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Preamble

This book is the result of nine years of teaching at the Technical University of Munich
(Technische Universitét Miinchen), eleven years of professional practice, including several
lectureships at international universities. This book is based on a number of exercises,
practical experiments and lectures by means of which I aim to clearly explain what are
at times very complex hydromechanical relationships. In this vein, it is important that
the reader is able to conceptualise a phenomenon in a similar way as a scientist would. In
an article in the magazine Hydrolink of the TAHR (International Association for Hydro-
Environment Engineering and Research), this approach, which was awarded the Ernst
Otto Fischer Award, was described as follows:

A discovery starts with an observation. The best evidence for this thesis is the endlessly cited
story of the apple falling on Isaac Newton’s head. Newton, it is said, started asking why such
things happen and, from there, eventually derived the laws of mechanics. Tracing the train
of thought even further back, it was Plato who deduced the concept of anamnesis. He stated
that the immortal soul already knows everything but forgets it all upon its birth. Humans
must recall their original notions through external triggers — percipience. Indeed, without
ever taking notice of the stars, mankind would never have discovered the heliocentric system
and the orbits. Hence, education in natural sciences should always start with observing or
sensing, in general, the phenomena. Through a notion of what is going on, one comprehends
and deduces interrelated theories. The findings must be thoroughly questioned and finally
applied to certain problems [44]. This goes along with a constant comparison of experiments
and theory [46].

It is my desire to make the fascinating topic of water attractive to you. Therefore, before
we deal with hydraulics, we will start with a teaser — the chapter titled “About water” (see
Chapter 1). I'm sure you will gradually overcome any inhibitions you may have concerning
differential equations and programming. However, you should also be fully aware of the
fact that the requirements you’ll be asked to meet are quite high.

In Part I of the book you have before you, the relevant physical relationships are derived
such that they are — hopefully — logical and comprehensive. This is why each single step
of the calculations is explained in detail, perhaps in too much detail for some of you!
Whenever possible, illustrative experiments will be used for explanation, some of which
you may carry out yourself using the simplest means.

The second part of the book is dedicated to the explanation of one-dimensional hydraulics
— again by means of several experiments. Part II is supported by programming examples
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in Octave, the freely available and open-source MATLAB® variant®. Therefore, it is
advisable to immediately download Octave at:

The accompanying open-source codes may be obtained from:

By the way, the programming examples provided throughout the book are presented in
similar blue boxes as above.

In Part III, the topics are taught by means of sample tests with explanations of their
solutions. No pianist or guitarist, no soccer player or skier, can learn the skills required to
perform their passions just by reading a book or learning a theory by heart. Remember:
Practice — and more practice still — makes perfect.

Part IV rounds off the teaching content by covering elaborate practical examples. These
examples include the water-level optimisation of a run-of-river power plant, the determi-
nation of the forces and moments acting on a weir system and on a hydropower penstock,
and the determination of the necessary pipe diameters for a wastewater system. The Ap-
pendix is a supplement to those sections that would have become too extensive or too
detailed in the main parts.

The book does not claim to fully describe all mathematical and physical principles. In par-
ticular, you will not find any shape parameter or loss coefficient tables or implementation
instructions in this book. Instead, this book is intended to help its readers comprehend
hydraulic phenomena as well as to critically question problems and to project the gained
insights onto other complex interrelations.

Flow is from left to right unless indicated differently. Calculations in the book
were conducted with the codes provided, therefore the accuracy of the used
numbers can be slightly different from the rounded ones printed in the book.

For the provision of materials, I wish to thank SWM Services GmbH, Wasser- und Schiff-
fahrtsamt Heidelberg, Kreuzinger + Manhart Turbulenz GmbH as well as Hamburg-
Wasser. My sincerest thanks go to my colleagues Dr Florian Schwertfirm, Dr Andreas
Zeiselmair, Dr Florian Mintgen and Dipl.-Ing. Andrés Botero Halblaub for their invalu-
able remarks, improvements and corrections. Brita Baumgéartel translated the book, which
was originally written in German, with the support of Steven McAllister. A very special
thanks goes to David Magallanes at Proofed for giving it the finaly touch. Thank you all
very much!

The open access publication of this book was made possible by the Verein zur Férderung
des internationalen Wissensaustauschs e.V. (knowledgExchange.org) through the gener-
ous support of the Cordes & Graefe Stiftung. Many thanks!

If any errors survived, despite the most scrutinous checks, please send details of these to
rapp@knowledgExchange.org.

I hope you enjoy the book.

Yours, Christoph Rapp

A T advise you to use the open source software Octave. Admittedly, as a student with a free
MATLAB® licence, you get used to the user-friendly interface and will later have to pay licence
fees.
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Chapter 1
About water

1.1 On origins

According to the equations of the general theory of relativity, the universe is either ex-
panding or contracting [17]. In order to circumvent the unthinkable, Einstein introduced
a factor to keep the size constant. Some 20 years later, however, Hubble, who gave his
name to the telescope, discovered that the universe is actually expanding. He did this
by proving that the color spectrums of far stars change as a result of their motion. This
frequency shift, also referred to as the Doppler effect, occurs if a source moves relative to
a receiver (as in the case of a police car siren). This evidence confirmed that a continuous
expansion must take place. The Big Bang theory was born, and it is still the most prob-
able scenario of the origin of the universe. The age of our universe could be quantified as
13.8 billion years. We’ll never know what, and indeed if, anything came before that.
Water is the material source of all things. We often come across this quote by Thales
of Miletus (624 to 546 BCE). The considerations that led to it will remain a secret de-
spite countless interpretations. However, when van Helmont planted a young tree into a
pot 2,000 years later for a scientific experiment and only watered it, he saw a consider-
able increase in weight five years later, thus confirming Thales’ thesis [2]. At that time,
nothing was known about the conversion of light energy to chemical energy, the so-called
phenomenon known as photosynthesis.

It wasn’t until the 18th century that the Greek theory of the four basic elements (fire,
water, earth, air) led to the chemical elements we know today as a result of research
conducted by Lavoisier (1743 to 1794). He performed an experiment to demonstrate that
burning “two parts inflammable air and one part life air” produces water [2]. He presented
the results on June 25, 1783, at the Académie des Sciences. This not only revealed the
chemical origin of water but also established stoichiometry, which then contributed to the
well-known periodic table of the elements. At that time, oxygen — from the Greek “oxys”
(acid) and “gen” (create), i. e. acid-former — was a known element, and it was Lavoisier who
introduced hydrogene (hydrogen), the water-former. Though it is not possible to deduce
the generation of the simplest element, hydrogen, with only one proton and one electron,
it is known that it can be created at a temperature of 3700 °C by the combination of the
elementary particles. The other heavier elements such as oxygen stemmed from nuclear
fusion of the hydrogen atoms during the birth of stars, as Rutherford proved in 1917.
Thereby, the creation of water is certainly obvious: It is the combination of the two
most-prevalent reactive elements in the universe — hydrogen and oxygen — that makes life

© The Author(s) 2024
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possible: H;O. One water molecule comprises two hydrogen atoms and one oxygen atom.
The oxygen atom “borrows” one electron from each of the two hydrogen atoms in order to
assume a lower energy state — this is the atom’s mission. The hydrogen, too, benefits from
this liaison because the oxygen also shares one of its desired electrons with each of the
hydrogen atoms. Two other electron pairs of the oxygen, so-called valence electrons, are
moved to the opposite sides such that the molecule spans a tetrahedron (derived from the
Greek words for “four” and “surface”). The oxygen now subjects the shared electron pairs
to a little more stress such that the two hydrogen atoms form slightly positively charged
points and the valence electrons slightly negatively charged corners. This results in what
are known as hydrogen bridge bonds, wherein the molecules unite with approximately
one tenth of the force of the atomic bonds as the positively charged hydrogen corners are
attracted to the negatively charged corners of the oxygen atoms of other molecules. These
hydrogen bridge bonds, which are broken and re-formed repeatedly, give water many of
its characteristic properties. They are also responsible for the so-called density anomaly,
e. g. they are the reason why ice floats. Water may assume three different phases, which
are primarily dependent on two state variables: the temperature and the pressure (please
scroll to Figure 3.3 on page 31).

Reducing the phase diagram of water to one dimension reflects exactly what everybody
experiences in their daily life. Cold water is in the solid phase, very hot water in the
gaseous phase, and in between, water is liquid. The known transition values, 0 °C between
solid and liquid and 100 °C between liquid and gas, are, however, applicable at atmospheric
pressure (1013 mbar). Tt is also generally known that eggs must be boiled for a longer time
on a mountain to make them hard, a fact that this example easily explains. A lower
air pressure results in a lower boiling point of water, which is why liquid water cannot
be heated to 100°C on a mountain. The eggs boil at lower temperatures than in the
valley. At a pressure as low as 6.12 mbar, all three conditions may simultaneously occur
at 0.01°C, while liquid water below this pressure does not exist at all. Here, there is a
direct transition between solid and gas. This is referred to as sublimation and conversely
as re-sublimation.

According to some scientists, water was brought to the newly born earth by comets (they
consist of approximately 20 % frozen water, Halley’s comet even of 80 %). According to
other scientists, the water was brought by asteroids that showered our celestial body with
water during its wild youth. If we actually look at the facts, there should be no water on
earth due to its proximity to the sun and the resulting heat.

The heavy elements sank into the core of the young earth and the light ones rose to
the surface; water, carbon dioxide and nitrogen evaporated, forming the atmosphere.
Enormous heat developed in the core and the greenhouse gases, water vapour and carbon
dioxide prevented the planet from cooling. The water vapour condensed in the atmosphere,
precipitated and evaporated immediately when it hit the hot ground. The torrential rain
lasted for ages and flushed out the CO; from the atmosphere, reducing the greenhouse
effect. The earth cooled down, the water no longer evaporated immediately from the
ground but instead flowed off, further reducing the greenhouse effect. CO, combined with
volcanic rock and transformed with sodium to soda, which in turn became lime and with
calcium chloride common salt. The carbon was bound in this way and the ocean slowly
but surely became saltier [2].

Nowadays, approximately 97 % of the water on earth is saline, while 77 % of the remaining
3 % is fresh water that is bound as ice in glaciers. Furthermore, 22 % of the fresh water
is deep groundwater and barely accessible to humans, meaning that the 1% of the fresh
water that inland waters carry appears almost inexhaustible in view of the huge quantities
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of water in the Amazon, Yangtze and Nile Rivers in addition to the Great Lakes or Lake
Victoria. Merely 0.01 % of fresh water is in the atmosphere — just 4 x 10 kg, i. e. a 4
followed by 15 zeroes. Despite these unimaginable masses, water supply has always been
one of the central problems of mankind. As 1.2 billion people do not have access to clean
drinking water, the UN General Assembly declared the period between 2005 and 2015 the
International Decade for Action “Water for Life”. In 2010 a resolution was passed which
declared access to water and basic sanitary supplies a human right.

1.2 On the origin of life

There is no element more closely linked to life than water. The first living beings developed
in the sea before the land was populated, and the origin of each human life is also located
in water. Embryos grow in the seawater-like amniotic fluid, so it is no surprise that three
quarters of the mass of a newly born child is HyO-molecules. Although men consist of 55 %
water and women of “only” 50 % water, water is the basis for the function of vital organs
such as the kidneys (81 %), heart (79 %) and brain (76 %). At the same time, water is the
breeding ground for numerous pathogens (e. g. malaria) because of its life-giving power
and through its function as a transport medium serving as a carrier for many diseases
(e. g. cholera) [31].

As far back as 3.8 billion years ago, amino acids, i. e. components of the proteins that are
the elementary constituents of all cells, originated in the primeval ocean. At great depths,
far more complex amino acid structures formed because, at that time, the water blocked
out harmful UV radiation, as the ozone layer had not yet formed. Approximately 3.5
billion years ago, cyano-bacteria, also known as blue-green algae, used the high reaction
potential of water, combining it with carbon dioxide and light to form glucose and oxygen.
Thus, they “invented” the metabolism that we now know as photosynthesis, so called due
to the use of light as energy source. These blue-green algae that, in a similar form, still
occur in Australia, are procaryotes, which means they do not have defined areas, so-called
organelles, or even an encapsulated nucleus. Nevertheless, they are able to reproduce,
which makes them the first living beings on this planet. Within their cell membranes,
which consist of the simplest fats, desoxyribonucleic and ribonucleic acids float in the cell
liquid. These acids are the carriers and the multipliers of genetic information.

When the primeval ocean no longer contained the iron that reacted with the oxygen re-
leased by the cyano-bacteria to form iron ore — a process which, after all, lasted two billion
years — the contamination of the atmosphere by toxic O, began. In the present tropopause,
about 15 km above the earth’s surface, a portion of the oxygen was transformed to ozone,
which protected the organisms against harmful UV radiation. About 1.5 billion years ago,
eukaryotes, which safeguard the genetic information in a nucleus, developed.

Higher life started to develop following the Cambrian explosion, which took place approx-
imately 540 million years ago. When, after 100 million years, flora and fauna populated
the land, this was only achieved thanks to solvent (intracellular) and carrier liquid (inter-
cellular) waters. Water fills the spaces in a cell and therefore about 80 % of the volume.
Intercellular water is present primarily in the blood, the brain, the stomach and the in-
testines. As water is essential for our metabolism, we should drink at least three litres of
water per day — a deciduous tree requires 250 L per day.

However, we humans consume, or rather use, much more water — virtual water. The
production of one kilogram of tea requires 37000 L or kg of water. Imagine a room with a
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floor space of 15m? that is filled with water up to the ceiling. That’s what is needed for
a single kilogram of tea. Coffee isn’t much better. For one kilogram of coffee, the room
would be half-filled; for one kilogram of beef, it is one-third full. And even if a rice field
required a water depth of 2m until the harvest, a carnivore consumes twice the amount
of virtual water as a vegetarian. For each milk bottle you buy, imagine the additional
800 bottles of water that were needed to produce the milk. And this does not include the
several cubic metres of this most precious resource that are necessary for the production
of the technical equipment for filling and distribution.

Wildlife is also very eager to gain access to the basis of life, i. e. water. The characteristic
features of various animal species, are well known. Camels, for instance, have oval-shaped
red blood cells, enabling them to absorb great amounts of water in a very short time
without risking water intoxication. As another example, frogs mix their body fluid with
glucose prior to hibernation in order to lower its freezing point and to therefore prevent
an expansion of their volume when the temperature drops below 0°C. The scarab is a
particularly innovative desert inhabitant that seems to have assimilated the phase diagram
of water. It places itself against the wind in such a way that the water vapour condenses
on its hydrophilic humps due to the wind pressure, thereby letting droplets flow directly
into its mouth.

Humans are unable to contort themselves like this in order to obtain this most precious
good. In the course of our development, however, we have left no stone unturned in order
to gain control of the elixir of life.

1.3 On the origin of civilisation

In regions where water is scarce and not readily available, humans have put much of
their energy into storing and accessing it. Early civilisations developed in precisely those
regions where creativity was essential to provide people with water. It was here that the
inhabitants of the Fertile Crescent excelled, irrigating their fields by means of sophisti-
cated systems. In Mesopotamia, the Tigris and the Euphrates Rivers carry water mainly
in springtime, which is too early for the summer harvest but too late for the winter har-
vest; further south, a most impressive culture developed by exploiting the dangerous Nile
floods in a country that is 96 % desert. These ambitious hydraulic structures, which six
to three thousand years later still reflect the social importance of water, brought forth
crop surpluses and allowed people to do more than just worry about surviving. Culture
began to develop, professions began to emerge, and people began to travel and share
their knowledge. And in view of the complexity and the might of the structures created
to harness it, historians wonder whether it was the administration of water that gave rise
to the state [21].

According to a recognised historical theory, the power of the Egyptian pharaoh dynasties
stemmed from local rulers who administered the irrigation channels. In wars that took
place in approximately 3000 BCE, Menes (“he, who builds the channels”) emerged victo-
rious and became the first pharaoh. The tax paid to the rulers in the form of a portion of
the harvest was set by means of so-called nilometres. The Roman poet Pliny referred to
this unit in his Naturalis Historia (Natural History). “Twelve cubits meant hunger, thir-
teen sufficiency, fourteen joy, fifteen security and sixteen surplus.” Heavier floods, which
invariably occurred in July, meant catastrophe. Records show that about every five years,



1.3. ON THE ORIGIN OF CIVILISATION )

either too much or too little water flowed in the Nile. Hydrologists who could predict such
events were worshipped at that time as high priests.

Hammurabi, the sixth king of the first Babylonian dynasty (18th century BCE), wrote
one of the world’s first extensive legal codes, which included the control and management
of water. Paragraph 53 reads:

He who opens the floodgates but whose dams are not strong enough and so cause flood shall
compensate the proprietor for his loss. This shall be determined on the basis of the harvests
of the neighbouring fields.

Irrigation became increasingly sophisticated and more voluminous. From 702 to 688 BCE,
the Assyrian king Sennacherib built an impressive water supply system with 150km of
channels, several tunnels, aqueducts and weirs. He himself searched for springs and initi-
ated the construction of a new supply for Nineveh. A river was completely blocked by a
dam 50 km northeast of the town in order to provide the people with water. To this end,
rocks had to be removed over a distance of 35km and an aqueduct 280 m long and 22 m
wide was built near Jerwan. The inscription there reads:

Sennacherib, the king of the world, the king of Assyria: I initiated the construction of a
channel from the Hazur River over a long distance. I built aqueducts from limestone blocks.
Said water was carried through them.

For the Romans, the handling of water, both its supply and disposal, was the dominant
issue in the planning of their metropolises. The most impressive building is certainly the
Pont du Gare near Nimes. Jacques Rousseau described his impressions of this structure
in his Confessions as follows:

I expected to see a monument, worthy of the hands which built it. But this work exceeded
my expectation; and that was the first time in my life. [...] I roamed the three levels of this
majestic building which I hardly dared to enter. The echo of my steps under these immense
arches made me believe to hear the powerful voices of those who built them. I was lost like
an insect in this immensity.

The discharge of wastewater has been of major importance ever since people began living
together in larger settlements, or even in cities. In Munich, it wasn’t until the second
half of the 19th century CE that the hygienist Max von Pettenkofer was able to convince
the city council to construct a central sewage system whose prime aim was to contain
cholera epidemics. But the examples of Tepe Gawra, Uruk or Habuba Kabira show that
the relation between the contamination of the wells by wastewater and rapidly spreading
diseases was already known by 4000 BCE. In Babylon, around 1300 BCE, King Adad-
Nirari I immortalised himself on a brick of an underground sewer to the Tigris. The
cross-section of this brick-built vault was two metres high and 1.8 m wide.

Examples of how we have engaged with water over the ages can be found across the globe.
The Mayan dam in Tikal (about 300 CE), the 5000-year-old irrigation system used to grow
rice in the present-day Kingdom of Cambodia, which expanded to the spectacular terraces
in Yunnan and East Timor, and the Swiss suons (water-carrying channels in Valais from
about 1000 CE) are further witnesses of the past. Additional elaborations will be omitted
here, although other achievements of former generations have been just as outstanding.



1.4 On the origin and source of industry

Humans made use of the power of water long before that of the wind. But the first power
unit that was not driven by water or wind was only able to function by using water: the
steam engine that Thomas Newcomen designed in 1712. Since then, power plants have
seen continuous improvements, and Newcomen’s efficiency of 0.5 % has been increased by
a factor of 100. New technologies have been developed, but even nuclear power plants
cannot generate electricity without water. Today, technological progress is not only based
on petroleum as the supplier of energy; 400m?® of water are required for the production
of one car, while a single CD requires 200L. In addition, there is the supply of food —
and water — to the world’s current eight billion people. For example, one of the largest
(underground) reservoirs in the world is in the Great Plains. It has a surface area of
450000km? and is now technically capable of being pumped empty in order to stay the
appetite of progress. Twenty-five times more water is withdrawn than flows in, which is
not in agreement with the idea of sustainability propagated by Hans Carl von Carlowitz
(1645 — 1714). The consequences for future generations are not taken into consideration.
In most countries, the water used for industrial purposes is still fed impurified into the
rivers and finally transported into the oceans. The contaminants join the food chain either
by the irrigation of plants or via the sea fish that eat them and land up on our tables. This
also applies to the heavy metals from a carelessly discarded cigarette butt, for example,
which, if dissolved in one litre of water, is lethal for most fish because of the nicotine and
the arsenic content.

As was the case at the onset of civilisation, great efforts are taken, particularly where
water is scarce, to provide sufficient quantities of good-quality water. In Singapore, known
for its electronic goods, which can only be produced using huge amounts of the purest
water, every effort is made to ensure the supply of H,O. Although it rains considerably
in the tiny city-state, every single drop counts in this metropolis that has a population
density of more than 7000 people per square kilometre (Germany: 230) and more than 5
million inhabitants. The supply of drinking water from Malaysia creates a high political
dependency, meaning that the Singaporean people resort to three water taps for their
uses: one dispenses desalinated water, which is obtained using enormous quantities of
energy; the second one provides reconditioned wastewater (2.5 x 10°m? daily, i. e. 16
times the consumption of all Munich households); and the third one administers rain
water. With the aid of adequate water technologies, such as efficient washing machines
and dishwashers, lavatory cisterns and so-called droplet irrigation, the precious — and
here actually in the economic sense — good water can be saved and used where it’s most
needed. The relationship between water and technological progress, and between water
and the industrial revolution, will not be elaborated on further, but their consequences
will be. It is ironic that the properties that make water the central element of life also
play a major role in climate change. Water in its three phases — gas, liquid, and solid
— has a significant impact on the climate of our planet. The oceans absorb CO, (as the
primeval ocean did). Water vapour is the number one greenhouse gas, and the ice-albedo
effect has the most dramatic impact of all climate feedback loops. However, it is much
more important that increasing temperatures significantly influence the hydrologic cycle.
Higher temperatures lead to higher humidity in the air, and this increases the probability
of disastrous thunderstorms and floods as well as water shortages due to rare rainfall. The
Intergovernmental Panel on Climate Change (IPCC) predicted in 2007 that by 2020, there
would be an anthropogenic temperature increase of 1°C and 400 to 800 million people
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living in regions of water scarcity; by 2050, there will be 1.5 billion people experiencing
water shortages with a temperature increase of 1°C to 2°C, or even 2.4 to 3.5 billion if
temperature rises by 2.5°C [9]. And for 2020 they were right.

1.5 To the origin

When viewed from an evolutionary biology standpoint, water plays a key role in the
creation theories of religions. In several religions of North Asia, North America, India and
Russia, a deity descended to the bottom of the primeval ocean to bring up an earth seed.
In Hindu mythology, the voice that embodied Brahma first became water and wind from
which the net of the world was woven. For the Maya in Central America, the deity Hurakan
called forth the land out of an ocean of darkness and water. The Hebrew God moved upon
the water before he divided the water from the land. In Islam, water symbolises creation,
security, healing and the connection to something divine. And in the Bible in Genesis, the
first book of Moses, it is written:

(1) In the beginning God created the heavens and the earth. And the earth was without
form, and void; and darkness was upon the face of the deep. And the Spirit of God moved
upon the face of the waters. [...] (9) And God said, let the waters under the sky be gathered
together unto one place, and let the dry land appear: and it was so. (10) And God called the
dry land “earth”; and the gathering of waters he called “seas”.

This chapter is licensed under the terms of the Creative Commons Attribution 4.0 In-
ternational License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
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Fundamentals and derivations



Chapter 2
Essential mathematics

2.1 Conventions

The coordinate system shown in Figure 2.1 is used in this book. Here, the z-axis points
upwards against the force of gravity. The velocity components in the x-, y- and z-directions
are identified by the variables u, v and w, respectively. Later, the so-called index notation
will also be used with the three spatial directions described by the indices 1, 2 and 3. The
following notation applies: x; =x, xp =y, x3 =z and u; = u, up =v, and u3 =w.

Z,W VA

X,u

Figure 2.1: Coordinate system with the positive x-direction to the right (direction of flow), the
positive y-direction into the drawing plane and the positive z-direction opposite to the
force of gravity.

2.2 Physical quantities and their mathematical descriptions

2.2.1 Scalar

A scalar is a non-directed physical quantity. For example, a certain temperature T or
concentration C of a substance prevails at a specific point in space. These two physical
quantities have no direction. This also applies to density or pressure. A scalar quantity is
a function of position and time expressed as f(x,y,z,t).
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2.2.2 Vector

A vector is a directed physical quantity; forces and velocities have a specific direction
in three-dimensional space. In a game of tug-of-war, for example, one team pulls in one
direction with a certain force, while the other team — if they are balanced to the same
norm — pulls in the opposite direction. The norm |)_() | is referred to as the undirected length
of a vector. In this chapter, vectors will be depicted with vector arrows for developing a
sense to distinguish between scalar and vectorial quantities.

> X

Figure 2.2: Example of a force with two components in the x- and z-directions.

In Figure 2.2, F, and F; identify the force components in the x- and in the z-direction, while
the arrow F reflects just this vectorial property. The vertical bars about F in Equation 2.2
represent the norm of that vector. The underlying mathematic operation, the calculation
of the hypotenuse using the legs of the right triangle, is written on the right side of the

equals sign.
F = (2 1)
F, ’

|F|=/F2+F? (2.2)

2.2.3 Tensor

The meaning of tensors can be illustrated with an infinitesimally small, i. e. minuscule,
cube-shaped element (see Figure 5.4). This cube has six surfaces in three-dimensional
space with three pairs of normal vectors; each normal vector has got an opponent pointing
in the opposite direction (this means that there are three sets of pairs of surfaces that are
parallel). Forces may now be applied to these minute surfaces, again in all three spatial
directions (positively or negatively). To illustrate this, place your hand on the tabletop
in front of you and push your hand away from yourself. You're applying shear stress to
this surface in the y plane, which extends perpendicularly to the z plane. This is how
you create shear stress 7,. If you move your hand to the right on the tabletop, then
you will induce shear stress on the z surface in the x plane; accordingly, the associated
component of the stress tensor is 7,,. Palm pressure applied vertically onto the tabletop
corresponds to a stress in the z plane, which is represented by the component 7,,. These
three components 7, 7;, and 7., indicate the stresses on the surface in the z plane. In
the negative coordinate direction (you move your hand on the tabletop to the left), the
stresses assume negative signs. But the stresses could just as well be applied on the surface
extending in the x or y plane. When we shrink the cube to one point, this results in what
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is known as the stress tensor T with its nine entries; the main diagonal elements indicate
the normal stresses, while the secondary diagonal elements indicate the shear stresses.

Tex Tay Tz
T=1 T Ty Bz (2.3)
Tox Tzy Tz

2.2.4 Scalar product

The scalar product links two vectors to one scalar value (see Equation 2.4). The projection
of @ onto b and the projection of b onto @ are designated by a; and ba, respectively
(see Figure 2.3). In the scalar product, the projected length of one vector is multiplied by
the length of the other.

Ll

a

_)
Figure 2.3: Scalar product of two vectors; b projected onto the direction of the vector a (left) and
_>
d projected onto the direction of the vector b, (right).

In Figure 2.3, the arrows with the red broken lines indicate the oriented length of the
projection of b onto @ and of @ onto b respectively. The scalar product is positive if b
points in the same direction as @; otherwise, it is negative. This is the case if 90° < ¢ < 270°
or cos ¢ < 0. We will use the scalar product later for calculating the components of fluxes
that are parallel to a line of action (e. g. normal to a surface).

E’o?zﬁﬂ-’?‘-cos(b:‘Z‘-|E’|'cos¢ (2.4)

Since the lengths of the two vectors |@| and ‘b’ are multiplied (and this product, of

course, by cos¢), it does not matter whether @ o b or bod is calculated (commutative
law). For vectors in space, the scalar product may be determined according to Equation
2.5.

aq b]
dob= ay |o| by | =ai-bi+ay-by+az-bs (2.5)
as bs
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2.2.5 Cross product

The result of a cross product of two vectors (@ x 3) is a third vector that is perpendicular

to the area formed by @ and b (see Figure 2.4). We can find the calculation rules e. g.
in [8, p. 192].

o
&

»

a

ﬁ
Figure 2.4: Cross product of two vectors @ X b .

N arbz —azby
C=dxb= a3b1 —a1b3 (2.6)
a1by —ayb

The absolute value of ¢ represents the area of the parallelogram spanned by @ and b

le| = | @ x Z‘ — |3 ‘Z‘ sin ¢ (2.7)

2.3 Euler vs. Lagrange

The creation of field theory was just one of Leonhard Euler’s outstanding achievements.
For the development of fluid mechanics, however, it was essential. But hydraulics would
not be complete without the description of movement according to Lagrange’s approach.

2.3.1 Lagrange’s perspective

The Lagrangian® model is based on the perception of movement by the moving in-
dividual. Imagine a soccer player running back and forth on the pitch (see Figure
2.5). At kick-off (r = Omin), he is located approximately at the centre of the circle
(5 (t = 0) = centre of circle). Maybe he scores a goal from the penalty area in the 23rd
minute (¢ =23min) and (¥ (f = 23) = penalty box) and is substituted in the 68th minute
(t =68min) and (s (r = 68) = substitution bench). At different times, the player is in dif-
ferent positions on the field ¥ (). Sometimes he sprints faster, sometimes slower (V' = %)
and in different directions which, however, are always indicated along his trajectory s

A Joseph-Louis Lagrange, %1736, Turin, Italy, 11813, Paris, France
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(see also Chapter 2.4.1). And he is subjected to accelerations because his velocity varies

at any moment (d = f(1) = %’ _ dZE’)

dr?

Figure 2.5: Lagrangian way of viewing a football match — recorded by a GoPro camera of a red
player (not shown in the photo).

We would have to prepare further individual travel directions for all other players and
the referee in order to reproduce the events on the football pitch. Being in the thick of it
rather than a mere bystander is what Lagrange is all about.

2.3.2 Fuler’s perspective

The description of the same situation as in the previous Chapter 2.3.1 looks different from
Euler’s point of view (see Figure 2.6). Euler® takes the position of the coach, an outside
observer. He permanently monitors the entire field and watches the actions of each player
at each moment. Mathematically, this situation can be expressed as follows:

0= (7) =0 (28)

70 = (1) s 29)

The acceleration of the goal scorer in the above example may of course also be expressed
on the Euler field. However, reference has first to be made to Chapters 2.4.1.2 and 5.2.

2.4 Functions

Functions describe dependencies of physical quantities. An example would be the height
of a human being during his lifetime, which is written mathematically as L = f(r) (see

B Leonhard Euler, 1707, Basel, Switzerland, 11783, Saint Petersburg, Russia
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Figure 2.6: Euler’s view of a soccer match.

Figure 2.7). In the early months and years, his height (L) will increase rapidly until he is
grown up.

La LA
LIIAL YA F———
&
At
H
Lt >t >t

Figure 2.7: Course of a human’s height over his/her lifetime.

2.4.1 Deriwvations

Let’s stay with the example of Figure 2.7. During childhood, a person grows rapidly.
During youth, growth is slower. As adults, humans no longer grow or might even shrink
a little. The change in a quantity with respect to a variable on which it is dependent is
known as a derivative, which is obtained by the process of differentiation. When measuring
the height of a person e. g. on the same day one year apart (At =, — 1), we will determine
a change in height of AL =L, — L. By means of the quotient %, the mean increase over
the course of this year is determined.

In the derivative %, we shrink the distance of the measuring points towards zero (At — 0)
and thereby determine the slope of the tangent line at this point.

A function may also be derived several times with respect to the same variable. The

2
second derivative, which indicates the curvature of the function, is written as %(zx).

2.4.1.1 Partial derivative

There are physical quantities that depend on several variable quantities, as was already
stated above. Let’s look at the air temperature while we imagine travelling from Munich
to Rome. Apart from crossing the Brenner Pass, it will most likely get warmer during
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our journey (T = f(¥), see Figure 2.8 (right)). If we stay at home, get up at 6 a.m. and
go to sleep at 10 p.m., we will likewise experience a change in temperature (T = f(¢), see
Figure 2.8 (left)). In a partial derivative, which, by the way, is expressed by a d, only the
change in a variable as a function of a certain physical quantity is of interest.

TaA TA

bt Y
L A

Figure 2.8: Temperature variation over the day (left) and temperature variation between Munich
and Rome (right).

The change in temperature as a function of time is written as the partial derivative 2 W
This, in turn, allows the units to be expressed as °C/s or K/s. The change in temperature
with respect to position is described by the partial derivative 5= aT , the units of which result
from the numerator and denominator: °C/m or K/m.

2.4.1.2 Total derivative

The total derivative is defined by the derivative of a physical quantity with respect to
another quantity. Contrary to the partial derivative, all functional relationships are taken
into consideration. Let’s return to the journey from Munich to Rome in our example: the
temperature changes over time and distance (T = f(r, 5 (¢))). When we move, we change
our position ¥ in the course of time ¢. Thus, the position § is again dependent on time
t. The total differential dT describes the movement of a Lagrangian observer in the Euler
field. This very context 1s expressed in Equation 2.10.

dT T  JTds oJT _9dT

— + 5= = +V = (2.10)

i dr 9% dr ot s
This means that the faster we drive to Rome, the faster it gets warmer. The change in
temperature is as dependent on the velocity and the change in velocity as a function of
distance ¥ as it is on warming over the course of the day. The first term on the right side
of the equation is the partial derivative of the temperature with respect to time; this is
also referred to as a local derivative. We are interested in the change of temperature T
with respect to time ¢; however, T changes with respect to the position function s, which
also depends on the time (F> This consideration is the basis for the second term, the
convective derivative. We form the velocity ¥ from the derivative of the position function

ds
with respect to time -
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2.4.2 Integration

Integration is the reverse of the mathematical operation of differentiation. Bronstein and
Semendjajew [8, S. 443] state: “While in differential calculus, the derivative of a given
function has to be determined, in integral calculus a function is to be found for a given
derivative, whose derivative corresponds to the pregiven one.”

Imagine again our journey from Munich to Rome, in which we are at position ¥ () (posi-
tion vector) at a point of time ¢. We also already know that the derivative of the position
function with respect to time corresponds to the velocity:

=
—» ds

= 2.11
V= (2.11)

Our speed is shown in Figure 2.9. We start slowly and accelerate on the highway, take a
break and start again for the last stage of the trip.

VA

‘morning tb.b tb,e evening

Figure 2.9: Cruising speed as a function of time.

Using integration, we will now calculate the distance travelled. Based on the units alone, it
is obvious that our position (or the distance travelled) may be determined by multiplying
the velocity V by the time ¢, during which we travel at exactly that velocity. In a purely
formal manner, this is done by integrating the velocity over time, which corresponds to
the area under the curve in the graph.

- b,b R levening =
; :/ P (1) dr + P (1) di (2.12)

[morning tb,e

On the basis of our example, we obtain the position (¢ = evening) = 914km (or the norm
of the vector as the distance travelled), if the origin of our coordinate system is in Munich.

2.5 Kinematics

In kinematics, deformations are described without considering the forces that cause them.
A volume, or two-dimensionally, a surface, may alter its appearance in various ways. While
in solid mechanics, deformations and stresses are correlated, it is the deformation speed
and the stresses that are correlated in fluid mechanics (see Chapter 5.5). Therefore, in
the following discussion, the deformations of a fluid element will be described — for better
presentability — in two-dimensional space.
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Imagine the area shown in Figure 2.10 as a flexible square whose corners are held by the
students Andreas (A), Bernd (B), Claus (C) and Dennis (D). If all four students move at
the same velocity, i. e. at the same velocity norm in the same direction (x in this case), the
shape of the area is maintained. Here, the velocity in the y direction is zero and changes
neither in the x- nor in the y-direction (v =0; % =0; 3—; =0); a velocity in the x-direction

prevails which is constant in all directions (# = const.; % =0; % =0).
y

D->D C>C
YaVA : :
| |
i i
| |

A>A B>B

> X,U

Figure 2.10: Deformation of an element in case of equal velocities at the corners.

2.5.1 Dzilatation

Figure 2.11 shows how the element is deformed if an acceleration of the velocity compo-
nent u occurs along the x-direction. Andreas and Dennis, who are standing at the same
horizontal distance x, move more slowly than Bernd and Claus. The u component in-
creases along the x-axis to the right (% #0). Since Andreas and Dennis move at the same
velocity, and Bernd and Claus also each move at the same velocity, though faster than
Andreas and Dennis, the element is simply stretched®. The change in area (or volume,
in three dimensions) represents the trace (i. e. the sum of the main diagonal elements) of
the velocity gradient tensor (see Chapter 2.5.4 and Equation 2.16).

D=>D C—C
Y:VA ! 1

:

|

|

|

|

1

|

Figure 2.11: Dilatation / stretching of an element.

€ The increase in area would correspond to an increase in volume in three-dimensional space which,
due to the incompressibility of water, is not possible (see Chapter 3.4.10). The element would have
to become thinner in the third spatial direction.
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2.5.2 Shearing

We will now take our example further. An Audi and a BMW drive in the right lane, and
a Citréen and a Dodge in the fast (left) lane of the highway. All four cars are driving
in the same direction (x), with the Audi and the BMW at a lower velocity. Since the
imaginarily spanned area created by the distances travelled by the four cars is sheared
(see Figure 2.12), the square becomes diamond-shaped. In this case, a change of the x
velocity component u at two different values of y is given (the Audi and the BMW are
at the same y-value; the Citroen and the Dodge are driving at a higher value of y in the
fast lane). This relation is mathematically described by the velocity derivative 3—5 #0.
None of the cars accelerate or brake, so that the change of the velocity component in the
x-direction is zero: % = 0. The velocity component v (in the y-direction) is zero and does
not change, neither in the x-direction nor in the y-direction; i. e. all cars remain in their
lanes: % =0 and g—; =0.

y, VA

~
~

/
ASA  BSB
Emergency Lane

> X,U

Figure 2.12: Shearing of an element.

2.5.3 Rotation

In our “student” example, the positive x-direction will now be identified by +x and the
negative y direction by —y. If Andreas moves one step in —y and one step in +x, Bernd
simultaneously in 4+x and +y, Claus in +y and —x and Dennis in —x and —y, then our
square is not deformed but rotated. This is referred to as a rotation (see Figure 2.13).
We see that Andreas and Bernd each move one step to the right, i. e. that the velocity
component u along the x-direction does not change. The same applies to Claus and Dennis,
whose steps to the left also do not allow a change of the u-component along the x-direction.
Thus: % =0. But at the same time, we learn that there is definitely a change of the u-
component in the y-direction, because while Andreas and Bernd go to the right, Claus and
Dennis, who have a higher y-position, take one step to the left, which results in ‘3—: £0.
The same applies to the v-component. Andreas and Dennis, who are situated along the
same x-position, move one step downward while Bernd and Claus move upward. Thus,
the v-component does not change in the y-direction, but it does in the x-direction (g—; =0,

% #0). We will return to this later in Chapter 2.5.4.
The x-, y-, and z-components of the rotation vector correspond to the vectors that are
normal to the plane of rotation. For example, the x-component of the rotation vector
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Figure 2.13: Rotation of an element.

describes the rotation in the y-z plane. The rotation vector, for whose direction of rotation
the “right hand rule” applies, is:

ow _ dv
5 g
=2 _ u w
S=| gL o (2.13)
dv _ du
Jdx  dy

If you memorise “wuv, or better wuff wuff ;-)”, as the sequence of the velocity components
which are derived to the remaining spatial direction and subtract the elements mirrored
on the main diagonal from this, it is quite easy to remember the rotation vector. The
rotation vector can also be written as the cross product of the nabla operator V and the
velocity vector @ (see Chapter 2.2.5 or Equation 2.6):

s dw _ dv
%r u Jdy dz
ot =Vxud=|45|x|v|=]%-% (2.14)
3 % ou
9 w oy _ g«

2.5.4 Velocity gradient tensor

The variations of the velocities on a field as explained above may be represented by the so-
called velocity gradient tensor V. This tensor includes the superpositioning of shearing,
dilatation and rotation of an element. The tensor in three-dimensional space is written
as:

Vi =| g o (2.15)

The meaning of the elements of this tensor may be explained by means of the following
example: Elementary deformations may be described via the decomposition of the ve-
locity gradient tensor (see Equation 2.15) into a symmetric (s;;, Equation 2.16) and an
antisymmetric part (e;;, Equation 2.17). In turn, the sum of s;; and ¢;; results in V.

du | du du | dv Jdu | Idw
e gy
v u Jdv v dv w
$+97y 7y+7y 7z+7y (2.16)
w4 Ju dw 4 9v Iw | Jw
ox dz dy dz dz dz

1

Sij:i
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1 dv __ du dv _ dw
dw_duow_av
dx dz dy 9z

The main diagonal elements of the tensor (%, g—;, %—V;), which are also found in the

symmetric part, specify the dilatation.

The off-diagonal elements are responsible for shearing and rotation. If both g—; and %
are positive, the element is sheared and becomes diamond-shaped. The right-hand lower
corner moves upward because % > 0. The left-hand upper corner moves to the right due
to % > 0. For the right-hand upper corner, both changes apply, and the corner moves to
the right and upward. You will find the summation of the secondary diagonal elements in
the symmetric part of the velocity gradient tensor % (g—; + %), which indicates shearing.
The antisymmetric part of the velocity gradient tensor (Equation 2.17) indicates the
rotation of an element in the flow (see Figure 2.13). If the norms of ‘3—; and % are equal,
but have opposite signs, then the element rotates without deformations occurring.

2.5.5 Divergence

The divergence of the velocity vector is the sum of the main diagonal elements of the
velocity gradient tensor (i. e. its trace); divergence corresponds to the change in volume:

du dv dw
divii = — + — + — 2.18
T ox + dy + dz (2.18)
For an incompressible fluid (see Chapter 3.4.10), i. e. a medium whose density does not
change upon the application of pressure, the constant mass is equivalent to the constant
volume. Therefore, the following applies to incompressible fluids: div % = 0.

2.6 Einstein summation convention

The Einstein® summation convention is a notation which is often used for expressing
three-dimensional equations. In this context, [8, p. 271] reads:

The summation convention generally stipulates that if an index occurs twice in an expression,
the expression is summed over all provided values of this index. If an index occurs once in
the expressions, ..., this means that the relevant equation applies to all values that may be
passed by this index.

With the indices used in this book, the equation for i = j =1, 2, 3 in the above-mentioned
source becomes:
fl' =ajjXj (2.19)

D Albert Einstein, %1879, Ulm, Germany, 11955, Princeton, USA
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X1 =anxi +anx: +apix
Xo = ar1x1 +a»x> +a»3xs (2.20)
X3 = az1x1 +azpx; +assxs

We will use the Einstein summation convention in the description of the fundamental
equations.

2.7 Elementary fluid mechanic terms
Table 2.1 summarises elementary fluid mechanics terms. The following figures in Table

Table 2.1: Elementary fluid mechanics terms.

steady % =0 the local velocity does not change as a function of time
unsteady aa—'l‘ = 0 the local velocity changes as a function of time
uniform g—% = 0 the velocity does not change as a function of place

non-uniform 5% # 0 the velocity changes with place

continuous gjg =0 the flow rate does not change as a function of place

discontinuous gjg # 0 the flow rate changes as a function of place

2.2 illustrate these relationships.

Table 2.2: Examples of flow types.
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steady unsteady
uniform uniform
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The upper left-hand figure in Table 2.2 does not show any time dependency. Therefore,
the flow is steady. The discharge cross-section does not change, which is why the flow
velocity does not change. Thus, the flow is uniform. As no fluid is added or leaked, the
flow is continuous.

In Table 2.2, top right, a time dependency is indicated by Q(¢). The container fluid is
discharged. Thus, the flow is unsteady. Because of the lack of any extra inflow or outflow,
the flow is to be identified as continuous. And because the cross-section does not vary
along the length of the pipe, the flow is uniform.

In Table 2.2, bottom left, no time dependency is discernible; therefore, the flow is to be
termed as steady. Not a single drop of fluid leaves the water body except for the outlet
cross-section, and nothing may enter it except for the inlet cross-section; therefore, the
flow is continuous. However, the flow velocity varies along the streamwise direction s~ due
to the variable cross-section. Thus, the flow in the bottom-left figure is non-uniform.
Table 2.2, bottom right, illustrates where the velocity changes as a function of time and
place. In addition, a lateral inflow is identified. The flow is unsteady, non-uniform and
discontinuous.

2.8 Selected flow lines

2.8.1 Streakline

A streakline is the trace connecting all fluid particles that have passed a prescribed point.
Imagine a marathon refreshment station. The trace connecting all runners with cups is a
streakline. Figure 2.14 shows water vapour from a chimney of a power station. The current
connection of all particles that have passed the chimney tip carries the water vapour as
tracer, while the other particles do not.

Figure 2.14: Example of a streakline. The addition of water vapour occurs at the chimney, the
point source. The vapour cloud shows the trace connecting all particles that were at
this point.
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2.8.2 Streamline

Streamlines are tangents of the flow vectors. Figure 2.15 shows streamlines as they develop
with the selected flow configuration over the time average. The fluid flows over periodically
arranged hills. Similar to a ski jumper, the flow lifts off the hill in time average and only
attaches again at approximately 3 ~ 4. The space between hill and reattachment point
is filled by a so-called recirculation zone. On the right-hand side, the acceleration of the
fluid due to the reduction of the outlet cross-section may be seen from the decreasing
distances between the streamlines.

3.035
2.0
y/h
=
, /
0.00 i 2 3 4 5 6 7 é é

Figure 2.15: Streamlines of a flow over periodically arranged hills.

2.8.3 Pathline

A pathline is the connection of those locations that were touched by a fluid element. A
comet with its tail would be a suitable image for a pathline. Or perhaps you may recall
the story of Hénsel and Gretel who dropped breadcrumbs (which were subsequently eaten
by birds) to mark their path. The crumbs represent the places where the two children had
been (see Figure 2.16).

L N N P

W S N N s

Figure 2.16: Hansel and Gretel mark their pathline with bread crumbs. Charity stamp of the
Deutsche Bundespost, issued 02.10.1961. Circulation 9750000, Michel No. 369, design
Bert Jager.
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2.8.4 Streamtube

A surrounding bundle of streamlines is referred to as a streamtube; no fluid bale leaks
through its lateral surface. Therefore, the volume flow, which may also be referred to as
flow rate or discharge, may be designated as a scalar product between the velocity vector
U and the cross-sectional vector area 7 dA as:

Q:/ﬂ)o ndA (2.21)

2.9 Selected cross-sections

In hydraulics, a clear distinction is made between flows under pressure (pipe hydraulics)
and flows with free surfaces (open channel hydraulics). Sometimes these conditions alter-
nate over time, e. g. in a sewage system, which exhibits a free water level and flow during
dry weather and a discharge under pressure in case of flood.

In this chapter, the most common cross-sections will be discussed with respect to their
characteristic quantities. From the continuity condition (Equation 5.2), it becomes ap-
parent that the area A plays a major role in hydraulics due to its linear relationship with
the flow velocity. Another quantity, whose impact we will only become acquainted with
in Chapter 13.9, is the so-called wetted perimeter P. This is the area where the flow is in
contact with the boundary, i. e. where external friction occurs. In a riverbed, these are
the bank slopes and the base, in a circular cross-section the circular arc from the bottom
to the water level. We may generally assume that the friction between water and air is
negligible. The flow area and the wetted perimeter are linked via the so-called hydraulic
radius Ry,y = ‘% (see Figure 13.22). Table 2.3 displays the area, the wetted perimeter and
the width of the water surface of selected cross-sections.

This chapter is licensed under the terms of the Creative Commons Attribution 4.0 In-
ternational License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
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Table 2.3: Characteristic values of selected cross-sections.
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Chapter 3
Essential physics

3.1 Aggregate states

3.1.1 Solid

In a solid body, the molecules have a fixed, unalterable order as long as the stress re-
mains under the yield point (o see Chapter 3.4.7). When stress is applied, the object will
consequently be deformed (€ see Chapter 3.4.8), and when stress is released, the solid
body will return to its original shape (elastic behaviour; see Figure 3.1). With twice the
stress applied, the deformation will be doubled (linear elastic behaviour). If a solid body is
subjected to plastic deformation, then the molecular structure will be irreversibly altered
at one place.

CA €A

»

Figure 3.1: Stress/deformation behaviour of an elastic solid body.

© The Author(s) 2024
C. Rapp, Hydraulics in Civil Engineering,
https://doi.org/10.1007/978-3-031-54860-4_3



http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54860-4_3&domain=pdf

30

3.1.2 Liquad

Liquids and gases are referred to as fluids. The molecular structure is not fixed; the
molecules are able to move in space. If a stress is temporarily applied to a fluid, the
fluid is deformed but does not return to its original condition upon stress release. This
behaviour is depicted in Figure 3.2. In any given space, liquids gather at the bottom, like
water in a glass, for example.

CA €A

Ll

...............

Figure 3.2: Stress/deformation behaviour of a fluid.

3.1.3 Gaseous

Gases have properties similar to those of liquids; the molecules are able to move freely.
However, it is much easier to compress gases (see Chapter 3.4.10), which have a much lower
density (see Chapter 3.4.6) than liquids. The number of particles of an ideal gas is constant
in a certain volume at the same pressure (see Chapter 3.4.9) and same temperature and
thus independent of the particle mass or the particle type.

