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Preface

This book addresses the research area of anomaly detection algorithms, begin-
ning with conceptual foundations, and then delving into algorithmic details, with
examples drawn from several practical application areas. In one form or the other,
researchers have been studying anomaly detection for over a hundred years, mostly
with isolated results that are unknown to those who pursue other fields of enquiry.

Many new advances have been made in the past decades, partly thanks to the
rapid pace of advancements in pattern recognition and data mining, along with the
availability of powerful computer hardware that facilitates addressing problems that
were previously considered intractable. We still search for needles in haystacks, but
our task is far more likely to be achievable than in previous decades.

Anomalies arise in numerous fields of study, including medicine, finance,
cyber-security, sociology, and astronomy. Indeed, anomalies are believed to drive
scientific innovation, requiring us to develop an understanding of observations that
are not well explained by prior hypotheses and accepted beliefs. In some areas,
anomalies indicate problematic behavior, e.g., unusual purchases that indicate credit
card fraud. In some other areas, they may be indicators of positive outcomes,
e.g., unexpectedly higher sales within a retail organization. In other cases, they
may merely indicate ill-understood phenomena or unknown objects or processes,
triggering the exploration of new ideas that enrich the field of human enquiry.

Detection of anomalies is sometimes an art, sometimes a craft, and sometimes
just a matter of being lucky, as those who study subatomic particle physics or
astronomy will testify. Sometimes an anomaly detection methodology successful
in one domain can also prove successful in a completely new area of study, and
knowledge of the former can enable more rapid advances in the latter. It is hence
important to have a firm grasp of the principles and algorithms of anomaly detection,
and understand the scope of their applicability.

The first five chapters of this book comprise Part I, providing a gentle introduc-
tion to various concepts and applications of anomaly detection, and the flavors of
various distance measures and perspectives about the anomaly detection problem,
including anomalies seen as out-of-cluster points, and addressing the notion of
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anomalies in the context of time series, requiring specialized approaches. These
chapters are expected to be comprehensible by individuals with a bachelor’s degree
in any technical field, preferably with prior exposure to the fields of probability and
statistics.

The last four chapters comprise Part II, and build on Part I, focusing on
algorithms of various kinds; the explanations are written to be understandable by
students and professionals from various fields, although the implementation of some
of the more elaborate algorithms will require significant programming capabilities.
Fortunately, many of these algorithms have been implemented by others and readily
available from various sources on the internet. The most well-known algorithms
have been implemented in libraries available with many data mining tools, packages,
and libraries, such as Weka and MATLAB.

Unique features of this book include a coverage of rank-based anomaly detection
algorithms, recently developed by the authors, and ensemble algorithms that suc-
cessfully combine ideas from many individual algorithms. In addition, considerable
space is devoted to discussing anomaly detection problems that arise in the context
of sequential data or time series, i.e., where understanding the data requires knowing
the exact sequence in which different data points arise.

This book has been the product of several years of discussions and work
on applied research projects by the authors, and some algorithmic solutions and
perspectives have arisen as direct results of such exposure to difficult real-life
problems, many of which involve very large amounts of data. We thank our
collaborators for the past two decades for insights gained into such problems, as
well as several colleagues and students at Syracuse University who have participated
in discussions on these topics, with particular thanks to Yiou Xiao and Zhiruo
Zhao for assisting with the preparation of material in the book. Finally, we thank
our collaborators at Springer for encouraging this effort and demonstrating great
patience while delaying the production schedule over the past three years.

Syracuse, NY, USA Kishan G. Mehrotra
Syracuse, NY, USA Chilukuri K. Mohan
Syracuse, NY, USA HuaMing Huang
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Chapter 1
Introduction

Incidents of fraud have increased at a rapid pace in recent years, perhaps because
very simple technology (such as email) is sufficient to help miscreants commit
fraud. Losses may not be directly financial, e.g., an email purportedly from a family
member may pretend to communicate a photograph, clicking on whose icon really
results in malware coming to reside on your machine. As is the case with health
and other unpreventable problems faced by humanity, early detection is essential
to facilitate recovery. The automated detection and alerting of abnormal data and
behaviors, implemented using computationally efficient software, are critical in
this context. These considerations motivate the development and application of the
anomaly detection principles and algorithms discussed in this book.

A central aspect of several instances of crime is that scammers take advantage of
a potential of humans to confuse the plausible and possible with the not improbable.
It is certainly possible that someone’s relative is in jail, but if it hasn’t happened
before, and is not consistent with past behavior or experiences of that relative, then
one should consider the jailing of the relative (and his sudden need for money)
to be an abnormal or anomalous event that cannot be taken at face value. Based
on past experiences of multiple individuals, the probability of being scammed is
much higher than the probability of one’s relative suddenly being jailed in a foreign
country and needing money. Thus, the ability to identify anomalies, especially in
relation to the past history of oneself and others, is critical to one’s financial and
other kinds of safety.

Substantial efforts are expended towards detecting when attacks and other
problems occur, based on the principle that abnormalities in underlying behavior
manifest themselves in observations that can be used to separate them from
“normal” (non-attack) modes of behavior. The broad approaches in detection
include:

• Look for damage after damage has occurred (e.g., look for unexpected transac-
tions in a credit card bill);
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• Detect signs of damage (e.g., less data space available on hard drive than
expected);

• Pattern-match against known “signatures” of malware, Internet site addresses,
message routing paths, etc.; and

• Anomaly detection: compare against expected or normal behaviors or data.

Detection of anomalies is the focus of this book, and the next section discusses the
general principles associated with anomaly detection. Following detection, actions
can be taken to recover from the attack. These may include patching software holes,
deleting undesirable files, changing passwords, changing hardware, etc.; however,
such recovery aspects are application-dependent, and hence out of the scope of the
contents of this book.

The rest of this chapter discusses what we mean by an anomaly, and describes
some of the application areas wherein anomaly detection is essential. Later chapters
address anomaly detection algorithms in greater detail.

1.1 What’s an Anomaly?

Anomalies or outliers are substantial variations from the norm.1;2

Example 1.1 The results of an IQ test are expected to be around 100, with a standard
deviation (s.d.) of 15, as shown in Fig. 1.1. If an individual’s IQ test result is 115,
it varies from the norm, but not substantially, being only about one s.d. higher. On
the other hand, an individual whose IQ test result yields a score of 145 would be
considered anomalous since this value is higher than the mean by about three times
the s.d. This example is relatively straightforward since there is a single quantitative
attribute (IQ score) with a unimodal distribution (with well-known statistics) that
can be used to identify anomalies. Most real problems, addressed by anomaly
detection algorithms, are multi-dimensional, and may involve nominal or categorical
(non-numeric) values.

Anomaly detection approaches are based on models and predictions from past
data. The primary assumption of normal behavior is stationarity, i.e., the underlying
processes, that led to the generation of the data, are believed not to have changed
significantly. Hence the statistics that characterized a system in the past continue
to characterize the system in the future; in other words, what we have seen before
is what we expect to see in the future. Data that changes over time, in some cases,
may be characterized by long-term trends (e.g., increasing heights or lifespan among
humans), or by cyclic behavior.

1Some authors refer to “anomalies” in processes and “outliers” in data. This book uses the two
words synonymously.
2Aspects of anomaly detection are also studied under other names, such as ‘novelty detection’,
‘chance discovery’, ‘exception mining’, and ‘mining rare cases’.
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Fig. 1.1 Distribution of Intelligence Quotient (IQ) scores—Mean of 100, Standard Deviation
of 15

Fig. 1.2 Monthly sales for a retailer—December 2016 sales are anomalous with respect to prior
year December sales

Example 1.2 Consider the monthly sales of a retailer as shown in Fig. 1.2. Sales in
December 2016 may substantially differ from those in November 2016 and January
2017, due to the effect of a large volume of goods purchased during the Christmas
season. Those values may seem anomalous with respect to each other, but are not
anomalous with respect to the same months in preceding years. In order to make
predictions about January 2017, we need to rely on numbers from January months
in 2014–2016, while factoring in year-to-year trends (e.g., steady growth or decline).
In some such examples, we can rely on common-sense knowledge or a model of the
underlying process, which includes seasonality as well as annual trends. In other
cases, the first task is to identify such a model or process, or at least to characterize
the effects of an unknown process on observable data, so that one can estimate
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the likelihood with which a particular data point could have been generated by the
underlying (unknown) process, based on a characterization of what is reasonable (or
non-anomalous) from other observable data generated by the same process. With
monthly retail sales data, for instance, well-known time series modeling techniques
can uncover the trends and cycles underlying the data, even if we are not told in
advance that they represent retail sales; hence, even if December 2016 sales had
been approximately the same as November 2016 sales, they may be flagged as
anomalous (and alarming) if they are much lower than December 2015 sales. The
degree of anomalousness of a data point is thus dependent on the entire data set
available to us, not just the very recent data.

At first sight, it appears that the problem is one of classification, i.e., separating
data into two classes: anomalous and non-anomalous. It is tempting to address
this problem using well-known machine learning and classification algorithms, e.g.,
back-propagation neural networks, support vector machines, and decision trees (a
la CART). This, however, will rarely be successful since there is a drastic imbalance
between the two classes: anomalous data are much rarer than non-anomalous ones;
results obtained by classification algorithms will often result in too many false
negatives (i.e., not recognizing anomalies). Further, the various anomalous cases
may have very little in common. Finally, the occurrence of an anomaly may well
be within the same bounds as those characterizing non-anomalous data, and hence
not distinguishable directly by attribute values, but may require analysis of their
behavior with respect to subsets of neighbors or other data points (e.g., December
2016 using December 2015 and December 2014). This motivates the development
and application of carefully designed anomaly detection algorithms, along with an
understanding of their applicability and limitations.

The next chapter addresses critical questions relevant to the formulation of
anomaly detection algorithms:

• How is the norm characterized?
• What if there are multiple and substantially different cases, all of which can be

considered to be normal?
• What is considered to be a substantial variation, as opposed to a minor variation

from a norm?
• How do we address multi-attribute data?
• How do we address changes that happen over time?

In the rest of this chapter, we describe examples of application areas where anomaly
detection is useful, and sometimes necessary to perform certain critical tasks. The
applications mentioned here are cybersecurity, finance, health, defense, home safety,
industry, and science; several other application areas also utilize anomaly detection
algorithms.
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1.2 Cybersecurity

There are many aspects of cybersecurity, and the rest of this section discusses
those in which anomaly detection plays a critical role. We first present a motivating
example that illustrates the complexity of the problem.

Consider the example in which a criminal hacks into a normal user’s account
first; he then observes the user’s behavior, and eventually pretends to be the same
user in the system before launching malicious attacks. After surfing the system and
identifying weaknesses, a series of attacks are triggered to hack the system, to steal
data or achieve other objectives. During this entire process, each single attack may
look normal, but when the individual commands are linked together, an abnormal
pattern may be detectable. For example, if the number of times a system file is
explored is too high, compared with other users (especially the folder belonging
to administrators), that may indicate anomalous behavior. Similarly, anomalous
behavior may be characterized by the occurrence of an unusually high number of
system logins and logouts during non-working hours, or increased use of remote
“ssh” commands to connect to the system; but such behaviors can be inferred only
if observed over a relatively long period of time.

1.2.1 Privacy

Details of the bank accounts and medical records of Hollywood celebrities have
recently been exposed, with the ensuing loss of privacy of those individuals.
Selfies belonging to many Hollywood celebrities have been shared publicly on the
Internet because owners’ iCloud accounts have been hacked. These are instances of
violations of data privacy.

Confidential data private to individuals (such as family details, and medical
conditions) maybe non-financial but can eventually be used to gain unauthorized
access to financial assets. For example, information such as one’s mother’s maiden
name and social security number are frequently used to permit access to individuals
who may not have the passwords required to electronically access a bank account.
Other confidential information may be potentially embarrassing if revealed, so that
those who possess such information may extort a fee for remaining silent about the
same.

Access control mechanisms are usually in place but their implementation is
often flawed, with a false sense of security that is readily breached. Although it
is practically impossible to prevent inappropriate access (since individuals with
access may commit crimes or unknowingly provide access to others), measures
can be taken to identify rapidly the possible occurrences of privacy violations.
Anomaly detection algorithms can be used to monitor access to the data, and flag
variations from the norm, e.g., identifying when individuals (who may have access
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permissions) access data at time points that are anomalous when compared to their
prior access histories and the access histories of others with similar roles in the same
organization.

Loss of individuals’ private data may also lead to attacks on organizations where
the individuals are employed, with the potential theft of trade secrets and intellectual
property. This may eventually lead to the loss of markets and drastic reduction in
profitability, if competitors produce the same products at a lower price, since they
do not have to pay for the research costs undergone by the original organization.
Detecting anomalies in access patterns, along with the frequencies and patterns of
email and other communications of employees may assist in discovering potential
loss of confidential data.

1.2.2 Malware Detection

The traditional approach to detecting viruses and worms focuses on after-the-fact
recognition of their signature patterns, and looking for such patterns within program
code and data. However, this approach is inadequate in dealing with the sudden
influx of a new malware instance that does not match old malware signature patterns.
An anomaly detection approach would instead monitor the appearance and behavior
of malware to attempt to recognize variations from the norm.

1.2.3 Fraudulent Email

The Internet is periodically flooded with email messages that claim to originate from
financial, information technology, or other service providers with whom individuals
routinely conduct business. Many individuals are lulled into clicking on apparently
harmless websites, or providing their personal data to others who then participate
in fraudulent activities, or sell the personal data on the darknet. Anomaly detection
algorithms can be used to guard against such attacks, at the individual level as well
as by organizations protecting their users.

At the organizational level, the frequencies of messages from different sources
(IP addresses) can be monitored, and the variations in these may be flagged as
potential problems; similarly, anomalies may be detected in message sizes, based
on prior size distribution information. At the individual level, every email message
that doesn’t conform to some generic expectations can be flagged as potentially
harmful, e.g.,

• messages from unknown senders,
• messages that arrive at an unusual time of day,
• messages containing unusual typographical errors,
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• messages in which the form of salutation differs from previous forms of
salutations used by the same sender in the past,

• messages which ask the user to click on a link, and
• messages which explicitly ask the user to forward the message to others.

Each of the above is an anomaly detection task, focused on a different aspect of the
message.

1.3 Finance

Many cybersecurity attacks are focused on obtaining or misusing financial data
and resources of gullible individuals. However, such crimes are also committed
using other means, e.g., hardware or software installed at automated teller machines
(ATMs). The following are a few examples of the same.

1.3.1 Credit Card Fraud

Unauthorized usage of credit cards and debit cards is a major problem leading to
the theft or loss of billions of dollars every year. For example, in 2013, newspapers
reported that a very large retail and financial firm had been the subject of a major
incident of theft of millions of credit card numbers. Exact amounts of losses are
unknown, but the security of 40 million cards was compromised3; an additional
70 million people also suffered from potential breach of private data (such as
mailing address). Other well-known incidents include the 2007 card compromise
that affected 90 million customers, and the 2009 compromise affecting 130 million
credit cards. A 2016 research study predicted that the cost of data breaches will
increase to $2.1 trillion by 2019, almost four times more than the global cost of
breaches in 2015 [89].

Banks and credit card companies take many measures to facilitate the detection
of potential anomalies in credit card usage, e.g., the use of a card in a location
geographically distant from the specific user’s normal usage region, or to make pur-
chases of unusual items such as electronic equipment using amounts of money that
are unusual for that user. Yet many early fraudulent usage instances go undetected,
especially if they involve small amounts; the danger here is that these small amounts
may indicate a test, followed soon by a large fraudulent purchase using the same
card. Regular and periodic application of anomaly detection algorithms on recent
purchase data would help prevent such problems to some extent.

3The word “compromise” has come to acquire a technical meaning: the simultaneous loss of private
information for a large number of individuals, in a single data theft incident.
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1.3.2 Creditworthiness

An important source of revenue for banks is the interest on the loans they make
to individual consumers or businesses. Many of these loans are of relatively low
risk, and banks expect that the loans and interest will be repaid without problems.
However, a small number of these loans are not repaid, and lead to significant
losses for the banks, which are eventually passed on to other consumers, e.g., in
increased interest rates. Even when collateralized (e.g., home mortgages), banks
incur significant costs in the processes needed to claim the mortgaged property and
then monetize the assets. Hence it would be useful if the risk of defaulting on a loan
is substantially reduced at the time of making a loan; at the same time, qualified
people should not be denied loans (as has occasionally happened in the past with
racially biased decision-making). Accurate anomaly detection on the credit history
and other data from loan applicants is hence desirable.

1.3.3 Bankruptcy Prediction

Risk is inherent in any entrepreneurial venture, and a significant number of
companies file for bankruptcy every year, affecting the company’s owners (or
stockholders), employees, contractors and creditors. Detecting potential bankruptcy
at an early stage would be very helpful to all these stakeholders. Anomaly detection
algorithms have been applied successfully to the task of analyzing company
fundamentals (such as earnings) over time, to evaluate which companies are likely
to go bankrupt.

1.3.4 Investing

Stock prices fluctuate every day, and the investors’ holy grail is to predict the future
performance of a stock, making buy/sell/hold decisions on that basis. Accurate
prediction is practically impossible, with unpredictable market shocks that affect
stock prices. However, the performance of a stock over a short (recent) period of
time can be compared with its prior performance, as well as the performance of
other stocks of similar companies. This can help identify anomalies that may signify
that the company is outperforming or underperforming its competitors. Thus the
application of anomaly detection algorithms can provide valuable information to
potential and current investors in the company.
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1.4 Healthcare

Many aspects of human healthcare can be assisted by anomaly detection algorithms;
two primary areas are the diagnosis and monitoring of patients.

1.4.1 Diagnosis

Practically every diagnostic effort is based on data that shows abnormalities in the
patient’s behavior or vitals (easily observable data characterizing the patient, e.g.,
blood pressure). In some cases, accurate analysis of quantitative data describing the
patient is non-trivial, and would benefit from the application of anomaly detection
algorithms. A few examples are described below.

• EKG and EEG data: Electrocardiogram (ECG/EKG) data are time series that
measure the electrical activities of the heart. Arrhythmias are irregularities
in electro-cardiogram data, e.g., premature ventricular contraction (PVC) is a
relatively common cardiac arrhythmia that can be detected in EKG data by
comparison with normal EKG data. Automatic detection of PVC from EKG
data would significantly reduce the workload for cardiologists, and potentially
increase the detection rate of PVC. Arrhythmias are currently detected by visual
inspection conducted by a physician expert who may not always be at hand when
a patient is ill with cardiac problems; this task could potentially be performed
more efficiently by anomaly detection algorithms. Automation can also help
reduce potential human errors by overworked physicians.

A similar issue is that of identifying possible evidence of epileptic seizures
in patients, by examining electro-encephalogram (EEG) data for abnormal
variations; the scarcity of qualified neurologists suggests that the use of anomaly
detection algorithms could be helpful. In such cases, the anomaly detection
algorithms could at least serve triage purposes: a certain number of false positives
can be tolerated by a physician as long as the number of false negatives is near-
zero.

• Cancer Diagnosis: The classification of tumors as benign vs. malignant, from
radiographic image data, has long been known to be a task that is particu-
larly challenging because of the relatively small number of malignant cases.
Machine learning and classification algorithms have been applied to this problem.
Anomaly detection algorithms could be very helpful in this application, since
various malignant cases may not have much in common, beyond the fact that their
attributes differ significantly from benign cases. The hardest cases, of course, are
the malignant cases whose attribute values are indistinguishable from the benign
cases; identifying potential features that may help to distinguish them would be
helpful, prior to application of classification or anomaly detection algorithms.
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1.4.2 Patient Monitoring

For patients being treated for some serious health disorders, it is very important to
monitor progress and vital signs constantly, in order to determine the occurrence of
unexpected side effects of medications or surgery, requiring immediate attention
and additional emergency treatment in some cases. Unfortunately, due to the
large number of patients in a hospital, signs of an abnormality are sometimes
accidentally ignored or do not receive immediate attention. Similarly, elderly
and disabled individuals occasionally suffer from falls in their private residences,
without receiving immediate care. The application of anomaly detection algorithms
to alert care providers, based on appropriate sensors, is hence essential.

1.4.3 Radiology

The field of radiology often involves searching for unusual data in X-ray, NMR, and
other images. Anomaly detection algorithms can potentially assist in finding early
phase tumor, facilitating early detection of cancer.

1.4.4 Epidemiology

Viruses and bacteria evolve at a fast pace, and understanding them is vital for
at least temporary success in the arms race between medications and pathogens.
The fields of genetics, proteomics, and metabolomics can be assisted by anomaly
detection algorithms that may search for unusual mutations that may signal specific
diseases. Medical science would also benefit by identifying points in time at which
epidemiological data reveals that previously successful medications cease to be
helpful to patients, signifying the emergence of a drug-resistant mutation of the
responsible pathogen. Some such data can also be obtained from individual patients,
whose response to a medication may follow an unusual path, e.g., first appearing
to improve, then degrading rapidly. This may call for actions such as quarantine
procedures to prevent the epidemic spread of a new drug-resistant pathogen.

1.5 Defense and Internal Security

Defense and internal security application areas are similar to the problems faced in
the field of cyber-security, with the main difference being that observations may be
made of the behaviors of individual people or physical sensors.
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1.5.1 Personnel Behaviors

Unusual behaviors of people in public places (such as airports) may indicate intent
towards planned violent activities. The behaviors may be observed using video-
cameras with limited regions of surveillance, installed in multiple public areas,
and monitored by security personnel. Based on the frequent observed behaviors of
people, normal patterns may be established with respect to how people tend to move,
and variations from these patterns represent anomalies which can be detected and
investigated. The application of automated anomaly detection algorithms to such
video data is a non-trivial task, especially since human subjects may move between
the regions monitored by different cameras, making it difficult to establish a clear
narrative regarding each individual subject’s behavior over an extended period of
time. There is also a potential for many false positive reports, since anomalous
behavior may be symptomatic of illness or confusion on the part of the subjects,
rather than violent intent. Indeed, the latter cases are extremely rare, making their
characterization difficult. An additional difficulty is that individuals with violent
intent may be well aware that they are being monitored, and hence take extra care
to appear ‘normal’ until an actual violent event begins to be carried out.

1.5.2 Battlefield Behaviors

In the military scenario, efforts are made to infer the tactical intent of an opposing
party from observable behaviors. Several classical battles have been won or lost
when one party conducts unusual movements of forces which are not foreseen by
the other party, even when the latter has greater strength in numbers or equipment.
For instance, an ambush or feint or a pretend attack by the first party with a
small number of forces may be intended to make the second party respond in a
predictable way which is advantageous to the first party which plans on a tactic that
has not been considered by the second party. Models would be constructed by each
party regarding possible intentions of the opposing party, evaluating the most likely
courses of action that may be taken. Variations from these expectations should lead
to questioning the model, and evaluation of alternative models to see if they would
fit better with observed data. If none of the current models fit well with the data,
closer monitoring and readiness to take actions would be required.

1.5.3 Unconventional Attacks

Although there is broad agreement around the world on avoiding chemical and
nuclear warfare, there have been some occasions where these expectations have been
violated by individual governments or factions. The potential for their use hence
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cannot be ruled out, requiring monitoring of signs indicating the accumulation of
such agents as well as their use or experimentation, e.g., byproducts of chemical
reactions or radioactive decomposition. Some such data may come from chemical
monitoring stations, while others may come from satellite images. In some cases, the
relevant anomalies may be detected based on evidence of unusual activities, such as
the movements of individual scientists or high level military officers to unexpected
locations. As in the case of malware, looking for a specific pattern may not yield
sufficient information, but looking for variations from known normal behaviors
may be much more helpful.

1.6 Consumer Home Safety

Anomaly detection algorithms, assisted by sensors that are becoming ubiquitous in
the home, can help with problems encountered in many households, some of which
are discussed below.

1.6.1 Detecting Occurrence of Falls and Other Problems

Many disabled and senior citizens live alone or in environments with very little day-
to-day human contact and direct monitoring. Disabilities as well as weakened bone
structures frequently result in falls and medical emergencies from which they may
be unable to recover by themselves. Unfortunately, those who can help them may not
have scheduled visits to occur close to the time at which such incidents occur, so that
easily addressable problems escalate in intensity to life-threatening situations. Some
simple technologies, e.g., using accelerometers embedded in smart phones, can help
detect some such situations, but do not address other scenarios where falls tend to
occur, e.g., in bath-rooms or bed-rooms where individuals do not carry smart phones
on their bodies. However, strategically placed vibration and acoustic sensors may
help in such situations, accompanied by anomaly detection algorithms that trigger
alarms (with medical personnel or relatives) only when the sensed data indicates
abnormal behavior, varying significantly from characteristics of data collected over
a prior period of time during which no falls are known to occur. The efficacy of this
approach depends critically on the accuracy of the anomaly detection algorithms:
too many false positives would be annoying since they result in excessive caregiver
resource consumption and desensitization to true alarms; on the other hand, even a
single false negative (undetected fall) would degrade confidence in the usefulness
of the system, negating its utility.
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1.6.2 Home Perimeter Safety

Signs of break-ins and burglaries are now routinely detected by sensors placed near
windows and doors, and can be monitored by security organizations, at costs that
vary from provider to provider. However, false alarms sometimes occur, resulting
in wasted resources, as in the case of false positives in fall detection (discussed
above). It may then be reasonable to use evidence from multiple sensors to confirm
possible break-ins, before deploying human personnel and law enforcement officers
to the possible scene of a crime. For instance, we may expect that if a sensor in
one location is tripped by an intruder, this would be followed closely by another,
assuming humans are moving at a reasonable pace through the house. On the other
hand, if a sensor was tripped by a tree branch, a squirrel or a deer on the lawn
close to a window, we would expect that the sensor behavior pattern would be
quite different, e.g., exactly one sensor may be tripped, possibly multiple times in
quick succession. This calls for the application of pattern recognition and anomaly
detection algorithms, with data collected from “normal” and “abnormal” behavior
that may be simulated experimentally.

Additionally, in regions where the incidence of crime is relatively high, periodic
monitoring of local traffic and pedestrian behaviors may reveal “normal” patterns
of behavior within a specific neighborhood, variations from which may trigger
additional monitoring or deployment of law enforcement resources. For instance,
people living in a neighborhood may generate an entry into a neighborhood database
whenever they see an unknown vehicle enters their neighborhood, and these may
be linked to a law enforcement database that keeps track of stolen vehicles or
those suspected of involvement in other crimes. Multiple sightings of the same
vehicle or individuals, assisted by an anomaly detection algorithm, may trigger an
investigation into the possibility of a break-in being planned.

1.6.3 Indoor Pollution Monitoring

Many sensors currently exist to monitor the concentrations of carbon-monoxide and
volatile organic compounds. In large cities, it is also important to monitor the levels
of particulate air pollutants and sulfur-di-oxide. The effective use of such sensors
would be in collusion with anomaly detection algorithms that can sense potential
problems before they actually occur, e.g., using information from external sensors,
weather data (e.g., wind velocity), and variations in pollutant density gradients,
along with data relevant to “normal” conditions.
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1.7 Manufacturing and Industry

Anomaly detection algorithms can be particularly useful in manufacturing and
industry scenarios since they can help catch potentially serious problems at a very
early stage.

1.7.1 Quality Control

Statistical change detection algorithms have been used for a long time for quality
control in manufacturing organizations, triggering alarms when sampled output
characteristics of a product fall below expected quality constraints. In general,
fluctuations in the underlying process may be detected by drastic changes in specific
sensor data measurements. These may be considered to be simple anomaly detection
algorithms.

In addition, anomaly detection can be applied to data from multiple sensors
located at various points in the monitored manufacturing environment. In addition
to identifying problems after they have occurred, anomalies may be detected
in unusual patterns of various sensor data, indicating possible locations in the
manufacturing environment where faults or failures have occurred. For example,
if the “normal” behavior of two adjacent sensors (possibly measuring different
attributes or features of the system or its products) over time involves a linear
relationship, with previously measured gradients, then a significant variation in this
relationship may be detected as anomalous, triggering further investigation.

1.7.2 Retail Sales

Many retail organizations have to constantly monitor their revenues and earnings, to
facilitate planning as well as to identify any potential disasters at an early stage. This
involves constructing time series of sales data, and analyzing fluctuations in sales,
comparing them to prior values, while factoring in various trends and relationships
to periodic cycles and external events. Anomaly detection algorithms can play a
useful role in this context, helping to separate insignificant fluctuations (noise) from
potentially meaningful variations with significant implications for the future plans
of the organization.
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1.7.3 Inventory Management

Many retail and other organizations maintain inventories of various products and
raw materials, and their effective management is an important factor influencing
profitability, especially when demand fluctuates drastically over time. Difficulties
arise when an organization does not have a product available for sale when
there is a sudden surge in demand; conversely, maintaining extra inventory (in
anticipation of a demand surge) can be expensive. Finally, some organizations are
plagued by occasional occurrence of theft by employees or outsiders, which may
only be detectable by effective inventory management and monitoring. Anomaly
detection algorithms can play a role in this context, e.g., by enabling formulation
of mathematical models or case data that describe “normal” behavior of inventory
data (collected over time), and triggering warnings when such expectations are
significantly violated.

1.7.4 Customer Behavior

Most organizations are constantly striving to determine how best to allocate
resources to maximize profit or revenue, by understanding customer behaviors.
Anomaly detection algorithms can be considered to be one aspect of data mining
efforts in this context. Past data can be analyzed to model customers’ typical
purchasing behaviors, and analyzing the subclasses of behaviors wherein pur-
chasing increases or decreases with time, perhaps as a result of a change in
store configuration or website. The application of anomaly detection algorithms
can enable detecting variations from such models, triggering investigations into
probable causes and possible remedies.

In addition to purchasing, customer behaviors may also be relevant to identify
potentially unacceptable actions or deception, e.g., in applications such as money
laundering. Anomaly detection algorithms can then pursue three directions: compar-
ing an individual’s behavior to his own past behavior, or to the behavior of others in
the group or category to which he belongs, or to the behavior of the entire collection
of customers. Such monitoring may also reveal fraud being perpetrated by other
individuals, who may have gained unauthorized access to a customer’s account.

1.7.5 Employee Behavior

Many organizations performing sensitive actions need to be extremely sensitive to
the possible damage caused by a few errant employees who may have access to
organizational resources in the course of normal performance of their everyday jobs.
Indeed, some of the largest known fraudulent financial manipulations have been
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identified as occurring due to the unusual activities of a small number of individual
employees, which could be detected by the passive monitoring of their actions using
anomaly detection algorithms.

External agencies can also apply anomaly detection algorithms to determine
whether fraud is being perpetrated by the principals of an organization. For example,
a famous Ponzi scheme could have been detected early by investigators if they
had analyzed the promises of high guaranteed returns made by the organization to
investors; such promises are well outside the norms of other stockbrokers and hedge
funds, including even the most successful members of this group. The promise
of high returns along with substantial opacity in the investing philosophy of the
organization should have triggered warning bells.

In addition to financial organizations, retail stores must monitor their employees
to maintain productivity and integrity; this may again be assisted by anomaly
detection algorithms.

1.8 Science

The application of anomaly detection algorithms is ubiquitous in science. Indeed,
according to one perspective, progress in science occurs due to paradigmatic revo-
lutions caused by the discovery of anomalous data that contradict well-established
models [78]. We consider below a few examples of anomaly detection in everyday
scientific practice, rather than revolutions.

The SETI project involves large scale efforts utilizing thousands of computers
that have been launched to analyze electromagnetic data received by the earth,
searching for anomalies that may indicate possible transmission of meaningful
signals by intelligent extra-terrestrials. More successful have been efforts applied
in the search for planets and stars with unusual behavior (compared to most other
objects), revealing the existence of planets whose temperature and composition
enables the occurrence of liquid water, hence presumed to be hospitable to life
similar to that on earth.

More routinely, the not-so-remote skies are periodically scanned with telescopes
to discover any unusual objects that do not fall into the categories of known objects
such as satellites; such monitoring is conducted to evaluate potential threats from
other nations as well as natural objects in space that may be heading towards the
earth. Even when they do not approach the earth, large natural objects flying through
space have allowed us to learn much about the universe and its composition.

Other scientific applications of anomaly detection include the search for new sub-
atomic particles, the discovery of new species from paleontological records, and the
detection of new strains of disease-causing organisms.
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1.9 Conclusion

This chapter presented the motivation and several application areas for anomaly
detection algorithms. There is a great need to develop general-purpose as well as
problem-tailored anomaly detection techniques, which must be adapted to keep pace
with the latest changes in technology which may result in new vulnerabilities in
various systems. Anomaly detection techniques must be efficient enough to catch
the small amount of outliers within large data flows, and must also be smart enough
to catch anomalies over time periods that may be short or long.

losses to individuals or companies. An inability to detect cyber-attacks and financial
fraud can lead to the suspicion that our existing financial and other infrastructures
are not safe, since it is unknown whether serious financial crimes are being
conducted right under our noses. This leads to the fear that the whole economic
system may come crashing down at any minute, thanks to the combination of rogue
actors, impotent institutions, careless system-builders, and ignorant individuals.

In the next few chapters, we discuss general principles underlying anomaly
detection. This is followed, in Part II, with the details of specific anomaly detection
algorithms, some of which have been developed in the very recent past.

The need for anomaly detection algorithms goes well beyond direct financial



Chapter 2
Anomaly Detection

Anomaly detection problems arise in multiple applications, as discussed in the
preceding chapter. This chapter discusses the basic ideas of anomaly detection,
and sets up a framework within which various algorithms can be analyzed and
compared.

2.1 Anomalies

An anomaly is a “variation from the norm”—this section explores this notion in
greater detail.

Many scientific and engineering fields are based on the assumption that processes
or behaviors exist in nature that follow certain rules or broad principles, resulting
in the state of a system, manifested in observable data. From the data, we must
formulate hypotheses about the nature of the underlying process, which can be
verified upon observation of additional data.1 These hypotheses describe the normal
behavior of a system, implicitly assuming that the data used to generate the
hypotheses are typical of the system in some sense.

However, variations from the norm may occur in the processes, hence systems
may also exist in abnormal states, leading to observable data values that are different
from the values observed when no such process/state variations occur. The task of
anomaly detection is to discover such variations (from the norm) in the observed
data values, and hence infer the variations in the underlying process. A fundamental
problem is that there is no simple unique definition that permits us to evaluate how
similar are two data points, and hence how different is one data point from others in
the data set. As pointed out by Papadimitriou et al. [92],

1In some cases, the inputs to a process can be perturbed, and the resulting changes in the output
data observed.
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“. . . there is an inherent fuzziness in the concept of outlier and any outlier score is an
informative indicator than a precise measure.”

When an anomaly detection algorithm is applied, three possible cases need to be
considered:

1. Correct Detection: Detected abnormalities in data do correspond exactly to
abnormalities in the process.

2. False Positives: The process continues to be normal, but unexpected data values
are observed, e.g., due to intrinsic system noise.

3. False Negatives: The process becomes abnormal, but the consequences are not
registered in the abnormal data, e.g., due to the signal of the abnormality being
insufficiently strong compared to the noise in the system.

Most real-life systems are such that 100% correct detection is impossible. The task
of the data analyst is to recognize this fact, and devise mechanisms to minimize both
false positives and false negatives, possibly permitting more of one than the other
due to considerations of asymmetrical costs associated with these.2

To account for the occurrence of false positives and false negatives, we may
set up the anomaly detection task as one of estimating the likelihood that any
given point is an anomaly, rather than classifying whether it is anomalous. Another
frequently used perspective is to evaluate the relative anomalousness of different
points: we may say that a point p is more anomalous than another point q, but may
not be certain whether either is a true anomaly. To address this task, a possible
scenario is to employ an algorithm to identify ten data points, rank-ordered, as
being the most likely anomalous cases. These ten cases provide a starting point for
human analysis or intervention, although all ten may turn out to be manifestations
of acceptable behavior.

In the cybersecurity context, anomaly detection algorithms must account for the
fact that the processes of interest are often neither deterministic nor completely
random. Indeed, the difficulties encountered in cybersecurity applications can often
be attributed to human actors with some free will. In other words, the observable
behaviors are the result of the deliberate (non-random) actions of humans who are
not predictable since their intentions are unknowable and their plans may change in
unexpected ways. At best, making some observations over time can reveal a pattern
that may be expected to continue, leading to some predictability. The human intent
or plan causing that pattern may itself abruptly change, especially in response to
cyber-defense mechanisms placed to thward previous plans, but such changes are
not expected to occur very often.

2In medical diagnosis of tumors, for instance, it may be safer for preliminary analysis to permit
more false positives than false negatives due to the much higher risk associated with missing a
malignant tumor; however, an excess of false positives will render the analysis unsatisfactory.
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2.1.1 Metrics for Measurement

To evaluate the performance of the algorithms, three metrics are often used:
precision, recall, and Rank-Power [10, 17, 86, 103]; these are defined below.

Given a data set D , suppose an outlier detection algorithm identifies m > 0

potential anomalies, of which mt.� m/ are known to be true outliers. Then
Precision, which measures the proportion of true outliers in top m suspicious
instances, is:

Pr D mt

m
;

and equals 1.0 if all the points identified by the algorithm are true outliers. If D
contains dt.� mt/ true outliers, then another important measure is Recall, defined
as:

Re D mt

dt
;

which equals 1.0 if all true outliers are discovered by the algorithm.
For the credit card transaction fraud example, if the data set contains 1,000,000

transactions of which 200 are fraudulent, an algorithm which considers all data to
be anomalous exhibits Pr D 0:0002 and Re D 1:0, whereas an algorithm with 8 true
positives (anomalies) and 2 false positives exhibits Pr D 0:8 and Re D 10=200 D
0:05.

Precision and recall are insufficient to capture completely the effectiveness of an
algorithm, especially when comparing algorithms that result in different numbers of
anomalies.

In particular, precision can take a small value just because m is large. One
algorithm may identify an outlier as the most suspicious while another algorithm
may identify it as the least suspicious. Yet the values for the above two measures
remain the same. Ideally, an algorithm will be considered more effective if the
true outliers occupy top positions and non-outliers are among the least suspicious
instances. The “RankPower” metric [107] captures this notion. Formally, if Ri

denotes the rank of the ith true outlier in the sorted list of most suspicious objects,
then the RankPower is given by:

RP D mt.mt C 1/

2
Pmt

iD1 Ri
:

Rank-Power takes maximum value 1 when all dt true outliers are in top dt positions.
When algorithms with the same m are compared (e.g., each of them identifies 30
data points as outliers), the larger values of all three of these metrics imply better
performance.
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Example 2.1 Consider a dataset D of size n D 50 that contains exactly 5 anomalies.
Suppose that an anomaly detection algorithm identifies m D 10 data points as
anomalous, of which mt D 4 are true anomalies. In addition, let the true anomalies
in D occupy ranks equal to 1, 4, 5, and 8 in the sorted list of truly anomalous data
points. Then,

Pr D 4

10
D 0:4; Re D 4

5
D 0:8; and RP D 4 � 5

2.1 C 4 C 5 C 8/
D 0:56:

2.1.2 Old Problems vs. New Problems

Some anomalies may have been encountered previously in data, e.g., due to past
attacks which were identified and not forgotten. Prior data analysis may then have
identified signatures of patterns associated with such anomalies. For example, many
viruses have been cataloged based on the effects they produce, or the occurrences
of certain code fragments within the viruses. Rules have been formulated to detect
such occurrences, and anti-malware software routinely applies such rules to help
isolate potential malware. We then consider the analyst’s problem as consisting of a
classification task, identifying which data belongs to the “safe” category, and which
data belongs to each known malware category. Learning algorithms (such as Support
Vector Machines[29] and backpropagation-trained Neural Networks [85]) have been
used to develop models that enable analysts to perform this classification task.

However, the classification approach can work only in detecting known problems
of specific kinds, whereas the greatest damage in cyber-security applications is
caused by unknown problems newly created by bad actors. Furthermore, there exist
problems whose manifestations in the data do not admit simple categorization;
hence amelioratory actions cannot be performed rapidly enough to prevent a
catastrophe, e.g., when an employee gives his password to someone over the
telephone, and the security of a sensitive system is compromised.

In such cases, anomaly detection procedures and algorithms are called for. The
basic assumption remains that the observable data do reflect anomalies in the
underlying process or behavior. However the corresponding changes in the data are
not expected to follow previously known patterns. We seek to detect that something
has gone wrong, even if we are unable to say exactly how or why that has happened;
we may not have an explicit model, pattern or rule that describes the anomalies.

2.1.3 What Kind of Data?

Most data analysis begins with the assumption that some process exists, and that
there are rules, guidelines, or physical principles governing the possible randomness
in the data. Another assumption is that the characteristics of this process hold in the
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entire set of data, e.g., a sample containing only 10% of the data should be expected
to have the same distribution as the entire data set. For data observed over time, the
same trends or cycles are expected to be observed in any reasonably large3 subset of
the data, whether the subset is drawn from the early or late part of the time sequence.

The choice of the anomaly detection algorithm should depend on the nature of
the process generating the anomaly. For example, when the relevant process is the
occurrence of a malware infection, the observed data may be the values stored in
certain memory locations, which vary from values expected in the absence of an
infection.

Example 2.2 The “threads” currently running on a computer’s processors may be
observable. Some threads represent normal activity for a given time of day and for
given users. But other threads may provide evidence that an unexpected computer
program is currently executing, the “process” that resulted in the specific observable
“data” (set of threads). Each “data point” is then a binary vector indicating which
programs are active and result in observable threads. An anomaly corresponds to
an unexpected set of programs being active, i.e., a bit vector substantially different
from “expected” or normal cases. Even though the dimensionality of such a space
is 2n where n is the number of programs, the “normal” cases may correspond to a
relatively small set of possibilities since only a few programs may be expected to be
simultaneously active in most circumstances.

In more interesting cases, analysis needs to be performed over time, as illustrated
by the following examples:

• The precise sequence in which certain processes are executed may be important
to signify malware.

• The time sequence of Internet nodes over which a message is routed, signifying
whether it is anomalous.

• We may consider behaviors of individuals: a single snapshot may not indicate
anything wrong, but a series of observations of the same individual (over time)
may indicate variations from the norm.

2.1.4 What’s a Norm?

We have already used words such as “normal” quite often, without clear definitions.
But rigor comes with the risk of mortis: circumscribing the permitted meaning of
a term may limit flexibility in its usage, and exclude desirable variants of meaning.
We seek the middle path, i.e., providing a rough but flexible definition.

Statisticians have long used the notions of (arithmetic) mean, median, and mode
to capture the norms associated with distributions. Each of these is a single scalar

3The sample must be measured over a time period substantially larger than the length of the cycles
in the data.
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or multidimensional vector, and the distance of a point from the mean (or median
or mode) has been used to assess the degree to which the point is “abnormal”. Use
of the Mahalanobis distance [84], with the standard deviation along each dimension
as a normalizing factor, removes the potential confusion due to incommensurable
dimensions. If the data distribution is normal, the Mahalanobis distance measure has
an important property: it is the square root of the log likelihood of a point belonging
to the distribution, i.e., an indication of how “anomalous” is the point relative to the
data.

But with non-normal (and multi-modal) distributions, this straightforward inter-
pretation no longer applies. Hence we seek to describe the “norm” as a set of points
rather than a single point. For example, the norm may consist of a collection of
“cluster centroids” or alternatively the boundaries of clusters. In order to consider
a point to be “abnormal,” it must be substantially distant from each of the points in
the norm.

Also, if the data set is characterized by variations in density over clusters in
space, such variations must also be accounted for in determining whether a point is
abnormal. For instance, a larger distance may characterize an anomaly near a less
dense cluster, whereas a smaller distance is reasonable for an anomaly near a more
dense cluster. Local density, i.e., the number of data points in a unit (hyper)volume,
then turns out to be a critical notion in identifying which points are more anomalous.
Indeed, some anomaly detection algorithms rely on local density estimation and
distance calculations that take local density into account.

