

Professional Portal Development with
Open Source Tools: Java™ Portlet API,

Lucene, James, Slide
W. Clay Richardson
Donald Avondolio

Joe Vitale
Peter Len

Kevin T. Smith

Wiley Technology Publishing

01 469513 FM.qxd 1/16/04 11:04 AM Page iii

01 469513 FM.qxd 1/16/04 11:04 AM Page ii

Professional Portal Development
with Open Source Tools: Java™ Portlet API,

Lucene, James, Slide

01 469513 FM.qxd 1/16/04 11:04 AM Page i

01 469513 FM.qxd 1/16/04 11:04 AM Page ii

Professional Portal Development with
Open Source Tools: Java™ Portlet API,

Lucene, James, Slide
W. Clay Richardson
Donald Avondolio

Joe Vitale
Peter Len

Kevin T. Smith

Wiley Technology Publishing

01 469513 FM.qxd 1/16/04 11:04 AM Page iii

Professional Portal Development with Open Source Tools:
Java™ Portlet API, Lucene, James, Slide
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2004 by W. Clay Richardson, Donald Avondolio, Joseph Vitale, Peter Len, and
Kevin T. Smith, All rights reserved.

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No partof this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal
Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447,
E-mail: permcoordinator@wiley.com.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND AUTHOR MAKE NO REPRESENTATIONS OR
WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND SPECIF-
ICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICU-
LAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE
ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD
WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PRO-
FESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR AUTHOR SHALL BE LIABLE FOR DAMAGES
ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEB SITE IS REFERRED TO IN THIS WORK AS A CITATION
AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER
ENDORSES THE INFORMATION THE ORGANIZATION OR WEB SITE MAY PROVIDE OR RECOMMENDATIONS IT MAY
MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEB SITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care Department within the
United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

Library of Congress Cataloging-in-Publication Data:

Professional portal development with open source tools: Java™ Portlet
API, Lucene, James, Slide (Wrox Press) / by W. Clay Richardson . . . [et al.] . .

p. cm.
Includes bibliographical references and index.

ISBN 0-471-46951-3 (PAPER/WEB SITE)
1. Web site development. 2. Open source software. I. Richardson, W. Clay, 1976-
TK5105.888P68 2004
006.7’6--dc22

2003023864

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

1MA/QZ/QS/QU/IN

Trademark Acknowledgments

Wiley, the Wiley Publishing logo, Wrox, and the Wrox logo are trademarks or registered trademarks of John Wiley & Sons,
Inc. and/or its affiliates. Java is a trademark of Sun Microsystems, Inc. All other trademarks are the property of their respec-
tive owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

01 469513 FM.qxd 1/16/04 11:04 AM Page iv

About the Authors

W. Clay Richardson
W. Clay Richardson is a software consultant specializing in distributed solutions, particularly portal
solutions. He has fielded multiple open-source Web and portal solutions, serving in roles ranging from
senior architect to development lead. He is a co-author of More Java Pitfalls, also published by Wiley &
Sons. As an adjunct professor of computer science for Virginia Tech, he teaches graduate-level course-
work in object-oriented development with Java. He holds degrees from Virginia Tech and the Virginia
Military Institute.

Donald Avondolio
Donald Avondolio is a software consultant with over seventeen years of experience developing and
deploying enterprise applications. He began his career in the aerospace industry developing programs
for flight simulators, and later became an independent contractor, crafting healthcare middleware and
low-level device drivers for an assortment of mechanical devices. Most recently, he has built e-commerce
applications for numerous high-profile companies, including The Home Depot, Federal Computer
Week, the U.S. Postal Service, and General Electric. He is currently a technical architect and developer on
several portal deployments. Don also serves as an adjunct professor at Virginia Tech, where he teaches
progressive object-oriented design and development methodologies, with an emphasis on patterns.

Joe Vitale
Joe Vitale has been working with the latest cutting-edge Java technology intensely. His most recent
focus has been on Java portals and object-relational mapping tools. One of these projects was writing a
content management system that contained role-based authentication of users and the capability for
users to upload, delete, and manage files, and secure resources. The whole system was designed to
plug right into a portal’s interface and enable the portal to directly communicate with it to obtain its
resources. Object-relational mapping technologies have also been a focus, using Apache’s Object
Relational Bridge (OJB).

Peter Len
Peter Len has over seven years’ experience performing Web-based and Java application development in
a client-server environment. He has designed, coded, and implemented data and Web site components
for each aspect of a three-tier architecture. Mr. Len has been developing with Java for over five years and
has recently been involved with portal and Web-service development. He holds a master’s degree in
both international affairs and computer information systems.

01 469513 FM.qxd 1/16/04 11:04 AM Page v

Kevin T. Smith
Kevin T. Smith is a technical director and principal software architect at McDonald Bradley, Inc., where
he develops security solutions for Web service–based systems. He has focused his career on building
enterprise solutions based on open-source tools. He holds undergraduate and graduate degrees in com-
puter science, software systems engineering, and information security. He has taught undergraduate
courses in computer science, given technical presentations on Web services and Java programming at
numerous technology conferences, and authored several technical books, including Essential XUL
Programming (Wiley 2001), More Java Pitfalls (Wiley 2003), and The Semantic Web: A Guide to the Future of
XML, Web Services, and Knowledge Management (Wiley 2003).

Dedication

This book is dedicated to all those who make the daily sacrifices, and especially to those who have made
the ultimate sacrifice, to ensure our freedom and security.

01 469513 FM.qxd 1/16/04 11:04 AM Page vi

Credits
Authors
W. Clay Richardson
Donald Avondolio
Joe Vitale
Peter Len
Kevin T. Smith

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Robert Ipsen

Vice President and Publisher
Joseph B. Wikert

Executive Editorial Director
Mary Bednarek

Editorial Manager
Kathryn A. Malm

Executive Editor
Robert Elliott

Senior Production Editor
Fred Bernardi

Development Editor
Eileen Bien Calabro

Production Editor
William A. Barton

Copy Editor
Luann Rouff

Media Development Specialist
Angela Denny

Permissions Editor
Carmen Krikorian

Project Coordinator
April Farling

Graphic and Layout Technicians
Carrie Foster
Jennifer Heleine
Kristin McMullan
Lynsey Osborn

Quality Control Technicians
John Greenough
Andy Hollandbeck
Brian H. Walls

Text Design & Composition
Wiley Composition Services

Proofreading
Henry Lazarek

Indexing
Tom Dinse

01 469513 FM.qxd 1/16/04 11:04 AM Page vii

01 469513 FM.qxd 1/16/04 11:04 AM Page viii

Acknowledgments

I would first like to acknowledge Major Todd DeLong, USA, who had the courage and insight to sup-
port an open-source portal solution in the face of overwhelming conventional wisdom, and provided
inspiration to this book. Those who know him understand that this is a relatively small measure of his
courage. Of course, I could not have had any chance of actually getting this book done without the sup-
port of my wonderful wife, Alicia, and daughter, Jennifer. I love both of you more than words can
describe. Stephanie, we love you and will never forget you. To my fellow authors, Donnie, Joe, Peter,
and Kevin, I appreciate the style, class, and integrity you showed during some very difficult times. I
am in a much better place now, and sincerely hope that each of you finds a similar situation for yourself.
You are all wonderful talents and it was a great pleasure collaborating with you. I would like to thank
Bob Elliott and Eileen Bien Calabro for all their hard work and perseverance working with us on this
project. To my leadership, Mark Cramer, Joe Duffy, Jim Moorhead, and Tom Eger, it’s wonderful to work
for guys who don’t talk about “core values,” but rather just lead by example. I would like to thank my
parents, Bill and Kay, my in-laws, Stephen and Elaine Mellman, my sister, Kari, my brother, Morgan, and
my stepfather, Dave, for always being there. I would like to acknowledge my grandmothers, Vivian and
Sophie, for being what grandmothers should be.

To my technical “posse”: Mark “Mojo” Mitchell, Marshall “PAB” Sayen, Mauro “Tre” Marcellino, Scot
Schrager, Tom Bachmann, Jon Simasek, Rob Brown, Kim Bell, Kevin McPhilamy, Jon Grasmeder — I look
forward to facing more technical challenges with you. To the people I constantly badger for “stuff”: Lisa
Peters, Chris Reid, Bryan Foster, Steve Tagg, Rick Yard — this has to count for something! Ed, you know
how it has to be. I would like to acknowledge those individuals with whom I didn’t get to work enough:
Arnie Voketaitis, Seth Goldrich, Cliff Toma, Joe Sayen, Kevin Moran, Adam Dean, Ken Pratt, Alex
Blakemore, Dave Holberton, Vic Fraenckel, Mike Shea, Jullie Bishop, and many more to whom I will
owe a beer for forgetting to mention them. I would like to thank my colleagues at Virginia Tech for their
assistance in my career development: Shawn Bohner, Athman Bouguettaya, John Viega, Stephen
Edwards, and Tom Sheehan. To Mike Daconta, I appreciate that you gave me my break in writing and
that you supported this book, and I can tell now that this lead author thing is harder than it looks! To my
duty crew at the Gainesville District VFD: Bob Nowlen, Gary Sprifke, Patrick Vaughn, Marshall Sayen,
Gerry Clemente, Javy Lopez, Thomas Mullins, and Brian LaFlamme — we have been through a lot
together! Eric Jablow, failing to list you among my mentors in More Java Pitfalls was a horrible oversight;
I hope I can rectify that here. Matt Tyrrell, despite being a “large cat,” you are still like a brother to me.
–WCR

I’d also like to thank all of the people I’ve worked with in the past: Wendong Wang, Arun Singh, Shawn
Sherman, Henry Zhang, Bin Li, Feng Peng, Henry Chang., Sanath Shetty, Prabahkar Ramakrishnan,
Swati Gupta, Mark Mitchell, Yuanlin Shi, Chiming Huang, Andy Zhang, Chi Luoung, and John Zhang,
all of whom I loved working and goofing around with. Additionally, I’d like to thank the members of
my current portal development program: Guillermo Suchicital, Susan Hansen, Linda Burchard, Honchal
Do, Jae Kim, Johnny Krebs, Steve Brockman, Kevin Mills, Bob Russell, and Arnie Voketaitis. Thanks also
to the professors at the Virginia Tech Computer Science/Information Technology Departments: Shawn
Bohner, Tarun Sen, Stephen Edwards, John Viega, and all the other dedicated, top-notch staff and
instructors.

01 469513 FM.qxd 1/16/04 11:04 AM Page ix

x

Acknowledgments

Last, I wish to thank all of the co-authors, who are fun guys to work with and be around: Kevin, Joe,
Peter, and Clay. To all of my family: Mom, Dad, Michael, John, Patricia, Jim, Sue, Reenie, Stephen, Emily,
Jack, and Gillian, you guys are great. Thanks also to my friends back in New York: the Wieczorek,
Devaney, Howard, Pujols, O’Donohoe, and Keane families; and to those in the open source community
who have so generously contributed their hard work and time by crafting all of the fantastic tools
described in this book, and have created a software culture of trust and collaboration that have allowed
so many others to be productive in their programming endeavors. To my wife, Van, who I love more
than anything for her easygoing manner and ability to use power tools and golf drivers better than most
men. –DJA

To my wife, Jennifer, and my son, Andrew, thank you for all your love and support throughout this pro-
cess; without you, I would never have found the energy to complete this. I’d also like to thank the fol-
lowing: the rest of my family, but especially my grandfather and grandmother, Carlo and Annette Vitale;
my father, Joseph Vitale; my step-mother, Linda Vitale; and my father and mother-in-law, James and
Marlaine Moore, for being helpful and offering encouraging advice. Many thanks also to John Carver,
Jeff Scanlon, Brandon Vient, and Aron Lee for their great supporting roles as friends. Of course, I would
like to thank all of my co-workers at McDonald Bradley Inc., including Kyle Rice, Danny Proko, Michael
Daconta, Ken Bartee, Dave Shuping, Joe Cook, Ken Pratt, Adam Dean, Joon Lee, Maurita Soltis, Keith
Bohnenberger, Bill Vitucci, Joe Broussard, Joseph Rajkumar, Theodore Wiatrak, Rebecca Smith, Barry
Edmond, and many others who have had a significant, positive influence on me throughout the years.
Finally, a special thanks goes to my co-authors for all of their hard work and encouragement. Thank you,
all! –JV

This book marks my first participation in the development of a technical book. It has been a great chal-
lenge and one that has enlightened me in a number of ways. I would first like to thank my co-authors
Clay, Donnie, Joe, and Kevin. They are extremely talented developers and thinkers and I truly appreciate
their trust in asking me to help author this book. They are always striving to make a difference in their
project work and I have benefited greatly from their help and guidance. I would also like to thank the
many great people at my company, McDonald Bradley, who have supported my efforts in writing this
book and who were willing to help wherever possible. I would especially like to thank Kevin Moran for
his editorial efforts as well as the many years of technical mentorship he has so graciously afforded me.
Lastly, I would like to thank my lovely fiancée, Ruby, for her editing, patience, support, and guidance
during this effort. May she never stop. – PAL

I would like to first thank my co-authors on this project — Clay, Don, Peter, and Joe. I think this book
contains some great lessons learned from some of our previous projects. I would also like to express my
thanks to Bob Elliott and Eileen Bien Calabro from John Wiley & Sons. Special thanks to Natalie
“Bonnie” Schermerhorn for giving me examples for the Llama Web service example. In addition, I can’t
forget my Southwest Virginia Readability editor, Helen G. Smith, or my Central Virginia Readability edi-
tor, Lois G. Schermerhorn. I would also like to recognize the great architecture team on the Virtual
Knowledge Base project (as of August 2003): Keith Bohnenberger, Darren Govoni, Eric Monk, Joseph
Rajkumar, Joel Sciandra, Maurita Soltis, and Arnie Voketaitis. Mike Daconta, thank you for your support
and writing suggestions over the years. To my wife, Gwen, thank you for putting up with me writing on
weekends for yet another book project! Last, but not least, I would like to thank God and the following
verses, which have affected my life in a powerful way: Philippians 4:4–9 and Romans 8:18–39. Read
them — you won’t be disappointed. –KTS

01 469513 FM.qxd 1/16/04 11:04 AM Page x

Contents

Acknowledgments ix
Introduction xix

Part I: Open Source Portals 1

Chapter 1: The Java Portlet API (JSR 168) 3

Portlet Fundamentals 3
Portlets and Servlets 5
Portal Interactions 6

The Portlet Interface and the GenericPortlet 8
Portlet Life Cycle 8
Portlet Runtime States 8
Portlet Request Handling 9

“There Can Be Only One” 9
ActionRequest 10
RenderRequest 11

GenericPortlet 11
Other Elements of the Java Portlet API 14

PortletConfig 14
PortletURL 14
Portlet Modes 15
Window States 16
Portlet Context 16
Portal Context 16
Portlet Preferences 16
Sessions 18
Calling JSPs and Servlets 19
Portlet Application Structure 21
Security 22
CSS Style Definitions 22
User Information Attributes 24

Portlet Tag Library 28
Portlet Deployment 28

Portlet Application Deployment Descriptor 28
Portlet Declarations 29

Building a Portlet 32
Summary 39

01 469513 FM.qxd 1/16/04 11:04 AM Page xi

xii

Contents

Chapter 2: Searching with Lucene 41

Understanding Search Engine Concepts 41
The Anatomy of a Search Engine 43
The Anatomy of Lucene 48

Analyzer 51
Document 53
Directory 54

Understanding the Lucene Query Syntax 54
Terms 54
Fields 54
Term Modifiers 54
Boolean Operators, Grouping, and Escaping 55

Optimizing Lucene’s Performance 57
Summary 57

Chapter 3: Messaging with Apache James 59

Introducing James 59
Working with Mailets and Matchers 60

Bundled Matchers 61
Bundled Mailets 62

Understanding SpoolManager 63
Understanding Repositories 63

File Repositories 64
Database Repositories 64
DBFile Repositories 64

Working with RemoteManager 64
Implementing James 64

Downloading James 64
Installing James 65
Configuring James 65

DNS Server Configuration 66
POP3 Server Configuration 66
SMTP Server Configuration 66
NNTP Server Configuration 67
FetchPOP Configuration 67
RemoteManager Configuration 68
Repository Configuration 68
SpoolManager Configuration 68
Global Server Configuration 68
Creating User Accounts 69

01 469513 FM.qxd 1/16/04 11:04 AM Page xii

xiii

Contents

Introducing JavaMail API 70
The Session Class 71
Message Class 71
Address Class 72
Authenticator Class 72
Transport Class 73
Store and Folder 73

JavaMail in Practice 74
Sending Messages 74
Receiving Messages 79

Summary 86

Chapter 4: Object to Relational Mapping with Apache OJB 87

Exploring Object-to-Relational
Mapping Concepts 87
Understanding OJB Technology Features 88
Using OJB API Layers 89

Developing with the PersistenceBroker API 90
The Message Class 93
JDBC Connection Mapping 99
Home.jsp 100
Add.jsp 104
View.jsp 106

Developing with the ODMG API 107
Opening a Database 107
Retrieving Objects 107
Storing Objects 108
Updating Objects 109
Deleting Objects 109

Developing with the JDO API 110
OJB Extras 110

Verifying an OJB Installation 111
Supported Database Platforms 111
Supported JDBC Data Types 112
Deploying OJB Applications 113

Jar Files 113
Metadata Files 114
JDBC Drivers 114
CLASSPATH Settings 114

OJB Performance 114
Summary 114

01 469513 FM.qxd 1/16/04 11:04 AM Page xiii

xiv

Contents

Chapter 5: Content Management with Jakarta’s Slide 117

Slide Architecture 117
External Architecture 118
Internal Architecture 120
Transaction Management 122

Transactions 123
Transaction Attributes 123

Namespaces 124
Helpers 124
Stores 132

Domain 132
Slide API Layer 135

Setting Up and Configuring Slide 135
Installing and Running Slide 135
Tomcat Manager 136

The Slide Server 138
Client View 139
Admin View 139
Editor View 139

WebDAV and Slide 139
Windows XP WebDAV Example 140

Summary 143

Chapter 6: Portal Security 145

Core Security Concepts 145
Authentication 145
Authorization 146
Single Sign-On (SSO) 147
Confidentiality 149
Data Integrity 150
Non-repudiation 150

Key Security Standards 150
SSL and TLS 150
XML Encryption 151
XML Signature 151
SAML 151
OASIS Web Services Security (WSS) 153

01 469513 FM.qxd 1/16/04 11:04 AM Page xiv

xv

Contents

Building Security Solutions for Your Portal 153
Web Container Security — Apache Tomcat 154

Server Configuration 155
Application Configuration 165
Programmatic Security Access with JSPs and Servlets 167

Security of the Portlet Container 168
Programmatic Security 169
Portlet Descriptor-Configured Security 170

Beyond the Portal — Secure Back-End Communication 171
Summary 172

Part II: How to Build a Portal 173

Chapter 7: Planning for Portal Deployment 175

System Requirements 177
Interface Requirements 177
Operational Requirements 177
Data Requirements 178
Security Requirements 178
Quality Assurance Requirements 179

Software Configuration Management 179
Jakarta’s ANT 180
Unit and Load Testing 180
Bug Tracking 181
Continuous Integration 181

Requirements Summary 181
Software Design Methodologies 182

The Unified Process (UP) 182
Domain Model 184
Software Architecture Document (SAD) 186
Shall Statements and User Stories 189
Class-Responsibility-Collaborator Cards (CRCs) 190
Storyboarding 190

Design Models for Visualization That Are Not in UML 193
Design Decisions 195

Model 1 Architecture 196
Model 2 Architecture 197
Model 2X Architecture 197

Search Utilities 200

01 469513 FM.qxd 1/16/04 11:04 AM Page xv

xvi

Contents

Content Management 200
Design Pattern Considerations in Your Portal 201

Using Java Standards 202
Model-View-Controller (MVC) Pattern 205
Template Method Pattern 205
Memento Pattern 205
Facade Pattern 205
Adapter Pattern 205
Factory Method Pattern 206
Singleton Pattern 206
Front Controller Pattern 206
Intercepting Filter Pattern 206

Client-Side Processing 206
JavaScript 207
Server-Side Processing 207

Java Plug-ins 208
Web Services for Remote Portals (WSRP) 209
Portal Navigation 210

Portal Navigation Using Taxonomies 212
Portlet Integration Plan 218
Summary 220

Chapter 8: Effective Client-Side Development Using JavaScript 221

Declaring JavaScript 222
Validating Data 223
Adding Functionality 227

Field Auto-Population 228
Field Auto-Validation 229

Space Management 231
Multiple-Value Picklists 231
Repeating Values 234

Dynamic Actions 240
Layering and DHTML 244

Forms and Layers 244
Movable Layers 250

Summary 253

Chaper 9: Developing Applications and Workflow for Your Portal 255

The Portlet Architecture 255
The Portlet Container 256
Portlet Preferences 258

01 469513 FM.qxd 1/16/04 11:04 AM Page xvi

xvii

Contents

JSP Tag Library 258
Packaging a Portlet 258

The eXo Portal Platform 259
The eXo Portal 259
Hot Deployment 259
Customization Tool 259
Setup and Installation of eXo 260
Understanding the eXo Directory Structure 260

The Directory Portlet 262
Developing the Directory Portlet 265

The MySQL Database 266
The DirectoryPortlet Class 267
The DirectoryValidator Class 271
The DirectoryView JSP File 272
The DirectoryEdit JSP File 274
The web.xml File 275
The portlet.xml File 275

Deploying the Directory Portlet in eXo 276
Portlet Creation the Model-View-Controller (MVC) Way 277
The MVC Loan Calculator Portlet 279
Web Applications versus Portlet Applications 283
Summary 283

Chapter 10: Portlet Integration with Web Services 285

Basic Concepts 285
Integrating with Traditional Web Services 287

A Simple Example 292
First Approach: SOAP and WSDL Messaging 292
Second Approach: Working with Generated Objects 298

Web Services for Remote Portlets (WSRP) 302
Types of WSRP Services 304

Discovery, Registration, and Deregistration Services 304
Simple WSRP Services — Stateless “View Only” Modes 304
More Complex Services — Interactive WSRP Services 304
Portlet Management Services 305

WSRP Markup Guidelines for Portlet Developers 305
Disallowed XHTML and HTML Tags 305
Cascading Style Sheets (CSS) Style Definitions 305
User Information 310

Summary 310

01 469513 FM.qxd 1/16/04 11:04 AM Page xvii

xviii

Contents

Chapter 11: Performance Testing, Administering,
and Monitoring Your Portal 311

Continuous Integration 312
CVS 312
Subversion 315
JUnit 316
AntHill 324

Load Testing 326
JMeter 327

Portal Requirements/Bug Management and Traceability with Scarab 330
Scarab 330

Scarab Tasks 331
Portal Administration with JMX 335
Portal Collaboration with JSPWiki 344
Summary 346

Chapter 12: Unifying the Enterprise Application
Space Through Web Start 347

Rich Clients 348
Java Web Start 349
Getting Started 351

Downloading and Installing Java Web Start 351
Configuring the Web Server 351
Creating the JNLP File 352

<jnlp> Attributes 353
<information> Subelement 353
<security> Subelement 353
<resources> Subelement 353
<application-desc> Subelement 354

Application Packaging 354
Client Invocation 354
Code Signing 356

Introductory Application 358
Using JWS in Portal Implementations 363

Use in a Web-based Portal 364
Use in a Java Portal 367

Java Swing 367
Java-based Portal Examples 368

Summary 372

References 373
Index 375

01 469513 FM.qxd 1/16/04 11:04 AM Page xviii

Introduction

Portal development projects have become the centerpiece of IT acquisition and development strat-
egy for many organizations. Enterprise integration and Web application developers predictably
groan when they hear the word “portal” — nightmares of proprietary APIs, oversold features, and
shoddy tool integrations. The authors of this book have been involved in over a dozen production
portal efforts over the last several years. In that time, we have dealt with numerous products and
frameworks, including some in-house frameworks based on servlets and JSPs. Through all of this,
we began to wonder whether these commercial suites were really providing any value. We started
to realize that we could put together a framework from open-source products.

We would like to point out that our portal framework is not meant to be an all-or-nothing solution.
We present a number of tools that you may use to satisfy your enterprise portal needs, and we
demonstrate how to use them, but because portal efforts are largely integration efforts, it would be
folly to presume that anyone will drop all of their current systems and pick up our framework.

This book explains a set of tools at the foundation of an open-source portal framework, and
demonstrates how to build your own portal using open-source tools. However, before describing
the structure of the book, it makes sense to cover some fundamental concepts addressed therein.

What Is a Portal?
“A portal is your enterprise.”

“A portal is a single synergistic access to all your enterprise information, and only the appropriate
information.”

02 469513 Intro.qxd 1/16/04 11:04 AM Page xix

“A portal is a unique IT strategy that allows me to answer the classic “build versus buy” question —
yes!”

“A portal is one of those holes in the side of a ship, like they had on the Love Boat!”

All of these are commonly used as definitions of a portal. Obviously, the first two come from people who
wish to sell you on your need for a portal. The third is clearly from a CIO who has funded a portal
acquisition, and the last is a popular joke (though wrong because, as all Love Boat fanatics know, a port-
hole is what is in the side of a ship).

The Java community decided to come up with a least common denominator agreement on what a portal
is by standardizing on a Portlet API. This standard is known as JSR 168: “Portlet Specification.” This
book views JSR 168 as the bottom line on portals, but understands the youth of this standard and that
the disparities among current portal implementations requires considering portals in a more pragmatic
sense.

JSR 168 defines a portal as follows:

A portal is a Web-based application that commonly provides personalization, single sign-on, and con-
tent aggregation from different sources, and it hosts the presentation layer of information systems.
Aggregation is the action of integrating content from different sources within a Web page. A portal may
have sophisticated personalization features to provide customized content to users. Portal pages may
have different sets of portlets creating content for different users. [JSR168]

Portals are becoming the new foundation of the Web application platform. The proliferation of Web
applications has required software to tie these disparate Web applications together into aggregated
applications.

Portals are Web-enabled applications that integrate and deliver information. Figure 1 illustrates an
overview of an enterprise portal.

Features of a Portal
The following table provides a list of features commonly found in portal products. It should be noted
that the fractious portal market has provided a wide spread of features in each product. In fact, JSR 168,
like all standards developed by industry committees, only establishes the minimal required set of portal
features.

xx

Introduction

02 469513 Intro.qxd 1/16/04 11:04 AM Page xx

Figure 1

Portal Consumers

Browsers Mobile
Devices

Other
Systems

Information Sources

Syndication
Feeds Documents Databases

Enterprise Portal

Applications Web
Services

Content
Management

Security

Workflow

Messaging and
Collaboration

Content
Presentation

Enterprise
Search

Database
Integration

xxi

Introduction

02 469513 Intro.qxd 1/16/04 11:04 AM Page xxi

xxii

Introduction

Feature Description

Aggregation of content The capability to tie different content fragments into one consistent
and interoperating view.

Customized views Customization commonly refers to having different views based on
the role of the person in the organization. For example, HR personnel
would have one view, while Finance personnel would have a differ-
ent one — each customized for their specific job needs.

Personalized content Personalization takes customization one step further and provides
the capability for individual users to customize their view to suit
their individual needs. For example, Joe may work in HR, but be
specifically responsible for hiring Java developers, so he would want
to personalize his view for that task, and perhaps link to content in
the Java domain, such as Apache.

Unified security model Users have an account for their time card application, their HR sys-
tem, and so on. This provides not only single sign-on, but also an
enterprise-wide security policy based on role.

Collaboration features While some portals may provide sophisticated tools for chat, applica-
tion sharing, common whiteboards, conferencing, and so on, collabo-
ration is mainly about developing communities of interest, whereby
people can share common expertise and insight on a particular set of
data. For example, a finance user may want to comment on a particu-
lar division’s report, providing advice or asking questions regarding
particular investment decisions.

Localization Localization involves customizing content to the locale in which it is
being presented. This could involve character sets, language, cur-
rency exchange, date format, and so on.

Internationalization Internationalization support enables an application or portal to be
developed in such a way that it can be easily localized. Depending on
the design of the portal, this can be very hard or very easy.

Workflow Workflow supports the user’s ability to seamlessly move through a
set of tasks across multiple data sources and applications. For exam-
ple, a user may need to pull data from three sources (catalog, inven-
tory, and partner inventory), and update two others (shipping and
invoicing) as part of completing a supply chain transaction.

Web services access Web services have become the latest development in the trend
toward interoperability. They provide a strong capability to both
access partner systems (business to business) and be consumed by
consumer applications (business to consumer). A portal should be
able to both consume Web services and provide them.

Self-service A recent trend in portals, particularly those for external consumption,
has been toward users being able to provide self-service. The idea is
that it should be easy for a user to provide and access sufficient infor-
mation to conduct transactions with minimal or no support from
other people.

02 469513 Intro.qxd 1/16/04 11:04 AM Page xxii

Feature Description

Client agnostic processing A portal should be able to service not only many different browsers
(all but the most junior Web developers understand how difficult this
can be), but also different devices (such as mobile devices) and plat-
forms (such as other applications).

As mentioned before, this table does not encompass all of the features to be found in any portal suite
available on the market. Nor is this a minimal set of features expected in any portal. Instead, this list is
meant to cut through the buzzwords and provide an understanding of the kind of features that a portal
can provide to your enterprise.

Components of a Portal Framework
In addition to having a set of conceptual features, a portal framework also contains a set of commonly
found components. Again, this list is neither comprehensive nor limiting, but it provides a solid
overview of the kind of components that are available in many portals. The following table describes
these common enterprise components:

Enterprise Component Description

Content management Content management suites vary greatly in what they do in terms of
access control, content markup, presentation, revisioning, and so on.
However, most portals maintain some capability to publish and main-
tain their content.

Syndication access A newswire provides a good analogy for a syndication feed. Essen-
tially, Web sites produce and update lists of new content. Portals ren-
der that content and regularly check for updates from the syndication
feed. There are several feed standards, including OCS, RSS 0.9, RSS
1.0, RSS 2.0, and so on. These are usually cached locally on the server
for all clients with an interest in that given feed.

Mail Mail support varies greatly in portals. Almost all provide some support,
even if it’s only as simple as mailing back user name and password
information. More sophisticated implementations enable a Web-based
mail client or even e-mail subscriptions to particular content.

Search Engine While portals go a long way in providing a road map to the information
users need to find, users will still need the capability to search through
the content sources for things that are too fine-grained for the road map.
Portals often exhibit wide disparities in their search engine capabilities,
with some having a search tool built into the portal, while others simply
support plugging in another tool. This can lead to confusion on the part
of developers about which search engine capabilities are actually part of
the software they acquired, and which need to be acquired.

Table continued on following page

xxiii

Introduction

02 469513 Intro.qxd 1/16/04 11:04 AM Page xxiii

Enterprise Component Description

Database Access Most portals provide a “database browser” portal, which wraps SQL
calls into a browsing interface. Others also come with sophisticated
object-to-relational mapping suites that can be used to tie databases
seamlessly into the portal framework.

Collaboration tools Threaded, searchable discussion forums are the most common collabo-
ration tools that come with a portal. However, many also include live
chat rooms, whiteboard tools, and so on.

This table gives you an appreciation for some of the components commonly found in portal suites.
However, we should probably provide you with a formal description of a portlet.

What Is a Portlet?
“Portlets are little windows into your enterprise.”

“Portlets are those boxes you see on a Web page.”

“Isn’t that what they call those portable restrooms you see at construction sites?”

In fact, portlets are reusable user interface Web components that provide a view of an information sys-
tem. These components provide a markup fragment, as they are called by JSR 168, which enables them
to be aggregated into larger portal pages. This definition, as well as the definition of portal containers
and their relationships to servlets and JSP, is covered in detail in Chapter 1.

A Brief History of Enterprise Portals
In the beginning, there were research papers, and those research papers were good. They were expense
to print and share, however, so they were shared electronically over the network now called the Internet.
The number of users on this network was relatively small, and the places where papers could be found
were rather well known, as the users were generally sophisticated.

Tools such as Mosaic and Netscape Navigator were developed to make it even easier for less sophisti-
cated users to browse information online. As the ease of use and publication increased, so did the
amount of data. Soon, the Internet was open to commercial ventures, and data of all types (regrettably,
in some cases) was soon being shared across this information superhighway.

The User Perspective
It quickly became important to find a way for users to easily find what they were looking for in this
storm of information available on the Internet. This imperative resulted in the first generation of search
engines. Search engines did make it easier to quickly find resources and services on the Internet, but it
was still hard to ensure that you got the correct and best data available on a given topic. Effective Web
research was still at the mercy of the sophistication of the users.

xxiv

Introduction

02 469513 Intro.qxd 1/16/04 11:04 AM Page xxiv

What if someone who knew the Internet pretty well could put together a road map? Someone did, and
called it Yahoo!. It provides a category list through which users can drill down to the information and
Web sites that they need. If you want something such as Atlanta Braves statistics, for example, you can
find them under a treelike mapping whose topics range from broad to narrow: Directory > Recreation >
Sports > Baseball > Major League Baseball (MLB) > Teams > Atlanta Braves. Ultimately, it would provide
you with the relevant pages — in this case, links to a number of sports Web sites that maintain an Atlanta
Braves page. In addition, you would find a link to sites that enable you to buy tickets at Turner Field. You
could have guessed that such sites existed, and you probably could find them eventually, but the search
engine enables you to quickly access all of the relevant information (in theory) on the Atlanta Braves.
(This shows the ability of a human to have a better understanding of what you are actually seeking than a
machine, which gathers its information from a few words and a number of sophisticated algorithms.)

Now, you can bookmark this page and return to it at any time (using the same computer) to find your
information on the Atlanta Braves. But what if you want to check the score from last night’s game, and
get any news from the Braves’ clubhouse? Even if you could get that information, you would still want
it delivered without asking for it, and many sports sites do have individualized pages for every team in
major sports. This is known as customization — providing customized content for particular users based
on their interest (Braves fan). Moreover, you can get customized information about all of your interests,
saving you a tremendous amount of time.

This desire for speed and customization is what fed the development of My Yahoo! It is a portal that
enables you to personalize your view with a certain look and feel, with content defined by you — your
sports teams, your stocks, your news, and your links. This was clearly a breakthrough in that you could
actually cater the Web to your interests, at least as a starting point.

The Business Perspective
It quickly became apparent to businesses that there was real value in getting information to customers, part-
ners, and employees easily and efficiently. The easier the communication became, the quicker the money
changed hands. In addition, informational portals began to appear for advertising and subscription pur-
poses. An example of this was ESPN, which provided great sports information. By becoming the preferred
place to receive sports information on the Internet, it was able to sell premium content and advertising.

Aside from a being a new media channel, organizations began to recognize an internal value to Web-
enabling their applications, databases, and so on. They realized that as their employees became more
proficient with the Web browser, training costs for using many of their applications could be decreased,
as the company apps would behave similarly to the commercial apps (for example, ordering a book
from Amazon). Furthermore, they realized the lower maintenance costs of having one application on the
desktop (the Web browser which was standard with the operating system — no statement about the
Microsoft lawsuit is implied here) and centrally managing the rest of the application on the server side.
This enabled patches, upgrades, and so on to be installed on one machine and affect all of the users. In
addition, the test environment of that one machine was much easier to control (because it was easier to
match the configuration for only one machine than for one machine per person in your organization).
This reduces the number of configuration incompatibilities, and conflicts dramatically wane.

Figure 2 illustrates how organizational applications interacted prior to Web-enabling them.

xxv

Introduction

02 469513 Intro.qxd 1/16/04 11:04 AM Page xxv

Figure 2

The interdependencies between applications and the subsequent impact of these interdependencies on
the organization were quite real, complex, and problematic. However, Figure 3 illustrates what things
looked like after Web-enabling the applications.

Figure 3

As you can see, Web-enabling the applications cleared up the spaghetti dependency diagram, and the
similarities to the portal diagram in Figure 1 are unavoidable.

However, while this appears to be a single, consolidated unit, that is only the illusion of the hardware
and network connections. Typically, the integration followed a popular technique at the time — integra-
tion by user. Essentially, the user had a front page with links to each of the applications, which the user
had to access to find or process a particular piece of information. If users were lucky, they could log in to

Client Client Client Client

Enterprise
Application

Enterprise
Application

Enterprise
Application

Enterprise
Application

Enterprise
Application

Web
Application

Server

Client Client Client Client

Enterprise
Application

Enterprise
Application

Enterprise
Application

Enterprise
Application

Enterprise
Application

xxvi

Introduction

02 469513 Intro.qxd 1/16/04 11:04 AM Page xxvi

each of them with the same user name and password, but there was still no concept of a single sign-on,
or a consistent security model. Furthermore, users were treated as if they were all the same. The data
they required and the applications they could access were uniform across the enterprise.

This deficiency led to the development of the enterprise portal, which sought to bring the same concepts
to an individual enterprise. Connecting all the apps into one consistent network — available to all of the
users based on their role — obviated the need for repetitive data-hunting, and for cutting and pasting
information into other applications until that process yielded the appropriate results.

The Technology Perspective
As soon as you identify a need, you will find a software company willing to oversell their product as the
solution to that need, including a bunch of needs that you didn’t know you had. When the first enter-
prise portal products came out, they had entirely proprietary APIs, and an interesting mix of feature
sets. For example, some had personalization features, others strong content management, while others
excelled at enabling workflow. Many had good enterprise application integration features. Eventually,
though, they all ended up providing a core feature set.

Along the way, J2EE began its meteoric rise through the server-side world. It provided strong enterprise
application development and integration features. It also had a substantial impact on Web development
activities with the servlet and JSP specifications.

Quickly, though, the portal capabilities became technical discriminators, and provided nonstandard
extensions to J2EE. These extensions ranged from very close approximations of the standard compo-
nents, with limited wrappers, to full-blown rewrites of presentation logic code. Some of these extensions
even claimed to be predecessors to standard APIs — despite having been released after the standard was
widely adopted.

The problem was that the portal implementations were starting to fracture the J2EE application base,
which would defeat the driver behind its success — the portability of enterprise applications. IBM recog-
nized the problem and proposed JSR 162, but Sun disagreed with their approach and proposed JSR 167.
Ultimately, Sun and IBM agreed to combine their two proposals into JSR 168. JSR 168 evolved slowly as
a result of the need to resolve these differences, as well as to compensate for the emerging OASIS stan-
dard on Web Services for Remote Portals (WSRP).

Web Services for Remote Portals (WSRP) is an OASIS standard that views the portal and Web service
interaction from a completely different angle. It conceptualizes what are known as forward-facing
Web services, which are Web services that are data-centric and provide a specification for how to ren-
der that data. These Web services would like a contract to which they can adhere and know how they
will be presented to users. This is discussed further in Chapter 10.

Challenges in Building Portals
Unfortunately, many portal development efforts have been highly fragmented, which has resulted in
applications that are difficult to navigate and frustrate users. In fact, the authors of this book first
worked together to save a project locked in a textbook example of this phenomenon. Many of these

xxvii

Introduction

02 469513 Intro.qxd 1/16/04 11:04 AM Page xxvii

problems occurred because of poor design and improper development strategies that involved the appli-
cation of proprietary solutions that were difficult to deploy and maintain.

Additionally, improperly designed portal projects have forced organizations to absorb development
costs that were disproportionate to the value added. Many of these efforts have resulted in the dilution
of a corporation’s image and have decreased customer loyalty.

The fact that so many portal failures have occurred should come as no surprise to those who have been
involved in portal development programs. Portal application developments are arduous. They require
the successful amalgamation of many different technologies and applications that must satisfy a dis-
parate end-user community.

Are Portals Here to Stay?
IDC estimates the market for enterprise portal platforms will reach more than 2.6 billion dollars by 2006.
Despite the overall depression in tech spending, Gartner estimates that portal software spending grew
59 percent to $709 million dollars in 2001. Delphi Group estimates that the Portal Market in 2003 will
reach $957 million worldwide, and reach $1.14 billion in 2004. Nearly all Web development efforts are
being geared toward integration Web portals. This means that a large portion of Java Web developers
will be using portal software. Much like JBoss and Tomcat provide open-source options for those who
develop Java Web applications, the current portal options have been limited, requiring individual expe-
rience in a wide variety of open-source projects.

The money flow clearly indicates that IT investments will continue in portal software. Therefore, devel-
opers need to be well versed in this area — not only to provide organizations with the capability to save
significant amounts of money by leveraging open-source products, but to keep their own career options
open.

What Is Wrong with Web Applications?
There is nothing wrong with conventional Web applications. As a matter of fact, portals are primarily
based on them. For a lot of cases, all that needs to be developed is a Web application; done properly, it
can easily merge into a portal environment later.

Where developers can run afoul is by ignoring the new portal standards available and writing their own
aggregation mechanisms. If, as a developer, you build your own nonstandard portal implementation,
you prevent the portability of your application.

However, note that the solution needed is often a simple Web application, which has no requirements
for a portal. Suppose, for example, you need a new billing application. You should not assume you need
a portal and that, within that portal, you will find the solution to making your application. Instead, you
can build the application as necessary, realizing that doing integration-friendly things is good software
practice, just as it is good practice to build what customers need, not what you want to give them.

We believe that the concept of the portal as a desktop replacement is still a bit far-fetched and unrealistic,
because a Web browser is only one of the tools most people use on a daily basis. While centrally managing

xxviii

Introduction

02 469513 Intro.qxd 1/16/04 11:04 AM Page xxviii

applications is good, and provides a number of benefits to the distributed office, you lose significant
functionality by putting your e-mail and instant messenger into a Web browser. While this is feasible,
ultimately it reduces your effectiveness, resulting in a portal that is actually hurting the enterprise.
Furthermore, no one has seriously proposed running office automation tools in a Web browser. Heaven
forbid they try to do it with a development environment! Therefore, in fact, it is unlikely that the major-
ity of your desktop is anywhere close to being integrated into your Web browser.

Ultimately, a portal can provide good value in presenting an organized view of the data, but it should
not feel as if it is an all-encompassing and monolithic desktop replacement. Developers should instead
consider user interfaces as appropriate, and leverage other client platforms to provide more sophisti-
cated views, with the portal serving Web services to them.

Why Open Source?
It seems like making the argument for open-source software gets easier every year. This is due in large
part to open-source products such as Linux, MySQL, JBoss, Tomcat, and the Apache Web Server (just to
name a few), which have been wildly successful. Furthermore, quality software organizations such as
the Apache Software Foundation (arguably the best software engineering firm in the world) boast a his-
tory of consistent, stable, and successful software deliveries.

The perception of open software being built entirely by hobbyists in their basements with their free time
is largely false (although those developers do great work too). Many open-source projects are commer-
cially developed code bases turned over to the open market as a business decision, which is smart
because they no longer have to pay to maintain the code. Other open-source developers are students
who donate research and products, and still others are top-notch consultants who donate their efforts in
part to keep their skills current. Many are people who got into software because they enjoy writing code,
and like the idea that they are writing code that others will actually use.

We can’t forget the best part about open-source software: it is free. Now, before the GNU people start
hunting us down, we should note that open source and free are not synonymous. Just because most open-
source products are free (in fact, we can’t think of one that isn’t), it doesn’t mean that they all are free. All
open source means is that you can receive the source in order to identify bugs. However, for the pur-
poses of this book, open source does mean free; that is, you don’t pay licensing fees for it.

Of course, these products are not totally free, because you generally need slightly more sophisticated
people to work with open-source tools. These tools lack a cottage industry that hands out certificates to
prove training on a piece of software. That said, many open-source projects are much easier to use than
their commercial competitors. If you are still skeptical, try installing JBoss some time.

The greatest thing about capable open-source software is that it solves the classic “build versus buy”
engineering dilemma. Software had become so complex that it was simply not practical to choose to
build anything. Now, with reliable open-source alternatives, developers can start with the open-source
products and build the features sets needed, and avoid trying to interpret the Rosetta Stone of software
license pricing.

More important, however, you can choose to invest in your people, not in licenses, which pay for a lot of
people who are not interested or even aware of your enterprise. Instead, you can apply your money
toward improving your enterprise software directly, with the entire investment going to directly

xxix

Introduction

02 469513 Intro.qxd 1/16/04 11:04 AM Page xxix

improve mission support, not buying a bloated product with a number of unneeded features, and then
needing to hire expensive consultants from that company to come in and make it actually do something
for your enterprise — because they are the only ones that know their product.

Consider another advantage. Open-source tools lower barriers to a developer’s entry into the market.
With open-source products, developers can become proficient with emerging tools and technologies,
cultivating an ability to build solutions with them, rather than be tied to a purchasing decision (before
they can actually learn hands on or gain new knowledge that can be applied to the next project).

Most important, building a portal is about integrating your enterprise, a process that one cannot take
lightly or accomplish easily. Business processes are complex and changing animals. If you could buy the
proverbial business adapter, you would have a pretty standard business. Businesses aren’t standard, of
course, because competitive forces and the ever-shifting variety of people associated with them won’t let
them be. You are not trying to manufacture a monolithic solution to integrating your enterprise —
because you won’t — this stuff evolves with your business. You are enabling information movement
through your organization. Therefore, it is better to invest in a person, rather than a product that will be
outdated in a year. Of course, you can always supplement the effort with outside consultants as neces-
sary. Again, though, you would not be tied to a particular company and their consultants (which are not
uniform in quality and availability anyway).

Open-Source Portal Servers
Note an important point about the framework that we are proposing. The principle objective of this
book is not to provide a monolithic set of tools tied together in one portal suite. Instead, we provide
information about a set of products that we find useful in building enterprise portal solutions. This pre-
vents you from saying, “But we already use Microsoft Exchange for our mail server and that will never
change, so I can’t use your framework!”

Along those lines, we would like to mention a few open-source portal servers currently available.

Apache Jakarta Pluto
Pluto (http://jakarta.apache.org/pluto) was developed by IBM as the reference implementation for the
Java Portlet API. Because it is the reference implementation for the Portlet API, which focuses primarily
on the portlet container, Pluto can best be described as a portlet container with a rudimentary portal
wrapped around it. Pluto is the portlet container for Jakarta’s Jetspeed Portal.

Because of the pace of release for Pluto, we chose to cover Pluto in a bonus chapter that will be available
on the book’s companion Web site.

Apache Jakarta Jetspeed
Jetspeed (http://jakarta.apache.org/jetspeed) was developed at the dawning of the enterprise informa-
tion portal era in 1999. It has been used extensively and enjoys a large user base. For a long time — in
fact, until recently — it was synonymous with open-source portals. It was the only open-source project
submitted to the expert group for JSR 168.

xxx

Introduction

02 469513 Intro.qxd 1/16/04 11:04 AM Page xxx

Jetspeed 2 is a total redesign based on the Java Portlet API and built around Pluto. It builds upon the
success of its earlier 1.4 version, leveraging its considerable development community to achieve a nice
project that will surely continue to be successful.

Liferay Enterprise Portal
The Liferay Enterprise Portal (www.liferay.com/home/index.jsp) provides a tremendous amount of
value for very little hassle. It supports a wide variety of J2EE application servers and databases. It pro-
vides bundled downloads with JBoss and Orion.

Essentially, quickly download, set an environment variable, run a shell script, and you have an enter-
prise portal. It is set up to quickly provide an easily configurable corporate portal, with such nice fea-
tures as a Mapquest lookup of your company’s address, showing an overview map (with a link to
directions).

Extensive portlets come with it, including search, message board, Wiki, journal, news feeds, weather, cal-
endar, stocks, general RSS, instant messaging, SMS messaging, unit conversion, translator, dictionary,
and user directory, and that is only about half of them!

The whole framework is built upon Jakarta Struts, which provides a high likelihood that it would be
easy to extend. However, extensive documentation is not available. Furthermore, while it seems likely
that they will become compliant with the new standard, there is no indication of when this will occur.

(On a side note, the reasons why open-source developers are inspired to do what they do are varied.
Check out Liferay’s FAQ to see many of these reasons. You might be surprised.)

eXo Portal
The eXo Portal (http://exo.sourceforge.net) is a fascinating portal server that appeared on the open-
source scene seemingly out of nowhere. Based on such open-source trendsetters as JBoss, AspectJ, and
the Pico Container, it not only provides an independent implementation of JSR 168, but also leverages
Java Server Faces in its implementation. It is difficult to determine whether it is more impressive that
these leading-edge tools are being provided within a Java Portlet API– compliant portal server or that
they can be leveraged so effectively to produce this Java Portlet API portal server. Whether it can sup-
plant the well-established Jetspeed community or the highly refined Liferay product remains to be seen,
but it is certainly worth watching.

How This Book Is Organized
This book contains twelve chapters divided into two parts. The first part covers portal concepts and
components in our portal framework, and the second part provides information on how to build your
own portal using the open-source framework.

xxxi

Introduction

02 469513 Intro.qxd 1/16/04 11:04 AM Page xxxi

Part One: Open-Source Portals
Part One addresses the concepts of portal frameworks, and discusses the tools involved in our open-
source portal framework. These chapters help you become acquainted with the toolsets, which are
demonstrated in the practical examples of Part Two.

Chapter 1: The Java Portlet API (JSR 168) — This chapter extensively covers
the JSR 168 Portlet API. It provides a portlet developer’s perspective on how the
standard affects them, highlighting important details and pitfalls in the specifi-
cation. It also demonstrates a simple example.

Chapter 2: Searching with Lucene — Lucene is a great open-source search
engine API. This chapter discusses the basics of indexing and searching docu-
ments, and includes a useful overview of the Lucene API.

Chapter 3: Messaging with Apache James — Apache James is an open-source
e-mail server supporting multiple protocols. Given the central place that collab-
oration holds in most portal solutions, it makes sense to introduce you to this
powerful mail server. This chapter discusses general mail concepts, the JavaMail
API, and mailets — a server-side processing framework similar to a servlet.

Chapter 4: Object to Relational Mapping with Apache OJB — The Apache
Object Relational Bridge project (OJB) is an interesting framework for object
persistence. While this framework is not as “plug and play” as some of the
other tools and frameworks covered in this book, it is important in that every
portal effort requires the development of some code, and often the most tedious
part of Web applications is object-to-relational persistence. Of course, this ends
up being the whole purpose of many Web applications, so OJB can be quite a
time-saver. In this chapter, we cover OJB and offer insights into how you can
use it in your portal applications.

Chapter 5: Content Management with Jakarta’s Slide — Slide is a mature con-
tent management framework that is used to manage content in various ways —
from Internet application portals (such as exolab.org) to distributed file systems
via Web browsers. Because content delivery is such a huge part of any portal’s
work, it is important to understand how to manage the content that is deliv-
ered. It must be easy to update your portal with “fresh” and reliable data. Slide
provides you a pluggable framework for managing your content. This chapter
explores the framework in detail, and describes how to use it.

Chapter 6: Portal Security — The prospect of seamlessly integrating all of your
content and applications sounds like a wonderful idea until you begin to fear
that you could be giving someone the keys to the company! Not only does one
have to worry about troublemakers, but also about inadvertent mistakes. This
chapter covers single sign-on, container security, application security, and many
other topics that are required to provide a secure portal implementation.

Part Two: How to Build a Portal
In Part Two, we walk you through a how-to on building and operating your own open-source portal.
Included here are considerations such as analysis and design of your portal requirements. Many portal

xxxii

Introduction

02 469513 Intro.qxd 1/16/04 11:04 AM Page xxxii

projects fail simply because no one understands what to put into the portal. You will cover various
development topics and learn how to test and operate your portal.

Chapter 7: Planning for Portal Deployment — Analysis and design of a portal
are critical elements in portal development projects. This chapter discusses
how to analyze your portal’s requirement. We suggest some methodology tips
for performing the analysis and development of your portal, and provide a
discussion of how this methodology maps to commonly used development
methodologies in the industry today. This chapter doesn’t seek to invent a new
methodology, but rather to illustrate some best practices that can be conducted
within the context of any methodology.

Chapter 8: Effective Client-Side Development Using JavaScript — Because of
the heavy server-side processing of portals (and Web applications in general),
developers often lose sight of techniques that can enable much more effective
processing on the client. These techniques are provided to show how, in a
multiple-browser environment, you can effectively use technologies such as
JavaScript. This chapter is useful not only for portals, but for any Web applica-
tion development task.

Chapter 9: Developing Applications and Workflow for Your Portal — In this
chapter, we demonstrate how to create portlet applications that are compliant
with the Java Portlet API. These examples are provided not only for real-life inte-
gration, but also to illustrate how you can customize your own implementation.

Chapter 10: Portlet Integration with Web Services — Web services are a large
part of the enterprise application integration space, and are providing the inter-
operability-enabling technology with both client platforms and business partners.
This chapter covers the basics of Web services, and provides code examples of
integrating with Web services using the Java Portlet API, along with the Axis Web
services API. The chapter also demonstrates how to make your portal both a pro-
ducer and a consumer of Web services, and provides an overview of the Web
Services for Remote Portlets (WSRP) specification.

Chapter 11: Performance Testing, Administering, and Monitoring Your
Portal — Simply developing your portal is not adequate for a successful portal
effort. Portals are evolving things, as much as your business is, so it is impor-
tant that you consider the methodologies for reducing error while accommodat-
ing change. Furthermore, you should prepare your portal to accommodate
increasing numbers of users, so you can monitor and manage your portal reli-
ably. This chapter addresses these topics as we explore the continuing adapta-
tion of your business with your portal.

Chapter 12: Unifying the Enterprise Application Space Through Web Start —
To a large extent, the appeal of centrally managed applications has driven the
“webification” of client/server and desktop applications. It is readily apparent,
however, that such Web applications are severely limited in their capabilities,
particularly in the areas of asynchronous processing (callbacks) and sophisti-
cated graphical user interfaces (GUIs). This chapter explores a vision for the
next-generation portal — the application portal centered around Java Web
Start.

xxxiii

Introduction

02 469513 Intro.qxd 1/16/04 11:04 AM Page xxxiii

What Is on the Companion Web Site?
This book has a companion Web site on which you can find the following:

Full source code to examples. Every example presented in the book has work-
ing source code available for downloads.

References. You can find interesting links related to open-source software and
portlet development.

Errata. This provides corrections to any mistakes that may not have been found
during the publishing process.

Bonus chapter. As mentioned previously, because of the timing of the Pluto
release, we will be providing a bonus chapter about Pluto as soon as it is
available.

How to Use This Book
You can use this book in two primary ways:

As a tutorial. This book covers a wide range of issues on portal development —
from development tools to development process, and from project initiation to
operational maintenance. It offers techniques and considerations that resulted
from the experience of the authors in developing and operating open-source
portal implementations. This provides the reader with the ability to learn from
our mistakes, as well as to consider our vision.

As a reference. This book has information about a multitude of open-source
tools, some of which you may never need and others that may be the perfect fit
for your organization. Furthermore, it covers in detail the Portlet API from a
portlet developer’s perspective. This makes this book invaluable as a desktop
reference for portal development.

Source Code
As you work through the examples in this book, you may choose to either type in all the code manually
or use the source code files that accompany the book. All of the source code used in this book is available
for download at http://www.wrox.com. Once at the site, simply locate the book’s title (either through
the Search utility or by using one of the title lists) and click the Download Code link on the book’s detail
page to obtain all the source code for the book. You only need to decompress the file with your favorite
compression tool.

Errata
We made every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, such as a spelling mistake or a faulty
piece of code, we would be very grateful for your feedback. By sending in errata, you may save another
developer from hours of frustration, and you will be helping us provide even higher quality information.

xxxiv

Introduction

02 469513 Intro.qxd 1/16/04 11:04 AM Page xxxiv

Conventions
To help you get the most from the text and keep track of what’s happening, we’ve used a number of con-
ventions throughout the book.

This background style is used for asides to the current discussion.

As for styles in the text, we follow these conventions:

❑ When we introduce new terms, we highlight them in bold.

❑ We present code in two different ways, as follows:

In code examples, the Code Foreground style shows new, important, pertinent code.

The Code Background style shows code that’s less important in the present context,
or has been shown before.

In some cases, we number lines of code in code listings. This is done only when specific lines of code are
directly explicated.

[JSR168] is an example of a reference. To see the referenced work, please check the References section at
the end of the book.

Contact Us
This book was born out of our interest in building portal solutions with open-source software. It is that
spirit of interchange that makes open-source software successful. Therefore, we invite feedback. Please
contact us with ideas, suggestions, corrections, new tools, or constructive criticism. One of the most grat-
ifying things about writing is receiving feedback from those who read your work.

You can contact me through e-mail at or through regular mail at the following address:

W. Clay Richardson
c/o Robert Elliot
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030

Hoping you enjoy the book,

Clay Richardson
Haymarket, Virginia

Boxes like this one hold important, not-to-be-forgotten information that is directly
relevant to the surrounding text.

xxxv

Introduction

02 469513 Intro.qxd 1/16/04 11:04 AM Page xxxv

02 469513 Intro.qxd 1/16/04 11:04 AM Page xxxvi

Part 1: Open Source
Portals

Chapter 1: The Java Portlet API (JSR 168)

Chapter 2: Searching with Lucene

Chapter 3: Messaging with Apache James

Chapter 4: Object to Relational Mapping with Apache OJB

Chapter 5: Content Management with Jakarta’s Slide

Chapter 6: Portal Security

03 469513 Pt1.qxd 1/16/04 11:04 AM Page 1

03 469513 Pt1.qxd 1/16/04 11:04 AM Page 2

The Java Portlet API
(JSR 168)

This chapter discusses the centerpiece of portal development, the Java Portlet API, Java Specification
Request 168 (JSR 168). The chapter explains the concepts in the specification, explaining how they fit
into portal architectures to enable the developer to be an effective portal developer.

Portlet Fundamentals
A portal server handles client requests. Much like a Web application server has a Web container
to manage running Web components (servlets, JSPs, filters, and so on), a portal has a portlet con-
tainer to manage running portlets. Note that most Web application servers, such as Tomcat, have
additional features beyond the Web container (management console, user databases, and so on),
including some specialized Web applications (an administration Web application, for example).
Portals are expected to follow a similar pattern, providing higher level functionality wrapped
around the portlet container that adheres to the specification, enabling portlet applications to be
portable, just as Web applications are.

The Portlet API is an extension to the servlet specification, which means that a portlet container is
also, by definition, a Web container. Figure 1.1 demonstrates the Portal stack, which indicates how
the various parts build upon each other to provide a portal server.

04 469513 Ch01.qxd 1/16/04 11:04 AM Page 3

Figure 1.1

Portal Server

Portlet Container

Web Container

Web Browser

Web Browser

Web Browser

Enterprise
Data

Enterprise
Data

Enterprise
Data

4

Chapter 1

04 469513 Ch01.qxd 1/16/04 11:04 AM Page 4

As you can see, the servlet container is the basis for any portal, upon which the portlet container exten-
sion is built. Likewise, a portal is built on top of that portlet container, which manages the portlets
required to handle client requests.

Before describing the relationships between portlets and servlets, we should discuss a few of the funda-
mental definitions related to the Portlet API.

The following table provides a list of the definitions that are used in this chapter to explain the Portlet
API. Of course, many others will be introduced throughout the chapter, but these are the fundamental
ones required for an understanding of the chapter.

Term Definition

Portal A Web-based application server that aggregates, customizes, and personalizes
content to give a presentation layer to enterprise information systems.

Portlet A pluggable Web component managed by a portlet container; it provides
dynamic content as part of an aggregated user interface.

Fragment The result of executing a portlet, a “chunk” of markup (HTML, XML, and so
on) that adheres to certain rules (see the sidebar “Rules for Fragments”).

Portlet Container The runtime environment of a portlet. It manages the life cycle of portlets, and
handles requests from the portal by invoking portlets inside the container.

Although this is not an all-encompassing list, it provides the basic terms that are used repeatedly in this
chapter.

Portlets and Servlets
As mentioned before, the Portlet API is an extension to the Servlet API. Therefore, there are both similar-
ities and differences between the components. It is important to understand these distinctions in order to
understand why there is a portlet specification (and break habits wrought from using their similar
servlet sisters).

The similarities between portlets and servlets are as follows:

❑ Portlets and servlets are both Java 2 Enterprise Edition (J2EE) Web components.

❑ Both are managed by containers, which control their interactions and life cycle.

❑ Each generates dynamic Web content via a request/response paradigm.

Fragments are not allowed to use certain tags from their respective markup lan-
guages. These tags include html, title, head, body, base, frameset, frame, link, meta,
and style. Use of these tags will invalidate the entire fragment. This is particularly
important to developers (like us!) who have been abusing the forgiving nature of
browsers until now.

5

The Java Portlet API (JSR 168)

04 469513 Ch01.qxd 1/16/04 11:04 AM Page 5

The differences between portlets and servlets are as follows:

❑ Portlets generate fragments, whereas servlets generate complete documents.

❑ Unlike servlets, portlets are not bound directly to a URL.

❑ Portlets have a more sophisticated request scheme, with two types of requests: action and render.

❑ Portlets adhere to a standardized set of states and modes that define their operating context and
rendering rules.

Portlets are able to do some things that servlets cannot, such as the following:

❑ Portlets have a far more sophisticated mechanism for accessing and persisting configuration
information.

❑ Portlets have access to user profile information, beyond the basic user and role information pro-
vided in the servlet specification.

❑ Portlets are able to perform portlet rewriting, so as to create links that are independent of the por-
tal server implementation (which have various methods to track session information, and so on).

❑ Portlets have two different session scopes in which to store objects: application wide and portlet
private.

Portlets lack some servlet features:

❑ Portlets cannot alter HTTP headers or set the response encoding.

❑ Portlets cannot access the URL that the client used to initiate the request on the portal.

Portlet applications are extended Web applications. Therefore, both types of applications are deployed
in Web archive files (WAR) and both contain a Web application deployment descriptor (web.xml).
However, a portlet application also contains a portlet application deployment descriptor
(portlet.xml).

Because a portlet application is an extension of a Web application, it is logical that it could contain other
Web application components. Portlets can use JSPs and servlets to implement their functionality. This
capability is discussed later in the chapter.

Portal Interactions
It makes sense to show how a typical portal interaction occurs before diving into details about how
portlets can render themselves with JSPs and servlets. Figure 1.2 demonstrates the chain of events that
occur inside a portal to manage a typical client request.

Inside a portal is a Portlet API–compliant portlet container that manages the runtime state of portlets. The
container evaluates those portlets into fragments, either by making requests of the portlet or by taking a
fragment from cache. Then, the container hands the fragments to the portal server that manages aggregat-
ing them into portal pages.

Now that you have looked at portals, portlets, and portal containers at a high level, it is time to dig into
the specifics about how to build portlets.

6

Chapter 1

04 469513 Ch01.qxd 1/16/04 11:04 AM Page 6

Figure 1.2

Fragments

Portal Server

Portal Page

Portlets

Portlet Container

1 2 3 4 5

7

The Java Portlet API (JSR 168)

04 469513 Ch01.qxd 1/16/04 11:04 AM Page 7

The Portlet Interface and the GenericPortlet
The Portlet interface defines the behaviors that all portlets must implement. Typically, you would pre-
fer to extend the GenericPortlet class to build a portlet, because it provides structures for providing
all of the typical portlet implementation methods, not simply the required ones.

Portlet Life Cycle
Much like servlets, a portlet’s life cycle is managed by the container, and has an init method that is
used to manage the initialization requirements (creating resources, configuring, and so on). Portlets are
not guaranteed to be loaded until needed, unless you configure the container to load them on startup.

The init method takes an object that implements the PortletConfig interface, which manages initial-
ization parameters and the portlet’s ResourceBundle. This object can be used to get a reference to the
object that implements the PortletContext interface.

Portlet developers don’t typically spend a lot of time worrying about the intricacies of portlet container
initialization exceptions, because generally they are thrown, and the developer reacts to them (debug-
ging the circumstance that led to the exception and correcting it if appropriate). However, it is worth
noting that an UnavailableException is able to specify a time for which the portlet will be unavail-
able. This could be both useful (keeping the portlet container from continuously trying to load the port-
let) and aggravating (Why isn’t the portlet container reloading my portlet?!) to a developer.

The destroy method provides the opportunity to clean up resources that were established in the init
method. This is analogous to the destroy method in a servlet, and is called once when the container
disposes of the portlet.

Portlet Runtime States
When a portlet is running, it has an associated Preferences object that allows for customization of the
portlet. The initial values of the preferences are those specified in the deployment descriptor, but the
portlet has full programmatic access to its preferences.

When a portlet is placed on a page, a Preferences object is related to it. The pairing of the portlet and a
Preferences object on a page is known as a portlet window. A page can contain many of the same
portlet windows within its display.

Before you start wondering why all of these Preferences objects are necessary, realize that this is pro-
viding the capability to perform a major features of a portal — customization. While the initial portlet
Preferences object is great for specifying the configuration and runtime state of the portlet, it is

When an exception is thrown in the portlet init method, the destroy method is
guaranteed not to be called. Therefore, if resources are created in the init method
prior to the exception being thrown, the developer cannot expect the destroy
method to clean them up, and must handle them in the exception’s catch block.

8

Chapter 1

04 469513 Ch01.qxd 1/16/04 11:04 AM Page 8

necessary to tweak that state to handle customized views of the portlet. For example, say you have an
employee directory portlet. Obviously, it would require certain preferences to get it running. However,
when that employee directory portlet is embedded on a “Finance Department” home page, it should not
only have a customized look and feel, but also have preferences related to the fact that it is on that page,
such as showing only Finance Department employees.

Portlet Request Handling
Two types of requests can be issued against a portlet: action requests and render requests. Not coinci-
dentally, these requests have their accompanying URL types: action URLs and render URLs. An action
URL targets the portlet’s processAction method, while the render URL targets its render method.

“There Can Be Only One”
If a client request is an action request, then it can target only one portlet, which must be executed first.
No other action requests can be performed on the remaining portlets, only render requests. Figure 1.3
illustrates how a portal container would manage an action request.

As you can see, the portlet container will execute processAction on the targeted portlet, waiting until
it finishes before it executes render on the rest of the portlets on the page. The calling of the render
method on the remaining portlets can be done in any order, and can be done in parallel.

The processAction method is responsible for changing state on the given portlet, while the render
method is responsible for generating the appropriate presentation content of the portlet. Therefore, it is
logical that a user can change only one portlet at a time (you can only click in one box!), and that all
portlets would have to call render to generate their content again upon the result of the action.
However, this is not to say that all portlets are not able to change at a given time.

Consider the following common example: a portal for The Simpsons. One of the portlets allows you to
select the given Simpson character whose page you would like to view. Other portlets contain character
information, recent appearances, greatest quotes, and so on. When you select a new character, you
would change the state of that character selector portlet through the processAction method. In that
method, though, you would edit a given shared attribute that specifies which character’s page you are
on, which would cause all of the portlets to render themselves for that character when you invoked
their render methods.

Note one exception to when a portlet’s render method is called, and that is when the portlet’s content
is cached. The Portlet API allows containers to choose to use a cached copy of the content, instead of
calling render. Portlet containers are not required to provide a cache facility, but the spec provides for
an expiration cache facility, which is configured in the portlet application deployment descriptor. The
deployer provides an expiration-cache element into which the user specifies the number of seconds to
cache (or -1 for cache that won’t expire).

The cache is per client per portlet, and cannot be shared across client requests. Of course, a developer
could implement his or her own portlet managed cache in the render method, storing some commonly
requested data in the PortletContext.

9

The Java Portlet API (JSR 168)

04 469513 Ch01.qxd 1/16/04 11:04 AM Page 9

Figure 1.3

ActionRequest
As previously mentioned in the discussion of portlet request handling, action requests handle changing
the state of a portlet based on the action request parameters. This is done using the processAction
method, which takes an ActionRequest and ActionResponse object as parameters.

The ActionRequest object, similar to a ServletRequest object, provides the following:

❑ The action request parameters

❑ The portlet mode

1. Action

2. Render

10

Chapter 1

04 469513 Ch01.qxd 1/16/04 11:04 AM Page 10

❑ The portlet session

❑ The window state

❑ The portlet preferences object

❑ The portal context

To change the portlet mode or window state, you call the appropriate method on the ActionResponse
object. The change becomes evident when the render method is called subsequent to the end of process-
ing in the processAction method. You can also pass render parameters using the ActionResponse
object.

RenderRequest
RenderRequests generate a fragment from the portlet’s current state. The RenderRequest object pro-
vides access to the following:

❑ The render request parameters

❑ The portlet mode

❑ The portlet session

❑ The window state

❑ The portlet preferences object

There is also an accompanying RenderResponse method, which provides the vehicle needed to render
content. You can call getOutputStream or getWriter as you do in a servlet, or you can dispatch the
content generation to a servlet or JSP. There is more detail on this technique later in the chapter, in the
section “Calling JSPs and Servlets.”

GenericPortlet
The GenericPortlet class is an abstract implementation of the Portlet interface. This is the most
common way most users will write portlets — by extending this class. The GenericPortlet class
extends the render method by setting the portlet title, and then calling its own doDispatch method,
which in turn, determines the mode of the Portlet, and calls its appropriate method: doEdit for EDIT,
doView for VIEW, and so on. There is more discussion on portlet modes later. The following code
describes a class that extends GenericPortlet:

package org.opensourceportals.samples;
import java.io.IOException;
import javax.portlet.ActionRequest;
import javax.portlet.ActionResponse;

The request and response objects are not thread-safe. This means that a developer
should avoid sharing references to them with other threads of execution. Most
developers will not run into this problem, but remember this tidbit next time you
decide to try something unconventional.

11

The Java Portlet API (JSR 168)

04 469513 Ch01.qxd 1/16/04 11:04 AM Page 11

import javax.portlet.GenericPortlet;
import javax.portlet.PortletException;
import javax.portlet.PortletMode;
import javax.portlet.PortletRequestDispatcher;
import javax.portlet.RenderRequest;
import javax.portlet.RenderResponse;
/**
* @author Clay Richardson
* ExamplePortlet is a basic example of writing
* a portlet by extending GenericPortlet
*
*/

public class ExamplePortlet extends GenericPortlet {
/*
* This method overrides the doEdit of GenericPortlet
* This is called to provide the markup to be rendered when the
* portlet mode is PortletMode.EDIT
* <p>
* In this case, we will dispatch the method to a JSP
* located in the portlet root directory called “edit.jsp”
*/

protected void doEdit(
RenderRequest request,
RenderResponse response)
throws PortletException, IOException {
PortletRequestDispatcher prd =

getPortletContext().getRequestDispatcher(“/edit.jsp”);
prd.include(request, response);

}

We declare our ExamplePortlet, having it extend GenericPortlet. In here, we also override the doEdit
method, which handles rendering when the portlet is in EDIT mode.

/*
* This method overrides the doHelp of GenericPortlet
* This is called to provide the markup to be rendered when the
* portlet mode is PortletMode.HELP
* <p>
* In this case, we will dispatch the method to a JSP
* located in the portlet root directory called “help.jsp”
*/

protected void doHelp(
RenderRequest request,
RenderResponse response)
throws PortletException, IOException {
PortletRequestDispatcher prd =

getPortletContext().getRequestDispatcher(“/help.jsp”);
prd.include(request, response);

}

/*
* This method overrides the doEdit of GenericPortlet
* This is called to provide the markup to be rendered when the
* portlet mode is PortletMode.VIEW

12

Chapter 1

04 469513 Ch01.qxd 1/16/04 11:04 AM Page 12

* <p>
* In this case, we will dispatch the method to a JSP
* located in the portlet root directory called “view.jsp”
*/

protected void doView(RenderRequest request,
RenderResponse response)
throws PortletException, IOException {
PortletRequestDispatcher prd =

getPortletContext().getRequestDispatcher(“/view.jsp”);
prd.include(request, response);

}

Similarly, we provide the behavior required to render the portlet when it is in its HELP and VIEW modes.

/* This method was overriden to specify
* the title programmatically
* This may be useful if you are going to
* have parameters in your title like:
* “News on 9/11/2001”
*/

protected String getTitle(RenderRequest request) {
return “Example Portlet”;

}

/* This method is the meat of the portlet
* manipulations of the portlet’s state are done
* through this method.
*
* For simplicity sake, we will parse a param
* that indicates the portlet mode to which the
* portlet should be set.
*
*/

public void processAction(ActionRequest request,
ActionResponse response)
throws PortletException, IOException {

PortletMode mode =
new PortletMode(request.getParameter(“mode”));

response.setPortletMode(mode);
}

}

Finally, we specify overriding the getTitle method, allowing for more complex logic in rendering the
title (such as displaying the current date) rather than displaying the static title declared in the deploy-
ment descriptor. We also handle the processAction method, which is responsible for the behavior in
response to an ActionRequest.

The preceding code shows a basic implementation of a portlet by writing a class that extends Generic
Portlet. This portlet doesn’t do much beyond dispatch to other JSPs based on its mode (and set its
name programmatically), but you see the crux of implementing a portlet.

13

The Java Portlet API (JSR 168)

04 469513 Ch01.qxd 1/16/04 11:04 AM Page 13

Other Elements of the Java Portlet API
Now that you have examined the high-level concepts of the Portlet API, this section addresses the lower-
level components within the specification, providing a portlet developer’s perspective on the internals
of the specification, highlighting important concepts and potential pitfalls.

PortletConfig
When a portlet is initialized, it needs access to the initialization parameters and other configuration infor-
mation. The PortletConfig object provides these. In addition to init parameters, the PortletConfig
object can also expose a ResourceBundle for the portlet.

The ResourceBundle contains certain fields required by the specification, including title, short title, and
keywords. A ResourceBundle allows for easier localization of your portlet application.

You can specify the ResourceBundle inline in the portlet application deployment descriptor, as follows:

<portlet>
...
<portlet-info>

<title>Homer’s D’oh a Day Portlet</title>
<short-title>doh</short-title>
<keywords>Simpsons, Homer Simpson, Entertainment</keywords>

</portlet-info>
...

</portlet>

Alternatively, you can specify a reference to a ResourceBundle this way:

<portlet>
...
<portlet-info>

<resource-bundle>com.somedomainname.HomerPortlet</resource-bundle>
</portlet-info>
...

</portlet>

Whichever method you use (the first is better mostly for applications with minimal localization require-
ments), the net effect for the developer is the same. These properties are always created in a Resource
Bundle and made available through the PortletConfig object.

PortletURL
When building portlet content, it is necessary to build URLs that provide the capability to call the portal.
This is the foundation of making the portal interactive. In order to allow for the proper creation of a
PortletURL, there are two implementations: ActionURL and RenderURL. Both of these are created from
the RequestResponse interface using the createActionURL and createResponseURL methods,
respectively. The ActionURL provides the capability to issue action requests on the portal, to do things
such as change portlet mode, change window state, submit a form, and so on. The RenderURL provides
the capability to skip the portlet’s processAction method and merely invoke the render method,
passing render parameters to control presentation.

14

Chapter 1

04 469513 Ch01.qxd 1/16/04 11:04 AM Page 14

You will find several methods of the PortletURL interface interesting:

❑ setSecure— provides the capability to specify whether the URL should use HTTPS or not. If it
is not used, it continues with whatever the current request specified. Therefore, you do not have
to specify it repeatedly.

❑ setWindowState— enables you to change the window state of the portlet.

❑ addParameter— adds parameters to the URL.

❑ toString— provides a string representation of the URL. Note that it is not guaranteed to be a
valid URL, as the portal may use tokens for URL rewriting.

❑ setPortletMode— enables you to set the portlet’s mode.

Portlet Modes
A portlet mode represents a functional state of a portlet. This is used by the portlet to determine how to
manage a render request. That is, depending on the mode, the portlet will render different markup.
Portlets are able to change their mode as part of processing action requests. In addition, a portlet can be
configured with different modes available and further restrict its availability based on role. The follow-
ing table describes the standard portlet modes defined in the Portlet API.

Mode Description

VIEW Generates markup visualizing the portlet state and properties. Developers implement
doView of GenericPortlet to provide this functionality.

EDIT Produces markup to enable modification of portlet properties. Developers implement
doEdit of GenericPortlet to provide this functionality.

HELP Provides help text for the portlet. Developers implement doHelp of GenericPortlet
to provide this functionality.

A portal can also provide custom portlet modes. Note that this is portal dependent, not portlet depen-
dent. Therefore, if a portlet implements additional portlet modes, they will not be portable between vari-
ous portlet containers. The portlet needs to override the doDispatch method to call the appropriate
render method. For example, if you define a portlet mode called “SPECIAL”, the doDispatch method
would call its render method, which by convention would be doSpecial. Of course, because you are
implementing the method, you could call the method anything you want.

Also note that you can specify which types of markup are available for a given portlet mode. Additional
information on configuring portal modes is presented in a later section, “Portlet Application Deployment
Descriptor.”

Portlet developers should use the PortletURL objects (or their accompanying tag
libraries) instead of directly manipulating HTTP query strings. The corollary to this
is that developers should not use GET in HTML forms. This is because portals may
encode internal state parameters in the PortletURL.

15

The Java Portlet API (JSR 168)

04 469513 Ch01.qxd 1/16/04 11:04 AM Page 15

Window States
The window state indicates to the portlet how much space is being allocated to it. This enables the port-
let to modify its rendering to suit that window state. The following table contains the window states
specified by the Portlet API.

State Definition

NORMAL The portlet will share the screen with other portlets. This means that the port-
let should limit its markup.

MINIMIZED The portlet should provide little or no output.

MAXIMIZED The portlet doesn’t share the screen with other portlets; thus, the portlet is not
limited in its markup.

Much like portlet modes, a portal can define custom window states, which must also be configured in
the portlet deployment descriptor.

Portlet Context
PortletContext is a wrapper object for your portlet application. There is one PortletContext object
per portlet application. The PortletContext provides the following:

❑ Accesses initialization variables

❑ Gets and sets context attributes

❑ Logs events

❑ Gets application resources (such as images, XML files, and so on)

❑ Obtains a request dispatcher to leverage servlets and JSPs in the portlet

Portal Context
A portlet can get a reference to the portal in which it is running through the PortalContext object.
Calling the getPortalContext method of the PortletRequest object will return the PortalContext.

The PortalContext provides the following:

❑ The name of the portal, through getPortalInfo

❑ Portal properties, through getProperty and getPropertyNames

❑ The supported portlet modes, through getSupportedPortletModes

❑ The supported window states, through getSupportedWindowStates

Portlet Preferences
In order to perform customization or personalization of your portlet, you need some way to vary certain
parameters of the portlet. These are called portlet preferences. The classic portlet example is the weather

16

Chapter 1

04 469513 Ch01.qxd 1/16/04 11:04 AM Page 16

portlet, and following that example, you could have a preference called “cities,” with values represent-
ing the zip codes of the cities for which you want the weather. Note that preferences are only meant for
configuring the portlet, so maintaining the list of all cities available in a preference would be an inappro-
priate use of preferences. Thinking of them in an object-oriented programming sense, they would be
attributes of the portlet itself.

Preferences are manipulated through an object that implements PortletPreferences. All preference
values are stored as String arrays, so you would not have the capability to store complex objects as you
do with request or session attributes, nor do you have the advantage of declaring the type, as you would
with environment entries. Therefore, if you are storing numbers as preferences, you will need to do con-
versions yourself.

Specifically, the PortletPreferences interface provides the following:

❑ getNames— This returns an Enumeration of the names of the available preferences.

❑ getValue— You pass it the name of the preference you are looking for, along with a default value
(in case it isn’t found), and it returns the first element of the array of that preference’s values.

❑ getValues— You pass it the name of the preference you want and a String array of default val-
ues and it returns a String array of its values.

❑ setValue— You pass it the name of the preference and the value of that preference, and it
sets it to a single-element String array containing that value. This method throws an
UnmodifiableException if the preference cannot be modified.

❑ setValues— You pass it the name of the preference and a String array representing the values for
that name, and it sets the preference values. This method throws an UnmodifiableException if
the preference cannot be modified.

❑ isReadOnly— You pass it the name of a preference and it returns a Boolean indicating whether
the preference can be modified.

❑ reset— You pass it the name of the preference and it will restore the default; if there is no
default, it will delete the preference.

❑ store— This stores the preferences. Because this can only be done from within processAction,
it will throw an IllegalStateException if it is done from within a render invocation. The
method will also throw a ValidatorException if it fails validation.

❑ getMap— This returns a Map of the preferences. The Map consists of String keys and a
String[] for values. This map is also immutable (cannot be changed).

Note two important things to understand about the store method. First, it is an
atomic transaction. Therefore, all of the changes must succeed or none of them will
succeed. This is critical to understand if you have an enormous preference list for
your portlet and you don’t do a tremendous amount of validation of the input.
Second, you could get stung by concurrent writes to the preference store. The critical
message here is that you should view your preferences as one distinct entity and not
a collection of independent parameters accessible through a common interface.

17

The Java Portlet API (JSR 168)

04 469513 Ch01.qxd 1/16/04 11:04 AM Page 17

The following code is an example of retrieving and setting preferences:

try {
PortletPreferences myPrefs = request.getPreferences();
String [] cities =

myPrefs.getValues(“cities”,
new String[] {“20112”,”90210”});

for (int i=0; i < cities.length; i++) {
System.out.println(cities[i]);

}
String [] newCities = new String[] {“20169”,”22124”};
myPrefs.setValues(“cities”,newCities);
myPrefs.store();

} catch (ValidatorException ve) {
System.out.println(“Preferences did not validate.”);

} catch (UnmodifiableException ume) {
System.out.println(“The preference is not modifiable”);

} catch (IllegalStateException ise) {
System.out.println(“You cannot be in render!”);

}

Developers can define custom classes to provide validation of preferences. These classes implement the
PreferencesValidator interface and must provide their validation capability in a thread-safe manner.
Implementing a PreferencesValidator is very simple: There is only one method, validate, which
takes a PortletPreferences object and returns nothing. Simply throw a ValidatorException if any
of the values doesn’t meet the logic you define.

Sessions
Because portals are built upon the request-response paradigm (and predominantly upon HTTP), there
has to be some mechanism available to maintain state across invocations. For example, it isn’t sensible to
authenticate users with every request. There are several techniques to manage sessions, with cookies and
URL rewriting being two of the most popular in Web applications (cookies are used under the hood by
many servlet containers to implement the HTTPSession).

Sessions are critical to portlet development, but there are many ways to implement them, so the Portlet
API provides the PortletSession interface. When a client makes a request, the server sends a session
identifier in the response. If the client wants to join the session, the client provides that session identifier
with their next request.

The PortletSession can be used to hold attributes. PortletSession operates much like HTTPSession
in this regard, providing the capability to store key-value pairs, with arbitrary objects. There is one major
difference. The PortletSession has two different scopes:

❑ APPLICATION_SCOPE is very similar to the HTTPSession scope. An object placed in this scope
is available to all the portlets within the session.

❑ PORTLET_SCOPE refers to when an object is available to only that portlet.

PORTLET_SCOPE is unique in that it provides a namespace for the given attribute. For example, an attribute
called city.name would be stored in javax.portlet.p.47?city.name. (“47” is an internally assigned

18

Chapter 1

04 469513 Ch01.qxd 1/16/04 11:04 AM Page 18

identification number). This attribute name prevents namespace collision with other portlets storing their
session variables with similar names.

Despite having a special system for naming its attributes, PORTLET_SCOPE doesn’t protect its attributes
from other Web components. In addition, the namespace application is done completely under the hood.
You just call getAttribute and setAttribute specifying PORTLET_SCOPE and the namespace conver-
sion is done by the PortletSession object. To make it even more convenient, other Web components
can receive this feature through the PortletSessionUtil.decodeAttribute method by passing the
simple attribute name, such as “city.name”.

Calling JSPs and Servlets
Because portlet applications are a complementary extension to Web applications, there must be a
mechanism to include Java Server Pages and servlets in a portlet. Upon first examination of the
GenericPortlet class, many Web developers cringe and think, “Oh, no! We are back to the old
servlet days of embedding markup!” However, much like servlet developers found using a
RequestDispatcher helpful in avoiding the “all your eggs in one basket” problem of placing all of
your markup in your servlet, or all of your Java code in a JSP, a portlet developer can use a
PortletRequestDispatcher.

When implementing the render method of the Portlet interface or, more likely, implementing one of
the “do” methods of the GenericPortlet class (for example, doView, doEdit, and so on), the devel-
oper can use a PortletRequestDispatcher as follows:

String reqPath = “/calView.jsp”;
PortletRequestDispatcher prd = portContext.getRequestDispatcher(reqPath);
prd.include(req, resp);

In this case, we have specified our JSP, calView.jsp, which is located in the root of the portlet applica-
tion, which we refer to with a leading slash. You must always start the path with a leading slash, and
provide a path from the PortletContext root (usually the root directory of your portlet application).
From there, you get a PortletRequestDispatcher (prd) from your PortletContext (portContext).
Then you pass your RenderRequest (req) and your RenderResponse (resp) as parameters to the
include method of the PortletRequestDispatcher (prd).

Similarly, we can call a servlet by its declared name (in the Web application deployment descriptor, also
known as web.xml). For example, we might have specified a servlet such as the following in the web.xml:

<servlet>
<servlet-name>chart</servlet-name>
<servlet-class>org.opensourceportals.ChartServlet</servlet-class>
<load-on-startup>0</load-on-startup>

</servlet>

Because we have named our servlet “chart,” we can specify it as follows:

String reqName = “chart”;
PortletRequestDispatcher prd = portContext.getNamedDispatcher(reqName);
prd.include(req, resp);

19

The Java Portlet API (JSR 168)

04 469513 Ch01.qxd 1/16/04 11:04 AM Page 19

This time we used the getNamedDispatcher method with the name of our servlet in order to get a
PortletRequestDispatcher. This is another important point to consider if you choose to do the
following:

String reqPath = “/calView.jsp?user=Jennifer”;
PortletRequestDispatcher prd = portContext.getRequestDispatcher(reqPath);
prd.include(req, resp);

Because the parameter user is specified in the query string, it will take precedence over any other ren-
der parameters named user being passed to the JSP. You probably will not encounter this problem, but
it is something to keep in the back of your mind in case you run into crazy behaviors: specifying a query
string takes precedence over other parameters.

There are restrictions on the use of HttpServletRequest. These methods are not available to the
included servlet or JSP:

❑ getProtocol

❑ getRemoteAddr

❑ getRemoteHost

❑ getRealPath

❑ getRequestURL

❑ getCharacterEncoding

❑ setCharacterEncoding

❑ getContentType

❑ getInputStream

❑ getReader

❑ getContentLength

These methods will all return null (getContentLength returns zero) if invoked from a servlet or JSP
that has been included by a PortletRequestDispatcher. Depending on how you create your
PortletRequestDispatcher, you may not have access to other methods. These additional methods
are not available to servlets or JSPs accessed from a PortletRequestDispatcher created by calling
getNamedDispatcher:

❑ getPathInfo

❑ getPathTranslated

❑ getServletPath

❑ getRequestURI

❑ getQueryString

The reason why the preceding methods would be unavailable through getNamedDispatcher is pretty
simple: Because you didn’t use a path for your request, there is no data with which these fields can be

20

Chapter 1

04 469513 Ch01.qxd 1/16/04 11:04 AM Page 20

populated. Likewise, HttpServletResponse has restrictions on what is accessible. The unavailable
methods of HttpServletResponse are:

❑ encodeRedirectURL

❑ encodeRedirectUrl

❑ setContentType

❑ setContentLength

❑ setLocale

❑ sendRedirect

❑ sendError

❑ addCookie

❑ setDateHeader

❑ addDateHeader

❑ setHeader

❑ addHeader

❑ setIntHeader

❑ addIntHeader

❑ setStatus

❑ containsHeader

The encode methods always return null, and containsHeader always returns false, but the remainder
will simply do nothing. This could be a source of great frustration if you are not careful as a developer,
because it simply will not work and will provide no notice.

The Java Portlet Specification recommends against using the forward method of the RequestDispatcher
of an included servlet or JSP. While this doesn’t seem like a big deal, note that Apache’s Struts Framework
uses the RequestDispatcher forward method in its ActionServlet. Given the popularity of Struts
as a Web application framework, this could make a significant impact on portal integration in many enter-
prises. This is not to say that it may not work anyway, but it is non-deterministic and should be carefully
examined in your circumstance and tested with your portal implementation.

Portlet Application Structure
Portlet applications are structured just like Web applications in that they have the following features:

❑ Can contain servlets, JSPs, Java classes, Java archives (JAR files) and other static files

❑ Are self-contained; all things in the Web application are packaged together in a common root

❑ Have a WEB-INF/classes directory to store standalone classes to be loaded by the application
classloader

❑ Have a WEB-INF/lib directory to store Java Archives (JAR files) to be loaded by the application
classloader

21

The Java Portlet API (JSR 168)

04 469513 Ch01.qxd 1/16/04 11:04 AM Page 21

❑ Have a Web application deployment descriptor located at WEB-INF/web.xml

❑ Are packaged as Web archives (WAR files)

In addition to these features, the portlet application contains a portlet application deployment descrip-
tor, located at WEB-INF/portlet.xml. This file is described in detail later in this chapter, in the section
“Portlet Application Deployment Descriptor.”

Security
Because security is a bigger matter than simply the requirements of the Portlet API, we defer the discus-
sion on security in the Portlet API to Chapter 6.

CSS Style Definitions
In order to achieve a common and pluggable look and feel for portlets, the Java Portlet API defines a set
of Cascading Stylesheets (CSS) styles that portlets should use in rendering their markup. By using a
standard set of styles, portals can support skins, customized colors and fonts. These styles are meant to
coincide with the OASIS Web Services for Remote Portlets standard.

In order to be complete, these style definitions are presented in the following table, as specified in
Appendix C of the JSR 168 (Java Portlet API).

Attribute Name Description

portlet-font This is for normal, unaccented text used in a portlet. Size can be
overridden using the style attribute with something such as
“font-size:large”.

portlet-font-dim This is for suppressed text, essentially text that has been grayed out.

portlet-msg-status This is used to represent text that is providing the current state of
an operation in project, such as “Please wait while data loads...”

portlet-msg-info Use this for informational text such as “Reminder: your username
is your e-mail address.”

portlet-msg-error This styles messages such as “An unexpected error occurred,
please contact the administrator.”

portlet-msg-alert This is for warnings, such as “Could not get open database con-
nection, please try again in a couple of minutes.”

portlet-msg-success This relays messages when the submission was successful, such as
“Your request was submitted.”

portlet-section-header Use this to render the table or section header.

portlet-section-body This is to style the internals of a table cell.

portlet-section- When using a technique called banding, in which you provide
alternate alternate styles in between alternate rows, this style provides that

capability.

22

Chapter 1

04 469513 Ch01.qxd 1/16/04 11:04 AM Page 22

Attribute Name Description

portlet-section- This style is used for highlighting a particular set of cells for the user.
selected

portlet-section- If you have subheadings in your table that you need to distinguish
subheader from your table header, you use this style.

portlet-section-footer If you include a footer to your table, this style would be used for
those cells.

portlet-section-text This style is used for things that do not fit in the other style
definitions.

portlet-form-label This is to style the label for the whole form, such as “User Regis-
tration Form.”

portlet-form-input- This is for the text that a user enters into an input field.
field

portlet-form-button This is for the text that appears on the face of a button.

portlet-icon-label This styles text next to an application-specific icon, such as “Export.”

portlet-dlg-icon-label This styles text next to a standard icon, such as “Cancel.”

portlet-form-field- This styles text that separates form fields (such as radio buttons).
label

portlet-form-field This is used for labels of checkboxes, but not for input fields.

portlet-menu This styles the menu itself (e.g., color).

portlet-menu-item Use this to style an ordinary menu item that is not selected.

portlet-menu-item- This is used to style an item that has been selected.
selected

portlet-menu-item- Use this to style an ordinary menu item when the mouse hovers
hover over it.

portlet-menu-item- This is used to style a selected item when the mouse hovers over it.
hover-selected

portlet-menu-cascade- Use this to style an unselected menu item that has menu items
item nested underneath it.

portlet-menu-cascade- Use this to style a selected menu item that has menu items nested
item-selected underneath it.

portlet-menu-description This styles text that is used to describe the menu.

portlet-menu-caption This is used for the menu caption.

By using these styles, portlet developers ensure that their portlets can be reused in many portlet applica-
tions, and be consistent with WSRP. In addition, it enables developers to apply “skins” from other port-
let applications to their portlet.

23

The Java Portlet API (JSR 168)

04 469513 Ch01.qxd 1/16/04 11:04 AM Page 23

User Information Attributes
User attributes are used to create a profile for a user. They are meant to be standardized on the World
Wide Web Consortium’s (W3C) Platform for Privacy Preferences (P3P) 1.0 (www.w3.org/TR/P3P/).
These attributes are also consistent with the efforts of the OASIS Web Services for Remote Portals stan-
dard. The following table lists the user attributes and their descriptions.

Attribute Name Description

user.bdate The user’s birth date, expressed in milliseconds from January 1,
1970 at 00:00:00 Greenwich Mean Time

user.gender The sex of the user

user.employer The name of the user’s employer

user.department The department in which the user works

user.jobtitle The user’s job title

user.name.prefix The prefix of the user’s name (Mr., Mrs., Dr., etc.)

user.name.given The user’s given name (Jennifer, Alicia, etc.)

user.name.family The user’s last name (Richardson, Smith, Avondolio, etc.)

user.name.middle The user’s middle name (Anne, Clay, Trent, etc.)

user.name.suffix The suffix following a user’s name (Sr., Jr., III, etc.)

user.name.nickname A user’s nickname (Mojo, PAB, BP, etc.)

user.home-info.postal. The name that should appear at the top of a home address (for
name example, The Richardsons or William C. Richardson)

user.home-info.postal. The street address of the user’s home (1600 Pennsylvania
street Avenue or 742 Evergreen Terrace)

user.home-info.postal. The postal city of the user’s home (Haymarket, Manassas, etc.)
city

user.home-info.postal. The state or province used in the user’s home address (Virginia,
stateprov British Columbia, etc.)

user.home-info.postal. The user’s home zip code (90210, etc.)
postalcode

user.home-info.postal. The user’s home country (United States of America, Canada, etc.)
country

user.home-info.postal. A subheading in the address block, like “Finance Department,”
organization which doesn’t make a lot of sense for a home address, but is

included for completeness

user.home-info.telecom. The international access code for the user’s home telephone (for
telephone.intcode example, 44 for the United Kingdom and 1 for the United States).

user.home-info.telecom. The user’s home telephone area code (for example, 703, 818, etc.)
telephone.loccode

24

Chapter 1

04 469513 Ch01.qxd 1/16/04 11:04 AM Page 24

Attribute Name Description

user.home-info.telecom. The user’s home telephone local number (for example,
telephone.number 555-1111, etc.)

user.home-info.telecom. The user’s home telephone extension, if they have one (for
telephone.ext example, 745, 2918, etc.)

user.home-info.telecom. Comments about the user’s home telephone (optional)
telephone.comment

user.home-info.telecom. The international access code for the user’s home fax (for example,
fax.intcode 44 for the United Kingdom and 1 for the United States)

user.home-info.telecom. The user’s home fax area code 703, 818, etc.)
fax.loccode

user.home-info.telecom. The user’s home fax local number (555-1111, etc.)
fax.number

user.home-info.telecom. The user’s home fax extension, if they have one (745, 2918, etc.)
fax.ext

user.home-info.telecom. Comments about the user’s home fax (optional)
fax.comment

user.home-info.telecom. The international access code for the user’s home mobile
mobile.intcode telephone (for example, 44 for the United Kingdom and 1

for the United States)

user.home-info.telecom. The user’s home mobile telephone area code (for example, 703,
mobile.loccode 818, etc.)

user.home-info.telecom. The user’s home mobile telephone local number (555-1111, etc.)
mobile.number

user.home-info.telecom. The user’s home mobile telephone extension, if they have one
mobile.ext (for example, 745, 2918, etc.)

user.home-info.telecom. Comments about the user’s home mobile telephone (optional)
mobile.comment

user.home-info.telecom. The international access code for the user’s home pager (for
pager.intcode example, 44 for the United Kingdom and 1 for the United States)

user.home-info.telecom. The user’s home pager area code (for example, 703, 818, etc.)
pager.loccode

user.home-info.telecom. The user’s home pager local number (for example, 555-1111, etc.)
pager.number

user.home-info.telecom. The user’s home pager extension, if they have one (for example,
pager.ext 745, 2918, etc.)

user.home-info.telecom. Comments about the user’s home pager (optional)
pager.comment

25

The Java Portlet API (JSR 168)

Table continued on following page

04 469513 Ch01.qxd 1/16/04 11:04 AM Page 25

Attribute Name Description

user.home-info.online.email The user’s home e-mail address

user.home-info.online.uri The user’s home Web page

user.business-info. The name that should appear at the top of a work address (for
postal.name example, Sun Microsystems or XYZ, Inc., etc.)

user.business-info. The street address of the user’s work (for example, 1600 Penn-
postal.street sylvania Avenue or 742 Evergreen Terrace)

user.business-info. The postal city of the user’s work (for example, Haymarket,
postal.city Manassas, etc.)

user.business-info. The state or province used in the user’s work address (for
postal.stateprov example, Virginia, British Columbia, etc.)

user.business-info. The user’s work zip code (for example, 90210)
postal.postalcode

user.business-info. The user’s work country (for example, United States of America,
postal.country Canada, etc.)

user.business-info. A subheading in the address block, like “Finance Department”
postal.organization

user.business-info. The international access code for the user’s work telephone (for
telecom.telephone.intcode example, 44 for the United Kingdom and 1 for the United States)

user.business-info. The user’s work telephone area code (for example, 703, 818, etc.)
telecom.telephone.loccode

user.business-info. The user’s work telephone local number (555-1111, etc.)
telecom.telephone.number

user.business-info. The user’s work telephone extension, if they have one (for
telecom.telephone.ext example, 745, 2918, etc.)

user.business-info. Comments about the user’s work telephone (optional)
telecom.telephone.comment

user.business-info. The international access code for the user’s work fax (for example,
telecom.fax.intcode 44 for the United Kingdom and 1 for the United States)

user.business-info. The user’s work fax area code (for example, 703, 818, etc.)
telecom.fax.loccode

user.business-info. The user’s work fax local number (for example, 555-1111, etc.)
telecom.fax.number

user.business-info. The user’s work fax extension, if they have one (for example,
telecom.fax.ext 745, 2918, etc.)

user.business-info. Comments about the user’s work fax (optional)
telecom.fax.comment

26

Chapter 1

04 469513 Ch01.qxd 1/16/04 11:04 AM Page 26

27

The Java Portlet API (JSR 168)

Attribute Name Description

user.business-info. The international access code for the user’s work mobile
telecom.mobile.intcode telephone (for example, 44 for the United Kingdom and 1 for the

United States)

user.business-info. The user’s work mobile telephone area code (for example, 703,
telecom.mobile.loccode 818, etc.)

user.business-info. The user’s work mobile telephone local number (555-1111, etc.)
telecom.mobile.number

user.business-info. The user’s work mobile telephone extension, if they have one
telecom.mobile.ext (for example, 745, 2918, etc.)

user.business-info. Comments about the user’s work mobile telephone (optional)
telecom.mobile.comment

user.business-info. The international access code for the user’s work pager (for
telecom.pager.intcode example, 44 for the United Kingdom and 1 for the United States)

user.business-info. The user’s work pager area code (for example, 703, 818, etc.)
telecom.pager.loccode

user.business-info. The user’s work pager local number (for example, 555-1111, etc.)
telecom.pager.number

user.business-info. The user’s work pager extension, if they have one (for example,
telecom.pager.ext 745, 2918, etc.)

user.business-info. Comments about the user’s work pager (optional)
telecom.pager.comment

user.business-info. The user’s work e-mail address
online.email

user.business-info. The user’s work Web page
online.uri

As you can see, the attributes are a bit repetitive, but offer a breadth of options to you as a developer in
terms of which user attributes you need to use for your portlet application.

However, it is not sufficient just to use these in your application. Your deployment descriptor must declare
which of these are used by a portlet application, and the deployer needs to map them against the related
ones available in the targeted portal server. This is where using the standard attributes comes in handy, as
it will greatly reduce, if not eliminate, the amount of mapping necessary to deploy your application.

Presuming you have done all of the appropriate mappings (and the section “Portlet Application
Deployment Descriptor” discusses how to do this in your portlet.xml), you can gain access to user
attributes such as the following:

Map userdata = (Map) request.getAttribute(PortletRequest.USER_INFO);
String workEmail =
(String) request.getAttribute(“user.business-info.online.email”);

04 469513 Ch01.qxd 1/16/04 11:04 AM Page 27

You grab a Map of the deployed user attributes by getting that attribute from the PortletRequest.
Then, you simply look up the appropriate value; in this case, the user’s work e-mail (stored under
“user.business-info.online.email”).

User attributes are very important in deploying personalized portlet solutions. Be sure to familiarize
yourself with these attributes.

Portlet Tag Library
The Portlet JSP Tag Library gives developers the capability to reference Portal components from within a
JSP page. The following table explains the tags:

Tag Name Purpose

defineObjects This tag declares three objects within the JSP page: RenderRequest ren-
derRequest, RenderResponse renderResponse, and PortletConfig
portletConfig.

actionURL This tag builds action URLs that point to the current portlet. This tag is
nested with param tags in order to pass the appropriate parameters in the
action URL.

renderURL This tag builds render URLs. It also is nested with param tags.

namespace This tag provides a unique name based on the current portlet in order to
avoid conflicts in variable and function names when all of the portlet frag-
ments are consolidated into a portal page.

param This tag gives the name and value of a parameter. It is nested inside either
the actionURL or renderURL tags.

Portlet Deployment
This section describes the portlet application deployment descriptor (portlet.xml), by dissecting a
sample and explaining the various sections of the descriptor piece by piece.

Portlet Application Deployment Descriptor
In order to understand the portlet application deployment descriptor well, you should examine each part.

If you have used XML very much, you will find this first section unremarkable. The only thing worth
noting here is that the version attribute is required to determine which version of the specification is in
effect.

<?xml version=”1.0” encoding=”UTF-8”?>
<portlet-app xmlns=”http://java.sun.com/xml/ns/portlet”

version=”1.0” xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:noNamespaceSchemaLocation=”http://java.sun.com/xml/ns/portlet-app_1_0.xsd”>

28

Chapter 1

04 469513 Ch01.qxd 1/16/04 11:04 AM Page 28

Portlet Declarations
This is the first part of the declaration of one portlet. In this, we give it a description, a local name, a display
name, and a class name. The description and display name are meant to make it more human-friendly,
while the local name and the class actually provide the nuts and bolts required to programmatically load
and reference the portlet. The local name must, of course, be unique within the portlet application.