3.1.4 Aggregate states of water

The three states of water — solid, liquid, gaseous — are best explained by means of the
phase diagram (see Figure 3.3).

By plotting the pressure vertically upwards and the temperature to the right, a sort of “y”
forms between the regions of the three phases of water. On the left at low temperatures,
water is solid; in the centre, it is liquid; and at high temperatures, it is gaseous. At a
low pressure, water exists only in a solid or gaseous state, and the transition from one
to the other state is called (re-)sublimation. We all have often experienced phase changes
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p

611 N/m?

0°C

Figure 3.3: Phase diagram of water.

between the solid, liquid and gaseous phases and are made aware of them by changing
temperatures. When it gets warm in springtime, the snow melts; the frozen water becomes
liquid again. When boiling pasta, some of the water evaporates and becomes gaseous.
The dependence on pressure is not something we come across often. When boiling eggs
on a mountain where the air pressure is lower, the phase transition occurs at a lower
temperature. Water changes its state on the right branch of the “y” further down and
thus at a lower temperature. In order to be cooked to perfection, the eggs must be boiled
for a longer period at the lower evaporation temperature.

3.2 Quantities and their units

In physics, quantities without units are meaningless. When choosing the right means of
transport to cover a distance specified as 600, it is crucial that we know whether we are
referring to metres or kilometres. When working with international teams or on interna-
tional projects, it is necessary to agree on a system being used: the “Systéme international
d’unités” (SI) or the Anglo-Saxon “Imperial System”. In our field of science, this applies
in particular to the local (GauB-Kriiger coordinates, UTM, etc.) and altitude indications
(metres above sea level based on the sea level of the North Sea or the Mediterranean Sea).
In science, the SI (also known as the metric system) units have prevailed due to their
practicality. The SI system is built on seven basic units. These are summarised in Table
3.1. In the context of hydraulics, we will deal with the first four basic units and derive all
the other ones from them.

3.3 Newton’s axioms

Generally speaking, the entire contents of this book are based on Newtonian mechanics
and its fundamental statements on the motions of bodies. Dialectically, it is necessary
to differentiate between verifiable laws and axioms, i. e. “statements of a mathematical
theory, from which the other [statements] may logically be derived” [7]. The axiom itself
cannot be substantiated within a system but is fundamental to it.
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Table 3.1: SI basic units.

|quantity |symbol|unit |unit symbol|
length L metre |m

mass m kilogram (kg

time T second |s
temperature T kelvin K

current I ampere |A

amount of substance|N mol mol
luminous intensity |J candela |cd

3.3.1 Lex prima — inertial law

A body remains in a state of rest or uniform translation unless applied forces cause a change
in this state of motion. N
V =const. forF =0 (3.1)

In other words, if a body must change its state of motion, forces must act on it.

3.3.2 Lex secunda — basic equation of mechanics

The change in motion is proportional to the magnitude of the applied force and takes place
in the direction of the straight line along which the force is acting.

The change in momentum over time results from the acting forces. On this subject, Grehn
et al [15] offer the following summary:

The force F which imparts the acceleration @ on a body with the mass m is the product of
this mass m and the acceleration @.

dv

N
F=md=m—
dr

(3.2)

3.3.3 Lex tertia - “actio = reactio”

Forces always occur in pairs.

Y)Vhen a body A applies the force FA on a body B (actio), then B also applies on A the force
F p, referred to as counterforce (reactio), which is opposed and its absolute value equal to the
first force [15]. For a one-dimensional problem we can write:

—

Fi=—Fgp (3.3)
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3.4 Principal physical quantities
3.4.1 Force

A force F is equivalent to the product of mass and acceleration:

—

F=md [N]=[kgm/s’] (3.4)

A beer crate containing 20 bottles with the mass
m=20-0.5L-1kg/L+ 20 myottle + Merate (3.5)
has a weight force of:

FG,beer crate — (20 -0.5L- 1kg/L +20 - mpottle + mcrate) g (36)

3.4.2 Momentum

A force is the change in momentum T over time, which corresponds to Newton’s second
axiom. N
- dI dv -
F=—=m— with I [Ns 3.7
” ” [Ns] (3.7)
In order to change the momentum of a beer crate, i. e. in order to bring it from the rest

state into motion, a force must be applied.

du
F = Myeer Cratea (38)
du
dr = myeer cratof (39)
X
If the beer crate with the mass myeer crate = 12Kg is to be accelerated from the rest state to
the velocity u =0.2m/s in the x-direction, then a force of F, = 1.0N over dr = %sz/s =

2.4s must be applied.

3.4.3 Work

In physics, work W corresponds to a force which is applied over a certain displacement.
Work is the scalar product of the vectorial quantities force and displacement.

W=FoX [Nm] (3.10)

Work due to lifting, acceleration, clamping and friction can be done on a body. In the
case of work due to lifting, a body with a weight Fg is lifted by a distance Ah. If a body is
subjected to a force with a component along the displacement vector s, it is accelerated
and then possesses the kinetic energy %mv2 (see Chapter 3.4.4). Work may, for example,
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also be done by tightening a spring or compressing a fluid. Friction work must be done in
order to overcome the force due to friction Fg along a distance . If you lift a beer crate
from the floor onto a table that is 70cm® high, you did the following lifting work:

W = erate- €05 = FG.crate - Prable = 12kg-9.81m/s*-0.7m = 82.4Nm (3.11)

The scalar product ensures that only the displacement parallel to the gravity vector g,
where g oS = hiaple, is accounted for. Work may be doubled by either lifting two beer
crates onto the table or one crate twice as high.

3.4.4 Energy

In [15], the following definition of energy can be found:

The energy of a body or a system is a property whose change Ae equals the work W which is
(externally) done on the body or the system.

If work is done on a body, its energy is increased; if the body or the system does work
externally, the body’s or the system’s energy decreases [15]:

Ae=W [Nm] =[] (3.12)

By lifting the beer crate, we have increased its energy by Ae = Fg - hyaple. When pulling
the crate over the floor, we carry out friction work. The energy which was applied as
force F over the length of the displacement vector § was converted to heat (beer crate
and floor). A body can be accelerated by the application of energy and will then possess
kinetic energy 2mv If, for example, a piston is pushed with a force F along the path
s within a closed cylinder, the medium in the cylinder is compressed, and upon stress
release, the work done becomes free again®. The so-called first law of thermodynamics
states that the energy in a closed system remains constant (see e. g. [15]):

The sum of energies within a system is constant.

3.4.5 Power

Power P corresponds to work per unit time.
w
P= s [Nm/s] = [W] (3.13)

Don’t be confused. W is the abbreviation for work as well as for the unit of power — Watt.
A person who can place the beer onto the table quickly demonstrates considerable power.
Even if two people carry out the same work by lifting 10 beer crates 70cm and placing
them onto the table, the one who needed only 1min for this task performed twice the
power of the other one who took 2 min.

A Do not fail to use the correct SI units from the very beginning; i. e. insert 0.70m rather than
70 cm.

B Compressed air storage reservoirs utilise what is known as compression energy.
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3.4.6 Density

The density p of a homogenous body corresponds to the quotient of mass and volume
p = {7 and has the unit kg/m’.

3.4.7 Stress

Stress o or 7 is a “generally non-isotropic [i. e. of different magnitudes in the spatial
directions] reaction force, related to an area in elastic bodies when deformed by external
forces” [7]. In fluid mechanics, normal stresses, i. e. stresses acting perpendicularly on a
particular surface, are referred to as pressure p (see Chapter 3.4.9) and surface parallel
stresses are known as shear stresses 7. In Chapter 2, a tensor was already explained by
means of the stress example (see Equation 2.3). From the definition of stress, its units
N/ m? follow. In mechanics, tensile stresses are generally defined positively and compres-
sion stresses negatively. In hydromechanics, no tensile stresses occur, which is why the
pressure always has a positive sign. It is only in the relative reference system (see Chapter
8.7) that water pressure may take negative values.

3.4.8 Deformation (rate)

In the case of a solid body, stress and elongation describe elastic behaviour (see Figure 3.1).
When the elastic stress is released, the solid body returns to its initial state. Deformation
is indicated as € = AT.

In fluids, applied stresses cause a deformation as long as they are maintained (see Figure
3.2). Therefore, stress is responsible for the deformation rate of a fluid. This deformation
rate is described by the velocity gradient tensor (see Equation 2.15).

3.4.9 Pressure

Pressure p corresponds to the “force per unit area of a surface” [7]. Everybody is probably
familiar with it as a scalar quantity, though a watertight definition sounds quite clumsy.
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Instead, let’s take a look at the human pyramid in Figure 3.4. While no pressure acts on
Andreas, Alexander and Anton from above, Bernd, Bastian, Bruno and Benedikt have to
carry the upper three. Carsten, Christian and Claus are even worse off because they not
only have to carry Andreas, Alexander and Anton but also the additional load of Bernd,
Bruno and Benedikt. Dominik, Ditmar, Daniel and Detlef bear the pressure of the three
rows above them. The pressure perceived by a particular row depends upon the weight of
the people stacked above and whether the human pyramid is built on the Moon or on the
Earth because of the magnitude of the gravitational constant g. In correct physical terms,
the pressure depends on the density of the continuum, the gravity and on the overlying
medium.

Andreas, Alexander and Anton
Bernd, Bastian, Bruno and Benedikt

Carsten, Christian and Claus

Dominik, Ditmar, Daniel and Detlef

Figure 3.4: Illustration of the pressure that is linearly dependent on the overlying medium.

p=pgh forp = const. (3.14)

When stacking humans of identical density in our example, the linear dependence of
pressure on depth can already be seen. This will be discussed in detail in Chapter 7. The
pressure reflects normal stress, which means that it acts perpendicularly to the surface
surrounding the medium.
At this point, it makes sense to differentiate and clarify the concepts of absolute und
relative pressure in detail.

3.4.9.1 Absolute pressure

The term “absolute pressure” is understood to be the sum of air and water pressure. When
we are at sea level, the ambient air has a pressure of approximately patm = 1013 mbar.
Then, if we dive 2 = 10m into the sea, we are subjected to the pressure p(h) = patm +
Pseawater " 8 * h.

Due to the fact that in nearly all hydromechanical applications the atmospheric pressure
acts from all sides, we may always calculate — aside from one exception — the relative
pressure. When considering closed air volumes (see Chapter 7.9), we must use the absolute
pressure.

3.4.9.2 Relative pressure

The relative pressure is related to the ambient pressure p,tm. Relative to it, the pressure
increases to p(h) = Pseawater - & - 1 during our dive into the sea.
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3.4.10 Compressibility

The compressibility of a body indicates the change in volume when a stress is applied.
Compressibility is described as the ratio between the pressure applied to a volume and
the change in volume:
ApV
AV

Thus, the modulus of elasticity (also known as Young’s modulus) has the same units as
pressure [N/ mz]. The minus sign is due to the fact that the volume becomes smaller AV,
i. e. negative, when pressure is applied.

E= (3.15)

Anna, Antonia and Anouk

Barbara, Belinda, Brooke and Bernadette

Caren, Carlotta and Clara

Dorothea, Diana, Denise and Daniela

Figure 3.5: Compression of a fluid volume (left) and explanation of the pressure distribution with
compressible media (right).

If we think back to the example in Figure 3.4, we assumed that the humans were not
squeezed together by the overlying load. On the right-hand side of Figure 3.5, the lower
rows are compressed due to the load. Here, the initial mass of a human (or molecule) is
constant, the height or the volume in three-dimensional space is reduced; because p = y,
this leads to an increase in density as depth increases. Our human pyramid is compressible.
Compressibility is an inherent property of gases and leads to the air pressure increasing
in a non-linear manner with overlying medium (see Figure 3.6). For compressible fluids,
the pressure must be calculated by Equation 3.16:

Pcompressible fluids = /P(h)g dh (316)
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Figure 3.6: Atmospheric pressure as a function of height above sea level.

3.4.11 Viscosity

Viscosity describes the resistance to movement of one layer of fluid over another. Figure
3.7 shows two plates with a fluid in between. By applying a force, one plate is offset
relative to the other one. Due to the adhesion condition (the molecules closest to the
wall are “glued” onto the wall), the velocity of the fluid directly at the boundary is equal
to that of the plate. The velocity gradient, i. e. the change in velocity between the two

plates, is indicated by %. The force which is required to impose this velocity gradient is

dependent on the so-called dynamic viscosity n [N s/mz] and the area A: F = —nA%.

dv

- — Nl
3, (3.17)

O =
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With what are known as Newtonian fluids, the ratio between applied force (or stress) and
the velocity gradient is linear. In fluid mechanics, the kinematic viscosity v = % [mz/ s] is
often used.

dn dv

Figure 3.7: Two plates with a fluid in between are offset relative to each other.

In non-Newtonian fluids, on the other hand, the ratio between force and velocity gradient
is not linear.

We are lucky because we work with water. The characteristics of a Newtonian fluid makes
things a lot easier.

3.4.12 Surface tension

The surface tension oy is a quantity that may virtually always be neglected. It plays a
role only in ground water and in very thin containers or small tubes (capillaries). Its
effect can be seen when water is dripped onto a table. The water does not spread over the
entire tabletop, but the individual drops remain unaffected and form a curved surface. The
contact angle with the limiting medium (i. e. the tabletop) is to be identified by ¢. Surface
tension has the effect of causing water in a capillary to move upwards against gravity. With
the balance of the capillary (Fc = os2rmcos@) and the gravity force (Fg = pghr’r), the
rise &, which is primarily dependent on the diameter of the capillary, may be calculated:
h= %. By the way, the capillary force shows that the surface tension is effective
along the boundary 2rm and therefore has — as the only stress — the unit N/m. The
contact angle ¢ between the water and the glass amounts to approximately 20°, so that
water rises approximately 2.8 cm in a 1.0 mm thick capillary.
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3.4.13 Discharge

Discharge, which is sometimes also referred to as volume flow rate, is the fluid volume that
travels through a flow cross-section within a certain time unit. Formally, the discharge
may be described as the integral of the velocity with respect to the cross-sectional area.
Since the surface is oriented in a particular direction according to its normal vector, the
only velocity component occurring in this direction is multiplied by the flow area in order
to obtain the discharge. Mathematically, the scalar product of the velocity vV and the
normal vector 7 is integrated over the surface area dA.

Q:i—‘j:/?oﬁ'dA [m¥/s] (3.18)

3.5 Properties of water

The properties of water, which are relevant to hydraulics, are listed in Table 3.2 for various
temperatures.

This chapter is licensed under the terms of the Creative Commons Attribution 4.0 In-
ternational License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons licence, unless indicated otherwise in a credit line to the material. If
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Table 3.2: Properties of liquid water.

|temperature| density |dyn. viscosity|kin. Viscosity|vap0ur pressure|

T p n v Py
[°C] [kg/m?][1073 [Ns/m*[| 1076 [m%/s] | 10° [N/m?]
0 999.840]  1.7921 1.7924 0.6112
5 999.964]  1.5108 1.5189 0.8725
10 999.700|  1.3077 1.3081 1.2280
15 999.101]  1.1404 1.1414 1.7053
20 998.206]  1.0050 1.0068 2.3385
30 995.650]  0.8007 0.8042 4.2452
40 992.219]  0.6560 0.6611 7.3813
50 988.050]  0.5494 0.5560 12.334
60 983.210]  0.4688 0.4768 19.933
70 977.790]  0.4061 0.4153 31.177
80 971.830]  0.3565 0.3668 41.375
90 965320  0.3165 0.3279 70.119
100 [958.350]  0.2838 0.2961 101.33

material is not included in the chapter’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
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Chapter 4
Introduction to potential theory

4.1 Introduction to potential theory

Potential theory is a mathematical construct for describing frictionless and rotationless
flows. It is applied to laminar flow around bodies, beyond the boundary layer in aerody-
namics and in groundwater hydraulics (see Chapter 15). It is performed analogously in
electrical engineering, where a parallel plate capacitor represents a potential field perpen-
dicular to which electrons are travelling. Magnetic field lines are also consistent with this
concept. In the context of this book, potential flow is formulated two-dimensionally.
Rotationless flows may be described via a scalar function @, the so-called potential func-
tion. We set — in a purely mathematical way — the two velocity components equal to the
partial derivatives of this potential function:

Yy P

- Ox

L (4.1)
V= EN

When inserting the gradient of the potential function into the two-dimensional continuity
condition % + g—;’ =0 (see Equation 2.18), it follows that

2 2
g o re 0
dx dy dxr  09y?
This differential equation, which may be found in [8, page 689], is also known as Laplace’s®
equation. The second derivative is therefore represented by what is known as the Laplace
operator V2.
We will now pursue the idea that streamlines reflect the tangents of the velocity vectors
(see Chapter 2.8 and Figure 4.1). This means that the gradient of the stream function
corresponds to the ratio of the velocity components % = Y. The equation is rearranged

as follows: !
udy—vdx=0 (4.3)

A Pierre-Simon Laplace, 1749, Beaumont-en-Auge, France, 11827, Paris, France

© The Author(s) 2024
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This shows that we can generate a stream function ¥ whose gradient for y results in the
component u and whose gradient for x results in the component —v:

L4
s
dy

4.4

_ow o
Y= dx

When inserting these expressions for u and v into the condition for the freedom of rotation
rotv = % — % =0, (see Chapter 2.5.3), it can be seen that the stream function, as well

as the potential function, satisfies Laplace’s equation.

Jdv  du __827‘1’ 2y

rotv = T N N =0 and therefore:
S (4.5)
°Y N v 0
ox2  9yr

P,

» X
/ \(p1=const.

Figure 4.1: Potential- and streamlines in a field.

At this point, let’s go back again to the potential function & and form the total differential,
which must be zero along a potential line:

d® 9P 9P

& o Ty Y

d¢:a—@dx+a—¢dy=udx+vdy:0 (4.6)
dx dy

dy u

dx v

Two functions fi(x;) and f>(x;) are perpendicular to each other at one point, if®:

dfite) _ oAbl 1 (47)

dx,- ’ dx,- C

B Just test this relationship by inserting ¢ = 1,2 and 3 and entering the gradients into a Cartesian
coordinate system.
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Since exactly this condition is met for Equations 4.3 and 4.6, stream- and potential lines
are perpendicular to each other at every point of the flow field.

Several solutions exist for Laplace’s equation. There are also several solutions for basic
types of flow which may be arbitrarily superimposed. These basic solutions are indicated
in Table 4.1. Superposition makes it possible to describe nearly any flow field from these
elementary solutions.

4.2 Parallel flow

The description of a parallel potential flow is almost trivial. The potential function @
differentiated with respect to x yields u and differentiated with respect to y results in
v. Because the velocity in a parallel flow does not change, the components are generally
indicated by ug and vg. Thus:

P ek 4
u=— u=—
dx dy (4.8)
_9® | _ ¥
' dy " T ox

Upon the integration of the equations ([udx = f%—fdx and [udy = [ %l){l dy), the two
functions may be expressed as:

b = upx+C;

(4.9)
¥ =uyy+C,

The integration constants can be determined from the velocity component in the y-
direction, v, as both ways must lead to the stream and potential function. Therefore
we find C; = vgy and C, = —vpx. You can try it out by inserting C; and C; into Equations
4.9 and deriving them with respect to x and y, which yields again Equation set 4.8.

4.3 Source and sink flow

In potential theory, sources and sinks are singular points; here, the equations are conse-
quently invalid. These basic flows not only enable the description of, for example, ground-
water withdrawals or returns via discharge wells but also describe boundaries of bodies
through a skilful arrangement via the so-called boundary streamline. Let us examine
sources.

A water quantity ¢ [mz/ s] shall be supplied to the environment of the source at point
(0,0). The unit in the two-dimensional representation of potential theory as formulated
herein corresponds to the depth-related discharge. Because of the radial flow of the water,
the velocity decreases towards the outside. The tangential component u; does not exist.
The velocity follows from the continuity condition as the quotient of the depth-related
discharge and the circumference:
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2nr (4.10)

In Cartesian coordinates, the components are described via trigonometric functions. By
multiplying the expression for u, by one in the form of 7, the denominator includes r,
which according to Pythagoras corresponds to x> +y?. In the numerator, rcos & becomes
x and rsina becomes y:

P IV
w=ucoso= 9 cosq= 1 (")cosa:;ﬂ(x>::

2 2 2 4y2 0 0
r xX°+y X y (4.11)
sino 4 sino = el (r) sin o 4 Y 0P o¥
vy=1Uu = — = — — = — — = — = — —
' 2nr 2mr 21 \ X2 +y? dy ox

In order to arrive at the potential and stream functions, Equation set 4.11 must be
integrated. Consult a pocketbook of mathematics, e. g. [8, p. 447], or a table of integrals.
There you will find a general solution for the special form of the integrand:

f'x)

dx=1In|f(x)|+C (4.12)

Taking the derivative of the denominator (within the brackets) with respect to x (top
equation) or y (bottom equation) in the set of Equations 4.11 yields 2x or 2y, respectively,
which corresponds to twice the numerator. With the application of the rule 4.12, the
integrand (bracketed factor in Equations 4.11) may therefore be written as %ln |f(x)]. The
following is obtained for the potential function &:

i el 2 i el
D= e 21n|x—i— |—2 21n(x +y%) (4.13)

As x* +y? must be positive, we may as well do without the vertical bars. When leaf-
ing through school texts or having [8, p. 9] at hand, the next sleight of hand may be
understood.

Definition: The logarithm of a number x > 0 to the base b >0,b# 1, ...is to be understood
as the exponent of the power to which b is to be raised in order to obtain the number x.

Under the logarithm, the factor % becomes the power %, which leads to Iny/xZ+y? and
eventually results in:
g1 q >, s _ 4
P = z—iln(x —i—y)zﬂln(x —i—y)z:Elnr (4.14)

For the derivation of the stream function, a mathematical formulary will again be helpful.
In the table for integrals of elementary functions, e. g. [8, p. 445], one reads as follows:

dx 1 X

First, let’s write down the integral for the stream function from Formulas 4.11.

q X
¥Y— [ ——-——=]d 4.16
21 (x2+y2> Y (4.16)
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With the aid of the solution from the table, we let a = x and dx = dy so that we can solve

for ¥: q
q y q x y q y
L x2+y? 2mx N T o (.17)

4.4 Potential vortex

Freedom of rotation and potential vortex? How, indeed, can these go together? Well, the
potential vortex is a very special vortex. A minute particle, that is in it, does not rotate.
As an example, the circuit of the gondolas of a Ferris wheel may essentially be seen as
movement in a potential vortex. Though moving in circles, the cabins always remain
oriented in the same direction. In fluid mechanics, this will only work if no shear stresses
are in effect, i. e. if the flow is frictionless. Movement, e. g. in a Rhon wheel that rotates as
a solid body (see Figure 4.2), presents itself quite differently. Thus, the solid body vortex
cannot be described by potential theory.

Figure 4.2: Solid body rotation (left) and potential vortex (right).

Let’s leave the image of the Ferris wheel and consider how the nature of the circular flow
might be such that an entrained particle does not change its orientation. We have already
defined the rotation of a particle via the velocity gradients in Chapter 2.5. For the rotation
in the x—y plane, the following applies: rotu, = 5= — 9y

For a particle to maintain its orientation on a circular path (see Figure 4.2 right), the
flow on the outer path must be slower than on the inside. In the case that % = 3—;, we
deal with a rotationless flow.

For the description of the potential vortex, we refer to the derivations of the source and
sink flow and exchange stream- and potential lines. For the radial velocity component u,,
we have distributed the discharge per unit depth ¢ along the circumference 2xr. Since
stream- and potential lines are perpendicular to each other and are to be exchanged,
this can be achieved by setting u, = 0 and u; = 5—. Here, I" identifies the vorticity that

2nr”
indicates to some extent the discharge per unit depth on the radius element r.
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As with the source and sink flow, the decomposition of the velocity components in the
x- and y-direction is performed via the sine and cosine functions, which along with the
tangential component yield the following expressions:

sin o L sin o L (r) sin ¢ r 4 L@ 7(9‘{]
U= —usinet = —— =—— (- - [ )= —
! 27 27nr \r 21 \ x2+y? ox dy
(4.18)
cos o L cos o L (r) cos o I~ 9% o¥
V=1Uu - — = — | - = — — = —
! 27y 2nr \r 21 \ x2+y? dy dx

The signs result from the mathematical definition of the angle o originating at the positive
x-axis and sweeping anti-clockwise towards the positive y-axis. In the first quadrant, for
example, where x and y are positive, the velocity component u; is directed opposite the
positive x-direction. Let’s find out whether the rotation is actually zero and calculate

rotu, = % — g—; by first differentiating the two components with respect to x or y according

to the quotient rule [8, p. 396].

W_9T & T(E+A)xd T @2

ax o ax 27[ x2+y2 o 27‘[ (xz +y2)2 o 27[ (xz +y2)2

u_9( T y \_ L@+y¥)-y2y I 2y (4.19)
r y—x

2T (x24y2)°

It follows that rotu, = % — 3—5 = 0. Thus, a potential vortex is rotationless. The centre of
the vortex, like a source or sink, is a mathematical singularity where the equations do not

apply. There, because r =0, u = v = co.

4.5 Summary of the elementary solutions

Table 4.1 summarises the derived elementary solutions of Laplace’s equation®. In the
description of groundwater flows, we will return to potential theory.

This chapter is licensed under the terms of the Creative Commons Attribution 4.0 In-
ternational License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

C The extensive derivation for the dipole, which is hardly relevant in our field, was moved into the
Appendix A.1.
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4.5. SUMMARY OF THE ELEMENTARY SOLUTIONS
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Chapter 5
Basic equations

5.1 Continuity condition

We have already mentioned the continuity condition (i. e. the law of conservation of mass)
in kinematics (see Chapter 2.5). It would be best to picture a fluid parcel with the dimen-
sions dx,dy,dz; its centre of gravity moves with velocity u while its edges may generally
have quite different velocities from each other, in which case the element undergoes de-
formation. At the same time, the density of the fluid parcel may change. First, we will
look at this matter two-dimensionally (see Figure 5.1).

u+8u 7d3: u+8udx
ox 2 ox 2
> es |
I I
I . P I
| N 7 |
dz —P: T ii\ —»:
l / \ l
|
I R I
P “ Lo - —_—— —a
/ dI 7
s SEEEEEEREE /
u
dx + dx dt
ox

Figure 5.1: Fluid element whose centre of gravity moves with velocity u.

While the centre of gravity of the two-dimensional element travels with velocity u in the
x-direction, the left border has a velocity of ujesr = u+ % (f%) and the right-hand edge

has velocity upight = u+ g—ﬁ% Thus, the velocity difference between front and rear (or

between the right and left sides) amounts to uyight — Uiers = % dx. The change in length of
the element is obtained by multiplying the velocity difference with the time df during which
this difference prevails, i. e. %dxdt. If one length of a cube changes by this value, then
the effects on its volume are determined by the multiplication with the surface element

© The Author(s) 2024
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dydz. This becomes somewhat more complex in three-dimensional space. We describe the
change of mass of the volume with respect to time as follows:

dm d(p-V) _dp v _dp du (dx\ (du [ dx
v a VatPa T Va e\ ) el )) ) v

(5(3)- (G 3)) e (5(3) (5 (3))) o]

(5.1)
=P edydetp | (2 ar) dydes (2 dy) drdzs (22 dz ) dedy
ot ox dy dz
_adp du dv Jdw B
—dedyd””[aw—y*a—z] drdydz=0

If the volume actually grows (because of the net growths in the three spatial direc-
tions), the density would have to decrease correspondingly during the same time interval
%’t)dxdydz in order to satisfy the constancy of mass. With an incompressible medium,
which generally applies to water, the derivative of the density %’t) disappears (the first
term). Therefore, the conservation of mass with such media corresponds to the constancy
of volume. When dividing Equation 5.1 by the density and the volume, we obtain the
divergence described in Chapter 2.5, which becomes zero for an incompressible medium.

.., Odu; du Jdv Jdw
divi = — = — + =

dx; dx 8_y+8_z

0 (5.2)

We will demonstrate what our theoretical considerations mean in practice by means of
the flow through a contraction, as shown in Figure 5.2. For this purpose, we integrate
the divergence of the velocity field over the volume of the contraction [div# dV; for an
incompressible medium, this integral must have a value of zero.

According to [8, p. 685], the Gaussian integral theorem (Equation 5.3) to which we refer
again for the derivation of the law of momentum in Chapter 5.8 provides the “connection
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u, X u,

|
l
-
l—

\

Figure 5.2: Flow in a contraction.

between a volume integral over a volume V which is interspersed by a field %, and a
surface integral over the area A encompassing this volume. The orientation of the surface
is such that the outside is the positive side®. Let % be a continuous vector field with its
first partial derivatives existing and continuous.”

/div?[dvz/ﬁ’oﬁ’dA (5.3)

In our example, there are only two surfaces, left and right, through which a medium flows;
on the left, fluid flows opposite the normal vector, and on the right, it flows in the same
direction as the normal vector, which is the reason for the opposite signs on the right side
of Equation 5.4. Here — but only here — we refer to u as the averaged velocity over the
cross-section. Mathematically, # corresponds to % JudA.

/divﬁ’dV:/ﬁ’oﬁ’dA:/ﬁ,’oﬁ’dAH—/LTZoT{dAr:LT,(—I)A;JrLTr(H)A, (5.4)

With div i = 0 (see Equation 5.2), Equation 5.5 ultimately shows that the mean velocity,
multiplied by the cross-section, i. e. the discharge, remains constant.

uA; = u,A,; therefore Q = uA = const. (5.5)

5.2 Cauchy equation

The Cauchy equation is based on Newton’s second axiom, which states that the momen-
tum of a mass may be changed only if a force is acting on this mass (see Equation 5.6).
Since in the incompressible flows with which we deal (with the exception of Chapter 12)
the mass in a volume cannot change because of the constancy of density, the description
of force is expressed in terms of a change in velocity with respect to time.

F = =—g Mg =md (5.6)

a7 dmv)  d¥ .
dr

A commonly known formula says that a force is determined by mass multiplied by accel-
eration.

A At another place of the same source, it reads [8, p. 500] that the normal vector points outward
with outside defined as positive.
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Consider an accelerated differential cube element with the edge length dx-dy-dz and the
density p. In order to accelerate the mass p -dx-dy-dz, a force must act on it according
to Newton’s second axiom. In the Euler context (see Chapter 2.3.2), the acceleration of
the mass is described via the total derivative (see Chapter 2.4.1.2). With Einstein’s sum
convention (see Chapter 2.6), the following expression results:

au[ 8u,~

a; =

For the acceleration in the three spatial directions i, three equations are obtained, each
containing the local derivative % and the sum over the convective derivatives. Let’s write
the equations again in their full lengths to become familiar with the sum convention. The
velocity components in the x-, y- and z-directions are identified by the variable names u,
v and w, respectively.

u du u du

ay = E—'_ME +Vaiy+wafz
v v v ov

ay— ait‘f‘uaix +v87y +W87Z (58)
ow ow ow ow

a;= - tus-+tva-—+two-

From the previous considerations, we can conclude that there are three relevant forces
in fluid mechanics: volume, planar and linear forces. Fortunately, we don’t have to worry
about any other forces such as magnetism. We have already mentioned surface tension as
a linear force. As the surface tension is, in general, negligibly small and plays a role only
in small capillaries, we will concentrate on the volume and planar forces in this book.
Let’s go back to our balloon fluid volume. Figures 5.3, 5.5 and 5.6 on the following pages
are included to assist in understanding the concept.

Figure 5.3: Fluid volume under the influence of gravity.
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The force of gravity is considered a volume force that acts on the cube: Fg =p-dx-dy-dz- g.
Therein, g is a vector which, according to the convention stated in Chapter 2.1, has a
component in the negative z-direction as a sole element:

0
7= o (5.9)
—9.81

Due to g, the element is accelerated opposite to the positive z-direction (see Figure 5.3).
Let’s derive the planar forces by means of Figure 5.4. To be prepared for Einstein’s sum
convention, the spatial directions x, y and z are identified by indices 1, 2 and 3. Therein,
the first index represents the surface normal, and the second index the direction of action
of the stress Thormal,direction of stress- Lhis is done in accordance with relevant works (e. g.
[60)).

The stresses act on the opposite surfaces in the opposite direction according to the free
body principle. We will see immediately that the individual stresses cancel each other and
that only their variations are effective.

But slow down: the following planar forces are acting in the x-direction (that is x;):

aTxxdx afxx dx
F. = 1 dydz+ " Zdydz—{’cxxdydz—k e <—2) dydz}
97, d ot [ d
+ Ty drdz + ;xzydxdz—[ryxdxdw ;”“ (—2y> dxdz]
Yy y
(5.10)
o1, d J d
+ o dedy+ 22 L drdy — | oy dedy+ 2 (L) dedy
dz 2 0z 2
J 97,0 P
— 25 Grdydz+ Z2% dydxdz + 2 dzdxdy
ox dy 9z

The stress in the x-direction acting on the surface varies along this direction and is ex-
pressed as % After traversing the distance dx, it takes on the value %dx This stress,
which has changed compared to that of the opposite surface, acts on the surface area
with size dy-dz. The resulting force is obtained by the product of stress and surface area,
i e. % dxdydz. Since the effect of this stress points in the same direction as the surface
normal vector, it is referred to as the normal stress. Figure 5.5 shows what happens when
a normal stress acting on our element in the x-direction is greater on the left than on the
right. The element moves to the right.

But at the other surfaces, shear stresses also point in the x-direction, and we must include
these in our force balance. The surfaces oriented in the y-direction exhibit a stress dif-
ference, expressed as a;;’,x dy, in the x-direction. This stress difference acts on the surface
with an extension in the x- and z-directions. The proportion of the force component in

the x-direction at the free body planes whose normal vectors point in the y-direction is

therefore a;; dydxdz. The same consideration applies to the two remaining surfaces of the

cube whose normal vectors extend parallel to the z-axis: aafg‘ dzdxdy. In Figure 5.6, the
fluid element is moved to the right by the shear stress 1.
Using the index notation with the differential volume dV = dxdydz = dx; dx; dxs, the fol-
lowing results are given for the x-component of the force:
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Figure 5.4: Stresses at the differential element, rear part of the cube on the top, front part on the
bottom.
ot on 0T
F, = ax“dxldxzdx3+a—dx2dx1dx3+a—dx3dxldx2 (5.11)
1

The force components for the three spatial directions may be written with Einstein’s sum

convention as follows: 5
T ji

dv 5.12

e (5.12)

Thus, Equation 5.12 applies to the directions i, wherein the partial derivatives must be

summed up over j (see Equation 5.11).

The principle of conservation of angular momentum allows the exchange of the indices
because T;; = 7j;. For more details, see [16, p. 192] or the Appendix in Chapter A.2.
Back to the consideration of forces acting on the differential element, we write at first the

sum over the forces acting in the x-direction only:

E:
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Figure 5.5: Fluid volume under normal stress.

Figure 5.6: Fluid volume under the influence of shear stress.

deEZdV dx + dy dz

du <8rxx I Tyy N 8%) (5.13)

The mass pdV is accelerated by % in the x-direction if the respective stresses act in this

direction. When writing Equation 5.13 with Einstein’s sum convention for the three spatial
directions, one must not forget the force of gravity (Fg = pdV g;) acting in the (negative)
z-direction. Moreover, we divide by dV and insert the density into the derivative, so that
Equation 5.14, which is also known as Cauchy equation, is also formally applicable to

compressible medias:
d(pui) 9 (pui) 9T
i =pgi+— 5.14
g Moy, P8It (5.14)
Of course, Equation 5.14 satisfies Newton’s third axiom. The mass on the left side is
accelerated (reactio) when the forces on the right side act on this mass (actio).

5.3 Constitutive equation

The Cauchy equation (see Equation 5.14) describes the acceleration of an element due to
generally applied surface and volume forces, irrespective of the type of mass in question.
The constitutive equation (the Latin word constitutive means determining) describes
the material properties. Specifically, it concerns the formulation of how an element is
deformed in relation to an applied stress. In Chapter 3.1, we have basically considered
the behaviour of solid bodies and fluids; the deformation of a fluid element was already
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described in Chapter 2.5. The viscosity was discussed as a substance property of a fluid
in Chapter 3.4.11. We will now combine our thoughts.
First, we divide the tensor 7;; into a pressure component and the rest. This sleight of
hand will later allow us to establish simple equations in hydrostatics. The pressure is a
scalar quantity acting in the same manner in all spatial directions (1, 2 and 3, or x, y
and z, respectively). To add the scalar pressure to the stress tensor, we use the so-called
Kronecker delta 6;;:

100

6j=1010 (5.15)
001

The pressure in the stresses corresponds to —pd;;; we call the rest, which contains contri-
butions of the viscosity, o;; [60].

T[j:—pSij—l-G,'j (5.16)

The pressure always acts in a direction opposite to the normal vector of the surface, which
leads to a prefixed negative sign. It is obvious that an element is not deformed upon
translation or rotation (see Chapter 2.5 again). The deformation, or the deformation rate
of the element merely reflects the symmetrical proportion of the velocity gradient tensor
Sij-

Let’s go back to Equation 3.17 in Chapter 3.4.11. There, we found for Newtonian fluids
that the dynamic viscosity as a proportionality factor links stress and the linear velocity
gradient. Equation 3.17, with the spatial directions in index notation, generally reads as:

Oij = KijmnSmn (517)

Therein, K;ju, is a fourth level tensor that linearly links each stress component of o;; with
one of the possible velocity gradients, or rather, with the symmetric proportion s,,, [18,
p. 63]B.
Next, we will focus on the description of k¥ and try to trim this giant monster a little.
Due to isotropy (stress in the Newtonian fluid has no preferred direction — see above), the
stress/expansion ratio is independent of the rotation of the coordinate system. All isotropic
tensors of even order consist of products with the Kronecker delta 8. Therefore, a fourth-
level tensor may be written via a sum of scalars A,n,¥, multiplied by the Kronecker delta
[50, p. 507]:

Kijmn = )LSijSmn + n5im5jn + Yéizzéjm (518)
Since 0;; is symmetrical (see Chapter A.2), it follows that kjjm, must also be symmet-

rical in i and j, which is only the case if y=nC. Transferred into Equation 5.17, these
considerations result in:

B Actually, Formula 5.17 comprises nothing other than Equation 3.15, which describes the ratio
of stress and strain (or pressure and compressibility) via the modulus of elasticity. However, here
we have an individual proportionality factor x, i. e. a construct of 9 x 9 = 81 elements for any
combination of o;; and s;;. We are already anticipating that this k¥ has something to do with
viscosity (see Chapter 3.4.11).

€ Check it! For any (i, j), the entries at m =i and n = j are 1, which follows from the multiplications
of the Kronecker deltas for 8;,0;,. If, however, §;,0;, is calculated, then the entry 1 will be found
at m=j and n =1, i. e. mirrored relative to the first term on the principal diagonal. The remaining
matrix elements are filled with zeros. Since the mutually symmetrical elements are multiplied by n
and 7, n and Yy must be equal so that the matrix in turn becomes symmetrical.
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Oij = KijmnSmn = Af&j(smnsmn + n5im5jnsmn + ’Yain(sjmsmn (5 19)

:l5ijsmm+ns,-j+}/s,~j:kﬁijsmm+2ns,~j .
Therein, s,,, represents the divergence of the velocity field® s, = s11 + 522 + 533 = div 7.
By inserting Equation 5.19 into 5.16, the following expression is obtained:

—p0ij +2n5ij + A8 Smm (5.20)

For an incompressible fluid, such as water with its high modulus of elasticity (Ewater =
2.1 x 10°N/m?), the last term is omitted because s, = div & = 0. Therefore, the randomly
selected factors A and y become irrelevant. It is obvious that 1) corresponds to the dynamic
viscosity, which also becomes apparent from the unit ([Ns/m?] x [m/(sm)] = [N/m?]).
Accordingly, this yields the constitutive equation for an incompressible fluid:

Tij = —pdij +21si; (5.21)

5.4 Euler equation

In Euler’s lifetime, the viscous term in the constitutive equation (5.21) was still unknown.
For this reason, the Euler equation describes only frictionless flows. The derivation starts
with the Cauchy equation (see Chapter 5.2).

c?u,- ¢9u,- 1 81,J
—_— i 5.22
g Mg pox ¥ (5:22)
When inserting the constitutive equation (see Chapter 5.3), a description for the stresses
7T is obtained. The constitutive equation for an incompressible and frictionless flow (where
n =0) reads:

Tij = _p5ij +2T]S,'J' = _P5ij (523)

In the Euler equation (5.24), only normal stresses, i. e. the pressure, are considered. We
obtain it by inserting Equation 5.23 into Equation 5.14:

du; .aui_ 19 (=p&ij) ~ lap
e e E" (5.2

5.5 Navier-Stokes equation

The mathematically correct description of friction is attributed to Henri Navier® and
Gabriel Stokes!, who worked independently of each other. These so-called Navier-Stokes
equations (5.29 and 5.30) fully describe flows by means of momentum and mass conser-
vation.

D See Einstein’s sum convention in Chapter 2.6: the sum over the indices appears twice.
E Henri Navier, #1785, Dijon, France, 11836, Paris, France
F Gabriel Stokes, %1819, Skreen, Ireland, 11903, Cambridge, England
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In this case, too, the derivation starts with the general equation of motion, which is named
after Cauchy:

c?u,- au,- 1 8151'

— 4 Uj=— = —

ot ax]‘ p ax]'
However, the constitutive equation (5.21), including the viscous term 7;; = —p&;; + 215,

is inserted here for the stresses. As in the derivation of the Euler equation, the Kronecker
delta &;; reduces the dimension of the pressure derivative.

+8i (5.25)

du; du; 19 (—pb;;+2ns;; 1dpd; 1 0
u ”_7(pj+nsj)+.__7pj+

W‘i‘ujaixj—p x; 8= p ox; EaTCj(anij)—ng 6
i 10 o2
- paxl_ paxj 7751/ gl

In the derivation of the kinematic relations, the velocity gradient tensor grad @ was divided

into a symmetric (s;; = % (% + %)) and an antisymmetric (e;;) part (see also Chapter
j i

2.5.4). Let’s have a closer look at it:
a du 9 dv d dw
— | vy du dv v v dw
By= | GG Rt R E D (5.27)
9w | Jdu dw | dv dw | Iw
dx dz dy dz dz dz
If only small temperature differences are allowed, the location-specific viscosity n may
be separated from the derivative and written before it. With the kinematic viscosity
V= %; [mz/ s], the viscous term, as it is known, reads:

1 0 n ) 8ul~ 82ul-
—=—(2nsij) =55 =V=>5 (5.28)
p ox; 77 p dxj dx; ax?

Thus, the Navier-Stokes equation for viscous, incompressible (see Chapter 3.4.10) flows
is:

du  Ow _ 19p . %
o "Yax; T Tpam BT oR

(5.29)

This equation is also referred to as the momentum equation. It is an aspect of forces
with the unit m/s?>. The unit for force N is obtained by integrating the equation over
the volume in question and the prevailing density. Together with the continuity condition
(Equation 5.309), which was already derived as divergence via the kinematic relations in
Chapter 2.5.5, the Navier-Stokes equations fully describe flows of incompressible fluids.

du;
5 =0 (5.30)

In its written form, the continuity equation (5.30) has the unit 1/s. In this case, too, one
would have to integrate over the volume and the density in order to obtain the rate of
mass change in kg/s.

G In the continuity condition, summation is also carried out over the duplicate index so that the
equation reads as follows: % + % + %—1” =0.
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5.6 Dimensionsless Navier-Stokes equation

Flows behave similarly if they are geometrically and dynamically similar [10]. The geo-
metric comparability is achieved by scaling the lengths, e. g. as for the scale of a road map.
The dynamic similarity is given with the identical dimensionless Navier—Stokes equation
(5.29). For writing the equation in a dimensionless form, the following reference quantities
lyefs Uret and p are defined:

X; u; u
X = Thiuf = s = L (5.31)
ref Uref ref Puref
Thus, we may write:
duj i du} _ _ap” | et v d%u}
o/ 8xj. ox} ”%ef UyofXref 8x’;2 (5.32)
duj 0 .
oxf

The dimensionless form of the Navier-Stokes equations is obtained with the Froude num-
bert Fr = \/% as the ratio of the inertia forces to the mass forces, and with the Reynolds

're:

number! Re = “refirel a5 the ratio of the inertia forces to the viscous forces.

duf  ,du! ap* 1 1 d%u;
3 T3 = 3¢ T2 T Re 302
or* ox; dxj  Fr*  Redx]

(5.33)

[ S

oxr 0
The dynamic similarity is given only if the Froude number’ and the Reynolds number
are equal. This is generally not possible in scaled experiments. Therefore, compromises
must be found and the law of similarity must be met as far as possible. In pipe flows, it is
mostly the viscous forces that are significant; channel flows are generally highly turbulent,
and the mass forces are dominant.

5.7 Bernoulli equation

The Bernoulli¥ equation is derived from the Euler equation (see Chapter 5.4). The Euler
equation reads:

Ju; u; 1dp

—tuj—=——=—+gi 5.34

g Yax, pox & (5:34)
As already mentioned above, the Euler equation has no viscosity term, which is why the
Bernoulli equation also describes only frictionless flows. For gravity, the sole force acting

H William Froude, %1810, Dartington, England, 11879, Simonstown, South Africa
T Osbourne Reynolds, %1842, Belfast, Northern Ireland, 11912, Watchet, England
J Fr is defined only for flows with free surfaces.

K Daniel Bernoulli, #1700, Groningen, the Netherlands, 11782, Basel, Switzerland
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on the volume, only that component of the motion that is in the z-direction is relevant. In
our case of the upward-pointing z-coordinate, gravity acts against it; therefore, the term
has a negative sign.

B 8gz dz

R P with g ~ 9.807m/s> (5.35)

You certainly recognize Equation 5.35 as the downhill-slope force. T indicates the slope
in the three spatial directions. The following is the Euler equation in a different notation:

T (5.36)

We will now turn to the glorious idea that relates only to the convective acceleration u j%

First, we subtract the term u JT therefrom and add it again directly. The operation reads

as follows: 5 3 5 3
u; u; uj uj
i— =uj| — — = i— 5.37

" 8xj " <8xj ax,- ) +u] 8xi ( )
The first term on the right of the equals sign is already known from the kinematic relations
(see Chapter 2.5). a"j’ — 3—2 describes the rotation, though with negative sign. The prefixed

u; of the second term on the right side may be drawn into the derivative because they
1 3ujuj L

have the same indices, which leads to ; —52*". The extended Euler equation is as follows:
du; 9 (1, 1dp  dgz du; Bu]
W*a?(z” )+p8x,+ ox, i\ ox, o (5:38)

The derivative with respect to the coordinate x; is obviously present in three of the terms,
so these terms are bracketed. Additionally, the local acceleration % is omitted for a

d [1 du; Jdu;j
o { uj i+ i P —l—gz] uj (axj 8x,) (5.39)

L The explanation for % is quite simple, because when u; is drawn into the derivative, the multi-

steady flow™

plication by the already existing du; yields a 8u§; hence, the factor 2, which previously had not
existed, originates from the differentiation.

M However, we will insert it again later in the same form.
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The term on the right side, u; (% — (;—Z) vanishes if we describe the flow along a stream-

line 5 (see Chapter 2.8) and integrate the equation along itN. The bracketed expression
on the right side can be written as rot# so that the whole term reads @ x rotu. Regarding
a streamline (by definition, @ || d7s), the vector of the cross product is perpendicular to

ds’; hence, the right side of the equation becomes zero©.

1
/(9 [ 24 = +gz} ds-2u2—|—§+gz—|—00nst.:0 (5.40)

The equation has the unit m?/s?; only by multiplication of the fluid mass in the area
of interest (by multiplication of the density integrated over the volume), the generally
known unit of energy Joule [J = kgmz/ sz] is obtained. With division by the gravitational
constant, the equation is converted to the unit metre; the integration constant on the
other side of the equals sign is referred to as energy head H. In the flow, the three types
of energy (velocity, pressure and geodetic height) may vary randomly; it is merely their
sum which remains constant. Energy is conserved.

u2 p

—+—+z (5.41)

“ 2% ps
In particular with the unit metre, the Bernoulli equation (5.41) is very clear. The effects
of the individual terms may be demonstrated by simple experiments (see Chapter 8).

5.8 Momentum equation

As mentioned above, the Cauchy equation (see Chapter 5.2) is based on Newton’s treat-
ment of forces and is generally applicable. With the law of momentum, the Cauchy equa-
tion is applied to a fluid volume fixed in space (see Figure 5.7). Since the derivatives of
the density for an incompressible fluid disappear, we may write:

aui 8ui N 8r,j
P +p”faT,- =pgi+ 3, (5.42)

The Cauchy equation (5.14) is first formally integrated over the spatial volume:

8u,- au,- o aTij
/p >, dV+/pujaxjdV—/pg,dV+/ 7, av (5.43)

N This holds of course for potential flows (see Chapter 4) too, as rot@ = 0.