The next section begins with very simple data, and we steadily work up our way
through more complex cases.

2.2 Outliers in One-Dimensional Data

Quantitative data is often analyzed by computing the statistics describing its
distribution. For clarity, we begin with single-dimensional quantitative data, i.e.,
each data point is a single number. Further, we begin with the simplest possible
distributions, which have been well-studied:

• Uniform Distribution: When data is distributed uniformly over a finite range,
the mean and standard deviation merely characterize the range of values. If the
neighborhood of any data point is as richly populated as any other point, it can be
argued that there are no anomalous data points, even though the extreme lower
and upper limits of the range are relatively far from the mean. One possible
indication of anomalous behavior could be that a small neighborhood contains
substantially fewer or more data points than expected from a uniform distribution.

• Normal Distribution: When data is distributed normally, the density of points
decreases substantially as we move away from the mean. About 0.1% of the
points are more than 3� (three standard deviations) away from the mean, and only
about 5�10�8% of the points are more than six standard deviations away from
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the mean.4 Hence it is often the case that a threshold (such as 3 � � ) is chosen,
and points beyond that distance from the mean are declared to be anomalous.
One contrary perspective is that the existence of some points far away from the
mean is just a consequence of the fact that a variable is normally distributed. We
may hence argue that a set of points (away from the mean) is anomalous if and
only if their number is substantially higher than the number expected if the data
were to be normally distributed, e.g., if 2% of the data points are found beyond
the 3� threshold.

• Other Unimodal Distributions: Many unimodal distributions are not normal, e.g.,
when there is a strict lower bound for the range of data values. Examples include
log-normal and Gamma distributions. As with the normal distribution, if the
nature and characteristics of the distribution are known, one may seek to find
thresholds beyond which a relatively small number (e.g., 1%) of the data points
are found. We may again argue that a collection of points (in a small region of the
data space) is anomalous if their number is larger than predicted by the statistics
of the distribution.

• Multimodal Distributions: The distributions for some data sets have multiple
modes, discovered only when the data is closely examined. Heuristics such as
the 3� rule are not useful with such distributions. Instead it is more useful to
think of the data as consisting of a collection of clusters of data points.

Clustering plays an important role in anomaly detection. Points which do not
belong to any cluster are candidates to be considered anomalous. In particular,
points which are distant from neighboring clusters are the logical anomaly choices
for any anomaly detection algorithm. What remains is the clarification of when a
collection of points should be considered a cluster, and what it means for a point to
be considered sufficiently distant from a cluster (or multiple clusters).

The informal definition of a cluster is that it is a collection of points that are near
each other—leaving open the task of defining “near.”

1. Density-based cluster identifications are very popular in identifying anomalous
data. If the relative number of points (per unit distance) is substantially higher in
a small region than the entire data set, the points in that region can be considered
as a cluster. This is still not a strictly mathematical definition, since the phrases
“small region” and “substantially higher” are inherently fuzzy. The distribution
of densities can itself be analyzed, and (if unimodal) we can identify the density
threshold beyond which the density is high enough to consider a region to contain
a cluster. Note that the same data set may contain one region of higher density
and another region of lower density that may also be considered to be a cluster.

2. Another perspective is to compare intra-group distances with inter-group dis-
tances, and argue that points form a cluster if they are substantially closer to
each other (on average) than they are to the nearest points outside the cluster.

4This is the origin of the “Six Sigma” principles, although the usually stated goal of 0.00034%
defect rate corresponds to 4:5� , not 6� .
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Unfortunately, there are some data distributions in which this definition leads
to trivial cluster identifications (e.g., placing almost all the points in the same
cluster).

With either of the above definitions, note that some points may lie outside
clusters. Some clustering algorithms allocate every point to some cluster, which
is not necessary. Other algorithms assume that the number of clusters is fixed (and
predetermined or provided by the user); this is again not necessary.

When clustering-based approaches are used for anomaly detection, points inside
clusters of a minimal size are usually not considered to be anomalous. This “minimal
size” is again an externally specified parameter, such as a threshold based on the
distribution of sizes of clusters in the data set.

Not all points outside clusters need to be considered equally anomalous. One
point may be considered “more anomalous” than another if it is farther away from
the nearest cluster—where this distance itself may be evaluated in different ways
(e.g., distance to the nearest point in the cluster, or distance to the centroid of the
cluster).

2.3 Outliers in Multidimensional Data

The ideas described earlier may be extended to multidimensional data; however,
increasing dimensionality results in additional complications. The fundamental
issues involve the choice of the distance measure: the Euclidean distance mea-
sure may not be appropriate since it may be combining numbers with different
dimensionality, but the choice of a common scaling factor is not obvious for all
dimensions. In attempting to evaluate which of two points (outside all clusters) is
closest to a cluster, for instance, the distance measure chosen may determine the
winner. Normalization, e.g., linearly scaling data values along different dimensions
to lie in the same range, is often needed, but raises the question of what kind of
normalization is best; extreme values may distort the results of simple normalization
approaches.

An interesting complication arises when one of the relevant dimensions (or
attributes) is time, which needs to be given special status. In particular, “time series”
data involve three attributes: one is a label (identifying an object), another indicates
(absolute) time, and the third is a numeric value. Time values come from a fixed and
discrete range, and the usual assumption is that data points exist for each label and
each permissible time point.

Two kinds of problems arise in this context:

1. If only one time series exists, i.e., all data points carry the same “label,” then a
relevant question is whether one portion of the time series differs substantially
from the rest.

2. Multiple time series may exist, and we need to determine which time series
is substantially different from most of the others. For example, in practical
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applications that arise in financial applications, we are often interested in learning
whether one time series changes values in lock-step with other time series, even
if the actual data values are different. If a time series does not change in such
lock-step manner with other time series, it could be considered anomalous. If
the data values refer to stock/share prices, the number of outstanding shares of
two companies may differ, so that two stocks may have similar variations in time
even though the prices at any given instant may differ substantially. Algorithms
have to be devised to determine whether this is the case, perhaps after linearly
normalizing all stock prices to be in the same range.

In evaluating anomalies in behaviors of individuals or systems, three kinds of
comparisons can be performed:

1. How does the behavior of the individual at a given time (or during a specific
time period) compare with his own behavior in the past? For example, does
one’s credit card record for one month show purchases of a substantially higher
magnitude or purchases of a different category than the past?

2. How does one’s behavior compare with the behavior of all the other individuals
for whom data is available? For instance, do an auto salesman’s sales figures
continue to rise even when almost all auto sales figures in the country are
decreasing?

3. How does the behavior of one member of a cluster or sub-population of
individuals compare with that of other members in the same cluster?5 For
instance, are the sales figures for a Toyota salesman in Syracuse uncorrelated
with those of other Toyota salesmen in Syracuse?

2.4 Anomaly Detection Approaches

This section presents the main principles underlying different algorithms and
approaches used for anomaly detection, particularly in the context of cyber-security.
The primary approaches can be characterized as distance-based, density-based, and
rank-based.

• Distance-based: Points that are farther from others are considered more anoma-
lous.

• Density-based: Points that are in relatively low density regions are considered
more anomalous.

• Rank-based: The most anomalous points are those whose nearest neighbors have
others as nearest neighbors.

5The usual expectation is that the observable data variables that describe the “behavior” are not
used in the clustering step.
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For each of these approaches, the nature of the data may be supervised, semi-
supervised, or unsupervised.

• In the supervised case, classification labels are known for a set of “training” data,
and all comparisons and distances are with respect to such training data.

• In the unsupervised case, no such labels are known, so distances and comparisons
are with respect to the entire data set.

• In semi-supervised problems, labels are known for some data, but not for most
others. For instance, a few cases of malware of a certain new category may be
available, and a semi-supervised learning algorithm may attempt to determine
which other suspected cases of malware belong to the same category. Algorithms
often proceed in multiple phases, with the early phase assigning tentative labels
to unlabeled data.

An unsupervised anomaly detection algorithm should meet the following char-
acteristics:

1. Normal behaviors have to be dynamically defined. No prior training data set or
reference data set for normal behavior is needed.

2. Outliers must be detected effectively even if the distribution of data is unknown.
3. The algorithm should be adaptable to different domain characteristics; it should

be applicable or modifiable for outlier detection in different domains, without
requiring substantial domain knowledge.

2.5 Evaluation Criteria

Every anomaly detection problem appears to have different characteristics, and an
algorithm that performs well on one problem may not perform well on another.
Indeed, it is difficult to characterize what it means to “perform well,” and three
questions can be posed in this context:

1. Can quantitative metrics be devised so that we can unambiguously say which
of two data points in a given data set is “more anomalous”—without appealing
to human intuition? An answer is required in order to minimize the number of
false positives generated by anomaly detection algorithms, particularly in the
unsupervised and semi-supervised contexts.

2. Each anomaly detection algorithm answers the above question in a procedural
way, e.g., based on distance to k nearest neighbors. Can this implicit choice be
justified on mathematical or rational grounds?

3. In some cases, algorithms also appeal to the desire to compute the results in
a “reasonable” amount of time, ruling out the search for optimal solutions. In
such cases, can we say anything about the quality of the obtained solutions when
compared to the optimal solutions?
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Information theory provides a possible answer to these questions. A high-level
basis for this approach is that many real-life processes are amenable to succinct
descriptions of their essence.6 Hence a variation from such a succinct description of
the process should be considered an anomaly.

Example 2.3 Perhaps a quadratic curve can be fitted through ten points with a small
threshold of tolerance (i.e., permitted distance from the curve). But a fourth degree
curve may be needed to fit twelve points that include these ten; we may hence argue
that the two additional points require multiple additional parameters, hence a longer
description. Those two points may then be considered anomalous.

Multimodal distributions with ellipsoidal peaks capture the characteristics of
many realistic problems; the model learning step would be to obtain the parameters
of such a distribution, e.g., the number, locations, and standard deviations (along
different dimensions) for the peaks, using a learning algorithm based on Mixture of
Densities, Kernel Regression, Support Vector Machines, or Radial Basis Function
approaches. We may then consider the extent to which each data point varies from
the expectations of such a model.

For the same data set, multiple models are possible, and the ones with greater
model complexity may result in smaller error, at the potential cost of over-fitting
and poor generalization (to new data for the same problem). Researchers in
machine learning and statistics have addressed this tradeoff in many ways, e.g., by
regularization, searching for a model that optimizes a linear combination of model
complexity and system error. Another “minimal description length” (MDL) [100]
perspective is to minimize the total number of bits needed to describe the model
as well as the deviations of data from the model. The related “Akaike Information
Criterion” (AIC) [6, 61] minimizes the sum of the number of model parameters k
and the logarithm of the maximized likelihood function for the model; an additional
correction factor of k.k C 1/=.n � k � 1/ is applied to account for finite sample size
n. AIC and MDL can be shown to be very similar, except that the latter multiplies
the model complexity penalty by an extra term.

Information content can then be obtained by comparing the actual data to the
(multimodal) distribution believed to characterize most of the data, obtained using
a learning algorithm as mentioned above. Given a data set D characterized by a
(learned or known a priori) distribution D, we may argue that a point p1 is more
anomalous than a point p2 if .D � fp2g/ has greater deviation from D than does
.D � fp1g/.

Alternatively, for each point p in the data set D , we may evaluate the probability
PD.p/ with which it is drawn from that distribution D. We then say p1 is more
anomalous than p2 if PD.p1/ < PD.p2/.

It is also useful to have an absolute notion of anomalousness, in addition to the
relative one above. Given a probability threshold � , we may say that a point p is
anomalous if PD.p/ < � . Results would depend on the user-determined parameter

6Understanding is compression, comprehension is compression!—G. Chaitin [18].
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� : a relatively high value of � (e.g., 0.1) may lead to the conclusion that too many
points are anomalous, whereas an extremely low value of � (e.g., 0.00001) would
suggest that almost none of the points are anomalous.

The relative and absolute notions mentioned above can be combined, by applying
a squashing function g to PD, such that g.PD.p// D 0 if PD.p/ < � . When
PD.p/ > � , we may use a nonlinear monotonically increasing function such as
g.PD.p// D .PD.p/ � �/4.

2.6 Conclusion

In this chapter, we have presented the key questions and principles of anomaly
detection, beginning with the formulations of what it means for a data point to be
anomalous, the different approaches to anomaly detection, and how we may evaluate
and compare different anomaly detection algorithms. These considerations precede
the detailed formulation of algorithms, and how we may tailor general-purpose
algorithms to problem-specific criteria and constraints. Later chapters address these
details.



Chapter 3
Distance-Based Anomaly Detection Approaches

In this chapter we consider anomaly detection based on distance (similarity)
measures. Our approach is to explore various possible scenarios in which an
anomaly may arise. To keep things simple, in most of the chapter we illustrate basic
concepts using one-dimensional observations. Distance based algorithms, proposed
by researchers, are presented in Chap. 6.

3.1 Introduction

By definition, identifying an anomaly involves figuring out that a data point is
“different” from others. This definition is necessarily parameterized by the data
set against which the data point is compared: a person who is five feet tall may
be anomalous among male college basketball players, but not among horse-riding
jockeys.

For convenience of presentation, throughout the chapter we assume that feature
observations belong to continuous space, but the discussion also applies to discrete
and nominal attributes where a suitable distance metric can be defined, see [14, 55].
In continuous spaces where all data attributes are real-valued (possibly within a
bounded range), we would say a data point is “different” from others if its distance
to other points is large. However, anomaly detection algorithms differ in how this
distance is evaluated. This is because no consensus exists on which sets of points are
to be used to compare distances, nor on how to evaluate the distance to a collection
of points, even though most researchers agree to work with the standard and well-
known definitions of the distance between two points.

This chapter focuses on anomaly detection algorithms that rely on distance
calculations between points and sets of points. The symbol D is used in this text
to represent the n-dimensional data set, presumed to be in continuous unbounded
real-valued space Rn. Data points in D are denoted by characters p; q, possibly

© Springer International Publishing AG 2017
K.G. Mehrotra et al., Anomaly Detection Principles and Algorithms, Terrorism,
Security, and Computation, https://doi.org/10.1007/978-3-319-67526-8_3

33

https://doi.org/10.1007/978-3-319-67526-8_3


34 3 Distance-Based Anomaly Detection Approaches

carrying subscripts or superscripts. Uppercase symbols such as P are used to denote
sets of points, i.e., P � D . The distance between two points p; q 2 D is denoted by
d.p; q/.

We begin with the simplest algorithms, giving examples and counter-examples to
indicate the usefulness and limitations of such algorithms. We address three primary
questions:

1. Measurement: How anomalous is a given point? This requires transforming
points into a one-dimensional scale, e.g., defining a function ˛ such that ˛.p/ 2
R measures the anomalousness of p 2 D .

2. Absolute: Is a given point anomalous? This requires finding a threshold � > 0

so that we say a point p 2 D is anomalous if ˛.p/ > � .
3. Relative: Is one point “more anomalous” than another? This requires comparing

points, so that ˛.p/ > ˛.q/ if a point p 2 D is more anomalous than another
point q 2 D . We may denote this relationship with the symbol “F”, i.e., p F q if
˛.p/ > ˛.q/.

Two secondary questions are also posed in practice, and their answers can be
derived from the former:

• Subset: What are the m most anomalous points in a given data set? To answer
this question, we may use the “relative” criterion to find the most anomalous, the
second most anomalous, etc., perhaps by sorting if m is large.

• Hybrid: What are the m most anomalous points in a given data set, which are
also absolutely anomalous? The answer can be obtained by applying an absolute
threshold to the “Subset” answer above.

In Sect. 3.2 we consider some of the distance (similarity) measures, in Sect. 3.3
we describe some distance based approaches, Sect. 3.4 contains the summary and
comments.

3.2 Similarity Measures

Often, we define similarity in terms of a distance measure. Note that a similarity
measure can be obtained by ‘essentially’ considering the ‘inverse’ of a distance
measure.

Popularly applied similarity measures include direct measures such as the
Euclidean, Minkowski, and Mahalanobis measures. Additional measures, such as
cosine similarity and Jaccard index are also used; often indirect measures, such as
Shared Nearest Neighbor (SNN) are more appropriate.1

1In SNN, the number of common points between k-nearest neighbors of two points represents the
desired similarity between the points. This measure is described in more detail in Chap. 6.
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When the different dimensions in the data set D are incommensurable and have
different mutual correlations, a preferred measure is the Mahalanobis distance

p
.p � q/TS�1.p � q/

where S is the covariance matrix measuring the mutual correlations between
dimensions for all points in the data set D . If the covariance matrix S is diagonal,
this simplifies to

v
u
u
t

 
dX

iD1

.pi � qi/2=�2
i

!

where �i is the standard deviation in the ith dimension. In the simplest case, where
S is the identity matrix, this reduces to the most commonly used Euclidean distance
measure,

d.p; q/ D
v
u
u
t

dX

iD1

.pi � qi/2:

Often, data is first linearly normalized along each dimension so that every point lies
in Œ�1; C1�d, before Euclidean distance calculations are performed.

The Minkowski distance of order ` between two points p D .p1; : : : ; pd/ and
q D .q1: : : : ; qd/ 2 D is defined as:

 
dX

iD1

jpi � qij`
! 1

`

:

Most often used values of ` are 1 and 2; for ` D 2 the Minkowski distance is equal to

the Euclidean distance and for ` D 1 this distance is equal to
�Pd

iD1 jpi � qij
�

and

is known as the Manhattan distance. Two other special cases of Minkowski distance,
defined below, are also used:

d
max
iD1

jpi � qij

and

d
min
iD1

jpi � qij:

Jacob similarity is defined for two sets of data points. Let A and B be two datasets,
then
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J.A; B/ D jA \ Bj
jAj C jBj � jA \ Bj :

Jaccard similarity is defined for binary points p and q, i. e., when all coordinates
of both take binary values only; i. e., pi D 0 or 1; for i D 1; : : : d.

J.p; q/ D m11

m01 C m10 C m11

;

where m11 D number of places where p and q are both 1, m01 D number of places
where pi’s are 0 and qi’s are 1, and m10 D number of places where pi’s are 1 and qi’s
are 0. For example, let p D .1; 1; 0; 0; 1; 0/ and q D .1; 0; 1; 0; 0; 1/, then m11 D
1; m01 D 2; m10 D 2; and J.p; q/ D 1=5.

Cosine similarity between two non-zero binary points p; q 2 D is defined as

Pd
iD1 piqi

qPd
iD1 p2

i

Pd
iD1 q2

i

:

The resulting similarity ranges from �1 to 1; when this similarity is 1, p D q and if
the similarity is �1, then p and q are exact opposite of each other.

3.3 Distance-Based Approaches

In this section, we present several simple anomaly detection algorithms and
approaches based on distance computations alone.

3.3.1 Distance to All Points

The simplest possible anomaly detection algorithm would evaluate each point p 2 D
against all points in D . The sum of distances from all points can be used as the
anomalousness metric, i.e.,

˛.p/ D
X

q2D
d.p; q/:

The most anomalous point is farthest from all points in the data set (Fig. 3.1).

1 20 21832

Fig. 3.1 Dot plot of dataset D D f1; 2; 3; 8; 20; 21g; red dot corresponds to anomalous observa-
tion
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Fig. 3.2 Dot plot of dataset D = f1, 3, 5, 7, 100, 101, 200, 202, 205, 208, 210, 212, 214g, red dot
indicates anomalous observation

Example 3.1 Consider the one-dimensional data set D D f1; 2; 3; 8; 20; 21g:
˛.1/ D 0C1C2C7C19C20 D 49: Likewise, the alpha values for the remaining
points are 45, 43, 43, 67, and 71, respectively. Hence, according to this criterion,
the most anomalous point is 21. This illustrates that extremal points are likely to be
chosen as anomalous, by this approach, which is often not the desired goal.

3.3.2 Distance to Nearest Neighbor

In this simple approach, we focus on the distance to the nearest point in the data set,
i.e.,

˛.p/ D min
q2D;q¤p

d.p; q/:

The most anomalous point is one whose nearest neighbor is at the greatest distance
(Fig. 3.2).

Example 3.2 Consider again the one-dimensional data set D = f1; 2; 3; 8; 20; 21g:
˛.1/ D min.1; 2; 7; 19; 20/ D 1; and the alpha values for the remaining points are
1, 1, 5, 1, and 1, respectively. Hence the most anomalous point is 8, according to
this criterion, which is usually considered satisfactory for such a data set.

Example 3.3 Consider the larger one-dimensional data set D = f1, 3, 5, 7, 100, 101,
200, 202, 205, 208, 210, 212, 214g: In this case, the ˛ values would be 2, 2, 2, 2, 1,
1, 2, 2, 3, 2, 2, and 2, respectively, suggesting that the most anomalous point is 205,
although it is at the center of a relatively close collection of points. This, again, is
often not the desired goal, and the problem can be attributed to the fact that only a
single near neighbor is insufficient to identify a point as non-anomalous.

3.3.3 Average Distance to k Nearest Neighbors

This approach requires a parameter k < N D jD j that identifies the number of
nearest neighbors to be considered. For convenience, we first define Near.p; j/ to be
a jth nearest neighbor of a point p2 D , where j < N D jD j, breaking ties arbitrarily.
Thus, the nearest neighbor of p2 D would be Near.p; 1/. The average distance to k
nearest neighbors, used as the indicator of the anomalousness of a point p would be:
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Fig. 3.3 Dot plot of dataset D = f1, 3, 5, 7, 100, 101, 200, 202, 205, 208, 210, 212, 214g, red dot
indicates anomalous observation

˛.p/ D
kX

jD1

d.p; Near.p; j//=k:

Equivalently, we may use the sum of the distances, omitting the division by k
(Fig. 3.3).

Example 3.4 Consider again the one-dimensional data set D = f1; 3; 5; 7; 100; 101;

200; 202; 205; 208; 210; 212; 214g: For k D 3, the ˛ values (sums) would be 12, 8,
8, 12, 189, 191, 15, 11, 11, 9, 8, 8, and 12, respectively, suggesting that the most
anomalous point is 101. For k D 4, the ˛ values (sums) would be 111, 105, 103, 105,
286, 289, 25, 19, 16, 15, 13, 15, and 21, respectively, still suggesting that the most
anomalous point is 101. The choice of k implicitly determines how many points
must be very near to another in order for it to be considered non-anomalous. A very
small value of k will result in false negatives, i.e., not flagging anomalous points,
as happens when k D 1 and this approach becomes identical to the criterion of
the distance to the single nearest neighbor (mentioned in the preceding subsection).
Conversely, a large value of k may result in non-intuitive values, e.g., k D jD j � 1

corresponds to the first case in this section, using the sum of the distances to all
points in the data set, so that extremal values are flagged as most anomalous.

3.3.4 Median Distance to k Nearest Neighbors

The arithmetic average is not very robust in that the addition of one or two more
points may drastically change the outcome of the computation. We may instead use
the median, a more robust measure, less sensitive to noise in the data, although it
requires a greater amount of computation. If k D 2m�1 is odd, the median distance
to k nearest neighbors is the same as the distance to the mth nearest neighbor.

Example 3.5 Consider again the one-dimensional data set D = f1, 3, 5, 7, 100, 101,
200, 202, 208, 210, 212, 214; g: For k D 3, the ˛ values would be 4, 2, 2, 4, 93, 94,
5, 3, 3, 3, 2, 2, and 4, respectively, suggesting that the most anomalous point is 101.
As before, the results of the computation are sensitive to the choice of k.
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3.4 Conclusion

This chapter has presented a collection of simple anomaly detection algorithms
that are based on distance computations alone. The following chapters explore the
use of other concepts, such as clusters, providing more elaborate algorithms and
approaches used in practice by many researchers.



Chapter 4
Clustering-Based Anomaly Detection
Approaches

This chapter explores anomaly detection approaches based on explicit identification
of clusters in a data set. Points that are not within a cluster become candidates to be
considered anomalies. Variations among algorithms result in evaluating the relative
anomalousness of points that are near (but not inside) a cluster, and also the points
at the periphery of a cluster.

In Sect. 4.1, we describe some classical clustering algorithms such as the k-means
clustering, followed by how to discover asymmetric clusters; that is, a procedure in
which a cluster is dynamically obtained, typically one at a time. Finally, Sect. 4.2
discusses basic concepts of anomaly detection using clusters.

4.1 Identifying Clusters

Clustering can be based on similarity or distance computations; these two
approaches differ, although the end result is often the same because similarity
measures are strongly negatively correlated with distance measures. Distance-based
clustering approaches are based on the idea that points within the same cluster are
separated by relatively small distances, whereas points in different clusters are at
greater distance from each other. Similarity-based clustering approaches suggest
that points that are similar to each other should belong in the same cluster because
points at smaller distances from each other are presumed to be more similar.

Clustering algorithms generally presume that the data is in a bounded continuous
multi-dimensional space, and that a similarity or distance measure has already been
chosen. In general, each point pi is assigned a “degree of membership” �.pi; Cj/ 2
Œ0; 1� to any cluster Cj. A few variations exist, such as the following:

• Most clustering algorithms partition the data into clusters, i.e., place every point
in some cluster, so that each �.pi; Cj/ 2 f0; 1g and

P
j �.pi; Cj/ D 1 for each pi.
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• Non-partitioning algorithms allow for the possibility that some points do not
belong to any cluster, i.e., each �.pi; Cj/ 2 f0; 1g and

P
j �.pi; Cj/ � 1 for

each pi.
• Some algorithms allow clusters to overlap, and a point may belong to multiple

clusters, i.e., each �.pi; Cj/ 2 f0; 1g and
P

j �.pi; Cj/ � the number of clusters,
for each pi.

• Fuzzy1 clustering algorithms permit non-binary membership values, i.e., 0:0 �
�.pi; Cj/ � 1:0, although they often restrict

P
j �.pi; Cj/ D 1 for each pi.

We present a few well-known algorithms for identifying clusters; some that place
every point in some cluster, some that allow for the possibility that a point may not
belong to any cluster. More exhaustive coverage of clustering methods is provided
in textbooks such as [5, 37, 62].

4.1.1 Nearest Neighbor Clustering

k-Nearest Neighbor algorithms have been proposed for many kinds of problems,
based on the main idea that an individual should be similar to a majority of its k
immediate neighbors, rather than to a centroid or an aggregate over a large set of
data points. This approach hence gives greater weightage to local properties of data
spaces, although computationally more expensive and contrary to the philosophy of
statistics to summarize properties of large amounts of data into a few numerical
characteristics. This approach has been used for classification tasks [34], in the
context of supervised learning, and can also be applied to clustering tasks if a set
of points distant from each other are initially chosen to be labeled with different
cluster-IDs, analogous to class labels in a classification problem. Points are labeled
with the same label as a majority of their k nearest neighbors.

A “Region-growing” heuristic is to start with a single new point at a time, label
it with a new cluster-id, and iteratively label all the immediate neighbors of labeled
points whose distance (to a labeled point) is smaller than a threshold that depends on
the distances between labeled points in that cluster. At the conclusion of this step,
“relaxation” iterations may be carried out, labeling points based on the majority
of their k immediate neighbors; these iterations may start at the boundaries of the
previously identified clusters, and result in merging some clusters.

1Fuzzy membership allows for non-binary cluster allocation, and is not the same as probability
of membership. Saying that a point belongs to a cluster with a certain probability, assumes that
there are only two cases: either the point belongs, or does not belong, to that cluster; but there
is uncertainty regarding which case holds. The discovery of future information or evidence may
reveal whether or not the point belongs to the cluster. On the other hand, when we say �.pi; Cj/ D
0:7, this is not a probability, but may instead express the fact that pi is near the other points with
high membership values in Cj, but other points with membership values > 0:7 are even nearer.
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Single nearest neighbor clustering has been proposed earlier in the context
of agglomerative clustering, e.g., the SLINK algorithm [104] which constructs
a dendrogram with O.n2/ computational effort. In such an algorithm, centroid
computation is not needed, and distance computations are performed with respect to
individual data points. Each node in the hierarchy is explicitly associated with a set
of points, and not just the centroid, so that there is no assumption of clusters being
symmetric in any dimension. Two clusters Ci; Cj are combined if they contain points
(x 2 Ci; y 2 Cj) whose Euclidean distance dE.x; y/ < � is considered small enough,
even if other points in the clusters are far away from each other. The threshold � may
be a function of the data set, e.g., (mean + 3�� ) of the distances in the minimum
spanning tree for the data set.

4.1.2 k-Means Clustering

This well-known algorithm [81], described in Algorithm “k-means clustering”,
repeatedly computes the centroid of each “current” cluster, and then updates the
same after re-associating each data point with the nearest (current) cluster centroid.

Algorithm k-means clustering
Require: Data set D , Number of clusters (k), termination threshold � ;
Ensure: k Clusters
1: Initialize: Randomly select k distinct elements of D as the initial set of centroids C D

fc1; : : : ; ckg;
2: Repeat
3: Assign each p 2 D to the closest cluster, minimizing dE.p; cj/;
4: Update each cj to be the centroid (mean) of the points assigned to it;
5: Until the number of points reassigned in this iteration < � ;

This algorithm implicitly identifies each cluster with its cluster centroid, resulting
in symmetric clusters such as spheres for three-dimensional data. Although this is
perhaps the most widely used clustering algorithm, there are many problems for
which the k-means clustering approach is unsatisfactory, as illustrated in Fig. 4.1.

Another difficulty with this algorithm is that the initial choice of the starting
points can affect the final result.

Example 4.1 Let D D f1; 4; 6; 10g and let k D 2.

• If the initially chosen cluster centroids are 1 and 10, respectively, the first iteration
of the k-means clustering algorithm would result in the clusters {1, 4} and {6,
10}, since 4 is closer to 1 (than 10) and 6 is closer to 10 (than 1).

• But if the initially chosen cluster centroids are 1 and 4, respectively, the algorithm
instead yields the clusters {1} and {4, 6, 10}, whose centroids are 1 and 6.66,
respectively.
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Fig. 4.1 Asymmetric clusters and the results of applying k-means algorithm with k D 3; clusters
are identified by the colors of the points

• No further change occurs, in each case, since the two cluster centroids (2.5 and
9.5 in the first case; 1 and 6.66 in the second case) are closest to all the points in
the respective clusters they represent.

An additional difficulty with this algorithm is the determination of the number of
clusters (k). One guideline is that the ratio of the intra-cluster distance to the inter-
cluster distance should be small. Some implementations begin with small k and
successively increment it as long as significant measurable progress is achieved,
e.g., in terms of the above ratio or the silhouette measure

s D 1 � (distance to own centroid)=(distance to next nearest centroid):

In the “elbow” method, the number of clusters are chosen at the point where the
incremental improvement is small.

Information-theoretic criteria have also been formulated to determine the best
choice of k. For each data point q 2 D , the maximum Likelihood function
L.‚jq/ is proportional to the probability P.qj‚/, where ‚ is the best Gaussian
mixture distribution described by the result of the clustering algorithm. The overall
maximum likelihood that the available data corresponds to the Mixture distribution
is then L D P.D j‚/. The Akaike Information Criterion suggests that we choose
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k to minimize k � ln.L/, whereas the Bayesian Information Criterion minimizes
�ln.L/. Another variant is based on rate-distortion theory, with an analytical
expression used to determine the amount of data compression that can be achieved.
Unfortunately, the latter approaches are computationally expensive and are hence
impractical for large data sets.

4.1.3 Fuzzy Clustering

The k-means clustering algorithm is expected to minimize
P

pi

P
cj

kpi�cjk2, where
each pi 2 D and each cj represents centroid of the jth cluster. However, it may be
argued that points that are closer to a centroid should be given greater weightage
in the minimization process, and that the cluster allocation should depend less on
points that are distant from cluster centroids. If �i;j 2 Œ0; 1� represents the degree
to which pi belongs to the fuzzy cluster whose weighted centroid is cj, estimated
as a decreasing function of the distance between pi and cj, then Bezdek’s “Fuzzy
k-means” clustering algorithm [12] attempts to minimize

X

pi

X

cj

�m
i;jkpi � cjk2;

generalizing the k-means clustering algorithm in an intuitive way, as shown in
Algorithm “Fuzzy k-means clustering”.

Algorithm Fuzzy k-means clustering
Require: Data set D , Number of clusters (k), termination threshold � ;
Ensure: k Clusters
1: Initialize: Randomly select k distinct elements of D as the initial set of centroids C D

fc1; : : : ; ckg;
2: Repeat
3: Compute the membership of each p 2 D in each cluster to be a decreasing

function of dE.p; cj/, such as 1=exp.dE.p; cj/
2/ or 1=.dE.p; cj//

m (e.g., with m > 2);
Normalize membership values so that

P
j �.p; cj/ D 1;

4: Update each cj to be the membership-weighted centroid of the points
assigned to it,

cj D
P

i �m
i;jpi

P
i �m

i;j

I

5: Until the magnitude of the changes to fuzzy cluster centroids in this iteration < � ;

As in the k-means algorithm, the membership degrees and weighted centroid
positions are iteratively updated until convergence, i.e., when little further change
is observed, using a predetermined threshold. As with most iterative minimization
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algorithms, there is no guarantee that a global minimum will be reached for the
function being optimized. At a high level, this algorithm is similar to the well-known
expectation-maximization algorithm [32], wherein an explicit assumption is made
that the data consists of a mixture of Gaussian distributions.

4.1.4 Agglomerative Clustering

This approach, described in Algorithm “Agglomerative clustering”, begins with
many tiny clusters, each containing a single element, and successively merges small
clusters to form bigger clusters. Two clusters are candidates for merging if they
are nearest to each other, e.g., based on the distance between cluster centroids.
The process can be terminated when the number or sizes of clusters are considered
satisfactory, or until the next merger would result in a single cluster.

Algorithm Agglomerative clustering
Ensure: Data set D
1: Initialize: Each data point is in a cluster by itself, constituting the current frontier of the

dendrogram;
2: Repeat
3: Find two nodes (in the current frontier) with the shortest distance between their cluster

centroids;
4: Merge them, forming their parent node in the dendrogram;
5: Replace the two pre-merger nodes by the new merged node in the current frontier, along

with its newly computed centroid;
6: Compute its distances from other nodes’ centroids in the frontier;
7: Until all nodes have been merged (or computational resources are exhausted).

This algorithm does not require an externally determined parameter for the
number of clusters (k), and is deterministic, giving the same result in each execution,
unlike the k-means algorithm. But it requires more computational effort, and
external decision-making may still be required to determine how deep we need to
go along each path down from the root before declaring a node as representing a
genuine cluster.

Sibson’s Single Linkage (SLINK) [104] algorithm reduces the complexity from
O.n3/ to O.n2/, and is based on nearest-neighbor clustering rather than centroid
computation.

The merging process is essentially binary: at each step, two nodes come together;
in some problems, a tree with branching factor more than two may be more
representative of the data. Variations of the algorithm can be defined to permit
multiple nodes to merge in a single iteration.

BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) [120]
and CURE (Clustering Using REpresentatives) [50] are efficient agglomerative
clustering techniques that facilitate anomaly detection.
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Fig. 4.2 Point A is a core point because its neighbor contains Eps D 6 points; Point B is a border
point because it belongs to A’s neighborhood but its neighborhood does not contain Eps points;
point C is a noise/anomalous point

4.1.5 Density-Based Agglomerative Clustering

Some applications require the rapid discovery of asymmetric clusters; this has
been addressed in the Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) algorithm [36], intended to discover clusters of arbitrary shape from
noisy data sets, requiring only one scan of the dataset.

The central notion underlying this agglomerative algorithm is that of a core point,
in whose vicinity (within a distance of r) lie a minimal number of other points � �#)
in the data set. Initially, clusters are formed around core points; in each iteration,
two clusters are merged if they contain core points within a distance of r from
each other. Non-core points in such clusters are called border points, whereas points
outside such clusters are called noise points, i.e., outliers. Figure 4.2 illustrates these
three types of points for a small dataset. In this figure A is a core point because its
neighborhood contains MinPts = 6 and B is a border point. Note that B is in the
neighborhood of A but the neighborhood of B contains 4 < MinPts D 6. C is a
noise point because it is neither a border point nor a core point.

Algorithm DBSCAN
Ensure: Data set D , threshold parameters r, �#

1: For each point p 2 D ,
2: Find its neighbors q 2 N.p/ � D such that dE.p; q/ < r;
3: Label p as a core point 2 C, the initial frontier, if jN.p/j � �#;
4: Endfor;
5: For each point p 2 D ,
6: add p to the cluster associated with some c 2 C if dE.p; c/ < r;
7:
8: Repeat
9:

10: If the current frontier contains two nodes c1; c2 such that dE.c1; c2/ < r, then
11: Merge the clusters they represent, and form their parent node in the dendrogram;
12: Replace the two pre-merger nodes by the new merged node in the current frontier, along

with its newly computed centroid;
13: Until no more mergers are possible.
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DBSCAN has problems in clustering some datasets that consist of clusters with
widely varying densities. We note that DBSCAN uses the traditional concept of
density; defined as the number of points in unit volume. This definition falls apart in
case the features are discrete or categorical, and the dimensionality of feature vector
is high; in such cases, the distribution of Euclidean distance between points tends
to be uniform. This deficiency has been addressed by several researchers including
Ertöz et al. [35], Jarvis and Patrick [63], and Guha et al. [51] by generalization of the
concept of density and/or by using other measures of similarity such as links, Jaccard
measure or cosine measure. The measure of similarity between two points p and q
that counts the number of common neighbors in sets of their k-nearest neighbor is
particularly significant when the feature variables are discrete/categorical and when
the dimensionality of the feature vector is large.

CURE [50] is another agglomerative hierarchical algorithm that represents each
cluster using a set of representative points, away from the centroid. Two clusters
can be merged if the minimum distance between any two of their representative
points is < a threshold. CURE identifies outliers by considering the growth of a
cluster; a slow growing cluster implies that the associated observations are likely to
be anomalies. The first representative point is chosen to be the point furthest away
from the center of the cluster and subsequent point is chosen so that it is farthest
from all the previously chosen points, This guarantees that representative points are
well distributed. Once the representative points are chosen, they are shrunk toward
the center by a factor which helps to moderate the effect of noise points located
at cluster boundaries (the representative points belonging to the clusters and noise
points are thus farther apart).

In Chap. 7, we consider another generalization of DBSCAN, using ranks and
associated anomaly detection algorithms.

4.1.6 Divisive Clustering

In this approach, a dendrogram is instead produced by successively partitioning sets
of data points. The process may be permitted to terminate when each cluster is:

• Small: the number of elements in each cluster � a threshold; or
• Tight: the maximum distance between data points in a cluster � a threshold;
• Relatively compact: average distance within the cluster is much smaller than in

the entire data set.

Avoiding the extensive distance computations required at the lowest (fine-grain)
levels imply that this algorithm would be more computationally efficient than
agglomerative clustering.
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Algorithm Divisive clustering
Ensure: Data set D
1: Initialize: The dendrogram (and the current frontier) contains a single splittable node repre-

senting the entire data set D ;
2: Repeat
3: Split each splittable node in the current frontier into two nodes, e.g., using k-means clustering

with k D 2;
4: Identify and mark the “trivial” nodes in the frontier, on which further splitting need not be

performed;
5: Until all nodes have been marked as trivial.

4.2 Anomaly Detection Using Clusters

Assuming that clusters have been identified using algorithms such as those defined
in the previous section, we now address the task of identifying anomalous points.
Several possible approaches are defined in the rest of this section.

4.2.1 Cluster Membership or Size

As mentioned earlier, some clustering algorithms permit data points to lie outside
identified clusters and in such cases, the points that do not belong to any cluster can
be considered anomalous. A simple example illustrates this concept.

Example 4.2 Consider the one-dimensional data set D1 D f1; 2, 3, 4, 5, 30, 31,
51, 52, 53, 55, 80, 110, 111, 112, 113g. If a clustering algorithm identifies the three
clusters f1; 2, 3, 4, 5g, f51, 52, 53, 55g, and f110, 111, 112,113g, then the data points
30, 31 and 80, which lie outside the clusters, are considered to be the anomalous
cases.

The outcome of this approach depends on the predetermined thresholds, such as
the number of clusters and minimum number of points required in a cluster. The
following examples illustrate how decisions are effected by the thresholds.

Example 4.3 Consider the one-dimensional data set D1 D f1; 2, 3, 4, 5, 30, 31, 51,
52, 53, 55, 80, 110, 111, 112,113g of the previous example. If the k-means clustering
algorithm is applied for k D 3 to this data, the three clusters identified would all
be sufficiently large so that no data points would be flagged as anomalous. But if
k D 5, we may obtain two clusters, {30, 31} and {80}, that contain a relatively
small number of data points; hence points therein are anomalous.

• If a cluster size threshold of 3 is used, then the elements 30, 31, and 80 would be
considered anomalous.

• If the cluster size threshold had been 2, then only the element 80 would be
considered anomalous.

Some algorithms such as DBSCAN explicitly enforce a minimum size requirement
for a cluster; but it is not obvious how to choose this threshold.
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Instead of an absolute threshold (such as 3), the threshold for large data sets may
be a function of the size of the data set jD j and the number of clusters k, e.g., the
threshold may be jD j=10k, following the rationale that the expected size of each
cluster is jD j=k, and no real cluster should be smaller by an order of magnitude.

4.2.2 Proximity to Other Points

A partitioning algorithm, such as the k-means clustering, places every point in some
cluster and every such cluster may satisfy the size condition; that is, the size of each
cluster is � the size threshold. But some points in the cluster may be so far from all
others in the same cluster that we may identify them as anomalous.

Example 4.4 Consider the one-dimensional data set used earlier: D1 D f1; 2,
3, 4, 5, 30, 31, 51, 52, 53, 55, 80, 110, 111, 112, 113g to which the k-means
clustering algorithm is applied. If k D 3, we identify three clusters f1; 2; 3; 4; 5g,
f30; 31; 51; 52; 53; 55g, and f80; 110; 111, 112, 113g. In the second cluster, each of
the points 30 and 31 is substantially farther from other points than are 51, 52, 53,
55; this suggests that these points are anomalous. Likewise, using a similar argument
point 80, in the third cluster, is anomalous.

Since calculating the sum of distances to all points in a cluster is computationally
expensive, a surrogate is to compute the distance of each point from the centroid of
the cluster. This approach can also be applied with non-partitioning algorithms, i.e.,
when some points do not belong to any cluster. We then define

˛.p/ D min
j

d.p; �j/;

where �j is the centroid of cluster Cj, i.e.,

�j D
X

pj2Cj

pj=jCjj:

If ˛.p/ is ‘large’ pi is considered to be an anomaly.

Example 4.5 For the example considered above, with k D 3 clusters C1 D
f1; 2; 3; 4; 5g; C2 D f30; 31; 51; 52; 53; 55g; and C3 D f80; 110; 111; 112; 113g;
are obtained and we find that �1 D 3; �2 D 45:3; �3 D 105:2; and ˛.1/ D 2,
˛.30/ D d.30; 45:3/ D 15:3 and ˛.80/ D 25:2, suggesting that the data point 80
is much more anomalous than 1 or 30. Since ˛.80/ D 25:2 and ˛.113/ D 7:8,
we would consider 80 to be the more anomalous point then 113. Among all points
considered 80 will be most anomalous point.

For this approach to work well, the number of clusters k must be correctly chosen,
neither k can be very large, nor very small. If k is large, to some extent the difficulty
may be overcome if a cluster size threshold is applied to the result. When k is very
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small, we can evaluate whether the intra-cluster distances are too large and if a
small increase in k can substantially decrease the intra-cluster distances, then such
an increase should be permitted. However, this is the essence of choosing the ‘right’
number of clusters in k-means clustering, discussed in Sect. 4.1.2.