<portlet>
<description>Example of creating a portlet</description>
<portlet-name>ExamplePortlet</portlet-name>
<display-name>Example Portlet</display-name>
<portlet-class>org.opensourceportals.samples.ExamplePortlet</portlet-class>

The expiration-cache tag represents the number of seconds a portlet is kept in cache. The expiration
cache value of -1 means that the portlet will always be kept in cache. If the value were zero, it would be
just the opposite — never cached.

<expiration-cache>-1</expiration-cache>

This next section declares the supported portlet modes and mime types. For each mime type, the sup-
ported portlet modes are listed. Wild cards (*) are acceptable in describing a mime type. For example, all
text-based mime types could be specified as text/*, and all mime types could be expressed as */*. In
this case, the portlet supports traditional HTML with three different modes available: VIEW, EDIT, and
HELP. However, it supports the VIEW mode only when the content type is the Wireless Markup
Language (WML). Each of these definitions must be unique — that is, you cannot define multiple sup-
ports blocks for the same MIME type.

<supports>
<mime-type>text/html</mime-type>
<portlet-mode>view</portlet-mode>
<portlet-mode>edit</portlet-mode>
<portlet-mode>help</portlet-mode>

</supports>
<supports>

<mime-type>text/wml</mime-type>
<portlet-mode>view</portlet-mode>

</supports>

This portlet provides only one Locale, English, for its internationalization support. It could support
many locales, and it would list them all here. For more information, examine Java’s internationalization
support.

<supported-locale>EN</supported-locale>

This element (<portlet-info>) provides the metadata about the portlet. The title element represents the
title that will be displayed on the portlet. The short title provides an abbreviated way of referencing the
portlet, such as in a management console. Similarly, the keywords are meant to provide context about
the subject of the portlet. This portlet information could have also been referenced in a ResourceBundle,
with only the name of the ResourceBundle specified here.

29

The Java Portlet API (JSR 168)

04 469513 Ch01.qxd 1/16/04 11:04 AM Page 29

<portlet-info>
<title>Pre-configured title</title>
<short-title>Example</short-title>
<keywords>JSR 168, Portlet API, Example, Simple</keywords>

</portlet-info>

This section shows the portlet preferences. Of course, the preferences you define must be unique. The
index-location preference is read-only, so it cannot be changed programmatically; instead, it must
be changed here. The second preference, sites-to-crawl, shows how multiple values can be specified
for a preference. The last preference, crawl-depth represents a number that must be converted through
Integer.parseInt, because preferences are all retrieved as either a String or a String array. The
preferences-validator element specifies a class that is used to validate these portlet-preferences.
In this case, the validator would confirm that the sites-to-crawl are valid and that the crawl-depth is
less than five (to keep the crawling time down).

<portlet-preferences>
<preference>

<name>index-location</name>
<value>/opt/lucene/index</value>
<read-only>true</read-only>

</preference>
<preference>

<name>sites-to-crawl</name>
<value>http://jakarta.apache.org</value>
<value>http://java.sun.com</value>
<value>http://onjava.com</value>

</preference>
<preference>

<name>crawl-depth</name>
<value>2</value>

</preference>
<preferences-validator>

com.opensourceportals.validator.CrawlValidator
</preferences-validator>

</portlet-preferences>

Here we have the relevant security references for the portlet. The role-name element specifies the
parameter that should be passed to the request.isUserInRole(String roleName) method. The
role-link is the role, defined in the portlet application’s web.xml, into which the user should be
mapped.

<security-role-ref>
<role-name>ADMIN</role-name>
<role-link>administrator</role-link>

</security-role-ref>

This closes the definition of the portlet. This can be repeated as many times as necessary to define all of
the portlets within your portlet application. Of course, each of your portlets must have a unique name
within this portlet application.

</portlet>

30

Chapter 1

04 469513 Ch01.qxd 1/16/04 11:04 AM Page 30

Portlet Customization Declarations
This defines a custom portlet mode called MY_MODE. Of course, whenever an application defines a cus-
tom portlet mode, it must not only be available through the targeted portal server, but also needs to have
portlets that actually use the mode (while programming defensively enough to avoid breaking in unsup-
ported portal servers).

<custom-portlet-mode>
<description xml:lang=”EN”>Custom portlet mode MY_MODE</description>
<portlet-mode>MY_MODE</portlet-mode>

</custom-portlet-mode>

LEFT-SIDE is defined here as a custom window state. Just as with custom portlet modes, custom win-
dow states can cause problems with your application’s portability. In addition, like custom portlet
modes, you can define multiples in the same application, but they must have unique names.

<custom-window-state>
<description xml:lang=”EN”>Docked into the left side</description>
<window-state>LEFT-SIDE</window-state>

</custom-window-state>

User Attributes and Security Constraints
The following code defines a user attribute called user.business-info.online.email that refers
to a user’s business e-mail address. Typically, these attributes are mapping from the portal server’s per-
sonalization database, which is why using standard names can ease the integration of user attributes.
Developers should use user attributes from the W3C P3P standard, as specified in the Portlet API. This
should ensure that they are unique (as required in the XML Schema for the portlet.xml) and reusable
(standards-compliant).

<user-attribute>
<description>P3P attribute for work e-mail address</description>
<name>user.business-info.online.email</name>

</user-attribute>

This is the security constraint for this portlet application. It lists the name of the portlet, ExamplePortlet,
and also specifies a user data constraint of INTEGRAL. User data constraints define the guarantees specify-
ing how the portlet communicates with the user. Three values are allowed here: NONE, INTEGRAL, and
CONFIDENTIAL. NONE means that there are no guarantees about the transmission of data between the
portlet application and the user. INTEGRAL specifies that the data must be checked to ensure that it has not
been manipulated (no added or removed information from the message). CONFIDENTIAL requires that the
data cannot be read by anyone other than the user. Typically, Secure Sockets Layer (SSL) is used to pro-
vide both INTEGRAL and CONFIDENTIAL constraints.

<security-constraint>
<portlet-collection>

<portlet-name>ExamplePortlet</portlet-name>
</portlet-collection>
<user-data-constraint>

<transport-guarantee>INTEGRAL</transport-guarantee>
</user-data-constraint>

</security-constraint>

31

The Java Portlet API (JSR 168)

04 469513 Ch01.qxd 1/16/04 11:04 AM Page 31

This defines the end of the portlet application.

</portlet-app>

Building a Portlet
Now, let’s work through a complete example of a portlet. This portlet is a little more complex than our
previous example, but it is not as involved as the portlets found in Chapter 9, which covers building
portlet applications.

The first thing to do in building the portlet is to build the portlet class. Most portlet classes simply
extend GenericPortlet, as shown in the following code:

/*
* This class demonstrates a basic search portlet
* using the Jakarta Lucene search API.
*
*/

package org.opensourceportals.samples;
import java.io.IOException;
import javax.portlet.ActionRequest;
import javax.portlet.ActionResponse;
import javax.portlet.GenericPortlet;
import javax.portlet.PortletException;
import javax.portlet.PortletMode;
import javax.portlet.PortletPreferences;
import javax.portlet.PortletRequestDispatcher;
import javax.portlet.RenderRequest;
import javax.portlet.RenderResponse;
import javax.portlet.ValidatorException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.queryParser.ParseException;
import org.apache.lucene.queryParser.QueryParser;
import org.apache.lucene.search.Hits;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.Query;
import org.apache.lucene.search.Searcher;
/**
* @author Clay Richardson
*
*/

public class LucenePortlet extends GenericPortlet {
/*
* This method overrides the doEdit of GenericPortlet
* This is called to provide the markup to be rendered when the
* portlet mode is PortletMode.EDIT
* <p>
* This mode should always show a form to change the indexPath
* preference, indicating where the index is stored.
*/

protected void doEdit(

32

Chapter 1

04 469513 Ch01.qxd 1/16/04 11:04 AM Page 32

RenderRequest request,
RenderResponse response)
throws PortletException, IOException {
PortletRequestDispatcher prd =

getPortletContext().getRequestDispatcher(“/searchEdit.jsp”);
prd.include(request, response);

}

We declare our LucenePortlet, which extends GenericPortlet. When we are in EDIT mode, we dis-
play the searchEdit.jsp.

/*
* This method overrides the doHelp of GenericPortlet
* This is called to provide the markup to be rendered when the
* portlet mode is PortletMode.HELP
* <p>
* This method provides help information by dispatching
* the request to “help.jsp”
*/

protected void doHelp(
RenderRequest request,
RenderResponse response)
throws PortletException, IOException {
PortletRequestDispatcher prd =

getPortletContext().getRequestDispatcher(“/help.jsp”);
prd.include(request, response);

}

And when we are in HELP mode, we display help.jsp.

/*
* This method overrides the doEdit of GenericPortlet
* This is called to provide the markup to be rendered when the
* portlet mode is PortletMode.VIEW
* <p>
* In this case, we will dispatch the method to a JSP
* located in the portlet root directory called “view.jsp”
*/

protected void doView(
RenderRequest request,
RenderResponse response)
throws PortletException, IOException {
String queryMode = request.getParameter(“queryMode”);
String forwardString = “/searchView.jsp”;
if (queryMode != null) {

forwardString = “/searchResults.jsp”;
}
PortletRequestDispatcher prd =

getPortletContext().getRequestDispatcher(forwardString);
prd.include(request, response);

}

33

The Java Portlet API (JSR 168)

04 469513 Ch01.qxd 1/16/04 11:04 AM Page 33

Rendering the VIEW mode depends on whether we passed in a query mode RenderRequest parameter.
If there is a queryMode parameter, we display the results; if not, we display the search box.

/* This method is overriden to specify
* the title programmatically
*/

protected String getTitle(RenderRequest request) {
return “Lucene Portlet”;

}
/* This method is the meat of the portlet
* manipulations of the portlet’s state are done
* through this method.
* <p>
* There are really two types of actions for this portlet
* depending on which mode we are in. In the VIEW mode,
* we have an action that searches a Lucene Index and then
* places the hits in a request attribute. In the EDIT mode,
* we allow users to change the location of the Lucene
* index.
*
*/

public void processAction(ActionRequest aReq, ActionResponse aRes)
throws PortletException, IOException {
PortletMode mode = new PortletMode(aReq.getParameter(“mode”));
aRes.setPortletMode(mode);
if (mode.equals(PortletMode.VIEW)) {

PortletPreferences prefs = aReq.getPreferences();
String indexPath = prefs.getValue(“indexPath”, null);
Searcher searcher = new IndexSearcher(indexPath);
Analyzer analyzer = new StandardAnalyzer();
StringBuffer queryBuffer = new StringBuffer();
String searchString = aReq.getParameter(“searchString”);
if (searchString != null) {

queryBuffer.append(searchString);
String line = queryBuffer.toString();
try {

Query query = QueryParser.parse(line, “contents”, analyzer);
Hits hits = searcher.search(query);
aReq.setAttribute(“hits”, hits);

} catch (ParseException pe) {
pe.printStackTrace();

}
} else {

aRes.setRenderParameter(“queryMode”, “begin”);
}

Our processAction behavior depends on the portlet’s mode. If we have a searchString object, then
we use it to query Lucene. If not, we set a render parameter.

} else if (mode.equals(PortletMode.EDIT)) {
/**
* If the Submit button is passed as a parameter, then we

34

Chapter 1

04 469513 Ch01.qxd 1/16/04 11:04 AM Page 34

* know it came from a form.
*/

if (aReq.getParameter(“Submit”) != null) {
PortletPreferences prefs = aReq.getPreferences();
String indexPath = aReq.getParameter(“indexPath”);
prefs.setValue(“indexPath”, indexPath);

try {
prefs.store();
aRes.setRenderParameter(

“success”,
“The update was successful.”);

} catch (ValidatorException ve) {
System.out.println(“Preferences did not validate.”);
aRes.setRenderParameter(

“success”,
“The preferences did not validate.”);

}

aRes.setRenderParameter(
“index”,
prefs.getValue(“indexPath”, “”));

/**
* Otherwise, we want to pull the preference, and pass it
* as a render parameter to our portlet.
*/

} else {
PortletPreferences prefs = aReq.getPreferences();
aRes.setRenderParameter(

“index”,
prefs.getValue(“indexPath”, “”));

}
}

}
}

In EDIT mode, we set the “index” portlet preference based on the parameters submitted from the
searchEdit.jsp. If there is no “Submit” parameter, we know that it is the initial view of the EDIT
page, and therefore, we want to retrieve the “index” preference.

The LucenePortlet uses a common method of building portlets in that it delegates its user interface
rendering to JSPs through a PortletRequestDispatcher. Two major actions are processed by the
portlet. One, in VIEW mode, handles searching the Lucene index; and the other, in EDIT mode, allows
modification of the Lucene index location, through a portlet preference called indexPath.

We want to determine whether the indexPath preference is actually pointed at a Lucene index, so we
will implement our own PreferencesValidator, called LuceneValidator, which is shown in the
following code:

/*
* This class demonstrates a basic validator.
*
*/

35

The Java Portlet API (JSR 168)

04 469513 Ch01.qxd 1/16/04 11:04 AM Page 35

package org.opensourceportals.validator;
import java.io.File;
import java.util.ArrayList;
import java.util.List;
import javax.portlet.PortletPreferences;
import javax.portlet.PreferencesValidator;
import javax.portlet.ValidatorException;
/**
* @author Clay Richardson
*/

public class LuceneValidator implements PreferencesValidator {
/*
* In order to create a validator, we implement the
* javax.portlet.PreferencesValidator interface.
*
* If it fails validation, we throw a ValidatorException.
*
*/

We declare our LuceneValidator by extending PreferencesValidator.

public void validate(PortletPreferences preferences)
throws ValidatorException {
List problems = new ArrayList();
String indexPath = preferences.getValue(“indexPath”, null);

//Does the preference even exist?
if (indexPath == null) {

problems.add(“indexPath”);
throw new ValidatorException(

“indexPath preference doesn’t exist”,
problems);

} else {

//Let’s check to see if the index is actually there
//The segments file is a good file to key off of...
File index = new File(indexPath, “segments”);
if (!index.exists()) {

problems.add(“indexPath”);
throw new ValidatorException(

“The index doesn’t exist”,
problems);

}
}

}
}

The LuceneValidator checks first to see if the indexPath preference is actually set to some value.
If it is set, then it determines whether the specified directory contains a “segments” file, which would
indicate the presence of a Lucene search engine index. This is a perfect example of how you would

36

Chapter 1

04 469513 Ch01.qxd 1/16/04 11:04 AM Page 36

want to use a validator as a mechanism to check a condition that is more complicated than simply “pre-
sent” or “not present.” If either of these conditions is false, then the LuceneValidator will throw a
ValidatorException.

Now that we have managed the major logical parts of the LucenePortlet, we will review the presenta-
tion aspects of the portlet. The following code shows search_view.jsp, which presents a user interface
for searching:

<%@ page import=”javax.portlet.PortletURL” %>
<%@ taglib uri=”http://java.sun.com/portlet” prefix=”portlet” %>
<portlet:defineObjects/>
<table width=”100%” border=”0” cellspacing=”0” cellpadding=”0”>

<tr>
<th>SEARCH</th>

</tr>
<tr>

<td>
<FORM action=”<portlet:actionURL />” method=”POST”>

<input type=”text” name=”searchString”/>
<INPUT type=”submit” name=”Submit” value=”Go”/>

</FORM>
</td>

</tr>
</table>

In this JSP, we see the first use of the Portlet Tag Library. These tags provide access to the portlet from
within a JSP. The most interesting use here is the actionURL tag, which is the proper way of creating
links within a portlet application. Creating them as was traditionally done in Web applications, by
appending parameters to an HTTP query string, is not correct, as it may omit portal-specific references
that should be included in the URL.

Logically, we now need a page to view the results of our search. The following code provides a search
results page:

<%@ page import=”java.util.*,org.apache.lucene.search.*,java.text.*” %>
<%@ page import=”org.apache.lucene.document.*” %>
<jsp:useBean id=”hits” scope=”request” type=”org.apache.lucene.search.Hits”/>
<%
String shaded = “silver”;
DecimalFormat form = new DecimalFormat(“#”);
%>
<p>
<i><%=hits.length()%></i> Documents match your request.
<p>
<center>
<table width=”100%”>
<%

for (int i = 0; i < 25; i++) {
Document doc = hits.doc(i);
if (i % 2 == 0) {

shaded = “silver”;

37

The Java Portlet API (JSR 168)

04 469513 Ch01.qxd 1/16/04 11:04 AM Page 37

} else {
shaded = “white”;

}
%>

<tr bgcolor=”<%=shaded%>”>
<td>
<%=(i+1+startRow)%>. (
<%=form.format((hits.score(i)*100))%>%)

<a href=”<%=doc.get(“url”)%>”><%=doc.get(“title”)%>

<%=doc.get(“summary”)%>
</td>

</tr>
<% } %>
</table>
</center>

As you can see, this is a simplistic search result page, providing only twenty-five search results, and no
paging capability.

Finally, the following code provides the portlet application deployment descriptor, also known as the
portlet.xml file:

<?xml version=”1.0” encoding=”UTF-8”?>
<portlet-app>

<portlet id=”LucenePortlet”>
<portlet-name>LucenePortlet</portlet-name>
<display-name>Example Search Portlet with Lucene</display-name>
<portlet-class>org.opensourceportals.samples.LucenePortlet</portlet-class>
<expiration-cache>-1</expiration-cache>
<supports>

<mime-type>text/html</mime-type>
<portlet-mode>EDIT</portlet-mode>
<portlet-mode>VIEW</portlet-mode>
<portlet-mode>HELP</portlet-mode>

</supports>
<portlet-info>

<title>Example Search Portlet with Lucene</title>
<short-title>Lucene Search</short-title>
<keywords>Search, Lucene</keywords>

</portlet-info>
<portlet-preferences>

<preference>
<name>indexPath</name>
<value>C:\lucene\index</value>

</preference>
<preferences-

validator>org.opensourceportals.validator.LuceneValidator</preferences-validator>
</portlet-preferences>

</portlet>
</portlet-app>

The portlet.xml file is very basic, just like the portlet we just wrote. It provides three modes, and spec-
ifies a validator for its preferences.

38

Chapter 1

04 469513 Ch01.qxd 1/16/04 11:04 AM Page 38

Summary
This chapter focused on explaining the Java Portlet API. It provided a basic end-to-end example of a
portlet to demonstrate the API in a practical use. However, for a more comprehensive chapter on build-
ing portlet applications, see Chapter 9.

39

The Java Portlet API (JSR 168)

04 469513 Ch01.qxd 1/16/04 11:04 AM Page 39

04 469513 Ch01.qxd 1/16/04 11:04 AM Page 40

Searching with Lucene

Lucene is an open-source search API that was originally built by Doug Cutting and is now main-
tained by the Apache Software Foundation’s Jakarta Project. The Lucene project Web site is located
at http://jakarta.apache.org/lucene.

Note that Lucene is a search engine API and not a search engine application. Of course, this
causes you to say, “What?! I have been robbed. I want a search engine, not an API to write my own
search engine!” Now, we will not even discuss the “value proposition” of open-source software,
which is well understood to all but a few concerned vendors, but it should be noted that making
Lucene an API gives you the flexibility to use it in your application. Having worked with a few
search engine applications, we can assuredly say that it is better to implement interfaces yourself
than write tortured adapters to relatively closed APIs. By the time you are done reading this chap-
ter, you will see how easy it really is.

This chapter explains the concepts behind search engine applications, describing how they are
implemented in Lucene, and showing you how to use the Lucene API to build search applications.

Understanding Search Engine Concepts
What is a search engine? The simple answer, and the one that most people offer without much
thought, is that it is a text box into which you type text, after which you press a Submit button.
From there, it returns a set of documents that contain your selected words. Now, all of us that have
done extensive Web research understand that it is more complicated than just returning particular
documents that contain the “magic words.” We know that search engines that simply do text
matching are horribly ineffective.

05 469513 Ch02.qxd 1/16/04 11:04 AM Page 41

When we talk about the effectiveness of a search engine, we are talking about two concepts:

❑ Accuracy — What percentage of all the documents available for the particular query issued
were actually returned?

❑ Precision — What percentage of the documents returned are actually about the particular
query?

Figure 2.1 illustrates the concept of accuracy. The large circle on the bottom represents all of the possible
documents available on a given topic. The smaller circle above represents the documents returned from
a search. The overlap in the middle represents the accurate documents. In a perfectly accurate search, the
top circle would completely cover the bottom circle.

Figure 2.1

Figure 2.2 demonstrates the concept of precision. The large circle on the bottom represents the documents
returned from a search. The smaller circle above represents the returned documents that are really about
the search topic. The overlap in the middle represents the precise documents. In a perfectly precise search,
the top circle would completely cover the bottom circle.

Accurate Documents

All Documents Found

All Documents on the Subject

42

Chapter 2

05 469513 Ch02.qxd 1/16/04 11:04 AM Page 42

Figure 2.2

Basically, the idea is to find an optimal point at which you receive as many of the documents that are rel-
evant as possible while minimizing documents that should not be retrieved.

The Anatomy of a Search Engine
So, how exactly does a search engine work? The simple answer is that it sucks in a bunch of documents
and organizes them into an index. That index is then used to return answers to queries in rank order.
Figure 2.3 illustrates this concept.

Figure 2.3 demonstrates the two paths through the search engine. The first path shows how the index
gets filled with documents. The documents are fed to an analyzer that then transforms them into the
appropriate weighted terms (or scores) and passes them to the IndexWriter. The second path through
the search engine shows how the index is queried for documents. The same analyzer is used to derive a
user-defined set of terms that are, in turn, passed to the IndexSearcher to perform the search of the
index. Because indexes rarely ever hold the entire document verbatim, a set of Hits are returned, with
each hit representing what is retained about the document within the index.

Precise Documents

All Documents on the Subject

All Documents Found

43

Searching with Lucene

05 469513 Ch02.qxd 1/16/04 11:04 AM Page 43

Figure 2.3

As you can see, the central part of a search engine is its indexes. How these indexes are built is remark-
ably similar amongst all search engines. An algorithm builds a list of entries, with each of the entries
containing a document identifier and a scored term. For example, a page from the American Kennel
Club scores the term “dog” at 9.03. While the number really depends on the scoring system chosen by
the algorithm, it essentially represents the confidence of the search engine that this document is relevant
to the term “dog.” When a query is sent to a search engine, the same algorithm is used to score what the
query means (in these weighted terms), which then allows us to compare it with the weighted terms of
the indexed documents.

These algorithms vary, but some of the typical facets of search engines are represented in the following
table.

Docs Query Parser

Analyzer

Query

Hits

Index Writer Index Searcher

Index

Index Path
Query Path

44

Chapter 2

05 469513 Ch02.qxd 1/16/04 11:04 AM Page 44

Technique Description

Stop Words Certain words, such as “the,” “a,” “and,” and so on have very little use or
meaning in indexing documents (they appear on every page).

Stemming This technique chops off parts of a word to get to the root word; for example,
the word “cats” becomes “cat.”

META tags META tags provide a way for developers to suggest keywords for a given
page. This can be used to increase the score for certain words in the docu-
ment. Unfortunately, they often bias the index for a document regardless of
the actual relational relevance to the document. For example, in the early
days of the Internet, Web developers would use “explicit words” as key-
words, hoping to increase traffic to their unrelated site—and it worked.
Therefore, many search tools ignore the suggested keywords either some-
what or entirely, preferring to allow their indexing algorithm to ascertain the
document content.

Page ranking Page ranking turns Web surfers into editorial assistants. By allowing the
users of a search engine to rank the applicability of a given document to their
search, the index gets “smarter.”

Page linkages Page linkages operate on the premise that if your page is a good reference
about something, chances are good that someone has linked to it, particularly
if it is related. Therefore, a linkage from a highly relevant document could
lend itself to a higher ranking. Of course, sometimes links are not very rele-
vant to the current page. For example, our home page may have links to
http://www.nationalreview.com, which tells you some things about us, but
doesn’t really tell you much about that page (other than maybe its popular-
ity). Of course, popularity is useful in a search engine until you realize that
the most popular sites are generally well known and more generic—and
search engines like to find specific things.

Parts of Speech Often, considering the part of speech of a word can define its value. Further-
more, if you consider its grammatical function, then you can weigh it more
heavily. For example, is the word the subject of a sentence?

Term Proximity Term proximity relates to how close two words are in a sentence, with the
premise that they are closely related if they are close together.

Semantic Nets/ This principle is a far more sophisticated example of the previous one. Essen-
Bayesian Nets tially, what it seeks to do is group together like words into “concepts.” For

example, the concept “Butcher of Baghdad” seems to always be related to
“Saddam Hussein,” so essentially these nets organize words into statistical
proximities and perform very complex matching algorithms to determine
how closely related one net is to another. The advantage of this strategy is
that the more data you feed it, the more statistical evidence it gathers and
hence the “smarter” it becomes.

Term Expansion This takes a term and runs it through a thesaurus to add more terms to gain a
better understanding of the words surrounding the original term.

45

Searching with Lucene

05 469513 Ch02.qxd 1/16/04 11:04 AM Page 45

Which of these techniques are used and to what extent a given search engine uses each is dependent on
the search engine. Usually, this is a closely guarded proprietary secret, wrapped in a shroud of market-
ing materials. What about Lucene? The answer depends on how you decide to build your analyzers.

Before describing the anatomy of Lucene, take a look at an example of these indexing strategies at work.
Figure 2.4 shows a paragraph to be indexed.

Figure 2.4

This sample is a typical example of a paragraph that search engines process every day. For simplicity’s
sake, we have left it as a very small passage and have given it a broad scope to demonstrate how a docu-
ment can be about numerous things. Of course, we will also simulate a very simplistic (and probably not
very effective) algorithm, for the sake of covering the basics.

One of the first things done in processing a given piece of text is to remove all of the superfluous
garbage that is not very useful in terms of indexing a document. Remember that the central point in
indexing a document is to find the words that describe what the document is about (accuracy), and not
add too much garbage (precision). Therefore, we should remove the things that are common to the vast
majority of documents. The first thing to remove is the punctuation, as it is not helpful in distinguishing
documents. Then, we remove words that are so common in the English language that we would find
them in virtually every document. These words are called stop words in Lucene speak, as you want to
stop them from being indexed (because they will kill your precision). Typical examples are articles (such
as “a,” “an,” and “the”), prepositions (such as “of,” “for,” and “to”), and conjunctions (such as “but,”
“if,” and “then”). A good stop words list will contain many words that you would not instantly recog-
nize as frequently overused. There are people who study the use of the English language extensively,
and they produce lists of words that are so frequently used that they seem to lose any discernable mean-
ing when analyzing text, such as “everything,” “anyone,” and “nobody.” These words are so widely
used in many contexts that it is hard to derive any meaning from their use in a given piece of text. Figure
2.5 shows how our sample is processed to eliminate the punctuation and stop words.

Figure 2.5

Notice how this cuts a significant amount of data out of the paragraph, as many of the words we employ
are used to “glue together” our sentences. You can see how the remaining words, taken individually,
seem more meaningful.

My name is Clay. I have been programming with Java since 1996.
In addition to working as a Java Architect, I write books on Java
and teach a course on Java for Virginia Tech. In my free time, I am
a volunteer firefighter.

My name is Clay. I have been programming with Java since 1996.
In addition to working as a Java Architect, I write books on Java
and teach a course on Java for Virginia Tech. In my free time, I am
a volunteer firefighter.

46

Chapter 2

05 469513 Ch02.qxd 1/16/04 11:04 AM Page 46

Another technique involved in processing text is to provide stemming. This is a very simplistic stemming
algorithm, but Figure 2.6 shows how stemming reduces three of the words to their more meaningful roots.

Figure 2.6

Some words are more readily related by using their root form — ”work,” “works,” and “working” all
demonstrably mean the same thing. Notice also that stemming the word “addition” is not necessarily a
good thing, as “add” is not exactly the same concept. This shows you the inexact science of stemming,
which is frequently the issue in indexing algorithms. The more you manipulate the text, the more likely
you are to introduce error and uncertainty.

Figure 2.7 shows the next step in our simple algorithmic processing. This relates to grouping and rank-
ing terms by parts of speech (or a more specifically grammatical role).

Figure 2.7

Notice how our algorithm has preserved the proper names for both the title of “Java Architect” and the
university “Virginia Tech.” This approach recognizes that names often have a lot of significance (which is
why we have them), and therefore creates combined terms. Some search engines do this type of process-
ing and others do not. Note that the Standard Analyzer for Lucene, by reducing everything to lowercase,
would make such processing practically impossible. However, it is introduced here in order to give you
an idea of numerous ways that one can look at a piece of text and process it for meaning.

Figure 2.8 shows the final index entries. Note that most search engines, for speed purposes, store their
data in what is known as an inverted index. Therefore, you actually list the terms and then the docu-
ments that contain those terms. This is much like the index of this book, except that the terms in the
index are not weighted. For our example, we will weight them.

Java
Clay
program
1996
add
work
Java Architect
write
book
teach
course
Virginia Tech
volunteer
firefighter
free
time

Clay programming Java 1996 addition working Java Architect
write books Java teach course Java Virginia Tech free time
volunteer firefighter

47

Searching with Lucene

05 469513 Ch02.qxd 1/16/04 11:04 AM Page 47

Figure 2.8

In this example, two terms have been pulled from our index. Below each of the terms is a list of docu-
ment identifiers, along with a weighting of that document for that term. In our example, our document
was given identifier 336, and we have arbitrarily given it a high rating on both ends (normally, these rat-
ings would be ascertained from a number of weighting algorithms).

Now that you have looked at the general concepts of indexing, it is time to examine how Lucene works.

The Anatomy of Lucene
Lucene is a very straightforward and modular API. It involves a set of classes that you implement, or
you can choose to use some of the demo classes included with the Lucene distribution.

To index documents using Lucene, you write a method (or a utility class) that performs the following
steps:

1. Gathers a list of files to be indexed.

2. Creates an instance of a Document object to handle an InputStream to each file. This could be
an instance of FileDocument or HTMLDocument — both included as part of the Lucene demo.

3. Creates an instance of Analyzer. This could be the included StandardAnalyzer or one as
sophisticated as you can make it.

4. Creates an IndexWriter with the following: a location of where to locate (place) the index, the
instance of Analyzer just created, and a flag to tell it whether to create the index or not (if it is
missing).

5. Adds the Document objects to the IndexWriter using the addDocument method.

As you can see, the process is very straightforward. In fact, Lucene deploys with two demonstrations of
how to do exactly this; furthermore, the Javadoc is very good at explaining how things work. The fol-
lowing basic code example performs the task:

/*
* BasicIndex.java
*

Java
<336, 0.99>
<356, 0.87>
<378, 0.76>
<236, 0.67>
<386, 0.56>
<598, 0.44>
Java Architect
<336, 0.89>
<226, 0.67>
<278, 0.56>
<236, 0.47>

48

Chapter 2

05 469513 Ch02.qxd 1/16/04 11:04 AM Page 48

* in
*
* org.opensourceportals.lucene
*
*/

package org.opensourceportals.lucene;
import org.apache.lucene.index.*;
import org.apache.lucene.document.*;
import org.apache.lucene.analysis.standard.*;
import java.io.*;
import java.util.*;
/**
* @author Clay
*/

public class BasicIndex {
public static void main(String[] args) {

if (args.length == 0) {
System.out.println(

“Usage: java BasicIndex <index-path> [files]”);
}
String indexPath = args[0];
IndexWriter writer;
try {

writer =
new IndexWriter(indexPath, new StandardAnalyzer(), false);

for (int i = 1; i < args.length; i++) {
System.out.println(“Indexing: “ + args[i]);
File indexFile = new File(args[i]);
InputStream fis = new FileInputStream(indexFile);

We have created a basic application that shows how to index a document. We created an IndexWriter
based on the location of the index given in the first argument, and then we iterated through the remain-
ing arguments to get the locations of the files that we need to process.

/*
* We use a Document with four fields:
* the file path, the last modified date
* the length of the file
* and the file’s contents.
*/

Document doc = new Document();
doc.add(Field.UnIndexed(“path”, indexFile.getPath()));
doc.add(

Field.UnIndexed(
“length”,
Long.toString(indexFile.length())));

doc.add(
Field.UnIndexed(

“modified”,
new Date(indexFile.lastModified()).toString()));

doc.add(
Field.Text(“text”, (Reader) new InputStreamReader(fis)));

49

Searching with Lucene

05 469513 Ch02.qxd 1/16/04 11:04 AM Page 49

writer.addDocument(doc);
fis.close();

}
writer.close();

} catch (IOException ioe) {
System.out.println(ioe);

}
}

}

Now, we create the Document object that we are going to index and define a set of fields that are rele-
vant metadata to store in our index. In this case, we decide to store the file path, the file length, the file's
last modified date, and the contents of the file. (Of course, we would want to limit storing the whole file
if we had large files.) Then we write the document to the IndexWriter.

Of course, only placing documents in an index is pointless if they cannot be queried, so the following
steps walk you through how that is accomplished:

1. Create a QueryParser by passing in the default field to search (as a String) and an instance of
Analyzer (important: make sure you use the same type of Analyzer that was used to build the
index).

2. Call parse on QueryParser to return a Query object.

3. Initialize an IndexSearcher with the location of the index you wish to search.

4. Pass the Query object into the search method of IndexSearcher, which will return a Hits
object.

5. Because the Hits object is just a ranked list of Document objects, you then parse that data and
present it as you wish.

Once again, this is a pretty straightforward process to search a document. Furthermore, a demo Web
application included with Lucene does precisely this. The following code is a very simple example of
how to show the process in code:

/*
* BasicSearch.java
*
* in
*
* org.opensourceportals.lucene
*
*/

package org.opensourceportals.lucene;
import org.apache.lucene.search.*;
import org.apache.lucene.queryParser.*;
import org.apache.lucene.analysis.standard.*;
import org.apache.lucene.queryParser.*;
/**
* @author Clay
*/

public class BasicSearch {
public static void main(String[] args) {

50

Chapter 2

05 469513 Ch02.qxd 1/16/04 11:04 AM Page 50

if (args.length == 0) {
System.out.println(

“Usage: java BasicSearch <index-path> \”search string\””);
}
String indexPath = args[0];
String searchString = args[1];
try {

Searcher searcher = new IndexSearcher(indexPath);
Query query =

QueryParser.parse(
searchString,
“text”,
new StandardAnalyzer());

We create an IndexSearcher from our first argument and a Query based on our second argument.
Notice our choice of a StandardAnalyzer and how it coincides with the analyzer used to create the
index. This is important because the document and the query need to be analyzed using the same algo-
rithm to get accurate results.

Hits hits = searcher.search(query);
for (int i = 0; i < hits.length(); i++) {

System.out.println(
hits.doc(i).get(“path”)

+ “; Size: “
+ hits.doc(i).get(“length”)
+ “ bytes; Last Modified: “
+ hits.doc(i).get(“modified”)
+ “; Rating: “
+ hits.score(i));

}
} catch (Exception ioe) {

System.out.println(ioe);
}

}

Now, we pass our Query into our IndexSearcher which returns a Hits object. We iterate through that
Hits object, retrieving each of its Document objects. For each of those, we print out three of its fields
(“path”, “length”, and “modified”) and its relative score.

Both of these basic examples overlook the most advantageous thing about the Lucene search API.
Because it is not a tool, but rather an API, the interfaces are very clean. Therefore, while no tool would
use such simplistic mechanisms to index and search documents, Lucene can provide similar capabilities.
Furthermore, it can provide real value in being extensible and customizable. In order to determine how
to provide these capabilities, it is important to examine a number of these specialized objects.

Analyzer
Much of the early part of this chapter was devoted to describing how search engines analyze text. This is
because it is the central activity and purpose of a search engine. The great thing about Lucene is that you
can write your own Analyzer to accommodate the sophistication desired for your particular application.
Next is an example of how a custom Analyzer looks.

51

Searching with Lucene

05 469513 Ch02.qxd 1/16/04 11:04 AM Page 51

/*
* CustomAnalyzer.java
*
* in
*
* org.opensourceportals.lucene
*
*/

package org.opensourceportals.lucene;
import org.apache.lucene.analysis.*;
import java.io.*;
import java.util.*;
/**
* @author Clay
*
* This is an example of how to build a basic Analyzer
*/

public class CustomAnalyzer extends Analyzer {
private static Hashtable stopWords;
/**
* An array containing some common English words
* that are usually not useful for searching.
*/

public static final String[] STOPWORDS = {
“about”, “after”, “all”, “also”, “an”, “and”,
“another”, “any”, “are”, “as”, “at”, “be”,
“because”, “been”, “before”, “being”, “between”,
“both”, “but”, “by”, “came”, “can”, “come”,
“could”, “did”, “do”, “does”, “each”, “else”,
“for”, “from”, “get”, “got”, “has”, “had”,
“he”, “have”, “her”, “here”, “him”, “himself”,
“his”, “how”, “if”, “in”, “into”, “is”, “it”,
“its”, “just”, “like”, “make”, “many”, “me”,
“might”, “more”, “most”, “much”, “must”, “my”,
“never”, “now”, “of”, “on”, “only”, “or”,
“other”, “our”, “out”, “over”, “re”, “said”,
“same”, “see”, “should”, “since”, “so”, “some”,
“still”, “such”, “take”, “than”, “that”, “the”,
“their”, “them”, “then”, “there”, “these”,
“they”, “this”, “those”, “through”, “to”, “too”,
“under”, “up”, “use”, “very”, “want”, “was”,
“way”, “we”, “well”, “were”, “what”, “when”,
“where”, “which”, “while”, “who”, “will”,
“with”, “would”, “you”, “your”, “0”, “1”, “2”,
“3”, “4”, “5”, “6”, “7”, “8”, “9”, “000”, “$”,
“a”, “b”, “c”, “d”, “e”, “f”, “g”, “h”, “i”,
“j”, “k”, “l”, “m”, “n”, “o”, “p”, “q”, “r”,
“s”, “t”, “u”, “v”, “w”, “x”, “y”, “z”

};
/**
* Constructor for our CustomAnalyzer.
* We take the opportunity to make a hash table for the
* stop words - to be used in the tokenStream method.
*/

public CustomAnalyzer() {
stopWords = StopFilter.makeStopTable(STOPWORDS);

}

52

Chapter 2

05 469513 Ch02.qxd 1/16/04 11:04 AM Page 52

We declared our stop words and override the default constructor to populate a Hashtable of those stop
words using the StopFilter object’s makeStopTable method.

/**
* The critical method to override in order to perform Analysis
*
* The String is used so that an Analyzer can be passed a field
* name and thus use a set of strategies for analysis depending
* on the field that was passed in. We don’t need such a
* capability
*/

public TokenStream tokenStream(
String doesNothing,
Reader reader) {
return new StopFilter(

new LowerCaseTokenizer(reader),
stopWords);

}
}

CustomAnalyser does little more than change everything to lowercase and filter out stop words, but it
provides a basic example of how to write an Analyzer. Note that the tokenStream method takes a
String; this is new from previous releases of Lucene, which took only a Reader. The rationale behind
this is that you could want to use a different strategy for analyzing the text based on the field. We didn’t
use that feature here, but it provides the capability, if desired, for a more sophisticated implementation.

Document
In designing your indexing solution, you must first consider how to create your Document objects. Because
a document is essentially a record in your index, you can think of this as developing the schema for your
index. It becomes particularly important in determining which fields can be searched, which are tokenized,
and which are available for displaying results. The following table discusses the types of fields.

Method Indexed Tokenized Stored Example Usage

Field.Text(String True True True The document summary
name, String value)

Field.Text(String True True False A large document summary
name, Reader value) (worth storing but too big to

hold verbatim)

Field.Keyword(String False True True The keywords or document
name, String value) title (the searchable metadata

fields)

Field.UnIndexed(String False False True The modification date (not
name, String value) searched but returned)

Field.UnStored(String True True False The document’s full text
name, String value)

53

Searching with Lucene

05 469513 Ch02.qxd 1/16/04 11:04 AM Page 53

As you can see, there is a bit of overlap among the field types. Essentially, you should ask yourself
whether this field needs to be searched, whether it needs to be displayed, and whether it is too big to be
stored. Those questions will help guide your selection of what field types to use.

Directory
The Directory object is an abstraction of the underlying storage of indexes. There are two existing
implementations of the abstract Directory class: FSDirectory for file systems, and RAMDirectory for
in-memory storage. In theory, you can implement your own Directory object to store your indexes in
numerous underlying storage mechanisms such as databases or document management systems.
Unfortunately, the Directory class adopts a file-based paradigm, which makes it tougher to understand
how to implement the interface.

Understanding the Lucene Query Syntax
Lucene provides the flexibility for you to write your own query language. However, this flexibility has
already provided a strong query language to use right out of the box. A good reference for this is avail-
able online at http://jakarta.apache.org/lucene/docs/queryparsersyntax.html. The following sections
explain the syntax.

Terms
Terms are generally like your conventional search engine. Each word, separated by a space, is a term
unless you place them in quotes:

members “vast right wing conspiracy”

In this case, there are two terms: “members” and “vast right wing conspiracy.” Clearly, you do not want
the terms vast, right, wing, or conspiracy by themselves. They are combined to be a meaningful term.

Fields
Our previous search will search against the default field that you specified when you initialized your
QueryParser. However, sometimes you would like to search against another of the fields in your index:

site:www.rnc.org “vast right wing conspiracy”

In this case, you are specifying that you want to search for “www.rnc.org” in the site field (which you
created) in your index. The “vast right wing conspiracy” term is still being run against the default field.

Term Modifiers
There are a number of ways that you can modify a term within your search. The following table demon-
strates a list of these modifiers.

54

Chapter 2

05 469513 Ch02.qxd 1/16/04 11:04 AM Page 54

Technique Example Description

Single Character to?t Matches any character in that one position. For
Wildcard example, “toot” or “tort” would be valid matches.

Multiple Character to*t Matches any number of characters in that position.
Wildcard In this case, the word “toast” would also be valid.

Fuzzy Usama~ Placing a tilde (~) at the end of the word provides
fuzzy logic using the Levenshtein Distance algo-
rithm. In this case, this would return “Osama” as a
valid term. This is useful when you believe you may
be a character off on a spelling. This technique
implicitly boosts the term by 0.2 also.

Boosting UML^5 tools Increases the relevance of a search term. In this case,
it means that “UML” is five times more relevant
than “tools.” The boost factor must be positive, but
can be a decimal (for example, 0.5).

Proximity “Microsoft Java”~7 This will return results where the words “Microsoft”
and “Java” are within seven words of each other.
This can provide a basic conceptual search capability
by indicating how certain key words can be closely
related.

Boolean Operators, Grouping, and Escaping
Lucene supports the common Boolean operators found in almost all search engines:

❑ AND indicates that two terms must be present together in a given document, but in no particu-
lar order, such as a phrase term (for example, “cold war”). For another example, Homer AND
Simpson will return pages that contain both terms, even if they are not next to each other.

❑ OR will return pages that contain either of the terms indicated. This is helpful when you have
alternate ways of describing a particular term. “Bull Run” OR Manassas would return pages
that contain either of the names used to describe the first battle of the American Civil War.

❑ + means that a term must exist on a given page. If you use +Wrox Java, it would return only
pages that had “Wrox” on them.

❑ - means that a term cannot appear on a given page. If you wanted to look at all pages related to
Wrox that don’t pertain to Microsoft, you could use Wrox -Microsoft.

❑ NOT behaves much like the “-” command. If you were looking for documents about the Bundy
family, but you didn’t want to be bogged down by all the documents about Ted Bundy, you
would use Bundy NOT Ted.

You cannot use wildcards at the beginning of a search term.

55

Searching with Lucene

05 469513 Ch02.qxd 1/16/04 11:04 AM Page 55

Grouping is another powerful capability that also exists in Lucene. Usually, if you are going to use Boolean
conditions, you need a mechanism to group together conditions. Consider the following example:

(“order of battle” AND “casualty figures”) at the First Battle of (“Bull Run” OR
Manassas)

In this case, you want pages that contain the order of battle and the casualty figures for the first battle of
what is known as either “Bull Run” or Manassas. This shows a perfect example of using grouping and
Boolean operators to make sophisticated queries.

Of course, to support this expansive query syntax, Lucene uses a number of special characters, listed here:

+ - && || ! () { } [] ^ “ ~ * ? : \

Therefore, for you to search for a TV show called “Showdown: Iraq,” you would need to escape the
colon in the query as follows: “Showdown\: Iraq”. Notice how this is just like the escape sequence in
Java, so it should be easy to remember.

While you have seen the power of the Lucene Query Syntax, and how useful it can be in creating sophis-
ticated searches, it is very important to consider the sophistication of the users of your system. While
most developers, and particularly open source developers, are strong Web researchers, most users of
your system will not have a strong understanding of Lucene’s searching capabilities. Therefore, it
becomes very important to provide a good user interface to enable users to maximize the benefits of
searching with Lucene.

Figure 2.9 provides an example of an Advanced Search page meant to leverage these advanced capabilities.

Figure 2.9
56

Chapter 2

05 469513 Ch02.qxd 1/16/04 11:04 AM Page 56

Optimizing Lucene’s Performance
In order to understand the performance considerations of Lucene, first consider how Lucene creates its
indexes. Lucene creates segments that hold a certain number of files in them. It is easy to think of a seg-
ment as an index part. Lucene holds its index in memory until it reaches the allowed capacity, and then
it writes it to a segment on the disk. Once a certain number of segments have been written, Lucene
merges the segments into bigger segments.

To determine how often to write and merge the indexes to disk, the IndexWriter has a member variable
known as the mergeFactor. The mergeFactor specifies how many files are stored before writing a seg-
ment. In addition, it controls how many segments are written before they are merged together. Raising
the merge factor increases the speed of your indexing activity, because more is being kept in memory and
fewer file reorganization manipulations are being conducted. However, note two obvious problems here.
First, your machine is limited in the amount of memory it has (a small fraction of the disk space), and sec-
ond, the operating system can often limit the number of files you can have open at one time.

You also need to know that IndexWriter has a member variable called maxMergeDocs. This variable
sets the limit on the number of files that can be contained in one segment.

Of course, the more files you have, and the less merging you do, the slower your searching will be.
However, anticipating this problem, IndexWriter has a method known as optimize that will combine
the segments on the disk (and reduce the number of files). Note that optimization can slow down index-
ing tremendously, so a strong consideration would be to limit the use of optimize in indexing-intensive
applications, and use it extensively in searching-intensive applications.

Summary
Lucene is a powerful search engine API. It is written in a very modular fashion, which allows you, as a
developer, a tremendous amount of freedom in how you decide to use it to solve your problems. Because
it is an API, it could be very effectively used to index your e-mail Inbox, a database, or a set of news feeds.
The applications are limited only by how you choose to use them.

This chapter covered the basics of search engines. Then we showed the techniques that search engines
use to analyze text. From there, we described the internals of the Lucene API, providing some examples
of how to do the major tasks required of an application developer who implements a solution with this
API. We described the query syntax as a means of helping developers understand the toolset available
for searching, and to encourage them to develop more sophisticated GUIs to leverage it.

Part II of this book describes how to build your own portal. It provides practical examples of how you
can add Lucene to your enterprise portal solution.

57

Searching with Lucene

05 469513 Ch02.qxd 1/16/04 11:04 AM Page 57

05 469513 Ch02.qxd 1/16/04 11:04 AM Page 58

Messaging with
Apache James

The Java Apache Mail Enterprise Server (James) is an open-source Java mail server that is part of
the Apache Software Foundation’s Jakarta project. It is a 100 percent pure Java mail server that was
designed to be a powerful, portable, and robust enterprise solution for e-mail and e-mail-related ser-
vices. Part of its strength comes from the fact that it is based on current and open protocols. James is
comprised of several different components and can be configured in different ways to offer a fully
flexible and customizable framework. It is currently built on top of the Apache Avalon application
framework (http://avalon.apache.org), which is also part of the Jakarta project. This framework
encompasses good development practices and provides a solid foundation to host the James mail
server.

This chapter explores various concepts of the James server. It explains how to obtain, install, and
configure the James server, and describes the various components that provide for the total e-mail
solution. The chapter concludes with an introduction to the JavaMail Application Programming
Interface (API), a small example application for sending and receiving e-mail using JavaMail and
the James e-mail server, and an example of how James can be used as part of a portal application.
This chapter covers many aspects of the James mail server, but for a more in-depth discussion and
explanation of all of the components that comprise the James framework, visit its primary Web site
at http://james.apache.org.

Introducing James
James was designed to be a complete enterprise mail solution. It can serve as a core component in
an overall portal solution. The James server has many design objectives that are implemented in a
number of features, including the following:

06 469513 Ch03.qxd 1/16/04 11:04 AM Page 59

❑ Server Portability — Apache James is a 100 percent pure Java application that is based on the
Java 2 platform and the JavaMail API.

❑ Complete Solution — The James mail server can handle the transport and storage of mail mes-
sages on a single server. It does not require any other server or another associated application.

❑ Protocol Abstraction — James views the various mail protocols as simply communication lan-
guages that tie the mail client to the mail server. It does not depend on any particular protocol,
but rather follows an abstracted server design.

❑ Mailet Support — A mailet is a discrete piece of mail processing logic that is incorporated into
the processing of a mail-compliant mail server. Apache James is such a server and supports the
Apache Mailet API. Mailets are easy to write and enable developers to build highly customized
and powerful mail applications.

❑ Resource Abstraction — Apache James abstracts its resources and accesses them through
defined interfaces, much like the e-mail protocols are used. These resources include features
such as JavaMail, used for mail transport, the Mailet API, and Java DataBase Connectivity
(JDBC), for message and user data storage. James is highly modular and packages its compo-
nents in a very flexible manner.

❑ Secure and Multi-Threaded Design — Apache James has a careful, security-oriented, fully
multi-threaded design, allowing enhanced performance, scalability, and mission-critical use.
This approach is based on the technology developed for the Apache JServ servlet engine.

James also introduces several concepts that are at the core of how it manages to operate as a mail server,
from both a production and administrative point of view. We will first describe them in a little more
detail so that you get a better idea of how they work. How to configure these items in the James server is
described in the section “Configuring James.”

Working with Mailets and Matchers
As mentioned earlier, a mailet is a discrete piece of mail processing logic that is incorporated into the
processing of a mail server. James operates as a mailet-compliant mail server, which means that it under-
stands how to process the Java code that uses the Mailet API. A mailet can do several things when pro-
cessing a mail message. It can generate an automatic reply, build a message archive, update a database,
or any other thing a developer would like to do with a mail message. James uses matchers to help deter-
mine whether a mailet should process a given e-mail message that just arrived. If a match is found,
James invokes that particular mailet.

The Mailet API is a simple API used to build mail processing instructions for the James server. Because
James is a mailet container, administrators of the mail server can deploy mailets. These mailets can either
be prepackaged or custom built. In the default mode, James uses several mailets to carry out a variety of
server tasks. Other mailets can be created to serve other purposes. The current Mailet API defines inter-
faces for both matchers and mailets. Because the API is public, developers using the James mail server
can write their own custom matchers and mailets.

Writing mailets and matchers is a relatively simple process. For mailets, you typically implement the
Mailet interface through the org.apache.mailet.GenericMailet class. This class has several meth-
ods, but in order to write a generic mailet, you only have to override the service method:

abstract void service(Mail mail)

60

Chapter 3

06 469513 Ch03.qxd 1/16/04 11:04 AM Page 60

Writing a matcher is just as simple. Simply use the org.apache.mailet.GenericMatcher class and
override the match method:

abstract Collection match(Mail mail)

Matchers, as identified earlier, are used to match mail messages against a set of conditions. If a match is
met, it returns a set of the recipients of that message. Matchers do not modify any part of the message
during this evaluation. Mailets, on the other hand, are responsible for processing the message and can
alter the content of the message or pass it on to some other component. James comes bundled with sev-
eral mailets and matchers in its distribution. The following sections describe the various mailets and
matchers that are bundled with the James server.

Bundled Matchers
The matchers that are bundled with James were identified by members of the user and developer com-
munities because they were found useful in their own configurations. Following is a list of the specific
matchers. More information on these matchers, including configuration information, can be found at
http://james.apache.org/provided_matchers_2_1.html.

❑ All — A generic matcher that matches all mail messages being processed.

❑ CommandForListserv — This matcher is used as a simple filter to recognize mail messages that
are list server commands. It matches messages that are addressed to the list server host as well
as any message that is addressed to a user named <prefix>-on or <prefix>-off on any host.

❑ FetchedFrom — This matcher is used with the James FetchPOP server. FetchPOP is a compo-
nent in James that allows an administrator to retrieve mail messages from multiple POP3
servers and deliver them to the local spool. This process is useful for consolidating mail residing
in accounts on different machines to a single account. The FetchedFrom matcher is used to
match a custom header set by the FetchPOP server.

❑ HasAttachment — Matches mail messages with the MIME type multipart/mixed.

❑ HasHabeasWarrantMark — Matches all mail messages that have the Habeas Warrant. A
Habeas mark indicates that the message is not a spam message even though it may look like
spam to the e-mail server. Information on these messages can be found at www.habeas.com.

❑ HasHeader — Matches mail messages with the specified message header.

❑ Hostls — Matches mail messages that are sent to a recipient on a host listed in a James configu-
ration list.

❑ HostlsLocal — Matches mail messages sent to addresses on local hosts.

❑ InSpammerBlacklist — Checks whether the mail message is from a listed IP address tracked
on mail-abuse.org.

❑ IsSingleRecipient — Matches mail messages that are sent to a single recipient.

❑ NESSpamCheck — This is a matcher derived from a spam filter on a Netscape mail server. It
detects headers that indicate if it is a spam message.

❑ Recipients — Matches mail messages that are sent to a recipient listed in a specified list.

❑ RecipientslsLocal — Matches mail messages that are sent to recipients on local hosts with
users that have local accounts.

61

Messaging with Apache James

06 469513 Ch03.qxd 1/16/04 11:04 AM Page 61

❑ RelayLimit — This matcher counts the number of headers in a mail message to see if the num-
ber equals or exceeds a specified limit.

❑ RemoteAddrInNetwork — Checks the remote address from the e-mail message against a con-
figuration list of IP addresses and domain names. The matcher will consider it a match if the
address appears in the list.

❑ RemoteAddrNotInNetwork — Checks the remote address from the e-mail message against a
configuration list of IP addresses and domain names. The matcher will consider it a match if the
address is not in the list.

❑ SenderInFakeDomain — Matches mail messages in which the host name in the address of the
sender cannot be resolved.

❑ Senderls — Matches mail messages that are sent by a user who is part of a specific list.

❑ SizeGreaterThan — Matches mail messages that have a total size greater than a specified
amount.

❑ Subjectls — Matches mail messages with a specified subject.

❑ SubjectStartsWith — Matches mail messages with a subject that begins with a specified value.

❑ Userls — Matches mail messages that are sent to addresses that have user IDs listed in a con-
figuration list.

Bundled Mailets
The bundled mailets, like the matchers, are commonly used by members of the user and development
community. More information on the following mailets, including configuration information, can be
found at http://james.apache.org/provided_mailets_2_1.html:

❑ AddFooter — Adds a text footer to the mail message.

❑ AddHabeasWarrantMark — Adds a Habeas warrant mark to the mail message.

❑ AddHeader— Adds a text header to the mail message.

❑ AvalonListserv— Provides functionality for a basic list server. It implements some basic fil-
tering for mail messages sent to the list.

❑ AvalonListservManager — Processes list management commands of the form <list-name>-
on @ <host> and <list-name>-off @ <host>, where <list-name> and <host> are arbitrary.

❑ Forward— Forwards the mail message to the recipient(s).

❑ JDBCAlias— Performs alias translations for e-mail addresses stored in a database table.

❑ JDBCVirtualUserTable— Performs more complex translations than the JDBCAlias mailet.

❑ LocalDelivery— Delivers mail messages to local mailboxes.

❑ NotifyPostmaster— Forwards the mail message to the James postmaster as an attachment.

❑ NotifySender— Forwards the mail message to the original sender as an attachment.

❑ Null— Completes the processing of a mail message.

62

Chapter 3

06 469513 Ch03.qxd 1/16/04 11:04 AM Page 62

❑ PostmasterAlias— Intercepts all mail messages that are addressed to postmaster@<domain>,
where <domain> is one of the domains managed by the James server. It then substitutes the con-
figured James postmaster address for the original one.

❑ Redirect— Provides configurable redirection services.

❑ RemoteDelivery— Manages the delivery of mail messages to recipients located on remote
SMTP hosts.

❑ ServerTime— Sends a message to the sender of the original mail message with a timestamp.

❑ ToProcessor— Redirects processing of the mail message to the specified processor.

❑ ToRepository— Places a copy of the mail message in the specified directory.

❑ UseHeaderRecipients— Inserts a new message into the queue with recipients from the
MimeMessage header. It ignores recipients associated with the JavaMail interface.

Understanding SpoolManager
As a mail server, James uses POP3 and SMTP services to receive and send e-mail messages. What James
does with a message once it receives it, however, is up to the SpoolManager. James separates the ser-
vices that are used to deliver the mail messages from the service that it uses to process a piece of mail
once it is received. The SpoolManager is a mailet and is the service component that James uses for its
mail processing engine. As previously described, it is a combination of matchers and mailets that actu-
ally carry out the mail processing.

The SpoolManager continues to check the spool repository for any new mail messages. Mail can be
placed in the spool repository from any number of sources. These include the POP3 or SMTP services.
The SpoolManager contains a series of processors. Each one will indicate what state the mail message is
in as it is processed in the SpoolManager. When a piece of mail is found in the repository, it is first sent
to the root, or first, processor. Besides holding newly arrived mail messages, the spool repository also
holds messages as they transit from one processor to another. Mail messages continue through the vari-
ous processors until they are finally marked as completed by a mailet.

The SpoolManager can be configured to address many needs that an administrator may have. Processes
to perform operations such as filtering and sorting can easily be created through custom matchers and
mailets that are used by the SpoolManager component. A large part of the James mail server’s flexibility
lies in the power of the SpoolManager.

Understanding Repositories
James uses repositories to store mail and user information. There are several different types of reposito-
ries and each serves a different purpose. The user repository is used to store information about users of
the mail server. This may include user names, passwords, and aliases. The mail repository is used to
store mail messages that have been delivered. Spool repositories will in turn store messages that are
currently being processed. Last is the news repository, which is used to store news messages. Aside
from having different types of repositories, James can also use different types of storage for these reposi-
tories. These storage types include File, Database, and DBFile. Each of these is briefly described next.

63

Messaging with Apache James

06 469513 Ch03.qxd 1/16/04 11:04 AM Page 63

File Repositories
File-based repositories store their data on the computer’s file system. This type of repository is very easy
to configure and in fact is the default repository storage type for the James mail server. Each of the four
types of repositories (user, mail, spool, and news) has a file-based repository storage capability. Using a
file repository, however, comes with its faults. There may be performance issues when compared with
the other storage types and it is not recommended for use if the mail server is used for large amounts of
mail processing.

Database Repositories
Repositories that use a database to store their data take a little more effort to configure than the file-
based repositories. Instructions on how to configure James to use a database as a repository can be found
in the James configuration file. In order to use a database, the administrator must know how to set up
the JDBC connection using the appropriate JDBC driver. This will include furnishing the JDBC driver
class, the Uniform Resource Locator (URL) to connect to the database, and a valid user name/password
combination. The James configuration already comes with a driver for the MySQL database. If another
database, such as Sybase or Oracle, is used, the appropriate Java Archive (JAR) or ZIP file containing the
driver classes must be added to the James lib subdirectory. The user, mail, and spool repository types
have JDBC-based implementations.

DBFile Repositories
The DBFile repository is a special storage mechanism that is used only for the mail repository type. As
the name indicates, the DBFile repository uses both the file system and a database to store data. The file
system is used to store the body of a mail message, while the message’s headers are stored in a database.
This configuration is used to take advantage of the performance of a database and the ease of using a file
system. It also splits the work between the two storage types so that neither one is overtaxed.

Working with RemoteManager
The RemoteManager is used for administrative purposes. It operates through a simple telnet-based
interface once the James server is started. Once logged into the RemoteManager, the administrator can
perform such operations as creating or removing users, configuring user aliases, and shutting down the
server. Information on how to start the RemoteManager is described in the README file located in the
base directory of the James install.

Implementing James
Now that we have introduced several concepts regarding Internet mail and the James server itself, let’s
download, install, and configure the James server to see how it operates. Once we have the James server
up and running, we can then start to write some application code that will be used to send and receive
mail messages. That is described in the next section. For now, let’s run through the necessary steps that
are used to deploy the James mail server.

Downloading James
To download the James mail server, simply go to http://jakarta.apache.org/builds/jakarta-james. From
there, you will have a choice to obtain the latest build or one of the nightly builds. The nightly builds,

64

Chapter 3

06 469513 Ch03.qxd 1/16/04 11:04 AM Page 64

however, are typically a little less stable that the latest builds because they have not been tested as
thoroughly. You may also choose to obtain an earlier version of James. In each of the directories, you
will also have the option of downloading the binary or source code. The quickest option to get things
started is to go to http://jakarta.apache.org/builds/jakarta-james/latest/bin/ and download the file
in the format of your choosing.

Installing James
Prior to using the James server, a few items must be in place. To run James, the Java Runtime Environment
(JRE) of Java version 1.3 (or later) must already be installed on the computer that will run the James
server. The environment variable JAVA_HOME must also be set to the location of the JRE’s home directory
and $JAVA_HOME/bin must be in the PATH variable. Users who want to deploy James on a Unix server
should also note that the root user is needed to access ports that are below 1024. By default, the James
mail and news services (POP3, SMTP, and NNTP) all run on ports below 1024. Because of this, the root
user may have to be used when starting James. There may be ways around this however.

After downloading the file, unpack the file so that the James directory structure is expanded and visible.
Once the James archive is unpacked, it is still not possible to obtain access to the main configuration files.
Due to the current configuration of the Avalon Phoenix container that is used to run James, the server
must first be started in order for the full distribution to be unpacked. After you have initially unpacked
the James archive file (ZIP or JAR), go to the bin subdirectory under the James installation directory and
execute the appropriate “run” script (run.sh for Unix platforms and run.bat for Windows). This will
start the James server. Once started, shut it down. Once the server is shut down, the configuration files
can be found and edited.

The main configuration file is the config.xml file. In the James 2.1.2 version, this file is located in
the apps/james/SAR-INF subdirectory of the main James installation directory. The README.html file,
however, lists the file in the apps/james/conf subdirectory, which is incorrect. Other versions of James
may have the file in another location. See the installation instructions for your version to determine
where the config.xml file is located.

The default configuration that comes with James will work out-of-the-box, but will not be sufficient for a
production mail server. In the next section, “Configuring James,” we describe how to configure some of the
items in James, as well as how to use the RemoteManager to perform some administrative tasks such as
creating users. As mentioned earlier, the mail and news services are already configured with default ports.
When James is started, the port numbers for the POP3, SMTP, and NNTP services are displayed. The
default ports used are 110 (POP3), 25 (SMTP), and 119 (NNTP). If, by chance, any of these ports is currently
in use by some other program on the computer, the error “java.net.BindException: Address already in use:
JVM_Bind” will be displayed. The error message will also be listed in the log file. Other parts of the error
message should give an indication as to which port it is referring to. If this happens, you must modify the
config.xml file and change the default port to some other port number and try to restart James.

Additional information concerning installing James can be found at http://james.apache.org/
installation_instructions_2_1.html (the current version) or in the README.html file located in the James
installation directory.

Configuring James
As mentioned earlier, you can operate James as a local mail server without modifying the default configu-
ration. All you need to do is create some user accounts and then create an application using the JavaMail

65

Messaging with Apache James

06 469513 Ch03.qxd 1/16/04 11:04 AM Page 65

API to send and receive mail messages. Both of these items are discussed in the sections “Creating User
Accounts” and “JavaMail in Practice.” This local out-of-the-box configuration, however, is really only
good for testing purposes. In order to use James in a production enterprise system, several items must be
configured by modifying the config.xml mentioned earlier. These items are briefly described in the fol-
lowing sections. Further information on configuration items can be found at http://james.apache.org/
documentation_2_1.html (the current version).

DNS Server Configuration
A Domain Name Server (DNS) is used to locate another server on the network. This is important when
sending mail messages because if the recipient’s e-mail address is not known by the local server, a check
must be made on a DNS server to determine where to transport the message. By default, the James con-
figuration assumes that a DNS server can be found on the localhost. The wrapper tag in the configura-
tion file that encloses the relevant DNS references is the <dnsserver> tag. Enclosed in this tag are one
or more <server> tags that each hold a single DNS IP (Internet Protocol) address. There is also an
<authoritative> tag that is used to specify whether authoritative DNS records are required. By
default, this is set to false, and should only be changed if you are familiar with its meaning. The follow-
ing example illustrates what this may look like in the configuration file:

<dnsserver>
<server>127.0.0.1</server>
<server>159.247.45.67</server>
<authoritative>false</authoritative>

</dnsserver>

POP3 Server Configuration
The POP3 configuration settings are controlled by the <pop3server> tag. This tag has the attribute
enabled to indicate whether the POP3 server is enabled. By default, the attribute is set to true. This tag
contains several child elements, including the following:

❑ <port>— This denotes the port on which the POP3 server will run. If this tag is omitted, the
default port will be 110.

❑ <bind>— This is an optional tag used to describe the IP address to which the POP3 service
should be bound.

❑ <useTLS>— This is an optional tag with a Boolean value that is used to denote which server
socket factory to use.

❑ <handler>— This tag is only used to provide backward capability and will no longer appear in
future versions of James.

There are also a few optional child tags that are used with advanced configurations. These tags include
<serverSocketFactory>, <threadGroup>, and <connectionLimit>.

SMTP Server Configuration
The SMTP configuration tag <smtpserver> is used in much the same manner as the <pop3server>
tag. It contains the same attribute and children element tags along with the same definitions for their
use. The default port for the SMTP server is 25.

66

Chapter 3

06 469513 Ch03.qxd 1/16/04 11:04 AM Page 66

NNTP Server Configuration
The NNTP service is controlled by two different configuration blocks. The first is the <nntpserver> tag.
It contains the same tag attribute and child elements as the <pop3server> and <smtpserver> tags.
The NNTP server, by default, will run on port 119. The other configuration block is controlled by the
<nntp-repository> tag. This tag relates to the server-side NNTP article repository and contains the
following child element tags:

❑ <readOnly>— This is a required tag that takes a Boolean value. If the value is true, then post-
ing messages to the NNTP server will not be permitted.

❑ <rootPath>— This is a required tag that takes a String value and must be in the form of a URL
that begins with a file: prefix. This value will specify the root directory of the NNTP reposi-
tory. An example of this tag’s use may look like the following:

<rootPath>file:/opt/apps/ntp/groups</rootpath>

❑ <tempPath>— Similar to the <rootPath> tag, this denotes the directory in which the NNTP
server will store any posted articles before they are sent to the spool.

❑ <articleIDPath>— Similar to the <rootPath> tag, this denotes the directory in which the
NNTP server will store the mappings between the article ID and the groups that contain the
article.

❑ <articleIDDomainSuffix>— This is a required tag that represents the suffix that is appended
to all article IDs generated by the NNTP server.

❑ <newsgroups>— This tag is a wrapper for one or more <newsgroup> tags. The value of each
<newsgroup> tag is the name of a newsgroup.

FetchPOP Configuration
Configuration of the FetchPOP service is controlled by the <fetchpop> tag. It contains the single
attribute enabled, which has a default value of false. This attribute is used to denote whether or not the
service is enabled. The <fetchpop> tag has only one valid type of child element tag: the <fetch> tag.
There can be multiple <fetch> tags, but each tag can denote only a single FetchPOP task. Each
<fetch> tag contains the single required attribute name. The value of this attribute must be unique in
relation to any other <fetch> tag’s attribute value. In addition to the one attribute tag, several child ele-
ment tags are used:

❑ <host>— Denotes the hostname or IP address of a POP3 server hosting the mail that will be
fetched.

❑ <user>— Denotes the user name of the mail account to be fetched.

❑ <password>— Denotes the password for the listed user.

❑ <interval>— Denotes the time, in milliseconds, between fetch requests.

With FetchPOP, there are also various considerations to take into account. Issues such as how to handle
a subset of mail or how to catch undeliverable mail must be addressed. These and other items are
described in more detail in the James FetchPOP configuration documentation.

67

Messaging with Apache James

06 469513 Ch03.qxd 1/16/04 11:04 AM Page 67

RemoteManager Configuration
The RemoteManager configuration is controlled by the <remotemanager> tag. As mentioned earlier,
the RemoteManager is used for administrative tasks such as adding and deleting users, setting up
aliases, and shutting down the server. It contains the same attribute and child element tags as the
<pop3server> tag. By default, the RemoteManager runs on port 4555.

Repository Configuration
In the earlier section “Understanding Repositories,” it was mentioned that James has four different
repository types (user, mail, spool, and news) and three different repository storage types (File,
Database, DBFile). By default, James is configured to use the file storage type for each of the repository
types. You can easily configure James to use these different storage devices. The configuration file uses
various top-level tags such as <mailstore>, <user-store>, and <database-connections> to per-
form such configurations. The configuration file itself has explanations and examples concerning the use
of these tags.

SpoolManager Configuration
Configuration of the SpoolManager is controlled by the <spoolmanager> tag. This tag contains several
general child element tags, including the following:

❑ <threads>— This specifies the number of threads that the SpoolManager will use to process
messages in the spool. The value of this tag can have an impact on the performance of the James
server.

❑ <mailetpackages>— This is a required tag that contains one or more <mailetpackage> tags.
The value of the <mailetpackage> tag will contain a Java package name that contains classes
that can be instantiated as mailets.

❑ <matcherpackages>— This is a required tag that contains one or more <matcherpackage>
tags. The value of the <matcherpackage> tag will contain a Java package name that contains
classes that can be instantiated as matchers.

❑ <processor>— This is used to define the processor tree for the SpoolManager. The
<spoolmanager> tag can contain several of these tags. Each <processor> tag contains the
required attribute name, and its value must be unique in relation to any other <processor> tag
attribute value. The value of the name attribute is significant to the SpoolManager because it
creates a linkage between a processor name and the state of a mail message as defined in the
Mailet API. Some processor names, such as root and error, are required.

Each <processor> tag may contain zero or more <mailet> tags. The order of each <mailet> tag is also
important because it indicates the order in which each matcher/mailet pair will be traversed by the pro-
cessor. The <mailet> tag, in turn, has two required attributes: match and class. The match attribute
will contain the name of a specific Matcher class to be instantiated; the class attribute will contain the
name of the Mailet class.

Global Server Configuration
James contains several global configuration items that do not fit into any of the other categories. They
have a global impact across the entire James server.

68

Chapter 3

06 469513 Ch03.qxd 1/16/04 11:04 AM Page 68

James Block
The <James> tag (notice the uppercase) contains several child element tags that should be checked and
modified if necessary upon installation:

❑ <postmaster>— This tag denotes the address it will use as its postmaster address.

❑ <usernames>— This tag contains only the three attributes ignoreCase, enabledAliases, and
enableFowarding. Each attribute takes a Boolean value of true or false.

❑ <servernames>— This tag determines which mail domains and IP addresses the server will
treat as local. It has two Boolean attributes: autodetect and autodetectIP. A value of
true for these attributes causes the server to attempt to determine its own host name and IP
address so that it can add it to the list of local mail domains. It also may contain zero or more
<servername> tags. The value for this tag is a single hostname or IP address that should also
be added to the list as a local mail domain.

❑ <inboxRepository>— This tag acts as a container for the single tag <repository>. The
<repository> tag is used to define the mail repository that will be used to store locally deliv-
ered mail.

Connectionmanager Block
This block uses the <connection> tag to control general connection management. It contains two child
elements:

❑ <idle-timeout>— The value for this element represents the number of milliseconds that it
takes for an idle client connection to be marked as timed out by the connection manager. The
default is five (5) minutes.

❑ <max-connections>— The value for this element represents the maximum number of client
connections that the connection manager will allow per managed server socket. The default value
is 30. If a value of 0 (zero) is given, then there is no limit imposed by the connection manager.

Objectstorage Block
This block controls the low-level file repository-to-file mapping. This block should remain unchanged.

Socketmanager Block
This block controls the socket types that are available in the James server. It should not be modified
unless you intend to enable SSL.

Threadmanager Block
This block controls the thread pooling in the James server. It should be modified only by administrators
who are familiar with its implications.

Creating User Accounts
User accounts created in James are shared across all of the services. Once a user account and password
are generated, the account can be used for POP3, SMTP, and NNTP. Once the James server is started,
user accounts can be created through the RemoteManager. By default, user account information is stored

69

Messaging with Apache James

06 469513 Ch03.qxd 1/16/04 11:04 AM Page 69

in files on the file system. If you want to use a different repository type, make sure the configuration file
is changed accordingly before users are added. If a change is made after user accounts have been cre-
ated, that data may be lost.

Once James is started, you can access the RemoteManager through a telnet session. To create a user once
the server has started, perform the following steps:

1. Telnet to the RemoteManager by using the host and port on which it is listening. By default, the
host is localhost and the port is 4555. The command should read telnet localhost 4555. These
items can be modified in the configuration file.

2. You will then be prompted for the administrator’s user name and password. By default, the
administrator’s user name is root and the password is root. These two items can also be
changed by modifying the configuration file.

3. Once logged in, you can create your first user by typing adduser <username> <password>. The
user name should only contain the name of the user and not the complete e-mail address. Once
a user is created, the full e-mail address will be a combination of the user name followed by the
@ symbol and any domain name that is listed in one of the configuration file’s <servername>
tags.

Simply follow Step 3 to add any other user. To see other commands that can be run in the RemoteManager,
type in the word help.

Introducing JavaMail API
The JavaMail API is a package of Java classes that is used for reading, writing, and sending electronic
messages. JavaMail is used to create Mail User Agent (MUA) programs. User agents represent a mail
client that sends, receives, and displays mail messages to a user. Note that the purpose of a MUA is not
for transporting, delivering, or forwarding e-mail messages. That is the job of a Mail Transfer Agent
(MTA). In essence, an MUA relies on the MTA to deliver the mail that it creates. In order to use JavaMail,
you will need to install a few items first:

❑ Install the Java 1.2 (or later) Java Development Kit (JDK).

❑ Obtain the latest JavaMail API. This can be found at http://java.sun.com/products/javamail/
index.html. Once you have downloaded and unbundled the appropriate file, simply add the
mail.jar file in your local CLASSPATH. This is really the only file you need from the down-
loaded package. It contains classes needed to perform POP3, SMTP, and IMAP4 services. The
installed Java JDK contains any other classes that are needed.

❑ The JavaMail API requires the Javabeans Activation Framework (JAF) API in order to function
properly. This package is used for basic MIME-type support. The JAF API can be downloaded
at http://java.sun.com/products/javabeans/glasgow/jaf.html. Once you have downloaded
and unbundled the appropriate file, simply add the activation.jar file to your local
CLASSPATH.

70

Chapter 3

06 469513 Ch03.qxd 1/16/04 11:04 AM Page 70

Once you have accomplished the previous three steps, you will be ready to write the code necessary to
send and receive e-mail messages. Before starting, however, it will be necessary to review the JavaMail
API to ensure an understanding of how it works. Seven core classes make up the JavaMail API:
Session, Message, Address, Authentication, Transport, Store, and Folder. Understanding these
core classes is key to performing nearly all the operations needed for sending and receiving messages.
The following sections describe each of these core classes.

The Session Class
The Session class defines a basic mail session. Virtually everything depends on this session. Its most
commonly used methods provide the capability to load the classes that represent the Service Provider
Implementation (SPI) for various mail protocols. The Session object uses the Java Properties
(java.util.Properties) object to obtain information such as the user’s name, password, and mail
server. There are two ways of obtaining a Session object. The first is the default Session, which can be
shared across the entire application:

Properties props = new Properties();
Session session = Session.getDefaultInstance(props, null);

The second is to obtain a unique Session object:

Properties props = new Properties();
Session session = Session.getInstance(props, null);

In both cases, the Properties object is used to store information, and the null argument is used in the
place of an Authenticator object, which is described shortly.

Message Class
After creating a Session object, you will need to create a Message object. A Message object is used to
represent everything that relates to a message. The Message class is an abstract class, so you have to
work with a message subclass. This can typically be either javax.mail.internet.MimeMessage or
javax.mail.internet.SMTPMessage. To create a Message object, you need to pass your Session
object to its constructor:

SMTPMessage message = new SMTPMessage(session);

Once the Message object is created, you can then start to add content to the message. With typical text-
based messages, you will not have to set the MIME-type that describes the content of the message
because the default is text/plain. If, however, you want to send a different type of e-mail message (such
as an HTML message), you must specify the MIME-type. The following is an example of how to set this:

String htmlData = “<h1>Hello There</h1>”;
message.setContent(htmlData, “text/html”);

If you use the default type, you can use the method setText to set the content. You will then use other
methods to set additional message data, such as the subject and the recipient address:

71

Messaging with Apache James

06 469513 Ch03.qxd 1/16/04 11:04 AM Page 71

message.setText(“Hello There”);
message.setSubject(“Read This Email”);
message.addRecipient(Message.RecipientType.TO, new

InternetAddress(“peter@localhost”);

Notice two things about setting the recipient. The first argument sets the type of recipient. Three options
can be used:

❑ RecipientType.TO

❑ RecipientType.CC

❑ RecipientType.BCC

The second argument deals with the actual user account information for the recipient. Instead of a sim-
ple String value, it uses an InternetAddress object. The InternetAddress object is a subclass of the
third core class of the JavaMail API, Address.

Address Class
When creating a message to send, you must assign the message to one or more recipients. Like the
Message class, the Address class is abstract. In order to create an address, you must use the Internet
Address (javax.mail.internet.InternetAddress) class. There are two ways to create an address.
One requires only an e-mail address, and the other adds a person’s name to which the e-mail address
should be associated:

Address address = new InternetAddress(“peter@localhost”);
Address address = new InternetAddress(“peter@localhost”, “Peter A. Len”);

Once an address is created, you can use it to set either the From or the To address. It is also possible to
set multiple addresses for each type:

// Setting one ‘From’ address
message.setFrom(address);
// Setting multiple ‘From’ addresses
Address address[] = ...;
message.addFrom(address);
// Setting recipients
message.addRecipient(Message.RecipientType.TO, address2);
message.addRecipient(Message.RecipientType.CC, address3);

Authenticator Class
The Authenticator class is used to access protected resources in the mail server. When getting mail mes-
sages from the server, for example, you need to provide a user name and password. The Authenticator
class can be used to set up a mechanism whereby the user is presented with a logon window prior to
accessing any mail messages. In order to use this mechanism, you must create a class that extends
Authenticator and have a method with the signature public PasswordAuthentication
getPasswordAuthentication(). You must then register your subclass with the Session object.
It will then be notified when authentication is necessary. An example may look like the following:

72

Chapter 3

06 469513 Ch03.qxd 1/16/04 11:04 AM Page 72

Properties props = new Properties();
Authenticator auth = new MyAuthenticator();
Session session = Session.getDefaultInstance(props, auth);
class MyAuthenticator extends Authenticator() {

public PasswordAuthentication getPasswordAuthentication() {
// Perform some operation to retrieve the user’s name and password,
// such as with Java Swing.
String username = ...;
String password = ...;
return new PasswordAuthentication(username, password);

}
}

Transport Class
The last step necessary in composing a message is to be able to send it. This is done through the
Transport class, which is another abstract class. It works in a similar fashion to that of the Session
class. There are two methods for using, or obtaining, the Transport class. The first is to use the default
version of the class by making a call to its static method send:

Transport.send(message);

The other way is to get an instance of the class from the session for the protocol you want to use. With
this method, you can also pass in information such as a user name and password. You must then explic-
itly close the connection. An example may look like the following:

Transport transport = session.getTransport(“smtp”);
transport.connect(host, username, password);
transport.sendMessage(message, message.getAllRecipients());
transport.close();

You will notice in the second example that you can get a reference to a Transport object by simply sup-
plying the name of the protocol—in this case, SMTP. JavaMail already has pre-built implementations of
these protocols so you do not have to build your own. Both ways work fine, but the latter method may
be more efficient if you are sending multiple messages. This is because you can send each message with
the same Transport object, as it remains active until it is closed. Using the send method in the first
example will create a new connection to the mail server each time it is called.

Store and Folder
Both the Store and Folder objects work together in obtaining a message. Just as with sending a mes-
sage, the Session class is used to receive mail messages. Once you get a handle to the session, you will
connect to a Store object. Similar to the Transport object, you indicate what protocol to use and possi-
bly specify user information. An example may look like the following:

Store store = session.getStore(“pop3”);
store.connect(host, username, password);

73

Messaging with Apache James

06 469513 Ch03.qxd 1/16/04 11:04 AM Page 73

Once you have made the connection to the Store, you must then obtain a Folder object and open it
before any messages can be read. When using the POP3 protocol, the only folder available is the INBOX
folder. If you are using the IMAP protocol, there may be other folders that are available. An example
may look like the following:

Folder folder = store.getFolder(“INBOX”);
Folder.open(Folder.READ_WRITE);
Messages messages[] = folder.getMessages();

In the preceding example, we opened the folder with Folder.READ_WRITE. This is used to indicate that
the contents of the folder can be modified. Another option to use is Folder.READ_ONLY, which states
that the contents of the folder can only be read. Once you have a Message object to read, you can do any
number of things with it, such as obtaining the recipients of the message, getting the subject line, or get-
ting the message’s content. You can also send a reply or forward the message to someone else. Examples
of how to do these various tasks are described in the next section, “JavaMail in Practice.” After you are
finished with the messages in the folder, both the folder and the session must be closed:

folder.close(boolean);
session.close();

The Boolean value used when closing the folder indicates whether or not to update the contents of the
folder by removing messages that have been marked for deletion.

JavaMail in Practice
So far, we have explained how to obtain, install, and run the James mail server, as well as some general
concepts of the mail server and the JavaMail API. In this section, we combine both of these aspects to
illustrate how JavaMail can be used to connect to the James server in order to send and receive mail
messages. In general, speaking in terms of sending and receiving mail messages is a bit simplistic. Many
different functions within each of these concepts can be performed. They can also present technical chal-
lenges when it comes to building a full-scale e-mail application for use in something like an enterprise
portal. We have already briefly described some of these actions, but the following sections present more
detail and examples.

Sending Messages
In order to send an e-mail message, you need a mail server (James), an API for writing code to perform
the action (JavaMail), and an application that the user interacts with to generate the message. Typically,
this application is some sort of Graphical User Interface, or GUI, which contains fields into which the user
can enter the information. In the following example, we will create the code necessary to perform such
actions. The example uses a Java Server Page (JSP) to render the HTML needed for the GUI, as well as
the Java code to obtain the data and use the JavaMail API to connect to the James mail server. Figure 3.1
shows the interface used for the user to create a message.

The following listing shows the code used for generating this interface as well as sending the message
data and image attachment to the James mail server.

74

Chapter 3

06 469513 Ch03.qxd 1/16/04 11:04 AM Page 74

Figure 3.1

Listing 3.1: Code For Sending E-mail

001 <%@page import=”java.util.*” %>
002 <%@page import=”javax.mail.*” %>
003 <%@page import=”javax.mail.internet.*” %>
004 <%@page import=”javax.activation.*” %>
005 <%@page import=”com.sun.mail.smtp.*” %>
006
007 <%
008 String action = request.getParameter(“action”);
009 String from = request.getParameter(“from”);
010 String to = request.getParameter(“to”);
011 String cc = request.getParameter(“cc”);
012 String subject = request.getParameter(“subject”);
013 String msgText = request.getParameter(“message”);
014 String file = request.getParameter(“attachment”);

The first few lines are used to import the Java classes necessary to send the message. Lines 8–14 are used
to retrieve the data that was sent when the user submitted the form. A check is then made to see if a null
value was sent and, if so, reassigns an empty value. Typically, you would also want to ensure that cer-
tain fields had values.

015
016 if (action == null) { action = “”; }
017 if (from == null) { from = “”; }
018 if (to == null) { to = “”; }
019 if (cc == null) { cc = “”; }
020 if (subject == null) { subject = “”; }
021 if (msgText == null) { msgText = “”; }

75

Messaging with Apache James

06 469513 Ch03.qxd 1/16/04 11:04 AM Page 75

022 if (file == null) { file = “”; }
023
024 String status = “”;
025 %>
026 <% try { %>
027 <% if (action.equals(“send”)) { %>
028 <%
029 // Create a Properties object.
030 Properties props = System.getProperties();
031 props.put(“mail.smtp.host”, “localhost”);
032
033 // Get a handle to the Session.
034 // because that has already been defined in the JSP.
035 Session mySession = Session.getDefaultInstance(props, null);
036
037 // Create a Messsage.
038 SMTPMessage message = new SMTPMessage(mySession);
039
040 // Set the ‘from’ address.
041 message.setFrom(new InternetAddress(from));
042
043 // Set the ‘to’ and ‘cc’ addresses.
044 StringTokenizer tokensTo = new StringTokenizer(to, “;”);
045 String addr = “”;
046 while (tokensTo.hasMoreTokens()) {
047 addr = tokensTo.nextToken();
048 message.addRecipient(Message.RecipientType.TO,
049 new InternetAddress(addr));
050 }
051 StringTokenizer tokensCC = new StringTokenizer(cc, “;”);
052 while (tokensCC.hasMoreTokens()) {
053 addr = tokensCC.nextToken();
054 message.addRecipient(Message.RecipientType.CC,
055 new InternetAddress(addr));
056 }
057
058 // Set the ‘subject’.
059 message.setSubject(subject);
060
061 // Set the date the message would be sent.
062 message.setSentDate(new Date());

Lines 35–62 are used to obtain a handle to the session, create a Message object, and then fill the message
with certain attributes, such as the subject, the date, and the recipients.

063
064 // Handle the attachment, if there is one.
065 if (!file.equals(“”)) {
066
067 // Set the ‘text’ as the first body part.
068 BodyPart mbp = new MimeBodyPart();
069 mbp.setText(msgText);
070 Multipart mp = new MimeMultipart();

76

Chapter 3

06 469513 Ch03.qxd 1/16/04 11:04 AM Page 76

071 mp.addBodyPart(mbp);
072
073 mbp = new MimeBodyPart();
074 String imgName = file.substring(file.lastIndexOf(“\\”)+1);
075 DataSource src = new FileDataSource(file);
076 mbp.setDataHandler(new DataHandler(src));
077 mbp.setFileName(imgName);
078 mp.addBodyPart(mbp);
079 message.setContent(mp);
080
081 }else {
082 // Use the default method if no attachment.
083 message.setText(msgText);
084 }
085

When sending an attachment, you must generate the content of the message as a Multipart object
(line 70), which consists of multiple parts. In this example, the text of the message is the first part and
the image attachment is the second part. To attach the image, you must load the image through a
DataSource object (line 75) and assign it to a DataHandler object. On line 79, the Multipart object is
then set as the content of the message. Line 87 then sends the message on its way.

Starting on line 94 and continuing to line 164, we simply write the HTML code that is used to present the
user with the interface to enter the data in the browser.

086 // Send it.
087 SMTPTransport.send(message);
088
089 status = “Message Sent”;
090 %>
091
092 <% } %>
093
094 <html>
095 <body>
096 <form action=”mailsend.jsp” method=”post”>
097 <input type=”hidden” name=”action” value=”send”>
098 <center>
099 <%=status%>

100 <h1>Send Mail</h1>
101
102 <table>
103 <tr>
104 <td align=”left”>
105 From:
106 </td>
107 <td align=”left”>
108 <input type=”text” name=”from” size=”30”>
109 </td>
110 </tr>
111 <tr>
112 <td align=”left”>
113 To:

77

Messaging with Apache James

06 469513 Ch03.qxd 1/16/04 11:04 AM Page 77

114 </td>
115 <td align=”left”>
116 <input type=”text” name=”to” size=”50”>
117 <small>Separate addresses with a semicolon (;)</small>
118 </td>
119 </tr>
120 <tr>
121 <td align=”left”>
122 CC:
123 </td>
124 <td align=”left”>
125 <input type=”text” name=”cc” size=”50”>
126 <small>Separate addresses with a semicolon (;)</small>
127 </td>
128 </tr>
129 <tr><td> <p></td></tr>
130 <tr>
131 <td align=”left”>
132 Subject:
133 </td>
134 <td align=”left”>
135 <input type=”text” name=”subject” size=”70”>
136 </td>
137 </tr>
138 <tr>
139 <td align=”left” valign=”top”>
140 Message:
141 </td>
142 <td align=”left”>
143 <textarea name=”message” rows=”10” cols=”50”></textarea>
144 </td>
145 </tr>
146 <tr>
147 <td align=”left”>
148 Attachment:
149 </td>
150 <td align=”left”>
151 <input type=”file” name=”attachment”>
152 </td>
153 </tr>
154 <tr><td> <p></td></tr>
155 <tr>
156 <td align=”center” colspan=”2”>
157 <input type=”submit” value=”Send”>
158 </td>
159 </tr>
160 </table>
161 </center>
162 </form>
163 </body>
164 </html>
165
166 <% }catch (Exception e) { %>
167 Error: <%=e%>
168 <% } %>

78

Chapter 3

06 469513 Ch03.qxd 1/16/04 11:04 AM Page 78

Lines 166 to 168 are simply used to catch any errors that may occur when the page is loaded and will
present the user with the error message. As shown in Figure 3.1, all of the recipients are associated with
the host localhost. This is the host name for the James mail server running on the local server. Line 31 in
Listing 3.1 sets localhost as the SMTP mail host in the Properties object. This indicates that all of the
recipients are users associated with the James mail server that we are using. If any of the recipients used
a different host name (e.g., johndoe@yahoo.com), the James server would need the IP address of a DNS
server that can map the host name to its location on another server. The identification of DNS servers is
listed in the James configuration file.

Receiving Messages
Now that we have successfully generated and sent an e-mail message, we must now retrieve the mes-
sage from the mail server. Typically, an interface is used to obtain information from a user for authentica-
tion purposes. An example may look like what is shown in Figure 3.2.

Figure 3.2

Once authenticated, the mail server knows which mail messages it can send back to the user, as shown
in Figure 3.3.

Figure 3.3

Once users are presented with a list of messages from their inbox, they should be able to then view the
entire contents of any messages. Different mail interfaces perform the operation in different ways. Figure
3.4 shows one example of how this may look.

79

Messaging with Apache James

06 469513 Ch03.qxd 1/16/04 11:04 AM Page 79

Figure 3.4

Similar to sending the message, our example for retrieving mail uses a JSP. The code necessary to per-
form the authentication and retrieve the message data from the mail server is shown in the following
listing. Some of the code is similar to that of the previous listing and so is not described here.

Listing 3.2: Code For Receiving E-mail

001 <%@page import=”java.util.*” %>
002 <%@page import=”java.io.*” %>
003 <%@page import=”javax.mail.*” %>
004 <%@page import=”javax.mail.internet.*” %>
005 <%@page import=”javax.activation.*” %>
006 <%@page import=”com.sun.mail.smtp.*” %>
007
008 <%
009 String action = request.getParameter(“action”);
010 String msgnum = request.getParameter(“msgnum”);
011 String username = request.getParameter(“username”);
012 String password = request.getParameter(“password”);
013
014 if (action == null) { action = “”; }
015 if (msgnum == null) { msgnum = “”; }
016 if (username == null) { username = “”; }
017 if (password == null) { password = “”; }
018
019 String status = “”;
020 String defaultDir = “C:\\tomcat-4112\\webapps\\examples\\”;
021 %>
022 <% try { %>
023 <% if (action.equals(“get”)) { %>
024 <%
025 String host = “localhost”;
026 int port = 111;

Line 20 lists the directory in which the attachment will be saved. In a production application, this is
normally read in from something such as a property file. Line 26 specifies the POP3 port number as 111.

80

Chapter 3

06 469513 Ch03.qxd 1/16/04 11:04 AM Page 80

If the POP3 port is something other than the default port or 110, it must be stated when the connection to
the store is made (see line 36).

027
028 // Get a handle to the Properties.
029 Properties props = System.getProperties();
030
031 // Get a handle to the Session object.
032 Session mySession = Session.getDefaultInstance(props, null);
033
034 // Connect to the Store.
035 Store store = mySession.getStore(“pop3”);
036 store.connect(host, port, username, password);
037
038 // Obtain a handle to the inbox.
039 Folder folder = store.getFolder(“INBOX”);
040 folder.open(Folder.READ_WRITE);
041
042 // Obtain the messages.
043 Message messages[] = folder.getMessages();
044
045 Message msg;
046 String from = “”;
047 String subject = “”;
048 String date = “”;
049
050 %>
051 <html> <body> <form>
052 <center>
053 <h1>Messages for: <%=username%></h1>
054 <table>
055 <th>Subject</th> <th></th> <th>From</th> <th></th>
056 <th>Date</th> <th></th>
057 <%
058 for (int i=0; i<messages.length; i++) {
059 msg = messages[i];
060 date = msg.getSentDate().toString();
061 subject = msg.getSubject();
062 from = ((msg.getFrom())[0]).toString();
063 %>
064 <tr>
065 <td align=”left”>
066 <a href=”mailget.jsp?action=get&msgnum=<%=i%>&username=
067 <%=username%>&password=<%=password%>”>
068 <%=subject%>
069
070 </td>
071 <td> </td>
072 <td align=”left”> <%=from%> </td>
073 <td> </td>
074 <td align=”left”> <%=date%> </td>
075 <td> </td>
076 </tr>
077 <%

81

Messaging with Apache James

06 469513 Ch03.qxd 1/16/04 11:04 AM Page 81

078 }
079 %> </table> <%
080
081 if (!msgnum.equals(“”)) {
082
083 %> <p><hr><p> <%
084
085 BodyPart part;
086 MimeMultipart mime;
087
088 int messageNumber = (new Integer(msgnum)).intValue();
089 Object obj;
090 Class cls;
091 Class strCls= Class.forName(“java.lang.String”);
092 Class mimeCls = Class.forName(
093 “javax.mail.internet.MimeMultipart”);
094 File file = null;
095 String filepath = “”;
096
097 for (int i=0; i<messages.length; i++) {
098 if (i == messageNumber) {
099 msg = messages[i];
100 date = msg.getSentDate().toString();
101 subject = msg.getSubject();
102 from = ((msg.getFrom())[0]).toString();
103
104 //msg.setFlag(Flags.Flag.DELETED, true);

Line 58 starts a loop for each message, which will be used to display the information to the user.
Typically, the user name and password are not handled in the manner shown in this example (see the
href on line 66). Line 104 is commented out. If you would like to have messages deleted from the mail
server after they are retrieved, simply uncomment the line.

105
106 %>
107 <center> <table>
108 <tr>
109 <td align=”right”>Subject:
110 </td><td><%=subject%></td>
111 </tr>
112 <tr>
113 <td align=”right”>Date: </td><td><%=date%></td>
114 </tr>
115 <tr>
116 <td align=”right”>From: </td><td><%=from%></td>
117 </tr>
118 <%
119
120 Address[] to = msg.getRecipients(Message.RecipientType.TO);
121 if (to != null) {
122 for (int t=0; t<to.length; t++) {

82

Chapter 3

06 469513 Ch03.qxd 1/16/04 11:04 AM Page 82

123 if (t == 0) {
124 %>
125 <tr>
126 <td align=”right”>To: </td><td><%=to[t]%></td>
127 <tr>
128 <%
129 }else {
130 %> <tr><td> </td><td><%=to[t]%></td><tr> <%
131 }
132 }
133 }
134
135 Address[] cc = msg.getRecipients(Message.RecipientType.CC);
136 if (cc != null) {
137 for (int c=0; c<cc.length; c++) {
138 if (c == 0) {
139 %>
140 <tr>
141 <td align=”right”>CC: </td><td><%=cc[c]%></td>
142 </tr>
143 <%
144 }else {
145 %> <tr><td> </td><td><%=cc[c]%></td></tr> <%
146 }
147 }
148 }
149
150 obj = ((MimeMessage) messages[i]).getContent();
151 cls = obj.getClass();

Lines 120–148 are used to obtain and display each recipient name from the two recipient types used in
the example. On lines 150 and 151, we receive the content of the message as an object and then compare
the object class with either the String class or the MimeMultipart class. This is done because the con-
tent may have been added to the message in different ways (see lines 79 and 83 from Listing 3.1.

152 if (cls == mimeCls) {
153 mime = (MimeMultipart) obj;
154 for (int j=0; j<mime.getCount(); j++) {
155 part = mime.getBodyPart(j);
156 if (part.isMimeType(“text/plain”)) {
157 // Should be the message text.
158 %>
159 <tr>
160 <td align=”right”>Message: </td>
161 <td><%=part.getContent()%></td>
162 </tr>
163 <%
164 }else if (part.getDisposition().equals(
165 Part.ATTACHMENT)) {
166 filepath = defaultDir + part.getFileName();
167 file = new File(filepath);
168
169 int chunk = 1000;

83

Messaging with Apache James

06 469513 Ch03.qxd 1/16/04 11:04 AM Page 83

170 byte[] buffer = new byte[chunk];
171 int length;
172
173 InputStream is = part.getInputStream();
174 FileOutputStream os = new FileOutputStream(file);
175 while ((length = is.read(buffer)) != -1) {
176 os.write(buffer, 0, length);
177 }
178 is.close();
179 os.close();
180

Lines 166–180 are used to transfer the data from the attachment part to the file through the use of input
and output streams. These streams are then closed in lines 178 and 179.

181 %>
182 <tr>
183 <td align=”right” valign=”top”>
184 Attachment:
185 </td>
186 <td><img src=”<%=filepath%>”></td>
187 </tr>
188 <%
189
190 }else {
191 // Handle other types here.
192 }
193 }
194
195 }else {
196 %>
197 <tr>
198 <td align=”right”>Message: </td><td><%=obj%></td>
199 </tr>
200 <%
201 }
202
203 %> </center> </table> <%
204 break;
205 }
206 }
207 }
208
209 folder.close(true);
210 store.close();
211 %>
212

Both the Folder and Store objects are closed on lines 209 and 210. The Boolean value sent when closing
the folder is used to indicate whether files flagged for deletion should be removed from the server (see
line 104). The code example then finishes up (starting on line 215) by generating the HTML needed for
the browser interface.

84

Chapter 3

06 469513 Ch03.qxd 1/16/04 11:04 AM Page 84

213 <% }else { %>
214
215 <html>
216 <body>
217 <form action=”mailget.jsp” method=”post”>
218 <input type=”hidden” name=”action” value=”get”>
219 <center>
220 <%=status%>

221 <h1>Get Mail</h1>
222
223 <table>
224 <tr>
225 <td align=”left”>
226 User Name:
227 </td>
228 <td align=”left”>
229 <input type=”text” name=”username” size=”20”>
230 </td>
231 </tr>
232 <tr>
233 <td align=”left”>
234 Password:
235 </td>
236 <td align=”left”>
237 <input type=”password” name=”password” size=”20”>
238 </td>
239 </tr>
240 <tr>
241 <td> <p></td>
242 </tr>
243 <tr>
244 <td align=”center” colspan=”2”>
245 <input type=”submit” value=”Submit”>
246 </td>
247 </tr>
248 </table>
249 </center>
250 </form>
251 </body>
252 </html>
253 <% } %>
254
255 <% }catch (Exception e) { %>
256 Error: <%=e%>
257 <% } %>

The preceding examples of sending and receiving e-mail messages are used here as one possible scenario
for implementing an e-mail client. There are obviously other ways to both develop the client interface and
utilize the JavaMail API. It is really up to the developer to decide how it is built. In addition, the two exam-
ples are shown as individual components only. This is done to keep the examples simple. In reality, both
components may be part of a larger enterprise system such as a portal application.

85

Messaging with Apache James

06 469513 Ch03.qxd 1/16/04 11:04 AM Page 85

Summary
The Apache James mail server is a powerful tool that can be used as a core component in the framework
of a larger enterprise system. It is not only very flexible, powerful, and easy to configure, it can also give
you total control over how e-mail or news messages are used and processed in your overall application
framework. This may become very important if the mail server plays a significant role in your overall
architecture and you do not want to rely on someone else’s server for reliable service.

In this chapter, we explained some general concepts about Internet mail and the James server. We then
described the various components and configuration parameters of the server and provided an introduc-
tion to the JavaMail API, which can be used to send and receive mail. We finished the chapter by provid-
ing two fairly basic, but comprehensive, examples of how to send and receive mail messages using a JSP
page, the JavaMail API, and the James mail server.

Although we did not describe at length every aspect of the James server, you should now have a good
understanding of how to configure and deploy it, as well as how it can be used in an overall mail solution.

86

Chapter 3

06 469513 Ch03.qxd 1/16/04 11:04 AM Page 86

Object to Relational
Mapping with Apache OJB

Object Relational Bridge (http://db.apache.org/ojb), or OJB, is an open-source object relational
mapping tool that is used to store Java objects in relational databases. It is currently maintained by
the Apache Software Foundation’s DB project. Persistent objects (objects that exist past the lifetime
of an application) are a large part of today’s software development tasks, and OJB provides all the
necessary functionality to meet the most complex object-to-relational mapping needs.

OJB is a very flexible object-to-relational tool and supports such industry standards as ODMG
(Object Database Management Group) and JDO (Java Data Objects).

This chapter covers object relational mapping concepts, OJB API layers, the development of a mes-
sage board sample application using OJB, and OJB extras.

Exploring Object-to-Relational
Mapping Concepts

Object-to-relational (O/R) mapping tools enable you to use an object-oriented (OO) programming
approach to developing powerful applications by leveraging the capabilities of OO programming
languages with relational databases. This type of developing enables you to think in a more OO
way, rather than the standard “I have data, let me store it directly to a database” way. With O/R,
you are free to think in terms of storing, manipulating, and retrieving objects from a relational data
source, instead of just data. This sheds an entirely new light on how the data relates, where it was
derived from, and what state it was in when the user decided to save it.

A term you will see often used in O/R mapping is transparent persistence. Simply stated, this is
the ability to alter data that is stored in a relational database through means of an object-oriented

07 469513 Ch04.qxd 1/16/04 11:03 AM Page 87

programming language. The alternative to using transparent persistence would be to use embedded
SQL statements or an interface such as JDBC to manipulate the data. The disparity between using the
two is actually very significant. Using transparent persistence not only saves you development time,
it can also improve the overall performance of your application.

Object-to-relational mapping tools save you development time because the number of lines of code that
you have to write is significantly less than when you implement a JDBC or embedded SQL solution.
O/R mapping tools such as OJB are sophisticated, and have a very robust feature set, eliminating the
headache of creating transaction management code, checking data types, mapping tables to objects, and
ensuring data integrity, all of which is taken care of for you. In addition, OJB adheres to all the latest
industry standards, which relieves you from the pressure of developing your own approach that follows
those standards.