O Let’s place a local coordinate system on the streamline 3 such that the x-direction coincides
with the s-direction. Hence, with the cross product (see Equation 2.6) and the rotation V x @ in
Equation 2.14, it follows that for the components u, v and w in the three spatial directions x, y and
z, respectively:

v du du aw
N (- (5 - 50) (3 - % 0\ o
(@ xroti@)odT=|v | x| &—2|od7= W(a—w—@>—u<@ ) [ogg=|ud|olo0]=0
52 gx dy dz Jdx  dy gi
w o — o (@,@),v(m,@ gt 0
dz dx y Jz
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’41_

Next we will deal with steady flows for which %' =0 and look at Figure 5.7, that shows
a sketch of a vertical cross-section of a free body fluid volume.
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Figure 5.7: Vertical cross-section of a free body fluid volume.

Fluid enters on the left side with velocity u; in the x-direction and exits on the right side
with velocity u,. It is evident that the fluid does not voluntarily undergo deformation of
the kind shown in Figure 5.7. To this effect, an external force, which will be referred to
as reaction force Fg, must be applied. Remember how we set up the Cauchy equation. We
stated that a fluid mass is accelerated (left side of the equation) when volume and surface
forces (on the right side) act on it, which corresponds to the principle in mechanics “actio
= reactio” (or, as we have written, “reactio = actio”). If we want to include external forces
and account for the “internal forces” of the flow, it is worthwhile to rearrange the equation
correspondingly. In Figure 5.7, Fy enters opposite the x-direction; the reaction of the fluid
as force in the x-direction is on the right of the equals sign.

0 i a ij
_/pujaj:jdv+/pg,-dv+/ azjf av (5.44)

We Wlll now analyse Equation 5.44 term by term; let’s begin with the convective derivative
Ik pu dVP Formally, we find it difficult at first to integrate the convective part of the

veloc1ty derivative with the Gaussian theorem (see also Chapter 5.1) over our volume

fixed in Space because unfortunately, the term reads % = a” —l— Jy “ 4 g“ and not divy =

duj 814
ox; + dy + az

We w111 leave the Cartesian coordinate system and formulate Equation 5.44 for a stream-
tube along the coordinate s which coincides with the streamline § (see Chapter 2.8).
Therein, o is normal, and ¢ is binormal to s; 0 and ¢ each span the three-dimensional
space perpendicular to s, and the velocity components uy, u, and u, are defined. The
convective acceleration integrated over the control volume reads as follows:

u; Jug Jug Jug
u-—dV:/ Us— +utg—+u;—— | dV 5.45
/p T ox; p ' ds “do 1 dq (5:45)
P The convective acceleration gﬁ; ‘3{; = ugl; was already discussed in Chapter 2.4.1.2. The velocity

field varies in the x-direction (g") and a fellow traveller notices this acceleration earlier if he moves

faster (with velocity u) in exactly this direction (x).
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From now on, we assume a uniform velocity profile in the cross-section. Then % = %—’fj =0

and Equation 5.45 reads:

/ Ju;
U

p J ij
This corresponds almost exactly with the formulation of the continuity condition in a

streamtube (Equation 5.4); therefore, we may write down the partial derivative in the
convective acceleration with the Gaussian integral theorem as follows:

Ju s

88»? 8;0 8uq v — /a“S+o+odvz/ﬁoﬁ’dA (5.47)

The scalar product of the normal and velocity vectors ensures that only the component
of the velocity vector that is perpendicular to the sectional surface, entering or exiting,
is considered for the discharge Q = [ o 7 dA. Finally, the convective acceleration is ob-
tained:

auz unlform aus a q
/MJ axj dV MSW_F a + q a dV / O (548)

The signs of the terms are hard to understand, and that is why we will take a meticulous
look at them. On the left side, where the fluid flows in, the normal vector 7 points
opposite the flow direction (which is in the positive x-direction) and is therefore negative.
For the term on the left side of the control volume, which is referred to as entering net
rate of momentum, or entering momentum flux®, we obtain (back at Equation 5.46):

/pulo ulon dAl /pulo 1 )dAl (549)

For the same quantity on the right side, also known as leaving momentum flux, the
following results:

[Pz @oiyan, = [ piro (@ (+1)d, (5.50)

Let’s go on with the other terms. By integration of the density pg; over the volume, the
weight as volume force is obtained.

/PgidV =pgiV (5.51)

The volume integral over the derivative of the stresses with respect to position again
becomes a surface integral via the Gaussian theorem:

a rem —
/ Tij dv Gauss- theo e /Tij o7 dA (552)
dx;

Due to the multiplication by the normal vector, the only thing that matters here is the
proportion of the stress tensor that acts perpendicularly to this surface, i. e. the pressure
[—p7 dA as negative stress 7;. Analogous to the momentum fluxes entering (left) and

Q The quantity is a momentum per unit time, which is, according to Newton’s second axiom (see
Chapter 3.3), changed by the forces applied.
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leaving (right) the control volume, we define the pressure as negative stress (see Chapter
5.3) at the free body surfaces. For the left side where the fluid enters, the expression reads
as follows:

/_PlﬁdAl:/_Pl(—l)dAl:/PldAl (5.53)

The normal vector points to the left, opposite to the positive x-axis, and is therefore
negative. The right side may be written as follows:

[-pitas = [—po+1)aa =~ [ poas, (5.54)
The findings are now combined in Equation 5.44:
FR:—/'pﬁo(a’oﬁ*)dA+pgiv+/—pﬁ’dA (5.55)
And further:

re=—( [piic o man+ [ pire o, ) +pav

+ (/ —pﬁz’dAH—/—prTz’dAr) (5.56)
=_ <—/pb7;o(b7z>)dAz+/Pb7;°(b7;)dAr> +PgiV‘“/PldAl_/lD’dA’

Equation 5.56 may now be simplified for uniform conditions at the sectional surfaces.
With a constant velocity distribution over the cross-section, we obtain:

[ o @omt)da = [ piio (@ (~1))dAs = —pQu (5.57)
[Pz @oiyan, = [ piro (@ (+1)dA, = pQu, (5.58)
The following results are obtained for a uniform pressure distribution:
/—Pzﬁ’dAz Z/—Pz(—l)dAz Z/Pszz = piA (5.59)
/—prﬁ’dAr = /—pr(+1)dAr = [ —prdA, = —piA, (5.60)
Equation 5.56 may thus be simplified as follows:

Fr = — (—pQu; + pQuy) + pgiV + / prdA; — / prda,
=+pQu; + piA; — pQu, — prAr +pgiV

(5.61)

From Equation 5.61, it can be seen that both the pressure force and the momentum flux
on both sides point in towards the control volume, irrespective of how the cross-sectional
boundaries of the free body are oriented. This is plausible for the pressure force on the
right side. For the momentum fluxes, it is conceivable that the fluid on the other side of
the right sectional surface of the free body must push off from the control volume and
therefore the force also points in towards the volume. Here, the formula is again “actio =
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reactio” (see Chapter 3.3). In our case (see Figure 5.7), the reaction force was applied in
the negative x-direction, which is why it has the same sign as the forces on the right side,
which also point to the left.

Over the lateral surface, no flow takes place; however, the pressure force must be relieved
over this surface. This is calculated in a pipe by means of what is known as Barlow’s
formula (12.17).

Generally speaking, because of the law of momentum, the conditions shown in Figure 5.8
result:

A(V
8 <
A g & o
2 /<

pow

J

Figure 5.8: Free body fluid volume with spatial curvature.

5.9 Summary of the basic equations

Figure 5.9 summarises the derivations of the basic equations with the specified conditions.
Applications and experiments will be explained in Part II.

This chapter is licensed under the terms of the Creative Commons Attribution 4.0 In-
ternational License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as
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you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
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Figure 5.9: Basis equations according to [40].
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Chapter 6
Turbulence and its modelling

6.1 Introduction to turbulence

AFlows are generally divided into laminar and turbulent flows, with the latter exhibit-
ing a chaotic character. Turbulent flows are irreqular, swirled, random, unsteady and
unpredictable and are therefore primarily time-dependent. The Brockhaus der Naturwis-
senschaften und der Technik [7] states under the term Stromungslehre (fluid mechanics):
“At laminar flows (... ), the layers of different velocities pass each other without the gener-
ation of eddies. With an increase in flow velocity in a pipe, the initially laminar movement
suddenly changes to a statistically disordered, turbulent flow. The cause is that the flow
near the wall becomes unstable.”

Since this phenomenon is so hard to grasp, Kundu and Cohen [25] refer to a quotation
by Lesieur (1987):

“Turbulence is a dangerous topic which is at the origin of serious fights in scientific meetings
since it represents extremely different points of view, all of which have in common their
complexity as well as an inability to solve the problem. It is even difficult to agree on what
exactly the problem to be solved is.”

Pope [34], however, recommends that turbulent flows be observed by means of, for ex-
ample, replica of Osborne Reynolds’ legendary dye experiment. Figure 6.1 shows the
streakline (see Chapter 2.8), i. e. the connection of all fluid elements which have passed
the point where the tracer was injected. With the laminar flow, a clear line is perceptible;
during transition, this line is broken by the onset of eddies and the chaotic character of
turbulent flow leads to a blurred image of the dye.

At Re = % ~ 2300, a laminar pipe flow changes to a turbulent flow (see Chapter 5.6).
The following thought experiment (see Figure 6.2) is intended to clarify the difference
between the two fundamentally different types of flow [43]:

When offering pedestrians at 3 a.m. on a Saturday night an incentive of approximately
Ae =0.10€ for walking from Marienplatz to Stachus, one can convince probably only a few
to do so. The few who can be persuaded will purposefully start without abrupt changes in
direction. When repeating the experiment on a Saturday afternoon at 3 p.m. and offering
Ae =50€ for walking the same distance, people will fight. Everybody wants to get hold of the
money, which means that Neuhauser Strafle, which connects Marienplatz and Stachus, will
be overcrowded. There will be pushing and elbowing, and bunches of several dozens of people
will be the play ball in the chaos of the mass. Because of the crowd, the boundary becomes

A This chapter is taken almost word for word from Rapp [44].

© The Author(s) 2024
C. Rapp, Hydraulics in Civil Engineering,
https://doi.org/10.1007/978-3-031-54860-4_6
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Figure 6.1: A replica of Reynolds’ dye experiment for exemplifying the laminar (left) and the turbu-
lent flow (right). The transition between laminar and turbulent is shown in the centre.

.||4

Marienplatz A€

~
Stachus

Figure 6.2: Thought experiment Marienplatz - Stachus (Munich’s main pedestrian zone) [43].

increasingly important since people will also be pushed to the boundary where open store
doors and market stalls do not allow frictionless passing. Many more people will probably
arrive at Stachus, but they will be much more exhausted than the night owls. Their energy
will not be dissipated by the large structures, even when they move together with dozens of
neighbours, e. g. perpendicularly to the main flow direction. Their energy will be dissipated
as they elbow their immediate neighbours who do not take the same direction.B

The Brockhaus der Technik [7] lists this important characteristic under the keyword tur-
bulente Bewegung (turbulent movement):

“Irregular movement of a flow, wherein flow energy is dissipated through the formation of
eddies and their collapse to new, still finer eddies. (...)”

6.2 Cursory approach to numerics

For the calculation of flows, the Navier—Stokes equations (5.29 and 5.30) must be dis-
cretised in terms of time and space; likewise, boundary conditions must be set at the
boundaries of the domain. This means that the partial differential continuous equations
are transformed to an algebraic form [54]. Thus, the equations must be formulated at dis-
tinct points (method of finite differences) or control volumes (method of finite volumes)
in the flow area in order to be able to obtain the space and time derivatives. These points

B This metaphoric paraphrasing is inadequate solely because turbulence is a three-dimensional
(and not a two-dimensional) phenomenon.
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or volumes may be arranged in space in various ways. Figure 6.3 is an illustration of an
example of a two-dimensional numerical grid that may be used for the simulation of flows.

Figure 6.3: Example of a two-dimensional cartesian calculation grid for numeric simulations accord-
ing to [6].

In the discrete formulation, the gradients in the equations require a corresponding nu-
meric approximation; in this case, too, there are various common methods available. For
instance, in the method of central differences (of second order), the pressure gradient in
the z-direction at point i can be approximated by the two points i — 1 and i+ 1, which are
spaced apart by Az:

@ ., Pi+1 — Pi-1

dz 2-Az
The result is that a turbulent flow cannot be calculated exactly. But the finer the resolu-
tion, the smaller the approximation error. Moreover, there is the phenomenon, described
above, of the small eddies being mainly responsible for the friction losses in the flow. To
represent these small eddies, an adequately fine discretisation is necessary; therefore, the
Navier—Stokes equations must be solved at numerous points or volumes. Because of the
time dependency of a turbulent flow, a very high resolution of time is also required to
represent these small eddies. Another property complicates life (or the solution of the
equations). Eddies become smaller with an increasing degree of turbulence, which is char-
acterised by the Reynolds number. According to the KolmogorovC® similarity hypothesis,

the lengths of the greatest to the smallest eddies scale with Ref [34]. This means that

(6.1)

3\3 9
the spatial discretisation must increase by (Reﬁ) = Rex.

6.3 Direct Numerical Simulation

When a flow is discretised in terms of time and space in such a manner that all length and
time scales are completely resolved, this is referred to as a direct numerical simulation
(DNS). The Navier-Stokes equations (5.29 and 5.30) describe the flow comprehensively,
so in this case no turbulence model is required. With correctly set boundary conditions,
the results correspond to the physically correct solution. However, the numeric cost due

to the spatial discretisation increases by Ref. Apart from the spatial resolution, the time
step must be reduced at higher Reynolds numbers, so that according to Frohlich [14] the
CPU (central processor unit) time increases proportionally to Re?. Because of this, the
DNSs, which must be simulated on supercomputers, are limited to academic cases with
relatively low Reynolds numbers.

€ Andrei Nikolajewitsch Kolmogorow, 1903, Tambow, Russia, 11987, Moscow, Russia
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6.4 Reynolds Averaged Navier—Stokes Simulation

Although the quantities described in the Navier—Stokes equation (5.29 and 5.30) are at
an instant of time of random character, they converge to an average value of statistically
steady-state flows with associated variance. Therefore, Osbourne Reynolds suggested that
instantaneous values be split into their average and fluctuation values (u;(x,7) = (u;(x)) +
u;(x,1)). The Reynolds equation reads:

) Oy 1p) Py O
o Wy T ey TE Y a2 T oy (6.2)

Compared to the Navier-Stokes equation, the Reynolds equation (6.2) has another six
unknowns in the form of the so-called Reynolds stress tensor p(uiuQ} or rather its partial
3(u:u;>
Jx;

four equations (the momentum equation holds for the three spatial directions; the fourth
equation is the continuity condition) is based on a total of ten unknowns; this is referred
to as the closure problem of turbulence. In Reynolds Averaged Navier—Stokes (RANS)
simulations, it is this tensor that is modelled. More detailed explanations may be taken
from the relevant literature, e. g. [48], [34] or [25].

In an example illustrating an approach flow in a hydropower plant, Figure 6.4 shows the
norm of the mean velocity vector resulting from a RANS simulation. This simulation
strategy yields results only for the time-averaged conditions.

derivative with respect to position for an incompressible fluid p

. The system with

Figure 6.4: Mean flow velocity in a sectional plane through a three-dimensional calculation domain
from a Reynolds Averaged Navier—Stokes simulation.

Because of the relatively low CPU costs, RANS simulations often lend themselves as the
method of choice.

6.5 Large Eddy Simulation

In large eddy simulations (LES), structures carrying high energy are resolved by selected
discretisation, while small, energy-dissipating eddies are modelled [14]. If the velocity is
divided into a proportion u that is represented by discretisation and a proportion & that
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is not resolved by the grid, the non-linearity of the convection term u ]% leads to what
J

are known as subgrid stresses Tfj. These stresses result from the fact that the momentum
transport of the eddies, which are smaller than the spatial discretisation, is not mapped
numerically. They are calculated as follows: 7j; = p (wiurj — i ;). The Navier-Stokes equa-
tions (5.29 and 5.30) are extended to the filtered Navier—Stokes equations by the gradient
of the subgrid stresses (the partial derivative of the subgrid stresses with respect to posi-
tion):

du; 1dp %u; 1 afisj

dr p 9x; sty oxt  p ox,

(6.3)

S

975,
The term ai’;’ , which is also referred to as a subfilter term, must be mapped via an
J

adequate model.

Figure 6.5 is an illustration of an example of the current velocity field of a flow through a
hydropower plant screen. Contrary to the average values in Figure 6.4, the resulting plot
exhibits sharp boundaries of the colour-marked instantaneous velocities.

CToo =g
BT
(=

Figure 6.5: Flow velocity at a distinct time in a sectional plane through a three-dimensional com-
putation domain from a large eddy simulation.

6.6 Shallow Water Equations

In depth-averaged shallow water equations, the momentum in the vertical direction is ne-
glected and, as the name suggests, averaging of the velocity over the flow depth is carried
out [3]. The momentum balance in the z-direction is integrated into the description of
the hydrostatic pressure. This is why the Navier—Stokes equations are simplified in such
a manner that they are also applicable to the solution of large computation domains.
However, the conditions for the scope of application of these equations, hydrostatic pres-
sure distribution and a w-component that is very much smaller than u and v, must be
met. Equation 6.4 comprises the shallow water equations for the three spatial directions.
The bar signifies the spatial averaging of the respective quantity; the stresses T must be
introduced empirically.

ohu  Ohuu | ohwv g oh? hazs T OhT/p N Ty /p

o tox Toy T 2ax Y T T ok Jy

ohv  ohva Jhw g oh? dzs Ty  OhTy/p  OhTy/p

i — S opS ¥ 6.4

o Tax T oy 2ay May T T T T oy (6.4)
0:_1@_g

p dz
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Mass conservation becomes:
oh  Jhu Jhv
ot T ox T oy
Especially for the calculation of the flow in natural channels, where there are no exact
geometrical and hydrological data available or measurable, this strategy yields sufficient
and useful information. Figure 6.6 shows a colour-marked flow depth map, obtained from
such a 2D computation, in a floodplain. One can easily imagine that the resolution of

0 (6.5)

Figure 6.6: Flow depth of the Dornbirner Ache in Vorarlberg, Austria, from [55].

the smallest eddy structures in a computation domain of several square kilometres is
impossible. A true-to-detail description of the boundary cannot be given, nor can the
necessary computer power for the computation be provided. However, in this case, the
precise knowledge of individual structures and flow separations is not the subject of the
investigation. Rather, the rough determination of inundation areas in case of flood events
is of interest.

6.7 Final considerations on turbulence

Turbulence is a complicated topic that, in most cases, makes the accurate computation
of flows impossible. And although the images resulting from three-dimensional simula-
tions are so beautifully coloured and convincing, they should nevertheless be critically
questioned. Fortunately, the exact solution of flow problems is not even necessary in most
cases. As an engineer, one would normally like to know whether components are able to
withstand a certain load or whether, for example, areas will be flooded or not. For such is-
sues, boundary conditions such as river topography and precipitation are associated with
high uncertainties. Therefore, the one-dimensional approaches that will be discussed in
the following part are far more than a rough estimation of the conditions. In any case,
they are often — together with the experiments — the only possibility of comprehending
these complex flows and verifiably estimating their consequences.

This chapter is licensed under the terms of the Creative Commons Attribution 4.0 In-
ternational License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as
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you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
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Chapter 7
Hydrostatics

7.1 General information on hydrostatics

Hydrostatics is a special field of hydromechanics and thus of the Navier-Stokes equations
(5.29 and 5.30). Because the fluid is stationary, all velocities and their gradients become
zero. The only acting forces originate from pressure and gravity.

When inserting 0 into the Navier-Stokes equation for the velocities and their derivatives
in a static system, Equation 7.1 is obtained.

1dp
0=——2L 7.1
> 92 +g (7.1)

7.2 Hydrostatic pressure

According to Chapter 3.4.9, the pressure, being a scalar quantity, is not directed. However,
the individual molecules bear against one another. A fluid boundary, e. g. a wall, has to
absorb the pressure. The pressure always acts perpendicularly to the wall, regardless of
its inclination. This fact can be comprehended as follows: As we agreed at the beginning
of this chapter, the fluid is stationary in hydrostatics. Take your mobile phone and put
it on a table. Now apply a normal stress with your hand (press perpendicularly to the
tabletop). Then try to apply a horizontal stress on the phone’s surface. You will succeed
only if you move your hand (and thus the phone) along the table plane. However, this is
not in accordance with the rules of hydrostatics! This means that the pressure can act
only perpendicularly to the boundary.

As explained in Chapter 3.4.9, the pressure in an incompressible fluid increases linearly
as a function of depth (see Figure 7.1). Equation 7.1 in the integral form reads:

=WS 1 9p =WS
——dz= / dz 7.2
/Z:Wth p 9z z:wsfhg (7:2)

This becomes »
i [gz]ivwvg_h + const. = g [zws — zws—x] + const. (7.3)

and solved for p:
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Figure 7.1: Pressure acting on a vertical wall (left) or on the bottom of a container (right).

p=pgh+C (7.4)

First, let’s go through the individual calculation steps. We integrate the partial derivative
of the pressure which depends on the coordinate direction z over exactly this coordinate
direction. Needless to say, as a result, just this derivative vanishes. Since the left side of
the equation is not dependent on z, the integration limits z = WS —#h and z = WS are
meaningless. However, the gravity constant g on the right side is integrated with respect
to z, which results in gz. The integration limits are set from the lower to the higher value
of z (see also e. g. [8, p. 457]). The integral is then written for the function f(x) whose
antiderivative F(x) is written as:

to
| £ = (3o = Flr = to) = F(x = from) (7.5)
from
The solution of a definite integral (an integral with integration limits) implies the addition
of an integration constant C which satisfies the boundary condition. In our case, this
constant is the pressure at the water surface, i. e. the atmospheric pressure patm, which
we will examine closer later in Chapter 7.9 in the context of relative and absolute pressure.
The constant is zero in the case of relative pressure.
In the integration of Equation 7.1, nothing is done formally other than adding the load
of the respective overlying molecules. From Equation 7.1, the relationship between fluid
depth and pressure follows, which was already described in Chapter 3.4.9. Equation 7.1,
which is based on the Navier-Stokes equation, already includes the incompressibility of
water via the constitutive equation (5.21). p is linearly dependent on z. In the coordinate
system defined in Figure 2.1, the z-axis points upwards; the gravity g is directed in the
negative z-direction. When introducing the auxiliary coordinate 4’ from the water surface
in a downward direction, the water pressure increases linearly with pgh’. When the depth
is identified by A, then the description of the pressure, which everybody has to know by
heart even while sleeping, is:

p=pgh (7.6)

The unit of the pressure can be derived from this equation:
kg/m?-m/s?-m = kg/(ms?) = N/m? (7.7)

The right side of Figure 7.1 depicts the pressure at the bottom of a container which is
a function of depth A’ and can be written as p = pgh. On the left side of the figure, the
effect of the pressure on a vertical wall is depicted. The pressure increases linearly with
depth and reaches the value p = pgh at the bottom.

Here, we should recall that the pressure is scalar, i. e. not directed. Within the fluid, i. e.
somewhere in the middle of the water column in Figure 7.1, the individual water molecules
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under pressure can bear against one another. They simply transmit the pressure. At the
boundary, they bear against the wall.

7.3 Pressure force

The pressure force on the wall in Figure 7.1 results from the integration of the pressure
over the area. At every single tiny bit of the wall, the pressure p = pgh’ prevails. Imagine
numerous single arrows that increase from 0 at the water surface to pgh at the bottom.
Each of them acts on an infinitesimally small area. Thus, the pressure force is obtained
by multiplying the pressure with the infinitesimally small areas dA:

Fpressure = /pdA (78)

For the wall: 5

h h
// pgh’' dh' db = pgb—
bJO 2
The pressure force acting on the vertical wall can thus be calculated by multiplying the
pressure on the surface’s centre of gravity with the surface area. This issue will be taken

up further below.

(7.9)

Fpressure = hCGPgA (710)

7.4 Buoyancy

Now, follow an experiment in which the forces are measured:

Buoyancy of a stone

This experiment (see Figure 7.2) is simple but nonetheless valuable. The stone is sus-
pended on a spring balance and has a weight of Fypove water = 16.5N. When the stone is
immersed under water, the spring balance indicates a force of Fynder water = 10.6N. The
difference is due to the so-called buoyancy force. It results from the pressure difference
between the upper and the lower surfaces of the stone, which, when integrated over the
area on which this pressure difference acts, becomes the buoyancy force.

Let’s look more closely at the situation (Figures 7.2 and 7.3). When diving from the water
surface by h; to the upwardly directed surface of the stone, the water exerts a pressure
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of pghy on this surface. This pressure prevails on the entire upwardly directed surface of
the stone (Agtone), which leads to a downward force F| = pghiAstone-

The pressure increases from pgh; to pgh, downwards along the side wall of the stone.
At the same time, we observe that the pressure increase is the same on all sides and the
pressure forces acting on the sides of the stone sum up to zero. The stone is neither pushed
to the left nor to the right, nor to the front nor rear. It remains in its horizontal position.
However, at the downwardly directed surface at the bottom of the stone, the pressure
force F; = pghyAstone acts upwards — perpendicular to the directed boundary.

The vertical force results as the sum of the upwardly- and downwardly directed forces:

Fbuoyancy =F—-F = PghaAstone — Pgh1Astone = P& (h2 - hl)Astone (7-11)

When hgtone = h2 — hi and Vgisplacement = Astone - Astone, the buoyancy force can be ex-
pressed as:

FbuoyancyT = pghstoneAstone = ngdisplacement (7.12)

With the stone immersed into the container (d = 0.293m), the water surface has risen
by 9mm. Since the water surrounds the stone entirely, the difference in the water levels
multiplied by the area of the water surface of the cylindrical container corresponds to
the volume of the stone. The displaced water volume is calculated as Vgisplacement =
Ahws - Ayessel = 0.009-0.2932% = 6.07 x 10~*m?. By multiplying this displaced volume by
pg, the buoyancy force Fyoyancy = 5.95N (Fabove water — Funder water) is obtained. The
calculated buoyancy corresponds to the difference between the weight forces of the stone
above and below water, which explicitly demonstrates the relationship.

Figure 7.2: Stone subject to buoyancy.

Of course, the mass of the stone remains constant throughout the experiment mgtone =
Pstone * Vstone = Pstone - Vdisplacement- BY the way, the density of the stone can also be

calculated with Fapove water fTOM Pstone = ’%
stone
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Figure 7.3: Stone subject to buoyancy — pressure distribution.

7.5 Pressure diagrams

7.5.1 Pressure diagrams with application of pressure on both
sides

There is water on both sides of the separating wall in Figure 7.4. The pressure acting on
the wall can be visualised by means of a pressure diagram, which we will explore together.
We start where the conditions are known. Atmospheric pressure prevails at the wall di-
rectly at the water surface, i. e. the water pressure is 0. When we move downwards on the
left side of the wall, the pressure increases linearly until we reach the pressure p = pgh;
at the bottom. On the right side, we also start where the pressure is known: at the water
surface. We start at zero pressure and move downwards along the wall. We reach the
bottom already after traversing the distance hy, where the pressure pghy prevails. The
gradient of the two triangles is pg, so that the resulting pressure distribution in the region
with water on the left and right side is constant.

K
K

[

1

pgh/ T\ pgh, pg(h,-h,)

NZ Zi NZ ZANAN

Figure 7.4: There is water on both sides of the separating wall. The resulting pressure diagram is
depicted on the right.

h,
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7.5.2 Fluids with different densities

The behaviour of pressure in the case of two liquids with different densities is discussed
with reference to Figure 7.5. Due to its lower density (Figure 7.5 left), oil (po; =~ 800kg/m?)
floats on water (for more details, see Chapter 7.4). Though oil has a somewhat smaller
modulus of elasticity than water ( Eoy ~ %Ewater), it can nevertheless be considered in-
compressible like water. Therefore, the pressure increases linearly with depth from the oil
surface by poiig and reaches the value p = pojigh; at the water surface. The uppermost
water molecules are already subjected to exactly this pressure, which is why the pressure
diagram of the water begins with the value p = pyj1gh1. From there, the pressure from the
water increases along the wall by pwaterg; due to the higher density of water, the rate of
change of pressure is greater than it is with oil. At the bottom, the water pressure reaches

Pwater,bottom = Pwatergha; the total pressure amounts to piotal = Poilgh1 + Pwater§ha.

=< =
h1 poil
~Z ~Z
pwater hl pnil /I \\ pwater
h, > /] h,
1
pP=paghtp.gh, \p=p,gh,|

Figure 7.5: In the left figure, oil floats on water. The right figure shows a separating wall, with oil
on the left side and water on the right side.

You can derive the pressure diagram in Figure 7.5 (right) yourself from the above. The oil
pressure increases to p = poj1gh; at the bottom; on the right side of the separating wall, the
water pressure increases to p = Pwater&h2 at the bottom. The resulting pressure diagram is
colored red in Figure 7.5. Whether the lowermost component of the resulting pressure acts
to the left or right depends on the density and height ratios. In our example, it acts to the
left as long as poiigh] < Pwater&hy applies. As soon as the water pressure upwards along
the wall becomes smaller than the oil pressure at the same level, the resulting pressure
direction changes. With tasks like this, it is recommended that you calculate and sum up
the individual forces for the calculation of the resulting force acting on the wall. Thus,
the following is obtained for the pressure force per unit width of oil in two-dimensional
space:

1
Fpressure,oil = Epoilgh% [N/m] (713)

and from the water: .
Fpressure,water = Epwatergh% [N/m] (714)
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7.5.3 Water pressure on inclined flat objects

From an example, we can learn that the pressure force on a flat object at any inclination
can be calculated by multiplying the pressure at the centre of gravity with the surface
area. For the determination of the pressure force, the pressure as a function of depth in
the liquid is integrated over the area.

4.0m

Figure 7.6: Water pressure on an oblique wall at a lake.

When diving along the wall shown in Figure 7.6 to the bottom of the lake, the pressure
increases only as a function of depth in the liquid #’. The pressure which prevails at this
depth acts perpendicularly to each of these infinitesimally small bits of the wall. At the
water surface, the pressure 0 prevails, and at the lake bottom it is pgh. In between, the
pressure increases linearly (the linear increase of pressure with depth was discussed in
Chapter 3.4.9), which leads to the pressure diagram drawn in Figure 7.6. For calculating
the pressure force on the wall, the pressure is integrated along the boundary. For this
purpose, we define the coordinate 4’ from the water surface vertically downwards and [’
from the water surface along the boundary downwards.

Forossure = / pdA = / / peh (I dbdl’ (7.15)

With db = 1m or rather as a force per unit width in two-dimensional space as well as with

L=v32+42=54—=_340 _ 2 the pressure force follows:
’ V343

L 4 417
Fpressure = /(; pggl,dl, = pg§? (716)
The direction of the force extends perpendicularly to the wall. The line of action lies in
the centre of gravity of the pressure diagram, which can be demonstrated via force x lever
arm. This is because the resulting pressure force at the point of the applied force must yield
the same moment as the integral over the differential area dA with its respective lever arm

. . . 4

I'(dA). The centre of gravity follows from the integration of the pressure (pgh’ = pgzl’)
acting at each point with its respective lever arm I’ perpendicularly on the boundary d/’
and division by the pressure force:

L o 4171 g7 4103
l''dl T 2
_ Jopss S ST (7.17)

lca = -
pesLs 3P83L? 3
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Thus, the line of action is located %L from the coordinate origin at the water surface. Here,
the coordinate direction I’ along the boundary and the direction of the force perpendicular
to the wall are to be taken into consideration. In our specific example, it follows for the
pressure force per unit width on the wall:

1 4
Fpressure = Epgng [N/m] (718)

The clockwise rotating moment about the base of the wall is:

1
3

M, %pg%Lz L [Nm/m] (7.19)

7.5.4 Decomposition

For certain tasks, it is advisable to divide forces into their components. In the case of
pressure as a scalar quantity, the horizontal component is always exactly the same as the
vertical one, i. e. pgh’. In Figure 7.7, the two components increase from 0 at the water
surface to pg-4.0 at the bottom. However, in the pressure diagrams on the left side of
Figure 7.7 it is evident that the vertical component of the pressure force increases over
a length of 3.0m, whereas the horizontal component increases over 4.0m. According to
Pythagoras, the length of the wall under water follows as L = v/3.02+4.02 = 5.0m from
the ratios. The force components in the horizontal and in the vertical direction also follow
these ratios exactly, as is obvious from the right side of Figure 7.7.

L . /( Fhorizomal

4.0m
L

p=pg4.0

Figure 7.7: Decomposition of the pressure force on an oblique wall.

The surface area (or, in three-dimensional space, the volume) of the vertical pressure
diagram multiplied by the density and gravity results in the vertical pressure force.

2D
Foertical = pgApressure diagram vertical [N/m] (720)

This statement also applies to the horizontal force.

2D
Fhorizontal = pgAprossuro diagram horizontal [N/m] (7.21)
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7.5.5 Lines of action of resulting horizontal forces

We can determine the lines of action of the resulting horizontal pressure forces by recalling
that these forces, just as the pressure pgh’, act on the individual, infinitesimally small
surface elements dA = dbdh’ with their respective lever arms &' (see Figure 7.8). The
following is the result:

Jopsh'i'dn’ _ pgls 02

-V — 7h - h T ur iagram 722
pghg %pghz 3 CG pressure diagra ( )

hline of action horizontal =

K

2/3h

FII

»
>

1/3h

.
»

Figure 7.8: Line of action, or point of application of force, of the resulting horizontal pressure force.

7.5.6 Lines of action of resulting vertical forces

For the vertical pressure diagrams also, the resulting force together with the lever arm
of the point of application of force must result in the same moment as the individual,
infinitesimally small pressure forces pdA with their respective lever arms, which are ex-
pressed by the horizontal auxiliary coordinate x. With the resulting vertical force per unit

buoyancy

avs

F=pgbA

[

CG(A

buoyancy )

Figure 7.9: Line of action, or point of application of force, respectively, of the resulting vertical
pressure force.

width Fy = pgApuoyancy in [N/m], we can write:
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pgAbuoyancy ' llever = /pghl(x)de (723)
By rearranging Equation 7.23:
_ [peh (xdr [ (¥)vdx

llever =

= 7.24
pgAbuoyancy Abuoyancy ( )

The expression (7.24) can be found slightly modified in [8, p. 493] titled ‘Coordinates
of the centre of gravity in a homogenous plane figure’. The point of application of the
resulting vertical force Fy is also the centre of gravity of the buoyancy area.

Let’s focus again on the context with reference to Figure 7.10. Four slim girls are enjoying
themselves (to represent the relatively low pressure on the left of Figure 7.9) on the left
side of a seesaw and two well-fed boys sit on the right side (representing the high pressures
there). If the resulting vertical force from the seesawing kids (including the dead load of
the seesaw) passes exactly through the support, or if the support is located exactly at the
centre of gravity of the seesawing persons, then the equilibrium of moments exists. Thus,
the centre of gravity (or the vertical centroidal axis), together with the resulting vertical
force, represents the pressure distribution at the boundary surface.

Figure 7.10: Seesaw as an example depicting the resulting vertical pressure force and its line of
application. Design: Julia Riiping.
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Water pressure on an articulated plate

The test rig illustrated in Figure 7.11 serves to demonstrate the water pressure on a flat
plate. On the right side of the separating wall, water is poured in until the equilibrium of
moments at a water surface of 7 =0.085m about the joint of the plate is reached and the
flap tilts to the left. The forces and their lever arms are marked directly at the test rig.

Figure 7.11: Water pressure on an articulated plate.

The plate has a thickness of w =0.01m, a length of / =0.2m and a width of » = 0.388m.
The density of PVC is ppyc = 1450kg/m?, so that the resulting weight of the flap is:

FG:W~b~l-ppvc-g:11.04N (7.25)

The line of action of the weight force of the flap extends through its centre of gravity,
i. e. through its centre. Therefrom the lever arm with respect to the tilting point can be
determined for the plate at an inclination of 30° relative to the vertical direction (see also
Figure 7.12):

!
x = 35in30° - %Vcos30° —0.0457m (7.26)

The resulting pressure force is calculated via the integral of the pressure over the surface
area on which it is acting. The triangular-shaped pressure distribution acts along the

: h
wetted section 53305

1 h
F—/pdA—ipghmb—1587N (727)
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/

joint-¥" x 1x]

Figure 7.12: Lever arm of the articulated plate.

The lever arm of this force is located at one third of the wetted section, i. e. at ﬁ =
3.27cm, so that the equilibrium of moments about the tilting point can be calculated as:

Y My, = 11.04-0.0457 — 15.9-0.0327 = 0.505 — 0.519 ~ 0 (7.28)

Just when the moment from the water pressure exceeds the moment from the dead weight
of the plate, the plate tilts.

7.5.7 ‘Base point line’

A ‘base point line’ can be used to determine the vertical pressure force component. As
described in Chapter 7.5.4, the pressure diagram can be divided into a horizontal and a
vertical component. In most cases, the horizontal component can be easily drawn, because
it invariably increases linearly from the water surface to the bottom (see Figure 7.13).

=%

i

+ =

\/’ load * buoyancy base f)oint line

Figure 7.13: Pressure on a curved wall, divided into horizontal and vertical components of the
pressure diagram.

The explanation of the vertical load starts directly at the water surface on the curved wall,
where the water pressure is zero. When moving along the wall to the left, the pressure
increases with the depth of the fluid, until it acts only in the horizontal direction at a
point with a vertical tangent. Along this just-described line, the water pressure pgh’ as
a scalar quantity is equal both in the vertical and in the horizontal direction. We can
also see that, shortly before reaching the vertical tangent, the vertical component of the
pressure acts downwards on the wall. With the length of the arrow A’ from the water
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surface to the wall, the red-coloured pressure diagram in Figure 7.13 is obtained. This
pressure diagram acts downwards.

When following the contour beyond the vertical tangent, we find that the direction of the
arrow has reversed. The vertical component, which acts from the scalar pressure at the
boundary, is directed upwards. This direction of action does not change along the wall to
the bottom. Analogous to our previous approach, we draw arrows in the vertical pressure
diagram, which extend from the boundary of the curved surface to the water surface,
because here as well the pressure is dependent on the depth within the liquid /. The
portion of the vertical pressure diagram with the upwardly directed action is referred to
as buoyancy; we colour it green in our sketch. In doing so, we detect that part of the load
region is also occupied by the buoyancy region. Both components cancel each other out
so that the pressure diagram in the lower region of Figure 7.13 (rightmost part), remains.
This pressure diagram is also obtained by drawing a vertical line from the foot of the wall
(i. e. from where the wall on the water side touches the bottom) to the water surface.
When there is water between this vertical line and the wall, then this area (in three
dimensional space, the volume) is to be referred to as load; it acts downwards. With air
between the ‘base point line’ and the wall, this area (or volume) is included as buoyancy
in the balance of forces; the buoyancy force acts upwards.

Thus, we obtain a lens-shaped buoyancy area at the left of the ‘base point line’, and, at
its right side in the upper region, a quasi-triangular-shaped load area.

Horizontal and vertical pressure diagrams

We will perform the entire process by means of an example. The wall depicted in the
following Figure 7.14 is filled from both sides.

3.0m

AN ?

K

AV
1.0m = 6.0m

2.0m

NZNINZNAN

2.0m

Figure 7.14: Example for pressure diagrams.

A The wall above does not change this fact. Those who question this should dive downwards ap-
proximately at the position where the horizontal pressure diagram is drawn. The pressure increases
with the depth of the liquid 4'. At the bottom, one can move in the horizontal plane on the isosur-
face of the pressure without perceiving a pressure change. In this manner, one advances under the
wall, where the pressure pgh prevails at the bottom.
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Let’s start with the horizontal pressure diagrams on the right and left side. On the left,
the pressure increases from the water surface to the bottom to ppottom,left = Pg-3.0; on
the right, up to puottom,right = P& 6.0. The result is a trapezoid acting to the left which
linearly increases from the water surface on the right side to the water level on the left.
From there to the bottom, the increase on the right side is equal to that on the left side
so that they neutralise each other. The resulting pressure on the wall in the lower region
remains constant.

It would be best if you follow the sketches in Figure 7.15. For the vertical pressure diagram,
we proceed successively and first look at the load from the water pressure on the left side.
At the upper right corner of the quarter circle, a pressure head of 1.0 mH;O or a pressure
of pg-1.0 acts downwards on the wall. The pressure then increases to pg-3.0 to the base
point. Advantageously, we draw the pressure arrows again from the water surface to the
boundary which is defined by the quadrant. The area marked in red in Figure 7.15 at the
top right consisting of a rectangle minus a quadrant:

1
Aload lefs = 3.0-2.0 — 12'02 . =2.86m> (7.29)
This results in a downwardly directed vertical force per unit width.

Fvertical,left = Aload,leftpg (730)

Now we will turn to the right side. When again moving downwards from the water surface,
the pressure increases to the corner up to pg-3.0. Of course, the vertical part of the wall
is not subjected to any vertical pressure component. The water-filled quadrant adjoins
below, where the vertical pressure component points upwards; filled from the right side,
the quadrant is subjected to buoyancy. Here, the pressure increases from pg-4.0 to pg-6.0.
When drawing the pressure arrows, it is noticeable that a part of the load-triangle is now
also subjected to buoyancy. When superposed, the area (with the load under positive
sign) of the vertical pressure diagram on the right side is calculated as follows:

1 1
Arignt = 53.0-3.0 - <6.0-2.0— 12'02 : n) = —4.36m’ (7.31)
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Figure 7.15: Pressure diagrams for the illustrated retaining wall: top left: horizontal pressure forces;
top right: vertical pressure force for the water pressure on the left of the wall; centre
left: vertical pressure diagram for the upper part of the wall (water application on
the right); centre right: vertical pressure diagram for the lower part of the wall (water
application right); bottom left: resulting vertical pressure diagram for water application
right; bottom right: resulting vertical pressure diagram for two-sided water application
by means of the ‘base point line’.
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It takes significantly less effort to draw a vertical line from the base, i. e. from the wet
part of the wall, that connects to the bottom, to the uppermost water surface. If air is
present between that vertical line and the wall, this area (volume, in three-dimensional
space) is under buoyancy. If the areas/volumes are filled with water, then there is a load
condition.

Up to the water surface on the left side of the wall, the areas are under buoyancy or
load, depending on whether the filling on the right or the left is considered. The triangle
above is under buoyancy because air is present between the ‘base point line’ and the wall.
Another triangle follows along the ‘base point line’ to the water surface which is on the
right side of the wall. Between this vertical line and the wall there is water; consequently,
a load condition is present here. In total, a buoyancy force per unit width acts:

Fr = (Abuoyancy — Aload ) P = (4.36 —2.86) pg = 14715N/m (7.32)

7.6 Hydrostatic paradox

Actually, the hydrostatic paradox is no paradox; rather it is obvious by consistent imple-
mentation of the physical findings. In fact, it stipulates that the pressure solely depends
on the depth of immersion in the liquid. Figure 7.16 shows various containers, all of which
are standing on the same horizontal plane; the water surfaces in the different containers
are at the same level. At the bottom of all the containers, the same pressure pgh prevails.
Imagine that you dive four meters deep at a corner of a swimming pool. You feel the
pressure p = pg4.0 as a load on your body. Then you swim to the other three corners of
the pool and dive again four meters deep. Which pressure do you feel there? Of course,
pg4.0 again. Wherever you dive four meters deep, this pressure will prevail. Thus, we can
state that in hydrostatics, horizontal planes are isosurfaces of the pressure. Regardless of
which container we dive to the bottom, or whether we swim back and forth at the bottom
— the pressure there is pgh.

LA

Figure 7.16: Containers with the same pressure prevailing at the bottom (pgh).

L[N

To comprehend this phenomenon, we have to engage in some dialectic and define termi-
nology. The force that results from the pressure at the bottom is not the same for the
different containers because it refers to the bottom area: Fiottom pressure = P&RAbottom -
The total vertical force that the bottom has to absorb corresponds to the weight of the
water body (at this point, we neglect the weight of the container): Fyertical total = J PgdV =
pngater-

When referring to the force by which the container has to be held together in the vertical
direction as flange force, then this comes full circle.
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Hydrostatic paradox

To demonstrate that the hydrostatic paradox is actually not a paradox, we take a rotation-
symmetrical container (see Figure 7.17).
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Figure 7.17: Rotation-symmetrical container to illustrate the hydrostatic paradox.
The calculation of the force that results from the pressure at the bottom is easiest because
it consists of the pressure at the bottom and the bottom area:
Foottom pressure = P&MAbottom = pg - 8.50-3m =2.358 x 10°N (7.33)

We can determine the volume under buoyancy by means of a table value for the volume
of a truncated cone, where Ry = 1.0m, Ry =3.0m, L; =3.5m and L, =2.5m:

Lor
Vbuoyancy = R37 - (L1 +La) — R%”'L1+%-(R%+R1-R2+R%) = 124.62m°  (7.34)

The buoyancy results from:
Fbuoyancy = pgvbuoyancy =1.223x 106N (735)

For the total vertical force, we use the water volume with Lz =2.5m:
Lyrm
Vwater = R%TC'LI + % : (R% +R;-Ry —I—R%) —I—R%ﬂ: L3 = 115.721113 (736)

The water volume multiplied by the density and gravity constant results in the total
vertical force:
Fuertical total = P§Vwater = 1.135 x 10°N (7.37)

We will note immediately that the sum of the force that results from the pressure at the
bottom and the buoyancy results in the total vertical force F|nottom pressure + Frbuoyancy =
Flyertical,total- That is logical, since the buoyancy is transmitted to the bottom of the
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container via the flange between the wall and the bottom. It’s not that paradox, the
‘Paradox’.

7.7 Water pressure on arbitrarily inclined flat objects

Generally speaking, we obtain the pressure force on an oblique surface via the integral of
the pressure over this surface or via the pressure at the centre of gravity pcg times the
area A:

Fp— / pdd = pocA (7.38)

To find the point of application of the resulting pressure force Fp, we calculate the moment
about the point of intersection of the auxiliary coordinate { with the water surface (see
Figure 7.18). Within the integral, pgh’ is the pressure at the respective height, which can
be expressed as pg{sine.

M:/pgh’gdA:/pggsinegdA:pgsine/g2dA (7.39)

The last term [{2dA is the geometrical moment of inertia I¢ about the §-axis, which
points to the drawing plane and lies on the water surface. When we refer to the point of
application of the pressure force as {p, the resulting pressure force times this lever arm
must result in the previously calculated moment.

M = pglca sineAlp = pgzccAlp (7.40)
By equating the terms (7.39) and (7.40), the point of application of the pressure force

follows as:
gp— Pesine[E7dA _ [EPdA g
"7 pglogsineA fccA  CcgA

With Steiner’s theorem (see e. g. [52, p. 4.29]) the geometrical moment of inertia can be
moved to the centre of gravity; it applies & || y, i. e. the direction remains constant:

(7.41)

Ir = Lica+(EcA (7.42)
For {p it follows:
Lcc+GécA Lca
{p= 2 —0— CCGACG = fca + TyCGA (7.43)

When we apply the finding e. g. to a trapezoid with the parameters from Figure 7.188,
we obtain the following equation for the area A¢rapezoid = (b1 +b2)% and I, cq trapezoid =

B3 (b1b2)* 201Dy
36(b1+by)

B Note that here & identifies the height of the body and not the depth of the water. This is not
intended to create confusion but rather to simplify the handling of pertinent table values (e. g.
[52]), which always specify the geometrical moments of inertia with the variables b and h.



7.7. WATER PRESSURE ON ARBITRARILY INCLINED FLAT OBJECTS

Crs ia = Cca + : JURI DL,
e Sca (br+b) 4 36 (b1 +b2)
R (b1 +by)* +2b1by h? 2b1by
=6cc+ =6cc+
C CCG 18(b1 +b2)2 C 18CCG (b1 +b2)2

Franke [13, S. 43] expresses the same context as follows:

G1(2b1 +by) + % (b1 +b2)
38, (b1 +b2) + (b1 +2by)
5 (2bi+b2) -5 (3b1+ 1)
285 (b1 +b2) — (2by +by)

CP,trapezoid = CZ -

=&

Figure 7.18: Water pressure on arbitrarily inclined surfaces.
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(7.44)

(7.45)
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We can determine the point of application of the pressure force on a rectangle from
Equation 7.45 with by = by = b:

G (2b+b)+2(b+Db) Ci3b+42b 3¢ +h
C[’,rectangle:CZ_ 3 :C2_37: CZ_ 6C
281 (b+b)+ (b+2b) 3(12b+3b 86 43 (7.46)
=¢ _Mzg _Clh—i_% =¢ 3G+
2760 30 2T 20, +h 3 20 +h

For b, =0, the point of application of the pressure force for a triangle with its tip pointing
downwards follows:

¢ ¢ &1 (2b1+0) + 2 (b1 +0) ¢ 812b1 + b ‘ 20+ 14
Ptriangle = 62 — ==, =0~
riangle %Cl (bl —|—0) + (b1 +0) %glbl +b1 %gl +1 (7 47)
_C_2€1h+§_ _h AL +h
T2 380 +h P 2 3G +h
For a circle with I, = ’fT”, we obtain:
rr r
ircle = —_— = 7.48
CP,Clrcle CCG+4CCGr27T CCG‘F 4CCG ( )

In Figure 7.18 and Table 7.1, the centres of gravity and points of application of the
pressure force are indicated for various surfaces. In addition, the distances between the
centre of gravity and point of application e are indicated; these are to be derived from
Equation 7.41€.