4.2.3 Proximity to Nearest Neighbor

Algorithms that rely on the distances to cluster centroids have an implicit assump-
tion that clusters should be “symmetric,” e.g., circular in two dimensions, since two
points at the same distance from a given centroid must have the same ˛ values.
However, real problems are often characterized by asymmetric clusters, and the
asymmetries cannot be removed by any simple linear or nonlinear transformations
of the data. The distance to the nearest neighbor then gives a more useful indicator
of the degree to which a data point is anomalous.

Example 4.6 Consider applying a partitioning algorithm (such as k-means cluster-
ing) to the data set D2 D f�4, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 17, 20, 23, 26, 40, 41,
42, 43, 45g; with k D 2, yielding two clusters

C1 D f�4; 1; 2; 3; 4; 5; 6; 7; 8; 9; 11; 14; 17; 20; 23; 26g

and

C2 D f40; 41; 42; 43; 45g:

C1 is not symmetric, unlike C2. Since �1 � 10, application of the distance-to-
centroid criterion yields ˛.26/ D 16 whereas ˛.�4/ D 14, so that 26 appears to
be the more anomalous of the data points. If we were to use the distance to the
nearest neighbor as the criterion, on the other hand, we would infer that 26 is only
three units away from its nearest neighbor, whereas �4 is 5 units away from its own
nearest neighbor, hence the latter is more anomalous.

4.2.4 Boundary Distance

As pointed out earlier, nearest-neighbor based anomaly detection has its own
pitfalls. In particular, if two outliers are near each other but far from all other data
points, they need to be considered anomalous even though each is very close to the
other. When anomaly detection relies on a preceding clustering step, the distance to
the nearest cluster boundary provides another useful indicator of anomalousness, as
illustrated in the following example.
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Example 4.7 Consider the data set

D3 D f�4; 1; 2; 3; 4; 5; 6; 7; 8; 9; 20; 21; 40; 41; 42; 43; 45g;

clustered using a non-partitioning algorithm with k D 2, yielding two clusters

C1 D f1; 2; 3; 4; 5; 6; 7; 8; 9g

and

C2 D f40; 41; 42; 43; 45g:

For the first outlier, ˛.�4/ D 5, the distance to the first cluster boundary, located at
1. On the other hand, ˛.20/ D 11 and ˛.21/ D 12, their respective distances from
9, the nearest cluster boundary. Hence 20 would be considered most anomalous,
followed by 21, and then by �4, even though the nearest neighbor of 20 is only one
step away.

If ˛.p/ is to be assigned to points inside as well as outside a cluster, then
this approach needs some modification. Recall that points inside a cluster may
be least anomalous if they are distant from the boundary. One possible approach
is to assign ˛.p/ D 0 for every point p that lies inside a cluster, and equals the
distance to the nearest cluster boundary for points that lie outside clusters. But this
assignment treats all inside points equally. However, if it is useful or necessary to
evaluate the relative anomalousness of points within a cluster, we may instead define
˛.p/ D �(distance to the nearest cluster boundary) for points inside a cluster. This
assignment is illustrated in the following example.

Example 4.8 As before, consider the data set

D D f�4; 1; 2; 3; 4; 5; 6; 7; 8; 9; 20; 21; 40; 41; 42; 43; 45g;

clustered using a non-partitioning algorithm with k D 2, yielding two clusters

C1 D f1; 2; 3; 4; 5; 6; 7; 8; 9g

and

C2 D f40; 41; 42; 43; 45g:

Note points �4, 20, and 21 do not belong to these two clusters. For points outside
the clusters we have ˛.�4/ D 5, ˛.20/ D 11 and ˛.21/ D 12, representing their
respective distances from the nearest cluster boundary points. For points inside the
clusters, we have (for example)

˛.1/ D 0; ˛.2/ D �1; ˛.8/ D �1; ˛.40/ D 0; ˛.41/ D �1:
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This definition preserves the idea that points in the inner core of a cluster are to
be considered less anomalous than points in the outer layers of the same cluster—
we may imagine each cluster to be an onion, distinguishing outer layers from inner
layers, rather than a strawberry whose interior is homogeneous.2

4.2.5 When Cluster Sizes Differ

When clusters have different sizes, as in the previous example, the choice of ˛

function defined above considers points in the innermost core of the smaller cluster
to be more anomalous than points in the innermost core of the larger cluster. For
example, in the above example ˛.5/ D �4 whereas ˛.42/ D �2 although both are
centroids of their respective clusters. This bias may be removed by normalization
based on some function of the cluster sizes. One possibility is to multiply ˛ values
for the smaller cluster by maxp2Ci ˛.p/= maxp2Cj ˛.p/. This would result in the
computation of ˛.42/ D .�2/.�4=�2/ D �4, and ˛.41/ D .�1/.�4=�2/ D �2.

If we use such a normalization step for points inside clusters, we then have to
decide whether to use a similar normalization step for points outside clusters.

Example 4.9 Consider the data set

D D f1; 2; 3; 4; 5; 6; 7; 8; 9; 20; 40; 41; 42; 43; 45; 55g;

clustered using a non-partitioning algorithm with k D 2, yielding two clusters

C1 D f1; 2; 3; 4; 5; 6; 7; 8; 9g

and

C2 D f40; 41; 42; 43; 45g:

If the normalization step is performed for points inside the clusters, we have ˛.5/ D
˛.42/ D �4, as before. Without the normalization, we would have ˛.20/ D 11,
the distance from 9 to 20, and ˛.55/ D 10, the distance from 45 to 55, i.e., 20
would be considered more anomalous than 55. But if the same normalization (as for
interior points) is performed for points outside the clusters, we would have ˛.55/ D
.10/.�4= � 2/ D 20, i.e., 55 would be considered more anomalous than 20.

Although a different normalization step would result in other answers, the
fundamental question remains: Should we consider characteristics of the “local”
data space near a point, when evaluating the relative anomalousness of points (that
lie outside clusters)? A human needs to judge whether normalization is called for,

2If needed, a simple linear transformation can be defined to force all values to be positive, e.g., by
adding the maximum cluster size to every ˛ value 4.
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e.g., whether 55 is truly more anomalous than 20 in the above example. The answer
is context-dependent; in many applications, the characteristics of the local region
needs to be taken into account, even when the data is one-dimensional.

For example, the heights of professional NBA basketball players have a larger
variance than the heights of professional horse-racing jockeys, for biological
reasons. So a professional basketball player who is almost 7 feet tall may be
considered far less anomalous than a horse-racing jockey who is 5’6” (i.e., 5.5 feet)
tall. Hence it makes sense to consider the distributions of the heights of the two sets
of people, before computing the relative anomalousness of two outliers.

Another similar example is the set of salaries of individuals in a large organi-
zation, which can usually be clustered based on individuals’ positions within the
organization, e.g., executives make more money than managers, who make more
than their administrative assistants, etc. But the variance in executive salaries is
much higher than the variance in the salaries of administrative assistants, so that the
magnitude of the deviation from the mean may not be a good indicator of relative
anomalousness: an assistant who makes $40,000 more than others in the cluster (of
assistant salaries) would be far rarer than an executive who makes $80,000 more
than others in a different cluster (consisting of executive salaries).

In both of the cases above, normalization based on local data space characteristics
would be useful. Other problems, thankfully, may involve no such complexity,
e.g., when we compare scores of students in an examination, a student with a
score of 100/100 may be considered as anomalous from the other high-performing
students as the relative anomalousness of a student scoring 0/100 among other low-
performing students.

4.2.6 Distances from Multiple Points

Many minor problems in data analysis disappear if we choose sample sizes that
are not too small. The same holds for anomaly detection: if we consider distances
to multiple (k) nearest neighbors, multiple cluster centroids, or multiple cluster
boundaries, and consider the averages (or medians) over a collection of values, the
results obtained tend to be more robust and less easily swayed by “noise” in the
process that generated the data. The key question is then the choice of how many
values need to be considered.

From the consideration of computational effort, of course, it is best to choose
a small set of values over which averages (or medians) are computed. This leads
to the common pragmatic choice of k D 3 (or 5) used by many practitioners, who
reason that the additional advantage gained by using larger values of k is not worth
the additional computational effort.

In problems where the computational effort considerations are not critical,
however, the choice of k requires greater attention.
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4.3 Conclusion

A large number of anomaly detection algorithms are based on clustering the given
data, discussed in this chapter; such algorithms declare anomalies to be those data
points that are outside clusters, or are near the boundaries of clusters. Although
many practitioners restrict themselves to one or two popular algorithms, such as k-
means clustering, there are many applications where the other algorithms discussed
here are to be preferred, e.g., when the clusters in a dataset are not symmetric, or if
densities vary across different regions of data space.

Although many clustering algorithms have been sketched in this chapter, we
recognize that clustering is an extensively researched area, and problem-specific
algorithms are sometimes developed. In particular, we sometimes must consider cat-
egorical (or nominal) data in which substantial changes are required to the“distance”
measures on which algorithms such as k-means rely. An important set of clustering-
like algorithms have been developed in the neural networks literature, e.g., the self
organizing map (SOM) [77].

We conclude by remarking that the examples in this chapter illustrate the ideas
using relatively simple and one-dimensional data. The problems discussed with
such simple data are only exacerbated when we consider multi-dimensional data.
Caution is recommended in developing complex solutions to specific problems
without considerations for the generalizability of such approaches.



Chapter 5
Model-Based Anomaly Detection Approaches

Many data sets are described by models that may capture the underlying processes
that lead to generation of data, describing a presumed functional or relational
relationship between relevant variables. Such models permit comprehension and
concise description of the data sets, facilitating identification of data points that
are not consistent with such a description. This chapter explores anomaly detection
algorithms based on hypothesizing and developing models that describe available
data. The primary questions to be answered include the following:

• How is the model represented?
• How do we evaluate the extent to which a data point conforms to the model?
• What determines the occurrence of an anomaly?
• How do we derive or learn the model parameters from available data?

In Sect. 5.1, we discuss models describing the relationships between variables
or attributes of data points, considering anomaly detection approaches based on
variations in model parameter values, as well as variations from model predictions.
In Sect. 5.2, we consider distribution models of data sets. Models of time-varying
phenomena, and associated anomaly detection problems, are addressed in Sects. 5.3
and 5.4. This is followed in Sect. 5.5 by a discussion of the use of various learning
algorithms to obtain models from data.

5.1 Models of Relationships Between Variables

When a dataset D is described by a model M.D/, anomaly detection can be
performed either in the model parameter space or the data space. In the former
case, the focus is on learned model parameters and how much they are influenced
by a single data point. In the latter case, the relative anomalousness of different data
points is measured by comparing the magnitudes of the variation between those
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data points and model predictions. Section 5.1.1 discusses anomaly detection based
on the effect of a data point on model parameter values. Section 5.1.2.1 addresses
implicit and explicit relationships between model variables, assuming the data space
approach.

5.1.1 Model Parameter Space Approach

In this approach, we evaluate how much the model is affected by the inclusion or
exclusion of any given point in the data set, by comparing parameter values ‚ D
f�1; : : : ; �kg of the model of the entire dataset M.D/ with those of M.Dx/, for some
Dx � D that depends on x. Multiple model parameter variations may be combined
by defining the anomalousness of x to be

˛.x/ D
kX

iD1

j��ij;

where ��i is the difference between the parameter values of M.D/ and M.Dx/. Dx

may be defined by either excluding x from D or by considering a small subset of D
that includes x. In the former (simpler) case, we may define Dx D .D n fxg/, which
excludes the suspected outlier. But if the learning algorithm is robust enough to
ignore outliers, or if the dataset is very large, then this approach may not work since
we find that M.D n fxg/ is no different from M.D/; then a better alternative would
be to let Dx include x while being small enough for the model to be significantly
affected by x, e.g., by restricting the size jDxj to be a small fraction of D , perhaps
by random sampling and then explicitly including x.

The model parameter space approach requires that more than one model be
learned from the data, which is more computationally expensive than approaches in
which a single model is learned and variations from model predictions are measured
in the data space. Nevertheless, the use of the model parameter space approach is
preferable in some problems wherein the overall characteristics of the dataset are
more important.

Example 5.1 Consider the set of annual incomes of individuals in the region of
Seattle. An approximately normal distribution model may describe this set. But the
exclusion of a few individuals (such as Bill Gates) may result in substantial change
to the mean and standard deviation parameters of the normal distribution. Measuring
the difference in mean (with vs. without any individual x 2 D) would convey the
relative anomalousness of x. On the other hand, many high income individuals may
not appear to be anomalous due to the effect of other outliers: a single billionaire’s
income significantly increases the mean and standard deviation.

In the above example, the model parameter space is more appropriate than a data
space approach, since we are more interested in comparing x to Dnfxg rather than in
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modeling the relationship between attributes of x. The following example illustrates
the application of this approach to a problem in which a model is described using a
quadratic relationship between variables, along with an inequality constraint.

Example 5.2 Consider a problem modeled by quadratic function of the form
x2

1 C x2
2 C c D 0 along with the inequality x1x2 C d > 0, wherein variations

in parameter values are combined linearly with equal weights in evaluating the
relative anomaly score of any point, i.e., the anomaly score of a point is defined
as j�cj C j�dj. Let the dataset D consist of ten points that are best described by
values of parameters c D �4:2; d D �0:4, when a learning algorithm is applied to
minimize mean squared error. Suppose D includes the points (1,2) and (2,0). When
the same learning algorithm is applied to the dataset D n f.1; 2/g, let the values of
the parameters be c D �4:5; d D �0:4, with the net difference in parameter values
(compared to the original model) being ˛.1; 2/ D j.�4:2C4:5/jCj.�0:4C0:4/j D
0:3. On the other hand,when the same learning algorithm is applied to the dataset
D n f.2; 0/g, let the values of the parameters be c D �4:1; d D �0:1, with
the net difference in parameter values (compared to the original model) being
˛.2; 0/ D j.�4:2C4:1/jC j.�0:4C0:1/j D 0:4. Since this value is larger than 0.3,
the point (2,0) would be considered more anomalous than (1,2).

5.1.2 Data Space Approach

The data space approach is conceptually simpler and less computationally expensive
than the parameter space approach, as illustrated by the following example.

Example 5.3 Consider the set of two-dimensional data points

D D f.1; 1/; .2; 1:9/; .3; 3:5/; .4; 4/; .5; 5/g:

Let a linear model x1 � x2 D 0 be constructed for D . Three of the five data points
have zero error with respect to this model, but .2; 1:9/ produces an error of 0.1, and
.3; 3:5/ shows up with a slightly larger error (0.5), and is hence considered more
anomalous.

In the above example, the data space approach is more appropriate since the best
linear model constructed for D may be the same with or without the anomalous data
points, depending on the methodology used to construct the model.

5.1.2.1 Implicit Model

We now address the data space approach for implicit models in which it is not
possible to tease out explicit functional relationships. This method can be applied to
problems that do not permit neat separation between the variables, e.g., it may not
be possible to distinguish dependent and independent variables. But the data may



60 5 Model-Based Anomaly Detection Approaches

be describable by implicit models such as f .x/ D 0, possibly along with a set of
constraints C consisting of inequalities gi.x/ > 0:

In such cases, the first possible measure of anomalousness of a data point x0 is
obtained by evaluating the distance between f .x0/ and 0. We must then consider the
extent to which the constraints are violated, and combine the two.

Example 5.4 Consider a dataset modeled by the equation x2
1 C x2

2 � 4 D 0 along
with the inequality x1x2 � 0:5 > 0. We evaluate the relative anomalousness of four
points: (1.9, 2.1), (1, 2), (0.5, 0.6), and (2,0), using the data space approach.

• The first point almost exactly satisfies the first equation, with a small error, and
easily satisfies the inequality. So it would not be considered anomalous, for any
reasonable definition of anomalousness.

• The magnitude of the variation between .1; 2/ from the first equation is 12 C
22 � 4 D 1, whereas the inequality 1 � 2 � 0:5 > 0 does not contribute to the
anomalousness measure.

• On the other hand, the magnitude of the difference between a point .0:5; 0:6/

from the first equation is j.0:5/2 C .0:6/2 � 4j D 3:39, whereas 0:5 � 0:6 D 0:3

varies by (0.5–0.3) = 0.2 from the boundary described by the inequality. Since
the violations from the equality as well as inequality are worse, this point would
be considered more anomalous than (1,2).

• The point (2,0), on the other hand, produces zero error with respect to the first
equation, while varying from the boundary described by the inequality by j2 �
0 � 0:5j D 0:5, i.e., more than the similar variation of the previous point (0.5,
0.6).

The last two cases of this example raise the question of which point is more
anomalous: (2, 0) or (0.5, 0.6)? The answer depends on the relative importance
of the equality and the inequality describing the model, which may in turn be
significantly problem-dependent. If a subject matter expert opines that variations
from the inequality are twice as serious as variations from the equality, for instance,
we would compute the composite anomalousness measure to be 3:39 C 2 � 0:2 D
3:79 for the point (0.5, 0.6), which is greater than 0 C 2 � 0:5 D 1:0 for the point
(2,0). On the other hand, if the inequality variations are considered to be 20 times
more important than the variations from the equality, then (2,0) would be considered
more anomalous than (0.5, 0.6), since 0 C 20 � 0:5 D 10 > 3:39 C 20 � 0:2 D 7:39.

In some cases, no problem-specific information is available a priori to decide how
best to combine the multiple objectives represented by variations from the multiple
equations and inequalities that describe the model. We must then infer the relative
weights (of the variations from different constituents of the model) by examination
of the data alone, possibly based on the high level statistical properties of these
variations. Under the assumption of normal distributions for each of these variations,
for instance, we may compute a data-dependent relative anomalousness measure as
follows:
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˛.x/ D
X

i

max.0; .di.x/ � �i/=�i/

where di.x/ is a non-negative quantity that measures the degree to which the ith
model component (an equality or inequality) is violated by point x, �i is the mean of
di over the entire data set, and �i is the standard deviation of the values of di. To avoid
the distortions in �i and �i by strongly anomalous data points, we may instead use
the median or the “trimmed” mean and standard deviation, e.g., omitting extreme
values before calculating each average and standard deviation. The threshold for
considering a value to be extreme may be arbitrary (e.g., the top 10% of data values
before computing the mean), or based on quartile ranges, e.g., x75% C 1:5 � .x75% �
x25%/, where xp% refers to the smallest value that exceeds p% of the data set.

Many anomaly detection problems are focused only on abnormally high values
of attributes or features, so that extremely low values are ignored. For example, if
cash withdrawal magnitudes from bank accounts are being examined, only large
withdrawals may come under scrutiny. However, there are some applications in
which low values are also important, e.g., if the goal is to find instances of low
productivity in the workplace.

5.1.2.2 Explicit Models

In explicit models, the model identifies the relationships between certain dependent
variables y and other independent variables x. A data point .x1; : : : ; xm; y1; : : : yn/

that does not closely conform to the model is to be considered anomalous, while
most data points are expected to be largely consistent with the model.

The relationship between dependent and independent variables is presumed to be
expressible in the closed form y D F.‚; x/, where F represents the model for the
dataset D , ‚ refers to model parameters that are learned for dataset D , and .x; y/ 2
D refers to a specific data point. The definition of an anomalousness measure is then
straightforward, based on evaluating the variation between predicted and actual data
values:

˛.x; y/ D jy � F.‚; x/j:

Well-known distance measures can be used to evaluate the extent to which a
specific data point conforms to a model. For example, if .x1; x2; x3; y1; y2/ is a given
data point, and .f1; f2/ is the model intended to explain the last two variables as
functions of the first three variables, then the values of the following expressions are
possible choices to evaluate how closely the point p D .x1; x2; x3; y1; y2/ conforms
to the explicit model .f1; f2/:

• Manhattan: ˛1.p/ D jy1 � f1.x1; x2; x3/j C jy2 � f2.x1; x2; x3/j
• Euclidean: ˛2.p/ D �

.y1 � f1.x1; x2; x3//2 C .y2 � f2.x1; x2; x3//2
� 1

2
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• Generalized: ˛3.p/ D w1.jy1 �f1.x1; x2; x3/j/a C w2.jy2 �f2.x1; x2; x3/j/a where
a > 0 and the weights w1 and w2 express the relative importance of the two
dependent variables, or normalize the summands so that they have magnitudes in
the same ranges.

If we use the above expressions of ˛i.p/ directly to measure the anomalousness or
outlierness of p, we would be assuming that .f1; f2/ is an accurate model of the given
data. However, these models may themselves be imprecise or uncertain, so that
small variations from the model should not be considered significant. For instance,
a satisfactory linear relationship between dependent and independent variables does
not preclude the possibility that none of the data points has zero error with respect
to the linear model. In this case a small error can be ignored as explained below. If
the degree of imprecision of the model can be estimated from the data, e.g., if it is
known that 90% of the data points vary from a model by ˛.p/ < �, then we may
define the anomalousness of a point p using this known (and permitted) range of
variation �, e.g., using an expression such as the following:

˛ˇ;�.p/ D .max.0; ˛.p/ � �//ˇ

where ˇ > 1 indicates the rate at which distance exacerbates anomalousness.
A special case of explicit models arises in the context of classification problems,

with the dependent variable y taking values that indicate class membership, where
the number of classes is usually small. The models are expected to be simple with
a small number of parameters (e.g., perceptrons that separate classes using a linear
function of the input variables), and data points misclassified by the model can be
considered to be anomalous, with the degree of relative anomalousness measured in
terms of the shortest distance to the appropriate boundaries between the classes.
Euclidean norms are usually chosen for the distance (or error) measure, since
simplicity and differentiability permit gradient computations and the application of
gradient descent algorithm variants to minimize such distances.

Example 5.5 Consider the set of points {(1,1), (2,1), (3,0), (4,1), (5,1), (6,1), (7,0),
(8,0), (9,0), (10,0), (11,0), (12,0), (13,1), (14,0), (15,0)}, where the second variable
is intended to be a function of the first, and is a class membership indicator, i.e., the
points in {(1,1), (2,1), (4,1), (5,1), (6,1), (13,1)} are associated with class 1, and the
others with class 0.

If we restrict ourselves to models of the form “y D 0 iff x > c” with a single
parameter c and error measure

P
i j.c � xi/j, the best model for this dataset is

obtained with the parameter choice c D 6 or any value of c 2 Œ6:0; 7:0/. In other
words, c 2 Œ6:0; 7:0/ minimizes an error measure such as

P
i j.c � xi/j for the

samples misclassified by any choice of c. Of the two misclassified data points (3,0)
and (13,1), the former is at a distance of 3 from c D 6 and is hence considered
less anomalous than the latter which is at a distance of 7. However, if we measure
anomalousness using a different error measure such as

P
i.c�xi/

2 (for misclassified
samples), then note that c D 6:9 is better than 6:0, since .3 � 6:9/2 C .13 � 6:9/2 <

.3 � 6/2 C .13 � 6/2. Even more surprisingly, optimizing this error measure gives
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a better solution at c D 7:9, which misclassifies one additional point (7,0). In this
example, minimizing mean squared error gives a different result from minimizing
the number of misclassified data points.

5.2 Distribution Models

In this section, we first discuss the application of parametric distribution estimation
to anomaly detection, and then address regression models of multiple kinds.

5.2.1 Parametric Distribution Estimation

Instead of focusing on the relationships between individual attributes of data points,
we may address compact descriptions of entire sets of data, viewed as distributions
with some expected variations among each other. Although this section focuses
on the well-known univariate normal distribution, our discussion can be applied to
various other distributions studied in the literature. If the data is believed to follow
a Gaussian distribution, then the probability density is given by the expression

f .xI �; �2/ D 1p
2��2

�

e� .x��/2

2�2

�

:

The distribution has a characteristic peak that occurs at the mean, �. Then the main
task is to learn the most appropriate values of � and � (standard deviation), the
two parameters of this distribution. About 4.5% of the data points are expected to
be more than two standard deviations away from the mean, and about 0.3% are
expected to be more than three standard deviations away. 99.9% of the data points
are expected to lie within the range f��3:29�; �C3:29�g; while 99.99% of the data
points are expected to lie within the range f� � 3:89�; � C 3:89�g; hence jx � �j=�

gives a clear indication of the probability of expecting the occurrence of a point.
Great caution is required in interpreting these numbers when the distribution is not
normal, or when the dataset is too small to justify the assertion that distribution is
normal; not every unimodal (bell-shaped) distribution is normal.

One of the primary tasks is then to distinguish between the expected amount of
noise in the data from the occurrence of true outliers. For instance, if a dataset is
represented by a normal distribution, then almost every point is expected to deviate
from the mean, but this does not indicate that each such point is anomalous. Indeed,
if the distribution is normal, we expect that a certain fraction of the points may lie
far from the mean, although such fractions are expected to become very small as
we move farther away from the mean. The tricky question is whether we would
consider a point situated at > � C 3� to be anomalous (for a one-dimensional data
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set), given that the very definition of a normal distribution suggests that there is a
non-zero probability of finding a few such points.1

The following are a few alternative approaches to this conundrum:

1. Ignore the definition of the distribution, and use the relative distance from the
mean to indicate relative anomalousness of each data point with respect to the
mean.

2. Based on the definition and properties of the distribution, use the probability of
occurrence of a specific data point to indicate relative (non)-anomalousness of
points.

3. Compare the distribution parameters with and without the suspected anomalous
data point, using the relative difference between such parameters to indicate
relative anomalousness.

For anomaly detection applications in which some data points cluster together,
and a small number do not, mixture models are most appropriate. A mixture
model consists of a finite collection of parameterized distributions, e.g., Gaussian,
binomial, exponential, or log-normal distributions.

Example 5.6 House prices in a city vary widely, but the city consists of a collection
of neighborhoods, with considerable uniformity within each neighborhood. The
overall distribution of house prices is hence a combination of the distributions within
its various neighborhoods; each such distribution may be normal, with a different
mean and variance.

Parametric models assume that the available data can be described by a well-
understood formula or distribution (e.g., Gaussian), with a small number of
parameters whose values need to be learnt for the specific data under consideration.
If this assumption is justified, then efficient learning algorithms can be applied
to the available data; otherwise, we have to rely on less efficient non-parametric
approaches.

5.2.2 Regression Models

Most regression algorithms apply variations of a gradient descent algorithm in
which an error measure is successively reduced in magnitude through iterative
improvements, i.e., changing the coefficient values in the model in a direction that
would reduce error. This approach, focusing on the least mean square approach, was
first developed by Legendre (in 1805) and Gauss (in 1809), who applied it to infer
planetary orbits.

1In the multivariate case, deviations must be normalized by standard deviations of multiple
attributes.
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5.2.2.1 Linear Regression

Linear regression is a special case which assumes that each dependent variable is a
linear function of the independent variables; variants in the neural network literature
are referred to as the Perceptron and Adaline models. They usually focus on finding
the linear model parameters that minimize mean squared error, i.e., MSE D P

i.yi �
f .xi//

2; where yi is the dependent variable, xi is the ith independent variable (vector),
and f .xi/ D a0 CP

ajxi;j is the linear function model. The values of aj parameters
are easily obtained, e.g., by iteratively modifying each linear coefficient aj by
�	d.MSE/=daj, where 	 > 0 is a small learning rate (or step size) constant chosen
to be small enough to avoid divergence, but large enough to ensure progress. Linear
models may also be learnt by minimizing another error measure such as

P
i j.yi �

f .xi//j, although gradient descent cannot be applied easily.

5.2.2.2 Nonlinear Regression

Linear models are limited in their capabilities, although easy to formulate and
learn. Methods such as non-linear least squares extend this approach to nonlinear
functions, such as f .xi; ˇ/ where ˇ represents the parameter vector. Often, the
primary difficulty is that closed form solutions are not available. Nevertheless, the
values are successively improved over multiple iterations, e.g., using a Taylor series
expansion. Initial parameter values may be obtained by trial and error, and iterations
are terminated when progress over successive iterations is judged to be negligibly
small.

If e represents the error vector, and J is the Jacobian matrix consisting of first
partial derivatives of the error vector with respect to the parameter ˇ, then in each
iteration ˇ is updated by .JTJ/�1JTe.2 When the Jacobian itself cannot be computed
easily, numerical approximations are obtained by computing the effects of small
perturbations of the parameter ˇ.

Another important approach for nonlinear regression is the use of Feedforward
Neural Networks [85], whose parameters (referred to as weights) are learned using
the error backpropagation algorithm (abbreviated backprop) [117]. Pictorially, they
can be represented as in Fig. 5.1, which shows an input layer (representing the
independent variables), and output layer (representing the dependent variables), and
a hidden layer; the input and hidden layers are augmented by a dummy node x0

whose constant output is 1, whose outgoing edge weights are also referred to as bias
values. Each edge from node i in layer k � 1 to node j in layer k is annotated by

2For the computation of this quantity, the Gauss-Newton method relies on the Cholesky decompo-
sition method, expressing any positive-definite matrix as the product of a lower triangular matrix
and its conjugate transpose. The Gauss-Newton method is susceptible to divergence, a problem
addressed by reducing the magnitude of the change in ˇ, e.g., by using the Marquardt parameter.
The Levenburg-Marquardt algorithm adapts the magnitude of this update, effectively obtaining a
compromise between the Gauss-Newton algorithm and gradient descent.
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Fig. 5.1 Feedforward Neural
Network with a hidden layer
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a numeric weight parameter w.k/
j;i , and each node in the network applies a sigmoid

function (such as the hyperbolic tangent or the logistic function) to the net input
received by the node. The output of the jth node in the kth layer, for instance, is

x.k/
j D 1=.1 C e�.

P
i w

.k/
j;i x

.k�1/
i //:

Such a network with a sufficient number of nodes can be used to approximate any
desired smooth function to a required degree of accuracy. A stochastic gradient
descent procedure (backprop) iteratively updates weights, starting with the layers
closest to the outputs and propagating backwards until the layers near the input
nodes are updated. Theoretical results state that two hidden layers are sufficient
for approximation to any desired degree of accuracy, with each node connected to
each node in the next layer, although recent work has exploited the power of “deep
networks” with many layers and a small number of connections between successive
layers.

5.2.2.3 Kernel Regression and Support Vector Machines

This approach estimates model functions using a locally weighted average function,
where the weights are determined by a suitably chosen kernel function[91, 114].
Gaussian functions are often used as kernels, an approach that has been popularized
with Support Vector Machines (SVMs) [29, 105, 112] which have also been used for
classification problems. SVMs have emerged as the learning algorithms of choice
for many classification problems, and combine several theoretically important ideas
(such as regularization, nonlinear feature space representations, and interior point
optimization algorithms) captured in efficient implementations. An SVM with
Gaussian kernel functions resembles a neural network model known as a Radial
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Basis Function (RBF) network, whose nodes apply Gaussian functions to net inputs,
and the parameters of such functions are learnt by gradient descent algorithm
variants.

5.2.2.4 Splines

Formally, a spline is a piecewise-polynomial real function; i.e., the function S.t/
consists of a collection of polynomials Pi.t/, with smooth junctions where the pieces
connect. A frequent choice of the polynomial function Pi.t/ is a cubic polynomial.
Splines patch together multiple polynomial functions, where each polynomial’s
coefficients are determined by a few points in close proximity to each other. In
the context of time series modeling, discussed in detail in the next section, time
is broken up into k discrete intervals Œt0; t1/; Œt1; t2/; : : : ; Œtk�1; tk�, and the spline
S.t/ D Pi.t/ for the range ti�1 � t < ti, where 1 � i � k.

5.3 Models of Time-Varying Processes

Formally, a (univariate) time series is a totally ordered sequence of data items
(numerical values), each associated with a time-stamp which makes it possible to
identify the time gap between any two items. Two successive timestamps are not
required to have the same time gap, e.g., the time interval between two different pairs
of successive items in the same time series may be 10 s and 20 s, respectively, since
we cannot always assume that data is sampled at equal time intervals. The format of
the time-stamp does not matter, as long as there is a one-to-one correspondence with
a universally accepted clock. In a multivariate time series, data items are vectors of
numerical values.

It may appear to be possible to consider the time-stamp of a data item as
just another numerical attribute of data, and hence apply the anomaly detection
principles and algorithms used with non-time series data. However, this approach
is unlikely to succeed since time is a unique characteristic that cannot be treated like
other attributes of a data set. Timestamps serve to sequence the data items (vectors
of non-time attributes of the data) as well as to indicate the “spacing” between data
items along the temporal dimension.

Example 5.7 Consider the following univariate time series data represented as two-
dimensional vectors .xi; ti/ in which the second attribute is a time-stamp:

Dt D f.�1; 0/; .1; 1/; .3; 2/; .5; 3/; .7; 4/; .6; 5/; .11; 6/; .17; 9/g

• If we were to attempt to find an anomaly while ignoring the fact that the
second attribute represents a time-stamp, the last point (17,9) is at the greatest
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Euclidean distance from other points, and is hence considered to be anomalous.
This conclusion would emerge irrespective of which of the anomaly detection
approaches (discussed in other chapters) we apply.

• If we were to treat the first attribute as a function of the second, the data fall
neatly into a straight line pattern, described by the equation x D 2t � 1, except
for one outlier: (6,5). In the 2-dimensional data space, this point appears to be
squarely in the middle of a cluster, although it is substantially anomalous from
the time series perspective.

The above example illustrates the importance of separating out the time attribute.
It is not necessary that the other data attributes be functions of time, and generally
they are not. For example, the daily fluctuations in closing stock prices cannot
be described as functions of time, affected as they are by multiple factors of the
economy and company performance.

The time series in the above example had data items that were not regularly
spaced along the time dimension. Note that if regular spacing did occur in the time
dimension, e.g., if the dataset had also included (13,7) and (15,8), the apparent
anomalousness of (17,9) would be eliminated, but the time dimension would then
be non-informative with respect to non-time-series anomaly detection approaches;
(6,5) would still appear to be in the heart of the data set, hence not anomalous using
such approaches.

Hence it is necessary to develop anomaly detection algorithms that are specif-
ically applicable to time series problems. A natural starting point is to extend or
modify non-time-series approaches, as explored below.

A time series, X , can be expressed as an ordered sequence:

X D .x1; t1/; .x2; t2/; : : : ; .xn; tn/ or

X D x1; x2; : : : ; xn

In either case, xi denotes the data attribute(s) at time ti; and can take continuous
or discrete values. The former representation is typically employed when ti values
are not equally spaced, e.g., when sensor measurements are reported at varying
intervals. In the rest of the chapter we assume that the data points are equally spaced
and use the compact representation, i.e., X D x1; x2; : : : ; xn.

Several methods have been proposed in recent years to address model-based
anomaly detection. Model-based methods, such as Regression[43, 101], Auto-
Regression [45], ARMA [94], ARIMA [87], and Support Vector Regression [82]
may be used to find abnormal sequences. Chandola et al. [21] suggest a kNN
based method which assigns anomaly score, equal to Euclidean distance to kth
nearest neighbor in the data set, to each time series. Another distance measure based
approach that can be used with kNN is dynamic time warping (DTW) proposed by
Berndt and Clifford [11]. Fujimaki et al. [45] suggest Autoregressive (AR) approach
which constructs a global AR model for all series and then calculates the anomaly
score at time t as the gap between the observed value and the predicted value. Zhou
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et al. [124] propose to apply the Back propagation Neural Network to the results of
Local Outlier Factor (LOF), to analyze the outliers over data streams.

Most of the anomaly detection techniques for sequence data, discussed in
this chapter, can be grouped into three categories, [21]): kernel-based techniques,
window-based techniques and Markovian techniques.

• Kernel-based techniques compute a similarity measure based on the entire
time series or sequence, which may be used in conjunction with the anomaly
detection techniques developed for non-sequence data, such as the k-nearest-
neighbor approach.

• Window-based techniques analyze short windows of sequence data (subse-
quences) to compute an anomaly score for each subsequence, then combine these
to obtain a total anomaly score.

• Markovian techniques assign a probability to each subsequence based on pre-
vious observations. For a system whose prior states were S1; : : : ; St, Markovian
approaches assume that the conditional probability of the next state depends only
on k < t recent states, i.e.,

P.StC1jS1; : : : ; St/ D P.StC1jSt�kC1; St�kC2; : : : ; St/:

For the simplest Markov models, k D 1, i.e., only the immediately preceding
system state determines the probability of the system state.

With each of these models, anomaly detection consists of identifying significant
variations from a model’s predictions, relying on a similarity or distance measure
that either compares, as stated earlier:

(a) predicted data to actual data, or
(b) the parameters of models with vs. without the potentially anomalous data point.

First a model is generated to predict the behavior of the time series; using
this model, the predicted values are calculated and compared with the observed
values. The cumulative score of the differences is defined as the anomaly score of
each observed data object. This approach is sketched in Algorithm “Model-based
approach”:

Algorithm Model-based approach
1: GIVEN: Time series dataset X 2 D , parametric model M;
2: Train the model M on each time series X in D to determine appropriate parameter values, and

let the result be M;
3: for each X 2 D do
4: Apply M to predict values of x.t/ of time series X and evaluate distance associated with it;
5: Report the series X as an anomaly if its distance is substantially large;
6: end for
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Stationarity assumptions are sometimes made, i.e., assuming that the process
which generates the data has not changed with time.

5.3.1 Markov Models

Markov models are used in systems that pass through sequences of discrete states
(such as s1s2s3s2s4s1s2 : : :). Markov models presume that each individual’s future
state has some dependence on the current state, but not directly on earlier states.
Time and other variables, including possible states, are assumed to be discrete, e.g.,
with values for the time variable ranging over non-negative integers, and values for
the possible states of an individual or system ranging over a finite set S.

Notation Let St denote the state of the system at time t, and let ptC1;b denote the
probability that the system state will be b at time tC1. Three simple Markov models
are presented in Fig. 5.2. In the simplest Markov model, ptC1;b is a function of St.

Example 5.8 Consider a coin being tossed repeatedly, with St 2 fHeads, Tailsg
indicating that a coin toss at time t results in one of two alternatives.

• With a fair coin, we expect pt;Heads D pt;Tails D 0:5, easily observed using a coin
tossed repeatedly; this is a trivial case of a Markov chain. But if multiple coin
tosses reveal a different probability distribution, e.g., if Heads show up 70% of
the time, we suspect an unusual behavior compared to the behavior of most coins
which are expected to be unbiased or fair. If the number of coin tosses is small,
the anomaly may be attributed to randomness, but if the anomaly was observed
over a large number of tosses (say 100), then we suspect that the coin toss process
is biased (not fair).

• The coin toss may be anomalous in other ways, even if almost the same number
of heads and tails are reported. Runs of identical coin-toss results may occur, e.g.,
with ptC1;Heads D 0:8 if St D Heads, and ptC1;Tails D 0:8 if St D Tails. Discovery
of this pattern may be obtained by applying a learning algorithm that learns the
probability of the result of each successive coin toss as a function of the most
recent coin toss.

0.5

0.5 0.5 0.8 0.80.80.5

0.2 0.2

0.20.50.5

H H H T T T

Fig. 5.2 Three HMM models with conditional probability of H and T as indicated by round
arrows; a straight arrow provides the probability of transition from one state to another. The
leftmost figure is for a fair coin, the second is biased (in favor of Heads), and the third figure
is symmetric but has low probability of going from one state to another
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• After the discovery of this pattern, a player may temporarily substitute a fair coin,
whose behavior (with equiprobable outcomes of every coin toss) would constitute
an anomaly with respect to the learned model. But we would not consider this to
be an anomaly if this substitution is permanent, i.e., if the fair coin continues to
be used thereafter.

• The “bias” introduced into the coin may wear off with time, and observations
after a few hundred coin tosses may vary from the 0.8 model, with the magnitude
of such variation from the model measured over multiple coin tosses. If this effect
(reduced bias) persists, it would reflect a necessary change in the model, but not
an anomaly.

Summarizing, this approach would first construct a Markov model for the system
being observed, and anomalies would be identified by the occurrences of temporary
variations from expected behavior in an observed system. This could be measured
in two ways:

1. Anomaly detection may be based on evaluating the magnitude of the variation
between the observed behavior and the behavior of the system as predicted by
the Markov model.

Example 5.9 In a repeated coin toss example, let the values observed be in the
sequence HHHHT HTHHH HHTHH TTHHH HHHHH THHHH HHTHH HTHTT
TTHHH TTHHT HTTHT HHTHH TTHHH HHHHH THHHH. Then the Markov
model would predict that Heads are likely to occur with a probability of 0.7, as
shown in Fig. 5.3. The stretch of equiprobable outcomes in the center of this
sequence would be flagged as anomaly since it significantly varies from the 0.7
prediction; this can be seen by the dip in the center of the graph in Fig. 5.4.

Fig. 5.3 Model parameter Prob.Heads/ based on all preceding time points
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Fig. 5.4 Result of periodically updating the parameter Prob.Heads/ after 5 coin tosses

2. Instead, anomaly detection may occur upon constructing a new model of the
system (e.g., by continuously learning the parameters of the Markov model), and
then computing the differences in model parameters from the previously learned
parameters. Since learning is computationally expensive, the model parameters
may be recomputed periodically instead of being continuously updated.

Example 5.10 In the preceding coin toss example, if the model parameter
that describes the probability of the next coin toss resulting in a Heads
outcome, updated at a frequency of a hundred coin tosses, has the values
(0:80; 0:79; 0:81; 0:79; 0:79; 0:52; 0:80; 0:81; 0:79; : : :), the an anomaly would be
flagged at the occurrence of the 0.52 parameter value.

5.3.2 Time Series Models

Time series are sequences of data items carrying time tags that monotonically
increase, usually at a fixed rate, e.g., stock prices at closing time on each work
day.3

Past work has extensively addressed the identification of autoregressive rela-
tionships, (long-term) trends, and cycles. Smoothing techniques such as moving
averages have been used to suppress the effects of random noise in the data. All of
these characteristics are derived from the available data, and expressed as parameters
of a high level model such as ARIMA, discussed in detail in textbooks such as [54].

3Note that the same phrase “time series” may refer to a single time-ordered sequence of values or
a set of such sequences.
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Sometimes, the behaviors of individuals and systems need to be analyzed at the
high level, rather than applying a microscope to irrelevant fluctuations over time at
a low level of granularity. Well-known statistical approaches to analyze time series
can then be useful, e.g., describing each time series (over a given period of time) in
terms of cycles and long-term trends. These can be viewed as the primary features
of the time series, and used to evaluate the occurrence of an anomaly within a single
time series as well as to distinguish one time series from a collection of others.

• A retail company’s stock may have previously seen seasonal cycles, e.g., with
an annual high in December. If, in one December, a comparable high is not
encountered, this signals that something anomalous is occurring within that
company.

• A collection of oil company stocks may exhibit a strong upward trend over a
relatively long period, despite occasional dips or corrections. If one of these
stocks fails to show such a trend, it stands out as anomalous with respect to
others.

• The rate at which accesses to a database occur may follow patterns that are
repeated daily, e.g., peaking early morning and early afternoon, with prominent
dips around noon and in the late afternoon. Variations from this, e.g., a very late
afternoon peak, may indicate an anomaly such as a user inappropriately accessing
an account.

Example 5.11 Consider the sales charts for a retailer, illustrated in Fig. 5.5.

Fig. 5.5 Example monthly sales chart for a retail company
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• First, we observe that there is a steady upward trend in the sales, despite
occasional minor fluctuations attributable to various external causes or the
random vagaries of human wills in numerous individual purchase decisions. A
linear regression model shows an annual increase of about 2%; if sales in a three-
month period show flat sales (0%) in a year-to-year comparison, this indicates an
anomaly with respect to the linear trend model for prior data, even if a similar
phenomenon has occurred occasionally in the past.

• Second, there are some seasonal patterns in monthly sales, with December sales
being approximately twice November sales each year. If sales in a particular year
show little or no increase in December, compared to the prior month, this would
indicate an anomaly with respect to the seasonality model.

Many real life processes are better described using continuous-valued variables
which change their values along a linear time sequence. It is possible to discretize
continuous-valued variables (e.g., into high; medium; low discrete categories), but
this often involves loss of information, and also requires problem-specific knowl-
edge. For example, an investor is interested in knowing actual stock prices, and it is
not sufficient to say merely that a stock price is “high.” Time series have hence been
used extensively in many applications in dynamic system modeling and forecasting,
e.g., in financial markets, and have been studied for many years, [15].