Performance can increase substantially when using OJB as the main focus for an O/R mapping solution
because OJB incorporates a caching system. Caching is the capability to maintain data in the calling
application’s memory, to reduce the strain on network traffic or the storage data source. The implemen-
tation of a caching system has the following benefits:

❑ Enables a significant reduction in the amount of database look-ups — The O/R tool does not
have to perform a SELECT from the database every time a query for data is issued by the appli-
cation if that query has already been performed.

❑ Keeps track of objects and reduces the amount of duplicate objects contained in memory —
This is very beneficial because it decreases the amount of memory the application needs — by
keeping track of objects that exist and not creating new ones that have the same ID.

❑ Prevents non-terminating loops from occurring when performing circular look-ups — The cache
system of OJB is also very flexible, enabling you to create your own subsystem based on the one
provided by OJB. Therefore, very complex caching systems can be developed to fit your needs.

Understanding OJB Technology Features
OJB has an extremely robust feature set and supports two industry standards: ODMG (Object Database
Management Group) and JDO (Java Data Objects). The main features of OJB can be categorized into three
sections: flexibility, scalability, and functionality. These features are described in the following tables.

The flexibility features enable you to determine which API would best suit your needs and to build
your own API. For example, if you needed to build your own API, you could take the existing
PersistenceBroker API as a basis and expand on it to develop a specific API to fit your requirements.

Feature Description

ODMG API OJB has a fully functional set of APIs that are compliant with
ODMG 3.0.

JDO API OJB currently uses a plug-in to support JDO 1.0. A full implementa-
tion of JDO is expected in the 2.0 release of OJB.

OTM Layer The Object Transactional Manager layer contains all the common
functionality of JDO and ODMG.

88

Chapter 4

07 469513 Ch04.qxd 1/16/04 11:03 AM Page 88

Feature Description

PersistenceBroker API This is essentially the “kernel” API layer for OJB, and is what all the
other technologies use as their foundation.

Scalability is one of the more impressive features of OJB. Few O/R mapping tools in the industry sup-
port load balancing across multiple physical machines.

Feature Description

Stand-Alone Mode This is the default mode for OJB and signifies the usage of a single
PersistenceBroker server existing in the same Java Virtual
Machine instance as the client application.

Client/Server Mode This is used for load balancing when you need the capability to
have multiple PersistenceBroker servers running in multiple
Java Virtual Machines on different computers.

OJB has a vast array of functional features to choose from when developing your applications. The fol-
lowing table lists the main features that you are most likely to use during the development process.

Feature Description

Object Caching OJB incorporates a caching system that caches previously accessed
or stored objects.

Transaction Management Transaction Management is also built into OJB. Therefore, if an exe-
cution of a command were to go awry during a persistent store pro-
cedure, the transaction management system would be able to roll
back any changes that had occurred.

JNDI Lookup OJB supports the capability to look up data sources via JNDI,
allowing for smooth integration with J2EE architectures.

Lock Manager Manages current transactions on objects.

1:1, 1:N, M:Ns mappings OJB contains a very robust mapping feature set that supports one-
to-one, one-to-many, and many-to-many relational mappings.

Sequence Manager The Sequence Manager takes care of creating unique IDs for newly
created objects automatically.

XML mapping All of the mappings created by OJB are stored in XML documents.

Using OJB API Layers
This section describes the three main API layers contained in OJB. It also goes through some of the
queries associated with each API. The three main APIs are the PersistenceBroker, ODMG, and JDO.
ODMG and JDO are built using the PersistenceBroker API as their foundation. They were implemented

89

Object to Relational Mapping with Apache OJB

07 469513 Ch04.qxd 1/16/04 11:03 AM Page 89

to enable OJB to adhere to their individual standards. You can build an application that leverages all the
valuable functionality of OJB without ever needing the JDO or ODMG APIs. Figure 4.l shows a diagram
of how these different APIs are related to each other.

Figure 4.1

Figure 4.1 indicates that ODMG and JDO both make use of the Object Transaction Manager (OTM). The
PersistenceBroker API, however, does not use the OTM and therefore cannot keep track of object state.
Therefore, if transaction management is a requirement of your application, then you would need to
choose either the ODMG API or the JDO API, unless of course you wanted to build your own OTM for
the PersistenceBroker API.

Developing with the PersistenceBroker API
The PersistenceBroker API (PBAPI) is the “kernel” of OJB. All other APIs use the PBAPI as a foundation.
The PBAPI is great for building simple applications and familiarizing yourself with OJB concepts. It is
not recommended for use with applications that require a robust feature set.

ODMG

PersistenceBroker

JDO

OTM

RDBMS RDBMS

90

Chapter 4

07 469513 Ch04.qxd 1/16/04 11:03 AM Page 90

The PBAPI consists of the following capabilities:

❑ Object-Relational mapping

❑ Basic RDBMS query capabilities that allow the retrieval of objects

❑ Removing objects from an RDBMS

❑ Inserting objects into an RDBMS

❑ Updating objects that are currently stored in the RDBMS

The PBAPI does not do any of the following:

❑ Store any information about object transactional state

❑ Have any type of lock management capabilities

❑ Have an advance object query language

The following example will aid you in understanding PBAPI and how it appears in the context of a fully
functional deployed Web application. The example chosen is a message board Web application that
enables the user to do the following:

❑ Post articles to the message board

❑ View stored articles

❑ Delete stored articles

The information is accessed and stored via the PBAPI into a relational Sybase ASA database. We could
have chosen any OJB-supported relational database to use as our data store. For more information on
supported databases, see the “OJB Extras” section of this chapter. The diagram shown in Figure 4.2
provides a high-level overview of where all the components of the sample exist and how they generally
interact.

This example uses two classes that are mapped to the database through the PBAPI: the Message class
and the Viewer class. The Message class is used to store new articles that the user posts. It is also used
when viewing and deleting messages from the database. The Viewer class functions as an access log,
which stores user information when a message is viewed. We have incorporated both classes for the
purpose of exploiting OJB’s ability to perform 1:N mappings of objects.

OJB maps the two classes together in the repository.xml file under a tag called
<collection-descriptor/>. The common attribute in the two classes that links them together is the
message ID, protected int m_nID. Before we go any further, let’s take a look at all the individual
components of the sample application and their uses. These components are described in both the
following table and the sections that follow.

91

Object to Relational Mapping with Apache OJB

07 469513 Ch04.qxd 1/16/04 11:03 AM Page 91

Figure 4.2

Pe
rs

is
te

nc
eB

ro
ke

r
AP

I

S
yb

as
e

U
se

rs

Q
/R

M
ap

pi
ng

C
la

ss
es

re
po

si
to

ry
.x

m
l

#
m

_s
S

ub
je

ct
 :

 S
tr

in
g

#
m

_s
S

ub
m

itt
er

 :
 S

tr
in

g
#
m

_s
M

es
sa

ge
 :

 S
tr

in
g

#
m

_s
D

at
e

:
S

tr
in

g
#
m

_n
ID

 :
 in

t
#
m

_v
V
ie

w
er

s
:

Ve
ct

or
+
ge

tS
ub

je
ct

()
 :

 S
tr

in
g

+
ge

tS
ub

m
itt

er
()

 :
 S

tr
in

g
+
ge

tM
es

sa
ge

()
 :

 S
tr

in
g

+
ge

tD
at

e(
)

:
S

t r
in

g
+
ge

tID
()

 :
 in

t
+
ge

tV
ie

w
er

s(
)

:
Ve

ct
or

+
se

tS
ub

je
ct

(in
 s

S
ub

je
ct

 :
 S

tr
in

g)
+
se

tS
ub

m
itt

er
(in

 s
S

ub
m

itt
er

 :
 S

tr
in

g)
+
se

tM
es

sa
ge

(in
 s

M
es

sa
ge

 :
 S

tr
in

g)
+
se

tD
at

e(
in

 s
D

at
e

:
S

tr
in

g)
+
se

tID
(in

 n
ID

 :
 in

t)
+
se

tV
ie

w
er

s(
in

 v
V
ie

w
er

s
:

Ve
ct

or
)

M
es

sa
ge

#
m

_s
IP

 :
 S

tr
in

g
#
m

_s
D

at
e

:
S

tr
in

g
#
m

_n
ID

 :
 in

t
+
ge

tIP
()

 :
 S

tr
in

g
+
ge

tD
at

e(
)

:
S

t r
in

g
+
ge

tID
()

 :
 in

t
+
se

tIP
(in

 s
IP

 :
 S

tr
in

g)
+
se

tD
at

e(
in

 s
D

at
e

:
S

tr
in

g)
+
se

tID
(in

 n
ID

 :
 in

t)

V
ie

w
er

H
om

e.
js

p

V
ie

w
.js

p

Ad
d.

js
p

O
JB

M
S
G

 W
EB

AP
P

92

Chapter 4

07 469513 Ch04.qxd 1/16/04 11:03 AM Page 92

Component Description

Home.jsp This is the default page that will be displayed to users when they
access the message board Web application. It displays a summary list
of messages that currently exist in the database.

Add.jsp This file provides an interface for submitting a new article to the
message board.

View.jsp Accessed from Home.jsp when a user clicks on a message,
View.jsp will be invoked, displaying the full message to the user.

Message Class The Message class is the main O/R class that is used for querying
messages, deleting messages, and submitting messages to the data
source.

Viewer Class The Viewer class keeps track of the last user to view a specific mes-
sage and is used in conjunction with the Message class. This example
uses both classes to demonstrate OJB’s 1:N capabilities.

repository.xml This file is the resource repository that OJB uses when creating a new
PersistenceBroker. It also contains pointers to three other XML files
that describe database connections, class mappings, and internal
mappings.

repository_database.xml This file contains a list of JDBC connections that can be used to access
relational databases. In our example, we will be using one connection
to a Sybase database.

repository_user.xml This is where the user-defined class mappings are stored — for exam-
ple, Message and Viewer.

repository_internal.xml OJB’s internal mappings are stored here. OJB uses them to provide
functionality such as lock and sequence management.

web.xml This file stores configuration information about the example message
board Web application.

The Message Class
The Message class is the most frequently used class in the message board example. It is very simple in
design, and its core purpose is to contain information about a message that is going to be stored in the
database, retrieved from the database, or deleted from the database. OJB utilizes this class and under-
stands its contents through the mapping of the class in the repository_user.xml file. In order for a
class to be mapped in the OJB metadata repository, it must adhere to the OJB guidelines.

The OJB guidelines for the classes you will write are basic and adhere to the design of transparent per-
sistence. All you have to remember is to include a public no-argument constructor in your class. We
also recommend implementing the java.io.Serializable interface in your class. Although this
interface is not required, we have found that you will run into fewer errors if you ensure that your class
can be serialized. The following code shows the Message class, taken directly from the message board
example:

93

Object to Relational Mapping with Apache OJB

07 469513 Ch04.qxd 1/16/04 11:03 AM Page 93

/*
* Created in 2003
*
* Message.java
*
*/

package com.ojbmsg.test;
import java.io.*;
import java.net.*;
import java.util.*;
/**
* @author Vitale
*/

public class Message implements java.io.Serializable {
protected String m_sSubject;
protected String m_sSubmitter;
protected String m_sMessage;
protected String m_sDate;

protected int m_nID;
protected Vector m_vViewers;

public Message() {
// Initialize member variables
m_nID = 0;
m_sSubject = “”;
m_sSubmitter = “”;
m_sMessage = “”;
m_sDate = “”;
m_vViewers = new Vector();

}

The Get and Set methods presented in the code example to follow simply set the protected variables in
this class. The variables that the methods manipulate are directly linked to the data source’s table
columns, which are mapped in the repository_user.xml file. So when the variables’ data changes, the
data source whose table columns are linked to those variables are also changed automatically by OJB.

// Get Methods
public String getSubject() {

return m_sSubject;
}
public String getSubmitter() {

return m_sSubmitter;
}
public String getMessage() {

return m_sMessage;
}
public String getDate() {

return m_sDate;
}
public int getID() {

return m_nID;
}

94

Chapter 4

07 469513 Ch04.qxd 1/16/04 11:03 AM Page 94

public Vector getViewers() {
return m_vViewers;

}
// Set methods
public void setSubject(String sSubject) {

m_sSubject = sSubject;
}
public void setSubmitter(String sSubmitter) {

m_sSubmitter = sSubmitter;
}
public void setMessage(String sMessage) {

m_sMessage = sMessage;
}
public void setDate(String sDate) {

m_sDate = sDate;
}
public void setID(int nID) {

m_nID = nID;
}
public void setViewers(Vector vViewers) {

m_vViewers = vViewers;
}

The Message class is extremely straightforward, but you are probably wondering what the repository
mapping entries are going to look like. The mapping entries offer a lot of flexibility, and can give the
impression of being more complex than they really are. The following XML illustrates the mapping
entries for the Message class:

<class-descriptor
class=”com.ojbmsg.test.Message”
table=”tblMESSAGE”

>
<field-descriptor id=”1”

name=”m_nID”
column=”ID”
jdbc-type=”INTEGER”
primarykey=”true”
autoincrement=”true”

/>
<field-descriptor id=”2”

name=”m_sSubmitter”
column=”SUBMITTER”
jdbc-type=”VARCHAR”

/>
<field-descriptor id=”3”

name=”m_sSubject”
column=”SUBJECT”
jdbc-type=”VARCHAR”

/>
<field-descriptor id=”4”

name=”m_sMessage”
column=”MYMESSAGE”
jdbc-type=”VARCHAR”

95

Object to Relational Mapping with Apache OJB

07 469513 Ch04.qxd 1/16/04 11:03 AM Page 95

/>
<field-descriptor id=”5”

name=”m_sDate”
column=”MYDATE”
jdbc-type=”VARCHAR”

/>

<collection-descriptor
name=”m_vViewers”
element-class-ref=”com.ojbmsg.test.Viewer”
orderby=”ID”
sort=”DESC”
auto-retrieve=”true”

auto-update=”true”
auto-delete=”true”

>
<inverse-foreignkey field-id-ref=”1”/>

</collection-descriptor>
</class-descriptor>

The mapping entries can be broken down into three key elements:

❑ The <class-descriptor> defines the class to which the object entry is mapped and what table
in the database it is mapped to.

❑ The <field-descriptor> maps a member variable of the class that you are mapping to a col-
umn of the table mapped in the <class-descriptor>.

❑ The <collection-descriptor> is the most complex part of the mapping entries. It creates the
1:N relationship between the Message class and the Viewer class.

The <class-descriptor> contains two elements that you must set up: the class element, used for map-
ping the entry to your Java class, and the table element, which must point to a table in the data source to
which you will be connecting. In this example, we are mapping the class element to com.ojbmsg.test
.Message and the table element to tblMESSAGE.

The <field-descriptor> has three elements, with an optional fourth. The ID element is optional and
enables you to assign a specific ID to each field-descriptor. The name element must point to a member
variable in the class specified in the <class-descriptor> element. The column element references a
column name in the relational database you are using. The final element is the jdbc-type, which is used
to specify the type of data that will be mapped. All the supported JDBC types are described later in this
chapter in the section “Supported JDBC Data Types.”

The <collection-descriptor> has multiple elements that can be used to fit your needs. The elements
used in this example consist of the following:

❑ The name, which points to a vector of Viewer classes.

❑ The element-class-ref, which references the type of class that is in the name element. In this
case, the class is the Viewer class.

❑ The orderby element, which tells OJB how to organize the Collection class objects.

96

Chapter 4

07 469513 Ch04.qxd 1/16/04 11:03 AM Page 96

❑ The sort element, which is used to sort the Collection class objects in ascending or descending
order.

❑ The auto-retrieve element, which instructs OJB to automatically incorporate the Collection class
objects when performing any operations on the parent classes (in this case, the Message class).

❑ The auto-update element, which forces OJB to automatically update the Collection class
objects when the parent class is being operated on.

❑ The auto-delete element, which enables OJB to perform deletes on the Collection class objects
without asking for permission when the parent class is being deleted. This prevents the desyn-
chronization of related Collection class objects.

The Viewer class’s primary goal is to demonstrate the one-to-many mapping capabilities of OJB. OJB
also supports many-to-many mappings, but that is beyond the scope of this example. For more informa-
tion on many-to-many mappings, please visit the OJB Web site at http://db.apache.org/ojb and read the
“Advanced O/R” tutorial. The Viewer class keeps track of users who have viewed messages. It records
the user’s IP address and the date they viewed the message. The following code illustrates the code for
the Viewer class:

/*
* Created in 2003
*
* Viewer.java
*
*/

package com.ojbmsg.test;
import java.io.*;
import java.net.*;
import java.util.*;
/**
* @author Vitale
*/

public class Viewer implements java.io.Serializable {
protected String m_sIP;
protected String m_sDate;
protected int m_nID;

public Viewer() {
// initialization of member variables
m_nID = 0;
m_sIP = “”;
m_sDate = “”;

}

The Get and Set methods in this class alter the protected class variables while OJB makes use of the
mappings in the repository_user.xml file to transfer the variables’ values to the mapped data source:

// Get Methods
public String getIP() {

return m_sIP;
}

97

Object to Relational Mapping with Apache OJB

07 469513 Ch04.qxd 1/16/04 11:03 AM Page 97

public String getDate() {
return m_sDate;

}
public int getID() {

return m_nID;
}
// Set methods
public void setIP(String sIP) {

m_sIP = sIP;
}
public void setDate(String sDate) {

m_sDate = sDate;
}
public void setID(int nID) {

m_nID = nID;
}

}

The Viewer class is straightforward in design compared to the Message class. It does not have a direct
relationship with any classes. Nor does it need to know that the Message class has a 1:N association
with it in order to function properly. This is depicted in the following code:

<class-descriptor
class=”com.ojbmsg.test.Viewer”
table=”tblVIEWER”

>
<field-descriptor id=”1”

name=”m_nID”
column=”ID”
jdbc-type=”INTEGER”
primarykey=”true”
autoincrement=”true”

/>
<field-descriptor id=”2”

name=”m_sIP”
column=”IP”
jdbc-type=”VARCHAR”

/>
<field-descriptor id=”3”

name=”m_sDate”
column=”VIEWDATE”
jdbc-type=”VARCHAR”

/>
</class-descriptor>

In the preceding code, you can see that the Viewer class mapping entries have no ties to the Message
class. If you recall from previous code, the Message class had a <collection-descriptor>, which
referenced the Viewer class. The Viewer class mapping entries do not have such a descriptor and there-
fore the class stands alone.

98

Chapter 4

07 469513 Ch04.qxd 1/16/04 11:03 AM Page 98

JDBC Connection Mapping
The final XML entries that must be inserted into the OJB metadata repository are the JDBC connections
that you need OJB to make in order to operate correctly. The following code illustrates a JDBC connec-
tion to a Sybase ASA server:

<jdbc-connection-descriptor
jcd-alias=”Sybase”
default-connection=”true”
platform=”Sybase”
jdbc-level=”1.0”
driver=”com.sybase.jdbc2.jdbc.SybDriver”
protocol=”jdbc”
subprotocol=”sybase:Tds:localhost”
dbalias=”2638”
username=”DBA”
password=”SQL”
batch-mode=”false”
useAutoCommit=”1”
ignoreAutoCommitExceptions=”false”

/>

You can have multiple JDBC connection descriptors in your mapping file, which would provide your
application with the capability to connect to multiple databases at any given time. Specific information
about the elements of the <jdbc-connection-descriptor> is described in the following table.

Element Description

jcd-alias A JDBC description alias. You can specify any alias name you wish that
will aid you in identifying the JDBC connection.

default-connection If set to true, this is the default connection that OJB will use if none is
specified when creating a PersistenceBroker.

platform OJB supports over ten relational database platforms. You can find more
about this in the “OJB Extras” section of this chapter.

jdbc-level Specifies the JDBC protocol version to use.

driver Specifies the driver to use to connect to the database.

protocol Protocol part of the connection string to use via JDBC.

subprotocol Sub protocol of the connection string.

dbalias Alias name of the database to connect to. Our example just uses the port
and no database name. Therefore, the default database of the connection
is used.

username Specifies the user name to use when connecting to the database.

password Specifies the password to use when connecting to the database.

99

Object to Relational Mapping with Apache OJB

Table continued on following page

07 469513 Ch04.qxd 1/16/04 11:03 AM Page 99

Element Description

batch-mode Batch-mode is used only if a database supports it. Each implementation
of the mode is database-dependent. Batch-mode can be changed at run-
time using the PersistenceBroker.serviceConnectionManager
.setBatchMode(...)

useAutoCommit Affects the way OJB uses the auto-commit mode. There are three modes;
the default mode is 1.
0 — turns auto-commit off.
1 — sets auto-commit explicitly to true when a connection is created,
and temporarily sets it to false when necessary (default).
2 — sets auto-commit explicitly to false when a connection is created.

ignoreAutoCommit If set to false, OJB will ignore any exceptions that are thrown from the
Exceptions use of auto-commit.

Home.jsp
This is the default page that is displayed to users when they access the message board sample Web
application. When this page is displayed, a list of currently existing messages is shown to the user. This
page also provides links to the user to enable the viewing of a specific message in greater detail or to
delete a specific message from the database. The code to perform all this functionality is embedded
within Home.jsp.

In order to retrieve the messages and display them to the user, you need to know how many messages
exist in the database first. If none are available, then there is no need to waste your time trying to iterate
through non-existent messages. The following code shows how to use the PersistenceBroker API to
retrieve the number of messages that exist in the database:

PersistenceBroker broker;
public int getCount() {

try {
// Create a PersistenceBroker object using the
// PersistenceBrokerFactory.
broker = PersistenceBrokerFactory.defaultPersistenceBroker();

// Construct a query to be issued
Query query = new QueryByCriteria(Message.class, null);

// Ask the broker to retrieve the extent collection
Collection allMessages = broker.getCollectionByQuery(query);

// If there are messages then return the number of messages
if (allMessages != null) {

broker.close();
PersistenceBrokerFactory.releaseAllInstances();
return allMessages.size();

} else {

100

Chapter 4

07 469513 Ch04.qxd 1/16/04 11:03 AM Page 100

broker.close();
PersistenceBrokerFactory.releaseAllInstances();
return 0;

}
} catch (Exception e) {

System.out.println(e);
e.printStackTrace();
broker.close();
PersistenceBrokerFactory.releaseAllInstances();

}
return 0;

}

Once you have the number of messages that exist in the database, you can then retrieve each one inde-
pendently to exhibit to the user. You need to use getMessage to retrieve the specified message from the
server. The getMessage method is shown in the following code:

public Message getMessage(String sIndex, String sUserIP) {
Message msgFound = null;
try {

// Create a PersistenceBroker object using the
// PersistenceBrokerFactory
broker = PersistenceBrokerFactory.defaultPersistenceBroker();

// Construct a query to be issued
Query query = new QueryByCriteria(Message.class, null);

// Ask the broker to retrieve the extent collection
Collection allMessages = broker.getCollectionByQuery(query);

// Now iterate through the results
java.util.Iterator iter = allMessages.iterator();
int nIndex = Integer.parseInt(sIndex);
int i = 0;

// Search for the message we are looking for
while (iter.hasNext()) {

i++;

// If we found our message exit the loop
if (i == nIndex) {

msgFound = (Message) iter.next();
break;

} else {
iter.next();

}
}

Once you have found a message, you need to create a Viewer object that will let the message know that
it has been viewed. The new Viewer object is then saved to the Message object, which is in turn saved to
the data source using the store method of the broker object:

101

Object to Relational Mapping with Apache OJB

07 469513 Ch04.qxd 1/16/04 11:03 AM Page 101

// If we have a message, return it
if (msgFound != null) {

// Construct a viewer object to show that this message has
// been accessed
Vector tmpvVwrs = msgFound.getViewers();
Viewer tmpView = new Viewer();

Calendar clNow = Calendar.getInstance();

tmpView.setIP(sUserIP);
tmpView.setDate(

Integer.toString((clNow.get(Calendar.MONTH) + 1)) + “/” +
Integer.toString(clNow.get(Calendar.DAY_OF_MONTH)) + “/” +
Integer.toString(clNow.get(Calendar.YEAR))

);

tmpView.setID(msgFound.getID());
tmpvVwrs.add(tmpView);

// Save the new Viewer to the Message class
msgFound.setViewers(tmpvVwrs);

try {
// Begin transaction
broker.beginTransaction();

// Store the new persistent making it persistent
broker.store(msgFound);

// Finally commit the transaction
broker.commitTransaction();

} catch (PersistenceBrokerException ex) {
// Rollback on error
broker.abortTransaction();
System.out.println(ex.getMessage());
ex.printStackTrace();

broker.close();
PersistenceBrokerFactory.releaseAllInstances();

}
broker.close();
PersistenceBrokerFactory.releaseAllInstances();

} else {
broker.close();
PersistenceBrokerFactory.releaseAllInstances();

}
} catch (Exception e) {

System.out.println(e);
e.printStackTrace();

broker.close();
PersistenceBrokerFactory.releaseAllInstances();

}
return msgFound;

}

102

Chapter 4

07 469513 Ch04.qxd 1/16/04 11:03 AM Page 102

From the getCount and getMessage examples, you can perceive that there is a systematic approach to
issuing queries using the PersistenceBroker API. The following sequence shows the generic steps in
issuing a query utilizing the PBAPI:

1. Obtain a PersistenceBroker by using the PersistenceBrokerFactory
defaultPersistenceBroker method:

broker = PersistenceBrokerFactory.defaultPersistenceBroker();

2. Construct a query using a class that is mapped in the OJB metadata repository:

Query query = new QueryByCriteria(Message.class, null);

3. Ask the broker to retrieve a collection of objects based on the query statement:

Collection allMessages = broker.getCollectionByQuery(query);

4. Iterate through the collection results and manipulate the objects you want to change:

java.util.Iterator iter = allMessages.iterator();

5. After changing the objects, you then need to store them back in the database. This requires you
to issue a transaction method and a store method:

broker.beginTransaction();
broker.store(msgObject);
broker.commitTransaction();

6. Finally, you need to close the broker and release any instances that you created from the broker
pool:

broker.close();
PersistenceBrokerFactory.releaseAllInstances();

To delete a message, you would use the same general code that was depicted in the getMessage
method, but rather than store the object with the broker.store function, you would execute a delete
on the object:

try {
broker.beginTransaction();
broker.delete(msgObject); // Delete the Message
broker.commitTransaction();
etc.

In the preceding code, you now have all the necessary functionality to execute the Home.JSP program
and see the results. Figure 4.3 shows what the OJB message board looks like after it has retrieved all the
messages that exist in a database.

The Home.jsp code is now complete and functioning. The following section describes how to add a mes-
sage to a database using the PersistenceBroker API. Add.jsp will demonstrate this functionality.

103

Object to Relational Mapping with Apache OJB

07 469513 Ch04.qxd 1/16/04 11:03 AM Page 103

Figure 4.3

Add.jsp
This page is accessed when the user wants to submit a new article to the message board. A form is
shown to the user requiring them to enter information in several fields. Once the user has filled out the
form and pressed the Submit button, the information is actually submitted to the same Add.jsp page,
which displays an embedded note to the user informing them that their article has been submitted to the
message board.

The majority of the code is similar to the code in previous examples; the main exception is that you need
to construct the Message object and fill it with data before you can persistently store it. Another point to
note here is that when the objects are stored, the PersistenceBroker API will automatically create a
unique ID for the object(s) and store it in the database. Figure 4.4 exemplifies the Add.jsp article sub-
mission form.

The addMessage method is called when the user clicks the Submit button. The addMessage method
processes the form data, converts it into a Message object, and then uses the PBAPI to store the object in
the database. The following code displays the addMessage code:

public Message addMessage(
String sSubmitter, String sSubject, String sMessage) {
Message msgToStore = null;

try {
broker = PersistenceBrokerFactory.defaultPersistenceBroker();

// Create Message to store
msgToStore = new Message();

104

Chapter 4

07 469513 Ch04.qxd 1/16/04 11:03 AM Page 104

// Add submitter to message
msgToStore.setSubmitter(sSubmitter);

// Add subject to message
msgToStore.setSubject(sSubject);

// Add article to message
msgToStore.setMessage(sMessage);

Calendar clNow = Calendar.getInstance();

// Set the date
msgToStore.setDate(

Integer.toString((clNow.get(Calendar.MONTH) + 1)) + “/” +
Integer.toString(clNow.get(Calendar.DAY_OF_MONTH)) + “/” +
Integer.toString(clNow.get(Calendar.YEAR)));

Figure 4.4

The broker.store method performs the actual persisting of the Message object, msgToStore, to the
data source:

// now perform persistence operations
try {

broker.beginTransaction();

105

Object to Relational Mapping with Apache OJB

07 469513 Ch04.qxd 1/16/04 11:03 AM Page 105

// Store the new object
broker.store(msgToStore);

broker.commitTransaction();
} catch (PersistenceBrokerException ex) {

broker.abortTransaction();
System.out.println(ex.getMessage());
ex.printStackTrace();

broker.close();
PersistenceBrokerFactory.releaseAllInstances();

}
broker.close();
PersistenceBrokerFactory.releaseAllInstances();

} catch(Exception e) {
System.out.println(e);

broker.close();
PersistenceBrokerFactory.releaseAllInstances();

}
return msgToStore;

}

View.jsp
This is the final JSP in the message board example. It does not introduce any new code and utilizes the
same getMessage method found in Home.jsp. What it does differently is display the full contents of a
specific message to the user. Figure 4.5 is a screenshot of what the user would see when a message is
accessed with View.jsp.

Figure 4.5

106

Chapter 4

07 469513 Ch04.qxd 1/16/04 11:04 AM Page 106

Developing with the ODMG API
This section briefly describes how to develop OJB applications using the ODMG API. OJB has created its
own implementation of the ODMG APIs, which it stores in the package org.apache.ojb.odmg. In order
to use the vast feature set of ODMG, you have to deal directly with an object that acts as the main entry
point of the ODMG APIs. This object is distinguished by the interface org.odmg.Implementation,
which enables you to obtain OQL objects, database objects, persistent collection objects, and
transaction objects. The good news is that if you have used ODMG before with non-OJB applications,
the code will be very similar to what you have created in the past, as all vendors must implement the
org.odmg.Implementation interface. The main difference is learning how OJB provides you access to
the ODMG object.

The examples that follow are based on creating the same type of functionality seen in the
PersistenceBroker API message board example, but utilizing ODMG instead. The core functionality
covered here includes opening a database, deleting and retrieving objects, and updating and storing
objects.

Opening a Database
As stated earlier, OJB has its own specific implementation of the org.odmg.Implementation interface;
this is simply org.apache.ojb.odmg.OJB. Now we need to obtain an instance of this class using the
static factory method getInstance. Using this instance, we can now open or create an ODMG database
(org.odmg.Database). The complete code follows:

import org.apache.ojb.odmg.OJB;
import org.odmg.Database;
import org.odmg.Implementation;
import org.odmg.ODMGException;
public Database open() {

// Obtain an ODMG object of type org.odmg.Implementation
Implementation odmgObject = OJB.getInstance();

Database odmgDB = odmgObject.newDatabase();

//open database
try {

odmgDB.open(“repository.xml”, Database.OPEN_READ_WRITE);
} catch (ODMGException e) {

e.printStackTrace();
}

return odmgDB;
}

Retrieving Objects
Obtaining objects using ODMG is quite a bit different than using the PersistenceBroker API. You
need to use the Object Query Language (OQL) designated by ODMG and set up query statements,
which are very similar to SQL statements. With the PBAPI, you issue queries directly on the objects with
QueryByCriteria methods. You need to obtain an OQLQuery object first, and then create a query state-
ment and execute it. This returns the Message objects in a DList, which you can later iterate through
when you are ready to process them. The following example shows the complete code for retrieving
objects using ODMG:

107

Object to Relational Mapping with Apache OJB

07 469513 Ch04.qxd 1/16/04 11:04 AM Page 107

import org.apache.ojb.odmg.OJB;
import org.odmg.DList;
public DList getAllMessages() {

try {
// Begin a transaction
Transaction trans = odmgObject.newTransaction();
trans.begin();

// Obtain an OQLQuery object
OQLQuery query = odmgObject.newOQLQuery();

// Create the OQL select statement
query.create(“select allmessages from “ +

Message.class.getName());

// Execute the query
DList allMessages = (DList) query.execute();

// Commit the transaction
trans.commit();

// Return the DList of messages
return allMessages;

}
catch (Exception e) {

System.out.println(e);
e.printStackTrace();

}
return null;

}

Storing Objects
Storing objects is extremely easy with the ODMG API. All you need to do is start a new transaction, create
a write lock on the object to store, and then commit the transaction. The following example demonstrates
the code to store objects with ODMG:

public void storeObject(Message msg) {

Transaction trans = null;
try {

// Obtain a new transaction object
trans = odmgObject.newTransaction();
trans.begin();

// We need to write lock the new object
trans.lock(msg, Transaction.WRITE);

// Now we commit the transaction
trans.commit();

} catch(Exception e) {
System.out.println(e);
e.printStackTrace(System.out);

}
}

108

Chapter 4

07 469513 Ch04.qxd 1/16/04 11:04 AM Page 108

Updating Objects
Updating objects requires more interaction than storing objects. In order to update an existing object,
you have to execute a query that can find the specific object that you are looking for. Once the object is
obtained, you then invoke a write lock on the object. The final steps are to update the necessary data
contained in the object and then commit the transaction. Following is the complete code needed for
updating objects using ODMG:

public void update(Message msg)
{

Transaction trans = null;

// Create a query to find a message with the specific ID
String oqlQuery = “select * from “ + Message.class.getName() +

“ where id = “ + msg.getID();

// Get the current database
Database odmgDB = odmgObject.getDatabase(null);

try {
trans = odmgObject.newTransaction();
trans.begin();
OQLQuery query = odmgObject.newOQLQuery();
query.create(oqlQuery);

// Execute the query
DList dlMessages = (DList) query.execute();

// Retrieve the message
Message msgFound = (Message) dlMessages.get(0);

// Set write lock
trans.lock(msgFound, Transaction.WRITE);

// Edit message subject line
msgFound.setSubject(“The subject has been edited”);

// Commit transaction
trans.commit();

} catch (Exception e) {
// RollBack
trans.abort();

System.out.println(e);
e.printStackTrace(System.out);

}
}

Deleting Objects
Deleting objects with ODMG API requires the same methods as updating objects. First, you
have to obtain the object you want to delete. Second, you need to mark it for deletion with
Database.deletePersistent(Object). Third, you simply commit the transaction and the delete
operation is carried out. The following example displays the code for deleting objects:

109

Object to Relational Mapping with Apache OJB

07 469513 Ch04.qxd 1/16/04 11:04 AM Page 109

public void delete(Message msg){

Transaction trans = null;

// Get the current database
Database odmgDB = odmgObject.getDatabase(null);

// Create the OQL query
String oqlQuery = “select * from “ + Message.class.getName() +

“ where id = “ + msg.getID();

try {
trans = odmgObject.newTransaction();

// Begin Transaction
trans.begin();

OQLQuery query = odmgObject.newOQLQuery();

query.create(oqlQuery);

// Execute query
DList dlMessage = (DList) query.execute();

Message msgFound = (Message) dlMessage.get(0);

// Mark message for deletion
odmgDB.deletePersistent(msgFound);

// Commit the transaction
trans.commit();

} catch (Exception e) {
// RollBack
trans.abort();

System.out.println(e);
e.printStackTrace(System.out);

}
}

Developing with the JDO API
OJB does not currently have its own implementation of JDO. OJB uses a plug-in called OJBStore, located
in the package org.apache.ojb.jdori.sql. A full JDO implementation is scheduled for the 2.0
release of OJB, and so is currently beyond the scope of this book.

OJB Extras
This section contains various information that you should find helpful when using OJB. It covers the fol-
lowing: the steps that should be taken to verify an OJB installation; the database platforms that OJB can be
successfully used with; the JDBC types that OJB enables for your use when developing your applications;
how to correctly deploy an OJB application; and, finally, some special performance notes regarding OJB.

110

Chapter 4

07 469513 Ch04.qxd 1/16/04 11:04 AM Page 110

Verifying an OJB Installation
Regardless of what API layer you chose to develop with, it is imperative that you make sure that OJB is
properly installed on your machine. The OJB development team makes this process extremely easy
using JUnit and Ant. You want to make sure that you have JDK 1.2 or later installed before proceeding
with the following tests.

1. Ensure that the JAVA_HOME environment variable points to the root directory of the Java SDK
installation.

2. Make sure that you have downloaded the latest binary or source distribution of OJB.

3. From the base directory of your new installation of OJB, execute bin\build junit for win32
machines or bin/build.sh junit for Unix machines.

These steps should initiate a chain of regression tests that can take several minutes to complete. After all
the tests have completed, a summary of the results will be displayed in the console. Make sure that no
tests failed. A typical output from these tests is as follows:

junit-no-compile-no-prepare:
[junit] Running org.apache.ojb.broker.AllTests
[junit] Tests run: 187, Failures: 0, Errors: 0, Time elapsed: 26.228 sec
[junit] Running org.apache.ojb.odmg.AllTests

A common error that can occur during the beginning of the tests is that the Ant script will not be able to
locate the j2ee.jar file. A simple solution is to put a copy of the file in the OJB_BASE\lib directory.
The other option is to edit the build script to point to the location of the j2ee.jar.

Supported Database Platforms
OJB currently supports a large array of database platforms that can be used with OJB persistent object
development. Each database system requires its own JDBC driver to enable access to it. The currently
supported database platforms are as follows:

❑ Db2

❑ Hsqldb

❑ Informix

❑ MS Access

❑ MS SQL Server

❑ MySQL

❑ Oracle

❑ PostgreSQL

❑ SybaseASA

❑ SybaseASE

❑ Sapdb

❑ Firebird

111

Object to Relational Mapping with Apache OJB

07 469513 Ch04.qxd 1/16/04 11:04 AM Page 111

❑ Axion

❑ NonstopSQL

Supported JDBC Data Types
OJB supports the most common JDBC data types that applications use today. The following describes
the supported JDBC data types and their Java equivalent.

JDBC Type Java Equivalent

CHAR String

VARCHAR String

LONGVARCHAR String

NUMERIC java.math.BigDecimal

DECIMAL java.math.BigDecimal

BIT boolean

TINYINT byte

SMALLINT short

INTEGER int

BIGINT long

REAL float

DOUBLE double

FLOAT double

BINARY byte[]

VARBINARY byte[]

LONGVARBINARY byte[]

DATE java.sql.Date

TIME java.sql.Time

TIMESTAMP java.sql.Timestamp

CLOB Clob

BLOB Blob

ARRAY Array

DISTINCT mapping underlying type

STRUCT Struct

REF Ref

JAVA_OBJECT Java class

112

Chapter 4

07 469513 Ch04.qxd 1/16/04 11:04 AM Page 112

Deploying OJB Applications
Deploying OJB applications requires specific knowledge of the OJB resources and configuration files that
are needed to run an OJB-supported application. This section describes the resources and configurations
and explains how each fits into the OJB framework.

Jar Files
The following table is a list of Jar files supplied with OJB in the ojb_root/lib directory. The files with an
asterisk next to their name are required for OJB to run. The other files are used for building purposes only.

Jar File Version

db-ojb-xxx.jar* Latest release

ant-1.5.jar 1.5

antlr-2.7.1.jar 2.7.1

commons-beanutils-1.4-dev.jar* 1.4-dev

commons-collections-2.0.jar* 2.0

commons-dbcp-1.0.jar* 1.0

commons-lang-1.0-b1.1.jar* 1.0-b1.1

commons-logging-1.0.1.jar* 1.0.1

commons-pool-1.0.1.jar* 1.0.1

crossdb.jar 1.0 RC1

ejb.jar 1.0

hsqldb-1.7.1.jar* 1.7.1

jakarta-regexp-1.2.jar 1.2

jcs-1.0-dev.jar* 1.0-dev

jta-1.0.1.jar* 1.0.1

junit-3.8.jar 3.8

log4j-1.2.6.jar* 1.2.6

p6spy-1.0.jar* 1.0

servletapi-2.2.jar 2.2

torque-3.0.jar 1.3

xalan-2.4.jar 2.4

xerces-2.0.2.jar* 2.0.2

113

Object to Relational Mapping with Apache OJB

07 469513 Ch04.qxd 1/16/04 11:04 AM Page 113

Metadata Files
Two main files are needed in order for OJB to run correctly:

❑ The repository.xml file and any resources it points to are needed for deployment.

❑ The ojb.properties file is also need for runtime configurations.

These files must also be stored in the CLASSPATH because OJB will attempt to load them via the
ClassLoader resource look-up.

JDBC Drivers
The JDBC drivers that you use for your specific application must be included when deploying the appli-
cation, and they must also be referenced in the CLASSPATH.

CLASSPATH Settings
For a standalone application, you must have the following files in your CLASSPATH:

❑ db-ojb-xxx.jar

❑ OJB.properties

❑ repository.xml

❑ JDBC drivers

❑ Any additional Jars your application may require

OJB Performance
OJB calls will be obviously slower than issuing direct JDBC queries because OJB introduces an extra
layer between the RDBMS and the actual business logic that is used. However, this does not mean that
the OJB team has not taken steps to ensure the best possible performance. The OJB team has rewritten
the reflection classes that are used to access the persistent objects for optimal performance.

OJB provides an API layer that makes it easy for developers to create O/R mapping applications. You
basically just need to weigh the options of capability, convenience, and rapid development time versus
the best possible performance solution. OJB also provides built-in object caching features, which
enhance query times drastically.

The bottom line is that the performance hit you may encounter using OJB versus straight queries is
minor in comparison to the amazing feature set and functionality that is built in to OJB. It is also impor-
tant to note that all O/R mapping tools are slower than straight queries; this is not exclusive to OJB.

Summary
Object Relational Bridge (OJB) is a powerful, flexible, and exciting object-to-relational mapping tool that
contains a vast array of functionality for incorporating persistent objects into your application designs. OJB
takes all of the guesswork out of O/R mapping and is truly a transparent persistence O/R mapping tool.

114

Chapter 4

07 469513 Ch04.qxd 1/16/04 11:04 AM Page 114

This chapter described Object-to-Relational mapping and then explained the main features of OJB. Next,
it covered how to use OJB’s API layers and demonstrated a complete message board application that uti-
lizes OJB’s features. You saw fully functional code that exploited the PersistenceBroker API and ODMG
API. Finally, you examined the configurations needed in order to deploy OJB in your own applications.

The next chapter describes content management with Jakarta’s Slide.

115

Object to Relational Mapping with Apache OJB

07 469513 Ch04.qxd 1/16/04 11:04 AM Page 115

07 469513 Ch04.qxd 1/16/04 11:04 AM Page 116

Content Management
with Jakarta’s Slide

Jakarta’s Slide (http://jakarta.apache.org/slide) is an open-source content management and inte-
gration system. It provides a robust API and a low-level content management framework, which
can be used as a foundation for building your own, more complex content management systems.
Slide is currently maintained by the Apache Software Foundation and was originally developed
by Remy Maucherat.

Slide manages binary content from distributed data sources and organizes it in a hierarchical fash-
ion. It also provides many additional features that can be used to manage the data sources, such as
versioning, indexing, searching, locking, and security. These are known as helpers in the Slide
world.

Slide also supports Web Distributed Authoring and Versioning (WebDAV) capabilities, which are
implemented via a servlet. WebDAV is a very popular protocol that is an extension of the HTTP
protocol. It is used for editing and managing Web-based content on remote Web servers. It is also
an Internet Engineering Task Force (IETF) standard and is supported by many popular software
companies (Microsoft, IBM, Novell, and more).

In this chapter, we explain the Slide architecture — specifically, namespaces, domains, and APIs;
provide information on the setup and configuration of Slide; discuss WebDAV and Slide; and
show examples of Slide using a WebDAV-supported client.

Slide Architecture
The architecture of Slide’s features and services were developed from a modular and pluggable
design consisting of high-level and low-level services, with a concentration on security, versioning,
locking, and structure. The high-level services have strong dependencies on each other in order to

08 469513 Ch05.qxd 1/16/04 11:03 AM Page 117

keep the security of Slide’s components intact. The low-level services are not concerned with security
and are more related to functionality. These services are all designed to be pluggable, meaning you can
add or remove services as needed. This pluggable design of low-level services makes Slide extremely
flexible and readily adaptable to a wide variety of content management needs.

You should understand the five main architectural concepts of Slide:

❑ External architecture

❑ Internal architecture

❑ Transaction management architecture

❑ Namespace

❑ Domain

External Architecture
The external architecture (EA), shown in Figure 5.1, is the highest-level architecture perspective.

There are two simplistic layers in the EA: the client layer and the server layer.

The client layer contains three components, which are used to communicate with the server. The first
component is the WebDAV client. The WebDAV client is an application that supports and understands
the WebDAV protocol from a client perspective. The WebDAV client connects to the WebDAV servlet
and communicates its requests to the WebDAV servlet. Many WebDAV client tools are available, but two
of the most common are DAV Explorer and the Microsoft Windows Operating System (O/S). Windows
has WebDAV capabilities built right into the O/S. You will see examples of using Windows to issue
WebDAV operations later in this chapter, in the section, “WebDAV and Slide.” DAV Explorer is a stand-
alone Java application developed by the University of California, Irvine. DAV Explorer looks very
similar to Windows Explorer and it supports most of the functionality specified in RFC 2518, which is
the WebDAV Distributed Authoring Protocol specification. You can download DAV Explorer from
www.ics.uci.edu/~Webdav/.

The second component is the HTTP client, which is an application that communicates with the Slide
server via the HTTP protocol. An example application could be any Web browser. With the HTTP client,
the content management system can be managed easily through a Web-based interface. This falls right
into play with portal development and is probably the best approach for administering content from a
portal perspective.

The final component of the client layer is a Java Application Client. A Java Application Client can be
created to utilize Slide’s API layer directly without going through the WebDAV servlet layer. This is defi-
nitely a plus when performance is a factor in the development task you are presented with.

From a portal development standpoint, you would most likely choose either the HTTP client approach
or the WebDAV approach for managing content, as both lend themselves to easy remote management
capabilities. The standalone Java application approach requires more configurations in order to get the
application up and running. If you want a portable standalone Java application as your approach for

118

Chapter 5

08 469513 Ch05.qxd 1/16/04 11:03 AM Page 118

managing content, then using Java Web Start (JWS) technology would be a great option. Java Web Start
enables you to download an application from the World Wide Web via a Web browser by simply clicking
on a hyperlink. The only configuration requirement of the machine that is downloading the program is
that it has Java Web Start installed. Added benefits of using JWS are the extra security and versioning
features built into its protocol. You can always be sure that administrators are using the latest copy of an
application and that the software is legitimate, as certificates and digital signatures are used. Please see
Chapter 12 for more in-depth information on Java Web Start.

Figure 5.1

WebDAV client HTTP client Java Application Client

Server

WebDAV servlet

Slide API

119

Content Management with Jakarta’s Slide

08 469513 Ch05.qxd 1/16/04 11:03 AM Page 119

The server layer enables the client layer to communicate with it through one of two methods. One
method is to use the WebDAV servlet for communication. WebDAV clients and HTTP clients use this
approach. The second method is for the client to communicate directly with the Slide API. Standalone
Java applications are the prime candidates for using the Slide API for communication.

Internal Architecture
The internal architecture digs deeper into the component realm of Slide, enabling you to see the individ-
ual pluggable interfaces that exist. Figure 5.2 depicts the internal architecture.

The internal architecture can be depicted with four layers: The Application layer, the Slide API layer,
the Helper layer, and the Data Store layer.

The Application layer provides the means by which clients can access the Slide API. There are two
methods for doing this. One is to use the WebDAV servlet for communication. As described in the pre-
ceding section, the WebDAV client and HTTP client interface with the WebDAV servlet for communica-
tion purposes. The second method is to use a standalone Java application that will directly access the
Slide API layer.

The Slide API layer provides access to the content management Java classes called helpers, and acts as a
bridge between the Application layer and the Helper layer. The Slide API accepts operation requests
from the Application layer and executes the requests accordingly.

The Helper layer encapsulates all the functionality to which an application would need access. The
helpers that currently exist in Slide are described in the following table.

Helper Description

Structure Provides access to the namespace tree

Lock Enables data-locking capabilities

Security Provides access to security functionality

Content Enables the management of content, revisions, and metadata

Macro Provides high-level object management functionality

Index Currently not implemented, this helper will provide indexing and searching
capabilities.

Process Currently not implemented, this helper will handle approvals, confirmations,
and notifications.

The Data Store layer is where all the data is housed and managed. Also available is transaction manage-
ment support for managing user data transactions.

120

Chapter 5

08 469513 Ch05.qxd 1/16/04 11:03 AM Page 120

Figure 5.2

Data sources

Slide API

Security
helper

Lock
helper

Content
helper

JNI

JDBC

File
System

LDAP

Java application
WebDAV servlet

JTA Layer

121

Content Management with Jakarta’s Slide

08 469513 Ch05.qxd 1/16/04 11:03 AM Page 121

Transaction Management
Slide implements a very robust transaction management system. Transaction management is very
important when dealing with content management, especially in a system that is accessed by multiple
users at any given time. This is definitely the case when building Java portals. The transaction manage-
ment architecture is shown in Figure 5.3.

Figure 5.3

Clients

Data sources

Slide API

Helper components

Store API

Transaction
Management

Layer

Data
Stores

122

Chapter 5

08 469513 Ch05.qxd 1/16/04 11:03 AM Page 122

Transaction management is key to a successful content management framework — without it, data can
easily become corrupted or out of sync. Slide uses Java transaction management as a basis for its transac-
tion management system. The following sections take a little deeper look into what this entails, explaining
what transactions are and how they are managed in the Slide architecture.

Transactions
A transaction is defined as a compilation of tasks that must be performed. They can consist of several
operations executing different functionalities in a given order or without order at all. These tasks have
to be managed individually in order to preserve data integrity. In addition to ensuring that data isn’t
corrupted, data integrity management also encompasses the following:

❑ Security — limits who has access to the specific data

❑ Versioning — keeps track of the latest version of the data

❑ Locking — ensures that only one user is altering the data at one time

❑ Replication — persists the new data updates to other stores that contain the same data

Transaction Attributes
You have probably heard of the acronym ACID before. All transactions share the same attributes, and
they are easily remembered with the ACID acronym: atomicity, consistency, isolation, and durability.

❑ Atomicity — This describes any operation that is indivisible, which simply means that the opera-
tion will either complete fully or will fail completely and be rejected by the managing system. In
other words, an operation either passes or fails; there is no middle ground or partial completion.

❑ Consistency — A transaction must manage its data in an all-or-nothing manner. When a trans-
action has completed, the data must be stored fully in the data store. However, if a transaction
fails, the data that was in the process of being persisted to the data store must be removed, and
the original data that exists in the data store must be returned to its previous state. This follows
the guidelines of data integrity.

❑ Isolation — In theory, several transactions can occur at the same given time. However, the transac-
tions should not conflict with each other. Therefore, the management system has to keep track of
who has already committed a transaction and in what order the transactions were committed, in
order to avoid conflicts. From an individual transaction standpoint, a transaction that is being exe-
cuted should be isolated from all other transactions that are occurring, meaning that other transac-
tions should appear as if they have completed either before it or after it, in a sequential manner.

❑ Durability — Sometimes errors occur after transactions are committed and changes are per-
sisted to the data store. In this case, the transaction management system needs to be durable
enough to recognize that the errors occurred after the data was persisted and the transaction
was complete. Therefore, the data should not be rolled back to the previous state; rather, it
should still reflect the most recently persisted data.

Transactions end in a very simplistic manner even if the underlying details are a bear to manage. In short,
a transaction will both be successful and save its new changes or it will fail and roll back all changes it may
have made to the data store.

Slide’s use of Java’s transaction management system provides you with an elegant way to manage transac-
tions at the programming level. This is definitely a plus when you need to develop a very robust content
management system.

123

Content Management with Jakarta’s Slide

08 469513 Ch05.qxd 1/16/04 11:03 AM Page 123

Namespaces
A namespace is a conglomerate of files, directories, actions, and security policies, all contained in a hier-
archical information tree structure. One namespace per application is the general rule. All the informa-
tion in the namespace is independent of other existing namespaces. One namespace cannot reference
another namespace or include links to other namespaces. This type of rule structure isolates application
data and security from other applications with different namespaces.

Namespaces also include actions and subjects that are, generally speaking, security policies that have
been created for a specific application. Actions control user permissions to content by defining read/write
constraints for individual users and groups. Subjects are the users and groups that are defined for the
application.

Given that the data is stored in a hierarchical information tree, there needs to be a standard way to
access the information in the tree. Slide uses Uniform Resources Identifier (URI) technology to do this.
URIs are simply strings that are used to identify resources. The string syntax is reminiscent of the Unix
file system, starting with a forward slash (/) as the root of system. When you need access to a specific
node in the hierarchical information tree, you simply specify a path as you would in a Unix file system
to locate the resource — for example, /bin/conf/server.xml.

If you need to make sure that your URIs are adhering to the W3 specification for addressing, please check
out the following Web site for further information on URI addressing: www.w3.org/addressing.

Helpers
Slide contains seven individual helpers that enable the management of objects in a namespace. You were
briefly introduced to these helpers in the table that appears in the section “Internal Architecture” of this
chapter. The following sections now describe each of these helpers: Structure, Security, Lock, Content,
Macro, Index/Search, and Process.

Helpers are also referred to as high-level services in the Slide world. In order to access information
nodes regardless of where the information is located or what form it is stored in, applications must use
these helper objects.

Structure Helper
The structure helper provides the necessary functionality for applications to access the hierarchical infor-
mation tree of a namespace. The structure package for navigating and manipulating a namespace is con-
tained in the package org.apache.slide.structure. Besides the structure interface, six classes are
also contained within the package. They are defined in the following table.

Class Description

ActionNode This class is used to define actions on available Slide objects. Actions can
dynamically be added to a namespace in order create a new security policy.

GroupNode A GroupNode defines a group of nodes. These defined groups of nodes are
generally users.

124

Chapter 5

08 469513 Ch05.qxd 1/16/04 11:03 AM Page 124

Class Description

LinkNode A LinkNode is a node that links to another node in the system.

ObjectNode The ObjectNode is an abstract data type and can represent any kind of
object node that exists in the system.

StructureImpl This class is the default implementation of the Structure interface.

SubjectNode The SubjectNode is the most commonly occurring type of node in a name-
space. It is used to store Slide information and can reference a file, a directory,
or a principal.

To access and manipulate the node hierarchy of a namespace, you must acquire a
structure object. In order to obtain a structure object, you need to call the method
NamespaceAccessToken.getStructureHelper(). This method call will return a structure object
that will provide you with all the necessary methods for manipulating a namespace.

Security Helper
Slide’s security helper provides a role-based, hierarchical security system that has a tremendous amount
of functionality that you can use immediately in your content management application fairly easily. The
security helper provides a layer between calls coming from users and the content contained in the sys-
tem. When a user or client tries to execute an operation on data, Slide will perform a security check on
the user to make sure that the user has the right permissions to perform the operation. Additional per-
missions can be added dynamically through the security helper from client applications that have access
to do so. The security helper is contained in the package org.apache.slide.security. Only two
classes are associated with this package: the NodePermission class and the SecurityImpl class.

Slide does use role-based access and it is similar to general role-based access systems, but with an added
twist of assigning roles to nodes. The roles are not necessarily focused on users, but rather on individual
nodes in the namespace. This is a different way of thinking, but it makes sense when using a content
management system. Therefore, the main framework for role-based access is individual nodes. If you
do not specify a role for a particular node, it will default to the role of nobody.

Roles are assigned to individual nodes in a namespace through the use of Java interfaces. You can leave
these interfaces empty if you wish or you can extend the functionality. In order to assign a particular role
to a node, the node must first meet a few expectations. First, the node has to extend the SubjectNode
class. Second, the node must also implement the role interface. Finally, the node must have a default
constructor. If all three of these requirements are met by the node, a role can then be associated with it.
Figure 5.4 illustrates the principles of security within Slide.

Permissions on child nodes are inherited from their parent nodes. If you had a URI such as /father
and then created a sub node called son, “/father/son”, son would inherit all the permissions that
/father had automatically. These behavior principles apply throughout the hierarchical tree. Therefore,
if /users had a new child called /users/joe, /users/joe would inherit all the permissions assigned
to /users.

125

Content Management with Jakarta’s Slide

08 469513 Ch05.qxd 1/16/04 11:03 AM Page 125

Figure 5.4

config.ini

/read

Parent node

config.ini is now blocking read/write
requests from user “Bill.”

Commands Issued Description:
Lock file config.ini from user Bill.

[/files.config,.ini, /users/Bill, /actions/read, no]
[/files.config,.ini, /users/Bill, /actions/write, no]

root

Child node

/files

Child node

/actions

Child node

/users

/write

/Joe

Bill

126

Chapter 5

08 469513 Ch05.qxd 1/16/04 11:03 AM Page 126

ObjectNodes have permissions associated with them in the form of quintuples, and use the following
format:

[Target Subject, Executing Subject, Action, Inheritance]

Referring to Figure 5.4, if you wanted to give /users/joe the /actions/read capabilities on a particu-
lar node, you would use the following syntax:

[/files, /users/joe, /actions/read, yes]

You can also explicitly define the file to which you want to give a node access, as shown in the following
example:

[/files/whatever.txt, /users/joe, /actions/read, yes]

Slide keeps track of all the permissions for you and performs all the necessary security checks when a
user tries to access a particular node. If a security check were to fail, you would immediately be sent an
AccessDeniedException stating that an exception was thrown when such and such a user tried to per-
form the given command. Once you understand the behavior of the security system, it is fairly simple to
use. Action types in Slide can be user-defined. Once they are created, any number of security checks can
be performed. Following are the default actions built into Slide:

❑ Read object

❑ Create object

❑ Remove object

❑ Grant permission

❑ Revoke permission

❑ Read permissions

❑ Lock object

❑ Kill lock

❑ Read locks

❑ Read revision metadata

❑ Create revision metadata

❑ Modify revision metadata

❑ Remove revision metadata

❑ Read revision content

❑ Create revision content

❑ Modify revision content

❑ Remove revision content

127

Content Management with Jakarta’s Slide

08 469513 Ch05.qxd 1/16/04 11:03 AM Page 127

As discussed earlier, two main classes are associated with the org.apache.slide.security package:
the SecurityImpl class and the NodePermission class. However, the package contains other classes
that provide useful information. The following table provides a complete description of the classes asso-
ciated with the security package.

CLASS DESCRIPTION

Security This is the security helper interface.

NodePermission This class is used to impose security constraints on nodes within
the hierarchical tree, and provides all the necessary methods to
manage the security constraints.

SecurityImpl This is the implementation class for the security helper interface
described earlier. This class provides the capability to check permis-
sions, revoke permissions, iterate through a permission list, grant
permissions, and deny permissions.

AccessDeniedException This class represents an access denied exception and will occur
when access to a specific node is denied. The exception will contain
information about the object on which the exception occurred, the
subject URI, and the action that was attempted.

SecurityException This class is a generic exception class that is used when no other
exception class fits the criteria of the security exception.

Lock Helper
The lock helper provides the Slide content management system with the capability to enable a user to
prevent a particular action from occurring on a resource for a duration specified by the user. For exam-
ple, if an application wanted exclusive read and write access to a file, the application could use the lock
helper to block other users from performing read or write actions on that file.

The lock helpers also provide the client application with the capability to check resources for locks and
determine whether the resource is accessible and lockable. It also provides the user with information
about how long the lock is for and who is locking it.

In the event that you try to perform a lock on a particular object and it fails, an ObjectLockedException
will be returned to you indicating that your operation failed. You can use the ObjectLockedException
to obtain more information about why the exception occurred.

To lock a SubjectNode, the following information must be provided: [target subject, owner subject,
locked action, duration, inheritance].

For instance, if you wanted to lock the /files node, you could use the following information to do so:
[/files, /users/joe, /actions/write, 20m, yes].

This would prevent the /files node from being written to for the duration of time specified by the user
Joe. In addition, any sub nodes under /files would also be locked, as you explicitly told the lock
helper to use inheritance. As you can see, Slide lock helper architecture is very similar to the security
helper architecture in the sense that child nodes inherit locks placed upon their parent nodes. Figure 5.5
illustrates the lock architecture in action.

128

Chapter 5

08 469513 Ch05.qxd 1/16/04 11:03 AM Page 128

Figure 5.5

The lock helper is contained in the package org.apache.slide.lock. Although several classes are
included in the package, two main classes are important when managing locks: LockImpl and
NodeLock. These two classes, as well as the other classes present in the lock helper package, are
described in the following table.

CLASS DESCRIPTION

Lock This is the Lock interface.

LockImpl This class implements the lock interface and provides applications
with the capability to check locks, enumerate through locks, kill
locks, renew locks, create a lock, and unlock a lock.

NodeLock This class enables you to lock a node through the use of its many
methods. It also provides the capability to get the expiration date
of a lock, determine whether the lock has expired, set an expira-
tion date, set an owner, find out who the owner is, set the inheri-
tance property of the node, and validate that the lock is still active.

config.ini

Parent node

config.ini cannot be accessed from
any user for 20 ms.

This is because it inherits the
security attributes of its parent

node/files.

root

Child node

/files

Child node

/actions

Child node

/users

Commands Issued Description: Lock child
node/files from all users for 20 milliseconds.

[/files, /users, /actions/read, 20ms, no]
[/files, /users, /actions/write, 20ms, no]

129

Content Management with Jakarta’s Slide

Table continued on following page

08 469513 Ch05.qxd 1/16/04 11:03 AM Page 129

CLASS DESCRIPTION

LockException The default exception class. It is thrown in cases that don’t fall
into the other three exception ranges.

LockTokenNotFound This exception is thrown if the token for the lock cannot be found.
Exception

ObjectIsAlready This exception is thrown if an object is already locked.
LockedException

ObjectLockedException If an object is already locked, this exception will be thrown if a
user tries to lock the object again.

Content Helper
The content helper’s classes are contained in the package org.apache.slide.content. These classes
provide the functionality for accessing and altering content, metadata, and revisions of nodes. Slide
automatically separates different versions of content that it manages and provides mechanisms for
branching and custom version control. The metadata that is associated with each content object node is
maintained by Slide as well. The following table describes the classes associated with the
org.apache.slide.content package.

CLASS DESCRIPTION

Content This is the Content interface for the helper class that will be imple-
mented by ContentImpl.

ContentImpl This is the implementation of the Content interface. This class enables
you to create a new revision, create a branch, merge two branches,
remove a revision, retrieve a revision descriptor, and store the contents
of an updated revision.

NodeProperty The NodeProperty class is all about accessing and manipulating the
properties of a node. With it, you can add permissions, enumerate per-
missions, get the name of the namespace, set a namespace, and remove
permissions.

NodeRevision This class encapsulates the content of a revision and provides methods
Content for interfacing directly with the content, such as reading the content,

setting the content, validating the content, and streaming the content.

NodeRevision This class enables you to manipulate the metadata of a particular node.
Descriptor

NodeRevision This class enables access to all the branches and revisions that have
Descriptors been created and stored.

NodeRevisionNumber This class is simply used for creating a revision version number.

BranchNotFound When trying to access a branch that does not exist, this exception will
Exception be thrown.

130

Chapter 5

08 469513 Ch05.qxd 1/16/04 11:03 AM Page 130

CLASS DESCRIPTION

ContentException This is a general exception for the content helper package. Any excep-
tions that occur that do not fit into any of the ones previously listed
default to this exception.

NodeNotVersioned This exception is thrown when an error occurs during the attempt to
Exception access version information from a node that does not contain any.

RevisionAlready If a user tries to store the same revision, a conflict will occur and this
ExistsException exception will be thrown, indicating that the revision stated already

exists.

RevisionContentNot If a user tries to retrieve the revision content of a node that doesn’t
FoundException contain any, this exception is thrown.

RevisionDescriptor If a user tries to retrieve the revision descriptor of a node that doesn’t
NotFoundException contain any, this exception is thrown.

RevisionNotFound This generic exception is thrown when a user tries to access revision
Exception data and an error occurs.

Macro Helper
The macro helper contains an assortment of classes that make complex namespace management opera-
tions easier to perform. Performing a recursive copy, move, or delete operation can be a nightmare to
code; luckily, these macro helpers assist in achieving such functionality. All of the macro helper classes
are contained in the org.apache.slide.macro package. The following table describes the classes con-
tained in the package.

Class Description

Macro This is the Macro Interface that is implemented by MacroImpl.

MacroImpl This class is the actual implementation of the Macro class. This class
enables you to perform copies, deletes, and moves, and to perform
each recursively within a given namespace.

MacroParameters This is just a parameter class that is passed when using the macros
in the MacroImpl class.

ConflictException Anytime a conflict occurs during a macro operation, this exception
is thrown. For example, if a conflict happens during a copy/move
operation, this exception would be thrown.

CopyMacroException This exception is thrown when errors occur during a copy process.

DeleteMacroException This exception is thrown when errors occur during a delete process.

ForbiddenException This exception is thrown when an operation is forbidden. For exam-
ple, if you tried to do a copy and a move operation and specified the
same location for both the original location and the destination loca-
tion, this exception would be thrown.

MacroException This is the default generic exception class of this package.

131

Content Management with Jakarta’s Slide

08 469513 Ch05.qxd 1/16/04 11:03 AM Page 131

Index/Search and Process Helpers
These helpers are planned for the future and have not yet been implemented by the Slide development
team.

Stores
Stores in Slide are used for saving content and metadata about objects. Low-level services can be created
to extend Slide’s storing capabilities. Store repositories can range from relational databases to file systems,
so the need for low-level services that can handle the needs of various objects is required. All services,
however, fit into two types of services: descriptors store and content store.

The descriptors store services are responsible for storing metadata, managing locks, storing structures,
and managing security. The content store services are solely responsible for managing, storing, access-
ing, and manipulating content.

The reason to have different types of repositories is simple: Different types of content are stored. Certain
repositories are better at dealing with large amounts of data, whereas others are better at creating mean-
ings and relationships for the data. Every object defined in Slide could potentially have a different type
of low-level service associated with it. Therefore, even though a namespace cannot access or reference
other namespaces, it doesn’t mean that the namespace cannot distribute its data across multiple content
stores.

The Slide configuration file determines how the low-level services map to individual nodes. Therefore,
it is up to the administrator to set up the different configurations for various objects. As with everything
else in a namespace, if you do something to a parent node, it affects the child nodes. When an adminis-
trator assigns low-level services to specific nodes, the child nodes of that parent node will also be
assigned to the low-level services, unless otherwise specified. Figure 5.6 illustrates the use of multiple
content stores in a single namespace.

Figure 5.6 uses three different service mappings to store different content. The /files nodes of this example
is stored in a file system. Obviously, this makes sense for the type of content — in this case, files — that is
being stored. The /actions nodes are stored via JDBC to a relational database or system that supports
JDBC connections. Finally, the /users nodes are stored in an LDAP server. From this diagram, you can see
that only one namespace exists, but that the content is distributed among multiple data stores.

Domain
A domain can contain one or more registered namespaces. The domain controls access to the registered
namespaces and performs initialization and connection management of the namespaces. There can be
only one domain per Java Virtual Machine (JVM), which is maintained by the domain administrators.
The domain administrators manage everything about a domain, including what namespaces are con-
tained in the domain and how they are initialized; the creation and mapping of low-level services; the
structure of the domain; and access and security.

The domain is initialized when Slide is first started. The initialization of the domain is based on a
domain configuration file, which is set up by the domain administrator prior to starting Slide. The
slide.properties file contains the path to the configuration file. The path can also be obtained via the
org.apache.slide.domain object at runtime. The domain initialization can be called again at runtime
through the static method Domain.init, though this is not the recommended approach.

132

Chapter 5

08 469513 Ch05.qxd 1/16/04 11:03 AM Page 132

Figure 5.6

One important point not mentioned yet is that the only object you have access to when developing for
Slide from a client perspective is the Domain object. Using the Domain object, you can gain access to
namespace objects and retrieve information about namespaces contained in the domain. If the initializa-
tion of the domain was successful, you can use the following two methods to gain access to the domain:

config.ini

Parent node

root

Child node

/files

Child node

/actions

Child node

/users

File System

JDBC System

LDAP System

JDBC server

LDAP server

Joe

133

Content Management with Jakarta’s Slide

08 469513 Ch05.qxd 1/16/04 11:03 AM Page 133

❑ If the method Domain.accessNamespace is successful, it will grant the user access to the speci-
fied namespace, as follows:

Domain.accessNamespace(SecurityToken securityObject, String namespace)

❑ The method Domain.accessDomain enables the user to enumerate through the available
namespaces contained in the domain, as follows:

Domain.accessDomain(SecurityToken securityObject)

All of the aspects described in previous sections, such as helper functions, transaction management, and
security, come into play here. When you use the method Domain.accessNamespace, a security object
is passed in to the method. This object is used by the domain to determine if it should grant permission
to the requested namespace. Therefore, a key point to remember here is that even if a user has access to
the Slide APIs, that user cannot do anything unless granted specific access to a namespace. If access is
granted, the domain gives the user a NamespaceAccessToken.

This NamespaceAccessToken object serves three main purposes:

❑ It conceals the namespace object from the client application and controls the methods that are
performed on the namespace.

❑ It enables a client application to obtain access to the helper functions described in-depth in
previous sections of this chapter.

❑ It implements the UserTransaction interface, enabling clients to support, use, and control
transaction management functionality.

The static Domain class is contained in the package org.apache.slide.common.Domain. The following
table describes key static methods that you may find useful.

Method Description

accessDomain(SecurityToken token) Provides access to the domain

accessNamespace(SecurityToken Provides access to the specified namespace based
token, java.lang.String off the security token
namespaceName)

closeNamespace(NamespaceAccess Closes the specified namespace based on the
Token token) NamespaceAccessToken

enumerateNamespaces Provides an enumeration of namespaces contained
in the domain

getDefaultNamespace Returns a string representation of the default
namespace for this domain

getDomainFileName Returns the configuration filename that the admin-
istrator can use to configure the domain

log(java.lang.Object data, A log method for inserting information into the
int level) domain’s log file

134

Chapter 5

08 469513 Ch05.qxd 1/16/04 11:03 AM Page 134

Slide API Layer
The final component of the Slide architecture is a component that should already be familiar to you from
previous discussions. The Slide API layer (SLAPIL) is intertwined throughout the external, internal,
transactional, domain, and namespace architecture components. The SLAPIL mainly consists of the
seven helper classes described in the section “Slide Architecture.”

Another important API layer to mention is the WebDAV API layer, which Slide integrates into its archi-
tecture. The APIs for the WebDAV library are located in the package org.apache.Webdav.lib. Slide
also integrates a WebDAV administration tool for configuring and administrating WebDAV capabilities.
The integration of WebDAV enables clients to access Slide remotely using its protocol. You learn more
about WebDAV and how to use it in the “WebDAV and Slide” section of this chapter.

Setting Up and Configuring Slide
This section explains the necessary steps involved in getting Slide up and running on your machine. It
focuses on setting up Slide on a Windows system, but also addresses a few Unix configuration specifics
where appropriate. For the most part, both types of configurations should be extremely similar, as Slide
is written in Java.

Installing and Running Slide
You can download two types of installation files from the Slide Web site: the source file bundle and the
binary file bundle. The authors recommend downloading both and extracting each bundle to the same
directory, starting with the source bundle first and then extracting the binary bundle. If you download
both bundles, you won’t have to worry about compiling the source files if you chose to download only
the source bundle. On the flip side, if you just download the binary files, you will not be able to inspect
the Slide source files. Having the code and the binary files helps you understand the architecture of the
system and enables you to dig into certain components and see what they are doing under the hood.

Once you have extracted the bundles, Slide is actually ready to go. Of course, you will need to perform
specific configurations in order to use certain features of Slide (such as the administration portion and
WebDAV portion), but to get an initial look at Slide, it will run as is upon extraction. The first step to per-
form before configuring or running anything is to set up an environmental variable called SLIDE_HOME.
Set the SLIDE_HOME variable to point to the base installation directory into which you installed Slide —
for example, SLIDE_HOME = D:\jakarta\jakarta-slide-1.0.16.

This is not a requirement of Slide, but rather a convenience factor when accessing different directories
from Slide’s home directory.

In order to run the Slide standalone server, you need to bring up a console window and change directory
to the SLIDE_HOME\server directory. From here, depending on whether you are on Windows or Unix,
you would issue one of the following commands:

❑ Windows: bin\startup

❑ Unix: ./bin/startup.sh

135

Content Management with Jakarta’s Slide

08 469513 Ch05.qxd 1/16/04 11:03 AM Page 135

Once the server has started up, all you have to do now is bring up a Web browser and enter
http://localhost:8080 to view the Slide welcome page. In addition to the configuration options described
in this section, the welcome page contains additional information about how to configure Slide appro-
priately. Figure 5.7 shows the Slide welcome page.

Figure 5.7

If you were able to bring up the Slide welcome screen, then everything is configured correctly up to this
point. Let’s proceed to apply the configurations suggested on the welcome screen.

Tomcat Manager
The Tomcat Manager enables you to manage the Web applications running on your server. In order to
gain access to the Tomcat Manager, you need to set up a Tomcat user in the tomcat-users.xml file. The
file is located in your SLIDE_HOME/server/conf/ directory. In order to edit the file, you need to open
the file in your favorite text editor. The contents of the file will look similar to the following:

<tomcat-users>
<user name=”tomcat” password=”tomcat” roles=”tomcat” />
<user name=”role1” password=”tomcat” roles=”role1” />
<user name=”both” password=”tomcat” roles=”tomcat,role1” />

</tomcat-users>

136

Chapter 5

08 469513 Ch05.qxd 1/16/04 11:03 AM Page 136

You now need to insert a new user who is part of the manager role. You should also grant this user
access to the root role for now. It will be used later when you try to access other components of Slide.
Therefore, add the following line, but feel free to use your own user name and password:

<user name=”jvitale” password=”password” roles=”manager,root” />

In order for the changes to take effect, you need to restart the standalone server. This can be accom-
plished from a console window by changing to the SLIDE_HOME\server directory and then executing
the next two steps:

1. At the console window, execute the shutdown shell command. If you are on Windows, it is
bin\shutdown. On Unix, use ./bin/shutdown.sh.

2. Once the server has shut down, simply restart it with the aforementioned startup commands:

❑ Windows: bin\startup

❑ Unix: ./bin/startup.sh

When the server has finished executing, you can navigate back to the Slide welcome screen and click
the TC Manager link on the left side. It will instruct you for a user name and a password. Enter the user
name and password that you set up for the manager and click OK. This brings up the Tomcat Manager
screen, as shown in Figure 5.8. This screen enables you to add and remove Web applications to your
virtual host on the fly.

Figure 5.8

The final configuration step we must perform before we can move on is to edit the SLIDE_HOME/conf/
slide/slide.data file. It contains a section that is commented out that needs to be uncommented and
configured to grant a user root privileges in order to edit or administer a Slide namespace. Therefore,
bring the file up in your favorite text editor. Locate the section that is commented out containing the
following data:

137

Content Management with Jakarta’s Slide

08 469513 Ch05.qxd 1/16/04 11:03 AM Page 137

<objectnode etc.>
<revision>

<property name=”password”
namespace=”http://jakarta.apache.org/slide/”>password</property>

</revision>
</objectnode>

The key to configuring this correctly is to uncomment the revision element and supply a password. Once
this step is completed, you need to restart the server again. Then, you should be able to access the Slide
Administration tool via the following URL: http://localhost:8082/slide

You will be required to enter a user name and password. The password should be the password that was
just entered in the revision section, and the user name is the same user name that was used to configure
the Tomcat Manager. The screenshot in Figure 5.9 shows the Slide Administration tool in action.

Figure 5.9

Congratulations! All of the user configuration and initial configurations are complete. You should now
have access to all of the components contained in Slide, including the WebDAV components, which are
covered in the section “WebDAV and Slide.”

The Slide Server
The Slide server is a fully functional content management system that includes an embedded Tomcat
4.0.1 server. You don’t have to download any extra components or integrate Slide with any servers in
order to have a fully integrated content management system. It is all included in the Slide binary bundle
for you. The server is started and configured the same way that a normal Tomcat server is. A few addi-
tional directory structures are added by Slide, but for the most part, the Tomcat server functions the
same as any Tomcat server would function. For more specific information about Tomcat, please see their
documentation, which is located on the Jakarta Web site at http://jakarta.apache.org/tomcat.

138

Chapter 5

08 469513 Ch05.qxd 1/16/04 11:03 AM Page 138

The Slide-specific files that need to be managed are the Slide domain file, called slide.xml, which
resides in the SLIDE_HOME/server/conf directory, and the Domain.xml file, which resides in a Web
application. The Slide server also has three main concentration points, called views. These views are
referred to as the client view, the editor view, and the admin view. Each view serves a separate purpose
and may reside on a different port.

Client View
The client view is accessed via the default Tomcat port, which is generally 8080. The client view is sim-
ply the normal Tomcat environment without virtual hosting. Instead, Slide manages the virtual hosting
of different Web applications added to the Slide domain itself. When a new namespace is defined in the
Slide domain, a Web application context will automatically be created for the servlet container.

Standard Java Web applications should work fine without any added configuration as long as they don’t
access the files contained in the Web application using direct file system access. In order for Web applica-
tions to avoid using direct file system access to manipulate their files, all they have to do is replace their
file system calls with ServletContext.getResource methods. This call uses a conceptual file system
access model.

Admin View
There are currently two admin views. One is the Tomcat Manager described earlier in the chapter.
It requires that a user who is in the “manager” role be created in the conf/tomcat-users.xml file. It
resides on port 8080 and enables an administrator to start, stop, and reload views, contexts, and active
sessions. The other admin view resides on port 8082 and is actually shown in Figure 5.9. This is a Slide
Web application that is a work in progress and will eventually enable administrators to manage all
aspects of their specific namespaces.

Editor View
The editor view can be accessed via the 8081 port, which is used mainly for WebDAV access. Users that
log in to the editor view can access, edit, and view content only if they are granted access based on their
permissions. The root user must have a password set in the Domain.xml file in order for the root user to
be successfully authenticated.

All clients that support the WebDAV protocol can be used to manage content. This includes the client
that comes with Slide. It is a command-based tool but will provide a free tool for becoming familiar with
the WebDAV protocol and Slide.

WebDAV and Slide
Slide supports Web-based Distributed Authoring and Versioning (WebDAV) capabilities, which are
implemented via a servlet. WebDAV is a very popular protocol that is an extension of the HTTP proto-
col. It is used for editing and managing Web-based content on remote Web servers. It is also an Internet
Engineering Task Force (IETF) standard and is supported by many popular software companies, includ-
ing Microsoft, IBM, and Novell. For further reading on the WebDAV protocol, check out the WebDAV
resource page located at www.webdav.org.

139

Content Management with Jakarta’s Slide

08 469513 Ch05.qxd 1/16/04 11:03 AM Page 139

Slide’s WebDAV servlet resides on port 8081 and can be accessed by any client that supports the
WebDAV protocol. Windows contains Web folders that offer built-in support for the WebDAV protocol.
The following section demonstrates how to use Window’s WebDAV support to manage content in the
Slide server.

Windows XP WebDAV Example
In Windows XP, we need to use the map a network drive utility, which is located on the Tools menu in
Windows Explorer, in order to show the WebDAV capabilities of Slide. Figure 5.10 shows the Map
Network Drive screen.

Figure 5.10

From the Map Network Drive screen, choose the link titled “Sign up for online storage or connect to a
network server.” Proceed through the wizard until you come to a screen that asks where you want to
create this network place. Make sure that you select “Choose another network location. Specify the
address of a Web site, network location or FTP site.”

After the preceding steps have been executed, the screen in Figure 5.11 will appear, asking you for an
address of the network place to which you wish to connect. In the text field provided, type in the
address of the Slide server and specify the WebDAV port, which by default is 8081.

Once you enter the address, click Next to proceed to the next screen. Windows will try to connect to the
Slide WebDAV servlet at this point. If an error occurs, verify that the address specified is correct and that
a valid root user exists. The steps for setting up a root user are covered in the “Tomcat Manager” section
of this chapter. You can also log into the WebDAV servlet area through a Web browser to test connectiv-
ity. You won’t be able to edit any of the content, but you can see the node structure. To test the WebDAV
servlet, point your browser to http://localhost:8081/slide and log in. If the login fails, then you know
that the issues you are having are related to user permissions.

If you were able to successfully log in to the WebDAV servlet, the screen shown in Figure 5.12 will be
displayed, asking you to specify a name for your new network place. The name doesn’t matter; you can
specify any name you wish.

140

Chapter 5

08 469513 Ch05.qxd 1/16/04 11:03 AM Page 140

Figure 5.11

Figure 5.12

141

Content Management with Jakarta’s Slide

08 469513 Ch05.qxd 1/16/04 11:03 AM Page 141

After you name your network place and click Next, you will be prompted to log in again to the server. Use
the same user name and password as you did before. The login screen is displayed in Figure 5.13; notice
how the name of the server is Slide DAV Server. This is the correct server to which you want to connect.

Figure 5.13

When you finish logging into the Slide WebDAV server and are successful, you will be immediately
shown a screen that contains the root nodes of the default namespace you are logged into. In this case,
the default namespace is Slide. Figure 5.14 shows the root nodes that should be displayed to you now.

Figure 5.14

Listed are the root nodes: /actions, /files, /users. If you want to add a file to the /files section,
you can perform standard Windows Explorer commands to accomplish the task, even drag and drop
will work. If you want to see what kind of actions have been established in this namespace, you can
change to the /actions section and see a list of action nodes, as shown in Figure 5.15.

In this case, three action nodes have been implemented. From this example, you can see how simple it is
to use WebDAV to manage the content in the content management system, as well as how sophisticated

142

Chapter 5

08 469513 Ch05.qxd 1/16/04 11:03 AM Page 142

WebDAV technology is. Using Slide as your content management system provides you with access to a
wealth of tools that should more than fit your needs, and whatever is lacking you can always create
yourself.

Figure 5.15

Summary
Jakarta’s Slide is a powerful open-source content management and integration system that provides the
developer with a rich framework to create their own sophisticated content management systems.

In this chapter, you have seen the power of the Slide architecture, consisting of numerous components
and APIs called helpers, which enable client applications to access the most intricate parts of the content
management system, thus providing the ultimate in flexibility.

Slide's use of domains and namespaces provides intense security, right down to the node level. Not only
can Slide manage binary content that exists on the namespace’s server, it can also manage content that is
distributed in multiple data stores across different locations.

Slide provides a useful Web-based interface for managing namespaces, users, Web applications, and
security. However, Slide really excels through its support of the Web-based Distributed Authoring and
Versioning (WebDAV) protocol.

Slide’s flexibility, scalability, and attention to security make it a great choice as a content management
system, especially where Web applications are needed. Therefore, it fits perfectly into the scope of a Java
Portal system.

The next chapter focuses on Portal security and its associated technologies.

143

Content Management with Jakarta’s Slide

08 469513 Ch05.qxd 1/16/04 11:03 AM Page 143

08 469513 Ch05.qxd 1/16/04 11:03 AM Page 144

Portal Security

Over the past few years, an increasing number of companies have been creating portals to allow
their partners, customers, and employees access to critical and sensitive information. Most portal
developers have faced incredible security challenges in this regard. Many vendors have created
proprietary “stove-piped” solutions for some of the security requirements, tying developers to a
particular product. This often works well until the product doesn’t work, the software is no longer
supported, or you need to rescale your architecture. If you are a developer who has been in that
boat, we feel your pain because we’ve been there. How can portal developers meet their security
challenges with a standards-based, open-source security solution? This chapter answers that ques-
tion — first by introducing you to essential security concepts, and then by showing you standards,
open-source tools, and techniques that you can use to secure your portal solution.

Core Security Concepts
In order to appropriately discuss security issues, concerns, and solutions in the scope of portal
development, it is necessary to define a few terms: authentication, authorization, Single Sign-On
(SSO), confidentiality, integrity, and non-repudiation. Because you can find entire texts dedi-
cated to these concepts, this section provides only a simple introduction, focusing on the scope of
what the portal developer and designer need to know. The terms defined in this section are impor-
tant for your understanding of achieving the security goals of your portal when you read the
implementation section in the middle of the chapter, “Building Security Solutions for Your Portal.”

Authentication
Authentication is the first step in providing access control, and it involves validating the identity
of a user. In a portal environment, authentication may be achieved via user name/password login,
validation of a user’s client certificate, or identity validation with a smart card or biometric device.

09 469513 Ch06.qxd 1/16/04 11:03 AM Page 145

Developing a solution for authentication usually means providing a repository for validating these iden-
tities and integrating it with your system. Mutual authentication means proving the identity of both
parties involved in communication, and this is done using special security protocols, such as SSL/TLS.
Message origin authentication is used to ensure that the message was sent by the expected sender, and
that it was not replayed.

In the implementation section, this chapter focuses on how to provide authentication services in your
portal. Authentication at the portal level is one of the most important aspects to providing security — it
will dictate how your application interacts with other enterprise applications and Web services.

Authorization
Once a user’s identity is validated, it is important to know what the user has permission to do. The sepa-
ration of access control into two distinct mechanisms, authentication and authorization, enables a logical
separation of first validating identity, and then validating what resources that identity has access to
consume or produce. Authorization determines a user’s permissions, roles, or other credentials that are
used to provide access to certain services that your portal provides. Role-Based Access Control (RBAC)
is an important access control strategy, especially because the capability is prevalent in J2EE architec-
tures. Because it has become a key focus of the security of portal development, it is a primary focus of
this chapter.

Extensive use of RBAC as a successful framework for the management of authorization credentials exists
in many commercial Web-based systems, relational databases, and portals. A key component of RBAC is
to map roles to permissions, and to map users to roles, as shown in Figure 6.1. In RBAC, access to
resources is controlled by security roles, which is very helpful for authorization management.

Figure 6.1 also shows views of some of the traditional access control authorization mechanisms — using
Access Control Lists (ACLs). In the past, large and complex ACLs mapped users to permissions, and
restricted access to resources by permissions and users. Abstracting the user — and the resources — from
low-level permissions is very helpful in authorization management. Because the number of permissions
is usually extremely high, keeping access control lists for discretionary access in an ever-changing
environment can be difficult with subject-to-object mappings. Instead, mapping these permissions to
never-changing roles can happen at one time, and users can be assigned and unassigned to these roles
throughout the lifetime of the individual in that organization. This makes the management of access
control easier.

What is the most difficult part of setting up a role-based access control system? An organization must
define its roles based on the business process, not just the organization chart. The technical part of the
solution is usually the easiest part. The schema must be flexible, and it must be able to withstand the
rigors of reorganization. NIST’s “Introduction to Role-Based Access Control” provides a good explana-
tion: “With role-based access control, access decisions are based on the roles that individual users have
as part of an organization. Users take on assigned roles (such as doctor, nurse, teller, manager). The pro-
cess of defining roles should be based on a thorough analysis of how an organization operates and
should include input from a wide spectrum of users in an organization.” [NIST]

146

Chapter 6

09 469513 Ch06.qxd 1/16/04 11:03 AM Page 146

Figure 6.1

The role-definition process is very important. However, as this book is geared toward programmers and
developers, we will leave that part to the process people; later, this chapter delves into how you can set
up role-based access for your portal. For more information on RBAC and role management, we invite
you to visit http://csrc.nist.gov/rbac/.

Single Sign-On (SSO)
Single Sign-On (SSO) is a popular feature. This useful functionality enables the user to authenticate only
once to his or her client, so that the user does not have to memorize many user names and passwords for
other Web sites, Web services, and server applications. In a portal scenario, it is important to realize that
portlets, shared between many portals, may communicate with enterprise applications that have identity
and authorization security constraints. Furthermore, beyond the portal, Web services may be distributed,
and may talk to other Web services, which may need the original user’s credentials. Figure 6.2 shows the
dilemma that we face as we attempt to create Single Sign-On solutions.

Traditional access control:
ACLs

(complex to manage)

PermissionsUsers Roles

Role-
Based
Access
Control

Resources

Traditional:

Too complex
Tra

dit
ion

al:

To
o
co

mple
x

147

Portal Security

09 469513 Ch06.qxd 1/16/04 11:03 AM Page 147

Figure 6.2

Looking at Figure 6.2, note the numerous challenges. The user initially authenticates to the portal, and
the portal determines the user’s authorization credentials, but the portal contains portlets that communi-
cate with Web services. To make the situation more complex, these Web services may communicate with
other Web services, which communicate with back-end databases and enterprise applications. Because
of all of the points between the user and the eventual back-end data source, we face considerable secu-
rity challenges. In looking at Figure 6.2, consider the following questions:

❑ How do the eventual data sources (A–F) have assurance that the user actually authenticated, or
what the user’s roles are?

❑ If the data sources A–F and the Web services in the diagram use different authentication mecha-
nisms and data stores, how can that be handled in a portal solution?

❑ If the data sources A–F and the Web services in the diagram have different user names and pass-
words for each user, how can we provide authentication without forcing the user to “log in” six
times? For example, what if user “Kevin Smith” has many user names and passwords, in addi-
tion to a personal digital certificate? For data source A, he may be required to use “kevint-
smith,” and for the others, he might be required to use user names “ksmith04,” “kevinsmith,”
ksmith,” and “ktsmith.” This is a common dilemma that portal designers face.

These questions are valid concerns that you should keep in mind, because you, as an enterprise archi-
tect, may be required to answer them. Once the user has authenticated and the authorization credentials
have been validated by the portal, technology enablers are used to pass these credentials throughout the
life cycle of the message, regardless of how many points and nodes are involved between the portal and
the eventual data source. This concept is usually referred to as deep authentication, because authentica-
tion credentials are passed from the portal to the portlets to the back-end Web services and data sources.
[SMITHK] Several architectural solutions can provide this functionality in a standard way. You can find
many technology enablers for SSO, including Kerberos, SAML (Secure Assertion Markup Language),
and other cryptographic protocols. The implementation section focuses on some of these solutions and
how you might build such a solution when you build your portal.

User

Enterprise
data sources

Web
Service

Web
Service

Web
Service

Web
Service

Web
Service

Portal

A

B

C

D

E

F

Portlet

Portlet

Portlet

148

Chapter 6

09 469513 Ch06.qxd 1/16/04 11:03 AM Page 148

Confidentiality
When sensitive information is transmitted, it is important to keep it secret. Confidentiality is the security
goal for hiding sensitive information, and we can provide confidentiality solutions with encryption.
With encryption, a plaintext message is jumbled with a cryptographic algorithm to produce a ciphertext
message. Using a key (or shared secret), the intended recipient can decrypt the data. Many different
cryptographic algorithms, symmetric (secret-key) algorithms, and asymmetric (public key) algorithms
can be used to provide different levels of protection for your data. In creating a solution to satisfy confi-
dentiality requirements, many things need to be considered — key management for distributing keys,
ciphers to use, and cryptographic protocols that provide these services.

Many higher-level protocols, such as Secure Sockets Layer (SSL) and its later version, Transport Layer
Security (TLS), provide bulk encryption between two points. In these higher-level protocols, the cipher is
determined, and key negotiation is achieved, at the beginning of the protocol, in order to establish a
“shared secret” that both sides can understand. It is important to understand that SSL is a point-to-point
protocol, and can be used for mutual or one-way authentication between two points only. In environ-
ments with a simple client and server, such a session may be enough to protect the confidentiality of the
data in the transmission. Although SSL does well at protecting data between two points, its benefits fall
short when protecting transmissions connecting multiple points, such as the scenario shown in Figure
6.2. Although SSL and TLS resolve one piece of the security puzzle, other technologies may be required
to meet the security goals of Web services, depending on your requirements.

Luckily, as a portal developer, you probably won’t have to worry about the low-level details of cryptog-
raphy. You will have to provide it, and know how to satisfy your confidentiality requirements with
known open-source tools. Referring back to Figure 6.2, we are still faced with another challenge. Because
there may be a distance (many nodes) between your portal and your eventual data source, you will have
to ask yourself (and your customers) the following questions:

❑ Is there a requirement for encryption at all? If there are no confidentiality requirements, don’t
worry about it. Note that there is a trade-off between encryption operations and speed of perfor-
mance. If you have a confidentiality requirement, the portal should be able to accommodate the
requirements of confidentiality, but the portal architect should realize that the cryptographic
mechanisms involved will have an impact on performance

❑ Does encryption between the user and the portal satisfy the requirements? If so, a simple
SSL/TLS connection between the user and the portal may suffice. If that doesn’t satisfy the
requirements, does there need to be bulk encryption between the user, the portal, and all of the
Web services, nodes, and enterprise applications in the solution? If so, the solution becomes a bit
more difficult.

❑ Does the encryption need to be directly between the portal and the eventual data source,
even though other Web services pass that information along? That is, do you need to keep
some data a “secret” from the Web services? If so, you will need a shared secret between the
portal and the eventual data source, and not just bulk encryption between the nodes. XML
Encryption, a W3C standard, is quite useful for this purpose.

The implementation section of this chapter describes solutions for some of these challenges. Key enabling
technologies and standards that help provide confidentiality solutions are XML Encryption, SSL/TLS,
XKMS, and OASIS Web Services Security (WSS).

149

Portal Security

09 469513 Ch06.qxd 1/16/04 11:03 AM Page 149

Data Integrity
In a network, it is important to ensure that data is not altered in transit. Validating a message’s integrity
means using techniques that prove that data has not been altered in transit. Because it is possible that
message injection, IP spoofing, and packet tampering can occur on TCP/IP networks, many applications
may require the use of digital signatures, MAC (Message Authentication Codes), or hash algorithms to
validate the integrity of the data.

A portal architecture presents integrity challenges between the user and the portal, as well as between
the portal, the Web services, and the eventual enterprise data sources. Based on your requirements,
SSL/TLS may provide the necessary message integrity between the user and the portal. When there is
the requirement that the body of SOAP messages passed to Web services have built-in integrity checks,
other standards can be used to achieve integrity. XML Signature, a W3C standard, provides message
integrity in addition to non-repudiation (discussed in the next section). The OASIS Web Services
Security specification provides mechanisms that achieve such a solution for Web services. The imple-
mentation section of this chapter describes solutions and tools for achieving integrity.

Non-repudiation
Non-repudiation is the side effect of digitally signing a message, and it is a security service that can be
used in legally proving that a user has performed a transaction or sent a message. In many business-to-
business (B2B) systems whereby thousands of expensive transactions take place, non-repudiation is often
an essential requirement. Because digital signatures are based on public key cryptography, the sender of
the signed message cannot successfully repudiate the fact that he signed the message — it can be mathe-
matically proven by a third party that the sender indeed signed the message with his or her private key.

Although we often discuss non-repudiation in the context of a user signing something, the discussion
can be tied to an enterprise with portals, applications, and Web services. A portal may sign a portion of
its message to a Web service, and a Web service may sign a portion of its messages. A side effect of digi-
tally signing a document is also integrity. Because the signed message is actually the signature of the
hash of the message used for proving integrity, many simply view non-repudiation as very strong
integrity. XML Signature is a W3C standard used for providing non-repudiation, and is used in other
standards, such as the WS-Security standard. The following section describes such standards.

Key Security Standards
The following security standards are playing — and will continue to play — a significant role in the
development of portals. This section provides a very brief overview of what you, as a portal developer,
need to know.

SSL and TLS
SSL stands for Secure Sockets Layer, and TLS stands for Transport Layer Security. SSL was created by
Netscape, and it was enhanced by the IETF (Internet Engineering Task Force) in 1996 to become TLS. As a
result, they are similar, and the terms are still used interchangeably. Both are higher-level cryptographic

150

Chapter 6

09 469513 Ch06.qxd 1/16/04 11:03 AM Page 150

protocols that are used to achieve confidentiality and data integrity between two points. Optionally, they
can be used for mutual authentication when both parties have digital certificates. Because TLS is based on
SSL, they are very similar. There are subtle differences between the two protocols, but they will not inter-
operate. Frankly, the non-cryptographer layperson usually interchanges the two because they achieve the
same goal. For the purposes of this book, we simply refer to both protocols as SSL. People refer to using
SSL with HTTP as HTTPS Sessions, a process providing confidential Web transmissions. From a portal
developer’s perspective, an SSL session can protect confidentiality and data integrity between the user
and the portal, and between the portal and its next layer of communication. This is usually a server con-
figuration issue, the details of which are discussed in the section “Building Security Solutions for Your
Portal.”

XML Encryption
XML Encryption is a W3C standard that handles XML documents and XML element-level confidentiality —
it can be used to encrypt elements of an XML document. XML encryption can be used with key exchange
algorithms and public key encryption to encrypt documents (and elements of XML documents) to different
parties. Unlike SSL, a point-to-point protocol that is decrypted at each point, XML encryption can be used in
solutions where there are multiple network nodes between the portal and the end data source. Apache’s
XML Security package, Verisign’s open-source TSIK (Trust Services Integration Kit) package, as well as
many others provide XML Encryption functionality.

XML Signature
XML Signature is a W3C standard that provides a way to prove message integrity and non-repudiation
of XML documents and elements of XML document. Any part of an XML document can be digitally
signed — becoming self-validating when the document recipient has the signer’s public key. XML
Signature, sometimes called XML-DSIG or XML-SIG, relies on public key technology in which the hash
(or message digest) of a message is cryptographically signed — thus providing both integrity and non-
refutable proof (non-repudiation) that the signer indeed signed the elements. In situations where portals
need to communicate with Web services, XML Signature plays an important role. Because a signed docu-
ment can be self-validating, credentials of the end user can be passed on in SOAP messages beyond the
portal. Apache’s XML Security package, Verisign’s open-source TSIK (Trust Services Integration Kit)
package, as well as many others, provide XML signature capability.

SAML
SAML, the Security Assertion Markup Language, is an OASIS standard that is used for passing authenti-
cation and authorization information between parties, and it is one of the building blocks for Single
Sign-On (SSO). In a portal environment, a portal can assert that it authenticated a user, and that the user
has certain security credentials. A SAML assertion can be digitally signed using XML Signature. Because
signed SAML can travel between platforms and organizations, regardless of how many points it crosses,
it has the potential to solve significant challenges in Web services security. [SMITHK] In Figure 6.3, for
example, if the portal authenticates the user “Alice” and knows that Alice has the “Power Users” secu-
rity role for RBAC, has access to the “Master Portlet,” and can access the “M2” data source, the portal
application can create a SAML assertion, sign it, and pass it on. Because SAML can be signed with XML
Signature, it is self-validating: Anyone trusting the signer will trust the credential.

151

Portal Security

09 469513 Ch06.qxd 1/16/04 11:03 AM Page 151

Figure 6
.3

User

M2 M3 M4

Web
Services

Web
Services

“Alice”
Roles = “Power Users”

Available portlets = “Master Portlet”
Available data sources = “M2”

SAML Assertion
“I promise that this is Alice,

that she authenticated to me, that
she is in the ‘Power User’ role,
and that she can access the

‘Master Portlet,’ as well as the
back-end data source ‘M2.’”

SIGNED,
The Portal

Portal Master
Portlet

Authentication

1
5

2

C
hapter 6

0
9

4
6
9
5
1
3

C
h
0
6
.
q
x
d

1
/
1
6
/
0
4

1
1
:
0
3

A
M

P
a
g
e

1
5
2

SAML is an important standard, and many open-source toolkits are available, including those by ven-
dors Netegrity and Verisign, as well as the open-source project OpenSAML. JSR 155, entitled “Web
Services Security Assertions,” will provide the standard Java API for SAML assertions.

OASIS Web Services Security (WSS)
Web Services Security is in the standards process at OASIS, and is managed by the OASIS Web Services
Security Technical Committee. The specification will, without a doubt, play a key role in the security of
Web services. Relying on the well-accepted standards of SOAP, XML Encryption and XML Signature,
the specification was released in April 2002 by Microsoft, IBM, and Verisign as “WS-Security,” and is a
specification that describes enhancements to SOAP-based Web services to provide protection through
integrity, confidentiality, and message authentication. The OASIS Web Services Security Technical
Committee has released three specifications: “Web Services Security: SOAP Message Security,” “Web
Services Security: Username Token Profile,” and “Web Services Security: X.509 Token Profile.” Together,
these specifications provide a rich framework and a high-level security standard that will work with
Web services. WSS will certainly play a role in portal development when portals communicate with
Web services. The development of WSS continues, including work involving SAML. Over the next
year, many implementations of WSS will be available for use when building security solutions for Web
Services.

Building Security Solutions for Your Portal
Now that you are familiar with the security vocabulary, it is time to describe how to build security ser-
vices into your portal. This section explains the basic security services that were defined in the preceding
sections, and will help you understand how to easily achieve them as your security requirements dictate.

Figure 6.4 shows a diagram of the portal-centric enterprise. Note the five main areas: a core enterprise
infrastructure, the Web container, the portal, Web services, and enterprise applications. The portal itself
is composed of a portlet container, which manages a number of portlets and adheres to the Java Portlet
Specification (JSR 168). This portlet container leverages the security services of your Servlet 2.3–compli-
ant Web container (that is, a Web server), which provides security services. Much of the security of the
Web container depends on the security infrastructure of your enterprise, which is the infrastructure por-
tion of Figure 6.4. Finally, the portlets of your portal communicate with Web services, which talk to
enterprise applications.

The significance of Figure 6.4 is that the security of each area has dependencies: Just as the security of
the Web container on which your portal relies depends on the security infrastructure of your enterprise,
so will the security of your enterprise applications depend on the security of your Web services. Because
you, as a portal designer and developer, will have to focus on configuring the Web container, the portlet
container, and communicating back-end enterprise applications, the following sections provide instruc-
tions and guidelines for securing those aspects.

153

Portal Security

09 469513 Ch06.qxd 1/16/04 11:03 AM Page 153

Figure 6.4

Web Container Security — Apache Tomcat
As the engine of your portal will be your Web server, many security services are provided by your
Web container. With the emergence of the Servlet 2.3 specification in late 2000, the concept of container-
managed security became a powerful means to delegate responsibility of access control and authoriza-
tion to the Web server in a standard way. The Servlet 2.3 specification enables the portal designer to
specify many security mechanisms in a Web application’s deployment descriptor, and also enables the
application, written in JSPs or servlets, to access security information pertaining to users and roles in a
standard way. The Apache Tomcat Web container became one of the first Web servers to use the security
mechanisms of the Servlet 2.3 specification, using security realms. Based on the Servlet specification, the
Web container can provide the security services of authentication and authorization, as well as data
integrity and confidentiality between the user and the portal.

Container-managed security is an important concept for portal developers to understand. The Java
Portlet Specification 1.0 relies on the security of the container, and states that “the portal should leverage
the authentication mechanisms provided by the underlying servlet container.” [JSR168] The section
“Security of the Portlet Container” addresses some of these issues.