C E. g. for a rectangle where the geometrical moment of inertia is related to the centre of gravity:
e= U — P g
T 12bhEp T 12zca
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Table 7.1: Pressure force and point of application at arbitrarily inclined surfaces. Here, h designates the height
of the object, not the depth of the water measured from the surface (see also Figure 7.18).

_ Shape % respectively zcgA _mw _moo _m
\\ U \\
G
ho h 38i+h h W2
L |bh (z) + % sing) L1 5 H-—4 ton
yi —U_ /
CG
Shxp
L | bh ho: h AL +h 2 W2
> |7 (21 + 5 sine) -3 umt_ G2 —5h 8Ccq
yi ._U_ /
xCG
xXP H@
\|\ 7~ h 2
b h o _ G2bi+ba)+3(bi1+b2) | s+ B 2by+by | B2 (bi+by) +2biby
’ 221 (b1 +b2) + g sine (b1 +2b2) &> 381 (b1+b2)+(b1+2b) &3 bitby |18 {og(by+by)
=
‘ Q
2 . 72 P2
r NHAN_nT\m_Dmv ﬁ_n_lw.n_lﬂ ﬁm|\ oo
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7.8 Moving liquids

Hydrostatics in moving liquids? How can that go together: static and at the same time
moving? In this chapter, we will address questions concerning liquids that are stationary
in a moving reference system. Imagine a glass of beer in a bistro aboard a fast train.
This chapter, wherein the z-axis points downwards from the water surface, is almost com-
pletely described by the following sentence: The water surface is always perpendicular to
the acceleration. In the case of a lake without outflow or a filled glass, we are quite sure
that the water surface is horizontal. When looking at the Pacific Ocean, it also seems to
be logical that the water surface is perpendicular to the acceleration vector — gravity. This
also holds true with moving fluids, though we are now considering accelerations that addi-
tionally occur in the x- and y-directions. Perhaps you have encountered a situation where
you spilled water when driving a car or going by train. We take a look (in anticipation of
the next experiment) at Figure 7.19 to see why that is.

L=0.10m

L /
4 7

Figure 7.19: Glass of water on an accelerated car in anticipation of the next experiment.

The water surface is a level surface where the water pressure is zero. The change of the
pressure on it equals zero, i. e. dp =0.

In the case of moving liquids too, the Navier-Stokes equation (5.29) must be valid. Since
the fluid in the moving reference system is and remains stationary, the local (%) and

convective acceleration (u; g”i
xj

) are both zero. If the molecules are not displaced with re-
%u;
oxz
the beginning of the chapter remains, whereas here, the acceleration vector also comprises
components in the horizontal directions x and y:

spect to each other, friction is also non-existent (v 0). The relationship stipulated at

——=—+g =0 (7.49)
We rearrange Equation 7.49 and multiply by dx;:

dp
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With g = (ay ay a;)T and p -dx; being the change of pressure dp in the direction dx;, the
mathematical result for a level surface in a cartesian coordinate system can be expressed
as:

dp Ip

dp !
E dx+87y -dy +(7 dz=p (aydx+aydy+a,dz) =dp=0 (7.51)

In cylindrical coordinates, this yields:

u, ow |
o) (ardr—l—azdz> =p(a,dr+a,dz)=dp=0 (7.52)

Now, what exactly did we do? ax is the change of the pressure p as a function of location
. If we want to know the extent of pressure change after we have travelled along the
dlfferentlal path dx;, then we have to multiply the change of the pressure a L by exactly

this path dx;®. Of course, the other term of Equation 7.49 has to be multlphed by dx;,
and, because a level surface is defined exactly so that the pressure change is zero, we may

write dp 2 0. We can comprehend the meaning of Equations 7.51 and 7.52 by looking at
a stationary system that does not exhibit any acceleration in the x- and y-directions or in
the radial direction (ay = a, =0, a, = 0). With gravity a, =9.81m/s? (... with the sign
convention described above) said equations can only be fulfilled if dz =0, i. e. if we move
in the horizontal plane.

7.8.1 Acceleration along a straight line

When moving a container from the stationary condition in the x-direction, the acceleration
acts in the opposite direction. You can check this in an elevator when moving upwards
— you feel heavier. When moving down, you feel lighter, which is due to d’Alembert’s
inertial force.

Acceleration of a water-filled car

We look at a small experiment where a rectangular container (0.1m x 0.1m x 0.1m) is half
filled and mounted on a car (see Figures 7.19 and 7.20). The car is connected to a drop
weight via a rope which runs over two rollers. Upon releasing the car’s brake, it will be
constantly accelerated by the drop weight in the x-direction. Thereby, the water surface
tilts in such a manner that it rises at the rear and drops at the front.

The acceleration of the car in the horizontal direction is obtained via the quotient of
the drop weight and the total mass which has to be accelerated by this drop weight:

Mdrop weight _ 0.50 _ 2 : T
e T rR——— 981557535705 = —1.635m/s”. The weight cannot sim

ply drop freely but must accelerate the mass of the car together with the water. The
water surface, being a level surface, extends perpendicularly to the resulting acceler-

D Please note the explanations for partial derivatives and differential quantities in Part 1 of this
book.
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Figure 7.20: Constantly accelerated container.

ation. The tilt angle can be calculated via the arctangent of the acceleration ratios:
o = arctan _91_'86135 = —9.46°. The comparison with the snapshot that shows (a = 8°) re-
veals a small difference, which can be explained by friction losses.

Now, the question concerning the pressure in this container becomes exciting. As described
above, the water surface is a level surface where the water pressure is 0. Thus, we can
determine the pressure in the container in two ways. In either case, we have to measure

the water depth in the direction of the acceleration vector:

1. By means of the vertical cover at this location and gravity.
2. Via the resulting acceleration vector and the prevailing cover along its line of action.

Due to the conservation of mass, the water surface at the tilt point in the middle of the
container remains at the same level iy = 0.05m. With a computational angle of 9.46°, the
pressure in the rear bottom corner for variant 1 is:

L
p=pg <ho +arctan9.46° - 2) = 570.8N/m? (7.53)

The water depth along the resulting acceleration vector can be calculated with the depth

at the rear container wall (ho + arctan9.46° - %) via the cosine:

L
h,=c0s9.46° <h0 +arctan9.46° - 2) (7.54)

For the pressure in the bottom rear corner, it follows that:

L
p=pah,, = pacos9.46° (ho + arctan9.46° - 2)

L
=p\/ —1.6352+9.812¢c0s9.46° (ho +arctan9.46° - 2) =570.8N/m>

(7.55)
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7.8.2 Acceleration along a circular path

A rotating container is based on the same principle as the constantly accelerated car. Here,
the liquid rotates with the same constant angular velocity @ as the container due to the
adhesive forces; consequently, this is a hydrostatic phenomenon in the moving reference
system. The surface or the level surface with the (relative) pressure 0 is parabolically
shaped because the water surface always adjusts perpendicularly to the acceleration; the
centripetal acceleration (or the centrifugal acceleration which is of opposite sign) increases
quadratically with the radius. The level line (that is, the water surface) can be calculated
by means of Equation 7.52 and the continuity condition.

Rotating container

Figure 7.21 shows an example of a rotating cylinder. The coordinate origin is again located
at the height of the water surface and the z-axis is directed downwards.

Figure 7.21: Image of the rotating container with the forming parabolic water surface.

With the accelerations in the radial direction a, = w*r and a, = g, the equation for the
level line follows from Equation 7.52:

r2
/ardr—i-/azdz:/a)zrdr-l-/gdz: Ea)2+gz+cl =0 (7.56)
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First, we divide the equation by g and solve for the water surface z, which defines the

constant ¢; anew and designates it as the initial value at the coordinate origin at r =0 as
20- -
°r

r)=— 7.57

() =-% (757)

With the container in the stationary condition, we mark the water surface. When rotated,
the water surface in the centre of the container drops while it rises at the wall. It is evident
that the water mass that was in the centre of the container is now present in the outer
region. When placing the coordinate orlgln on the water surface with the container being
stationary (z=0), the volume integral f o SR z(r)rdrdg must be zero, even with the
container in rotation. Take into account the Jacobl determinant r, which has to be given
in the integration of the surface in cylindrical coordinates. When inserting z(r), it follows
that:

r=R w2r3
/ / rirdrd¢ = / ———i—zo rdr:/ ———— 4 zordr
0=0Jr=0 r=0 2g

B w2r4+ 2 rR+ B w2R4+ R2+ I
24 02|, T Toga T TR

(7.58)

The integration constant c; is, of course, zero because for @ =0, zo = 0 (the water surface
in the centre remains at the coordinate origin when the container is not rotating) and
Equation 7.58 can only be satisfied with ¢; = 0. Since the volume integral (and thus the
right side of our equation) is zero, we can divide by 27 immediately after the integration
with respect to ¢ and the insertion of the interval limits (27; 0); it disappears. According
to the integration rules which can be found in e. g. [8, p. 457], the upper integration limit
is inserted into the antiderivative (i. e. into the integrated function), and the antiderivative
with the inserted lower integration limit is deducted therefrom (see Equation 7.5). Since
r =0, nothing needs to be deducted. Solving for zy, we obtain:

w’R* 2 o’R?

.= - 7.59
2¢-4 R? 4g (7.59)

0 =

When zg is inserted into the above Equation 7.57, we obtain the following for the water
surface in a rotating cylinder:
o022 0’R>

z(r) = e " g (7.60)

In our example, with R = 0.147m and the angular velocity @ =27nf =2x-2 = 12.57Hz,

the calculation for the height of the outer water surface gives the result z(r = R) =

Zouter = —12‘521,2R2 + IZ‘Z:RZ = —0.087m with respect to the original level (the z-axis

points downwards from the water surface). In the centre of the container, we obtain

12.57%0% | 12.57*R?
Z(r - O) = Zcentre — — 2g + 4g - O 087m
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7.9 Boyle-Mariotte law

You probably remember the Boyle-Mariotte law from school. It states that the product
of volume and pressure in a gas is constant if the temperature also remains constant (see
Equation 7.61). This is referred to as adiabatic process.

p-V =const. forT = const. (7.61)

At this point, we shall recall (see Chapter 3.4.9) that we generally have to distinguish
between the absolute and relative water pressure (see Figure 7.22).

relative pressure absolute pressure

O v A YA Y vy

h s

O+ p=peh, O-+p=prpeh,

Figure 7.22: Relative and absolute pressure.

For some questions in engineering, the scrupulous application of this law is essential,
which is why we should deal with it in more detail. Help yourself to a drink and immerse
a transparent drinking straw into it. The liquid level in the straw is the same as it is in
the glass. Remove the straw, seal it airtightly at the upper end and immerse it again.
What do you detect? The liquid level rises a little in the straw, but certainly not up to
the water surface in the glass. What could be the reason?
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Before we explore the reasons together in a cool experiment, you have to promise the
following:

With enclosed air volumes, we must always calculate with the absolute pressure,
i. e. the sum of air and water pressure (see Figure 7.22).

Determination of the height above sea level by means of a Coke bottle

We fix a straw in the opening of a Coke bottle and seal it with a rubber plug in an air-
tight manner. Before sealing it, we have to determine the initial air volume. Therefore,
we fill the entire Coke bottle and the straw with water, weigh it and by taking the
density into account yield Vo = 3.573 x 10~*m>. The bottle is then completely emptied
and inserted upside-down into a water container. The water surface rises 10.8cm in the
straw which has an inner diameter of 1.0cm. The original air volume has been reduced
by 0.108-R>7r = 8.48 x 107%m?> (see Figure 7.23).

h

WL in straw

Figure 7.23: Determination of the height above sea level by means of a Coke bottle.

Let’s go on a diving tour. We dive to the bottom of the glass and move directly under the
straw. We (or the liquid) remain there stationary. At this level, the pressure in the glass
is pgh, and on the other side of the straw wall it is also pgh. If this was not the case, then
liquid would be pressed in or out until equilibrium is achieved. We venture into the straw
and slowly move upwards. The surrounding pressure is reduced to the same extent as the
depth of the liquid. We remain at the boundary between liquid and air. Here, the same
pressure prevails in the straw as in the glass at the same level. It does not matter whether
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we resurface in the straw or in the glass; the cover (or the load) from the water molecules
above us is reduced to the same extent. We therefore find that the pressure within the
straw at the water surface is exactly the same as the pressure outside the straw within
the glass at the same height pghi. The total air volume in the straw is now subject to
exactly this pressure®.

At the beginning of the experiment, atmospheric pressure pg prevailed in the total volume,
Vo, of bottle and straw. Thus, the air pressure in the immersed bottle is calculated as:

p1=po+pPg(h—hws in straw) = Po+pg(0.345—0.108) = po + pg - 0.237 = patm + 2325
(7.62)
We obtain the air volume V;, which prevails after immersing the bottle, by subtracting
the water volume that has entered the straw:

Vi =3.573x 107* = 0.005°7-0.108 = 3.488 x 10~ *m’ (7.63)

The initial pressure pg is the atmospheric pressure patm which can be calculated by means
of the Boyle-Mariotte equation.

PatmVo = (Patm +2325) Vi = parmVi +2325 -V (7.64)
This yields:
Patm (Vo — V1) =2325-V; (7.65)
We finally obtain:
Vi
=2325——— =95611P 7.66

The height above sea level can then be derived from the barometric formula (7.67) (where

T(h=0)=288.15K, p(h=0) = 1013.25hPa, §& = 6.5 x 1073 K/m) (see also Figure 3.6):

5.255
p) = (1-Grog) e (7.67)

We obtain 487 m.a.s.]. by means of an equation solver or by trial and error, which is not
so bad for the official elevation of Munich (519 m.a.s.l.)¥.

E The experiment neither works alone with the Coke bottle nor with the straw. The problem is that
the difference of the absolute pressures (barometric pressure vs. air plus water pressure) is so small
that the air volume is hardly compressed. The water surface in the straw or in the bottle then rises
only insignificantly. It is therefore advantageous to have an additional volume (the bottle body)
and a small cross-section at the air-water interface (the straw) so that the water rises noticeably.
Just try it with a wine bottle, which has a relatively slim neck and a fat body.

F Note: The calculation process is very sensitive, and weather-related deviations of the air pressure
from the ideal condition assumed in the barometric formula are not the exception, but the rule.
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Balloon under water

The Boyle-Mariotte relation between pressure and volume will be explained in another
experiment. A blown-up balloon is first pulled just slightly below the water surface (see
Figure 7.24). With the water surface marked at the water column and the balloon pulled
further downwards, a drop of the water level is to be observed. What could be the reason
for this?

ik
K]
ik

Figure 7.24: Compressed air in a balloon under water.

Quite right, the balloon has shrunk. Due to the higher pressure at a greater depth, the
original air volume must become smaller according to p-V = const. An air volume of
5.0L under atmospheric (that is, absolute) pressure of 101000N/m? was pumped into
the balloon via a pressure regulator. The water level in the column (d = 0.293m), which
was determined with the balloon just completely immersed to z; = 2.63m, dropped to
72 = 2.619m by the balloon being pulled down. The absolute pressure at the height of
the balloon zz = 0.54m amounts to p3 = patm + (22 —z3) pg = 101000+ (2.619 — 0.54) pg =
121395N/m?. The air volume of the balloon under pressure can be calculated with these
values from Boyle-Mariotte’s law, poVy = p3Vs:
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Po ;101000
Vs=w2 =50x 10
3T * 121395

Of course, the volume reduction can be calculated via the water surface difference between

z; and zp (dV =0.011- % =0.74L), which is consistent with the result from the Boyle-
Mariotte equation.

=4.160x 103m3 = 4.16L (7.68)

This chapter is licensed under the terms of the Creative Commons Attribution 4.0 In-
ternational License (http://creativecommons.org/licenses/by/4.0/), which permits use,
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Creative Commons licence and indicate if changes were made.
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Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
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Chapter 8
Bernoulli equation and energy diagrams

8.1 Classification of the Bernoulli equation

It follows from the equations derived in Chapter 5 that an exact calculation of the flow
situation in a pipe section is possible only in exceptional cases of laminar flows. For an-
swering questions that an engineer might have, one-dimensional, steady-state approaches
are often sufficient. In the present chapter, we therefore start with loss-free flow, which
is described one-dimensionally by the Bernoulli equation (see Equation 5.41 or Chapter
5.7), in which each term has the unit ‘metre’. The equation is as follows:

2

p %
H=z+"+4+_— 8.1
pg 28 ®.1)

Therein z is the geodetic height, & is the pressure height and % is the velocity height®.
Thus, H is the sum of the three forms of energy, which remains constant in a loss-free
flow. According to Equation 8.1, in the case of a horizontal pipe expansion where (z =
const.), the pressure must increase because the velocity decreases. In the case of tapering,

. . . . 2 C
v increases, which, of course, results in an increase of ;—g. In order to maintain H = const.,

L i1 turn must become smaller since z = const. That’s what it’s all about.

%4

8.2 Piezometric pressure height

We will first look at a water container in which hydrostatic conditions prevail; the flow

velocity is zero everywhere (see Figure 8.1). When we float on the water surface, no water

pressure is acting on us and our velocity is negligibly small. Our total energy is solely the
2

geodetic height z;; the pressure height g—}g and the velocity height ;—; are zero. We now

move downwards and remain in position 2, where the geodetic height has decreased to z;.

At the same time, however, the pressure height increased by the same degree to l% (with
p2 = pghy). We therefore find that the sum of z; and % again results in z;. When we dive
deeper to position 3, where the geodetic height is only z3, the pressure height % acts on

A In the following, v will indicate the mean cross-section velocity.

© The Author(s) 2024
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us. No matter how we twist it, the sum of geodetic height z and pressure height ﬁ is
the same everywhere in our system: it corresponds to the height of the water level. As
this quantity (z+ ﬁ) is widely used, it has been given its own name: piezometric pressure
height.

p/(pg)

O —
ol "

p/(pg)

@.,,

Z;

datum plane

Figure 8.1: Explanations of the piezometric pressure height.

8.3 Excursus: Energy diagram — an introduction

The energy diagram is an important instrument by means of which the hydraulic condi-
tions in pipelines and open channels may be clearly represented. The unit of the terms in
the Bernoulli equation (8.1) — metre — is very helpful.

Let’s go back again to the example we just discussed. The piezometric pressure height in
the container always corresponds to the water level. We indicate the piezometric pressure
height with a broken green line (the so-called hydraulic grade line) in the energy diagram
(see “HGL” in Figure 8.2 on the left). The so-called energy grade line (EGL) represents
the total energy of our system. The energy grade line reflects the sum of geodetic height,
pressure height and velocity height. The velocity in the container is v =0 because the

. . 2 .
water does not move, and the kinetic energy is therefore ;—g = 0. In the container, the

energy height corresponds to the piezometric pressure height H = z+ & + %. For our
energy diagram, this means that the hydraulic and energy grade lines lie at exactly the
same level — the water level (see Figure 8.2 right).

Now, finally, we let the water flow! IT&vta pei®

B Quote attributed to Heraclitus of Ephesus (520 - 460 BCE) meaning that “Everything is in a
state of flux”.
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Figure 8.2: Hydraulic grade line, energy grade line and overall energy diagram for a container.

8.4 Bernoulli in pipes

Figure 8.3 shows a glass tube with water flowing through. Moving from left to right it
exhibits a gradual expansion and then an abrupt tapering. There are openings to which
the tubes are tightly connected on the upper side of the apparatus. Now we focus on the
vertically arranged tubes, so-called level gauges, which are identified by numbers 1, 4 and
5C. When diving downwards in one of these tubes, the pressure increases linearly and
reaches the value pgh’ at the depth 4'. Let’s have a look at a water molecule in the area of
the level gauge connection. If the pressure from below were higher than that from above,
then the molecule would enter the level gaugeP. Conversely, the molecule would enter
the glass tube (through which water is flowing) from the level gauge if the pressure from
above were higher. However, it stays in place because the water level in the gauge remains
constant. Together with the geodetic height z, which may be related to any level (e. g.
the tube axis), the water level in the gauge indicates the so-called piezometric pressure
height z+ %.

A wafer-thin tube bent at a 90° angle was tightly inserted into the tube at the third
and sixth (last) opening and turned opposite to the flow direction along the axis of the
main tube (see Figure 8.4 left). This tube that is directed against the flow is called a
Pitot tube. It is named after Henri de Pitot®, a French hydraulic engineer who worked
in the 18th century. We dive again through the tube, along the tube axis opposite the
direction of flow, to the opening. In this case, the same pressure prevails on the right and
on the left of our sample molecule”. However, it can be seen that both Pitot tubes exhibit
a higher water level than the neighbouring level gauges. This is the essential finding of
the Bernoulli equation. Due to the relatively short length of the glass tube, energy losses
may be neglected between cross-sections at the pipes numbered 3 and 4 as well as at
those numbered 5 and 6 (H3 = Hy, Hs = Hg). The three forms of energy, geodetic height,
pressure height, and velocity height exist in the cross-section of level gauge 5. Note that

2
Hs =275+ 5—; + ;—Z. In the cross-section of Pitot tube 6, the velocity immediately upstream
from the wafer-thin tube amounts to zero (water flows neither in nor out); hence vg =0
and therefore Hg = z¢ + %. With z5 = z¢, it follows that:

C Because of the non-parallel streamlines below level gauge 2 it is bracketed. We may apply the
Bernoulli equation there but we have to be careful with the pressure; for further explanation see
Chapter 5.7 and the box on page 118.

D Here, water does not behave differently from a crowd of people at a rock concert. If you are
jammed in like a sardine attending a Red Hot Chili Peppers’ concert and the crowd presses harder
from behind than the people in front of you, you will inevitably be pushed forward. On the other
hand, if the crowd pressure is reversed, you will be pushed rearward.
E Henri de Pitot, (¥1695), Aramon, France (11771), Aramon, France

F Otherwise, more and more water would flow in or out, and thus the water level in the Pitot tube
would rise or fall, respectively.



116

stand stand Pitot stand stand Pitot
pipe pipe tub pipe  pipe tube

1 (2)

Figure 8.3: Tube experiment for explaining the Bernoulli equation.
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Thus, the Pitot tube indicates the sum of the piezometric height Pﬂg +z and the velocity
. 2
height ;—g.

8.5 Excursus: Energy diagram — a continuation

The level gauge reflects the piezometric height and the Pitot tube indicates the total
energy height. The entirety of flow information may be summarised in an energy diagram
(see Figure 8.4, right). Therein, the energy grade line represents the total energy (i. e.
the energy height H) at each cross-section, which corresponds exactly to the water level
in a Pitot tube attached at a particular location. This also applies to the hydraulic grade
line, which indicates the piezometric pressure height, and may be measured via the water
level in a level gauge. Together with the height of the tube axis, which corresponds to
the geodetic height z, the pressure height ;#g may also be determined. Here, the tube axis
represents the mean geodetic height of the water which is present in the tube.

Discharge in a pipe

The experiment of Figure 8.3 clarifies the Bernoulli relationship between pressure height
and velocity height by means of a tube expansion and its tapering. With an increasing



8.6. BERNOULLI AND OUTFLOWS 117

EGL -}~~~
HGL-----8----]
5
datum plane .. i datum plane 7

Figure 8.4: Energy diagram for a level gauge and a Pitot tube in a pipe flow (left) as well as for
the tube experiment (right) in Figure 8.3.

diameter (dy =2.0cm, d3 4 =4.0cm), the fluid velocity is reduced, leading to a pressure
increase. On the right side, the water once again is accelerated (dsg = 2.0cm); hence, the
pressure drops. The total energy is indicated by the height of the water in the Pitot tubes.
The 0.016 m difference in water levels between Pitot tube (6) and level gauge (5) corre-

sponds to the velocity helght (see Figure 8.4, left), from which the discharge may easily

be calculated using Equation 8.2: Q = A4/ ;—Z,Zg =0.01?7,/0.016-2g = 0.176 L s.

However, we may also determine the discharge from the level gauges not far upstream or
downstream from the tapering. For loss-free flow and z4 = z5 in the Bernoulli equation, it
follows that

2
b4 Vi D5
+— = 8.3
pg 28 pg 2g (8:3)
and further: 5
) Z N N V421 Q2 1
A - - (8.4)
pg pg 28 28 2g\Al A]

The discharge results from the cross-sectional area values and the difference in pressure
height % = 0.013m, which may be taken from Figure 8.3:

0= 1|2 (pa— y<l-L>4—01ML/ (8.5)
- P b4 — D5 A% A?‘ =Y. S .

The discharge obtained from the velocity height agrees sufficiently accurately with the
solution from the difference in pressure height.

8.6 Bernoulli and outflows

In preparation for the next steps, we will continue the considerations of Chapter 8.2 and
drill a hole into the container wall (see Figure 8.5).
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Figure 8.5: Extension of the example in Figure 8.1.

We have certainly dealt extensively with the increase in pressure as a function of depth;
everyone will agree that we can describe the pressure in the container at the level of the
drilled hole as pgh. The difference between absolute and relative pressure (see Chapter
3.4.9) should again be discussed briefly. The atmospheric pressure acts on the water sur-
face so that the absolute pressure at the level of the hole is patm + pgh. The atmospheric
pressure patm prevails outside the container. This means that as we drill a hole into the
container wall, this pressure acts through the hole against the water. Thus, the atmo-
spheric pressure acts on the fluid particles from both sides so that we may as well safely
omit it. The relative (water) pressure outside the container is therefore 0.

The Bernoulli equation was derived by integration along a streamline s (see Chapter 5.7)
from the Euler equation (5.24), which, contrary to the Navier—Stokes equation (5.29),
does not include a viscous (friction) term.

With a hole drilled through the container wall, water will be pressed through it because
the pressure on the left side is greater than on the right (by pgh). Imagine an overcrowded
auditorium at the end of the lecture. All students push through a door that is quite narrow.
Those at the door are subjected to the pressure of the fellow students from behind while
no pressure from the front is counteracting them, and they can freely leave.

Back to the Bernoulli equation, which stipulates that the total energy remains constant.
This means that the water, when flowing out of the container, has the same energy height
outside, as indicated by the chain-dotted red lines in Figure 8.5.

Take care that the preconditions of the Bernoulli equation prevail! If hydraulic
losses are not negligible, you are not allowed to apply it*. Where streamlines
are bent, the pressure is distributed non-linearly; hence exact knowledge of the
local pressure or velocity distribution is essential for statements concerning the
entire cross-section of the flow. If possible, balance the three forms of energy at
locations where parallel streamlines prevail.

% We will see a little later how we can integrate hydraulic losses into the Bernoulli equa-
tion.

If we move on a streamline (see dotted line in Figure 8.5) from left to right, then the
2
velocity height ;—; =0 and the pressure height % = h are still acting at the starting

point®. On the right side at cross-section 2, the pressure height (relative to the water

pressure) is % = 0. Since 71 = 7p, it follows from the Bernoulli equation that the velocity

G ... which is somewhat awkward for me to explain; let’s say that v is negligibly small.
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height ;—% must be h. This is exactly what we see when we place a Pitot tube at level
71 = 7o into the jet. All that remains is to draw the hydraulic grade line at the outflow in
its axis, and then our energy diagram will be complete with the corresponding lettering.
You may ask yourself why the hydraulic grade line happens to lie at the level of the
outflow. Let’s go back to Chapter 8.2. Therein we determined that the hydraulic grade
line reflects the piezometric pressure height. It consists of the pressure height (zero at the
outflow) and the geodetic height, which is, of course, at the outflow level. If the water
does not have at least this energy, which is equivalent to the water level at the opening,
then of course nothing can flow out.

For the outflow, we may now establish the Bernoulli equation:

2 2 2

1% \% V.
g+l _ P2 h P h (8.6)

pg 28 pg 28 pg 2

With 5—; = h it follows that:

v2=/2¢h (8.7)

8.7 Cavitation

Up to now, we’ve looked at water only as a liquid. We know from Figure 3.3 that water
may also exist in other states. And it is this characteristic of water that we should be
aware of.

In the Bernoulli equation, z describes the vertical distance from the reference height to the
pipe axis, ﬁ the vertical distance from the pipe axis to the hydraulic grade line, which
corresponds to the piezometric pressure height, and % the velocity height (see Figure
8.6). If the hydraulic grade line is below the pipe axis, negative pressure prevails, i. e. a
pressure lower than the ambient pressure. We take advantage of this fact when we “pull”
liquid via a drinking straw out of a glass. The atmospheric pressure is then higher than
the pressure within our mouth and therefore “pushes” the liquid upwards against gravity.
We know from Figure 3.3 that water can be gaseous even at relatively low temperatures,
namely when the pressure is low. We will have a closer look at this phenomenon in the

following experiment, which you can easily carry out yourself.
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A

Figure 8.6: Negative pressure in a pipeline system. Please ignore the drop of the energy grade line
at the boundary of container 2 (for now).

Water vapour in a hose

Given two containers (e. g. buckets), we fill one with water. Then water is sucked from
one container into a hose approximately 20m long and directed into the other container.
Then we grip the hose in the middle and pull it upwards while the two ends remain in the
containers. Above a height of approximately 8 m, the liquid water in the hose becomes
gaseous; this is referred to as a separation of the liquid columns. On the right side of Figure

Figure 8.7: Experiment for the generation of gaseous water in a hose (see also Figure 8.6).



8.7. CAVITATION 121

8.7, you see that the water in the upper area of the hose is gaseous. The water cannot
flow over this “gas barrier”. In order to ensure that the water flows, the pressure must
be greater than the vapour pressure. For the temperature-dependent vapour pressure,
—7.5mH;0 is generally considered a standard value.

If the pressure drops locally, e. g. in pumps or turbines, under the vapour pressure,
H,O “bubbles” or “voids” develop; these voids implode and become liquid again at places
of higher pressure. When they implode, a liquid jet passes through the void at several
hundred metres per second. Due to the pressure gradient in a flow adjacent to walls (which
will be dealt with later), the jet is always directed against the boundary. No material can
withstand these “pinpricks”; therefore, almost any effort is taken to prevent from this
phenomenon which is generally known as cavitation.

I think we are now well equipped for more in-depth knowledge of this subject.

This chapter is licensed under the terms of the Creative Commons Attribution 4.0 In-
ternational License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
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Chapter 9
Outflow from openings

9.1 Outflow through openings

In the present chapter, we will extend the considerations concerning the Bernoulli equation
to questions that are of interest in filling and emptying large and small containers making
use of energy diagrams.

9.2 Torricelli equation

We begin with the derivation of the Torricelli* equation. In Chapter 8.6, we derived the
relationship between the pressure and velocity of the outflow from a container by means

of Figure 8.5 (h = %) By rearranging, we obtain Equation 9.1:

v=1/2h (9.1)

Water jet

For our experiment, we use a container whose bottom outlet is closed by a ball valve (see
Figure 9.1). How far does the jet reach at a pressure height of 2.0m and a height of the
outflow of hguifiow = 80cm?

The velocity component in the x-direction u results from the Bernoulli or the Torricelli
equation. The velocity is zero in the container, and the pressure height is h = % =2.0m in
relation to the outlet opening; downstream from the orifice, atmospheric pressure prevails

so that the velocity component u may be calculated:

u=+/2¢gh=v2-981-20=6.26m/s (9.2)

A Evangelista Torricelli, 1608, Faenza, Italy, 11647, Florence, Italy

© The Author(s) 2024
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Figure 9.1: Water jet discharged from a container (left); jet with a (meanwhile) lower water level
in the container (right).

Immediately downstream from the orifice (or outside the container), the velocity compo-
nent in the vertical direction is w =0, but the water moves constantly at velocity u in the
x-direction and is accelerated downwards by gravity. The time during which the water is in
the air is dependent only on the height of the outflow Aoutaow (and g), which is also known

as a horizontal projectile motion. With Agutfiow = %[27 it follows that t =  / th‘% =0.40s.

During this time period, the water moves x =¢-u = 0.40-6.26 = 2.53m in the horizontal
direction.

Returning to the Torricelli equation

We remember that the Bernoulli equation does not include friction; when deriving further
formulas therefrom, they will not, then, include any energy losses. We “cheat” by inserting
a coefficient of friction, localised for orifices by means of numerous tests, in the range of
® =0.96...0.98 (see Equation 9.1). This means that 2% to 4 % of the hydraulic energy
is lost when fluid flows out of an orifice. We should not yet be concerned that the energy
grade line does not actually extend horizontally.

We will now closely look at the outflow. As in the rock concert discussed above, the water
molecules push from the container opening to the outside due to the pressure difference.
To visualise the conditions at the outlet, it is best to imagine a cyclist who circles into
a yard entry. If she approaches perpendicularly, she simply goes straight through. If she
approaches the passage in parallel, as illustrated in the following Figure 9.2, and tries to
get through the gate, she will not succeed in following exactly the contour of the sharp
edge. She turns with the smallest possible radius and approaches the gate. Her streamline
is shown as a broken line in the drawing.

Here is where things get exciting with the Bernoulli equation. Although we know that
for the boundary streamline the pressure is zero, we are not able to describe the pressure
distribution precisely at the opening cross-section. However, it will be zero across the jet
where parallel streamlines prevail since no fluid wants “in” or “out” there. At this position,
the cross-section of the jet is (A;), which is smaller than at the container opening (A¢); the
jet is subjected to tapering, which is described by the empirically determined contraction
coefficient y as the ratio of the jet area to the area of the opening.
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Figure 9.2: Constriction of a jet by the boundary streamline.

V=1, (9.3)

With Equation 9.1, we may set up an expression for the outflow Q:

Q= 9yAg\/2gh (9-4)

The friction coefficient ¢ and the contraction coefficient y form the so-called discharge
coefficient u:

=9y (9.5)
From this, the Torricelli equation is obtained (9.6):
h
0= pAoy/2h, where .= > 15 (9.6)
0

There is one issue with the Torricelli equation (9.6) that we have to watch: if the water at
the outflow is not deep enough, air may be sucked in due to eddy generation, which reduces
the outlet cross-section so that less water flows out than calculated. You have certainly
seen such an air-sucking eddy when emptying a bathtub. For the outflow from container
openings, the water depth & should be at least 1.5 times the height of the opening hg.

9.3 Outflow from a “small” and a “large” opening

Up to now we’ve withheld the fact that the pressure pghr at the upper edge of a vertical
opening of height Ao is lower than the pressure height (pghg) at the lower edge due to the
difference between the heights of the two edges. It follows from the relationship that was
derived at the beginning of this chapter that the velocity at the upper end of the orifice
is lower than that at the lower end. However, it does not increase linearly over the height
of the orifice but rather as v/ (see Figure 9.3).

This means specifically that we must integrate the velocity with respect to the height of
the orifice in order to determine the discharge and write the Torricelli equation with the
width of the opening b as follows (Equation 9.7):
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Figure 9.3: Outflow from a “large” opening.

hp
0= /[Jb\/ 2gh dn’ (9.7)
hr

Comparison between “small” and “large” opening

We compare the results between a small and a large opening by means of an experiment
(see Figure 9.4). Because the container is so large, a constant water level may be assumed
during the time of measurement.

Figure 9.4: Outflow from a container.
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e With a mean water depth of h,, = 0.40m at the centre of the opening and an outflow
coefficient g = 0.6, an opening width b = 5.0mm and its height hp = 10.0cm, the
discharge is obtained according to Equation 9.6:

Q=p-b-ho\/2ghm =0.6-50x1072-0.10,/2g-0.40 = 0.84L/s (9.8)

e For the determination of the discharge by integration of the velocity with respect to
the orifice height ho, we use Equation 9.7. In our case, the outflow velocity is not
dependent on the width, but it is dependent on the water depth at the opening. We
therefore integrate the outflow velocity, which is dependent on the water depth #/,
with respect to the same dh’. The constant values such as y, 1/2¢ and b may be
written before the integral.

hp 210 3 3
Q:,ub\/Zg/ \/f?dh':().0133-§ {hé —h%] =0.84L/s (9.9)
hr

With these ratios of water depth and height of the orifice, the difference is negligible.
By the way, in the experiment, the discharge was determined with a bucket that was
filled with water from the jet for approximately 5s. The water volume in the bucket
was determined by weighing the bucket before and after filling; the results of three
measurements were between 3.95 and 4.4L, i. e. between 0.79 and 0.88 L/s.

Outflow from a triangular opening

Now we go to another degree of complication, but don’t worry, everything will be discussed
in a relaxed manner.

Here, we look at the outflow through a triangular opening from the container seen in
Figure 9.5. The opening angle, 2¢, is 60°. Half of this opening angle, «, is therefore 30°;
hy = 1.0m and hg = 1.4m. When using the Torricelli equation for the determination of
the outflow, we must take into account that the width of the opening depends on #, i. e.
b=fH).

First, let’s find out how we might describe the area. The width of the triangle at the
height hy may be expressed via the tangent:

b

tanot = —2 9.10
an o — (9.10)

When we describe the width of the opening as a function of the coordinate A’, which we
must do (unfortunately), we may solve the previous equation for b. b is described as a
function of A’ and the concrete value hr is replaced by the coordinate h'. We must not
forget that the following equation is applicable only for the range hy < h' < hp.

b(l')=2tana (hg—h') where hy <h < hg (9.11)

We test the equation for the two extreme values:
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Figure 9.5: Outflow from a triangular opening.

b(hr) =2tan @ (hg — hy) = 2tan30° - 0.4m = 0.462m (9.12)
b(hg) =2tano (hg — hg) = 2tan30°-Om = Om (9.13)

It seems to work! Therefore, b(h') is inserted into Equation 9.14 in such a manner that
width b(K') is not before the integral as a constant but rather is inside it.

hp hp
0— u/ b(H')\/2gh di = u/ 2tana (hg — ') /2gH dif (9.14)
hp hy

The job is already half done. First, we place the constants before the integral and combine
them into a single constant C:

h h
Q:u.,/zg.ztana/B(hB—h’)W?dh':c. " hy NI — 1 W A (9.15)

hr hr

Next, the constant C may be directly calulated: C = 3.0688 m? /s. The unit m? /s comes
from the root of the gravity constant. From the integration of [hg-+/I di', it follows that
%hB-h’%. Also, [H -v/W dh' = fh’% dn' =2 -'3. Now, let’s insert the limits of the definite
integral:

hp
LIV Y ]
3 5 N

T

2 3 2 5 2 3 2 5
=30688|(=--14-142—--142)—(=-14-1.02—---1.02 =

=3.0688-0.0851 = 0.261m’/s = 261L/s

0 =3.0688 [

Phew, that was tough. Let’s recall what we learnt in Chapter 7.3: the pressure force is
the result of the multiplication of the pressure at the centre of gravity by the area. For
the outflow from openings, the pressure at the centre of gravity is used in the calculation
for the discharge velocity. The equation for the above example with Ay = % -0.462-0.40 =
0.0924m? reads as follows:

Q= U-Ay\/2ghcg =0.6-0.0924,/2g-1.133 = 0.261m’/s = 261L/s (9.16)
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Perhaps you ask yourselves: “What was this stress good for?” The only answer I have
is: “For the sake of knowledge”. Seriously though, there are cases in which the error of
approximation is not tolerable and that require an analytically correct solution.

Let’s take a break!

9.4 Qutflow at a variable water level

Back at the desk now, we concentrate on a question that is primarily of interest in the
context of reservoirs. It is a matter of determining the outflow when the water level is
variable. This must be done when filling and emptying rainwater retention basins or basins
of dams. So off we go.

~Z

Y0 7 {4z

ZI N
S Q(2)

Figure 9.6: Outflow from a container in which the water level is variable; the area of the reservoir
is indicated as AR.

Figure 9.6 shows a container with a dropping water level during an outflow. For the sake
of simplicity, we position the origin of the z-axis such that z increases positively upwards in
the centre of the opening. In order to be able to calculate the duration of the outflow, we
use a brilliant idea: the volume V that flows out over a certain time period ¢ corresponds
exactly to the volume that is missing in the container. Logical, isn’t it?

The volume that flows out is obtained via the integral of the discharge with respect to
time. This becomes obvious when considering the units. The discharge that is dependent
on z has the unit [m*/s] which, multiplied by the unit of time [s], results in the unit of
volume [m3]. Hence, the volume that flows out may be represented as follows:

V= / 0(z)di (9.17)

The water volume that is missing in the container is generally described by the integration
of the area with respect to the height:

V= /AR(Z) dz (9.18)

When setting up the continuity equation, attention must be paid to the coordinate di-
rection. During the outflow of the container, the water level sinks, causing z to decrease,
which would lead to a negative volume with the above equation. Make sure that the inte-
gral fZZTB reads “from top to bottom” with the integration limits in the proper order. Thus,
we write:
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1(z5) ]

v=[ " 0()d=— / Ar(z)dz (9.19)
t(zr) T

For the calculation of the outflow duration, Equation 9.19 is rearranged to solve for dt.

By integration, ¢ remains on the left side, and the resulting z-dependent terms are written

on the right side and integrated:

_ [ _Ar()
t*/zT o (9.20)

In order to carry out such tasks, one must first formulate the discharge and the outflow
area as a function of z. Let’s risk looking at a first example; later, things will get somewhat
more complicated with an experiment.

Outflow from a container with a sinking water level

In this example, the area of the container Ac = 3.0m? is independent of z (see Figure
9.7), which makes things easier. The water level is assumed to drop from zz = 4.0m to
zg = 2.0m. The height of the opening (Ap = 7.854 x 107> m?; u = 0.65) is at Zopening = 0m.
How long does it take for the water level to drop from 4.0m to 2.0 m?

AV4
A =
. /SN (R v AU
A =
ZT
ZB
ZI
A
b,

Figure 9.7: Outflow from a container with a variable water level.

Since the container area is independent of z, it may be placed before the integral. It follows
that:

ZB 1 d
——dz

a 0(2)

The z-dependent outflow is described by Equation 9.22:

t=—Ac (9.21)
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= UAo+\/282 (9.22)

Constants u, Ap and +/2g may again be inserted before the integral so that the result is:

AC 20 1
= 2
t ,qu 72 Jio \[ (9.23)

The integration of [ 7 1dz yields 2-z7 and thus:

fo _Ac [\/]20

HAO\/ NAO\/
The units may serve as a plausibility check of the integration®:
[m’]

m2-m? /s

V2.0~ V4.0| = 155.43s (9.24)
[V20- V49| -

[s] = m? | = [s] (9.25)
| ]H

That looks quite okay. We will still check whether we would have obtained a similar result
with a mean depth of 3.0m: The outflow volume is V =Ac-Az=3.0m?-2.0m = 6.0m>.
The discharge Q with a mean depth of z =3.0m yields Q = uAp+/2gz = uAp\/2g-3.0 =
0.0392m3/s. An outflow duration of 153.19s results from computing ¢ = %, which seems
to confirm the result from the more complex solution by integration.

Are you feeling well prepared for the ultimate challenge in this chapter? If so, then we
can tackle the following experiment.

Outflow from an inverted pyramid

During the outflow from the inverted pyramid depicted in Figure 9.9 the cross-sectional
area changes with the water depth. In the calculation of the outflow duration, the con-
tainer area A(z), which is dependent on z, must also be integrated. When carrying out the
experiment, it may be observed that at first the water level sinks slowly despite a consid-
erable water depth and later sinks faster. First, we set up the equation for the container
area. The wall angle on all four sides of the pyramid is 26.6° relative to vertical; the area
of the base of the pyramid is that of a square. Use a pocket calculator and determine the
tangent of 26.6°; it is very close to % so that we will proceed with a value of 0.5. The
following Figure 9.8, which you are advised to draw, clarifies the relationships:
The container wall is inclined sideways by 0.5z, which leads to a pyramid base edge length
of 2:0.5z+bg. Figure 9.8 (left) depicts this. The result is a container area that is a function
of z:

A(z) = (bo+2)° (9.26)

B The observant reader may have noted that the integration constant was withheld. We may of
course insert constants and relate them with the limits of a specific datum. It is certainly more
reasonable to choose the starting time of the emptying process, which of course means that the
constant is 0s.
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Figure 9.8: Geometric considerations concerning the outflow from an inverted pyramid.

In this case, it follows that for Equation 9.20, with bp = 1.0cm and p = 0.9€:

B A 1 z 2
po [PAR) T(bota)”,
ar Q(Z> UAON2g Jzp \ﬁ
1 z=0.48 ) 1 1 3
= m o boZ 2 +2b0z2 +2z2 dZ - (927)
4 2 z=0.48
= 2508.5 {Zbozé + Zboz? + = 3] = 171.6s
3 5 z=0

Figure 9.9: Outflow from an inverted pyramid.

By comparison, the outflow duration that was measured by means of a stopwatch is a
little shorter at 162 s, which can be explained by the quite arbitrary choice of the discharge
coefficient .

For those who still aren’t tired, the show goes on. The others may feel free to skip the
rest and go on to Chapter 10.

C In Bronstein and Semendjajew [8, page 457] we again look up the integration limits. We integrate
from zr (lower integration limit) to zz (upper limit). In the next step, we swap the limits, which is
why the minus sign is omitted.
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Caution! For the mathematically experienced persons only!

Reality is even somewhat more complicated. Do you remember the derivation
of the Bernoulli equation in Chapter 5.77 The local derivative % of the Euler
equation (5.24) was set to zero right at the first step. Since then, we have ignored
nonstationary phenomena. If we want to do it exactly, we must consider the

acceleration of the water level. This can be achieved as follows:

We integrate the local acceleration of the water level g;(z) as well as the remaining terms of
the Euler equation (5.24) in the derivation of the steady-state Bernoulli equation along the
streamline 5 (see Equation 9.28). We make an approximation and replace the streamline
with the vertical coordinate z.

Figure 9.10: Schematic diagram for calculating the influence of the local acceleration.

At exactly the surface of the water, the very thin slice exhibits the area A(z) but measures
only A(x) at its bottom during the outflow (see Figure 9.10); thereby, the water surface
is accelerated [59, S. 368]. Thus, we integrate % along the streamline of the accelerated

water surface y.
Lo
x:() t

We may express the velocity v at the bottom of the slice y using the sinking velocity of
the water level and the continuity condition:

V=VWL " M (929)

A(x)
We substitute this expression for v in the integral of the previous equation and place that
part independent of ) outside the integral. The velocity of the water level is replaced by
the derivative of its position with respect to time.

dv 2 d d2z = d
/az(Z)dx=A(Z) . /;¢=0A(§Cc) :A(z)dtj/X:OAé) (9.30)

Let us focus on the term before the integral. Here, we rearrange the continuity condition
(9.20) and write:

de _ 0() _ pAoyig 031)

a B A(Z) (bo +Z)2

We form the second derivative of position with respect to time izz by taking the derivative

of Equation 9.31 first with respect to dz and then in turn dz to dz. In the following equation,

we can substitute the expression for %, seen in Equation 9.31.
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(9.32)
/o Z ,uA 287
(bO +Z) (bO —|—Z)
With 1
d V= %z*z (bo +z)2—2(b0 +2)1/2 (9.33)
dz (bo +2)° (bo+2)* '
it follows that:
d2 (bo+2)*
—2(bo+2)vz 9.34
= (waov/2s)’ bo+z>(2ﬁ (bo+32) vz (9.34)
All that remains is the integral of ﬁ with respect to x.
¢ d ¢ d ~-1 17 1 1
Ay S R o
2=0A(X) =0 (bo+ %) bo+x ]y bo+z bo+0

Substituting, we may write the acceleration integrated along the sinking water level from
Equation 9.30 as follows:

/ (@) dx =Az (MAO\/>) bo+z) (<b3\j§>2_2(b0+Z)\/2>.<blo_bol+z>

(9.36)
The outflow in Equation 9.27 was based on the Torricelli (or the Bernoulli) equation.
Its derivation yielded the terms évz, % and gz. For an outflow ﬁ =0 applies and gz is

converted to v . It is therefore evident to normalize the error, that arises by neglecting
the local acceleratlon, by gz.

7/‘11 )dx = AZ)* (#Aof) i <<b0+z>2_2(b0+Z)ﬁ>.<blo_ : >

bo+z) 2y/z bo+z
(9.37)
Table 9.1 lists this relative error for various z coordinates. The choice of the outflow

Table 9.1: Relative error due to neglecting the local acceleration of the outflow from the inverted

pyramid.
z coordinate [m]|0.48 0.24 0.12 0.06 0.02
error —2.01 x1072[—=1.47 x 107%[=9.93 x 10~%|—5.73 x 107 3]—5.00 x 102

coefficient p has a significantly greater impact. By the way, the maximum error of 5%
in the last row of the table is related to a much shorter time period than that with the
container almost full (the little amount of water left flows out rapidly). We might combine
the influence of the acceleration of the water surface with the outflow duration in order
to determine the total duration. But even I have had enough of this topic for now.
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This chapter is licensed under the terms of the Creative Commons Attribution 4.0 In-
ternational License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
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Chapter 10
Momentum equation

10.1 Classification of the law of momentum

The law of momentum was derived in Chapter 5 by means of integration of the Cauchy
equation of motion over a control volume (see Figure 5.9). The internal forces that act
upon the control volume are in equilibrium with the reaction force. In the following
experiments, we will find out more about the secrets of the law of momentum.