The main effort in statistical approaches is to find the right model that describes
a time series; anomalies within the time series are then considered to be data points
that deviate substantially from the predictions of such a model.

5.3.2.1 ARIMA Models

ARIMA models are very widely used, and allow us to capture the following features
of many time sequences:

• Dependence of a variable upon its own history;
• Greater weightage to its recent values than older previous values;
• Non-stationarity;
• Smoothing by moving averages, to eliminate some noise;
• A term that expresses drift over time; and
• Inclusion of terms that represent random noise.

Dependence on past values is a common assumption in time series modeling. To
model dependence, the current value of a variable, xt, is described in terms of its
past values; xt�1; xt�2; : : :. An autoregressive AR (p) model assumes that we can
predict the behavior of xt as a linear function of its past values xt�1; xt�2; : : : ; xt�p,
where p > 0 and the associated AR(p) model is

xt D
pX

iD1


ixt�i C �t;
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where the error �t is assumed to be normally distributed with mean 0 and variance
�2. The lag operator L is often used to refer to the value of a variable at a preceding
time point, with Lxt D xt�1; for longer time lags, we write Lixt D xt�i. Using this
convenient notation, the above AR(p) equation can instead be written as follows:

 

1 �
pX

iD1


iL
i

!

xt D �t:

Often the current level is affected by a shock variable which is randomly
distributed, whose effect is felt for an interval of time stretching over q > 0 time
units. This is an example of a phenomenon captured effectively by using a Moving
Average (MA) model. For example, a MA(1) model is written as

xt D �t C ��t�1

and an MA(q) model is:

xt D �t C �1�t�1 C : : : C �q�t�q D
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When the AR(p) and MA(q) models are combined, we get a general ARMA(p; q)
model:
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Finally, introducing a drift term with an additional parameter d > 0 that allows
us to capture non-stationarity in the time sequences, we obtain the Autoregressive
integrated moving average or ARIMA(p,d,q) models, proposed by Box and Jenkins,
summarized in [8], and represented by the following equation:
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where p; d; q are model parameters that may be chosen by the user. Here, ı=.1 �P
i 
i/ is considered the “drift” over time. Special case of this model includes

Random walk model in which p D q D 0. A special case, ARFIMA(0,d,0), written
as .1 � L/dXt D �t, is interpreted to mean

�t D Xt � Xt�1d C Xt�2d.d � 1/=2 � Xt�3d.d � 1/.d � 2/=6 C : : :

Important variations of ARIMA are: VARIMA models, in which the data varying
over time are vectors; SARIMA models that explicitly model seasonality; and
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FARIMA or ARFIMA models, in which parameter d can take fractional values,
so that deviations from the mean can be allowed to decay more slowly.

5.3.2.2 Discrete Fourier Transformation

The discrete Fourier transform (DFT) represents a collection of digitized signals
(time series) in frequency domain (sinusoids). Fourier transforms are important in
signal processing. due to the reason that it allows to view the signals (discrete time
series) in a different domain where several difficult problems become very simple
to analyze.

Given a time series X D x0; x1; : : : ; xn�1, the discrete Fourier transformation of
X is a n-dimensional vector, F D F.0/; F.1/; : : : ; F.n � 1/, defined as follows:

F.j/ D
n�1X

kD0

xke�i 2�
n jkI j D 0; 1; : : : .n � 1/;

where i denotes the (complex) square root of �1. The transformation can be written
in a matrix notation as:

F D WX T

For example, when n D 4 and X D .10; 3; 7; 5/, in matrix notation the desired
transformation is:
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Given the Fourier transformation F of a given time series it is very easy to
recover the series by inverse transformation.

5.3.2.3 Haar Wavelet Transformation

We now describe Discrete Wavelet Transformation (DWT) with Haar wavelets (also
known as Db1). Haar wavelets are the simplest possible wavelets, preferred over
DFT due to computational efficiency and the time localization property, so that it is
easier to determine when the anomaly occurs (Fig. 5.6)

Given a vector of x of 2n points, where n is an integer, its Haar transformation is:

y D Hx;
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Fig. 5.6 Basis functions of
Haar transformation, for data
with four observations
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where H is an orthogonal matrix with special properties, described below. For
example, if x has four points, then the graphical representation of the basis functions
of this transformation are as shown below:This basis can be represented by four
vectors: .1; 1; 1; 1/, .1; 1; �1; �1/, .1; �1; 0; 0/ and .0; 0; 1; �1/. These vectors are
orthogonal to each other, however they are not orthonormal. The matrix H is a 4 � 4

matrix, obtained after normalization of these vectors. More precisely,
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For example, when n D 4 and X D .10; 3; 7; 5/, in matrix notation the desired
Haar transformation is:
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Similarly, when x contains eight observations, the corresponding basis functions
are as plotted below (Fig. 5.7). The corresponding transformation matrix, H8 is given
below:
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(1, 1, −1, −1, 0, 0, 0, 0)

(1, 1, 1, 1, 1, 1, 1, 1)

(0, 0, 0, 0, 1, 1 −1, −1)

(0, 0, 0, 0, 0, 0, 1, −1)(0, 0, 0, 0, 1, −1 0, 0)(0, 0, 1, −1, 0, 0 0, 0)(1, −1, 0, 0, 0, 0, 0, 0)

(1, 1, 1, 1, −1, −1 −1, −1)

Fig. 5.7 Basis functions of Haar transformation, for data with eight observations
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In general, unnormalized transformation matrix H2n is recursively defined as:

H2n D
�

Hn ˝ Œ1; 1�

In ˝ Œ1; �1�

	

;

where In is the identity matrix of size n � n and ˝ denotes the Kronecker’s product.
Haar transformation has the property that if y D Hx, then x D H�1y D HTy.

Consequently, if we retain all values in y, then x can be recovered completely.
However, if only larger values in y are retained and all small values are equated
to zero, then the inverse transformation provides a ‘good’ approximation of x.

More recently, other methods to find a model for a given time series have
also been proposed, such as short-time Fourier transform and fractional Fourier
transform.

5.4 Anomaly Detection in Time Series

Anomaly detection problems come in two primary flavors in the context of time
series:

• Abnormalities within a single time series; and
• Substantial variation of one time series from a collection of time series.
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This section is organized as follows. In Sect. 5.4.1 we consider anomaly detection
within a single time series; and the variation of one time series from a collection of
time series is discussed in Sect. 5.4.2.

5.4.1 Anomaly Within a Single Time Series

The problem of anomaly detection within a single time series is usually formulated
as the “Change Detection” problem, i.e., identifying when the parameters of a time
series model have changed.

We first present some examples of time series anomaly detection problems
(Figs. 5.8, 5.9, 5.10).

Example 5.12 The daily closing price of a large retail company’s stock has been
exhibiting a roughly linear behavior for many months, with small up and down
variations.

• One day, the stock price rises a little, but may fall the next day back to the
value predicted by the linear behavior. This may not be an anomaly, and may be
attributed to market noise, especially if the magnitude of the rise is not substantial
compared to the usual day-to-day variations for the same stock price.

• One week, a sudden spike is observed, not followed by a dip over the next
few days. This indicates an anomaly, and could be explainable by news sug-
gesting that the fundamentals of the company’s performance have substantially
improved.

• In early December, the stock price rises substantially, and then falls again by
early January. This may not be an anomaly, but may indicate cyclic seasonal
behavior (due to Christmas-time spending), especially if supported by data for
multiple years. Of course, we may consider any such December behavior to be
anomalous with respect to the behavior in other months. Thus, the time duration

Fig. 5.8 Daily closing prices for a company’s stock in 2015
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Fig. 5.9 Daily closing stock prices, with an anomaly near day 61

Fig. 5.10 Daily closing stock prices, with an anomaly that extends for several days (roughly from
day 22)

of the analysis is important to distinguish seasonal or cyclical variations from
true anomalies.

• On September 16, 2008, the stock price dipped substantially. This certainly
indicates an anomaly in the time series. Later analysis reveals that practically
all stock prices dipped on that day (referred to as a “market crash”), and this
particular stock had merely moved in lock-step with the rest of the stock market.
Hence, when viewed in the context of the rest of the stocks, the behavior of this
stock was not anomalous.

• On May 6, 2010, the stock price does not change much, with respect to its earlier
observed linear behavior. But analysis reveals that most large company stock
prices dipped on that day, and this particular stock had not moved in lock-step
with the rest of the stock market. Hence, when viewed in the context of the rest
of the large company stocks, the behavior of this stock was anomalous!
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In the context of cyber-security, time series arise in a few different contexts:

• The observable behaviors of an individual may exhibit changes over time, which
can indicate that he now has new intentions that he did not have earlier, leading
us to infer the possibility of past or future fraudulent activities.

Example 5.13 Alberta Einstein’s normal access pattern for her email account may
be characterized by the fact that she checks in for only a few minutes each
night at 9PM. If it appears that Alberta’s account is being used for over fifteen
minutes at midnight, we may infer that perhaps the account is being accessed by
an unauthorized user, not Alberta. Of course, it is possible that there are valid
reasons for such occurrences, e.g., travel to a different time zone. If this recurs
with regularity every Tuesday night (but not on other nights), perhaps Alberta’s
computer has a zombie problem.
• The behavior of an individual may vary substantially from those in his peer

group. This “outlier” individual may be involved in fraudulent activities.

Example 5.14 Johann Dough, an employee of a hospital with legitimate access to
electronic healthcare records may be accessing the healthcare records of seventy
two individuals in an eight-hour day during a certain extended duration of time.
On average, other individuals with the same job title at the same hospital access
forty individuals’ records per day, with a standard deviation of ten. Johann’s
substantial variation from peer group behavior signals possible undesirable activity,
e.g., Johann may be leaking confidential information to external entities.

– If the job description of Johann was different (e.g., “network administration”
or “system testing”) from the peer group, then the variation may not be
considered significant.

– If the standard deviation was twenty instead of ten, the “three-sigma” rule
suggests that the same variation may not be considered to be substantial, since
.70 � 40/=20 < 3.

– Suppose Johann had been previously accessing fifty records per day, with a
sudden jump to seventy two at some point in time; when that jump occurs,
the variation with Johann’s own past history signals an anomaly necessitating
further investigation. Of course, this does not conclusively prove fraudulent
behavior, e.g., such behavior is explainable if Johann’s job description had
changed recently, or if new software (improving productivity) had been
purchased at the time point when the transition in Johann’s behavior occurred.

– Suppose Johann was steadily accessing exactly 8–9 records in every hour of
the weekday, whereas the peer group exhibits more predictable fluctuations,
e.g., peaking at 9AM, with a near-zero access rate during the lunch hour,
and a slow period towards the end of the work-day. This would signal an
abnormality when you compare the hourly access rate time series of Johann
with the time series of the peers. (A possible explanation is that an automated
process or zombie is performing the accesses.)

– Suppose Johann’s access rate steadily drops over a long period of time,
whereas peer group access rates remain flat. This is again an indication of
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an anomaly of Johann’s time series vs. the peer group’s time series, though it
may indicate loss of morale, motivation, or productivity, rather than fraud.
Abnormally low levels of activity hence require different actions (and the
formulation of different underlying hypotheses) when compared to anomalies
indicating significantly higher levels of activity.

• The quantities of message traffic received over the Internet by a large server or
system may exhibit patterns that are mostly predictable, although subject to some
random noise. Substantial variations from such patterns (over time) may signal
possible cyber-attacks.

Example 5.15 The typical distribution of the number of email messages received
by a server for an e-retail sales company (providing online purchase assistance)
may peak to 100 messages/second at 9PM, with very low activity over most of the
day, and a spike during the noon hour.

– If a peak is instead observed at 2AM on a specific day, that would be an
anomaly with respect to the past history of the message traffic.

– If the peak volume at 9PM jumps to 1000 messages/second, that would
indicate a different kind of anomaly, e.g., the announcement of a “hot” new
toy on the retail channel, or the precursor of a denial-of-service attack.

– The peak on a Saturday may be at a different time, with weekend hourly time
series following a substantially different pattern than weekday time series. So
an anomaly for a weekday may not be an anomaly for weekends (or holidays).

– Data from a long period of time may be necessary to distinguish anomalies
from normal business cycle events, e.g., due to year-end accounting activities
or major holidays associated with extensive gift-related purchases or specially
discounted sales.

• The distribution of the origins or routing points of Internet message traffic may
also follow predictable patterns, with malicious attacks identifiable by variations
from such patterns.

Example 5.16 Approximately 3% of the message traffic to a university server
usually originates from a specific country, and has a predictable distribution over
time, e.g., with 80% of the traffic originating during the period 9AM–6PM in that
country. A potential cyber-attack may be suspected when the actual distribution of
traffic from that country deviates drastically from this pattern.

– One morning, 10% of the message traffic received by the university originates
from that country. The substantial increase in volume indicates possibility of
malicious attacks or other undesirable activity.

– Another day, 0.01% of the message traffic originates from that country.
This anomaly may indicate that the communication channels specific to that
country are broken.

– A non-trivial amount of traffic from that country is received at a time period
corresponding to midnight in that country. The amount may not be substantial
when viewed in isolation, but may deviate from the expected time distribution.
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Fig. 5.11 Distance of data point (12, 12) using one consecutive point on either side

– One day, the distribution of lengths of messages (from that country) appears
to be unusual, e.g., many messages have the same length, whereas the
norm is to see much greater variation in message length. This suggests that
many messages may be coming from the same sender, indicating potential
spamming or malicious activity.

5.4.1.1 Methodologies for Anomaly Detection Within a Single Time Series

Many non-time-series problems are amenable to distance-based approaches, where
the relative anomalousness of a data point is estimated as a function of its Euclidean
distance to other data points (the nearest neighbor or the nearest cluster centroid),
which is not directly useful for time series data due to the complications introduced
by time-stamp values. This leads to the alternative distance-based approaches listed
below.

Notation The terms “preceding” (or “predecessor”) and “succeeding” (or “suc-
cessor”) refer to the nearest points on either side of a point in the given data set,
along the time dimension; for instance, in the time series the data point (11,6) is
preceded by (6,5) and followed by (17,9). We use the phrase “data item” to refer
to the attributes in a data point excluding the timestamp, e.g., “6” is the data item
corresponding to the data point (6,5) where “5” is the timestamp.

• Compute the perpendicular distance between a data item and the line segment
connecting its predecessor and successor data item.4

4The distance between .x1; t1/ and the line segment connecting its predecessor .x0; t0/ and
successor .x2; t2/ can be computed as
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This is undefined for the first and last time points.

Example 5.17 For X D f.�1; 0/; .1; 1/; .3; 2/; .5; 3/; .7; 4/; .6; 5/; .11; 6/; .17; 9/g;
the respective distances for the non-terminal points (t D 1; : : : ; 6) are
approximately 0.0, 0.0, 0.0, 1.3, 1.3, and 0.7, respectively, leading to the conclusion
that the most anomalous points are (7,4) and (6,5) as shown in Fig. 5.11.

Note that the presence of an anomalous data point such as (6,5) affects its
neighborhood, leading us to suspect that its nearest neighbor is also anomalous.
This is a consequence of using only two points to construct the line segment, for
which the distance of a potentially anomalous point is computed.
• Compute the distance between a data points and the line segment connecting

its two nearest (in time) data points. This permits computation of the relative
anomalousness of even the terminal points, although requiring extrapolation
instead of interpolation in some cases. Implicitly this permits the possibility that
the time series behaves differently in different regions of the temporal space, e.g.,
with a different slope.

Example 5.18 For X 0 D f.�1; 0/, .1; 1/, .3; 2/, .5; 3/, .12; 12/, .17; 15/,
.17; 16/, .17; 17/g, the respective distances for all points are approximately 0.0,
0.0, 0.0, 0.0, 5.0, 0.0, 0.0, and 0.0, respectively, leading to the conclusion that the
most anomalous point is (12,12).

In the above example, the first part of the time series has a positive slope,
whereas the second part has zero slope; the anomalous data point was in between
these segments. The extreme points within each segment were not considered
anomalous since they did lie close to (or on) the line segments constructed from
their nearest neighbors.

• We may use k > 2 nearby points to construct the line segments, e.g., the best fit
line connecting two previous and two following data points, and then compute
the distance as above; see Fig. 5.12.

• The distance of a point could be computed from a curve that is used to describe
the time series, where the curve is obtained by regression or splines.

5.4.2 Anomaly Detection Among Multiple Time Series

When two time series can be represented satisfactorily by ARIMA(p; d; q) models,
and the series-defining parameters ( Q
; Q� ) of the models are estimated using available
time series data, one notion of distance (between the two time series) can be
obtained in terms of the differences in the series-defining parameters ( Q
; Q� ), e.g.,

k.t2 � t0/x1 � .x2 � x0/t1 � x0t2 C x2t0k
p

.x2 � x0/2 C .t2 � t0/2
:
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Fig. 5.12 Distance of data point (12,12) from the regression line obtained using two consecutive
neighbors on either side of it

the Euclidean distance between the ( Q
; Q� ) vectors for the two time series models.
However, there are a few disadvantages; the numbers of the AR and MA parameters
must be equal, and in addition, even a small difference in p; d; q parameters of two
ARIMA models can result in substantially different time series.

The same principle can be applied to other models, e.g., when two time series
are represented using cubic splines with different coefficients, we can compute the
distance between the vectors of coefficients for the two time series.

It is a more complex task to compute the distance between a single time series X
and multiple time series (over the same dataset D). If the parameter vectors of the
models of all the time series in a set D are substantially similar, and all are described
by the same ARIMA class (with the same p; d; q values), then averaging the ( Q
; Q� )
vectors of multiple time series may be sufficient to capture the characteristics of
the entire collection of time series, so that we can compute the distance between
the parameters of X and the mean (vector) of the parameter vectors of all the time
series in D .

On the other hand, if there are substantial differences among the models of the
time series in D , e.g., a few of them have slightly different p; d; q values, then this
approach will not work. Instead, the original dataset D would have to be averaged
out, yielding a single time series XD , for which an ARIMA(p; d; q) model is derived,
and the resulting ( Q
; Q� ) vector compared with the vector for the best ARIMA(p; d; q)
model for X ; if the distance is large, we conclude that X is anomalous with respect
to D . This procedure requires fixing p; d; q values based on the best ARIMA model
obtained for the entire data set.

A similar approach may also be used to identify an anomaly within the same
time series X that ranges over time from t1 to tn, such as when the behavior of the
underlying process (generating the time series data) changes.

Notation Let ‚.X / represent the ( Q
; Q� ) vector corresponding to the best
ARIMA(p; d; q) model for the time series X , with the best possible choice of p; d; q.
For the same p; d; q values, let ‚j;k.X / represent the ( Q
; Q� ) vector corresponding to
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the ARIMA(p; d; q) model for the time series X when restricted to the sub-series
from time tj to time tk.

A few alternative ways of estimating the anomalousness of X at time tj are as
follows:

• Compute the distance between ‚.X / and ‚j;kX k.X /.
• Compute the distance between ‚.X / and ‚j;jC`.X / for a specified sufficiently

long interval `.
• Compute the distance between ‚j�`�1;j�1.X / and ‚j;jC`.X / for a specified `.

We return to the question of determining how close is a time series to a collection
of other time series. For the rest of this section, we assume that D is the collection
of m time series, Xi is the ith time series in D , for 1 � i � m, and the goal is to
define an appropriate distance measure d.Xi;D/, to be maximized by any anomaly
detection procedure.

Before we can define such a measure, a few issues need to be addressed:

• Two time series may be defined over overlapping but not identical periods of
time. In this case, the distance measure may focus only on the period for which
both time series are defined, i.e., the intersections of the two time periods.

• One or more of the time series may be irregularly spaced, with missing values.
If no other information is available, as discussed in an earlier section, missing
values may be filled in by linear interpolation between data points on both sides
of the missing values, with the hope that the rate of change is constant during
the missing period. Interpolation using a collection of neighboring points may be
advisable, since anomalies may distort the results of interpolation for neighboring
points.

• Two time series may range over different sets of data values, e.g., one company’s
stock value may vary around $10 while the other varies around $50. Normalizing
all time series to the same range of values, e.g., the interval [0,1], would facilitate
comparison. The simplest normalization approach is to replace each point x`;i 2
X` by a time series-specific normalization, such as

.x`;i � minjŒx`;j�/

.maxjŒx`;j� � minjŒx`;j�/

which ensures that all the time series have the same [0,1] range.5 Alternatively,
we may focus on making all time series have the same mean (0) and standard
deviation (1); this is accomplished by replacing each point x`;i 2 X` by

5This normalization can be excessively influenced by a single very large (or very small) value,
which can be addressed by censorization or trimming. A simple censorized (or trimmed)
normalization would remove points that are not in the 10-percentile to 90-percentile range within
that time series, before applying the normalization transformation mentioned above. As a result,
most normalized values would be in the [0,1] range, while a few may vary substantially from this
interval.
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x`;i � 1
jX`j

P
j x`;j

�.X`/

where � refers to the standard deviation within a given time series.

In the following, for presentational and notational convenience, we assume that
all x`;i are normalized; all time series are of length n, and t D 1; 2; : : : ; n. Finally,
the dataset D contains m different time series.

5.4.2.1 Using Point-to-Point Distances

The first approach is to define the distance of a time series from others, as the
average of distances of points in the time series from other time series. This can
be obtained by first calculating point by point distance between two time series,
averaged over all times; i.e., defined as:

d.Xi;D/ D 1

n

nX

tD1

mX

jD1

d.xi;t; xj;t/

We assume here that all the time series are being compared over the same time
period, so that jXij D jXjj D n.

5.4.2.2 Using Variations over Time

A time series is more than a collection of points: it conveys increases and decreases
that occur over time, which may be more significant than the values themselves.
So the right question to ask may be whether the increases or decreases in two time
series correlate strongly. The “local gradient” of a time series at a given point in
time can be estimated, and compared with the local gradients of other time series at
the same point in time. Two time series that differ substantially in their data values
may vary over time in the same manner and hence have high similarity.

Example 5.19 Let X1 D f.1; 1/; .4; 2/; .6; 3/; .3; 4/; .1; 5/g and X2 D
f.7; 1/; .8; 2/; .10; 3/; .5; 4/; .4; 5/g. Both of these time series “rise” at the first two
time points and then “fall” at the next two time points, and are hence substantially
similar even though the actual data points are substantially different. On the other
hand, X3 D f.1; 1/; .4; 2/; .2; 3/; .3; 4/; .1; 5/g exhibits a decrease at the second
time point and an increase at the third time point, although it is almost identical to
X1. Viewed as sets of points, X1 and X3 are almost identical; viewed in terms of
local gradients, on the other hand, they are substantially different.

Depending on the nature of the problem and the granularity of the desired
gradient analysis, the effort required in estimating the local gradient can be varied,
as discussed below (Figs. 5.13, 5.14).
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Fig. 5.13 Synchronous rise and fall of X1 and X2

• In the simplest case, we can ignore the magnitudes of changes, and only consider
whether data is rising, falling, or flat. Define the local gradient of X at time t as
xtC1 � xt D �xt. Then the local or instantaneous correlation between two series
X and Y at time t is defined as

�s.X ;Y ; t/ D 1

2
..sgn.�xt/ C sgn.�yt// ;

where the three-valued ‘signum’ function is defined as:

sgn.x/ D
8
<

:

1 if x > 0

�1 if x < 0

0 if x D 0

The value of �s.X ;Y ; t/ ranges over f�1; �0:5; 0; 0:5; 1:0g, and can be
converted to a distance measure 2 Œ0; 1� as follows:

ds.X ;Y ; t/ D 1

2
.1 � �s.X ;Y ; t// :

The distance between X and Y over the entire time period .jXij D jXjj D n/

is

ds.X ;Y / D
nX

tD1

ds.X ;Y ; t/:

• The above measure does not distinguish between the magnitudes of changes in
the variables (over time). High resolution measurements of the data over time
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Fig. 5.14 Asynchronous behavior of X1 and X3

may result in rendering system noise to be visible, so that tiny fluctuations
result in apparent up-and-down movement of the variable being studied. No
correlation may be observable when the variables in both time series fluctuate
in this manner, distorting the computation of the distance measure, although
real changes of substantial magnitude occur in the variables over time. For
example, the directions of minute-by-minute fluctuations in two stocks of the
same kind may not expose the correlations that are visible in day-by-day stock
price measurement variations. Thus, it is important to consider the magnitudes
of changes, in addition to the directions. But the notions of “large” and “small”
must be considered with respect to each specific time series; for instance, the
magnitude of the daily variation in a volatile company stock may be much larger
than that of most other stocks. The normalization approaches mentioned earlier
normalize the magnitudes of data points, e.g., into the [0,1] range, but not the
variations. To address these concerns, another measure is defined, normalizing
by the average deviation magnitude, as follows:

�c.X ;Y ; t/ D 1

2

�
�xtC1

�dxt
C �ytC1

�dyt

�

;

where �dxt D Pn
tD1 j�xtC1=.n � 1/j and �dyt D Pn

tD1 j�ytC1=.n � 1/j.
As before, we can then define the distance measure

dc.X ;Y ; t/ D .1 � �c.X ;Y ; t//

and
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dc.X ;Y / D
nX

tD1

dc.X ;Y ; t/:

A discretization approach may also be used, categorizing changes that occur in
a time series into a few classes. Changes whose magnitudes are of the order of
“system noise” may be considered to be zero, and others may be characterized as
small, medium, or large, using problem-specific thresholds inferred from the data.

5.4.2.3 Correlations with Delays

In some practical problems, two time series may exhibit similar behavior but
one time series may be lagging another, e.g., when variations in the inputs of a
manufacturing plant lead to similar variations in the plant’s outputs after the time
lag required to complete processing the inputs.

Formally, let Y represent the time series X when shifted by �t time units, i.e.,
with yt D xtC�t: We seek to find the value of �t that minimizes dc.X ;Y /. The
new delayed-distance measure is defined as

dd.X ;Y / D min�tdc.X ;Y /:

This computation is expensive, and various heuristics may be used to obtain reliable
estimates of the same.

One minor problem, especially with relatively short time series, is that the least
delayed-distance may be obtained by shifting one time series almost all the way
to the end of the other, e.g., .4; 1/; .2; 2/; .3; 3/; .4; 4/ will have zero distance
from .1; 1/; .2; 2/; .3; 3/; .4:4/ after shifting by three time units, even though the
unshifted time series are substantially similar. This can be addressed by penalizing
the delayed-distance measure by the amount of shift required, or by accounting for
the relative lengths of the sequences that match after the shift occurs.

These methods have been used mainly for detecting an individual outlier
(w D 1), not for abnormal subsequence detection, and the results are impacted
significantly by model parameters or distributions of data sets. How do we define
anomaly score for a subsequence .x.i/; x.i C 1/; : : : ; x.i C w � 1//? An example,
based on this approach, is as follows:

˛ .x.i/; x.i C 1/; : : : ; x.i C w � 1// D
iCw�1X

jDi

˛.x.j//

where, for some � > 0,

˛.x.j// D



1 if jx.j/ � x�.j/j > �

0 otherwise.
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The subsequence .x.i/; x.i C 1/; : : : ; x.i C w � 1// is considered to be anomalous if

˛ .x.i/; x.i C 1/; : : : ; x.i C w � 1// > w � �;

where the value of the threshold � 2 Œ0:0; 1:0� indicates the relative preference for
false positives vs. false negatives, e.g., � D 0:1 is expected to yield more false
positives than � D 0:3.

When the window length w D 1, this approach is essentially that of checking
whether the difference between a predicted value and the actual value exceeds a
prespecified threshold. This approach [82] has been applied using a Support Vector
Machine (SVM) [105] trained to predict the next value in the sequence from the
immediately preceding subsequence of length � .

A similar approach can be used for subsequence anomaly detection using the
Discrete Fourier transform (DFT) or Discrete Wavelet transformation (DWT), as
outlined below.

The Haar transform is obtained for subsequence .x.i/; x.i C 1/; : : : ; x.i C w � 1//

of size w for i D 1; 2; : : : ; n�wC1 and a predetermined number (<< n) of wavelet
coefficients are retained. Using these retained coefficients the subsequences that are
considered to be sufficiently similar to a given sequence Q are obtained. The set S
of neighbors of Q, consisting of those subsequences whose distances do not exceed
a preassigned threshold, is obtained; thus facilitating detection of subsequences that
are farther away.

Anomaly detection, using association rules and model based approach, is also
possible [58]; in particular, when the inputs and outputs of a system can be
distinguished and data mining methodologies can be used. In this approach, a finite
number of representative patterns are first obtained from each continuous time
series by random sampling of subsequences of fixed lengths and their features, such
as minimum, maximum, and the first few DFT coefficients. Using these features,
the subsequences are clustered, and cluster centroids are considered the items for
association rule mining. A typical association rule, X1 ! Y2, is interpreted as saying
that the presence of pattern X1 in the time series X leads to the prediction that the
pattern Y2 is likely to appear in series Y . These association rules can be used to detect
anomalies, if X1 appears in X along with some subsequence in Y that substantially
varies from pattern Y2.

5.5 Learning Algorithms Used to Derive Models from Data

Models are sometimes available based on the prior knowledge of subject matter
experts, but more often the models need to be inferred from available data by the
application of learning algorithms. However, learning algorithms constitute an entire
research area by themselves; this section is hence confined to only a small subset of
the same.
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We must first choose from among a class of possible models, while considering
three criteria: simplicity, adequacy (in terms of minimal error), and computational
effort. Occam’s razor suggests that the simplest model be chosen, with the fewest
possible parameters; this is often justified from the perspective of generalizability,
e.g., the ability of the model to describe new data points derived by the same
procedure that generated the observable data points. Expert knowledge is first
invoked to determine which class of models is appropriate for the task, and which
learning algorithm may be most useful; in the absence of such knowledge, empirical
experimentation is carried out with multiple models and learning algorithms, in
order to find the simplest model that can explain the data with minimal error,
using an acceptable amount of computational time for the learning algorithm. The
criterion of minimizing error magnitude is often at odds with the other two criteria
(model simplicity and learning effort), so compromises are desired, perhaps with
thresholds of acceptability for each criterion. The practitioner must decide whether
a chosen model is adequate enough to describe the data, and consider the trade-offs
between these conflicting criteria.

Models are usually obtained by applying a learning algorithm to a subset of
available data (referred to a “training data”), and then evaluated using another subset
(the “test data”).

We have considered three different kinds of models in the preceding sections,
each of which calls for a different class of learning algorithms.

• Distributions: Learning algorithms that attempt to find models for data distribu-
tions (e.g., to determine if a normal distribution fits the data well) have been well
studied in the statistical literature, with some estimates for the extent to which a
dataset may deviate from the mathematical description of the model.

• Time-varying phenomena: Algorithms for the estimation of Markov models
and ARIMA time series models for data have also been described in the statistical
literature.

• Relationships between variables: Most learning approaches for describing the
relationships between variables can be regarded as regression or curve-fitting
algorithms, in which model parameters are to be estimated from training data.

5.5.1 Regularization

As mentioned earlier, simplicity, adequacy , and computational effort are three
essential characteristics of all learning algorithms. Regularization plays an impor-
tant role in accomplishing these goals, as explained below in context of mean
squared error (regression).

In addition to minimizing the mean squared error, often an important concern
is to ensure that coefficient values in the model remain small. This is often
accomplished by penalizing large coefficients, for which a few different approaches
have been explored [57, 111]. For example, in Ridge regression, we minimize a
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linear combination of the mean squared error and the sum of the square of the
coefficients, instead of just the mean squared error. The effect is to shrink all
coefficient values.

A related approach is Lasso (Least Absolute Shrinkage and Selection Operator)
regression [110] which restricts the sum of the magnitudes of the coefficient
values to remain below a predetermined threshold, with the net effect of forcing
some coefficients to be zero-valued. Ridge regression is analogous to setting the
prior distributions of coefficients to be normal, whereas Lasso regression uses
prior distributions that are sharply peaked at zero values, with discontinuous first
derivatives.

Elastic net [30] regularization combines the approaches of ridge and lasso
regression, minimizing a function such as

jY � AXj2 C 1

X

i

jAij C 2

X

i

jAij2

Other variations have also been proposed, e.g., penalizing large changes over
successive iterations, or enforcing co-existence of non-zero values for some vari-
ables (known to be strongly correlated). In all of these methods, the choice of
the regularization coefficients i is critical to obtain fast computation without
divergence.

Forward-backward (or Proximal Gradient) methods [27] have recently been
proposed to address problems in which the penalty terms are non-differentiable.
For Lasso regression, this approach leads to a simple update scheme for model
parameters, in which potential parameter updates are first computed using the
gradient approach (w � 	d.MSE/=dw), and the results are subjected to a soft
thresholding step so that

wnew D
8
<

:

w � 	d.MSE/=dw � 	 if w � 	d.MSE/=dw > �

wnew D 0 if jw � 	d.MSE/=dwj � �

wnew D w � 	d.MSE/=dw C 	 if w � 	d.MSE/=dw < ��

where � is a threshold. Iteration of this update rule converges well with an
appropriate choice of 	.

5.6 Conclusion

Mathematical modeling techniques have been developed for various problems,
for understanding data, representing essential aspects of data, and generating
predictions for as-yet unobserved data. Many kinds of models exist, and their
applicability depends on the nature of the data and the kinds of problems to be
addressed. Models can also be used for anomaly detection, in two ways: either
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focusing on the effect of a data point on the model parameter values, or on the
variation between actual data and the model predictions.

This chapter has summarized the use of different kinds of models for anomaly
detection. Models bring order to the universe of data: as the volume and complexity
of data increases, models become more important since it can become very difficult
to analyze the data without the models. A particularly important example is that of
data that vary over time, where the relationships between prior and current values
are critical in determining whether observed data is anomalous. We have discussed
the possible use of well-known methodologies such as Markov models and ARIMA
models for anomaly detection.

Model parameter learning methodologies have also been discussed in the preced-
ing section. From our perspective, even hitherto unexplored learning algorithms can
be used to build models, which can then be used for anomaly detection. Finally, we
caution that expert knowledge may be useful in first determining what kind of model
is appropriate for a given dataset, as well as for determining high level constraints
on parameter values, and the relative importance of various features of the data, in
order to avoid emphasizing spurious or accidental relationships..



Part II
Algorithms



Chapter 6
Distance and Density Based Approaches

In Chap. 3, we discussed distance based approaches for anomaly detection; however
there the focus was to illustrate how distances can be measured and minor
perturbations in proposed distance can change the outcome; illustrated by simple
examples. In this chapter we consider anomaly detection techniques that depend on
the distances and densities. The densities can be global or local to the region of
concern.

6.1 Distance from the Rest of the Data

The simplest anomaly detection algorithms are based on the assumptions about the
data distribution, e.g., that data is one-dimensional and normally distributed with
a mean of Np and standard deviation of � . A large distance from the center of the
distribution implies that the probability of observing such a data point is very small.
Since there is only a low probability of observing such a point (drawn from that
distribution), a data point at a large distance from the center is considered to be an
anomaly. More specifically, in such simple cases, anomaly detection algorithms may
rely on the fact that, as z increases, the number of data points found at a distance of
z� away from Np decreases rapidly. For instance, only about 0.1% of the data points
exceed Np C 3� , and this can be used to justify the following well-known criterion
for detecting an outlier:

If a data point is z (typically z D 3) or more standard deviations away from the arithmetic
mean, then it is an outlier.

Such approaches, based on the normal distribution, have existed for many years.
In 1863, Chauvenet [22] proposed to represent p as p D Np C z� ; then the normal
distribution function is first used to determine the probability � that a data point
2 D has a value � Np C z� , and p is considered to be an outlier if �jD j < 0:5 (the
threshold of 0.5 is somewhat arbitrary). A more rigorous criterion, but essentially the
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Fig. 6.1 Gaussian distribution with mean 0 and standard deviation = 1; probability in the right tail
(red area) is 0.0227

same as described above, was earlier developed by Peirce in 1852 [48, 93]. Peirce’s
approach first computes a table estimating the maximum allowable deviation from
the mean, beyond which a point would be considered an outlier. Values in the table
depend on the size of the data set. If an outlier is found, subsequent iterations are
initiated, looking for additional outliers.

Grubbs [49] argues that z should depend on the size N D jD j of the data set,
especially when jD j is small, as follows. In his approach the goal is to determine if
p 2 D is an outlier with a desired degree of confidence = 1 � ˛, provided:

jp � Npj
�

D z � N � 1p
N

v
u
u
t

t2˛
2N ;N�1

N � 2 C t2˛
2N ;N�1

:

Typically, ˛ D 0:05 or 0.01 (Fig. 6.1).
From the perspective of clustering, the assumption is that there is only one cluster

in the dataset, and in it points are symmetrically distributed. Even in such data sets,
measuring the distance from the mean is not always satisfactory because the mean
of a set of observations is significantly skewed in the presence of an outlier. The
notion of “distance from the rest of the data” may then be better captured in terms
of the change in variance when a potential outlier is eliminated.1 If an observation is
an outlier, then its contribution to the sample variance will be large. Using this idea,

1The change in variance is also closely related to the change in the information content, e.g., the
number of bits needed to describe D n fpg vs. D .
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Grubbs proposed an alternative algorithm that computes the relative anomalousness
of a data point as the ratio of sample variance without the largest observation with
the sample variance with the largest observation to decide if the largest observation
is anomalous. According to this criterion, p is an anomalous observation if

�2.D n fpg/=�2.D/

is “small’. This approach can be extended to test if multiple data points are outliers,
e.g., both p1 and p2 are considered anomalous if �2.D n fp1; p2g/=�2.D/ is small.

Extensions of the above approaches for multi-dimensional datasets are straight-
forward:

• We may compute the anomalousness of a point separately along each dimension
of the data, and aggregate the results. One possible rule is to use the maximum,
that is, if ˛i.p/ represents the anomalousness of point p in the ith dimension,
then ˛.p/ D maxi.˛i.p//, emphasizing points that are anomalous along any
dimension.

• We may instead choose to consider anomalous points as those which are
anomalous along many dimensions, captured if we define ˛.p/ D P

i ˛i.p/.
• Alternatively, we may reduce d-dimensional observations to scalars, e.g., using

the Mahalanobis transformation y D .p � Np/TS�1.p � Np/ and then evaluate the
(relative) anomalousness of y values. Note that for large datasets the values of y
satisfy a �2 distribution if the original data (p) exhibit a multivariate Gaussian
distribution.

Such simple tests are based on an implicit assumption that the data belongs to
one cluster and satisfies the Gaussian distribution. If dataset D can be described
as consisting of multiple well-separated clusters, then the distance-based criteria
can be applied while restricting attention to the specific clusters to which different
points belong. First, we must identify the nearest cluster Cj � D to which the
point p belongs, e.g., based on minimal distance to the cluster centroid. We then
consider the anomalousness of p with respect to Cj, using the approaches discussed
earlier, and ignore other subsets of D . For instance, if p belongs to cluster Cj and
in ith dimension Npj;i denotes cluster centroid and �i the standard deviation, then the
anomalousness of a point p 2 D is evaluated using the following expression:

˛.p/ D max
iD1;:::;d

jpi � Npj;ij
k�i

:

If clusters are not clearly separated then the following approach is suitable.
Suppose that D D C1 [ C2 [ : : : [ Ck, then ˛D.p/ D mini ˛Ci.p/.

The clustering or partitioning task may itself be described as an optimization
task that minimizes the anomalousness of all data points, e.g., finding the choices of
C1; : : : ; Ck that will minimize

X

pj2D

k
min
iD1

˛Ci.pj/:
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6.1.1 Distance Based-Outlier Approach

Knorr and Ng [76] define the notion of distance based (DB) outliers “DB-outliers”
as follows: “an object p in a data set D is a DB.�; r/-outlier if at least a fraction
�D (where 0 � � � 1) of the objects in D are at a distance greater than r from
p.” where a distance r and a fraction � are two user selected parameters. In other
words, if we define the “r-neighborhood” of p as

Np.r/ D fq W q 2 D and d.p; q/ � rg;
then p is considered an outlier if

jNp.r/j � .1 � �/jD j:
Knorr and Ng [75, 76] have shown that this notion of distance based outlier

detection generalizes the notion of outliers supported by statistical outlierness for
standard distributions. For example, DB.0:9988; 0:13�/-outlierness corresponds to
the criterion jp � Npj > 3� , for a normal distribution with mean Np and standard
deviation � . For a detailed description of this algorithm, see Algorithm “DB-
outlier”.

Algorithm DB-outlier
Require: �; r;D.
Ensure: List of outliers.

1: O D ;.
2: for p 2 D do
3: Np.r/ D NULL
4: for q 2 D do
5: if dist.p; q/ <D r then
6: Insert q in Np.r/
7: end if
8: end for
9: if jNp.r/j <D .1 � �/jDj then

10: Insert p into O
11: end if
12: end for

A straightforward implementation of the above criterion to determine all anoma-
lous observations in D is “clearly” time consuming. To reduce the amount of
computation in the above algorithm, one approach is to identify non-anomalous
points as soon as possible. Most data points can be quickly identified as non-outliers
in case it can be determined that each of them is sufficiently near a non-trivial
fraction of the data set.

One approach to improving efficiency is called the Index-Based Algorithm, and
proceeds by counting the number of points within a distance of r from the point
p. As soon as this number exceeds .1 � �/ � N C 1, the point is declared to be a
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non-outlier. If a standard multidimensional indexing structure (e.g., as described in
Safar and Shahabi [102]) is used, then the complexity of this algorithm is quadratic
in the size of the data set.

Another efficient approach is based on constructing a d-dimensional hyper-grid,
as described below, where d is the dimensionality of the data points.

Consider a hyper-grid in d dimensions, where each side of a cell is of length D
r

2
p

d
, resulting in diagonal length of the cell equal to r=2. The following observations

help in quickly determining non-anomalous observations:

• If two points lie within the same cell, the distance between them must be no
larger than r=2.

• If two points lie in adjacent cells, referred to as “level-1 neighbors,” then
they may be arbitrarily close to each other, but the distance between them is
guaranteed to be < r, twice the diagonal-length.

• “Level-2 neighbors” are in cells separated by exactly one cell; the minimum
distance between level-2 neighbors is � r

2
p

d
, the side-length, and the maximum

distance between level-2 neighbors is < 3r=2, thrice the diagonal-length, hence
> r.

Now consider the following setting:

• Let p be a point in cell C.
• Let cell C contain a points.
• Let bj be the number of points in level j-neighboring cells, for j D 1; 2.

Then:

1. aCb1 is a lower bound on jNp.r/j, hence p is not a DB-outlier if aCb1 > d�jD je.
2. On the other hand, aCb1Cb2 is an upper bound on jNp.r/j, hence p is guaranteed

to be a DB-outlier if a C b1 C b2 < d�jD je C 1:

3. If neither of the above conditions is satisfied, the point may or may not be an
outlier, and additional analysis is required; for large data sets, the relative number
of such points is expected to be small, so that the above tests are sufficient for
most points, enabling faster computation of DB-outlierness.

Knorr and Ng have used the number of points within a fixed distance, r, from
p 2 D to evaluate its outlierness; the algorithms in later sections are motivated by
the following criticisms of this approach:

• Several researchers have argued that this measure (number of points within
r-distance) is inefficient in detecting anomalies in more complicated settings,
particularly when D consists of clusters with varying densities. They propose
that such counts should be measured at multiple distances and levels (within a
small neighborhood).

• Another concern that has been raised about Knorr and Ng’s approach is that a user
may not know what to expect in a specific data set with reference to anomalies.
In other words, the best choices of values for parameters (such as � and r) are
hard to determine a priori.



102 6 Distance and Density Based Approaches

• The size of the data set influences the results, whereas it may be argued that
adding a collection of points at a great distance from p should not affect the
outlierness of p.