PORTLET
CONTAINER

Portlet Portlet

Web Server Confidentiality/
Encryption

Access
Control

Directory

LDAP

Authorization
Services

PKI

Databases

Application
Servers

Policy
Database

Authentication
Type

Security
Realm

WEB
CONTAINER

INFRASTRUCTURE

Web
Service

Web
Service

Web
Service

Web
Service

Web
Service

WEB SERVICES

ENTERPRISE
APPLICATIONS

PORTAL

User
credentials

154

Chapter 6

09 469513 Ch06.qxd 1/16/04 11:03 AM Page 154

For now, this section presents a high-level but fairly detailed view of some of the security features of
Apache Tomcat. Much of the discussion of the configuration of Tomcat and development using these
security features can be applied to any Servlet 2.3–compatible Web container. Here, we discuss server
configuration, where much of your security can be dictated at server configuration time, Web applica-
tion configuration, where security can be dictated at application configuration time, and programmatic
security, where security can be dictated at compile time with JSPs and servlets. For additional informa-
tion, you can consult the Tomcat documentation at http://jakarta.apache.org/tomcat/.

Server Configuration
Many security features in Apache Tomcat can be configured in your server’s server.xml file, located in
the conf directory of your Tomcat distribution. By modifying this file, you can specify your own access
control directory by using security realms; set up encryption HTTP sessions (HTTPS) with SSL/TLS to
achieve confidentiality; and log events at granular levels. The next two sections focus on two very
important features that can be configured: security realms and SSL.

Security Realms
In the section “Core Security Concepts,” we briefly defined and discussed authentication and authoriza-
tion. In Tomcat (and other Servlet 2.3 and later standard containers), these can be achieved by using a
security realm. The Apache Tomcat project defines a realm as “a ‘database’ of usernames and passwords
that identify valid users of a Web application (or set of Web applications), plus an enumeration of the list
of roles associated with each valid user.” [REALMHOWTO] The Web container can control access to
resources via roles to achieve RBAC, and given the realm configuration, users can have any number of
roles associated with their user name.

Using realms, the mapping of users to roles and the collection of passwords associated with a user is done
outside of the Web server — usually in a database or an LDAP directory server. Tomcat defines a Java
interface (org.apache.catalina.Realm) to provide this connection. Java developers may implement
this interface to create their own realm, or you can simply configure your Web server to use the available
realms. Three primary types are used in production: a DataSource realm, a JDBC realm, and a JNDI realm.
A DataSource realm accesses its information from a relational database using a JNDI DataSource, a JDBC
realm accesses its information from a relational database using a JDBC connection, and a JNDI realm
accesses its information from an LDAP directory server, using a JNDI connection. Tomcat additionally
provides a MemoryRealm, which simply uses a local XML file for authentication and authorization cre-
dentials. Given the realm configuration, the Web server can authenticate users and authorize users into
specific pages, or dynamic content, based on their role or their identity. Using this standard mechanism
for container-managed security, the Web application developer can determine the user’s identity and the
user’s security role, and can, based on application configuration, control with any given granularity what
the user can access or do.

It is possible to test your system by using a MemoryRealm in Tomcat, controlled by an XML file of
users and roles, but it is not recommended for production use. In using that solution, all of your user
information is loaded into memory. If you have numerous users, this puts an intensive load on your
system. Moreover, in order to change user-role mappings and add users, you will have to either restart
your Web server or somehow force a reload of the file. You’re better off with a database or directory-
based realm when you go into production.

Setting up such a realm is only a configuration task, and configuration is easy and flexible, depending
on your needs. In Tomcat, the <Realm> XML tag of your server’s main configuration file controls how
your Web container gets those credentials. This tag can be contained by three possible elements in your

155

Portal Security

09 469513 Ch06.qxd 1/16/04 11:03 AM Page 155

server’s configuration file: the <Engine> element, the <Host> element, and the <Context> element.
Most of the time, your realm is contained by the <Engine> element; and in this case it is shared across
all of the applications of your Web server unless it is overridden by another <Realm> element in a subor-
dinate <Host> or <Context> element. If it is inside a <Host> element, it is shared across all Web appli-
cations for that virtual host. If it is placed inside a <Context> element, the realm will be used only for
that particular Web application. The following code illustrates examples of the <Realm> tag in action
with Apache Tomcat — two examples that use a MySQL database for authentication and authorization,
and an example in which an LDAP database is used for authentication and authorization.

<!—
These are three examples of how the <Realm> tag in Apache Tomcat
May be configured to provide authentication and authorization.

—>

<!— 1) Example of how a simple MySQL Database Realm can be
Configured

—>
<Realm className=”org.apache.catalina.realm.JDBCRealm”

debug=”99”
driverName=”org.gjt.mm.mysql.Driver”
connectionURL=”jdbc:mysql://foo.com/authority?user=t;password=t”
userTable=”users” userNameCol=”user_name”
userCredCol=”user_pass”
userRoleTable=”user_roles” roleNameCol=”role_name” />

<!— 2) The same database, configured as a DataSource —>
<Realm className=”org.apache.catalina.realm.DataSourceRealm”

datasourceName=”java:/comp/env/jdbc/realmdb”
userTable=”users” userNameCol=”user_name”
userCredCol=”user_pass”
userRoleTable=”user_roles” roleNameCol=”role_name” />

<!— 3) Example of how a JNDI Realm can Be Configured —>
<Realm className=”org.apache.catalina.realm.JNDIRealm”

debug=”99”
connectionName=”cn=Directory Manager”
connectionPassword=”Isabella_was_born_during_edits”
connectionURL=”ldap://maloryfox.trumantruck.com:389”
digest=”MD5”
roleBase=”dc=roles,dc=trumantruck,dc=com”
roleName=”cn”
roleSearch=”(uniqueMember={0})”
roleSubtree=”false”
userPassword=”userPassword”
userPattern=”cn={0},dc=trumantruck,dc=com”/>

The first realm example in the preceding code uses a MySQL database server as a JDBC realm as part of
the infrastructure for identification and authorization of users. Setting the driverName, connectionURL,
userTable, userCredCol, userRoleTable, and roleNameCol attributes configures the server to
authenticate a user. The second example shows the same database used by the Web server as a
DataSource realm, passing in the JNDI name of the DataSource in the datasourceName attribute, and
using the appropriate org.apache.catalina.realm.DataSourceRealm class. Finally, the third exam-
ple shows an example of configuring a JNDI realm to use an iPlanet Directory Server for authentication
and authorization. In that example, the attributes connectionName, connectionPassword,

156

Chapter 6

09 469513 Ch06.qxd 1/16/04 11:03 AM Page 156

connectionURL, digest, roleBase, roleName, roleSearch, roleSubtree, userPassword, and
userPattern specify the connection details.

Because the documentation on Tomcat Realms is excellent, and because we do not want to regurgitate
the “REALM HOWTO” document provided with Tomcat, we will only provide a detailed example of
setting up a JDBC database realm, and give you an example of creating your own security realm when
necessary. The following table lists the available attributes for the JDBC realm type. Certain attributes,
such as connectionName and connectionPassword, are used only if you need to authenticate to your
database to get to the credentials.

Hint: If you are going to the trouble to set up an access control database, you probably want to
password-protect it!

Attribute Description Required?

className The name of the class to use. Yes
JDBC realms must use apache.catalina.
realm.JDBCRealm

connectionName The database user name used to connect to the If connection requires
database to get credential information a password

connectionPassword The database password used to connect to the If connection requires
database to get credential information a password

connectionURL The JDBC URL Yes

debug Level of debugging (0..99) used to write to No
the associated Tomcat Logger. The higher the
number, the greater amount of logging
information written to file.

digest The digest algorithm used to store passwords No
in digested formats for this data source. This is
a popular method of password storage, and an
alternative to storing your passwords in the
clear. Note that if you use this, you must use
the standard types in java.security.
MessageDigest (MD5, etc.), and you must
remember to digest your passwords before
you insert them into your database!

driverName The name of the JDBC driver Yes

roleNameCol The column in the userRoleTable containing Yes
the names of your security roles for RBAC

userCredCol The column in the userTable containing the Yes
names of user passwords for RBAC

userNameCol The column in the userTable and the Yes
userRoleTable that contains the names
of your users

157

Portal Security

Table continued on following page

09 469513 Ch06.qxd 1/16/04 11:03 AM Page 157

Attribute Description Required?

userRoleTable The table that contains a user name and a role Yes
for RBAC authorization

userTable The table that contains users and their Yes
passwords for RBAC authentication

The following code shows a very simple example of using the JDBC-ODBC bridge to connect to a database.
In this case, we set up a simple Microsoft Access Database (just so we could visually show you what it
looks like).

01: <Realm className=”org.apache.catalina.realm.JDBCRealm” debug=”99”
02: driverName=”sun.jdbc.odbc.JdbcOdbcDriver”
03: connectionURL=”jdbc:odbc:Realm” digest=”MD5”
04: userTable=”users” userNameCol=”user_name”
05: userCredCol=”user_pass”
06: userRoleTable=”user_roles”
07: roleNameCol=”role_name” />

As you can see from Figure 6.5, our user table is users, and our table that does the user-role mappings
is user_roles. Another thing to notice is that we used the MD5 digest algorithm to store the password
in digested format. However, note that with most digest algorithms, the same plaintext (cleartext pass-
words) produces the same ciphertext (the way it looks in the database shown in Figure 6.5).

Figure 6.5

Of course, creating a DataSource realm is quite similar, and so is setting up a JNDI realm for accessing
LDAP directories.

158

Chapter 6

09 469513 Ch06.qxd 1/16/04 11:03 AM Page 158

Finally, you may create your own realm — the following example shows some code that was written to
handle the way that MD5 passwords are used in iPlanet/Netscape Directory servers. As you can see, the
class is a subclass of the org.apache.catalina.realm.JNDIRealm class. In this particular code list-
ing, the method getHexValue() was used to avoid problems. In some implementations of Netscape
Directory Servers and the iPlanet directory server, the hex value in the userPassword field is often
found with the name of the algorithm in curly braces (for example, {MD5}), and is encoded with base64
encoding. This is sometimes a problem when you are setting up authentication on a JNDI security realm,
because this is something that other directory servers do not do. The following code solves that problem,
with the getHexValue() method and calls to it in the methods getUserDN() and getPassword().

We have broken up this listing to walk you through this example. In the beginning of the code listing,
we have overridden getUserDN(), which returns the distinguished name of a successfully authenti-
cated user. To make certain that we can authenticate the user successfully, we need to be able to compare
a digest of the password with the hex value of the string in the userPassword field.

import org.apache.catalina.realm.*;
import org.apache.catalina.util.*;
import javax.naming.*;
import javax.naming.directory.*;
import java.security.Principal;
public class iPlanetRealm extends JNDIRealm
{

protected static final String info =
“org.apache.catalina.realm.iPlanetRealm/1.0”;
protected static final String name = “Our iPlanet Realm”;
/**
* Return the distinguished name of an authenticated user
* (if successful)
* or <code>null</code> if authentication is unsuccessful.
*
* @param context The directory context we are accessing
* @param username Username to be authenticated
* @param credentials Authentication credentials
*
* @exception NamingException if a directory server error occurs
*/

protected String getUserDN(DirContext context,
String username, String credentials)

throws NamingException
{
if (debug >= 2)

log(“getUserDN(“ + username + “)”);
if (username == null)

return(null);
if ((userFormat == null) || (userPassword == null))

return(null);
// Retrieve the user password attribute for this user
String dn = userFormat.format(new String[] { username});
if (debug >= 3)

log(“ dn=” + dn);
Attributes attrs = null;
try

159

Portal Security

09 469513 Ch06.qxd 1/16/04 11:03 AM Page 159

{
attrs = context.getAttributes(dn, userPassword);

} catch (NameNotFoundException e)
{

return(null);
}
if (attrs == null)

return(null);
if (debug >= 3)

log(“ retrieving attribute “ + userPassword[0]);
Attribute attr = attrs.get(userPassword[0]);
if (attr == null)

return(null);
if (debug >= 3)

log(“ retrieving value”);
Object value = attr.get();
if (value == null)

return(null);
String valueString = null;
if (value instanceof byte[])

valueString = new String((byte[]) value);
else

valueString = value.toString();

valueString = getHexValue(valueString);

// Validate the credentials specified by the user
if (debug >= 3)

log(“ validating credentials”);
boolean validated = false;
if (hasMessageDigest())
{

// Hex hashes should be compared case-insensitive
validated = (digest(credentials).equalsIgnoreCase(valueString));

}
else

validated = (digest(credentials).equals(valueString));
if (validated == false)
{

//just in case we do our own digests
validated = credentials.equals(valueString);

}
if (debug >= 2)
{

log(“ our digest of the credentials=” + digest(credentials));
}
if (validated)
{

if (debug >= 2)
log(sm.getString(“jndiRealm.authenticateSuccess”,

username));
}
else
{

160

Chapter 6

09 469513 Ch06.qxd 1/16/04 11:03 AM Page 160

if (debug >= 2)
log(sm.getString(“jndiRealm.authenticateFailure”,

username));
return(null);

}
return(dn);

}

To compute the hexadecimal value of the message digest in the directory server, we call our own method,
getHexValue(), which does the conversion. The next few methods in the class override other methods
in JNDIRealm. In order to have the getPassword() method return the correctly encoded password, we
need to be able to do our conversion again with our getHexValue() method. The following listing shows
the overridden getName() method, the getPassword() method, and the getPrincipal() method:

public String getName()
{

return(“MyIPlanetRealm”);
}
public String getPassword(String username)
{

String valueString = null;
try
{

log(“getPassword has been called...”);
if (username == null)

return(null);
if ((userFormat == null) || (userPassword == null))

return(null);
// Retrieve the user password attribute for this user
String dn = userFormat.format(new String[] { username});
if (debug >= 3)

log(“ dn=” + dn);
Attributes attrs = null;
try
{

attrs = context.getAttributes(dn, userPassword);
} catch (NameNotFoundException e)
{

return(null);
}
if (attrs == null)

return(null);
if (debug >= 3)

log(“ retrieving attribute “ + userPassword[0]);
Attribute attr = attrs.get(userPassword[0]);
if (attr == null)

return(null);
if (debug >= 3)

log(“ retrieving value”);
Object value = attr.get();
if (value == null)

return(null);
if (value instanceof byte[])

161

Portal Security

09 469513 Ch06.qxd 1/16/04 11:03 AM Page 161

valueString = new String((byte[]) value);
else

valueString = value.toString();
valueString = getHexValue(valueString);
// Validate the credentials specified by the user

}
catch (Exception e)
{

e.printStackTrace();
}
return(valueString);

}
public Principal getPrincipal(String username)
{

System.out.println(“calling authenticate on “ +
username + “,”
+ getPassword(username));

return(authenticate(username, getPassword(username)));
}

Finally, the key to our custom realm is shown in the next example. In order to correctly authenticate a
user, we need to use this method to convert a base64-encoded message digest with preceding brackets to
a hexadecimal digest. The following listing shows just how we do it.

private String getHexValue(String iplanetEncodedPassword)
{

//get rid of the {algorithm} that is in front of the digested
//user password
String hexval = iplanetEncodedPassword;
log(“ iPlanet String=” + iplanetEncodedPassword);
if (iplanetEncodedPassword.startsWith(“{“))
{

String base64val =
iplanetEncodedPassword.substring(

iplanetEncodedPassword.indexOf(‘}’)+1
);

hexval =
HexUtils.convert(Base64.decode(base64val.getBytes()));

if (debug >= 2)
{

log(“ Hex value of iPlanet String=” + hexval);
}
System.out.println(“hex value is “ + hexval);

}
else
{

log(“It seems to be hex-encoded already.. returning..”);
}

return(hexval);
}

}

162

Chapter 6

09 469513 Ch06.qxd 1/16/04 11:03 AM Page 162

It should be noted that you will rarely have to create your own custom security realms — by default,
Tomcat comes with realms that can easily communicate with your directory servers and databases with
authentication and authorization credentials. It is good to know that if you absolutely have to do it, you
can inherit from classes in the org.apache.catalina.realm package.

Finally, creating a utility to manage your authentication and authorization credentials in a Tomcat realm is
something that you have to do on your own. In the past, we have created Web applications that parse the
<Realm> tag in the server.xml file to find out how to manage the users, and the user-role mappings, for
our security realms.

A Single Sign-On strategy for your portal can be achieved by using security realms that are shared across
Web applications. Setting up a realm — and a storage mechanism for your realm (LDAP or database) —
is a very important part of your portal’s security strategy.

For more information on setting up Tomcat security realms, and specifically setting up DataSource and
JDBC realms, please visit http://jakarta.apache.org/tomcat/tomcat-5.0-doc/realm-howto.html.

SSL for Confidentiality
If you need the security service of confidentiality when presenting sensitive data to your users in your
portal, you will probably need to configure your Web container to use SSL. TLS is actually the more up-
to-date term for this service, but because many people continue to use SSL to describe it, we will too.

In building your portal, realize that when you are providing the service of confidentiality, your server is
doing encryption and decryption, which is computationally expensive performance-wise. For that rea-
son, wisely choose the areas of your portal that will actually need encryption. Some pages, such as the
login page, can be configured to use SSL-based authentication with HTTPS, whereas your user’s session
information can be carried from that page over to the other regular HTTP pages.

Setting up SSL/TLS in Tomcat to protect confidentiality of your user’s sessions and integrity of the end-
to-end data is an easy task. The key steps to set this up are as follows:

❑ Download JSSE (Java Secure Socket Extension), which contains the code for setting up the secure
connection if you don’t have JDK 1.4 or later on your machine. (If you do have JDK 1.4 or later,
it’s built in.)

❑ Either generate a self-signed RSA-based digital certificate or have one issued to you by a trusted
authority.

❑ Load the certificate in your keystore, and then you can configure Tomcat to use it.

If you are going to generate a self-signed certificate, simply use the keytool utility that comes with your
JDK in your $JAVA_HOME/bin directory. An example of such a session is shown in the following code.

C:\>keytool -genkey -alias tomcat -keyalg RSA -keystore c:/keystore
Enter keystore password: omgykkyb
What is your first and last name?

[Unknown]: Joe Portal
What is the name of your organizational unit?

[Unknown]: BuildingOpenSourcePortalsWithJava
What is the name of your organization?

[Unknown]: Wiley

163

Portal Security

09 469513 Ch06.qxd 1/16/04 11:03 AM Page 163

What is the name of your City or Locality?
[Unknown]: Mechanicsville

What is the name of your State or Province?
[Unknown]: Virginia

What is the two-letter country code for this unit?
[Unknown]: US

Is CN=Joe Portal, OU=BuildingOpenSourcePortalsWithJava, O=Wiley,
L=Mechanicsville, ST=Virginia, C=US correct?

[no]: y
Enter key password for <tomcat>

(RETURN if same as keystore password):

The preceding code shows the generation of the self-signed certificate and storing it in the keystore
located on the filesystem at C:\keystore. Next, it’s time to configure your server to use it. Luckily for
us, there is a commented-out example in Tomcat’s server.xml file. After making a few changes to the
SSL connector’s Factory class, the following code shows the resulting configuration options that enable
an encrypted channel between the browsers and the server hosting our portal.

01: <!— Define a SSL Coyote HTTP/1.1 Connector on port 8443 —>
02: <Connector

className=”org.apache.coyote.tomcat4.CoyoteConnector”
03: port=”8443” minProcessors=”5” maxProcessors=”75”
04: enableLookups=”true”
05: acceptCount=”100” debug=”0” scheme=”https”

secure=”true”
06: useURIValidationHack=”false”

disableUploadTimeout=”true”>
07: <Factory
08: className=”org.apache.coyote.tomcat4.CoyoteServerSocketFactory”
09: keystoreFile=”C:/keystore” keystorePass=”omgykkyb”
10: clientAuth=”false” protocol=”TLS” />
11: </Connector>

The important things for us to add in this listing are on line 9. Because we specified a keystore (and did
not use the default), we needed to use the keystoreFile and keystorePass attributes of Factory to
specify how Tomcat can access the certificate. Note that in line 10, a clientAuth attribute is set to false.
If it had been set to true, only clients using certificate authentication could gain access to the site.

Now that we have configured Tomcat to use SSL, we can go to https://localhost:8443/ to test it. The alert
shown in Figure 6.6 (or something like it) should warn the user that the site is untrusted. Because we gen-
erated the certificate ourselves, we get this message. Of course, SSL will still work on your site if the user
chooses to proceed, but in order to avoid warnings like this, there is another step that you can take.

Because most browsers by default trust certificate authorities such as Verisign and Thawte, you may get
those authorities to sign your certificate. In order for that to happen, you need to generate a Certificate
Signing Request (CSR) to allow such a certificate authority to sign your public key, generating an X.509
certificate and therefore authenticating your identity so that your site can be trusted. The certificate
authority of your choice will have detailed instructions for this process. Luckily, your Java keytool utility
can generate such a request by executing the following:

keytool -certreq -keyalg RSA -alias tomcat -file certreq.csr
-keystore c:/keystore

164

Chapter 6

09 469513 Ch06.qxd 1/16/04 11:03 AM Page 164

Figure 6.6

By executing that command, the keytool utility creates a file called certreq.csr that you will need to
send to your certificate authority. They will send you their certificate and give you instructions for down-
loading their certificate chain. Once you get your certificate and download their certificate chain of trust,
you can import these back into your keystore, and Tomcat will use this as your new certificate.

For more information on configuring Tomcat to use SSL, see http://jakarta.apache.org/tomcat/tomcat-
5.0-doc/ssl-howto.html.

Application Configuration
From the Tomcat application level (meaning your application’s web.xml file descriptors), you can con-
figure authentication and levels of authorization at the Web-page level. Tomcat has three types of
authentication: BASIC (in which it pops up a user name/password window), DIGEST (in which the
hash of the password is passed to the server), and FORM (in which you can create a customized form
for authentication).

The following code shows an example of setting BASIC authentication and RBAC to a group of pages.
In lines 11–19, we set a security constraint on a collection of pages (in this case, one page specified by the
foo.html URL pattern on line 14). The authorization constraint listed on lines 16–18 specifies that the
end-user must have the manager role. Finally, lines 21–24 force the user to log in to the portal using
BASIC authentication when he or she attempts to access the protected resource collection.

01: <?xml version=”1.0”?>
02:
03:<web-app>
04: <display-name>Authentication Test</display-name>
05: <description>Authentication Test</description>
06:
07: <welcome-file-list>
08: <welcome-file>home.jsp</welcome-file>
09: </welcome-file-list>
10:
11: <security-constraint>
12: <web-resource-collection>

165

Portal Security

09 469513 Ch06.qxd 1/16/04 11:03 AM Page 165

13: <web-resource-name>REALM Test</web-resource-name>
14: <url-pattern>foo.html</url-pattern>
15: </web-resource-collection>
16: <auth-constraint>
17: <role-name>manager</role-name>
18: </auth-constraint>
19: </security-constraint>
20: <login-config>
21: <auth-method>BASIC</auth-method>
22: <realm-name>My Portal</realm-name>
23: </login-config>
24: </web-app>

The preceding code is a simple test for setting up BASIC authentication using the <login-config>
tag. The following code provides an example of FORM authentication, which also utilizes the
<login-config> tag, but specifies custom pages for the authentication and error screens.

01:<login-config>
02: <auth-method>FORM</auth-method>
03: <realm-name>Authentication</realm-name>
04: <form-login-config>
05: <form-login-page>/login.jsp</form-login-page>
06: <form-error-page>/error.jsp</form-error-page>
07: </form-login-config>
08:</login-config>

To use FORM-based authentication, you need to now create a login page, which is shown in the
following code. It is important to know that the mandatory items in this example are the form action
(j_security_check), the username attribute (j_username), and the password attribute (j_password).

01: <title>Login Page</title>
02: <CENTER>
03: <body bgcolor=”white”>
04: <form method=”POST”
05: action=’<%= response.encodeURL(“j_security_check”) %>’ >
06: <table border=”0” cellspacing=”5”>
07: <tr>
08: <th align=”right”>Username:</th>
09: <td align=”left”>
10: <input type=”text” name=”j_username”>
11: </td>
12: </tr>
13: <tr>
14: <th align=”right”>Password:</th>
15: <td align=”left”>
16: <input type=”password” name=”j_password”>
17: </td>
18: </tr>
19: <tr>
20: <td align=”right”>
21: <input type=”submit” value=”Log In”>
22: </td>
23: <td align=”left”>

166

Chapter 6

09 469513 Ch06.qxd 1/16/04 11:03 AM Page 166

24: <input type=”reset”>
25: </td>
26: </tr>
27: </table>
28: </form>

Finally, the following code shows the configuration for digest authentication, which is very similar to
BASIC authentication.

<login-config>
<auth-method>DIGEST</auth-method>
<realm-name>Digest Authentication Example</realm-name>

</login-config>

Many developers choose to use the DIGEST authentication method when they are worried about user
names and passwords traveling in the clear, but are not concerned enough to use encryption. With
DIGEST authentication, when the user authenticates, the browser sends the hash value of the password,
and the server compares that value with the hash value of the password taken from its security realm for
the user. It should be noted that DIGEST authentication does not offer security comparable to SSL.
Computing hash values is a simple computational task, and the ciphers used with the SSL/TLS algo-
rithms offer much stronger security.

Programmatic Security Access with JSPs and Servlets
Any Servlet 2.3 container offers methods on the ServletRequest object that enable the developer to
restrict access within a JSP or servlet, depending on the user’s identity or role. This provides a fine-
grained level of access that can be embedded in the logic of your portal or portlet. The following table
shows the methods of the ServletRequest object that can be used by the portal developer in assigning
role-based access and fine-grained access to a user.

Method Description

boolean isUserInRole(String role) If the user is in the role passed in as the argument,
this will return true; otherwise, it returns false.

String getRemoteUser() Returns the name the client used for authentication.
If there was no authentication, it will return null.

java.security.Principal Returns a principal object for the user
getUserPrincipal()

The following code shows an example of a JSP that provides such fine-grained access. In line 3, the JSP
takes the user’s user ID from the ServletRequest object, and uses it for customization on line 3 if that
user ID is not null. On line 20, the JSP provides an administrator’s menu if the user belongs to the
administrator’s role.

01: <H1>Welcome to this test page</H1>
02: <%
03: String username = request.getRemoteUser();
04: if (username != null)
05: {

167

Portal Security

09 469513 Ch06.qxd 1/16/04 11:03 AM Page 167

06: %>
07: Hello there, <%=username%> .
08:
09: <% } %>
10:
11: <HR>
12: <H2>Resources</H2>
13: <TABLE>
14: <TR><TD>Default Menu</TD></TR>
15: <TR>
16: <TD>Super Portal</TD>
17: <TD>Kevin’s truck</TD>
18: </TR>
19: </TABLE>
20: <% if (request.isUserInRole(“administrators”)) { %>
21: <TABLE>
22: <TR>
23: <TD><I>Administrator’s menu</I></TD>
24: </TR>
25: <TR>
26: <TD>Delete Link
27: <TD>User/Role Administration
28: </TR>
29: </TABLE>
30: <% } %>

The following code snippet shows another example of security at the JSP level by forcing logout and
redirection of a user. Using the invalidate() method of the HttpSession object, a portal can force a
user logout, and by using the sendRedirect() method of the ServletResponse object, we can redi-
rect the user to another page. By using a simple JSP page, such as shown in the following code, we can
program simple logout functionality in our portal.

<%
session.invalidate();
String url = response.encodeURL(“home.jsp”);
response.sendRedirect(url);
return;
%>

As we have shown, many security features are present in your Web container, and if you take advantage
of them, you can apply these features to the security of your portal.

Security of the Portlet Container
Because portlets can be accessed by so many users, and because portlets often have connections to back-
end data stores that contain sensitive data, many will have security requirements. As a result, the portlet
container must leverage the security of the Web container covered in the last section. Because it is the
responsibility of the Web container to authenticate users and determine the security roles for users, it
must also convey a user’s identity and role information to the portlet container so that portlets will have
access to this information. Luckily, the Java Portlet API is very similar to the Java Servlet API, and main-
tains the same concepts of security roles. Just like Web servers, portlets control security via descriptors,
and control access by using programmatic security.

168

Chapter 6

09 469513 Ch06.qxd 1/16/04 11:03 AM Page 168

Programmatic Security
The programmatic security in portlets is quite simple, and is very similar to the security provided by
Java servlets. A good example of the similarities between Java servlet security and Java portlet security
can be seen in the PortletRequest interface, with its security-related methods, listed in the following
table.

Method Description

boolean isUserInRole If the user is in the role passed in as the argument, this will return
(String role) true; otherwise, it returns false.

String getRemoteUser() Returns the name the client used for authentication. If there was
no authentication, it will return null.

java.security.Principal Returns a principal object for the user
getUserPrincipal()

getAuthType() Returns the authentication method. The possible return values are
PortletRequest.BASIC_AUTH, PortletRequest.CERT_AUTH,
PortletRequest.DIGEST_AUTH, PortletRequest.FORM_AUTH ,
or null if there was no authentication.

isSecure() Returns a Boolean indicating whether this request was made using
a secure channel between the client and the portal, such as HTTPS

Much like the ServletRequest object’s security methods shown in the last table, this table shows that a
portlet may call the getRemoteUser() method to get the authenticated user’s name, isUserInRole()
to determine whether a user is in a specific security role, getUserPrincipal() to get the principal
object for a user, getAuthType() to find the authentication method, and isSecure() to determine
whether the connection between the user and the portal is encrypted.

The following code shows an example of the portlet accessing this interface. Here, the portlet calls these
methods on the RenderRequest object, which realizes the PortletRequest interface.

import javax.portlet.*;
import java.io.*;
public class SnobbyPortlet extends GenericPortlet
{

public void doView(RenderRequest request,RenderResponse response) throws
PortletException, IOException

{
Writer writer = response.getWriter() ;
if (request.isUserInRole(“VIP”))
{

writer.write(
“<p class=’portlet-msg-info’>Okay, you are a VIP!</p>”

);
writer.write(“<p class=’portlet-font’>Welcome, mister VIP!</p>”);

}
else

169

Portal Security

09 469513 Ch06.qxd 1/16/04 11:03 AM Page 169

{
writer.write(“<p class=’portlet-font’>” +

“Since this is a snobby portlet, and you are not a VIP,” +
“you are a nobody. Wipe your feet on the way out.</p>”);

}

}
}

In addition to calling methods such as isUserInRole() in portlets such as this, a portlet may throw a
PortletSecurityException if there is a security violation, and this will be handled by the container.

Portlet Descriptor-Configured Security
Security constraints of the portlets themselves can be described in a portlet descriptor. Each portlet may
define the roles required, the role mappings, and other constraints, in the portlet.xml descriptor, as
shown in the following example.

<portlet-app>
...

<portlet>
...
<security-role-ref>

<role-name>PortalManager</role-name>
<role-link>PortletManager</role-link>

</security-role-ref>
<security-constraint>

<display-name>Secure Portlets</display-name>
<portlet-collection>

<portlet-name>accountSummary</portlet-name>
</portlet-collection>
<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraint>

</security-constraint>
...

</portlet>
...

</portlet-app>

In the preceding code, you can see the portlet descriptor addressing a few security issues:

❑ The portlet descriptor is mapping security roles using the <security-role-ref> tag. Here, we
map the main Web container’s security role, PortalManager, to a new role, PortletManager.
This can be done when you want to do role mappings between the Web container and the portlet
container.

170

Chapter 6

09 469513 Ch06.qxd 1/16/04 11:03 AM Page 170

❑ The portlet descriptor defines a transport guarantee with the <transport-guarantee> tag.
This guarantee revolves around connection. If the element’s value is CONFIDENTIAL, this means
that the data transmitted must be encrypted (usually with SSL).

For more information on configuring security aspects of your portlets, visit Jakarta Pluto (the reference
implementation of the Java Portlet Specification) at http://jakarta.apache.org/pluto/.

Beyond the Portal — Secure Back-End Communication
An important aspect that many developers and managers often miss is security beyond the portal —
security of the back-end communication between your portal and the back-end applications that feed it.
Sometimes, it is acceptable for the portal to connect to a back-end database with its own user name and
password, and the tunnel can be protected with SSL. In a J2EE architecture, user and role information is
passed from the Web container layer to the J2EE layer, and access to EJBs can be controlled by RBAC
security roles at the bean method level of granularity. In other situations, where trust is not propagated
(see the “Single Sign-On [SSO]” section at the beginning of this chapter), the back-end application would
like the portal to authenticate on behalf of the user. It is the latter scenario — usually involving Web ser-
vices — that is the most challenging.

Luckily, it is possible to use open-source tools to provide propagation of trust, Single Sign-On, and non-
repudiation of a user’s initial authentication by leveraging some of the Web service standards (for example,
XML Signature or SAML) discussed earlier in this chapter. By passing a signed SAML attribute assertion
that lists the user’s authentication means, identity, and other credentials, you can provide proof of the end-
user’s identity and his authorization levels. An open-source API providing the necessary cryptography,
combined with any open-source Web service toolkit, can be used to validate signed SAML placed in the
SOAP header of Web service messages. Using Apache Axis, for example, you can create an Axis Handler
that validates the digital signature of a signed SAML assertion using the Apache XML Security package,
and you can control access to Web services by comparing the credentials in the SAML assertion to the Web
service’s access control policy.

Figure 6.7 shows an example security architecture that provides such a security solution. In this architec-
ture, the user authenticates to the portal, the portal retrieves information from its standard Servlet 2.3
security realm to get the user’s credentials, the portal creates and signs a timestamped and signed SAML
assertion based on that user’s identity and roles, and this is passed on to the back-end data sources. The
hash of the SOAP body should also be placed in the SAML assertion as a SAML attribute so that the
mapping of the end-user to the end-user’s request should not be lost. Of course, some processing must
be done on the Web service side (with servlet filters or handlers) to handle signature validation and
access control.

An architecture similar to the one shown in Figure 6.7 can provide end-to-end security for the portal
enterprise.

171

Portal Security

09 469513 Ch06.qxd 1/16/04 11:03 AM Page 171

Figure 6.7

Summary
This chapter introduced you to information security concepts and techniques that you can use when devel-
oping portals with security requirements. In the chapter, we defined a security vocabulary, briefly intro-
duced relevant security standards, and provided an overview of how to configure and develop security
solutions as a portal developer. Focusing on accepted standards and open-source technologies, this chapter
provided you with some entry points into developing security services for open-source portals.

Users Roles

Permissions

Roles

Web
Services

Access
control

Portal
access control

handled in
App descriptors

& JSPs

Web Service
Application

Server

XML Signature, SAML Code

Keystore

Authentication
& Authorization

Security Realm

User-Role
Administration

Container-managed security Container-managed secu
rit

y

Servlet Filter
or Handler

Portal

Web
Services

Web
Services

Web
Services

Signed, timestamped SAML
sent in the SOAP header

Signature validation
decryption

Certs for
portals

Sign
ing

SAML C
reatio

n

Security roles
and SAML attributes

172

Chapter 6

09 469513 Ch06.qxd 1/16/04 11:03 AM Page 172

Part 2: How to Build a
Portal

Chapter 7: Planning for Portal Deployment

Chapter 8: Effective Client-Side Development Using JavaScript

Chapter 9: Developing Applications and Workflow for Your Portal

Chapter 10: Portlet Integration with Web Services

Chapter 11: Performance Testing, Administering, and Monitoring
Your Portal

Chapter 12: Unifying the Enterprise Application Space Through
Web Start

10 469513 Pt2.qxd 1/16/04 11:03 AM Page 173

10 469513 Pt2.qxd 1/16/04 11:03 AM Page 174

Planning for Portal
Deployment

Writing about portal deployment planning is a little like those heady philosophical discussions
one has in high school about Existentialism, and the struggle to make rational decisions in an irra-
tional universe. A lot of that type of debate relates to the building of portals, particularly the need
to make choices and then commitments to them. The difficult aspect of this decision making is that
portal design involves the task of aggregating disparate subsystems into a single interface that has
to satisfy a contradictory set of users and their needs. Additional factors that make this decision-
making process so difficult are the rapid changes in data and technologies, organizational issues,
and, last but not least, ignorance.

Portal plans often start out innocently as a means of collaboratively sharing information among a
common user base. Questions like “Who will use the portal?”; “What synergy among our disparate
user groups will this portal bring?”; and, perhaps, “What self-service features can we expect from
this portal?” will have been addressed in broad terms at the onset of a program, so that the monies
needed for development and deployment start flowing. But what happens next? One word comes
to mind: chaos.

To overcome this chaos, pre-emptive measures need to be made at the onset of portal development
to ensure that technical surprises don’t surface during the latter stages of development. The appli-
cation of iterative modeling procedures such as the Unified Process (UP) or Extreme Programming
(XP) will increase your chances of avoiding those surprises.

When planning a portal deployment, many concerns need to be addressed, but the two most
important modeling determinations are the management of Web content data and the user com-
munities that will be exposed to that data. Accommodations must be made to ensure that portlet
content is not rendered improperly to the disparate user base, which could compromise an indi-
vidual’s privacy. User profiles should be established so that content can be shown in proper user
communities. This chapter addresses these matters. Across all portal applications, content is
exposed to its users in many forms, but the most prevalent forms of exposure include message

11 469513 Ch07.qxd 1/16/04 11:08 AM Page 175

boards, calendars, weather forecasts, news, and search utilities. For portals to retain and increase their
user bases, they need to maintain lucid navigation flows so that end-users know where they are and
where they are going to go next. If a design does not provide a proper navigation model, users may
become confused, lose interest, and ultimately browse somewhere else.

The illustration in Figure 7.1 defines a portal in very simple terms. Generally, a file cabinet is a place
where multitudes of related and unrelated data are stored for office use. The file cabinet analogy can be
applied to portals because they warehouse unrelated data for business operations. With file cabinets,
individual folders are tabbed to indicate the content they keep. With portals, portlet applications emu-
late folders in that they represent individual subsystems of data.

Figure 7.1

This chapter explains some requirement-capturing techniques to begin your portal planning activities.
It will also help you with other design decision techniques that you should consider when building your
portal, so you can mitigate the chaos that naturally ensues during the inception phase of development.

Calendar

Messageboard

News Feed

Search

Query

Email

176

Chapter 7

11 469513 Ch07.qxd 1/16/04 11:08 AM Page 176

You’ll also be looking at requirement considerations and some tools to ensure that requirements are
managed and adhered to properly. In addition, this chapter covers software design methodologies,
design decisions, search and content management tools, design pattern considerations, client/server
processing, Web services for remote portals, portal navigation, and portlet integration planning.

System Requirements
Typically, a requirement is considered a specific characteristic or functionality that the system must per-
form on a problem domain from a customer’s perspective. If a requirement is established but does not
affect a stakeholder, it should be considered a design or implementation decision.

To gather requirements for a portal project, development, testing, and design teams should sit down with
all of the program’s stakeholders who are responsible for all of the different subsystems and/or portlets
to determine the features that are needed for the successful deployment of your system. The exclusion of
partners who are expected to contribute content to the portal usually ends up hurting your program in the
long run. Similarly, the inclusion of extraneous portal participants in your development/design meetings
could also be a distraction. A compromise must be drawn that allows for the limited participation of each
portlet subsystem’s team with members who possess technological and problem domain expertise of their
application. Those members must then be allowed to report back to their team about the details of those
meetings. Last, all concerned parties should be prepared to negotiate trade-offs in each other’s deploy-
ments. Requirements come in many flavors, but the following sections describe some typical requirements
that portal applications might consider capturing during their design activities, along with definitions and
questions you should ask.

Interface Requirements
Interface requirements address the basic flow of content into and out of the portal through its portlets.
To properly describe and address these requirements, a design team might pose the following questions:

❑ What is the input/output?

❑ How will the portal data be handled?

❑ How will the portal data be formatted?

Decisions need to be made up front as to what interfaces will be developed and provided so that portal
developers can render and persist portal data content. Once a determination has been made about the
input sources, then requirements need to be captured regarding how that data will be handled and for-
matted. For SOAP implementations, XML parsers or XSL transform stylesheets might be selected, along
with their associated library files. If Java Data Objects (JDO) components are being developed, then
XML-mappings used to abstract database interfaces will have to be decided upon.

Operational Requirements
Operational requirements focus on 24 x 7 portal uptime so that user operations and maintenance activities
do not conflict. Some questions that your design team might consider when capturing these requirements
are as follows:

177

Planning for Portal Deployment

11 469513 Ch07.qxd 1/16/04 11:08 AM Page 177

❑ What does the system do?

❑ What are your performance constraints and expectations?

❑ How often and when will new content be made available to users?

❑ When and what maintenance activities are needed to service the portal community?

Operational requirements for a portal indicate what activities the individual portlet components will
perform inside the larger portal view. Constraints and user expectations need to be delineated by the
stakeholders to ensure that the portlet subsystems play together properly in the portal sandbox.
Additionally, rules need to be established to ensure that Web content updates and maintenance opera-
tions do not halt operations.

Data Requirements
There are many data requirements, too many to list here, but with portal implementations, care should
be taken during requirements analysis to consider the content delivery mechanism used to publish data.
One issue that might be considered when gathering requirements that address data delivery is whether
your system will implement push or pull operations.

The traditional model of content delivery on the Web reflects the latter strategy — users search repeatedly,
or “pull” data in a random manner, which can become tedious and frustrating when the information they
are seeking does not measure up to their needs. Because of this dilemma, technologies were developed to
“push” content to user desktops. Push technology works by having end users fill out profiles in which they
specify particular types of data they want “pushed” to their applications; in our case, it could be a portlet.
This profile acts like a filter for content and is stored on either the client’s machine or on some content
provider’s server.

Unfortunately, latency issues can become a problem with the implementation of push technology.
Networks can become overloaded and filters can allow significant amounts of unwanted content to be
propagated to a system if the filters are not properly configured. Typically, profiles work well for simple
queries such as stock quotations and weather forecasts and can overwhelm a system when complex alert
systems are implemented.

Additionally, consideration needs to be given to how your portal system will persist data during trans-
actional activities. Will a relational database or an XML file suffice as data-persistence mechanisms? Are
your data operations atomic, and can they be rolled back if they are not properly processed? Should data
abstraction layers be implemented, like Java Data Objects (JDO) or other Object/Relational Mapping
(ORM) tools? These are just a few of the issues that your portal team should deliberate on during data-
requirements analyses.

Security Requirements
Security is usually one of the biggest concerns for any portal deployment process. Relevant data needs to
be exposed to users of a portal based on profile information that might be stored in an LDAP directory
server or some other persistent data store for retrieval. User communities need to be established so that
Web content can be targeted properly to the portal audience. Some questions that might be used to cap-
ture common security requirements are as follows:

178

Chapter 7

11 469513 Ch07.qxd 1/16/04 11:08 AM Page 178

❑ Will declarative or programmatic security be implemented?

❑ What type of a Security realm is needed for deployment?

❑ Will security features propagate properly among all of the disparate portlets?

Compromised data on a portal application, or any Web application for that matter, negatively impacts
the user community that will use and support that application. Any single incident can severely damage
the reputation of a company that deploys a portal, which will impair its ability to effectively conduct
future operations. Because of this, portal applications must address the threat of a security breach or the
compromising of delicate user profiles, by implementing security operating policies that can help
improve user trust.

Many portal frameworks roll their own proprietary security APIs, but in many instances, consideration
should be given to the adherence to open security standards. When addressing security in a portal,
architects need to consider the use of programmatic security when ascribing responsibilities to portlet
containers because the individual portlets need to be certain of the roles of the user who is accessing
them. The JSR-168 specification indicates that the portlet container will share the same Servlet 2.3 secu-
rity APIs that implement the Request interface methods to perform programmatic security. That should
prove beneficial for servlet applications that use these features and now can be wrapped fairly easily
with the new portlet wrappers available in portals that are JSR-168–compliant.

Quality Assurance Requirements
Quality assurance measures are needed on all software development projects to propagate best prac-
tices, and to ensure that code baselines remain intact and that developer modifications remain in sync.
Two important questions that must be asked when determining quality assurance requirements are

❑ How will deployed software be refactored ?

❑ How will software be migrated from one system to another?

Quality assurance processes control system differences to manage risk and error propagation. The estab-
lishment of processes is needed to ensure systematic patterns of action that provide evidence that the
portal program adheres to defined technical requirements.

After defining these processes, such as those shown in Figure 7-16, later in this chapter, tools need to be
identified to achieve a program’s stated quality assurance goals. Additionally, standards and conven-
tions need to be established so that best practices can be distributed across the development spectrum.

Adherence to some quality assurance requirements can be facilitated with open-source applications and
continuous integration activities using CVS, ANT, and CheckStyle; unit and load testing with JUnit and
JMeter; and Scarab, for bug tracking. The following sections describe these activities.

Software Configuration Management
Software configuration management requires that source code and design artifact be managed properly
so that deployment goals can be attained. Open-source configuration management tools such as CVS
and Subversion control source code versions and their modifications so that development teams can stay
in sync, minimizing delivery risks.

179

Planning for Portal Deployment

11 469513 Ch07.qxd 1/16/04 11:08 AM Page 179

A configuration management plan should be established at the onset of a program to describe all of the
configuration management operations that will be implemented during a project’s life cycle. This plan
should detail resources and activity schedules, and the personnel responsible for these operations.

Jakarta’s ANT
ANT is an open-source build application that is written in Java and uses XML tags to target a broad
range of configuration management activities. ANT’s utility lies in its ability to extend build functional-
ity with XML file structures and the Java programming language. An ample number of core tasks and
external tasks have been developed for ANT to meet and surpass many source code management and
deployment operations.

With all portal development efforts, quality assurance activities are paramount because changes to its design
are inevitable due to their dynamic nature. ANT allows for the automation of database scripts, CVS activi-
ties, and source code compilation, build and deploy tasks that can be run on different platforms.

A simple but effective task that can be useful in ensuring that your code base adheres to a set of pro-
gramming guideline is CheckStyle. CheckStyle (http://checkstyle.sourceforge.net/) automates the
checking of source code so that developers can continue to work on developing code while ANT script
with CheckStyle targets ensure that standards are being adhered to.

CheckStyle is a time-saving development tool that helps programmers write Java code that adheres to a
coding standard. It automates the process of checking Java code to spare humans this boring (but impor-
tant) task. This makes it ideal for projects that want to enforce a coding standard.

CheckStyle is highly configurable and can be used to support almost any coding standard. Supplied
with CheckStyle is an example configuration file that supports the Sun Code Conventions. In addition,
other sample configuration files are supplied for other well-known conventions, as shown in Figure 7.2.

Figure 7.2

Unit and Load Testing
When building portlet applications in your portal, it is always important to generate test applications
along with the source code. Perhaps that seems trivial, but the time savings are invaluable when you’ve
been told that your code is no longer working several months after you checked it into a source code

Rules:

1. Check JavaDoc statements
2. Verify naming conventions
3. Avoid finalizers
. . .
et al.

return test results

Local
filesystem

File1.java

File2.java

File3.java

File4.java

build.xml

<?xml version="1.0"?>
<project name="Quality assurance tests" default="test">

<target name="checkStyle" description=""depends=init">
<taskdef resource="checkstyletask.properties"/>

<checkstyle config=" /checkstyle-3.0/docs/BlochEffectiveJava.xml">
<fileset dir="." includes="".java"/>

</checkstyle>
</target>

</project>

prompt> ant checkStyle

180

Chapter 7

11 469513 Ch07.qxd 1/16/04 11:08 AM Page 180

repository. With these tests, you can jog your memory in an easy fashion to recollect how your code
worked, and determine what new bugs were introduced to undermine your software. Several open-source
offerings can be used to perform unit testing (JUnit) and load testing activities (JMeter). Chapter 11 addresses
this subject in greater depth.

Bug Tracking
Bugs are an unavoidable aspect of software development. The key to dealing with them is ensuring that
they are tracked and fixed, and that someone corroborates that they are properly corrected. Web-based
defect tracking systems provide program stakeholders with the capability to remotely ascertain the fea-
ture requests, bug fix details, and problem resolution. Scarab (http://scarab.tigris.org/) is an open-
source tool that you can implement to meet your bug defect tracking needs.

Continuous Integration
Continuous integration is a concept championed by Martin Fowler that emphasizes an Extreme
Programming practice of testing your software baseline through automated procedures to ensure
that bugs reveal themselves quickly rather than propagating through your system and revealing them-
selves in the latter stages of development, which could cripple your deployment plans.

Requirements Summary
Clearly, requirements are important in that they capture what the stakeholders of a system expect their
system to do. In order for these requirements to be considered valid, they need to be correct, realistic,
and traceable. Portal component developers must be vigilant in their requirements-capturing undertak-
ings because scope creep or mismanaged requirements handling can undermine the efforts of all the
dependent groups that are responsible for its release.

For example, it makes no sense to establish a requirement that your target run on a Solaris platform
when you’ve been told that the application you’re developing can only run on Windows. System perfor-
mance always tests the stated criterion that your requirements should be realistic. Sure, you can state
that your content queries should return results in less than five seconds, but is that always realistic?
Sometimes more difficult queries can deliver results after five seconds; does that mean that your require-
ment is unrealistic? Perhaps, but it is always important to set realistic requirement goals that apply to
reasonable requests that occur in a consistent manner. As far as traceable requirements are concerned,
make sure that system features can be verified against a requirements specification, that errors can be
identified, and that changes in your system can be managed.

It is extremely helpful for portal architects to experiment with iterative measures to achieve resonance in
their processes as they’re working through their portal development. Additionally, it is very important
to be cognizant of all of the different perspectives of the portlet integrators so that teams can work
toward a consensus during operations.

181

Planning for Portal Deployment

11 469513 Ch07.qxd 1/16/04 11:08 AM Page 181

Software Design Methodologies
The initial activity for every program is to capture requirements. This is a tricky proposition, however,
because the requirements you elicit at the beginning of your task invariably change by the end of the task.
This phenomenon is not unique to portals; it happens on all software programs, but can be exacerbated
when disparate systems are all aggregated on a single view, as they are on portals. Because of this
inevitability, it’s always important to maintain a good relationship with your stakeholders to ensure that
some give-and-take can be achieved when these modifications occur, as well as with your portal develop-
ment and integration teams, which need to ensure that modifications on one subsystem do not sabotage
other portlets that reside in the enterprise portal. To communicate changes and to facilitate future amend-
ments, all changes need to be captured in a portlet integration plan, as described in the latter section of
this chapter.

The Unified Process (UP)
The Unified Process (UP), which is an amalgamation of processes by Booch, Jacobsen, and Rumbaugh,
is a popular modeling process that emphasizes iterative development. Each iteration includes its own
requirements analysis, design, implementation, and testing activities. The UP consists of four phases that
can be used to define a system’s requirements and to perform object-oriented analysis and design opera-
tions. These four phases are inception, elaboration, construction, and transition. During these phases,
your program scope is understood, your architecture risks are mitigated, and your releasable system is
crafted and deployed so that maintenance can manage your implementation. Further elaboration on the
Unified Process can be found in Craig Larman’s excellent book Applying UML and Patterns. This chapter
describes artifact generation for two of those phases, inception and elaboration, and how they can be
applied to portal design. The inception phase generally scopes out a program’s vision, and forms a case
for the development of a system from a conceptual view. UP documents that are crafted in this phase are
use cases and use-case models. Elaboration clarifies the vision established in the inception phase and
provides more concrete predictions of the overall project — specifically, the stakeholder requirements.

Figure 7.3 shows a simple use-case model for a portal application. In the portal system, the actor known
as the Portal User interacts with the calendaring, search, and query activities. The Portal Administrator
participates in the spidering and monitoring scenarios.

Use cases are generally simple narratives that describe the goals of a system. Figure 7.4 illustrates a use
case scenario for adding a message to a message board application.

Use cases are created to capture text descriptions of requirements that outline system functionalities that
are expected when a system is deployed. Figure 7.4 demonstrates some high-level aspects that might be
included in your use case, ones that are not necessarily required for publication. These concepts include
the actors of the system, a description of the use case, the pre- and post-conditions of the scenario being
described, and a linear sequence of the scenario, including alternative variations and perhaps some
requirements that are warranted for its implementation. A very nice Web site that contains some use case
templates can be found at www.usecases.org.

182

Chapter 7

11 469513 Ch07.qxd 1/16/04 11:08 AM Page 182

Figure 7.3

Add an Appointment

Portal

Portal
User

Portal
Administrator

View Message
Thread

Perform
Keyword Search

Perform
Data Query

Monitor User
Clickstreams

Delete an
Appointment

Modify an
Appointment

Perform
Advanced Search

Spider
External Sites

183

Planning for Portal Deployment

11 469513 Ch07.qxd 1/16/04 11:08 AM Page 183

Figure 7.4

Domain Model
The development of domain models, which are part of the Unified Process and are elaborated on in
Larman’s book [LARMAN], can be useful in determining individual concept classes for future construc-
tion. This type of object modeling enables developers to conceptualize ideas about what classes are
needed for construction and their responsibilities among other components. This is performed by break-
ing down your target system into conceptual models or abstracted elements, as shown in Figure 7.5.

Construction of a domain model for a portal would start with breaking down the system into conceptual
classes for the problem domain for all of the individual portlets. All of the scenarios crafted for the portlets
are used to determine the classes needed for construction. Noun-phrase identification is a good starting
point for this. Say that for your message board scenario you have the action flow depicted in Figure 7.5.

Use Case UC1: Add Messages to Messageboard Portlet

Primary Actor: Portal users

Stakeholders and Interest:
• Portal User: Desires the ability to add/delete/modify comments to the Messageboard portlet
• Portal Administrator: Desires the ability to add comments to existing Messageboard entries

Brief Description:
Add messages to the Messageboard portlet. Portlet users with Administrative privileges can append
comments to individual user comments.

Pre-Conditions:
PORTLETMESSAGES and PORTLETMSGTHREAD tables are deployed on a MySQL database. user
profiles have been established in a Netscape Directory Server to delineate user roles and privileges.

Success Guarantee (Post-Conditions):
None specified for this case

Main Success Scenario (or Basic Flow):
1. Portal User: invokes the Demo portal
2. Portal User: logs in with individual user name/password
3. Portal User: clicks on message link in Messageboard portlet
4. Portal User: adds comments to Messageboard form and clicks Submit button
5. Portlet indicates a proper message has been entered and renders message links on Messageboard
 portlet.

Extensions (or Alternate Flows):
2a. Portal Administrator: logs in with user name/password
2b. Portal Administrator: logs in with improper user name/password
3a. Portal Administrator: appends comments to existing user comments
3b. Portlet detects error and prompts user to enter a proper user name/password.
4a. Portal User: does not fill out all required form items needed for proper submission
5a. Portlet detects errors and prompts user to fill out all required forms for proper submission.

Special Requirements:
None specified for this use case

184

Chapter 7

11 469513 Ch07.qxd 1/16/04 11:08 AM Page 184

Figure 7.5

The candidate classes that can be drawn from the scenario flow depicted in Figure 7.5 are as follows:
Portal User, Topic, Messageboard, and MessageThread. A domain model that might be drawn for
these conceptual classes is shown in the following table.

Conceptual Class Category Examples

Physical or tangible objects Messageboard, portalUser, Topic

Transactions messageAdd, messageDelete

Roles of people portalUser, portalAdministrator

Processes ViewingThread

A simple association checklist, demonstrated in the following table, would define relationships between
the conceptual classes.

Category System

A is a member of B Topic – Messageboard

threadedDiscussion – Messageboard

A communicates with B threadedDiscussion – Messageboard

A uses or manages B Portal – Portlet

Portlet – Messageboard

Messageboard - threadedDiscussion

The example provided in the preceding table is obviously simplistic, but it does make clear how you
should approach the creation of conceptual classes for your portal effort. This association checklist
should be created for all of your subsystems, or portlets, to capture all of the classes that will be needed
for deployment. The next step is to draw a domain model diagram with your new conceptual classes,
like the one shown in Figure 7.6.

Database

>Topic1
>Topic2
>Topic3

msg1
msg1.1
msg1.2

msg2
msg3

Messageboard Portlet Scenario:

1. Portal user logs into the portal and selects a topic in

 the left navigation taxonomy.

2. Messageboard portlet displays messages associated

 with the user-selected topic that are persisted in a

 database back-end.

3. Portal user clicks on Thread link.

4. Messageboard portlet displays the threaded discussions

 for that topic.

185

Planning for Portal Deployment

11 469513 Ch07.qxd 1/16/04 11:08 AM Page 185

Figure 7.6

As demonstrated in the preceding examples, domain modeling is an excellent business modeling tech-
nique, but unfortunately this process can become quite cumbersome and time-intensive for complex
portal applications that handle many subsystems in their portlet applications. The idea is to conceptual-
ize what your portal system will do in a visual manner so that, going forward, you can better appreciate
and complete your development tasks.

Software Architecture Document (SAD)
The Software Architecture Document (SAD) is part of the elaboration design phase and serves as a
pertinent learning tool to provide a high-level view of a system and its interfaces. A SAD encapsulates
a general architectural summary of a system, using several different views to illustrate all of the aspects
of the system.

A SAD commonly is partitioned into several overviews that describe conceptual understandings of
a potential system deployment. An example SAD is shown in Figure 7.7. All of its components
(Introduction, Architecture Goals, Use Case View, Logical View, Data Flow, Deployment Flow, Data
Views, and Requirements Matrix) serve as a guide for architectural analysis so that anyone reading
it can gain an understanding of the overall system at a glance.

The Introduction section of the SAD elucidates all of the different terminologies that will be used in the
paper, and describes the scope of the program from a conceptual perspective. With many portal deploy-
ments, this section might describe J2EE technologies targeted for implementation, provide an illustration
of the enterprise portal, and describe briefly how the target system will manifest itself. A demonstration
of this section is shown in Figure 7.8.

contains

1 *

comprised of

manages

*

1

1

1

Portal

Portlet

Messageboard threadedDiscussion

186

Chapter 7

11 469513 Ch07.qxd 1/16/04 11:08 AM Page 186

Figure 7.7

The Architecture Goals section of the SAD outlines how the target system will be used, as well as
the system’s operating environment. Although this section is generally text describing your system’s
goals, Figure 7.8 is included to visually illuminate those objectives. The text that follows Figure 7.8
demonstrates this.

The target portal system shown in Figure 7.9 will be deployed though J2EE components — specifically,
servlets and Java Server Pages (JSPs) on the Web tier that runs in the portal’s portlet container. Database
queries will be performed through Web Service components that will aggregate content from disparate
data sources. Programmatic security will be performed on individual portlets using profile information
on an LDAP Directory server so that relevant content can be targeted to specific user communities.
Additionally, RSS syndication feeds, XML updates using dom4j libraries, and a JDO Abstract Layer
will be implemented to feed data to individual portlet subsystems, and the portal application will reside
on a target platform that runs the Linux operating system.

The Use Case View section of the SAD demonstrates the functional requirements on the system. The use-
case model shown in Figure 7.10 is further refined during the construction phase to reflect architecturally
significant functionality.

• Describe the scope of your program and a glossary of acronyms
and abbreviations to provide clarity to readers of this document.Introduction:

• Describe software technologies that will be implemented in the
portal from a high-level view.Architecture Goals:

• Illustrate Use-Case Models to describe system behavior of a
portal.Use Case View:

• Describe a high-level conceptual view of your portal system.
Elaborate the interfaces, classes, packages, and portlet
subsystems.

Logical View:

• Describe how data will flow into and out of the individual portlet
subsystems and how it will be persisted on the portal back-end.Data Flow:

• Describe how the portal system will be deployed.
Deployment Flow:

• Describe the database and XML tables that will be implemented
in your portal deployment.Data Views:

• Display all of the Use Case requirements and their associations
with the individual portlet subsystems in a table for easy
reference.

Requirements Matrix:

Software Architecture Document

187

Planning for Portal Deployment

11 469513 Ch07.qxd 1/16/04 11:08 AM Page 187

Figure 7.8

Figure 7.9

Figure 7.10

Messageboard Portlet

Portal
User

Add Message

Delete Message

Display Message
Thread

Portal
User

Alerts Portlet

Display Alerts

Subscribe for
Alerts

SQL/SOAP

RSS

Portal

LDAP/JNDI

DOM4J

JDO

EIS Tier

DB2

XML

EIS Tier

RDF

DB1

Client
Tier

DB1

DB2

user

computer

EIS
Tier

Middle
Tier

Portal

portal

GLOSSARY

DOM (Document Object Model) - description
JAR (Java Archive File) - description
JMX (Java Management Extensions) - description
JMS (Java Messaging Service) - description
RSS (RDF Site Summary) - description
XML (Extensible Markup Language) - description

188

Chapter 7

11 469513 Ch07.qxd 1/16/04 11:08 AM Page 188

The Logical View section of the SAD with respect to portals should summarize all of the portlet subsystems
from an organizational perspective that includes all of the frameworks, classes, packages, and interface lay-
ers that will be deployed on your system. It is important to remember that this section does not need to
provide too much granularity, but enough to convey a coherent message about your system and how the
different portlet components will work together and avoid integration collisions.

The Data Flow section of the SAD, shown in Figure 7.9, demonstrates the flow of data from external data
sources into and out of the portal implementation. This section can help portlet integrators better under-
stand port and interface requirements that will enable them to secure socket connections and facilitate
profile creation to ensure that pertinent Web content is revealed to privileged users.

The Deployment Flow section of the SAD describes the topology of the deployed system. In Figure 7.11,
a very simple view exhibits the tiered components that will be developed for the portal deployment.

Figure 7.11

The Data Views section of the SAD elucidate the XML and database schema views of your system. These
views typically represent high-level views of that data in data-flow diagrams to provide the SAD’s read-
ers with an idea of table structures for implementation and to protect individual portlet developers from
encroaching on one another’s data persistence structures.

The Requirements Matrix section of the SAD relates the use case artifacts to one another for easy reference.
A matrix correlates requirements with technical deliverables in your system. This can be an invaluable tool
for portal programs to coordinate portlet development with stakeholder expectations for deployment.

Shall Statements and User Stories
Shall statements and User Stories are lightweight requirements capturing mechanisms that can be used
with any simple editor or spreadsheet application to expedite your design activities. The basic idea of
these artifacts is to perform conceptual modeling and to capture high-level requirements for your sys-
tem. Typically, shall statements are written in the form of “This system shall perform . . .,” where the
functional and nonfunctional activities are explained to the shareholders of a system. User Stories are
short paragraphs that are artifacts of the XP methodology, which specify what your deployed system
will deliver to satisfy stakeholder expectations.

Client Browser

Portal User

Portlet Server Database Server

Portal Administrator

Feedback

Calendar Search

Portal Database

SOAP Service

HTTP/S SOAP/XML

JDBC

189

Planning for Portal Deployment

11 469513 Ch07.qxd 1/16/04 11:08 AM Page 189

Class-Responsibility-Collaborator Cards (CRCs)
Class-Responsibility-Collaborator cards are a great means to capture responsibilities associated with
classes. Figure 7.12 demonstrates what a CRC card looks like. The idea of CRC cards as design tools is to
formulate potential classes and assign responsibilities to them.

Figure 7.12

Of course, the use of CRC cards can appear primitive to design teams that might feel the need for more
robust modeling tools to implement their design goals. But they really are powerful mechanisms that
you can use to carve up the complexity of an application into manageable parts. You can also use them
to clearly define the responsibilities between those parts during the early stages of design so that prema-
ture complexity is not introduced into one’s modeling activities.

Storyboarding
Once all of your portal user interfaces have been identified, consideration should be given to developing
storyboards based on some of your use case scenarios. A storyboard typically consists of sample HTML
files or other program visualizations that outline the sequence of events that can occur during normal
operations of your portal. This practice also gives your design team a better understanding of your Web
application’s real estate.

Storyboarding can be accomplished by printing out all of your screenshots from your template HTML
files to ensure that all of the navigation flows have been completed, and then have them posted to a wall
in a fashion similar to what is shown in Figure 7.13. You might try using red spools of thread attached to
tacks to establish navigation flows in your portal application.

This visualization technique is a fairly inexpensive solution for your modeling team, and can be effective
in understanding data flows in your application.

Another great practice to capture all of your high-level processing activity comes from the traditional
structured approach to modeling called a context diagram (see Figure 7.14), which captures the flow of
information between a system and external entities. The system scope defined in this figure delineates

Class: Messageboard

Responsibilities: Collaboration:

Add Messages
Delete Messages
Show Message Threads

messageThread

Class: Calendar

Responsibilities: Collaboration:

Add Appointments
Delete Appointments
Show Appointments

dbPersistence
Date

190

Chapter 7

11 469513 Ch07.qxd 1/16/04 11:08 AM Page 190

all of the portal system boundaries from a conceptual perspective without bogging itself down with
finer details. The context diagram generally serves as a springboard for more detailed investigation dur-
ing your analysis activities.

Figure 7.13

Figure 7.15 describes some of the lightweight XP life cycle processes that occur in planning and production
operations, which are demonstrated at www.extremeprogramming.org. Along with those activities, open-
source tools are shown to complement those tasks to satisfy design and configuration management procedures
in that process. Embedded inside the figure shown are some open-source tools that could be used to facili-
tate those processes. With XP, the key is not to tie yourself down with time-consuming modeling tasks. The
emphasis should be on the code itself — that is the end-game that will satisfy the project’s stakeholders. To
avoid analysis-paralysis, as well as tying your team in knots over capturing design models, your design
planning should be done on a whiteboard so that changes can be accommodated in an easy fashion and
resources are not expended on designs that can vacillate in structure and behavior during early modeling
activities. Part of this modeling necessitates storyboarding to understand application flows and real-estate
concerns. As far as bug tracking is concerned, open-source tools such as Scarab, BugRat, and iTracker can be
used to enable developers to work without interruption from testers. Automated testing procedures could
be generated using open-source tools such as ANT, JUnit, and JMeter, and scheduled to run during off-hours
so they won’t impede development. Lastly, ANT and CheckStyle could automate your code peer reviews
and be incorporated into your acceptance testing. CheckStyle is an ANT library extension that can found at
http://checkstyle.sourceforge.net/anttask.html.

Sequence 1.2

Sequence 1.1

Sequence 2.1

Sequence 2.2

Sequence 4.1

Sequence 4.2

Sequence 5.1

Sequence 3.1 Sequence 3.2 Sequence 3.3

Sequence 1.3

191

Planning for Portal Deployment

11 469513 Ch07.qxd 1/16/04 11:08 AM Page 191

Figure 7.14

As indicated in the XP processes diagram shown in Figure 7.15, careful consideration should be given to
the deployment of a collaboration server during the inception phase of your deployment so that knowl-
edge can propagate through the disparate participating groups in your program. Product discoveries
that are captured and put on these servers will increase knowledge flows and free personnel from
explaining lessons learned to other participants. The idea is to keep everyone involved “clued-in” to all
activities so that changes or decision-making at one end of the development spectrum do not go unno-
ticed by those on the other end.

News
Feed

Appointment deletion confirmation

Delete an Appointment

Message insertion confirmation

Display message Clickstream DB
confirmation

Monitor clickstreams

Confirm new adds Add new content

Spider external sites

Confirm Spidering
completion

Add message

Delete message

View message thread

Add an Appointment

Message addition confirmation

View Message Thread

Portal
Administrator

Portal

0

Context Diagram

Portal
User

Weather
Feed

Portal
Content
Manager

Alerts

192

Chapter 7

11 469513 Ch07.qxd 1/16/04 11:08 AM Page 192

Portal development efforts evolve into nasty shouting matches and finger-pointing when CM processes
have not been properly deployed and adhered to. Automation of these CM activities is paramount to con-
trol the complexities that naturally arise among the different portlet developers of your portal system.

Figure 7.15

Design Models for Visualization That Are Not in UML
In Scott Ambler’s book Agile Modeling, he provides a practical approach to modeling that enables you to
deploy UML artifact-generation best practices on your system. UML does not address two very impor-
tant features of enterprise modeling: user interface design and data persistence design. Scott suggests
crafting storyboards to visualize your User Interface design to address real estate and navigation con-
cerns and to craft Data Flow Diagrams to enhance data content awareness [AMBLER].

The Data Flow Diagram (DFD) in Figure 7.16 illustrates how data flows from external entities through
known processes into and out of a portal application. DFDs are great visualization models that portray
all of the relevant inputs/outputs, processes, and persistence mechanisms on your system.

JAMES
Server

Testing

User Stories
(Scenarios)

Subject
Matter
Experts

System
Metaphor

Conceptual
Framework

Release
Planning

Spike
(Product

Discovery)

Test Scenarios

Release
Plan

New User
Story

Bugs

Latest
Version

Customer/Mgmt
Approval

Small ReleasesNext Iteration

Iterations to Release Phase
(6-8 weeks)

Production Phase

Maintenance Phase

Iteration

Planning
Phase

CVS

Exploration
Phase

Portal User

Backups

ANT + FTP

BugRat/Scarab/iTracker
(bug tracking)

ANT + CheckStyle
(Peer review)

CruiseControl

Axis Client

JUnit

JMeter

Collaboration
Server

UML Artifacts — (optionally) in Visual Paradigm/Poseidon

Acceptance
Tests

UML Artifacts
(Whiteboard)

&
CRC Cards

Storyboards

193

Planning for Portal Deployment

11 469513 Ch07.qxd 1/16/04 11:08 AM Page 193

Figure 7.16

View/Add/
Delete/
Modify

Message

Messages

Message
info

Portal
User

Message Tree

View/Add/
Delete/
Search

Appointment
Appointment

info

Portal
User

Group
Appointments

Personal
Appointments

Perform
Data
QueryInquiry

results

Portal
User Topic Lists

Resources

Country Lists

Annotate
Artifact

Portal
User

Annotations

Users

Resources

Site

Metadata
details

URL query

Portal
Admin
User

Spider
external

site

Email
Server

Email results

Email inquiry

Portal
User

Email
Search

Data inquiry

Inquiry
results

SearchPortal
User

Users

Profiles

Resources

Monitor
User

Preferences

Authenticated
Users

Clickstream
ReferencesPortal

Admin
User

194

Chapter 7

11 469513 Ch07.qxd 1/16/04 11:08 AM Page 194

Design Decisions
A design decision is generally an architectural or implementation decision that lies outside of the require-
ments determined by external shareholders. From an architectural perspective, portal designers need to
understand their user communities and their development resources in order to put forth a coherent
implementation plan. Often, this understanding can assist portal architects in determining whether a
commercial framework is needed for deployment, or a development team can roll their own. Figure 7.17
shows a few design decisions that a portal deployment might consider, along with system requirements
that relate to the Requirements section previously described. Remember that the requirements listed are
only a subset of possible needs that should be addressed prior to development, but they definitely are rel-
evant and deserve consideration.

Figure 7.17

Portal Design
Decisions

Requirements
and Scenarios

Goals:
• Accommodating a disparate
 user community!
• Data dissemination and
 Self-service
• Satisfying your requirements
 with your design decisions

Profiles and Roles

Security Requirements

Model

Data Requirements

Configuration
Mgmt. Process

Quality Assurance
Requirements

Personalization

Standards

Functionality
Requirements

Framework?
Architecture Model?
Java Standards and
Design Patterns?

View/Presentation

Server-side processing
Client-side processing

Protocols and Interfaces

Patterns

Plug-ins

Interface Requirements

195

Planning for Portal Deployment

11 469513 Ch07.qxd 1/16/04 11:08 AM Page 195

The following sections describe design decisions that relate to portal architectures. Prior to beginning an
expensive portal procurement decision-making process, an understanding of the different portal archi-
tectures could be beneficial when evaluating the different portal offerings.

Model 1 Architecture
A lack of strong enterprise-level development expertise combined with tight scheduling could warrant
the Model 1 design. If this is the case, and the program needs to forgo the procurement of a portal frame-
work, using Java Server Pages and servlets with a basic Web container could satisfy your needs.
Typically, the Model 1 strategy, which is considered “page-centric,” can be deployed with a home page
containing embedded pages. With this model, the leftNav.jsp page shown in Figure 7.18 would con-
tain an XML-generated taxonomy that would enable users to navigate through Web content.

Figure 7.18

content.jsp

footer.jsp

header.jsp

leftNav.jsp

196

Chapter 7

11 469513 Ch07.qxd 1/16/04 11:08 AM Page 196

Many project designers have spent large investments in portal applications because they bought into the
hype of the portal vendors, later deciding that their decision was a bad one. With the help of open-
source portal frameworks such as JetSpeed (Pluto), LifeRay, eXo, and Jportal, which implement the JSR-
168 specification, developers can build applications without costly expenditures. Additionally,
developers can build standardized portlets that can be reused on all of these disparate portal platforms.

For enterprise portals, which service a large community of users and provide self-service capabilities
along with information dissemination, an implementation should consider a framework model that can
handle heavy loads of information and modifications. The procurement of non-standard portal systems
should take into consideration the huge development costs that can be incurred for the services of devel-
opers who are cognizant of proprietary product extensions on these closed systems. Concern might also
be given to understanding how new components can be enabled in their frameworks. The upside to
acquiring a ready-made portal framework is that they come with ready-made tables for data persistence
and numerous tools that enable easy portlet customization and configuration of portlet visualization
preferences.

Model 2 Architecture
As previously mentioned, the Model 1 architecture is well-suited for simple applications, but most
Web applications have navigation and flow control difficulties that necessitate the use of the Model 2
Architecture (M2A), shown in Figure 7.19. With the M2A, which is also referred to as the Model-View-
Controller (MVC), multiple views of the same data (model) can be rendered to the user community
based on their navigation selections from the view. Most J2EE-compliant portal frameworks implement
an MVC solution that uses a servlet controller to render appropriate JSP visualizations. M2A implemen-
tations, like Jakarta Struts, can be more cumbersome than Model 1 systems because of labyrinthine
parameter-passing through an XML file (struts-config.xml) used by a controller servlet. This devel-
opment complexity can be overcome, however, by time and experience. With M2A implementations,
users can control and deploy Web components in an easier fashion than hard-coding dependencies
inside the code itself, which presents maintenance problems when things change.

Model 2X Architecture
The Model 2X Architecture (M2XA), shown in Figure 7.20, demonstrates a slight difference between it
and a Model 2 implementation. With M2XA, XML is generated by a servlet or JSP component and is
transformed into presentation script prior to being sent to a browser for presentation. These transforma-
tions are generally performed by XSL stylesheets. The use of XSL stylesheets enables developers to ren-
der different views with the same data.

The benefits of M2XA for portal applications are twofold: a single stylesheet can be developed to present a
unified view, and a portlet’s look and feel can be made at runtime, just like an application that implements
the Decorator pattern. A great reference for the M2XA can be found at www.orbeon.com/model2x/.

197

Planning for Portal Deployment

11 469513 Ch07.qxd 1/16/04 11:08 AM Page 197

Figure 7.19

O
pt

io
n

1

O
pt

io
n

2

O
pt

io
n

3

S
er

vl
et

(C
on

tr
ol

le
r)

fo
ot

er
.js

p

he
ad

er
.js

p

C
on

te
nt

 1

C
on

te
nt

 2

C
on

te
nt

 3

le
ft

N
av

.js
p

D
at

a
La

ye
r

M
od

el

V
ie

w
 1

V
ie

w
 2

V
ie

w
 3

198

Chapter 7

11 469513 Ch07.qxd 1/16/04 11:08 AM Page 198

Figure 7.20

O
pt

io
n

1

O
pt

io
n

2

O
pt

io
n

3

S
er

vl
et

(C
on

tr
ol

le
r)

fo
ot

er
.js

p

he
ad

er
.js

p

C
on

te
nt

 1

C
on

te
nt

 2

C
on

te
nt

 3

le
ft

N
av

.js
p

D
at

a
La

ye
r

M
od

el

V
ie

w
 1

V
ie

w
 2

V
ie

w
 3

Ap
pl

y
XS

LT
S

ty
le

sh
ee

t

199

Planning for Portal Deployment

11 469513 Ch07.qxd 1/16/04 11:08 AM Page 199

Search Utilities
Every portal deployment needs a reliable search utility to enable users to quickly find data that is reli-
able and suits their needs. Some common search engines include Verity, Autonomy, Inktomi, Convera,
Google, and the open-source offering called Lucene. Navigating through a portal using taxonomies is
fine for some, but it can become tiresome when the amount of content available is overwhelming. When
the sheer size of a site’s content can be too much to chew on, and you need to filter out content to get
what you need, then a search utility is warranted.

Most search engines perform queries against a database, XML, or binary data set generated from an
indexing mechanism. Some search engines use robots to survey the Internet so that they can aggregate
more content for their databases. Web documents are retrieved and indexed. When you enter a query at
a search engine Web site, your input is checked against the search engine’s keyword indices. The best
matches are then returned to you as hits.

Two of the more prevalent text-searching capabilities involve searches by keyword and concept. A key-
word search usually searches the metadata associated with an artifact for the user-specified keyword
and returns all documents that are affiliated with it. Some search engines omit text submitted with the
search request so that they can search for terms that are deemed more relevant. This operation means
that words such as “a” and “the” might be overlooked during the search operation. Furthermore, some
engines discriminate between uppercase and lowercase characters in a search string, others do not. A
problem with keyword searching is that words that are spelled the same but have different meanings
result in ambiguous content returns from your query.

A concept search attempts to determine what the query string actually means and tries to obtain content
that is statistically related to the string query.

In addition to these two types of searches, search engines enable users to refine their queries to target
content they need. Some of that refinement includes the capability to search for two or more words and
to exclude words that might confuse the engine database. Boolean operators in the form of words or
symbols are part of that query refinement. Boolean operators such as AND, OR, and NOT, as well as +, -,
enable the search operation to combine and subtract terms from the request.

Finally, most search engines return query results based on relevancy ratings. These relevancy ratings are
generated by the number of times the keyword appears in that document; the more often it does, the
more relevant the artifact is ranked. Keyword counts in documents are not an important distinguishing
feature as to the importance, or relevancy, of a document. Sometimes a document may use a common
word repeatedly, which could result in that document being irrelevant for your needs.

Content Management
On many portal applications, comprehensive solutions are needed to deliver content in a controlled fashion
through content management applications. Data management encompasses content facilitation through
workflow applications known as content management tools that provide management and publishing
operations for Web content distribution. The implementation of content management systems typically
occurs after a working system has been deployed and the portal implementers understand the content
they possess.

200

Chapter 7

11 469513 Ch07.qxd 1/16/04 11:08 AM Page 200

Two open-source products, OpenCMS and Jakarta’s Slide, can be used to control Web content flow in
portal deployments. You should examine many of the key features of these content management sys-
tems to ensure that your system can deploy Web applications in an efficient manner with these tools.
Here is a list of capabilities that you should look for in a content management application:

❑ Content Publishing entails the ability to draw information from a persistence store for publica-
tion. This can be a database or an XML-based storage mechanism.

❑ Asset Management means that all types of content, from document-based files to graphical
images, can be handled in an efficient manner so that redundancies are avoided.

❑ Workflow Management necessitates the creation of user profiles that delineate user roles and
rights to Web artifacts. Once these have been established, users can pull down a document for
edit or modification, after which the document can be pushed back into a workflow so that
someone else can work on it. When the end of the workflow chain has been reached, the artifact
is generally marked for publication.

❑ Versioning enables developers to track changes through a history log. More important, it enables
versions to be rolled back when problems are found with deployed distributions, and baseline
releases can be constructed and fielded to targeted systems.

❑ Scheduling enables content managers to distribute their content during “off-hour” times so that
server implementations are not overloaded and can handle the new content flows in an efficient
manner.

❑ Personalization is a tall order for most deployments, because it requires profiles and sophisti-
cated rules to be set up so that targeted content can be distributed to user communities in an
easy manner. Personalization is generally phased into a content management process because
of the complexities involved in building rules and relevant target communities.

Content management systems can be beneficial to your portal deployments, because they ensure that
document standards propagate properly across your system and that portlet components can be man-
aged efficiently in your portal operations.

Design Pattern Considerations in Your Portal
Clearly, there are many ways to implement a design that cannot be expressed adequately in this chapter
alone. Hopefully, the introduction of high-level pattern constructs and brief discussion of the implementa-
tion of Java standards in this chapter can facilitate your design decisions on your portal deployments.
Java language and implementation standards can also help control complexity so that consistent levels of
quality can be attained in your development activities. This in turn can lead to increased partner adoption
and portlet maintenance. Last, the adoption of design patterns should be applied so that best practices are
propagated in your portal deployment and development operations can be hastened.

Much has been written during the last few years about design patterns and their use in Java development,
so rather than go into great elaboration of their use, we felt that it would be more beneficial to provide
high-level concepts of patterns that might be used in your portal deployments and to encourage you to
explore them from the online Javaworld newsletter and from the Core J2EE Patterns book [ALUR].

201

Planning for Portal Deployment

11 469513 Ch07.qxd 1/16/04 11:08 AM Page 201

Using Java Standards
For many mission-critical development portal efforts, decisions need to be made about expensive soft-
ware procurements to satisfy your development needs. In order to protect this investment, it is wise to
consider standards when you make your purchasing decision because there is nothing worse than
dumping a lot of money into a particular framework only to learn after you have obtained it that it is a
closed, proprietary system that does not work well with other systems. To guarantee that this does not
happen to you, you should become familiar with software standards and other application frameworks’
use of them. Regrettably, systems that do rely heavily on proprietary extensions often force your project
to hire expensive expertise to help you deploy your program with their framework.

Figure 7.21 illustrates some of the Java standards that could be considered for portal development. It is
important to remember that these need to be established prior to procuring a portal framework or inte-
grating existing applications into a homegrown portal application. Always be cognizant of the latest ver-
sions of the standards listed in Figure 7.21, and the effects that newer versions of those standards might
have on your design decisions.

Figure 7.21

Figure 7.22 illustrates some of the portal standards that should be considered before building your portal
application.

On many portal implementations, a business case for adherence to language standards that relate to
individual portlets needs to be made so that proprietary extensions are not adopted by a program that
disallows code reuse and promotes vendor lock-in. Being exposed to proprietary data formats, one
inevitably gets increasingly locked into the solutions of a particular vendor, which in turn limits the
options for application software. This ultimately enables vendors to dictate enhancement prices and
introduces unnecessary risks to your system. (What if the vendor closes up shop because of low market
share? Or what if the vendor adopts a technology strategy that differs from its previous software release
that you implemented, which forces your development team to rewrite existing applications?)

Portal Data Management:
• RDBMS – SQL

Portal Standards

Portal Data Content:
• (Documents) XML, HTML, XHTML, CSS2, XSL/T, RSS
• (Graphics) JPEG, MPEG, GIF
• (Web Services) WSDL, WSRP, SOAP 1.1, UDDI

J2EE Web Components:
• (Visualization/Data) – JSR168, Servlets, Java Server Pages

202

Chapter 7

11 469513 Ch07.qxd 1/16/04 11:08 AM Page 202

Figure 7.22

When designing your portlets from a high-level view, it is always important to give all of the portal par-
ticipants an idea of what protocols and standards will be applied in their deployment. Figure 7-17 shows
this, which could be an invaluable tool for discussion among different development groups. A system
like this ensures that all necessary pieces of your deployment are accounted for.

Figure 7.23 depicts a portal overview from a developer’s perspective, and one that can be considered in
your portal development. These represent a subset of a much larger superset catalog of Gang of Four
[GoF] and J2EE patterns, but the idea presents some best practices when designing your portal.

In many instances, the portal framework can handle operations in its own manner, but in case you want
to roll your own, the preceding discussion can offer you some insight as to how the application of best
practices in the form of design patterns can be applied.

Text-based
Search

Messageboard w/
Admin Comments

Advanced Search

Application Server

Database

ClickStream
w/Visualizer

Map
Visualization

Calendar for
Logging

Messageboard
Summary

Upload File
Helper

Spider

JD
BC

 2
.0

/S
QL

/J
SP

 1
.2

/

Se
rv

le
t 2

.3
/H

TM
L

4.
x

SOAP 1.x/XSLT 1.x/
HTML 4.x/JSTL 1.0

SOAP 1.x/
XSLT 1

.x/

HTM
L 4

.x/
JSTL

1.0

JDBC 2.0/SQL/JSP 1.2/
HTML 4.x

JS
P

1
.2

/
S

O
AP

 1
.x

JDBC 2.0/SQL/JSP 1.2/

JSTL 1.x/HTML 4.x

JDBC 2.0/SQL/JSP 1.2/

HTM
L 4.x/XM

L/Java2D

JDBC 2.0/SQL/JSP 1.2/

HTM
L 4

.x

JDBC 2.0/SQL/JSP 1.2/

HTML 4.x

JSR-168 Wrappers will be used on
these individual Servlets/JSPs.

203

Planning for Portal Deployment

11 469513 Ch07.qxd 1/16/04 11:08 AM Page 203

Figure 7.23

S
er

vl
et

(C
on

tr
ol

le
r)

In
te

rc
ep

ti
ng

 F
ilt

er

•
Fa

ct
or

y

 M

et
ho

d
•
S
in

gl
et

on

D
at

a
La

ye
r

M
od

el

M
od

el

X
M

L
Fi

le
Te

m
pl

at
e

M
et

ho
d M

ed
ia

to
r

Fr
on

t
C

on
tr

ol
le

r

M
od

el
-V

ie
w

-
C

on
tr

ol
le

r
(M

V
C

)

A
da

pt
er

Fa
ça

de

V
ie

w
 1

V
ie

w
 3

R
S
S

P
ub

lis
h/

S
ub

sc
ri
be

V
ie

w
 2

V
ie

w
 4

(F
or

m
)

M
em

en
to

204

Chapter 7

11 469513 Ch07.qxd 1/16/04 11:08 AM Page 204

Model-View-Controller (MVC) Pattern
In the portal architecture shown in Figure 7.23, the MVC Pattern is where the servlet controller renders
different views to the portal façade from a disparate set of data sources.

The model is the piece that has no specific knowledge of its controllers or its views. The portal system
maintains relations between the different models and views and broadcasts content to the views when
the model changes state. The view is typically the piece that manages the visualizations of the model
data. The controller is the piece that manages user interaction with the model data.

The MVC Pattern is used with many frameworks because of its ability to handle content delivery com-
plexities that are prominent in many enterprise systems. Jakarta’s Struts and BEA’s WebFlow are two
notable implementations that use this in their frameworks.

Template Method Pattern
A good practice when developing JavaBeans in your portal applications is to use the Template Method
Pattern [GoF] to enforce a common design across the portal back-end. The Template Method Pattern can
be used so that modifications to your get and/or set methods will not affect your presentation view.

In the portal display in Figure 7.23, the JavaBean applications on the back-end implement the Template
Method Pattern to manage the logic in the accessor (get/set) methods.

Memento Pattern
In the sample portal visualization shown in Figure 7.23, the view labeled #4 indicates that a form will be
rendered to the user display. In many cases, the form will use JavaScript to perform validation testing so
that activities will be performed on the client side in order to alleviate unnecessary operations on the
server. This is a good practice for some Web applications, especially portals that perform heavy server
operations, but sometimes incompatibilities in browsers allow inconsistent behaviors to occur.

The Memento Pattern [GoF] will persist the state of the form entries so that submits retain that data in
the form text fields, and can perform server-side validation operations on that data.

Facade Pattern
The Façade Pattern [GoF] is used in the portal application shown in Figure 7-23 to facilitate tedious
operations that are associated with a database connection. Some of the operations that would warrant
the use of a façade include the following: database connection handling, driver setups, and SQL state-
ment construction.

Adapter Pattern
The Adapter Pattern [GoF] could be applied in the aforementioned portal application as a means to
rewrite legacy code implementations to share data from the back-end data stores. By wrapping existing
code with an object adapter, the application can support existing interfaces by adapting the interface of
the parent class.

The Adapter Pattern provides a mechanism to convert one interface into another. This is necessary when a
newer interface has superceded an older one. Instead of recoding the implementation of the older interface,
that implementation can be wrapped by an adapter that implements the newer interface. Calls to the new
interface methods are then translated into calls to the older interface methods. This enables the legacy code
to be extended to allow for more functionality, without having to rewrite existing code.

205

Planning for Portal Deployment

11 469513 Ch07.qxd 1/16/04 11:08 AM Page 205

Factory Method Pattern
The Factory Method Pattern [GoF] can be used to instantiate objects, such as a factory, by abstracting the
creation and initialization of these objects from the user. This enables the client to focus on the applica-
tion without being concerned with the object creation details. In our sample portal display, it can be used
to generate a taxonomy object (from an XML file) that will generate queries as the user traverses the
navigation tree.

Singleton Pattern
The Singleton Pattern [GoF] ensures that only one instance of a class is created, and provides a single
point of access to an object. In the portal example shown in Figure 7-23 a Singleton can be used to open a
database connection or to generate a navigation tree from an XML file.

Front Controller Pattern
The Front Controller Pattern [ALUR] is part of the J2EE Presentation Tier Patterns library. The Front
Controller Pattern is similar to the MVC Pattern, and is actually used within the context of it, but it dif-
fers in that no model, or data access component, is associated with it. Referring to our sample portal
shown in Figure 7-23, a Servlet controller is used to render different JSP views to the portal display.

Note the following important features of the Front Controller Pattern: It allows for the handling of
requests in a centralized location, which facilitates maintenance, and can perform authorization checks
without having to spread unnecessary logic across multiple applications.

Intercepting Filter Pattern
The Intercepting Filter Pattern [ALUR] is another J2EE Presentation Tier Pattern that was introduced
with the Servlet 2.3 specification. This Pattern allows for the pre-processing and post-processing of user
requests, as well as the capability to alter response headers and data when processing requests.

In the portal display, the Intercepting Filter Pattern can be used to swap presentation views within a
portlet, meaning that the data sent back from the back-end database can be processed to render data in
XML format so that an XSL stylesheet can be applied to the data to present a different user view.

Client-Side Processing
Client-side processing refers to the application processing done at the browser. All browsers have been
enabled to interpret scripting instructions that would usually be sent to the server. This activity reduces
the load on the server’s back-end.

Sadly, many challenges are present in browsers because of inconsistencies in their adherence to scripting
standards. One of the most troublesome problems with browsers is inconsistencies with their implementa-
tions of the Document Object Model (DOM). The DOM standard is used to access elements and attributes
of a Web document. These inconsistencies force developers to increase their development efforts to support
different browser incompatibilities. To work around this issue, some portal efforts perform more server-
side processing, which places a great load on the back-end. Other workaround measures involve allowing
only limited amounts of client-side processing, and the application of best practices obtained through other
development endeavors.

206

Chapter 7

11 469513 Ch07.qxd 1/16/04 11:08 AM Page 206

JavaScript
Different Web browsers, and different versions of the same Web browser, will often treat the similar
JavaScript documents slightly differently. This browser incompatibility becomes a more salient issue
the more your portal application applies it in its client-side processing. The trick to is to establish a
JavaScript standard, and apply it across all of your portal applications that use JavaScript. With all portal
applications that use JavaScript, make sure you’re aware of your presentations when JavaScript has been
disabled in your browser.

Always remember to propagate your proven scripting practices across your portal development efforts.
One best practice to apply across your JavaScripting effort in your portal is to put your JavaScript source
in a separate JavaScript (.js) file. When this is done, the JavaScript source can be referenced with the
script tag in the following manner: <script src=””>.

Server-Side Processing
According to the JSR-168 Portlet Specification, portlets share many of the same attributes as servlet com-
ponents. The following table compares the two Web components to highlight their commonalities and
differences.

Capabilities Portlets Servlets

Specialized container management X X

Life cycle management in container X X

Web interaction via request/response paradigm X X

Generates markup fragments X

Binds to a URL X

Uses predefined modes and states to indicate
application behaviors X

Ability to store transient state data in container
sessions for both application and private scope X

Sets the application response character encoding set X

Ability to set HTTP headers on a response X

Ability to implement the Request interface for
programmatic security activities X X

Figure 7.24 describes the request-handling operations that occur during portlet processing in a portal
that implements the JSR-168 Portlet Specification APIs. The portlet container processes the action initi-
ated by the portal user first, and then renders the portlet fragments in no specific order to refresh the
user display.

207

Planning for Portal Deployment

11 469513 Ch07.qxd 1/16/04 11:08 AM Page 207

Figure 7.24

Java Plug-ins
Java Plug-ins enable Web applications to supplant a browser’s default virtual machine so that more up-
to-date JVMs can be applied to that application. The Java Plug-in, which requires a one-time download,
enables applications to be consistent in their operations by overriding browser inconsistencies.

The first time a Web browser encounters a Web page that specifies the use of the Java Plug-in, the browser
must download and install the required files for proper operation. On most portals’ applications, a link
should be provided to show users where a plug-in can be obtained to run their application. After the Java
Plug-in has been downloaded, subsequent invocations of Web pages that are reliant on the plug-in will
retrieve it from the local hard drive when an applet component is rendered.

The implementation of applets and Java Plug-ins in your portal deployments typically needs stake-
holder “buy-in” prior to acceptance. This consideration needs to be addressed because of bandwidth
and firewall issues that might prevent users from downloading the plug-in to access portlets that use
them. To gain better clarity on the implementation of the Java Plug-in on your portal implementation
with two of the most common browsers, Netscape and Internet Explorer, developers should refer to
Sun’s Java Plug-in reference at: http://java.sun.com/products/plugin/.

Portlet Container

Portlet Container

SAMPLE Portal

Finishes before the
render requests start

processAction()
render()

Fragment

Portlet
Container

Portlet
Container

render()

Fragment

render()

Fragment

208

Chapter 7

11 469513 Ch07.qxd 1/16/04 11:08 AM Page 208

Web Services for Remote Portals (WSRP)
Web Services for Remote Portals (WSRP) is a new technology that will be an important feature of the
JSR-168 Portlet Standard Specification. It enables the plug-n-play of visual UI Web services with portals
or any other Web applications. WSRP services will allow content providers to expose content or applica-
tions in a non-intrusive manner that does not require application-specific adaptation by consuming
applications.

The intention of WSRP is to facilitate the integration of Web applications through a standard set of
Web service interfaces. A simple sequence of steps (shown in Figure 7.25) is performed when adding
portlets through Web services in portals. When a user puts a portlet on one of the portal pages, the por-
tal requests the creation of a corresponding portlet instance on the WSRP service’s side, by calling the
createPortletInstance operation and obtaining a portlet instance handle that it uses in subsequent
requests. It can then obtain markup to embed from the WSRP service by calling the getPortletMarkup
operation and displaying that markup within a portlet. If the obtained markup contains links or forms
with associated actions, and the user clicks into the portlet on one of these links or forms, the portlet trig-
gers the corresponding action in the WSRP service by calling the performAction operation. When the
portal doesn’t need the portlet instance anymore because the portlet is removed from a user’s page, it
requests to discard the portlet instance on the WSRP service’s side by calling the destroyInstance
operation. A good reference on WSRP implementation can be found at www-106.ibm.com/
developerworks/library/ws-wsrp.

Figure 7.25

WSRPs are Web-service visualization components that accumulate content from disparate external
sources for portal presentation. WSRP services can be discovered when they are published publicly or
when they’ve been incorporated into a service directory from which they can be discovered dynamically.
This is shown visually in Figure 7.26

1. The createPortletInstance operation is called
when the portal requests a portlet instance.

2. Markup script is procured and embedded in the
portlet by calling the getPortletMarkup operation
from the WSRP service.

4. The destroyInstance operation is invoked
when the portlet instance is no longer needed.

3. The performAction operation is invoked when
a hyperlink or form action is invoked by the portal
user.

Web Service Provider

Stock Portfolio

Symbols

MSFT

IBM

ORCL

SUNW

Price

26.89

83.72

12.077

4.59

Change

+0.20

+0.39

-0.013

+0.03

Volume

63403704

8567500

24285256

34794800

209

Planning for Portal Deployment

11 469513 Ch07.qxd 1/16/04 11:08 AM Page 209

Figure 7.26

Portal Navigation
Good navigation design and consistency are essential ingredients for any successful Web site. The navi-
gation scheme is basically the road map of your site, marking content routes and directions to further
data information areas. One of the most important jobs of a portal designer is to accommodate an eclec-
tic user base by presenting a clear vision of the navigation and search activities. Flexibility should
always be designed into your navigation system to allow for easy modifications that inherently occur
because of new data integrations.

Navigation types come in many flavors, but the four most common are as follows: embedded links,
breadcrumb trails, top-bottom-left navigation bars, and site maps. Embedded links are commonplace in
all portal applications; they are added to Web page bodies through the <a href> link construct.
Breadcrumb trails enable users to backtrack through previous page links that they visited earlier.
Navigation bars, located on the top/bottom/left portions of your Web page, are the most common

SOAP Request

Web Service
(Presentation-oriented)

Sample Portal
Stock Portfolio

Presentation Layer

Presentation Layer

Sample Portal

Stock Portfolio

Web Service
(Data-oriented)

210

Chapter 7

11 469513 Ch07.qxd 1/16/04 11:08 AM Page 210

form of navigation in portals. Navigation taxonomies are typically used on the left navigation bar to
scroll down a page for content selections. On most Web sites, a site map is provided to give users a high-
level view of the content available on the site. The problem for portals is that the content is so varied and
complex that is difficult to categorize this in an easy-to-read fashion, and it’s even harder for a developer
to build this functionality in a dynamic fashion. The JetSpeed framework from Jakarta uses an XML file
to track the content and portlets available to users. JetSpeed uses the Portal Structure Markup Language
(PSML), which is demonstrated in Listing 7.1.

Listing 7.1: PSML File Used in JetSpeed Portal

<portlets user=”default” xmlns=”http://xml.apache.org/jetspeed/2000/psml”>
<controller

name=”org.apache.jetspeed.portal.controllers.RowColumnPortletController”>
<parameter name=”sizes” value=”70%,30%”/>
<parameter name=”mode” value=”row”/>

</controller>
<skin>

<property name=”selected-color” value=”#990000”/>
<property name=”title-color” value=”#FFCC00”/>

</skin>
<portlets>

<controller
name=”org.apache.jetspeed.portal.controllers.RowColumnPortletController”/>

<entry type=”ref”
parent=”http://jakarta.apache.org/jetspeed/channels/jetspeed.rss”>

</entry>
<entry type=”ref” parent=”http://www.xmlhack.com/rsscat.php”>
</entry>

</portlets>
<portlets>

<controller
name=”org.apache.jetspeed.portal.controllers.RowColumnPortletController”/>

<entry type=”ref” parent=”http://www.mozilla.org/news.rdf”>
<parameter name=”itemDisplayed” value=”5”/>

</entry>
<entry type=”ref” parent=”http://www.apacheweek.com/issues/apacheweek-

headlines”>
<parameter name=”showTitle” value=”false”/>

</entry>
<reference id=”P-ed09142736-10018” path=”group/apache/page/news”/>

</portlets>
</portlets>

Figure 7.27 shows most of the navigation devices that a portal should offer its users to enable them to
navigate through content.

Typically, these navigation components include tree-like taxonomy structures consisting of hyperlinks;
breadcrumb trails, to indicate where the user is and has been previously; and a site map, which aggre-
gates all of the important pages that a user needs to be cognizant of from the developer’s perspective.
The portlet.xml file deployment descriptor, which is part of the JSR-168 specification, defines the
metadata that can be used to build a site map application on portal applications.

211

Planning for Portal Deployment

11 469513 Ch07.qxd 1/16/04 11:08 AM Page 211

Figure 7.27

Portal Navigation Using Taxonomies
Taxonomies are important features of portal content organization. Most portals use some kind of naviga-
tion scheme to arrange their content terms into a hierarchical structure for user browsing provisioning.
There are many ways to generate taxonomies. The preceding code sample demonstrates a taxonomy
generator that reads an XML file displayed in Listing 7.2 and creates content links for a user to navigate
through, using dom4j libraries.

This particular application uses an open-source product called dom4j to extract links from the hierarchi-
cal data in the XML file. dom4j is a great application for parsing and manipulating content that resides in
XML files. As their site mentions (www.dom4j.org/), it offers full support for JAXP, SAX, DOM, and
XSLT. It also has XPath support for navigating XML documents, and is based on Java interfaces for flexi-
ble implementations. For those standards-junkies, it is not considered a standard because it does not
fully support the DOM standard.

Listing 7.2: TopicGenerator.java

001: package portals;
002: /**
003: * @author MM
004: *
005: * To change this generated comment edit the template variable “typecomment”:
006: * Window>Preferences>Java>Templates.
007: * To enable and disable the creation of type comments go to
008: * Window>Preferences>Java>Code Generation.
009: */
010: import java.net.*;

Site map

Site Map

Link to Portlet 1

Link to Portlet 2

Link to Portlet 3

Breadcrumb trail

1st page >> 2nd page >> current page

Taxonomy

Link

212

Chapter 7

11 469513 Ch07.qxd 1/16/04 11:08 AM Page 212

011: import java.util.*;
012: import javax.naming.*;
013: import org.dom4j.*;
014: import org.dom4j.io.*;
015: public class TopicGenerator {
016: protected static String EXPANDED_SYMBOL = “- ”;
017: protected static String COLLAPSED_SYMBOL = “+ ”;
018: protected static String LEAF = “• ”;
019: protected static String SPACER = “ ”;
020: protected static String TOPIC_CSS_CLASS = “SelectedTopic”;
021: private Document document;
022: public TopicGenerator() throws NamingException {
023: Context initCtx = new InitialContext();
024: Context ctx = (Context) initCtx.lookup(“java:comp/env”);
025: String topicsDirectory = (String) ctx.lookup(“topicsDirectory”);
026: setFilename(topicsDirectory + java.io.File.separator + “Topic.xml”);
027: }
028: public TopicGenerator(String fileName) throws Exception {
029: parseDocument(fileName);
030: if (this.document == null)
031: throw new Exception(“Problem initializing TopicGenerator”);
032: }
033: public void setFilename(String fileName) {
034: parseDocument(fileName);
035: }
036: private void parseDocument(String fileName) {
037: try {
038: SAXReader reader = new SAXReader();
039: document = reader.read(fileName);
040: } catch (DocumentException de) {
041: System.out.println(“Problem initializing TopicGenerator.”);
042: de.printStackTrace();
043: } catch (MalformedURLException me) {
044: System.out.println(“Malformed URL.”);
045: me.printStackTrace();
046: }
047: }

The addElement method shown in Lines 48–79 adds hyperlinked elements to the navigation tree. The
implementation of the StringBuffer class is preferred over a String class concatenation because of
significant performance differences.