10.2 Flow forces in open channel flows

We will investigate the force conditions in an open channel with a sluice gate in an
illustrative experiment.

Force acting on a plane sluice gate

A sluice gate is mounted on a cart that is placed on an open channel in a laboratory
flume. The cart is held by means of a spring balance (see Figure 10.1). When switching
on the pump, the open channel is flooded, and the cart moves in the direction of flow until
an equilibrium between the flow forces in the x-direction and the spring force is obtained.
We make use of the free body method and mark the forces acting on the plexiglass wall
of the flume (see Figure 10.2). The gravitational force acts in the vertical direction, and
the channel bottom acts against it. In the horizontal direction, the pressure force, i. e. the
integral of the pressure with respect to the area [ pdA and the momentum flux pQv, are
entered at the interfaces pointing into the control volume. In the horizontal direction, the
resulting reaction force is the spring force Fgy, which maintains the volume in the depicted
shape in space.

In the experiment shown in Figure 10.1, an upstream flow depth yjes, = 17.6cm, as well
as the depth y.gne = 2.0cm at the smallest cross-section of the jet, were measured in the
open channel of width » =20cm at a discharge of Q =5.7L/s.

© The Author(s) 2024
C. Rapp, Hydraulics in Civil Engineering,
https://doi.org/10.1007/978-3-031-54860-4_10
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Figure 10.2: Law of momentum for determining the force acting on a sluice gate.

/ Plett dAlefs + P OViets = / Pright dAright + P QVright + Fu (10.1)
1 1
Epgylzeftb +POViett = Epgy%ightb + POVright + Fy (10.2)
1 0? 1 0?
~pg-0.176>-02+p—F—— = —pg-0.020>-024+p——~— +F 10.3
P8 TPo176-020  2P8 TP 0.020.020 T 1H (10.3)
30.387 4 0.923 = 0.392 + 8.123 + Fy (10.4)

This results in a horizontal force of Fy = 22.8 N, whereas the spring balance indicates a
force of approximately 21 N. The difference between measurement and calculation arises
from the friction force of the cart and the friction associated with the flow; both forces
are included in the resultant force Fy.
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10.3 Fastening and flange force at a hose with nozzle

The following experiment clarifies how the flow forces are absorbed by a load-carrying
structure.

Holding force for a hose with nozzle

This experiment is a hiding place for the pitfalls of the law of momentum. One must
always be extremely aware of which forces are acting, which forces conceal themselves
in the resultant one and, above all, how these forces are absorbed by the surrounding
structure.

Perhaps you once happened to lose your grip on a pressurised garden hose and could not
catch the dancing nozzle until you finally turned off the tap. With the present experiment,
we determine the holding force for the hose (see Figure 10.3). For this purpose, we open
the water tap and see that the cart moves backwards until equilibrium is established
between the flow forces and the measured spring force of approximately 3.0 N.

Figure 10.3: Nozzle fastened on a cart with pressure connection (left). Detail of the experimental
arrangement with cart, pressure connection, pressure sensor, amplifier and display
(right).

To solve the problem we would reflexively form a control volume around the nozzle and
mark the pressure force and the momentum flux at the hose and the momentum flux with
the velocity at the nozzle (the pressure is zero due to the ambient air downstream from the
nozzle). Though the entering momentum flux pQvpese and the pressure force pposeAnose
in the interior of the hose are counteracting the leaving momentum flux, they cannot be
absorbed by the hose, transferred into the ground and released there; the force is simply
passed on by the fluid. The hose is not able to absorb forces radially to its axis. You may
try it out by means of a hose bent at an angle of 90°, which may be accomplished by
sliding the ends against each other. We take this consideration as the basis for our free
body, i. e. the control volume (see Figure 10.4).
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Figure 10.4: Free body of hose and nozzle.

Only the momentum flux pQvy,.1e leaving the control volume through the nozzle and
the holding force of the spring balance F act along the axis of the jet. The exiting jet is
also counteracted by the atmospheric pressure, however, it also acts on the hose in the
opposite direction; hence, these pressure forces cancel each other out (see Figure 10.5).

e
;54;-” P,
Figure 10.5: Detail of the forces due to atmospheric pressure; these forces cancel each other out.

With the nozzle diameter dyozz10 = 0.0035m and the measured discharge Q =0.17L/s, the
horizontal reaction force follows:

2
pQ? (0.17x107%)
Fr = = =3.0N 10.5
. Anozzle P (3‘5><10_3)27r ( )
4

The hose must be held against the leaving momentum flux pQvy,1e = 3.0N, which is
also evident by the volume of the free jet shown on the right in Figure 10.4. The result is
confirmed by the measurement (see above). The pressure must be released via the surface
area, of the control volume. The pressure was measured by means of a sensor. The display
in Figure 10.3 (right) indicated the pressure in percent of 2.0 bar. Accordingly, a pressure
of Phose = 0.788-2.0bar = 1.576 x 10° N/m2 was present at the moment of the recording.
For the hose with a wall thickness of w = 3.0mm, a radial stress of

prdnose  1.576 x 10°-0.015 s 9
— - =3.94x10°N 10.6
= o 23.0% 102 X 10°N/m (106)

is obtained with the so-called Barlow’s formula (also see Equation 12.17). In addition, the
force of gravity must be released into the ground. It corresponds to the sum of the weights
of the cart (Fg cart), the hose and the nozzle (Fg hose+nozzle), and of the water within the
hose (pgViwater)-

In the following discussion, the force that is required to keep the fluid volume within its
shape is determined.
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Fastening force for a nozzle at a hose

The fastening force of the nozzle shown in Figure 10.3 at the hose is also relevant. Imagine
that you hold the hose in your left hand and the nozzle in your right hand. If you try
placing the nozzle on the hose from which water is flowing, you must press it firmly
against the end of the hose. If you let go of the nozzle, then the water jet carries it away.
To determine the fastening force, we must therefore fit the control volume such that the
interface is between nozzle and hose (see Figure 10.6).

¥ F/2
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—> —> df ' «——
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|
e
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Figure 10.6: Fastening force of a nozzle on a hose.

The force with which the nozzle must be pressed against the hose corresponds to the
reaction force of the flow forces. On the left, the pressure force and the momentum flux
with vhese act. On the right, the pressure height is zero because the atmospheric pressure
prevails at the outflow. The pressure within the hose upstream from the nozzle amounts
to 1.576 x 10° N/m? (see above) with a hose diameter of dj,sc = 0.015m.

2 2
phoseAhose +P Q =p Q +F (107)
Ahose Anozzle
001527 (0.17x107)*  (0.17x 1073)?
5 _
1.576 x 10 p DTS e +F (10.8)
=
27.85+0.164 = 3.00 + F (10.9)
F=250IN (10.10)

Thus, the connection between nozzle and hose must withstand at least 25 N. Here again,
a radial stress of 3.94 x 10° N/m? to be absorbed by the hose jacket is obtained from the
Barlow’s formula (see Equation 12.17).

This chapter is licensed under the terms of the Creative Commons Attribution 4.0 In-
ternational License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
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Chapter 11
Steady pipe flow

11.1 Dynamic similarities of pipe flows

The Navier—-Stokes equations (5.29 and 5.30), which are written in dimensionless form in
Chapter 5.6, are essential for all flows. Flows behave similarly only if Froude and Reynolds
numbers are identical. For pipe flows, the Froude number is not defined since these flows
do not have free surfaces. A pipe flow is driven by the pressure gradient and the viscous
forces are dominating which is why the Reynolds number is used for the comparability
of such flows (see Chapter 5.6 and Equation 11.1). Generally, the Reynolds number is
related to the kinematic viscosity v, the pipe diameter d and the mean flow velocity v.

_ UrefXref E
\% \%

Re (11.1)

11.2 Description of laminar flows

The Navier—Stokes equations (5.29 and 5.30) may be solved exactly for some laminar
flows, e. g. in straight pipelines where Re < 2300. The so-called Couette®-Poiseuille®
flow is widely described as a simple solution. We roll up our sleeves and determine the
velocity profile in a plane entirely filled channel of height B that extends infinitely in the
x- and y-directions. The bottom remains stationary, whereas the lid moves with velocity
u(z=B) = ug. We write down the Navier-Stokes equation for the x-component. Remember,
we are dealing with a laminar flow.

—tu—+v—tw—=——=—"—"4+V| 55+t =5+

du du Jdu du 1dp ’u d*u  d%u
o o TV ay T T Tpax V(axz 9y az2> (112)

The individual terms are:

° % local derivative of the velocity as a function of time. However, the flow is to be
steady-state, i. e. it does not change with time. Therefore, the term becomes zero.

A Maurice Marie Alfred Couette %1858, Tours, France 11943, Angers, France
B Jean Léonard Marie Poiseuille 1797, Paris, France 11869, Paris, France

© The Author(s) 2024
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° ug”. u is definitely not zero; after all, the water is to move in the x-direction. But

since the channel is infinitely long in the x-direction, the velocity component will not
change in this direction. % and thus the entire term, becomes zero.

oV a” Since the plate channel is infinite in both horizontal spatial directions, the velocity
gradient is 3— = 0; likewise, the component in the y-direction is v = 0.

e The term w L also vanishes because the vertical velocity component w in the laminar
steady-state ﬂow must be equal to zero (no fluid can flow through the plates).

The left side of the equation is therefore zero.

e However, — 9P cannot be omitted because a pressure gradient in the x-direction must

p ox
exist. How else would the fluid flow?

e 2
o If @ =0, then the second derlvatlve % must also be zero.

° The above also applies to a 2.
e However, it is conceivable that u, the velocity component in the x-direction, changes

with respect to the channel height. The Velocity at the bottom plate is zero and on
top it is ug. The second partial derivative ‘3 22 also remains. And this is a good thing
since otherwise all terms except the pressure term would be zero; in that case, this
pressure term would have to disappear as well in order to satisfy the equation - what

would imply statics.
Thus, we may set up a significantly simplified Navier—Stokes equation for the x-direction:
du 10
yZ4e_29 (11.3)
dz2  pdx

In order to obtain the velocity profile in the z-direction, the equation must be integrated
twice with respect to z. Here we go:

// 82dzd—//lap (11.4)

On the left side, the second derivative is reduced to the first derivative, and on the right
side, the resulting constant is multiplied by z. In addition, the integration constant must
be added. Simultaneously, we divide by v and note that n =v-p.

du 1dp

—dz= C )dz 11.5

5, &= / (77 55T 1> z (11.5)
In the next integration step, the integral of z becomes % and the integration constant

from the first step C; is also integrated; moreover, the constant from this calculation step
is included. We obtain a preliminary description of the velocity profile:

1dp
———=+Ciz+C 11.6
u(z) = 1 ox 2+1z+2 (11.6)
With the above boundary conditions, the constants may be determined. For z=0, u=0
since u(z =0) = 0. The equation reduces to 0 =0+ 0+ C,. This means that the game
is over for Cy: C; = 0. C}, however, requires more effort. We insert u(z = B) = up into
Equation 11.6:
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1 dp B?
=———+C|B 11.7
up nox 2 +Ci ( )
This becomes L 90 B
up p
Cl=————— 11.8
'"B nox2 (11.8)

which again, inserted into 11.6, results in:

_10p2 ug_ 19pB _up L9pz ,_p (11.9)

u(z)_n8x2+§z n8x2z_ Bz+n8x2 ¢

Thus, we obtain a parabolic velocity profile for the channel. Let’s find out what this
means.

For % =0, a linear velocity profile of a so-called Couette flow results from any given up.
With ug = 0, the so-called Poiseuille flow results for a random pressure gradient whose
maximum velocity is obtained by taking the derivative of Equation 11.9 with respect to

z and setting it to zero:

du(z) 1 (1 dp !
N L S 11.1
dz dz <2n 8xZ(Z B) (11.10)
The product rule leads to:
14 14 10 |
— P g+ 2L — %P _p)Lo (11.11)

Tt T moox
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It can be clearly seen from 2z — B = 0 that the coordinate corresponding to the maximum
velocity is z = g. With z = g inserted into Equation 11.9, the maximum velocity of a
Poiseuille flow is finally obtained:

Umax =

1 dpB (B 10

i Ay ) . (11.12)
2n dx 2 \ 2 8n dx

The mean cross-sectional velocity i@ of a Poiseuille flow (noting that ug = 0) is obtained
by the integration of Equation 11.9 with respect to the channel height and the division
by B:

_ 1 _1318}72 _19p32
u—E/u(z)dz—E A EE(Z —Bz)dz—ﬁa/o (22 —Bz)dz

1 dp {13 B21"

= 28 ox 3‘ZL+C

(11.13)

With C =0, it follows that g—;’ =0, since otherwise water would flow without a driving
force. We obtain:

3 2B 3 3
1 dp[z2 BZ|" _ 1 Jp[2B° 3B :_L@BZ (11.14)
2BTI Ox 0 1211 dx

3 2

6 6

ﬁ:

Thus, the mean velocity corresponds to i = %umax.

11.3 Wall shear stress in pipe flows

In Chapter 5.7, the Bernoulli equation was derived from the Euler equation, which does not
contain terms that account for friction. The strength of the Bernoulli equation is evident
in that numerous tasks may be solved by simple means via these clear relationships. The
Bernoulli equation brings structure to complex fluid-mechanical problems. However, there
is no such thing as loss-free flow, and there are very few cases in which friction may be
neglected.

The following elaborations are based on the idea that energy losses must be accounted for
by another descriptive formula. Thereby, the Bernoulli equation “shrivels” to summing up
the energies at various cross-sections of the flow. The introduction of the head loss term
Ae = Jg -L is connected to the names of DalrcyC and WeisbachP. Therein Jg is the slope
of the energy grade line and L the flow distance (see Figure 11.1). For now, we write a
relationship between slope of the energy grade line and velocity head and introduce the
friction coefficient fp. The explanation will become apparent in the following pages.

_beL2

_Jo 11.15
D g (11.15)

JE

Generally speaking, energy is dissipated in flow direction between two cross-sections, i. e.
flow-mechanical energy is converted into heat Ae (see Figure 11.1).

€ Henry Darcy, %1803, Dijon, France 11858, Paris, France
D Julius Ludwig Weisbach, %1806, Mittelschmiedeberg, Germany 11871, Freiberg, Germany
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Figure 11.1: Pipe flow considering losses.

We describe the gradient (V) of the piezometric pressure height (see also Chapter 5.7)
along the coordinate s with the slope of the energy grade line Jz®:

1 dp dz
= —Jg = — —

Vppiezometric ap
pg pgds ds

(11.16)

The gradient of the piezometric pressure height comprises the variations of pressure and
geodetic height. Since the pipe cross-section remains constant, the variation of the velocity
height need not be included in the equation. The energy loss Ae is obtained later via
multiplication of the slope of the energy grade line by the corresponding flow distance L.
Figure 11.1 already indicates the law of momentum. In a pipe with constant diameter,
the momentum fluxes on both sides have the same magnitude and are mutually opposed;
hence, they cancel each other out. The force balance reads:

d dz
pQu+/pdA_PQu+/<p+dl:dS)dA-f—/pgdstdA-l-/TWdAlateral area (11.17)

All that remains is the change of the pressure along the flow distance ds. When we set the
averaged values over the cross-section Apipe = RT, or over the lateral area Ajateral area =
2R7mds, the result is:

d d
0= d—pdsR2n+pgR27rdsd—Z+1W2R7rds (11.18)
) S

In the next step, we divide by ds and the force balance is written at the differential
element:

d d
0= —pR2n+pgR27r—Z+rW2R7t (11.19)
ds ds

Now we solve for the wall shear stress Ty and factor out the area.

R’m (dp dz R (dp dz
_ dp 4\ _ _R(dp d 11.2
o 2R7r<ds+pgds> 2 (ds+pgds (11.20)

E The coordinate z points upwards. Therefore, the direction of the slope of the energy grade line is
opposite to that of a positive gradient of the geodetic height.
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Equation 11.20 may be simplified still further with the Expression 11.16:

R
w :ngJE (11.21)

For now, we have merely established a relation between wall shear stress and slope of
the energy grade line. This can be summarised using Formula 11.15 and the substitution

D =2R: ) 2
Rfpu D fp u /o 2
Ty =pgIRM _ 5, 2/oM /D 11.22
WPy 0 TP8 T D ag PR (11.22)

11.4 Hydraulic losses of laminar flows

Fundamental differences between laminar and turbulent flows were dealt with in Chapter
6. Newtonian fluids such as water are characterised by the linear relation between velocity
gradient and shear stress (see Chapter 3.4.11). This material characteristic has already
been included in the Navier-Stokes equation (5.29) with the constitutive equation (5.21).
The coefficient that establishes the linear relation between T and % is the so-called dy-
namic viscosity 7. According to Equation 3.17, the following applies to the coordinate

direction n, which faces perpendicularly away from the wall:

T= n% (11.23)

If the radial coordinate r with the origin in the pipe centre is introduced, the Newton’s
shear stress approach with the direction of r opposite n reads as follows:

u

T:—ng

(11.24)

This relation is inserted into Equation 11.21, which describes the wall shear stress with
r =R, so that we obtain:

du  pg
—=—=rJ 11.25
or 2n e ( )
Next, we integrate Equation 11.25 with respect to r in order to arrive at the velocity
distribution u(r):
du pg
—dr= | ——=rJgd 11.26
/8r " / an ECT ( )

For the velocity component u in the main flow direction, which is dependent on the radial
coordinate r, we obtain:

2

pgr

=———Jg+C 11.27

ulr) =58 e+ (11.27)

At the wall, the no-slip condition applies, i. e. u(r = R) = 0; in this way, the integration

constant may be determined:

pg R?

c=E8%

2n 2k

Inserted into Equation 11.27, the velocity distribution within the pipe becomes:

(11.28)
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u(r) = P& (R = ) Ji (11.29)
4n
Expressing the kinematic viscosity as the quotient of dynamic viscosity and density, i. e.
V= g, and substituting this into Equation 11.29, the maximum velocity in the cross-
section centre (r =0) is calculated as:

Umax = %RZJE (11.30)

In order to obtain the mean velocity, the velocity distribution must be integrated over
the cross-section and divided by the cross-sectional area. Here, the Jacobian factor r (see
Equation 7.58) must not be forgotten.

~ 1 2r R 1 2r Rpg 5 5
i= ﬂ/o /0 u(r)rdrdg = ﬂ/o /0 an (R* —r*) Jgrdrd¢

R
1 gJg /R ) 3 1 gJg [R?FP 7+
=—>Log [ (Rr—r)dr=—2EL - 11.31
Rex av 2F Jy Br=r) =50 15 1, (11.31)
_ gl [(RR RN 11 gl R glp g
R? 2v 2 4 R22v 4  8v

If we solve for Jg and insert the derived relation into the so-called Darcy-Weisbach equa-
tion (11.15), we thereby obtain with the mean flow velocity u = a:

udv  fp u?

— == 11.32
gR*> D 2g ( )
Rearranging for fp yields:
u8v(2g)(2R) 32v  64v
=" == — 11.

fo gR?u? Ru Du (11.33)

And finally, substituting the expression for the Reynolds number Re = %:

64

=— 11.34
/o Re ( )

The friction coefficient fp and the velocity profile of a laminar pipe flow may be derived
directly by considering the forces involved.

11.5 Hydraulic losses of turbulent flows

Due to the chaotic properties of turbulent flows (see Chapter 6), the derivation of fp via
the linear relation of the wall-normal velocity gradient and shear stress is not possible.
Because of velocity fluctuations, stresses also occur within the flow, which, when time-
averaged, are referred to as Reynolds stresses. When including these stresses in the law of
momentum, a formulation for fp may be set up via what is known as Prandtl’s’ mixing

F Ludwig Prandtl, «1875, Freising, Germany, 11953, Géttingen, Germany
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length approach and the logarithmic law of the wall. For the interested reader, reference
is made here to Appendix A.3, though we use the equations ultimately defined by Prandtl
and his assistant Nikuradse®. We refer to Figure 11.1, which shows the head loss Ae. As
depicted therein, we write the terms as a balance between the energy heights on both
sides of the equation since the “lengths” on the right and left sides are equal.

2

2
v r ‘
pg 28 pg 28
With v; = v,, we solve for Ae:
Ae:Z1—Zr+ﬂ_&:_A <p+z> (11.36)
pg P& pg

With a flow through a pipe that has a constant cross-sectional area, the head loss Ae
corresponds to the difference between the piezometric pressure heights —A (& +z>. As
in Chapter 11.4, we express Ae according to Darcy-Weisbach with the friction coefficient

Jp- ,

L
Ae— DL U
D 2g

Measurements have shown that, due to the turbulent fluctuations normal to the flow
direction, the velocity profile of a turbulent flow is much wider than in a laminar flow
(see also in particular Appendix A.3). Fast fluid goes further toward the wall, which is
why the wall itself and the description of the flow at the wall gain importance (see Figure
11.2).

(11.37)

2 T .
laminar e
turbulent
1.5t
o]
~
o 1
=
)

1-r/R

Figure 11.2: Velocity profile of laminar and turbulent (the latter time-averaged) flows, each at mean
velocity @i =1.

G Johann Nikuradse, x1894, Samtredia, Georgia 11979, Géttingen, Germany
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Experiments have shown that a viscous sublayer, as it is called, forms directly on the
wall. Figure 11.3 illustrates the context. This viscous sublayer forms a kind of a sliding
vy zone vy

vy
| turbulent
V4
cr

Figure 11.3: Microscopic view of a flow in proximity to the wall. Hydraulically smooth wall on the
left, transition region in the middle and rough wall on the right.

turbulent

turbulent
, zone

surface for the turbulent flow; here, the gaps (possibly microscopically small) between
the uneven spots are filled. It is therefore essential to determine, whether or not the
velocity fluctuations of the turbulent core zone reach the uneven spots of the wall. In the
measurements, the relationship between friction coefficient fp and relative roughness rg
(determined by the quotient ry = %), was empirically determined by adhering sand grains
of different sizes k; onto smooth pipe wallsH.

In our thought experiment for turbulence (see Chapter 6), this would mean that people
fill the boundary area of the pedestrian zone (with the open doors of the department
stores) while they make virtually no progress (see Figure 11.3, left). There is hardly any
possibility of changing from one layer to the other. Those in the “turbulent core zone”
will not be bothered by the store doors if the thickness of this viscous layer exceeds the
projections. We're talking about the smooth wall; here, the friction in the entire cross
section is largely dependent on the viscous behaviour close to the wall. The thickness of
this viscous layer is determined by the degree of turbulence, i. e. the Reynolds number,
since it influences how closely the fluctuations normal to the wall actually approach the
wall. You may imagine that the greater the turmoil, the more the people in the turbulent
core zone are pushed to the boundary. Therefore, the friction coefficient for smooth walls
may be described on the basis of the research by Prandtl and Nikuradse!.

1 2.5
i 210g<Re\/E> (11.38)
If the viscous layer of people proceeding only at a snail’s pace at the boundary of the
flow were so thin that even fast runners at the boundary of the turbulent core zone bump
against the uneven spots of the wall again and again, we are dealing with a rough boundary
(see Figure 11.3, right). The viscosity or the viscous sublayer plays only a minor role. In
a flow with a rough boundary, friction is dependent only on the predominant roughness
relative to the cross-section”.

1 kg
Vi = —2log (3.7D> (11.39)

H The regularity of the uneven spots of the pipe wall has an impact on the resistance behaviour
of the flow. In the description of the natural roughness, we still refer to the equivalent sand grain
roughness k; contrary to the actual measurable roughness k. We’re not distinguishing further and
deal with the equivalent sand grain roughness ks in the following discussion.

T Please see Appendix A.3 for a detailed derivation.
J For the derivation, please refer to the Appendix A.3.
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Colebrook® proposed to introduce a transition region which is pertinent for the most
technically relevant flows (see Figure 11.3, centre). Here, both viscosity and roughness
influence pipe friction:

1 2.5 ks
NS 2log <Re\/E + 3.7D> (11.40)
Please note that no explicit solution for fp is possible in Equations 11.38 and 11.40 and
that you must solve them iteratively™. The instructions for finding the friction coefficient
fb step-by-step are given in Figure 11.4M. The provided code first solves the equation for
the transition region and then, if there are hydraulically smooth or rough walls, skips to
the associated Equations 11.38 and 11.39. These equations may be applied to arbitrary
cross-sections via the introduction of the hydraulic radius, the quotient of area and wetted

perimeter.
A D1rn D
R — 2 - = 11.41
WP 4Dn 4 (11.41)
Figure 11.4 shows the Prandtl-Colebrook algorithm, i. e. the procedure for calculating
the friction coefficient according to the above Formulas 11.38 to 11.40. Figure 11.5 shows
a simplified Moody diagram to illustrate the relationship between fp and the Reynolds

number Re.

Apart from the derivations, everything in the current discussion relates to the
one-dimensional approach; therefore, we will identify the cross-sectional velocity
by v.

Calculation of friction coefficients

We switch on the pocket calculator to determine the friction coefficient fp and the slope

of the energy grade line Jg = %3% for four different outflow and pipe configurations. The

kinematic viscosity for the various temperatures has already been taken from Table 3.2.

| [D [m]|k, [m] |0 [m’/s] |T [°C]= v [m?/s] |

1/0.10 [1.0x 107°]5.0 x 10|10 = 1.3081 x 10~°
212.0 |1.0x1072(0.60 10 = 1.3081 x 10~°
3112 [5.0x107%4[1.2 20 = 1.0068 x 10~°
412 [5.0x1073{1.2 20 = 1.0068 x 10~°

In Equations 11.38 and 11.40, fp occurs both on the left and on the right side of the
equals sign. In the initial step 0, we set fpg = 0.02 on the right side and thus obtain fp

K Cyril Frank Colebrook, 1910, Swansea, Wales, 11997, Worthing, England

L In many standard works, all of which were written long ago, this approach was deemed excessively
labor-intensive. Nowadays, every reader of this book has a mobile with a processor that is more
powerful than the control chips on the Apollo missions. We therefore do not accept excuses for
“more fit for use” formulas.

M The open source library also contains, of course, a routine from which the friction coefficient fp
for any parameters may be determined.
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INPUT

cross section (‘circular', 'trapezoidal', 'parabolic'): cs
cross section values (d, [b,m], a): ¢sP [m, -]
flow depth: y  [m]
discharge: Q [m¥/s]
equivalent sand roughness: ks [m]
kinematic viscosity: v [m?%s]

u4R

Re = —2
v

64
Re < 2300 > lami =—
—{ e aminar }— o Re

Re > 2300 - turbulent

! k i k : k :

I Re y/fp——<5-V8 | 5:-V8<Re-/f——<70-V8 | Re\/f——>70-V8 |

' 4Rhy H 4Rhy H 4'Rhy |

R S o e
i smooth i transition zone i rough '

_________ - | T T TR

b1 . <2,51> o1 . <2,51 L ks > L1 . < ke ) i
 —— = —2lo | — = —-2lo . —= —2lo _ !
A *\Revo/ i Vo *\ReyF, ' 3714Ruy) || Jfy 8\3,71- 4Ry, |

Figure 11.4: Prandtl-Colebrook algorithm for calculating the friction coefficient fp.

on the left side. In the next iterative step, we insert it on the right side and obtain a new
result for fp jefr, which is inserted on the right until fp jef; = fD right- By processing the
individual steps of Figure 11.4, we arrive at the following (intermediate) results:

| [Re | /D1 | /D2 | /D3 |comment e |
1487 0.1315 no iteration necessary (laminar)[2.714 x 106
2(2.920 x 10°]0.01412|0.01464|0.014 58|smooth — 0.01454|1.352 x 1073
3(1.265 x 10]0.01645[0.01649(0.016 49 7.885 x 10~
4[1.265 x 10°]0.028 84[0.028 820.028 82 rough — 0.02874 |1.374 x 103
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Figure 11.5: Moody diagram — illustration of the relationship between fp and Reynolds number

Re.
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Free outflow at the end of a pipeline

The purpose of this task is to practice the procedure for determining the discharge in a
pipeline system. The following dimensions are given:

|h=5.0m|L =2500m|d = 1.5m|k; = 0.2mm|T = 20°C]

Figure 11.6 shows a large container with a pipeline that ends with a free outflow. Think
about the boundary conditions for the energy diagram. Those who are up to it may sketch
it themselves; those who are less sure may follow the descriptions, step-by-step, in Figure
11.7.

=L

) L

N

Figure 11.6: Example of pipe flow.

1. The water level in the container indicates the piezometric pressure height; in the
container, v~ 0 — % ~ 0, which is why hydraulic and energy grade line are to be
drawn at the water level.

2. We also know the piezometric pressure height at the outflow; it lies in the pipe axis.
It’s the same as in Figure 8.5. Preferably, we place a small green dot there.

3. At the free end of the pipe, the water has the same velocity as in the middle, which
results from the continuity condition. It is mandatory to draw the energy grade line
at the end by % above the hydraulic grade line.

4. The energy grade line may be connected from there to the energy grade line at the
water level of the container since only pipe friction losses occur and the slope of the
energy grade line is unchanged.

5. Since ;—2 is constant throughout the entire pipe, the distance between hydraulic and
energy grade line also remains constant. We may therefore draw the hydraulic grade
line in parallel with the energy grade line from the pipe’s end to the container and
enter the individual quantities.

6. At the container, the hydraulic grade line drops downward by %. A portion of the
piezometric pressure energy is converted to kinetic energy, allowing the water to flow.

7. By marking the hydraulic losses Ae at the end of the pipe, the energy diagram is
completed.

The energy balance may quite easily be established with the energy diagram from Figure
11.7. The sum of the quantities on the left side of the system (with index [) is identical
to the sum of the quantities on the right side (index r).
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Figure 11.7: Energy diagram for the pipe flow example.

2 2

v V
g+ 2Ly P T A (11.42)

pg  2g pg 28

With the inserted quantities and Ae = f?T-L%’ it follows that:

vi | fp-2500 v;

0= 28 15 2g

(11.43)

The equation includes two unknowns; we cannot solve for them directly because we need
the velocity v for the Prandtl-Colebrook algorithm. But we will succeed! We estimate
Jp =0.02 and calculate a first approximate value for v,. The equation

2
v 0.02-2500
50=-" (14— 11.44
2g< s ) (11.44)

yields v, = 1.69m/s and hence Q =0.75% - 7-v, =2.987m?/s. With d = 1.5m, Q =2.987m?%/s,
ks =2x10*m and v = 1.01 x 107%m?/s, we obtain fp = 0.0132 at Re = 2.52 x 10° and
% =1.33 x 10~* with the equation for the transition region.

Well, the estimate wasn’t that bad, but this fp will certainly yield a quite different flow

velocity. We therefore insert the newly obtained fp into the energy equation.

5.0

2 .
v (1 001322500) (11.45)

~ 2 15

This results in v, = 2.064m/s, and therefore Q = 3.648m?/s. Well, we have no choice but to
completely reprocess the algorithm with this newly found discharge value. We start again
at the very top in Figure 11.4 with the same input quantities but with Q = 3.648m?/s.

With the Reynolds number Re = 3.08 x 10° and the equation for the transition region, we
obtain fp =0.01312 and Q = 3.660m?/s. In the end, the value for the friction coefficient
will converge to fp = 0.01311, which confirms the value of fp obtained above, and the
discharge value of Q = 3.662m3/ s subsequently calculated with sufficient accuracy. Those
who already feel confident enough may elegantly solve this problem by means of Octave.
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11.6 Minor (local) hydraulic losses

The friction coefficient described above reflects hydraulic losses that occur along pipes.
Both in the theoretical derivations in Chapter A.3 and in the underlying physical exper-
iments, a fully developed flow is assumed. This means that no changes in flow direction
occur. In a turbulent flow, this happens with a flow distance of approximately 20d where
d is the pipe diameter.

In practice, extremely few pipelines extend out dead straight; installations such as bends,
valves or changes in cross-section are found extensively. This chapter covers these locally
limited effects on the hydraulic losses which, due to their squared dependence on kinetic
energy, are also related to the velocity height. The individual values will not be listed
here. They may be taken from the pertinent tables such as [52, 4, 62] and the technical
guidelines of the various associations (IAHR, IWA, etc.). Illustrative sketches associated
with the following minor (local) losses may be found in Figure 11.8.

Inflow loss

As already shown in Figure 9.2, the boundary streamline affects the inflow into a pipe.
Due to the flow constriction at the start of the pipe, the fluid must be accelerated to a
higher velocity than v; the constriction causes recirculation at the wall, which brings about
further losses. Only after approximately 20 diameters, the flow is fully developed and the
loss may adequately be described via the friction coefficient fp. The energy height that
was dissipated up to this point is represented by Aey and the dimensionless loss coefficient
by K;.

Outflow loss

With the continuity condition, one may easily deduce that the fluid at the end of a
pipeline is still flowing, while v — 0 in the container with a much larger cross-section.
Because of the turbulence during mixing in the receiving container, the hydraulic energy
is completely dissipated; hence Ko is always set to one. A smaller value may be used in
exceptional cases only in very small intermediate containers. But this loss coefficient is
essential for the free outflow, too, because at the end of the pipe the kinetic energy still
exists; it then dissipates in the free jet.

Bend loss

In flow deflection, losses occur in addition to pipe friction, which are described by co-
efficient Kp. Kp is dependent not only on the deflection angle but also on the radius of
curvature.
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inflow loss Ae; = KI%

Z

= |TKyv?2g

~ o ~

outflow loss coefficient Ko 4

2
outflow loss Aep = E—g

T~

-~
~.
-~

Il ~‘EI{0V2/2gv

-

bend loss coefficient Kp
bend loss Aeg = KB%

~.
~.
~.
~. |
~

Tl JKv2g
| S

-
-

: \\\

|

!

~~.

valve loss coefficient Ky

2
valve loss Aey = Kv%g

~.
~.
~.
~. |
~

‘*~\\\:\':II\(VVZ/2g
. 7=

1=~
1

~

S~
-~

—

loss coefficient for

expansions Kexp
2
. o Vi
loss by expansion Aeeyp = Kexpag

loss coeflicient for

constrictions Kc.ons

V2

loss by constriction Aecons = Kconsﬁ
I

IKconssz/ 2¢g

1S f o~
1=~ T~
\\
| =~
~.
|
|

@

Figure 11.8: Minor (local) loss coefficients.

Valve loss

The word “valve” is a general description for flow control devices. While shut-off valves,
such as ball or butterfly valves, are designed for the open or closed state, regulating
devices like gate or globe valves may impart variable losses to the flow, thereby adjusting
the discharge. Theoretically, the loss coefficient Ky takes values in the range of 0 < Ky < oo.
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Expansion of cross-section

Minor (local) losses occur in cross-section expansions. The associated equation, with which
the energy losses may theoretically be derived via the law of momentum, is attributed to
the Frenchmen Borda™ and Carnot©. For the cross-section expansion, it is essential to
keep in mind that the loss coefficient Koy}, is related to the downstream cross-section 2
(see Figure 11.8). These minor (local) losses occur only there.

Constriction of cross-section
In the cross-section constriction, minor losses are of course also pertinent. Imagine the
convergence of three highway lanes to a single lane. For the constriction, it must also be

kept in mind that the loss coefficient K.qps is related to the downstream cross-section 2.
In my opinion, you are ready to start a pipeline experiment.

Pipe hydraulics

For a clear demonstration of the overall loss-affected pipe flow, we use the test rig of Figure
11.9. The level gauges, which are arranged in the background (the narrow, bright-reddish
strip) and connected with the pipe via small holes, allow the tracking of the course of the
hydraulic grade line. A magneto-inductive flowmeter is shown in the photo (bottom right).
Let’s check whether all the equations, pipe friction and minor (local) loss coefficients®
yield an acceptable result for the discharge.

H =328m|H, —0.80m |l =4.40m |d=15cm|k,=5.0x10°m
Ki =05 |Kpssc = 0.07|Kgooe = 0.14|T = 20°C

First, we draw the energy diagram shown in Figure 11.10. The water levels in the container
indicate the piezometric height. The flow velocity in the containers is negligibly low so
that the energy grade line (EGL) lies on the water level. The hydraulic grade line (HGL)
extends to the container water level at the lower end of the pipe. The EGL may be drawn

a distance of % above the HGL. This last drop of the EGL to the water level of the lower

container represents the outflow loss Kog—z. I recommend that you mark the “height of
arrival” of the HGL anéi EGL at the outﬂgow. The distance between the HGL and EGL
is the velocity height ;—g, which is constant throughout the pipe because the diameter d
does not change. Thus, the HGL and EGL must extend in parallel along the pipeline.
You may transfer the distance selected to the pipe inlet of the head container. This is

to be the start of our journey. At first, there is a downward drop of the EGL by the
inflow loss Aeg = KI%. Immediately downstream, there awaits the next minor loss, the

45° bend. There is another downward drop of Aegsse = KB45o%. It doesn’t matter how

N Jean-Charles de Borda %1733, Dax, France 11799, Paris, France
O Lazare Nicolas Marguerite Carnot %1753, Nolay, France 11823, Magdeburg, Germany
P The local loss coefficients are taken from [52].
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Figure 11.9: Test rig for pipe hydraulics from [44].

large the drops are shown in the drawing. All that matters is to mentally walk along
the pipeline when drawing the energy diagram and to note all conspicuous features. The
energy grade line has the same gradient everywhere, because with unchanging boundary
conditions for friction (fp, v and d, see Figure 11.4), the slope of the energy grade line Jg
remains constant. The diagram contains another drop for visualising the valve loss which,
however, is to be set here with Ky =0 (ball valve completely open). Following the flow
with the slope of the energy grade line Jg, the next 45° bend results in another minor
Vv

loss of Aegsso = KB4502—;, and subsequently of Aepgge = KBQOO;—;, before the energy grade
2
V

line drops by % to the container water level at the edge of the container. As already
mentioned above, the hydraulic grade line (HGL) runs at a constant distance parallel to
the energy grade line (EGL).

The problem is actually solved now. From now on, all that must be done is to translate
the energy diagram into an adequate formula. Previously, the “lengths” on the left and on
the right side have been set equal. We will now try another method and start a mountain
hike — in this case, on the path marked in red.

/oh v

We start our hiking tour at H; = 3.28 m, jump downward by Ae;, descend T 3 metres

along the first path section of length /; to the first bend, and then hop down by another
KB45o§ metres. We continue downwards, leaving out the valve loss, until after a path
distance of I, and a descent of %;—2 metres, the next bend appears. Again, KB450%
metres are overcome. The following section has a constant gradient; we descend along
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Figure 11.10: Energy diagram for test rig from [44].

this third section by a total of %;—Z metres. A last bend with a height step of KBgooﬁ

2g
fo v ..
42 Arriving

at the container, we must jump down by ;—2 to our target height of H, = 0.80m above the
laboratory floor. Mathematically expresseé’, our mountain hike reads as follows:

metres follows; then we are on the home stretch of length I4 at a gradient of

2 2 2 2 2 2 2 2 2

V foliv % ol v v folzv V folyv V
H—K— -2 Kpiso— — 22 Kppee— B3 g - IPH g

IT™oe ™ a2 B2 d 2¢ "B¥2g 4 2¢ TP"2g 4 2¢ 2g
(11.46)

By combining the pipe friction losses through [ =I; + 1/, + I3+ /4 and factoring out the
velocity height, Equation 11.46 becomes noticeably clearer:

2
v l
Hl_@ <fz) +K; +KB450+KB45°+K890°+1> =H, (11.47)

With the insertion of the values, Equation 11.47 becomes

2 4.4
3.28 — Q 3 /o 4+0.54+0.074+0.074+0.14+1 ) =0.80 (11.48)
=z 8
and further: )
80 fpd.4
2.48 — 1.78 | =0 11.49
0.015%72g <0.015 + ) ( )

Equation 11.49 can be rearranged and solved with the initial friction coefficient fp =0.02:

2.48.0.015%n?
0= \/ T8 (11.50)

8 (%0224 1 1.78)
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This yields Q =4.458 x 10~* m3/ s, and we start the Prandtl-Colebrook algorithm by run-
ning the routine pc.m.

Octave determines a value of 0.0299 for fp, which is based on a discharge of Q = 4.458 x
10~*m3/s. We go back to Equation 11.49 and insert fp = 0.0299.

The balancing of the energies results in Q = 3.795 x 10~#m3/s; however, we do not know if
the fp obtained for Q =4.458 x 10~*m?/s is also valid for Q = 3.795 x 10~*m?/s. Therefore,
we call the Prandtl-Colebrook routine — but now with Q = 3.795 x 10~*m?/s.

This time, the equation for the transition region results in fp = 0.0304, which is very close
to the estimate from the previous iteration step where fp = 0.0299.
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The output result is Q = 3.769 x 10~*m3/s. But we are not yet finished at this point. We
still have to prove that fp holds for this discharge as well.

The Prandtl-Colebrook algorithm confirms that fp = 0.0304. This makes the discharge of
Q =3.769 x 10~*m?3/s official. By the way, the measurement by means of the MID resulted
in 0.365L/s.

11.7 Turbomachines

11.7.1 Pumps

Pumps supply the system with hydraulic energy. Centrifugal pumps that rotate about
a motor-driven axis take in water axially at the so-called suction side and increase the
pressure level via rotation of the blades. The rotatory motion of the blades pushes the fluid
outwards by centrifugal acceleration; the fluid outflows radially. The pressure is further
increased by a gradual cross-section expansion at the outlet according to the Bernoulli
equation. With the same diameter upstream and downstream from the pump, the pressure
increase corresponds to the increase of the total energy Hp. Equation 11.51 specifies the
motor power that is required for the supply of Q by Hp (see Chapters 3.4.5 and 3.4.3).
Here, the right side of the equation is divided by the efficiency 1p < 1 because the (electric)
power to be provided must compensate for the efficiency loss.

1
Pr=——pgOHp W] (11.51)
np

11.7.1.1 Pipeline characteristic

In a pipe system, the hydraulic losses are a function of discharge. This is referred to as
the pipeline characteristic that results from the energy equation taking the losses into
account. For the energy diagram in Figure 11.11, left, the equation may be set up as
follows if the outflow loss Ko =1 is included in the sum of the minor losses:

2 / n
HP:(H,H,HA%g <f2+21(,-> (11.52)
i=1

Figure 11.11, right, shows an example of a pipeline characteristic. The delivery head starts
at Hgeo = H, — H; for Q =0 and then increases quadratically with Q.

Q After the experiment was set up, I could hardly wait to compare the calculated and the measured
discharge quantities. But it did not work! I calculated for hours, I doubted the MID and myself. I
modified the loss coefficients and changed the roughness of the pipe wall to very smooth. But to
no avail. The measured discharge significantly exceeded the calculated one. At some point, I asked
the craftsmen whether they really had installed a 0.5 —inch pipe. “Yeah, sure”, was their reply; and
they were right. Later, I filled such a pipe with water and determined the diameter to be 1.5cm via
its weight. This corresponds to approximately 0.59 —inch which is greater than I expected. Since
then, I pay attention to the diameter very carefully. ..
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Figure 11.11: Energy diagram of a pipe flow with pump (left) and pipeline characteristic (right).

11.7.1.2 Pump characteristic

The characteristic of a pump shows the relation between delivery head and discharge. It is
easy to comprehend that the delivery head of a pump decreases with increasing discharge.
Dependencies develop as shown on the left side of Figure 11.12. From the pipeline and the
pump characteristic, it follows that one pump in one system can supply only one single
discharge; this is referred to as the operating point. Normally, regulation is possible only
by imparting additional hydraulic losses to the pipeline characteristic, which should be
prevented for reasons of energy efficiency™. However, this may be achieved by valves, for
example, in which case it must be ensured that they are installed downstream from the
pump in order to avoid the risk of cavitation. Initially, it is not a problem for centrifugal
pumps to operate against fully closed valves; however, heating of the fluid can lead to
trouble. Another possibility for reducing the discharge of a pump is to return a portion
of the water via a bypass before the pump. In various pump models, different impellers
may be installed in order to realise adjustments to the volume flow. In past years, variable
speed pumps that cover a wider outflow spectrum at a concrete delivery head have been
developed on a broader scale. The Hp-Q dependencies are represented with their respective
efficiencies in what are known as pump characteristic field diagrams (see Figure 11.12,
right). Herein Hnxpsp is the Net Positive Suction Head (NPSH), which depends on the
discharge. This value depicts the necessary pressure upstream from the pump in order to
prevent cavitation from occurring (see Chapter 8.7).

pipeline
characteristic

charac-
teristic
»Q

Figure 11.12: Example of a pump characteristic and characteristic field.

»Q

R Therefore, it is often advisable to have the pumps run only for a certain period of time and to
provide a container for inflow and outflow buffering.
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Determination of a pipeline and a pump characteristic

Anybody who is prepared to pay 20 € for an aquarium pump and a hose may determine
the characteristic of a pump in a simple experiment (see Figure 11.13). The hose has a
diameter of d = 11mm® and a length of / = 2.0m with a roughness of ks = 5.0 x 10~%m.
For the temperature, T =20°C may be assumed; for the inflow loss, K; = 0.5 is presumed.

Figure 11.13: Experiment for the determination of a pump characteristic.

The pipeline characteristic is obtained by taking into account the discharge-dependent
losses.

0’ /ol | ¢ 0’

Hp=H — | = Ki | =H, —— = (181.82 1.5 11.53

P geo+(d2_n>2 2g d +i:21 geo+1.772><1077( fD+ ) ( )
7) .

With the offered Octave-script for calculating the friction coefficient fp, the relation
between discharge and head loss listed in Table 11.1 is obtained from the above equation.

Table 11.1: Pipeline characteristic of the hose system from Equation 11.53.

0 [m’/s]]2.0x107°[4.0x 107°[6.0 x 107°[8.0 x 107°[10.0 x 107[12.0 x 10>
Ae [m] [0.0148 ]0.0764 [0.157  [0.262  [0.390 0.542

A maximum delivery head of Hpp—o = 0.74m was measured (82.2cm from the table top
minus the water level of approximately 8 cm in the lower container). The maximum dis-
charge for Hgeo = 0 was determined, without a hose and by means of a stopwatch and
a measuring cup, as Qmax = % =1.33x 10~*m?3/s. The discharges at different geodetic

S .. .though 10mm is specified. ..



11.7. TURBOMACHINES 167

delivery heads, which were imparted to the system by positioning the outflow increasingly
higher, were of course measured with a hose, i. e. including the pipeline characteristic.
Table 11.2 lists the measured values of the operating points. The third row shows the
hydraulic losses that occurred at the corresponding discharge values (see Formula 11.53);
the fourth row shows the sum of head losses and geodetic delivery head. These delivery
heads are depicted in Figure 11.14 as small black squares and as a function of discharge.
From these so-called operating points, the solid line, which was approximated via a fourth-
degree polynomial, specifies the pump characteristic.

Table 11.2: Pump characteristic including the hydraulic losses in the hose system. Measured
discharges at different delivery heads.

Heeo [m]]0.00[0.08 [0.18 0.28 [0.38 [0.48 [0.58 [0.68

Q [1x10°m’/s[[13.3]9.80 [8.55 [7.15 [6.17 [5.56 |3.47 [1.92
Ae [m][0 [0.376]0.295]0.214]0.165[0.137]0.060/0.014

Hgeo +Ae [m][0 ]0.456]0.475]0.494]0.545[0.617]0.640]0.694

The various pipeline characteristics are based on the discharge-dependent head losses and
on different geodetic delivery heads. The measured operating points lie fairly accurately
on the associated characteristics.

0.00
0.0E+00 2.0E-05 4.0E-05 6.0E-05 8.0E-05 1.0E-04 1.2E-04 1.4E-04

Q [m¥s]

Figure 11.14: Pipeline characteristics for various delivery heads and experimentally determined
pump characteristic.

This experiment was intended merely to convey the idea of how a pump that operates at
constant capacity behaves in a system with variable boundary conditions (in this case,
different delivery heads). A general example with pumps will provide a fitting climax to
the practical examples.
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11.7.1.3 Parallel pump arrangement

The parallel arrangement of pumps may increase the discharge. However, the pipeline
characteristic teaches that doubling the number of pumps does not automatically imply
doubling the discharge. Two pumps are often arranged in parallel in order to cover fail-
ures or to cope with heavy rainfall events, for example. The parallel arrangement cannot
increase the delivery head. The discharges, that are dependent on the delivery heads, are
added; that is the pump characteristics are ’added horizontally’ (see Figure 11.15).

operating points

Figure 11.15: Pump characteristic of two parallely arranged identical pumps.

11.7.1.4 Serial pump arrangement

Pumps are serially arranged to increase the delivery head. The discharge cannot be in-
creased by means of this setup. The discharge-dependent delivery heads are added; that
is the pump characteristics are “added vertically” (see Figure 11.16).