The algorithms discussed in subsequent sections address these shortcomings.

6.2 Local Correlation Integral (LOCI) Algorithm

Papadimitriou et al. [92] propose a multi-point evaluation approach, called Local
Correlation Integral, described below.

Let p 2 D be an observation. As before, let Np.r/ be the set of all points
in D within a distance of r from p; this set is also referred to as the sampling
neighborhood of p. Given a predetermined parameter 0 < ˛ < 1, define the
counting neighborhood of p as Np.˛r/, the set of points within ˛r distance from
p. Denote the number of points in this set as n.p; ˛r/. Finally, denote by On.p; r; ˛/,
the average, over all fq W q 2 Np.r/g, of n.q; ˛r/, i.e.,

On.p; r; ˛/ D 1

jNp.r/j
X

q2Np.r/

n.q; ˛r/:

Given r and ˛, the Multi-granularity Deviation Factor (MDEF) at observation
p 2 D is defined as:

MDEF.p; r; ˛/ D 1 � n.p:˛r/

On.p; r; ˛/
:

MDEF can be negative as well as positive. A negative value suggests that p is not
anomalous, whereas a high value of MDEF suggests that p has relatively few near-
neighbors, when compared to other points in the same region, hence p is more likely
to be an anomaly.

These concepts are illustrated for a simple example in Fig. 6.2. Here, the
r-neighborhood of p0 contains 3 other observations, p1, p2, and p3 (excluding itself).
But none of these points are contained in the smaller ˛r-neighborhood. By contrast,
the ˛r-neighborhoods of p1, p2, and p3 contain 7, 3, and 6 observations respectively.
Consequently, On.p; r; ˛/ D 1C7C3C6

4
D 4:25, and MDEF.p0; r; ˛/ D 1 � 1=4:25 D

0:765.
In order to determine the outlierness of the observation p, the LOCI algorithm

proceeds as follows:

• The range of r values of interest is determined, with rmax chosen to be �
˛�1 maxp;q2D ı.p; q/, and rmin is chosen so that the relevant neighborhoods
contain approximately 20 observations.

• MDEF(p; r; ˛/ values are computed for all r 2 Œrmin; rmax�.
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Fig. 6.2 Evaluation of n.p; ˛r/ and On.p; r; ˛/ for a small dataset

• Let �On.p; r; ˛/ be the standard deviation of n.q; ˛r/ values for q 2 Np.r/, and

�MDEF.p; r; ˛/ D �On.p; r; ˛/

On.p; r; ˛/
:

• An observation p is flagged as an outlier, if for any r 2 Œrmin; rmax� its MDEF is
sufficiently large. More precisely, p is considered to be an outlier, if

MDEF.p; r; ˛/ > k� � �MDEF.p; r; ˛/:

Papadimitriou et al. suggest values of ˛ D 1=2 and k� D 3, although ˛ can take
any value between 0 and 1, and k� can also take any reasonable value.

At first glance, considering all values of r 2 Œrmin; rmax� appears to be a daunting
task but this is not a real problem because n.p; r/ and n.p; r˛/ (and therefore
On.p; r; ˛/) change their values only a finite number of times, e.g., only when r
increases enough to include at least one more observation in Np.r/ or Np.˛r/.
Consequently, when n.p; r/ changes its value, values of r can be determined for
all p 2 D .
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Algorithm Exact LOCI algorithm
1: for each p 2 D do
2: Find Np.rmax/;
3: Compute ı.p; pm-NN/ and ı.p; ˛pm-NN/ for 1 � m � N, where pm-NN denotes the mth nearest

neighbor of p;
4: Sort the list of these ıs in ascending order of magnitude;
5: For each r, in the sorted list, calculate n.p; ˛r/ and On.p; ˛r/;
6: Compute MDEF.p; ˛; r/ and �MDEF.p; ˛; r/;
7: If MDEF.p; ˛; r/ > 3 �MDEF.p; ˛; r/, then flag p as a potential outlier.
8: end for

The “exact LOCI” algorithm is presented in Algorithm “Exact LOCI algorithm”.
The time complexity of this exact algorithm can be reduced by resorting to some
approximations [92].

6.2.1 Resolution-Based Outlier Detection

An alternative approach addresses the problem of parameter value determination by
measuring the ‘outlierness’ of an observation p 2 D at different resolutions, and
aggregating the results [41].

In this algorithm, at the highest resolution, all observations are isolated points
and thus considered to be outliers whereas at the lowest resolution all observations
belong to one cluster and none is considered to be an outlier. As the resolution
decreases from its highest value to the lowest value some observations in D begin
to form clusters leaving other observations out of the clusters, and this phenomenon
is captured in the resolution-based outlier detection approach.

The concept of resolution is related to the inter-observation distances. Naturally,
if we consider r1 < mini¤j;pi;pj2D d.pi; pj/, then Np.r1/ will contain only one point,
p, for all p 2 D and this represents the maximum resolution. On the other hand,
if r� (e.g., r� D maxp;q2D d.p; q/) is such that all observations in D belong to one
cluster, then r� corresponds to the smallest resolution.2

In the resolution-based approach, each cluster is formed using the transitive
closure of the close neighbor relation. For p; q 2 D and r > 0, the observation q is
a close neighbor of p (with respect to r) if d.p; q/ � r. The iterative accumulation
of close neighbors results in a cluster, i.e., cluster growth continues until all close
neighbors of points in a cluster are contained in the cluster.

Given r1 and r�, intermediate resolutions can be described by choosing r2 <

r3 < : : : < rR D r�. An example of this is equal spacing by �R D .r� � r1/=R, so
that ri D ri�1 C �R. Then the resolution-based outlier factor (ROF) is defined as:

2Fan et al. [41] consider the closeness of a point based on each dimension separately. Thus, in
their implementation, an observation p is close to another observation q if the difference between
p and q is less than r in any dimension. The algorithm is easier to implement using this definition
of closeness since it avoids inter-observation distance computations.
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Table 6.1 Illustration of ROF evaluation for observations in Fig. 6.3

r1 r2 r3 r4

Cluster Cluster Cluster Cluster
Obs. size ROF size ROF size ROF size ROF

1 1 0 4 0 5 3/5 6 3/5+4/6

2 1 0 4 0 5 3/5 6 3/5+4/6

3 1 0 4 0 5 3/5 6 3/5+4/6

4 1 0 4 0 5 3/5 6 3/5+4/6

5 1 0 1 0 5 0 6 0+4/6

6 1 0 1 0 1 0 6 0+0
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Fig. 6.3 Clustering of six observations based on successive decrease in resolution values

ROF.p/ D
RX

iD1

cluster-size.p; ri�1/ � 1

cluster-size.p; ri/
;

where cluster-size.p; ri/ represents the number of observations in the cluster that
contains the observation p 2 D .

ROF evaluation is illustrated in Table 6.1 for a small dataset in Fig. 6.3. In this
illustration, as expected, the smallest ROF corresponds to observation 6, which is
the most significant outlier in this dataset.

In general, a small value of ROF.p/ occurs when p belongs to fewer clusters,
i.e., observations that join a cluster in a later iteration have smaller ROF values. The
smallest ROF values correspond to the most anomalous observations.

Although ROF does not explicitly compute densities, the densest clusters will be
formed first, followed by less dense clusters. Thus ROF incorporates some of the
features of density based approaches, described in the following section.

6.3 Nearest Neighbor Approach

In the preceding sections, the numbers of observations within a fixed radius were
used to determine a measure of outlierness. Alternatively, it can be argued that
an observation is an outlier if its neighbors are far away. That is, a measure of
outlierness can be described based on the distance of its neighbors.
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In Ramaswamy et al. [98], the k-NN distance of a point is used as its outlier
score. Let us denote the kth nearest neighbor of an observation p as NN.p; k/

and calculate d.p; NN.p; k// D dk.p/. A large value of dk.p/ indicates that p is
anomalous. The dk.p/ values are ranked in decreasing order of magnitude and the
points corresponding to the highest values are declared to be outliers. A detailed
description of this algorithm is presented in Algorithm “k-NN outlier”.

Algorithm k-NN outlier
Require: k; n;D.
Ensure: O has n of outliers.

1: O D ;.
2: for p 2 D do
3: Np D NULL
4: for q 2 D do
5: if jNpj < k then
6: Add q in Np

7: else
8: if maxfdist.p; s/js 2 Npg > dist.p; q/ then
9: Add q in Np and remove the first s in Np such that dist.p; s/ > dist.p; q/

10: end if
11: end if
12: end for
13: NN.p; k/=max{dist.p; s/js 2 Np}
14: end for
15: for p 2 D do
16: if jOj < k then
17: Add p in O
18: else
19: if minfNN.s; k/js 2 Og < NN.p; k/ then
20: Add p in O and remove the first s in O if NN.s; k/ < NN.p; k/

21: end if
22: end if
23: end for
24: return O

Angiulli and Pizzuti [7] argue that the outlier criterion of Ramaswamy et al., does
not provide good results, especially when D contains multiple clusters of different
densities. They propose that a proper measure of outlierness is the weight of p
defined as

kX

iD1

di.p/:

As before, these weight values are sorted in decreasing order of magnitude to find
the most anomalous points.
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6.4 Density Based Approaches

Knorr and Ng’s [76] approach fails to capture some outliers as illustrated in Fig. 6.4;
here, if the object ‘a’ is considered as an DB(� , r)-outlier, then according to this
definition all objects in cluster C2 are also considered as DB(� , r)-outliers, which
is counter-intuitive; by visual inspection, object ‘a’ appears to be more of an outlier
than all objects in cluster C2.

To overcome such a deficiency, Breunig et al. [16], Tang et al. [108], Jin et al. [65]
and others have suggested density based algorithms. The underlying assumption of
a distance based anomaly detection algorithm is that the relative distances between
other points in a neighborhood are irrelevant to anomaly detection; hence such an
approach is assured to work well only when the different neighborhoods (populated
by points) are characterized by roughly equal densities. But this assumption is often
violated, i.e., in many practical situations data points have different densities in
different neighborhoods. A density based approach looks at the “local” density of a
point and compares it with density associated with its neighbors.3

In density based approaches the main idea is to consider the behaviors of a point
with respect to its neighbors’ density values. The neighborhood is conceptualized

Fig. 6.4 An example in
which DB(pct, dmin)-outlier
definition and distance-based
method do not work well.
There are two different
clusters C1 and C2, and one
isolated data object ‘a’ in this
data set. The distance from
object ‘b’ to its nearest
neighbor, d2, is larger than the
distance from object ‘a’ to its
nearest neighbor, d1,
preventing ‘a’ from being
identified as an anomaly

3In the Syracuse region, a daily commuting distance characterized by a driving time of 25 min
would be considered excessive; that same travel time would be considered to be low in the Los
Angeles region. The definition of what constitutes “excessive driving time” must hence be a
function of the distribution of driving times within the region of interest, rather than a constant
over all regions.
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Fig. 6.5 Anomaly detection in one dimension using a histogram. Bins centered at 3.0 and 4.2
consist of very few observations and therefore the associated observations may be considered
anomalous

by considering k nearest neighbors, where k is either iteratively estimated or is a
preassigned integer. The underlying assumption is that if the density at a point p
is ‘smaller’ than the densities of its neighbors, it must be an anomaly. The main
difference between the approaches described below is in how they define the ‘local’
behavior and related density. Density may be computed in many ways, some of
which are computationally expensive.

When the data is one-dimensional, we can use histograms to estimate the density
function of the entire dataset, and hence detect anomalies. The data space is first
subdivided into various disjoint bins of equal sizes. Some bins are heavily populated,
and points in these bins are not considered to be outliers. Other bins may contain
a relatively small number of points, compared to nearby bins, and can hence be
argued to be anomalous, as illustrated in Fig. 6.5. A hierarchical binning approach
can also be used; points in a smaller bin of low density may be considered to be
anomalous if the larger bin (containing this smaller bin) is of higher density. The
histogram method does not care where the bins of small densities are located; this
allows for the possibility that the data distribution is not Gaussian, and that the
dataset contains multiple clusters; it is also possible to discover anomalies that are
not at the extremities of the data distribution, e.g., between two clusters.

For multi-dimensional data, most algorithms rely on estimating density from
the statistics of the distances within a region of the data space, i.e., if average
distances (between all points in a region) are small, then the density (in that region)
is high, and conversely if the distances are large, the density is low. One concrete
formulation of this approach is as follows:
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• The local density of a point p is defined as the reciprocal of the average distance
among the k points nearest to p.

• The relative anomalousness or outlier ‘score’ of p varies inversely with the local
density at p.

Thus, one can calculate the outlier score of each point in the dataset, and sort the
scores in decreasing order of magnitude; points at the top of the sorted list and with
significantly ‘large’ scores are declared outliers.

6.4.1 Mixture Density Estimation

Often data is generated by more than one process, each characterized by a different
distribution. In that case we may be able to model the data using a mixture of
distributions and estimate the density at a point. The density estimation problem can
be loosely defined as follows: given dataset D and a family of probability density
functions, find the probability density that is most likely to have generated the given
points. For concreteness, if the family of densities is multivariate Gaussian and we
suspect that the data in D is generated by k different Gaussian distributions with
density functions g.pI �j; ˙j/ for j D 1; : : : ; k, then we wish to find the ‘best’ set of
parameters � D .�j; �j; ˙j W 1 � j � k/ such that

f .pI �/ D
X

1�j�k

�jg.pI �j; ˙j/

is most likely to have generated the given dataset. Of course, the parameters
.�j; �j; ˙j W 1 � j � k/ are unknown. One well-known approach to find the
‘best’ f .pI �/ is via Maximum Likelihood approach [31, 32]. After estimating the
parameters of this mixture model, the anomalousness of an observation can be
determined by the magnitude of the density at the point in comparison with the
density at other points.

Alternatively, one can use a nonparametric density estimation as outlined below.
Given D , estimate the density at a point p as

f .p/ D 1

Nh

X

q2D
K.

p � q

h
/

where h is the smoothing parameter. This density estimate can be applied to
determine anomalous of p as described above—that is, if f .p/ is large, then p is
considered to be a normal observation, and an anomaly otherwise. In this approach
the kernel K is chosen to satisfy the following conditions.

1. K is a probability density function,
2. Typically K is a symmetric function, i.e., K.u/ D K.�u/.
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The following kernel functions are frequently used for the density estimation task:

1. K.u/ D 3
4
.1 � u2/; for � 1 � u � 1; 0 otherwise

2. K.u/ D 35
32

.1 � u2/3; for � 1 � u � 1; 0 otherwise

3. K.u/ D 1p
2�

exp.� u2

2
/; �1 < u < 1

This simple algorithm compares surprisingly well with many other algorithms,
although it requires considerable computation for large and high-dimensional data
spaces.

Three well-known density-based algorithms are described in the following
subsections:

• Breunig et al. [16] suggest using the local outlier factor (LOF);
• Tang et al. [108] obtain the connectivity-based outlier factor (COF);
• Jin et al. [65] assign to each object the degree of being influenced outlierness

(INFLO) and introduce a new idea called ‘reverse neighbors’ of a data point
when estimating its density distribution.

The common theme among these algorithms is that they all assign outlierness
to each object in the data set and an object will be considered as an outlier if
its outlierness is greater than a pre-defined threshold (usually the threshold is
determined by users or domain experts).

6.4.2 Local Outlier Factor (LOF) Algorithm

Breunig et al. [16] proposed the following approach to find anomalies in a given
dataset. As the name of the algorithm suggests, the Local Outlier Factor (LOF)
measures the local deviation of a data point p 2 D with respect to its k nearest
neighbors. A point p is declared anomalous if its LOF is ‘large.’ The LOF of a point
is obtained as described in the following steps:

LOF Computation

1. Find the distance, dk.p/, between p and its kth nearest neighbor. The distance can
be any measure, but typically the Euclidean distance is used.

2. Let the set of k nearest neighbors of p be denoted by Nk.p/ D fq 2 D � fpg W
d.p; q/ � dk.p/g.

3. Define the reachability distance of a point q from p, as dreach.p; q/ D
maxfdk.q/; d.p; q/g. This is illustrated in Fig. 6.6.

4. The average reachability distance of p is

dreach.p/ D
P

q2N .p/ dreach.p; q/

jNk.p/j :



6.4 Density Based Approaches 111

Fig. 6.6 Illustration of
reachability distance.
dreach.p1; o/ and dreach.p2; o/

for k D 4

The local reachability density of a point is defined as the reciprocal of reachabil-
ity distance

`k.p/ D Œdreach.p/��1:

5. Finally, this local reachability density is compared with the local reachability
densities of all points in Nk.p/, and the ratio is defined as LOF (local outlier
factor):

Lk.p/ D
"P

o2Nk.p/
`k.o/

`k.p/

jNk.p/j

#

:

6. The LOF of each point is calculated, and points are sorted in decreasing order
of Lk.p/. If the LOF values are ‘large’, the corresponding points are declared as
outliers.

7. To account for k, the final decision is taken as follows: Lk.p/ is calculated for
selected values of k in a pre-specified range, max Lk.p/ is retained, and a p with
large LOF is declared an outlier.

A detailed description of this algorithm is presented in on the next page
(Algorithm “LOF Computation”).

A variation of LOF is Cluster-based LOF (CBLOF), proposed by Gao [47]. In
this case the first step is to find clusters of the dataset and divide all clusters into two
broad groups—small clusters and large clusters. The CBLOF of each point in D is
obtained depending on the data point belong to a small cluster or a large cluster.
If the data point lies in a ‘small’ cluster, then its CBLOF score is obtained as the
product of the size of the cluster and the point’s distance to the nearest centroid
of a large cluster. However, if the point belongs to a large cluster, then its score
is the product of the size of the cluster and point’s distance from the cluster’s
centroid. Other extensions, such as the local density based outlier factor have also
been proposed.
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Algorithm LOF (Local Outlier Factor) Computation
Require: k;D.
Ensure: Lk - LOF score for each object in D
1: Lk D ;.
2: for p 2 D do
3: Nk.p/ D NULL
4: for q 2 D do
5: if jNk.p/j < k then
6: Add q in Nk.p/

7: else
8: Let s� 2 Nk.p/ be such that dist.p; s�/ � dist.p; s/ for all s 2 Nk.p/;
9: if dist.p; s�/ > dist.p; q/ then

10: Replace s� 2 Nk.p/ by q
11: end if
12: end if
13: end for
14: dk.p/=max{dist.p; s/js 2 Nk.p/}
15: end for
16: for p 2 D do
17: for q 2 D do
18: dreach.p; q/ D maxfdk.p/; d.p; q/g
19: end for
20: end for
21: for p 2 D do
22: lk.p/ D jNk.p/jP

q2Nk .p/ dreach.p;q/

23: end for
24: for p 2 D do

25: Lk.p/ D Œ

P
o2Nk .p/

lk .o/

lk .p/

jNk.p/j
�

26: end for
27: return Lk

6.4.3 Connectivity-Based Outlier Factor (COF) Approach

LOF performs well in many application domains, but its effectiveness will diminish
if the density of an outlier is close to densities of its neighbors. For example, in
Fig. 6.7, data object o1 is isolated but its density is very close to densities of objects
in cluster 1, C1, hence LOF fails to detect this outlier.

To solve such a deficiency of LOF, Tang et al.[107] suggest a new method to
calculate the density as described below. Define the distance between two non-
empty sets P and Q as d.P; Q/ D minfd.p; q/ W p 2 P; q 2 Qg. This can be
used to define the minimum distance between a point and a set by treating the point
as a singleton set.

1. As in the previous algorithm, let Nk.p/ be the set of k nearest neighbors of p.
2. The “set-based path (SBN)” is an ordered list of all neighbors of p, arranged

in increasing order of distance from p. Formally, the SBN of length k is a path
< p1; p2; : : : ; pk > based on the set fp;Nk.p/g such that for all 1 � i � k � 1,
piC1 is the nearest neighbor of the set fp1; p2; : : : ; pig in fpiC1; piC2; : : : ; pkg.
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Fig. 6.7 An example in
which LOF fails for outlier
detection

Fig. 6.8 Illustration of
set-based path and trail
definitions. The k nearest
neighbors of p are q1; q2; and
q3, for k D 3. Then SBN path
from p is fp; q1; q3; q2g, and
SBT is < e1; e2; e3 >

respectively

3. The Set-based trail (SBT) is an ordered collection of k � 1 edges associated
with a given SBN path < p1; p2; : : : ; pk >. The ith edge ei connects a point
o 2 fp1; : : : ; pig to piC1 and is of minimum distance; i.e., length of ei is

jeij D d.o; piC1/ D d.fp1; : : : ; pig; fpiC1; : : : ; pkg/:

Figure 6.8 illustrates these concepts.
4. Given p, the associated SBN path < p � p1; p2; : : : ; pk >, and the SBT

< e1; e2; : : : ; ek�1 >, the weight wi for edge ei is proportional to the order in
which it is added to SBT set. Then the average-chaining distance (A) of p is the
weighted sum of the lengths of the edges. That is:

ANk.p/.p/ D
k�1X

iD1

wi � jeij:
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where

wi D 2.k � i/

k.k � 1/

5. Finally, the connectivity-based outlier factor (COF) of a point p is defined as
the ratio of p’s average-chaining distance with the average of average-chaining
distances of its k nearest neighbors;

COFk.p/ D ŒANk.p/.p/�

"P
o2Nk.p/ ANk.p/.o/

jNk.p/j

#�1

:

6. Larger values of COFk.p/ indicates that p is more anomalous.

COF works better than LOF in the data sets with sparse neighborhoods (such as
a straight line), but its computation cost is higher than LOF. A detailed description
of this algorithm is presented on the next page.

6.4.4 INFLuential Measure of Outlierness by Symmetric
Relationship (INFLO)

This approach, proposed by Jin et al. [65], uses the notion of “reverse nearest
neighbors” of an object p to obtain a measure of outlierness. The main idea is that
an object is an outlier if it is not a nearest neighbor of its own nearest neighbors.

The “Reverse Nearest Neighborhood (RNN)” of an object p is defined as

RN k.p/ D fq W q 2 D and p 2 Nk.q/g:

Note that Nk.p/ has k objects but RN k.p/ may not have k objects. In some
instances, it may be empty, because p may not be in any of Nk.q/ for any q 2
Nk.p/ For example, consider the following case:

• The two points nearest to p are q1; and q2.
• The two nearest neighbors of q1 are q2; and q3,
• The two nearest neighbors of q2 are q1 and p.

Then, for k D 2, the set of reverse nearest neighbors of p is fq2g (Fig. 6.9).
Jin et al. [65] propose to replace Nk.p/ by the k-influential space for p, denoted

as ISk.p/ D Nk.p/ [ RN k.p/. Associated with ISk.p/, they define the influential
outlierness of a point p as

INFLOk.p/ D 1

den.p/

P
o2ISk.p/ den.o/

j.ISk.p//j
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Fig. 6.9 Reverse Nearest
Neighborhood and Influence
Space. For k=3, Nk.q5/ is
fq1; q2; q3g.
Nk.q1/ D fp; q2; q4g.
Nk.q2/ D fp; q1; q3g.
Nk.q3/ D fq1; q2; q5g.
RN k.q5/ D fq3; q4g

Algorithm COF
Require: k;D.
Ensure: COFk - COF score for each object in D
1: COFk D ;.
2: for p 2 D do
3: Nk.p/ D NULLI SBN.P/ D fPgI SBTDist.p/ D ;I ANk .p/ D 0

4: for q 2 D do
5: if jNk.p/j < k then
6: Add q in Nk.p/

7: else
8: Let s� 2 Nk.p/ be such that dist.p; s�/ � dist.p; s/ for all s 2 Nk.p/;
9: if dist.p; s�/ > dist.p; q/ then

10: Replace q� 2 Nk.p/ by q
11: end if
12: end if
13: end for
14: i=1;NN.p/ D Nk.p/

15: while jNN.p/j > 0 do
16: dist.ei/ D minfdist.s; t/js 2 SBN.p/; t 2 NN.p/g
17: Move corresponding t from NN.p/ to SBN.p/

18: i C C
19: Add dist.ei/ to SBTDist.p/

20: end while
21: for i=1 to k do
22: ANk .p/ D ANk .p/ C dist.ei/�2.kC1�i/

.kC1/�k
23: end for
24: end for
25: for p 2 D do

26: COFk.p/ D jNk.p/j�ANk .p/
P

o2Nk .p/ ANk .o/

27: end for
28: return COFk
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where den.p/ D 1
dk.p/

; dk.p/ represents the distance between p and its kth nearest
neighbor.

Thus for any p, INFLO expands Nk.p/ to ISk and compares p’s density with
average density of objects in ISk. By using the reverse neighborhood, INFLO
enhances its ability to identify the outliers in more complex situation, but its
performance is poor if an object p’s neighborhood includes data objects from groups
of different densities, then outlierness of p cannot be correctly measured.

Algorithm INFLO
Require: k;D.
Ensure: INFLOk - INFLO score for each object in D
1: INFLOk D ;.
2: for p 2 D do
3: Nk.p/ D ;I RNk.p/ D ;I
4: for q 2 D, q ¤ p do
5: if jNk.p/j < k then
6: Add q in Nk.p/

7: else
8: Let s� 2 Nk.p/ be such that dist.p; s�/ � dist.p; s/ for all s 2 Nk.p/;
9: if dist.p; s�/ > dist.p; q/ then

10: Replace q� 2 Nk.p/ by q
11: end if
12: end if
13: end for
14: dk.p/=max{dist.p; s/js 2 Nk.p/}
15: for q 2 Nk.p/ do
16: Add p in RNk.q/

17: end for
18: end for
19: for p 2 D do
20: ISk.p/ D Nk.p/ [ RNk.p/

21: INFLOk.p/ D dk.p/�
P

o2ISk .p/
1

dk .o/

jISk.p/j

22: end for
23: return INFLOk

6.5 Performance Comparisons

Algorithms discussed in this chapter were compared for multiple datasets, described
in the Appendix, to evaluate their performance.

• LOF, COF, and INFLO were compared using the Synthetic dataset1 for k D
4; 5; 6, and 7, and mt D 5; 6. It was observed that all three algorithms have
identical performance in all cases except when k D 4 and mt D 6. In this case,
performance of COF was slightly better, as measured using RankPower which
was 1 for COF and 0.955 for LOF and INFLO.
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• LOCI, ALOCI, LOOP, INFLO, KNN, LOF, and COF were compared using
Iris, KDD-1000, and PEC-1000 datasets and were compared in terms of their
performance as measured in terms of RankPower.

– For the Iris data, each of the algorithms found exactly five out of the ten
anomalies.

– For the KDD-1000 dataset, ALOCI and LOF show much better performance
than the other algorithms. For example, these two algorithms find 9 and 8
anomalies out of 10 compared to other algorithms which identified only 1 or
2 anomalies correctly. In another experiment with the same datasets when 20
anomalies were inserted, LOCI, ALOCI, and LOF found 9 anomalies whereas
the other algorithms found only 1 or 2 anomalies.

– For the PEC-1000 the performance of LOCI, ALOCI, and KNN was only
relatively better than the rest of the algorithms. For example, out of 10 inserted
anomalies, these three algorithms identified 4, 5, and 6 anomalies correctly
whereas the other algorithms found only 3 or less anomalies.

Based on these experiments, we conclude that ALOCI consistently performs better
than other algorithms. Other algorithms, such as LOCI, LOF, and KNN also provide
good performance in some datasets.

6.6 Conclusions

This chapter has presented several distance and density-based anomaly detection
approaches and algorithms. These include algorithms based on direct distance
computations, which do not perform well if the data set is characterized by
variations in density. Other variations of distance-based approaches discussed in
the literature include [38, 39, 121]. Algorithms based on density estimation include
classical kernel-based methods as well as algorithms that use nearest neighbor
distance computations to estimate density, sometimes indirectly.



Chapter 7
Rank Based Approaches

The density-based methodology discussed in the preceding chapter, which examines
the k-neighborhood of a data point, has many good features. For instance, it is
independent of the distribution of the data and is capable of detecting isolated
objects. However it has the following shortcomings:

• If some neighbors of the point are located in one cluster, and the other neighbors
are located in another cluster, and the two clusters have different densities, then
comparing the density of the data point with all of its neighbors may lead to a
wrong conclusion and the recognition of real outliers may fail, an example is
illustrated in Sect. 7.1.

• The notion of density does not work well for sparse data sets such as a cluster of
points on a single straight line. Even if each point in the set has equal distances
to its closest neighbors, its density may vary depending on its position in the
dataset.

Clusters with different densities and sizes arise in many real-world context. An
example is the case where a financial institution wishes to find anomalous behavior
of its customers. It is obvious that all normal customers are not alike—depending
upon their needs and nature all have different ‘normal’ behavior. Individuals with
multiple accounts and large investments tend to have deposit and withdrawal
patterns that differ substantially from those of individuals with small amounts.
Consequently, the collection of data associated with all users is likely to form mul-
tiple clusters with variable number of data points in each cluster, and with variable
densities, etc. In such a situation, density based approaches will perform poorly.

In such situations, to find anomalous observations, the ideal solution is to
transform the data so that all regions in the transformed space have similar local
distributions. The rank-based approach attempts to achieve this goal. In using the
rank based approach the effect of inter-object distances is diminished; and in using
‘modified-ranks’, described in Sect. 7.3, the effect of the size of the local cluster(s)
is also accommodated.
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Fig. 7.1 Example of an outlier (Bob) identified by the fact that he is not very close to his best
friend (Eric), unlike an inlier (Jack)

The idea of rank is borrowed from the research literature on social networks.
Detecting outliers in a given data set resembles finding the most unpopular person
in a given social network. Consider the social network in Fig. 7.1: to discover the
relative popularity of Bob, we may ask Bob:“who are your k best friends?”. Then we
may ask all “friends” of Bob the same question. If Bob is not listed among the close
friends of his friends, clearly he is not a popular person. A summary of answers from
all k persons whom Bob identifies as his friends allows us to draw a clear conclusion
about his popularity. Just as we can use the concept of relative popularity in friend
networks, we can use a similar notion of rank to capture the outlierness of a point.

In this chapter new approaches based on a rank measure and clustering are
presented for outlier detection.
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7.1 Rank-Based Detection Algorithm (RBDA)

In this section, we consider a new approach to identify outliers based on mutual
proximity of a data point and its neighbors. The key idea of the algorithms is to use
rank instead of distance. These ranks are relative to a point p 2 D ; that is, given a
point p 2 D , the largest rank is assigned to the point q 2 D that is farthest away
from p and smallest rank, 1, to the point closest to it.

To understand mutual proximity consider p 2 D and q 2 Np.k/, where Np.k/ is
the k-neighborhood of p. Here q is “close” to p because it belongs to Np.k/. In return,
we ask “how close is p to q?”. If p and q are ‘close’ to each other, then we argue that
(with respect to each other) p and q are not anomalous data points. However, if q is
a neighbor of p but p is not a neighbor of q, then with respect to q, p is an anomalous
point. If p is an anomalous point with respect to most of its neighbors, then p should
be declared to be an anomaly. When measuring the outlierness of p, instead of
distance, we use the ranks calculated based on neighborhood relationships between
p and Nk.p/, see Fig. 7.2. Low cumulative rank assigned to p by its neighbors
implies that p is a central point because it is among the nearest neighbors of its
own closest neighbors. However a point at the periphery of a cluster has a high
cumulative sum of ranks because its nearest neighbors are closer to each other than
the point. This forms the basis of RBDA [59].

Description of Rank-Based Detection Algorithm (RBDA) Algorithm

1. Let p 2 D and Nk.p/ denotes the set of its k-neighbors. Let rq.p/ denote the rank
of p with respect to q, that is:

rq.p/ D number of points o 2 D � fpg such that d.q; o/ < d.p; q/:

For all q 2 Nk.p/, calculate rq.p/.

Fig. 7.2 Illustration of ranks:
Red dash shows k-NN of p
when k is 3 and long blue
dash shows a circle with
radius of d.p; q3/ and center
of q3. The k-NN of p is
{q1,q2, q3}. Then rq3.p/=4,
because d.q3; p/ is greater
than any of
d.q3; q3/; d.q3; q4/; d.q3; q1/

and d.q3; q5/
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2. ‘Outlierness’ of p, denoted by Ok.p/, is defined as:

Ok.p/ D
P

q2Nk.p/ rq.p/

jNk.p/j : (7.1)

If Ok.p/ is ‘large’ then p is considered an outlier.
3. One criterion to determine ‘largeness’ is described below. Let Do = fp 2

D jOk.p/ � O�g where O� is chosen such that the size of Do is a large fraction
(e.g. 75%) of the size of D . We normalize Ok.p/ as follows:

Lk.p/ D ln.Ok.p// (7.2)

Zk.p/ D 1

Sk
.Lk.p/ � NLk/ (7.3)

where

NLk D 1

jDoj
X

p2D

Lk.p/ and S2
k D 1

jDoj � 1

X

p2D
.Lk.p/ � NLk/

2

and if the normalized value Zk.p/ is � 2.5, then we declare that p is an outlier.
In this criterion we have assumed that the distribution of Zk.p/ D 1

Sk
.Lk.p/ �

NLk/ (normalized for mean and standard deviation) will be approximated by the
standard normal random variable and P.Zk.p/ D 1

Sk
.Lk.p/� NLk/ > 2:5/ � 0:006.

Hence, value of Zk.p/ D 1
Sk

.Lk.p/ � NLk/ > 2:5 will be an outlier.
4. Alternatively, one can sort observations in decreasing order of Ok.p/ and declare

the top few observations as anomalous. A histogram of Ok.p/ values can be used
for easy visualization.

A detailed description of the RBDA algorithm is presented in Algorithm “Rank-
Based Detection Algorithm”.

7.1.1 Why Does RBDA Work?

Before explaining why RBDA works, first we examine a scenario in which the
density-based algorithm would fail. Consider the data set in Fig. 7.3. There are
three groups of data objects and one isolated data object—‘A’. Data object ‘B’ is
from group3. When k is 7, the k nearest neighbors of both ‘A’ and ‘B’ contain the
data objects from different density groups. In this case, the density-based outlier
detection algorithm, LOF, assigns a higher outlierness value 1.5122 to ‘B’ and lower
outlierness value 1.1477 to ‘A’ which is counter-intuitive. Density-based algorithms
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Algorithm Rank-Based Detection Algorithm
Require: k;D.
Ensure: RBDAk - RBDA score for each object in D
1: RBDAk D ;.
2: for p 2 D do
3: N.p/ D ;I Nk.p/ D ;I
4: for q 2 D do
5: if q ¤ p then
6: Add q to N.p/

7: end if
8: end for
9: Sort N.p/ by dist.p; q/ in ascending order

10: dk.p/=kth of N.p/

11: tmp D 0I index D 0I rank D 0I
12: for q 2 N.p/ do
13: if dist.p; q/ � dk.p/ then
14: Add q in Nk.p/

15: end if
16: index++
17: if dist.p; q/ � tmp then
18: rank = index;
19: end if
20: rp.q/ D rankI tmp D dist.p; q/;
21: end for
22: end for
23: for p 2 D do
24: sumrank=0;
25: for q 2 Nk.p/ do
26: sumranks += rq.p/

27: end for
28: RBDAk.p/ D sumranks

jNk.p/j

29: end for
30: return RBDAk

assume that all neighbors of data object of interest are from the same density groups,
but such is not the case in our example.1

To overcome this issue, instead of focusing on the calculation of density, RBDA
chooses ranks instead of distance. Thus in Fig. 7.3, RBDA outlierness (average rank)
of ‘A’ is 10 and that of ‘B’ is less (6.5714) as desired.

Use of ranks eliminates the problem of density calculation in the neighborhood of
the point, and this improves performance. Although based on distance, ranks work
better than distance and captures the anomalousness of an object more precisely in
most cases. Consequently, rank-based methods tend to perform better than several
density-based methods, on some synthetic data set as well as on some real datasets.

1In this illustration, LOF suffers the same deficiency when k is 6, 7, or 8. For example, LOF assigns
outlierness value 1.5122 to ‘B’ and 1.1477 to ‘A’, and it fails to identify ‘A’ as the most significant
outlier.
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Fig. 7.3 Red dash circles
contain the k nearest
neighborhoods of ‘A’ and ‘B’
when k=7

Rank based clustering can be used for detecting tight and sparse clusters easily
using only one parameter. Based on ranks, it forms clusters with higher accuracy. By
combining it with ranks, it achieves better performance than algorithms discussed
in previous chapters and thus it is applicable in broad practical domains.

7.2 Anomaly Detection Algorithms Based on Clustering and
Weighted Ranks

In Chap. 4 we argued that clustering can be used to find anomalous objects in a given
data set. This approach has a significant advantage; it reduces the time complexity
considerably provided the clustering algorithm is fast.

It can be seen that an object that is near a very large cluster is more likely to be
declared anomalous even if it is only slightly far away from its neighbors, compared
to the case if it had been close to a small cluster. To account for this imbalance, the
concept of modified rank has been proposed.

In this section, we first describe a new clustering approach, a modification
of DBSCAN, called Neighborhood Clustering (NC-clustering). Next we consider
several algorithms to find anomalous observations in a dataset, where clustering is a
preprocessing step. In a clustering based approach, observations that do not belong
to a cluster are declared anomalous. In the following, this condition is relaxed;
instead observations that do not belong to a cluster are potential anomaly candidates.
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7.2.1 NC-Clustering

As in DBSCAN, in NC-clustering a cluster is required to have minimum number of
objects, denoted as ` (in DBSCAN it is denoted as MinPts). The main difference
between this approach and DBSCAN is in interpreting ‘reachability’. In NC-
clustering reachability is defined using k-neighborhood, i.e., the main idea is to
declare data objects p and q in D to be close if q is one of the k-nearest neighbors
of p and vice-versa. One distinct advantage of this approach is that k is easier to
guess than the parameter ‘eps’ needed by DBSCAN to define the neighborhood
size. Another difference is that, in DBSCAN, a border point is considered to be in
the cluster; this is not the case in NC-clustering. Formally, the following definitions
are used in the proposed clustering algorithm; all definitions are parameterized with
a positive integer parameter ` intended to capture the notion of cluster tightness.

• D-reachability (given `): An object p is directly reachable (D-reachable) from q,
if p 2 N`.q/.

• Reachability: An object p is reachable from q, if there is a chain of objects
p � p1; : : : ; pn � q, such that pi is D-reachable from piC1 for all values of
i.

• Connectedness: If p is reachable from q, and q is reachable from p, then p and q
are connected.

Figure 7.4 illustrates the concepts of dk.p/, Nk.p/ and RN k.p/. In Fig. 7.4, for
k D ` D 3, y is D-reachable from p since y is in N3.p/, but p and y are not connected

Fig. 7.4 Illustration of dk.p/, Nk.p/ and RN k.p/ for k D 3. The large blue circle contains
elements of N3.p/ D fx; e; yg. Because y is farthest third nearest neighbor of p, d3.p/ D d.p; y/,
the distance between p and y. The smallest green circle contains elements of N3.y/ and the red
circle contains elements of N3.z/. Note that ry.p/ = rank of p among neighbors of y = 9. Finally,
RN k.y/ D ; since no other object considers p in their neighborhood
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since p is not in N3.y/. However, y and z are connected since they are in each other’s
3-neighborhoods. The clustering method is represented as NC.`; m�/.

Breadth-first search can be performed on a graph whose node-set is D and in
which an edge exists between p; q 2 D if p 2 N`.q/ and q 2 N`.p/. A connected
component C of the graph is a cluster if the following conditions are satisfied:

1. Every object in C is D-reachable from at least two others in C.
2. The number of objects in C is no smaller than a pre-specified minimum, m�.

For example, NC.6; 5/ denotes that a cluster contains connected objects for ` = 6,
and every cluster must contain at least 5 objects. If any connected component C does
not satisfy these conditions, it is broken up into isolated objects, which are declared
to be potential outliers.

The appropriate values of ` and m� are problem-specific and depend on domain
knowledge. If ` is small, the NC-clustering method finds small and tightly connected
clusters and large values of ` result in large and loose clusters. If the clusters are
small and tight, more objects that do not belong to any cluster are detected and in
the latter case only a few objects are declared as outliers. In real world applications
(such as credit card fraud detection) most of the transactions are normal and only
0.01% or less of the transactions are fraudulent. In such cases, a small value of ` is
more suitable than a large `. The value of m� has a similar effect: if m� is too small,
then the cluster size may also be too small, and a small collection of outliers may be
considered as a cluster, which is not what we want.

Advantages of NC.`; m�/ clustering algorithms are:

• It only requires one scan to find all the clusters.
• It controls the tightness and sparsity of clusters using a single parameter—`.
• It can find the central objects of clusters easily by analyzing each Ok.p/. The data

objects in the center must have lower Ok.p/ values.

7.2.2 Density and Rank Based Detection Algorithms

In this section we consider algorithms that first use a clustering approach, such as
the one described above, followed by methods that attempt to account for cluster
sizes, and other relevant parameters.

Density-Based Clustering and Outlier Detection Algorithm (DBCOD)
For p 2 D , Tao and Pi [109] define the local density, the neighborhood-based

density factor, and neighborhood-based local density factor of p, respectively, as:

LDk.p/ D
P

q2Nk.p/
1

d.p;q/

jNk.p/j ; NDFk.p/ D jRN k.p/j
jNk.p/j ; and NLDFk.p/ D LDk.p/�NDFk.p/:
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The threshold of NLDF, denoted as �NLDF, is defined as:

�NLDF D



mink.NLDFk.p// if for all objects p 2 D; NDFk.p/ D 1

maxk.NLDFk.p// otherwise

Using the above definitions, Tao and Pi [109] find the clusters based on the
definitions in the previous section except that their definition of D-reachability is
as follows:

p and q 2 D are in each other’s k-neighborhood and NLDFk.q/ < �NLDF.

Points outside the clusters are declared as outliers.

7.3 New Algorithms Based on Distance and Cluster Density

Purely rank-based analysis leads to potential incorrect answers when an object is
near a dense cluster; this property is the ‘cluster density effect’. For instance, two
points are of special interest in Fig. 7.5: point ‘A’ in the neighborhood of a cluster
with low density (25 objects) and point ‘B’ in the neighborhood of a cluster with
high density (491 objects).

By visual inspection, it would be argued that the object ‘A’ is an outlier whereas
object ‘B’ is a possible but not definite outlier. For k=20, O20.A/=25 because rank of
‘A’ is 25 from all of its neighbors. On the other hand, the ranks of ‘B’ with respect to
its neighbors are: 2, 8,. . . , 132, 205, 227; so that O20.B/ is 93.1. RBDA concludes
that ‘B’ is more likely to be an outlier than ‘A’. This is due to the presence of a
large and dense cluster in the neighborhood of ‘B’; a point close to a dense cluster
is likely to be misidentified as an outlier.

By visual inspection, we intuitively conclude that a point is an outlier if it is ‘far
away’ from the nearest cluster. This implies that the distance of the object (from
the cluster) plays an important role; but in RBDA the distance is accounted for
indirectly, only through rank. This motivates examining possible improvements that
may be obtained by modifying the outlierness measure to give additional weight to
the distance of a point from the set containing its neighbors.

Fig. 7.5 An example to
illustrate ‘Cluster Density
Effect’ on RBDA; RBDA
assigns larger outlierness
measure to B
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In the first step, the data is clustered using a clustering algorithm, and in the
second step, a data object’s anomaly score is evaluated based on its distance from
the closest cluster. Distance from the centroid of the cluster is, most likely, a poor
measure mainly due to the reason that clusters generated by the schema discussed in
DBSCAN or the previous section are not necessary spherical; however the point’s
k-nearest neighbors could be used. A distance could be defined in multiple ways;
three distance measures of a point q from the set Nk.p/ are often used:

• minq2Nk.p/ d.p; q/ (minimal distance)
• maxq2Nk.p/ d.p; q/ (maximal distance)
• 1

jNk.p/j
P

q2Nk.p/ d.p; q/ (averaged distance)

Note that these distances are not with respect to the entire cluster; only with
respect to the point’s k-nearest neighbors. Such different distance measures lead
to multiple measures of outlierness; the third (averaged distance) measure is used in
the following algorithm.