048: private void addElement(StringBuffer sb, Set set, Element element, String
topicId,
049: String topicParamName, String href, String extraParams, int level) {
050: if (level != -1) {
051: // write current node
052: for (int i = 0; i < level*4; i++)
053: sb.append(TopicGenerator.SPACER);
054: if (element.elements().isEmpty())
055: sb.append(TopicGenerator.LEAF);
056: else if (set.contains(element))

213

Planning for Portal Deployment

11 469513 Ch07.qxd 1/16/04 11:08 AM Page 213

057: sb.append(TopicGenerator.EXPANDED_SYMBOL);
058: else sb.append(TopicGenerator.COLLAPSED_SYMBOL);
059: String thisTopicId = element.attributeValue(“value”);
060: if (topicId.equals(thisTopicId))
061: sb.append(“<a class=\”” + TopicGenerator.TOPIC_CSS_CLASS + “\” “);
062: else sb.append(“<a “);
063: sb.append(“href=\””);
064: sb.append(href);
065: sb.append(‘?’);
066: sb.append(topicParamName);
067: sb.append(‘=’);
068: sb.append(thisTopicId);
069: sb.append(extraParams);
070: sb.append(“\”>” + element.attributeValue(“text”) + “
”);
071: }
072: if (set.contains(element) || level == -1) {
073: Iterator it = element.elementIterator();
074: while (it.hasNext()) {
075: Element currElement = (Element) it.next();
076: addElement(sb, set, currElement, topicId, topicParamName, href,
extraParams, level + 1);
077: }
078: }
079: }

The generateParams method receives a HashMap object from the getTopics method so that it can gen-
erate the parameters needed for navigation. Please note that it is always a good practice to check the
input parameters that are passed into a method prior to performing operations on them. Lines 81–82
verify that the object value is not null and contains some items to process.

080: private String generateParams(HashMap params) {
081: if (params == null || params.isEmpty())
082: return “”;
083: StringBuffer toReturn = new StringBuffer();
084: Iterator keys = params.keySet().iterator();
085: while (keys.hasNext()) {
086: String currParam = (String) keys.next();
087: String currParamValue = (String) params.get(currParam);
088: if (currParamValue != null) {
089: toReturn.append(‘&’);
090: toReturn.append(currParam);
091: toReturn.append(‘=’);
092: toReturn.append(currParamValue);
093: }
094: }
095: return toReturn.toString();
096: }

The getTopics method on Line 97 establishes a tree structure based on the taxonomies residing in the
Topic.xml file discovered from the code shown on Lines 23–26. The overloaded getCountriesList
method shown on Line 110 receives a string country value and returns a string of country items along
with the country selected by the user.

214

Chapter 7

11 469513 Ch07.qxd 1/16/04 11:08 AM Page 214

097: public String getTopics(String topicId, String topicParamName, String href,
HashMap params) {
098: if (topicId == null)
099: topicId = “”;
100: Element taxonomy = (Element)
document.selectSingleNode(“/navigation/taxonomy”);
101: List list = taxonomy.selectNodes(“//topic[@value=’” + topicId +
“‘]/ancestor-or-self::*”);
102: Set expandedNodeSet = new HashSet(list);
103: StringBuffer toReturn = new StringBuffer();
104: addElement(toReturn, expandedNodeSet, taxonomy, topicId, topicParamName,
href, generateParams(params), -1);
105: return toReturn.toString();
106: }
107: public String getCountriesList() {
108: return getCountriesList(“”);
109: }
110: public String getCountriesList(String cc) {
111: StringBuffer toReturn = new StringBuffer();
112: Element countriesRoot = (Element)
document.selectSingleNode(“/navigation/countries”);
113: Iterator allCountries = countriesRoot.selectNodes(“//country”).iterator();
114: while (allCountries.hasNext()) {
115: Element currCountry = (Element) allCountries.next();
116: String currCC = currCountry.attributeValue(“value”);
117: toReturn.append(“<option class=\”smalltext\” name=\”CC\” value=\””);
118: toReturn.append(currCC);
119: toReturn.append(“\””);
120: if (currCC.equals(cc))
121: toReturn.append(“ SELECTED”);
122: toReturn.append(‘>’);
123: toReturn.append(currCountry.getTextTrim());
124: toReturn.append(“</option>”);
125: }
126: return toReturn.toString();
127: }
128: public String getTopics(String topicId, String topicParamName, String href)
{
129: return getTopics(topicId, topicParamName, href, (HashMap) null);
130: }

The overloaded getTopics method on Lines 131 and 137 returns the Topics values shown in using the
getTopics method on Line 97. The topics that are returned become part of the taxonomy tree for user
navigation.

131: public String getTopics(String topicId, String topicParamName, String href,
String cc, HashMap params) {
132: if (params == null)
133: params = new HashMap();
134: params.put(“country”, cc);
135: return getTopics(topicId, topicParamName, href, params);
136: }

215

Planning for Portal Deployment

11 469513 Ch07.qxd 1/16/04 11:08 AM Page 215

137: public String getTopics(String topicId, String topicParamName, String href,
String cc) {
138: HashMap params = new HashMap();
139: params.put(“country”, cc);
140: return getTopics(topicId, topicParamName, href, params);
141: }

Although the TopicGenerator method is used as a JavaBean component by our Web component in
Figure 7.27, it is generally a good practice to create a test application with your bean to ensure that it
works properly prior to deployment, and to demonstrate to others how the methods in it should be
accessed. The main method, which starts on Line 142, uses an absolute class path to invoke the
TopicGenerator method with the Topic.xml file that will be used to navigate the taxonomy tree.

142: public static void main(String[] args) throws Exception {
143: TopicGenerator tg = new
TopicGenerator(“c:\\apache\\tomcat4124\\webapps\\mojo\\WEB-
INF\\classes\\Topic.xml”);
144: System.out.println(tg.getTopics(“1”, “mammals”, “test.html”));
145: System.out.println(tg.getCountriesList());
146: System.out.println(tg.getTopics(“1”, “ mammals”, “”, “”));
147: }
148: }
149:

The data elements in the Topics.xml file in Listing 7.2 are invoked by the TopicsGenerator.java
routine in Listing 7.3 to build a taxonomy tree. The two most important elements of this file are the
countries and topic items. The XML file represents the topic and country data in a hierarchical manner
that is easy to manipulate with the DOM4J libraries.

Listing 7.3: Topic.xml

<navigation>
<countries>

<country value=”USA”>United States</country>
</countries>
<taxonomy text=”Default Taxonomy” value=”test”>

<topic value=”10000000” text=”Mammals”>
<topic value=”10000001” text=”Beaver”/>
<topic value=”10000002” text=”Bighorn Sheep”/>
<topic value=”10000003” text=”Bison”/>
<topic value=”10000004” text=”Black Bear”/>
<topic value=”10000005” text=”Bobcat”/>
<topic value=”10000006” text=”Cottontail Rabbit”/>
<topic value=”10000007” text=”Elk”/>
<topic value=”10000008” text=”Moose”/>
<topic value=”10000009” text=”Raccoon”/>
<topic value=”10000010” text=”Skunk”/>
<topic value=”10000011” text=”Squirrel”/>
<topic value=”10000012” text=”White-tailed Deer”/>
<topic value=”10000013” text=”Wife”/>

216

Chapter 7

11 469513 Ch07.qxd 1/16/04 11:08 AM Page 216

<topic value=”10000014” text=”Wolf”/>
<topic value=”10000015” text=”Existentialists”>
<topic value=”10000016” text=”Camus”/>
<topic value=”10000017” text=”Kafka”/>
<topic value=”10000018” text=”Sartre”/>

</taxonomy>
</navigation>

The source code in the TopicGenerator.java application generates the taxonomy navigation piece
in the left navigation of the mocked-up portal page in Figure 7-28. An open-source library object model
called dom4J (www.dom4j.org/) was used to manipulate an XML file so that taxonomy data could easily
be read in and manipulated, enabling a navigation component to drill on the XML data and generate
queries during the navigation process.

Figure 7.28 demonstrates how a taxonomy editor could be deployed using the source code. As a user navi-
gates through the taxonomy, new queries are generated and the results of those queries can be rendered in
the content section of a portal application, or inside of a portlet itself. The example in Figure 7.28 highlights
the chosen topic “Bighorn Sheep” and generates a query, which returns a taxonomyIndex of 10000002
and a country attribute of USA. Consideration should be given to the use of XML parsers that act on XML
files for navigation components because they’re easy to manipulate and help avoid the hard-coding of links
in your applications.

Figure 7.28

217

Planning for Portal Deployment

11 469513 Ch07.qxd 1/16/04 11:08 AM Page 217

Portlet Integration Plan
Portlet Integration Plans typically outline the overall components that are needed to successfully deploy an
enterprise portal. These integration pieces include hardware, software, portlet overviews, requirements,
database schemas, and administrative information needed for proper implementation. Figure 7.29 exhibits
a sample Portlet Integration Plan, which starts out as a portlet survey and evolves into a working docu-
ment to facilitate the integration of portlets into a portal system.

Figure 7.29

Hardware specifications describe the operating system, RAM, and disk space requirements, as well as
any peripheral devices, so that portlet integrators realize where their portlet subsystems will be situated,
and to let others know up front if the system being deployed has any shortcomings that might affect the
fusion of their individual applications. Additionally, portal implementations generally reside on more
than one box, so network dependencies and system topologies can be outlined here to elucidate how
things will fit together on the enterprise system.

• Describe hardware components here.
Hardware:

• Describe software components here.
Software:

• Name, Description, Deployment Descriptor and Web Services
dependencies

• J2EE Components and Web Services (JSP, Servlet, JavaBeans,
EJBs, JMS, JMX. . .)

• Non-J2EE Components (RSS. . .)
• Persistence mechanisms (XML, Database. . .)
• Presentation dependencies (Skins, Images, Size Requirements. . .)

Portlet Overview:

• Library dependencies (JARs)
• Build scripts
• XML dependencies (excluding deployment descriptor (web.xml))
• Programmatic security (.isUserinRole(. . .))

Portlet Requirements:

• Build scripts
• Connection pooling requirements
• Local/Remote access

Portlet DB Schemas:

• Point of contact, Phone number/Email
• Test scripts
• Documentation, screenshots
• CVS (Module name, Login information

<RSH, username/password>)

Portlet Administration:

Portlet Integration Plan

218

Chapter 7

11 469513 Ch07.qxd 1/16/04 11:08 AM Page 218

Software specifications outline all of the portal binary installations and the Web applications that will
run in it. It is important to note what software versions will be used, especially with open-source appli-
cations, because of their easy availability and continuous release and update schedules.

Portlet overview plans describe the individual portlets and any deployment descriptor or Web services
dependencies that the integrators need to understand so that disparate portlet developers will not inter-
fere with each other’s portlet subsystems. All J2EE components (JSPs, servlets, EJBs, and so on) need to
be outlined, as well as non-J2EE applications. Persistence mechanisms should be publicized in small
detail, such as XML or database tables, to let the integration team know which ANT/SQL or SQL scripts
are needed to support the portlet applications. Lastly, presentation dependencies need to be made
known so that real estate concerns and visualization needs can be addressed.

Portlet requirements illustrate library dependencies such as Java Archive (JAR) files, ANT build scripts,
XML dependencies, and programmatic security concerns. XML parsers are a big part of portal implementa-
tions, considering the incursion of SOAP services and taxonomy applications, so it is paramount that portal
integrators understand the XML parsers used by the different portlet development groups so that library
collisions can be avoided. As far as programmatic security is concerned, it is important to understand the
different methods of the Request interface. This enables you to access role information from a servlet con-
text so that you can distinguish privileges, enabling you to make determinations about the delivery of Web
content in your portlets. In Figure 7.30, programmatic security is performed to ensure that users with
administrator role privileges are shown the AdminView page and all others will be shown the GuestView.

Figure 7.30

The Portlet Integration Plan is a living document that should reflect changes that are realized through
discovery by both the developers and the system integrators. A “Lessons Learned” section should be
appended to the document during each portal integration drop.

SAMPLE Portal

if (request.isUserInRole(“admin”))
 <jsp:include page=“AdminView.jsp”>
else
 <jsp:include page=“GuestView.jsp”>

<portlet-app>
 <portlet>

 <security-role-def>
 <role-name> admin </role-name>
 <role-link> admin </role-link>
</security-role-ref>

<portlet>
<portlet-app>

Guest
View

Admin
View

219

Planning for Portal Deployment

11 469513 Ch07.qxd 1/16/04 11:08 AM Page 219

Summary
One conclusion that should be obvious from this chapter’s discussions about requirements gathering
and making portal design decisions is that portal design is difficult. However, one should realize that
investment protection with standards is a good bet when evaluating portal framework products, and
proper requirements and modeling processes will facilitate your operations.

The confluence of portlet subsystems into a unified portal view is a daunting modeling task to under-
take, which is compounded by technical aspects of the implementation of the finalized design. Even if
you feel that you’ve stayed up-to-date with all of the technologies needed for implementation, the task
still remains formidable. Thankfully, if you plan on using Java technologies in your portal implementa-
tions, all of their technologies are related and designed to complement each other, which should help
you in the long run. Some of the modeling tasks and design decisions described in this chapter could
prove beneficial in your portal development programs, but one thing is for sure: There is no turnkey
solution for deploying portals.

Lastly, your portal framework should be considered a “choreography piece” for all of the portlet sub-
systems that reside in it, and it is important to set modest goals for your first portal implementation.
The greater the number of features or bells and whistles, the more likely it will be that the project
becomes overly complex, the delivery date delayed, and the resulting product flawed or unreliable.
Determine what key features are needed in order for the portal to succeed. Begin with a modest list of
goals and fight against project creep so that early successes can flourish and significant successes can be
realized in the future.

220

Chapter 7

11 469513 Ch07.qxd 1/16/04 11:08 AM Page 220

Effective Client-Side
Development Using

JavaScript

A lot of application development is focused on the middle or back-end tier where business logic
and data storage are performed. These tiers comprise the vast majority of an application’s guts
and complexity. An equally important aspect, however, is the development of the client itself. This
is the portion of the application that the customer or user interfaces with in order to accomplish a
specific task.

No matter what your application architecture is comprised of, be it Java servlets, Java Server Pages
(JSP), Perl Common Gateway Interface (CGI) scripts, Microsoft .Net components, and so on, your
Web-based application, in the end, will consist of HyperText Markup Language (HTML) displayed
in a browser. By itself, HTML is static. It can only display text or a variety of form elements for data
entry. In the past, Web developers would design client interfaces to enable users to enter data into
designated fields and then submit the page to a server located somewhere on the network. The
server would then perform all the operations on the submitted data, from validation to applying
business rules. This essentially equated to server-side data processing. When Web-based applica-
tions were in their infancy, this process was accepted as the de facto standard.

As Web-based applications evolved, they became much more complex, and better methods for
handling the client needed to be worked out. Issues concerning network latency and application
performance also needed to be addressed. In order to solve some of these problems, some of the
data processing needed to be moved from the server to the client itself. Performing some of the
workload on the client allowed for a couple of things to happen. First, certain data validations and
processing could be done in the client browser, relieving the server of the burden to take the time
to perform these functions. Second, it could reduce the amount of network activity needed to per-
form a given task.

In order to perform these types of client-side operations, many browsers have integrated the abil-
ity to run JavaScript. JavaScript is an interpreted, object-oriented programming language that can

12 469513 Ch08.qxd 1/16/04 11:06 AM Page 221

be added to an HTML page, which can add great flexibility to a Web page. JavaScript is not unlike other
programming languages. It contains the ability to use operators, expressions, conditionals, loops, func-
tions, etc. In addition to those basic features, however, JavaScript has built-in functions that allow direct
access to a Web page’s content. Adding JavaScript to a client application not only can help a developer
cut down on unnecessary network traffic, it can also provide the ability to develop a more complicated
and efficient client by adding power, flexibility, and even interactivity. This all can equate to a more use-
ful and fulfilling experience for the user.

While adding JavaScript to a development architecture in order to take advantage of its features, the devel-
oper must consider a few issues. One such issue is how various browsers have integrated the use of
JavaScript. The two main Web browsers, Microsoft Internet Explorer (IE) and Netscape Communicator,
differ slightly in how they interpret JavaScript code. Because of this, developers of Web applications that
use JavaScript have to develop and test their code in both browsers (and different versions within the same
browser) to ensure that the application will run properly. The majority of JavaScript code does run in both
browsers without any changes needed. The main difference is how each browser views the Web page
Document Object Model, or DOM. It was mentioned earlier that JavaScript has built-in functions that
can be used to gain access to a Web page’s content. This process is accomplished through the interaction
between the JavaScript code and the browser’s DOM. Because both IE and Netscape use different DOM
models, the JavaScript code necessary to access it is slightly different. The differences in JavaScript code for
both IE and Netscape are highlighted in the various examples and discussions that follow in this chapter.

This chapter provides a recipe for efficiently developing Web clients for multiple browsers. The chapter
starts out by describing how JavaScript is declared in the client and how it can be used to perform generic
functions such as data validation. The chapter then describes increasingly more complex ways to utilize
JavaScript. This includes auto-population and auto-validation, how to manage the client space through
an efficient combination of JavaScript and HTML form elements, and how JavaScript can be used to
dynamically change the look of the client. Throughout the examples, you will also find references to code
differences that are needed so that each of these capabilities can be successfully run in different client
browsers. Applying these characteristics to the client will aid the portal development process by removing
unnecessary processing on the server, allowing for greater flexibility and power on the client, and enrich-
ing the user experience.

Declaring JavaScript
To create and run JavaScript, all that is needed is a Web browser and a text editor. Because JavaScript
runs inside of the HTML page, the code can be generated along with the HTML tags. There are two
ways, however, to include JavaScript code into an HTML page. The first method is to write the code
in-line — that is, to include the code in the same file as a hard-coded HTML page or in the same script
that dynamically generates an HTML page. To do this, the JavaScript is entered inside of the <script>
tag. The <script> tag is usually, but not required to be, listed at the top of the HTML page inside of the
<head> tag. The following code snippet shows how to declare the use of in-line JavaScript code:

<html>
<head>

<script language=”javascript”>
// Javascript code goes here.

</script>
</head>

</html>

222

Chapter 8

12 469513 Ch08.qxd 1/16/04 11:06 AM Page 222

The other method is to create the JavaScript code in a separate file and include the file from the HTML
page:

<html>
<head>

<script language=”javascript” src=”lib/javascript/jsfile.js”>
</script>

</head>
</html>

In the preceding example, the JavaScript code is located in the file jsfile.js, located in the directory
lib/JavaScript. This is a relative path from the location of the HTML file. No special tags are needed
inside of the separate JavaScript file in order for the code to be loaded and executed.

Whether to include the JavaScript code in-line or in a separate file depends on the Web-based applica-
tion as well as simple personal preference. Adding the code in-line is most appropriate if the JavaScript
needed is specific only to that HTML page or if some of the JavaScript has to be dynamically built based
on the contents of the page. For example, if the HTML page is dynamically generated and the JavaScript
code must reflect certain aspects of that page, which may be different each time, it will also be necessary
to dynamically generate the JavaScript code at the same time. On the other hand, some JavaScript func-
tionality may be shared among several different Web pages. In that case, it would be more appropriate
to place the JavaScript code in a file and have each Web page include the file. This reduces the amount
of code written and enables the developer to adhere to the paradigm of code reuse. In many cases, how-
ever, it is necessary to use both approaches.

To have a Web page use JavaScript code written both in-line and in a separate file, simply combine the
syntax for both approaches. The following code snippet shows how this is declared:

<html>
<head>

<script language=”javascript” src=”lib/javascript/jsfile.js”>
</script>
<script language=”javascript”>

// Javascript code goes here.
</script>

</head>
</html>

Validating Data
As described in the opening paragraphs, one advantage of using JavaScript on the client is performing
client-side field validation. Using JavaScript in the client browser enables a developer to perform data
validation before it is sent back to the server for further processing, and because the validation is being
performed on the client instead of the server, feedback to the user concerning any data errors is obtained
much quicker.

Two basic components are part of performing field validations. The first is to create a function that will
perform the logic necessary for the validation, and the second is to add the process that calls the func-
tion. There are some differences between writing JavaScript functions versus writing functions in other

223

Effective Client-Side Development Using JavaScript

12 469513 Ch08.qxd 1/16/04 11:06 AM Page 223

programming languages. In JavaScript, a function is declared without a reference to whether something
is returned by the function or not. It is also a loosely typed language, and arguments sent into the func-
tion are not declared to be of a certain data type. The following example shows a JavaScript function that
accepts a single parameter:

function validateDateField(parameter1)
// Javascript code for this function goes here.

}

You can use several methods to call JavaScript functions on a Web page. What you choose, of course,
depends on the intended goal. If the goal is to perform validation on an entire form, the call to a function
is usually accomplished from an HTML button. Following is the code necessary to call a JavaScript func-
tion from an HTML button:

<html>
<head>

<script language=”javascript”>
function validateForm() {

// Javascript code goes here.
}

</script>
</head>
<body>

<form>
<input type=”button” value=”Validate” onClick=”validateForm()”>

</form>
</body>

</html>

The preceding example shows the HTML <input> tag using the JavaScript onClick event handler to
call the function validateForm without any arguments. A function can also be called directly from the
field on which the validation is to be performed. The following code snippet lists a JavaScript function
call from an HTML text field. Notice that this example has a reference to the object this being passed to
the function from the HTML field:

<html>
<head>

<script language=”javascript”>
function validateField(fieldObj) {

// Javascript code goes here.
}

</script>
</head>
<body>

<form>
<input type=”text” name=”today” onChange=”validateField(this)”>

</form>
</body>

</html>

The preceding example shows the HTML <input> tag using the onChange event handler to call the
function validateField with a single argument. In this case, the argument is the pre-defined object

224

Chapter 8

12 469513 Ch08.qxd 1/16/04 11:06 AM Page 224

this, which is used by JavaScript event handlers to send a field object reference to the function. The
function can then perform operations on the field by referencing the function’s parameter name.

There are two other ways to call a function to perform an operation with regard to a field element on a
Web page. One way would be to call the function with no reference to the field (no argument). In that
case, the function itself would have to create a reference to the field. The second way is to send a refer-
ence to the field, but not using the this object. This second approach would involve getting a reference
to the field from the browser’s DOM itself. As mentioned earlier, IE and Netscape require that JavaScript
reference the DOM in different ways. To make the same call to the function validateField with a ref-
erence to the field object via the DOM, the developer must ensure that appropriate syntax is used, based
on the client browser. In order to send the reference in the Netscape browser, for example, the argument
sent to the JavaScript function should look like the following:

<input type=”text” name=”today” onChange=”validateField(document.forms[0].today)”>

To send the reference in the IE browser, use the following call:

<input type=”text” name=”today” onChange=”validateField(document.all.today)”>

The same syntax (for example, document.all.today) would be used by the function to get a reference
to the field from inside the function itself. Ideally, the this object would be used because in order to
access the object, no code difference between Netscape and IE is needed. If either of the other two
methods were used, it would most likely be necessary to create the reference to the field object inside
the function rather than send it to the function. This is because the developer would have to use program-
ming logic to first determine whether the client browser is either Netscape or IE. This can be done in a
JavaScript function, but not in the HTML document where the <input> tag is listed.

Actually, IE is little more flexible when it comes to interpreting JavaScript. When accessing a document’s
form and form elements, IE is able to process both the statements document.forms[0].today and
document.all.today. Netscape, however, can only process the statement document.forms[0].today.
This flexibility in IE, however, is only valid when accessing the form object of the main document. Later
in this chapter, in the section “Layering and DHTML,” the concept of layering is introduced. This is done
through the and <div> tags. When using these tags, IE will have to access the layer’s form ele-
ments through the document.all object. This will be made a bit clearer when layering is discussed.
Although the initial examples in this chapter only need to access elements from the document.forms[0]
object, we will use document.all to access the elements in the IE browser for consistency.

There are several ways to have JavaScript determine which browser is being used to run the application.
The approach chosen depends on how much information the developer wants — for example, you may
want to determine not only which browser, but also which browser versions. The code examples checking
for a Netscape browser, for example, will work for Netscape 4.x browsers but not Netscape 6.0. A couple
of examples of how to determine which browser is being used are outlined in the following code:

<html>
<head>

<script language=”javascript”>
var Netscape = false;
// Method #1
if (document.layers) { Netscape = true; }
// Method #2

225

Effective Client-Side Development Using JavaScript

12 469513 Ch08.qxd 1/16/04 11:06 AM Page 225

if (navigator.appName == “Netscape”) { Netscape = true; }
function validateField() {

var field;
if (Netscape) {

field = document.forms[0].today;
}else {

field = document.all.today;
}
// Rest of Javascript code.

}
</script>

</head>
<body>
<form>

<input type=”text” name=”today” onChange=”validateField()”>
</form>
</body>

</html>

Once the browser type is determined and the field object reference is generated according to the proper
syntax, the object’s properties can be obtained and modified using the same code for both browsers. At
this point, the developer can proceed with the validation of the field data. In the preceding case, the vali-
dation is for a date that was entered into a text field. As is typical of most applications, the code used to
accomplish a specific task can be written in different ways. The following listing shows one possible
solution for performing a date validation on a text field in an HTML document:

function validateDateField(fld) {
// ‘fld’ was sent to this function using the this object.
// The date should be in the YYYYMMDD format.
var dateValue = fld.value;
// Use pattern matching to make the first check for 8 digits.
if (!/^\d{8}$/.test(dateValue)) {

alert(“The date must be in the format YYYYMMDD.”);
return false;

}
var year = dateValue.substring(0,4);
var mon = dateValue.substring(4,6);
var day = dateValue.substring(6,8);
if (year < 1900 || year > 2100) {

alert(“The year must be between 1900 and 2100”);
return false;

}else if (mon < 01 || mon > 12) {
alert(“The month must be between 01 and 12”);
return false;

}else if (day < 01 || day > 31) {
alert(“The day must be between 01 and 31”);
return false;

}
return true;

}

Ideally, the date validation routine would also check the day against the month — to ensure, for exam-
ple, that a non-leap year did not list a month and day of 0229. If the date that the user entered into the

226

Chapter 8

12 469513 Ch08.qxd 1/16/04 11:06 AM Page 226

text field is not in the proper format, the developer can alert the user to this fact and require that the
value be changed before the form is submitted to the server. The validation in the previous example was
performed on a text field.

A developer can use several other types of fields on a Web page to gather data from the user, including
text areas, radio buttons, check boxes, single pick lists, and multiple-selection pick lists. Except for the
text area field, the other HTML data entry types have their values obtained by JavaScript in a different
manner than that of the text field. The following examples show how JavaScript can obtain the value, or
values, from each of these different types of fields. Once the value or values are retrieved, the developer
can then perform whatever validation needs to be done.

function validateField(fld) {
// This validation is for radio button or checkbox fields.
// The only difference between checking values from a group of
// radio buttons or checkboxes is that more than one checkbox
// can be ‘checked’.
var val = “”
for (var i=0; i<fld.length; i++) {

if (fld[i].checked) {
val = fld[i].value;
// Add rest of validation here.

}
}

}
function validateField(fld) {

// This validation is for single or multiple select fields.
// The only difference between checking values from a single select
// or multiple select field is that the multiple select field can
// have more than one option selected.
var val = “”
for (var i=0; i<fld.options.length; i++) {

if (fld.options[i].selected) {
val = fld.options[i].value;
// Add rest of validation here.

}
}

}

With the ability for a developer to access each data entry field on a Web page, much of the data process-
ing that previously took place on the server can now take place on the client. This not only provides
immediate feedback to the user about incorrectly formatted data, it also relieves some of the processing
load on the server. If the data had to be sent back to the client from the server based on an error, this
client-side validation would also reduce the amount of traffic on the network compared to server-side
validation.

Adding Functionality
Besides checking field values for proper formatting, JavaScript can also be used to enhance an application
by adding flexibility and functionality. Developing client applications requires more than just displaying
necessary data entry fields. The Graphical User Interface, or GUI, that the user interacts with must be easy

227

Effective Client-Side Development Using JavaScript

12 469513 Ch08.qxd 1/16/04 11:06 AM Page 227

to work with and must flow in a manner that promotes a natural progression. The developer must ensure
that the GUI is not crowded or confusing for users, and enables them to accomplish their task. The follow-
ing two sections describe a couple of these functional capabilities.

Field Auto-Population
Sometimes the developer can aid users by integrating processes that require filling out data fields based
on user input. Take, for example, a banking form that deals with currency and exchange rates. It would
be nice if the conversion to or from a specified currency could automatically be performed by the appli-
cation itself, rather than having the user fill in the data. JavaScript can be used to perform just such a
function. Listing 8.1 shows the code that is used to convert U.S. dollars to Kenyan shillings automati-
cally. This saves users the time needed to manually make the calculation and enter the data.

Listing 8.1: Field Auto-Population

01: <html>
02: <head>
03: <script language=”javascript”>
04: var Netscape = false;
05: if (navigator.appName == “Netscape”) { Netscape = true; }
06:
07: function convertToKsh(fld) {
08: var dollars = fld.value;
09:
10: // Make sure that only numbers were entered.
11: if (!/^\d$/.test(dollars)) {
12: alert(“Only numbers can be entered in the Dollar field.”);
13: return;
14: }
15:
16: var rate = 79;
17: var shillingField;
18: if (Netscape) {
19: shillingField = document.forms[0].shillings;
20: }else {
21: shillingField = document.all.shillings;
22: }
23: shillingVal = dollars * rate;
24: shillingField.value = shillingValue;
25: }
26: </script>
27: </head>
28: <body>
29: <form>
30: U.S. Dollars:
31: <input type=”text” name=”dollars” onChange=”convertToKsh(this)”>
32: <p>
33: Kenyan Shillings:
34: <input type=”text” name=”shillings” onFocus=”javascript:onBlur()”>
35: </form>
36: </body>
37: </html>

228

Chapter 8

12 469513 Ch08.qxd 1/16/04 11:06 AM Page 228

The preceding code illustrates general functionality for performing auto-population of fields. Note two
additional items in the code. One, the value entered into the dollar field is checked to ensure that only
numbers were used. This check is performed on line 11. Two, code was added to ensure that the user
could not delete or change the value that was automatically populated into the shillings field. This is
done on line 34. In this case, the JavaScript event handler onFocus is called when the user selects that
field. The onFocus event handler responds by calling another JavaScript event handler, onBlur. When
the event handler onBlur is called, the field is immediately de-selected and no longer maintains focus
(that is, the mouse cursor is no longer on that field), so the user cannot perform any operation on it.

Field Auto-Validation
Another benefit that JavaScript can offer to enhance a client application is related to the concepts of data
validation and field auto-population. The concept of auto-validation can be created based on a combina-
tion of user input and business rules. Take, for example, a form used to provide payment options for
some kind of online business. If the user selects payment by credit card, the field into which the user
would enter the credit card number now becomes a mandatory field to fill out. If the user chooses COD,
however, the field for a credit card number should not be used. Instead, maybe an address field is now
mandatory. Using a combination of the code examples previously used, the developer can use JavaScript
to handle the various scenarios that may arise to ensure that the proper data is submitted to the server.
Listing 8.2 shows how this can be accomplished.

Listing 8.2: Auto-Validation

01: <html>
02: <head>
03: <script language=”javascript”>
04: var Netscape = false;
05: if (navigator.appName == “Netscape”) { Netscape = true; }
06:
07: function checkOptions() {
08: var payment;
09: var creditcard;
10: var address;
11: var form;
12:
13: if (Netscape) {
14: form = document.forms[0];
15: }else {
16: form = document.all;
17: }
18:
19: payment = form.payment;
20: creditcard = form.creditcard;
21: address = form.address;
22:
23: var paymentValue = “”;
24: var creditcardValue = creditcard.value;
25: var addressValue = address.value;
26:
27: for (var i=0; i<payment.options.length; i++) {
28: if (payment.options[i].selected) {
29: paymentValue = payment.options[i].value;

229

Effective Client-Side Development Using JavaScript

12 469513 Ch08.qxd 1/16/04 11:06 AM Page 229

30: if (paymentValue == “COD”) {
31: // Ensure there is an address.
32: if (addressValue == “”) {
33: alert(“Please enter an address.”);
34: return false;
35: }else {
36: creditcard.value = “”; // For good measure.
37: // Could perform check on address format.
38: break;
39: }
40:
41: }else if (paymentValue == “credit”) {
42: // Ensure there is a credit card number.
43: if (creditcardValue == “”) {
44: alert(“Please enter a Credit Card number.”);
45: return false;
46: }else {
47: address.value = “”; // For good measure.
48: // Could perform check for card number format.
49: break:
50: }
51: }
52: }
53: }
54:
55: if (paymentValue == “”) {
56: // Neither value was selected.
57: alert(“Please select a payment method”);
58: return false;
59: }

Line 5 determines which browser is being used. Lines 13–17 then use the proper syntax based on the
browser type to obtain a reference to the form. Lines 27–53 check the field values and perform the auto-
validation based on certain criteria. If a payment value has not been determined, an alert (line 57) is
generated and prompts the user.

60:
61: form.submit();
62: }
63: </script>
64: </head>
65: <body>
66: <form method=”post” action=”http://validationtest.com/test.jsp”>
67: Payment Options:
68: <select name=”payment” size=”3”>
69: <option>
70: <option value=”credit”>Credit Card
71: <option value=”COD”>COD
72: </select>
73: <p>
74: Credit Card Number:
75: <input type=”text” name=”creditcard” size=”20”>
76: <p>

230

Chapter 8

12 469513 Ch08.qxd 1/16/04 11:06 AM Page 230

77: COD Address:
78: <textarea name=”address” rows=”50” cols=”4”></textarea>
79: <p>
80: <input type=”button” value=”Submit” onClick=”checkOptions()”>
81: </form>
82: </body>
83: </html>

Last, if all validation is successful, JavaScript is used to submit the form. This is shown on line 61. Lines
66–81 then create the HTML code necessary to generate the fields used in the form. Of the 83 lines of
code listed, 59 are JavaScript-specific code.

Listing 8.2 shows several different aspects of how JavaScript can be used on the client to perform some
sort of operation. As you can imagine, a larger form that contains many more field elements may also
require an equally large amount of JavaScript code to perform all the functions that are necessary. It
must be reiterated that all of the JavaScript code can be removed from the HTML file and stored in a sep-
arate file. Refer to the earlier example showing how an HTML page can reference a JavaScript file.
Although this means that multiple files need to be maintained, it does reduce the amount of clutter in
any one file and can separate presentation tags from field and form processing instructions. The require-
ments for performing real-world client-side form processing can be much more complex than the pre-
ceding example, but as you can see, JavaScript can add a lot of functionality to what a developer is able
to do on the client before it is sent back to the server for further processing.

Space Management
When designing a Web page, the developer must determine the proper layout of field elements in the
GUI (browser) to ensure that the form has a smooth flow and does not appear overly crowded. If the
form seems to be too large or excessively busy-looking, the user may get confused or frustrated. The fol-
lowing sections describe some of these scenarios and offer possible solutions.

Multiple-Value Picklists
Handling a field that may contain numerous options to choose from is one common scenario confronting
developers. Take, for example, a field that may require the user to select multiple country values.

Two HTML field elements are used to provide the user with the capability to select more than one option.
The first is a group of check boxes. The second is a select list that is designated with the multiple
attribute. A country listing can span several hundred options. If check boxes are used, several hundred
check boxes need to be displayed on the form, for what amounts to a single field. The problem can be
further compounded by having more than one field that requires this country list. Compared to check
boxes, using the multiple select list can reduce the amount of space that is used on the form, but it also
presents other challenges.

Another attribute for the <select> tag is size. The value of this attribute is used to determine how
many options in the list are visible to the user. To save space on the form, the size indicated is usually
not very large. If, for example, the size is designated to display ten options, there will still be several
hundred country values that are not visible in the list. While users can use the vertical scroll bar to
maneuver through the list, it may not be possible to visually display all of the selected values at the

231

Effective Client-Side Development Using JavaScript

12 469513 Ch08.qxd 1/16/04 11:06 AM Page 231

same time. This may make it difficult or confusing for users when they are reviewing the form. It also
presents the possibility that a user may unknowingly de-select a value because not all of the active selec-
tions were visible. In addition, if more than one field needs to use the same list, each of the country val-
ues must be coded into each of the select field’s <option> tags. This could potentially cause a lot of
duplicate data being transferred over the network.

Either solution will work, but neither one is ideal for presenting the field and its values to the user in
a visually acceptable manner while avoiding data duplication. One possible solution, however, can be
achieved with JavaScript. Using JavaScript, the developer can create a mechanism whereby the selection
of country values is made in a secondary window, and only the selected values are displayed on the
main form. This would solve each of the three problems described earlier. The space needed to display
the field is small, all of the selected values are visible to the user, and no duplicate data is loaded into the
browser. The third point is possible because only one list of country values is needed. Any field that
requires this list will simply reuse the single pick list component. Listing 8.3 shows the JavaScript and
HTML code used to generate this mechanism.

Listing 8.3: Pop-Up Picklist Window

01: <html>
02: <head>
03: <script language=”javascript”>
04: var Netscape = false;
05: if (navigator.appName == “Netscape”) { Netscape = true; }
06: var pickArr = new Array();
07: pickArr[0] = “Algeria”;
08: pickArr[1] = “Belgium”;
09: pickArr[2] = “China”;
10: pickArr[3] = “Denmark”;
11: pickArr[4] = “England”;
12: pickArr[5] = “France”;
13: // The rest of the countries

Create the pick list in a JavaScript array. This has to be done only one time, no matter how many fields
on the form will use the pick list:

14: function picklist(fldname) {
15: var fldObj;
16: if (Netscape) {
17: fldObj = document.forms[0].fldname;
18: }else {
19: fldObj = document.all.fldname;
20: }

Generate a reference to the field that will hold the selected values from the pick list:

21: var CODE = “<html”>;
22: CODE += “<script language=’javascript’>”;
23: CODE += “ FIELD_OBJ = null;”;
24: CODE += “ function sendVal() {“;
25: if (Netscape) { CODE += “ var fld = document.forms[0].pick;”; }
26: else { CODE += “ var fld = document.all.pick;”; }

232

Chapter 8

12 469513 Ch08.qxd 1/16/04 11:06 AM Page 232

27: CODE += “ var vals = opener.getPickVals(fld);”;
28: CODE += “ FIELD_OBJ.value = vals;”;
29: CODE += “ window.close();”;
30: CODE += “ }”;
31: CODE += “</scri” + “pt”>”;

Several things are taking place in the preceding code snippet. Line 21 begins the process of storing
HTML code in the JavaScript variable CODE. This code will be used to generate the HTML page that will
display the picklist form. Along with the HTML, JavaScript code is also being generated, which will be
used to gather the selected picklist values and send them back to the main form. Line 27 creates a refer-
ence to the JavaScript object opener. This object is a reference to the browser window that opened the
picklist window. It then calls the JavaScript function getPickVals, which resides in the main browser
window. Lastly, Line 31 concatenates two strings that form the closing <script> tag. It is important to
note that the browsers usually will not be able to process the code unless this is done. The reason is
because you are essentially having JavaScript code write more JavaScript. If line 31 were written CODE
+= “</script>” , the browser would interpret that as the end of JavaScript code for that Web page,
when in fact it is only the end of the JavaScript code intended for the new window.

32: CODE += “<body><form>”;
33: CODE += “<center>Country Picklist</center>”;
34: CODE += “<p>”;
35: CODE += “<center><select name=”pick” size=”10” multiple>”;
36: for (var i=0; i<pickArr.length; i++) {
37: CODE += “<option>” + pickArr[i];
38: }
39: CODE += “</select></center>”;
40: CODE += “<p><center>”;
41: CODE += “<input type=’button’ value=’Select’ onClick=’sendVal()’>”;
42: CODE += “<input type=’button’ value=’Close’ onClick=’window.close()’>”;
43: CODE += “</center></form></body></html>”;

The preceding lines of code use the JavaScript array defined earlier to create the HTML code necessary
to generate the country picklist, as well as the buttons used to either save the selected values or close the
window.

44: PickWin = window.open(“”,”newwindow”);
45: PickWin.document.open();
46: PickWin.document.write(CODE);
47: PickWin.document.close();
48: PickWin.FIELD_OBJ = fldObj;
49: PickWin.focus();
50: }

The JavaScript function finishes by opening a new window and writing the HTML content to its docu-
ment. Line 48 shows how the picklist window obtains a reference to the field on the main form that will
receive a copy of the selected picklist values.

51: function getPickVals(picklist) {
52: var vals = “”;
53: for (var i=0; i<picklist.options.length; i++) {

233

Effective Client-Side Development Using JavaScript

12 469513 Ch08.qxd 1/16/04 11:06 AM Page 233

54: if (picklist.options[i].selected) {
55: if (vals != “”) { vals += “\n”; }
56: vals += picklist.options[i].text;
57: }
58: }
59: return vals;
60: }
61: </script>
62: </head>

The last JavaScript function is used to gather the selected picklist values, store them in a JavaScript vari-
able, and then return the variable to the calling function. The calling function, starting on line 24, will
then send the values back to the field on the main form.

63: <body><form>
64: <input type=”button” onClick=”picklist(‘storage’)”>
65: <textarea name=’storage’ rows=”5” cols=”40”>
66: </form></body>
67: </html>

Lines 63–67 finish the Web page example by creating a button that will launch the picklist window, and
the field that will receive the selected picklist values.

The preceding example shows several different JavaScript capabilities that can be used to enhance the
flexibility of a Web page. Lines 6–12 show how JavaScript can use the power of arrays to store values
locally and then use those values for virtually any purpose. JavaScript was also used to store HTML and
JavaScript code for use in another browser window. References to form elements were not only passed
to different functions, but also to different browser windows. As in some earlier examples, JavaScript
was also used to retrieve data from, and add data to, HTML form elements. The code on lines 44–47
shows how JavaScript can open new windows and write content directly to the window’s document.
Each of these capabilities can be used individually or in combination, as shown in this example, to form
a process that will aide the developer in making the client application a more robust tool for the user to
accomplish the task at hand.

Repeating Values
Another issue that frequently causes problems for Web site developers is that of repeating fields. For
example, an online mortgage company may have a form that requires users to enter all of their current
loans. This may just be a single text field, but it is unknown at the time that the user displays the form
exactly how many entries will be required. A simple solution may be to provide the user with an HTML
<textarea> field to list all of their entries in the one field. This may not be appropriate either, however,
because with multi-line entries, there may not be a way to tell where one piece of information ends and
another begins.

To ensure that the information about different loans is not mixed, the developer may force the user to
use a different text field for each individual item. This brings us back to the developer’s dilemma of how
to display just the right amount of text fields when it is unknown how many they will need. Different
users will also require a different number of these fields.

One possible solution to this problem would be to design a way for the user to enter a number indicat-
ing how many fields they will use. The form would then be submitted back to the server, the proper

234

Chapter 8

12 469513 Ch08.qxd 1/16/04 11:06 AM Page 234

number of fields would be added, and the new form would be redisplayed to the user. Again, however,
we face the issue of extra submissions over the network, which could cause performance problems.

Another issue is that of the additional fields taking up more space on the form as a whole. What if the
information that needed to be repeated were not just a single text field for a piece of loan information
but rather a three- or four-field group that was used to gather information about a person’s previous
addresses. If a user wanted to add five previous addresses, the amount of extra fields on the form could
get out of hand. This approach certainly would not help with the issue of space management. To further
complicate matters, what if the user decided later that they needed to list seven addresses, not just five?
Handling the data already listed in the five fields along with adding additional fields could cause quite a
programming headache.

Another approach to solving the problem is to guess at a reasonable number of repeating values that the
user is likely to need and just display all of the fields. While this may not contribute to additional perfor-
mance problems due to the lack of extra submission calls, the form will most likely still be too cluttered
for the user. There is also the chance that the user may need more fields than was initially anticipated.
Clearly, a much better approach must be used, one that satisfies both the issue of not adding unneces-
sary performance roadblocks and maintaining appropriate space management.

One possible approach to finding this improved solution would be to build a repeating group mechanism
that would require only one field element for each repeatable field, regardless of how many times it is
needed. Buttons would be associated with each repeating group, whether it be one or multiple fields,
which would allow the user to add new values and maneuver back and forth among the values. This
mechanism can be accomplished by using JavaScript arrays to store the data locally for each repeating
group. As the user adds or maneuvers among the existing values in the repeating group, the currently
displayed values are quickly stored in the appropriate array by way of the current index. The new values
to be displayed, if any, are then retrieved from the array and put into the HTML fields on the form.

To the user, this process is seamless and immediate. Not even the users need to know how many repeat-
ing values they will be using because the mechanism is built to auto-increase to virtually an unlimited
number, memory not withstanding. In this case, JavaScript is used to take the storage of field data off
of the form itself, to memory locations in an array. This greatly enhances the developer’s capability to
acquire good space management. Listing 8.4 provides an example of how a generic repeating group
mechanism can be built.

Listing 8.4: Repeating Group Mechanism

001: <html>
002: <head>
003: <script language=javascript>
004: var repfields = new Array();
005: repfields[‘street’] = new Array();
006: repfields[‘street’][0] = ‘street’;
007: repfields[‘street’][1] = ‘city’;
008: repfields[‘street’][2] = ‘state’;
009:
010: var rep = new Array();
011: rep[‘street’]=new Array();
012: rep[‘city’]=new Array();
013: rep[‘state’]=new Array();

235

Effective Client-Side Development Using JavaScript

12 469513 Ch08.qxd 1/16/04 11:06 AM Page 235

Create JavaScript arrays for the fields in the repeating group as well as for the storage of field data.

014:
015: function scroll(pgrpname, direction) {
016: // pgrpname = parent group name
017: // This is the name of first field in the repeating group.
018: // Used as basis for getting the name of the text fields
019: // holding the record number you are on as well as for
020: // obtaining references to the data storage arrays.
021: // direction = indicates which button was clicked
022:
023: // This example does NOT check which browser is being used.
024:
025: var REC = eval(“document.forms[0].” + pgrpname + “Recno”);
026: var OF = eval(“document.forms[0].” + pgrpname + “Ofno”);
027: var Recnum = REC.value // number of current record
028: var Ofnum = OF.value // number of last record

Obtain references for the fields that track what repeating group index the user is on. The eval function
is used to create the reference based on a hard-coded string and the value of a variable. Using variables
passed into the function in this manner enables the developer to create a more flexible script.

029: var newRec, newOf;
030: var moveAhead = 0;
031: var moveToLast = 0;
032:
033: if (direction == “prev”) {
034: if (Recnum == 1) {
035: alert(“You are on the first record”);
036: return;
037: }
038: newRec = eval(Math.abs(Recnum)-1);
039: newOf = Ofnum;
040: moveAhead = 1;
041:
042: }else if(direction == “first”) {
043: if (Recnum == 1) {
044: alert(“You are on the first record”);
045: return;
046: }
047: newRec = 1;
048: newOf = Ofnum;
049: moveAhead = 1;
050:
051: }else if(direction == “next”) {
052: if (Recnum == Ofnum) {
053: alert(“You are on the last record”);
054: return;
055: }
056: newRec = eval(Math.abs(Recnum)+1);
057: newOf = Ofnum;
058: moveAhead = 1;
059:

236

Chapter 8

12 469513 Ch08.qxd 1/16/04 11:06 AM Page 236

060: }else if(direction == “last”) {
061: if (Recnum == Ofnum) {
062: alert(“You are on the last record”);
063: return
064: }
065: newRec = Ofnum;
066: newOf = Ofnum;
067: moveAhead = 1;
068:
069: }else if(direction == “new”) {
070: newOf = eval(Math.abs(Ofnum)+1);
071: newRec = newOf;
072: }

Use conditional statements to determine which button was selected and then determine the new repeat-
ing group index numbers. Notice here how the Math.abs function is used inside of the eval function.
The Math.abs function is used to convert a numeric string into a number that can be used in a mathe-
matical operation. This conversion itself must be wrapped in the eval function so that the mathematical
expression can be performed correctly.

073: var flds = eval(“repfields[‘“ + pgrpname + “‘]”);
074: var currfld, ele, eleName, eleVal;

Line 73 obtains a reference to the JavaScript array that holds the name of each field that is part of the
repeating group. This example had only one repeating group, so some of the code could have been hard-
coded, rather than dynamically creating object references. Except for additional JavaScript array declara-
tions (see lines 5-8), the code in this listing, however, is written in a manner that will support the use of
multiple repeating groups with no additional code changes.

075: for (var i=0; i<flds.length; i++) {
076: currfld = flds[i];
077: ele = eval(“document.forms[0].” + currfld);
078: eleName = ele.name;
079: eleVal = ele.value;
080: if (!eleVal) { eleVal = “ “; }
081:
082: if (direction == “prev” || direction == “next”) {
083: rep[eleName][Recnum] = eleVal; //store current value
084: ele.value = rep[eleName][newRec]; //get old value
085:
086: }else if(direction == “first”) {
087: rep[eleName][Recnum] = eleVal;
088: ele.value = rep[eleName][1];
089:
090: }else if(direction == “last”) {
091: rep[eleName][Recnum] = eleVal;
092: ele.value = rep[eleName][Ofnum];
093:
094: }else if(direction == “new”) {
095: rep[eleName][Recnum] = eleVal;
096: if (Recnum == Ofnum) {
097: // The user hit the ‘new’ button while on the last

237

Effective Client-Side Development Using JavaScript

12 469513 Ch08.qxd 1/16/04 11:06 AM Page 237

098: // element. Let’s make sure that we only advance the
099: // numbers if there is a value in one of the fields.
100: if (eleVal && !hasBlanks(eleVal)) { moveAhead = 1; }
101:
102: }else {
103: // The user hit the new button but not on the last
104: // element. Let’s look ahead to see what values are
105: // stored for the last elements. If both are empty,
106: // only advance the current record number to match
107: // the ‘of’ number.
108: lastVal = rep[eleName][Ofnum];
109: if (lastVal && !hasBlanks(lastVal)) { moveAhead = 1; }
110: else { moveToLast = 1; }
111: }
112: ele.value = “”;
113: }
114: }

Get a handle to the actual field element. Once the reference is created, store the current value in the storage
array and obtain the new value, if any, to display in the field. This example only uses text fields. If other
types of fields are used (such as radio buttons or picklists), you will have to add the JavaScript syntax nec-
essary to process those types.

115: if (moveAhead) {
116: REC.value = newRec;
117: OF.value = newOf;
118:
119: }else if(moveToLast) {
120: REC.value = Ofnum;
121: }

Last, change the repeating group counters to display the appropriate index number.

122: }
123:
124: function hasBlanks(str) {
125: var len = str.length;
126: var spot = “”;
127: var sym = 0;
128:
129: for (var i=0; i<len; i++) {
130: spot = str.substring(i, i+1);
131: if (spot != “ “) {
132: sym = 1;
133: break;
134: }
135: }
136: if (sym) { return false; }
137: else { return true; }
138: }

The function hasBlanks is used to ensure that a field does not contain only spaces. This is necessary
because a space is a valid character as far as JavaScript is concerned. When the user selects the New

238

Chapter 8

12 469513 Ch08.qxd 1/16/04 11:06 AM Page 238

button in the repeating group, a check is performed to ensure that at least one of the fields has a value.
If not, the counters are not moved. Using hasBlanks ensures that a field with only spaces is not mistak-
enly identified as a field with a true value.

139: </script>
140: </head>
141: <body bgcolor=”cadetblue”>
142: <form name=”myform”>
143: <center>
144: <table border=2>
145: <tr><td>
146: Street: <input name=’street’ type=’text’ size=’50’>
147: </td></tr>
148: <tr><td>
149: City: <input name=’city’ type=’text’ size=’30’>
150: </td></tr>
151: <tr><td>
152: State: <input name=’state’ type=’text’ size=’3’>
153: </td></tr>
154:
155: <tr><td>
156: <input type=button value=’<<’ onClick=’scroll(“street”,”first”)’>
157: <input type=button value=’Prev’ onClick=’scroll(“street”,”prev”)’>
158: <input type=button value=’Next’ onClick=’scroll(“street”,”next”)’>
159: <input type=button value=’>’ onClick=’scroll(“street”,”last”)’>
160:
161: <input type=button value=’New’ onClick=’scroll(“street”,”new”)’>
162:
163: Record: <input type=’text’ value=’1’ name=’streetRecno’ size=’2’>
164: Of <input type=’text’ value=’1’ name=’streetOfno’ size=’2’>
165: </td></tr>
166: </table>
167: </center>
168: </form>
169: </body>
170: </html>

Figure 8.1 shows a screen capture of what the repeating group mechanism looks like to the user.

Figure 8.1

The preceding repeating group example gives the user the capability to create new repeating group
records, as well as to move back and forth among the existing values. This mechanism could be expanded
to include such things as searching and deleting within the repeating group as well. In order to add these,
or any other, capabilities, simply add an HTML button with the appropriate arguments to the scroll

239

Effective Client-Side Development Using JavaScript

12 469513 Ch08.qxd 1/16/04 11:06 AM Page 239

function and then modify the function to incorporate the new logic. While the repeating group mecha-
nism offers the developer several advantages, some side effects are inherent to the mechanism model.
These may or may not become issues for the developer or the user. The first issue is that only one value
for each of the repeating group fields is visible to the user at any one time. The rest of the values are hid-
den in the JavaScript data storage array. Adding a search capability could help alleviate this problem by
making it easy to quickly find other values.

The other issue is that of submitting the form data to the server for processing. Because the value for each
field in the repeating group is stored in a JavaScript array, the form cannot be submitted as usual. If it
were, only the current value for each field would be transmitted to the server and the rest of the data
would be lost. If this type of repeating group mechanism is used, the developer must create a new strat-
egy for getting all of the repeating group values in the JavaScript array back to the server for processing.

When a Web page is submitted, the HTML fields and their values are sent over the network as a sort of
hashtable to be accessed by the server program. Given this, the values in the JavaScript array must be
put in an HTML field first, and then the form can be submitted as usual. It is up to the developer to
determine the best solution for this process. If the values are simply added to a <textarea> field, for
example, they must be added in such a manner that they are easily extracted as individual values when
the code is interpreted by the server-side program.

One possible solution is to store the values in an XML format and then add it to a field. Taken a step
further, the entire document could have all of its values stored in an XML format. This could be accom-
plished by having JavaScript gather all of the values and create the XML document. The XML could then
be put in one or more <textarea> fields and submitted to the server. When building a client Web page,
the developer will have to weigh the advantages and drawbacks of certain design strategies. In the case
of the repeating group mechanism, the advantages of space management and virtually unlimited repeat-
ing group entries will most likely outweigh the drawbacks that result from the design.

Dynamic Actions
Up to this point, we have used JavaScript to perform some general, but still powerful, capabilities.
Validating data, transferring field values, forcing mandatory data entry, and space management are but
a few of these capabilities. They provide the basis for transforming a static Web page into a functional
application that can include built-in business rules.

Sometimes, however, this is not enough. There may be times when a truly more dynamic approach is
needed for certain characteristics of a Web page. Previously, our code example showed one possible
solution for how an application can use a component — in this case, a picklist — more efficiently. The
component, however, always remained the same. The values of the picklist never changed. In most
cases, this would be the normal characteristic for such a component. Suppose, however, the values of
a picklist needed to change dynamically based on some action by the user.

Take, for example, a Web page for a travel agency. The page may have a picklist from which the user
can select the country to which they would like to travel. Instead of having one large country picklist,
however, the page may have one picklist that lists the continents and another for the countries on the
continent. When the user selects one of the continent values, the other picklist will display the countries
for that particular continent. As the user selects different continent values, the country picklist must
dynamically change its values. One way to solve this problem is to submit the form back to the server

240

Chapter 8

12 469513 Ch08.qxd 1/16/04 11:06 AM Page 240

and have the server rebuild the Web page with the appropriate set of picklist values. This could be very
time-consuming, however, especially if the user wants to change the picklist several times.

This is another good example of how JavaScript can help the developer build a dynamic client without
having to submit the form to the server. With JavaScript, a picklist’s values can change dynamically in
response to some user action. Listing 8.5 shows how this dynamic action can take place.

Listing 8.5: Dynamically Changing a Picklist

01: <html>
02: <head>
03: <script language=”javascript”>
04: var Netscape = false;
05: if (navigator.appName == “Netscape”) { Netscape = true; }
06:
07: var africaArr = new Array();
08: africaArr[0] = “Algeria”;
09: africaArr[1] = “Kenya”;
10: africaArr[2] = “South Africa”;
11:
12: var europeArr = new Array();
13: europeArr[0] = “Belgium”;
14: europeArr[1] = “Germany”;
15: europeArr[2] = “Italy”;
16: europeArr[3] = “Switzerland”;
17:
18: // The rest of the country arrays.

Create the picklists using JavaScript arrays. These will be used by JavaScript to switch the values of the
single <select> object picklist.

19: function picklist(pickObj) {
20: var ctryPick;
21: var continent;
22: for (var i=0; i<pickObj.options.length; i++) {
23: if (pickObj.options[i].selected) {
24: continent = pickObj.options[i].value;
25: }
26: }
27: if (Netscape) {
28: ctryPick = document.forms[0].countries;
29: }else {
30: ctryPick = document.all.countries;
31: }

Lines 22–26 determine which continent value the user selected. The code then proceeds to create a refer-
ence to the picklist object that holds the country values.

32: while (ctryPick.options.length > 0) {
33: ctryPick.options[0] = null;
34: }

241

Effective Client-Side Development Using JavaScript

12 469513 Ch08.qxd 1/16/04 11:06 AM Page 241

Remove any values from the country picklist in preparation for adding a new list of values. It is impor-
tant to remove the old values first, rather than just overwrite them with the new values, because the old
list may be longer than the new list.

35: var new_opt;
36: if (continent == “africa”) {
37: for (var i=0; i<africaArr.length; i++) {
38: new_opt = new Option(africaArr[i],””);
39: ctryPick.options[i] = new_opt;
40: }
41:
42: }else if (continent == “europe”) {
43: for (var i=0; i<europeArr.length; i++) {
44: new_opt = new Option(europeArr[i],””);
45: ctryPick.options[i] = new_opt;
46: }
47:
48: }else if(continent == “na”) {
49: // Continue with the rest of the conditional statements.
50:
51: }

Lines 35–51 determine which continent was selected and then use the appropriate country array to popu-
late the country picklist by creating new options and adding them in order to the picklist object. Keep in
mind that there are several different ways to perform this last portion of logic. A separate JavaScript array
was created for each of the continent countries. The preceding example used a separate for loop for each
of the country arrays, depending on which continent was selected. This code could be reduced by creating
a single reference to the appropriate array so that only one for loop is needed. This can be accomplished
through the built-in JavaScript function eval. The following lines of code could replace lines 35–51 with
this new approach:

35: var new_opt;
36: var pickArr = eval(continent + “Arr”);
37: for (var i=0; i<pickArr.length; i++) {
38: new_opt = new Option(pickArr[i], “”);
39: ctryPick.options[i] = new_opt;
40: }

As you can see, the number of lines of code needed to perform the action was reduced from 17 lines to
just 6. Line 36 is the key to this code reduction. The eval function will convert a string value to its equiv-
alent object value. In this case, the string was the value of the variable continent (e.g., europe) and the
string Arr to form the new string europeArr. If you remember from earlier in the example, there is a
JavaScript array object with the same name. With this change, there is no longer any need for conditional
statements to determine which continent was selected. It also reduces code maintenance because the
hard-coded continent values in the conditionals are, again, no longer needed.

47: if (Netscape) {
48: history.go(0);
49: }
50: }
51: </script>

242

Chapter 8

12 469513 Ch08.qxd 1/16/04 11:06 AM Page 242

The JavaScript function is finally ended with another check to determine whether Netscape is the client
browser. If it is, a call to another built-in JavaScript function, history.go, is made. JavaScript has access to
many of the browser’s objects. One of these is the history object, which keeps track of where the user has
been. The go function is used to navigate the browser to some previous URL that the user has visited. If, for
example, line 48 used the code history.go(-2), the browser would be directed to load the URL that the
user visited two pages ago. In this case, however, the argument used was 0. The number 0 represents the
current URL in the history object. This essentially refreshes the current page. If Netscape is being used as
the client browser, this refresh action is essential in order to get the full impact of the dynamic picklist
change. When new values are added to the country picklist, some of the new values may be longer than
any of the previous values that were displayed in the picklist. In IE, the new picklist <select> object is
automatically resized when the new values are added. This is not the case with Netscape.

In effect, this means that if the longest value in the old picklist was ten characters long, only the first
ten characters for each of the new picklist values will be displayed. Any new value that has more than
ten characters will still have its full value available for selection, but the whole value will not be seen
by the user. If, however, the page is refreshed, Netscape will then be able to perform the proper resizing
of the <select> object so that each value can be seen in its entirety.

52: <head>
53: <body>
54: <form>
55: Select a continent to display the countries available:
56: <select name=”continents” onChange=”picklist(this)”>
57: <option value=”africa”>Africa
58: <option value=”europe”>Europe
59: <option value=”na”>North America
60: // Add the other continent values
61: </select>
62: <p>
63: Destination countries:
64: <select name=”countries” size=”5”>
65: </select>
66: </form>
67: </body>
68: </html>

The example code finishes by generating the HTML code for the two picklist objects. Notice on line 56
that the JavaScript event handler onChange is used to call the main JavaScript function picklist with the
this object argument.

As you can see from the various examples in this chapter, JavaScript can be used with increasing com-
plexity to produce functionality that is hidden from the user but, at the same time, can produce a GUI
that enables the user to complete as much work as possible on the client. As mentioned earlier, a devel-
oper designing a client application must take into consideration more than the requirement of gathering
certain data.

Certain visual aspects of the GUI will, if done properly, assist the user in completing the intended goal.
The easier it is for a user to complete the intended task, the greater the likelihood that it will actually be
done. If the developer is designing a GUI for a company’s internal use, such as a payroll form, there is
little likelihood that a poorly designed data entry form would keep the user from completing the task of
using the form, as that is part of the user’s job. Conversely, if the Web page’s purpose is to get a potential

243

Effective Client-Side Development Using JavaScript

12 469513 Ch08.qxd 1/16/04 11:06 AM Page 243

customer to purchase something that the company is selling, a poorly designed page may result in
reduced sales if the user gets frustrated or loses interest before completing the process. It is up to the
developer to find unique or innovative ways to build a robust client framework that will help in solving
the many issues of performance, visual aesthetics, and space management. In the preceding code sam-
ples, performance was enhanced by moving a portion of the GUI off of the main form and creating
dynamically changing picklists, a solution that helped with space management.

Layering and DHTML
Several of the previous examples have dealt with, in one way or another, the issue of managing the space
used on a form so that the GUI is not overly crowded or confusing for the user. Another seemingly com-
mon issue that developers face is the problem of having an overly large amount of fields that need to fit
on a Web page form. This section focuses on how JavaScript can be used to display multiple forms in the
same space, and how it can be used in a creative manner to dynamically move objects on an HTML page.

Forms and Layers
Trying to place all of the fields in a way that will maintain the intended workflow usually results in an
overly crowded number of fields placed horizontally or a form that is so long vertically that the user
feels overwhelmed. Unfortunately, the amount of fields that have to be used may be out of the control of
the developer.

What the developer does have control over is how to design the GUI to best accommodate the large
number of fields. This scenario, however, doesn’t offer the developer a lot of options. Two general
options are to split the work among several server calls or have the client handle multiple views. The
first option would require the fields to be arranged into key sections, with one section displayed at a
time. Once the user submits the current section back to the server for processing, the next section is dis-
played. This continues until all sections are completed.

There are many potential problems with this approach. In addition to the possibility of slow response
times, there is also the problem of handling cases in which the user does not complete all of the sections.
Keeping track of what the user has and has not done can be quite a challenge for the developer.

This leaves the second option, which is similar to the first, except everything is handled on the client
side. The goal would be, again, to divide the field elements into logical groupings and display only one
group at a time to the user. This could possibly be accomplished with pop-up windows, but a more ele-
gant solution would be to employ the use of layers. Layering involves adding field elements to the form
object of a layer. Each layer is placed in the same position as the other layers, but only one layer is visible
at any one time. Moving from one form to another simply involves hiding the current layer and display-
ing the new layer. The term “layer” in this context is somewhat of a misnomer and should not be taken
literally. Netscape utilizes the <layer> tag to create a layer object. This tag is properly interpreted only
by the Netscape browser. IE does not recognize such a tag. In order to get the effect of layering in IE, the
 or <div> tags must be used. Fortunately, Netscape also can use the and <div> tags to
achieve layering as well.

Each layer is part of the browser’s document object. The layer itself also contains a document object, and is
where the form object that contains the layer’s field elements resides. It was stated earlier that both IE and
Netscape access the browser’s DOM in slightly different ways. In all of the previous examples, the field

244

Chapter 8

12 469513 Ch08.qxd 1/16/04 11:06 AM Page 244

elements were associated with the window’s document.form object. Thus, JavaScript access to these ele-
ments was performed through a document.forms[0]. elementname call. Both IE and Netscape were able
to access the fields through this manner. It was also stated that IE could access the field elements through
a document.all.elementname call, and the preceding examples had IE access the elements through this
manner. This was done to keep the code examples consistent for when we addressed the issue of layers.

Netscape’s DOM includes a set of arrays for the various children of the document object. Layer objects
in Netscape are accessed through the document’s array of layers —document.layers[layername]. IE
uses document.all to gain access to all objects on a form, be it an image, link, or layer. Therefore, in the
case of JavaScript in IE, access to a layer object can only be done by using document.all(layername).
Listing 8.6 shows a Web page consisting of three different sections, each associated with a different layer.

Listing 8.6: Layering Example

001: <html>
002: <head>
003: <style type=”text/css”>
004: #maindiv{position:absolute; left:10; top:10}
005: #sub1div{position:absolute; left:10; top:10; visibility:hidden}
006: #sub2div{position:absolute; left:10; top:10; visibility:hidden}
007: </style>

The layer’s characteristics are defined within the <style> tag. Here is where you define such things as
the layer’s location on the Web page, along with its visibility status. Note that the layer #maindiv does
not contain a visibility attribute. By default, a layer is visible unless otherwise stated.

008:
009: <script language=”javascript”>
010: Netscape = false;
011:
012: if (navigator.appName == “Netscape”) { Netscape = true; }
013:
014: CurrentLayer = “maindiv”;
015: CurrentForm = “mainform”;
016:
017: //
018: // switchForm - hides one layer (form) and displays another.
019: //
020: function switchForm(from, to) {
021: if (Netscape) {
022: document.layers[from].visibility = “hidden”;
023: document.layers[to].visibility = “visible”;
024:
025: }else {
026: document.all(from).style.visibility = “hidden”;
027: document.all(to).style.visibility = “visible”;
028: }
029:
030: CurrentLayer = to;
031: CurrentForm = to.replace(/div$/,”form”);
032: }

245

Effective Client-Side Development Using JavaScript

12 469513 Ch08.qxd 1/16/04 11:06 AM Page 245

The JavaScript function switchForm is key to the layering functionality. This is where the layer views
are switched. The currently visible layer, identified by the from variable, is hidden, whereas the selected
layer, identified by the to variable, becomes visible.

033: </script>
034: </head>
035: <body bgcolor=”cadetblue”>
036:
037: <!— MAIN FORM —>
038: <div id=”maindiv”>

The layer’s content is now defined within the <div> tag. The id attribute value must match a valid
name listed within the <style> tag at the beginning of the script. This tag will contain its own <form>
tag in which the field elements of the layer are defined.

039: <form name=”mainform”>
040: <center>
041: Individual Biography<p>
042: <table>
043: <tr>
044: <td align=”right”>Name:</td>
045: <td><input name=”name” type=”text” size=”50”></td>
046: </tr>
047: <tr>
048: <td align=”right”>SSN:</td>
049: <td><input name=”ssn” type=”text” size=”12”></td>
050: </tr>
051: <tr>
052: <td align=”right”>Marital Status:</td>
053: <td>
054: <input name=”marital” type=”radio” value=”s”>Single
055: <input name=”marital” type=”radio” value=”m”>Married
056: <input name=”marital” type=”radio” value=”d”>Divorced
057: <input name=”marital” type=”radio” value=”w”>Widowed
058: </td>
059: </tr>
060: <tr>
061: <td align=”right”>Date of Birth:</td>
062: <td><input name=”dob” type=”text” size=”10”></td>
063: </tr>
064: <tr>
065: <td align=”right”>Place of Birth:</td>
066: <td><input name=”pob” type=”text” size=”40”></td>
067: </tr>
068: <tr>
069: <td valign=”top” align=”right”>Address:</td>
070: <td>
071: <textarea name=”address” rows=”5” cols=”60”></textarea>
072: </td>
073: </tr>
074: </table>
075: </center>
076: <p>

246

Chapter 8

12 469513 Ch08.qxd 1/16/04 11:06 AM Page 246

077: <center>
078:
079: Physical Characterisitcs
080:

081:
082: Occupation
083: </center>

Lines 78 and 81 list the code used to link the main form to the other layers. The anchor uses the JavaScript
event handler onClick to call the function switchForm. The arguments to the function represent the layer
to hide and the layer to make visible.

084: <p>
085: <center>
086: <input type=”button” value=”Save Record”>
087: </center>
088: </form>
089: </div>
090:
091:
092: <!— SUB FORM 1 —>
093: <div id=”sub1div”>
094: <form name=”sub1form”>
095: <center>
096: Physical Characteristics<p>
097: <table>
098: <tr>
099: <td align=”right”>Height (in.):</td>
100: <td><input name=”height” type=”text” size=”10”></td>
101: </tr>
102: <tr>
103: <td align=”right”>Weight (lbs.):</td>
104: <td><input name=”weight” type=”text” size=”10”></td>
105: </tr>
106: <tr>
107: <td align=”right”>Eye Color:</td>
108: <td><input name=”eyes” type=”text” size=”30”></td>
109: </tr>
110: <tr>
111: <td align=”right”>Hair Color:</td>
112: <td><input name=”hair” type=”text” size=”30”></td>
113: </tr>
114: <tr>
115: <td align=”right”>Glasses/Contacts:</td>
116: <td>
117: <input name=”glasses” type=”radio” value=”yes”>Yes
118: <input name=”glasses” type=”radio” value=”no”>No
119: <input name=”glasses” type=”radio” value=”unk”>Unknown
120: </td>
121: </tr>
122: <tr>
123: <td valign=”top” align=”right”>Distinguishing Marks:</td>
124: <td><textarea name=”marks” rows=”5” cols=”60”></textarea></td>

247

Effective Client-Side Development Using JavaScript

12 469513 Ch08.qxd 1/16/04 11:06 AM Page 247

125: </tr>
126: </table>
127: </center>
128: <p>
129: <center>
130: <input type=”button” value=”Save” onClick=’switchForm(“sub1div”,
“maindiv”)’>
131: </center>
132: </form>
133: </div>

Line 91 starts the code for the first subform. As mentioned in line 5, the subform is not initially displayed
to the user. Line 130 again uses a reference to the JavaScript function switchForm, which is used to dis-
play the subform. Line 136 begins the code for the second subform. Its characteristics are similar to the
first subform.

134:
135: <!— SUB FORM 2 —>
136: <div id=”sub2div”>
137: <form name=”sub2form”>
138: <center>
139: Occupation<p>
140: <table>
141: <tr>
142: <td align=”right”>Name of Employer:</td>
143: <td><input name=”employer” type=”text” size=”50”></td>
144: </tr>
145: <tr>
146: <td align=”right”>Job Title:</td>
147: <td><input name=”jobtitle” type=”text” size=”40”></td>
148: </tr>
149: <tr>
150: <td align=”right”>Job Start Date:</td>
151: <td><input name=”jobstartdate” type=”text” size=”10”></td>
152: </tr>
153: <tr>
154: <td align=”right”>Salary:</td>
155: <td><input name=”salary” type=”text” size=”10”></td>
156: </tr>
157: </table>
158: </center>
159: <p>
160: <center>
161: <input type=”button” value=”Save” onClick=’switchForm(“sub2div”,
“maindiv”)’>
162: </center>
163: </form>
164: </div>
165: </body>
166: </html>

This layering example shows a very generic view of how individual field groupings can be separated
from the rest of the Web page field elements. Switching among the layers is a seamless process and

248

Chapter 8

12 469513 Ch08.qxd 1/16/04 11:06 AM Page 248

enables the user to concentrate on only a small portion of the total fields at any one time. This helps keep
the GUI from appearing too cluttered or confusing.

The fields in the preceding example were set up as simple text or radio button fields for simplicity. The
forms could be made much more complex and flexible by integrating the characteristics of some of the
previous examples, such as repeating groups, multiple-option picklist pop-up windows, or dynamically
changing picklists. As with some of the other examples, the advantages also come with some drawbacks.
The drawbacks for the layering capability are similar to those of the repeating group in that not all of the
field values are visible to the user at the same time, and the Web page cannot be submitted in the typical
manner. This second point is true for layering because each layer has its own <form> and only one form
can be submitted at a time. A possible solution to this is the same as the solution for the repeating group,
which is to have JavaScript gather all of the field values, create an XML document, store the XML docu-
ment in one or more <textarea> fields, and submit the form with the field, or fields, to the server for
processing.

Figures 8.2 and 8.3 show screen captures for the initial layer as well as the Physical Characteristics layer.

Figure 8.2

Figure 8.3

249

Effective Client-Side Development Using JavaScript

12 469513 Ch08.qxd 1/16/04 11:06 AM Page 249

Movable Layers
Using layers to hide and display form elements begins the process of transforming a static general-purpose
Web page into a dynamic, user-friendly user interface. This additional creativity and functionality is known
as DHTML, or Dynamic HTML. DHTML introduces a new type of user interaction to the Web page, and
JavaScript is the key to making this happen. The new and exciting ways in which JavaScript is being used
to help create DHTML Web pages are rapidly growing. Items such as menu bars, toolbars, various types of
charts, games, animations, and so on are bringing Web pages to new heights and making the user experi-
ence much more rewarding. One of the more interesting items is the capability to track mouse events. With
the capability to track the user’s mouse movements in conjunction with the use of layers, a developer can
create an application in which the user is able to move objects around the Web page. This type of capability
could be used to create a JavaScript game or the dynamic placement of form elements. Listing 8.7 shows
how to create a Web page that enables the user to click and drag two images around the browser window.

Listing 8.7: Moving Layers with Mouse Movements

001: <html>
002: <head>
003: <style type=”text/css”>
004: #img1 {position:absolute; left:50; top:100; width:244; z-index:0}
005: #img2 {position:absolute; left:110; top:145; width:144; z-index:0}
006: </style>

Lines 4 and 5 create the layers that will be used. Notice that they each list the property z-index. This
property is used to place the layers in a stacking order. A value of 0 means that the layer is on the bottom
of the stack. If two layers share the same space on the page, the layer with the highest z-index will be
visible.

007: <script language=”javascript”>
008: var Netscape = false;
009: if (navigator.appName == “Netscape”) { Netscape = true; }
010:
011: // Set zIndex property.
012: function setZIndex(obj, zOrder) { obj.zIndex = zOrder; }
013:
014: // Position an object at a specific pixel coordinate.
015: function shiftTo(obj, x, y) {
016: if (Netscape) {
017: obj.moveTo(x,y);
018: } else {
019: obj.pixelLeft = x;
020: obj.pixelTop = y;
021: }
022: }
023:
024: // Holds reference to selected element.
025: var selectedObj;
026:
027: // Holds location of mouse click relative to element.
028: var offsetX, offsetY
029:
030: // Find out which element has been clicked on.
031: function setSelectedElem(evt) {

250

Chapter 8

12 469513 Ch08.qxd 1/16/04 11:06 AM Page 250

032: if (Netscape) {
033: // Declare local var for use in upcoming loop
034: var testObj;
035:
036: // Make copies of event coords for use in upcoming loop.
037: var clickX = evt.pageX;
038: var clickY = evt.pageY;
039:
040: // Loop through all layers (starting with frontmost layer)
041: // to find if the event coordinates are in the layer.
042: for (var i = document.layers.length - 1; i >= 0; i—) {
043: testObj = document.layers[i];
044: if ((clickX > testObj.left) &&
045: (clickX < testObj.left + testObj.clip.width) &&
046: (clickY > testObj.top) &&
047: (clickY < testObj.top + testObj.clip.height)) {
048:
049: // Set the global var to the layer and bring it forward.
050: selectedObj = testObj;
051: setZIndex(selectedObj, 100);
052: return;
053: }
054: }
055:
056: }else {
057: // Use the IE event model to get the targeted element.
058: var imgObj = window.event.srcElement;
059:
060: // Make sure it’s one of image layers.
061: if (imgObj.parentElement.id.indexOf(“img”) != -1) {
062: // Now set the var to the style property of the element
063: // bring it forward.
064: selectedObj = imgObj.parentElement.style;
065: setZIndex(selectedObj,100);
066: return;
067: }
068: }

The call to the function setZIndex on lines 51 and 65 causes the selected layer to always appear to float
on top of any other layer as they pass over one another.

069:
070: // If we are here, the user probably clicked on the background.
071: selectedObj = null;
072: }

The function setSelectedElem, which starts on line 31, is used to determine which, if any, layer was
selected by the user. If one is within the right coordinates of the mouse click, some global variables are
set and will be used by other functions.

073:
074: // Drag an element.
075: function dragIt(evt) {

251

Effective Client-Side Development Using JavaScript

12 469513 Ch08.qxd 1/16/04 11:06 AM Page 251

076: // operate only if a fish is selected
077: if (selectedObj) {
078: if (Netscape) {
079: shiftTo(selectedObj, (evt.pageX - offsetX),
080: (evt.pageY - offsetY));
081: }else {
082: shiftTo(selectedObj, (window.event.clientX - offsetX),
083: (window.event.clientY - offsetY));
084: // Prevent further system response to dragging in IE.
085: return false;
086: }
087: }
088: }

Moving the layer on the page is done through the function dragIt, which is listed on line 75. As the
user drags the mouse over the browser window, this function is continuously called to provide updates
about where to move the selected layer. It is called so often and quickly that the movement of the layer
seems to be extremely fluid.

089:
090: function engage(evt) {
091: setSelectedElem(evt);
092:
093: if (selectedObj) {
094: // Set vars that remember where the click is in relation
095: // to the top left corner of the element so we can keep
096: // the element-to-cursor relationship constant throughout
097: // the drag.
098: if (Netscape) {
099: offsetX = evt.pageX - selectedObj.left;
100: offsetY = evt.pageY - selectedObj.top;
101:
102: }else {
103: offsetX = window.event.offsetX;
104: offsetY = window.event.offsetY;
105: }
106: }
107: return false;
108: }

Line 91 makes a call to the method setSelectedElem, which will determine if the user clicked the mouse
on a layer object. Line 93 determines whether an object, or valid layer, was selected. This is important to
ensure that the variables listed later in the function are not changed when the user doesn’t click on a layer.

109:
110: // Restore elements and global vars to initial values.
111: function release(evt) {
112: if (selectedObj) {
113: setZIndex(selectedObj, 0);
114: selectedObj = null;
115: }
116: }

252

Chapter 8

12 469513 Ch08.qxd 1/16/04 11:06 AM Page 252

117:
118: // Turn on event capture for Netscape.
119: function setNavEventCapture() {
120: if (Netscape) {
121: document.captureEvents(
122: Event.MOUSEDOWN | Event.MOUSEMOVE | Event.MOUSEUP);
123: }
124: }
125:
126: // Assign event handlers used by both Netscape and IE.
127: function init() {
128: if (Netscape) { setNavEventCapture(); }
129:
130: // Assign functions to each of the events.
131: // This is used for both Netscape and IE.
132: document.onmousedown = engage;
133: document.onmousemove = dragIt;
134: document.onmouseup = release;
135: }

The function init on line 127 is used to set up the event handling of the mouse actions. Each user-
defined method (engage, dragIt, release) assigned to handle the events will receive an event object
as a parameter even though it is not listed as such. Netscape requires an additional step to set up the
event handlers, which is listed in the function setNavEventCapture on line 119.

136: </script>
137: </head>
138: <body onLoad=”init()”>
139:
140:
141:
142:
143:
144:
145: </body>
146: </html>

Lines 139–144 finish the code example by creating the contents of the two layers. In this case, the contents
include only images.

Summary
In designing a portal, the client is but a portion of the entire architecture. Just as a portal can be designed
using different tools and be comprised of varying components, the client itself can also be designed
using different user interfaces. This chapter dealt solely with the browser-based client. Using JavaScript
on the client can add great flexibility to a developer’s schema for designing an application.

As shown in several examples, JavaScript can be used for simple field validations or more complex,
dynamic interaction with the browser window. This gives the developer a wider range of options when

253

Effective Client-Side Development Using JavaScript

12 469513 Ch08.qxd 1/16/04 11:06 AM Page 253

delegating the workload between the various portal components. Although this chapter demonstrated
several key aspects of how to utilize JavaScript in a client browser to help solve a variety of problem-
solving scenarios, it is by no means an exhaustive list.

The developer will face plenty of additional common and unique circumstances in designing the appli-
cation’s client component. While JavaScript can offer the developer a large number of options to choose
from, it is imperative, as mentioned earlier in the chapter, to understand how JavaScript can be deployed
successfully in a multi-browser environment. There are not only differences in how JavaScript is used
within different browsers, but also within different versions of the same browser. Any application that
employs JavaScript must be thoroughly tested in a variety of browsers and browser versions to ensure
the greatest possibility of success.

254

Chapter 8

12 469513 Ch08.qxd 1/16/04 11:06 AM Page 254

Developing Applications and
Workflow for Your Portal

This chapter focuses on the development of JSR 168 portlet applications for portal servers that are
compliant with the JSR 168 standard. It provides a general overview of the necessary portlet con-
cepts, portlet architecture, and the development process, including compilation and deployment.
You will also build a portlet that explores each of these areas.

The enterprise portal that we will use to build our portlet applications is the eXo portal platform,
which supports JSR 168 and is an open-source solution. You will learn about the eXo portal plat-
form’s architecture and create a sample portlet that touches on the Model-View-Controller
paradigm, which eXo also supports for portlet development.

The Portlet Architecture
Before creating our portlet, you should understand why we even need a portlet specification in
the first place. What are the benefits for a developer, an IT manager, and a vendor? For developers,
the portlet specification provides a standard way to develop portlets, and thus makes portlet code
reusability a reality. Imagine being able to maintain only one set of portlet code that will work on
any JSR 168–compliant portal server with minimal if any alterations to the configurations. For IT
managers, the major benefit is that now their department’s portlets support any portal vendors
that are JSR 168 compliant. This allows for greater flexibility with little engineering involvement
when providing their portlets to the market place. For vendors, the specification creates the capa-
bility to provide all sorts of tools — from IDEs to application servers — and it increases the market
size for these tools.

A portal contains the user’s individual portlets, which can be added, removed, and customized by
the user. Portlets are what make up a portal’s presentation layer. They are user interface components
that are customizable by users, and they can be added to and removed from the portal dynamically.
They also process user requests and generate content on demand through the portlet container.

13 469513 Ch09.qxd 1/16/04 11:06 AM Page 255

The Portlet Container
A portlet container is used to manage portlets throughout their life. The container enables developers to
call specific methods during the lifetime of the portlet. It is up to the developer to decide which methods
to implement. As a general rule, developers should always extend the GenericPortlet class when cre-
ating their portlets. The GenericPortlet class calls specific render methods based on the current
mode of the portlet. These methods are described in the following table.

Method Description

doEdit This is called by the render method when the portlet is going into EDIT mode.
EDIT mode should be used for the specific purpose of editing the portlet. For
example, if we had a stock portfolio portlet and it contained a list of stocks,
when we click edit we should be able to edit the list of stocks in our portfolio.

doView This is called by the render method when the portlet is going into VIEW mode.
VIEW mode is the main mode that the portlet will be in. The main content of your
portlet should be displayed during this mode. For example, if we had a football
standings portlet, the standings should be displayed when in VIEW mode.

doHelp This is called by the render method when the portlet is going into HELP mode.
HELP mode should be used to display specific help on the usage of the portlet.
Taking the stock portfolio example from doEdit, HELP mode might describe the
appropriate way to edit and enter the stocks and their symbols into the portlet.

Other methods can be accessed with or without extending from the GenericPortlet class. These
methods enable the developer to handle different functionality that is not necessarily based on the
current mode of the portlet. These additional methods are shown in the following table.

Method Description

init The init method is called by the container when the portlet is created and is
used to initialize the portlet and prepare it for use. For example, if your portlet
needed to load specific configurations from a database or external data sources,
this would be a great time to do it.

destroy The destroy method is called by the container when the container destroys the
portlet, enabling you to clean up anything that may require special attention.
For instance, if a database connection were open, this would give you a chance
to close the open connections and clean up neatly when the portlet is destroyed.

processAction The processAction method is called by the container when a user submits
changes to the portlet. This is an essential method that enables you to process
data submitted by the user from the portlet. For example, you could have a form
that requests the user’s birth date. When the user submits the form, process-
Action is called, enabling you to process the information and decide what to
display to the user, as well as change the mode of the portlet if you desire.

render The render method is called whenever the portlet needs to be redrawn. In most
cases, you will not need to handle this method because doView, doEdit, and
doHelp exist in the GenericPortlet class and are automatically called by the
render method.

256

Chapter 9

13 469513 Ch09.qxd 1/16/04 11:06 AM Page 256

The four methods that you will interact with most when developing a portlet are the doView, doEdit,
doHelp, and processAction methods. These methods appear similar to servlets because they are
passed request and response objects. Depending on the methods used with them, these objects can be
used to do the following:

❑ Gain access to the portlet’s preferences objects in order to maintain state.

❑ Get parameters submitted by users through forms.

❑ Obtain session information.

❑ Gather security information about the user, such as user-role information.

❑ Change different aspects of the portlet and how it is rendered. For example, the title can be
changed through the response object.

There are many more interaction and runtime specifics dealing with the portlet and users of the portlet.

Figure 9.1 shows what a basic portlet in VIEW mode looks like and provides a brief description of the dif-
ferent components of the portlet container window, as well as what methods each component invokes
when clicked.

Figure 9.1

Both the “minimize” and “maximize”
buttons have an alter-mode called

“restore.” The restore always activates
the doView() method when clicked.

The
Portlet
Window

Activates the
doEdit() method
when clicked.

Activates the
doHelp() method

when clicked.

The minimize button
will not activate any
mode when clicked.

The maximize button
activates the

doView method
when clicked.

257

Developing Applications and Workflow for Your Portal

13 469513 Ch09.qxd 1/16/04 11:06 AM Page 257

The portlet container handles user interaction with the visual components of a portlet and also enables
the developer to change specific attributes about the portlet. We have not yet talked about how to main-
tain state and special configurations with portlets. The next section describes the maintenance of user
state through the portlet preferences.

Portlet Preferences
The JSR 168 specification provides a way for developers to maintain user information about a portlet,
including state information. This is done through the use of the PortletPreference object. We will use
this object in-depth when we create our example portlet later in this chapter. This object will aid us in
storing different information about the portal and enable us to retrieve preference information when
necessary. For a more detailed look at portlet preferences, please see Chapter 1.

Using the setValues and getValues methods, we can retrieve the necessary preferences for our portlet.
The store method is used to save changes to the PortletPreference object; however, changes can only
be made inside the processAction method and toward the end of execution. The PortletPreference
object also has a way to validate that the data we are about to save using the store method is correct.
This is done by implementing the PreferenceValidator class. If this class is implemented, any calls to
store will trigger the validate method of the PreferenceValidator class before the changes to the
PortletPreference object are saved.

The initial preferences are stored in the portlet.xml file along with the PreferenceValidator class
for the specified portlet. This is the key area to save initial preference information you want to load at
runtime. You will see a working example of this later, in “The Directory Portlet” section of this chapter.

JSP Tag Library
The portlet specification also provides a JSP tag library, which makes it easier for you to develop JSP
pages and process portlet information. This tag library is setup in the web.xml file for the portlet.
Following is an example of the <taglib> entry:

<taglib>
<taglib-uri>http://java.sun.com/portlet</taglib-uri>
<taglib-location>/WEB-INF/taglib.tld</taglib-location>

</taglib>

JSP tag libraries have been created for Web applications as well. Do not confuse the two. The portlet tag
library is specifically used for accessing the portlet API and portlet information.

Packaging a Portlet
Portlets are packaged very similarly to Web applications (in .war files). As a matter of fact, they are even
created with the extension .war. Everything is contained in the .war file, just as it would be in a normal
.war file, with the addition of a portlet.xml file (which is a deployment descriptor describing the portlet
in detail and storing preference information). The portlet.xml also aids in security configurations for the
portlet. It can restrict the portlet from being run on any protocol other than HTTPS. This should definitely
be helpful if you have to develop an online banking portal or an e-commerce billing system.

258

Chapter 9

13 469513 Ch09.qxd 1/16/04 11:06 AM Page 258

The eXo Portal Platform
The eXo portal platform is a JSR 168-compliant, open-source portal that supports portlets developed
according to the JSR 168 specification. It supports two methods of portlet development. One is the stan-
dard development architecture using the guidelines in the JSR 168 specification, and the other enhances
the development of portlets by using a Model-View-Controller architecture. You will look at one exam-
ple of each development approach in this chapter. The Directory portlet example was developed using
the standard method, and the Loan Calculator portlet example was developed using the MVC approach.

The following sections describe several of the features and tools that the eXo platform provides in order
to make the development process and usage of JSR 168-compliant portlets simple and robust.

The eXo Portal
The eXo portal is built around the Java Server Faces (JSR 127) specification, which is a Web framework
paradigm based on the Model-View-Controller (MVC) method of development, which enables devel-
opers to interact with the Web layer’s components and events in a fashion that is similar to Swing. This
enables the easy retrieval of a portlet’s content and user preferences. The eXo portal is completely com-
pliant with the JSR 168 specification, which enables you to create portlets based on the specification and
run them on the eXo portal.

Hot Deployment
The Hot Deployment feature is comprised of two technologies that together provide a lightweight and
fast solution for hot deployment. The technologies are JbossMX and Pico Container. Pico Container
handles the resolving of dependencies, while JbossMX’s main focus is hot deployment of the Web
archive. This means that you can deploy the portlets you create while the server is running. This is a
great feature, because it can be quite a nuisance during development, or even while doing production
upgrades, to have to stop the server in order to install new portlets. This will save you a significant
amount of time during the development process.

Customization Tool
The eXo platform also provides a customization tool that provides administrators with the capability to
configure the portlet with minimal effort and almost no programming knowledge. The customization
tool is a “what you see is what you get” (WYSIWYG) complete portal and portlet editor. The customiza-
tion tool is shown in Figure 9.2.

The customization tool enables you to decide which portlets are in your portal, what their titles are, and
how they are laid out. It also enables you to add and edit tabs, as well as adjust and edit columns. It’s a
very flexible and easy-to-use tool, especially during the testing process when you need to test more than
one portlet at a time.

259

Developing Applications and Workflow for Your Portal

13 469513 Ch09.qxd 1/16/04 11:06 AM Page 259

Figure 9.2

Setup and Installation of eXo
There are two main distributions of eXo, as is the case with most open-source products: the source distri-
bution and the binary distribution. If you download the binary distribution, all you have to do is extract
the platform and run it. The latest Java Virtual Machine is required to be present on your machine in
order for it to function correctly. The following steps enable you to run the eXo binary distribution:

1. If you are familiar with Jboss, the eXo platform directory structure will look familiar to you.
eXo uses a consolidated version of the Jboss server. Change directory to install_directory/
exo-portal/exo-jboss/bin.

2. On a Unix system, run the shell script exo.sh. On a Windows system, run the batch file exo.bat.
This will execute the server and integrate the eXo portal with Jboss.

3. The final step of the installation process is to simply go to the following URL, where you should
see the eXo portal running:

http://localhost:8080/exo/faces/layout/blue-lagoon/portal.jsp

The source distribution is provided for developers who want to compile the source code themselves and
execute the platform. Build procedures change daily, as does the code, so it is important to keep up with
the latest changes on the eXo Web site (www.exoportal.org), especially the Forums section.

Understanding the eXo Directory Structure
The eXo directory structure has numerous similarities with the Jboss directory structure. This is because
it is tightly bundled with Jboss and Tomcat. Just in case you have never used Jboss before, this section
explains each directory and what it is used for in relation to the eXo platform. Figure 9.3 illustrates the
components of the eXo directory structure.

260

Chapter 9

13 469513 Ch09.qxd 1/16/04 11:06 AM Page 260

Figure 9.3

Referring to Figure 9.3, at level 1 we have the directory /exo-jboss. This is the top-level directory and
doesn’t contain any files. At level 2, we have three new directories, which are described in the following
table.

Directory Description

/bin The /bin directory contains all the scripts necessary for starting and shut-
ting down the portal server. It contains the exo.sh and exo.bat files
previously explained in the section “Setup and Installation of eXo.”

/server The /server directory simply contains the level 3 directories shown in
Figure 9.3.

/lib The /lib directory contains all the libraries necessary to run JBoss.
Libraries contained here have a global effect across the server. In other
words, a library file in this directory does not need to be included in the
portlet’s WEB-INF/lib directory.

The level 3 directories contain default configuration information and are described in the following
table.

Directory Description

/conf The /conf directory enables you to define a default web.xml file that will
be used by all Web applications and portlet applications.

/exo-express The /exo-express directory is the start of the simplest form of the eXo
portal server.

/exo-jbossLevel 1

Level 2

Level 3

Level 4 /conf /data /exo-lib /lib /portlet-deploy /services-deploy

/conf /exo-express

/bin /server /lib

261

Developing Applications and Workflow for Your Portal

13 469513 Ch09.qxd 1/16/04 11:06 AM Page 261

The level 4 directories contain several key directories that are used for the following: configurations of
portlets, hot deployment, libraries the portlets use, and eXo services. These directories are described in
the following table.

Directory Description

/conf The /conf directory enables you to configure security features, logging
features, and deployment configurations.

/data The /data directory contains information related to the hypersonic
database that comes with eXo.

/exo-lib The /exo-lib contains libraries explicit to eXo. If any of these libraries
are contained in the level 2 /lib directory, they do not need to be
included here.

/lib The /lib directory enables the deployment of libraries that will affect all
the portlets and Web applications on this server. Again, if any of these
libraries are contained in the level 2 /lib directory, they do not need to
be included here.

/portlet-deploy The /portlet-deploy directory is the directory in which you would put
your portlet WAR files. This is the hot deployment directory and the main
directory you will be dealing with when developing portlets.

/services-deploy The /services-deploy directory is made specifically to contain eXo ser-
vice (.es) files.

The preceding tables describe the key directories in the eXo platform and their uses. This should provide
you with a good understanding of how the eXo portal platform is structured.

The Directory Portlet
In this section, you will learn how to design, develop, and configure the Directory portlet example. This
example portlet focuses on all the main aspects of portlet development and shows you how to handle
each facet of the development process. Deployment of the Directory portlet will take place on the eXo
portal platform, which was discussed in the previous section.

The Directory portlet is a portlet that enables the user to find a fellow employee in their company direc-
tory. The user can search for the associate by last name, first name, or e-mail address. If the user were to
search for a last name for which multiple entries existed, the portlet displays each entry on a separate line.
The company directory information is stored in a MySQL database and is accessed via JDBC. Figure 9.4
shows what the portlet looks like in the portlet VIEW mode.

In the portlet VIEW mode, the Directory portlet is available for someone to enter a search. It is currently
set up to search by last name. That can be changed in EDIT mode. If we search for an associate with the
last name of Smith, the portlet will submit the form and call the processAction method, which will
then search for the associate, display the results, and return the portlet to VIEW mode. Figure 9.5 displays
the results of the search.

262

Chapter 9

13 469513 Ch09.qxd 1/16/04 11:06 AM Page 262

Figure 9.4

Figure 9.5

You can see in Figure 9.5 that the results showed up in VIEW mode even though they were submitted
from VIEW mode. This is an interesting concept and is not as complex as it may seem. Basically, when
the form is submitted, it posts the information to the processAction method and returns to the same
view it was in before submission unless explicitly changed during the processAction method. When it
returns from the process action, the doView method is executed again, enabling us to display the results
of the search.

The edit screen shown in Figure 9.6 enables the user to decide which method to search by. The user can
select either last_name, first_name, or email as a search criteria. When the Apply button is pressed,
the processAction method is triggered. The processAction method sets a preference indicating
what the user selected and returns the user to VIEW mode, which in turn uses the preference as the new
search criteria.

263

Developing Applications and Workflow for Your Portal

13 469513 Ch09.qxd 1/16/04 11:06 AM Page 263

Figure 9.6

Finally, the portlet HELP mode is displayed, as shown in Figure 9.7. In this mode, we can offer the user
specific details about how to use the Directory portlet and tips about how to search the associate direc-
tory if need be.

Figure 9.7

264

Chapter 9

13 469513 Ch09.qxd 1/16/04 11:06 AM Page 264

You may have noticed throughout these screenshots that the icons have changed for each mode. This is
completely configurable and is simple HTML code. You can always determine programmatically what
mode you are in or about to be in throughout the life cycle of the portlet. This enables ultimate cus-
tomization of what we allow the user to view, depending on the mode of the portlet. All these tech-
niques are demonstrated when you view the source code for each component of the directory portlet.

Developing the Directory Portlet
In the previous section, you saw what the directory portlet looks like in HELP, VIEW, and EDIT portlet
modes. Now we will concentrate heavily on the construction of the portlet, examining all the source
code in great detail. Do not be overwhelmed by the code, for the general concepts that make up the port-
let are fairly painless to grasp, especially if you have done any kind of Web application development in
the past.

Before examining the source code, you need to take a look at the various files that make up the Directory
portlet. The files are described in the following table.

File Description

DirectoryPortlet. This is the main portlet source file that subclasses the GenericPortlet
java class; it contains methods for handling the different modes and events

that are triggered during the life cycle of a portlet. The methods it con-
tains are as follows:

init— handles portlet initialization.

processAction— handles action events created by the user.

doView— handles VIEW mode render requests.

doEdit— handles EDIT mode render requests.

doHelp— handles HELP mode render requests.

destroy— this method is not defined in our sample, but could be
added to it if we needed any clean-up code.

DirectoryValidator. This file contains the DirectoryValidator class, which implements
java the interface PreferencesValidator and includes a validate

method. The validate method is executed from a processAction
call when a PortletPreferences.store method is executed. Its
main purpose is to ensure that the preferences data about to be stored
to the preferences is correct. If it isn’t correct, you can throw a
ValidatorException from the validate method, thus aborting
the PortletPreferences.store procedure.

DirectoryView.jsp This JSP file is included in when the doView method is executed from
the DirectoryPortlet class. It contains the search form that the user
can use to search for an employee in the associate directory. It also con-
tains the logic for connecting to the MySQL database and issuing a SQL
statement to query the appropriate information from the database. Once
it obtains information from the database, it displays it to the user from
within itself and does not use another JSP to display the information.

265

Developing Applications and Workflow for Your Portal

Table continued on following page

13 469513 Ch09.qxd 1/16/04 11:06 AM Page 265

File Description

DirectoryEdit.jsp This JSP file is included when the doEdit method is executed from the
DirectoryPortlet class. It contains a form that enables the user to
select the search criteria (last name, first name, e-mail) to search by.
When the user clicks Submit, the form data is processed by
processAction and the portlet’s mode is changed to VIEW.

DirectoryHelp.jsp This JSP file is included when the doHelp method is executed from the
DirectoryPortlet class. It contains help information that aids the
user in the use of the portlet.

DirectoryResources. This file simply contains one property that allows you to set the default
properties title for the portlet. The line looks like this: javax.portlet.title=

Directory Portlet.

portlet.xml This is the deployment descriptor file for the portlet. It contains all
kinds of configuration data that pertains to the directory portlet. Exam-
ples of such data include security constraints, initial preferences, user
attributes, and so on.

web.xml This is the Web archive deployment descriptor; it contains servlet map-
pings, tag libraries, display name, and so on.

taglib.tld This file is the template for the JSP tag library.

The MySQL Database
The MySQL database, dbdirectory, used in the directory portlet example has a very simplistic design.
It contains one table called tblCoworkers with four columns: first_name, last_name, email, and
phone. The database is used by DirectoryView.jsp to accomplish the user search request. The follow-
ing code demonstrates a SQL script that could be created to configure the database in MySQL:

// Create the Database
CREATE DATABASE IF NOT EXISTS dbdirectory;

// Create the table
CREATE TABLE IF NOT EXISTS TBLCOWORKERS
(

FIRST_NAME VARCHAR(100),
LAST_NAME VARCHAR(100),
EMAIL VARCHAR(100),
PHONE VARCHAR(100)

);

// Here is the syntax for inserting a record
INSERT INTO TBLCOWORKERS (FIRST_NAME, LAST_NAME, EMAIL, PHONE)
VALUES (‘Joe’, ‘Smith’,’jsmith@somecomp.com’, ‘703-781-5825’);

Now that we have examined the files, directory structures, and databases that make up the directory
portlet example, let’s take a look at the source code. We will analyze each source code example, provid-
ing you with a detailed informational breakdown of what is taking place within each major section.

266

Chapter 9

13 469513 Ch09.qxd 1/16/04 11:06 AM Page 266

The DirectoryPortlet Class
This class is the main portlet class that extends the GenericPortlet class. It implements the following
methods: init, doView, doEdit, doHelp and processAction. The following code shows the initial cre-
ation of the DirectoryPortlet class and the init method:

/**
* Created: 2003
*/

import javax.portlet.*;

/**
* Class : DirectoryPortlet extends GenericPortlet
* Desc : Use to process portlet events
*/

public class DirectoryPortlet extends GenericPortlet
{

private static final String TEMPLATE = “/WEB-INF/templates/html/”;

/**
* Method : init
* Desc : Handles the initialization of the portlet
*/

public void init(PortletConfig config) throws PortletException {
super.init(config);

}
}

In the preceding code, we needed to import the package javax.portlet.* to gain access to the Portlet
API. After the import, we defined the DirectoryPortlet class and extended the GenericPortlet
class. The GenericPortlet class contains all the necessary portlet methods that we can define to con-
trol our portlet. The init method is now defined and does nothing more than call its superclass.