H, 4
HO/ 1+2]

operating
H,, points

geo

»Q

Figure 11.16: Pump characteristic of two serially arranged identical pumps.
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11.7.2 Turbines

Turbines are turbomachines that withdraw hydraulic energy from the system and convert
it into mechanical energy, which is generally utilised for driving generators to produce
electricity. Considering once again the mechanical work that a system performs outwardly,
or the work that is done to a system from the outside, the equation for the power of a
turbine can easily be derived (see Chapter 3.4.5 and 3.4.3). According to Equation 3.13,
power equals work per unit time, which in the case of a turbine is reasonably expressed
making use of water mass per unit time (i. e. pQ). The theoretically available power of a
turbine is calculated with the gross head, i. e. the difference of head and tail water levels:

PT,theoretical = ngngoss [W} (11.54)

A portion of the originally existing energy (Hgross) is dissipated in the penstock by friction;
the available head is Hr which is also known as Hype¢. Generally speaking, the net head is
the gross head minus the hydraulic losses. The efficiency factor® of the turbine 0 < ny < 1
reduces the power that can be harnessed further.

Pr=nrpgQHr [W] (11.55)

A turbine withdraws energy from the system, which is why it is shown as a drop of the
energy grade line by Hr in the energy diagram (see Figure 11.17).

K

1v2g o

7

Figure 11.17: Energy diagram of a pipeline system with built-in turbine.

When setting up the energy equation, Formula 11.55 is solved for Hr and inserted.

T Hydropower turbines are generally very efficient. They are individually designed for the various
configurations. Therefore, they reach efficiency factors in the range of 85 % to 95 %.
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Prater hydro power plant in Munich

The Prater hydropower plant in Munich has been operating since 2010 and is completely
hidden underground. Its Kaplan turbine has a design discharge of 34 m3/s. The operation
level is at 511.56 m.a.s.l., whereas the tail water may be taken in at 502.06 m.a.s.l.; the
head race tunnel of length 170 m has a cross-section of 4.70 m by 4.70 m.
For the calculation of the friction coefficient fp, we use the hydraulic radius Ryy, which
is determined by the quotient of the flow area and the wetted perimeter (see Equation
11.41):
A 47

Ry, = ik 1.175m (11.56)
The efficiency of the system (turbine, generator, electrotechnical equipment) is given here
as 82 %. Assume that water temperature is T = 10°C and that k; = Smm. The energy
equation, which may be derived from Figure 11.17 with the sum of the individual losses
(incl. outflow loss Y7 | K; = 2.0), reads:

511.56 — 0 fDL+iK— — Hy = 502.06 (11.57)
. l =502. .
A2 2g \ 4Ry, &

0’ Jp-170
9'5_(4.7-4.7)2.25; 41175 T20) Hr=0 (11.58)

The following values result for the design discharge of Qp = 34m?®/s: fp = 0.0199, Ae =
0.329m, Hr =9.500 —0.329 = 9.171 m. With Equation 11.55, a power of

Pr =nrpgHrQ =0.82-1000-9.81-9.171-34 =2.51 x 10°W = 2.5] MW (11.59)

results. This power is achieved only if a discharge of 34 m3/s flows through the turbine
at a gross head of 9.50m. When integrating power with respect to time, one obtains a
physical unit of work, either Nm or kWh (see Chapter 3.4.3). The Prater power plant
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generates 10.5 x 10 kWh electricity in one average year. At 8760 h/a, this corresponds to
a mean power of (Pr) = 1198.6kW. By the way, valuable planning instructions may be
found in the standard reference work Low-Head Power Plants by Mosonyi [30].

11.8 Pipe junctions

At pipe junctions, the flow conditions adjust themselves in such a manner that one single
pressure, or a pressure height, is obtained at the junction. We may again recall the previous
example of a rock concert. If the hydraulic and energy grade line were to extend in one
pipe string so that shortly before the junction a higher pressure prevails than in the node,
then the high gradients would result in more water successively flowing out from that
string. The higher discharge again leads to greater head losses until equilibrium has been
reached. Figure 11.18 shows the flow conditions at a junction by means of an energy

diagramV.
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Figure 11.18: Energy diagram of a pipeline system with junction. ©Christoph Rapp 2017. All
Rights Reserved.

When setting the pressure height at the junction as a boundary condition, the system of
Equations 11.60 to 11.62 is determined. Here, it is of utmost importance to walk along the
hydraulic gradient lines in the hiking tour described above. In this way, the outflow loss

U In purely mathematical terms, for a theoretically chosen Kjunct =0, an upward jump in the energy
grade line, in the direction of flow, may occur if the velocity in the converged pipe is higher than
in the pipes leading to the node. However, this is not physically possible since no external energy
is supplied to the system (see Chapter 3.4.4). However, in reality, hydraulic losses are generated by
the junction of the flow and the associated eddies, which must be accounted for.
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Ko, i. e. the loss of the velocity height, is already taken into account in the pipe strings
upstream from the junction.

07 0F foulh  Of

Hy — — =HGL:yn 11.60
AT AR T A2 d A% junct (11.60)
2 2 2
Pups Qz Q2 fDZZZ Q2
mp T + 5= +Hp— — =HGL; 11.61
Zpump 0g A§2g P A%Zg dy A%Zg junct ( )
2 2
[
HGLjunct_(Q12+7Q2)I(juHct— (Q1~2|-Q2) fosls _ py (11.62)
A32g A22g ds

When using the continuity condition, one obtains three equations with the three unknowns
(Q1,02,HGLjunct ). Finding the solutions for these unknowns is demonstrated by means
of the following example.

Pipeline system with junction

The partial discharges and the pump capacity (np =0.7) are to be calculated for the illus-
trated pipeline system when a discharge of 03 =1.20 m3/ s is to be attained for maintaining
the water supply from the reservoir on the right-hand side.

270m < 1 - g -~ EGL

[Kok, 210m

k=v?/2¢g

[Line data:|Q [m?/s]|l [m]|d [m]|fp [-]|K; [-]]

1 - 2000)0.60 (0.018 |0.30
2 - 1800|0.70 (0.021 |0.30
3 1.20 1300]0.60 |0.023

First, the energy diagram is drawn so that the hydraulic grade lines intersect at one
point; the rest is as usual. HGL and EGL lie in the container at the water level. From

2
there, the energy height initially drops precipitously by the inflow loss Kjk; = K; A%g, then
1
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2
continuously with gradient Jg = A%g fd%‘ over the length /;. In order to reach the pressure
1
o

height at the node, a downward drop from the EGL by k| = e must take place. The
1
following conditional equation results:

0? (fDlll

dq

270 - —
Af2g

+K; + 1> = HGLjunct (11.63)

The equation in the second string looks similar with the exception that, in addition, the
pump supplies energy to the system.

03 (szlz

do

160+ Hp —

+ K+ 1) = HGLjunct (11.64)

Starting from the hydraulic grade line at the junction HGLjunct, the piezometric pressure
height gradually declines to the water level of the right-hand container. Since we move
from the HGLjunct along the hydraulic grade line, we arrive exactly at the water level of

2
the container at 210 m.a.s.l. and have no need to drop down by ;—Z]

(014 02)* fosls
A%Zg ds

HGLjunes — =210 (11.65)

With the known discharge of Q3 = 1.20m?/s, the pressure height at the junction may be
calculated by the equation for the third string:

(01 +02)* fosls 1.22  0.023-1300
=210 =210+45.751
ADg t0283225 06 +

=255.751m

HGLjuner = 210+

(11.66)

The equation that describes the conditions in string 1 (11.63) may now be solved explicitly
for Q].

g 0.30*7%2g
le—: (270 —255.751) 55155000 03+1
(%+Kz+1) (M6 +03+1)

Q1= | (270 —HGLjunct)

=0.604m’/s
(11.67)

From the continuity condition, O, = Q3 — Q1 = 1.20—0.604 = 0.596m3/ s follows immedi-
ately. When this is inserted into the energy equation for string 2 (11.64), the delivery
head and the capacity of the pump may be calculated:

%

HP = HGLjunct - 160+ A%Tg <

fo2la
d>

0.5962  /0.021-1800
+K1—|—1):95.751+ 2 (

1.30
0.35%722g 070 )
=102.52m

(11.68)
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The electrical power Pp that is required for driving the pump is obtained by Equation
11.51:

1 1
Pr= —pg0:Hp = ——pg-0.596- 102.52 = 856.56 kW (11.69)
nr 0.70

11.9 Summary of pipe flow

Figure 11.19 summarises all relevant pipeline system installations in an energy diagram
(see also Equation 11.70).

2 2
l I
Hy - Hp— 0 (fD] 1+KI+KB(1+KV> 0 (fD22+Kexp>

AR2g \ d; A2 \ (11.70)
0% [ fosls .
_14272g d3 +Kcons+KBB+1 _HT:HB
3

This chapter is licensed under the terms of the Creative Commons Attribution 4.0 In-
ternational License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
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11.9. SUMMARY OF PIPE FLOW
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Figure 11.19: Energy diagram of a fictitious pipeline system. (©)Christoph Rapp 2017. All Rights

Reserved.
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Chapter 12
Unsteady pipe flow

12.1 General remarks on unsteady pipe flows

The pressure surge due to changes in the discharge may be compared to a rear-end colli-
sion. When water is abruptly stopped by a valve at the end of a pipeline, this “information”
is not yet available at its inlet. At this location, the steady-state condition is still in effect
and water continues to flow into the pipeline at that time; the water at the downstream
valve is compressed and the pipeline is expanding. The pressure increase resulting from
the compression may propagate only as fast as a solid body wave, which leads to oscilla-
tory periods that are not at all negligible, particularly in long pipelines. The analogy of
the collision in which a moving mass comes to a sudden standstill is obvious. The “infor-
mation” about the accident transmitted to the car drivers who are following is delayed by
the “reaction time”, and so collisions are inevitable.

© The Author(s) 2024
C. Rapp, Hydraulics in Civil Engineering,
https://doi.org/10.1007/978-3-031-54860-4_12
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In pipe hydraulics, the pressure variations due to discharge changes propagate at the
speed of sound of the medium and — normally — reach the other end of the pipeline, where
there is an open (and unaffected) water surface.

Due to the pressure surge in the pipeline, the pressure gradient reverses when the wave
arrives at the reservoir. The compressed water (subjected to stress) flows against the
direction of the original pressure gradient from the pipe into the head reservoir. The
situation in the pipeline relaxes until the pressure wave — now originating from the reser-
voir — reaches the closed device. There, however, further relaxation of the water is not
possible because the closed valve prevents any further flow of the fluid. Accordingly, the
pressure continues to decrease and this information travels upstream at the same velocity.
With the lower pressure wave arriving at the upstream reservoir, the cycle reverses since
the high-pressure gradient is a strong stimulus for the water to flow into the pipe. The
entire process is repeated indefinitely with the Alliévi® method, which is based on the
continuity condition and the unsteady Bernoulli equation (see Chapter 12.2) due to the
conservation of energy. In the method of characteristics, which is based on the continuity
and momentum equations, the pressure variations gradually subside (see Chapter 12.7).
Generally speaking, pipelines can cope quite well with the additional radial stresses due to
the unsteady pressure increase; in most cases, negative pressure, against which pipelines
are defenceless, has more serious consequences.

A Lorenzo Alliévi, 1856, Milano, Italy 11941, Rome, Italy
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A good survey of the various methods for calculating the pressure surge is found in Martin
and Pohl [29]. At first, we derive the continuity condition and the energy equation for
unsteady flows in pipelines that we need for the Alliévi method in order to determine the
maximum possible pressure increase known as the Joukowsky surge. Subsequently, the
unsteady momentum equation for the pipe flow is derived and applied together with the
continuity equation in the method of characteristics. Needless to say, results are compared
for illustrative purposes.

I do apologise. This chapter is boring and heavily laden with mathematics. Clench your
teeth!

12.2 Continuity condition according to Alliévi

The Alliévi (also known as Alliévi-Riemann) equations are based on a one-dimensional,
loss-free approach to the continuity and the energy equations. We start with the derivation
of the continuity condition as was done by Siegerstetter [56, page 27], for example.

We describe the change of mass in a pipe section of length dx as seen in Figure 12.3.
Initially, the mass that flows in and out per unit time is pQ = pvA. However, this may
change along the flow distance dx; this is referred to as the convective derivative %.
A local change of mass is also possible in that either the density, the volume, and/or the

o

area of a differential disk element increases or decreases %A) In other words, if more
fluid flows in at the left boundary than flows out on the right (a difference of (p VA) dx),

the mass in the volume must have increased by —QprA) dx.

A 2ov) s d(pua)d (pA)

ox 2 ox 2 ot

dx (12.1)

pVvA can be subtracted from both sides of the equation. Then we divide by dxAp and split
the terms of the derivative according to the product rule, i. e. into the convective and
local derivatives (see Chapter 5.2).

1 dA dv ap dA ap
dxAp (pva—dx—kpAa dx+v. Aa dx+pa—dx+A T dx)

vdA dv vdp 10A 1dp _0

Aox ToxTpoxtaar Toar

(12.2)
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Figure 12.3: Change of mass in a pipe section of length dx.

We may combine the partial derivative of the area and that of the density for the total
differential with chain rule (see Chapter 2.4.1.2):

dA_oAds 9 _ 0A 0
& oxdr " or Vox o1
dpo dpdx dp JA  JA

This allows us to simplify the continuity equation as follows:

(12.3)

s e E Ay 12.5
+ + . (12.5)

Deformation of the fluid

1dp
p dt>
ibility. In a Hooke’s medium (see [15, p. 31], for example) there exists a linear relationship
between deformation and stress. As a digression, we write the known relationship between
the elongation of a bar as the ratio of stress and modulus of elasticity ATI = Z. Since the
pressure is a negative stress in terms of mechanics (i. e. the volume shrinks as pressure

increases), the equation involving the fluid volume reads as:

First, we will deal with the term which describes the fluid deformation or compress-

w_

= 12.6
v T Es (12.6)
Solving for the modulus of elasticity, we have:
d
Ep=—< (12.7)
v

However, in any case, mass is conserved and so dm = 0. With m = pV and use of the
product rule, it follows that

dm=dpV =Vdp+pdV=0 (12.8)

which may be rearranged as:
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dv d
g__@ (12.9)
v P
By inserting Equation 12.9 into (12.7), we obtain
d
Ep=——1 (12.10)
i
or d q
p_o& (12.11)
p Er

which provides us with an expression for the first term of Equation 12.5. Let’s focus on
the second term.

Deformation of the pipe

The pipe may also undergo deformation. For a circular pipe, A = % and the derivative

of the area with respect to the diameter is % = 21%7: = %. Hence, dA may be written as
follows: T
dA = EDdD (12.12)
Thus, it follows for expression %:
dA =« 4 2dD
— =—-DdD —— = — 12.13
A 2 D¢ D ( )
Again, based on Hooke’s law, the change of the perimeter is % = é—g, or can be written
as % = %. Consequently,% may be written as done in Equation 12.14:
dD do
— = (12.14)
D  Ep

The relevant stress ¢ for the volume change comprises the radial component o, and the
effects of the axial stress in the radial direction u;o,. This influence of axial stresses on
the radial direction may be illustrated by a balloon that is stretched (see Figure 12.4).
The axial stress influences the radius, which becomes smaller.

Figure 12.4: Effects of axial and radial stresses. When stretched, the balloon gets narrower.

The stress comprises the radial (o,) and the axial component that is multiplied by the
lateral contraction number p; with values of approximately 0.3 [5, p. 117]:
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G =0, — U0y (12.15)
Since 0, = u;0,, Equation 12.14 may be rewritten using ¢ = o, (1 — /.LLZ)

dD  do; 2
D=5 (1—u7) (12.16)

The change of the radial stress in a pipe with the thin-wall thickness of w is calculated
via Barlow’s formula (see e. g. [52, p. 13.46]):

dpD
do, = — 12.17
o= (12.17)
Equation 12.17, inserted into 12.16, results in:
dD dpD 5
—=——(1- 12.18
D~k (| HL) (12.18)
For % we finally obtain the expression:
dA 2dD 2dpD 2 dpD 2
g — 1— =" (1- 12.1
A~ D awg TR = g () (12.19)

Deformation of the system

The total deformation comprises the volume change due to pipe expansion and the com-
pressibility of the fluid. The continuity condition (12.5) for the unsteady flow with the
terms for the deformation of the fluid (12.11) and the pipe (12.19) yields:

dv 1dp D »ndp  dv 1 D o\ dp
AT U § WYY e A Y (S § QT A 12.2
ox + Er dt + wEp ( 'uL) d  odx + Er + wEp ( ML) dr ( 0)

The bracketed expression corresponds to the reciprocal value of the system stiffness, which
establishes a relationship between the elastic moduli of the two materials:

1 D1 o1 )
_(PLq_ e L 12.21
E (WEP( i)+ (12.21)

With a = \/%, the propagation velocity of pressure waves in bars (see e. g. [26, p. 63]),
we obtain by substitution

Ep

Esys p
P L. LB - . (12.22)
p 7 tues (1-4g) I+ D2 (1- 1)

and ultimately:

o=

dv 1 dp

Since disturbances in materials propagate according to the density and the modulus of
elasticity, an Indigenous American is capable of hearing an approaching train earlier by
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laying his ear on the steel tracks (see Figure 12.5). In our case, with the system consisting
of two materials — the (steel) pipe and water — the speed of sound is determined via the
system stiffness Eqys. By the way, the propagation velocity of disturbances a in steel pipes
has a magnitude of approximately 1000 m/s.

Figure 12.5: An Indigenous American listens to determine whether a train is approaching. Design:
Julia Riiping.

In the next step we will use the partial derivatives instead of the total differential:

ldp 1dp 1dpdx

Furthermore, h as piezometric pressure height h = é +z can be rearranged as p =

(h—z)pg®, or dp=p-g-d(h—z) [5, p. 117]. Finally, with velocity as the derivative of
position with respect to time v = g—’t‘, it follows that

1dp 1 d(h—z) 1 d(h—7z)
pdt—ppg 3 +ppg o (12.25)

which may be simplified further:

1dp dh—z) d(h—z) dh oh 0z 9z
—— = +v =g tvegs—8&= — Vg€ 12.26
o di ( o1 ox 81 T89x 89 T ox (12.26)
B For a better understanding of the situation, refer to the adjacent diagram.; ~ff ~f ——— =~~~
In the following discussion, the piezometric pressure height £ is used; in / HGL
order to obtain the pressure height ﬁ, the geodetic height z must be ppg
deducted at the corresponding location. IX
h \/
Z
atum plane
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Two issues become evident from Equation 12.26. First, the term g% must be zero since
otherwise we would face a huge problem The pipeline should not change its vertical
position over time! And second, corresponds to the negative sine of the pipeline angle
6 with respect to the horlzontal

The continuity equation (12.23) may ultimately be written as follows:

dv g dh vgdh vg

a"‘;g‘f’ az a Sln5 0 (1227)

12.3 Energy equation according to Alliévi

We derive the unsteady energy equation similarly to the Bernoulli equation (Chapter
5.7), with the exception that the local derivative aa 5, 1s not set to zero. Since the Bernoulli
equation is obtained from the Euler equation by integrating along a streamline, the un-
steady term for the streamline in the x-direction is 1 av 7 dx (in metres), hence, the Bernoulli
equation with the unsteady term, reads

2 2
) 2%} Vi 1 8v
TR T A N BT (12.28)
pg 28 pg 28 got

where the geodetic height and the pressure height may again be rewritten as the piezo-
2
metric pressure height h = z+ é. With hy —hy =dh and 22 — 5L =d (ﬁ) = Edv7 Equation

2g 2g 2g
12.28 becomes:
10v
dh—l— d —I—fg—dx 0 (12.29)

In the next step, Equation 12.29 is d1v1ded by dx.

dh vdv 19dv

0 12.30
dx+gdx+g8t ( )

The disturbance is propagated at +a = ‘31—“:, which solved for dx and the result substituted

into 3% yields gla% However, it must be ensured that the ordinary derivative of the

velomty with respect to time becomes the partial one, not to get confused with the total
derivative. We can also write the partial derivative for the spatial gradient of the piezo-
metric pressure height. At any rate, it is apparent that division by the very large value
ga causes the term to become negligibly small. In addition to the continuity equation
(12.27), we thereby obtain Alliévi’s second equation:

oh 19dv

a‘Fg; - (12.31)

12.4 Riemann solution of the Alliévi equations

In the continuity condition (12.27) we see the total differential of the piezometric pressure

height with respect to time £ % +4 gz =4 4" Viadx=a-dr (written as a-dt in the partial
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differential equation), the convective derivative becomes (%) Z%, which is negligible since

v<a (see e. g. [5, p. 118] or [19, p. 252]). Without blinking an eye, we also eliminate
the term with the pipeline gradient vg% (that is Z—§ siné in Equation 12.27) for the same
reason. Thus, the coupled Alliévi equations that describe energy (12.32) and continuity
(12.33) of an unsteady pipe flow read:

oh 1adv
il (12.32)
dv g dh

For the solution of these differential equations, first, the coordinate x' = L —x is defined;
it extends from the valve at the lower reservoir opposite to the flow direction (i. e. in the
direction of the negative x-axis) to the upper reservoir (see Figure 12.6). Let’s rewrite

(k) ¢Q)

I8

1K

tHx'fa_

@G-

»

| -
Ll

. . . . / /
Figure 12.6: Explanations concerning functions ¢(t — %) and y(r+%).

Equations 12.32 and 12.33 as:

dh 1dv

Fri (12.34)
dv g dh

We do as Jaeger did [19, page 250 et sqq.] and write down the general solution of the
partial differential Equations 12.34 and 12.35 that Riemann® found [8, p.s 549-550]. Later
we will prove that these are in fact the solutions.

W) =ho b0~ S )4 e+ ) (12.36)

/ /

v(¥,1) :vo—g ¢(t—%)—y(t+%) (12.37)

In Equations 12.36 and 12.37, ¢ and y are arbitrary integration functions that are de-
termined by their boundary conditions. 4y and vy are the constants of integration, hence

€ Georg Friedrich Bernhard Riemann, x1826, Breselenz, Germany 11866, Lago Maggiore, Italy
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the conditions of the steady-state. We can see that the above equations are indeed the
solutions of the differential equations when we take the derivative of 12.36 with respect to

x' and multiply with %. Again, we substitute % =a. d‘p( ) yields —@/ because of —%

Subsequently, we derive 12.37 with respect to ¢P:

oh 1 X, o1 x
3= _;q)/(t — g) + gy/(H— 5) (12.38)
v g X, g x
5, = =)oyt ) (12.39)

The relationship between ah, and af can easily be seen in Equations 12.38 and 12.39:

oh 1dv

Similarly, we take the derivative of 12.36 with respect to ¢t and 12.37 with respect to x/,
which yields:

X X
— =0/t —— 1t + — 12.41
== )+ ) (12.41)
v g X, g x
— ==0t——)+ =V — 12.42
o = 2 )yt =) (12.42)
With these expressions, the relationship between % and % becomes obvious:
dv g dh

Thus, we can accept that Riemann had found the correct solution. Let’s describe the
physical meaning of functions ¢ and y. Jaeger [19] sends an observer with the propagation
velocity a in the direction of ' on a trip. His position depends on the time travelling and
his starting point xi; here, x' = ar +x/. For the passenger, the function ¢ does not change
its value along x':

at —l—xl x}

¢(t——) o(r— )= ¢(;):const. (12.44)

Now, we send a female observer from x, with a against the direction of x’. She as well
does not notice any changes®.

/ /

?’(H%):Y(H

)= 7(%) = const. (12.45)

From the units of the functions (metre) we see that ¢ and y must be undistorted pres-
sure waves that propagate in the same direction as (primary wave ¢) and opposite the
direction of (reflection wave y) the coordinate direction x’. It becomes obvious that the
pressure height h(x',7) consists of the steady-state condition hy and the superposition of

D Just for now, we call ¢/ and y’ the derivatives of these functions since we won’t need them any
longer. Please don’t get confused with the symbols. x’ stands for the coordinate direction, whereas
¢/ denotes the (partial) derivative with respect to time.

E Buler, of course, sees variations of the function values x and .
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the two waves. As you can surely imagine, the functions ¢ and y depend on the boundary
conditions.

With Formula 12.36, one obtains (e. g. for a container with a free water surface at the
beginning of a penstock, where (h(L,t) =ho = h,)):

h(L,t):ho+¢(t—§)+}/(t+§):ho (12.46)

We can read from Equation 12.46 that ¢(t —£) = —y(t + £). The pressure wave, which
keeps its absolute value, is being reflected at the reservoir with a negative sign (total
reflection). Setting r =1t; — % yields ¢(#; — %) = —y(#)F. For a total reflection, the pres-
sure wave ¥ corresponds to the negative wave (—@) of the previous phase, hence we can

generalise: )
L
Y(t) =—o(t——) (12.47)

a

We still follow the descriptive steps, however reduced, from Jaeger [19]. If we name the
initial time step of the pressure surge #; = 0 and consider the primary time steps t; =
(i—1) % solely at ¥’ =0, we will obtain Equations 12.36 and 12.37:

h(t;) = ho+ ¢ (1;) + y(t;) (12.48)
v(t) = vo— S [9(t) = 7(t) (12.49)

We can simplify the relationship further using formula 12.47 :

h(ti) =ho+ ¢ (t;) — @ (ti-1) (12.50)
(1) = vo— 3 [9() +9(1i1)] (12.51)

The example in the following Chapter 12.5 illustrates these concepts.

12.5 Joukowsky surge

The propagation of solid body waves occurs at the speed of sound. In our case with

two different media, the propagation velocity is determined via the system stiffness Egyq

(see Equation 12.22). This means that a disturbance at the end of a pipeline, which is

reflected at the other end, arrives again at the place of origin after time tg = %L When the
2L

pipeline is completely closed during time 0 < <1z = %7, the conditions are not affected

by the reflection. In Equations 12.36 and 12.37, y(t + %) becomes zero and consequently
the equations are:

/

h(x 1) = ho+ ¢ (t — %) (12.52)
V(1) :vo—gq)(z—%/) (12.53)

F %L represents the phase or the reflection time of the pressure wave, meaning the time that it

needs to travel from x' =0 to ¥’ =L and back to x' =0.
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The expression for the function ¢ (z — %’) is derived therefrom (Equation 12.53) and inserted
into Equation 12.52. We obtain

x/

o1—") = —g (v(,1) = vo) (12.54)

and for the surge height (without the steady-state piezometric pressure height hy):
(1) = — 2 (v(x 1) — vo) (12.55)
8

Equation 12.55 assumes the maximum value for h(x',z) at v(x',0) =0, i. e. when an abrupt
(at least during time t < tg) complete closure of a valve occurs. The maximum pressure
increase due to unsteady flow events is the so-called Joukowsky® surge.

Ahmax = gVO (12.56)

The Joukowsky surge is the maximum occurring pressure increase due to the complete
stop of the fluid mass within the reflection time zg. The same effect — but with a reversed
sign — occurs when abruptly opening a closed device.

Pressure surge in a pipeline

To illustrate the functions, we use an example that will be discussed starting on page 202
and that uses the method of characteristics. From the calculations therein, we bring here
the propagation velocity a = 1255m/s and the steady-state flow velocity vo = 0.705m/s.
The valve at the end of the pipeline system shown in Figure 12.13 is fully open in
the steady-state and is to be completely closed instantaneously (within 7c = 0s). The
Joukowsky surge occurs because of t¢ < tg, and it occurs instantly since tc = 0; further-
more, Ahmax = 4vo = gg; -0.705 = 90.25m.

When designating #; = 0 as the point of time at which the device is completely closed
instantaneously (within 7c = 0) and setting v(¢;) = 0 in Equation 12.49, we obtain for the

boundary condition of the abruptly closed valve at the lower reservoir:
a a
¢ (1) :—(V(tl)—VO)~§+y(t1) =V (12.57)

Since ¥(t;) comes from ¢ of the previous time step (i. e. in the steady-state), y(¢;) = 0.
Thus, ¢(1;) = Vog. We obtain the pressure surge height from Equation 12.36 as sum of the

function values of y and @: h(t;) = y(t1) + ¢ (t1) = vog = Ahmax =90.25 m!. The function ¢
conveys this information involving a in the direction of x'.

G Nikolay Yegorovich Zhukovsky, #1847, Orechowo, Russia 11921, Moscow, Russia
H The reflection wave is not yet here!

I Here again, we consider only the pressure surge component and set the hydrostatic pressure height
to zero.
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When the high pressure in the pipe has reached the upper reservoir after t = Ig, it causes
the water to return into the reservoir. The reflection of the wave ¢ at the upper reservoir
is therefore effected with the sign reversed (y = —¢; see Equation 12.46 or e. g. [29, p.
177]) since the pressure at the free end may be released. The good news that relaxation
is in sight is propagated again with a via function y from the upper reservoir until it
arrives after ¢ = fg = Za—L at the closed valve. With v(;) =0 in Equation 12.49 or 12.51
we obtain with , = 2% for ¢(n) = vog + Y(t2) = VoG — ¢(r1) = 0. Formula 12.50 yields the
pressure surge height h(f;) = ¢(2) — ¢(¢;) = —90.25m. The water flowing in the direction
of the upper reservoir cannot further acquire any fluid at the closed valve and expands
the water mass as shown by the spring in the photo sequence on page 178.

The information that nothing more can be gained at the valve is again conveyed via ¢ =0
at velocity a in the direction of the upper reservoir and arrives there after t = %L Due
to the high-pressure gradient, water flows again from the reservoir into the pipe and the
negative wave is again mirrored at the free end, which is accomplished mathematically
with a sign reversal by means of Y= —¢. The wave arrives again at the valve after 13 = 4%.
With ¢(13) = Vog +y(t3) = vog — 0(n)= vog —0=90.25m, the surge height becomes h(t3) =
0(13) +v(13) = ¢(t3) = 90.25m. Because of the absence of losses, the process continues
indefinitely.

It is essential to take the following three issues into consideration:

1. The pressure that is described and shown corresponds only to the dynamic component.
The pressure surge height A(x,¢) must be superimposed with the hydrostatic pressure
ho(x) at the designated place.

2. Due to the assumed absence of friction in the Alliévi method, the procedure is repeated
forever and a day.

3. The physical properties of water subvert our theoretical construction. Its end is
reached at a pressure height of approximately —7.5 mH,O (sum of dynamic and steady-
state components). Water cannot withstand tensile forces and the liquid vaporizes (see
Chapter 8.7). The negative (relative) pressure is limited to the vapour pressure, which
according to Table 3.2 amounts to p, =2338.5 N/m2 at T =20°C; it must be ensured
that the absolute pressure is applied (i. e. the sum of atmospheric pressure and wa-
ter pressure; see Chapter 7.9). It follows from patm +h-pg > p, that at a pressure
height relative to the pipe axis of h-pg > 2338 — 101300 = —98962N/m? (from which
h=—10.09m), the liquid water becomes gaseous. In our specific case with the pipeline
height zZyalve =293 m.a.s.1., the piezometric pressure height cannot fall below 282.91m
(see Figure 12.7 ). The drinking straw experiment on page 179 demonstrated the ef-
fects of negative pressure (the atmospheric pressure is higher than the pressure in
the pipeline). In order to avoid such problems, vent and bleed valves are installed at
critical locations in the pipeline. Preferably, you test the effect yourselves by pricking
a tiny hole in the straw.

Figure 12.7 shows the piezometric pressure height over a period of 60s.

The digression via the Riemann-Alliévi equations to the Joukowsky surge was primarily
intended to create an understanding of the processes taking place. With the unsteady
momentum equation that is derived in the following section, we will feed the method
of characteristics (Chapter 12.7) that we make use of to calculate realistic velocity and
pressure conditions when discharge changes occur in pipelines.
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piezometric pressure height
400
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Figure 12.7: Piezometric pressure height at the valve for the pressure surge example.

12.6 Momentum equation

In this section, we derive the law of momentum for the unsteady pipe flow. Figure 12.8
shows the forces that act on a pipe section with unsteady flow.

e,
- @ab P 4 <
\\ ‘2’
\\\ )( ﬂg4d$s
2+ (20 ? ng
(i
2) ki 4&, 5
P v
X.\A z )( s
d.@ p7L p )

Figure 12.8: Forces on the control volume.

Pressure force: 5
P
=-A—dx 12.
3y (12.58)

Gravity or downward force in the direction of the pipe axis:
dz .
= fpgAa—dx: —pgAdxsind (12.59)
X

Friction force:
Fr = —nDt,dx (12.60)
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2
With the friction coefficient from Chapter 11 in the equation 7, = pf% and the Darcy-
Weisbach equation fp = ’El?g , it follows that the shear stress can be expressed as T,, =

£ JiDg . As a result, Equation 12.60 assumes the following appearance:

JeD
Fr = —7D1, dv = —nDdx% — Apglp dx (12.61)
Inertia force: P 3
V y
A — | dx 12.62
=p < 5T at> (12.62)

This corresponds to the rate of change of momentum. The direction of action of the
momentum fluxes at both interfaces of the control volume is “into” it (see Chapter 5.8),
which is why this change also acts opposite to the direction of flow.

The sum of the forces is zero:

av v

0 0z
Fp+Fg+Fr+F=-AZL d— P8A=- 1o

o o dx—ApgJidx— pA(

) dr=0 (12.63)

We Set dp p -d(h—2z) (see Chapter 12.2) or rather the partial derivative with respect
to x, E =p- g a =3 We also divide Equation 12.63 by —

d(h—7z) 0z v Iv\
APgT +P8A$ +ApgJe +pA <8t +v8x) =0 (12.64)

We divide this by pA and temporarily obtain

dh 0z 0z dv  dv
J — =0 12.65
T R (12.65)
and ultimately the momentum equation for unsteady pipe flows:
oh dv  dv
—=0 12.
83y +gJE+a +V8x (12.66)

12.7 Method of characteristics

If we were to ask mathematicians about Equations 12.27 and 12.66, they would respond
that they are quasilinear partial differential equations of the hyperbolic type’ and cannot
be solved as a closed system. By means of the method of characteristics, we can solve
simplified equations at discrete times and places. For these equations, the boundary con-
ditions of the steady-state flow are required. The equations allow one to successively step
by the time increment At at specific places. The equations and the boundary conditions
will be derived on the following pages before practising the method of characteristics by
means of an example.

J In hyperbolic differential equations, disturbances propagate in two different directions; in
parabolic differential equations, they propagate in one direction only, and elliptic differential equa-
tions are immune from disturbances.
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We reproduce the continuity condition and the momentum equation and add to this set

of equations two trivial equations that describe the total differential of 4 and v with chain

rule (an alternative notation for e. g. dh appears more common: % gﬁ ‘éf + gi’)

%Jra%%Jrvg gh+vg sind =0 (12.67)
g‘;h tolp+ gv +v§—: 0 (12.68)

dh = gi dx + 3}, d (12.69)

dv zvdx—l- gvd (12.70)

We sort and write down the following system of equations:

% 1 [‘l% 0 5 —%sinS

g v 01 i —gJE

woao||h]|=| (12.71)
0 dx O dr 7‘; dv

This system of equations (A ox = b) yields an unambiguous solution if det(A) # 0, which,
however, we do not aim for because then there would be no changes in space and time.
Thus, we force det(A) = 0.

det(A) = =0 (12.72)

g oo ]z
S < =
g o/
S = O

0 dx O dr

The evaluation of determinants and/or subdeterminants is described in [8, p. 269]. To
make the following steps more transparent, we calculate the determinant of a matrix in
Appendix A.4. Fortunately, some of the elements are zero.

oY 01 g 01 g v 1
det=5"10dr o)~ 1|dvdr 0|+ |dx 0 0
@ ldx 0 dr 0 0d| “|0dxde
_gv( |dt O 0 dr dt 0 dx dt
_a<v0dt+1dx0> <g0dt+1 oo)
L8 (o]0 0] |dx0], ‘deD
2
a dx dr 0 dr 0 dx (12.73)
— 8% (v(drdr—0) 4+ 1(0—drdx)) — 1 (g(drdr —0) +1(0—0))
a
+2 (60— 0)—v(drdr—0) + 1 (drdr—0))
a

= ? > (vd — drdx) — gd% + ; (—vdxds+d*x)

232 2
d%  gvdrdx dredr  gd
_gvdt gvdrdx o gdrdr gdx

0
a? a? a? a?

We multiply by g‘é—zzt and obtain
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dv  d?
v2—2va—|—d—;;—a220 (12.74)

which is put into the form of a quadratic equation:

dr)® . dx
— ) —2v—+1*—a*=0 12.75
(dt) S +vi—a ( )
The generally known solution for a quadratic equation xj, = bii Vb7 —dac yields:
V2 -2 +4a2 2v+2
de _ 2vEvay' —dvitdar  2vA2a L (12.76)

dr 2 2

For the condition that we established (that the determinant be 0 or that there are to be
variations in space and time), the solution is valid only along the characteristic directions:

dx
C+ = di =v+a (1277)
C_= % v—a (12.78)

Wow! Though not particularly difficult, this was time-consuming. Time for a break.
When consulting a mathematician, she or he will explain that the system provides a solu-
tion when det(A) = 0 only if all determinants, which are formed by replacing an arbitrary
column of the matrix by the resultant vector on the right-hand side, are also zero. We
focus on the first column and replace it by the resultant vector of Equation 12.71:

v v 01 —gJr 0 1 g —gJg v 1
det=—°3sind|0 dr 0|—1| dh dr 0|+ | dh 0 O
a dx 0 dr dv 0dt| % | dv dxdr
gv . dr 0 0 dr dr 0 dh dt
_a251“5<" 0 a1 de)l( e\ g T dv0>
g 00 dh 0 dh 0
s 12.79
+a2< 878 | dr| = |dv ar| ! dvdx) (12.79)
gv

=— sind (v(drdt —0)+1(0—drdx)) — 1 (—gJg (dtdr —0) 4+ 1(0—drdv))

+ % (—gJg (0—0) —v(dhdt —0) 4 1 (dhdx —0))
a

— 8 sin&drdx— 5 sin v + gJpd®t +drdv+ S dhdv— Svdhdr =
a a a a

In the next step, we divide by d?¢:

dv g dhdx gvdh
= 5* 1) J, = ———=>=—=0 12.80
a2 Y sin ) sm v+g E+d + 2ad 2 ( )

With the first condition % =v=a, it follows that
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dv dh dh
g—s1n5(v:l:a)——s1n5v+gJE+ + £ a) — 34
dr @ dr a2 dr (12.81)
dv  gdh '
= :I:— o+gJ +=
sind +gJg + — & adr
Finally, we obtain:

gv dv gdh
— 12.82
C.= asm6+ng+df+ & =0 (12.82)

gv dv gdh
C_.=> —=sind+g/g+——=2—=0 12.83
SOt T a (12.83)

For the characteristic directions (12.77 and 12.78), the equations are equivalent to Equa-
tions 12.27 and 12.66, but their solution is much easier. These characteristic directions
are depicted in the x-t diagram of Figure 12.9.

tA
(11,1) (11,3)
| C c B
(10,2)
c’ C
©,1) (9,3)
] C c’ B
(8,2)
c’ C
(7,1) (7,3)
] C c' B
(6,2)
c’ C
5,1 (5,3)
N C c B
4,2)
c’ C
3,1) (3,3)
c’ B
(L,1) 1.3) IAI
AX AX >

Figure 12.9: Characteristics grid.

We multiply Equations 12.82 and 12.83 by gdt and introduce difference quotients instead

of the differential quotients for solving the equations on the discrete grid (see Figure 12.9).

And we simplify further. The propagation velocity a = %ys in rigid pipes amounts

to approximately 1000m/s and the flow velocity, in general, is approximately 1.0m/s;
hence the characteristics may be approximated sufficiently accurately as +a. The term
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8%sin § also falls victim to the same consideration, which in particular applies to pipelines
normally laid horizontally (see Chapter 12.4 and [5, p. 118] or [19, p. 252]). In addition,
a + sign is smuggled into the friction term. The explanation for this is brief: because
the gradient of the energy grade line was written for direction x, the C_ characteristic
extends in the opposite direction. Equations 12.84 and 12.85 (below) are also referred to
as compatibility conditions:

Ci = =+a (12.84)
+Ah+ L AvEaAtly =0 (12.85)
g

We take the friction term from Chapter 11, Jg = sgn(v )f D Gince the direction of flow
may reverse in the unsteady flow, and because the velocity helght is a scalar quantity, we
must multiply by the sign of the velocity sgn(v). The gradient of the energy grade line
always points in the direction of motion.

12.77.1 Initial characteristic

The initial characteristic describes the steady-state conditions. These apply at time t =0,
which is designated by the index i = 1. Information such as discharge or pressure variations
is propagated at the velocity of sound waves with the characteristics Cy in the flow
direction and C_ opposite the direction of flow.

The energy loss is determined via the Darcy-Weisbach approach. Ay identifies the open
valve area which is reduced in a manner similar to the outflow from openings by means
of the valve coefficient py (see Equations 12.109 and 12.120).

Q* (/oL 0?
Ae:h,—h,—Az28< 2 +ZK>+AeV—A22 ( ZK+ ) (12.86)

Equation 12.86 is solved for vy, i. e. the steady-state velocity:

h—hy)2
Vo = (= hr)2¢ (12.87)

M_F n K._|_i
D 21:1 i u‘Z/A\Z,

The pressure height in the steady-state case may be determined with Equation 12.88.
Compared to the pipe friction losses, minor losses are generally small. The velocity height
at v<4.4m/s is below 1.0m. Since flow velocities in pipelines are even lower in most
cases, it is generally assumed in the method of characteristics that hydraulic and energy
grade line coincide [5, p. 348]. The slope of the hydraulic grade line (ho(x)) is therefore
assumed to be constant between upper and lower reservoir levels, and the outflow loss
Ko =1 disappears in Equation 12.88. However, the initial velocity is determined including
the minor (local) losses as shown in Equation 12.87.

2
2% X
ho(x) = ho — 21;]2 (12.88)
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12.7.2 Calculation modules

The following considerations on the C; and C_ characteristics build the foundation for
the calculation of the conditions at the nodes j in a time step i+ 1. Therein, j =1
designates the start of the pipeline (upstream end); j = n indicates the downstream end.
i = 1 identifies the start of the discharge variation. Since the equations apply only along
the C; and the C_ characteristics, the time interval As between the calculation steps
is dependent on the spatial resolution of the computational domain (see Figure 12.9).
Principally, a distinction must be made between nodes within the grid and nodes located
at the boundary.

12.7.3 Nodes within the domain

Figure 12.10 shows the conditions within the calculation domain. What happens at node
Jj at time i is determined by the conditions conveyed by the C, characteristic of node j—1
as well as by information delivered by the C_ characteristic of node j+1 at time i—1.

th
i__

i1t

Figure 12.10: Conditions within the grid.

Let’s start with the compatibility condition of the C, characteristic: Ah+ gAv—i—aAtJE =0.
With the indexing shown in Figure 12.10, it reads:

a
hi,jy = hgi-1,j-1) + 2 (Vi) = Vii1,j-1) +aAtIgi g j 1) =0 (12.89)

We will now go into greater detail on the C_ compatibility. The first term reads —Ah =
— (h(,-,l’jﬂ) — h(l-yj)), i. e. the greater x value minus the smaller one. Likewise, the velocity

difference is written Av = (V(i,L 1) — VG, j)). The gradient of the energy grade line is

initially directed opposite to the C_ characteristic, as mentioned above, because Jr = ﬁ—i

stands for the energy grade line and therefore Ax is negative here as well as in the pressure
height and velocity terms.

a
= (1) = hajy) + . (V141 = V(ij) —aAtgi 1 ji1) =0 (12.90)

We will first equate the known quantities of Equations 12.89 and 12.90 to the auxiliary

. + —
variables K(i—l,j—l) and K(i_17j+l).
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a
K11y = ~hi-1j-1— o Vi) Ao (12.91)

_ a
Kiiotjen = ~hao1gen + V100 ~ @8 g i) (12.92)

The two compatibility conditions C; and C_ may be expressed more simply with these
two auxiliary variables K™ and K. It is evident that two equations exist for the two
unknowns h; ;) and v(; ;. We insert K * and K~ into the respective Equations 12.89 and
12.90 and solve them to obtain v(i, j) and A(i, j).

K — K

8 (i—l,'-i-l) (i—l,'—l)
Vi =S (12.93)
K. .. +K" .
(i—1,j+1) (i—1,j-1)
hij)=— / 5 / (12.94)

12.7.4 Nodes at the left boundary

Figure 12.11 illustrates the conditions at the left boundary of the computational domain.
The situation at node j =1 at time i is described by the conditions of node j+1 (i. e.
Jj =2) conveyed by the C_ characteristic at time i — 1. For the determination of variables
v(i,j=1) and h(; j—y), yet another equation on the prevailing boundary conditions must be
added (see below).

t4
i__

Ll

Figure 12.11: Conditions at the left boundary of the grid.

The C_ characteristic for the left node j =1 generally reads:

a
— (hjeny —haj) + s (V141 = Vig) —@AgG 1 j1) =0 (12.95)

First, we sum up the known quantities of Equation 12.95 to the auxiliary variable K(;_l.j )
again.

_ a
Kiorjeny = 7haren + V140 — A1) (12.96)

For the C_ compatibility condition, it follows that:
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a p—
fijy = GV Ty =0 (12.97)

As already mentioned above, the boundary condition must provide the second equation
(to solve the two unknowns).

12.7.4.1 Reservoir with constant water level

The boundary condition for a reservoir with constant water level is trivial:
h(i,j) = h; = hcontainer (12.98)

With this condition for the reservoir at the left boundary, Equation 12.97 may be solved
for v

i.j)

g _ g _
Vi) = (h(m') +K(i71,j+1)) = (hl +K(i71,j+1)) (12.99)

12.7.4.2 Reservoir with time-varying water level

The solution for the time-varying water level is similar:
h(l}j) = ]’ll(l) (12100)
From there, the following equation for the velocity may be derived:

8 - 8 _
Vi) =, (h(i,j) +K(i71,j+1)) = (hl(f) +K(i71,j+1)) (12.101)

12.7.4.3 Time-variable velocity
The system may also be imposed with a time-variable velocity at the boundary.

V(i) = v(t) (12.102)
Inserting Equation 12.102 into Equation 12.97 yields the pressure height:

a _
h(iaj) = g\/(l) _K(i,17j+1) (12103)

12.7.4.4 Valve

Besides the water level of the reservoir, the control device is presumably the most impor-
tant boundary condition. The equation for the fluid velocity at a valve generally reads:

A(r)

A 28 |hi—hg; j)| (12.104)

V(ij) = sgn(h; — h(i,j)).uV

When solving Equation 12.97 for h(;;) and substituting into Equation 12.104, we obtain:
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a
]’l *Vi' +K_
g (i.j) (

L) (12.105)

Alt
Vii,j) = sen(ly V(l K 1;+1))Nv U )\/28

In the following steps, we omit the sign function sgn whose influence will be discussed
later. Equation 12.105 is squared in order to extract the desired velocity v(; ;) from the

root. ( )2
Alt
V%Lj) = ,Ll‘% Ve <28
0

We now extract v(; ; from the absolute value expression and set the equation to zero:

i—1,j+1)

a —
h; — gv(i’j) —I—K(

) (12.106)

2 a 2 A(1)? 2A
Viig) T §v<,-,,-)2guv w2 M ‘hl+ (i 1J+1)’
A (12.107)
2 2
= Vi) T2 5 2 )\ 0

This yields a veritable quadratic equation, which may be solved via the generally

—bi\/2b2—4ac A@t)?
a

e and finally
, it follows that:

known formula x;, =

¢ = —2qu} A

With expressions a = 1, b = 2au

h+Ki_y

2
20 [ (a2 ) a1 (20

i+ K 11+1)‘>

’V(i,j)lﬂ} = 7.1
2
—2au3*‘fj§i\/4a2u$’*ffﬁ +8gu 5‘2 WK | (12.108)
- 2
A1) A@r)*
= —apy 12 i\/azﬂéAz;JfZg#v (i 1]+1)’
0 0

First, we consider the two solutions that result from the + sign. For A(f) = A and a
common discharge coefficient py = 0.98, the absolute value of the term preceding the
root is quite high. For steel pipes, a value of approximately —1000m/s is obtained. For
the same opening ratio, the value under the root is greater than a?; with respect to the
absolute value, the term has the same order of magnitude as the first one. When the
terms have the same sign, in this case negative, they sum up to —2000 m/s, which is not
physically possible. The energy for accelerating the water to this velocity is not available
at the pressure gradient h; —hy; ;. The only valid solution is the one obtained when the
root term is added.