Rank with Averaged Distance Algorithm (RADA) This algorithm adjusts the
rank-based outlierness value by the average distance of p from its k-neighbors. The
key steps are described below; k; `; m� are positive integer parameters defined in the
previous section:

1. Find the clusters in D by NC.`; m�/ method.
2. Declare an object o to be a potential-outlier if it does not belong to any cluster.
3. Calculate a measure of outlierness:

Wk.p/ D Ok.p/ �
P

q2Nk.p/ d.q; p/

jNk.p/j (7.4)

where Ok.p/ is as defined in Eq. (7.1) in the description of RBDA.
4. If p is a potential-outlier and Wk.p/ exceeds a threshold, declare p to be an outlier.

For the dataset in Fig. 7.5, W20.A/ D 484:82 and W20.B/ D 396:19 implying that
A is more likely outlier than B, illustrating that RADA is capable of overcoming the
problem observed with RBDA.

Modifications of RBDA We have observed that the size of the neighboring cluster
plays an important role when calculating the object’s outlierness via RBDA. In
RBDA the weight of a cluster C is jCj; but a smaller weight would be desirable to
reduce the size effect. However, it is not clear how to find the appropriate reduction;
weight assignments equal to 1,

pjCj, and log jCj are some possibilities resulting
in:

1. ODMR Suppose that all clusters (including isolated points viewed as clusters
of size 1) are assigned weight 1, i.e., all jCj observations of the cluster C are
assigned equal weights = 1=jCj.

Then the “modified-rank” of p is defined as mrq.p/ D the sum of weights
associated with all observations within the circle of radius d.q; p/ centered at q.
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Fig. 7.6 Assignment of
weights in different clusters
and modified-rank.
Modified-rank of A, with
respect to B, is 1 C 5 � 1

9
C 1

7

The desired statistic is the sum of “modified-ranks” in q 2 Nk.p/, denoted by

˝ D
X

q2Nk.p/

mrq.p/: (7.5)

Figure 7.6 illustrates how modified-rank is calculated.
2. ODMRS: If cluster C is assigned a weight =

pjCj, i.e., each observation of
the cluster is assigned the weight = 1=

pjCj, then the “modified-rank” of p is
obtained by summing these weights associated with all observations within the
circle of radius d.q; p/ centered at q; that is

modified-rank of p from q D mrS
q.p/ D

X

s2fd.q;s/�d.q;p/g
weight.s/:

The associated statistic ˝.S/ D P
q2Nk.p/ mrS

q.p/.
3. ODMRW: A third alternative, to define modified rank, is as follows. Given a

cluster C, first we define pk;d D P
q2Nk.p/ d.p; q/. Then the modified rank of p is

defined as:

mrW
q .p/ D pk;d

P
p2C pk;d

:

The associated statistic is ˝.W/ D P
q2Nk.p/ mrW

q .p/.
4. ODMRD: Influenced by the distance consideration of Sect. 7.3, we present

one more modification of ODMR by using additional distance information.
ODMRD-outlierness, denoted as ˝.D/

k.p/, is defined as:
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˝.D/
k.p/ D

X

q2Nk.p/

mrq.p/ � d.q; p/

This modification has used the modified rank definition of ODMR; alternatives
such as ODMRS and ODMRW could also be explored.

Each of the above variations of ODMR can be used to compute outlierness. The
algorithm is as follows:

1. Cluster the points in D using the NC.`; m�/ algorithm;
2. Let the set of potential outliers P D the set of points in D that do not belong to

any cluster;
3. For each point p 2 P, compute ˝.p/ (as defined in Eq. (7.5) or its variants ˝.W/,

˝.D/
k.p/ etc.);

4. Points p with large values of ˝.p/ are declared to be outliers.

When applied to a new problem for which the ground truth is not known, we may
examine the distribution of ˝ values to determine a threshold and all points whose
˝ values exceed this threshold would be considered to be outliers. To find the
threshold, one can use the classical ninety fifth percentile of ˝ values subject to
the condition that there must be a drastic difference between the average of the first
95% values versus the last 5% values (e.g. 4 times more). When there is no such
threshold, e.g., if ˝ values are uniformly distributed in an interval, the user would
have to select a threshold parameter m that indicates how many points are to be
considered outliers. Two algorithms could be compared by examining the sets of m
points considered to have the highest outlierness values (˝), and evaluating in each
case how many of these are true outliers (if ground truth is known).

7.4 Results

We compare RBDA and its extensions with algorithms presented in Chap. 6.

7.4.1 RBDA Versus the Kernel Based Density Estimation
Algorithm

Recall the anomaly detection algorithm described in Chap. 6. This algorithm
computes the density at a point using the non-parametric approach with Gaussian
kernel. RBDA was compared with this algorithm for datasets described in the
Appendix. It was observed that RBDA performs better than the kernel based
approach for the synthetic dataset 1, Iris-5 and Wisconsin-10. On the other hand
the kernel based algorithm performs better than RBDA when the window is large
(� D 5) for Iona-10 and Iona-3 datasets; for the Iris-3 dataset, both performed
equally well.
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7.4.2 Comparison of RBDA and Its Extensions with LOF,
COF, and INFLO

The performance of RADA, ODMR, ODMRS, ODMRW, ODMRD, RBDA,
DBCOD, LOF, COF and INFLO were compare for several datasets described
in the Appendix.

• For the synthetic dataset 2, we compared performances for k D 25; 35, and
50 and m D 6; 10; 15; 20; 30. For k D 25 and 35 the performance of RADA,
ODMR, ODMRS, ODMRW, and ODMRD were identical to the performance of
RBDA. For k D 50 the performance of RADA, ODMR, ODMRS, ODMRW, and
ODMRD were identical and slightly better than of RBDA. Comparisons of the
remaining algorithms are presented in Table 7.1.

Table 7.1 Performance of each algorithm for synthetic dataset 2. The largest values (best perfor-
mances) are shown in red color

k=25 RBDA DBCOD LOF COF INFLO

m mt Re RP mt Re RP mt Re RP mt Re RP mt Re RP

6 6 1 1 3 0.5 0.857 4 0.667 1 3 0.5 0.857 3 0.5 1

10 6 1 1 4 0.667 0.667 5 0.833 0.882 3 0.5 0.857 4 0.667 0.714

15 6 1 1 5 0.833 0.577 6 1 0.656 5 0.833 0.484 5 0.833 0.6

20 6 1 1 6 1 0.5 6 1 0.656 5 0.833 0.484 5 0.833 0.6

30 6 1 1 6 1 0.5 6 1 0.656 6 1 0.375 6 1 0.438

k=35 RBDA DBCOD LOF COF INFLO

m mt Re RP mt Re RP mt Re RP mt Re RP mt Re RP

6 5 0.833 1 3 0.5 0.857 2 0.333 0.429 0 0 0 2 0.333 0.429

10 5 0.833 1 5 0.833 0.577 3 0.5 0.375 2 0.333 0.158 3 0.5 0.375

15 6 1 0.808 5 0.833 0.577 5 0.833 0.357 5 0.833 0.259 5 0.833 0.375

20 6 1 0.808 6 1 0.457 6 1 0.362 5 0.833 0.259 5 0.833 0.375

30 6 1 0.808 6 1 0.457 6 1 0.362 6 1 0.256 6 1 0.344

k=50 RBDA DBCOD LOF COF INFLO

m mt Re RP mt Re RP mt Re RP mt Re RP mt Re RP

6 5 0.833 1 3 0.5 0.857 1 0.167 0.5 0 0 0 1 0.167 0.5

10 5 0.833 1 3 0.5 0.857 2 0.333 0.25 1 0.167 0.1 2 0.333 0.25

15 5 0.833 1 5 0.833 0.484 4 0.667 0.278 1 0.167 0.1 5 0.833 0.3

20 5 0.833 1 5 0.833 0.484 6 1 0.3 2 0.333 0.1 5 0.833 0.3

30 6 1 0.583 6 1 0.396 6 1 0.3 6 1 0.175 6 1 0.292
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• Comparisons for the Iris Dataset

– For the dataset with rare class, results show that ODMRW achieves the best
performance when k is 5; LOF is the best when k is 10, while ODMRW is the
second best. For k D 10, RADA, ODMRW, RBDA, LOF, and INFLO perform
best.

– For the dataset with planted outliers; ODMRW achieves the best performance
for all values of k. RADA, ODMR, ODMRS, ODMRD and RBDA all have
similar performances. LOF, COF and INFLO do not work well for this data
set since they hardly detect any outlier when m � 40.

• Comparisons for the Ionosphere Dataset

– For the dataset with rare class, results (with respect to metrics mt and Recall)
show that the algorithms RBDA, ODMR, ODMRD, and RADA perform
equally well whereas DBCOD does not perform well for k � 30.

– For the dataset with planted outliers, ODMRW performs better than the other
algorithms for all values of k. DBCOD, LOF, COF and INFLO do not work
well for this data set since they are not able to detect more than 1 (out of 3)
outlier when m � 30.

• Comparisons for the Wisconsin Dataset

– Results for the dataset with rare class show that no single algorithm dominates,
but Rank-based algorithms tend to perform better than LOF, COF, INFLO
and DBCOD. For k D 7 RBDA and RADA both work better than other
algorithms; COF performs the best when k D 11; and DBCOD shows the best
performance when k D 22. In general, no single algorithm can achieve the
best performance for all values of k. Most of the algorithms perform equally
well and are able to detect all 10 outliers when m is 40.

– Results for the dataset with inserted anomalies show that RADA, ODMR,
ODMRS, ODMRW, ODMRD and RBDA achieve the best performances for
all values of k.

• Overall Performance Table 7.2 summarizes the performance of all algorithms
over all values of k, and is obtained by using normalized RankPower. RankPow-
ers are normalized to fall in the scale [0, 100], where 0 means that the RankPower
of the algorithm is least, and 100 corresponds to the largest RankPower. Values
of k were chosen between 5% to 10% of the size of datasets.

Although better performance is indicated by larger values of all three measures
of performance, mt, recall, and RankPower, we observe that RankPower is more
discriminatory than the other two metrics. Using this metric, for the datasets
mentioned above, the relative behavior of algorithms can be summarized as:

ODMRW � ODMRD � ODMR � RADA

� ODMRS � RBDA � LOF � DBCOD � INFLO � COF

where by “�” we indicate a better performance.
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Table 7.2 Summary of LOF, COF, INFLO, DBCOD, RBDA, RADA, ODMR, ODMRS, ODMRW,
and ODMRD for all experiments. Numbers represent the average performance rank of the
algorithms; a larger value implies better performance. Data set with ‘r’ in the parentheses represents
the data set with rare class. And data set with ‘o’ in the parentheses represents the data set with
planted outliers

Dataset LOF COF INFLO DBCOD RBDA RADA ODMR ODMRS ODMRW ODMRD

Synthetic 44 27 36 45 80 100 100 100 100 100

Iris(r) 82 17 59 26 74 76 90 77 98 91

Inosphere(r) 54 57 58 26 92 97 92 92 100 98

Wisconsin(r) 62 86 61 92 93 95 93 92 86 92

Iris(o) 100 67 100 100 100 100 100 100 100 100

Inosphere(o) 49 48 53 34 92 96 92 92 100 96

Wisconsin(o) 6 20 12 47 100 100 100 100 100 100

Summary 57 46 54 53 90 95 95 93 98 97

Table 7.3 KDD 99, k D 55: For each value of m the best results are in red color. Results for
COF and INFLO were generally poorer than for LOF and are not shown below

LOF RBDA RADA ODMR ODMRW

m mt Re Rp mt Re Rp mt Re Rp mt Re Rp mt Re Rp

12 4 0.33 0.04 6 0.50 0.13 6 0.50 0.14 6 0.50 0.14 6 0.50 0.14

20 6 0.50 0.07 8 0.67 0.22 10 0.83 0.37 10 0.83 0.37 10 0.83 0.37

30 8 0.67 0.13 5 0.42 0.03 12 1.00 0.53 12 1.00 0.52 12 1.00 0.52

40 8 0.67 0.13 6 0.50 0.04 12 1.00 0.53 12 1.00 0.52 12 1.00 0.52

50 11 0.92 0.23 8 0.67 0.07 12 1.00 0.53 12 1.00 0.52 12 1.00 0.52

60 11 0.92 0.23 9 0.75 0.09 12 1.00 0.53 12 1.00 0.52 12 1.00 0.52

80 12 1.00 0.27 11 0.92 0.13 12 1.00 0.53 12 1.00 0.52 12 1.00 0.52

7.4.3 Comparison for KDD99 and Packed Executables
Datasets

Aforementioned algorithms were compared for KDD99 and Packed Executable
datasets. Representative tables and summary are provided below.

• For the KDD99 dataset, the performance was measured for k D 15; 35; 55; 105;

155; and 205, and m D 12; 20; 30; 40; 50; 60 and 80. Detailed performance is
presented in Table 7.3 for k D 55 only.

It can be seen that for k D 55, the best performance is given by RBDA.
Performances of ODMR, OGMRW and RBDA are also pretty good, whereas
LOF, INFLO and COF have poor performance, especially when measured in
terms of RankPower. Similar observations can be made for other values of k.
Overall performance of RADA is the best.

• The following Table 7.4 gives results for the Packed Executable Dataset, for
k D 55. Other values of k D 15; 35; 105; 155; and 205, were also used.



134 7 Rank Based Approaches

Table 7.4 Packed Executable Dataset k D 55. For each value of m the best results are in red
color. Results for COF and INFLO were generally poorer than for LOF and are not shown below

RBDA INFLO RADA ODMR ODMRW

m mt Re Rp mt Re Rp mt Re Rp mt Re Rp mt Re Rp

8 3 0:38 0:07 0 0:00 0:00 4 0.50 0.17 4 0:50 0:10 4 0:50 0:10

10 4 0:50 0:11 0 0:00 0:00 4 0.50 0.17 4 0:50 0:10 4 0:50 0:10

20 6 0:75 0:23 0 0:00 0:00 8 1.00 0.61 6 0:75 0:22 6 0:75 0:22

30 7 0:88 0:31 0 0:00 0:00 8 1.00 0.61 7 0:88 0:29 6 0:75 0:22

40 8 1:00 0:40 0 0:00 0:00 8 1.00 0.61 8 1:00 0:37 8 1:00 0:38

50 8 1:00 0:40 1 0:13 0:00 8 1.00 0.61 8 1:00 0:37 8 1:00 0:38

60 8 1:00 0:40 3 0:38 0:07 8 1.00 0.61 8 1:00 0:37 8 1:00 0:38

From the above table, it is easy to conclude that the performance of RADA is
the best. However, from other tables (not presented here) it was observed that for
k D 15, the best performance is given by ODMRW, followed by ODMR, RADA,
and RBDA. For k D 35; 55; and 105, performance of RADA is the best followed
by ODMR, ODMRW, and RBDA. For these values of k COF, INFLO and LOF
has extremely poor performance. However, when k D 155 and 255, LOF has
the best performance; RADA is close behind it. In summary, it is observed that
RADA is a good algorithm, reliable in most cases, but the value of k matters.
It would be useful to determine appropriate value of k for a given dataset.

7.5 Conclusions

The performance of an outlier detection algorithm based on rank alone is highly
influenced by cluster density variations. Furthermore, by definition, ranks use the
relative distances and ignore the ‘true’ distances between the observations. This
motivates development of new outlier detection algorithms that utilize rank as well
as distance information.

Extensive evaluations on synthetic and real datasets have demonstrated that the
overall performance of each of the new algorithms (ODMR and other variants) is
significantly better than previously known algorithms. Among the new variants of
algorithms, ODMRW performed best, perhaps due to the greater weightage placed
on distance.



Chapter 8
Ensemble Methods

In the previous chapters, we have described various anomaly detection algorithms,
whose relative performance varies with the dataset and the application being
considered. It may be impossible to find one algorithm that outperforms all others,
but ensemble methods that combine the results of multiple algorithms often provide
the best results. A particular anomaly detection algorithm may be well-suited to the
properties of one dataset and be successful in detecting anomalous observations of
the particular application domain, but may fail to work with other datasets whose
characteristics do not agree with the first dataset. The impact of such mismatch
between an algorithm and an application can be alleviated by using ensemble
methods where a variety of algorithms are pooled before a final decision is made.

This chapter discusses ensemble methods to improve the performance of
anomaly detection algorithms, and successfully address the high false positive
rates of individual algorithms, referred to as weak learners. Ensemble methods
for anomaly detection have been categorized into two groups [4]: the independent
ensemble and the sequential ensemble approaches. In the independent ensemble
approach, discussed in Sect. 8.1, the results from executions of different algorithms
are combined in order to obtain a more robust model. In sequential ensemble
approaches, summarized in Sect. 8.2, a set of algorithms is applied sequentially.
Section 8.3 discusses adaptive sampling methods based on the Adaboost algorithm
and on the active learning approach. A weighted adaptive sampling algorithm is
then described, in Sect. 8.4. Section 8.5 presents concluding remarks.

8.1 Independent Ensemble Methods

In the Independent Ensemble methods, each algorithm provides an anomaly score
to objects in D ; objects that receive higher scores are considered more anomalous.
The ranges and distributions of scores may be substantially different for different

© Springer International Publishing AG 2017
K.G. Mehrotra et al., Anomaly Detection Principles and Algorithms, Terrorism,
Security, and Computation, https://doi.org/10.1007/978-3-319-67526-8_8

135

https://doi.org/10.1007/978-3-319-67526-8_8


136 8 Ensemble Methods

algorithms; normalization of individual scores is hence necessary before combining
scores. Normalization may be performed using a linear mapping that assigns a
normalized score of 0 to the least anomalous data point, and a normalized score
of 1 to the most anomalous data point (as per each specific algorithm). We use
the notation that ˛i.p/ is the normalized anomaly score of p 2 D , according to
algorithm i.

In some algorithms, anomaly scores are sorted in decreasing order and assigned
ranks, and these ranks are used in ensemble methods, instead of using normalized
anomaly scores. We follow the convention that the object that receives the highest
score is ranked 1, the second most anomalous object is ranked 2, and so on. We use
the notation that ri.p/ is the rank of p 2 D , according to algorithm i.

The approaches that can be used to combine the results of multiple algorithms can
focus either on the raw anomaly scores (˛i), or on the ranks (ri). Most combination
methods seek a consensus among algorithms, by computing the median or mean of
the anomaly scores or ranks; an alternative approach considers a data point to be
highly anomalous if at least one algorithm evaluates it to be highly anomalous–this
is implemented by computing the maximum of the anomaly scores, or the minimum
of the ranks.

Averaging The averaged normalized score of p over m individual algorithms is
obtained as follows:

˛.p/ D 1

m

mX

iD1

˛i.p/:

Final ranking is based on this averaged score, and the data point with the highest
˛ value is ranked 1 (i.e., is most anomalous). It is possible instead to perform
averaging directly on the ranks, but this can result in the loss of useful information,
e.g., whether the top two ranked individuals obtained using an algorithm i differ
substantially or minimally in ˛i values.

Example 8.1 For a dataset with three points, upon applying three individual
anomaly detection algorithms, let

˛1.p1/ D 1:0; ˛1.p2/ D 0:9; ˛1.p3/ D 0:0;

˛2.p1/ D 1:0; ˛2.p2/ D 0:8; ˛2.p3/ D 0:0;

and

˛3.p1/ D 0:1; ˛3.p2/ D 1:0; ˛3.p3/ D 0:0:

Then the averaged anomaly scores are ˛.p1/ D 0:7; ˛.p2/ D 0:9; and ˛.p3/ D 0:0;

suggesting that p2 is more anomalous than p1, whereas averaging the ranks yields
an average rank of 1.3 for p1 and 1.7 for p2, suggesting that p1 is more anomalous
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than p2. The former inference may be more reasonable since algorithms 1 and 2 do
not substantially distinguish between the relative anomalousness of p1 and p2 (since
they have very similar anomaly scores), whereas algorithm 3 does consider them to
have substantially different anomaly scores. This may happen because the first two
algorithms use almost identical approaches to compute anomaly scores, whereas the
third algorithm behaves quite differently, and the strong opinions of the latter should
not be submerged by the weak opinions of the first two.

The Min-Rank Method Let the anomalous rank of p, assigned by algorithm i be
given by ri.p/. As mentioned earlier, ri.p/ < ri.q/ implies that ˛i.p/ > ˛i.q/, hence
p is more anomalous than q according to algorithm i. The Min-rank method assigns
the smallest possible rank to each data point, implicitly emphasizing points that
may be considered anomalous according to any single criterion or algorithm, even
if other algorithms do not consider the point to be anomalous. If m algorithms are
being combined, then

rank.p/ D min
1�i�m

ri.p/:

In other words, if the object p is found to be most anomalous by at least one
algorithm then the Min-rank method also declares it to be the most anomalous
object. If all m algorithms give substantially different results, several different points
may have the same combined (minimum) rank. Maximization of ˛i (instead of ri)
values should give similar results but is not recommended since each algorithm may
compute anomaly scores in a completely different way, and direct comparison of
anomaly scores of different algorithms may not make sense: if ˛1.p1/ > ˛2.p1/ and
˛2.p2/ > ˛1.p2/, then we cannot infer from the maximum ˛i values whether p1 is
more anomalous than p2.

Example 8.2 Let ˛i values for three points be defined for three algorithms as in the
previous example, resulting in the following ranks:

r1.p1/ D 1; r1.p2/ D 2; r1.p3/ D 3I

r2.p1/ D 1; r2.p2/ D 2; r2.p3/ D 3I

r3.p1/ D 2; r3.p2/ D 1; r3.p3/ D 3:

Then the minimum rank values combined from the three algorithms are:

rank.p1/ D 1; rank.p2/ D 1; rank.p3/ D 3:

Both p1 and p2 are then considered equally anomalous, but more anomalous than p3.
Note that averaging the ranks would have given a different result: the average rank
of p1 is greater than that of p2. Maximizing the ˛i values gives 1.0, 1.0, and 0.0, for
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the three points, respectively, which is consistent with minimizing the ranks in this
example.

Majority Voting Another possible approach is to consider a point p to be more
anomalous than q if more of the m algorithms assign higher scores to p than to q.
First we define the comparison indicator function comp as follows, where � � 0 is a
small threshold used to determine whether an algorithm considers two points to be
equally anomalous:

compi.p; q/ D
8
<

:

1 if ˛i.p/ > ˛i.q/ C �;

�1 if ˛i.p/ < ˛i.q/ � �;

0 if j˛i.p/ � ˛i.q/j � �:

Then,

comp.p; q/ D
mX

iD1

compi.p; q/

roughly indicates the degree of consensus between the m algorithms regarding
whether p is more anomalous than q. By definition, note that compi.q; p/ D
�compi.p; q/, hence comp.q; p/ D �comp.p; q/. This pairwise comparison mea-
sure can be used to construct a composite rank or anomaly score, e.g., defining ˛.p/

to be
P

pj2D comp.p; pj/.

Example 8.3 Let ˛i values for three points be defined for three algorithms as in the
previous example, and let the threshold � D 0:1. Then

comp1.p1; p2/ D 0; comp1.p1; p3/ D 1; comp1.p2; p3/ D 0I
comp2.p1; p2/ D comp2.p1; p3/ D comp2.p2; p3/ D 1I

comp3.p1; p2/ D �1; comp3.p1; p3/ D 0; comp3.p2; p3/ D 1:

Then the combined comparison values are comp.p1; p2/ D 0; comp.p1; p3/ D 2;

and comp.p2; p3/ D 2; yielding the composite anomaly scores ˛.p1/ D 2, ˛.p2/ D
2, and ˛.p3/ D �4. The final result again indicates that p1 and p2 are equally
anomalous, but more than p3. Note that the results depend on �; for example, if
� had been chosen to be 0.05 in the above example, then p2 would be considered to
be more anomalous than p1.

Majority voting has been used in many other contexts, including voting in the
political context, and many results have been developed addressing its usefulness.
Condorcet’s Jury Theorem [28] establishes a mathematical result applicable to
ensemble methods, and states that if a majority vote is taken using the opinions of
weak learners who have an independent probability > 0:5 of voting for the correct
decision, then adding more such voters improves the probability of the majority
decision being correct. Both the qualifying criteria are important: the voters must be
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independent, and each voter must be more likely to vote correctly than incorrectly.
Unfortunately, many practical applications violate the first criterion, and enlarging
the jury may decrease its collective competence when votes are correlated [66].
A stronger result shows that if the number of voters is sufficiently large and the
average of their individual propensities to select the better of two policy proposals is
a little above random chance, and if each person votes his or her own best judgment
(rather than in alliance with a block or faction), then the majority is extremely likely
to select the better alternative [56]; this result is particularly useful for ensemble
algorithms for anomaly detection, since each algorithm applies its own procedure
(i.e., no voting in a block) even though some algorithms produce results that are
correlated since they examine the same data and apply similar procedures.

Sampling Empirical results have shown that these methods provide improvements
over the results of single anomaly detection algorithms. However, some of the above
approaches require significantly high computational effort; for instance, if a dataset
contains a thousand points, then millions of point-point comparisons would be
needed for the majority voting approach. Sampling can be used to identify promising
candidates for the most anomalous data points using any of the above approaches,
and exhaustive comparisons can be restricted to such promising candidates. For
example, we may repeatedly draw a relatively small random sample of fixed size,
S � D (with replacement), and find the most anomalous element of S by the min-
rank approach, adding it to the Candidates set. All the members of Candidates may
then be exhaustively compared with each other, perhaps using the majority voting
approach. Alternatively, an anomaly score for each data point may be computed as
the average of the anomaly score with respect to multiple small samples (subsets of
D) [126].

8.2 Sequential Application of Algorithms

Even the sampling approach (described above) requires that each algorithm be
applied to the entire dataset. Greater computational efficiency would be obtained if
promising solutions are first obtained by a subset of algorithms, and the remaining
algorithms restrict their anomaly score computations to these promising solutions.
In the sequential approach, we begin with the entire dataset D , and successively
apply one algorithm after another, refining the subset of promising solutions at
each stage by eliminating the least anomalous candidates from the previous step.
Using substantially diverse algorithms is very important when combining different
anomaly detection algorithms [4, 125]. The extent to which two algorithms produce
similar results can be evaluated by computing the Pearson correlation coefficient
between each pair of algorithms using the associated score vectors. Diversity is
maximized by selecting the pair of algorithms with the smallest average correlation
value. Zhao et al. [122] applied this approach to several algorithms discussed in
earlier chapters, and observed that the smallest correlation corresponds to COF
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and RADA. In other words, COF followed by RADA (or in reverse order) should
be successful in anomaly detection. The largest average correlations are observed
between the three algorithms of rank-family, i.e., between RBDA, RADA, and
ODMR; implying that selecting two algorithms among these will not perform as
well due to low diversity.

As in the previous section, ranks for all data points are calculated using
the anomaly scores. In the Sequential-1 method (cf. Algorithm “Sequential-1
algorithm”), one anomaly detection algorithm (such as COF) is first applied on
the whole dataset to obtain the ranks of all observations. Next the dataset D˛ is
obtained by retaining the ˛ � jD j elements of D with the highest anomaly scores
using algorithm 1, suspected to contain all anomalies. The second anomaly detection
algorithm calculates the anomaly scores of all objects in the dataset with reference
to D˛ . For instance, if ˛ D 0:1, then the second algorithm is applied only to 10%
of the elements in D . This process can be repeated using additional individual
anomaly detection algorithms. Computational effort decreases as ˛ decreases, with
an increased risk of losing data points that are anomalous only from the perspective
of the algorithm(s) applied later.

Algorithm Sequential-1 algorithm
Input: dataset D , detection algorithms A and B, fraction 0 � ˛ � 1

Output: a set of k most anomalous objects in D

1. ScoreListA.D/ = List of anomaly scores obtained using algorithm A on D ;
2. RankListA.D/ = List of objects in D sorted by the order of decreasing anomaly scores (from

ScoreList);
3. D˛ = List of the first ˛ � jDj objects in RankListA.D/;
4. ScoreListB.D˛/ = List of anomaly scores obtained using algorithm B on D˛ ;
5. RankListB.D˛/ = List of objects in D˛ sorted by the order of decreasing anomaly scores (from

ScoreList);
6. Return the list of the first k elements in RankListB.D˛/.

This approach can be used along with the sampling approach mentioned earlier.
Zhao et al. [122] extend the single algorithm sampling approach of Zimek et al.
[126], using the second anomaly detection algorithm with the averages of anomaly
scores obtained using subsamples drawn from D˛ (using the first algorithm).
Empirical results showed that best results were obtained in most cases with this
approach using either LOF or COF followed by RADA.

8.3 Ensemble Anomaly Detection with Adaptive Sampling

In the previous sections, we considered either combining the outputs of multiple
algorithms, or applying one algorithm to the results obtained by another. This
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section extends the first approach, repeatedly examining targeted observations to
refine decisions.

Averaging the outputs of different weak learners gives them equal weightage,
whereas each weak learner may be shown to work well on a specific subset of D .
This issue can be addressed using weighted majority voting in which the weight of a
learner is assigned by measuring the quality of its results. For any object o 2 D , if a
learner’s output at iteration t 2 f1; 2; : : : ; Tg is `t.o/, the final output is denoted by:

L.o/ D
TX

tD1

ˇt`t.o/

where ˇt indicates how important the learner `t is in the final combination. For
example, in the context of a classification problem, one can use the error on the
training data as an indication of how well a learner is expected to perform.

A few ensemble methods use repeated samples for unsupervised anomaly
detection [3, 125]. We now discuss ensemble approaches based on the Adaboost
approach [122].

8.3.1 AdaBoost

AdaBoost is an ensemble-based supervised classification algorithm [44] which has
gained considerable popularity for its elegance and performance. The algorithm
iterates through T rounds of weak learners applied to the training dataset. In each
round, Adaboost focuses on the ‘hard’ examples from the previous round, then com-
bines their output by weighted majority voting. AdaBoost calls a “booster” in each
round to draw a subsample Dt from D with a set of sampling probabilities, initially
uniform. A weak learner or base method ht is trained over Dt, then the sampling
probabilities are increased for incorrectly classified examples. After T rounds, each
weak learner `t is assigned with a weight ˇt which is lower if the corresponding
error for that learner is higher. The final decision output is made by applying
weighted majority voting over all `t for t D 1; 2; : : : ; T . The training error will
be substantially reduced if all the weak learners are better than random guessing.

An optimal weight choice criterion, assuming decisions are made independently
of each other, states that the overall probability of the ensemble making the correct
decision by majority rule is obtained by assigning weights to different decision-
makers that are proportional to wi D log.pi=.1 � pi// where pi is the probability of
the ith decision maker making the correct choice [53]. A corollary states that if pi is
unknown, we can approximate the optimal weight choices by wi proportional .�i �
0:5/ where �i measures how often the ith decision-maker agrees with the majority.

The method proposed by Abe et al. [1] converts the anomaly detection problem
to an AdaBoost-solvable classification problem by drawing some number of points
from an underlying distribution, and marking them as anomalies, whereas all the
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points in the original dataset are considered to be inliers. Their resampling method
is based on minimum margin active learning by iteratively assigning lower sample
rejection probabilities to points with low margin values, because they have less
consistency. The weights for each classifier are adjusted by the classification error
rate in each subsample.

Zhao et al. [122] propose a different approach that adapts AdaBoost’s approach to
the unsupervised anomaly detection problem. This algorithm, discussed in greater
detail in Sect. 8.4, uses the score output of the base algorithm to determine the
‘hard’ examples, and iteratively re-sample more points from such examples in a
complete unsupervised context. First, we discuss the adaptive sampling approach.

8.3.2 Adaptive Sampling

Adaptive learning, also known as Active Learning, refers to a procedure where
intervention or human feedback is applied to achieve superior performance from
a given dataset. Consider the problem of two-class classification: a classifier is
designed to associate each observation with one of the two classes. In addition,
assume that there is only one feature, described by the Gaussian distribution, and
the classes differ only in the mean but the variances are equal. In this simplest
classification problem, if the training set consists of two simple random samples
from the two Gaussian distributions, then the classifier is likely to perform poorly
in comparison with the classifier built using most of the observations near the
boundary. In essence, this is the key difference between Fisher’s linear discriminant
and the Support Vector Machine (SVM) approach that emphasizes observations near
the boundary of the two distributions.

In some active learning frameworks, learning proceeds in rounds; each round
starts with a small number of ‘labeled’ examples. Then the learner models the
combined data, i.e., the new labeled data as well as the whole or subset of the
original data. The model is used to identify a few data points such that obtaining
labels for them would help to improve the model. These are shown to the teacher
for labeling, and the cycle repeats.

8.3.3 Minimum Margin Approach

The ensemble-based minimum margin approach [1] transforms the unsupervised
anomaly detection problem to a supervised classification problem solved using
any classification algorithm A. All the given observations, D , are identified with
Class 0, and Class 1 consists of a synthetic sample containing an equal number
of observations generated from a uniform distribution over a range that includes
the entire range of values of data attributes in D . The classification algorithm A
is iteratively applied with different samples, and the ith classifier Ci is just the
application of A to the ith sample Si � D whose elements are chosen with higher
probability when there is less consensus between prior classifiers C0; : : : ; Ci�1.
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Thus, the algorithm successively focuses on the decision boundary between the
obvious normal examples and the clear outliers.

For each data point x, if Cj.x/ D b indicates that x is placed in class b by classifier
Cj, the minimum margin algorithm computes the margin value M.x/ based on the
previous C0; C1; : : : ; Ci�1 classifiers as follows:

M.x/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

i�1X

jD0

�
Prob.Cj.x/ D 1/ � Prob.Cj.x/ D 0/

�
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
:

Note that M.x/ is high when the classifiers C0; C1; : : : ; Ci�1 unanimously consider
x to be either an outlier or an inlier, so not much is to be gained by applying the
next classifier Ci to x; on the other hand, M.x/ � 0 when the classifiers are equally
split in their opinions, so the next classifier Ci should carefully consider x with a
high probability. The actual probability of selecting observation x into sample Si is
evaluated using the area under the right-hand tail of a Gaussian curve

ˆ.�; �; y/ D
Z 1

y

1p
2��

e
�1
2 .

.x��/
� /2

dx

where � D i
2
, � D

p
i

2
, and y D iCM.x/

2
. This probability is largest when M.x/ D 0

(when y is smallest), and the probability is smallest (but non-zero) when M.x/ � i,
i.e., when C0; C1; : : : ; Ci�1 are unanimous. Thus, successive classifiers pay greater
attention to the points on which previous classifiers have no consensus.

The final decision regarding whether a point x is anomalous is based on a
weighted average of the opinions of various classifiers C0; : : : ; Ct, and the weight of
each classifier Ci, which is obtained as a function of the error rate of Ci on the sample
Si, e.g., wi D log.1- (error rate)=(error rate)/; following the Adaboost approach.

8.4 Weighted Adaptive Sampling

The minimum margin approach discussed in the previous section computes a
weighted average of the decisions of different classifiers Ci obtained by applying the
same classification algorithm A to selected samples of D . This section describes an
analogous approach, in which the results of different anomaly detection algorithms
are combined, using weighted adaptive sampling that uses the anomaly scores
obtained with different algorithms [123].

Adaptive sampling emphasizes examples that are “hard to identify”, i.e., near the
boundary of inliers and outliers, as seen in Fig. 8.2. To extract such examples from
the dataset, we need to answer two questions:

1. How can we determine whether an object can be easily classified as an outlier?
2. How can we combine the outputs from different iterations?
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Fig. 8.1 An example with three anomalous data points p, q, and r added to synthetic data
generated randomly

The approach described in this section uses anomaly score outputs from the base
algorithms to determine the set of boundary points, defined below, which are re-
sampled with higher probability using a kNN approach.

Decision Boundary Points
A simple example is illustrated in Fig. 8.1, containing three artificially introduced
anomalous data points: p, q, and r. The LOF anomaly detection algorithm (with
k D 3) yields anomaly scores for each object, normalized to the [0,1] range. The
mapping of data points into the score space is shown in Fig. 8.2.

The object p on the upper left corner is the most obvious anomaly among all
of the three anomalies, and was assigned the highest anomaly score as shown
in Fig. 8.2; this illustrates that the detection algorithm performs very well when
detecting the easy-to-detect anomalies. But the scores for the other two points
are relatively low, and are almost the same as those of some non-anomalous data
points; these are considered to be on the boundary. The score space can be used to
distinguish potential anomalies and inliers, all objects with an anomaly score greater
than � (a predetermined threshold) can be identified as anomalous and all other
objects are marked as inliers; � determines the decision boundary. In the example
of Fig. 8.2, if we choose � D 0:3, then two real anomalies p,q are identified, but
five false positives are introduced, and we have one false negative r (undetected
anomaly).
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Fig. 8.2 Normalized LOF scores for data in Fig. 8.1; the y-axis represents the data points

It is unclear whether points near the threshold boundary are true anomalies,
since the threshold is arbitrarily chosen; a slightly larger or smaller value of �

may yield different results. This motivates another approach that applies higher
sampling probability weights to points that are near a decision boundary [123],
described below, justified with an analogy to anomaly detection algorithms based
on computing the local density near each point.

Sampling Weights Adjustment Consider normalized scores ˛.x/ 2 Œ0; 1� for each
data point x. Note that ˛.x/ � 0 identifies a clear inlier, ˛.x/ � 1 identifies a definite
anomaly, and ˛.x/ � � implies that x is more likely to be a boundary point, where
� 2 Œ0; 1� is an appropriately chosen threshold.

Most false positives and false negatives are expected to occur at boundary points,
with existing algorithms. Hence a new weight WB.x/ is assigned to each data point
x, increasing with the likelihood that it is a boundary point, as follows:

WB.x/ D
(

˛.x/

�
if ˛.x/ < �

1�˛.x/

1��
if ˛.x/ � �:

(8.1)

For example, if � D 0:75 and ˛.x1/ D 0:8, then WB.x1/ D .1 � 0:8/=.1 �
0:75/ D 0:8, a high value indicating that x1 needs extra attention, whereas if � D
0:75 and ˛.x2/ D 0:99, then WB.x2/ D .1 � 0:99/=.1 � 0:75/ D 0:04, hence x2 is a
definite outlier that does not need further attention in refining the learning algorithm
parameters.
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Such a weight assignment increases sampling probability for boundary points
and decreases the sampling probability for points that are easy to detect (clear inliers
and anomalies). Instead of iteratively refining the boundaries as in classification
or clustering problems, this approach iteratively resamples the points near the
boundaries. This helps address some false negatives and positives caused by low
data density near the boundary. As is the case with many other learning algorithms,
focusing attention on boundary points improves the performance, refining the
boundary, instead of wasting computational effort on obvious inliers and outliers.

Final Outputs Combination The absence of labeled training data makes it
difficult to measure the performance quality of a clustering or anomaly detection
algorithm in an ensemble approach. If the outputs from all iterations are indepen-
dent, we can use the correlation between them as an indication of how well one
individual learner performs. However, in the adaptive learning process, the input
of each learner is dependent on the previous one, and this makes the process of
selection of weights (for each learner) even harder. The problem of measuring how
well a learner performs in an iteration is essentially the question of how many
‘real’ anomalies were captured in that iteration. Objects with higher scores are more
anomalous than the ones with lower scores. But a more pertinent question is that
of determining the size of the gap between scores of anomalous vs. non-anomalous
objects. Histograms in Fig. 8.3 show normalized scores for two datasets: (1) with
no anomaly and (2) for the same dataset with 3 anomalies inserted. We observe that
the anomalies get larger scores, and also the gap in scores between the inliers and
anomalies increases, in Fig. 8.3a, the ‘gap’ is from 0.7 to 0.8 while in Fig. 8.3b, the
‘gap’ is from 0.6 to 0.9.

These observation suggest three alternative weight assignments for ˇt:

a) The simplest approach is to take the arithmetic average for all values of t. Thus,
we assign:

ˇt D 1; t D 1; 2; : : : ; T

Fig. 8.3 Difference between the histograms of scores, (a) without anomalies; and (b) with three
anomalies
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b) Another approach is to elect a score threshold � , and at each iteration t, calculate
at Dthe number of objects with score greater than � . Using this, we assign:

ˇt D 1 � at

jDtj
where jDtj is the size of the sample in the tth iteration.

c) At each iteration t, we may instead obtain the histogram of the score output,
calculate the ‘gap’ bt between the right-most bin and the second right-most bin,
and set:

ˇt D bt C 1

TP

tD1

bt C 1

:

8.4.1 Weighted Adaptive Sampling Algorithm

Algorithm “Anomaly detection with weighted adaptive sampling” begins by giving
equal sampling weight to all points in the original dataset D , such that for every
point xi, w0

xi
=1=jD j. At each iteration t 2 f1; 2; : : : ; Tg, we draw N observations

following the sampling distribution pt, obtained as described below. Duplicates are
removed and the scores are re-evaluated, and this new set of observations is denoted
as Dt. We adjust the sampling weights for all the points in Dt as mentioned above,
and normalize their sampling weights with respect to the sum of all the sampling
weights in Dt; for unsampled data, the sampling weights remain unchanged. The
result of our sampling makes the sampling weights for possible boundary points
(hard-to-identify points) higher in the following iterations, so the ‘effective’ sample
size will decrease over successive iterations.

8.4.2 Comparative Results

This section describes the datasets used for simulation, simulation results, and
discussions of algorithm parameters.

Many researchers use the Receiver Operating Characteristic (ROC) curve,
plotting true positive rate against false positive rate, to show how the performance
of a classifier varies as its threshold parameters change. The Area Under Curve
(AUC) measure, defined as the surface area under ROC curve, is used here to
evaluate the relative performance of anomaly detection algorithms. A larger value
of AUC indicates that the algorithm is more capable of capturing anomalies while
introducing fewer false positives.
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Algorithm Anomaly detection with weighted adaptive sampling
Input: Dataset D , and detection algorithm A.
Initialize the weight vector: w0

xi
D 1

jDj

for each point xi;
for iteration t = 1,2,. . . ,T:
1. Obtain the probability distribution for sampling:

pt D wt

†wt
xi

2. Draw N observations from D using pt, remove the duplicates, denote this set of observations as
Dt

3. Run A on Dt, get a score vector Scoret, normalize the scores to [0,1]
4. ht.xi/= normalized score of xi

5. Set the new weights vector to be:

wtC1
xi

D .1 � ˛/ � wt
xi

C .˛/ � WB.xi/I
Output: Make the final decision

H.xi/ D
TX

tD1

ˇtht.xi/

8.4.3 Dataset Description

Five well-known datasets were used in our simulations; described in the
Appendix:

1. Packed Executables Classification dataset (PEC)
2. KDD 99 dataset (KDD)
3. Wisconsin Dataset (WIS)
4. Basketball dataset (NBA)
5. Smartphone-Based Recognition of Human Activities and Postural Transitions

Data Set (ACT)

8.4.4 Performance Comparisons

The ensemble approach was compared with base algorithm LOF using different
values of k (the number of local neighbors). Figures 8.4 and 8.5 plot AUC values
against different values of k. The solid line shows the AUC for base algorithm LOF,
and the boxplots show the results over 20 trials of the ensemble approach with
adaptive weighted sampling, using ˇt D 1 � atjDtj . The results show that for all k
values, the ensemble approach outperforms the base algorithm for all the 5 datasets;
we observe that the variance in performance quality decreases as k increases.
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Fig. 8.4 AUC performance comparison of weighted adaptive sampling (boxplots) with base
algorithm LOF (solid curve), for different values of k. (a) Wisconsin dataset. (b) Activity dataset.
(c) NBA dataset

In the Active-Outlier approach [1], the anomaly detection problem is transformed
to a classification problem by inserting additional observations generated from a
specific distribution (Uniform, Gaussian). The inserted observations are labeled
to belong to the anomalous class, and the observations in the original dataset are
assumed to be non-anomalous. AdaBoost may be used with decision tree classifier
(CART) as the base classifier. In the ensemble approach, no additional observations
are inserted; LOF is used as the base anomaly detection algorithm with ˛ D 0:2

and results are reported for three different values of k. For fair comparison, the same
number of iterations are performed with both methods.