The doView method handles the doView calls from the render method, enabling you to determine what
to do in VIEW mode. It also includes the DirectoryView.jsp, which enables you to process user search
requests.

public void doView(RenderRequest request, RenderResponse response)
throws PortletException, IOException

{
// Get a preferences object for this portlet
PortletPreferences prefs = request.getPreferences();

// Obtain a windows state object that can be used to determine
// the state of the portlet
WindowState state = request.getWindowState();

The first thing we want to do is determine the state of the portlet. If it is in NORMAL or MAXIMIZED mode,
we will handle the request:

267

Developing Applications and Workflow for Your Portal

13 469513 Ch09.qxd 1/16/04 11:06 AM Page 267

// If we are in the NORMAL or MAXIMIZED state execute this block of
// code
if (state == state.NORMAL || state == state.MAXIMIZED) {

Writer writer = response.getWriter();

Next, we display the icon we want to be viewed on the portlet for this mode:

writer.write(“<center></center>”);
writer.write(“<center>Associate Directory</center>
”);

Finally, we obtain the portlet context and a dispatcher, and then include the DirectoryView.jsp, pass-
ing it the request and response objects before it is included. This gives DirectoryView.jsp the
chance to decide what it will display:

PortletContext context = getPortletContext();
PortletRequestDispatcher rd = context.getRequestDispatcher(TEMPLATE +

“DirectoryView.jsp”);
rd.include(request, response);

}
}

The doEdit method enables you to process edit requests from the user. The EDIT mode in this portlet is
for tracking what criteria the user wants to search by:

/**
* Method : doEdit
* Desc : Handles portlet edit events
*/

public void doEdit(RenderRequest request, RenderResponse response)
throws PortletException, IOException

{
// Get a preferences object for this portlet
PortletPreferences prefs = request.getPreferences();

// Obtain a windows state object that can be used to determine the state
// of the portlet

WindowState state = request.getWindowState();

The following code determines the current state of the portlet. As long as it is in NORMAL or MAXIMIZED,
we will proceed accordingly:

// If we are in the NORMAL or MAXIMIZED state execute this block of code
if (state == state.NORMAL || state == state.MAXIMIZED) {

Writer writer = response.getWriter();

writer.write(“<center></center>”);

writer.write(“<center>Associate Directory</center>
”);

268

Chapter 9

13 469513 Ch09.qxd 1/16/04 11:06 AM Page 268

At this point, we include the DirectoryEdit.jsp and pass it request and response objects,
respectively.

PortletContext context = getPortletContext();
PortletRequestDispatcher rd = context.getRequestDispatcher(TEMPLATE +

“DirectoryEdit.jsp”);

rd.include(request, response);
}

}

The following code shows the doHelp() method. The directory portlet example doesn’t provide much
help to the user because of its simplicity. We could expand this method if we had a much more complex
portlet that was going to be commercially used. At the end of this method, we include Directory
Help.jsp to aid in help processing:

/**
* Method : doHelp
* Desc : Handles portlet help events
*/

public void doHelp(RenderRequest request, RenderResponse response)
throws PortletException, IOException

{
// Get a preferences object for this portlet
PortletPreferences prefs = request.getPreferences();

// Obtain a windows state object that can be used to determine the state
of the portlet

WindowState state = request.getWindowState();

// If we are in the NORMAL or MAXIMIZED state execute this block of code
if (state == state.NORMAL || state == state.MAXIMIZED) {

Writer writer = response.getWriter();

writer.write(“<center>
</center>”);

writer.write(“<center>Associate Directory</center>
”);

PortletContext context = getPortletContext();

PortletRequestDispatcher rd = context.getRequestDispatcher(TEMPLATE +
“DirectoryHelp.jsp”);

rd.include(request, response);
}

}

The processAction method is the final method in the DirectoryPortlet class. It provides you with the
capability to process action events as they are occurring. For instance, if a user submits data from a form in
EDIT mode, a processAction() call will be made, enabling you to handle the form submission and then
take appropriate action. Now to step through the code for a better understanding of this key method:

269

Developing Applications and Workflow for Your Portal

13 469513 Ch09.qxd 1/16/04 11:06 AM Page 269

/**
* Method : processAction
* Desc : Handles portlet Action events
*/

public void processAction(ActionRequest aReq, ActionResponse aRes) throws
PortletException, IOException

{

It is important to grab a preferences object in case we need to store information submitted by the user.
We will determine this based on the current mode of the portlet.

// Get preferences object
PortletPreferences prefs = aReq.getPreferences();

// Get the search string the user sent
String searchString = aReq.getParameter(“searchString”);

If we are in VIEW mode, then we want to retrieve the current search string that the user submitted and
use setRenderParameter to save it as a parameter that can be used by DirectoryView.jsp to search
the associate directory:

// Check to see what mode we are in and process action accordingly
if (aReq.getPortletMode().equals(PortletMode.VIEW)) {

if (searchString == null) {
searchString = prefs.getValue(“searchString”,”not_supplied”);

}

aRes.setRenderParameter(“searchString”, searchString);

} else if (aReq.getPortletMode().equals(PortletMode.EDIT)) {
boolean editOK = false;
String errorMsg = null;

If we are in EDIT mode, we know that the form submission is coming from DirectoryEdit.jsp. This
means that we need to obtain the search type that the user selected from the combo box and store it as a
preference for later use:

try {
// Get selection string from combo box
String selected = aReq.getParameter(“cmbSearchType”);

// Make sure the preference we want to modify is modifiable
if (prefs.isModifiable(“userSelection”)) {

prefs.setValue(“userSelection”, selected);

// Store preferences
prefs.store();
editOK = true;

} else {
System.out.println(“Error:processAction(): PortletPreferences

not modifiable, check deployment descriptor”);
editOK = false;

270

Chapter 9

13 469513 Ch09.qxd 1/16/04 11:06 AM Page 270

}
} catch (ValidatorException ex) {

System.out.println(“Error:processAction():Validation Exception - “
+ ex);

editOK = false;
errorMsg = ex.getMessage();

} catch (Exception e) {
System.out.println(“Error:processAction():Exception - “ + e);
e.printStackTrace(System.out);

}

The setPortletMode method is one of the really neat features of the Portlet API. We can use the set
PortletMode method to literally change the mode we want the portlet to be in once processAction is
complete. In the following code snippet, we are setting it to VIEW mode even though we were originally
in EDIT mode. This will execute the doView method when processAction has finished processing:

try {
// Redirect to view mode
if (editOK) {

aRes.setPortletMode(PortletMode.VIEW);
} else {

aRes.setRenderParameter(“error”, errorMsg);
}

} catch (Exception e) {
System.out.println(“Error:processAction():Exception:Redirect - “ +

e);
e.printStackTrace(System.out);

}
}

The DirectoryValidator Class
In the processAction() method described in the previous section, we executed a store method to
save information related to the search criteria supplied by the user. In the method, we executed a
prefs.store call. This method does not require a validator class, but we highly recommend that you
use one. For one thing, it will save you a lot of time debugging if something goes wrong with the store
method. In addition, it provides you with a means to prevent errors from occurring in the store
method, and a tactic to clean up gracefully.

The PreferencesValidator that is used for your portlet is defined in the portlet.xml file. In this
example, the DirectoryValidator class is created and contains a method called validate(), which
makes sure that the user supplied a selection before pressing the Submit button from EDIT mode. If the
selection is empty, a ValidatorException is thrown, halting the store() operation. The following
example shows the code used in the directory portlet:

public class DirectoryValidator implements PreferencesValidator {
/**

* Method : validate
* Desc : This method is called with the preference store() method
* is invoked.
*/

271

Developing Applications and Workflow for Your Portal

13 469513 Ch09.qxd 1/16/04 11:06 AM Page 271

public void validate(PortletPreferences prefs) throws ValidatorException {
String sSelection = prefs.getValue(“userSelection”,””);

// Check to make sure that there is a userSelection preference
if (sSelection.equalsIgnoreCase(“”)) {

throw new ValidatorException(“Invalid userSelection Preference!!”,null);
}

}

The DirectoryView JSP File
The DirectoryView.jsp file is displayed in VIEW mode and is included when doView is called in the
DirectoryPortlet class. This file contains the logic that is needed to perform the search of the associ-
ate directory. It creates a JDBC connection to a MySQL data source, which stores the associate directory
information. When a search is submitted by the user, a processAction method is called and returns the
search string the user submitted to this JSP. When the search string is received, DirectoryView.jsp
searches the associate directory for matches and displays them on the portlet. Let’s examine the source
code of DirectoryView.jsp more closely:

<%@ page import=”javax.portlet.*” %>
<%@ page import=”java.sql.*” %>
<%
// Get the request and response objects to be used in this jsp
RenderRequest renderRequest = (RenderRequest)

request.getAttribute(“javax.portlet.request”);

RenderResponse renderResponse = (RenderResponse)
request.getAttribute(“javax.portlet.response”);

// Obtain a preferences object
PortletPreferences prefs = renderRequest.getPreferences();

// Get the current user selection
String sSelection = prefs.getValue(“userSelection”, “last_name”);

// If something went wrong set it to ‘last_name’
if (sSelection == null) {

sSelection = “last_name”;
}

%>

The user form is created with the method set to post and the action set to something you have probably
never seen before. We use renderResponse.createActionURL to create an action URL. This will post
the user form information to the processAction method of the DirectoryPortlet class:

<form method=”post”
action=”<%=renderResponse.createActionURL().toString()%>”>

<input type=”text” name=”searchString” size=”25”>
<input type=”submit” value=”Search” name=”btnSearch”>

</form>

272

Chapter 9

13 469513 Ch09.qxd 1/16/04 11:06 AM Page 272

At this point, we want to get the search string that the user submitted and then create our connection to
the MySQL database so that we can find the appropriate associates:

<%
// Get the search string
String sSearchStr = request.getParameter(“searchString”);

if (sSearchStr != null && !sSearchStr.equals(“”)) {
// Setup a connection to a MySQL database
String sDriverName = “jdbc:mysql://LT-JVitale.mcdonaldbradley.local/dbDirectory”;

String sClassName = “com.mysql.jdbc.Driver”;

Class.forName(sClassName);

// Create connection
Connection connection = DriverManager.getConnection(sDriverName);

connection.setAutoCommit(false);

Statement statement = connection.createStatement();

String sSQLCommand = null;

The following code segment determines which criteria to search by. Remember that the user can change
this in EDIT mode, so we have to handle all three cases:

// Decide what to search by
if (sSelection.equalsIgnoreCase(“last_name”)) {

sSQLCommand = “SELECT * FROM tblcoworkers WHERE last_name = ‘“ +
sSearchStr + “‘“;

} else if (sSelection.equalsIgnoreCase(“first_name”)) {
sSQLCommand = “SELECT * FROM tblcoworkers WHERE first_name = ‘“ +

sSearchStr + “‘“;
} else {

sSQLCommand = “SELECT * FROM tblcoworkers WHERE email = ‘“ +
sSearchStr + “‘“;

}

// Execute SQL statement
ResultSet resultset = statement.executeQuery(sSQLCommand);

// Return the results below in a table formatted fashion
%>

We broke up this code to save space. Basically, what you would do in order to retrieve the results is spin
through the ResultSet and obtain the column values for each record. Then, you would display them in
an HTML-formatted table:

273

Developing Applications and Workflow for Your Portal

13 469513 Ch09.qxd 1/16/04 11:06 AM Page 273

<%
// Display next result if there is any
while(resultset.next()) {

resultset.getString(“first_name”);
resultset.getString(“last_name”);
resultset.getString(“email”);
resultset.getString(“phone”)

}

// Clean up connection
statement.close();
connection.close();

%>

The DirectoryEdit JSP File
The DirectoryEdit.jsp file is accessed when the user selects EDIT mode on the portlet. This JSP file
enables the user to edit the search type that VIEW mode uses for searching the associate directory. When
the form is submitted, the contents are sent to the processAction method of the DirectoryPortlet
class. If successful, the portlet is set to VIEW mode and will show the reflected changes. Now, let’s inspect
the important parts of the DirectoryEdit.jsp code:

<%@ page import=”javax.portlet.*”%>
<%
// Get the request and response objects to be used in this jsp
RenderRequest renderRequest = (RenderRequest)

request.getAttribute(“javax.portlet.request”);

RenderResponse renderResponse = (RenderResponse)
request.getAttribute(“javax.portlet.response”);

%>

The following JSP snippet is the form that posts information to the processAction method of the
DirectoryPortlet class:

<form method=”post”
action=”<%=renderResponse.createActionURL().toString()%>”

<select size=”1” name=”cmbSearchType”>
<option selected value=”last_name”>last_name</option>
<option value=”first_name”>first_name</option>
<option value=”email”>email</option>

</select>
<input type=”submit” value=”Apply” name=”btnApply”>

</form>

This following simple code shows how to access the portlet mode using the Portlet API:

Portlet mode:
<%= renderRequest.getPortletMode().toString() %>

274

Chapter 9

13 469513 Ch09.qxd 1/16/04 11:06 AM Page 274

The web.xml File
The web.xml files for portlets have the same general structure that Web application web.xml files have.
They contain configurations specific to the Web application portion of the portlet. The XML fragments
that follow highlight the important parts of the web.xml file:

<web-app>
<display-name>DirectoryPortlet</display-name>
<description>

This application is a portlet. It can not be used outside a portal.
This web.xml file is mandatory in each .par archive file.

</description>

Notice that the <servlet> and <servlet-mapping> tags all point to the portlet:

<servlet>
<servlet-name>DirectoryPortlet</servlet-name>
<servlet-class>DirectoryPortlet</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>DirectoryPortlet</servlet-name>
<url-pattern>/DirectoryPortlet</url-pattern>

</servlet-mapping>

The next section defines the JSP tag library to use for this portlet:

<taglib>
<taglib-uri>http://java.sun.com/portlet</taglib-uri>
<taglib-location>/WEB-INF/taglib.tld</taglib-location>

</taglib>
</web-app>

The portlet.xml File
The portlet.xml file is the deployment descriptor for the portlet and contains configuration, security,
cache, and initial preference information. The following code shows the core elements for the directory
portlet example:

<portlet-app>
<portlet>

<description lang=”EN”>Directory Portlet</description>
<portlet-name>DirectoryPortlet</portlet-name>
<display-name lang=”EN”>Directory Portlet</display-name>
<portlet-class>DirectoryPortlet</portlet-class>
<expiration-cache>-1</expiration-cache>
<supports>

<mime-type>text/html</mime-type>
<portlet-mode>edit</portlet-mode>
<portlet-mode>help</portlet-mode>

</supports>
<supported-locale>en</supported-locale>

275

Developing Applications and Workflow for Your Portal

13 469513 Ch09.qxd 1/16/04 11:06 AM Page 275

<resource-bundle>DirectoryResources</resource-bundle>
<portlet-info>

<title>Directory Portlet</title>
<short-title>DirectoryPortlet</short-title>
<keywords>Directory</keywords>

</portlet-info>

The <portlet-preferences> tag is a key tag for you to take note of. Here is where you define the ini-
tial preferences that you want to load into memory when the portlet is initialized:

<portlet-preferences>
<preference>

<name>userSelection</name>
<value>last_name</value>

</preference>
<preferences-validator>DirectoryValidator</preferences-validator>

</portlet-preferences>
<security-role-ref>

<role-name>trustedUser</role-name>
<role-link>auth-user</role-link>

</security-role-ref>
</portlet>
<user-attribute>

<description lang=”EN”>
Pre-defined attribute for the telephone number of the user at work.

</description>
<name>workInfo/telephone</name>

</user-attribute>
<security-constraint>

<portlet-collection>
<portlet-name>TimeZoneClock</portlet-name>

</portlet-collection>
<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraint>

</security-constraint>
</portlet-app>

Deploying the Directory Portlet in eXo
The steps to deploy a portlet on the eXo portal platform are fairly straightforward. The key is to make
sure that you package the Web archive (.war) file correctly, with all the files in the appropriate directory
structure. Figure 9.8 illustrates the correct directory structure and the files in those directories prior to
archiving.

To package the portlet into a Web archive (.war) file, we would use the JAR tool that is provided with
the Java SDK. Once our DirectortyPortlet.war file is created, all we have to do is drop it into the hot
deployment directory of eXo called portlet-deploy and the portlet will be automatically deployed by
JBoss. Then, we simply bring up the eXo portal in a Web browser, log in, go to the customization page,
and add the portlet to the portal. The Directory portlet will now be viewable and useable.

276

Chapter 9

13 469513 Ch09.qxd 1/16/04 11:06 AM Page 276

Figure 9.8

Portlet Creation the Model-View-Controller
(MVC) Way

The eXo portal platform provides a means for you to develop your portlets according to the MVC
paradigm. The MVC paradigm was orignally created by SmallTalk developers and has since been
adopted for programming GUI-driven applications. The MVC paradigm divides an application into
three componets: the model, the view, and the controller. The controller has access to both the model
and the view and is the basis for the paradigm. The model talks to the view and can notify it of any
changes to the model, but it does not have any references to the controller. The view has a reference to
the model in order to communicate with the model and retrieve data from it. The view can also commu-
nicate with the controller, but its main purpose for communication with the controller is to notify it
when updates to the view are successful.

In the portal world, the portlet acts as the controller, which creates the model object that can be used to
access any enterprise or back-end data sources. The portlet or the controller will send the data out to the
appropriate views. In the portal case, the data is dispatched to the JSPs that process the data. The JSPs
aid in changing the view and rendering a visual display of the data that has been processed, all the while
communicating with the controller. Figure 9.9 depicts the MVC paradigm as it applies to portlets.

ROOT

templates html

classes

images

WEB-INF

lib

tlds

directory.jpg
edit.jpg
help.jpg

DirectoryPortlet.class
DirectoryResources.properties

mysql-connector-java-3.0.8-stable-bin.jar

DirectoryValidator.class

DirectoryEdit.jsp
DirectoryHelp.jsp
DirectoryView.jsp

directory.xml
taglib.tld
web.xml

XML

TLD

portlet.tldTLD

XML

277

Developing Applications and Workflow for Your Portal

13 469513 Ch09.qxd 1/16/04 11:06 AM Page 277

Figure 9.9

Actions
Triggered by

Users

Controller
Controls the

Model and the
Views

JSP

DATA

JSP

Views
Acquires data

from the
model

Model
Sends data
to the Views

278

Chapter 9

13 469513 Ch09.qxd 1/16/04 11:06 AM Page 278

The MVC Loan Calculator Portlet
We have created a Loan Calculator portlet that makes use of the MVC paradigm using the eXo portal
platform. The official name of this portlet in code is the MVCPortlet and we refer to it by this name
throughout this section. The MVCPortlet portlet and controller configurations are defined in the
portlet.xml file located in the MVCPortlet\WEB-INF directory. Specific controller information is
defined in a separate XML file called controllers.xml, which is pointed to from the portlet.xml
file. The following XML snippets are taken from the portlet.xml file and illustrate how the framework
is set up and how a controller is configured:

<portlet>

Here, the basic portlet name and class are defined for the portlet:

<description lang=”EN”>MVC Portlet Test</description>
<portlet-name>MVCPortlet</portlet-name>
<display-name lang=”EN”>MVCPortlet</display-name>
<portlet-class>exo.portal.portlet.ExoPortletFramework</portlet-class>

Within the <init-param> tags, the portlet controller file is defined:

<init-param>
<description>Portlet Controller</description>
<name>controller-url</name>
<value>controllers.xml</value>

</init-param>
</portlet>

The controllers.xml file displayed in the following code handles the different modes that can occur
during a portlet’s life cycle. This differs from the Directory portlet example in which we had to handle
each mode in code by extending from the GenericPortlet class. The controllers handle the VIEW,
EDIT, and HELP modes when they are encountered, and forward the requests to the XML specified
classes and JSPs:

<controllers>
<name>MVC Portlet Test</name>
<identifier>Hello MVC Portlet Test</identifier>

The view controller results in two possible actions that can occur. One is the default action,
ShowMVCPortletAction, which is called when no action parameters have been supplied. The other is
the MVCPortletAction, which is called when action parameters are supplied:

<view-controller>
<default-action>ShowMVCPortletAction</default-action>
<action name=”ShowMVCPortletAction” class=”mvctest.MVCPortletAction”>

<forward name=”success” page=”MVCPortlet.jsp”/>
<forward name=”error” page=”MVCPortlet.jsp”/>

</action>

279

Developing Applications and Workflow for Your Portal

13 469513 Ch09.qxd 1/16/04 11:06 AM Page 279

<action name=”MVCPortletAction” class=”mvctest.MVCPortletAction”>
<forward name=”success” page=”MVCPortlet.jsp”/>
<forward name=”error” page=”MVCPortlet.jsp”/>

</action>
</view-controller>

The help controller is executed when the portlet is in HELP mode:

<help-controller>
<default-action>MVCPortletHelpMode</default-action>
<action name=”MVCPortletHelpMode” class=”mvctest.MVCPortletHelpMode”>

<forward name=”success” page=”MVCPortletHelp.jsp”/>
<forward name=”error” page=”MVCPortletHelp.jsp”/>

</action>
</help-controller>

The edit controller is executed when the portlet is in EDIT mode:

<edit-controller>
<default-action>MVCPortletEditMode</default-action>
<action name=”MVCPortletEditMode” class=”mvctest.MVCPortletEditMode”>

<forward name=”success” page=”MVCPortletEdit.jsp”/>
<forward name=”error” page=”MVCPortletEdit.jsp”/>

</action>
<action name=”MVCPortletAction” class=”mvctest.MVCPortletAction”>

<forward name=”success” page=”MVCPortlet.jsp”/>
<forward name=”error” page=”MVCPortlet.jsp”/>

</action>
</edit-controller>

The appropriate action classes are called when processing of the action message is needed. In order
to process an action, you must extend the ActionHandler interface. You must then override two
execute methods to handle two different types of action events: the RenderRequest event and the
ActionRequest event. RenderRequest events are executed when the portlet is asked to be visible on-
screen. ActionRequests are executed when an action has occurred within the portlet, as shown in the
following code:

public class MVCPortletAction extends ActionHandler {
public void init() throws Exception {
}
public void execute(PortletContext context, ActionRequest request)

throws Exception
{

// Add ActionRequest handling code here
}
public void execute(PortletContext context, RenderRequest request)

throws Exception
{

// Add RenderRequest handling code here
}

}

280

Chapter 9

13 469513 Ch09.qxd 1/16/04 11:06 AM Page 280

Figure 9.10 illustrates the GUI interface of the Loan Calculator portlet in action. In EDIT mode, the Loan
Calculator portlet enables you to edit the loan amount; the term, in months; and the interest rate. When a
user clicks Calculate, VIEW mode is displayed, showing the values entered in EDIT mode, plus the newly
calculated monthly payment.

Figure 9.10

Most of the structure for the Java classes and JSP code is the same as the Directory portlet example, with
the exception of the previously explained MVC additions. Therefore, there is no need to show the entire
source code here. You can, however, download it from the book’s Web site at www.wrox.com. Two
source examples are worth noting. One is the MVCPortletAction class used for handling user submis-
sions of forms, and the other is an example from the MVCPortletEdit.jsp, which shows you how to
switch portlet modes from within a JSP. The following example shows the code for the
MVCPortletAction class:

package mvctest;
import javax.portlet.*;
import exo.portal.portlet.actions.ActionHandler;
public class MVCPortletAction extends ActionHandler {

public void init() throws Exception {
}
public void execute(PortletContext context, RenderRequest request)

throws Exception {

System.out.println(“MVCPortlet inside RenderRequest execute() method.”);

}

VIEW MODE EDIT MODE

HELP MODE

281

Developing Applications and Workflow for Your Portal

13 469513 Ch09.qxd 1/16/04 11:06 AM Page 281

public void execute(PortletContext context, ActionRequest aReq)
throws Exception {

// Get preferences object
PortletPreferences prefs = aReq.getPreferences();

if (prefs != null) {
String sLoanAmount = aReq.getParameter(“loanAmount”);
String sLoanTerm = aReq.getParameter(“loanTerm”);
String sLoanRate = aReq.getParameter(“loanRate”);

double dLoanAmount = Double.parseDouble(sLoanAmount);
double dLoanTerm = Double.parseDouble(sLoanTerm);
double dLoanRate = Double.parseDouble(sLoanRate);

double dLoanPayment = 0.0d;
double dRate = 0.0d;
dRate = dLoanRate / 1200;

// Loan Calculation Algorithm
dLoanPayment = dLoanAmount * dRate /

(1.0d - (Math.pow(1.0d/(1.0d + dRate), dLoanTerm)));

String sLoanPayment = String.valueOf(dLoanPayment);

try {
prefs.setValue(“loanAmount”, sLoanAmount);
prefs.setValue(“loanTerm”, sLoanTerm);
prefs.setValue(“loanRate”, sLoanRate);
prefs.setValue(“loanPayment”, sLoanPayment);

// Store preferences
prefs.store();

} catch (ValidatorException ex) {
// Handle Exception

} catch (Exception e) {
// Handle Exception

}
}

}
}

The final code excerpt is taken from MVCPortletEdit.jsp and illustrates how to change the mode of a
portlet from a JSP:

RenderResponse pRes =
(RenderResponse) request.getAttribute(“javax.portlet.response”);

// Create a Portlet URL
PortletURL pURL = pRes.createActionURL();

// Set the portlet mode to VIEW
pURL.setPortletMode(PortletMode.VIEW);

282

Chapter 9

13 469513 Ch09.qxd 1/16/04 11:06 AM Page 282

The eXo portal platform is very flexible and it enables you to take different approaches to developing
portlets. The portlet examples presented here demonstrated how to develop JSR 168 portlets in standard
fashion and also how to take advantage of the MVC development structure that eXo supports.

Web Applications versus Portlet Applications
You now know that the structure of a portlet is very similar to that of a Web application, which suggests
the obvious question: Should you convert your Web applications into portlet applications? This raises
some important points, so we will now discuss some distinctions between the two.

It should be readily obvious to you by now that Portlet applications and Web applications are similar
but not the same. If Portlet applications were merely a newer version of Web applications, then they
would have replaced Web applications, instead of building upon them.

Fundamentally, though, Portlet applications and Web applications have a major distinction in their designs.
Web applications control the interaction with the client tier—the Web browser. This means that they provide
all content in the page, as well as control layout and application flow control. Portlet applications have funda-
mentally different design assumptions. They have two types of logic: action logic and render logic. Portlet
applications also do not control where they appear on the page. Portlets have specific modes that should be
taken into account (VIEW, EDIT, and HELP). These modes are the basis for portlet design. Therefore, you have
to figure out if it makes more sense to create a portlet or a Web application for the data you want to present.

One other key point to keep in mind when comparing Portlet applications and Web applications is that
portlets are generally thought of as individual applications contained in a portal, which can be added,
removed, and customized by the user. Remember that the architecture for portlets in general usually
does not rely on other portlets in the user’s portal in order to function. This could be a significant factor
in your decision as to whether you want to create a Web application or a portal application.

We think you will find that even though portlets are built on the Web application architecture, this does not
automatically make the use of Web applications obsolete. Rather, it just provides you with more options
for development, and it is up to you to decide which is right for the task at hand. Therefore, whether you
should convert your Web applications into portlet applications must be determined on a case-by-case basis.

Summary
This chapter focused on development of JSR 168 portlet applications for portal servers that are compliant
with the JSR 168 standard. In it, you were exposed to a general overview of portlet concepts, including
portlet architecture and the development process, which explained the compilation and deployment of
portlets.

You created your own portlet, the Directory portlet, as a solid JSR 168–compliant portlet example. In
doing so, you were able to cover all the core components of portlet development and examine portlet
concepts in depth. You used the open-source eXo portal platform to build and deploy your portlet appli-
cations, and looked at the Model-View-Controller paradigm that eXo supports for portlet development.

The final part of the chapter discussed Web applications versus portlet applications. In the next chapter,
you will explore the concepts of building Web services for your portal.

283

Developing Applications and Workflow for Your Portal

13 469513 Ch09.qxd 1/16/04 11:06 AM Page 283

13 469513 Ch09.qxd 1/16/04 11:06 AM Page 284

Portlet Integration
with Web Services

Throughout this book, we have discussed portal development as it relates to the user interface. This
chapter, however, focuses on the information transmission between your portal and your enterprise
information stores with Web services. Portlets are a great way to provide a front-end-user interface
to back-end data sources, and Web services provide a standard interface for the transmission of that
information. Traditional Web services are data-oriented and presentation-neutral, and must be
aggregated and styled in order to provide presentation. On the other hand, the OASIS WSRP (Web
Services for Remote Portlets) specification introduces a presentation-oriented Web service interface
façade for remote portlets that mixes application and presentation logic. WSRP defines how a port-
let can be invoked remotely by another portal, and is a mechanism for simpler integration between
portals and Web services.

In this chapter, we describe the basic concepts of Web services and portal integration; build exam-
ples of portlets interacting with traditional Web services; and provide an overview of the WSRP
specification. All source code for the examples in this chapter, including the code referred to but
not listed, is on the book’s Web site, at www.wrox.com.

Basic Concepts
Unless you have been in a cave for the last few years, you know that Web services are software appli-
cations that can be discovered, described, and accessed based on XML and standard Web protocols
over computer networks. The messaging foundation of Web services is SOAP (Simple Object Access
Protocol). WSDL (Web Service Definition Language) is used for describing the interfaces of SOAP
Web services, and UDDI (Universal Description, Discovery, and Integration) registries are used for
discovering and finding such Web services. Because there is community acceptance and standards
agreement on these specifications to promote interoperability between applications, any portal

14 469513 Ch10.qxd 1/16/04 11:06 AM Page 285

developer should understand these basic concepts and know how to integrate with Web services. As this
book is geared toward portal developers and is not a Web services tutorial, we do not explain every detail
of the SOAP, WSDL, and UDDI specifications. We do, however, briefly discuss the SOAP message syntax,
show you SOAP messaging and WSDL examples, discuss Web services as they relate to portlet develop-
ment, and show you examples of portlets integrating with sample Web services using Apache Axis.

If you are entirely new to Web services, we recommend that you spend some time looking at the Web
Services Primer at http://webservices.xml.com/, as well as the Sun Java documentation at http://java.
sun.com/webservices. The examples in this chapter use the Apache Axis framework to deploy our Web
services, and in one case, use Axis-generated objects to communicate with them. For more information
about Apache Axis, please visit their Web site (http://xml.apache.org/axis).

One of the first things that you should understand is the format of the SOAP message syntax. An entire
Web service message is encapsulated by a SOAP envelope, optional header information (mostly security-
related information) is contained in the SOAP header, and the body of your Web service messages is con-
tained in the SOAP body.

The following code shows a sample SOAP request asking for the last stock trade price for a ticker sym-
bol, taken from the first example in the SOAP 1.1 specification. [SOAP] The SOAP body contains the
main request, and the SOAP envelope wraps the entire message. On lines 4–7 is the SOAP body of the
message, which wraps the application-specific information (the call to GetLastTradePrice in the
SOAP body). A Web service receives this information, processes the request in the SOAP body, and
returns a SOAP response. In this example, there was no SOAP header, but if there were such a header,
it would precede the SOAP body as another child of the SOAP envelope:

01: <SOAP-ENV:Envelope
02: xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”
03: SOAP-ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”>
04: <SOAP-ENV:Body>
05: <m:GetLastTradePrice xmlns:m=”Some-URI”>
06: <symbol>DIS</symbol>
07: </m:GetLastTradePrice>
08: </SOAP-ENV:Body>
09: </SOAP-ENV:Envelope>

The WSDL for this Web service would list the SOAP message format for the requests and responses. The
SOAP response in the following code, much like the request in the preceding code, contains the “guts”
of the application’s message in the SOAP body. No presentation is included in the SOAP response; there-
fore, any portal calling this Web service will have to add presentation to the results:

<SOAP-ENV:Envelope
xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”
SOAP-ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”/>
<SOAP-ENV:Body>

<m:GetLastTradePriceResponse xmlns:m=”Some-URI”>
<Price>34.5</Price>

</m:GetLastTradePriceResponse>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

286

Chapter 10

14 469513 Ch10.qxd 1/16/04 11:06 AM Page 286

If you developed a portlet to call the GetLastTradePrice Web service with a request shown in the first
nine lines of code, you would have to do a little bit of extra work to add presentation to the response
shown in the second group. The service itself provides no graphics, and simply sends an XML message
response. Because SOAP messages are presentation-neutral, they must be styled (usually with stylesheets)
to produce content. A simple scenario of the interaction between a portal and a Web service is shown in
Figure 10.1. This figure shows three important concepts:

❑ The use of a Web service as a façade to the data source

❑ The interaction between a portlet in a portal and a Web service

❑ Taking the contents of the SOAP response and applying presentation

Figure 10.1

In Figure 10.1, a portlet sends a SOAP request to a Web service, which in turn makes a request to an
information store. When the Web service is able to respond, it sends a SOAP response back to the portal.
At this point, however, another process must take place in order to style the response content. Often, the
presentation process could use XSL (the eXtensible Stylesheet Language) with a stylesheet in order to
style the content for display in the portlet. Of course, this example could become more complicated if the
portlet speaks to several Web services and needs to aggregate content before styling the information. As
a result, your design needs to accommodate such complexity. As we discussed in the last chapter, such a
design can be accomplished by using the Model-View-Controller (MVC) paradigm. Portlet development
with Web services using MVC can take a very similar approach, with the Web services representing the
model. In a portlet architecture with Web services, your Portlet developed with the Java Portlet API may
act as the controller, and delegate presentation to other components, including JSPs. In the next section,
you will see several examples of building portlets that integrate with traditional, data-centric Web ser-
vices, following the MVC paradigm.

Integrating with Traditional Web Services
Portlets may be used as controllers to connect to your Web services, and dispatch presentation to other
components, such as JSPs. Figure 10.2 shows a typical example of how you can develop your portlets to the
MVC paradigm. In Figure 10.2, the portlet gets initialization information from the portlet descriptor as well
as the names of the JSPs for VIEW mode, EDIT mode, and HELP mode. The portlet, using the doView(),
doEdit(), and doHelp() methods inherited from the class javax.portlet.GenericPortlet, is able
to dispatch to the proper presentation defined by the mappings in the portlet deployment descriptor.
Depending on your Web services, your portlet itself may initiate the call to the Web service, or your JSPs
may invoke a class or a bean to call the Web service.

Web Service

Portal

Portlet

Information
Store

2. Request/Response1. SOAP Request

4. Presentation 3. Soap Response

287

Portlet Integration with Web Services

14 469513 Ch10.qxd 1/16/04 11:06 AM Page 287

Figure 10.2

Figure 10.2 provides a good overview of how your portlets can be designed, whereby your portlets act
as controllers to JSPs based on the VIEW/EDIT/HELP modes of your portlet. This takes advantage of the
MVC paradigm, and can help you when you develop your portlets — regardless of whether you will be
interacting with Web services.

Sun Microsystems developed some excellent sample portlets that follow this model, and these JSPs are
used in several open-source portlet containers, which are available at http://developers.sun.com/
prodtech/portalserver/reference/techart/jsr168/index.html. In their design, they have created a
JSPPortlet class that extends the javax.portlet.GenericPortlet class that performs the redirec-
tion to the appropriate VIEW, EDIT, and HELP pages. This class is extended by their sample portlets,
and a UML class diagram for their design is shown in Figure 10.3.

Figure 10.3 shows the design of Sun’s example JSP portlets, where JSPPortlet is a superclass for dis-
patching the presentation of the portlet, based on the contentPage, editPage, and helpPage parame-
ters in a portlet descriptor. The demonstration portlets that extend JSPPortlet are WeatherPortlet,
NotepadPortlet, and BookmarkPortlet, all of which are good examples that you can use to under-
stand portlet development. A partial listing of the code for JSPPortlet is shown in the following code.
Because this code was developed by Sun Microsystems, we are listing the copyright:

/*
* Copyright 2003 Sun Microsystems, Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:

dispatches to the “HELP” JSP

dispatches to the “EDIT” JSP

dispatches to the “VIEW” JSP

Portlet
Deployment
Descriptor

(portlet.xml)

Defines Mappings
Between Modes and JSPs

SOAP
Request/Response Web ServicePortlet

View.jsp

Help.jsp

Edit.jsp

DoHelp

DoView

DoEdit

288

Chapter 10

14 469513 Ch10.qxd 1/16/04 11:06 AM Page 288

*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* - Redistribution in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* Neither the name of Sun Microsystems, Inc. or the names of
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* This software is provided “AS IS,” without a warranty of any
* kind. ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
* WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY
* EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE LIABLE FOR ANY DAMAGES
* SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR
* DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN
* OR ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR
* FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR
* PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF
* LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE SOFTWARE,
* EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
*
* You acknowledge that Software is not designed, licensed or intended
* for use in the design, construction, operation or maintenance of
* any nuclear facility.
*/

package com.sun.portal.portlet.samples.jspportlet;
import javax.portlet.*;
import java.io.*;
import java.util.*;
public class JSPPortlet extends GenericPortlet {

private PortletContext pContext;
public void init(PortletConfig config) throws PortletException {

super.init(config);
pContext = config.getPortletContext();

}
public void doView(RenderRequest request,RenderResponse response)

throws PortletException,IOException {
String contentPage = getContentJSP(request);
response.setContentType(request.getResponseContentType());
if (contentPage != null && contentPage.length() != 0) {

try {
System.out.println(“Dispatching to content page: “ +

contentPage);
PortletRequestDispatcher dispatcher =

pContext.getRequestDispatcher(contentPage);
dispatcher.include(request, response);

} catch (IOException e) {
throw new PortletException(“JSPPortlet.doView exception”,
e);

}
}

}

289

Portlet Integration with Web Services

14 469513 Ch10.qxd 1/16/04 11:06 AM Page 289

Figure 10.3

G
en

er
ic

Po
rt

le
t

is
 D

ef
au

lt
Im

pl
em

en
ta

tio
n

fo
r

Po
rt

le
t

In
te

rf
ac

e

ja
va

x.
 p

or
tle

t

(M
ai

n
Po

rt
le

t
AP

I P
ac

ka
ge

)

co
m

.s
un

.p
or

ta
l.p

or
tle

t.
sa

m
pl

es

M
ai

n
Po

rt
le

t
In

te
rf

ac
e

In
te

rf
ac

e
th

at
Pr

ov
id

es
 P

or
tle

t
w

ith
 a

C
on

fig
ur

at
io

n

Th
es

e
ar

e
sa

m
pl

e
po

rt
le

ts
 t

ha
t

S
U

N
M

ic
ro

sy
st

em
s

cr
ea

te
d

#
 d

oE
di

t(
)

#
 d

oH
el

p(
)

#
 d

oV
ie

w
()

+
 in

it(
)

#
 p

ro
ce

ss
Ac

tio
n(

)
#
 g

et
Ti

tle
()

#
 d

oD
is

pa
tc

h(
)

G
en

er
ic

 P
or

tle
t

JS
PP

or
tle

t
is

 a
 "

he
lp

er
"

po
rt

le
t

fr
om

 w
hi

ch
JS

P-
sp

ec
ifi

c
po

rt
le

ts
 c

an
 in

he
rit

.
It

ge
ts

 t
he

"V
IE

W
",

 "
ED

IT
",

 a
nd

 "
C

O
N

TE
N

T"
 js

ps
 f

ro
m

 t
he

as
so

ci
at

ed
 p

ar
am

et
er

s
in

 t
he

 p
or

tle
t

de
sc

rip
to

r,
he

lp
s

re
so

lv
e

JS
P

pa
th

na
m

es
 f

ro
m

 t
ha

t
de

sc
rip

to
r,

an
d

di
sp

at
ch

es
 in

fo
rm

at
io

n
to

 t
he

 J
S

Ps
 t

he
m

se
lv

es

+
 in

it(
)

+
 d

es
tr

oy
()

+
 p

ro
ce

ss
Ac

tio
n(

)
+
 r

en
de

r(
)

Po
rt

le
t

+
 g

et
In

itP
ar

am
et

er
()

+
 g

et
In

itP
ar

am
et

er
N

am
es

()
+
 g

et
Po

rt
le

tC
on

te
xt

()
+
 g

et
Po

rt
le

tN
am

e(
)

+
 g

et
R

es
ou

rc
eB

un
dl

e(
)

Po
rt

le
tC

on
fig

W
ea

th
er

Po
rt

le
t

N
ot

ep
ad

Po
rt

le
t

B
oo

km
ar

kP
or

tle
t

+
 d

oE
di

t(
)

+
 d

oH
el

p(
)

+
 d

oV
ie

w
()

+
 in

it(
)

+
 p

ro
ce

ss
Ac

tio
n(

)
#

 g
et

C
on

te
nt

JS
P(

)
#

 g
et

Ed
itJ

S
P(

)
#

 g
et

H
el

pJ
S

P(
)

- g
et

JS
PP

at
h(

)
#

 g
et

Lo
ca

liz
ed

JS
P(

)

co
m

.s
un

.p
or

ta
l.p

or
tle

t.
sa

m
pl

es
.js

pp
or

tle
t.

JS
PP

or
tle

t

290

Chapter 10

14 469513 Ch10.qxd 1/16/04 11:06 AM Page 290

In the preceding listing, you saw that the doView() method uses the PortletRequestDispatcher
object to dispatch the listing to the content page, specified in the portlet descriptor. In the same way,
the doEdit() and doHelp() methods that were deleted from this listing delegate the view to the appro-
priate JSPs. In the following code, additional methods from JSPPortlet continue such delegation. The
getContentJSP() page returns the localized JSP for the VIEW mode of the portlet. In the same manner,
getEditJSP(), and getHelpJSP() in the file return the localized JSPs for the EDIT and HELP JSP pages,
respectively. In the following code, the class resolves the localized path in the getLocalizedJSP() and
getJSPPath() methods:

protected String getContentJSP(RenderRequest request)
throws PortletException {

PortletPreferences pref = request.getPreferences();
String contentPage = pref.getValue(“contentPage”,””);
return getLocalizedJSP(request.getLocale(), contentPage);

}
/* NOTE:

getEditJSP() and getHelpJSP() were removed from this listing
for space-saving purposes. They are very similar to getContentJSP().

*/
protected String getLocalizedJSP(Locale locale, String jspPath) {

String realJspPath = jspPath;
if (locale != null) {

int separator = jspPath.lastIndexOf(“/”);
String jspBaseDir = jspPath.substring(0, separator);
String jspFileName = jspPath.substring(separator+1);
PortletContext pContext = getPortletContext();
String searchPath = getJSPPath(jspBaseDir,

locale.toString(),
jspFileName);

if (pContext.getResourceAsStream(searchPath) != null) {
realJspPath = searchPath;

} else {
if (!locale.getCountry().equals(“”)) {
searchPath = getJSPPath(jspBaseDir,

locale.getLanguage(),
jspFileName);

if (pContext.getResourceAsStream(searchPath) != null) {
realJspPath = searchPath;

}
}

}
}
return realJspPath;

}
private String getJSPPath(String jspBaseDir,

String localeStr, String jspFileName) {
StringBuffer sb = new StringBuffer();
sb.append(jspBaseDir)

.append(“_”)

.append(localeStr)

.append(“/”)

.append(jspFileName);
return sb.toString();

}
}

291

Portlet Integration with Web Services

14 469513 Ch10.qxd 1/16/04 11:06 AM Page 291

The preceding code samples show some of the major methods of JSPPortlet.java. Its doView(),
doEdit(), and doHelp() methods get the appropriate JSPs from the portlet’s descriptor. They dispatch
to the appropriate pages, calling the getContentJSP(), getEditJSP(), and doHelpJSP() methods,
depending on the mode of the portlet. As you can see, the Java class can be a very helpful class for JSP
redirection. We will extend this class in our example portlets in this chapter.

The next section provides an example of two different designs for integrating with Web services using
such an architecture, explaining the pros and cons of each. In one example, the portlet delegates com-
plete responsibility to its corresponding JSP pages for its respective modes; in the other, the Web service
is called from the portlet and sends data information to the corresponding JSPs.

A Simple Example
For this example, we will develop a very simple portlet connecting to a simple Web service. Because we
often see a lot of “stock quote” examples for Web services, which get boring after a while, we’ve created an
example that is a little different. For this example, we will build a simple Llama portlet that shows inven-
tory for a llama farm, based on results returned from a Llama Inventory Web service. The results from the
Web service are based on a common XML Llama schema. This portlet acts only in VIEW and HELP modes.

We will show two approaches for invoking the Llama Web service: one showing and using SOAP and
WSDL messaging, and one using objects generated with Web service tools. The first approach will show
the “gory details” of SOAP and WSDL because it is sometimes helpful to see this in order to understand
how SOAP and WSDL work. (It is also very helpful when you are debugging!) In the first approach,
we’ll provide an example of delegating responsibility to a JSP that calls the Web service and styles the
SOAP message. In the second approach, we’ll show you an example of using Axis-generated objects for
communicating with your Web service. Both approaches focus on the Llama Inventory Web service.

First Approach: SOAP and WSDL Messaging
Our first approach has been created more for instructional (tutorial) use than for production. This will
help you understand SOAP “on the wire,” and some of the nitty-gritty details of WSDL. At the end of this
section, you should have an appreciation for what “automatic” Web service integration tools do for you.

The WSDL that our Web service uses for this example is based on a “common llama schema” shared by
many llama farms. The WSDL for this example, for “Bonnie’s Llama Farm”, is shown in the follow-
ing code sections. As you can see by looking at the LlamaResults element in the WSDL, inventories
consist of a list of llamas, including each llama’s international identifier, its age, a description, a name,
the type of llama it is (usually a stud, weanling, cria, or female), and a URL for its image on the Web.
The types section is shown here, which indicates the schema that we are using:

<?xml version=”1.0” encoding=”UTF-8” ?>
<definitions targetNamespace=”http://trumantruck.com/bonniellama”

xmlns=”http://schemas.xmlsoap.org/wsdl/”
xmlns:apachesoap=”http://xml.apache.org/xml-soap”
xmlns:impl=”http://trumantruck.com/bonniellama”
xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”
xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<!— types section —>
<types>

292

Chapter 10

14 469513 Ch10.qxd 1/16/04 11:06 AM Page 292

<schema xmlns=”http://www.w3.org/2001/XMLSchema”>
<simpleType name=”LlamaTypes”>
<restriction base=”string”>
<enumeration value=”STUD”/>
<enumeration value=”INTACT WEANLING MALE”/>
<enumeration value=”ADULT FEMALE”/>
<enumeration value=”FEMALE CRIA”/>
<enumeration value=”WEANLING FEMALE”/>
<enumeration value=”WEANLING MALE (NON-INTACT)”/>

</restriction>
</simpleType>
<element name=”LlamaResults”>
<complexType>
<sequence>
<element name=”Llama” minOccurs=”0”>
<complexType>
<sequence>
<element name=”identifier” type=”string”/>
<element name=”age” type=”string” minOccurs=”0”/>
<element name=”description” type=”string” minOccurs=”0”/>
<element name=”name” type=”string”/>
<element name=”type” type=”impl:LlamaTypes”/>
<element name=”imgurl” type=”string” minOccurs=”0”/>

</sequence>
</complexType>

</element>
</sequence>

</complexType>
</element>
<element name=”getLlamasInput” type=”xsd:anyType”/>

</schema>
</types>

Next, we must define our message declarations, our port type declarations, and our bindings. These
parts of the WSDL are shown in the following code:

<!— message declarations —>
<message name=”getLlamasRequest”>
<part element=”impl:getLlamasInput” name=”part”/>

</message>
<message name=”getLlamasResponse”>

<part element=”impl:LlamaResults” name=”getLlamasReturn”/>
</message>

<!— port type declarations —>
<portType name=”BonniesLlamaFarmInfoService”>

<operation name=”getLlamas”>
<input message=”impl:getLlamasRequest”/>
<output message=”impl:getLlamasResponse”/>

</operation>
</portType>

<!— bindings —>
<binding name=”BonniesLlamasSoapBinding”

type=”impl:BonniesLlamaFarmInfoService”>

293

Portlet Integration with Web Services

14 469513 Ch10.qxd 1/16/04 11:06 AM Page 293

<soap:binding style=”document”
transport=”http://schemas.xmlsoap.org/soap/http”/>

<operation name=”getLlamas”>
<soap:operation soapAction=””/>
<input name=”getLlamasRequest”>
<soap:body namespace=”http://trumantruck.com/bonniellama”

use=”literal”/>
</input>
<output name=”getLlamasResponse”>
<soap:body namespace=”http://trumantruck.com/bonniellama”

use=”literal”/>
</output>

</operation>
</binding>
<service name=”BonniesLlamaFarmInfoServiceService”>
<port name=”GetLlamas” binding=”impl:BonniesLlamasSoapBinding”>
<soap:address

location=”http://localhost:80/axis/services/BonniesLlamas”/>
</port>

</service>
</definitions>

As you can see by looking at the WSDL in the preceding code, the getLlamas() operation returns an
XML schema-defined list of llamas for an inventory. We know this by looking at the port type declara-
tion section of the WSDL, which indicates that the output message is impl:getLlamasResponse, which
is defined in the message declarations as type LlamaResults, which was defined in our types section at
the beginning of the WSDL.

If you don’t get overly excited by inspecting WSDL and looking at the details of SOAP messages, don’t
worry. We are showing you this because it is helpful for an understanding of these concepts. In the second
approach, which follows, we’ll show you how your developer tools do the WSDL-to-Java conversion so
that you don’t have to manipulate the wire format. For debugging purposes, it is helpful to understand
SOAP interactions, just as it is helpful to understand WSDL.

An example SOAP message that is returned from the getLlamas() operation is shown in the following
code:

<soapenv:Envelope
xmlns:soapenv=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>

<soapenv:Body>
<LlamaResults>
<Llama>

<identifier>289892</identifier>
<age>6</age>
<description>Black and White Tuxedo Llama</description>
<name>Sergio</name>
<type>STUD</type>

</Llama>
<Llama>

<identifier>32983</identifier>

294

Chapter 10

14 469513 Ch10.qxd 1/16/04 11:06 AM Page 294

<age>2</age>
<description>Champagne and White-Colored Female</description>
<name>Victoria</name>
<type>ADULT FEMALE</type>
<imgurl>http://www.trumantruck.com/Llama32983.JPG</imgurl>

</Llama>
</LlamaResults>

</soapenv:Body>
</soapenv:Envelope>

The preceding code shows the example results for querying this Llama Inventory service. If we under-
stand the format of the messages by looking at the WSDL (or by looking at the SOAP messages), we can
certainly style the output with XSLT. Because this example will not utilize EDIT mode, our portlet
descriptor provides pages only for VIEW and HELP mode, as shown in the following code:

<portlet>
<portlet-name>Llama Portlet</portlet-name>
<portlet-class>

LlamaPortlet
</portlet-class>
<init-param>
<name>llama.url</name>
<value>http://localhost:80/axis/services/BonniesLlamas</value>

</init-param>
<expiration-cache>3600</expiration-cache>
<supports>
<mime-type>text/html</mime-type>
<!— We are not supporting EDIT mode in this portlet —>
<!— <portlet-mode>EDIT</portlet-mode> —>
<portlet-mode>HELP</portlet-mode>

</supports>
<portlet-info>
<title>Bonnie’s Llamas</title>

</portlet-info>
<portlet-preferences>
<preference>
<name>contentPage</name>
<value>/llama/llamaView.jsp</value>

</preference>
<preference>
<name>helpPage</name>
<value>/llama/llamaHelp.jsp</value>

</preference>
</portlet-preferences>

</portlet>

As previously mentioned, we will extend Sun’s JSPPortlet class for this example, which will redirect
our portlets to the proper JSP pages, based on the portlet descriptor shown in preceding code. In the fol-
lowing code, we create our Llama portlet, which delegates everything to the VIEW JSP in the doView()
method. Because this is a simple portlet that only displays information that is not changeable, we don’t
utilize the doEdit() method. We don’t override the doHelp() method from JSPPortlet, because we
are not sending any parameters to our HELP page, and the inherited method already does the dispatch-
ing for us:

295

Portlet Integration with Web Services

14 469513 Ch10.qxd 1/16/04 11:06 AM Page 295

import javax.portlet.*;
import java.io.*;
import com.sun.portal.portlet.samples.jspportlet.JSPPortlet;
public class LlamaPortlet extends JSPPortlet
{

private String m_llamaURLString;
public void init(PortletConfig config)
throws PortletException, UnavailableException
{

String llamaURLString;
super.init(config);
m_llamaURLString = config.getInitParameter(“llama.url”);

}
public void doView(RenderRequest request,RenderResponse response)
throws PortletException, IOException {

try
{

request.setAttribute(“llamaURL”, m_llamaURLString);
super.doView(request, response);

}
catch (Exception ex)
{

ex.printStackTrace() ;
response.setProperty(“expiration-cache”,”0”);
PortletRequestDispatcher rd =

getPortletContext().getRequestDispatcher(
“/llama/llamaServiceUnavailable.html”);

rd.include(request,response);
}

}
}

As you can see in the preceding code, the portlet gets the llama.url parameter from the portlet deploy-
ment descriptor in the portlet’s init() method, and sets it as an attribute in the RenderRequest object
for the JSP to receive. The following code shows the SP that styles the SOAP message. This JSP uses the
XTAGS tag library, the IO tag library, and the PORTLET tag library to present information in the portlet’s
VIEW mode. The IO tag library and the XTAGS library come from Jakarta Taglibs, an open-source reposi-
tory for custom tag libraries that provides convenient tags for JSP processing. The PORTLET tag library is
used for passing portlet parameters to JSPs:

<%@ taglib uri=”http://jakarta.apache.org/taglibs/xtags” prefix=”xtags” %>
<%@taglib uri=”http://jakarta.apache.org/taglibs/io” prefix=”io” %>
<%@ taglib uri=”http://java.sun.com/portlet” prefix=”portlet” %>
<portlet:defineObjects/>

<%
String llamaURL= (String)renderRequest.getAttribute(“llamaURL”) ;

%>

<xtags:style xsl=”http://localhost/webproject/llama2view.xsl”>
<io:soap url=”<%=llamaURL%>” SOAPAction=””>

<io:body>
<SOAP-ENV:Envelope

296

Chapter 10

14 469513 Ch10.qxd 1/16/04 11:06 AM Page 296

xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”
SOAP-ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”>

<SOAP-ENV:Header/>
<SOAP-ENV:Body>

<ns1:getLlamas
xmlns:ns1=”http://localhost:8080/axis/services/BonniesLlamas”>

</ns1:getLlamas>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>
</io:body>

</io:soap>
</xtags:style>

As you can see, the JSP in the preceding code first uses the IO tag library to send the SOAP message to
our getLlamas() Web service call, and then styles the result with the XTAGS library and a stylesheet.
The stylesheet is shown in the following code:

<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:output method=”xml” indent=”yes” encoding=”utf-8”/>
<xsl:template match=”LlamaResults”>
<center>

<hr/>
Inventory for Bonnie’s Llama Farm</center>
<TABLE BORDER=”1”>
<tr><TD>Name</TD><TD>Type</TD><TD>Description</TD>

<TD>ID</TD><TD>Image</TD>
</tr>
<xsl:for-each select=”Llama”>

<tr><td><xsl:value-of select=”name”/></td>
<td><xsl:value-of select=”type”/></td>
<td><xsl:value-of select=”description”/></td>
<td><xsl:value-of select=”identifier”/></td>
<xsl:if test=”imgurl”>

<td>

<xsl:attribute name=”src”>
<xsl:value-of select=”imgurl”/>

</xsl:attribute>

</td>
</xsl:if>

</tr>
</xsl:for-each>

</TABLE>
</xsl:template>

</xsl:stylesheet>

The stylesheet in the preceding code styles the SOAP response, which looks like the code shown earlier
in the example SOAP message. As you can see, the stylesheet creates a table of llamas, showing the
name, type, description, and identifier. If the <imgurl> element exists, it creates an image in the table.
The results are shown in Figure 10.4, in which you can see the inventory of llamas at Bonnie’s Llamas.

297

Portlet Integration with Web Services

14 469513 Ch10.qxd 1/16/04 11:06 AM Page 297

Figure 10.4

As you can see by looking at the results in Figure 10.4, our portlet works! Having examined this part of
the example, you should have an understanding of what WSDL is, what SOAP messaging looks like,
and how portals can interact with JSP pages.

Although this code was created as an exercise to help you learn how to interact with portlets, the authors
have in practice learned difficult lessons in utilizing the Java IO tag libraries and XTAGS in building portlet
views:

❑ They are often hard to maintain, depending on the versions of certain libraries and parsers that
are deployed with them.

❑ In the preceding example, the JSP page makes the call to the Web service. A better use of the MVC
paradigm is to enable your portlet to call your Web service, passing the information to the JSPs.

In addition, the authors have seen that it is sometimes a pain to deal with WSDL and SOAP messages
directly. Instead, you can delegate this responsibility to your favorite Web services toolkit (such as Apache
Axis). Our next approach takes a different design approach, and uses Java objects that were created by the
Axis toolkit.

Second Approach: Working with Generated Objects
This section takes a different (and better) approach to building the portlet that talks to Bonnie’s Llama
service. We will change the portlet code and the JSP code, but everything else will stay the same.

298

Chapter 10

14 469513 Ch10.qxd 1/16/04 11:06 AM Page 298

If you don’t enjoy parsing SOAP messages yourself (a likelihood that probably represents a good 99
percent of the world) and would like your Web services toolkit to do it for you, read on! Most toolkits
enable you to do a WSDL-to-Java conversion, and vice-versa, when you are creating clients to talk to
Web services, or when you are building new Web services. The toolkit performs the marshalling (con-
verting XML to objects) and unmarshalling (converting objects to XML) for you, so that you don’t have
to. With Axis, it is easy. You may use the Axis-wsdl2java Apache Ant task that is included with the
latest version of Axis, or you may call the Axis converter directly with the Apache Axis WSDL2Java class
by typing the following, assuming that the Axis libraries are in your classpath:

% java org.apache.axis.wsdl.WSDL2Java BonniesLlamas.wsdl

Based on the WSDL listed earlier, the tool automatically generates Java code and classes, placing it in the
package dictated by the target namespace. Because the target namespace of the WSDL was http://
trumantruck.com/bonniellama/, the tool places the generated Java source and classes in the direc-
tory com/trumantruck/bonniellama, representing the new package that was created by the following
code generation:

BonniesLlamaFarmInfoService.class
BonniesLlamaFarmInfoService.java
BonniesLlamaFarmInfoServiceService.class
BonniesLlamaFarmInfoServiceService.java
BonniesLlamaFarmInfoServiceServiceLocator.class
BonniesLlamaFarmInfoServiceServiceLocator.java
BonniesLlamasSoapBindingStub.class
BonniesLlamasSoapBindingStub.java
LlamaTypes.class
LlamaTypes.java
_LlamaResults.class
_LlamaResults.java
_LlamaResults_Llama.class
_LlamaResults_Llama.java

The object most meaningful to our application is the LlamaResults_Llama class. This class represents the
characteristics of each llama from the schema. Of course, the names of the classes Axis generates are not
always pretty, but given well-formed and valid WSDL, Apache Axis should be able to create classes that
you can easily use to interact with Web services. Because Axis generates the code for you, you can certainly
change the names of the classes and recompile for better-looking class names. In this case, we will simply
use the classes that Axis generated for us. The code for our second portlet shows the llama inventory:

//import the Axis-generated classes
import com.trumantruck.bonniellama.*;
import javax.portlet.*;
import java.io.*;
import java.net.*;
//import the Sun JSP portlet that we will extend
import com.sun.portal.portlet.samples.jspportlet.JSPPortlet;
public class LlamaPortlet2 extends JSPPortlet
{

private String m_llamaURLString;
public void init(PortletConfig config)
throws PortletException, UnavailableException

299

Portlet Integration with Web Services

14 469513 Ch10.qxd 1/16/04 11:06 AM Page 299

{
String llamaURLString;
super.init(config);
m_llamaURLString = config.getInitParameter(“llama.url”);

}
public void doView(RenderRequest request,RenderResponse response)
throws PortletException, IOException
{

//Get the list of Llamas from the web service & send it on to the JSP!
try
{

_LlamaResults_Llama[] llamas = getLlamas();
request.setAttribute(“llamas”, llamas);
super.doView(request, response);

}
catch (Exception ex)
{

ex.printStackTrace() ;
response.setProperty(“expiration-cache”,”0”);
PortletRequestDispatcher rd =

getPortletContext().getRequestDispatcher(
“/llama/llamaServiceUnavailable.html”);

rd.include(request,response);
}

}

In the preceding code, we extend Sun’s JSPPortlet class, and because we are only concerned about
the functionality in VIEW mode for this example, we only override the doView() method to call the
Web service before the superclass. In this portlet, we created a getLlamas() method that used our Axis-
generated classes to call our Web service. This method — the final part of our portlet — is listed in the
following code:

/*
* This method uses the generated stuff from Axis’ WSDL2Java
*/

private _LlamaResults_Llama[] getLlamas() throws Exception
{

BonniesLlamaFarmInfoServiceService bonnie = new
BonniesLlamaFarmInfoServiceServiceLocator();

URL serviceURL = new URL(m_llamaURLString);
//Get the getLlamas() service
BonniesLlamaFarmInfoService service = bonnie.getGetLlamas(serviceURL);
//Get the LlamaResults()
_LlamaResults lr = (_LlamaResults)service.getLlamas(null);
//Finally, get the list of Llamas!
_LlamaResults_Llama[] llamas = lr.getLlama();
return (llamas);

}
}

In the preceding code, we use the classes generated by Apache Axis in the getLlamas() method. In that
method, we use the generated classes to talk to our Web service, and get a marshaled object version of
the list of llamas returned in the SOAP response. In the doView() method, we call getLlamas() to get

300

Chapter 10

14 469513 Ch10.qxd 1/16/04 11:06 AM Page 300

the list of the llama inventory, and we use that list of llamas as an attribute in the RenderRequest object
before calling the superclass that will dispatch us to the JSP page. The following code shows the JSP
page that adds presentation to the list of llamas:

<%@ taglib uri=”http://java.sun.com/portlet” prefix=”portlet” %>
<portlet:defineObjects/>
<%

com.trumantruck.bonniellama._LlamaResults_Llama[] llamas =
(com.trumantruck.bonniellama._LlamaResults_Llama[])

renderRequest.getAttribute(“llamas”);
%>
<center>

<hr/>Inventory for Bonnie’s Llama Farm</center>
<TABLE BORDER=”1”>
<tr><TD BGCOLOR=’yellow’>Name</TD>

<TD BGCOLOR=’yellow’>Type</TD>
<TD BGCOLOR=’yellow’>Description</TD>
<TD BGCOLOR=’yellow’>ID</TD>
<TD BGCOLOR=’yellow’>Image</TD>

</tr>
<%

for (int i = 0; i < llamas.length; i++)
{

String url = llamas[i].getImgurl();
%>
<tr><td><%=llamas[i].getName()%></TD><TD><%=llamas[i].getType()%></TD>

<TD><%=llamas[i].getDescription()%></TD>
<TD><%=llamas[i].getIdentifier()%></TD>

<%
if (url != null)
{

%>
<TD><IMG width=100 HEIGHT=100 SRC=’<%=url%>’></TD>

<%
}
%>

</TR>
<%
}
%>

</TABLE>

In the preceding code, we get the list of llamas as an array by obtaining that attribute from the
renderRequest object that was set in our portlet. We create a table identical to the HTML table that we
generated in the earlier approach with a stylesheet, looping the length of array, and getting the required
information from each llama returned from our Web service. The result is the same portlet that was
shown in Figure 10.4.

As you can see, this approach is a little easier than dealing directly with the SOAP messaging. It is also a
better way to enable your portlet to call your Web service; the only responsibility your JSP has is to pre-
sent the data that your portlet passes. Using the unmarshalling and marshalling features that Apache
Axis provides for you, you can handle the business logic of your application without having to delve in
the guts of SOAP messaging and WSDL parsing.

301

Portlet Integration with Web Services

14 469513 Ch10.qxd 1/16/04 11:06 AM Page 301

In this section, you have examined a few examples of building portlets that communicate with Web ser-
vices. As a result, you should be able to use the concepts presented in other chapters of this book to
build complex portlets that communicate with any Web service. In this section, we used Apache Axis,
but any Web services toolkit should be able to provide the same functionality. Another good example of
portlet integration with Web services is Sun’s Weather Portlet, distributed with many open-source port-
let containers, such as Exo Portal on SourceForge (http://sourceforge.net/projects/exo).

Web Services for Remote Portlets (WSRP)
As you have seen, traditional Web services are presentation-neutral, and as a result, we portlet develop-
ers need to provide presentation logic for the Web services we invoke. In addition, we sometimes need
to aggregate content from multiple Web services to provide a combined view. Over the past few years,
many vendors and technologists have discussed creating presentation-oriented Web service interfaces
for portlets so that they can be called remotely. However, without a standard interface definition for all
portlets, developers would have a frustrating time creating plug-and-play portlets from different Web
services. The OASIS Web Services for Remote Portlets (WSRP) specification aims to simplify the integra-
tion through standard Web service interfaces for presentation-oriented interactive Web services. WSRP
defines how a portlet can be invoked remotely, through a Web service, by a portal. This section provides
the “big picture” of WSRP: how it works, and how you can build portlets that will work well remotely.

Web Services for Remote Portlets are user-facing, interactive Web services that include presentation.
[SCHAECK] These presentation-oriented Web services enable remote portlets to be displayed in local
portals. Using WSRP services, your portal can quickly bring remote portlet content and display it locally.
Your portal can also expose local portlets remotely for other portals to use. Luckily for the portlet devel-
oper, no special portlet code is needed! The WSRP specification (as well as the Java Portlet specification)
provides important guidelines for standard user-interface markup, a topic that is covered in the section
“WSRP Guidelines for Portlet Developers,” later in this chapter. Other than that, the portlet container
does all the hard work for you. Making your portal consume remote portlets or produce local portlets
remotely should be a simple configuration step.

To begin understanding WSRP, you should understand a few terms:

❑ WSRP Producers — Producers are presentation-oriented Web services that host portlets that are
able to render markup fragments and process user interaction requests. Producers provide Web
service interfaces for self-description (metadata), markup, registration between producers and
consumers, and portlet management.

❑ WSRP Consumers — Consumers are portals or applications that communicate with presentation-
oriented Web services (remote portlets). They gather the markup delivered by the portlets and
present the aggregation to the end-user.

❑ Remote Portlets — Remote portlets are those portlets that are hosted and disseminated by a
WSRP producer through a Web services interface. These portlets can be developed with the Java
Portlet API, much like the examples in this book — and they use standard WSRP markup.

You can see all of these WSRP players in action in Figure 10.5. In this figure, both WSRP consumers and
producers are portals, and the consumer speaks SOAP to the producer to indicate a portlet that resides
on a remote server. Unlike traditional Web services, the SOAP bodies of WSRP messages contain presen-
tation information, including portlet markup.

302

Chapter 10

14 469513 Ch10.qxd 1/16/04 11:06 AM Page 302

Figure 10.5

In Figure 10.5, note that a standard Web service interface (the block that says WSRP Interfaces) enables
the consumer portal to include remote portlets from the producer. This is what WSRP is all about! When
a portal uses a remote portlet, it typically uses a generic portlet proxy to invoke the Web service, and it
invokes it much like it would invoke a local portlet. Because all remote portlets have the same interface
definition, the same proxy can be used for all remote portlets. A diagram of this interaction is shown in
Figure 10.6. As you can see, the process of the portal calling the proxy is very similar to calling a portal
using a local interface.

Figure 10.6

As simple as Figure 10.6 looks, a few complexities of producer-consumer interaction can result. A typical
process flow, based on the Web Services for Remote Portlets Specification 1.0, is shown here [WSRP]:

1. The consumer discovers the producer via a UDDI server or other type of registry. In this step,
the consumer may receive registration requirements for consumer-producer relationships, meta-
data about the producer describing the requirements for consumer-producer interactions, as
well as the types of portlets that are available for consumption.

2. The consumer and the producer establish a relationship, exchanging capability information.
This may include security and business requirements, and this relationship ultimately results in
the consumer learning the full capabilities (all available remote portlets) of the producer. Many
times, this involves a registration step.

3. The consumer and the end-user establish a relationship, which may require authentication,
based on the producer’s security requirements. This step may also consist of enabling the user
to customize content sent by the producer.

4. The consumer sends a request for a markup from a remote portlet to the producer, receives the
page, and presents this content to the end-user.

SOAP

User’s
Client

Portal

Portlet

Portlet

Portlet

Portlet

Portlet

Portlet

Remote
Portlet Proxy

Local Portlet
Interface

Aggregation Portal

WSRP
Service

SOAP
Portal

WSRP Consumer WSRP Producer

WSRP
Interfaces

Server
Portal

Portlet

Portlet

Portlet

303

Portlet Integration with Web Services

14 469513 Ch10.qxd 1/16/04 11:06 AM Page 303

5. Portlet interactions take place, based on user input events; and based on the event that is triggered,
the consumer may send this action event for processing, leading to step 4.

6. Eventually, the producer and consumer end their relationship, and resources are cleaned up.

The next section discusses some of the WSRP services that are involved in this process.

Types of WSRP Services
To enable a flexible infrastructure for remote portlets, WSRP services range from very simple to complex.
Many portlets are very simple (such as our llama example, which used only VIEW and HELP modes), but
some portlets require complex user interaction and operate based on transient and persistent state. As
you can imagine, this requires a little bit of work underneath the covers when complex portlets become
remote portlets. In fact, WSRP has defined Web service operations to handle all these scenarios. This sec-
tion describes each of the services that are available with WSRP standard portals.

Discovery, Registration, and Deregistration Services
WSRP providers can publish their remote portlets in a registry (such as a UDDI server) so that WSRP
consumers can discover information about the portlets. These registries provide the portlet name, an
overall description, supported markup types, and the WSRP interface description in WSDL. Although
registries support most capabilities for discovery, calling the WSRP getServiceDescription()opera-
tion on the Web service returns the full capabilities of the service. This also returns what is required for a
consumer to communicate with the producer (if registration is required).

If there is a requirement for registration, WSRP provides these services. To register, the consumer calls
the register() operation, passing in registration data. This registration data includes information
about the consumer, the protocol extension it supports, and portlet states and modes it is willing to
manage. A unique registrationHandle is returned from the registration operation to refer to this reg-
istration process. To later deregister, the consumer calls the deregister() operation, supplying the
initial registrationHandle so that the producer may release resources related to that consumer.

Simple WSRP Services — Stateless “View Only” Modes
The simplest WSRP service would be one that provides “view only” access to a portlet without tracking
state changes, much like in our llama example in the last section. In our llama example, we simply pro-
vided a page for VIEW mode, which invoked a Web service; and a HELP page, which provided docu-
mentation about the portlet. For such an example, if our portlet container were a WSRP producer and
wanted to expose our llama portlet as a remote portlet, it would need to register a WSRP service that
provides a getMarkup() operation, which returns a WSRP markup fragment listing the llama inventory.

More Complex Services — Interactive WSRP Services
As remote portlets require more end-user interaction, it is usually necessary to pass state information
between the producer and the consumer based on that end-user interaction. Many times, this state infor-
mation is session-based, meaning that the relationship between the end-user and the portlet ends after the
session ends. Often, persistent state information between end-users and remote portlets also needs to be
saved and passed. As a result, WSRP provides services for performing these interactions. The method
performBlockingInteraction() provides action handling for each user interaction, and it passes state
information, as well as other parameters, before the consumer calls getMarkup() to see the resulting
WSRP content. Based on the parameters passed in the performBlockingInteraction() operation,

304

Chapter 10

14 469513 Ch10.qxd 1/16/04 11:06 AM Page 304

both the consumer and producer can communicate changes in state, regardless of whether they are
persistent or session-based. The initCookie() operation is used for passing cookie information, and
releaseSessions() is called by the consumer in order to inform the producer that it will no longer be
using a set of sessions.

Portlet Management Services
A producer can expose a portlet management interface and enable a consumer to clone and customize the
portlets that the producer offers, enabling consumer-configured portlets. Using WSRP portlet-management
services, an administrator on the consumer portal can configure properties about the producer’s remote
portlet for use by the consumer. Operations in the Portlet Management Interface are as follows:

❑ getPortletDescription() provides information about the portlets it offers.

❑ clonePortlet() enables the consumer to request the creation of a new portlet from an existing
portlet.

❑ getPortletPropertyDescription() enables the consumer to discover the type and description
of the properties of a portlet, which could be useful in generating a user interface for configuring
the portlet.

❑ getPortletProperties() enables the consumer to fetch the current values of the portlet’s
properties.

❑ setPortletProperties() enables the consumer to set the current values of the portlet’s
properties.

❑ destroyPortlets() is used to inform the producer that the consumer-configured portlet will
no longer be used.

WSRP Markup Guidelines for Portlet Developers
Although we have listed some of the major WSRP Web services, you won’t have to call those WSRP ser-
vices (unless you are developing a portlet container!). Because your portlet container will do most of the
hard work as a consumer or producer of remote portlets, all you have to do is develop your portlets with
your Java Portlet API, using standard markup required by the WSRP and Java Portlet specification. For
the most part, portals utilize HTML and XHTML, and WSRP lists guidelines for what is allowed and not
allowed. This section provides an explanation of these guidelines.

Disallowed XHTML and HTML Tags
When building HTML- or XHTML-based portlets, you must not use the following tags: <body>,
<frame>, <frameset>, <head>, <html>, and <title>. Using those tags will make the producer a non-
interoperable producer; and although many consumers may allow it, it may cause erratic behavior in
some consumer environments.

Cascading Style Sheets (CSS) Style Definitions
The WSRP specification defines a set of CSS definitions in order to provide a common look and feel —
regardless of whether the portlet is displayed locally or remotely. These styles affect the decorations around
the portlets, but not the content of the portlets themselves. This section defines the styles that are listed in
the WSRP specification. The behavior of the elements that use these CSS classes is dependent on the portlet
container, so you may want to experiment with the open-source portal of your choice that uses these styles.

305

Portlet Integration with Web Services

14 469513 Ch10.qxd 1/16/04 11:06 AM Page 305

Font Style Classes
The WSRP specification provides style classes that are related to font attributes. If the developer wants a
certain font type to be larger or smaller, he or she should use the font-size style, setting it to a relative
size. The following table shows the font style classes from the WSRP specification.

Style Description

portlet-font This style is for font attributes of “normal” fonts, and it is used for the
display of non-accentuated information.

portlet-font-dim This style is for font attributes similar to the portlet-font style, but displayed
in a lighter “dimmed” color.

The following code shows a WSRP-compliant fragment of markup for the font style CSS classes:

<!— Portion of a Portlet Fragment—>
<p class=”portlet-font”>This is a test of normal font</p>
<p class=”portlet-font” style=”font-size:larger”>

This should be bigger
</p>
<p class=”portlet-font-dim”>This should be dimmed a little bit.</p>

Message Style Classes
Message style definitions affect the rendering of a paragraph and may affect the attributes of text,
depending on the portal customization settings. For example, depending on the customization parame-
ters, portals may display error messages in red, success messages in green, and so on. The following
table describes the message style class definitions dictated by the WSRP specification.

Style Description

portlet-msg-status Used for displaying the status of the current operation

portlet-msg-info Used for displaying help messages or additional information

portlet-msg-error Used for displaying error messages

portlet-msg-alert Used for displaying warning messages

portlet-msg-success Used for displaying verification of the successful completion of a task

The following code shows an example of compliant error message and information message:

<!— code —>
<p class=”portlet-msg-error”>

An error occurred as a result of this operation!
</p>
<p class=”portlet-msg-info”>The error that was returned was: ‘Insufficient Memory
to Perform Operation’. Stack trace follows:
</p>

306

Chapter 10

14 469513 Ch10.qxd 1/16/04 11:06 AM Page 306

Section Style Classes
The WSRP specification provides section style definitions that affect the rendering of markup sections, such
as alignment, borders, and background color. The following table lists the classes and their descriptions.

Style Description

portlet-section-header This style is used to show a section header.

portlet-section-body This style is used to show normal text in a section.

portlet-section-alternate This implies text in every other row in the section.

portlet-section-selected This implies text in a selected range.

portlet-section-subheader This style is used to show a subheader.

portlet-section-footer This style is used to show a section footer.

portlet-section-text This style is used for text that belongs to the section but does not fall
in one of the other categories.

The following compliant fragment uses the section style classes:

<p class=”portlet-section-header”>
More Java Pitfalls

</p>
<p class=”portlet-section-subheader”>

50 New Time-Saving Solutions and Workarounds
</p>
<p class=”portlet-section-text”>

This is a great book! Five Stars.
</p>

Table Style Definitions
The following table shows style sheet classes related to HTML and XHTML tables. Use these styles when
styling table content.

Style Description

portlet-table-header This style is used for table headers (such as “Style” and “Descrip-
tion” in this table). Sometimes, the consumer portal will make the
font of this bold, and give it a background color, making it stand out.

portlet-table-body This style is used for normal text in a table cell.

portlet-table-alternate This style highlights text in every other row in the table.

portlet-table-selected This style applies to text in a selected cell range.

portlet-table-subheader This style is for text of a subheading.

portlet-table-footer This style is for a table footer.

portlet-table-text This style is for text that belongs to the table but does not fall in one
of the other categories.

307

Portlet Integration with Web Services

14 469513 Ch10.qxd 1/16/04 11:06 AM Page 307

The following code fragment shows an HTML table with compliant style tags (from our earlier llama
example):

<!— code showing a few table styles —>
<table>

<tr class=’portlet-table-header’>
<td>Name</td><td>Type</td>
<td>Description</td><td>ID</td>
<td>Image</td>

</tr>
<tr class=’portlet-table-body’>

<td>Marshall</td><td>STUD</td>
<td>For some reason, all the ladies love this Llama</td>
<td>21979</td>
<td>http://www.trumantruck.com/marshallthepimp.jpg</td>

</tr>
</table>

Form Style Definitions
Form styles define the look-and-feel of the elements in an HTML form. The following table describes the
available styles.

Style Description

portlet-form-label This style defines text used for the descriptive label of the whole form.

portlet-form-input-field This style is used for text of the user-input in an input field.

portlet-form-button This style applies to text on a button.

portlet-icon-label This style is used for text that appears beside a context-dependent
action icon.

portlet-dlg-icon-label This style defines text that appears beside a “standard” icon (for exam-
ple, OK or Cancel).

portlet-form-field-label This style applies to text for a separator of fields (for example, check-
boxes, and so on).

portlet-form-field This style is used for text for a field (input field, check boxes, and so on).

The following code fragment shows compliant portlet markup using the form style definitions:

<form>
<p align=”center” class=”portlet-section-header”>

Llama Registration Form
</p>
<center>

<table>
<tr><td class=”portlet-form-label” colspan=”2”>

Please Enter The Llama Registration ID of the Llama
You would Like to Register

308

Chapter 10

14 469513 Ch10.qxd 1/16/04 11:06 AM Page 308

</td>
</tr>
<tr><td class=”portlet-form-field-label”>Identification #</td>

<td><input name=”llama_identifier” type=”text”
class=”portlet-form-input-field”>

</td>
</tr>
<tr><td class=”portlet-form-label” colspan=”2” align=”center”>

<input name=”submit” type=”button”
class=”portlet-form-button”
value=”Register!”/>

</td>
</tr>

</table>
</center>

</form>

Revising the Llama Portlet to Make It WSRP-Compliant
Finally, in order to make our llama portlet’s JSP a WSRP-compliant portlet, we need to change a few
things. Because we created a table in our portlet, we need to use the table style definitions shown in the
table of the same name. The following code shows the change to our earlier llama example to make it
compliant:

<%@ taglib uri=”http://java.sun.com/portlet” prefix=”portlet” %>
<portlet:defineObjects/>
<%

com.trumantruck.bonniellama._LlamaResults_Llama[] llamas =
(com.trumantruck.bonniellama._LlamaResults_Llama[])

renderRequest.getAttribute(“llamas”);
%>
<p class=’portlet-section-header’>Inventory for Bonnie’s Llama Farm</p>
<p class=’portlet-section-body’>

</p>
<TABLE BORDER=”1”>
<tr class=’portlet-table-header’><TD>Name</TD><TD>Type</TD>

<TD>Description</TD><TD>ID</TD><TD>Image</TD>
</tr>

<%
for (int i = 0; i < llamas.length; i++)
{

String url = llamas[i].getImgurl();
%>

<tr class=’portlet-table-body’>
<TD><%=llamas[i].getName()%></TD><TD><%=llamas[i].getType()%></TD>
<TD><%=llamas[i].getDescription()%></TD>
<TD><%=llamas[i].getIdentifier()%></TD>

<%
if (url != null)
{

%>

309

Portlet Integration with Web Services

14 469513 Ch10.qxd 1/16/04 11:06 AM Page 309

<TD><IMG width=100 HEIGHT=100 SRC=’<%=url%>’></TD>
<%
}
%>

</tr>
<%
}
%>

</TABLE>

User Information
The WSRP specification, along with the Java Portlet Specification, provides a mechanism for portlets to use
standardized user information in order to personalize behavior for the current user. A standard set of user
attributes has been derived from the W3C P3P (Platform for Privacy Preferences) specification. Because of
space limitations, we do not list them all here, but refer you to Section 11 (User Information) of the WSRP
specification, available at www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrp/. This user
information can be used when passing information between a producer and a consumer. These user
attributes can also be used in portlet descriptors, as the Java Portlet specification suggests.

Summary
This chapter covered a lot of ground. We have provided an overview of how portals and portlets can
interact with Web services. We provided a brief overview of Web services standards; discussed design
strategies for building portlets that communicate with Web services; and showed you how by providing
examples of portlet code interacting with services. We also discussed the Web Services for Remote Portlets
(WSRP) specification, and provided guidelines for writing WSRP-compliant markup in your portlets.

310

Chapter 10

14 469513 Ch10.qxd 1/16/04 11:06 AM Page 310

Performance Testing,
Administering, and

Monitoring Your Portal

Portals have become an important tool for organizations to improve their knowledge transfer
through dynamic content delivery and self-service activities for large audiences of people who rely
on that information to be effective in their positions. Many institutions have already made signifi-
cant investments in portals and will continue to rely on portal development activities to reign in
maintenance costs that result from the proliferation of unstructured Web sites and to avoid the
misplacement of information that could result in the obsolescence of critical information.

More often than not, successful portal implementations were crafted by diverse development and
Web content teams that managed to operate in a consistent manner amidst the chaos that inevitably
consumes these programs. This chapter discusses how development and deployment consistencies
can be attained by creating and applying reliable and repeatable process methodologies using open-
source tools during a program’s life cycle.

Portal process coordination starts with a pragmatic understanding of what you have, what you
need, and how are you going to get where you want to be. Some portal projects are lucky enough
to have previously developed source code or some open-source libraries that they can easily reuse
and deploy with portlet wrappers, but others might need to develop new programs that have to
integrate with previously developed code. The trick is to “sync-up” all of these applications
through configuration management, testing, and network management procedures.

It is paramount that all software programs implement a configuration management (CM) scheme
to manage development operations so that development efforts can be controlled, and deployment
risks and errors can be avoided.

This chapter focuses on a few open-source technologies that should help assist you in your pro-
gram management activities. These tools include CVS, ANT, JUnit, JMeter, Anthill, and Scarab,

15 469513 Ch11.qxd 1/16/04 11:06 AM Page 311

which are primarily used during portal development iterations. Additionally, some elaboration is pro-
vided for network management pieces that use Java Management Extensions (JMX), which are generally
used during deployment and maintenance to observe, monitor, and alter your applications through con-
trolled interfaces to ensure that they’re working properly. Some portlet examples will exhibit the use of
JMX MBeans to perform system administration operations. The final section of this chapter demonstrates
the implementation of an open-source collaboration server called JSPWiki, which might be used for a
portal implementation to share knowledge among the stakeholders of a portal system, to propagate best
practices and lessons learned, and to share documents and exchange ideas. The point here is to provide
a general overview of how open-source applications can be implemented to capture and maintain your
processes properly so that your portal development and maintenance activities don’t overwhelm your
program. Prior to discussing some of these important tools, a brief description of an important develop-
ment methodology called continuous integration will be touched on to emphasize the importance of
testing your applications to facilitate integration activities in the latter stages of your program.

Continuous Integration
Continuous integration is an eXtreme Programming (XP) practice that obliges developers on a software
program to submit tests along with their code so that automated procedures can be put in place to test in
an automated fashion that code and any modifications that are made to it. Open-source tools such as
CruiseControl, BusyB, and AntHill have been developed to assist in this process and have made continu-
ous integration a practical consideration for many integration activities. The idea behind continuous
integration is to facilitate integration testing up front and manage risk so that interface issues don’t bog
down deployment operations in the final stages of deployment.

Continuous integration encompasses the execution of automated builds from a centralized code repository
from which developers check in and check out source code during their development activities. A system
build is typically generated daily from this repository so that tests can be run against new code submis-
sions to ensure that all new modifications to that code have not corrupted previously working code. More
often than not, these tests are run during off-hours so as not to interfere with normal operations.

Two approaches for performing continuous integration operations with Open-source tools and a central-
ized code repository warrant the implementation of CVS and the newer Subversion applications., The
following sections discuss these technologies to help you gain a better appreciation of these capabilities
and how they can be implemented to help you manage your development challenges.

CVS
Concurrent Versioning System (CVS) is used on many development programs to manage source code
artifacts and their modifications. The CVS application acts as a coordination tool to control code devel-
opment and facilitate the merging of changes by different developers. This harmonization enables pro-
grams to remain in sync programmatically and ensures that developers work off a common source code
set. Additionally, CVS repositories allow common releases to be tagged so that ongoing operations can
check out working copies of files and roll back code to procure targeted builds for release.

In Figure 11.1 is a brief overview of CVS, and some its operations are demonstrated to provide you with
a better appreciation of its use. Developer 1 is shown checking out the portal module and all of the code
and libraries associated with the portal module. This action is generally taken when a programmer is

312

Chapter 11

15 469513 Ch11.qxd 1/16/04 11:06 AM Page 312

starting out and needs to access the baseline code for a program. Developer 2 is adding an archived file
called messageboard.jar to the CVS repository. Notice the -kb flag appended to the add statement.
This is used to ensure that the file being archived is marked as binary.

Figure 11.1

Most problems on application deployments that use CVS are the result of developers checking in code
improperly, which often means checking in or adding binary libraries without the -kb option. The absence
of this flag during CVS add operations will cause problems on your system and can be hard to track down
during your development activities, so consideration might be given to using the cvswrappers file to
ensure that files that end in jar are included in add and import operations as binary files. Developer 3 is
performing an import operation of an entire module under the name “portal” to the CVS repository. The
same consideration needs to be given to binary files during this operation also.

A system administrator who is responsible for maintenance of a CVS repository generally tags builds
for deployment to customer sites. This person will check out code submitted by the program’s developers
according to the tag associated with the code marked during the life cycle of the project.

A great resource that should help you get a better handle on CVS and its utilization can be found at
www.cvshome.org/docs/manual/. Because CVS is such an important tool used in many of the CM
processes described later in this chapter, additional command-line operations are provided in this
section to enhance your learning.

pr
om

pt
>

cv
s c

he
ck

ou
t p

or
ta

l

prompt> cvs import -m

“Baseline” calendar

baseline start

prompt> cvs add
-kb messageboard.jar

Checkout build
based on

tagged releases

Release_1_7 Release_1_0

Developer 1

Developer 2

Developer 3

CVS Administrator

Customer 1Customer 2

Computer

CVS Layer

Network

313

Performance Testing, Administering, and Monitoring Your Portal

15 469513 Ch11.qxd 1/16/04 11:06 AM Page 313

The CVS tool requires the implementation of a server application to process user requests for source
code from the repository. Accounts must be established on the server to allow access to the code, along
with CVS group privileges. To access that server, a client application must implement a communication
protocol to gain access to the repository. The following paragraphs discuss two means of accessing data
from the CVS library: through a password server and with an ssh script.

For a client to access a CVS repository that uses a password server, the CVSROOT environment variable
must be established to expedite the checking in/out of source code. The CVSROOT environment variable
takes the following form:

:pserver:<username>@<hostname>:<cvs-repository-path>

If this is not performed by the client, then the user is forced to type the following at the command line,
or in their CVS IDE tool dialog window: -d :pserver:<username>@<hostname>:<cvs-repository-path>
for every CVS operation, which can be quite painful if you need to perform many CVS operations.

Ssh (Secure shell) client access is a safer alternative to using a password server for CVS operations. Ssh is
a program that enables users to log into remote computers, execute commands, and transfer files from
one machine to another. Ssh provides strong authentication and secure communications over unsecured
channels. Ssh would be used to protect against sinister snoopers who might log all of the incoming/
outgoing traffic on your system, especially passwords or any other information that is passed in the
clear. Additionally, Ssh can prevent IP spoofing — whereby unknown remote hosts pretend to be trusted
hosts — because it never trusts the network. To use Ssh in your CVS activities, you must set the environ-
ment variable CVS_RSH equal to ssh, and then use the following code to perform your CVS operation:

cvs –d :ext:<username>@<hostname>:<cvs-repository-path> command

CVS updates to your working directory are performed by using the update command to capture new
files that might have been checked in by other users. An example for an update to your files would be
cvs update <module-name>.

To add files that you have worked on, you must use the commit operation. CVS examines each directory
and subdirectory below the current working directory. Any files that CVS knows about will be checked
for changes. When changes are committed to the CVS repository, CVS opens your default editor and
asks that you comment on the changes to the file(s) being checked in. A window similar to the following
will be shown:

CVS:—————————————————————————————————
CVS: Enter Log. Lines beginning with ‘CVS:’ are removed automatically
CVS:
CVS: Committing in .
CVS:
CVS: Modified Files:
CVS: example/portal/sample.tld example/portal/sample.jar
CVS:—————————————————————————————————

The removal of files from CVS repositories often is a tricky proposition for developers, unless they’ve
performed this action a few times before. A file is marked for removal by using the remove statement in
the following manner: cvs remove <filename>. After that is done, the file needs to be deleted from
your working directory. The CVS application puts this file in a subdirectory called Attic, which makes
that file transparent to future operations on it.

314

Chapter 11

15 469513 Ch11.qxd 1/16/04 11:06 AM Page 314

To compare files in your working repository with a centralized CVS repository, the diff command can be
used. To understand the history of a file, a user can type cvs history –c <filename> to display when a par-
ticular file has been checked in. Additionally, file information can be displayed with the log command.

One salient shortcoming of the CVS application is that it does not lock files to prevent two or more users
from making modifications on the same file, necessitating the need to merge those files upon commitment
to the CVS repository. This merging can be quite messy, especially if a large number of changes are made
by a different set of users to a particular file. A new open-source application called Subversion (http://
subversion.tigris.org) addresses the nonlocking aspect of CVS and has been developed to supercede CVS,
which promises to make it a more robust tool for code management.

Subversion
Subversion is an alternative open-source revision control system to CVS that was developed by the
Tigris.org group (http://subversion.tigris.org) for software configuration and management. With
Subversion, software developers can monitor modifications in their code and work independently of other
developers with confidence that complicated merge operations are not needed. The Subversion file system
tracks changes to it by storing files in a tree structure. Recall that a big problem with CVS is that two or
more users can modify the same file at the same time, which can cause files to become out-of-sync. To get
back into sync, those files have to be manually merged to accommodate changes made by multiple users.

Figure 11.2 demonstrates how complicated merges required with the use of CVS are avoided with
Subversion.

Figure 11.2

write

User 1 reads repository
artifact to get in sync

Merged version
is published

A merged version of the artifact
is created

Both users
edit their files

User 1 writes back
to repository

User 2 writes back to
repository and receives
“out of date” message

Two users
copy same file

read

rea
d

re
ad

re
ad

1

2

3

4

5

6

7

8

User 1User 2

User 1User 2

User 1User 2

User 2 compares
working version to
repository version

User 1User 2

User 1
User 2

User 1

User 1

User 2

User 1 User 2

repository

315

Performance Testing, Administering, and Monitoring Your Portal

15 469513 Ch11.qxd 1/16/04 11:06 AM Page 315

Subversion’s strengths, which make it an attractive alternative to the CVS source control management
tool, are as follows:

❑ It shares many CVS features, with the exception of the annotation task, which has been put off
until after the 1.0 release.

❑ File contents are versioned.

❑ Commit operations are atomic, meaning that until an entire commit has been successful,
updates to that repository are considered incomplete.

❑ The open-source Apache Web server acts as a network server to enable WebDAV protocol oper-
ations to act upon the code repository.

❑ It uses a binary “diff”-ing mechanism to store successive revisions of a file.

Although CVS is a great tool that has been implemented on many software development programs, con-
sideration should be given to Subversion and its wider range of capabilities to facilitate your configura-
tion management activities.

JUnit
Unit testing is typically performed to verify that subsystem components function properly with different
types of user input. With unit testing, a predetermined set of tests are run against static data from a con-
trolled environment. On many portal implementations, these tests act on back-end JavaBean components
and their methods.

Countless numbers of CVS and ANT script integrations have been published to describe how developers
and testers can use these technologies to perform continuous integration activities. Rather than repeat some
of these implementations, this section explores a slightly different perspective that might be considered to
accommodate your testing activities.

Test teams generally like unit tests because testers consider code to be correct by examining input/output
conditions of the code during their testing. This view can sometimes appear myopic to stakeholders, who
consider the entire code set and how it works from an operations perspective. Therefore, overall testing
procedures should aggregate both views to determine whether a program is working properly.

JUnit is an open-source test framework found at www.junit.org that enables developers to easily auto-
mate unit testing of their source code creations from source code repository builds. The example shown
in the following code demonstrates how JUnit and CVS can be used to satisfy your test objectives.

The dialog box shown in Figure 11.3 illustrates the use of an open-source ANT library found at
www.kasisoft.de/build/ant/interactive/ called Interactive ANT.

With Interactive ANT, users can create drop-down lists and text fields for dynamic user inputs. The
build-portal-tests.xml file enables users to browse the local directory file system for the directory
in which tests will be run, select pre-determined tests for execution, select the JUnit run mode, and query
the user as to whether the code being tested should be checked out of CVS prior to running unit tests.

316

Chapter 11

15 469513 Ch11.qxd 1/16/04 11:06 AM Page 316

Figure 11.3

The following code shows the ANT script that actually executes the JUnit tests based on the user inputs
from the interactive dialog application. The first section of the script initializes property values concern-
ing file paths and CVS dependencies. Naturally, these could also be sent through the command line or
from an external properties file. The file classpaths are defined for the JAR files that are needed to run
the interactive display:

001: <?xml version=”1.0”?>
002: <project name=”junitTest” default=”help”>
003:
004: <property environment=”env”/>
005: <property file=”build.properties”/>
006: <property name=”deploy.dir” value=”./deploy” />
007: <property name=”app.name” value=”PORTAL”/>
008: <property name=”lib.path” value=”.”/>
009:
010: <!— CVS —>
011: <property name=”cvs.username” value=”emilyStephenA” />
012: <property name=”cvs.hostname” value=”localhost” />
013: <property name=”cvs.dir” value=”c:\cvsrep” />
014: <property name=”cvs.module” value=”CVSTests” />
015:
016: <!— Setup the system classpath —>
017: <path id=”system.classpath”>
018: <pathelement path=”${lib.path}/AntelopeTasks.jar”/>
019: <pathelement path=”${lib.path}/portal_interactive.jar”/>
020: <pathelement path=”${env.ANT_HOME}”/>
021: </path>
022:
023: <!— task definitions —>
024: <taskdef name=”if” classname=”ise.antelope.tasks.IfTask”
classpathref=”system.classpath” />
025: <taskdef name=”interactive” classname=”portal.Interactive”
classpathref=”system.classpath” />
026:

The run_interactive_display_test target that starts on line 27 uses the Interactive ANT libraries to
render the user GUI shown in Figure 11.3 so that users can dynamically declare directory, test selection,
GUI, and CVS flag information that will be used to run the JUnit tests. The if-then-else logic operations
are enabled by the Antelope libraries to trigger proper target execution for testing:

317

Performance Testing, Administering, and Monitoring Your Portal

15 469513 Ch11.qxd 1/16/04 11:06 AM Page 317

027: <target name=”run_interactive_display_test”>
028: <interactive verbose=”off”>
029: <input property=”dir” text=”Directory” type=”dir”
value=”c:\Java_Portal_book\JUnit” />
030: <input property=”test” text=”Test Selection” type=”test” />
031: <input property=”junit” text=”Run JUNIT GUI/non-GUI” type=”junit” />
032: <input property=”cvs” text=”Checkout code from CVS?” type=”cvs” />
033: </interactive>
034: <echo> Directory : ${dir} </echo>
035: <echo> Test selection : ${test} </echo>
036: <echo> JUnit run selection : ${junit} </echo>
037: <echo> Checkout code from CVS? : ${cvs} </echo>
038:
039: <if name=”cvs” value=”Checkout code from CVS”>
040: <antcall target=”cvs_code_checkout”/>
041: </if>
042:
043: <if name=”test” value=”— Select Test”>
044: <echo> No test selected. Please select a test. </echo>
045: <else>
046: <if name=”junit” value=”— Select GUI/non-GUI”>
047: <echo> No JUnit option selected. Please select a JUnit option.
</echo>
048: <else>
049: <if name=”test” value=”Test1”>
050: <echo> Test1 selected </echo>
051: <if name=”junit” value=”Run w/ GUI”>
052: <antcall target=”portal_test1_gui”/>
053: <else>
054: <antcall target=”portal_test1_nongui”/>
055: </else>
056: </if>
057: <else>
058: <if name=”test” value=”Test2”>
059: <echo> Test2 selected </echo>
060: <if name=”junit” value=”Run w/ GUI”>
061: <antcall target=”portal_test2_gui”/>
062: <else>
063: <antcall target=”portal_test2_nongui”/>
064: </else>
065: </if>
066: <else>
067: <echo> All tests [Test1/Test2] selected </echo>
068: <if name=”junit” value=”Run w/ GUI”>
069: <antcall target=”portal_test1_gui”/>
070: <antcall target=”portal_test2_gui”/>
071: <else>
072: <antcall target=”portal_test1_nongui”/>
073: <antcall target=”portal_test2_nongui”/>
074: </else>
075: </if>
076: </else>
077: </if>
078: </else>
079: </if>
080: </else>

318

Chapter 11

15 469513 Ch11.qxd 1/16/04 11:06 AM Page 318

081: </if>
082: </else>
083: </if>
084: </target>
085:

The run_commandline_test target that starts on line 86 determines which test to select for operation.
If the test name selected is Test1, then a text string will be echoed to the console with the value Test1.
Otherwise, the target portal tests, not shown in this script, will be called:

086: <target name=”run_commmandline_test”>
087: <!— read from properties files —>
088: <echo>Directory : ${dir} </echo>
089: <echo>Test selection : ${test} </echo>
090:
091: <if name=”test” value=”— Select a test”>
092: <echo> No test selected </echo>
093: <else>
094: <if name=”test” value=”Test1”>
095: <echo> Test1 </echo>
096: <else>
097: <antcall target=”portal_tests”/>
098: </else>
099: </if>
100: </else>
101: </if>
102: </target>
103:

The portal_test1_gui and portal_test2_gui targets that start on lines 104 and 115 run JUnit tests in
a GUI display so that users can visually determine if their tests have passed or failed in their operations:

104: <target name=”portal_test1_gui”>
105: <java fork=”yes” classname=”junit.awtui.TestRunner”
106: taskname=”junit” failonerror=”true”>
107: <arg value=”validateFormTestCase1”/>
108: <classpath>
109: <pathelement path=”${lib.path}” />
110: <pathelement path=”${java.class.path}” />
111: </classpath>
112: </java>
113: </target>
114:
115: <target name=”portal_test2_gui”>
116: <java fork=”yes” classname=”junit.awtui.TestRunner”
117: taskname=”junit” failonerror=”true”>
118: <arg value=”validateFormTestCase2”/>
119: <classpath>
120: <pathelement path=”${lib.path}” />
121: <pathelement path=”${java.class.path}” />
122: </classpath>
123: </java>
124: </target>
125:

319

Performance Testing, Administering, and Monitoring Your Portal

15 469513 Ch11.qxd 1/16/04 11:06 AM Page 319

The portal_test1_nongui and portal_test2_nongui targets that start on lines 126 and 143 run
JUnit tests from the command line. The JUnitReport test descriptors will output their test results in
an XML file for observation and analysis:

126: <target name=”portal_test1_nongui”>
127: <echo message=”Running JUnit tests.” />
128: <junit printsummary=”true”>
129: <formatter type=”xml” />
130: <test name=”validateFormTestCase1” />
131: <classpath>
132: <pathelement location=”.” />
133: </classpath>
134: </junit>
135: <junitreport todir=”.”>
136: <fileset dir=”.”>
137: <include name=”TEST-*.xml” />
138: </fileset>
139: <report format=”frames” todir=”.” />
140: </junitreport>
141: </target>
142:
143: <target name=”portal_test2_nongui”>
144: <echo message=”Running JUnit tests.” />
145: <junit printsummary=”true”>
146: <formatter type=”xml” />
147: <test name=”validateFormTestCase2” />
148: <classpath>
149: <pathelement location=”.” />
150: </classpath>
151: </junit>
152: <junitreport todir=”.”>
153: <fileset dir=”.”>
154: <include name=”TEST-*.xml” />
155: </fileset>
156: <report format=”frames” todir=”.” />
157: </junitreport>
158: </target>
159:

The cvs_code_checkout target that starts on line 160 performs checkout operations on the CVS reposi-
tory, as well as move and delete activities on the file system. After files have been checked out from CVS,
the code is compiled from the compile_portal_tests target:

160: <target name=”cvs_code_checkout”>
161: <echo message=”Checking out test code from CVS.” />
162: <cvs cvsRoot=”:pserver:${cvs.username}@${cvs.hostname}:${cvs.dir}”
163: command=”co ${cvs.module}”
164: dest=”${lib.path}” />
165: <!— move files for easy access —>
166: <move todir=”${lib.path}”>
167: <fileset dir=”${lib.path}\CVSTests”/>
168: </move>
169: <delete dir=”${lib.path}\CVSTests”/>

320

Chapter 11

15 469513 Ch11.qxd 1/16/04 11:06 AM Page 320

170: <!— compile code —>
171: <antcall target=”compile_portal_tests”/>
172: </target>
173:

The compile_portal_tests target on line 174 compiles the baseline code checked out from CVS repos-
itory. The help target that start on line 181 could be used to add help text to facilitate operations for new
users:

174: <target name=”compile_portal_tests”>
175: <echo message=”Compiling Portal test code.” />
176: <javac srcdir=”${lib.path}”
177: destdir=”${lib.path}”
178: classpathref=”system.classpath” />
179: </target>
180:
181: <target name=”help” description=”Help”>
182: <echo message=”JUnit application”/>
183: <echo message=””/>
184: <echo message=”Place help instructions here. “/>
185: <echo message=””/>
186: </target>
187:
188: </project>

The taskdef definitions on lines 24–25 associate task names with their library class names. Task defini-
tions require two attributes: the name that identifies the unique task, and the full name of the class that
implements this task. Our Interactive ANT example uses two open-source libraries that can be downloaded
from the Internet: Antelope (http://sourceforge.net/projects/antelope) and Interactive ANT, which can
be procured from (www.kasisoft.de/build/ant/interactive/). The Antelope libraries enable users to imple-
ment Java-like if/else constructs in your ANT scripts. The Interactive ANT libraries allow users to easily
create interactive displays to add script behavior on the fly.