If v(i,j) <0, then (hl V(i) —|—K(l 1 J+l)) (hl —|—K(l L+l ) In the case where v(; ;) >0,
it follows (hl — ( )+K(l 11+1)> < (hl—l—K(l 1;+1))' For the determination of the sign,

the velocity term ¢V(i,j) may be readily ignored since it only moves the result of the sum
further toward the sign-changing zero. Finally, we arrive at the following equation for a

valve arranged at the left side of the system:
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2 2 4 4 5
- HyA(r) pyA()* LA(r) -
Vo) = 5Ky o) | T [T A 28 T [ K
(12:109)
For the pressure height, Formula 12.97 yields:
a _
hi.j = 26~ K (12.110)

12.7.5 Node at the right boundary

Figure 12.12 shows the conditions at the right boundary of the computational domain, i. e.
at node j = n for time step i. What happens there is determined only by the conditions of
the node j—1 at time step i — 1 conveyed by the C+ characteristic. We already anticipate
that a further descriptive equation must be added in order to be able to calculate the
two variables v(; j_,) and h(; j_,). The necessary information is provided via the boundary
conditions.

t4

Ll

i-11

j=n-1  j=n

Figure 12.12: Conditions at the right boundary of the grid.

We may transfer the above considerations for the C, characteristic and write them down
for the case of the right-hand node j=n.
a
hej) =~ 10+, () = V1) + @b o1 =0 (12.111)

The knowns of Equation 12.111 are used for determining the auxiliary variable KJ—I 1)

a
K(—i'_fl,jfl) = _h(i—l,j—l) — gV([_]_yj_]) +aAtJE(i—l,j—l) (12112)

The C; compatibility condition follows:

a
higy V) H Koy =0 (12.113)

=1

In the following discussion, several boundary conditions will be described.
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12.7.5.1 Reservoir with constant water level

The formula for a reservoir with constant water level was already given above for the left

boundary.
h(i,j) = hy = hcontainer (12114)

When inserting A, into Equation 12.113 it becomes:

g g
Vg = =5 (hup +Kiy o) = =2 (K1) (12.115)

12.7.5.2 Reservoir with time-varying water level
There is hardly any change in the description of the time-varying water level.

The result for the velocity is:

8

8
V(i,j) = —; (h(lvﬂ +K(41T71,j71)> = —E (l’lr(t) +Kaj*1,j*1)) (12117)

12.7.5.3 Time-variable velocity

The time-variable velocity for the right boundary reads:

Substituting this into Equation 12.113 yields the pressure height h; ;:

a
hiijy == V0 =Ko (12.119)

12.7.5.4 Valve

The derivations of the equations for the control device installed at the right hand boundary
are to be modelled after the corresponding equations for the left boundary in Chapter
12.7.4.4.

24 (4)2 44 ()4 2
HyA(r) HyA(7) Ar)
v(i’j):sgn(—h,—K(iLFI)) — A% a+ Aé 02+2gu‘% A(Z) —h,—K('l.'_l"j_l)‘

(12.120)
For the pressure height, Equations 12.120 and 12.113 yield:

a
hiig) = = V) ~Ki (12.121)
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12.8 Summary: unsteady pipe flows

The acquired knowledge on unsteady pipe hydraulics is summarised in the following ex-
ample.

Pressure surge in a pipeline

For an illustration of the method of characteristics, we use the following example. The
valve at the end of the pipeline of the system shown in Figure 12.13 is fully open in the
steady-state. The valve is completely closed within 7o = 30s. We assume a linear closing
law and set up the computational domain with three nodes along the pipeline, allowing
us to observe the unsteady pressure component at multiples of %:

1. beginning of the pipeline at the upper reservoir
2. middle of the pipeline
3. end of the pipeline

1K

Avd
5.0m
Figure 12.13: A sample pipeline.
The following is also given:
T =20°C L =6000m d=0.30m|Ep =2.1 x 10" N/m?
ks =1.0x103mlw=28.0x 10 m|u; =0.33 [Ag = Ap = 0.07069 m?
h;=312m hy =298 m tc =30s |uy =0.98

First, the propagation velocity is calculated by means of Equation 12.22.

Ep 2.1x10%

a= P - p = 1255m/s (12.122)

E 9
1+ 85 (1-p7) 1+ ohds 2250 (1-0.332)
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Thus the time increment for the surge that propagates by half the pipe length amounts to

At = i = % =2.391s. We see that the Joukowsky surge (Ahmax = vog) does not occur

because t¢c > tg = 271‘ =9.565s. The flow velocity results for the steady-state case with the
opening area of the valve Ag and the valve coefficient uy from the following equation.

:éfDL v%/alve _éfDL V%"A%’ _v%’<fDL A%’ )

2¢ d 2¢ 2g d 2g~,u‘2,-A% 28\ d /.L‘%-A%

hy—h, (12.123)

When solving the energy equation for the steady-state case, one obtains for the steady-
state velocity in the pipeline (without considering minor losses):

hy—hy)2 312 -298)2
Vo ( l rlzg _ ( )282 (12124)
(f];iL'i_ 222) /D -6000 + (015 ﬂ')
Hifo 0307 0.082(0.1527)

The Prandtl-Colebrook iteration¥ yields a friction coefficient of fp = 0.0275 and vy =
0.705m/s via T =20°C and k; = 1.0 x 10~>m. The intermediate results are:

1. fpoo = 0.02, Qp = 0.0583m3/s
2. fpo.1 = 0.0275, Q1 = 0.0498m>/s
3. fpoa = 0.0275, Qr = 0.0498 m?/s

This allows the calculation of the gradient of the energy grade line for the steady-state:

JEo = o _ 2.329x 1073 (12.125)
d 2g
For the path of the hydraulic grade line, neglecting minor losses and velocity height, this
becomes!:
ho(x) = h ffﬁ (12.126)
o) =h—Jp 29 .
x=0m x=7%=3000m x=L=6000m
ho(x=0) =312m|hy(x = %) =305.01m|ho(x =L) =298.03m
The linear closing law reads:
t
At) = (1 — t) Ay fort <tgand A(t) =0fors >1c (12.127)
c

Let’s get started. We scramble along the characteristics, time increment-by-time incre-
ment, from the known nodes in the steady-state. We orient ourselves at the characteristics
grid illustrated in Figure 12.9. The first index corresponds to the time increment and the
second one to the position. The conditions are known for the steady-state; this includes
nodes (1,3), (2,2) and (3,1) because during this period, steady-state flow will still prevail
there.

K The procedure in the Prandtl-Colebrook iteration is explained in Chapter 11.5.
L Note, that the calculations of vg and subsequently Jgo included the outflow-loss.
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Node (3,3)

The C* characteristic of node (2,2) leads to node (3,3), where the valve boundary condition
exists. Arriving at node (3,3), 2Az or 4.78 s have elapsed since the beginning of the closing
process. After this time, the opening area of the valve is 5.94 x 1072m?. For Equation
12.120 (the valve equation) with Ao = Ap, the auxiliary variable K(JEQ) is required (see
Equation 12.91). Here, all quantities are known from the steady-state.

Ky = —hoo) — Ly 22 +aAtlgp0) = —305.01 — 207054 1255-2.39-2.329 x 10”3
’ g ’ g

— —388.28m
(12.128)

Now, fully relaxed, we may solve the valve equation:

0.982-(5.94 x 1072)?

-1255+
(7.07 x 10-2)?

V(3,3) = sgn(—298 +388.28) l

0.984-(5.94 x 10-2)* 5.94 x 10-2)*
\/ 98- (594X 10 %) 15552 1 940,982 094X 1070\ hog 388 28]| = 0.705m)s

(7.07 x 10-2)* (7.07 x 10-2)?
(12.129)

With velocity v(33), all quantities for the determination of A3 3) are now available:
h3a) = — (a3 — Ky = — 0705+ 388.28 = 298.04m (12.130)
g ’ 8

This wasn’t that complicated, was it? We should right away calculate the gradient of the
energy grade line Jg(33) and K(g 3

2
/D33 V3.3) 3
J = s s =2.328 x 107 12.131
E(3,3) sgn(v(373)) d 2g X ( )
We now combine the quantities to arrive at K(g 3) For the downstream boundary, the

calculation of the auxiliary variable K™ may be omitted because the C* characteristic
moves outside the domain of the calculation.

K= —his)+ gvm) —aAtlg sz = —214.78m (12.132)

Well, let’s look at node (4,2) where two items meet: the C* characteristic from the steady-
state-influenced upstream node (3,1) and the C~ characteristic from node (3,3), which was
just calculated.

Node (4,2)

The two characteristics C™ and C~ arrive at node (4,2). For this, the two following equa-
tions are to be solved:
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K...—K&
33 31

a

K54 +KG
hazy = ——2 o (12.134)

We already determined the auxiliary variable K(3 3)
must use the steady-state conditions at the upstream reservoir.

in the previous section. For K(Jg 1)y we

Ki 1y =—hen - gvm) +aAtlysy) = —h — 125 4 1255.2.39-2.329 x 103 = —395.26m
(12.135)

Thus for Ay )
o) =— *214'782* 39526 _ 305.02m (12.136)

and for v(y):
V) = % _214'78; 395-26 _ 705 m/s (12.137)

At first sight it appears as if nothing has happened, though the decimal places are already
changing. For internal nodes, it is recommended that the auxiliary variables K(Z %) and
Kz
calculations hardly differs from the gradient of the energy grade line in the steady-state
since v(42) = vo. Thus, we write Jg42) = 2.328 x 103M | We obtain for K(Jg“z) and K(; %)

be calculated directly. For this purpose, we first need Jg(4), which after extensive

1255
Ky = o) - Lya2) +aAtlg (a2 = —305.02 — —20.705+1255-2.39-2.328 x 10
! g ’ g
= —388.28m
(12.138)
Koy = o) + Ly (a2) — altg (0 = —305.02+ £0.705— 1255-2.39-2.328 x 103
’ - ' g

=-221.77m
(12.139)

Slowly but surely. Now we will calculate the two boundary nodes (5,1) and (5,3) together.

Node (5,1)

After another 2.39s, the C~ characteristic reaches node (5,1). There, the boundary con-
dition of the constant water level h; exists. For the left boundary, the following applies:

h(S,l) = /’ll =312m (12.140)

The velocity becomes:

M Even though the calculation is not worked through here, you must definitely comply with the
signum, i. e. the sign function, in the calculation of the gradient of the energy grade line! With flow
reversal, the gradient of the energy grade line points in the other direction.
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y _£ h +K _£ 312—-221.77) = 0.705m 12.141)
(5,1) a (5,1) (4,2) a ( : : /S ( :

Here again, the “dynamics” can hardly be felt. We look at the lower end at time step 5,
i. e. after 4Ar =9.56s.

Node (5,3)

The C* characteristic reaches node (5,3) from (4,2). The equations are available together
with the valve boundary condition (A(t = 4At) = 4.81 x 10~2m?).

0.982- (4.81 x 1072)?

1255+
(7.07 x 10-2)?

v(s,3) = sgn(—298 +388.28) l_

(4.81 x 10-2)*
(7.07 x 10-2)*

-12552 +2g-0.982

0.984(4.81 x 10-2)*
¢ (4.81 x 10-2) |-298 1 388.28| | = 0.705m/s

(7.07 x 10-2)*
(12.142)

With velocity v(s 3), all quantities are now known, allowing for the determination of /s 3).

a a
his3) == Vi53) ~ Ky = = 0.705+388.28 = 298.06m (12.143)

Thus, the method is straightforward. One progresses from the steady-state through the
system, considering the respective boundary conditions. For the calculation of unsteady
pipe flows by means of the method of characteristics, you may of course use the appropriate
routines from the supplied open-source library. The results after a total of 40 time steps are
listed in Tables A.1 to A.4 in Appendix A.8. Figure 12.14 shows the piezometric pressure
height curves at the three spatial nodes. The pressure increases abruptly immediately
after the complete closure of the pipeline. Please note that in the tables of results in
Appendix A.8, the pressure cannot drop below the vapour pressure (see Chapter 8.7).

piezometric pressure head over time

400 ‘ ‘
end of penstock
center of penstock =
380 start of penstock

0 20 40 60 80 100
t [s]

Figure 12.14: Curve of the piezometric pressure for the unsteady pipe flow example.
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This chapter is licensed under the terms of the Creative Commons Attribution 4.0 In-
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Chapter 13
Steady free surface flow

13.1 Flows with free surface

The fact that the Bernoulli equation does not allow any statements on flows where friction
is not negligible has caused us to use semi-empirical relationships in pipe hydraulics. In
open channel hydraulics, things become more complex because the Bernoulli equation
permits two different flow depths for one single energy height. Before we look at the
equation more thoroughly, the similarity with open channel flows will be discussed.

13.2 Dynamic similarities of open channel flows

The Navier—Stokes equation (Chapter 5.5), which is written in dimensionless form in
Chapter 5.6, is of course also valid for flows with free surface. Dynamically similar flows
have identical Froude and Reynolds numbers. However, these are obtained only for identi-
cal fluids and identical geometries. Generally, either the body forces or the viscous forces
are dominating the flows. The driving force of an open channel flow is the body force that
results from gravity. Due to the often very rough open channel wall, viscous forces are
negligibly small (see Appendix A.3 and/or Chapter 11.5). Therefore, the Froude number
is used for comparability with open channel flows. It is normally related to the mean flow

velocity and the flow depth.
Uref V

- \/ 8iXref B \/5

The propagation velocity of waves may be derived by means of the Airy wave theory (see
Chapter A.6). A limit value analysis leads to the distinction between shallow- and deep-
water waves, though we usually deal with shallow-water waves. According to this theory,
the propagation velocity of shallow-water waves is ¢ = ,/gy. Thus, the Froude number
specifies the ratio between the flow velocity and the propagation velocity of shallow-water
waves. The following two examples clarify the relationship:

Fr

(13.1)

© The Author(s) 2024
C. Rapp, Hydraulics in Civil Engineering,
https://doi.org/10.1007/978-3-031-54860-4_13
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13.3 Bernoulli equation in open channels

The Bernoulli equation (5.41) states that the sum of geodetic height, pressure and velocity
height remains constant in a loss-free flow. As a consequence that losses cannot be covered
by the Bernoulli equation, we relate the energy height in free surface flows to the channel
bed (where z =0, see Figure 13.3), and call the quantity “specific energy”.

2
= é + ;—g (13.2)

It is important that subsequent statements be made with respect to this datum (the
channel bed). The Bernoulli equation “shrinks”, so to speak, to the balance of the specific
energies at certain cross-sections.

SRR

Figure 13.3: Bernoulli equation for free surface flows.

The energy balance in open channel hydraulics includes two terms: ig and ;—; At first,
we assume — before thinking more thoroughly about this topic in Chapter 13.9 — that the
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pressure, as in hydrostatics, increases linearly with the vertically measured depth y. Then
£ =y may be written. Upon insertion of the continuity condition (5.5), it follows that

pg
for the Bernoulli equation in open channels:
Q2
H=y+—>— 13.3
vy (13.3)
Requirements:
e Freedom of losses (statement on cross-section values)
e Hydrostatic pressure distribution
The following explanations are based on a rectangular open channel of width b:
2
H= —_— 13.4
V¥ e (13.4)

Equation 13.4 contains three variables: H, Q and y; gravity g and width b (in the channel
under consideration) are constant. In order to recognise the importance of the equation,
it is recommended that one variable be set constant and that a plot of the other two, one
against the other, be made in a diagram.

13.3.1 H-y diagram

First, we relate the discharge to the width of one metre (discharge per unit width: g =
2 [m3/(sm)]): X X X
q v
e P T
Using the Bernoulli equation, we look at a constant discharge per unit width ¢ = const.
by plotting the specific energy and the flow depth against one another. The result is an
example of a diagram, in this case shown for ¢ = 1.0m?/(sm) in Figure 13.4.
The flow area becomes very large for the extreme case of a very great flow depth, and from
the continuity condition (5.5) it follows that the flow velocity approaches zero. The specific
energy H consists of a very great proportion of the flow depth y and an extremely small

(13.5)

proportion of the velocity height ;—; In Figure 13.4, when drawing a straight line upwards
from the abscissa (x-axis) at a certain specific energy (e. g. at H =1.6m), it intersects the
H —y function twice until it reaches the red bisector, which in turn reflects the specific
energy. As we are currently interested in great flow depths, we choose the upper point of
intersection, which indicates the flow depth on the ordinate (y-axis). Starting from this
point to the bisector, the velocity height % is found again. Since it is hardly possible
to read the velocity height in this illustration, we venture off to a small programming
example in Octave.
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Figure 13.4: Flow depth vs. specific energy for a rectangular open channel with g = const. =
1.0m3/(sm).

Octave presents y = 1.580m as the result. For the associated velocity height, one ob-

tains ;—Z =H—y=2.0cm; i. e. v=10.633m/s. To countercheck, v-y again results in

g=1.0m*/(sm).

The same specific energy also allows a much lower flow depth. Entering fsolve(@f,0.3)
in Octave’s command line, you obtain as a result for the flow depth 0.19013 with a
starting value of 0.3. With v= ‘;1 =5.260m/s and % = 1.410m, here again it follows that
H=y+} =1.60m.

The state of flow at great flow depth is referred to as subcritical (ysyg = 1.580m) and at

small flow depth as supercritical (ysypgr =0.190m). The flow depths at the same specific
energy are referred to as corresponding flow depths.
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Subcritical discharge in a laboratory flume

In the experiment (as before, flow is from left to right) shown in Figure 13.5 with width
b=4.0cm, a constant discharge of 60L/min, i. e. 0.025m3/(sm), has been set. Let’s first
look at the left part of the photo where the Pitot tube (far left — hardly recognizable in
the image) indicates the specific energy Hyps = 12cm. As usual, it is marked on the acrylic
glass wall by the red energy grade line that extends horizontally because of the lack of

energy losses. In this region, the flow depth of y = 11.77cm is somewhat lower®.

q = 0.025 m¥*sm
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Figure 13.5: Subcritical flow in a rectangular laboratory flume with a discharge of g =25L/(sm).

We now let our eyes wander to the right in the direction of flow and see a ramp that
heightens the bed. I hope you remember the agreement we made at the beginning of
Chapter 13.3 to always relate the energy height in open channel hydraulics to the bed,
i. e. applying the specific energy . When moving along the channel bed to the right,
the distance to the energy grade line decreases gradually. Let’s have a closer look on
the right side of the H —y diagram that was drawn for the constant discharge per unit
width of ¢ = 0.025m%/(sm). We wander from the point of intersection of the green line
with the flow depth along the specific energies vs. flow depths relation to the left until
we have reached the specific energy Hoy the sill = Hupstream the sill —W = 0.08m on the sill

with height w =4.0cm. For 0 =y+ 0&0222 —0.08, Octave displays 0.0742m as flow depth.

22
And we actually see that the distance between the bed (by the bed sill) and the energy
grade line has been reduced. We also see that the distance between the water level and
the energy grade line increased from left to right. The velocity height increased from
12.00 —11.77 =0.23cm to 8.00 — 7.42 = 0.58 cm. This seems obvious because the flow area
was significantly reduced. The Pitot tube on the bed sill again indicates the total energy at
the height of the red line. Starting from the bed sill, it goes further to the right and down
the ramp of the bed sill again. Since the specific energy is related to the bed, it rises again

0.0252
2

A Try to solve equation 0=y + —0.12 yourself in Octave. For a starting value, enter 0.1, i. e.

fsolve(@f,.1)
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to the right®. When moving to the right along the H —y relation from its intersection
with the specific energy H = 0.08 m, we find that the increase in specific energy goes along
with the increase in flow depth. Exactly the same condition can be found in the photo.
When looking closely at the right side of the photo, it is even discernible that the water
level rises slightly in the direction of flow. And that’s what must occur! The velocity is
reduced with the increase of the flow depth and thus the velocity height as well. Since
the distance between water level and energy grade line defines the velocity height, it must
decrease because H = const.

Supercritical discharge in a laboratory flume
At the farthest left boundary of Figure 13.6, the water level in the Pitot tube again indi-

cates a specific energy of Hypstream the sill = 12¢m. As in the above example, the discharge
amounts to g = 0.025m>/(sm).

q = 0.025 m¥sm

0.04 0.08 0.12 0.16 0.2
H [m]

Figure 13.6: Supercritical flow in a rectangular laboratory flume with a discharge of ¢ =25L/(sm).

The markings on the ruler are hardly discernible in the photo; the flow depth is approx-
imately 2.0cm. Those who want more precise data must again rely on Octave for the
solution of the Bernoulli equation:

The starting value must be close to the actual solution value (here 0.02m). Then, in this
case, y = 1.764cm.

Here again we turn downstream to the bed sill with height w =2.0cm. On the ramp of the
bed sill, the specific energy decreases gradually until it reaches Hoyy the sin = 12.0 —2.0 =

B After Chapter 11, everybody should be aware of the fact that the energy height cannot increase
absolutely since no energy is supplied to the flow at this point.
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10cm. Let’s follow the H —y line in Figure 13.6. At the flow depth with supercritical flow,
a decrease of the specific energy leads to an increase in flow depth. The photo shows a
significant increase of the flow depth relative to the bed — and that it is even possible that
the water flows “uphill”. This is comparable to a roller coaster where the cars — without
an engine — race at high velocity up a hill, lose kinetic energy with the increase of the
potential energy and are finally pushed over the top of the hill. Using the definition for H

one obtains with an estimated value that is less than 4.0cm: yop, the it = 1.995cm.
Those who question the photo will see that the water level in the middle Pitot tube is
not at the height of the red energy grade line, but rather approximately 1.5 cm below it.
For a subcritical flow, the energy losses over such a short distance may in most cases be
hidden. But due to the high velocities at supercritical flow, they cannot be disregarded.
Loss-affected flows will be addressed in upcoming sections starting with 13.9. For the time
being, we pretend as if no losses have occurred.

On the declining part of the bed sill, the specific energy (remark: related to the bed)
increases again. When following the specific energies vs. flow depths relation starting
from the point of intersection between H = 10cm and y = 1.995cm to the right (increasing
specific energy), the flow depth must decrease. Looking more closely, one may detect
(relative to the bed) a slightly dropping water level. A more distinct lowering of the flow
depth is not discernible due to the occurring losses and the differences of the water levels,
which are already small. Mathematically, we obtain again a flow depth of y =1.764cm at
the prevailing specific energy (H = 12cm).

Critical flow in a laboratory flume

We start again at the same discharge (¢ = 0.025m3/(sm)) with the specific energy
Hypstream the sill = 12.0cm (see Figure 13.7). The bed sill is now set to w = 6.0cm so
that the specific energy on the bed sill decreases to Hop the silt = 6cm. The flow depth
upstream from the bed sill again amounts to approximately 11.8 cm. Downstream from
the bed sill, however, the flow depth did not return to the original value of 11.8 cm, but
rather reaches approximately 2.0 cm. The flow transition from subcritical to supercritical
flow is forced because on the bed sill at height w = 6cm the critical specific energy also
known as minimum energy Hpin = Hypstream the sill —W = 6cm is attained (see Figure 13.7,
right).

If the critical conditions, i. e. the minimum values of the H —y relation, are reached, they
will be passed through. In our case, the ramp again extends down to the original datum
so that downstream from the sill, Hjownstream the sill = 12.0cm. Therefore, the flow depth
drops again to Yqownstream the sill = 1.8cm (see above).
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Figure 13.7: Critical flow in a rectangular laboratory flume with a discharge of g =25L/(sm).

13.3.2 Mathematical description of the critical conditions

Figure 13.4 shows that at a certain specific energy, two flow depths, referred to as corre-
sponding flow depths, may exist. There is no solution for the equation from H = 0m to
approximately H = 0.7m. In other words, at a specific energy that is smaller than a certain
value (approximately 0.7m), g = 1.0m3/(sm) cannot be discharged. Minima and maxima
of a function are obtained by setting the first derivative to zero. Thus the minimum en-
ergy (critical specific energy) is determined by taking the derivative of the specific energy

with respect to the flow depth: %—I; < 0. The concrete calculation steps for a rectangular

cross-section are: ) ) 2
dH q 1 q - (=2)
e 2 ) =141 = 13.6

dy (y+y228> &by Y (13.6)
Solving for the flow depth y, which we designate as y. (¢ stands for critical) for this

extreme value, the result is:
[ 2
q
Ye,rectangle = \ g (137)

By inserting the critical flow depth into the Bernoulli equation (13.4), the minimum energy
may be determined for a rectangular cross-section:

2 2 2 2 2
I'Imin:yc‘f‘izq2 :3q*+7q2 :3i+ Z =
y:2g \/g 3/ﬁ2g \/g el
8
2 2 2 2
_slqt g3 slqt  15/g7 3
=4t T = s = 5
8§ 2g3 g 2yg 2

Before proceeding, we will pause briefly. In Chapter 13.2, the Froude number and its

importance for open channel hydraulics was discussed. It is defined as Fr = \/%. From

2
Equation 13.8 (Hpyin = %yc), it follows that ;—Z’ = %yc; i. e. v. = \/gyc- By insertion of this
critical velocity v, at the critical flow depth y. into the definition of the Froude number

(Equation 13.1), Fr = \/?W = \/\/% =1 is obtained. Thus, Fr = 1 marks the boundary

(13.8)
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between critical conditions; for Fr > 1, supercritical conditions apply; for Fr < 1, subcritical
conditions are pertinent.

Critical conditions at arbitrary cross-sections

We may determine the critical flow depth for any cross-section of area A(y) by taking the
derivative of the specific energy with respect to the flow depth. The specific energy for
any cross-section is:
Q2
H=y+—5— (13.9)
A(y)*2g
Taking the derivative of the specific energy with respect to the flow depth and setting it
to zero: )
dH -(=2) dA
dH_ 2 %( ) 4y (13.10)
dy A28 dy
In the formulation of arbitrary cross-sections, % is added from use of the chain rule
because A(y) depends on y, as can already be seen from the expression. To gain a better
understanding of this derivative, we mentally follow an image drawn by Jirka and Lang
[20]. When raising the water level in an arbitrary open channel cross-section (see e. g.
Figure 13.22 on page 234) by dy, the area increases simultaneously by dA. Thus, the
increase in area of an open channel flow always takes place at the water level. Since
% = bws, then®:
dH 0? !

— =1-=1b =0 13.11
o a3g ws ( )

C

From the underlying one-dimensional approach, it follows, strictly mathematically, that
the Froude number for arbitrary cross-sections must be formed via the reference length
Lot = ﬁ (see Formula 5.33) in order to reach the critical conditions at Fr = 1P. For the
Froude number in any open channel, we therefore write:

Fr=—— (13.12)

A
8bws
Actually, however, there will be different propagation velocities of surface waves, depend-
ing on the flow depth at their respective locations across an open channel. For those in-
terested in the topic “one-dimensional approach to arbitrary open channel cross-sections”,
the standard reference by Bollrich [5] is recommended for further reading.

C Thus, the differential area is divided by the differential height, resulting in the width at the water
surface. When verifying the statement for a rectangular open channel of width b, % = b, which is
in accordance with the above solution. But you may well check it out yourself and derive A with
respect to y, e. g. for a trapezoidal or parabolic open channel. The calculation for a partially filled
circular cross-section is far more complicated. However, it will always yield % = bws. You will find
the derivations for the critical flow depths in trapezoidal, triangular and parabolic cross-sections in
Appendix A.5.

3
D Let’s briefly check the following: Fr =1 leads to v? = %; i.e. 0*= %. This is inserted into the
3
expression for the derivative of the specific energy with respect to the flow depth: 1 — S~ bws (),

bws Alg
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13.3.3 q-y diagram

Back to Equation 13.4, in which H is set constant for the following discussion. Figure 13.8
is an example with H = 2.0m showing how the variables ¢ and y behave at this specific
energy.

H=2.0m
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Figure 13.8: Flow depth vs. discharge per unit width for a rectangular open channel with H =
const. =2.0m.

Figure 13.8 shows a curve that indicates a maximum value of the discharge per unit width.
The maximum may again be determined by setting the derivative to zero. We solve the
Bernoulli equation for ¢

q=\/(H—y) 28 (13.13)

and take the derivative of it with respect to y:

9 fi ) 2p 1
dy (H—y)-2gy & V28V (H—y)y & ( )

Using the product rule f’(x) =o' (x)-v(x) +u(x) -V (x), as it is given in Bronstein and
Semendjajew [8, S. 395], it follows that:

1 !
P Va5 0 V1) = Va (VA - A=) o
(13.15)
In order to simplify Equation 13.15, we first divide by +/2g; on the right side, % still
equals 0. Furthermore, we move a term to the other side of the equals sign and obtain:

VH—y= %/%—y (13.16)

N =

Now we solve Equation 13.16 for y:

y=2/H—-y\VH—y=2(H—y)=2H -2y (13.17)
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With y = %H , which we also get from the derivative of g with respect to y, the critical
conditions are in effect. In a rectangular cross-section, the maximum discharge may flow
at a certain specific energy if it consists of % velocity height and % flow depth.

When inserting this finding into Equation 13.13, we obtain an expression for gmax:

2 2 \? 1 4 8
=t (H=ZH) 2¢(ZH) =/-H-2¢--H? =/ —H3 13.1
dma \/< 3 ) g<3 ) \/3 8 9 27 8 ( 3 8)

Thus, no more than gmax = 4.822m>/(sm) may flow off at a specific energy of H = 2.0m.
Let’s first look at an example before we return to the ¢ —y relation in Chapter 13.8.

Flow in a constriction

In an open channel, a discharge per unit width of ¢ = 3.0m3/(sm) takes place. This
increases to ¢ = 5.0m?/(sm) in a lateral constriction. On the left side of Figure 13.9, we
immediately see that the discharge per unit width of g =5.0m?/(sm) cannot be discharged
at the available specific energy of H = 2.0m; maximally, approximately 4.82m?3/(sm) may
flow. And that’s how it is initially. The discharge difference (~ 0.18m?/(sm)) remains
upstream, the water level rises, and energy is built up until there is just enough that
the arriving discharge may pass. This means again that the critical conditions (right
side of Figure 13.9) are met and thus a transition from subcritical to supercritical flow
occurs (see above). We may calculate the minimum required energy from Formula 13.8:

_33/50%
H—2 <

development length, the flow depths upstream and downstream from the constriction
where a discharge per unit width of ¢ =3.0m3/(sm) takes place may be seen on the right
side of Figure 13.9. The flow depth at subcritical flow is yypstream ~ 1.9m; the flow depth
downstream may be estimated as the corresponding flow depth yqownstream =~ 0.55m.

=2.049m. When neglecting energy losses, which is well-justified by the short

H=2.0489 m
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Figure 13.9: Flow through a constriction if ¢ > gmax.

Those who want more precise results may once again use Octave and obtain yupstream =
1.925m and y4ownstream = 0.554 m.
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13.4 Flow under a sluice gate

For deriving shape parameters (e. g. [20, p. 59]), one may consider the flow under a sluice
gate that is mounted at different angles against vertical. We focus on vertical sluice gates
and take advantage of the Bernoulli equation following the derivation of the Torricelli
equation (9.6) but consider the kinetic energy. When introducing a discharge coefficient

Figure 13.10: Flow under a sluice gate.

U= ¢ -y here, as well as a combination of the loss coefficient ¢ and the contraction
number Y, the equation for the flow under sluice gates with the lifting height hj;¢ reads
as follows:

O=U- hjg-b- V28 (H _yvc) for Yupstream > 1.5 hyigg (13-19)

Also, for the flow under sluice gates, the equation is valid only if no air is sucked-in
upstream (air that is sucked in would reduce the flow area). Therefore, yypstream must be
at least 1.5 times the lifting height /g .
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We move slightly upstream, as well as downstream to the so-called vena contracta (where
the least flow depth y,. prevails), to find hydrostatic pressure distributions. As friction
losses occur, particularly due to the high velocity downstream from the sluice gate, they
will be accounted for by the coefficient p.

Now we address the flow conditions illustrated in Figure 13.10 and determine the discharge
under the sluice gate. Here, we again draw the energy diagram directly onto the acrylic
glass wall. With the width of the flume b =20cm and the lifting height Ay, = 2.6cm as
well as with the discharge coefficient g = 0.7, the flow depth measurements for upstream,
Yupstream = 11.7cm, and downstream from the sluice gate, y,. = 1.8cm, lead to a discharge
of 0 =5.1L/s. The result is quite close to Q = 5.0L/s, which was determined by means
of a so-called magneto-inductive flow meter. Simply recalculate as follows!

The discharge coefficient u given in reference works like Bollrich [5] usually includes the
influence of upstream velocity head and downstream pressure, so that the discharge under
sluice gates is often calculated using the Torricelli equation (9.6). Caution is therefore
required when determining the discharge coefficient. The influence of backwater is usually
considered via an additional coefficient which, in this case, is obviously smaller than one.

13.5 Flow over weirs

Weirs as construction elements in hydraulic engineering are of great importance for prac-
tical applications. The flow over a weir with all relevant variables is shown in Figure
13.11.

Figure 13.11: Flow over a weir.
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13.5.1 Poleni equation

The fluid flows in an open channel towards a weir.

Yu

N\

Figure 13.12: Idealised streamlines at a weir.

At a distance of 3 — 4 hwiy, the water level is not yet dropping; there, we may assume

hydrostatic conditions. For the following considerations, our reference system has z =10

(with the z-axis directed upwards) located on the weir crest, i. e. the highest point of

the weir (we assume a sharp-edged weir here). The energy height may be written 3 — 4
2

hwy upstream from the weir as H = hwyg + % relative to z = 0. The streamlines that

begin below z = 0 also meet this condition exactly; although their pressure heights é are

greater, the geodetic heights are lower (negative) by the same degree. Stating that on the
one hand the energy height along a streamline is constant (which seems not unreasonable
due to the relatively short development length) and that on the other hand the pressure
height on the weir is zero® means that each streamline on the weir exhibits thze energy
w(2) F

from the respective geodetic height z and the tangential velocity component ég , while

é = 0. Thus, we may write

Uy (Z)2

2g

2
HZhWH—F% =z+ (13'20)

and therefrom interpret the velocity as a function of the coordinate z as seen, for example,
in Zuppke [65] or Bollrich [5, page 396]:

uy(z) = \/2g (hWH—Z+;Z> (13.21)

The following expression for the discharge is the integral of the velocity with respect to
the area. Here, the factor {, which is smaller than one, is meant to indicate the thickness
of the water jet (also called nappe) at the respective location relative to hwi.

E This assumption must be carefully considered. From Figure 13.12, it follows that atmospheric
pressure pg prevails above and below the overflow jet. This also applies to fixed weirs and the design
discharge (see Figure 13.13). However, the jet inside is not pressureless because the streamlines are
curved and the jet is tapering.

F' A streamline is defined such that only the tangential component exists (see Chapter 2.8).
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y=b rz=C-hwn =C-hwa V2
Q:/ / V28 hWH—z—i——dzdb b/ «/2g1/hWH—z—|—idz
y 7=

=0
(13.22)
The integration of [+/—zdz yields —%z%. We therefore obtain:
r 37 &hwa
0= —gb\/Z hwa —z2+ @ 2
73 8 WH — 2 2g
L 0
2 A% A% (13.23)
) e L) - U :
31? g (hWH & hwu + 2g> (hWH + 28>

2

3 3
=2 | (mwa+ ) — (= A
=3 8 WH 2 WH 2¢

2
Neglecting the velocity height in the upstream water ;—’é, which appears to be justified

due to the low flow velocities there, we may further write:

—ib\/@[hém—(l—cﬁ Whvr| = 2bv/28hby [1 (1= )3 (13.24)

Substituting the overflow coefficient u for the bracketed expression [1 —(1-¢ )%}, we
obtain the Poleni equation (13.25):
2, i
= u3by/ 2ghiy (13.25)

The table values for p also include the influences of friction and pressure as well as
the upstream velocity height, all of which have been neglected in the derivation. y is
dependent on the design of the weir and ranges from 0.5 for wide-crested weirs to 0.75 for
round-crested weirs. An advantageous flow profile was developed by the American Corps
of Engineers and is internationally known as the WES profile. Design information may
be found e. g. in [58, 136]. However, the equation for the discharge over a weir (13.25) is
applicable only if no backwater from downstream exists (submerged flow). In this case, a
reduction factor, which takes into account the influence of backwater (see Chapter 13.5.3),
is introduced.

Flow over a sharp-edged weir

Exemplary for the flow over a sharp-edged weir, we observe the development of negative
pressure with insufficient aeration of the overflow jet. When aerating the region below
the nappe by means of a finger held into the overflow jet, a far greater throw will form
(see Figure 13.13). Sufficient aeration of the nappe must be ensured in the construction of
weirs in order to prevent pulsation of the jet, which would introduce pressure fluctuations.
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Figure 13.13: Flow over a sharp-edged weir (attached nappe on the left, aerated on the right).

In the above laboratory flume of width b = 0.20m with weir height w =0.10m and overflow
height Awy = 0.053m, the result for the discharge coefficient, according to Rehbock®
[49], is u = 0.605+ m +0.08 - hWTH = 0.666. From Equation 13.25, the result for the
discharge is 4.8 L/s.

13.5.2 du Buat equation

The equation according to du Buat! (13.26), which also explicitly indicates the upstream
velocity height, is (see Equation 13.23):

2\ 3
0= Hausuae 30/ (hWH+;—’;> (13.26)
Du Buat does not include the velocity height upstream from the weir in the discharge
coefficient g, which is why it differs from the Poleni coefficient and is designated as
Udu Buat- However, Equation 13.26 must be solved iteratively, which is why it was hardly
used before the development of numeric solvers. For this reason, the pertinent tables do
not contain any reference values for the discharge coefficient UgyBuat- In Rossert [49],

2 —-1.5
one may find only the analytically derived relation gy Buat = K - (1 + (zg;:—gm)) , which

consequently leads to the same result as the evaluation of Equation 13.25.

13.5.3 Submerged flow over a weir

Submerged flow over a weir occurs when the tailwater level rises up to a certain height
above the weir crest. In experiments, it can be proven that the tailwater impacts the flow
conditions upstream from the weir when the overflow jet separates from the weir body.

G Theodor Rehbock, %1864, Amsterdam, the Netherlands 11950, Karlsruhe, Germany
H “The famous researcher Chevalier du Buat shone mightily ahead ...”, from Kreuter [24].
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Initially, the pressure distribution in the crest area is changed by the rising tailwater. The
occurrence of an undulating flow is typical for the separation of the jet (see Figure 13.14).

hWH

Figure 13.14: Submerged flow over a weir.

Depending on the design of the weir, various values for }£V—DH may initiate the submerged

flow. The highest degree of impounding is achievable with hng ~ 0.8 for the broad-crested
weir.

13.6 Discharge through a siphon weir

A siphon weir has an appearance similar to that of a common weir with the critical
difference that the discharge from the siphon takes place under pressure (or better: under
negative pressure). The siphon weir has a lid, known as siphon roof, in the contour of the

x ----EGL --- HGL
v i

Yu

Ah

Figure 13.15: Sketch of a siphon.

weir.

But wait a minute. If the water level exceeds the height w of the siphon weir, the flow ini-
tially takes place with free surface and may be expressed via the Poleni equation (13.25).
By means of priming deflectors and the high velocity at the downstream face, the air is
carried out of the siphon, and the water then flows off under pressure. Hence, the energy
height difference between upstream and downstream water, and no longer the overflow
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height, determines the discharge. The discharge through a siphon weir is therefore de-
scribed by the energy levels up- and downstream from the siphon weir, however, generally
the water level difference is taken into account (see Equation 13.27). In most cases, a
discharge coefficient [63] of 0.7 to 0.8 is achieved.

0= Hsiphon weir 'Asiphon weir * \/ 28Ah = Hsiphon weir d- bsiphon weir * V/ 2842+ yu —Yp
(13.27)
The flow stalls if the upstream water level drops below the siphon mouth or so far such
that air is sucked in (see Chapter 13.4 or Equation 13.19). For the siphon weir, it must
also be ensured that no cavitation occurs (see Chapter 8.7).

Flow through a siphon weir

Suppose the flow through a siphon weir with a rectangular cross-section (b =5.0m, d =
1.0m, 4 =0.75, Az=3.0m) is to be determined. Furthermore, assume that the upstream
flow depth is yy = 5.0m, and downstream flow depth is yp =2.0m.

0= Hsiphon wcirAsiphon weir \/28 (AZ+)’U *yD) =0.75-5.0- ]~0\/2g : (30 +5.0- 20)
= 40.687m>/s
(13.28)

13.7 Flow depth at a fall

In the case of a fall, nature also demands only the energy that is absolutely necessary.
Therefore, the flow depth here in subcritical flow may be derived from the minimum
principle. But beware! At a fall, air can be present at the underside of the jet, which means
atmospheric pressure. When viewing Figure 13.16, the experienced hydraulic engineer
will notice that there is no hydrostatic pressure distribution. What we need is the law of
momentum!

Let’s assume that immediately upstream from the fall there are still hydrostatic conditions
and that hardly any energy is dissipated over the flow distance from there to the fall.
Therefore, the minimum energy Hp,;, will be established just upstream from the fall; with
hydrostatic conditions, this corresponds with y..

We will further assume that the jet behaves as if it is discharged into open air; the pressure
at the fall will then become zero. The forces are plotted in Figure 13.17.

Under these conditions, the law of momentum for a rectangular open channel is estab-
lished:

1
vac+§pgy%b:var (13.29)

We simplify the equation by dividing by p and b; Q becomes g and v is replaced with %:

qg 1 , q
L4 gt =gt 13.30
7, + S8V 7, ( )
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Figure 13.17: Forces at a fall.

The relationship between y. and ¢ for the critical conditions is known from Equation 13.7.
Solving y, = \3/? for ¢? results in:
7 =g, (13.31)
Inserting this result into Formula 13.30 yields Equation 13.32:
2 1, ygg
Ye&+ FYe8 = y_ (13.32)

r

When combining the terms on the left side and dividing the equation by g, the ratio
becomes very clear. We obtain

3
Sy =2 (13.33)
2

which solved for y, finally yields:

2y2 2

—ZJ¢c _ = 13.34
Yr 3}% 3)’6 ( )
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Flow depth at a fall

While taking the photo in Figure 13.16, which shows a b = 0.20m-wide flume, a discharge
of 0 =3.0L/s was measured.

From Formula 13.7, the critical flow depth is y, = 0.0284m, from which %yc =0.0189m
results. In the experiment, y, = 2.2cm, which lies between the calculated value and y,,
was measured. This is attributed to the fact that the pressure force directly at the fall
is not zero; the pressure is zero at both the upper and lower side; however, the fluid in
the jet itself will be subject to a certain pressure distribution. For example, Valentin [61]
gives the ratio ;—Z a value of approximately 0.7.

13.8 Venturi channel

The Venturi channel, as it is called, was developed by British engineers in India for
measuring discharge in open channels. The measuring device is named after the Italian
physicist who discovered the Venturi effect!.

The Venturi channel makes use of the extremal principle of Bernoulli’s equation: when a
flow is constricted to such an extent that the discharge can no longer pass through, the
flow backs up. The two functional dependencies of flow depth and specific energy (Chapter
13.3.1) as well as flow depth and discharge per unit width g (Chapter 13.3.3) have been
discussed above. Wherever ¢ = const., the use of the H —y relation (see Figure 13.4) is
recommended. It is only the discharge that is related to the channel width that varies
in such a Venturi channel, but at continuous beds (without bed sills) the specific energy
stays constant (H = const. or may be assumed to be constant). Therefore, the application
of a ¢ —y diagram, as shown in Figure 13.8, is advantageous.

Venturi channels are very frequently employed in wastewater systems for discharge mea-
surements because the discharge may be determined solely by measuring the flow depth
upstream from the constriction. They are advantageous compared to measuring weirs be-
cause the bed sill, which may lead to sedimentation, is omitted. However, the extent of the
constriction must reliably ensure the transition from sub- to supercritical flow. Therefore,
we have to be careful that there is no influence from the downstream backwater into the
Venturi channel. A Venturi channel is designed only for the measurement of a discharge
range to be defined in advance. For a better understanding of the flow, we will briefly
conduct an experiment.

I Giovanni Battista Venturi, *1746, Bibbiano, Italy 11822, Reggio nell’ Emilia, Italy
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Discharge in a Venturi channel

The Venturi channel optimised by Valentin? (here the width of the constriction varies
with height — see Figure 13.18) allows us to approximate the discharge in a laboratory
flume. All we have to do is measure the cross-sectional values as well as the flow depth
upstream from the constriction. The width of the channel is b = 0.20m; the average width
of the constriction that varies over the height is beonstriction = 0.-085m. With the Venturi

Figure 13.18: Determination of the discharge by means of a Venturi channel.

channel, it is generally assumed that energy losses are negligible; however, empirically
determined loss coefficients may be applied as in DIN 19559. We equate the minimum
energy at the narrowest place with the specific energy slightly upstream from the Venturi
channel so that the Bernoulli equation for both cross-sections reads as follows:

0’ 3 02
Yupstream + 55— 5 = Hpjin, constriction = ) \ T E— (13.35)
2gyupstreamb gbconstriction

With the measured flow depth yupstream =0.102m and the cross-sectional values, Equation

13.35 reads:
0.102 + % = Hp; S B % (13.36)
' 0.1022.0.202.2g ~ mimconstriction = 5 |/ 50,0852 '

For the solution, we again use Octave:

J Patent identification number DE19962239C2 05.12.2002.
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Octave displays Q = 4.93L/s for the discharge, which is in close agreement with the
magneto-inductively measured discharge of 5.0L/s.

13.9 Steady-state, uniform flow (normal conditions)

Water flows in a river due to a pressure gradient caused by gravity or a water level
gradient. From source to mouth, a river like the Isar or the Danube exhibits a certain water
level gradient over a certain distance. We continue with the example of the Isar, which
originates in the Karwendel mountains at a height of 1160 m.a.s.l. and joins the Danube
after flowing for a distance of 295km at 310 m.a.s.l. near Deggendorf. A mean water level
gradient of % = 2.88 results from the height difference and the flow distance. The
originally existing energy has been dissipated, i. e. mostly converted into heat. By the
way, the sun supplies the water with potential energy by means of evaporation and lifting
vapour molecules to great heights. The rivers of the planet are fed with water and the
necessary energy for the discharge is supplied by the drift of clouds and precipitation from
great heights (e. g. in the Karwendel).

Open channel hydraulics deals with flows that have a free surface. In the Chapter “Hydro-
statics” (7), we have also focused on (standing) water with a free water level. We found for
stationary liquids that the water level is always perpendicular to the acceleration vector.
If the flow depth is measured vertically — and not normally to the bed or water level — we
make a small mistake. Let’s look more closely at this matter:

Figure 13.19: Acceleration vector and flow depth on an inclined plane.

Figure 13.19 shows a body of water on an inclined plane (the bed of our open channel).
The pressure acts perpendicularly to the boundary (the river bed), and the acceleration
as is parallel to that boundary. The component of the flow depth perpendicular to the
bed corresponds to y, = ycosa. In order to obtain the component a,, which is parallel to
v, the gravitational constant g must be multiplied by cos@. For the pressure, it follows
that p = pa,y, = pgcosa -ycoso = pgycos” . At very steep slopes of 10 %, the cosine
reaches a value of 0.995; its square is 0.99. Since the influence is negligible (1 %) even at
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such steep channel beds, we will work with the vertical flow depth as pressure height ‘f—g
in the following discussion (see also [13]).

Figure 13.20: Water body on an inclined plane.

We look at the balance of forces depicted in Figure 13.20. The relationships between the
quantities will be better understood if we undertake a mental bicycle tour. We mount a
bike on a hill with constant gradient and roll downhill. The descent will probably take
place such that we accelerate from standstill and eventually reach a velocity that does not
increase further. This is the case when the downward force and the friction force are in
equilibrium®. Flows in open channels behave in the same way. The downward force that
results from gravity acting on the inclined plane accelerates the flow until a balance with
the friction force is obtained. This is referred to as “normal conditions”.

In the present section, we deal with these uniform conditions (see Chapter 2.7), i. e. the
flow velocity does not change along the flow distance. If the velocity does not change, then
the flow depth y and the velocity height g also do not change. As a result, the bottom
gradient, the water surface gradient and the gradient of the energy grade line are identical
(Jp = Jws = Jg; see Figure 13.21).

The absolute values of the momentum flux and the force due to pressure are equal on the
left- and right-hand sides of our control volume in Figure 13.20. Only the force due to
mass and the friction force remain. Considering the immediately prior assumption that
the flow depth may be measured vertically, it follows that for the downhill-slope force due
to mass pAds with acceleration a; (see Figure 13.19) along the coordinate s:

Fg-sina = pAayds = pAdsgsino (13.37)

The cross-sectional area is given by A, and the infinitesimal disk thickness in the flow
direction is identified by ds, as shown in Figure 13.20.

The friction term for the complex turbulent flow must be extremely simplified in order to
be able to provide a one-dimensional solution. We benefit from the fact that the external
friction is dominant and that viscous forces play a minor role — generally — in rough open
channels. Therefore, only the wall shear stress, Ty, is applied against the flow direction. It

K Newton stated in the lex prima, also known as the law of inertia (see Chapter 3.3), that a body
remains in uniform motion if the sum of the applied forces is zero.
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Figure 13.21: Steady-state conditions in an open channel section.

acts as a friction force Fr over the wetted perimeter P along the infinitesimal distance ds
(see Figures 13.20 and 13.22). We may confidently assume that there is no friction with
air at the free surface. From this, it follows that:

Fr = twPds (13.38)

A check of the units signals that all is well since N/m?-m-m results in the unit of force
N. Inserted into the momentum equation and equated with the downhill force, the result
is:

pAgsinods = Ty Pds (13.39)

With the hydraulic radius Ry, = % (see Figure 13.22%), 1y may be written as:
Ty = PgRyy sina (13.40)

Since dz should be measured perpendicularly to ds, we may use the small angle approxima-
tion sin =tan@ = % = Jp. This assumption, like the one for the pressure at the bottom,
is justifiedM:

Tw = pthyJB (13.41)

When establishing a loss coefficient tw = y- %vz, which is related to the dynamic pressure

%vz for 7y, it follows that:
yv?