Table 8.1 presents the AUC results, averaged over 20 trials; the best values are
shown in boldface. The relative performance of the ensemble approach is better
in all but one cases and improves as k increases. On the mobile activity dataset,
the Active-Outlier approach fails to detect any real anomalies when a uniform
distribution is used for synthetic anomaly generation, but performs significantly
better when a Gaussian distribution is used.
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Table 8.1 Performance
comparison: averaged AUC
over 20 repeats

DataSet Active-Outlier Ensemble

Unif Gauss k=1% k=3% k=5%

WIS 0.865 0.921 0.963 0.965 0.978
NBA 0.903 0.810 0.920 0.959 0.961
ACT 0.5 0.980 0.961 0.999 1.000
PEC 0.907 0.686 0.975 0.986 0.985

KDD 0.873 0.685 0.985 0.993 0.993

Fig. 8.5 Comparison of
AUC performance: weighted
adaptive sampling (boxplots)
versus the base algorithm,
LOF (solid lines); the x-axis
shows the percentage of the
data set size considered to be
local neighbors: (a) KDD
dataset; (b) PEC dataset
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8.4.5 Effect of Model Parameters

We first discuss how the number of iterations affects the performance of the
ensemble approach. Figure 8.6 plots the AUC values against the number of iterations
for a synthetic dataset and a real dataset. On the synthetic dataset, performance
stabilized after 10 iterations and on the real dataset, performance stabilized after 20
iterations.

The simulations for comparing different possible combination approaches were
conducted as follows:

1. For each dataset, for each k value, the algorithm is applied with each of the three
different combination approaches.

2. The above process is repeated 20 times, and the mean AUC is reported.
3. For each dataset, for each k value, the AUC performance of each combination

approach is ranked; the best one will have a rank of 1, the worst one has a rank
of 3.

4. For each dataset, the sum of the above ranks is calculated for each combination
approach; the best one has the lowest sum.

Table 8.2 summarizes the accumulated sums of AUC rankings over all different k
values for the three approaches, denoted as Suma, Sumb, and Sumc respectively; the
best values are shown in boldface. The one with best detection performance will

Fig. 8.6 AUC performance vs. number of iterations. (a) Synthetic dataset. (b) Real dataset

Table 8.2 Performance over
Sum of AUC rankings with
different combination
approaches

DataSet Suma Sumb Sumc

WIS 42 33 73

NBA 55 52 43
ACT 41 27 73

PEC 59 45 33
KDD 33 41 57

Sum over all datasets 230 198 279
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have the lowest Sum over the three different combination approaches. Approach a
ranks once as the best, twice as the second, and twice as the third; combination
approach c ranks twice as the best, three times as the third; while the combination
approach b ranks twice as the best, three times as the second and none as the third.
So the combination approach b, where ˇt D 1 � atjDtj , outperforms the other two
combination approaches over the 5 datasets that were considered.

8.5 Conclusion

This chapter has presented several anomaly detection algorithms based on ensemble
approaches. First, the independent ensemble approach provided algorithms for
combining the results after separately applying each individual algorithm. Then, the
sequential ensemble approach suggests how the results of applying one algorithm
can be refined by the application of another algorithm. We then considered adaptive
sampling methods, building on the well-known Adaboost algorithm, including a
discussion of active learning in this context. Finally, weighted adaptive sampling
was presented and evaluated using five datasets, leading to the conclusion that such
an approach outperforms other algorithms discussed earlier.



Chapter 9
Algorithms for Time Series Data

Many practical problems involve data that arrive over time, and are hence in a strict
temporal sequence. As discussed in Chap. 5, treating the data as a set, while ignoring
the time-stamp, loses information essential to the problem. Treating the time-stamp
as just another dimension (on par with other relevant dimensions such as dollar
amounts) can only confuse the matter: the occurrence of other attribute values at
a specific time instant can mean something quite different from the same attribute
values occurring at another time, depending on the immediately preceding values.
Such dependencies necessitate considering time as a special aspect of the data for
explicit modeling, and treating the data as a sequence rather than a set. Hence
anomaly detection for time-sequenced data requires algorithms that are substantially
different from those discussed in the previous chapters.

Applications of time series anomaly detection have emerged in many fields,
including health care, intrusion detection, finance, aviation, and ecology. For
example, in a computer network, an anomalous traffic pattern may be observed when
a hacked computer sends sensitive data to an unauthorized destination. In health
management, an abnormal medical condition in a patient’s heart can be detected by
identifying anomalies in the time-series corresponding to Electrocardiogram (ECG)
recordings of the patient; a normal ECG recording produces a periodic time series,
whereas the ECG of a patient exhibiting arrhythmia may contain segments that do
not conform to the expected periodicity or amplitude. In the domain of aviation,
flight data is collected in the form of sequences of observations from multiple
sensors, resulting in a multi-variate time series; any significant deviation from the
typical system behavior is considered anomalous. Anomaly detection has been used
in astronomical data to detect light curves’ outliers within astronomical data [96].
Outlier detection for temporal data has been extensively surveyed by [23, 52].

This chapter is organized as follows. In Sect. 9.1, we describe the main anomaly
detection problems generally addressed in time series context. In Sect. 9.2, we
describe algorithms for identifying anomalous sequences from a collection of
sequences, including a discussion of distance measures and popular transformations
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that have been used in developing the anomaly detection algorithms. In Sect. 9.3,
we consider algorithms for identifying anomalous subsequences. All of these
algorithms are based on a single distance measure; in Sect. 9.4, we consider
detection algorithms based on combining multiple distance measures and evaluation
procedures. Online time series anomaly detection is discussed in Sect. 9.5. Some
of these algorithms are empirically evaluated and compared; results are presented
in Sect. 9.6. A summary of these algorithms and a discussion of the results are
contained in Sect. 9.7.

9.1 Problem Definition

Different kinds of anomaly detection problems are illustrated by the example of
financial time series shown in Fig. 9.1, displaying the variation of stock prices
of some companies for the period from 2010 to 2012. First, we observe that one
time series (Walmart Inc., shown with red dots) exhibits behavior substantially
different from others, which represent the stock prices of oil and gas companies.
Within each series, there are considerable fluctuations, among which some sudden
drastic decreases stand out as anomalies, perhaps indicating problems of a specific
company. At some time points, indicating market crashes, all the time series exhibit
substantial decreases: the decrease of one company’s stock price then is anomalous
with respect to its own past behavior, but not with respect to the overall market
behavior, which could be represented by a time series that aggregates multiple
companies (e.g., Dow Jones Industrial Average, or the S&P500 and similar indices).

Fig. 9.1 Time series representing normalized daily closing stock prices for some compa-
nies—Red dots represent the stock prices of Walmart, Inc., whose behavior varies substantially
from that of others representing various oil and gas companies
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We hence discuss both kinds of anomaly detection algorithms: distinguishing an
anomalous sequence from others, as well as identifying anomalous subsequences
within a given sequence; furthermore, online anomaly detection algorithms are
necessary in order to react rapidly to market fluctuations. These problems are
discussed below in greater detail.

• Between various time series: We first consider the problem of identifying which
time series is anomalous when compared to others in a collection of multiple time
series.

1. First, we consider the entire time period for which data are available, e.g.,
determining that the stock prices of Walmart represent an outlier with respect
to the oil and gas stock price time series, shown in Fig. 9.1. Formally, suppose
we are given a time series dataset D D fXiji D 1; 2; : : : ; mg, where Xi D
fxi.t/j1 � t � ng represents the ith time series and xi.t/ represents the value
of the ith time series at time t, n is the length of the time series, and m is
the number of time series in the dataset. The goal is to calculate O.Xi/, the
outlierness or anomaly score1 of a series Xi, and ‚0 a threshold such that if
Xi is an anomalous series, then O.Xi/ � ‚0; otherwise O.Xi/ < ‚0.

2. Although a time series may resemble other time series in the dataset when
the entire period of time is considered, it may diverge substantially from the
others for a small sub-period. The change may be permanent or short-lived;
the behavior of such a company stock price may revert later to its previous
behavior, once again moving in tandem with other stocks in the same industry
group. For example, among the stock prices of various oil and gas companies,
which mostly move in tandem, one particular stock may exhibit anomalous
behavior, e.g., rising or dipping suddenly due to rumors of a possible merger.
On the other hand, a company’s stock price may be almost unchanged over
time, but this may be anomalous when compared to the stock prices of other
companies, all of which exhibit sudden spurts in response to external news
(e.g., impending war that increases demand for some commodities). Adding
to the notation mentioned earlier, we must calculate O.Xi; p; w;D/ which
represents the outlierness of the time series Xi during the time interval from
time instant p to p C w, compared to other time series 2 D for the same
time period. The goal is to find the series Xi as well as the relevant time
period parameters (p; w) such that O.Xi; p; w;D/ exceeds a threshold. This
requires very high computational effort, unless the possible values of p and w
are constrained substantially.

• Within a time series: Another problem of interest is the detection of an anomaly
within a single series, which differs substantially from the rest of the same
time series; identifying the precise moment when the deviation begins could be
important in some cases.

1We use “O” instead of “˛” in the case of time series; these are otherwise identical except that
there is no presumption that O � 1.
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1. The occurrence of an event or point anomaly is characterized by a substantial
variation in the value of a data point from preceding data points. For example,
in the credit card fraud detection context, if a purchase is associated with a
much higher cost than prior purchases by the same customer, an anomaly
would be signaled.

2. Discords are anomalous subsequences that occur within a given time series,
defined as “maximally different from the rest of the sequence” [72, 73]. For
example, in detecting cardiac arrhythmias from an electrocardiograph (ECG),
no individual reading may be out of range, but the sequence of a collection
of successive values may not be consistent with the regular and periodic form
of the data. We expect a certain (previously observed) regular waveform to be
repeated, and variation from this expectation constitutes an anomaly. Another
example consists of overseas money transfers; past history might indicate that
these occur about once a month for a customer (e.g., to financially support
the customer’s family living abroad), representing a simple periodic sequence
over time; the occurrence of multiple such transactions within a month then
constitutes an anomaly. Detecting such anomalies is difficult because the exact
length of the anomalous subsequence may not be known.

Formally, suppose X D fx.t/j1 � t � ng is a time series where x.t/
represents the value of the series X at time t and n is the length of X . A
subsequence of X is defined as Xp;w D fx.p/; : : : ; x.p C w � 1/j1 � p �
n � w C 1I 1 � w � ng.The goal is to find abnormal subsequences (Xp;w)
if any exist. More specifically, we must calculate the outlierness, O.Xp;w/, of
any Xp;w. If O.Xp;w/ � ‚0, a user-defined threshold, then Xp;w is declared
to be abnormal.

3. Sometimes the individual values may be within an acceptable range, but the
rate of change over time may be anomalous, and we refer to this as a rate
anomaly. For instance, in the credit card fraud detection problem, the balance
(total amount owed by the customer) may suddenly increase within a day,
due to a large number of small transactions made during a short amount of
time; this should signal an anomaly even if each individual transaction is
unremarkable, and the total balance remains within the range of prior monthly
expenditures. This is an example of a contextual anomaly, wherein a data point
is anomalous with respect to the immediately preceding values, though not
with respect to the entire range of possible values from past history.

Example 9.1 The rapid fall of an oil stock price may signal an anomaly when
viewed against its own past history. But this may not be an anomaly when
evaluated against simultaneous rapid decreases in other oil stock prices. On
the other hand, the stock price of an oil company may at some time begin to
exhibit significant deviations from those of other oil companies, suggesting
an underlying problem that should trigger actions by stock traders. In order to
carry out such actions, it is important to detect such deviations as they occur
in time, else the trader may be too late and may suffer losses due to delays in
analysis and decision-making.
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• Online anomaly detection: In some time series problems, the underlying
process generating the data changes with time. If we have applied a learning
algorithm to determine the parameters of a model using old data, then the old
parameters may no longer be applicable to new data. Hence we must reapply the
learning algorithm to obtain a new set of parameters for the model. Unfortunately,
this requires exorbitantly high computational costs, due to repeated applications
of a learning algorithm when new data arrive. This makes it very difficult to detect
anomalies as soon as they arise, in order to respond rapidly when anomalies
are detected. This is referred to as the online anomaly detection problem. The
goal may be to identify anomalies within a given series, but may also refer to
anomalies in comparison to the most recent behavior of other time series.

Formally, consider a time series dataset D D fXiji D 1; 2; : : : ; mg, where
Xi D fxi.t/jt D 1; 2; : : :g represents the ith time series and xi.t/ represents the
value of the ith time series at time t. In the online context, the goal is to calculate
O.xi.t//, the outlierness of a series xi at time t, without requiring excessive
computation but learning the characteristics of the most recent data, i.e.,

f.Xj.t � w/; : : : ;Xj.t � 1//; for j D 1; : : : mg:

The appropriate window length w is itself unknown, and may depend on the
problem characteristics, model size, prior hypotheses regarding the possible rate
of change of the underlying process, and inferences made from data.

Problems in which available data are not evenly spaced over time constitute
another challenge. For example, during a single day, trades in a stock may occur
at uneven intervals. In other cases, data at all time points may exist but may be
unavailable or missing, e.g., when sensors take readings at varying intervals in
time. In observations of physical data (e.g., temperature at the bottom of a lake),
for instance, available data may constitute a discrete irregularly spaced sample of
observations from an underlying infinite data set that varies continuously over time.
Interpolation or imputation methods, [9], may sometimes be applied to infer missing
data, prior to the application of anomaly detection algorithms of the kind discussed
in this chapter.

Another problem arises when all time series are not necessarily of the same
length; for presentational convenience, we ignore this concern.

9.2 Identification of an Anomalous Time Series

Just as earlier chapters discussed the identification of anomalous data points
(outliers) from other data points (inliers), the classic problem for time series is to
identify the time series that is an outlier with respect to other time series. Abstractly,
algorithms similar to those discussed in previous chapters can again be applied if we
can identify a space in which time series can be compared easily with each other,
and an appropriate distance measure for time series. However, these are non-trivial
issues, and several approaches have been explored to address the relevant task. We
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first describe various categories of algorithms used for this task, and then discuss
the distance measures and transformations that are specific to time series problems.

9.2.1 Algorithm Categories

Anomaly detection algorithms for data sequences fall in two major categories, viz.,
Procedural and Transformation approaches.

In procedural or model-based algorithms a parametric model, such as regression
or Hidden Markov Models (HMMs), is built using the training data to predict the
behavior of the time series, and an anomaly score is assigned to each (test) time
series. The predicted values are calculated and compared with the observed values,
as sketched in Algorithm “Procedural approach”; note that we may choose the
testing period, which need not necessarily begin after the training period, i.e., it
is possible that � 0 < � C 1.

Algorithm Procedural approach
1: GIVEN: Time series dataset D , training time period � , testing start point � 0, parametric model

M
2: Train the model M on the first � values of time series in D to determine appropriate parameter

values, and let the result be M� ;
3: for each time series Xi 2 D do
4: Apply M� to predict xi.�

0/; : : : ; xi.n/; thus obtain Oxi.�
0/; : : : ; Oxi.n/;

5: Report Xi as an anomaly if .Oxi.�
0/; : : : ; Oxi.n// is substantially different from

.xi.�
0/; : : : ; xi.n//;

6: end for

The models used for this approach include Regression [43, 101], Auto-
Regression [45], ARMA [95], ARIMA [88], and Support Vector Regression
[83, 106]. These methods are mainly designed for individual outlier detection,
and the results are impacted significantly by model parameters or distributions of
data sets.

In the transformation approach, the data is transformed prior to anomaly
detection, using approaches such as the following:

• Aggregation approach which focuses on dimensionality reduction by aggregat-
ing consecutive values; this approach is sketched in Algorithm “Aggregation
approach”.

• Discretization approach which converts numerical attributes into a small number
of discrete values, in order to reduce computational effort; this approach is
sketched in Algorithm “Discretization approach”.

• Signal processing transformations, e.g., in Fourier or Wavelet transformation
the data is transformed to a different space; a subset of transformed parameters
is chosen, thereby reducing the dimensionality. This approach is sketched in
Algorithm “Signal processing transformation approach”.
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Algorithm Aggregation approach
1: GIVEN: Time series dataset D , window size w (much smaller than the time series length);
2: for each time series Xi 2 D do
3: for j 2 Œ1; : : : ; b n

w c� do
4: Aggregate w consecutive values

AiŒj� D .xi.j � w C 1/; x.j � w C 2/; : : : ; x.j � .w C 1///;
5: end for
6: end for
7: Apply an anomaly detection algorithm to the aggregated time series fAi; i D 1; 2; : : : ; mg

where Ai D .AiŒ1�; AiŒ2�; : : : ; AiŒb n
w c�/

Algorithm Discretization approach
1: GIVEN: Time series dataset D , discrete value count v (often in the 3–5 range);
2: for each time series Xi 2 D do
3: for j 2 Œ1; n� do
4: Discretize xi.j/ into one of the v values, so that vi.j/ 2 f1; : : : ; vg;
5: end for
6: end for
7: Apply an anomaly detection algorithm to the discretized time series fV1; V2; : : :g where Vi D

.vi.1/; vi.2/; : : : ; vi.b n
w c/

Algorithm Signal processing transformation approach
1: GIVEN: Time series dataset D , Transformation F, Desired dimensionality d (often in the 3–6

range);
2: for each time series Xi 2 D do
3: Compute F.Xi/;
4: Apply dimensionality reduction to obtain F�.Xi/ from F.Xi/, e.g., by selecting the d most

significant coefficients of terms in F.Xi/;
5: end for
6: Apply an anomaly detection algorithm to the transformed data fF�.X1/; F�.X2/; : : :g

We now address the formulation of distance metrics and transformations that are
central to these approaches.

9.2.2 Distances and Transformations

Viewed as a vector, a time series is generally of very large dimensionality. Con-
sequently, the first step is to obtain a compact representation to capture important
information contained in the series. Lin et al. [79] define a generic time series data
mining approach as follows:

1. Create an approximation of the data, which will fit in main memory, yet retains
the essential features of interest.

2. Approximately solve the task at hand in main memory.
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3. Make a small number of accesses to the original data on disk to confirm the
solution obtained in Step 2, or to modify the solution so it agrees with the solution
we would have obtained on the original data.

Some approaches to reduce the dimensionality of time series are model-based,
whereas others are data-adaptive [20, 33].

The lock-step measures are based on one-to-one mapping between two time
series; examples include: Cross Euclidean distance (EUC) [40], the Cross Corre-
lation Coefficient-based measure [13], SameTrend (STREND) [60], and Standard
Deviation of Differences (DIFFSTD), discussed below.2

• The Cross-Euclidean distance between two time series X and Y is defined as:

dE D
 

nX

tD1

.x.t/ � y.t//2

! 1
2

:

• Better scale invariance is provided by the Cross Correlation Coefficient-based
measure, defined as

dC D .2.1 � correlation.X ;Y ///
1
2 ; :

where correlation is the Pearson correlation coefficient between the two time
series.

• For the SameTrend (STREND) measure, the difference �x.t/ D x.tC1/�x.t/; t 2
Œ1::n � 1� is calculated for each series, and STREND is defined as

S.t/ D
8
<

:

1 if �x.t/ 	 �y.t/ > 0

�1 if �x.t/ 	 �y.t/ < 0

0 otherwise.

Thus, S.t/ indicates whether or not x.t/ and y.t/ change in the same direction
at time t. The aggregate measure, over the entire length, n, of the time series is
evaluated as

dS.X ;Y / D 1 � 1

n � 1

X

t2Œ1::n�1�

S.t/:

Example 9.2 Figure 9.2 illustrates the STREND computation for two time
series. For time series X , the successive values are .9; 3; 4; 5; 3; 5; 6; 2; 1/,
and the differences (subtracting each element from the preceding one)

2For readability, we often abbreviate the aggregate distance between two time series Xi and Xj as
d.i; j/ or dist.i; j/ instead of d.Xi;Xj/.
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Sign(x(t+1)−x(t))

1

1 3 6 8 time

−1

Fig. 9.2 Plots of trend (sgn.�x.t/ D xtC1 � xt/) for two time series. These two series move in the
same direction five out of eight times

are .�6; 1; 1; �2; 2; 1; �4; �1/. Similarly, for time series Y , the val-
ues are .1; 2; 3; 4; 3; 2; 2; 1; 0/ so that the successive differences are
.1; 1; 1; �1; �1; 0; �1; �1/. The trend for the first interval is negative for series
X and positive for series Y , hence the first element of the STREND vector is
S.1/ D �1; but the trends are both positive for the second interval, hence the
second element of the STREND vector is S.2/ D 1. All the elements of the
STREND vector are given by S D .�1; 1; 1; 1; �1; 0; 1; 1/, in which the sixth
element is 0 since the corresponding trend is S.6/ D 0 (neither positive nor
negative) for Y . Finally, the STREND distance (between X and Y ) computed
is 1 �P

t.S.t//=.n � 1/ D 1 � .3=8/ D 0:625.
• DIFFSTD is the standard deviation of differences between two time series, i.e.,

if ıX ;Y .t/ � ı.t/ D kx.t/ � y.t/k, and � D P
t ı.t/=n, then the new distance is

defined as

dist.X ;Y / D
sX

t

.ı.t/ � �/2=n:

This measure, illustrated in Fig. 9.3, is widely used in the financial field.

Example 9.3 For the same two time series (used to illustrate STREND above),
the DIFFSTD measures begins by computing the absolute difference ı.t/ D
X .t/ � Y .t/ between corresponding elements of the two time series, giving
values .8; 1; 1; 1; 0; 3; 4; 1; 1/ from which we compute the average value � DP

t ı.t/=n D 2:22 and finally the distance

sP
t.ı.t/ � �/2

n
D 2:35
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Fig. 9.3 Two time series compared using DIFFSTD—Vertical lines indicate differences at
individual time points

• The elastic measures are based on one to many mapping between two time series
and therefore can handle the time shifting/lag issues. An elastic measure matches
one point of the time series versus many or none points of another time series,
so that it always tries to find the best possible matches between two time series
under certain conditions.

• In recent years, some time series researchers have applied the measures used to
compare strings (finite sequences of characters), such as Edit distance, defined as
the smallest number of additions, deletions, and insertions needed to make two
strings identical. Edit Distance on Real sequence (EDR) [24] is a modification
required since the elements of a time series may not be integers, and ignores
differences between elements that are below a minimal threshold parameter �, as
follows:

ı�.xi; yi/ D



0 if jxi � yij < �

1 otherwise

For example, when � D 0:15, and insertions, deletions, and gaps are equally
penalized, the edit distance between the sequences x D(0.1, 0.5, 0.5, 0.8, 0.9)
and y D(0.3, 0.6, 0.8) is given by the alignment

..0:1; _/; ._; 0:3/; .0:5; 0:6/; .0:5; _/; .0:8; 0:8/; .0:9; _//
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Time 

Time Series  Y

Time Series  X

Fig. 9.4 Time alignment of two time series; aligned points are indicated by the arrows

which gives

ı0:15.x; y/ D 1 C 1 C 0 C 1 C 0 C 1 D 4:

Variations of this approach include assigning greater penalties to gaps,
especially those that occur in the middle of the sequence. When penalties are
very large, the problem reduces to finding the longest common substring, and
when gaps are not penalized, the problem reduces to finding the longest common
subsequence (LCSS) [113]. A similar approach is used in Dynamic time warping
(DTW) [11, 99], used in many practical applications such as speech recognition
and signature recognition. DTW attempts to accommodate such discrepancies
in X and Y series; viz. Fig. 9.4. A warping path for X and Y is defined as
a pair of monotonically non-decreasing sequences L D .1; : : : ; Lk; : : : ; kX k/

and R D .1; : : : ; Rk; : : : ; kY k/, representing indices into the two time series,
respectively, constrained so that

.Lk � Lk�1; Rk � Rk�1/ 2 f.0; 1/; .1; 0/; .1; 1/g:

The cost associated with a warping path .L; R/ is defined as
P

k d.X .Lk/ �
Y .Rk//, where d measures the difference in component values. In DTW the goal
is to find the warping path that minimizes this cost. This can be accomplished
by using the classical dynamic programming algorithm developed to align two
sequences [90].

• In the transformed space approach, the time series is first transformed into
another space; measures in the transformed space include TQuEST [2] distance,
and Spatial Assembling Distance SpADe [26]. Other examples include Symbolic
Aggregate approXimation (SAX) proposed by Keogh and Lin [79] with and
without sliding window (SAXSL and SAXNW respectively); SAX with bag-of-
pattern (SAXBAG) [80], Discrete Wavelet Transform [19], and Discrete Fourier
Transform [40]. We describe a few of these distances in the following.
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• Piecewise Aggregate Approximation (PAA) is a simple dimensionality reduction
method for time series mining. PAA approximates a time-series X of length
n into a vector of length M where M < n. The transformed vector QX D
.Qx1; Qx2; : : : ; QxM/ where each Qxi is calculated as follows:

Qxi D M

n

n
M .i/X

b n
M .i�1/cC1

xj:

Thus, an n-dimensional time series is reduced to an M-dimensional vector which
consists of the mean values for each n

M -dimensional subsequence of the series.
The distance between two time series X and Y is approximated using the
distance, dP, between the PAA of each series where:

dP. QX ; QY / D
r

n

M
.

MX

iD1

.Qxi � Qyi/
2/

1
2 :

The PAA distance satisfies the bounding condition [119]:

dP. QX ; QY / � dist.X ;Y /:

Note that a series X will be declared anomalous if its distance from other series
is large. But, if in place of Euclidean distance the PAA distance is used, then the
above inequality guarantees no false decision. A drawback of this measure is that
PAA minimizes dimensionality by the mean values of equal sized subsequences,
which misses some important information and sometimes causes inaccurate
results in time series mining.

• SAX [79] converts a real-value univariate time series to a string by performing
sliding window subsequence extraction with aggregation followed by discretiza-
tion. First, it chooses a size of sliding window, then transforms all observations
of the raw dataset inside the sliding window into Piecewise Aggregate Approx-
imation (PAA [70]) representation; next it transforms PAA representation in the
sliding window into a SAX word. After obtaining the SAX sequences of words,
it is possible to perform optimization for the sequences containing consecutive
repetitions of the same words, further reducing the length of the final output
sequence, but we ignore this refinement in the following discussion.

Suppose the size of the sliding window is w, and the alphabet † (used in SAX)
is of size j†j. Then the following steps are executed:

1. The time series X is transformed to a PAA sequence P as described earlier;
P D P.1/; : : : ; P.M/, where M D d n

w e.
2. The sequence P is converted to a SAX word-sequence S D S.1/; : : : ; S.M/,

where S.t/ 2 † and the associated value is determined by the magnitude
of P.t/ in the equi-probability distribution. The equi-probability distribution
identifies breakpoints k1; : : : ; ka�1 such that the area under the normal curve
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in the interval .�1; k1/ equals each area under the normal curve in the
interval .ki; kiC1/ and .ka�1; 1/. When a D 3, for instance, k1 � �0:43

and k2 � 0:43, and each area under the normal curve in the intervals
.�1; �0:43/, .�0; 43; 0:43/, and .0:43; 1/ is approximately 1/3. Any value
can be discretized into one of the three ranges into which the normal curve
is divided by these two breakpoints (k1; k2/, e.g., �1 would be discretized
into the symbol representing the interval .�1; �0:43/, 0.5 into the symbol
representing the interval .�0:43; 0:43/, and 2 into the symbol representing
the interval .0:43; 1/.

Thus, the time series X is represented as a sequence of SAX words
S.t/; t D 1; : : : ; M, as illustrated in Fig. 9.5.

3. The distance between two time series X , Y is defined as

dSAX.X ;Y / D
 

n

M

MX

tD1

symdist.S.t/; S�.t//2

! 1
2

:

where S� represents the SAX word representation of time series Y and
symdist is the symbolic distance that can be calculated using the SAX distance
lookup table [79]. If i < j, then the symdist (table entry) between a symbol
representing the ith interval .ki�1; ki/ and a symbol representing the jth interval
.kj�1; kj/, is defined to be kj�1 � ki, the difference between the lower bound of
the higher interval and the upper bound of the lower interval. The sym � dist
table is symmetric, with 0 entries along the main diagonal and its two adjacent
diagonals. For example, if three symbols (intervals) are used, the symdist
between the extreme intervals is 0:43 � .�0:43/ D 0:86, and the other entries

Fig. 9.5 Example for SAXBAG distance computation—SAX words and SAXBAG frequency
counts
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are 0. If four symbols are used, with three breakpoints (�0:67; 0; 0:67), the
symbol for the leftmost (smallest) interval is at a symdist of 0 from the
second symbol, 0.67 from the third symbol, and 1.34 from the fourth (highest)
symbol.

• SAX with bag-of-pattern (SAXBAG): This method uses the frequencies
of different SAX words as the representation of the raw data [80]. Then the
Euclidean distance can be calculated between two time series with bag-of-pattern
representations. Given a time series, subsequences of size w are obtained using
a sliding window. Each subsequence is reduced to w-dimensional discrete repre-
sentation in two steps. First, in the aggregation step, (cf. Algorithm “Aggregation
approach”) the subsequence is further divided into u D M

w segments (sub-
subsequences of equal size) and the average value of the data falling within a
segment is evaluated. In the second step, each average is discretized to a symbol,
from a predetermined set of symbols, using the equal probability intervals
approach.

Example 9.4 Two time series are shown in Fig. 9.5. For concreteness, the values
for one time series X are shown in Table B.1 in the Appendix (beginning with
0.00 and ending with �3:57). For this time series, the mean is �0:66, and the
standard deviation is 1.10, and the z-scores obtained by subtracting the mean and
dividing by the standard deviation, give the following results of normalization:
0:60; 0:88; 1:75; 0:91; 0:34; �0:38; 0:21; : : : ; �2:91; �2:64: We now use a
window size of 15 and compute the averages of 15 successive datapoints per
window (with no overlaps) to be �0:05, �0:81, �0:64, 0.10, 1.21, 0.59, 0.54, and
�0:95, respectively. We use the alphabet size of 3, with three alphabet symbols 2
fa; b; cg. The two cutpoints (from the equiprobable distribution) are at �0:43 and
0.43, dividing the range of values into three intervals; using these, we discretize
the normalized sequence to the following: b; a; a; b; c; c; c; a. For example, the
first symbol is b since �0:43 � �0:05 � 0:43, and the last symbol is a since
�0:95 < �0:43. Using a word-size of 3, we obtain the following word pattern
matrix; each row indicates the number of occurrences (in baabccca) of the listed
3-letter substring, but only for the non-zero cases. For example, aaa is omitted
since there are no occurrences of aaa in baabccca, but baa 1 is listed since there
is one occurrence of baa (at the beginning of the string baabccca).

aab W 1

abc W 1

baa W 1

bcc W 1

cca W 1

ccc W 1



9.3 Abnormal Subsequence Detection 167

In other words, the SAX representation of X will be baa; aab; abc; bcc; ccc; cca:

Inserting 0 values for the absent substrings, and listing the values in alphabetical
order, the full SAXBAG representation for time series X is:

0; 1; 0; 0; 0; 1; 0; 0; 0; 1; 0; 0; 0; 0; 0; 0; 0; 1; 0; 0; 0; 0; 0; 0; 1; 0; 1

where the first 0 corresponds to the (absent) alphabetically first substring aaa,
followed by 1 for the next substring aab that does occur once in baabccca, etc.

Similarly, the SAXBAG representation for another time series is as follows:

1; 0; 0; 0; 1; 0; 0; 0; 0; 1; 0; 1; 0; 0; 0; 0; 0; 1; 0; 0; 0; 0; 0; 0; 0; 0; 1

where the values varying from the SAXBAG of X are shown in boldface.
Focusing on the values that are different between the two SAXBAGs, the

SAXBAG distance between X and Y is finally computed to be:

p
..0 � 1/2 C .1 � 0/2 C .0 � 1/2 C .1 � 0/2 C .0 � 1/2 C .1 � 0/2/ D 2:45

• Inspired by Kolmogorov’s complexity measure, Keogh et al. [74] defined the
following dissimilarity measure:

d.x; y/ D C.xy/

C.x/ C C.y/
;

where C.: : :/ denotes the compressed size of the argument string, and xy is the
concatenation of x and y; the compression could be achieved using any suitable
method, e.g., SAX.

9.3 Abnormal Subsequence Detection

Detecting anomalous subsequences involves evaluating whether a subsequence is
substantially different from other subsequences (in the larger time series), and is
anologous to evaluating whether an entire time series is substantially different from
other time series, as indicated earlier. Hence the approaches, distance measures, and
transformations mentioned in the previous section can once again be applied to the
task of detecting anomalous subsequences.

One approach is to consider subsequences as points in space and use an existing
anomaly detection approach to find anomalous subsequence(s). This approach is
sketched in Algorithm “Point-based approach”.

But the time complexity of this approach can be prohibitively high; a significant
body of research to find anomalies in time series context addresses techniques to
reduce this time complexity, e. g., using indexing techniques [71]. The main data
structures that have been used towards efficient representation of subsequences
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Algorithm Point-based approach
1: GIVEN: Time series X, window size w (much smaller than the time series length);
2: for each i 2 f1; 2; : : : ; .1 C kXk � w/g do
3: Let Xi be the subsequence of length w beginning with XŒi�;
4: end for
5: Apply an anomaly detection algorithm to the w-dimensional data points

fX1; X2; : : : ; X.1CkXk�w/g.

in ‘feature’ space are R-tree, R�-tree and X-tree representations. R-trees are
data structures that are used for indexing multi-dimensional information such as
geographical coordinates, rectangles or polygons.

Another approach defines anomalies within time series as occurrences of patterns
that do not occur in normal circumstances, e.g., a flat section within a time series
representing human heartbeats [67]. Features such as DWT coefficients are first
extracted on sliding window sections of the time series, and these are discretized,
using a single symbol to represent an interval of values. A data structure such as a
suffix tree is then used to represent the frequencies of occurrence of various short
strings of discretized features within the time series. Anomaly scores can then be
computed by comparing suffix trees corresponding to different subsequences; see
Algorithm “Wavelet-based Subsequence Anomaly Detection”.

Algorithm Wavelet-based Subsequence Anomaly Detection
Require: Time series X , Number of discretized values (v), Window length (w), and String length

(l).
Ensure: outliers in X .

Apply DWT to sliding window sections of the time series, where the ith window is X.i/ D
.x.wi C 1/; xi.wi C 2/; : : : ; xi.wi C w � 1//.
Discretize DWT coefficients; each symbol 2 fa1; : : : ; awg represents values within an interval;
Compute the frequency �

.i/
s in each window X.i/ of each substring s D aj; ak; : : : of length l;

Represent these substring frequencies using a suffix tree;
Use the suffix trees to evaluate the distance between any two windows, measured in terms of the
differences in substring frequencies, d�.X.i/; X.j// D P

s j�.i/
s � �

.j/
s j

Use the distance to compute the anomaly score of each window, e.g., as the distance to the kth

nearest neighbors.

A similar algorithm compares the frequencies of SAX words of current data and
past data [115].

With such an approach, if the length w of the discord (anomalous subsequence)
is known, disjoint subsequences of length w can be compared to the entire sequence
to find the anomalous subsequences. But no clear guideline exists for choosing the
right values for window length; this problem exists for other algorithm parameters
as well. One possibility is a ‘Divide and Conquer’ approach: repeatedly halve the
sequence size until the right size is discovered, using a measure such as SAX
compression dissimilarity (C), discussed earlier. Attention is focused on the part
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of a sequence which contains greater dissimilarity with the entire sequence, and the
length of this subsequence is successively halved [74].

Table 9.1 summarizes advantages and disadvantages of various distance mea-
sures for anomaly detection in time series.

9.4 Outlier Detection Based on Multiple Measures

As indicated by Table 9.1, no single measure is capable of capturing different types
of perturbations that may make a series anomalous; a similar observation was made
to motivate ensemble methods in Chap. 8. Hence multiple measures should be
considered together to improve anomaly detection for time series problems [60].

9.4.1 Measure Selection

For the best utilization of limited computational resources, we need to select
a subset of the measures described in the previous section. Towards this goal,
selection of measures that are orthogonal to each other is required, to minimize
redundancy. The orthogonality can be approximated by selecting measures that are
least correlated with each other; the first two measures are selected such that they are
least correlated with each other and subsequent measures are selecting using partial
correlation coefficients. Correlation and partial correlation coefficients between the
measures can be computed over multiple datasets. Three useful measures that can
be combined effectively are DIFFSTD, SAXBAG, and STREND [60].

These measures capture different aspects of the time series, and a combination
of these gives a comprehensive measure of how isolated is a time series from others
in the comparison set. SAXBAG captures the behavior of a time series using a
histogram of possible patterns, STREND identifies the degree of synchronization
of a series compared with another series, and DIFFSTD measures the amount
of deviation. From another perspective, SAXBAG addresses the signature of a
single time series, whereas DIFFSTD and STREND are inter-time-series-measures;
STREND focuses on the synchronization of two time series whereas DIFFSTD
focuses on the magnitude. Combining these three metrics produces a comprehensive
and balanced measure that is more sensitive than individual measures.

Normalization After calculating these measures, they need to be normalized
before combining, since the ranges of selected measures are very different; for
example, the range of STREND is from 0 to 1, and the range of SAXBAG is from
0 to l

p
2 where l D the number of words obtained from the entire series. Empirical

results have shown that the normalization method where each observation is divided
by the trimmed mean (excluding 5% on either end) was found to perform better than
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alternatives that include the extreme values.3 The normalized distances between the
ith and the jth series, based on SAXBAG, STREND, and DIFFSTD are denoted as
d0

s.i; j/, d0
t.i; j/, and d0

f .i; j/, respectively.

Assignment of Weights to Different Measures The selected measures may not
be equally effective in detecting anomalousness; better results can be obtained by
assigning the highest weight to that measure which is more effective. The weight
associated with measure ` of the ith series is computed by finding its k nearest
neighbors of the series and the RBDA value is calculated to assign the weight of
each measure [60].

Algorithm MUDIM
Require: a positive integer k and a time series dataset D .
Ensure: outliers in D .

Step 1. Calculate the distances between ith and jth time series using SAXBAG, STREND, and
DIFFSTD, denoted as ds.i; j/, dt.i; j/, and df .i; j/, respectively.
Step 2. For ` D s; t; f normalize the raw distance to be between 0 and 1 as follows:

d`.i; j/ D dist`.i; j/

mean.Œ5% : : : 95%� of sorted list of dist`.i; j//

Step 3. The weight for the ith series, for the normalized ` feature for ` 2 fs; t; f g, is calculated
as follows (cf. Eq. 7.4):

w0

`.i/ D Ok.i/ �
P

q2Nk.i/ d.q; i/

jNk.i/j
Step 4. For all Xi 2 D , find the average distance to the k nearest neighbors of the ith time series
using the equation

d0

`.i/ D
P

j2Nk.i/ d0

`.i; j/

jNk.i/j
where j D 1; : : : ; m; ` 2 fs; t; f g; and Nk.i/ denotes the set of k nearest neighbors of the ith time
series.
Step 5. Calculate the anomaly score, A.Xi/, for the ith time series as combined distance based
on weighted distances:

A.Xi/ D
s X

`2fs;t;f g

.d0

`.i//
2 � w0

`.i/:

Step 6. Sort A.Xi/’s in descending order and calculate the average and standard deviation of
lower 80% of sorted observations. The series with A.Xi/ larger than (mean + 3� standard
deviation) is declared an anomalous.

3An extreme observation can strongly affect the mean and the standard deviation of a data set. To
achieve ‘improved’ performance and robustness, trimmed statistical measures should be computed,
after deleting extreme values from the data set.
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9.4.2 Identification of Anomalous Series

After obtaining the anomaly score for each series, the final step involves deciding
which series is anomalous, i.e., which O.Xi/ value is large enough. This question
can be answered using threshold-based or clustering-based approaches:

1. The anomaly score O.Xi/ for each series Xi is calculated based on distances and
weights of the three measures mentioned in the previous section:

O.Xi/ D
s X

`2fs;t;f g
.dist0̀ .i//2 � weight0̀ .i/: (9.1)

To minimize the distortions caused by a few large O.Xi/ values, we may
eliminate the highest 20% of the O.Xi/ values, and calculate the (trimmed) mean
� and standard deviation � of the lower 80% of O.Xi/ values [60]. The ith series
is considered anomalous if O.Xi/ > � C 3� .

2. The second method is to identify potentially anomalous series using a clustering
algorithm. This idea can be applied in at least two ways:

• Apply a clustering algorithm (such as NC.`; m�/) in 3-dimensional space
(using all three features of a series). If a series belongs to a cluster of minimal
size, then it is declared as normal, otherwise it is considered to be potentially
anomalous.4

• Apply the clustering algorithm separately in each feature space. If a series
belongs to a cluster of minimal size in each of the three feature spaces, then it
is declared as a normal series, otherwise it is potentially anomalous.

Finally, each potentially anomalous series can be compared with normal series,
using the � C 3� criterion with the trimmed statistics, as described earlier.

9.5 Online Anomaly Detection for Time Series

As mentioned in Sect. 9.1, online anomaly detection requires rapidly detecting
outliers as they arise, where the anomaly is with respect to the most recent data,
since we allow for the possibility that the underlying system behavior changes
with time. In other words, inferences made from old data may not be valid, and
any model used earlier must be retrained, modifying model parameters as needed.
The focus of online anomaly detection algorithms is hence on rapidly retraining
model parameters, in order to decide about the anomalousness of the most recent
observation (or the subsequence ending with the most recent observation), To

4For example, if there are n time series, then we may consider elements of a cluster containing
fewer than na time series to be anomalous, where a D 0:25.
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improve the efficiency of the online algorithm, we may keep a fixed number of
observations in the training set, discarding some old data as the current model
parameters are updated. Such an approach is sketched in Algorithms “Online model-
based subsequence detection” and “Online between-sequence anomaly detection”;
the latter applies a specific interpretation of between-sequence anomaly detection,
in terms of the relative predictability of elements of a time series from others.

Algorithm Online model-based subsequence detection
1: GIVEN: Time series X , retraining interval w, parametric model M;
2: Train the model M using all available data, in order to predict the next value in time series X ;
3: while new data continues to arrive, do
4: if retraining interval w has passed since the most recent training has occurred, then
5: Update the model M using the most recent w values of time series X to determine

appropriate parameter values;
6: end if
7: Report the most recent subsequence xŒi�; xŒi C 1�; : : : ; xŒi C w � 1� as an anomaly if it is

substantially different from the subsequence x�Œi�; x�Œi C 1�; : : : ; x�Œi C w � 1� predicted
by M;

8: end while

Algorithm Online between-sequence anomaly detection
1: GIVEN: Dataset of time series D D fX1; : : : ; Xng, retraining interval w, parametric model M;
2: Train the model M using all available data, in order to predict the next values in each time

series in D;
3: while new data continues to arrive, do
4: if retraining interval w has passed since the most recent training has occurred, then
5: Update the model M using the most recent w values of all time series in D to determine

appropriate parameter values;
6: end if
7: for each series Xj 2 D, do
8: Compute the new predicted subsequence Xj � Œi�; Xj � Œi C 1�; : : : ; Xj � Œi C w � 1�;
9: Let ıjŒi� measure the deviation of this predicted subsequence from the actual observed

subsequence XjŒi�; XjŒi C 1�; : : : ; XjŒi C w � 1�;
10: end for
11: Let �ı and �ı be the mean and standard deviation of fı1Œi�; : : : ; ınŒi�g values;
12: Let ˛j D .ıjŒi� � �ı/=�ı ;
13: Report .XjŒi�; XjŒi C 1�; : : : ; XjŒi C w � 1�/ as an anomaly if ˛j > 3.
14: end while

9.5.1 Online Updating of Distance Measures

In Sect. 9.4, we discussed an anomaly detection method based on DiffStD, STrend,
and SAXBAG measures. Anomaly detection algorithms based on computing dis-
tances between time series can be recast as online algorithms, as shown in
Algorithm “Online distance-based anomaly detection”.
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Algorithm Online distance-based anomaly detection
.
1: GIVEN: Dataset of time series D D fX1; : : : ; Xng, retraining interval w, distance measure d

that computes distance between two time series;
2: while new data continues to arrive, do
3: Update the distance measure values d.Xi; Xj/;
4: Compute the anomaly scores ˛.Xi/ for each time series, based on the distances, e.g.,

˛.Xi/ D .ı.Xi/ � �ı/=�ı ; where ı.Xi/ D the mean distance from Xi to its nearest k
neighbors, �ı is an average of this quantity over all time series, and �ı is the corresponding
standard deviation.