As previously mentioned, vast amounts of JUnit test materials and references can be found online, as
well as in journals and books, but a simple primer should suffice to refresh your memory in case you
might have forgotten some of the steps needed to successfully deploy JUnit tests. Feel free to skip ahead
if this material is not for you.

The validateFormTestCase2 program in the following code runs three tests on the methods of the
validateForm application in the code that follows it. Notice the assert operations that are performed
on the returned values from the accessor methods of the JavaBean. These operations are considered back-
box testing because our only concern is that if we add a value in the test sent to an application, that same
value is returned when we try to invoke it later:

import junit.framework.TestCase;
public class validateFormTestCase2 extends TestCase {

public void testCase2() {
validateForm vForm = new validateForm();

assertTrue(vForm != null);
vForm.setTelephoneNumber(“703-555-1212”);

assertTrue(“703-555-1212” == vForm.getTelephoneNumber());
}

321

Performance Testing, Administering, and Monitoring Your Portal

15 469513 Ch11.qxd 1/16/04 11:06 AM Page 321

public void testCase3() {
validateForm vForm = new validateForm();
assertTrue(vForm != null);
vForm.setBirthDate(“04-12-1963”);
assertTrue(“04-12-1963” == vForm.getBirthDate());

}
public void testCase5() {

validateForm vForm = new validateForm();
assertTrue(vForm != null);

vForm.setSsn(“123-45-6789”);
assertTrue(“123-45-6789” == vForm.getSsn());

}
}

The validateForm application in the following code is a simple JavaBean application that runs on the
server back-end and is used by a Web component that runs in an application server’s Web container. The
JUnit test in the preceding code will invoke the get and set operations in this class to determine whether
the internal methods behave properly when user inputs are run against them. The validate method uses
regular expressions to determine whether user inputs are correct. If no errors have been found, the JSP
that uses this validation form can be assured that all data input by the user is proper and well-formed:

import java.util.*;
import java.text.*;
import java.util.regex.*;
public class validateForm {

private String telephoneNumber;
private String birthDate;
private String ssn;

private Hashtable errors;
public boolean validate() {
boolean errorsFound=false;

if (telephoneNumber.equals(“”)) {
errors.put(“telephoneNumber”,”Please enter a valid telephone #”);

errorsFound=true;
} else {

if (!(telephoneNumber.matches(“\\+?([0-9]+-)+([0-9]+-)+[0-9]+”))) {
errors.put(“telephoneNumber”,”Please enter a valid telephone

format ### - ### - ####”);
errorsFound=true;

}
}

if (ssn.equals(“”)) {
errors.put(“ssn”,”Please enter a valid Social Security #”);

errorsFound=true;
}

else {
if (!(ssn.matches(“(\\d{3}\\-?)+(\\d{2}\\-?)+\\d{4}+”))) {

errors.put(“ssn”,”Please enter a valid SSN: ### - ## - ####”);
errorsFound=true;

}
}
if (birthDate.equals(“”)) {

322

Chapter 11

15 469513 Ch11.qxd 1/16/04 11:06 AM Page 322

errors.put(“birthDate”,”Please enter a valid date”);
errorsFound=true;

} else {
if (!(birthDate.matches(“(\\d{4}\\-?)+(\\d{2}\\-?)+\\d{2}+”))) {

errors.put(“birthDate”,”Please enter a valid date format: (yyyy-
mm-dd)”);

errorsFound=true;
}

}
return errorsFound;

}
public String getErrorMsg(String s) {

String errorMsg =(String)errors.get(s.trim());
return (errorMsg == null) ? “”:errorMsg;

}
public validateForm() {

telephoneNumber=””;
birthDate=””;
ssn=””;
errors = new Hashtable();

}

The following code performs get and set operations for the validateForm bean that is used by a JSP
for validation activities:

// getters
public String getTelephoneNumber() {

return telephoneNumber;
}
public String getBirthDate() {

return birthDate;
}
public String getSsn() {

return ssn;
}
// setters
public void setTelephoneNumber(String tn) {

telephoneNumber=tn;
}
public void setBirthDate(String bd) {

birthDate=bd;
}
public void setSsn(String s) {

ssn=s;
}

}

In summary, during portal development, it is very easy for a program’s complexity to grow exponen-
tially because of design and technology miscalculations. To staunch this occurrence, attention should be
given to developing unit tests for your applications throughout your programming activities to mitigate
deployment risks on your portal program. Once these tests have been crafted, you should archive them
in your code repositories for future retrieval and implementation.

323

Performance Testing, Administering, and Monitoring Your Portal

15 469513 Ch11.qxd 1/16/04 11:06 AM Page 323

AntHill
Earlier in this chapter, we discussed the use of CVS, ANT, and JUnit applications for continuous integra-
tion operations. Typically, the implementation of these technologies for testing necessitates the manual
setting up of scripts to run those applications. The ANT script shown in the preceding section, named
junitTest, checks out the latest baseline code from the CVS repository; compiles those files; deploys
those files as libraries in Java Archive (JAR) format; runs unit tests with JUnit on all of the individual
components; and verifies that bugs were not introduced into the working baseline.

Rather than manually integrate those parts into a single ANT script and develop a separate script for
scheduling test execution, consider using a really nifty open-source application called Anthill to perform
those same activities. Anthill was developed by Urbancode and can be found at www.urbancode.com/
projects/anthill/default.jsp. Anthill uses Jakarta Apache’s ANT tool to automate build processes so that
multiple users can build code together from a consistent baseline that resides in a centralized source code
repository. AntHill requires the following open-source applications for deployment:

❑ Tomcat v4.1.24 or higher — Anthill deploys as a Web application, so the anthill.war file that
is included with the Anthill distribution should be installed in the /webapps directory of the
Tomcat server.

❑ Any e-mail server application — Our example uses the open-source application called JAMES
v2.1. JAMES can be downloaded from the Internet at http://james.apache.org/. Once installed,
a user account needs to be established so that build notifications can be broadcast. Generally,
this involves installing and running the JAMES server with the run script, telnet-ing to the
default port number 4555, and adding a user account. A default user login is root/root; from
there you can type help to get more information on operations that can be performed by the
user. These activities include the following: user account actions, user account information
displays, and forwarding tasks. See Chapter 3 for more information on JAMES.

❑ ANT — The ANT utility can be found at http://ant.apache.org. It is a Java-based build tool that
uses XML scripts to target build operations.

❑ CVS — CVS can be procured from www.cvshome.org. Once it has been properly installed on
your system, a file named project.version needs to be added to the CVS module directory
being tested. The number placed in that file is incremented by one for each consecutive build per-
formed by AntHill on that module.

The Projects section of Figure 11.4 indicates that a project named Portal Test was run at a designated
build interval indicated by a timestamp. A successful run renders a green background indication around
the build time. An unsuccessful run displays a red background, indicating that unit tests have dis-
covered an error, which could warrant further investigation.

The Build link associated with the individual projects enables users to create non-scheduled builds on
the fly. When clicked, a Web page is rendered to the user display that shows the current version number
of that task. Along with that is a checkbox, indicating that a new build will be executed; and a text field,
which must have a new build version input associated with it.

The Anthill application enables users to modify test properties through a Web browser. The anthill.
build.script property can be designated so that the testing framework can execute JUnit test scripts
on demand or at desired time intervals. All scheduled test scripts should reside in a folder that is relative
to the project root directory.

324

Chapter 11

15 469513 Ch11.qxd 1/16/04 11:06 AM Page 324

Figure 11.4

Figure 11.5 shows a Web-based administrative display that enables users to designate test properties for
test operations. Some of the important configuration considerations include e-mail setup values, Anthill
home path information, and the URL that will be accessed from Anthill.

Figure 11.5

325

Performance Testing, Administering, and Monitoring Your Portal

15 469513 Ch11.qxd 1/16/04 11:06 AM Page 325

AntHill implements a property file called anthill.properties to save system configuration values
that are modified by the user. This file maintains the attributes shown in the following table.

Property Description

anthill.home Location of Anthill installation (for example, d:/anthill)

anthill.ant.home Location of ANT installation (for example, lib/ant1.5.1)

anthill.version.adapter Controls the format of the version number Anthill uses during
scheduled builds (for example, com.urbancode.anthill.
adapter.UrbanCodeVersionAdapter)

anthill.repository.adapter Component responsible for interaction with the source control
repository (for example, com.urbancode.anthill.
adapter.CVSRepositoryAdapter)

Anthill.publish.dir.default Location to place artifacts after a build is completed (for exam-
ple, publishDir)

Anthill.mail.host Mail server IP address or DNS name (for example, localhost)

Anthill.mail.from Address that will show up on notification alerts (for example,
root@localhost)

Anthill.server Address where URL address will be accessed on the server (for
example, http://localhost:8080/anthill/)

As with all testing tools, configuring them is the most difficult part of their implementation. Once they
have been properly set up, your automated builds will enhance your program’s testing and integration
processes. The idea here is to build your unit tests with JUnit and then use Anthill to apply those tests to
build files that are generated from your CVS repository using the scheduling and build activities of the
Anthill tool to increase your operational efficiencies.

Load Testing
For most software implementations, unit tests are performed in a controlled fashion. This differs from
load testing, which evaluates dynamic user and content transactions on a system in a semi-controlled
manner. You might intend to simulate 50+ user transactions on a system, but you can’t be absolutely
sure which simulated user is being processed, because the threaded components you would use for
those users can operate in a random fashion. The purpose of load testing is to ensure that a system
delivers the functionality that system stakeholders expect, rather than what testers and developers want
their unit tests to accomplish. Load tests are important because they enable testers to discover system
software faults during development so that they can be rectified prior to final deployment. Load tests
come in many forms, but you might consider two in your testing operations: stress and configuration.

Stress tests are run to ensure that a deployed system can handle a specified number of users, and to gain a
better understanding of how a system performs when those users perform simultaneous transactions on it.
Stress tests are generally run to take measurements on a system that has a significant amount of users per-
forming simultaneous transactions. Configuration tests are executed to evaluate the software/hardware

326

Chapter 11

15 469513 Ch11.qxd 1/16/04 11:06 AM Page 326

configurations on a system to ensure that a system is deployed satisfactorily and meets all of the system
requirements established by the stakeholders of a program.

Tests that simulate stress loads are critical to all Web-based deployments, but they’re especially pertinent
for portal deployments because portals are built to service large user communities through portlets, which,
taken as a whole, perform many independent back-end operations simultaneously. Load test implementa-
tions monitor and report on the performance and scalability of a system to ensure that high performance is
attained. Performance and scalability are two primary concerns for most portal deployments because of
their dependence on back-end data sources for dynamic content and their need to handle transactional
operations as user loads are increased on a system. Traditionally, portlet usage projections are generated
during the requirements phase of a portal project but are not realized until the portal application is deployed
and is accessible to the user community. The open-source application JMeter can be used to test those pro-
jections and your Web site’s behavior under measured stress levels during development so that bottlenecks
in your applications can be corrected and re-engineered prior to deployment.

JMeter
JMeter is a Jakarta Apache offering (http://jakarta.apache.org/jmeter/) that runs as a Java Swing applica-
tion to measure and test nonfunctional behavior of Java applications, databases, LDAP directory server
lookups, and Web components. JMeter simulates user loads through threaded applications that are set up
through its console application. JMeter also renders graphical analyses of scheduled tests on designated
applications and enables users to archive test data results for future observation and interpretation.

It would be hard to argue that many portal development efforts have not benefited from the implementa-
tion of open-source products in their deployments. Compressed development cycles have led to wide-
spread implementation of open-source libraries to accommodate tight delivery timelines. As a result of this,
developers often deploy libraries that have been developed independently from their teams. This reliance
on free open-source libraries has gained prominence in development circles and poses a difficult dilemma
for teams that are challenged to deploy reliable enterprise systems with no in-depth knowledge of these
libraries in their systems. This occurrence has warranted the implementation of unit and load tests to moni-
tor software integrations and to correct performance obstacles early in their development timetables so that
unexpected issues do not arise in the latter stages of a program because of these library components.

Tools such as JMeter are especially helpful in ensuring early in your development that latency issues
don’t wreak havoc on your production systems. JMeter enables both developers and testers to optimize
their systems for speed and scalability because throwing more hardware at a latency problem is not
always the best solution to overcoming inefficient code. There are no hard-and-fast rules for this, but
most portal deployments should gear themselves towards realistic goals and strive for them.

JMeter enables development teams to be more conscientious about an application’s latency issues through-
out the development process. Performance management of enterprise Web applications is challenging, so
planning performance goals should be part of your design and development activities. That includes fore-
casting the number of concurrent users and the response times you expect to deliver on your production
system.

Before delving into the use of the JMeter console, let’s examine the use of a JMeter ANT task developed by
ProgrammerPlanet (www.programmerplanet.org/ant-jmeter/) to perform Web-based testing. The task
shown in the following code enables developers to run their JMeter test plans from the command line and
output run logs to a flat file that can be rendered to HTML format using an XSLT stylesheet:

327

Performance Testing, Administering, and Monitoring Your Portal

15 469513 Ch11.qxd 1/16/04 11:06 AM Page 327

<?xml version=”1.0”?>
<project name=”test” default=”jmeter-ant”>

<property name=”basedir” value=”d:\JMeter_1.8”/>
<taskdef name=”jmeter”

classname=”org.programmerplanet.ant.taskdefs.jmeter.JMeterTask”/>
<target name=”jmeter-ant”>

<echo> basedir= ${basedir} </echo>

<jmeter jmeterhome=”d:/JMeter_1.8”
testplan=”d:/JMeter_1.8/portal_tests/TestPlan_1.jmx”
resultlog=”d:/JMeter_1.8/portal_tests/TestPlan_1.jtl”/>

<xslt in=”d:/JMeter_1.8/portal_tests/TestPlan_1.jtl”
out=”d:/JMeter_1.8/portal_tests/TestPlan_1.html”
style=”d:/JMeter_1.8/portal_tests/jmeter-results-report.xsl”/>

</target>
</project>

The XSLT provided with the download renders test metrics to an HTML file for examination in a Web
browser. Additional views can be provided by modifying the custom ANT tasks file and outputting the
data to a different file and stylesheet that accommodate the data view you want to render.

The JMeter console is a Java Swing application that enables simple dialog boxes to set up load tests to
stress your system and monitor the results. Figure 11.6 shows this console. From it, testers and develop-
ers can create threaded sessions to emulate specified numbers of concurrent users for load testing. User
dialog boxes enable users to set up different forms of user requests. The screen shown in Figure 11.6
indicates that requests can for created the following operations: FTP, HTTP/S, SOAP/XML RPC, LDAP
lookups, Java applications, and JDBC calls. Graphic visualizations can be added to those requests,
including Spline displays, as well as Aggregate and Tree reports.

The screenshot in Figure 11.7 shows how a user can test a JDBC connection. In this example, a SELECT
statement is performed on a table called report. This test can also be configured to perform twenty simul-
taneous requests using the same query operation, to see how the database handles multiple requests on the
same table. Most data-intensive Web applications that depend on back-end database queries to generate
dynamic content should incorporate tests like these to ensure that their connection pooling operations are
working properly, and that their JDBC connection drivers can handle known amounts of requests. JMeter
enables testers to discover database invocation shortcomings through JDBC calls so that corrective actions
can be made to assuage these problems throughout a portal application’s life cycle. Rather than have some
tester “fat-finger” database requests, users can pull up archived tests, run them with JMeter, and determine
whether their system is running properly or needs corrective measures.

As you explore the JMeter application, you will discover the great potential it possesses to satisfy your
load testing needs for your portal application. The JMeter site includes a rich set of resources that users
can sift through to better understand the load testing tool’s capabilities. The basic idea here is to manage
project risk by using tools such as JMeter early in your development schedules to understand how your
system components work as a whole under varied user scenarios and stress levels. This inevitably will
improve your application quality and accelerate your delivery timelines.

328

Chapter 11

15 469513 Ch11.qxd 1/16/04 11:06 AM Page 328

Figure 11.6

Figure 11.7

329

Performance Testing, Administering, and Monitoring Your Portal

15 469513 Ch11.qxd 1/16/04 11:06 AM Page 329

Portal Requirements/Bug Management and
Traceability with Scarab

Requirements and bug-tracking activities are important software management tasks during portal devel-
opment that necessitate the consolidation of requirement deliverables in a centralized repository and a
monitoring tool to audit the status of those tasks during a project’s life cycle. Several high-quality open-
source tools such as Scarab, Bugzilla, BugRat, and iTracker are readily available for download on the
Internet to perform these operations for you. This chapter concentrates on the Scarab application
(www.tigris.org/) and its use of Web components to provide robust requirements and bug-tracking
coverage for your portal initiatives.

Scarab
Software change tracking is an important configuration management activity that is needed to manage
software and design artifact changes throughout the life cycle of your program. Software and design
modifications are a continuous concern throughout a project’s lifetime — either the developers want to
change their technical perspectives or the stakeholders want to amend their original requirements. To
address this recurring challenge, tracking software needs to be implemented to maintain the flow of a
project, to maintain high levels of software quality assurance, and to remind all party members about a
program’s requirements and their adherence to them. Uncontrolled requirements tracking and change
modifications could lead to pandemonium on a program.

With Scarab, users can view a program’s requirements, customer feature requests, as well as bug discover-
ies and fix details through easy-to-use navigation windows and keyword queries from a browser display.

A bug-tracking system is essentially a centralized data repository for problem reports. Those reports can
be software bugs, hardware defects, stakeholder feedback, or any other incidents and issues. Two impor-
tant benefits of a bug-tracking and requirements-tracking system are its collaborative nature and its
tracking management capabilities.

Two essential considerations with an open-source bug-tracking system include the following: Java imple-
mentation for cross-platform compatibility and database independence. When procuring such a system
for your program, forethought also must also be given to users and their ability to do the following:

❑ Create/edit/close issues

❑ Obtain attachment support so that issue clarity can be provided

❑ View logging operations

❑ Broadcast e-mail notifications about project status

❑ Perform searches on issues

❑ Generate reports and import/export issue data

Administrative operations should allow users with admin privileges to perform project and user locking
activities, as well as have the capability to determine user-level permissions. Fortunately, Scarab meets
all of these requirements.

330

Chapter 11

15 469513 Ch11.qxd 1/16/04 11:06 AM Page 330

As with all requirements and bug-tracking tool implementations, problem discovery and explanation
clarity are paramount in resolving problems. When such a tool has been put in place, users should be
strongly encouraged to do the following:

❑ Put in as much relevant detail as they can. Duh!

❑ Keep issues distinct and separate from one another.

❑ Use their e-mail addresses so that problem ambiguities can be resolved faster.

❑ Broadcast alerts or e-mails to developers who have bugs assigned to them.

❑ Include URLs that indicate where the bug is located.

Additional open-source applications that are needed for Scarab deployments include the following:

❑ Tomcat v4.1.24 or later — Scarab deploys as a Web application that can be built using ANT
scripts included in their distribution. After a successful build, a Web Archive (WAR) is created,
which can be dropped into the /webapps directory of the Tomcat server.

❑ An e-mail server — JAMES v2.1 (http://james.apache.org/). See Chapter 3 for more information
on JAMES. All new accounts will be sent a confirmation code to ensure that users properly reg-
ister with the Scarab system. If you intend to run Scarab locally on your PC without a mail
server running on your box, it is possible to trick the system by updating the user account you
have created in the turbine_user table by manually setting the CONFIRM_VALUE to CONFIRMED.
The CONFIRM_VALUE is normally established when a user receives an e-mail from the Scarab
tool after registering and returning a confirmation e-mail.

❑ A database — Our implementation uses the open-source database MySQL, which can be found
at www.mysql.com/. User table scripts are provided with the Scarab distribution and can be
applied using the ANT build script with the create-db-schema target name.

Scarab Tasks
The Scarab tasks page contains many important tabbed features that enable users to monitor issues.
Figure 11.8 illustrates the tabbed sections, which indicate what relevant data is available to users and
what fields need to be filled out and submitted so that they will be persisted in the back-end repository.
The following table describes the tabbed sections available from the tasks page.

Tab Name Description

Attributes Contains static issue information, including when an issue was com-
mitted and last modified.

A text area is provided so that users can enter comments regarding
their reasons for a change.

Alternatively, users can move and copy issues from this section.

Personnel Displays the user personnel name of the person who created the task.

Comments A text area that enables users to add comments that will be associ-
ated with the task being viewed.

331

Performance Testing, Administering, and Monitoring Your Portal

Table continued on following page

15 469513 Ch11.qxd 1/16/04 11:06 AM Page 331

Tab Name Description

Attachments/ Renders a Browse button that enables users to attach files with
Dependencies/URLs the task issue along with comments in a text area. This attachment

function requires that the user indicate the mime-type of the file
being attached to the task.

Text and drop-down components are rendered so users can specify
dependencies as Issue IDs, Types, and Reasons.

Related links can be input as URL and text descriptions.

History Provides timestamps of critical events associated with task issues. All
newly created issues reveal the date they were created, who created
them, and why they were created.

Figure 11.8

Scarab employs a very vigorous issue management strategy when committing, tracking, and modifying
issues. Relationships are tracked between issues, so it is possible to track an issue through specific query
operations, or when reviewing other issues. All software changes are tracked along with information
about who made changes and when source code modifications were committed.

With Scarab, issue types are created so that a unique set of attributes and options can be used to describe
issues in a purposeful manner. Attributes within an issue type are defined by the project administrator
and affect issues only within that issue type. Each project has a unique set of issue types.

332

Chapter 11

15 469513 Ch11.qxd 1/16/04 11:06 AM Page 332

Issue attributes are used to categorize issues for tracking and analysis. Each issue type has a unique set
of attributes, such as Summary, Description, Priority, Milestone, Status, Resolution, and Severity. The
Scarab system deploys with a default set of values for attributes, but it can be easily customized by your
project administrator. The User Search page shown in Figure 11.9 enables users to perform keyword
searches on user-specified criteria. Search results can be refined by specifying filters as well as desired
amounts of data to be rendered on the user display. When user names are returned from a user query,
Scarab users with proper privileges have the option of modifying these roles or deleting them entirely
from the user repository.

Figure 11.9

In the Scarab Role Administration screen displayed in Figure 11.10, users can edit, delete, and add new
roles for the project modules. When a user opts to edit a user role, this is achieved by selecting the radio
button associated with the role to be edited, and clicking the Edit button on the Role List display. From
there, the user can enable or disable roles permissions that relate to the following: Domains, Issues,
Items, Modules, Users, and Votes. Generally, these permissions relate to the following functions: Edit,
Attach, Add, Configure, Assign, Enter, Search, Approve, Delete, and Manage.

The screenshot in Figure 11.11 demonstrates how query results are rendered when issue queries are per-
formed. After a result set has been returned from a user query, the user has the option of selecting indi-
vidual query items so that they can be saved for future interpretation. These same queries can be saved
to an Excel spreadsheet or a tab-separated display in a browser window that can be printed for future
reading. This query capability is important for aggregating common problems so that they can be recog-
nized and rectified in a timely fashion.

333

Performance Testing, Administering, and Monitoring Your Portal

15 469513 Ch11.qxd 1/16/04 11:06 AM Page 333

Figure 11.10

Figure 11.11

334

Chapter 11

15 469513 Ch11.qxd 1/16/04 11:06 AM Page 334

Another important feature of the Scarab application is the capability for users to import issues into the
system to be tracked during a program’s life cycle. An export function also enables users to save issue
libraries so that they can be archived and transported to other Scarab implementations.

In summary, the Scarab tool can be a valuable asset in your portal development because it enables all
program stakeholders to monitor and assess the health of their project from a user-friendly browser
application. The database back-end provides great flexibility in capturing issues and their states
throughout the life cycle of a program. Tracking tools such as Scarab can facilitate your requirements for
monitoring and reporting needs, as well as bug tracking activities, so that your project can achieve
success with its deployment and maintenance operations.

Portal Administration with JMX
In the past, many portal applications managed their disparate subsystems through applications and Web-
based console applications using proprietary APIs to control data and operations on that information.
These operations were often costly in terms of toolset training, and challenging in regard to its usefulness
to implementers when monitoring data. In addition to that, system configurations were often saved and
modified manually to flat files that became susceptible to corruption through user mismanagement and
mishandling, resulting in unreliable operations.

The introduction of Java Management eXtensions (JMX) APIs and libraries now enables developers to cre-
ate applications that perform system management operations of deployed systems through standards-
based interfaces using the Java programming language. These interfaces were developed so that role,
security realm, and database components could be easily administered by managed resources known as
agents, thus avoiding the introduction of errors by manual operations.

JMX was rolled out with the Tomcat 4.1 distribution in a Struts-enabled administrative console. In Tomcat’s
5.x distribution, JMX MBeans were captured in the catalina-admin.jar file. This admin console offers a
graphical administration tool that authorizes developers to expose application-specific information about
J2EE and Java-based applications and the resources they act upon.

To really appreciate the power of JMX, it is important to understand its benefits. According to the JMX
specification, JMX provides the following:

❑ A management agent that provides a standard manner to manage Java applications, devices,
and services

❑ The integration of autonomous modules with the management agent, which produces a scalable
management architecture

❑ The capability to leverage standard Java technologies such as JNDI, JDBC, and JTS

❑ JMX smart agents that can be managed through HTML browsers or by SNMP protocols

Figure 11.12 illustrates part of the JMX specification. It offers a high-level view of how JMX can be used
on your system to control the applications and Web components that operate on your system.

The following code listings are sample JSR 168 portlet implementations that emulate functions that
reside in the Tomcat 5.x administration console application. The purpose of this code is to demonstrate
how to use Dynamic MBeans in your portlet applications using simple J2EE Web components.

335

Performance Testing, Administering, and Monitoring Your Portal

15 469513 Ch11.qxd 1/16/04 11:06 AM Page 335

Figure 11.12

The JMX Instrumentation Level provides an interface to resources so that they can be managed. This
interface is known as a managed resource and is called an MBean. The Instrumentation Level supports
four flavors of MBeans: Standard MBeans, Dynamic MBeans, Open MBeans, and Model MBeans.
Proper MBean implementations can be made by gaining a better understanding the four different
MBean types.

Standard MBeans explicitly define their management interfaces so that get and set operations can be
performed on them fairly easily. The JMX agent uses introspection to discover the state and behavior of
classes and their superclasses through Standard MBeans. According to the JMX specification, the name
of an MBean’s Java interface must be formed by adding the MBean suffix to the MBean’s fully qualified
Java class name. Therefore, if an MBean class you have created is named Test, then the Java interface
that you need to implement with that class should be named TestMBean.

Dynamic MBeans implement the DynamicMBean interface to enable runtime modification of system
attributes and events. Dynamic MBeans expose attributes and methods without introspection but through
a JMX agent. The DynamicMBean interface is displayed in Figure 11.13. When a DynamicMBean is regis-
tered in a JMX agent, an application can make calls through the accessor methods (getters/setters)
and the invoke method to obtain the names of a component’s attributes and operations.

PA

Connectors and Protocol Adaptors

C

MBean
Server

Agent
Services
(as MBeans)

Resource 1
(MBean)

(host2)Resource 2
(MBean)

Java virtual machine (host 1)

Current JMX specification

C

Separate JSRs

Future phases of the JMX specification

Agent Level

Distributed
Services Level

Instrumentation
Level

JMX-compliant
Management Application

Web Browser

JMX
Manager

Additional
Management
Protocol APIs

SNMP
Manager API

CIM/WBEM
API

TMN
Manager API

Property Management
Application

C

336

Chapter 11

15 469513 Ch11.qxd 1/16/04 11:06 AM Page 336

Figure 11.13

Open MBeans were developed as a mechanism to discover new managed objects at runtime. Open
MBeans are capable of managing data and operations during runtime without requiring the recompila-
tion of management applications. Open MBeans are particularly useful when a management application
does not necessarily have access to the Java classes of an agent. Model MBeans use a set of interfaces to
provide both static and dynamic behavior. Descriptors are used with Model MBeans to serve as meta-
data stores.

A great reference that you should consider looking at to better appreciate JMX and its management and
instrumentation capabilities is Mike Janowski’s JMX Programming (Wiley, 2002).

Now that you have a basic understanding of some high-level concepts concerning MBean implementa-
tion, the question becomes, How do you actually write code to implement them? You must first procure
an application server that runs an MBean server. Jakarta’s Tomcat server starts an MBean server when the
application server is started. If you don’t believe it, look at the Java console on which you ran startup for
Tomcat. Next, you should delve through the source code of the catalina-admin.jar file in the Tomcat
distribution that stores the Struts-enabled files to see how MBeans are used in the admin console. To run
the console, start Tomcat and type this URL: http://<Tomcat hostname>:<Tomcat port number>/admin.
Prior to performing this activity, however, you should modify the tomcat-users.xml file in Tomcat’s
/conf directory to include the admin keyword to the role attribute. This will enable you to log in to the
admin console as tomcat/tomcat.

If you don’t want to dawdle through the console code, you might consider the following code. This JSR
168 portlet cuts through the complexity that the Struts console admin tool possesses. This simple example
instantiates an MBeanServer object so that users and roles can be displayed and a new user can be added:

«Interface»
Dynamic MBean

getMBeanInfo(): MBeanInfo
getAttribute(attribute:String): Object
getAttributes(attributes:String[]): AttributeList
setAttribute(attribute:Attribute): void
setAttributes(attributes:AttributesList): AttributeList
invoke(actionName:String,

params:Object[],
signature:String[]): Object

337

Performance Testing, Administering, and Monitoring Your Portal

15 469513 Ch11.qxd 1/16/04 11:06 AM Page 337

001: import java.io.IOException;
002: import java.io.Writer;
003: import java.net.*;
004: import javax.portlet.*;
005: import javax.management.*;
006: import javax.servlet.*;
007: import org.apache.commons.modeler.Registry;
008:
009: public class JMXPortlet1 extends GenericPortlet {
010:
011: public JMXPortlet1() {}
012:
013: public void init(PortletConfig config)
014: throws PortletException {
015: super.init(config);
016: }
017:

The doView method on line 18 is used to render the content of the JMXPortlet1 portlet application. Our
example code determines whether the Tomcat MBean server is running; if so, then the application will
add the user Jack Stern to the system using a JMX interface and the invoke method of the MBean object
on line 52:

018: public void doView(RenderRequest request, RenderResponse response)
019: throws PortletException, IOException, UnavailableException {
020:
021: String groups[] = null;
022: ObjectName oname = null;
023: String objectName = null;
024:
025: WindowState state = request.getWindowState();
026: WindowState _tmp = state;
027: if(state == WindowState.NORMAL) {
028:
029: Writer writer = response.getWriter();
030:
031: MBeanServer mserver = Registry.getRegistry().getMBeanServer();
032: if(mserver == null) {
033: throw new UnavailableException(“MBeanServer is not available”);
034: } else {
035:
036: String db=”Users:type=UserDatabase,database=UserDatabase”; //
037: String databaseName =URLDecoder.decode(db);
038:
039: // add user
040: String signature[] = { “java.lang.String”, “java.lang.String”,
“java.lang.String” };
041: Object params[] = { “jack”, “jack”, “Jack Stern” };
042:
043: try {
044: oname = new ObjectName(databaseName);

338

Chapter 11

15 469513 Ch11.qxd 1/16/04 11:06 AM Page 338

045: objectName = (String)mserver.invoke(oname, “createUser”,
params, signature);
046: } catch(Exception e) {
047: System.out.println(“Exception: “ + e.toString());
048: }
049:
050: try {
051: oname = new ObjectName(objectName);
052: mserver.invoke(oname, “removeGroups”, new Object[0], new
String[0]);
053:
054: if(groups == null)
055: groups = new String[0];
056: String addsig[] = new String[1];
057: addsig[0] = “java.lang.String”;
058: Object addpar[] = new Object[1];
059: for(int i = 0; i < groups.length; i++) {
060: addpar[0] = (new
ObjectName(groups[i])).getKeyProperty(“groupname”);
061: mserver.invoke(oname, “addGroup”, addpar, addsig);
062: }
063: } catch(Exception e) {
064: System.out.println(“Exception: “ + e.toString());
065: }
066: writer.write(“Added user: Jack Stern
”);

Lines 67–107 render user, role, and group information visually inside the JMXPortlet1 portlet component.
On line 70, the getAttribute method is sent the users text value to indicate that the MBean component
should return all of the user names of the system and store them in string array visual output. The same
getAttribute method is used on lines 84 and 98 so that role and group information can be rendered
along with user name data:

067: // show users
068: try {
069: ObjectName dname = new ObjectName(databaseName);
070: String results[] = (String[])mserver.getAttribute(dname,
“users”);
071: if(results == null)
072: results = new String[0];
073: else {
074: for (int i=0; i < results.length; i++)
075: writer.write(“user[“ + i + “]= “ + results[i] + “
”);
076: }
077: } catch(Exception e) {
078: System.out.println(“Exception: “ + e.toString());
079: }
080:
081: // show roles
082: try {
083: ObjectName dname = new ObjectName(databaseName);
084: String results[] = (String[])mserver.getAttribute(dname,
“roles”);

339

Performance Testing, Administering, and Monitoring Your Portal

15 469513 Ch11.qxd 1/16/04 11:06 AM Page 339

085: if(results == null)
086: results = new String[0];
087: else {
088: for (int i=0; i < results.length; i++)
089: writer.write(“role[“ + i + “]= “ + results[i] +
“
”);
090: }
091: } catch(Exception e) {
092: System.out.println(“Exception: “ + e.toString());
093: }
094:
095: // show groups
096: try {
097: ObjectName dname = new ObjectName(databaseName);
098: groups = (String[])mserver.getAttribute(dname, “groups”);
099: if(groups == null)
100: groups = new String[0];
101: else {
102: for (int i=0; i < groups.length; i++)
103: writer.write(“groups[“ + i + “]= “ + results[i] +
“
”);
104: }
105: } catch(Exception e) {
106: System.out.println(“Exception: “ + e.toString());
107: }
108:

Lines 109–111 demonstrate how the PortletRequestDispatcher interface is used to delegate Web con-
tent to the components that handle and render it. The path defined as a string on line 110 must be relative
to the context root to propagate properly:

109: PortletContext context = getPortletContext();
110: PortletRequestDispatcher rd =
context.getRequestDispatcher(“/WEB-INF/templates/html/JMXExample.jsp”);
111: rd.include(request, response);
112: }
113: }
114:
115: public void doEdit(RenderRequest request, RenderResponse response)
116: throws PortletException, IOException {}
117:
118: public void doHelp(RenderRequest request, RenderResponse response)
119: throws PortletException, IOException {}
120:
121: }
122:

This program performs the same functionality as the Struts admin console shown in Figure 11.14, where
user name, password, and full name inputs are submitted by the console user to add users to the back-end
database. Once a unique user name has been submitted in the Tomcat admin console, the Web page will
render that data back to the display so that users will know that a successful submission has been made.

340

Chapter 11

15 469513 Ch11.qxd 1/16/04 11:06 AM Page 340

Figure 11.14

To set up new data sources using JMX MBeans, you can implement the JMX portlet shown in the follow-
ing example. This portlet implements JSR 168 libraries for portlet visualization:

01: import java.io.IOException;
02: import java.io.Writer;
03: import java.net.*;
04: import javax.portlet.*;
05: import javax.management.*;
06: import javax.servlet.*;
07: import org.apache.commons.modeler.Registry;
08:
09: public class JMXPortlet2 extends GenericPortlet {
10:
11: public JMXPortlet2() {}
12:
13: public void init(PortletConfig config)
14: throws PortletException {
15: super.init(config);
16: }
17:

341

Performance Testing, Administering, and Monitoring Your Portal

15 469513 Ch11.qxd 1/16/04 11:06 AM Page 341

Prior to adding a new data source to the back-end persistence mechanism, an MBeanServer instance
must be created, as shown on line 31. Once the action of creating a new data source has been executed
properly in lines 46–86, the newly created data source can be exercised by other portlet users to perform
database operations. Improper entries will trigger error messages to alert the portal user that improper
parameter values were submitted in the portlet application:

18: public void doView(RenderRequest request, RenderResponse response)
19: throws PortletException, IOException, UnavailableException {
20:
21: String groups[] = null;
22: ObjectName oname = null;
23: String objectName = null;
24:
25: WindowState state = request.getWindowState();
26: WindowState _tmp = state;
27: if(state == WindowState.NORMAL) {
28:
29: Writer writer = response.getWriter();
30:
31: MBeanServer mserver = Registry.getRegistry().getMBeanServer();
32: if(mserver == null) {
33: throw new UnavailableException(“MBeanServer is not available”);
34: } else {
35:
36: String objectName = “”;
37: String signature[] = { “java.lang.String”, “java.lang.String” };
38: Object params[] = { “testMySQL”, “javax.sql.DataSource” };
39:
40: String resourcetype = “Global”;
41: String path = “”;
42: String host = “”;
43: String domain = “Catalina”;
44: ObjectName oname = null;
45:
46: try {
47: oname = new ObjectName(domain +
48: “:type=Resource” +
49: “,resourcetype=Global” +
50: “,class=” +
51: params[1] +
52: “,name=” + params[0]);
53:
54: if(mserver.isRegistered(oname)) {
55: System.out.println(“Invalid name...”);
56: }
57: oname = ResourceUtils.getNamingResourceObjectName(domain,
resourcetype, path, host);
58: objectName = (String)mserver.invoke(oname, “addResource”,
params, signature);
59: } catch(Exception e) {
60: System.out.println(“Exception: “ + e);
61: }
62:

342

Chapter 11

15 469513 Ch11.qxd 1/16/04 11:06 AM Page 342

63: // set up attributes
64: String attribute = null;
65: try {
66: oname = new ObjectName(objectName);
67: attribute=”url”;
68: mserver.setAttribute(oname, new
Attribute(attribute,”jdbc:mysql://localhost/mysqlDB”));
69: attribute=”driverClassName”;
70: mserver.setAttribute(oname, new
Attribute(attribute,”org.gjt.mm.mysql.Driver”));
71: attribute=”username”;
72: mserver.setAttribute(oname, new
Attribute(attribute,”dbUser”));
73: attribute=”password”;
74: mserver.setAttribute(oname, new
Attribute(attribute,”dbUser”));
75: attribute=”maxActive”;
76: mserver.setAttribute(oname, new Attribute(attribute,”4”));
77: attribute=”maxIdle”;
78: mserver.setAttribute(oname, new Attribute(attribute,”2”));
79: attribute=”maxWait”;
80: mserver.setAttribute(oname, new Attribute(attribute,”5000”)); /
81:
82: } catch(Exception e) {
83: System.out.println(“Exception: “ + e);
84: }
85:
86: writer.write(“Added datasource: mysqlDB
”);

Lines 87–89 demonstrate how the PortletRequestDispatcher interface is used to delegate Web con-
tent to the components that handle and render it. The path defined as a string on line 88 must be relative
to the context root to propagate properly:

87: PortletContext context = getPortletContext();
88: PortletRequestDispatcher rd = context.getRequestDispatcher(“/WEB-
INF/templates/html/JMXExample.jsp”);
89: rd.include(request, response);
90: }
91: }
92:
93: public void doEdit(RenderRequest request, RenderResponse response)
94: throws PortletException, IOException {}
95:
96: public void doHelp(RenderRequest request, RenderResponse response)
97: throws PortletException, IOException {}
98:
99: }
100:

The console shown in Figure 11.15 displays the results of running the code in the preceding listing. All of
the properties that were initialized in this code are shown in the data source display so that they can be
configured dynamically by the user.

343

Performance Testing, Administering, and Monitoring Your Portal

15 469513 Ch11.qxd 1/16/04 11:06 AM Page 343

Figure 11.15

Prior to the introduction of JMX libraries in application servers, many of these applications provided pro-
prietary interfaces for adding and modifying components on them. The problem with these products was
that their implementations tied you to their system. Your individual applications, which acted inside their
frameworks, often became coupled with their server components, which made modifications expensive
and difficult to rectify. Thankfully, the industry trend for these application servers was the migration to
JMX components to manage your resources with standards-based tools and the Java programming lan-
guage. Development and implementation of MBeans on your portal systems greatly enhances your sys-
tem’s portability so that your components can easily plug into any JMX-compliant server.

Portal Collaboration with JSPWiki
Up till now, this chapter has focused on open-source tools that you might consider to perform testing and
monitoring activities on your portal implementation. Portal process methodologies and tools, however,
warrant further discussion about how all of these technologies can be brought together in a collaborative
fashion to ensure the success of your project. Therefore, this chapter finishes with a brief overview of an
open-source tool called JSPWiki (www.jspwiki.org/Wiki.jsp).

On most portal initiatives, cross-project communication needs to be managed to capture and promote
requirements adherence as well as development knowledge among the disparate portlet development

344

Chapter 11

15 469513 Ch11.qxd 1/16/04 11:06 AM Page 344

teams. Often, this development knowledge includes how and where things were installed, what applica-
tions and libraries are being implemented, and what pitfalls were discovered and should be avoided
by the development teams. This knowledge can also be used by the testing team personnel to craft and
target suitable test plans. To perform these operations, a collaboration server needs to be integrated into
your development plans. This chapter briefly discusses a new open-source tool call JSPWiki that was
derived from the more mature PERL-based Wiki tool to perform these actions for you.

Ideally, you want a collaboration server to provide a comprehensive solution for document and task
management, and a calendar to create events and member tasking. JSPWiki can’t currently provide you
with all of these capabilities, because of its relative newness, but it will enable you to capture and openly
exchange knowledge on your portal program in an unfettered fashion.

JSPWiki is written with Java Server Pages (JSPs), runs in a Web container, and implements a simple text
syntax to craft Web pages and cross links between pages. Plug-ins can be implemented to enhance its
functionality. Additionally, links can be included to add behavior and enhance the user experience.

Figure 11.16 shows a JSPWiki display that has implemented a template plug-in to override the default pre-
sentation. Several different template facades can be added to the /templates directory of your JSPWiki
installation. To enable these templates, the template key in the jspwiki.properties file must be modified
from the default value to the template façade that is desired. In Figure 11.16, the mrg template is used.
The JSPWiki page in Figure 11.16 might be used to encourage its viewers to freely contribute suggestions
and comments on the technologies that are described on the web page. Additionally, documents can be
uploaded for knowledge transfer and a simple search query can be invoked to track down artifacts.

Figure 11.16

345

Performance Testing, Administering, and Monitoring Your Portal

15 469513 Ch11.qxd 1/16/04 11:06 AM Page 345

In the display, all of the technologies that are demonstrated in this chapter are hyperlinked so that users
can freely add or read text annotations about them. The question mark (?) next to some of the links indi-
cates that the topic is new and has not had any user input added to it. The Portal Blogger link enables
users to navigate to an external blogger application.

Summary
Phew! That was a lot of material to cover in one chapter. Please remember that this chapter addressed only
a few applications that can be used to test, administer, and monitor your portal development operations.
Numerous open-source tools are available to perform these same tasks, so it is important to acquaint your-
self with these tools in the open-source community and their applicability to your testing, monitoring, and
administration needs. Feedback systems are paramount when implementing a portal application — to
ensure that good communication channels allow the flow of ideas and development best practices to prop-
agate through a program so that successful implementations can be realized.

To optimize complex systems like portals, consideration should always be given to relevant system
processes that automate user code distribution and management, testing, bug-tracking and network
component management. The tools we have examined in this chapter illustrate an assortment of
approaches that can be used to implement practical testing and oversight processes so that your portal
implementation can be successful. Getting things right in your portal system through the enactment of
these tools is a prudent thing to do and will improve your operations in the long run.

346

Chapter 11

15 469513 Ch11.qxd 1/16/04 11:06 AM Page 346

Unifying the Enterprise
Application Space Through

Web Start

Web browsers have become the standard interface for displaying and using data on the Internet.
Its inherent functional limitations, however, may not make it fully suitable for certain applications.
With rapid developments in technology, increasingly complex applications will be in demand.
While popular portal applications may best be displayed in a browser, some general and niche
portals may require a richer client interface — one that will serve in a manner that Web browsers
cannot. Just as the current portal framework was a generational leap from the older, individual
static Web page, a newer generation of portal applications is being built using rich clients, which
function in a way that the standard Web browser simply cannot. These rich clients may offer asyn-
chronous processing, complex event handling, or more stylistic Graphical User Interface (GUI)
components. They are able to offer the user more functionality and a flexible application that is tai-
lored to their needs.

Users typically are able to find these features in their favorite desktop word processing, graphics,
or presentation applications. They like the rich behavior and the fact that it resides on their own
computer, so they can work offline, anywhere and anytime. There are some problems with these
rich, “thick” clients, however, insofar as they are used as part of an enterprise application solution.
Issues may arise when it comes to installing the application on hundreds, maybe thousands, of
computers. It may be even more difficult to obtain new versions of the application or simple
updates for a bug fix.

One innovative product that is trying to bridge the gap between the benefits of a rich client and the
disadvantages of its pitfalls is Sun’s Java Web Start. Java Web Start is based on the Java Network
Launch Protocol (JNLP) and the Java 2 platform. JNLP is tabbed as a deployment solution that pro-
vides Java developers with the capability to deploy and maintain rich, thick Java clients that can be
stored and executed locally on a user’s desktop. It has even become a standard component of the
Java 2 Standard Edition (J2SE) platform (as of Java version 1.4). The prospects of what Java Web
Start can offer are very enticing for both Java developers and portal application builders alike.

16 469513 Ch12.qxd 1/16/04 11:05 AM Page 347

This chapter discusses various aspects of Java Web Start, including its installation, configuration, pack-
aging, and invocation. It also describes JNLP and how Java Web Start utilizes it, as well as the security
aspects of building a Java application that is distributed through Java Web Start. The chapter concludes
with a sample application that shows how to put all of the pieces together. This chapter does not, how-
ever, provide in-depth details about writing Java applications, as the focus is on how Java Web Start can
be used to deploy virtually any type of Java application as part of an enterprise solution. The challenge
of building the appropriate client application for a given scenario is left up to you, the Java Web Start
application developer.

Rich Clients
Users are enthralled with what the Web technology wave has brought them. Using a Web browser to
surf the net in order to find virtually any piece of information on any topic is very appealing. However,
users are not likely to forego their favorite desktop applications, such as Microsoft Word, Microsoft
PowerPoint, or Adobe Acrobat, for some webified version that tries to serve the same purpose. The rea-
son is that a browser-based application has limits as to how functional, interactive, or complex it can be.
Typical desktop applications written in languages such a C, C++, Java, and Visual Basic are greatly supe-
rior in what they can offer to the user experience. These types of applications can be very complex as far
as capabilities are concerned, while at the same time be very easy to use for the typical person. Using
these richer types of clients in an enterprise application can offer both the user and the developer many
opportunities for accomplishing the task at hand.

As mentioned earlier, one of the problems with the use of these rich clients is that they can sometimes be
complicated to install, and possibly even harder to upgrade. Moreover, a company may have hundreds or
even thousands of desktop computers on which these clients are intended to be run. It may be very diffi-
cult to ensure that each computer is able to obtain the current version of your application. This is typically
a logistics issue, as the target computers may be spread throughout a country or even over multiple conti-
nents. The personnel performing installations may be overwhelmed. The task of application distribution,
installation, and maintenance can be a daunting one. Not everyone may get the bug fix or upgraded
version in a timely fashion. These types of problems have led many companies to view the Web-based
application boom as a panacea because of its simplicity and cost-effective deployment and maintenance.
It is very easy to deploy a Web server and develop a Web-based application for use in a Web browser. A
company’s employees or customers could all come to the same place to obtain the application as well as
receive upgrades or enhancements dynamically. The problem again, however, is that by going to these
thin clients, users relinquish some functionality for ease of development, distribution, and maintenance.
Traditionally, the richer, thick clients were more functional, but harder to deploy and maintain.

What was needed was something to bridge the gap between the ease of Web-based deployment and the
functionality of a rich client. Delivering an interface that was richer than simple HTML but still inside the
Web application framework became an attractive goal to pursue for both developers and implementers.
Building a Java-based client application in such an architecture was an effort that had its problems. Early
attempts at accomplishing this task led to the introduction of the applet. A Java applet, as you probably
know, was an attempt to run a Java application from the user’s Web browser. For a while, this approach
was fairly popular because it delivered a rich Java application front-end to the user via a Web browser.

It soon became apparent, however, that running an applet introduced its own set of problems.
Differences in various browsers’ Java Runtime Environment (JRE), as well as long download times,
proved to be problematic for developers. Although the Java language was quickly making advances and

348

Chapter 12

16 469513 Ch12.qxd 1/16/04 11:05 AM Page 348

Java Swing was becoming popular for use in Java GUIs, the Web browsers were not as fast at incorporat-
ing these enhancements into their JREs. Greater strides had been achieved in the Java platform for
developing richer application interfaces, but the problem of effectively deploying and maintaining a
rich application on the client remained. A promising solution to this problem has started to unfold in
the form of the JNLP technology and Java Web Start.

Java Web Star t
Java Web Start is Sun’s Reference Implementation (RI) of JNLP and is essentially a wrapper for easily
deploying a Java application and its rich GUI. Virtually any Java application can be used in this frame-
work. Because the Java application will ultimately reside on the client machine, its speed and response
time are not necessarily dependent on the network. This enables a user to employ it in an offline mode,
which is something that a browser-based application typically cannot do. This may not always be the
case, however, if the application is used as part of an enterprise portal solution that requires access to
remote data sources. In any case, a Java application can take advantage of the many aspects of the Java 2
platform, which offers far greater capabilities than a standard browser-based application. The promise of
JNLP and Java Web Start is to combine the flexibility, functionality, and power of rich Java application
clients with the ease of deploying and maintaining the Web-based architecture.

Once a client machine has Java Web Start installed (described shortly in the section “Downloading and
Installing Java Web Start”), it is ready to download and deploy a Java application, which sits inside a
Web server’s Web space and has been added to a JNLP framework. In its simplest form, the client clicks
an HTML link that references a JNLP file. The JNLP would then upload the Java application to the client
machine. Once the application resides on the client machine, it can be launched from either the com-
puter’s Start Menu (under Windows), a desktop icon, or via the browser link again. Although a Web
browser is required to obtain the initial installation of the application, a browser is not needed for the
application’s continued use. This can be an appealing feature, as the Java application can be associated
with the user’s desktop just like any other application. The initial download of the application can be
time-consuming because the entire application code must be uploaded to the client, but subsequent
application invocations will be very quick because the application is running locally on the client. This
initial time lag to launch the application may be unappealing to browser users, but the benefits that the
user will obtain from subsequent application startups will far outweigh that initial delay. Each time the
application is launched on the client, a check determines whether the local version is the most current. If
a newer version is detected on the server, the new update is automatically uploaded to the client. This
capability enables users to maintain the most recent version of an application or receive bug fixes with-
out having to do anything but launch the application. This auto-check is done whether the user starts the
application from the browser or a desktop icon. Figure 12.1 shows a graphical representation of the Java
Web Start workflow. This graphic was taken from the Java Web Start architecture document, which can
be found at http://java.sun.com/products/javawebstart/architecture.html.

Although the Java application is initially launched, and subsequently downloaded, from a Web browser,
it will run in the client’s installed Java 2 JRE, rather than the Web browser’s JRE. This means that the
application will run in a dedicated Java environment and not be dependent on the browser to provide
the necessary framework. This alleviates the aforementioned problem of browser incompatibilities when
running Java applets. Because applets seemingly no longer play as large a role in deploying client Java
applications as was once envisioned, the JNLP framework, along with Java Web Start, is ready to take
over the role of distributing these rich clients as single applications or full-fledged intranet enterprise
application solutions.

349

Unifying the Enterprise Application Space Through Web Start

16 469513 Ch12.qxd 1/16/04 11:05 AM Page 349

Figure 12.1

Java Web Start offers many capabilities that were previously lacking in other attempts to distribute rich Java
applications. Automatic downloads and updates along with quick application startup (after the initial
loading) are appealing features for both developers and users. As mentioned earlier, a Java application loaded
on the client machine via Java Web Start also has the look and feel of other desktop applications because it
can be started from the Start Menu or a desktop icon. This is an appealing feature for users who like stan-
dard desktop application loading. The locally stored applications are also very secure. Although they are
stored on the client’s machine, the application still adheres to the same applet-like security sandbox archi-
tecture. Security restrictions forbid an application from performing such functions as accessing the local
hard drive or obtaining resources from other hosts, and the application has limited access to the client’s
system properties. Just like applets, however, a Java application loaded from Java Web Start can be signed,
and the user can grant certain privileges that will allow it to go outside the security sandbox. Signing appli-
cation code to perform such operations is discussed in the section “Code Signing,” later in this chapter.

As you can imagine, the possibilities for creating and running complex, innovative, and user-friendly Java
applications on a client machine with JNLP and Java Web Start are virtually limitless. It can be as simple
as a single application or as complex as an entire enterprise application portal. The direction and vision
are up to the developer. As far as deploying portal solutions goes, there are a couple of different scenarios
in which a developer can use Java Web Start as a deployment mechanism. As mentioned earlier, the vast
majority of portals used today are Web-based portals that use HTML clients. The complexities and logic of
running these portals is concentrated on the server, where, for example, Java applications are being
employed. The client is still a thin application of very little functionality (in and of itself). The addition of

HTTP:

WEB

HTTP:

Java™ Web Start Starts

Download Draw

Launch Draw

NET EFFECT
One Click to

Launch Application1

2
3

350

Chapter 12

16 469513 Ch12.qxd 1/16/04 11:05 AM Page 350

JavaScript code can make an HTML Web page more interactive and flexible, but there are still limits as to
what can be done. With Java Web Start, an entire Java application with great flexibility can now be run
locally. This application itself could represent the entire application portal. When a user performs some
action on the Java application interface, the entire GUI does not have to be redrawn, as in the case of a
Web-based portal. The Java 2 platform offers great functionality in dynamically updating only specific
components of the user interface, without affecting other components. Essentially, an enterprise applica-
tion portal built on top of the Java 2 platform can be the launching point for many other subapplications
(also known as portlets). The developer can achieve a similar framework while still maintaining a typical
Web-based HTML portal architecture. In this case, the portal may contain several portlets that, when acti-
vated, use JNLP and Java Web Start to launch Java applications stored locally on the client machine. This
enables a generic portal framework to contain complex portlet applications. Having Java applications on
the client enables the continued progression of portal framework architectures.

Getting Star ted
Setting up and using Java Web Start to launch a Java application is a relatively simple process. Several
steps need to be taken in order to accomplish this, but you should not run into any problems. The fol-
lowing subsections provide the details for building and deploying Java applications through JNLP using
Java Web Start from a developer’s perspective. These topics include downloading and installing Java
Web Start, how JNLP is used, what is needed to package an application, how to sign application code,
and how to link an HTML page to the JNLP file.

Downloading and Installing Java Web Start
It was mentioned in the introduction that Java Web Start is now integrated in the J2SE platform. Once
the J2SE is installed on the computer, no other action is needed in order to make Java Web Start available
for use. If a previously installed JRE did not include Java Web Start, a small update package can be
downloaded. If no JRE has previously been installed on the client machine, another, albeit much larger,
download file can be obtained. In either case, an executable file will be downloaded. After the download
is complete, simply double-click on the file and follow the installation wizard. Once the installation is
complete, you are ready to begin the process of deploying a Java application using Java Web Start. All of
the downloads, from the J2SE to the individual Java Web Start packages, can be downloaded by going to
Sun’s Java Web Start Web site, which is located at http://java.sun.com/products/javawebstart/
download.html.

Configuring the Web Server
Java Web Start utilizes the existing Web technology architecture in order to deploy applications and
perform auto-update functions. It uses the Hypertext Transfer Protocol (HTTP) and Web servers to
accomplish this. In order for Java Web Start to behave properly, however, the JNLP that is used to actu-
ally launch the application must be registered in the Web server as a new Multipurpose Internet Mail
Extension (MIME) type. The MIME type lets the Web server know what application to launch when it
receives a request for such a file type. This action is similar to how other desktop applications are
launched — for example, when a file with the extension .doc is requested and Microsoft Word is auto-
matically launched. The new MIME type that must be configured is application/x-java-jnlp-file.

Different Web servers have different methods for configuring their MIME types. Simply check the docu-
mentation for the Web server to see which file and format you must use. Some Web servers may already

351

Unifying the Enterprise Application Space Through Web Start

16 469513 Ch12.qxd 1/16/04 11:05 AM Page 351

have the MIME type configured in their default settings. If you are using Apache Tomcat 4.0.x or later, for
example, simply check the web.xml file located in the conf directory. It should already be configured to
handle the JNLP extension. How the JNLP is used and configured is discussed in the next section.

Under the various MIME type mappings, the following entry should be listed:

<mime-mapping>
<extension>jnlp</extension>
<mime-type>application/x-java-jnlp-file</mime-type>

</mime-mapping>

Once the Web server is configured to handle the JNLP extension, simply restart the server. Any request
that wants to access a file with the extension .jnlp will now be properly handled.

Creating the JNLP File
Now that the Web server is configured to handle requests for JNLP files, it is time to create one. The JNLP
file is a descriptor file for specifying what the application is composed of, where to find the necessary files,
what icon to associate with the application, and so on. The format of the file is the Extensible Markup
Language (XML). The contents of the file are described in the Java Network Launching Protocol and API
specification, which can be found at http://java.sun.com/products/javawebstart/download-spec.html.
JNLP is also described in the Java Web Start Developer’s Guide. Probably the easiest way to create a JNLP
file, however, is to obtain an existing one and simply modify it to suit your needs. Listing 12.1 shows an
example of what a JNLP file might look like.

Listing 12.1: Sample JNLP File

01: <?xml version”1.0” encoding=”UTF-8”?>
02: <jnlp
03: spec=”1.0+”
04: codebase=”http://server:port/web_server_location”
05: href=”myFile.jnlp”>
06: <information>
07: <title>The title of the application</title>
08: <vendor>Company name</vendor>
09: <homepage href=”homepage.html”/>
10: <description>A full description of the application</description>
11: <icon href=”images/myicon.gif”/>
12: <offline-allowed/>
13: </information>
14: <security>
15: <all-permissions/>
16: </security>
17: <resources>
18: <j2se version=”1.3”/>
19: <jar href=”myjar.jar”/>
20: <jar href=”classes12_01.jar”/>
21: </resources>
22: <application-desc main-class=”myPackage.MyClass”/>
23: </jnlp>

352

Chapter 12

16 469513 Ch12.qxd 1/16/04 11:05 AM Page 352

Several other tags and attributes can be used for other specialized needs. For example, Java Web Start
can be used to launch Java applets by using the applet-desc element in the JNLP file. Consult the Java
Web Start Developer’s Guide for a full description of the available tags.

The first line in the preceding code simply states the XML version and encoding. This tag is optional but
is almost always included in the file. The main tag in a JNLP file is the <jnlp> tag. This tag includes
four main subelements: <information>, <security>, <resources>, and <application-desc>. It
also contains several attributes. These attributes and subelements are described in greater detail in the
following sections.

<jnlp> Attributes
Lines 3–5 list the attributes of the <jnlp> tag. The first one, spec, is used to denote the JNLP specifica-
tion version. This attribute is optional and defaults to the value 1.0+. The next attribute is codebase,
which is used as the base location for locating a resource on the Web server listed in any href attribute.
The last attribute listed, href, is used to denote the name of the JNLP file itself.

<information> Subelement
The <information> subelement listed in lines 6–13 is used to provide some general information about
the application. The <title> tag is simply used to name the application. This title will appear on vari-
ous Java Web Start interfaces to distinguish this application from other Java Web Start applications. The
<vendor> tag is normally used to denote the vendor, or organization, that built the application. The
third tag in the listing is the <homepage> tag, which contains only the single attribute href. The value of
the attribute is a Uniform Resource Locator (URL) that points to a Web page which Java Web Start uses
when the user wants to obtain more information about the application. As mentioned previously, the
value of an href attribute is a relative location based on the value of the codebase attribute. The next
tag, <description>, is used to apply a general statement about the application. The <icon> tag also
takes a single href attribute and points to a GIF or JPEG image with which you want Java Web Start to
identify the application. This icon is used for display on the client desktop as well as other Java Web
Start modules. The last tag listed, <offline-allowed>, is used by Java Web Start to determine whether
the application can be launched when the client machine is not connected to a network. The tag is also
used to determine how Java Web Start will apply its auto-update functionality. By default, if this tag is
not listed, the application is determined to be in an online mode. This means that the application cannot
be launched if the client machine is not connected to a network.

<security> Subelement
As mentioned in the “Java Web Start” section, applications that are launched by Java Web Start adhere to
the applet-like sandbox security architecture, which restricts the operations that an application can per-
form when it comes to such things as client system resources and hardware. The <security> tag can
be used in the JNLP file to request permission to perform operations outside this sandbox. The
<all-permissions> element tag is used when you want to gain full access to the client machine. When
this is requested, the application code must be signed and the user will be asked if he or she wants to
accept the signing certificate.

<resources> Subelement
The <resources> tag is used to specify the various resources that the application needs in order to run.
This information is listed in lines 17–21. The first tag listed, <j2se>, is used to denote which version of
the Java 2 platform the application will run in. The next two lines both list the <jar> tag. This tag, which

353

Unifying the Enterprise Application Space Through Web Start

16 469513 Ch12.qxd 1/16/04 11:05 AM Page 353

takes the familiar href attribute, is used to tell Java Web Start where to find the Java class files that the
application will use. In the preceding example, line 19 lists a JAR file that holds application code created
by the developer, while line 20 lists the Oracle Java DataBase Connectivity (JDBC) driver classes. As you
can see, multiple <jar> tags can be used inside of the <resources> tag. The preceding listing used only
the <j2se> and <jar> tags, but other tags are available for use, including nativelib, property,
package, and extension.

<application-desc> Subelement
The last subelement used in the <jnlp> tag is an element that lets Java Web Start know that it is launching
a Java application, rather than a Java applet. The attribute main-class is used to denote the application
class that contains the main method; it is used to start the application. If this class file is listed in the mani-
fest file of the first JAR file listed, then this subelement does not have to be listed in the JNLP file.

As a side note, JNLP separately bundles an additional Application Programming Interface (API) in the
jnlp.jar or javaws.jar file. This API provides additional application functionality that is not part of
the J2SE API. This API describes services that enable the developer to further enhance the capabilities of
a Java Web Start application. The services that are available through this API include BasicService,
ClipboardService, DownloadService, FileOpenService, FileSaveService, PrintService, and
PersistenceService. More information on how to use this API can be found in the Java Web Start
Developer’s Guide. In order to use this API, the appropriate JAR file must be added to your classpath
for compiling purposes. Typically, the javaws.jar file can be found in the directory in which Java Web
Start was installed.

Application Packaging
Although we have talked a lot about JNLP and how Java Web Start utilizes this protocol to deploy and
maintain applications, the main part of a Java Web Start application is the application itself. In the sec-
tion “Introductory Application,” later in this chapter, you will examine some sample code for a small
Java application as an introduction to using Java Web Start. For now, we will just assume that you have
already developed a Java application that we can package accordingly.

Once the application code has been created and, we hope, tested, all that is left to do is to gather the code
and package it in a JAR file, or files. The application JAR file(s), other application resource files, images,
HTML files, and any other files that may be associated with the Java Web Start application must be
installed under the Web server’s Web space so that it is accessible to anyone with access to the network
through a Web browser. The location of the files under the Web space must also be listed properly in the
JNLP file so that a client that wants to access the Java Web Start application will not run into any deploy-
ment problems. Once the application has been packaged properly, it is ready to be accessed from another
client machine.

Client Invocation
Now that the Java Web Start application is sitting on the server under the Web space waiting to be
accessed by a client, you need to generate the client code that is needed to access the Java Web Start appli-
cation. Earlier, we described how to configure the Web server such that if a request came in asking for
access to a file with the extension of .jnlp, the Java Network Launch Protocol would be automatically
activated. The JNLP file is then used to gather the application’s resources and send them to the requesting
client. In order for the client to trigger this sequence of events, a simple HTML link is the only thing
needed. The syntax for this is as follows:

354

Chapter 12

16 469513 Ch12.qxd 1/16/04 11:05 AM Page 354

Launch a Java Web Start Application

The myFile.jnlp file should be found under the Web server’s root document directory. This filename is
the same file listed on line 5 in the first code listing presented earlier. When customers or users visit your
Web page, they should be able to just click on the link to launch your Java Web Start application.
However, what if the client machine that accesses your Web page does not have Java Web Start installed?
If that is the case, they will not be able to launch the application. It would be nice if you could first detect
whether Java Web Start were installed on the machine. That way, you could either present them with the
appropriate link to your application (if it is installed) or point the user to a site where they can first
download and install Java Web Start. Luckily, this is possible with a little client-side scripting. Both
Netscape and Internet Explorer (IE) have scripting languages that can be used in the browser to enable
you to determine whether such a product is installed. Listing 12.2 shows an example of how this can be
accomplished.

Listing 12.2: Java Web Start Client Detection

01: <html>
02: <head>
03: <script language=”javascript”>
04: isIE = “true”;
05: installed = “false”;
06:
07: if (navigator.appName == “Netscape”) { isIE = “false”; }
08:
09: if (isIE == “false”) {
10: mime = navigator.mimeTypes[‘application/x-java-jnlp-file’];
11: if (mime) { installed = true; }
12: }
13: </script>
14: <script language=”VBScript”>
15: If isIE = “true” Then
16: If Not (IsObject(CreateObject(“JavaWebStart.IsInstalled”))) Then
17: installed = false
18: Else
19: installed = true
20: End If
21: End If
22: </script>
23: <script language=”javascript”>
24: if (installed) {
25: document.open();
26: document.write(“Launch Web Start App”);
27: document.close();
28: }else {
29: document.open();
30: document.write(“Please Download Java Web Start From “ +
31: “<a href=’http://java.sun.com/products/javawebstart/” +
32: “download.html’>Here.”);
33: document.close();
34: }
35: </script>
36: </head>
37: </html>

355

Unifying the Enterprise Application Space Through Web Start

16 469513 Ch12.qxd 1/16/04 11:05 AM Page 355

The first <script> tag, listed in lines 3–13, uses JavaScript as the scripting language. This is primarily
for the Netscape browsers. Typically, client-side scripting using JavaScript is fine in both Netscape and
IE, but in this case we must use different scripting code for the IE browser. Inside the tag, notice that a
couple of global variables are being instantiated. These are used to keep track of which browser the
client is using and whether Java Web Start is installed on the machine. The script then continues to deter-
mine if the JNLP mime type is part of Netscape’s array or mime types. Line 7 is where the script deter-
mines whether the client browser is Netscape. This is just one way of determining browser type. There
are other ways to determine which browser version is being used. The preceding code was tested using
Netscape 4.7.7 and IE 6.0. It is possible that other browser versions may not work with the code listed.
For a production application, more testing would have to be completed to ensure that the code used
would work with at least the most common browsers and browser versions.

The second <script> tag group, listed from lines 14–22, uses Microsoft’s VBScript as the scripting lan-
guage. This will be used by IE browsers and ignored by Netscape browsers. The VBScript makes a simi-
lar check to determine whether Java Web Start is installed. Notice that the variables isIE and
installed were instantiated within the first block of code but used here, in the second block of code.
This works fine, as the scope of the variables is available within in the wrapper <script> tag.

The last <script> group is used to bring everything together. The first two areas are used to determine
the variables’ values based on which browser is being used. Now that those have been determined, you
can use JavaScript to make a conditional statement based on whether Java Web Start is installed on the
client machine. If it is, then you can simply display the link to your application’s JNLP file. If Java Web
Start is not installed, then you can display a message indicating that, with a link that enables the user to
download Java Web Start. This will help prevent users from trying to launch a Java Web Start applica-
tion when they do not have the proper component installed on their machine. Regardless of whether
Java Web Start was installed, the code only displays a link on the resulting Web page. Typically, the
resulting page would include more than just the link. For the sake of brevity, however, only the appro-
priate link is displayed.

Code Signing
It was mentioned earlier that Java Web Start applications, although running on the client machine,
adhere to a restricted security sandbox architecture. This protects users from applications that can per-
form operations that may be harmful to the user’s system. A developer, however, may need to gain
access to certain resources, or perform operations that are outside the sandbox in order for the applica-
tion to execute as intended. In order to accomplish this, the developer must perform a couple of opera-
tions. The first is to provide the appropriate tags in the application’s JNLP file. To request full access to a
client’s machine, the JNLP file must contain the following code:

<security>
<all-permissions/>

</security>

This was also listed on lines 14–16 of the first code listing, which described the contents of the JNLP file.
The second step is to sign the application code. Code signing is an important security feature for both
the user and the vendor of the application. For users, it means that they can first see who has signed the
application, in order to determine if it is a trusted source. If a user does not know the signer, he or she
can simply elect not to launch the application. For the vendor, it ensures that a third party has not
tampered with the application code. If Java Web Start determines that the signed code has been altered
in any way, it will not launch the application. Java Web Start applications can be signed in the same

356

Chapter 12

16 469513 Ch12.qxd 1/16/04 11:05 AM Page 356

fashion as Java applets. This is done through the J2SE’s keytool and jarsigner. Several steps are involved
when signing your application code. These steps are outlined as follows:

1. Create a JAR file for the application code. This can be done with the following statement:

jar cf myApplication.jar myApplication.class

2. Create a new key in the keystore. When you run this procedure, you will be prompted for a
password as well as some identification information, such as name, organization, and location.
To create a new key, you run the following statement:

keytool –genkey –keystore testKeystore –alias testAlias

3. Create a self-signed certificate. In order to sign the application code, it is necessary to have a cer-
tificate that is used to identify a trusted authority. The J2SE keytool provides a mechanism for
creating a self-signed certificate, but this typically is used only for test purposes, as it does not
guarantee anything about the identity of the signer. Generally, when an application that requires
signed code goes into production, a trusted certificate from a certificate authority is used. An
example of a popular certificate authority is Verisign. The following statement can be used to
create a self-signed certificate that will be used when signing the application JAR file:

keytool –selfcert –alias testAlias –keystore testKeystore

4. Ensure that everything went okay up to this point by listing the contents of the keystore. This
can be accomplished with the following statement:

keytool –list –keystore testKeystore

After providing a password, the contents of the keystore will be displayed. If all went well, the
contents should look something like the following:

Keystore type: jks
Keystore provider: SUN
Your keystore contains 1 entry:
testalias, Mar 12, 2003, keyEntry,
Certificate fingerprint (MD5):
E2:AB:2A:0C:DB:51:B3:8A:32:40:53:A6:1D:A2:B7:31

5. Sign the application’s JAR file by running the following command:

jarsigner –keystore testKeystore myApplication.jar testAlias

If more than one JAR file is used by the application, you must repeat the last step for each additional
file. Note a couple of important points to understand about certificates and signing application code.
First, the certificates usually are valid only for a given period of time. This means that when a certificate
expires, another one must be generated in order to maintain a properly signed application. Second,
remember that after any application modifications, the application code must be re-compiled, re-jarred,
and re-signed. Otherwise, the changes made to the application will not be updated on the client
machines. When a user launches the application on the client machine, Java Web Start performs its
auto-update procedures by checking whether the application’s JAR file(s) have changed. If the code
(that is, the Java class files) has changed but has not been re-jarred, Java Web Start will not recognize that
an update to the application has been made.

357

Unifying the Enterprise Application Space Through Web Start

16 469513 Ch12.qxd 1/16/04 11:05 AM Page 357

Introductory Application
Now that we have discussed the procedures for setting up the framework for creating and deploying a
Java application using Java Web Start, let’s create a small application and use the procedural steps to
deploy it. This will give you the opportunity to see what exactly Java Web Start does, and displays,
when a user wants to launch a Java application. Our little example application simply asks the user to
try to guess a number between 1 and 100. If the user makes the correct guess, a congratulatory message
is provided. If the guess is incorrect, a message will appear, indicating that the guess was either too high
or too low. For our example, we will assume two things have already taken place. One, we will assume
that Java Web Start has been downloaded and installed on the development machine; and two, we will
assume that the Web server has already been configured for the JNLP mime type. The first thing we will
do is create the Java application code for our little application game. The following code provides the
source code for this application:

import java.util.*;
import java.io.*;
import java.awt.*;
import java.awt.event.*;
public class GuessGame extends Frame implements ActionListener {

Button btn_restart;
Button btn_guess;
Button btn_close;
TextField tf_guess;
Label lbl_result;
int the_number;
public static void main(String args[]) {

new GuessGame(“Guess Game”);
}
public GuessGame(String s) {

super(s);
btn_restart = new Button(“Restart”);
btn_guess = new Button(“Guess”);
btn_close = new Button(“Quit”);
btn_restart.addActionListener(this);
btn_guess.addActionListener(this);
btn_close.addActionListener(this);
lbl_result = new Label(“Enter a number from 1 - 100”);
tf_guess = new TextField(3);
Panel main = new Panel();
main.setLayout(new GridLayout(3,1));
Panel p1 = new Panel();
Panel p2 = new Panel();
Panel p3 = new Panel();
main.add(p1);
main.add(p2);
main.add(p3);
add(main);
p1.add(lbl_result);
p2.add(tf_guess);
p3.add(btn_guess);
p3.add(btn_restart);
p3.add(btn_close);
chooseNewNumber();

358

Chapter 12

16 469513 Ch12.qxd 1/16/04 11:05 AM Page 358

setSize(400,200);
show();

}

The first part of the class defines Java AWT objects that will be used as part of the GUI. The GuessGame
method is then used to instantiate the GUI objects, create the layout, and display the GUI to the user:

public void chooseNewNumber() {
the_number = (int)(Math.random() * 100);
if (the_number == 0) { chooseNewNumber(); }

}
public void actionPerformed(ActionEvent e) {

if (e.getActionCommand().equals(“Quit”)) {
System.exit(0);

}else if (e.getActionCommand().equals(“Restart”)) {
chooseNewNumber();
lbl_result.setText(“Enter a number from 1 - 100”);
tf_guess.setText(“”);
tf_guess.requestFocus();

}else if (e.getActionCommand().equals(“Guess”)) {
int response = Integer.parseInt(tf_guess.getText());
if (response == the_number) {

lbl_result.setText(“Congratulations! You’re Right.”);
}else if (response < the_number) {

lbl_result.setText(“Your guess was too low.”);
}else {

lbl_result.setText(“Your guess was too high.”);
}

}
}

}

Now that we have created our application code, compiled it, and tested it, we are ready to move on to the
next process, which is to create the JNLP file that will be used by Java Web Start. The first code listing
showed what a sample JNLP file might look like, and described each component. The JNLP file that we
will create for our test application is slightly different, as it does not require all the items depicted in the
first code listing. The following code shows what the JNLP file for our Guess Game application looks like:

<?xml version”1.0” encoding=”UTF-8”?>
<jnlp

spec=”1.0+”
codebase=”http://localhost:8090/javawsGame”
href=”guessGame.jnlp”>

<information>
<title>Guess Game 1.0</title>
<vendor>Acme Game Builders</vendor>
<homepage href=”help.html”/>
<description>A guessing game of random numbers.</description>
<icon href=”game.gif”/>
<offline-allowed/>

</information>
<resources>

359

Unifying the Enterprise Application Space Through Web Start

16 469513 Ch12.qxd 1/16/04 11:05 AM Page 359

<j2se version=”1.4”/>
<jar href=”game.jar”/>

</resources>
<application-desc main-class=”GuessGame”/>

</jnlp>

Notice that one key item has been left out of our JNLP file: the <security> section is not listed. This is
because our application does not require any special privileges that are outside the security sandbox. In
addition, only a single JAR file is listed in the <resources> section because our application does not
require any other resources to run. The game.jar file simply contains our one class, GuessGame.class.
Everything is set. Now all we need is an interested user who would like to launch our little game appli-
cation. Assuming that the client machine has Java Web Start installed, when the user visits our Web page
and clicks the link that points to the application’s JNLP file, Java Web Start should activate and down-
load the application to the client. Figure 12.2 shows what the user would see.

Figure 12.2

Figure 12.3 shows what our Guess Game application looks like on the client machine.

Figure 12.3

That is all there is to it. Our Java Web Start application now resides on another machine. When the user
wants to play the game at some other time, he or she has two options for launching it again. Users can
revisit the Web page that contained the link to the JNLP file and launch it via the URL link, or they can
double-click on the Java Web Start icon that is located on their desktop. In either case, if the application
code has not been changed, Java Web Start will not download the application again but simply launch
the locally stored copy. If users decide to launch the application from the desktop icon, they will be pre-
sented with the Java Web Start Application Manager, shown in Figure 12.4.

360

Chapter 12

16 469513 Ch12.qxd 1/16/04 11:05 AM Page 360

Figure 12.4

As you can see, the Application Manager console displays some of the information listed in the JNLP
file. That is why it is important to be as descriptive and unambiguous as possible when generating your
application’s JNLP file. You should also notice the image icon displayed along with the application’s title
in the upper-left corner. This is the game.gif image, which we declared in the JNLP file. Under the View
menu option of the Application Manager are three application groupings: Remote Applications,
Downloaded Applications, and Favorite Applications. When Java Web Start downloads an application,
it adds it to its Downloaded Applications grouping. It was mentioned earlier that it would be possible
for a user to launch a Java Web Start application from several areas. Two of those mentioned were the
Start Menu and from a desktop icon. After an application is initially downloaded, it can only be
launched via the browser or from the Java Web Start Application Manager. Once a user has launched the
application a second time, Java Web Start displays a message, asking such users whether they want to
create shortcuts for those areas. Figure 12.5 displays this message.

Figure 12.5

Our little application could be downloaded and run on the client machine without having the code signed
because no special access privileges were requested. In order to see the effect of how Java Web Start han-
dles applications that have been signed, we will pretend that our application requires special privileges
for accessing the client machine. This requires that the application code be signed with jarsigner. Earlier,
you learned the procedures for generating a new self-signed certificate and how to use that certificate to
sign your application JAR file. If we simply took our existing JAR file and followed the procedures for

361

Unifying the Enterprise Application Space Through Web Start

16 469513 Ch12.qxd 1/16/04 11:05 AM Page 361

signing the code in the JAR file, however, Java Web Start would not recognize that anything had changed
with our application. In order to make this happen, we must also make a change to our JNLP file. It was
mentioned earlier that we did not include the <security> tag in our application’s JNLP file. We must
now add this in order to make our change complete. Lines 14–16 of the first code listing in the chapter
show what the <security> tag should contain. Once we make that additional change, Java Web Start
will detect a change in our application the next time the client tries to launch it. When the user does
decide to re-launch our application, Java Web Start will display the screen shown in Figure 12.6.

Figure 12.6

The user can determine a few things from this screen. The first line indicates that the application is
requesting full system access. It also lists the name of the signer. The name was entered when the key for
the keystore was generated. Lastly, there is a warning to the user that Java Web Start was not able to ver-
ify the authenticity of the certificate used to sign the application code and, because of that, does not rec-
ommend that the user run the application. The last point is the reason why it is recommended that a
self-signed certificate be used only for testing, and that a certificate from a trusted certificate authority
be used when the application is put into production mode. Note also the Details button on the screen. If
users would like more information about the certificate, they can click the Details button, and the screen
in Figure 12.7 will be displayed.

Figure 12.7

362

Chapter 12

16 469513 Ch12.qxd 1/16/04 11:05 AM Page 362

A few more details about the certificate can be obtained from this detail screen. Users can gain a little
more information about the issuer as well as the dates for which the certificate is valid. After reviewing
this information, users will be a little more informed before deciding whether they want to trust the
signer enough to run the application. In our case, we know that our application code is not going to do
anything malicious to the client machine. Java Web Start, however, does not know that. One of the
strengths of using Java Web Start is its security mechanism. If someone creates an application requesting
special privileges outside the security sandbox, for example, and adds the <security> tag but does not
sign the application code, Java Web Start will not want to launch the application, and will display the
screen shown in Figure 12.8 to the user.

Figure 12.8

Using Java Web Start can enable you to deliver a very rich client application written with the Java 2
framework to virtually any client machine that is connected to the Internet in a very efficient and secure
manner. As you can see from the previous examples, it does not take much effort to install Java Web Start,
develop a Java application, and make it accessible through a Web server. This capability greatly increases
the options for the developer when putting together an architecture for a distributed enterprise applica-
tion, especially when it comes to the new generation of portal applications. Our little Guess Game appli-
cation is a simple stand-alone application, but it would be just as easy to produce a more sophisticated
application that is either a portion (i.e., a portlet) of a Web-based portal or serves as a basis for an entire
enterprise portal application itself. Now that you know how to use Java Web Start to deliver your Java 2
application, we will look at how this capability can be used in the larger context of portal development.

Using JWS in Portal Implementations
We have talked a lot about Java Web Start, but JWS is only the delivery mechanism for the real client in
which we are interested. It is the Java 2 client application that Java Web Start downloads and updates
that is the real key to how and why Java Web Start can be used as a new means for delivering an enter-
prise portal solution. It was mentioned earlier that Web-based portals cannot always fulfill the require-
ments of a client application. While Java may be used on the server via JSPs, JavaBeans, and servlets, the
result is an HTML client application. There are limitations as to what can be done with an HTML page,
even if it is dynamically generated. There may be circumstances in which only a portion of the page
needs to be updated and a full form submission is unnecessary, or in which the layout and functionality
of the client GUI is too complicated to be represented in an HTML page. The solution to these more
sophisticated problems is a client that utilizes the Java 2 framework. Java offers more robust, functional,
and rich client interfaces, and Java Web Start is the wrapper that can deliver them.

363

Unifying the Enterprise Application Space Through Web Start

16 469513 Ch12.qxd 1/16/04 11:05 AM Page 363

Current Web-based portals typically center on several key items, such as general search capabilities,
news feeds, shopping, e-mail, and so on. Depending on how these various components are imple-
mented, their levels of sophistication can vary. You may need, for example, to build a very sophisticated
news channel that requires capabilities that an HTML page cannot deliver. Other times, it may be neces-
sary to have a portlet (or portion thereof) that resides in a larger portal perform automatic checks on the
server for an update without impacting anything else in the portal. The possibilities for an interface that
requires a richer Java client are endless.

Two types of scenarios in which Java can be used in a portal framework are to use it as a portion of a
standard Web-based portal or to use it for the entire portal itself. In the former case, it may have been
necessary to use a Java application for its capability to meet a more complex requirement that was not
needed for the other components of the portal. In this case, Java Web Start would be utilized to deliver
the one component of the portal. As demonstrated earlier, this would require only that an HTML link to
the application’s JNLP file be listed in the portal. We will take a look at examples for both of these sce-
narios to give you a better idea of how each can be used.

Use in a Web-based Portal
Consider, for example, a portal that should implement a chat capability. Although the rest of the portal’s
components may work well using the Web-based HTTP architecture, the functionality needed for the
chat mechanism requires a more sophisticated framework and interface. Figure 12.9 depicts a fictitious
Web-based portal that has a Java-based chat component as part of one of the portal’s portlets.

Figure 12.9

The content and role of the portal is not significant for our purposes. What is important is the one item
in the portal that is used to launch our Java 2 chat application. Notice the link labeled Online Chat that
is part of the Communication portlet located on the left side of the portal. When the mouse hovers over
this link, the URL associated with it, http://localhost:8090/iportal/communication/chat/chat.jnlp, is
displayed in the browser’s status bar, which is located in the lower left-hand corner. This URL should
now be familiar to you. When a user clicks this link, Java Web Start will launch and download a Java
application to the client machine. If the user has already downloaded the application, clicking the link
will simply launch the locally stored version. In this case, the portal needed a component that would
enable a certain type of chat session(s) to be used. The interface needed to accomplish this is a bit more

364

Chapter 12

16 469513 Ch12.qxd 1/16/04 11:05 AM Page 364

sophisticated than the HTML-rendered page can perform, so a Java application is used to build the user
interface, and is integrated into the portal via a link to the application’s JNLP file. Following is the code
that accomplishes this:

.

 <img src=”<%=LINK1%>”>

Web Email

 <img src=”<%=LINK2%>”>
<a href=”http://localhost:8090/portal/communication/chat/chat.jnlp”

style=”text-decoration=none”>
Online Chat

.

The other link in this portion of the portlet, as well as all the other portal links, uses a call to a JSP page
in order to accomplish its particular task. The link to the chat application, however, makes a call to a
JNLP file. You have already seen the contents of a JNLP file, so we won’t repeat that here. Refer to the
first code listing of the chapter if you need to review the sample JNLP file presented earlier. When a user
visits the portal and decides to take part in a chat session, the chat application will be launched by Java
Web Start. Figure 12.10 displays what the user would then see.

Figure 12.10

The chat application contains separate areas to maintain three different chat sessions at once. Each one
could be independent of the other. As you can imagine, this functionality would be extremely difficult to
produce in an HTML-based environment. A more logical choice for implementing this type of functional
requirement is through a Java application, and Java Web Start is the ideal means to deliver it. While
Figure 12.10 displays the application in the content pane of the portal, it really is a separate application
running on the desktop and is not embedded in the portal itself. This enables users to continue using the
portal’s other components while maintaining their chat sessions. The code used to create the sample chat
session is as follows:

365

Unifying the Enterprise Application Space Through Web Start

16 469513 Ch12.qxd 1/16/04 11:05 AM Page 365

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
public class ChatClient extends JPanel {

public ChatClient() {
ImageIcon icon = new ImageIcon(“talk2.gif”);
JTabbedPane tabbedPane = new JTabbedPane();
Component panel1 = makeSplitPane();

: tabbedPane.addTab(“Chat Room 1”, icon, panel1, “Business Chat”);
tabbedPane.setSelectedIndex(0);
Component panel2 = makeSplitPane();
tabbedPane.addTab(“Chat Room 2”, icon, panel2, “Personal Chat”);
Component panel3 = makeSplitPane();
tabbedPane.addTab(“Chat Room 3”, icon, panel3, “Hobbies Chat”);
//Add the tabbed pane to this panel.
setLayout(new GridLayout(1, 1));
add(tabbedPane);

}
protected Component makeSplitPane() {

JTextArea receive = new JTextArea(“”, 10, 30);
JTextArea send = new JTextArea(“”, 3, 30);
JScrollPane topScrollPane = new JScrollPane(receive);
JScrollPane bottomScrollPane = new JScrollPane(send);
JSplitPane splitPane = new JSplitPane(

JSplitPane.VERTICAL_SPLIT,
topScrollPane, bottomScrollPane);

JButton btn = new JButton(“Sign On”);
JPanel btnPanel = new JPanel();
btnPanel.add(btn);
JPanel panel = new JPanel(new BorderLayout());
panel.add(“Center”, splitPane);
panel.add(“South”, btnPanel);
return panel;

}
public static void main(String[] args) {

JFrame frame = new JFrame(“Chat Portlet”);
frame.addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {System.exit(0);}
});
frame.getContentPane().add(new ChatClient(),

BorderLayout.CENTER);
frame.setSize(600, 400);
frame.setVisible(true);

}
}

As you can readily see from the preceding code, the “guts” for a real chat client are not listed. That
would involve multiple Java files and more text than we have space for in this chapter. It does, however,
show the basis for building a Java client that could house a chat mechanism. It also provides a sample
scenario of what type of client component may require a Java interface and how it can be integrated into
a general Web-based portal architecture. Another thing to keep in mind concerning the implementation
of a Java application launched by Java Web Start as part of a Web-based portal is that it is generally

366

Chapter 12

16 469513 Ch12.qxd 1/16/04 11:05 AM Page 366

launched via the link listed in the portlet. It was mentioned earlier that one of the benefits to running a
Java application through Java Web Start is that it can be launched via other mechanisms, such as the
Start Menu or a desktop icon. While this chat application can be launched through these other mecha-
nisms as a stand-alone application, in order for it to be part of, and integrated within, the portal, it must
be launched via the hyperlink in the portlet. This is neither a positive nor a negative aspect of the appli-
cation or portal, but rather a consequence of being part of the portal as a whole.

Developing a Java client application can be more time-intensive and require a greater skill set than pro-
ducing similar functionality through dynamically generated HTML pages. This may be necessary,
though, to produce the functionality you need. Our example only required one portion of the portal to
be run as a Java client application. What if several other components of the portal also required similarly
sophisticated clients? At some point it may be better, or even necessary, to develop the entire portal itself
as a Java application. Aside from having a richer portal client, having a Java-based portal also introduces
the possibility of having individual portal components communicate with each other in a seamless man-
ner that is not possible in an HTML-based portal. This type of functionality can provide the developer
with many more options concerning the portal architecture.

Use in a Java Portal
Building a Java-based portal enables the developer to have complete control over how the portal acts
and reacts to user interactions. Various types of functionality, such as drag and drop, just cannot be
accomplished in Web-based portals. Using a Java client application as the portal interface allows for a
much richer user experience and a more functional application. In general, a Java-based portal is simply
a Java application. In order to make it accessible on the Internet, the application need only be Java Web
Start–enabled, which means that it is packaged in the JNLP framework. Portals are all about obtaining,
sharing, and transferring data from various data sources. The rich functionality of the Java language
enables these types of processes to occur in a much smoother manner than in a typical Web-based
portal. One of the big enhancements to the Java 2 environment was the introduction of Java Swing.

Java Swing
Swing was introduced as part of the Java Foundation Classes (JFC) and is a new GUI component kit that
aids in the development of an application’s visual components. These include such things as dialogs,
window panes, menu bars, and so on. Besides Swing, the JFC also includes the Java 2D, drag and drop,
and other Accessibility APIs. Swing and the JFC are an add-on to the standard Java Abstract Windowing
Toolkit (AWT) packages. Swing is now a core part of the JDK 1.2 and sits atop and expands the AWT.
There are many crossover classes between AWT and Swing components, such as the AWT Frame class
and the Swing JFrame class, but the Swing components offer a much more powerful and elegant solu-
tion than their AWT counterpart. One of the key capabilities of the Swing toolkit is the Pluggable Look
and Feel (PL&F). This feature enables developers to modify the appearance and behavior, or look and
feel, of the windowing components they are developing. A second important feature of Swing is its
Accessibility classes. This API introduces an important compatibility with software and hardware that is
designed for people with special needs, such as those who have a sight impairment or cannot operate a
mouse. The benefits that the Accessibility classes offer don’t only benefit the disabled, however. Creating
things such as touch-screen components are beneficial to everyone, and gives the developer additional
options in developing an application. Figure 12.11 depicts where the Swing API fits into the JFC frame-
work. This graphic is part of the document “Getting Started with Swing,” which can be found at
http://java.sun.com/products/jfc/tsc/articles/getting_started/index.html.

367

Unifying the Enterprise Application Space Through Web Start

16 469513 Ch12.qxd 1/16/04 11:05 AM Page 367

Figure 12.11

As you can imagine, using Swing components as part of a Java-based portal solution can add great flexi-
bility and functionality not only to the portal framework itself but also to how individual components
within the portal work, both as individual components and interconnected modules. There is no generic
definition of how a portal is supposed to function or what types of capabilities it must have, so how a
portal’s user and functional requirements are converted into a Java 2 application (using the AWT or
Swing) is up to the imagination and creative capabilities of the developer. Because of this, there is no
way to describe or show how to build a Java-based portal, but only to show some examples of how com-
ponents can be used within a portal framework or how other developers have used Java to build an
existing portal or portal-like application. A couple of these examples are listed in the following section.

Java-based Portal Examples
A portal can look like many different things, depending on the goal and purpose of the portal. The main
thing to determine is whether the functionality needed for the portal is better served by using a Web-
based or Java-based front-end interface. We will assume here that a Java-based portal is needed due to
the complexities that the interface must deliver. It was mentioned earlier that Java Swing offers a solid
platform for building rich interfaces. Figure 12.12 depicts a Java-based portal that employs several differ-
ent Java Swing components.

Figure 12.12

The example shows a number of features that Java Swing can offer, including a JTabbedPane, JSplitPane,
JPanel, JSlider, JCheckbox, JComboBox, and JRadioButton. Notice that the tabs on the top of the application

368

Chapter 12

16 469513 Ch12.qxd 1/16/04 11:05 AM Page 368

span the myriad of typical portal-type components. Unlike a Web-based portal, however, these different
components could possibly be updated as the user is accessing a different part of the portal. It depends on
how the application is developed, but Java offers this type of flexibility. The following example shows the
code necessary to build this interface:

import javax.swing.*;
import javax.swing.border.*;
import java.awt.*;
import java.awt.event.*;
public class JavaPortal extends JPanel {

/*
* Class constructor
*/

public JavaPortal() {
JTabbedPane tabbedPane = new JTabbedPane();
tabbedPane.addTab(“Mail”, new JPanel());
tabbedPane.addTab(“Chat”, new JPanel());
tabbedPane.addTab(“News”, new JPanel());
tabbedPane.addTab(“Stocks”, new JPanel());
tabbedPane.addTab(“Ski Reports”, makeSkiPanel());
tabbedPane.addTab(“Currency”, new JPanel());
tabbedPane.addTab(“Box Scores”, new JPanel());
tabbedPane.addTab(“Weather”, new JPanel());
//Add the tabbed pane to this panel.
setLayout(new GridLayout(1, 1));
add(tabbedPane);

}

The JavaPortal constructor is used to create the Swing objects that are added to the GUI layout. In this
case, a variety of Swing panels are added as tabs to the JTabbedPane:

/*
* makeSkiPanel - Creates the entire panel for a given tab.
*/

protected Component makeSkiPanel() {
JTabbedPane tabbedPane = new JTabbedPane();
tabbedPane.addTab(“United States”, makeSkiDetail());
tabbedPane.addTab(“Europe”, makeSkiDetail());
tabbedPane.addTab(“South America”, makeSkiDetail());
tabbedPane.setTabPlacement(JTabbedPane.RIGHT);
JSplitPane splitPane = new JSplitPane(JSplitPane.HORIZONTAL_SPLIT,

makeSkiProps(), tabbedPane);
return splitPane;

}
/*
* makeSkiDetail - Creates the panel data for the right-side tabs.
*/

protected JPanel makeSkiDetail() {
JPanel skiDetail = new JPanel();
skiDetail.setBackground(Color.green);
JPanel inner = new JPanel();
inner.setLayout(new BoxLayout(inner, BoxLayout.Y_AXIS));
JLabel lbl1 = new JLabel(“Zermatt”);

369

Unifying the Enterprise Application Space Through Web Start

16 469513 Ch12.qxd 1/16/04 11:05 AM Page 369

JPanel p1 = new JPanel();
p1.add(lbl1);
p1.setBackground(Color.green);
inner.add(p1);
lbl1 = new JLabel(“New snow: 56\””);
p1 = new JPanel();
p1.add(lbl1);
p1.setBackground(Color.green);
inner.add(p1);
lbl1 = new JLabel(“Conditions: Partly Sunny, Flurries, 32 C”);
p1 = new JPanel();
p1.add(lbl1);
p1.setBackground(Color.green);
inner.add(p1);
lbl1 = new JLabel(new ImageIcon(“ZERMATT.gif”));
p1 = new JPanel();
p1.add(lbl1);
p1.setBackground(Color.green);
inner.add(p1);
JPanel p2 = new JPanel();
p2.setBackground(Color.green);
p2.setBorder(new TitledBorder(new EtchedBorder(), “Rotate Picture”));
JSlider slide = new JSlider(JSlider.HORIZONTAL, 0, 360, 180);
slide.setMajorTickSpacing(60);
slide.setMinorTickSpacing(30);
slide.setPaintTicks(true);
slide.setPaintLabels(true);
p1 = new JPanel();
p1.add(slide);
slide.setBackground(Color.green);
p1.setBackground(Color.green);
p2.add(p1);
inner.add(p2);
skiDetail.add(inner);
inner.setBackground(Color.orange);
return skiDetail;

}
/*
* makeSkiProps - Creates the left portion of the JSPlitPane.
*/

protected Component makeSkiProps() {
JPanel skiPanel = new JPanel();
skiPanel.setLayout(new BoxLayout(skiPanel, BoxLayout.Y_AXIS));
skiPanel.setBorder(new TitledBorder(new EtchedBorder(), “Options”));
JPanel top = new JPanel();
top.setLayout(new BoxLayout(top, BoxLayout.Y_AXIS));
JPanel choices = new JPanel();
choices.setLayout(new BoxLayout(choices, BoxLayout.Y_AXIS));
choices.add(new JCheckBox(“New Snow”));
choices.add(new JCheckBox(“Snow Base”));
choices.add(new JCheckBox(“Current Conditions”));
choices.add(new JCheckBox(“Trail Map”));
choices.add(new JCheckBox(“Mtn. Picture”));
top.add(choices);
String[] data = {“Jackson Hole”, “Whistler/Blackcomb”, “Zermatt”};

370

Chapter 12

16 469513 Ch12.qxd 1/16/04 11:05 AM Page 370

JComboBox resorts = new JComboBox(data);
JScrollPane resortPane = new JScrollPane(resorts);
JPanel listPanel = new JPanel();
listPanel.add(resortPane);
top.add(listPanel);
skiPanel.add(top);
JPanel bg = new JPanel();
bg.setLayout(new BoxLayout(bg, BoxLayout.Y_AXIS));
bg.setBorder(new TitledBorder(new EtchedBorder(), “Background”));
JPanel j1 = new JPanel();
j1.add(new JRadioButton());
j1.add(new JLabel(new ImageIcon(“green.gif”)));
j1.add(new JRadioButton());
j1.add(new JLabel(new ImageIcon(“blue.gif”)));
JPanel j2 = new JPanel();
j2.add(new JRadioButton());
j2.add(new JLabel(new ImageIcon(“yellow.gif”)));
j2.add(new JRadioButton());
j2.add(new JLabel(new ImageIcon(“magenta.gif”)));
bg.add(j1);
bg.add(j2);
skiPanel.add(bg);
return skiPanel;

}

The two Swing panels that are generated from the methods makeSkiDetail and makeSkiProps are cre-
ated with content that will be displayed in the left and right sides of the GUI’s split pane:

/*
* main
*/

public static void main(String[] args) {
JFrame frame = new JFrame(“Java-Based Portal”);
frame.addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {System.exit(0);}
});
frame.getContentPane().add(new JavaPortal(),

BorderLayout.CENTER);
frame.setSize(600, 400);
frame.setVisible(true);

}
}

As you can see, the preceding code is not enough to produce a fully functioning portal application as
depicted in Figure 12.10. It merely represents a shell for how a Java-based portal application can be built,
and demonstrates several options that Java Swing can offer the developer in building a portal interface.

Another example of a Java-based application is BrowserG. BrowserG is a freeware Java-based desktop
application developed by Jeet Shahani that is based on the WebClient Java API. Documentation and
download information can be found at http://browserg.mozdev.org. Figure 12.13 shows one facet of this
product’s functionality.

371

Unifying the Enterprise Application Space Through Web Start

16 469513 Ch12.qxd 1/16/04 11:05 AM Page 371

You will notice that this application utilizes moveable menu bars. These can add great flexibility, as it
essentially allows for a layering of application interfaces. These examples show only a small part of what
a Java-based application can look like or what its perceived functionality can entail. They should pro-
vide you with a good idea of how much more flexible a Java-based application (for example, a portal)
can be versus an HTML Web-based portal.

Summary
Enterprise portals continue to evolve, and with it so should the technologies behind them. As portals
become more sophisticated, the framework that supports them needs to be flexible enough to satisfy all
of their requirements. A move to using a richer client interface in the form of a Java application is not
new, but how the application can be installed and maintained on a client machine has been greatly
improved with the introduction of Java Web Start. As a developer, taking advantage of the Java Web
Start framework is very simple. The following list shows the relatively few steps that need to be taken to
make any Java application “webified” for use by Java Web Start:

1. Download and install Java Web Start.

2. Configure the Web server to recognize .jnlp file requests.

3. Create a Java application.

4. Create a JNLP file for the application.

5. Package the application in a JAR(s) file and put it in the necessary location on the Web server.

6. Sign the application code if necessary.

7. Create an HTML Web page that has a link to the JNLP file.

Ultimately, using Java Web Start is beneficial for both the user and the developer. The user of a Java
application delivered by Java Web Start will embrace its richness and functionality, while the developer
will appreciate it for its flexibility, security, and robustness.

372

Chapter 12

16 469513 Ch12.qxd 1/16/04 11:05 AM Page 372

References

[ALUR] Alur, Deepak, John Crupi, and Dan Malks. Core J2EE Patterns: Best Practices and Design
Strategies. Upper Saddle River, NJ: Prentice-Hall, 2001.

[AMBLER] Ambler, Scott M. Agile Modeling: Effective Practices for Extreme Programming and the
Unified Process. Indianapolis, IN: John Wiley & Sons, 2002.

[BECKFOWLER] Beck, Kent and Martin Fowler. Planning Extreme Programming. Boston, MA:
Addison Wesley, 2000.

[GoF] Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Reading, MA: Addison-Wesley, 1996.

[HOWTO] See http://jakarta.apache.org/tomcat/tomcat-5.0-doc/realm-howto.html.

[JCP] JSR-000003 Java Management Extensions (JMX) Maintenance Release 2, September 2, 2002.

[JSR168] The Java Portlet Specification 1.0, October 27, 2003.

[NIST] Computer Security Resource Center. “An Introduction to Role-Based Access Control,” in ITL
Computer Security Bulletin. National Institute of Standards and Technology, December 1995. See also
http://csrc.nist.gov/publications/nistbul/csl95-12.txt.

[REALMHOWTO] The Tomcat 5 Servlet JSP Container — Realm Configuration HOWTO, http://
jakarta.apache.org/tomcat/tomcat-5.0-doc/realm-howto.html.

[SCHAECK] Schaeck, Thomas. “Web Services for Remote Portals (WSRP) Whitepaper,” in OASIS
Web Services for Remote Portlets TC, 2002.

17 469513 Ref.qxd 1/16/04 11:05 AM Page 373

[SMITHK] Smith, Kevin. “Solutions for Web Services Security — Lessons Learned in a Department of
Defense Program,” in Object Management Group’s 2nd Workshop on Web Services Modeling, Architectures,
Infrastructures and Standards. Philadelphia, PA , April 2003.

[SOAP] Simple Object Access Protocol 1.1, W3C Note, May 8, 2000. See www.w3.org/TR/SOAP/.

[WSRP] Committee Specification 1.0: OASIS Web Services for Remote Portlets, Committee Specification 1.0,
July 14, 2003.