5: Report any Xj as an anomaly if ˛.Xj/ > 3.
6: end while

The key is in efficiently updating the distance measure values; for the three
distance measures discussed in Sect. 9.4, updates can be performed as follows:

• DiffStD: The variance of differences between series Xi and Xj at time n can be
calculated as:

df .i; j/ D n � ssq.i; j/ � .sqs.i; j//2

n � .n � 1/
; (9.2)

where

ssq.i; j/ D
nX

tD1

.xi.t/ � xj.t//
2 and sqs.i; j/ D

nX

tD1

jxi.t/ � xj.t/j:

The numerator in Eq. (9.2) can be updated for the .n C 1/th observations by
adding .xi.n C 1/ � xj.n C 1//2 and jxi.n C 1/ � xj.n C 1/j to ssq.i; j/ and sqs.i; j/
respectively.

• STrend: Let �xi.n/ D xi.n/ � xi.n � 1/. Then, by definition,

Si;j.n/ D



1 if �xi.n/ 	 �xj.n/ > 0 or �xi.n/ D �xj.n/ D 0

0 otherwise

Consequently,

dt.i; j/ D
Pn

tD2 Si;j

n � 1
: (9.3)

Therefore, to update this value using the .n C1/th observation, we modify the
numerator by adding the last trend term Si;j.n C 1/, and accordingly modify the
denominator as well.

• SAXBAG: This approach converts the data segment in the sliding window of
size w to a single SAX word, and then counts the frequency of each word. When
data at time n C 1 is observed, a new SAX word will be generated based on the
sequence
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xi.n C 2 � w/; xi.n C 3 � w/; xi.n C 4 � w/; : : : ; xi.n C 1/:

The stored data set can be updated to account for the new SAX word.

The updated distances, df .i; j/, dt.i; j/, and ds.i; j/, are normalized to d0
f .i; j/,

d0
t.i; j/, and d0

s.i; j/ respectively, according to Step 2 in Algorithm “MUDIM” and
the w0̀ .i/ values are calculated and the anomaly score for the ith series is calculated
as follows:

A.Xi/ D
s X

`2fs;t;f g
.d0̀ .i//2 � w0̀ .i/:

Based on the above equations, a “naive” online detection algorithm (NMUDIM)
can be developed. Anomaly scores (Oi values) can be plotted for each time series,
as illustrated in Fig. 9.10.

Ignoring the length of a time series, the time complexity of NMUDIM is O.m2/,
because distances dl.i; j/, l D s; t; f are calculated for all i ¤ j. In addition, the
k nearest neighbors of series i are identified for each i. A method to reduce this
complexity is presented in the following paragraph.

Unweighted Multi-Distance Measure (UMUD) To speed up the online algo-
rithm, a simpler distance measure can be used without considering rank:

dumd.i; j/ D
sP

`2fs;t;f g.d0̀ .i; j//2

3
; (9.4)

and the anomaly score for the ith series, Ai.k/, can be defined as the average distance
to its k nearest neighbors:

A.Xi/ D
P

j2Nk.i/ dumd.i; j/

jNk.i/j : (9.5)

Now, select any k neighbors of Xi , and let OA.Xi/ denote the average dumd.i; j/ over
them. Then the average distance of k-nearest-neighbors of Xi must be less than or
equal to the average distance of any k neighbors of Xi, so:

A.Xi/ � OA.Xi/:

In addition, if we can find a threshold  such that A/Xi/ <  implies Xi is not
an anomalous series; then any OA.Xj/ <  also implies Xj is not an anomalous
series either; thus most of the non-anomalous series can be excluded from anomaly
score calculations. To find an estimate of the threshold, , the following sampling
procedure is applied: calculate A.Xi/’s values for i 2 S , where S contains a
small fraction (˛) of the elements in D , randomly selected. Then  is chosen to
equal the value of A.Xi/ which is at the top .ˇ � 100/th percentile in descending
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order. Based on the above observations, a faster version of MUDIM is presented in
Algorithm “MUASD”, whose key steps are as follows, repeated as new data points
arrive:

1. Find  as described above.
2. For Xi 2 D � S , maintain a binary max heap consisting of distmsm.i; j/ where

various Xj’s are selected k neighbors of Xi. If the average of these k neighbors is
less than , then Xi is declared as non-anomalous. Else distmsm.i; j/ is calculated
for next selected value of j, and the heap is updated by keeping only the smallest
k values of distmsm. The anomalousness of series Xi is tested using the above
criterion. This process stops if at any stage, the series is found to be non-
anomalous or none of the k neighbors remain.

3. Calculate the anomaly scores of all potential anomalous series (found in Step 2)
and identify the anomalous series, if any.

Algorithm MUASD Online detection of time series anomalies
Require: Set D of m time series Xi, each initially of length n, growing as new Xi.t/ values arrive;
Ensure: Calculate and store all pairwise distances between time series in D upto length n.
1: while New data values arrive over time, do
2: Update and store pairwise (sequence-sequence) distance values using efficient heap data

structures;
3: for each Xi, do
4: update aggregated distances ai from Xi to the nearest neighbors of Xi

5: if ai values are small enough, then
6: mark Xi as non-anomalous;
7: else
8: compute the current anomaly score of Xi from ai;
9: end if

10: end for
11: end while

By applying these techniques, the time complexity for the online algorithm is
considerably reduced, as verified in experimental simulations whose results are
reported in Sect. 9.6.

9.5.2 Multiple Measure Based Abnormal Subsequence
Detection Algorithm (MUASD)

An example problem is shown in Fig. 9.6, where each subsequence represents power
consumption on a weekly basis. Such anomalies are detectable if the time period
over which each subsequence is examined spans one week, whereas these anomalies
are not detectable if the time span is a day or a month. Hence a critical parameter is
the window (w) or length of the subsequences for which anomalousness needs to be
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Fig. 9.6 Examples for abnormal subsequences: Subsequences extracted from a long series of
power consumption for a year; each subsequence represents power consumption for a week. (Top
left) contains normal subsequences; others contains abnormal subsequences along with the week
they appear. Abnormal subsequences typically represent the power consumption during a week
with special events or holidays

calculated, and this may be a user-provided parameter; typically w is much smaller
than the length n of the entire time series.

Detection of an abnormal subsequence can be recast as the problem of comparing
each subsequence of a given length w to other subsequences (also of length w) in
the time series of length n, which is similar to the problem considered earlier in
this chapter, e.g., using MUDIM algorithm. More precisely: given a time series X,
the set of extracted subsequences, Xw D fXp;wI 1 � p � .n � w C 1/g, consists of
X1;w D fx.1/; x.2/; : : : ; x.w/gI X2;w D fx.2/; x.3/; : : : ; x.w C 1/gI : : : I Xn�wC1;w D
fx.n�wC1/; x.n�wC2/; : : : ; x.n/g. We must determine if any Xi;w is substantially
different from the others, e.g., by evaluating whether its average distance to its k
nearest neighbors is much larger than is the average distance for other subsequences.

We expect that the subsequence Xi;w is substantially similar to the subsequence
XiC1;w, since consecutive series share most elements, and are likely to be nearest
neighbors with only a small distance between them. To address this self-match
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problem, a subsequence is compared with another subsequence provided there is
no overlap between the two subsequences. Now an algorithm such as MUDIM can
be applied to the set of series in Xw, finding the k nearest neighbor subsequences
that do not overlap with each subsequence Xp;w 2 Xw.

The following steps can improve computational efficiency:

1. To find the nearest neighbor of a subsequence in Xw, we may use Euclidean
distance.

2. Instead of multiple nearest neighbors, we may use only the nearest neighbor, i.e.,
k D 1.

3. Frequencies of SAX words of a subsequence Xp;w may be compared with their
frequencies over the entire time series X (instead of other subsequences).

9.5.3 Finding Nearest Neighbor by Early Abandoning

To search the nearest neighbor for a subsequence in a long time series, a “Reordering
early abandoning” approach can reduce computational effort [97].

• In this approach, a promising candidate is first chosen as the nearest neighbor
for a subsequence Xi;w, and the least among all distances calculated so far is
called its best-so-far distance. Suppose the nearest neighbor for X1;w is Xp;w,
then what is the possible nearest neighbor for X2;w? Since most objects in X1;w

and X2;w are identical, then XpC1;w would have a very high possibility to be the
nearest neighbor for X2;w. Thus, instead of searching nearest neighbor from the
beginning, we can start at XpC1;w, and its distance to X2;w is the initial best-so-far,
as we begin examining other possibilities.

• At each subsequent step during distance calculations with another subsequence
to evaluate whether it could be a nearest neighbor of Xi;w, computation can be
terminated if the current accumulated distance exceeds best-so-far distance, and
we can abandon this candidate since it cannot be the nearest neighbor for Xi;w.
Performing such calculations beginning with large distance values (instead of
just going from left to right) will result in quick termination, as in the case of
other variants of the Branch-and-bound approach.

Figure 9.7 depicts an example of this approach, when the current value of best-
so-far exceeds the sum of the distances for the five successive (nearest) time points,
but not the sum of the three largest distance values among the set of time points
to be considered, when comparing time series T1 with time series T2. Without the
reordering step, six distance additions are required (left part of the figure), but three
are sufficient (right part of the figure) when the largest distances are considered first.
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Fig. 9.7 Left (No reordering): 6 calculations performed before abandoning; Right (With reorder-
ing): Abandoning after 3 largest distance computations

Fig. 9.8 Sub-sequence frequency—Red bold line represents a subsequence considered abnormal
since it appears only once in this series, whereas other subsequence patterns occur much more
frequently

9.5.4 Finding Abnormal Subsequence Based on Ratio of
Frequencies (SAXFR)

Another approach, called SAX words based frequency ratio (SAXFR), is based on
assuming that the occurrence frequencies of abnormal subsequences are far lower
than the frequencies of normal subsequences. An example is shown in Fig. 9.8.
To implement SAXFR we calculate the ratios between frequencies of SAX words
generated from an abnormal subsequence with frequencies of these words in the
entire series. The ratio computed for an abnormal subsequence is expected to be
much higher than the ratio computed for a normal series. The anomalousness
measure is then defined to be ˛SAXFR.X/ D average of the reciprocals of the
frequencies of SAX words contained in X.

For example, if three SAX words abc; aac; abd are generated from an abnormal
subsequence, and these words appear 2; 3; 2 times respectively within the entire
series, then the corresponding reciprocals are 1=2; 1=3; 1=2. The average value can
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be calculated for such reciprocal frequencies, in this case, it is ˛SAXFR.X/ D .0:50C
0:33 C 0:50/=3 D 0:44. For comparison, consider another subsequence, each of
whose SAX words appear 10 times; then the corresponding average value would
instead be 0.1, a much lower value, indicating that this latter subsequence is not
anomalous.

In capturing the outlierness of subsequences, the window size plays a critical role.
If the window size of each word in SAX is too short, then the shorter subsequence
represented by each SAX word may not be anomalous and we have too many false
negatives. If the window size is too long, then the number of SAX words obtained in
each subsequence (of length w) is less, and their frequencies may be low even if the
sequence is not anomalous, thereby impacting the results of the SAXFR approach
in a different way.

In SAXFR since the ratio is compared between a subsequence and the entire
series, there is no need for nearest neighbor computation, and there is also no
need for additional parameters. Another advantage is that frequencies can be
precomputed over the entire sequence, and subsequence SAX frequencies can be
updated incrementally, so the computation is very fast.

9.5.4.1 Effect of SAXFR Subsequence Length Parameter

Figure 9.9 summarizes the results of some experiments to identify the relationship
between subsequence length and performance of SAXFR. Other parameters had the
following values in these simulations: the sliding window size is w=2, the number
of symbols is 4, and the length of the SAX word is 5. Three data sets (SYN0,
ECG1 and ECG2) were used with subsequence lengths in {10, 20, . . . , 120}. The

Fig. 9.9 Performance of SAXFR versus length of the subsequence. In general, the ratio of
anomaly scores for abnormal subsequence to normal subsequence decreases with the size of the
subsequence
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minimum sizes of abnormal subsequences in these three data sets were 40, 40 and
100 respectively. In all the runs of the algorithms performed, the average anomaly
scores of abnormal subsequences were found to be significantly higher than that of
normal subsequences.

In general, the size of a subsequence does not have to be necessarily equal to the
exact size of the abnormal subsequence in order to achieve the best performance.
In SYN0, ˛SAXFR of each abnormal is three times larger than that of a normal
subsequence, when the subsequence length is between 10 and 50. When the
subsequence length increases, the ˛SAXFR value decreases. In ECG1, the ratio
between the ˛SAXFR values of abnormal vs. normal subsequences exceeds 3 when the
subsequence length is 20 or 30. In ECG2, the ratio is over 3 when the subsequence
length is between 30 and 80.

Experimental results suggest that too small or too large subsequence lengths
are not the best choices for SAXFR. If the size is too small, then the SAX word
extracted from an abnormal subsequence may be similar to a SAX word extracted
from normal subsequences. On the other hand, if the size is too large, then the ratio
remains small, causing a similar problem. The best window size appears to be data-
dependent: one possible heuristic is to use any known periodicity in the data set to
determine the window length.

The other factor that impacts the performance is the degree of similarity between
normal subsequences. If normal subsequences are highly similar to each other, as in
the SYN0 data, then the ratio of average anomaly score of abnormal subsequence
over that of normal subsequence is larger.

9.5.5 MUASD Algorithm

The above discussion leads to a simple definition of the steps for the MUASD
algorithm:

1. Given a time series X, length of subsequence w, obtain Xw, the set of all possible
subsequences of X using sliding window technique.

2. Calculate dists, the SAX word distance between si and its nearest neighbor.
3. Calculate the frequencies (FreqAll) of all SAX words based on the entire series.
4. For each subsequence Xp;w 2 Xw, calculate the frequency Freqi for Xp;w, and the

associated distance measure distr.
5. Calculate the same-trend distance distt.i/ between si and its nearest neighbor.
6. Normalize dists; distr; distt to compute the z-scores (subtracting the mean and

dividing by the standard deviation).
7. Combine all distances and compute an anomaly score O.i/ for each ith subse-

quence.

In this algorithm, different weights are not assigned to different features (in
contrast to MUDIM). The reason for this is that the rank based weight allocation
method works better if the number of outliers is far less than the number of normal
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objects. But in the abnormal subsequence detection problem, the number of objects
contained in an abnormal subsequences is sometimes large, thus the number of
subsequences containing common data objects with abnormal subsequence is also
large. For instance, in the ECG1 data set, the total number of data objects with
abnormal subsequences is close to 10% of the entire series. A large number of
anomalies will bias the results of rank based methods.

Algorithm MUASD Algorithm to calculate anomaly scores for each subsequence
Require: Time series X of length n, subsequence length parameter w � n;
Ensure: anomaly scores for subsequences;
1: for Each i 2 f1; : : : ; n � w C 1, do
2: Let Xi be the result (with mean 0) of normalizing the subsequence ŒX Œi�; : : : ;X ŒiCw�1�;
3: Aggregate the three distances (dists; distt; distr) from Xi with each Xj, for j < i;
4: end for
5: for Each i 2 f1; : : : ; n � w C 1, do
6: For Xi, find the k nearest subsequences using the aggregated distances;
7: Compute the anomaly score of Xi, combining the distances to its k nearest neighbors;
8: end for

9.6 Experimental Results

This section compares the performance of algorithms discussed in the previous
sections for all three problems. These algorithms include distance-based algorithms
using various measures as well as algorithms based on the combination of measures
discussed in Sect. 9.4.

9.6.1 Detection of Anomalous Series in a Dataset

The results described below use the RankPower comparison metric [103], described
in Sect. 2.1.1. According to this criterion, better algorithms exhibit higher
RankPower values; i.e., the RankPower of an algorithm is 1 (the largest possible
value) if all the k known outlier series in D are ranked between 1 and k by the
algorithm.

Datasets We have used 47 datasets, consisting of three synthetic datasets and 44
modified real datasets from multiple application domains, to compare the perfor-
mance of each algorithm, including MUDIM. In these experiments, parameters of
SAXBAG, viz., the size of subsequence, the length of SAX word and the number
of symbols, were 20, 5, and 5, respectively. All time series in the data sets are first
normalized to have zero mean and standard deviation equal to one [71].
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Synthetic datasets have been designed to introduce typical time series problems
such as time lagging and amplitude differences (see Fig. B.1). The real datasets
come from different application domains, such as finance, electronics, image
recognition and video surveillance. We augment these real datasets by introducing
one or more anomalous series. Some background information about the data sets is
given in Sect. B.1.2.

Some data sets, originally designed for classification problems, were modified
for anomaly detection experiments by selecting all time series from one class and
choosing a few time series from another class that are very different from most
of the series of the first class. For example, ‘Commodity Prices’ dataset contains
five commodity prices from [46] and one consumer retailer stock [118]; an ‘outlier’
commodity price time series.

Details about the normal series and anomalous series in each dataset are given in
Tables B.2 and B.3.

Results RankPowers of all algorithms on all data sets are summarized in Table 9.2,
with the best results shown in boldface. From this table, we conclude that MUDIM
has the best overall performance and its RankPower values are 1 in all cases; i.e.,
it finds the anomalous series in all data sets; confirming that a combination of
measures performs better in most cases. Simpler methods such as DIFFSTD, DTW,
SAXSL, and FOURIER also work well in some, but not all cases. Domain specific
analysis is summarized below:

• MUDIM and STREND are good at detecting outliers in financial data sets such
as stock prices and commodity prices, perhaps because financial time series can
be easily aligned, and variation in amplitudes is a common problem in financial
time series (for example, one stock may increase by 1% and another stock
may increase by 5% in the same day). Measures such as SAXSL, SAXBAG,
DIFFSTD and FOURIER rarely discover real outliers in such data.

• Traditional methods, such as DTW, WAVELET and FOURIER, show good
performance with many datasets.

9.6.2 Online Anomaly Detection

Datasets The algorithms are evaluated using three synthetic data sets and eight
modified real data sets introduced earlier in Sect. 9.6.1, viz., SYN1, SYN2, SYN3,
STOCKS, OPMZ, MOTOR, POWER, TEK140, TEK160, TEK170 and SHAPE1.
Key characteristics of the data sets are shown in Tables B.2 and B.3.

In all experiments, the initialization is performed at l D 100th observations and
the rest of the observations of the series are used to test the effectiveness of the
proposed algorithm. The number of nearest neighbors is set at k D 5 for all data
sets.
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Fig. 9.10 NMUDIM anomaly scores for each data set. Plots of the online anomaly scores for each
series at time 100+x in four data sets (from top to bottom, left to right) : SYN2, STOCKS, MOTOR,
and SHAPE1. Red curves indicate anomalous series

Results The time series in the data sets are plotted in Fig. B.4 and the performance
of the NMUDIM algorithm is shown in Fig. 9.10. As more data arrives and if more
unusual patterns occur, the anomaly score increases and the gap between anomalous
and normal series becomes larger. Normal series’ anomaly scores converge if they
are similar to each other.

The above algorithms are compared with three other online detection algorithms
based on (a) Euclidean distance, (b) Dynamic Time Warping (DTW), and (c)
Autoregressive (AR) approach, proposed by [11, 72] and [45] respectively. The first
two of these methods calculate a measure of anomalousness of a time series by (i)
finding the k nearest neighbors of the series, and (ii) using the average distance of
these k neighbors. The third method constructs a global AR model for all series and
then measures the anomaly score at time t as the gap between the observed value
and the predicted value.

We compare the numbers of true anomalous series detected by these algorithms
after all observations have arrived, as shown in Table 9.3. It can be seen that
NMUDIM and UMUD perform very well for all 11 data sets; i.e., anomalous series
are always in top p places. Other methods do well for some but not all sets. This
illustrates that the use of multiple criteria is important in order to capture multiple
types of anomalies.
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Table 9.3 Performance of all algorithms; numbers show the true outliers that are identified by
algorithms

Data sets p =# of true outliers Euclid AR DTW NMUDIM UMUD

SYN1 2 2 1 2 2 2

SYN2 2 2 2 2 2 2

SYN3 1 0 1 0 1 1

STOCKS 1 0 0 0 1 1

OPMZ 1 0 1 0 1 1

MOTOR 1 1 0 1 1 1

POWER 7 7 1 7 7 7

TEK140 1 1 0 1 1 1

TEK160 1 1 0 1 1 1

TEK170 1 1 0 1 1 1

SHAPE1 1 1 0 1 1 1

9.6.3 Anomalous Subsequence Detection

We compare the performance of several algorithms as described below:

• (Euclidean distance method) Keogh et al. [72] use the Euclidean distance to
the nearest neighbor as anomaly score to find the most unusual subsequence.
We apply their method for every subsequence so that each subsequence can be
assigned an anomaly score.

• (SAX Frequency Ratio) We also applied SAXFR separately to check its perfor-
mance. The size of feature window is set to w=2. Alphabet size is set to 4 as
suggest by Rakthanmanon et al. [97] and word size is set to 5. The algorithm
parameters are chosen for the best performance.

• Model prediction based methods have been used, e.g., Auto Regression by
Fujimaki et al. [45], ARMA by Pincombe [94], ARIMA by Moayedi et al.
[87]. Models are generated based on the entire series, and then the model is
applied to predict the next observation using the model. The mean squared error
is considered to be the anomaly score. Parameter values are chosen from 10 to
20, yielding the minimum mean squared error.

To evaluate each algorithm, we compare the anomaly scores of abnormal
subsequences (which are known to us) with those of normal subsequences. If the
anomaly scores of the abnormal subsequences are higher than those of the normal
subsequences, then the algorithm is considered to be effective; otherwise not.

Data Sets Results are shown for one synthetic data set and 7 real data sets.
The synthetic data set contains several copies of ‘normal’ data and two identical
abnormal subsequences. Practical data sets are obtained from multiple application
domains: two data sets are from medical domain, three are from electronic domain
and two are from video surveillance domain. The details of data sets are given in
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Table B.4. The length of w for each data set is chosen mostly by following the
original author’s suggestion.

Results Experimental results are shown in Fig. 9.11; results for other datasets are
in Appendix B.1.5.

Fig. 9.11 Experimental results for VIDEOS1. Red circle highlights abnormal subsequences. (Top
Left) Plot of VIDEOS1 time series; (Other) Results of 6 algorithms used in these comparisons.
Y-axis represents anomaly scores at time t. X-axis shows time t

Our observations are:

• Euclidean distance based method works well if abnormal subsequences are not
similar to each other, see example in Fig. B.5. This approach also results in false
positives for some data sets such as TEK140 and TEK170.

• SAXFR method works well if normal subsequences appear more frequently.
In TEK data sets, SAXFR doesn’t work well since normal subsequences only
appear four more times than abnormal subsequences and contain considerable
noise.

• Model based methods appear to be satisfactory for data set ECG1 in Fig. B.6,
but only one of three abnormal subsequences is detected. For other data sets, the
model based methods did not succeed in finding anomalies.

• MUASD usually works better for high frequency data sets. In low frequency data
sets such as TEK, it may result in false positives.
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Table 9.4 Running time of NMUDIM and average computation workload comparison between
NMUDIM and UMUD

Running NMUDIM NMUDIM UMUD

Time Length # of Series (Seconds) Workload Workload Ratio

Synthetic1 1500 20 3.90 190 63 33.2%

Synthetic2 1500 40 8.20 780 405 51.9%

Synthetic3 1500 80 18.28 3160 1138 36.0%

Synthetic4 1500 200 53.60 19900 6535 32.8%

Synthetic5 1500 400 152.69 79800 28387 35.6%

Synthetic6 1500 1000 706.64 499500 113304 22.7%

“Workload” represents the average number of comparisons performed in each iteration.

9.6.4 Computational Effort

The time complexity of the UMUD algorithm is O.n � m2/ because it updates
stored data structures when new data arrive and then inter-time series distances are
obtained for each pair of series. In addition, the k nearest neighbors need to be
computed in order to calculate the anomaly scores.

Table 9.4 shows the computational times (in seconds) needed for six synthetic
data sets, on a machine with Core i7, 6G memory, Windows 7 system, using Matlab
R2010b. In those experiments, the parameters for UMUD were as follows: k is 1,
˛ is 0.05 if number of series is less than 200, otherwise 0.1. ˇ is 0.1. UMUD was
about 60% faster than NMUDIM. We find that the anomalous series begins to differ
from the rest of the group within as few as 100 additional observations.

The comparisons of computational effort (time) between the NMUDIM and
UMUD are shown in Table 9.4. The MUDIM approach is efficient and detects
anomalous series as soon as it begins to drift away from the other (non-anomalous)
series, a substantial advantage over other anomaly detection algorithms for time
series. This approach can handle data uncertainty very well, and its online version
does not require any training data sets. Compared with other methods, it requires
less domain knowledge.

9.7 Conclusion

Many applications require the analysis of data that arrives over time, identifying
anomalies that occur within a sequence, as well as between sequences, possibly
requiring rapid identification of the anomalies as soon as new data arrive. As in
non-time-dependent anomaly detection, critical questions concern the choice of a
distance measure and the possible transformation of the data into an appropriate
space that facilitates anomaly identification. Additional complexity enters the
analysis task due to the problem-dependent nature of appropriate values for critical
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parameters such as the appropriate time window sizes or the characteristics of the
anomalies of interest.

In this chapter, we have described and evaluated the performance of popularly
used measures and algorithms for anomaly detection with time series data. In
particular, approaches that involve discretization of the time series data appear
to be useful in many applications, along with distance measures specialized for
various transformations. Comparisons across multiple time series must account for
the possibility of time lags and lack of synchronicity between different time series.
Comparisons between subsequences of the same time series must recognize that
each subsequence needs to be evaluated within the context of surrounding values.

Algorithms that focus on a single distance measure (or transformation) often miss
anomalies that are adequately captured by other measures or transformations. Com-
binations of multiple measures hence perform best, as substantiated by empirical
results that showed that a combination of three measures performed the best, i.e.,
was able to identify anomalous times series in all domains considered in various
simulations. The selection of three measures is based on some preliminary analyses,
with measures that do not overlap in their detection capabilities. For example,
the MUASD algorithm combines three important processes: early abandoning
searching for the nearest neighbor subsequence, frequencies ratio comparisons for
each subsequence, and calculation for the same trend. This approach performs best
on between-sequence as well as within-sequence anomaly detection, although the
time complexity is higher than that of algorithms that focus on a single distance
measure.



Appendix A
Datasets for Evaluation

The datasets used in evaluating the performances of anomaly detection algorithms
are summarized below.

A.1 Synthetic Datasets

Two synthetic datasets, shown in Figs. A.1 and A.2, are used to evaluate the outlier
detection algorithms. For illustrative convenience, we use only 2-dimensional data
points so that outliers can be seen easily. In each dataset, there are multiple clusters
with different densities. In each dataset, we have placed six additional objects, (A,
B, C, D, E, and F) in the vicinities of the clusters.

• Synthetic Dataset 1: Synthetic dataset 1 contains four clusters of different
densities consisting of 36, 8, 8, and 16 instances.

• Synthetic Dataset 2: Synthetic dataset 2 consists of 515 data objects including
six planted outliers; this data set has one large normally-distributed cluster and
two small uniform clusters.

A.2 Real Datasets

We have used three well known datasets, namely the Iris, Ionosphere, and Wisconsin
breast cancer datasets. We use two ways to evaluate the effectiveness and accuracy
of outlier detection algorithms;

© Springer International Publishing AG 2017
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Fig. A.1 A synthetic dataset with clusters obtained by placing all points uniformly with varying
degrees of densities

Fig. A.2 A synthetic data set
with one cluster obtained
using the Gaussian
distribution and other clusters
by placing points uniformly

1. Detect rare classes within the datasets. This methodology has also been used by
many researchers such as Feng et al., Cao [17], and Tang et al. [42, 107]. Rare
classes are generated by removing a majority of objects from the original class;
remaining points of this class are considered anomalous points.

2. Plant outliers into the real datasets (according to problem specific knowledge)
and expect outlier detection algorithms to identify them.
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Iris Dataset This well-known data set contains the categorization of iris flowers
to three classes: Iris Setosa, Iris Versicolour, Iris Virginica, with 50 instances each.
The Iris Setosa class is linearly separable from the other two classes, but the other
two classes are not linearly separable from each other.

• Objects belonging to the Iris Setosa class are made ‘rare’ (anomalous) by
randomly removing 45 instances; the remaining 105 instances are used in the
final dataset.

• Three outliers are planted; the first outlier has maximum attribute values, second
outlier has minimum attribute values, and the third has two attributes with
maximum values and the other two with minimum values.

Johns Hopkins University Ionosphere Dataset The Johns Hopkins University
Ionosphere dataset contains 351 data objects with 34 attributes; all attributes are
normalized in the range of 0 and 1. There are two classes labeled as good and bad
with 225 and 126 data objects respectively. There are no duplicate data objects in
the dataset.

• To form the rare class, 116 data objects from the bad class are randomly removed.
The final dataset has only 235 data objects with 225 good and 10 bad data objects.

• Both classes, labeled as good and bad, with 225 and 126 instances respectively,
are kept in the resulting dataset. Three outliers are inserted into the dataset; the
first two outliers have maximum or minimum value in every attribute, and the
third has 9 attributes with unexpected values and 25 attributes with maximum
or minimum values. The unexpected value here is a value that is valid (between
minimum and maximum) but is never observed in the real datasets.1

Wisconsin Diagnostic Breast Cancer Dataset2 Wisconsin diagnostic breast can-
cer dataset contains 699 instances with 9 attributes. There are many duplicate
instances and instances with missing attribute values. After removing all duplicate
instances and instances with missing attribute values, 213 instances labeled as
benign and 236 instances as malignant were left.

• All 213 instances of the benign class are retained, but 226 malignant instances
are randomly removed, leaving 10 ‘anomalous’ points; the final dataset consisted
213 benign instances and 10 malignant instances.

• After removal of duplicate instances and instances with missing attribute values
from the original dataset, only 449 instances were kept consisting of 213
instances labeled as benign and 236 as malignant. Next, two outliers were planted
into dataset; both outliers have maximum or minimum values for all attributes.

1For example, one attribute may have a range from 0 to 100, but the value of 12 never appears in
real dataset.
2http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/.

http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/
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Basketball Dataset (NBA)3 This dataset contains Basketball player statistics from
1951–2009 with 17 features. It contains records of all players’ statistics in regular
seasons, and another set of records that contain information about all star players
for each year. Regular season statistics for all star players (for 2009) are considered
as the outliers, and all the other players statistics (also for 2009) are considered as
normal points in the dataset.

Smartphone-Based Recognition of Human Activities and Postural Transitions
Data Set (ACT)4 This dataset consists of data from 30 volunteers from age 19–48;
there are three static postures (standing, sitting, lying) and three dynamic activities
(walking, walking downstairs and walking upstairs), as well as postural transitions
that occurred between the static postures (stand-to-sit, sit-to-stand, sit-to-lie, lie-
to-sit, stand-to-lie, and lie-to-stand). Volunteers wore smartphones and data was
captured from the 3-axial linear acceleration values and 3-axial angular velocity
values from the sensors, with 561 features and 12 classes. The class with the least
number of instances (sit-to-stand) is considered to consist of outliers, and the class
with most number of instances (standing) is considered to consist of inliers.

A.3 KDD and PED

In addition two more datasets described below are also used.

• Packed Executables dataset5 Executable packing is the most common tech-
nique used by computer virus writer to obfuscate malicious code and evade
detection by anti-virus software. This dataset was originally collected from the
Malfease Project dataset and is used to classify the non-packed executables from
packed executables so that only packed executables could be sent to an universal
unpacker. In our experiments, we select 1000 packed executables as normal
points, insert 8 non-packed executables as anomalies. All the 8 features are used
in experiments (http://roberto.perdisci.com/projects/cpexe).

• KDD 99 dataset6 KDD 99 dataset is constructed from DARPA intrusion dataset
evaluation program. KDD 99 has been widely used in both intrusion detection
and anomaly detection research area. There are 4 main attack categories and
normal connections in KDD 99 dataset. In our experiments, we select 1000
normal connections from testing dataset and insert 14 attack connection as
anomalies. All the 41 features are used in experiments (http://kdd.ics.uci.edu/
databases/kddcup99/kddcup99.html).

3http://databasebasketball.com/.
4http://archive.ics.uci.edu/ml/datasets/Smartphone-Based+Recognition+of+Human\+Activities+
and+Postural+Transitions.
5http://roberto.perdisci.com/projects/cpexe.
6http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

http://roberto.perdisci.com/projects/cpexe
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://databasebasketball.com/
http://archive.ics.uci.edu/ml/datasets/Smartphone-Based+Recognition+of+Human+Activities+and+Postural+Transitions
http://archive.ics.uci.edu/ml/datasets/Smartphone-Based+Recognition+of+Human+Activities+and+Postural+Transitions
http://roberto.perdisci.com/projects/cpexe
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html


Appendix B
Datasets for Time Series Experiments

B.1 Datasets

We have used 47 data sets, consisting of three synthetic datasets and 44 modified real
datasets from variety of application domains. A brief description of these datasets
is provided in the following sections and summary in Tables B.2 and B.3.The
real datasets come from different application domains, such as synthetic, finance,
electronic, image recognition and video surveillance. We augment these real
datasets by introducing one or more anomalous series.

B.1.1 Synthetic Datasets

Synthetic datasets are designed to introduce typical time series problems such as
time lagging and amplitude differences (see Fig. B.1).

B.1.2 Brief Description of Datasets

Some background information about the datasets is given below (Figs. B.2
and B.3):

• Synthetic Dataset 1(SYN1). Synthetic dataset 1 contains 14 univariate time
series including two anomalous time series. The length of each time series is
500. The two anomalous time series have shapes considerably different from the
others.

© Springer International Publishing AG 2017
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Table B.1 Time series X used in SXBAG evauation

0.00 0:31 1:27 0:34 �0:29 �1:08 �0:44 �0:98 �0:57 �0:04

�1:00 �1:96 �1:39 �2:03 �2:84 �3:05 �2:51 �1:90 �1:21 �0:53

�1:04 �1:18 �0:96 �1:06 �1:92 �1:57 �1:46 �0:96 �1:57 �2:34

�1:78 �1:35 �1:85 �1:04 �1:44 �1:20 �0:26 �0:93 �1:02 �1:68

�0:91 �1:83 �2:32 �1:38 �1:46 �1:25 �1:32 �0:73 �1:38 �0:70

�1:00 �1:29 �0:99 �0:52 �0:84 �1:24 �0:36 0:51 1:35 1:41

0:85 �0:12 0:85 �0:04 0:46 0:42 �0:04 �0:09 0:45 0:99

0:91 1:10 1:48 1:67 1:14 0:61 0:13 �0:30 �0:05 �0:20

0:74 0:20 0:69 �0:14 �0:06 �0:90 �0:36 �0:30 �0:19 �0:12

0:17 �0:38 0:34 0:17 0:16 1:14 0:49 �0:13 0:48 0:16

0:20 �0:37 �0:58 �0:99 �1:92 �0:98 �0:51 �0:75 �0:48 �0:49

�0:44 �1:37 �2:01 �2:03 �1:42 �2:04 �2:56 �3:11 �3:86 �3:57

• Synthetic Dataset 2(SYN2). Synthetic dataset 2 contains 30 time series includ-
ing two anomalous time series, each of length 128. The normal time series consist
of two dissimilar groups, but the two anomalous series do not belong to either
group.

• Synthetic Dataset 3(SYN3). Synthetic dataset 3 contains 7 time series including
one anomalous time series with the length of 500. The dataset contains time
series with many types of scaling such as increasing scaling and varying scaling.
The anomalous time series is a single (flat) line perturbed by random noise.

B.1.2.1 Real Datasets

The real datasets come from different application domains, such as finance,
electronic, image recognition and video surveillance. Since some data sets were
originally designed for classification problems, we have modified them for anomaly
detection experiments by selecting all time series from one class and choosing few
time series from another class that are very different from the most of the series of
the first class, thus making them anomalous.

• Stocks (STOCKS). This dataset consists of closing prices of 17 oil & gas
operation industry stocks and one consumer retailer stock (WMT:Wal-Mart)
from January-4th-2010 to February-10th-2012 [118]. All stock prices are aligned
by dates and contain 527 values. The symbols for the 17 stocks in oil and gas
industry are APA, APC, BP, CNQ, COP, CVE, CVX, DVN, EOG, HES, IMO,
MRO, OXY, STO ,TOT, WNR, XOM. All stock prices are normalized with a
mean of zero and standard deviation of one.

• Commodity Prices (OPMZ). This data set contains five commodity prices from
[46] and one consumer retailer stock(WMT:Wal-Mart) from October-13th-2009
to April-13th-2012 [118]. Each series contains 629 values. The five commodities
are wheat, corn, cocoa, coffee and cotton. All prices are normalized with a mean
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Fig. B.1 Typical time series problems—Two series are xa.t/ and xb.t/. Time lagging: xa.t/ D
xb.t C x/; Amplitude differences: xa.t/ <> xb.t/

Fig. B.2 Plots of first six time series dataset of Table B.2. Red dotted line represents anomalous
series

of zero and standard deviation of one. Since Wal-Mart is not a commodity,
the outlier detection method is expected to find Wal-Mart as an outlier in this
experiment.

• Synthetic Lightning EMP (EMP3). This data set, from [64], contains 11 time
series; 8 of them are from one class and three anomalous series are from another
class. Each series contains 201 observations.
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Fig. B.3 Plots of time series 7 to 12 of the dataset of Table B.2. Red dotted line represents
anomalous series

• Motor Current data set (MOTOR). Original data set is from [69], and contains
420 time series. 21 were chosen including 1 anomalous time series, and each
one consists of 1500 real values. Normal time series are the current signals
measured from normal operations of a induction motor. The anomalous time
series is obtained from a faulty motor.

• Power Usage Data (POWER). This data set was obtained from UCR [69],
and contains 51 time series corresponding to the weekly power consumption
measured every 15 min at a research facility from week 2 to week 52 in 1977.
Each time series contains 672 values, and the anomalous time series represent
the power consumption during the weeks with a holiday or special event.

• NASA Valve Data (TEK140, TEK160 and TEK170). This data set was also
obtained from UCR [69]. The data values are solenoid current measurements on
a Marotta MPV-41 series valve which is on and off under various test conditions
in a laboratory. The normal time series correspond to the data measured during
the normal operations of the valves; the time series data measured during a faulty
operation of the valve is considered an anomaly. Three data sets T14, T16, and
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T17 all contain 5 time series of which 4 are normal and one is anomalous. The
anomalous time series were measured during different faulty operations of the
valves.

• Shape (SHAPE1 and SHAPE2) These data sets were also obtained from UCR
[69]. Both consist of 21 time series corresponding to the shapes. The normal time
series have the shapes of bones while the anomalous time series has the shape of
a cup.

• Automatic Diatom Identification using Contour Analysis (ADIAC1 and
ADIAC2). These data sets ,also obtained from UCR [69], describe the contours
of different type of diatoms.

• Words (WORDS1 and WORDS2). These data were also obtained from UCR
[69] and describe the contours of word images.

B.1.3 Datasets for Online Anomalous Time Series Detection

To assess the effectiveness of the proposed algorithm we use eleven data sets,
consisting of three synthetic data sets and eight modified real data sets introduced
in the previous section, viz., SYN1, SYN2, SYN3, STOCKS, OPMZ, MOTOR,
POWER, TEK140, TEK160, TEK170 and SHAPE1.

The data series in data sets are plotted in Fig. B.4.

Fig. B.4 Four datasets used in the experiments (from top to bottom, left to right) are: SYN2,
STOCKS, MOTOR, and SHAPE1. Anomalous series are marked as red
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Table B.4 Time series data
sets details

Dataset Source Length w Domain

SYN0 Generated 966 40 Synthetic

ECG1 [115, 116] 1000 40 Medical

ECG2 [115, 116] 2160 40 Medical

TEK140 [25] 5000 100 Electronic

TEK160 [25] 5000 100 Electronic

TEK170 [25] 5000 100 Electronic

VIDEOS1 [25] 11251 200 Video surveillance

VIDEOS2 [25] 11251 200 Video surveillance

B.1.4 Data Sets for Abnormal Subsequence Detection in a
Single Series

We use one synthetic data set and 7 real data sets. The synthetic data set contains
several copies of ‘normal’ data and two abnormal subsequences, both exactly the
same. Real data sets are obtained from multiple application domains: two data sets
are from medical domain, three are from electronic domain and two are from video
surveillance domain. The details of data sets are given in Table B.4. The length of
w for each data set is chosen either by following the original author’s suggestion or
by our observations.

B.1.5 Results for Abnormal Subsequence Detection in a Single
Series for Various Datasets

Anomaly detection of a subsequence, obtained for datasets described in the previous
section is shown in the following figures (Figs. B.5, B.6, B.7, B.8, B.9, B.10, B.11).
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Fig. B.5 Experimental results for SYN0. Red circles highlight abnormal subsequences. (Top Left)
Plot of SYN0 time series; (Other) Results of 6 algorithms used in these comparisons. Y-axis
represents anomaly scores at time t. X-axis shows time t

Fig. B.6 Experimental results for ECG1. Red circles highlight abnormal subsequences. (Top Left)
Plot of ECG1 time series; (Other) Results of 6 algorithms used in these comparisons. Y-axis
represents anomaly scores at time t. X-axis shows time t
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Fig. B.7 Experimental results for ECG2. Red circles highlight abnormal subsequences. (Top Left)
Plot of ECG2 time series; (Other) Results of 6 algorithms used in these comparisons. Y-axis
represents anomaly scores at time t. X-axis shows time t

Fig. B.8 Experimental results for ECG2. Red circles highlight abnormal subsequences. (Top Left)
Plot of ECG2 time series; (Other) Results of 6 algorithms used in these comparisons. Y-axis
represents anomaly scores at time t. X-axis shows time t



206 B Datasets for Time Series Experiments

Fig. B.9 Experimental results for TK160. Red circles highlight abnormal subsequences. (Top Left)
Plot of TK160 time series; (Other) Results of 6 algorithms used in these comparisons. Y-axis
represents anomaly scores at time t. X-axis shows time t

Fig. B.10 Experimental results for TK170. Red circles highlight abnormal subsequences. (Top
Left) Plot of TK170 time series; (Other) Results of 6 algorithms used in these comparisons. Y-axis
represents anomaly scores at time t. X-axis shows time t
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Fig. B.11 Experimental results for VIDEOS2. Red circle highlights abnormal subsequences. (Top
Left) Plot of VIDEOS2 time series; (Other) Results of 6 algorithms used in these comparisons.
Y-axis represents anomaly scores at time t. X-axis shows time t
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