374

References

17 469513 Ref.qxd 1/16/04 11:05 AM Page 374

In
de

x

Index

Symbols
* (asterisks), wildcards in portlet deployment descrip-

tors, 29
- (minus sign) operator, Lucene query syntax, 55
+ (plus sign) operator, Lucene query syntax, 55

A
access control, portals, authentication, 145–146
AccessDeniedException, Slide security

helper, 127
AccessDeniedException class, Slide security

helper, 128
accessDomain method, Domain class, 134
accessNamespace method, Domain class, 134
accuracy, search engines, 42
ACLs (Access Control Lists), portal authorization,

146–147
action requests (portlets), handling, 10
action URLs (portlets), 9
ActionRequest object, portlet request handling,

10–11
actions

security policies, 124
Slide security helper, 127

ActionURL object, portlets, 14
actionURL tag (Portlet Tag Library), 28
Adapter Pattern, defined, 205
Add Messages to Messageboard Portlet example use

case, 184
addElement method, portal navigation, 213
AddFooter mailet, 62

AddHabeasWarrantMark mailet, 62
AddHeader mailet, 62
adding portlets, 8
Add.jsp

message board Web example application, 93
overview, 104
source code, 104–106

addMessage method, OJB message board example
application, 104

addParameter method, PortletURL interface, 15
Address class, JavaMail, 72
addresses, recipients, setting (JavaMail), 71–72
adduser command, James, 70
admin view, Slide, 139
Advanced Search Page example (Lucene), 56
algorithms

encryption, 149
search engine techniques, 44–45

All matcher, 61
analysis, documents, search engines and, 43–44
Analyzer class, overview, 51
AND operator, Lucene query syntax, 55
ANT (Jakarta), deployment planning and, 180
AntHill, continuous integration application, 324–326
Apache Axis. See Axis
APIs (OJB), relationships among, 90
applets, portlet planning considerations, 208
Application layer, Slide architecture, 120
application packaging (Java Web Start), 354
application-desc tag, Java Web Start, 354
applications

Java, Slide content management, 118
portlet, localization and ResourceBundle object, 14

469513 Index.qxd 1/27/04 11:23 AM Page 375

applications (continued)
portlet compared to Web, extensibility, 6
Web compared to portlet applications, 283

applications (portlet), structure, 21–22
APPLICATION_SCOPE, PortletSession interface, 18
architecture

design decisions, overview, 195–196
eXo portal platform, directory structure, 260–262
model 1, 196–197
model 2, 197
model 2X, 197–199
portlet, overview, 255
security, diagram of, 171

architecture (Slide)
external, 118–120
internal, 120–121
overview, 117–118
Slide API layer, 135

Architecture Goals section, SADs, 187
arguments

JavaScript functions, calling, 225
recipient addresses (JavaMail), 72

arrays, JavaScript, creating, 232
articleIDDomainSuffix tag, James, 67
articleIDPath tag, James, 67
asset management, 201
association checklists, domain models, 185
atomicity, Slide transaction management, 123
attachments (mail), creating, 77
attributes
className (security realms), 157
connectionName (security realms), 157
connectionPassword (security realms), 157
connectionURL (security realms), 157
CSS portlet style definitions, 22–23
digest (security realms), 157
driverName (security realms), 157
fetch tag (James), 67
fetchpop tag (James), 67
jnlp tag, 353
keystoreFile, 164
keystorePass, 164
mailet tag (James), 68
portlet scope naming conventions, 18–19
protected int m_nID (OJB), 91
roleNamesCol (security realms), 157
user profiles (portlets), 24–28
userCredCol (security realms), 157

userNameCol (security realms), 157
userRoleTable (security realms), 158
userTable (security realms), 158
version (portlet deployment descriptors), 28

authentication
deep authentication, 148
JavaMail, 72–73
logon screen (JavaMail), 79
portals, 145–146
security realms and, 155–163
Tomcat configuration, 165–167

Authenticator class, JavaMail, 72–73
authoritative tag, James, 66
authorization

portals, 146–147
portals, single sign-on (SSO), 147–148
security realms and, 155–163
Tomcat configuration, 165–167

auto-delete element, Message class (OJB), 97
auto-populating fields, JavaScript, 228–229
auto-retrieve element, Message class (OJB), 97
auto-update element, Message class (OJB), 97
auto-validating fields, JavaScript, 229–231
AvalonListserv mailet, 62
AvalonListservManager mailet, 62
Axis, Llama example portlet/Web service, 298–302
Axis-wsdl2java (Ant task), 299

B
back-end security considerations, 171
banding style, attribute setting for portals, 22
BASIC authentication, 165
batch-mode element, jdbc-connection-

descriptor tag, 100
bayesian nets, search engine algorithms, 45
bin directory, eXo portal platform, 261
bind tag, James, 66
bindings section, Llama example portlet/Web

service, 293–294
body (SOAP messages), 286
body tag, WSRP and, 305
Boolean operators

Lucene query syntax, 55–56
search engines, 200

boosting search terms (Lucene queries), 55
BranchNotFoundException class, Slide content

helper, 130

376

applications (continued)

469513 Index.qxd 1/27/04 11:23 AM Page 376

browsers
client-side processing, 206
Java Plug-ins, portlet planning considerations, 208
JavaScript considerations, 207

bug tracking
deployment planning and, 181
Scarab, 330–335

build applications, ANT (Jakarta), 180
button text, attribute for portals, 23

C
cache, portlet expiration-cache tag, 29
cached content (portlets), render method and, 9
caching

defined, 88
objects (OJB), 89

calling
JavaScript functions, 224–225
servlets and JSPs, portlets and, 19–21

catching errors, sending mail (JavaMail), 79
cells (tables), attribute settings for portals, 23
Certificate Signing Request (CSR), 164
certificates, signing authorities, 164
characters (special), Lucene query syntax, 56
check box label, attribute for portals, 23
check boxes, defined, 231
CheckStyle, deployment planning and, 180
child nodes, permissions (Slide security helper), 125
class attribute, mailet tag (James), 68
class element, Message class (OJB), 96
class-descriptor tag, Message class (OJB), 96
classes
Address (JavaMail), 72
Analyzer, 51–53
Authenticator (JavaMail), 72–73
CRC (Class-Responsibility-Collaborator) cards, 190
developing, domain models and, 184–186
DirectoryPortlet (Directory example portlet),

267–271
DirectoryValidator (Directory example portlet),

271–272
Folder (JavaMail), 73–74
GenericMailet, 60–61
GenericMatcher, 61
GenericPortlet, 11–13
GenericPortlet (source code), 32–33
GenericPortlet, defined, 8
IndexSearcher, 50–51

IndexWriter, 49
InternetAddress (JavaMail), 72
Message (JavaMail), 71–72
Message (JavaMail), overview, 93
Message (JavaMail), source code, 94–97
Message (OJB), 91
OJB, creation guidelines, 93
PreferenceValidator, 258
search engine functionality, 48
Session (JavaMail), 71
Slide content helper, 130–131
Slide lock helper, 129–130
Slide macro helper, 131–132
Slide security helper, 125, 128
SMTPMessage (JavaMail), 71
StandardAnalyzer, 48
Store (JavaMail), 73–74
Transport (JavaMail), 73
Viewer (JavaMail), overview, 97
Viewer (JavaMail), source code, 97–98
Viewer (OJB), 91
WSDL2Java, 299

className attribute, security realms, 157
CLASSPATH settings, OJB deployment, 114
Class-Responsibility-Collaborator (CRC) cards, 190
client invocation (Java Web Start), 354–356
client layer, Slide, 118
client view, Slide, 139
clients

Slide API, accessing, 120
WebDAV (Slide), 118

client/server mode (OJB), 89
client-side field validation, JavaScript, 223–227
client-side processing

layering elements on page (JavaScript), 244–249
overview, 206

clonePortlet method, WSRP, 305
closeNamespace method, Domain class, 134
code listings. See source code
code signing (Java Web Start), 356–357
collaboration, JSPWiki, 344–346
collection-descriptor tag
Message class (OJB), 96
OJB repository.xml file, 91

column element, Message class (OJB), 96
CommandForListserv matcher, 61
concept searching (search engines), 200
conditional statements, JavaScript, 237
conf directory, eXo portal platform, 261–262
confidentiality considerations, portal security, 149

377

confidentiality considerations, portal security

In
de

x

469513 Index.qxd 1/27/04 11:23 AM Page 377

configuration
connectionmanager (James), 69
fetchPOP service (James), 67
global items (James), 68–69
James, overview, 65–66
James, DNS server, 66
James, NNTP server, 67
James, POP3 server, 66
James, SMTP server, 66
Java Web Start and, 119
Java Web Start, Web server, 351–352
objectstorage (James), 69
portlet preferences, overview, 16–18
portlet security, descriptors and, 170–171
PortletConfig object, 14
RemoteManager (James), 68
repositories (James), 68
security (portlet.xml file), 258
Slide, mapping services to nodes, 132
socketmanager (James), 69
SpoolManager (James), 68
SSL (Secure Sockets Layer), 163–165
threadmanager (James), 69
Tomcat authentication and authorization, 165–167
Tomcat Manager, 136–138
Tomcat server, overview, 155
Tomcat server, security realms, 155–163

configuration files
James, accessing, 65
Slide, 132

configuration management, 311
config.xml (James), location, 65
confirmation message text, attributes, setting for

portals, 22
ConflictException class, Slide macro helper, 131
connection tag, James, 69
connectionLimit tag, James, 66
connectionmanager, configuration (James), 69
connectionName attribute, security realms, 157
connectionPassword attribute, security realms, 157
connectionURL attribute, security realms, 157
consistency, Slide transaction management, 123
consumers (WSRP), defined, 302
Content class, Slide content helper, 130
content helper (Slide), 120, 130–131
content management (Slide)

remote, 118
Slide server, 138–139

standalone Java applications for, 118
transaction management and, 122

content management, portal design considerations,
200–201

content publishing, 201
content store, Slide, 132
ContentException class, Slide content helper, 131
ContentImpl class, Slide content helper, 130
context diagrams, 190
Context tag, Tomcat configuration, 156
continuous integration

defined, 312
software testing, 181

controllers.xml file, Loan Calculator example
portlet, 279

conventions (naming), portlet scope attributes, 18–19
CopyMacroException class, Slide macro helper, 131
core classes, JavaMail API, 71–74
CRC (Class-Responsibility-Collaborator) cards, 190
createPortletInstance operation (WSRP), 209
criteria, setting for searches, 272–274
CSR (Certificate Signing Request), 164
CSS (Cascading Style Sheets)

Portlet API definitions, 22–23
WSRP (Web Services for Remote Portals), 305

customization
portlet deployment descriptors, 31
portlet preferences, overview, 16–18
portlet window states, 16
Preferences object (portlets), 8–9

customization tool, eXo portal platform, 259–260
CVS (Concurrent Versioning System), 312–315

D
data directory, eXo portal platform, 262
Data Flow Diagram (DFD), 193–194
Data Flow section, SADs, 187, 189
data integrity management, 150. See also transaction

management (Slide)
data persistence design, UML alternatives, 193–194
data requirements, deployment planning, 178
Data Store layer, Slide architecture, 120
Data Views section, SADs, 187, 189
database platforms, OJB support, 111–112
database repositories (James), overview, 64

378

configuration

469513 Index.qxd 1/27/04 11:23 AM Page 378

databases
caching, 88
deleting objects (ODMG API), 109–110
MySQL (Directory example portlet), 266
opening (ODMG API), 107
PersistenceBroker API, iterating through, 100–101
retrieving objects (ODMG API), 107–108
security realms, 155
storing objects (ODMG API), 108
updating objects (ODMG API), 109

DataHandler object, JavaMail, 77
DataSource security realms, information Web site, 163
date validation, JavaScript, 226
DAV Explorer, WebDav client tool, 118
dbalias element, jdbc-connection-descriptor

tag, 99
dbdirectory database, Directory example portal, 266
DBFile repositories (James), overview, 64
debug attribute, security realms, 157
declarations

JavaScript, 222–223
portlet deployment descriptors, 29–30
stop words (search engines), 52–53

declarations section, Llama example portlet/
Web service, 293–294

declared names, calling servlets, 19
decodeAttribute method, PortletSessionUtil

interface, 19
deep authentication, portal security, 148
default actions, Slide security helper, 127
default-connection element, jdbc-

connection-descriptor tag, 99
defaultPersistenceBroker method, issuing

queries, 103
defineObjects tag (Portlet Tag Library), 28
DeleteMacroException class, Slide macro

helper, 131
deleting database objects, ODMG API, 109–110
deployment

bug tracking and, 181
data requirements, 178
Directory example portlet, 276–277
Hot Deployment (eXo portal platform), 259
interface requirements, 177
Java Web Start method, 358–363
OJB applications, 113–114
operational requirements, 177–178
planning overview, 175–177
portlet applications, 6
quality assurance requirements, 179–181

security requirements, 178–179
testing, 180–181

deployment descriptors
portlet applications, location, 22
portlet applications, overview, 28
portlet customization declarations, 31
portlet declarations, 29–30
portlet security constraints, 31
portlet user attributes, 31
user profile attributes (portals), 27

Deployment Flow section, SADs, 187, 189
deregister method, WSRP, 304
deregistration service, WSRP, 304
descriptors, portlet security and, 170–171
descriptors store, Slide, 132
design decisions

field list layout, multiple value picklists, 231–234
field list layout, variable number of, 234–240
model 1 architecture, 196–197
model 2 architecture, 197
model 2X architecture, 197–199
navigation overview, 210–212
overview, 195–197

design methodologies, overview, 182
design patterns, overview, 201
destroy method
GenericPortlet class, 256
portlets, 8

destroyInstance operation (WSRP), 209
destroyPortlets method, WSRP, 305
development

continuous integration, 312
CVS (Concurrent Versioning System), 312–315
JUnit testing, overview, 316–323
Subversion (revision control system), 315–316

DFD (Data Flow Diagram), 193–194
digest attribute, security realms, 157
DIGEST authentication, 165
digital certificates, signing authorities, 164
digital signatures, nonrepudiation, 150
Directory example portlet

component files, 265–266
deploying, 276–277
DirectoryEdit.jsp, 274
DirectoryPortlet class, 267–271
DirectoryValidator class, 271–272
DirectoryView.jsp, 272–274
MySQL database, 266
overview, 262–265
portlet.xml file, 275–276

379

Directory example portlet

In
de

x

469513 Index.qxd 1/27/04 11:23 AM Page 379

Directory example portlet (continued)
posting user form information, 272–274
web.xml file, 275

Directory object, implementing, 54
Directory portlet example, overview, 262–265
directory structure, eXo portal platform, 260–262
DirectoryEdit.jsp, Directory example portlet,

272–274
DirectoryPortlet class, Directory example portlet,

267–271
DirectoryValidator class, Directory example

portlet, 271–272
DirectoryView.jsp, Directory example portlet,

267, 272–274
discovery service, WSRP, 304
div tag, layering in IE, 244
DNS (Domain Name Server), configuration (James), 66
dnsserver tag, James, 66
document analysis, search engines, 43–44
Document object

creating, 53–54
Lucene, 48
source code example, 49–50

Document Object Model (DOM), client-side
scripting, 206

documentation, Tomcat server, 138
documents, indexing example (search engines), 46–48
doDispatch method

portlet creation, 11–13
portlet modes, 15

doEdit method
DirectoryPortlet class, 267
GenericPortlet class, 256
portlet creation, 11–13

doHelp method
Directory example portlet, 269
DirectoryPortlet class, 267
GenericPortlet class, 256

doHelpJSP method, 292
DOM (Document Object Model)

client-side scripting, 206
JavaScript functions, calling, 225

Domain class, methods, 134
domain models, class development and, 184–186
Domain Name Server. See DNS
Domain object, Slide, 133
Domain.accessDomain method, Slide, 134
Domain.accessNamespace method, Slide, 134
Domain.init method, Slide, 132
domains, Slide, 132–134

Domain.xml file, location, 139
dom4j, portal navigation and, 212
doView method
DirectoryPortlet class, 267
GenericPortlet class, 256
portlet creation, 11–13

downloading, James, 64–65
driver element, jdbc-connection-descriptor

tag, 99
driverName attribute, security realms, 157
durability, Slide transaction management, 123
dynamic HTML pages, JavaScript, 240–244

E
EDIT mode, portlets, 15
EDIT mode (portlets), rendering handling, 12
editor view, Slide, 139
element-class-ref element, Message

class (OJB), 96
elements
auto-delete (OJB Message class), 97
auto-retrieve (OJB Message class), 97
auto-update (OJB Message class), 97
batch-mode (OJB jdbc-connection-descriptor

tag), 99
class (OJB Message class), 96
column (OJB Message class), 96
dbalias (OJB jdbc-connection-descriptor

tag), 99
default-connection (OJB jdbc-connection-

descriptor tag), 99
driver (OJB jdbc-connection-descriptor

tag), 99
element-class-ref (OJB Message class), 96
ID (OJB Message class), 96
ignoreAutoCommit Exceptions (OJB jdbc-

connection-descriptor tag), 99
jcd-alias (OJB jdbc-connection-descriptor

tag), 99
jdbc-level (OJB jdbc-connection-descriptor

tag), 99
jdbc-type (OJB Message class), 96
name (OJB Message class), 96
orderby (OJB Message class), 96
password (OJB jdbc-connection-descriptor

tag), 99
platform (OJB jdbc-connection-descriptor

tag), 99
protocol (OJB jdbc-connection-descriptor

tag), 99

380

Directory example portlet (continued)

469513 Index.qxd 1/27/04 11:23 AM Page 380

sort (OJB Message class), 97
subprotocol (OJB jdbc-connection-

descriptor tag), 99
table (OJB Message class), 96
useAutoCommit (OJB jdbc-connection-

descriptor tag), 99
username (OJB jdbc-connection-descriptor

tag), 99
encode methods, return values, 21
encryption, portal security, 149
Engine tag, Tomcat configuration, 156
enterprise portals, design decisions, 197
enumerateNamespace method, Domain class, 134
envelopes (SOAP), 286
environment (runtime), portlets, 5
errors

default ports (James), 65
sending mail, catching (JavaMail), 79

escaping characters, Lucene query syntax, 56
ExamplePortlet class, source code, 11–13
exceptions, portlet container initialization, 8
eXo portal platform

customization tool, 259–260
Directory example portlet, deploying, 276–277
directory structure, 260–262
eXo portal, 259
Hot Deployment, 259
installation, 260
overview, 259

exo-express directory, 261
exo-jboss directory, 261
exo-lib directory, 262
expiration-cache element, portlets, 9
expiration-cache tag, portlet deployment

descriptors, 29–30
extending
JSPPortlet (Sun sample portlet), 295–296
PreferencesValidator class (portlets), 36
render method, 11–13

extensibility, portlet applications compared to Web
applications, 6

external architecture, Slide, 118–120
Extreme Programming (XP), deployment planning, 175

F
Facade Pattern, defined, 205
Factory Method Pattern, 206
fetch tag, James, 67
FetchedFrom matcher, described, 61

fetchPOP service, configuration (James), 67
fetchpop tag, James, 67
field auto-population, JavaScript, 228–229
field auto-validation, JavaScript, 229–231
field elements, layout

multiple value picklists, 231–234
variable number of, 234–240

field references, JavaScript functions, 225
field validation, client-side (JavaScript), 223–227
field values, returning, JavaScript, 227
field-descriptor tag, Message class (OJB), 96
fields
Document object (search engines), 53
Lucene query syntax, 54
referencing, JavaScript, 232
referencing, JavaScript functions, 225

file repositories (James), overview, 64
files, Directory example portlet, 265–266
flexibility features, OJB (Object Relational Bridge),

88–89
Folder class, JavaMail, 73–74
font style classes, WSRP, 306
font-size style class (WSRP), 306
footers (tables), attribute setting for portals, 23
ForbiddenException class, Slide macro helper, 131
FORM authentication, 165
form field, separation attribute for portals, 23
form label, attribute for portals, 23
form style classes, WSRP (Web Services for Remote

Portals), 308–309
form submission, JavaScript, 231
forms

layering on page (JavaScript), 244–249
movable layers (JavaScript), 250–253
posting user form information (Directory example port-

let), 272–274
processing, Directory example portlet, 263

Forward mailet, 62
forward method, RequestDispatcher, recommen-

dations, 21
fragments (portals)

defined, 5
portlet container management of, 6

frame tag, WSRP and, 305
frameset tag, WSRP and, 305
Front Controller Pattern, defined, 206
functional features, OJB (Object Relational Bridge), 89
functions, creating (JavaScript), 224
fuzzy logic (Lucene query syntax), 55

381

fuzzy logic (Lucene query syntax)

In
de

x

469513 Index.qxd 1/27/04 11:23 AM Page 381

G
generateParams method, portlet navigation, 214
GenericMailet class, mailet creation, 60–61
GenericMatcher class, matcher creation, 61
GenericPortlet class

defined, 8
methods, 256
methods, functionality of, 257
portlet creation, 11–13
source code, 32–33

Get method
Message class (OJB), 94
Viewer class (OJB), 97

getAttribute method, portlet namespace applica-
tion, 19

getAuthType method, PortletRequest
interface, 169

getContentJSP method, 292
getContentLength method, null values, 20
getDefaultNamespace method, Domain class, 134
getDomainFileName method, Domain class, 134
getEditJSP method, 292
getHexValue method, passwords, 159
getJSPPath method, 291
getLlamas method, 293–294
getLocalizedJSP method, 291
getMap method, PortletPreferences interface, 17
getMarkup method, WSRP, 304
getMessage method, OJB message board example

application, 101
getNamedDispatcher method

calling servlets, 20
method availability, 20

getNames method, PortletPreferences
interface, 17

getOutputStream method, portlet request
handling, 11

getPassword method, 159
getPasswordAuthentication method, JavaMail,

72–73
getPortalContext method, functionality of, 16
getPortletDescription method, WSRP, 305
getPortletMarkup operation (WSRP), 209
getPortletProperties method, WSRP, 305
getPortletPropertyDescription method,

WSRP, 305
getRemoteUser method
PortletRequest interface, 169
ServletRequest object, 167

getServiceDescription method, WSRP, 304
getTitle method, overriding, 13
getTopics method, portlet navigation, 214
getUserDN method, passwords, 159
getUserPrincipal method, PortletRequest inter-

face, 169
getUserPrinciple method, ServletRequest

object, 167
getValue method, PortletPreferences

interface, 17
getValues method
PortletPreference class, 258
PortletPreferences interface, 17

grouping search conditions (Lucene), 56

H
handler tag, James, 66
hardware specifications, 218
HasAttachment matcher, 61
HasHabeasWarrantMark matcher, 61
HasHeader matcher, 61
head tag, WSRP and, 305
headers (HTTP), portlets and, 6
headers (SOAP messages), 286
help, Directory example portlet, 264
HELP mode, portlets, 15
HELP mode (portlets), rendering handling, 13
Helper layer, Slide architecture, 120
helpers (Slide)

content, 130–131
defined, 117
index/search, 132
lock, 128–130
macro, 131–132
namespace management, 124
process, 132
security, 125–128
structure, 124–125

help.jsp, source code, 33
Hit object, processing (search engines), 50
Home.jsp

message board Web example application, 93
overview, 100
source code, 100–102

Host tag, Tomcat configuration, 156
host tag, James, 67
Hostls matcher, 61
HostlsLocal matcher, described, 61
Hot Deployment, eXo portal platform, 259

382

generateParams method, portlet navigation

469513 Index.qxd 1/27/04 11:23 AM Page 382

HTML pages, dynamic, JavaScript and, 240–244
html tag, WSRP and, 305
HTML tags, disallowed (WSRP), 305
HTTP client, Slide, 118
HTTP headers, portlets and, 6
HTTPS (secure HTTP protocol)

portal security standards, 151
setSecure method (PortletURL interface), 15

HTTPServletRequest object, methods, restrictions
on, 20–21

I
icon text, attribute for portals, 23
ID element, Message class (OJB), 96
idle-timeout tag, James, 69
IE (Internet Explorer)
div tag, 244
JavaScript and, 225
span tag, 244

ignoreAutoCommit Exceptions element,
jdbc-connection-descriptor tag, 100

implementation, PortletConfig interface, 8
importing, packages, 267
inboxRepository tag, James, 69
include method, calling JSPs, 19
Index helper, Slide, 120
indexes (search engines), 44
indexing (search engines)

example, 46–48
source code example, 48–49

index/search helper, Slide, 132
IndexSearcher class, source code example, 50–51
IndexSearcher, search engines, 43–44
IndexWriter class, creating, 49
IndexWriter, search engines, 43–44
information tag, Java Web Start, 353
init method
DirectoryPortlet class, 267
exceptions (portlets), 8
GenericPortlet class, 256
portlets, 8

initialization
domains (Slide), 132
portlet container exceptions, 8
PortletConfig object, 14
requirements (portlets), 8

init-param tag, Loan Calculator example portlet,
279–283

input field text, attribute for portals, 23
input tag, JavaScript functions, calling, 224
InSpammerBlacklist matcher, 61
installing

eXo portal platform, 260
James, 65
Java Web Start, 351
JavaMail, prerequisites, 70
OJB, verifying, 111
Slide, 135

integration
Llama example, generated objects version, 298–302
Llama example, overview, 292
portlets with traditional Web services, 287–292
portlets with Web services, conceptual overview,

285–287
interactive services, (WSRP), 304–305
Intercepting Filter Pattern, 206
interface
ava.io.Serializable, OJB classes and, 93
Mailet, introduced, 60
org.apache.catalina.Realm, security

realms, 155
org.odmg.Implementation, OJB applications, 107
Portlet, overview, 8
PortletConfig, implementing, 8
PortletPreferences, methods, 17
PortletRequest, methods, 169
PortletSession, description, 18
PortletURL, portlets, 14–15
RequestResponse, URL objects, 14
role, Slide security helper, 125

interface requirements, deployment planning, 177
interfaces, WSRP, overview, 302–304
internal architecture, Slide, 120–121
internationalization support, portlets, 29
Internet Explorer (IE)
div tag, 244
JavaScript and, 225
span tag, 244

InternetAddress class, JavaMail, 72
interval tag, James, 67
Introduction section, SADs, 186–189
invalidate method, HttpSession object, 168
inverted index, search engines, 47
invoking Web services, portlet proxies, 303
IO tag library, 296
isolation, Slide transaction management, 123

383

isolation, Slide transaction management

In
de

x

469513 Index.qxd 1/27/04 11:23 AM Page 383

isReadOnly method, PortletPreferences
interface, 17

isSecure method, PortletRequest interface, 169
IsSingleReciepient matcher, 61
isUserInRole method
PortletRequest interface, 169
ServletRequest object, 167

iterative development, software creation, 182–184

J
JAF (Javabeans Activation Framework), obtaining, 70
Jakarta Slide. See Slide
Jakarta Struts, 197
James. See also JavaMail

configuration
connectionmanager, 69
DNS server, 66
fetchPOP service, 67
files, accessing, 65
global items, 68–69
NNTP server, 67
objectstorage, 69
overview, 65–66
POP3 server, 66
RemoteManager, 68
repositories, 68
SMTP server, 66
socketmanager, 69
SpoolManager, 68
threadmanager, 69

default ports, errors, 65
downloading, 64–65
features, 59–60
installing, 65
mailets, bundled with, 62–63
matchers, bundled with, 61–62
matchers, defined, 61
prerequisites, 65
repositories, overview, 63
repositories, types of, 64
SpoolManager mailet, 63
user accounts, creating, 69–70

James tag, 69
JAR files, OJB deployment, 113–114
Java

documentation Web site, 286
MVC pattern, 205
Plug-ins, portlet planning considerations, 208
standards, overview, 201–204

Java Application Client, Slide, 118
Java Networking Launching Protocol and API specifica-

tion Web site, 352
Java Swing, 367–372
Java Web Start

application creation and deployment, 358–363
application packaging, 354
client invocation, 354–356
code signing, 356–357
configuration, Web server, 351–352
installing, 351
JNLP file, creating, 352–354
overview, 347–348
portal implementation, overview, 363–364
portal implementation, Java portal, 367–372
portal implementation, Web-based portal, 364–367
principles of operation, 349–351
Slide content management, 119

Javabeans Activation Framework (JAF), obtaining, 70
java.io.Serializable interface, OJB classes

and, 93
JavaMail. See also James

attachments, creating, 77
installing, prerequisites, 70
messages, receiving, 79–85
messages, sending, 74–79

JavaMail API
core classes, 71–74
overview, 70–71

JavaScript
arrays, creating, 232
browser, determining identity of, 225–226
client-side field validation, 223–227
conditional statements, 237
dynamic HTML pages, 240–244
field auto-population, 228–229
field auto-validation, 229–231
field values, returning, 227
form submission, 231
functions, calling, 224–225
functions, creating, 224
functions, referencing fields, 225
HTML pages, including in, 222–223
layering elements on page, 244–249
movable layers, 250–253
multiple value picklist layout, 231–234
overview, 221–222
portal planning considerations, 207
variable number of fields, layout techniques, 234–240

JbossMX, Hot Deployment (eXo portal platform), 259

384

isReadOnly method, PortletPreferences interface

469513 Index.qxd 1/27/04 11:23 AM Page 384

jcd-alias element, jdbc-connection-
descriptor tag, 99

JDBC
connection mapping (OJB), 99–100
data types, OJB support, 112
drivers, OJB deployment, 114
security realms, information Web site, 163

JDBCAlias mailet, 62
jdbc-connection-descriptor tag, OJB, 99–100
jdbc-level element, jdbc-connection-

descriptor tag, 99
jdbc-type element, Message class (OJB), 96
JDBCVirtualUserTable mailet, 62
JDO API (OJB)

defined, 88
implementation issues, 110

JetSpeed, portal navigation and, 211
JMeter, 327–329
JMX (Java Management eXtensions), 335–344
JNDI lookup (OJB), 89
JNLP file, creating (Java Web Start), 352–354
jnlp tag, attributes, 353
jsfile.js, including, 223
JSP tag library, overview, 258
JSPPortlet (Sun sample portlet), extending,

295–296
JSPPortlet (Sun sample portlet), source code (partial

listing), 288–289
JSPs (Java Server Pages)

access control, 167–168
calling, portlets and, 19–21
parameters, passing to, 296–297

JSPWiki (collaboration software), 344–346
JSR 168 Portlet Specification, server-side processing,

207–208
JSSE (Java Secure Socket Extension), SSL configura-

tion, 163
JUnit, overview, 316–323
JVM (Java Virtual Machine), domains, 132

K
keystore, self-signed certificate generation and

storage, 163–164
keystoreFile attribute, 164
keystorePass attribute, 164
keytool utility, self-signed certificates, 163–164
keyword searching (search engines), 200

L
labels (forms), attribute for portals, 23
layer tag, Netscape, 244
layers

forms (JavaScript), 244–249
movable (JavaScript), 250–253
Slide architecture, external, 118
Slide architecture, internal, 120

layers (OJB), overview, 89–90
layout design considerations, field elements

multiple value picklists, 231–234
variable number of, 234–240

lib directory, eXo portal platform, 261–262
libraries
IO tag library, 296
JSP tag library, 258
PORTLET tag library, 28, 296
XTAGS tag library, 296

life cycle, portlets, 8
load testing, overview, 326–327
Loan Calculator example portlet, 279–283
controllers.xml file, 279
init-param tag, 279

LocalDelivery mailet, 62
Locale object, portlets, 29
localization (portlet applications), ResourceBundle

object, 14
Lock class, Slide lock helper, 129
lock helper (Slide), 120, 128–130
Lock Manager (OJB), 89
LockException class, Slide lock helper, 129
LockImpl class, Slide lock helper, 129
locking, Slide transaction management, 123
LockTokenNotFoundException class, Slide lock

helper, 129
log method, Domain class, 134
Logical View section, SADs, 187, 189
login-config tag, BASIC authentication, 165–166
logon screen, JavaMail, 79
logout, source code, 168
look-ups (database), caching, advantages for, 88
Lucene

Advanced Search Page example, 56
Analyzer class, 51–53
overview, 41
query syntax, 54–56
required functionality, 48

385

Lucene

In
de

x

469513 Index.qxd 1/27/04 11:23 AM Page 385

M
Macro class, Slide macro helper, 131
Macro helper, Slide, 120, 131–132
MacroException class, Slide macro helper, 131
MacroImpl class, Slide macro helper, 131
MacroParameters class, Slide macro helper, 131
mail. See JavaMail
mail protocols, James and, 60
mail repository (James), defined, 63
mail server. See James
Mail User Agent (MUA) programs, 70
mailerpackages tag, James, 68
Mailet interface introduced, 60
mailet tag, James, 68
mailetpackage tag, James, 68
mailets

defined, 60
James, bundled with, 62–63
overview, 60–61
SpoolManager, overview, 63

makeStopTable method, search engines, 53
mapping

JDBC connections (OJB), 99–100
OJB metadata repository requirements, 93
O/R (object-to-relational), 87–88
permissions to roles (portal access control), 146
relational, OJB capabilities, 89
repository entries (OJB), 95
services to nodes (Slide), 132
users to roles, security realms and, 155
XML, OJB capabilities, 89

markup guidelines, WSRP (Web Services for Remote
Portals), 305–310

markup languages, tags, illegal (portal fragments), 5
match attribute, mailet tag (James), 68
match method, overriding, 61
matcherpackage tag, James, 68
matcherpackages tag, James, 68
matchers

creating, 61
defined, 61
James, bundled with, 61–62

max-connections tag, James, 69
MAXIMIZED window state, portlets, 16
maxMergeDocs member variable (IndexWriter), 57
MD5 digest algorithm, passwords, 158
member variables
maxMergeDocs (IndexWriter), 57
mergeFactor (IndexWriter), 57

Memento Pattern, 205
memory, database caching advantages, 88
Memory Realm, Tomcat server, 155
menu items, style attribute for portals, 23
menu, style attribute for portals, 23
mergeFactor member variable (IndexWriter), 57
message board Web application

component relationships, 92
deleting messages, 103
Home.jsp, overview, 100
Home.jsp, source code, 100–102
issuing queries, 103
ODMG implementation, 107–110
PersistenceBroker API example (OJB), 91–93

Message class
JavaMail, 71–72
message board Web example application, 93
OJB, 91
overview, 93
source code, 94–97

message origin authentication, portal security, 146
message style classes, WSRP (Web Services for

Remote Portals), 306
message text, attributes, setting for portals, 22
messages

receiving (JavaMail), 79–85
retrieving (OJB message board example

application), 101
sending (JavaMail), 74–79

messaging (Web services), SOAP, 285
META tags, search engine algorithms, 45
metadata element, portlets, 29
metadata files, OJB deployment, 113–114
methodologies (software design), overview, 182
methods. See also objects
addElement (portal navigation), 213
addMessage (OJB message board example

application), 104
boolean isUserInRole (ServletRequest

object), 167
clonePortlet (WSRP), 305
defaultPersistenceBroker, 103
deregister (WSRP), 304
destroy (GenericPortlet class), 256
destroy (portlets), 8
destroyPortlets (WSRP), 305
DirectoryPortlet class, 267
DirectoryValidator class, 271
Document object, 53
doEdit (GenericPortlet class), 256

386

Macro class, Slide macro helper

469513 Index.qxd 1/27/04 11:23 AM Page 386

doHelp (GenericPortlet class), 256
doHelpJSP, 292
Domain class, 134
Domain.accessDomain (Slide), 134
Domain.accessNamespace (Slide), 134
Domain.init (Slide), 132
doView (GenericPortlet class), 256
encode return values, 21
forward (RequestDispatcher), 21
generateParams (portlet navigation), 214
Get (OJB Message class), 94
Get (OJB Viewer class), 97
getAttribute (portlet namespace application), 19
getContentJSP, 292
getEditJSP, 292
getHexValue (passwords), 159
getJSPPath, 291
getLlamas, 293–294
getLocalizedJSP, 291
getMarkup (WSRP), 304
getMessage (OJB message board example

application), 101
getNamedDispatcher (calling servlets), 20
getOutputStream (portlet request handling), 11
getPassword, 159
getPasswordAuthentication (JavaMail), 72–73
getPortletDescription (WSRP), 305
getPortletProperties (WSRP), 305
getPortletPropertyDescription (WSRP), 305
getServiceDescription (WSRP), 304
getTitle (portlets), 13
getTopics (portlet navigation), 214
getUserDN (passwords), 159
getValues (PortletPreference class), 258
HTTPServletRequest object restrictions, 20–21
init (GenericPortlet class), 256
init (portlets), 8
invalidate (HttpSession object), 168
java.security.Principle getUserPrinciple

(ServletRequest object), 167
makeStopTable (search engines), 53
match, overriding, 61
performBlockingInteraction (WSRP), 304
portlet creation, 11–13
PortletPreferences interface, 17
PortletRequest interface, 169
PortletURL interface, 15
processAction (GenericPortlet class), 256
processAction (PortletPreference class), 258
processAction (portlets), 9

processAction (portlets), ipping, 14
QueryByCriteria (querying databases), 107–108
register (WSRP), 304
registrationHandle (WSRP), 304
releaseSessions (WSRP), 304
render (GenericPortlet class), 256
render (portlets), 9
RenderResponse (portlet request handling), 11
search engine functionality, 48
send (JavaMail), 73
sendRedirect (ServletResponse object), 168
service (mailets), 60
Set (OJB Message class), 94
Set (OJB Viewer class), 97
setAttribute (portlet namespace application), 19
setPortletProperties (WSRP), 305
setValues (PortletPreference class), 258
store (OBJ message board example application),

101–102
store (PortletPreference class), 258
String getRemoteUser (ServletRequest

object), 167
mime types, portlet descriptors, 29
MimeMessage class, JavaMail, 71
MIME-type, setting (JavaMail), 71
MINIMIZED window state, portlets, 16
model 1 architecture, 196–197
model 2 architecture, 197
model 2X architecture, 197–199
models (use cases), software development, 182
Model-View-Controller (MVC), 197
modes

Directory example portlet, 262
stateless (WSRP), 304

modes (OJB), 89
modes (portlets)

overview, 15
setting, 15

movable layers, JavaScript, 250–253
MUA (Mail User Agent) programs, 70
multipart mail messages, creating, 77
Multipart object, JavaMail, 77
multiple value picklist fields, layout with JavaScript,

231–234
multithreading, James, 60
mutual authentication, portal security, 146
MVC (Model-View-Controller), 197

defined, 205
eXo portal, 259
Loan Calculator example portlet, 279–283
portlet creation, overview, 277–278

387

MVC (Model-View-Controller)

In
de

x

469513 Index.qxd 1/27/04 11:23 AM Page 387

MVCPortlet portlet, 279–283
MVCPortletAction, 279
MySQL database, Directory example portlet, 266

N
name element, Message class (OJB), 96
names

administrator user name (James), 70
declared, calling servlets, 19–20

namespace
portlet scope and, 19
Slide
Domain object, 133
helpers for, 124
overview, 124
security helper, 125–128
structure helper, 124–125
URIs, 124

namespace tag (Portlet Tag Library), 28
NamespaceAccessToken object, Slide, 134
naming conventions, portlet scope attributes, 18–19
navigation

portal design, overview, 210–212
taxonomies, 212–217

NESSpamCheck matcher, 61
Netscape

JavaScript and, 225
layer tag, 244

news repository (James), 63
newsgroups tag, James, 67
NNTP server, configuration (James), 67
nntp-repository tag, James, 67
nntpserver tag, James, 67
NodeLock class, Slide lock helper, 129
NodeNotVersionedException class, Slide content

helper, 131
NodePermission class, Slide security helper,

125, 128
NodeProperty class, Slide content helper, 130
NodeRevisionContent class, Slide content

helper, 130
NodeRevisionDescriptor class, Slide content

helper, 130
NodeRevisionDescriptors class, Slide content

helper, 130
NodeRevisionNumber class, Slide content

helper, 130

nodes
roles and (Slide security helper), 125
Slide, mapping services to, 132

non-repudiation, portal security, 150
NORMAL window state, portlets, 16
NOT operator, Lucene query syntax, 55
NotifyPostmaster mailet, 62
NotifySender mailet, 62
Null mailet, 62
null values

encode methods and, 21
HTTPServletRequest object methods and, 20

O
OASIS Web Services for Remote Portlets, CSS and, 22
OASIS Web Services Security specification, portal secu-

rity, 150
Object Relational Bridge. See OJB
object state, tracking requirements (OJB)
Object Transaction Manager. See OTM
ObjectIsAlreadyLockedException class, Slide

lock helper, 129
ObjectLockedException class, Slide lock helper,

128, 129
ObjectNodes objects, Slide security helper, 127
objects. See also methods
ActionRequest (portlet request handling), 10–11
ActionURL, 14
caching (OJB), 89
DataHandler (JavaMail), 77
deleting (ODMG API), 109–110
Directory (search engines), 54
Document (Lucene), 48
Document (Lucene), creating, 53–54
Domain (Slide), 133
Hit (search engines), 50
HTTPServletRequest, 20
Locale (portlet internationalization), 29
locking (Slide), 128–130
Multipart (JavaMail), 77
NamespaceAccessToken (Slide), 134
PortalContext, 16
PortletConfig, 14
PortletContext, 16
PortletPreference (user state maintenance), 258
Preferences (portlets), 8–9
Properties object (JavaMail Session class), 71
QueryParser (search engines), 50
RenderRequest (portlet request handling), 11
RenderURL, 14

388

MVCPortlet portlet

469513 Index.qxd 1/27/04 11:23 AM Page 388

ResourceBundle (portlets), 8, 14
retrieving (ODMG API), 107–108
ServletRequest methods, 167
StopFilter (search engines), 53
storing (ODMG API), 108

objectstorage, configuration (James), 69
ODMG API (OJB)

defined, 88
opening databases, 107
overview, 107
retrieving database objects, 107–108

OJB (Object Relational Bridge)
advantages, 88
class creation guidelines, 93
database platform support, 111–112
deployment

CLASSPATH settings, 114
JAR files, 113
JDBC drivers, 114
metadata files, 114

functional features, 89
installation, verifying, 111
java.io.Serializable interface and class cre-

ation, 93
JDBC connection mapping, 99–100
JDBC data type support, 112
layers, overview, 89–90
modes, 89
overview, 87
performance considerations, 114
scalability features, 89

onClick event handler, JavaScript functions,
calling, 224

OOP (object-oriented programming), advantages, 87
OpenCMS (content management), 200–201
open-source configuration management tools, 179–181
operational requirements, deployment planning,

177–178
optimization, Lucene performance, 57
option tag, field elements, 231
OQL (Object Query Language), retrieving database

objects, 107–108
O/R (object-to-relational) mapping

overview, 87
tools, 88
transparent persistence, 87–88

OR operator, Lucene query syntax, 55
orderby element, Message class (OJB), 96
org.apache.catalina.Realm interface, security

realms, 155

org.apache.slide.common.Domain package, Slide
Domain class, 134

org.apache.slide.content package, Slide content
helper, 130–131

org.apache.slide.lock package, Slide lock
helper, 129

org.apache.slide.macro package, Slide macro
helper, 131

org.apache.slide.security package, Slide
security helper, 125

org.odmg.Implementation interface, OJB applica-
tions, 107

OTM (Object Transactional Manager) layer (OJB),
defined, 88

OTM (Object Transaction Manager), state and, 90
overriding, getTitle method (portlets), 13

P
packages, importing, 267
page linkages, search engine algorithms, 45
page ranking, search engine algorithms, 45
page-centric design decisions, 196–197
param tag (Portlet Tag Library), 28
parameters

passing to JSPs, 296–297
portlet initialization management, 8
servlets, precedence when calling, 20

parsing Soap messages, Axis-wsdl2java
(Ant task), 299

parts of speech, search engine algorithms, 45
passing parameters to JSPs, 296–297
password element, jdbc-connection-descriptor

tag, 99
password tag, James, 67
passwords

authentication (JavaMail), 72–73
DIGEST authentication, 167
getHexValue method, 159
getPassword method, 159
getUserDN method, 159
MD5 digest algorithm, 158
Tomcat Manager, 138
user accounts, default (James), 70

patterns (design), overview, 201
PBAPI. See PersistenceBroker API (OJB)
performAction operation (WSRP), 209
performance

Lucene, optimizing, 57
OJB applications, 114

389

performance

In
de

x

469513 Index.qxd 1/27/04 11:23 AM Page 389

performBlockingInteraction method, WSRP, 304
permissions

portal authorization, 146–147
Slide security helper, 125–128

PersistenceBroker API
database, iterating through, 100–101
queries, 103

PersistenceBroker API (OJB)
capabilities, 90–91
defined, 89

personalization, content management considerations,
201

Pico Container, Hot Deployment (eXo portal
platform), 259

planning deployment
data requirements, 178
interface requirements, 177
operational requirements, 177–178
overview, 175–177
quality assurance requirements, 179–181
search engine considerations, 200
security requirements, 178–179

platform element, jdbc-connection-descriptor
tag, 99

Platform for Privacy Preferences, user profile attributes,
24–28

Plug-ins (Java), portlet planning considerations, 208
POP3 server, configuration (James), 66
pop3server tag, James, 66
pop-up picklist window, source code, 232
port tag, James, 66
port type declarations section, Llama example

portlet/Web service, 293–294
portability

James, 60
portlet modes, 15

Portal Administrator actor, 182
portal containers, 255
Portal stack, defined, 3–4
Portal User actor, 182
portal-centric enterprise diagram, 153–154
PortalContext object, functionality of, 16
portals

administration, JMX (Java Management eXtensions),
335–344

architecture design decisions, model 1, 196–197
architecture design decisions, overview, 195–196
authentication, 145–146
authorization, 146–147
defined, 5

deployment planning overview, 175–177
enterprise, design decisions, 197
functionality, 3, 6–7
interface requirements, 177
portlet container, relationship to, 5
program configuration management, 311
search engines and, 200
security

confidentiality considerations, 149
data integrity, 150
deep authentication, 148
non-repudiation, 150

security concepts overview, 145
Slide transaction management and, 122
SSO (single sign-on) authorization, 147–148
storyboarding planning technique, 190–191

Portlet API
CSS definitions, 22–23
Portal stack, 3–4

portlet applications
compared to Web applications, 283
deployment descriptors, overview, 28
deployment, WAR files and, 6
localization and ResourceBundle object, 14
structure, 21–22

portlet container
defined, 5
destroy method, 8
fragment management, 6
function of, 3
initialization exceptions, 8
methods, 256
portlet life cycle management, 8
security overview, 168
servlet containers, relationship to, 5
window components, 257

portlet declarations, 29–30
portlet descriptors, security, configuration, 170–171
Portlet Integration Plans, 218–219
Portlet interface, overview, 8
portlet management services, WSRP, 304–305
portlet modes, portlet declarations, 29
portlet overview plans, 219
portlet, preferences, maintaining user state, 258
portlet proxies, invoking Web services, 303
portlet servers, function of, 3
PORTLET tag library, 28, 296
portlet windows, 8
PortletConfig interface, implementing, 8
PortletConfig object, portlets, 14

390

performBlockingInteraction method, WSRP

469513 Index.qxd 1/27/04 11:23 AM Page 390

PortletContext object, functionality of, 16
portlet-deploy directory, eXo portal platform, 262
portlet-dlg-icon-label style class (WSRP), 308
portlet-font style class (WSRP), 306
portlet-font-dim style class (WSRP), 306
portlet-form-button style class (WSRP), 308
portlet-form-field style class (WSRP), 308
portlet-form-field-label style class

(WSRP), 308
portlet-form-input-field style class

(WSRP), 308
portlet-form-label style class (WSRP), 308
portlet-icon-label style class (WSRP), 308
portlet-info tag, metadata element, 29
portlet-msg-alert style class (WSRP), 306
portlet-msg-error style class (WSRP), 306
portlet-msg-info style class (WSRP), 306
portlet-msg-status style class (WSRP), 306
portlet-msg-success style class (WSRP), 306
PortletPreference object, user state

maintenance, 258
PortletPreferences interface, methods, 17
PortletRequest interface, methods, 169
PortletRequest object, user attributes,

accessing, 28
PortletRequestDispatcher object

dispatching to content page, 291
GenericPortlet class method implementation
method availability, 20

portlets
architecture, overview, 255
cached content and render method, 9
capabilities compared to servlets, 6
compared to servlets, 5–6, 207
creating (MVC method), overview, 277–278
creation (interfaces and classes for), 8
creation example, 32–38
CSS style attributes, 22–23
defined, 5
Directory example portlet, overview, 262–265
fragment management, 6
GenericPortlet class, 11–13
HTTP headers and, 6
init method, 8
integration with traditional Web services, 287–292
integration with Web services, conceptual overview,

285–287
internationalization support, 29
life cycle, 8
Llama example, generated objects version, 298–302

Llama example, overview, 292
loading, 8
metadata element, 29
modes, overview, 15
modes, setting, 15
PortletConfig object, 14
PortletURL interface, 14–15
Preferences object, 8–9
preferences, overview, 16–18
programmatic security, 169–170
remote, defined, 302
request handling objects, 10–11
request handling overview, 9–10
request handling thread safety issues, 11
runtime state, 8–9
samples from Sun Microsystems, 288
sessions, overview, 18–19
UnavailableException, 8
user profile attributes, 24–28
VIEW mode, 257
war files, 258
window states, 16
WSRP interfaces, overview, 302–304

PORTLET_SCOPE, PortletSession interface, 18–19
portlet-section-alternate style class

(WSRP), 307
portlet-section-body style class (WSRP), 307
portlet-section-footer style class (WSRP), 307
portlet-section-header style class (WSRP), 307
portlet-section-selected style class

(WSRP), 307
portlet-section-subheader style class

(WSRP), 307
portlet-section-text style class (WSRP), 307
PortletSecurityException, 170
PortletSession interface, description, 18
portlet-table-alternate style class (WSRP), 307
portlet-table-body style class (WSRP), 307
portlet-table-footer style class (WSRP), 307
portlet-table-header style class (WSRP), 307
portlet-table-selected style class (WSRP), 307
portlet-table-subheader style class (WSRP), 307
portlet-table-text style class (WSRP), 307
PortletURL interface, portlets, 14–15
portlet.xml, example source code, 38
portlet.xml file

Directory example portlet, 275–276
portlet preferences, 258

posting user form information, Directory example port-
let, 272–274

391

posting user form information, Directory example portlet

In
de

x

469513 Index.qxd 1/27/04 11:23 AM Page 391

postmaster tag, James, 69
PostmasterAlias mailet, 62
precedence, query strings, calling servlets and, 20
precision, search engines, 42
Preferences object, portlets, 8–9
preferences, portlets

maintaining user state, 258
overview, 16–18
warning about, 17

PreferencesValidator class, extending, 36
PreferenceValidator class, 258
process flow, WSRP (Web Services for Remote Portals),

303–304
process helper, Slide, 120, 132
processAction method
DirectoryPortlet class, 267
GenericPortlet class, 256
PortletPreference class, 258
portlets, 9

processAction method (portlets), skipping, 14
processes diagram, XP (Extreme Programming) portal

planning, 191
processor tag, James, 68
producers (WSRP), 302
profiles (user), attributes for portals, 24–28
properties, AntHill, 326
Properties object, Session class (JavaMail), 71
proprietary systems, advantages and disadvantages

of, 197
protocol element, jdbc-connection-descriptor

tag, 99
protocols

encryption, 149
mail, James and, 60

proxies, portlet, invoking Web services, 303
proximity of terms (Lucene query syntax), 55
PSML (Portal Structure Markup Language), JetSpeed

framework, 211
publishing content, 201

Q
quality assurance, deployment planning, 179–181
queries

implementing functionality for search engines, 50–51
Lucene syntax, 54–56
PersistenceBroker API, 103
retrieving database objects (ODMG API), 107–108

query strings, precedence when calling servlets, 20
QueryByCriteria methods, querying databases,

107–108
QueryParser object, creating, 50

R
RBAC (Role-Based Access Control)

information Web site, 147
portal authorization, 146

readOnly tag, James, 67
Realm tag, Tomcat configuration, 155
recipient addresses, setting (JavaMail), 71–72
recipient matcher, 61
Recipients matcher, 61
Redirect mailet, 62
referencing

fields from Javascript, 232
fields from Javascript functions, 225
namespaces, Slide, 124
PortletContext interface, 8
ResourceBundle object, 14

register method, WSRP, 304
registration service, WSRP, 304
registrationHandle object, WSRP, 304
relational mapping (OJB), capabilities, 89
RelayLimit matcher, 62
releaseSessions method, WSRP, 305
relevancy ratings, search engines, 200
remote management, Slide, 118
remote portlets, defined, 302
RemoteAddrInNetwork matcher, 62
RemoteAddrNotInNetwork matcher, 62
RemoteDelivery mailet, 62
RemoteManager

configuration (James), 68
user accounts, creating (James), 70

RemoteManager (James), overview, 64
remotemanager tag, James, 68
render method

extending, 11–13
GenericPortlet class, 256
portlets, 9

render requests (portlets), portlet modes and, 15
render URLs (portlets), 9
rendering (portlets), doEdit method, 12
RenderRequest object, portlet request handling, 11
RenderResponse method, portlet request

handling, 11

392

postmaster tag, James

469513 Index.qxd 1/27/04 11:23 AM Page 392

RenderURL object, portlets, 14
renderURL tag (Portlet Tag Library), 28
replication, Slide transaction management, 123
repositories (James)

configuration, 68
database, 64
DBFile, 64
file-based, 64
overview, 63

repositories (Slide), 132
repository mapping entries, OJB, 95
repository_database.xml file, message board Web

example application, 93
repository_internal.xml file, message board Web

example application, 93
repository_user.xml file, message board Web

example application, 93
repository.xml file

message board Web example application, 93
OBJ, 91

request handling (portlets)
ActionRequest object, 10–11
overview, 9–10
RenderRequest object, 11
restrictions, 9–10
thread safety issues, 11

RequestResponse interface (portlets), URL
objects, 14

Requirements Matrix section, SADs, 187, 189
reset method, PortletPreferences interface, 17
ResourceBundle object, portlets, 14
ResourceBundle object (portlets), management, 8
resources

abstraction, James and, 60
cleaning up (portlets), 8
portal authorization and access control, 146–147

resources tag, Java Web Start, 353
returning field values, JavaScript, 227
revision control systems, 312–316
RevisionAlreadyExistsException class, Slide

content helper, 131
RevisionContentNotFoundException class, Slide

content helper, 131
RevisionDescriptorNotFoundException class,

Slide content helper, 131
RevisionNotFoundException class, Slide content

helper, 131
rich clients, overview, 348–349
role interface, Slide security helper, 125

Role-Based Access Control. See RBAC
role-name element, portlets, 30
roleNamesCol attribute, security realms, 157
roles

mapping users to, security realms and, 155
role-definition considerations (portal access control),

146–147
Slide security helper, 125

rootPath tag, James, 67
runtime environment, portlets, 5
runtime state

portlet request handling, 9
portlets, 8–9

S
SAD (Software Architecture Document), software plan-

ning, 186–189
SAML (Security Assertion Markup Language), portal

security, 151–153
scalability features, OJB (Object Relational Bridge), 89
Scarab, bug tracking, 330–335
schemas, Llama example portlet/Web service,

292–293
scope, PortletSession interface, 18–19
scored terms, search engines, 44
script tag, declaring JavaScript, 222
search engines. See also Lucene

algorithm techniques, 44–45
Analyzer class, 51–53
conceptual overview, 41–43
document analysis functionality, 43–44
Document objects, creating, 53–54
indexing example, 46–48
portal planning, 200
stop words, declaring, 52–53

searchEdit.jsp, source code, 33
searching

Directory example portlet, 263
DirectoryView.jsp, 272–274

section headers, setting for portals, 22
section style classes, WSRP (Web Services for Remote

Portals), 306
Secure Sockets Layer. See SSL
security

application authentication and authorization configura-
tion, 165–167

architecture diagram, 171

393

security

In
de

x

469513 Index.qxd 1/27/04 11:23 AM Page 393

security (continued)
back-end communication considerations, 171
certificate signing authorities, 164
code signing (Java Web Start), 356–357
configuration (portlet.xml file), 258
constraints (portlet deployment descriptors), 31
default user account user names (James), 70
dependencies, 153–154
deployment planning, 178–179
encryption, 149
Java Web Start and, 119
JSP and servlet access control, 167–168
password authentication (JavaMail), 72–73
portals, authentication, 145–146
portals

authorization, 146–147
authorization (single sign-on), 147–148
conceptual overview, 145
confidentiality considerations, 149
data integrity, 150
deep authentication, 148
non-repudiation, 150

portlet container, overview, 168
portlet descriptor-configured, 170–171
portlets, programmatic security, 169–170
self-signed certificates, keytool utility and, 163–164
services overview, 153–154
setSecure method (PortletURL interface), 15
Slide services and, 117–118
Slide transaction management, 123
Web container overview, 154–155

Security class, Slide security helper, 128
Security helper, Slide, 120, 125–128
security policies, namespaces and, 124
security realms, Tomcat server configuration, 155–163
security tag, Java Web Start, 353
SecurityException class, Slide security helper, 128
SecurityImpl class, Slide security helper, 125, 128
security-role-ref tag, portlet descriptors, 170
select lists, defined, 231
select tag, field elements, 231
self-signed certificates, keytool utility, 163–164
semantic nets, search engine algorithms, 45
send method, JavaMail, 73
SenderInFakeDomain matcher, 62
Senderls matcher, 62
sendRedirect method, ServletResponse

object, 168
Sequence Manager (OJB), 89
serializing classes, OJB and, 93
server directory, eXo portal platform, 261

server layer, Slide, 118
server (Slide), overview, 138–139
server tag, James, 66
servername tag, James, 69
servers (portlet), function of, 3
servers, Tomcat configuration overview, 155
server-side processing, 207–208
serverSocketFactory tag, James, 66
ServerTime mailet, 62
server.xml file, Tomcat configuration, 155
service method (mailets), overriding, 60
services

security, overview, 153–154
WSRP, 304–305

services (Slide)
architecture, 117–118
mapping to nodes, 132

services-deploy directory, eXo portal platform, 262
servlet containers, portlet containers and, 5
ServletRequest object

compared to ActionRequest object, 10
methods, 167

servlets
access control, 167–168
calling, portlets and, 19–21
compared to portlets, 5–6, 207
security, compared to portlet security, 169

Session class, JavaMail, 71
sessions (portlets), overview, 18–19
Set method
Message class (OJB), 94
Viewer class (OJB), 97

setAttribute method, portlet namespace
application, 19

setPortletMode method
Directory example portlet, 271
PortletURL interface, 15

setPortletProperties method, WSRP, 305
setSecure method, PortletURL interface, 15
setValue method, PortletPreferences

interface, 17
setValues method
PortletPreference class, 258
PortletPreferences interface, 17

setWindowState method, PortletURL interface, 15
shall statements, 189
ShowMVCPortletAction, 279
signatures (digital), nonrepudiation, 150
signing authorities, digital certificates, 164
single sign-on. See SSO authorization
Singleton Pattern, 206

394

security (continued)

469513 Index.qxd 1/27/04 11:23 AM Page 394

SizeGreaterThan matcher, 62
skins, Portlet API CSS definitions and, 22–23
Slide

architecture
external, 118–120
internal, 120–121
overview, 117–118
Slide API layer, 135

content management decisions and, 200–201
domains, 132–134
helpers

content, 130–131
defined, 117
index/search, 132
lock, 128–130
macro, 131–132

installing, 135
Java Web Start (content management), 119
namespaces, overview, 124
overview, 117
remote management, 118
running, 135–136
server, overview, 138–139
stores, 132
Tomcat Manager and, 136–138
transaction management, overview, 122–123
transaction management, transactions, 123
views, 139
WebDAV and, overview, 139–140

Slide Administration tool, viewing, 138
Slide API layer, Slide architecture, 120
slide.properties file, 132
slide.xml file, location, 139
SMTPMessage class, JavaMail, 71
smtpserver tag, James, 66
SOAP (Simple Object Access Protocol)
getLlamas method, message generated by, 294–295
Llama portlet/Web service example, 292–298
messages, generating graphical content, 287
parsing messages with Axis-wsdl2java (Ant

task), 299
request and response examples, 286
Web services messaging, 285

socketmanager, configuration (James), 69
Software Architecture Document (SAD), software

planning, 186–189
software configuration management, deployment

planning, 179–181
software design methodologies

overview, 182
Unified Process (UP), 182–184

software specifications, 219
software testing, continuous integration, 181
sort element, Message class (OJB), 97
source code
Add.jsp (OJB message board example application),

104–106
addMessage method, 104–105
Analyzer class, 52–53
attachments, receiving (JavaMail), 84
BASIC authentication, 165–166
deleting database objects (ODMG API), 109–110
DirectoryEdit.jsp, 272–274
DirectoryPortlet class, 267–271
DirectoryValidator class, 271–272
DirectoryView.jsp, 272–274
Document object example, 49–50
dynamically changing a picklist (JavaScript), 241
expiration-cache tag, 29
extending JSPPortlet class, 295–296
field auto-population (JavaScript), 228–229
field auto-validation (JavaScript), 229–231
field values, returning (JavaScript), 227
fields, referencing with JavaScript, 232–233
FORM authentication, 166–167
GenericPortal class, 11–13
getMessage method (OJB), 101
Home.jsp (OJB message board example application),

100–102
indexing documents (search engines), 48–49
IndexSearcher example, 50–51
JavaScript date validation, 226
JavaScript declarations, 222–223
JavaScript, determining browser identity, 225–226
JavaScript functions, 224
JavaScript functions, calling, 224
JDBC connection mapping example (OJB), 99–100
JDBC-ODBC bridge, 158
JetSpeed PSML file, 211
JNLP file, 352
JSPPortlet (Sun sample portlet), 288–289
JSPs, access control, 167–168
JSPs, calling, 19
layering example (JavaScript), 245–248
Llama portlet/Web service example, 292–298
logout functionality, 168
mail addresses, setting (JavaMail), 72
MD5 password handling, 159–161
Message class, 94–97
Message objects, creating (JavaMail), 71
MIME-type, setting (JavaMail), 71

395

source code

In
de

x

469513 Index.qxd 1/27/04 11:23 AM Page 395

source code (continued)
moving layers (JavaScript, 250–253
multipart mail messages, 77
MVCPortlet portlet, 279–283
obtaining messages (JavaMail), 73–74
org.odmg.Implementation interface, 107
parsing WSDL to Java, 299
passing parameters to JSPs, 296–297
password authentication (JavaMail), 72–73
pop-up picklist window, 232
portlet customization declarations, 31
portlet declarations, 29–30
portlet descriptor-configured security, 170
portlet example, 32–38
portlet metadata element, 29–30
portlet preferences, setting, 17
PortletRequest interface, accessing, 169
portlet.xml file, 275–276
queries, issuing (message board OJB example applica-

tion), 103
Realm tag (Tomcat configuration), 156
receiving messages (JavaMail), 80–85
repeating group mechanism (JavaScript), 235–239
resolving localized paths, 291
ResourceBundle object, 14
retrieving database objects (ODMG API), 108
self-signed certificates, 163–164
sending mail (JavaMail), 73, 75–78
servlets, calling, 19
Session objects, obtaining (JavaMail), 71
SOAP message, 294–295
SOAP request and response examples, 286
storing database objects (ODMG API), 108
TopicGenerator.java, 212–213
Topic.xml, 216–217
updating database objects (ODMG API), 109
user profile attributes, accessing, 27
version attribute (portlet deployment descriptors), 28
Viewer class (OJB), 97–98
web.xml file, 275

span tag, layering in IE, 244
special characters, Lucene query syntax, 56
spool repository (James), 63
SpoolManager, configuration (James), 68
SpoolManager mailet, overview, 63
spoolmanager tag, James, 68
SSL (Secure Sockets Layer)

configuration, 163–165
encryption, 149
portal security, 150–151

SSO (single sing-on) authorization
portal security, 147–148
technology enablers, 148

stack (Portal), 3–4
stand-alone mode (OJB), defined, 89
StandardAnalyzer class

importance of, 51
Lucene, 48

standards
Java, 201–204
OASIS Web Services for Remote Portlets, 22
Platform for Privacy Preferences, 24
SAML (Security Assertion Markup Language), 151–153
SSL (Secure Sockets Layer), 150–151
TLS (Transport Layer Security), 150–151
URI specification Web site, 124
WebDAV, 117
WSS (Web Services Security), 153
XML Encryption, 149, 151
XML Signature, 150

state
maintaining user, portlet preferences, 258
OTM (Object Transaction Manager) and, 90
portlet modes and, 15
portlet sessions, overview, 18–19
portlet window state, 16
portlets, determining (code for), 268

state (runtime)
portlet request handling and, 9
portlets, 8–9

stateless modes, WSRP, 304
stemming, search engine algorithms, 45, 47
stop words

declaring, 52–53
search engine algorithms, 45–46

StopFilter object, search engines, 53
Store class, JavaMail, 73–74
store method

OBJ message board example application, 101–102,
105–106

PortletPreference class, 258
PortletPreferences interface, 17

stores, Slide, 132
storing database objects, ODMG API, 108
storyboarding, portal planning, 190–191
StringBuffer class, implementation, 213
strings, portlet URLs, creating, 15
structure helper (Slide), 120, 124–125
Struts, 197

396

source code (continued)

469513 Index.qxd 1/27/04 11:23 AM Page 396

struts-config.xml file, 197
subheadings (tables), attribute for portals, 23
Subjectls matcher, 61
SubjectNode class

Slide lock helper, 128
Slide security helper, 125

subjects, security policies, 124
SubjectStartsWith matcher, 62
subprotocol element, jdbc-connection-

descriptor tag, 99
Subversion, overview, 315–316
Sun Microsystems, sample portlets, 288
Swing (Java), 367–372
syntax

queries (Lucene), 54–56
Slide lock helper, 128
URIs, 124

system requirements
deployment planning

data, 178
interface, 177
operational requirements, 177–178
overview, 177

quality assurance requirements, 179–181
security requirements, 178–179

T
table style classes, WSRP (Web Services for Remote

Portals), 307–308
tables

cell highlighting attribute for portals, 23
footer attribute for portals, 23
header attribute for portals, 22
subheading attribute for portals, 23

tag library
IO, 296
JSP, 258
PORTLET, 296
XTAGS, 296

taglib entry, web.xml file, 258
tags
Application-desc (Java Web Start), 354
articleIDDomainSuffix (James), 67
articleIDPath (James), 67
authortative (James), 66
bind (James), 66
class-descriptor (OJB Message class), 96
collection-descriptor (OJB Message class), 96

collection-descriptor (OJB repository.xml
file), 91

connection (James), 69
connectionLimit (James), 66
Context, Tomcat configuration, 156
div (layering in IE), 244
dnsserver (James), 66
Engine, Tomcat configuration, 156
fetch (James), 67
fetchpop (James), 67
field-descriptor (OJB Message class), 96
handler (James), 66
host (James), 67
Host, Tomcat configuration, 156
HTML, disallowed (WSRP), 305
idle-timeout (James), 69
inboxRepository (James), 69
information (Java Web Start), 353
init-param (Loan Calculator example

portlet), 279
input (JavaScript functions, calling), 224
interval (James), 67
James, 69
jdbc-connection-descriptor (OJB), 99–100
jnlp, attributes, 353
layer (Netscape), 244
login-config (BASIC authentication), 165–166
mailet (James), 68
mailetpackage (James), 68
mailetpackages (James), 68
matcherpackage (James), 68
matcherpackages (James), 68
max-connections (James), 69
newsgroups (James), 67
nntp-repository (James), 67
nntpserver (James), 67
option (field elements), 231
password (James), 67
port (James), 66
Portlet Tag Library, 28
postmaster (James), 69
processor (James), 68
readOnly (James), 67
Realm, Tomcat configuration, 155
remotemanager (James), 68
resources (Java Web Start), 353
rootPath (James), 67
security (Java Web Start), 353
security-role-ref (portlet descriptors), 170
select (field elements), 231

397

tags

In
de

x

469513 Index.qxd 1/27/04 11:23 AM Page 397

tags (continued)
server (James), 66
servername (James), 69
serverSocketFactory (James), 66
smtpserver (James), 66
span (layering in IE), 244
spoolmanager (James), 68
tempPath (James), 67
threadGroup (James), 66
threads (James), 68
transport-guarentee (portlet descriptors), 171
user (James), 67
username (James), 69
useTLS (James), 66

tags (markup languages), fragments (portals), illegal, 5
taxonomies, portal navigation, 212–217
taxonomy editors, 217
technology enablers, SSO (single sing-on)

authorization, 148
Template Method Pattern, defined, 205
tempPath tag, James, 67
term expansion, search engine algorithms, 45
term modifiers (Lucene query syntax), 54–55
term proximity, search engine algorithms, 45
terms (Lucene query syntax), 54
testing

continuous integration, 181
JUnit, overview, 316–323
load testing, overview, 326–327
Memory Realms and, 155
SSL, 164
test applications, 180–181

text, attributes, setting for portals, 22
threadGroup tag, James, 66
threadmanager, configuration (James), 69
threads tag, James, 68
thread-safety, portlet request handling, 11
title tag, WSRP and, 305
TLS (Transport Layer Security)

encryption, 149
portal security, 150–151

Tomcat Manager, Slide and, 136–138
Tomcat server

configuration overview, 155
documentation (Web site), 138
security realms, 155–163
SSL configuration, 163–165

tomcat-users.xml file, creating users, 136
tools

content management, 200–201
customization (eXo portal platform), 259–260

O/R (object-to-relational) mapping, 88
Slide Administration, 138
software configuration management, 179–181
WebDAV client, 118

TopicGenerator.java, source code, 212–213
Topic.xml source code, 216–217
ToProcessor mailet, 62
ToRepository mailet, 62
toString method, PortletURL interface, 15
transaction management (OJB)

described, 89
object state tracking requirements, 90

transaction management (Slide)
Data Store layer, 120
features, 123
overview, 122–123
success and failure outcomes, 123
transactions, 123

transactions, Slide transaction management, 123
transparent persistence, O/R (object-to-relational)

mapping, 87–88
Transport class, JavaMail, 73
Transport Layer Security. See TLS
transport-guarantee tag, portlet descriptors, 170
types section, Llama example portlet/Web service,

292–293

U
UDDI (Universal Description, Discovery, and Integra-

tion), Web services, locating, 285
UML, alternatives to, 193
UnavailableException, portlet container

initialization, 8
Unified Process (UP)

deployment planning, 175
overview, 182–184

UP (Unified Process)
deployment planning and, 175
overview, 182–184

URIs (Uniform Resources Identifier), namespace access
and, 124

URLs (Universal Resource Locators)
portlet access limitations, 6
PortletURL interface, 14–15
URL tags (Portlet Tag Library), 28

use case scenarios, storyboarding, 190–191
Use Case section, SADs, 187
Use Case View section, SADs, 187

398

tags (continued)

469513 Index.qxd 1/27/04 11:23 AM Page 398

use cases
Add Messages to Messageboard Portlet example, 184
software development, 182

useAutoCommit element, jdbc-connection-
descriptor tag, 100

UseHeaderReciepients mailet, 62
user accounts, creating (James), 69–70
user agents, 70
user attributes

constraints (portlet deployment descriptors), 31
WSRP (Web Services for Remote Portals), 310

user interface design, UML alternatives, 193–194
user interface, portlet container and, 258
user names, Tomcat Manager, 138
user profile, attributes for portals, 24–28
user repository (James), 63
User Stories, 189
user tag, James, 67
userCredCol attribute, security realms, 157
Userls matcher, 62
username element, jdbc-connection-descriptor

tag, 99
username tag, James, 69
userNameCol attribute, security realms, 157
userRoleTable attribute, security realms, 158
users

mapping to roles, security realms and, 155
Slide security helper, 125–128
Tomcat Manager, setting up, 136–137

userTable attribute, security realms, 158
useTLS tag, James, 66

V
validate method, DirectoryValidator class, 271
validation

data integrity (portal security), 150
fields, client-side (JavaScript), 223–227
user identity authentication (portal security), 145–146

variables
maxMergeDocs (IndexWriter member), 57
mergeFactor (IndexWriter member), 57

version attribute, portlet deployment descriptors, 28
versioning

defined, 201
Slide transaction management, 123

VIEW mode
portlets, 15, 257
source code, 34

VIEW mode (portlets), rendering handling, 13

Viewer class
message board Web example application, 93
OJB, 91
overview, 97

View.jsp

message board Web example application, 93
overview, 106

views, Slide, 139
visualization (portal planning)

DFD (Data Flow Diagram), 193–194
stoyrboarding, 190

W
WAR files, portlet application, deployment, 6
war files, portlets, 258
warning text, tributes, setting for portals, 22
Web application servers

compared to portlet servers, 3
features, 3

Web applications
compared to portlet applications, 283
message board example (OJB), 91–93
overview, 221
Tomcat Manager and, 136–138

Web browsers
client-side processing, 206
IE, JavaScript and, 225
Java Plug-ins, portlet planning considerations, 208
JavaScript considerations, 207
Netscape, JavaScript and, 225

Web container
security considerations overview, 154–155
SSL configuration, 163–165

Web Distributed Authoring and Versioning. See WebDAV
(Web Distributed Authoring and Versioning)

Web server (Java Web Start), configuration, 351–352
Web services

integration with portlets, conceptual overview, 285–287
integration with portlets, traditional services, 287–292
invoking with portlet proxies, 303
Llama example, generated objects version, 298–302
Llama example, overview, 292
WSRP, overview, 302–304

Web Services for Remote Portals (WSRP), portal
planning considerations, 209–210

Web Services Primer Web site, 286
Web sites

Axis, 286
DAV Explorer, 118

399

Web sites

In
de

x

469513 Index.qxd 1/27/04 11:23 AM Page 399

Web sites (continued)
dom4j, 212
James, 59, 64–65
Java documentation, 286
Java Networking Launching Protocol and API specifica-

tion, 352
Java Plug-in implementation information, 208
JavaMail API, 70
Lucene project, 41
OJB (Object Relational Bridge), 87
RBAC information, 147
sample portlets (Sun Microsystems), 288
security realm configuration information, 163
Slide, 117
Slide welcome page, 136
Tomcat documentation, 138
Tomcat SSL information, 165
URI specification, 124
Web Services Primer, 286
WSRP information, 209

Web Start. See Java Web Start
WebDAV (Web Distributed Authoring and Versioning)

API layer, 135
client, 118
Slide and, overview, 139–140
Slide support for, 117
Windows XP example, 140–143

web.xml file
Directory example portlet, 275
JSP tag library, 258
message board Web example application, 93

weighted terms, search engines, 43
welcome page (Slide), viewing, 136
wildcards

Lucene query syntax, 55
portlet deployment descriptors and, 29

window states, portlets, 16

windows, portlet windows, 8
Windows (Microsoft), WebDAV client and, 118
Windows XP, WebDAV and Slide example, 140–143
workflow management, 201
WSDL (Web Service Definition Language)

Llama portlet/Web service example, 292–298
SOAP Web services and, 285

WSDL2Java class, 299
WSRP (Web Services for Remote Portals)

CSS (Cascading Style Sheets), 305
font style classes, 306
form style classes, 308–309
HTML tags, disallowed, 305
Llama portlet example, making compliant, 309–310
markup guidelines, 305–310
message style classes, 306
overview, 302–304
portal planning considerations, 209–210
process flow, 303–304
section style classes, 306
services, 304–305
table style classes, 307–308
user attributes, 310

WSS (Web Services Security), portal security, 153

X
XML Encryption, portal security, 149, 151
XML, mapping, OJB capabilities, 89
XML Signature, portal security, 150, 151
XP (Extreme Programming)

continuous integration, 312
deployment planning and, 175
focus of, 191
User Stories, 189

XTAGS tag library, 296

400

Web sites (continued)

469513 Index.qxd 1/27/04 11:23 AM Page 400

469513 Index.qxd 1/27/04 11:23 AM Page 401

469513 Index.qxd 1/27/04 11:23 AM Page 402

469513 Index.qxd 1/27/04 11:23 AM Page 403

469513 Index.qxd 1/27/04 11:23 AM Page 404

Apache Software License

Version 1.1

Copyright © 2000 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted pro-
vided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3. The end-user documentation included with the redistribution, if any, must include the
following acknowledgment:

“This product includes software developed by the Apache Software Foundation
(www.apache.org/).”

Alternately, this acknowledgment may appear in the software itself, if and wherever such
third-party acknowledgments normally appear.

4. The names “Apache” and “Apache Software Foundation” must not be used to endorse or
promote products derived from this software without prior written permission. For written
permission, please contact apache@apache.org.

5. Products derived from this software may not be called “Apache,” nor may “Apache” appear in
their name, without prior written permission of the Apache Software Foundation.

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE
SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABIL-
ITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

19 469513 EULA.qxd 1/16/04 11:05 AM Page 405

19 469513 EULA.qxd 1/16/04 11:05 AM Page 406

GNU Lesser General Public License
Version 2.1, February 1999

Copyright © 1991, 1999 Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307, USA.

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is
not allowed. [This is the first released version of the Lesser GPL. It also counts as the successor of the
GNU Library Public License, version 2, hence the version number 2.1.]

Preamble
The licenses for most software are designed to take away your freedom to share and change it. By con-
trast, the GNU General Public Licenses are intended to guarantee your freedom to share and change free
software — to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some specially designated software packages—
typically libraries — of the Free Software Foundation and other authors who decide to use it. You can use
it too, but we suggest you first think carefully about whether this license or the ordinary General Public
License is the better strategy to use in any particular case, based on the explanations below.

When we speak of free software, we are referring to freedom of use, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software (and
charge for this service if you wish); that you receive source code or can get it if you want it; that you can
change the software and use pieces of it in new free programs; and that you are informed that you can
do these things.

To protect your rights, we need to make restrictions that forbid distributors to deny you these rights or
to ask you to surrender these rights. These restrictions translate to certain responsibilities for you if you
distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must give the recipi-
ents all the rights that we gave you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide complete object files to the recipients, so
that they can relink them with the library after making changes to the library and recompiling it. And
you must show them these terms so they know their rights. We protect your rights with a two-step
method: (1) we copyright the library, and (2) we offer you this license, which gives you legal permission
to copy, distribute and/or modify the library.

To protect each distributor, we want to make it very clear that there is no warranty for the free library.
Also, if the library is modified by someone else and passed on, the recipients should know that what
they have is not the original version, so that the original author’s reputation will not be affected by prob-
lems that might be introduced by others.

Finally, software patents pose a constant threat to the existence of any free program. We wish to make
sure that a company cannot effectively restrict the users of a free program by obtaining a restrictive
license from a patent holder. Therefore, we insist that any patent license obtained for a version of the
library must be consistent with the full freedom of use specified in this license.

20 469513 Less.qxd 1/16/04 11:11 AM Page 407

Most GNU software, including some libraries, is covered by the ordinary GNU General Public License.
This license, the GNU Lesser General Public License, applies to certain designated libraries, and is quite
different from the ordinary General Public License. We use this license for certain libraries in order to
permit linking those libraries into non-free programs.

When a program is linked with a library, whether statically or using a shared library, the combination of
the two is legally speaking a combined work, a derivative of the original library. The ordinary General
Public License therefore permits such linking only if the entire combination fits its criteria of freedom.
The Lesser General Public License permits more lax criteria for linking other code with the library.

We call this license the “Lesser” General Public License because it does Less to protect the user’s free-
dom than the ordinary General Public License. It also provides other free software developers Less of an
advantage over competing non-free programs. These disadvantages are the reason we use the ordinary
General Public License for many libraries. However, the Lesser license provides advantages in certain
special circumstances.

For example, on rare occasions, there may be a special need to encourage the widest possible use of a
certain library, so that it becomes a de-facto standard. To achieve this, non-free programs must be
allowed to use the library. A more frequent case is that a free library does the same job as widely used
non-free libraries. In this case, there is little to gain by limiting the free library to free software only, so
we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free programs enables a greater number of
people to use a large body of free software. For example, permission to use the GNU C Library in non-
free programs enables many more people to use the whole GNU operating system, as well as its variant,
the GNU/Linux operating system.

Although the Lesser General Public License is Less protective of the users’ freedom, it does ensure that
the user of a program that is linked with the Library has the freedom and the wherewithal to run that
program using a modified version of the Library.

The precise terms and conditions for copying, distribution and modification follow. Pay close attention to
the difference between a “work based on the library” and a “work that uses the library.” The former con-
tains code derived from the library, whereas the latter must be combined with the library in order to run.

GNU Lesser General Public License Terms and Conditions for Copying, Distribution
and Modification

0. This License Agreement applies to any software library or other program which contains a
notice placed by the copyright holder or other authorized party saying it may be dis-
tributed under the terms of this Lesser General Public License (also called “this License”).
Each licensee is addressed as “you.”

A “library” means a collection of software functions and/or data prepared so as to be con-
veniently linked with application programs (which use some of those functions and data)
to form executables.

The “Library,” below, refers to any such software library or work which has been dis-
tributed under these terms. A “work based on the Library” means either the Library or any
derivative work under copyright law: that is to say, a work containing the Library or a

20 469513 Less.qxd 1/16/04 11:11 AM Page 408

portion of it, either verbatim or with modifications and/or translated straightforwardly
into another language. (Hereinafter, translation is included without limitation in the term
“modification.”)

“Source code” for a work means the preferred form of the work for making modifications
to it. For a library, complete source code means all the source code for all modules it con-
tains, plus any associated interface definition files, plus the scripts used to control compila-
tion and installation of the library.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running a program using the Library is not
restricted, and output from such a program is covered only if its contents constitute a work
based on the Library (independent of the use of the Library in a tool for writing it).
Whether that is true depends on what the Library does and what the program that uses the
Library does.

1. You may copy and distribute verbatim copies of the Library’s complete source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish on
each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty; and distribute a copy
of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a
work based on the Library, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices stating that you changed
the files and the date of any change.

c) You must cause the whole of the work to be licensed at no charge to all third parties
under the terms of this License.

d) If a facility in the modified Library refers to a function or a table of data to be supplied
by an application program that uses the facility, other than as an argument passed when
the facility is invoked, then you must make a good faith effort to ensure that, in the event
an application does not supply such function or table, the facility still operates, and per-
forms whatever part of its purpose remains meaningful. (For example, a function in a
library to compute square roots has a purpose that is entirely well-defined independent of
the application. Therefore, Subsection 2d requires that any application-supplied function
or table used by this function must be optional: if the application does not supply it, the
square root function must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Library, and can be reasonably considered independent and
separate works in themselves, then this License, and its terms, do not apply to those sec-
tions when you distribute them as separate works. But when you distribute the same sec-
tions as part of a whole which is a work based on the Library, the distribution of the whole
must be on the terms of this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

20 469513 Less.qxd 1/16/04 11:11 AM Page 409

Thus, it is not the intent of this section to claim rights or contest your rights to work writ-
ten entirely by you; rather, the intent is to exercise the right to control the distribution of
derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library
(or with a work based on the Library) on a volume of a storage or distribution medium
does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead of this
License to a given copy of the Library. To do this, you must alter all the notices that refer to
this License, so that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the ordinary GNU General
Public License has appeared, then you can specify that version instead if you wish.) Do not
make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary
GNU General Public License applies to all subsequent copies and derivative works made
from that copy.

This option is useful when you wish to copy part of the code of the Library into a program
that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided that
you accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange.

If distribution of object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place satisfies the
requirement to distribute the source code, even though third parties are not compelled to
copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed to
work with the Library by being compiled or linked with it, is called a “work that uses the
Library.” Such a work, in isolation, is not a derivative work of the Library, and therefore
falls outside the scope of this License.

However, linking a “work that uses the Library” with the Library creates an executable
that is a derivative of the Library (because it contains portions of the Library), rather than a
“work that uses the library.” The executable is therefore covered by this License. Section 6
states terms for distribution of such executables.

When a “work that uses the Library” uses material from a header file that is part of the
Library, the object code for the work may be a derivative work of the Library even though
the source code is not. Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The threshold for this to be true
is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and accessors,
and small macros and small inline functions (ten lines or less in length), then the use of the
object file is unrestricted, regardless of whether it is legally a derivative work. (Executables
containing this object code plus portions of the Library will still fall under Section 6.)

20 469513 Less.qxd 1/16/04 11:11 AM Page 410

Otherwise, if the work is a derivative of the Library, you may distribute the object code for
the work under the terms of Section 6. Any executables containing that work also fall
under Section 6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or link a “work that uses the
Library” with the Library to produce a work containing portions of the Library, and dis-
tribute that work under terms of your choice, provided that the terms permit modification
of the work for the customer’s own use and reverse engineering for debugging such modi-
fications.

You must give prominent notice with each copy of the work that the Library is used in it
and that the Library and its use are covered by this License. You must supply a copy of this
License. If the work during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference directing the user to the
copy of this License. Also, you must do one of these things:

a) Accompany the work with the complete corresponding machine-readable source code
for the Library including whatever changes were used in the work (which must be dis-
tributed under Sections 1 and 2 above); and, if the work is an executable linked with the
Library, with the complete machine-readable “work that uses the Library,” as object code
and/or source code, so that the user can modify the Library and then relink to produce a
modified executable containing the modified Library. (It is understood that the user who
changes the contents of definitions files in the Library will not necessarily be able to recom-
pile the application to use the modified definitions.)

b) Use a suitable shared library mechanism for linking with the Library. A suitable mecha-
nism is one that (1) uses at run time a copy of the library already present on the user’s
computer system, rather than copying library functions into the executable, and (2) will
operate properly with a modified version of the library, if the user installs one, as long as
the modified version is interface-compatible with the version that the work was made
with.

c) Accompany the work with a written offer, valid for at least three years, to give the same
user the materials specified in Subsection 6a, above, for a charge no more than the cost of
performing this distribution.

d) If distribution of the work is made by offering access to copy from a designated place,
offer equivalent access to copy the above specified materials from the same place.

e) Verify that the user has already received a copy of these materials or that you have
already sent this user a copy.

For an executable, the required form of the “work that uses the Library” must include any
data and utility programs needed for reproducing the executable from it. However, as a
special exception, the materials to be distributed need not include anything that is nor-
mally distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that com-
ponent itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other proprietary
libraries that do not normally accompany the operating system. Such a contradiction means
you cannot use both them and the Library together in an executable that you distribute.

20 469513 Less.qxd 1/16/04 11:11 AM Page 411

7. You may place library facilities that are a work based on the Library side-by-side in a single
library together with other library facilities not covered by this License, and distribute such
a combined library, provided that the separate distribution of the work based on the
Library and of the other library facilities is otherwise permitted, and provided that you do
these two things:

a) Accompany the combined library with a copy of the same work based on the Library,
uncombined with any other library facilities. This must be distributed under the terms of
the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a work
based on the Library, and explaining where to find the accompanying uncombined form of
the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as
expressly provided under this License. Any attempt otherwise to copy, modify, sublicense,
link with, or distribute the Library is void, and will automatically terminate your rights
under this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain in full
compliance.

9. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Library or its derivative works.
These actions are prohibited by law if you do not accept this License. Therefore, by modify-
ing or distributing the Library (or any work based on the Library), you indicate your
acceptance of this License to do so, and all its terms and conditions for copying, distribut-
ing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipient
automatically receives a license from the original licensor to copy, distribute, link with or
modify the Library subject to these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein. You are not responsible
for enforcing compliance by third parties with this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they do
not excuse you from the conditions of this License. If you cannot distribute so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations,
then as a consequence you may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by all those who receive
copies directly or indirectly through you, then the only way you could satisfy both it and
this License would be to refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular circum-
stance, the balance of the section is intended to apply, and the section as a whole is
intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system which is implemented by
public license practices. Many people have made generous contributions to the wide range

20 469513 Less.qxd 1/16/04 11:11 AM Page 412

of software distributed through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of
the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Library
under this License may add an explicit geographical distribution limitation excluding those
countries, so that distribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the Lesser
General Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns. Each ver-
sion is given a distinguishing version number. If the Library specifies a version number of
this License which applies to it and “any later version,” you have the option of following
the terms and conditions either of that version or of any later version published by the Free
Software Foundation. If the Library does not specify a license version number, you may
choose any version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distribution
conditions are incompatible with these, write to the author to ask for permission. For soft-
ware which is copyrighted by the Free Software Foundation, write to the Free Software
Foundation; we sometimes make exceptions for this. Our decision will be guided by the
two goals of preserving the free status of all derivatives of our free software and of promot-
ing the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT
WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY “AS IS” WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSE-
QUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE LIBRARY
(INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED
INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF
THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER
OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

20 469513 Less.qxd 1/16/04 11:11 AM Page 413

How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible use to the public, we recom-
mend making it free software that everyone can redistribute and change. You can do so by permitting
redistribution under these terms (or, alternatively, under the terms of the ordinary General Public License).

To apply these terms, attach the following notices to the library. It is safest to attach them to the start of
each source file to most effectively convey the exclusion of warranty; and each file should have at least
the “copyright” line and a pointer to where the full notice is found.

<one line to give the library’s name and a brief idea of what it does.>

Copyright © <year> <name of author>

This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either version 2.1 of the License,
or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU Lesser General Public License for more details. You should have received a copy of the GNU
Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.

Also add information on how to contact you by electronic and paper mail. You should also get your
employer (if you work as a programmer) or your school, if any, to sign a “copyright disclaimer” for the
library, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the library ‘Frob’ (a library for tweaking knobs)
written by James Random Hacker.

<signature of Ty Coon>, 1 April 1990

Ty Coon, President of Vice

That’s all there is to it!

20 469513 Less.qxd 1/16/04 11:11 AM Page 414

GNU General Public License
Version 2, June 1991

Copyright © 1989, 1991 Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is
not allowed.

Preamble
The licenses for most software are designed to take away your freedom to share and change it. By con-
trast, the GNU General Public License is intended to guarantee your freedom to share and change free
software—to make sure the software is free for all its users. This General Public License applies to most
of the Free Software Foundation’s software and to any other program whose authors commit to using it.
(Some other Free Software Foundation software is covered by the GNU Library General Public License
instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to
ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which
gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that
there is no warranty for this free software. If the software is modified by someone else and passed on,
we want its recipients to know that what they have is not the original, so that any problems introduced
by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone’s free
use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

21 469513 Gen.qxd 1/16/04 11:05 AM Page 415

Terms and Conditions for Copying, Distribution and Modification
0. This License applies to any program or other work which contains a notice placed by the copy-

right holder saying it may be distributed under the terms of this General Public License. The
“Program,” below, refers to any such program or work, and a “work based on the Program”
means either the Program or any derivative work under copyright law: that is to say, a work
containing the Program or a portion of it, either verbatim or with modifications and/or trans-
lated into another language. (Hereinafter, translation is included without limitation in the term
“modification.”) Each licensee is addressed as “you.”

Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running the Program is not restricted, and the output from
the Program is covered only if its contents constitute a work based on the Program (indepen-
dent of having been made by running the Program).

Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in
any medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to
this License and to the absence of any warranty; and give any other recipients of the Program a
copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work
based on the Program, and copy and distribute such modifications or work under the terms of
Section 1 above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed the
files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or
is derived from the Program or any part thereof, to be licensed as a whole at no charge to all
third parties under the terms of this License.

c) If the modified program normally reads commands interactively when run, you must cause
it, when started running for such interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a notice that there is no warranty
(or else, saying that you provide a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this License. (Exception: if the
Program itself is interactive but does not normally print such an announcement, your work
based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work
are not derived from the Program, and can be reasonably considered independent and separate
works in themselves, then this License, and its terms, do not apply to those sections when you
distribute them as separate works. But when you distribute the same sections as part of a whole
which is a work based on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the entire whole, and thus to each

21 469513 Gen.qxd 1/16/04 11:05 AM Page 416

and every part regardless of who wrote it. Thus, it is not the intent of this section to claim rights
or contest your rights to work written entirely by you; rather, the intent is to exercise the right to
control the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or
with a work based on the Program) on a volume of a storage or distribution medium does not
bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code
or executable form under the terms of Sections 1 and 2 above provided that you also do one of
the following:

a) Accompany it with the complete corresponding machine-readable source code, which must
be distributed under the terms of Sections 1 and 2 above on a medium customarily used for
software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a
charge no more than your cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute corresponding
source code. (This alternative is allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such an offer, in accord with
Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to
it. For an executable work, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control compila-
tion and installation of the executable. However, as a special exception, the source code dis-
tributed need not include anything that is normally distributed (in either source or binary form)
with the major components (compiler, kernel, and so on) of the operating system on which the
executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated
place, then offering equivalent access to copy the source code from the same place counts as dis-
tribution of the source code, even though third parties are not compelled to copy the source
along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program
is void, and will automatically terminate your rights under this License. However, parties who
have received copies, or rights, from you under this License will not have their licenses termi-
nated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These
actions are prohibited by law if you do not accept this License. Therefore, by modifying or dis-
tributing the Program (or any work based on the Program), you indicate your acceptance of this
License to do so, and all its terms and conditions for copying, distributing or modifying the
Program or works based on it.

21 469513 Gen.qxd 1/16/04 11:05 AM Page 417

6. Each time you redistribute the Program (or any work based on the Program), the recipient auto-
matically receives a license from the original licensor to copy, distribute or modify the Program
subject to these terms and conditions. You may not impose any further restrictions on the recipi-
ents’ exercise of the rights granted herein. You are not responsible for enforcing compliance by
third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent license would not permit royalty-
free redistribution of the Program by all those who receive copies directly or indirectly through
you, then the only way you could satisfy both it and this License would be to refrain entirely
from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance,
the balance of the section is intended to apply and the section as a whole is intended to apply in
other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right
claims or to contest validity of any such claims; this section has the sole purpose of protecting
the integrity of the free software distribution system, which is implemented by public license
practices. Many people have made generous contributions to the wide range of software dis-
tributed through that system in reliance on consistent application of that system; it is up to the
author/donor to decide if he or she is willing to distribute software through any other system
and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the
rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents
or by copyrighted interfaces, the original copyright holder who places the Program under this
License may add an explicit geographical distribution limitation excluding those countries, so
that distribution is permitted only in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version num-
ber of this License which applies to it and “any later version,” you have the option of following
the terms and conditions either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of this License, you
may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is copy-
righted by the Free Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals of preserving the free
status of all derivatives of our free software and of promoting the sharing and reuse of software
generally.

21 469513 Gen.qxd 1/16/04 11:05 AM Page 418

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAM-
AGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAM-
AGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING
BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO
OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way
to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source
file to most effectively convey the exclusion of warranty; and each file should have at least the “copy-
right” line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>

Copyright © <year> <name of author>

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not,
write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.

Also add information on how to contact you by electronic and paper mail. If the program is interactive,
make it output a short notice like this when it starts in an interactive mode:

21 469513 Gen.qxd 1/16/04 11:05 AM Page 419

Gnomovision version 69, Copyright © <year> <name of author>

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details, type ‘show w.’

This is free software, and you are welcome to redistribute it under certain conditions; type ‘show c’ for
details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the General
Public License. Of course, the commands you use may be called something other than `show w’ and
`show c’; they could even be mouse-clicks or menu items—whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a
“copyright disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program ‘Gnomovision’ (which makes
passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If
your program is a subroutine library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use the GNU Library General Public License
instead of this License.

21 469513 Gen.qxd 1/16/04 11:05 AM Page 420

	Cover
	Acknowledgments
	Contents
	Introduction
	Part I: Open Source Portals
	1: The Java Portlet API (JSR 168)
	Portlet Fundamentals
	Portlets and Servlets
	Portal Interactions

	The Portlet Interface and the GenericPortlet
	Portlet Life Cycle
	Portlet Runtime States
	Portlet Request Handling
	"There Can Be Only One"
	ActionRequest
	RenderRequest

	GenericPortlet

	Other Elements of the Java Portlet API
	PortletConfig
	PortletURL
	Portlet Modes
	Window States
	Portlet Context
	Portal Context
	Portlet Preferences
	Sessions
	Calling JSPs and Servlets
	Portlet Application Structure
	Security
	CSS Style Definitions
	User Information Attributes
	Portlet Tag Library

	Portlet Deployment
	Portlet Application Deployment Descriptor
	Portlet Declarations

	Building a Portlet

	Summary

	2: Searching with Lucene
	Understanding Search Engine Concepts
	The Anatomy of a Search Engine
	The Anatomy of Lucene
	Analyzer
	Document
	Directory

	Understanding the Lucene Query Syntax
	Terms
	Fields
	Term Modifiers
	Boolean Operators, Grouping, and Escaping

	Optimizing Lucene's Performance
	Summary

	3: Messaging with Apache James
	Introducing James
	Working with Mailets and Matchers
	Bundled Matchers
	Bundled Mailets

	Understanding SpoolManager
	Understanding Repositories
	File Repositories
	Database Repositories
	DBFile Repositories

	Working with RemoteManager

	Implementing James
	Downloading James
	Installing James
	Configuring James
	DNS Server Configuration
	POP3 Server Configuration
	SMTP Server Configuration
	NNTP Server Configuration
	FetchPOP Configuration
	RemoteManager Configuration
	Repository Configuration
	SpoolManager Configuration
	Global Server Configuration
	Creating User Accounts

	Introducing JavaMail API
	The Session Class
	Message Class
	Address Class
	Authenticator Class
	Transport Class
	Store and Folder

	JavaMail in Practice
	Sending Messages
	Receiving Messages

	Summary

	4: Object to Relational Mapping with Apache OJB
	Exploring Object-to-Relational Mapping Concepts
	Understanding OJB Technology Features
	Using OJB API Layers
	Developing with the PersistenceBroker API
	The Message Class
	JDBC Connection Mapping
	Home.jsp
	Add.jsp
	View.jsp

	Developing with the ODMG API
	Opening a Database
	Retrieving Objects
	Storing Objects
	Updating Objects
	Deleting Objects

	Developing with the JDO API

	OJB Extras
	Verifying an OJB Installation
	Supported Database Platforms
	Supported JDBC Data Types
	Deploying OJB Applications
	Jar Files
	Metadata Files
	JDBC Drivers
	CLASSPATH Settings

	OJB Performance

	Summary

	5: Content Management with Jakarta's Slide
	Slide Architecture
	External Architecture
	Internal Architecture
	Transaction Management
	Transactions
	Transaction Attributes

	Namespaces
	Helpers
	Stores

	Domain
	Slide API Layer

	Setting Up and Configuring Slide
	Installing and Running Slide
	Tomcat Manager

	The Slide Server
	Client View
	Admin View
	Editor View

	WebDAV and Slide
	Windows XP WebDAV Example

	Summary

	6: Portal Security
	Core Security Concepts
	Authentication
	Authorization
	Single Sign-On (SSO)
	Confidentiality
	Data Integrity
	Non-repudiation

	Key Security Standards
	SSL and TLS
	XML Encryption
	XML Signature
	SAML
	OASIS Web Services Security (WSS)

	Building Security Solutions for Your Portal
	Web Container Security-Apache Tomcat
	Server Configuration
	Application Configuration
	Programmatic Security Access with JSPs and Servlets

	Security of the Portlet Container
	Programmatic Security
	Portlet Descriptor-Configured Security

	Beyond the Portal-Secure Back-End Communication

	Summary

	Part II: How to Build a Portal
	7: Planning for Portal Deployment
	System Requirements
	Interface Requirements
	Operational Requirements
	Data Requirements
	Security Requirements
	Quality Assurance Requirements
	Software Configuration Management
	Jakarta's ANT
	Unit and Load Testing
	Bug Tracking
	Continuous Integration

	Requirements Summary

	Software Design Methodologies
	The Unified Process (UP)
	Domain Model
	Software Architecture Document (SAD)
	Shall Statements and User Stories
	Class-Responsibility-Collaborator Cards (CRCs)
	Storyboarding

	Design Models for Visualization That Are Not in UML

	Design Decisions
	Model 1 Architecture
	Model 2 Architecture
	Model 2X Architecture

	Search Utilities
	Content Management
	Design Pattern Considerations in Your Portal
	Using Java Standards
	Model-View-Controller (MVC) Pattern
	Template Method Pattern
	Memento Pattern
	Facade Pattern
	Adapter Pattern
	Factory Method Pattern
	Singleton Pattern
	Front Controller Pattern
	Intercepting Filter Pattern

	Client-Side Processing
	JavaScript
	Server-Side Processing
	Java Plug-ins

	Web Services for Remote Portals (WSRP)
	Portal Navigation
	Portal Navigation Using Taxonomies

	Portlet Integration Plan
	Summary

	8: Effective Client-Side Development Using JavaScript
	Declaring JavaScript
	Validating Data
	Adding Functionality
	Field Auto-Population
	Field Auto-Validation

	Space Management
	Multiple-Value Picklists
	Repeating Values

	Dynamic Actions
	Layering and DHTML
	Forms and Layers
	Movable Layers

	Summary

	9: Developing Applications and Workflow for Your Portal
	The Portlet Architecture
	The Portlet Container
	Portlet Preferences
	JSP Tag Library
	Packaging a Portlet

	The eXo Portal Platform
	The eXo Portal
	Hot Deployment
	Customization Tool
	Setup and Installation of eXo
	Understanding the eXo Directory Structure

	The Directory Portlet
	Developing the Directory Portlet
	The MySQL Database
	The DirectoryPortlet Class
	The DirectoryValidator Class
	The DirectoryView JSP File
	The DirectoryEdit JSP File
	The web.xml File
	The portlet.xml File

	Deploying the Directory Portlet in eXo

	Portlet Creation the Model-View-Controller (MVC) Way
	The MVC Loan Calculator Portlet
	Web Applications versus Portlet Applications
	Summary

	10: Portlet Integration with Web Services
	Basic Concepts
	Integrating with Traditional Web Services
	A Simple Example
	First Approach: SOAP and WSDL Messaging
	Second Approach: Working with Generated Objects

	Web Services for Remote Portlets (WSRP)
	Types of WSRP Services
	Discovery, Registration, and Deregistration Services
	Simple WSRP Services-Stateless "View Only" Modes
	More Complex Services-Interactive WSRP Services
	Portlet Management Services

	WSRP Markup Guidelines for Portlet Developers
	Disallowed XHTML and HTML Tags
	Cascading Style Sheets (CSS) Style Definitions
	User Information

	Summary

	11: Performance Testing, Administering, and Monitoring Your Portal
	Continuous Integration
	CVS
	Subversion
	JUnit
	AntHill

	Load Testing
	JMeter

	Portal Requirements/Bug Management and Traceability with Scarab
	Scarab
	Scarab Tasks

	Portal Administration with JMX
	Portal Collaboration with JSPWiki
	Summary

	12: Unifying the Enterprise Application Space Through Web Start
	Rich Clients
	Java Web Start
	Getting Started
	Downloading and Installing Java Web Start
	Configuring the Web Server
	Creating the JNLP File
	<jnlp> Attributes
	<information> Subelement
	<security> Subelement
	<resources> Subelement
	<application-desc> Subelement

	Application Packaging
	Client Invocation
	Code Signing

	Introductory Application
	Using JWS in Portal Implementations
	Use in a Web-based Portal
	Use in a Java Portal
	Java Swing
	Java-based Portal Examples

	Summary

	References
	Index