RhyJB - Z (1342)

L The definition of the hydraulic radius does not lead to an 1
ideal description of the cross-section values. For the cir- )
cular cross-section, the flow area at depths y~d increases 2
far less than the wetted perimeter. From a purely mathe- ¢
matical point of view, this absurdly leads to a situation in
which the cross-section at flow depths y > 0.81d exhibits a ~ 04
higher capacity than when the pipe is completely full (see
right-hand figure). Of course, this does not correspond to
the behaviour under real conditions; therefore, it is gen- 0
erally calculated with the discharge at full pipe capacity 0o 02 04 a ?(':[_] o8 1 12
starting with a filling level of % > 0.81. ’

y/d[-]

0.2

M (alculate the sine and the tangent for an angle of 10°. A difference of 1.5 % results.
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Figure 13.22: Flow area A and wetted perimeter P in an open channel.

Solved for the flow velocity in an open channel, the equation corresponds to the formula
discovered by Brahms and published by Chézy [13]:

= /zjﬁ /RugJB (13.43)

Using the Darcy-Weisbach approach, where y = fTD, Vv is replaced and the result is:

V= J80g\/RhyJB (1344)
v D

Hence, the friction coefficient may be determined with the semi-empirical Prandtl-
Colebrook equations (see Equations 11.38, 11.39, 11.40 and 11.41). Equation 13.45, where
log again represents the common logarithm, is mostly used in the context of questions
with regard to sewers.

1 2.51 k
—— =-2lo + d ) 13.45
NG & <Re\ﬁfD 4Ry 371 (13.45)

Under rough and highly turbulent conditions, which are usually predominant in open
channels, the viscous term approaches zero so that fp may be written explicitly:

1 ks
= log 13.46
NG o8 (4-Rhy.3.71> (13.46)

Inserting the logarithmic expression for \/% into Equation 13.44, the velocity is expressed

as:

k k
—_-2./80-Rvo-Jn-1 W ) =-2./80-Ri.-Jn-1 s 13.4
Y 8:8 Ruy-Jp Og<4-Rhy~3.71> 88 Ruy - Jp Og(14.84-Rhy) (13.47)

However, because a number of scientists carried out experiments, another formula should
dominate in open channel hydraulics. In generalised form, Equation 13.43 with the po-
tencies o and B reads:

v=C-R%J} (13.48)
Empirical investigations in rough pressure pipes resulted in 0.5 < o < 0.75 and 8 =0.5.
Then Gauckler set the values o = % and = % and limited the application range to open

channels with gradients of Jg > 7 x 107*. Manning suggested that the selected potencies
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be assumed for all gradients, and Strickler formulated a relation between the constant C
and the relevant grain diameter d,,:
Ko

C= i (13.49)

Although Franke [13] states that Ky ~ 26m%/s applies only for the range % =2x1073 -

3 x 1073, the ratio \6376* is used in a far wider roughness spectrum. In Anglo-Saxon and

German-speaking regions, the Manning equation, which was derived from experiments
with rough open channels, is frequently employed for the solution of one-dimensional

issues. With the so-called Manning coefficient n = %N, it reads:
L gl

Thus, the normal conditions may be determined via the Manning equation (13.50) with
Jg = JgO. After inserting the continuity condition, it follows that

1 A
0= -\Ig—Z (13.51)

n 3

PN

For a specified discharge, a certain flow depth results. This in turn leads to vy, Hy and
Fry in an open channel with n and Jg.

N In German-speaking regions, the equation is known as the Manning-Strickler equation with the

1
roughness coefficient named after Albert Strickler. kgt = % and carries the unit m3 /s, in case you
wonder why the author chose such weird numbers in some calculation examples.

O The attentive reader has noticed that the subscript of the gradient was modified from B to E.
Actually, we should have written Jg from the very beginning. But for the sake of clarity between
the quantity “bottom” or “bed” gradient and the identical gradients of energy grade line and water
surface, it has been omitted under steady-state, uniform conditions. Chapter 13.10 explains why
the Manning equation contains the gradient of the energy grade line Jg.
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13.10 Steady-state nonuniform flow

When thinking of an open channel, such as the natural course of a river, it is hardly
conceivable that steady-state, uniform conditions could be found in any section. Under
natural conditions, variations in cross-section and gradient as well as different degrees of
roughness exist. The effects of such changes on the flow will be formally described in this
section, although we will repeatedly return to the steady-state, uniform flow we just dealt
with.
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13.10.1 Differential equation of the water surface profile

We will use the balance of forcest, i. e. the momentum equation in the s-direction (see

Chapter 13.9). Figure 13.23 explains the generalised function for the nonuniform flow
(y1 # yr) versus that of Figure 13.20.

2

B
ds

Figure 13.23: Balance of forces on a volume of water in an open channel section.

Due to the variable water level, the vertical (or rather normal to s) velocity component, is
not zero. Nevertheless, we make this simplification because the influence is minimal, and
it significantly facilitates the derivation of the differential equation of the water surface
profile. Contrary to the result with steady-state, uniform flow, we obtain a convective
acceleration that manifests as the change of the momentum flux in Figure 13.23. By
multiplication with the density p and integration over the fluid volume with the mean
cross-sectional area A and the layer thickness ds, we obtain the force that must be applied
to accelerate this volume accordingly. Here too, we can use the symbol for one-dimensional,
regular differentiation d instead of that for partial differentiation d while considering only
one velocity component v for u;.

dv dv
/pva dv = png ds (13.52)

Next, we will deal with the pressure term —%% The force due to pressure is again

obtained by multiplication with the density and the integration over the control volume
dvV =A-ds:

_ 9 Y
/p( >dv_ Lads=—pglAds (13.53)

The change in pressure dp from the left to the right side of our infinitesimally small
fluid volume with layer thickness ds becomes dp = pa, (Yui — Yur) = Pg - €08 & (Yni — Ynr),
as already discussed in Chapter 13.9. With the assumption made therein that the flow
depth may be measured vertically, it follows that dp = pgdy. The downhill and friction
forces change insignificantly compared to those at the steady-state, uniform flow. In the

P Within this book, we deal with firm bed. Sediment transport is described splendidly by e. g.
Zanke [64] for engineering applications.
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calculation of the water mass, the flow area is included in the equation as mean area A
and the wetted perimeter as mean wetted perimeter P.

d
Fg-sino = /panV = pAdsgsina = pAdsg (13.54)
S

The friction force is again written in terms of the wall shear stress along the wetted
area Pds. Fp acts like the positive pressure gradient against the direction of flow; for this
reason, the term representing Fr in Formula 13.56 is subtracted.

Fr = TWpdS (13.55)

By substituting the derived relationships, Equation 13.56 follows:
d d d

pvAds = = —pg D Ads — tyPds + pgAds & (13.56)
ds ds ds

After dividing by pgAds, it may be written:

vdv dy dz P
—— =t ——— 13.57
gds ds + ds pgA ( )

In the next step, the velocity is drawn into the differential, which was already done in
Chapter 5.7. We must be careful and divide by the new exponent as the differentiation

factor of % is 2 (% yields 1).

2

RN 1559

2g ds ds ds pgA
Now the change in velocity height along the direction s is on the left side of the equals
sign. The term —% represents the change in water level, and % may be written as the
bottom gradient Jg. With Ry, = % = % = g, the friction term corresponds to the gradient
of the energy grade line in Equation 11.21.
Let’s consider the energy diagram, or rather the energy equation, in Figure 13.24 with

the marginal variations of energy de, velocity height d (;—Z) and flow depth dy along the
infinitesimal layer thickness ds of our fluid volume.

The sum dz+y+ % is on the left side of the energy diagram and of our energy equation.
On the right side we find y and % as well, with the difference that the changes relative to

the conditions on the left are also listed. Compared to the conditions on the left, the flow
depth y has changed by dy over the flow distance ds. This coincides with the change of
the velocity height %. Moreover, the head loss de is indicated on the right. The equation
that reflects Figure 13.24 agrees with the result found with the balance of forces. Note
that dziz is negative in the case shown in Figure 13.24.

Equation 13.59
2 2

y y
d L= L 4+d 13.59
z+y1—|—28 yr+2g+ e ( )
becomes:
dv?
dz=dy+ —— +de (13.60)

2g
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Figure 13.24: Energy diagram of a nonuniform flow in an open channel.

Dividing by ds, we obtain:
dz dy 1d? d
&_ 9 ¥ (13.61)
ds ds 2gds ds

With % = %, this is exactly the relationship found for the gradient of the energy grade
line Jg in the balance of forces (see Equation 11.21). Rearranging Formula 13.61 and using

the small angle approximation dx ~ ds we obtain:

d 1 dv?
R PR PR s

—— 13.62
dx 2g dx (13.62)

2
A clever technique enables a further simplification. We insert v> = %2 in the above
equation and derive the term of the velocity height with respect to y. This results

in an expression similar to that in Equation 13.11, and we write again for % = bws:

2 2
L_d (Q ) = —2bws 1Q We shift dy to the other side of the equation so that the ex-

2¢ dxdy \ AZ gA3 dx
2 2
pression becomes i% (%) = —%%, which in turn may be transferred into the last
intermediate step:
dy Q*bws dy
— =Jp—J — 13.63
o Bt oA dx ( )
After rearranging and pulling out % as a common factor, the equation reads:
dy Q*bws
—(1- =Jg—J 13.64
dx ( gA3 peoE (13.64)
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With the Froude number Fr = ————, or the square of the Froude number Fr? =
$hws
2
v o VszS _ szWS . . . .
= =g = a0 = =0, we finally arrive at the differential equation of
Veras $hws ¢ #
the water surface profile:
dy JB—JE
A 13.65
R (13.65)

Differential equation of the water surface profile

The differential equation of the water surface profile will now be explained by means of
two examples. Jp is negative in both examples. In case @, subcritical flow takes place; in
case (2), the flow is supercritical. This leads to the following discussion:

—F 10 —F 150

step step

i:%:@ =y Sx=%=@ =y1

The numerator in case (1) is negative because a positive number (Jg) is subtracted from a
negative number (Jg). The Froude number in subcritical flow is smaller than one so that
its square is also smaller than one. In this case, the denominator is positive; thus, the
fraction becomes negative. This means that the flow depth in this situation must drop.

For the conditions on the right in case @, the numerator does not change relative to

case @ However, supercritical flow is in effect here, which leads to Fr > 1 and therefore
Fr? > 1. With the negative denominator, the fraction becomes positive; the flow depth
rises in the flow direction (relative to the bottom).

From the differential equation of the water surface profile, it may also be concluded that
the flow depth in the case of supercritical flow can decrease if the gradient of the energy
grade line is smaller than the bottom gradient. With a negative denominator (Fr? > 1),
the fraction becomes negative only if the numerator is positive, i. e. Jp > JE.

According to the differential equation of the water surface profile, the reduction in energy
in subcritical flow goes along with negative %. For subcritical conditions, the denominator
is positive; therefore, energy is reduced if Jg > Jp, i. e. the numerator is negative.
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13.10.2 Water surface profiles

Water surface profiles are of general interest in river hydraulics. How far does backwater
from a dam reach? Does water overflow in a flood event? In this chapter, we will find
answers to these questions.

In Chapter 13.3, the behaviour of free surface flows with respect to the composition of the
specific energy was considered. Since the Bernoulli equation (5.41) is based on the Euler
equation (5.24), energy losses must be included in yet another equation. Because water
may be discharged at one specific energy with two different flow depths (in subcritical
and in supercritical flow), the implementation of a loss term in open channel hydraulics
is not as easy as in pipe flow. The gradient of the energy grade line was introduced with
the Manning equation (13.50) for open channels. The Darcy-Weisbach approach with the
friction coefficient as described by the Prandtl-Colebrook equation (13.45) also contains
the gradient of the energy grade line as a function of roughness and the cross-section
quantities.

In this chapter, we consider water surface profiles by checking whether the two equations
(friction and Bernoulli equation) can be brought into alignment.

Table 13.1: Water surface profiles — Bernoulli vs. Manning equation.

| Bernoulli || Chézy or Manning
Je

yp p e y > yn — energy

J { increase

, .
/7
y .’/ASUB
d 7 \l,

7 \YSUPER \.JE_\ y <yy — energy

H_ a Js decrease

13.10.2.1 Transition subcritical — subcritical

First we assume that the normal conditions are known from the steady-state, uniform flow
(see Figure 13.25). On the left side of the figure, the normal depth yy is plotted above
ve. Subcritical flow is taking place. The centre section is marked as “smooth”. According
to Equations 13.50 and 13.45, a smoother boundary means a higher flow velocity. And
according to the continuity condition (5.2), a higher flow velocity leads to a lower flow
depth. This is marked as such in Figure 13.25 because the normal flow depth in the smooth
section lies below that of the rough section but still within subcritical conditions.

At the figure’s right edge, the initial conditions are once again assumed. But where do
the transitions occur? The “eye” icon in each of the boxes below indicates the region that
we investigate. The transition is to take place there.
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h
rous smooth

rough

Figure 13.25: Example for the transition from sub- to subcritical flow.

|
1 | roughi2 | smooth Bernoulli ysuB += Hsus | é
|

Manning y>yw=H1

First we consult the H —y diagram in Table 13.1. We are in subcritical flow, i. e. on the
upper branch of the specific energy vs. flow depth diagram. At a certain specific energy,
we find the associated flow depth and follow the H —y relation in the direction of the
decreasing flow depth; we see that the specific energy decreases. This is exactly what the
interrelation ysup J = Hsugp J in the above table is supposed to reflect.

We now turn to the flow formulas. In the region of interest (represented by the eye),
prevailing conditions permit the normal flow depth, as plotted. The flow depth in this
section drops to just this water level and is therefore above yy smooth- If the flow depth
is greater than yy, then the water flows more slowly than normal conditions allow due
to the greater cross-section at this location. At lower velocities, less energy is consumed.
This is a fact known by anyone who rides a bicycle or drives a car. Thus, it follows from
the flow formula that the specific energy increases.

2
Let’s discuss the Manning equation v = %JERE ,- The Manning coefficient 7 is constant
in this section of the flow. With increasing y, Ry, increases as well®. If v is smaller than
vy because of the greater cross-section, then Jg < Jp must also be true. Thus, energy —
relative to the bottom — is built up. Since the statements resulting from the two equations
are contradictory, the transition at this location is not possible.
The differential equation of the water surface profile yields the same statementS.

=yt é

R This applies to all cross-sections because the area increases with the flow depth faster than the
wetted perimeter. The exception is the upper region of the circular cross-section (see Chapter 13.9).

y>yN:>JE<JB:>$
SUB = +

! dy _ Jp—JE
y={ dx — 1-F¢?

e

+H+

S The author’s opinion after many years of teaching experience is that the Bernoulli-Manning
discussion is more descriptive than the differential equation of the water surface profile. However,
the statements are identical. You may opt for either method.
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The left column in the above table shows what should happen: the flow depth must de-
crease. For this region, y > yy; this corresponds to Jg < Jg. Therefore, a positive numerator
results. In subcritical flow, Fr < 1 and consequently Fr? < 1; the denominator is positive
as well. The change of the flow depth in the flow direction is positive, and according to
the differential equation of the water surface profile, y must increase. The course is not
possible.

We now look at a potential transition in the rough section, as symbolised by the eye icon.

|
1 [ rough,2 | smooth Bernoulli ysuB = Hsus | @

Manning y<ywv=H|

We start again with the Bernoulli equation, which states that for this region in subcritical
flow, the falling water level corresponds to a decreasing specific energy. Follow the H —y
curve on the upper branch along the falling water level.

In the region under observation, the water level drops below the normal flow depth of
this section. This means that the water flows faster at this location than the friction,
cross-section and bed gradient conditions stipulate. The flow equations also lead to an
energy reduction (y < yv = H |). Back to our mental experiment with the cycling tour:
we mount the bicycle and roll downhill until the balance of downward and friction forces
is established and the velocity no longer varies. If we want to accelerate (v > vy), we must
pedal. We burn calories, i. e. we expend additional energy.

The differential equation of the water surface profile also confirms the transition at this
location:

! dy _ JpJp y<yw=Je>Jp= T dy
y=b| &= Rt i w77y
SUB = —

In this case, the two equations are brought into line with each other and the transition
occurs under subcritical flow conditions in the upstream section. The change occurs in
such a manner that the normal conditions of the downstream section are in effect exactly
at the boundary.

We will now examine the transition during the downstream change from smooth to rough
conditions.
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|
2] smooth:3 | rough Bernoulli ysus 1= Hsup T i

Manning y<yw=H]|

With increasing flow depth in subcritical flow, the energy grade line is also increasing as
can be seen from the H —y diagram in Table 13.1. In the rough section, a greater normal
flow depth is found; consequently, the flow depth in the transition region is smaller. But
according to the continuity condition, a smaller flow depth also means that the velocity
is higher than at normal conditions. Higher velocities lead to higher energy losses so that
the specific energy decreases. Bernoulli and Manning do not reach a consensus.

The same result is obtained via the differential equation of the water surface profile:

: dy _ Jg—Jg y<yNéJE>JB:>f dy é
= & = 1R =774
Y= &= 1w SUB=>$ & T F

Therefore, we look at the transition in the section where smooth conditions are to be
found:

I
2 | smooth,3 | rough Bernoulli ysuB 7= Hsup T @
|

Manning y>yw=H1

With increasing flow depth in subcritical flow, the specific energy is also increasing. In
this region, the flow depth is greater than the normal flow depth that is related to low
roughness. The increasing area leads to lower velocities and thus to an energy buildup.
Both equations state energy buildup; in subcritical flow, the transition will occur in the
upstream section (see Figure 13.26). The normal flow depth of the downstream section
must exist at the boundary between the different sections.

The discussion about the differential equation of the water surface profile yields the same
result:

| oy | yev= < NS
Y=l &= -m? 1 [
SUB = —

Hence, we may sketch the water surface profile for the transition from sub- to subcritical
flow and back in Figure 13.26.

Impacts of changes/disturbances are found upstream in subcritical flow.
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Figure 13.26: Transition from sub- to subcritical flow.

13.10.2.2 Transition supercritical — supercritical

We venture a role play in which we alternately assume the personalities of Daniel Bernoulli
and Robert Manning. In the following example, the transitions between two flow sections,
which are characterised by normal conditions in supercritical flow, are considered (see
Figure 13.27). The normal flow depth is plotted once again in the sketch; yy lies below
ve, which means that the discharge is in supercritical flow.

y(‘,— ______ | 1

Yn——>2z- T —: ___________ |
I T
! .- S : —~—

|

|

h
W};W%
rough

Figure 13.27: Example for the transition from super- to supercritical flow.

We begin our investigation into the transition taking place in the smooth section.

- Hsupgr T

Ve~ L] Iough:2 | smooth Bernoulli YSUPER 4=
YNIX = sl\ -

Manning y>yw=H7

Daniel Bernoulli: Ladies and gentlemen, in supercritical flow we are on the lower branch of
my H —y relation for a constant discharge per unit metre ¢ = const. When the flow depth
in supercritical flow decreases, the velocity height increases faster than the flow depth
decreases. From y. onwards the specific energy increases continuously in supercritical at
decreasing flow depth. ysuypgr { leads to Hsypgr 1! Manning: Thank you very much for
your statements, Mister Bernoulli. From my point of view, I have the following to add.
If the flow depth in the smooth section drops to the normal flow depth, then logically it
is even greater than yy in the transition region. According to the continuity condition,
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y > yy means that v < vy, which in accordance with my equation leads to an increase in
specific energy. As is known, slower movements consume less energy than fast movements!
Mister Bernoulli, we agree. The transition occurs in the downstream section.

Bernoulli: Of course, Mister Manning. But to be absolutely sure, we must check whether
or not we can find another consensus in the other section.

Ve~ 1| rough,2 | smooth Bernoulli YSUPER 4=
YNI\K§ =~ Hsyper T

r~
Ly - -
T~

~

\@A\\?\ e Manning y<yw=H/|

Bernoulli: Well, I insist. According to the equation named after me, the specific energy
increases - even in the rough section - if the flow depth decreases in supercritical flow:
YSUPER = HsuPER T

Manning: Okay, let’s enter into a scientific argumentation. When the flow depth drops in
the rough section, it is lower than the existing normal flow depth there. This means that
the water flows faster than during normal conditions. According to my equation, when
y < yn, energy is reduced. Mister Bernoulli, there won’t be a deal. The transition actually
takes place in the downstream section.

Bernoulli: This dispute gives me great pleasure. Let us examine how the transition takes
place when it becomes rough again in supercritical flow. Once again, we begin our inves-
tigation in the downstream rough section.

- Hsyper 4

Manning y<yw=H|
@@

Bernoulli: Since we are in supercritical flow, the specific energy decreases with increasing
flow depth. You see that when you move onto the lower branch of my H —y relation in
the direction that promises a greater flow depth. In the diagram in Table 13.1, you move
only upwards on the lower branch as long as you also move to the left. I stress that point:
YSUPER 1= HSUPER |

Manning: Mister Bernoulli, indeed, I am able to follow your line of reasoning. But let me
explain my standpoint. At the place of interest, we are in a region where the flow depth
is lower than the normal flow depth (y < yy). This means that v > vy; hence, it follows
that energy is reduced. Mister Bernoulli, I fully agree. The transition takes place in the
downstream section. But for the sake of propriety, we should check whether a transition
could not also take place in the smooth section.

Vo2 | frflooth '3 | rough Bernoulli YSUPER T= @
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-~ Hsyper 4

~

V2] \srzmoth '3 | rough Bernoulli YSUPER T= é

~
~
~
~

YNz\K___ -

|
RENE
! &YM
@ Manning y>w=H?"

Bernoulli: Well, my point of view has not changed since the flow depth will increase in
supercritical flow, which agrees with a decreasing specific energy: ysupgr T= HSUPER 4
Manning: Stop! This won’t work! If the flow depth already increased in the smooth section,
it would be above yy in the transition region. The flow would be slower than normal
conditions allow and consequently the specific energy would increase. In this controversy,
Mister Bernoulli, we won’t find agreement.

The transition from super- to supercritical flow is shown in Figure 13.28.

rough

th
SMoo rough

Figure 13.28: Transition from super- to supercritical flow.

Impacts of changes/disturbances are found downstream in supercritical flow.

13.10.2.3 Transition subcritical — supercritical

We now consider the transition between sub- and supercritical flow, by means of the
differential equation of the water surface profile (13.65) before we work with a detailed
example later. We write it down again: % = {B:Fjr’i;

We agree that the flow depth must decrease from subcritical to supercritical flow. Ac-
cording to the Bernoulli equation, the specific energy also decreases in subcritical flow.
The flow velocity increases, which results in a higher energy loss, i. e. Jg > Jp. In the
differential equation of the water surface profile, the numerator is negative for this case.
We turn to the denominator. Since the Froude number for conditions in subcritical flow
is less than one, a positive denominator results. Consequently, the gradient of the water
surface % is actually negative; the water surface drops. So far so good. The flow depth
cannot, drop below y, in the upstream section as the numerator is still negative, but since
Fr > 1, the denominator becomes negative, too (and therefore g—)yc positive). Let’s have a
look at the section where supercritical flow takes place. Based on the same consideration,
the differential equation of the water surface profile acquires a negative denominator. If

the flow depth drops here from y. to yy, v > vy and therefore Jg < Jg. The numerator
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becomes positive, and with the negative denominator we obtain a negative value for %;
i. e. a decreasing flow depth.

It is obvious that we encounter a serious problem for the transition when the value of Fr
approaches one since in this case the value of the denominator approaches zero. This may
be investigated by means of the limit of %:

dy
SUB: lim — = —e0 13.66
Fr—1dx ( )
Consequently, the water level drops vertically at the transition from sub- to supercritical
flow. In fact, the pressure conditions stabilize such that there is a continuous transition
between sub- and supercritical flow. We have seen this already in Figure 13.7.

The transition between subcritical and supercritical flow is continuous; the crit-
ical conditions are passed through at the border between the sections.

13.10.2.4 Transition supercritical — subcritical: hydraulic jump

We will also analyse the transition between super- and subcritical flow, first by means of
the differential equation of the water surface profile.

The flow depth must increase from super- to subcritical low. With the limit for the Froude
number approaching one in supercritical flow, the gradient of the flow depth becomes:

Cody
SUPER: Flrlgql s (13.67)

According to Equation 13.65, the water surface increases vertically at the transition be-
tween supercritical and subcritical flow. However, this wall facing opposite the flow direc-
tion falls over and a so-called hydraulic jump occurs.

With the knowledge that we have already acquired, we may even be able to interpret
this phenomenon since disturbances may develop in subcritical flow upstream and in
supercritical flow downstream (see Figure 13.1). A disturbance that travels upstream
cannot progress beyond the hydraulic jump.

The transition between supercritical and subcritical flow occurs as a hydraulic
jump.

The jet, i. e. the discharge in supercritical flow, submerges into the subcritical region near
the bottom. This causes mixing and a deceleration of the jet. The water at the surface
flows upstream against the flow direction; this is referred to as a recirculation zone. Such
a hydraulic jump is extremely dangerous for terrestrial creatures. First, there is no escape
because of recirculation and second, the water density is rather low because of the mixture
with air such that one’s buoyancy is poor. There is only one way out if you happen to
get caught in a hydraulic jump: dive down and let yourself be carried by the jet near the
wall behind the hydraulic jump.

As is shown in the photo (Figure 13.29), the flow in such a hydraulic jump is highly
turbulent. The intrusion of air is mainly responsible for the dissipation of great quantities
of energy in the form of sound and primarily heat, which is why the flow depths upstream
and downstream from the hydraulic jump are not corresponding in terms of the Bernoulli
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Figure 13.29: Hydraulic jump in the laboratory flume.

equation. Moreover, the dissipated energy quantity cannot be estimated a priori via an
empirical equation. We are fortunate that we can resort to the law of momentum™!

We sketch a fluid volume in a free body diagram and plot the forces acting in the x-
direction.

V. i
Y

—
Jpawibi(y) dy/» &0 — \Jrayrbe(y) dy

N7 7 N\

Figure 13.30: Sketch of a hydraulic jump.

The flow depths on the right and on the left of the hydraulic jump are also
referred to as conjugated flow depths. For conjugated flow depths, the sum of
the pressure force and the momentum flux on the left and right side of our control
volume are identical. Flow depths at identical specific energy are referred to as
corresponding.

T We remember the Prandtl quotation in Chapter 5.8 that is tailored to the hydraulic jump.
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The law of momentum for an open channel flow, with the assumption already made in
Chapter 13.9 regarding the small angle approximation for the forces in the x-direction,
generally reads:

/pldAl—i—val :/p,dAr—i-var (13.68)

Therein, the friction at the bottom (the external reaction force) is neglected (see Figure
13.30). With a few mathematical techniques, this generally applicable formula may be
converted to an explicitly solvable equation if it is set up for a rectangular open channel
without a step. The written-out terms read as follows:

1 1
P8y + POV = 2pgyib+pQv, (13.69)

In the first step, we introduce the discharge per unit width g because we are in a rectan-
gular open channel; we divide by the open channel width b. We also want to divide by

pg-
1
2

2, 9Vi 1L, qv
— = — 13.70
Vi + g 2yr + g ( )

When we place the pressure forces on one side and the rate of change of momentum (or
the momentum fluxes) on the other side, then the equation reads:

2 2
Vi = Yr
L = g (v, —v) (13.71)

Using the continuity condition v;y; = vy, we solve for v, and insert it into Equation 13.71

as follows: s
-7 _4 <Wyl _V,) _4, (” - 1) (13.72)
2 8 Yr 8 Yr

We factor the left side as (y;+y,) (v —yr) and multiply the —1 in the bracketed term on
the right by i—’r to obtain a common denominator.

1 —Jr
3 0r) n-) = T (222 (13.73)

In the next simplification step, we divide the equation by % <”y;ry’)

Vr+yr)yr = 2§vz (13.74)

When substituting v;y; for ¢ and dividing by ylz, the major conversions will have been
accomplished:

2 2
%
Ve dr oM (13.75)
Yoo 81

The expression on the right side is equivalent to twice the square of the Froude number
that we see on the left side of the hydraulic jump Fr; = \/%71 (see Equation 13.1). We now

make the substitution, rearrange terms, set one side of the equation to zero, and obtain:
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2
Tl R =0 (13.76)
N/

And now the ultimate sleight of hand! Equation 13.76 is a regular quadratic equation
when x is substituted for the fraction i—; Thus, we may write:

K +x—2-Fr7 =0 wherex= ;i (13.77)
1

Since the standard solution for the quadratic equation (see e. g. [8, p. 64]) ax? +bx+c=0
is

b+ 4
xip= — T (13.78)
2a
then for Equation 13.77:
Sl 1240 (<20 RF) 1148 B
Xi2 = 1 = 5 (13.79)

Upon substituting for the constants a, b and ¢ in Equation 13.79, one immediately notices
that the solution in which the root is subtracted is non-physical since there are no negative

flow depths. We therefore write
—1+44/1+8 -Fr?
I : (13.80)

i 2

and ultimately:

YL HJ

YrHI = 5 (\/ 148 Frjyy — 1)
YrHJ

ViHI = > (\/1+8'FI%HJ—1)

Since formally no differences were made between the left and right sides, the same deriva-
tion may also be executed for the flow depth on the left side. Actually, only the indices
are interchanged.

(13.81)
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Types of hydraulic jumps

There are different types of hydraulic jumps that are characterised by the Froude number
just upstream from the jump. In the range of Fr ~ 1.7 —2.5 a week jump occurs, at
Fr ~2.5—-4.5 it is called oscillating jump whereas only above Fr ~ 4.5 a stable, well
balanced hydraulic jump develops. The hydraulic jump is characterised by white water;
the jet possesses so much energy that it submerges below the jump roller.

If the Froude number of the supercritical flow directly upstream from the hydraulic jump
is smaller than 1.7, then the energy of the supercritical flow is insufficient for the jet to
submerge below the jump roller. The jet is deflected upwards; this form is characterised
by undulating waves.

Length of a hydraulic jump

For the length of a hydraulic jump, Franke [13] states the following relationship:
Luy=y,uy-8.5(Fryuy—1.7) forFr>17 (13.82)

Therein, the end of the hydraulic jump is assumed to be the cross-section where any
backflow may no longer be detected at the surface.

Hydraulic jump

We return to Figure 13.29 to look at the conditions at the hydraulic jump in an ex-
periment. A discharge of 5.0L/s was set in the 0.20 m-wide open channel. The flow
depth directly upstream from the hydraulic jump was determined to be y; yy = 0.018m,

. -3 . .
which leads to Fr; = b%z \/gyllTJ = 8:3&5%18 \/9811.0.018 =3.305. Equation 13.81 yields y, gy =

y”% <, /1 +8~Fr127HJ — 1) = % ( 1+8-3.305% — 1) = 0.0756m for the conjugated flow
depth in subcritical flow. By the way, the measured flow depth was 0.075m. The inter-

ested reader may measure the water surfaces up- and downstream from the hydraulic
jump from Figure 13.29 in order to check the result by means of their ratio.

13.10.2.5 Water surface profiles at the hydraulic jump

In the discussion about the water surface profiles in Chapter 13.10.2.4, we found out,
why hydraulic jumps develop. The central question remains: where does this phenomenon
occur? And with the highly variable normal conditions up- and downstream from the
jump, it is understandable that the conjugated flow depths, which are rigidly connected
via the law of momentum or via Equation 13.81, need not correspond exactly to those
normal conditions. Consequently, there will be transition regions upstream or downstream
from the hydraulic jump. Therefore, we distinguish between two cases: is the specific
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energy of the normal conditions in supercritical greater or smaller compared to the one
in subcritical flow?

In the case that the flow conditions in subcritical require more energy than those in su-
percritical flow, energy must be built up along a flow distance relative to the bottom. This
is only feasible in subcritical low where the velocity is low; according to Manning, energy
can be built up only when y > yy. Then the flow depth upstream from the hydraulic jump
is the normal flow depth of the supercritical section, which may be calculated by means of
the Manning equation, for example. Immediately downstream from the hydraulic jump,
the water depth, which is conjugated to the normal flow depth of the supercritical section,
is to be found. Subsequently, in the section where the normal conditions would permit
supercritical flow, energy is built up due to the flow depth that is greater than normal.
Exactly at the boundary to the downstream section, the normal flow depth (subcritical)
of that section is reached.

In the case that the specific energy of the normal conditions is lower in the subcritical
section than that in supercritical, energy must be reduced. Irrespective of the fact that
energy is also dissipated in the hydraulic jump, the energy reduction according to Bernoulli
is achieved in supercritical flow only if the flow depth increases. But in keeping with
Manning, energy can be reduced only if the flow depth is less than yy. Therefore, in order
to reduce energy, the flow depth in supercritical flow may increase only in that section
where the normal conditions are in subcritical. It increases until it is conjugated to yy suB;
at that time, the hydraulic jump occurs.

Thus, we can subsume. If energy must be reduced between the two normal conditions, this
is accomplished by an increasing supercritical flow depth in the section with subcritical
normal conditions. As a result, y increases gradually until the conjugated flow depth of
yr =YNSUB is reached. At that location, the hydraulic jump occurs and subsequently
YN,SUB is attained.

If the specific energy of the normal conditions in subcritical is higher than that in super-
critical flow, energy must be built up. This works only in the section where y > yy, i. e.
where the normal conditions allow supercritical flow.

Hsupgr < Hsug, or rather

[HSUPER —Aeygg < HSUB] ] Hsuper > Hsus

Figure 13.31: Hydraulic jumps at required energy buildup (left) and energy reduction (right).

The critical quantity in open channel hydraulics is the specific energy; the flow
depths merely adapt to it.
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Transition subcritical — supercritical - subcritical flow

With the transition from sub- to supercritical and that from super- to subcritical flow, we
take the Bernoulli-Manning discussion further so that we are prepared for all questions
about nonuniform open channel hydraulics. In this context, it doesn’t matter at all what
causes the change in the normal flow depth. What is important is that it changes; how it
changes is also relevant. Therefore, we consider the transition from sub- to supercritical
flow and vice versa using a change of bed gradient for which we must still determine the
boundary conditions.

Figure 13.32 shows an open channel with a discharge of Q = 7.6m?/s that has a bed
gradient discontinuity between sections one and two before the primary conditions return
in section three.

Q)

©)

Figure 13.32: Example for the transition from sub- to super- and back to subcritical flow.

section 1{Jg; =0.30% np =3.33x 1072 s/m% by =6.0m
section 2|Js = 2.50% ny =2.0 x 102s/m3 by =b; =6.0m
section 3|Js3 = Js1 = 0.30%|n3 =n; =3.33 x 1072 s/m% b3 =by)=6.0m

First, we must determine the normal conditions. Let s start! Either follow the input
prompts or use the routine normalConditions.m with the input file dataOpenChan-
nel.csv, which is described on page 236.
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It is advisable to immediately calculate all quantities under normal conditions: Fry; =
0.433 < 1, yy1 = 0.955m, vy; = 1.326m/s, Hy; = 1.045m. We now try our hand with
section two.
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For the conditions in section two, a Froude number of Fry, = 1.968, i. e. supercritical flow,
is obtained. The normal conditions for the three sections are summarised in the following
table:

section 1|yy; = 0.955m|vy; = 1.326m/s|Hy; = 1.045m|Fry; = 0.433 < 1|SUB
section 2|yyz2 = 0.348m|vyz = 3.637m/s|Hy, = 1.023m|Fry, = 1.968 > 1|SUPER
section 3|yy3 = 0.955m|vy3 = 1.326m/s|Hyz = 1.045m|Fry3; = 0.433 < 1|SUB

Thus, we must deal with a transition from sub- to supercritical flow between sections one
and two as well as with a transition from super- to subcritical flow between sections two
and three. Let’s look at the details of the transitions.

We address the transition between section one and two, i. e. the change in flow from sub-
to supercritical.

\S]

Bernoulli ysuB 4= Hsus { @

\©\ Manning y<ywv=H|
Ve

We see that the decreasing flow depth in subcritical flow occurs along with a decrease
in specific energy. The same statement follows when y < yy;, according to the Manning
equation. Apparently, the transition takes place in section one. But stop! Let’s take a close
look at what will happen if the critical conditions are already passed through in section
one. We would already be in supercritical flow in section one.

I
. YSUPER 4=
I Bernoulli
1 ! 2 Hsypgr T i
YNl%m.. )
c= === :\.E }
|\ :\\ ~
~ \N Manning y<yy=H]|
§ YNZ

If the flow upstream from the discontinuity in the bed gradient already changed to su-
percritical flow, this would mean that the specific energy increased with decreasing flow
depth. However, according to Manning, this is not possible since the flow depth is smaller
than the normal depth of this section.

We summarise the first considerations: the transition is possible in section one as long as
subcritical flow exist.

And what about the transition in section two? We again examine both scenarios therein:
1) the decrease in the flow depth in subcritical and 2) the decrease in the flow depth in
supercritical flow.
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I
1 : o) Bernoulli ysuB 4= Hsus | i
I

Manning y>yw=H1%

If the flow depth drops in subcritical flow in this section, the specific energy also decreases.
But this does not agree with the Manning equation because while the flow depth decreases,
it is greater than the normal depth.

I
: YSUPER 4=
! Bernoulli
1 [ 2 Hsuper T @
I

Manning y>yw=H7

When we assume that we are already in supercritical flow, the decreasing flow depth leads
to an increase in specific energy according to the Bernoulli equation. The flow formula also
states that at y > yy, the specific energy is increasing (remark: relative to the bottom).
When combining the above considerations, it follows that a decrease in flow depth in
subcritical flow occurs in the upstream section, and downstream from the bed gradient
discontinuity, the flow depth must drop in supercritical flow. Therefore, y. is attained
exactly at the vertex.

At the second vertex in Figure 13.32, roughness and bed gradient return to the values of
section one. Consequently, a transition between super- and subcritical flow must happen
somewhere. We consider first what would happen if the flow depth in section two were
to increase. Since supercritical conditions are to be found in section two, we assume an
increase in y in supercritical flow.

2 ; 3 : YSUPER T=
-~ Bernoulli
Je ! HsuPER i
A
Manning y>yw=H17

According to Bernoulli, H decreases when y increases in supercritical flow. As a result,
y > yn2, which, according to Manning, should lead to an increase in specific energy. But
this does not happen!

In our search for the location of the transition, we will now turn to the situation in section
three, where subcritical flow already exists, but yy3 has not yet been attained.
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I
Yen . 2 ! 3 Bernoulli ysuB T= Hsus T i
|

Manning y<yw=H/|

It may feel like a curse, but it is impossible to find a system in which both equations are
satisfied. A continuous transition between super- and subcritical flow is not possibleV.
Principally, the result of the discussion about the energy equation and the flow formula
is that the transition between super- and subcritical must occur suddenly and not con-
tinuously, as we have already discovered above based on the differential equation for the
water surface profile. A hydraulic jump occurs (see Figure 13.29).

Let’s try our luck with a transition in section three. In that section, we already found that
an increase in flow depth in subcritical flow is not possible (see above: [ysuyp 1= Hsup T
andy < yy = H ]]). Consequently, normal conditions (in subcritical flow) must be in effect
immediately to the right of the hydraulic jump. With yy3 =y, 11y, we may determine the
required flow depth in supercritical flow:

, 0.955
v =% <\/1+8'Fr3 1) == (V14804382 1) =0278m  (13.83)

The flow depth to the left of the hydraulic jump would have to be smaller than the normal
water depth in section two. But this is not possible because the specific energy increases
with decreasing flow depth in supercritical flow, and as soon as it is below yy energy is
reduced, according to Manning.

That no transition is possible in section three could have been foreseen when considering
the specific energies since Hy3 > Hyy. Energy must be built up somewhere. Energy is
dissipated in the hydraulic jump, and at a thought transition in section three, the flow
depth would have to exceed yy3 according to the flow formulas, which is certainly not
possible upstream from the hydraulic jump.

Let’s look at a possible transition in section two. Since an increase in flow depth in the
steep section with supercritical flow is not possible, the hydraulic jump exhibits the normal
conditions on the left side. From Equation 13.81, it follows that the conjugated flow depth
in subcritical flow is:

0.348
YrHI = % <\/1+8-Frl2 - 1) = =P (V14819687 1) =0.810m  (13.84)

2

Thus, we must obtain an increase in flow depth in subcritical flow in order to reach the
normal flow depth of section three (yy3 =0.955m). Let us consider this by means of the
table that is by now familiar to us:

U Until now, we have only considered the increase in flow depth under the conditions of the
respective section. This is quite reasonable since there is no need to examine the increase in flow
depth in subcritical flow in section two, and certainly not if subcritical flow is not reached. The
same applies to the increase in flow depth in supercritical flow in section three. If the increase
in flow depth in subcritical flow does not work in this section, then an examination of a possible
increase in supercritical flow is wasted effort. Nevertheless, we will deal with this matter at a later
time. Stay with it!
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Bernoulli ysuB 7= Hsyp T @

@® Manning y>yw=H7

Ultimately, the water surface profiles may be combined in the energy diagram in Figure
13.33.

Flow over a bed sill

This example serves to recapitulate and consolidate our knowledge. For this purpose, we
will complete a task as it is executed a thousand times worldwide. The channel bed is
lifted by a bed sill of height w = 0.50m (see Figure 13.34). Additionally, we will examine
what might happen if the downstream bottom is formed as in the case of a stilling basin
with a negative step of Az=0.10m (shown in broken lines). Here, the water surface profiles
are of interest.
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Figure 13.33: Energy diagram for a sample task with two gradient changes.

Figure 13.34: Sample task for an open channel flow with bed sill and stilling basin.

b =8.0m|w=0.50m|Q = 25m%/s|Jg = 0.3%|n =25 x 10 2s/m’|Az=0.10m|

With the input data we obtain the following":

lyv = 1.396m|vy = 2.244m/s|Hy = 1.653 m|Fry = 0.607 < 1|SUB|

We find normal conditions in subcritical flow. The critical quantity is the specific energy.
Does the flow have sufficient energy under normal conditions to pass the bed sill? For y,,
we obtain y. = 0.999m via Equation 13.7; or, with Formula 13.8, Hp,jx, = 1.498m. With a
bed sill of height w = 0.50m, Hy < Hpyin +w. This means that upstream from the bed sill,
energy up to Hpin +w must be built up in order to reach Hy;, on the bed sill and for the
critical conditions to be passed.

With knowledge of the specific energy upstream and downstream from the bed sill (energy
losses are not taken into account), the flow depths upstream (subcritical) and downstream
(supercritical) of the bed sill may be determined with the Bernoulli equation for Hyps =
Hiowns = Hpin +w = 1.998m.

V Now, at the latest, you should consult the routine normalConditions.m (see page 236) for calcu-
lating the relevant values.



13.10. STEADY-STATE NONUNIFORM FLOW 261

We obtain yups = 1.853m, yqowns = 0.596m and y. = 0.999m on the bed sill.

Together we consider how the flow depth increases upstream. Normal conditions in sub-
critical flow exist; the flow depth is to increase from yy = 1.396m to y,ps = 1.853m. What
does Bernoulli say?

ysuB T= Hsus T

And what does Manning say?
y>yw=H7T

The backwater adjusts continuously upstream from the bed sill. How is the situation
downstream from the bed sill?

Since subcritical flow characterises the normal conditions and the critical conditions are
passed on the bed sill, a hydraulic jump must occur. With Hgypgr = 1.998m > Hy =
1.653m, it follows from Figure 13.31 that the tailwater increases in supercritical flow;
then, the remaining energy difference is reduced via the hydraulic jump. Immediately
downstream from the hydraulic jump, normal conditions must then prevail againV. The
conjugated flow depth in supercritical flow is calculated by Formula 13.81:

1.
iy = % (V1+8:0.6072~1) = 0.686m (13.85)

This means that the flow depth increases from the downstream foot of the bed sill to the
hydraulic jump; i. e. from Yqowns = 0.596m to y; py = 0.686m. A brief check shows the
following:

YSUPER 1= HSUPER {
y<yw=H|

Thus, the task is solved, and the challenge is successfully met. The results are summarised
in an energy diagram (see Figure 13.35).

As an option, one may examine in this example how conditions would develop if a stilling
basin were to be placed directly downstream from the bed sill. Further effects upstream

W If you are still motivated, feel free to try out what would happen downstream from the hydraulic
jump in subcritical flow if the flow depth were smaller or greater than yy. For y < yy, the flow depth
should increase to yy which, according to Bernoulli, should lead to an increasing specific energy.
However, in line with Manning, for y < yy, energy reduction takes place. So that doesn’t work. We
will try y > yy, which would lead to a sinking water level down to yy. In subcritical flow, a decrease
in specific energy results from the Bernoulli equation. According to Manning, however, the specific
energy should increase because y > yy. Consequently, normal conditions result directly downstream
from the hydraulic jump.
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Figure 13.35: Energy diagram for the sample task with a bed sill.

may be excluded because the critical conditions and the bed sill height remain unchanged.
However, the specific energy downstream from the bed sill will increase by the negative
step: Hiowns = 2.098 m, which yields yqowns = 0.571 m.

Equation 13.81 was derived for continuous bottoms; because of the forward-facing step
(the positive step at the end of the stilling basin), this simple equation must not be used.
The situation is described in Figure 13.36.

i

Y:

] Az \E

Y
V74

Figure 13.36: Flow depths and hydraulic jump in the stilling basin.

The law of momentum must be set anew because the pressure force on the right side
includes the proportion from the forward-facing step.

o 1 > 0’
+—p-g- b=
by 2P 8 ViHy p

1
p +3Pg (yw+A4z2)*-b (13.86)

b-yn

We employ Octave’s equation solver.
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With y, = yn the output for y; yy is 0.603 m. The water level in the stilling basin increases
from yqowns = 0.571m to y; = 0.603m.

13.11 Computation of water surface profiles — direct step method

The computation of water surface profiles is based on the same method that was already
involved in the expansion of the Bernoulli equation with the loss term according to the
Darcy-Weisbach equation or in the derivation of the differential equation of the water
surface profile. In German speaking countries it is known as Bofl method. The energy
is balanced at two open channel cross-sections (see Figure 13.37); however, we do not
write differentials or infinitesimal quantities, but rather differences of “tangible” orders of
magnitude. As we did with pipe hydraulics, we may also, in this case, equate the quantities
on the left with those on the right side.

v2/2g Ae
[v2/2g
Y
’ \A
J
Az 2
TYNKAN
7/ AX 7

Figure 13.37: Balancing of the energy at two open channel cross-sections according to Figure 13.24.

The purely formal result is:

2 2
v
Aztyi+ 55 =y, + ;7 tAe with Az =JgAxand Ae = Jg pAx (13.87)
g g |

By means of the direct step method, the energy loss is determined for the average con-
ditions based on the flow formulas. In this way, the distance between two flow depths
Ax may be explicitly calculated, and the flow depth at any given distance may be cal-
culated implicitly. As disturbances in supercritical flow propagate downstream only, the
calculation with the direct step method in this flow condition is possible only in the
downstream direction. However, in subcritical flow, the downstream conditions determine
what happens upstream, which is why the direct step method (or for that matter, any
other arbitrary complex method) may be applied only upstream in this case. The average
conditions are determined as follows:
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Table 13.2: Averagings in the direct step method.

V22
1 1 Al+A Jem =5
- :
Vip = 5 (Vl +Vr) Rhy,m = 5 (Rhy7l +Rhy’r) - F’l +Pr ng"m

The calculation of the gradient of the mean energy grade line in Table 13.2 is related to
the mean velocity v, = % (vi +v,); however, the energy loss is dependent on the square of
the velocity so that the introduced linearisation is not correct. If the cross-sections exhibit
only small distances, the error is negligibly small (see example in Chapter 13.11.2).

13.11.1 Distance Ax of two flow depths

By rearranging Equation 13.87, Ax may be calculated explicitly:

N
Ax— H,—H, :yr 2¢ YT 2g
JBfJEm JB*JE,m

(13.88)

13.11.2 Flow depth at distance Ax

For the calculation of the flow at a specified distance, Equation 13.87 must be solved for
v (subcritical) or y, (supercritical) as follows:

2o
—y, 4+ Jem—Jg)-A 13.89
Vi y+2g 2g+(E, B) - Ax ( )

By rearranging the equation, not only do the indices change, but also the signs of Jg and

JEm:
B2
= - — L+ (Jp—J ‘A 13.90
Y=Yt = 5 U= Je ) Ax (13.90)
Since the flow depths are also included in the velocity heights, the equations cannot be
solved explicitly. This means that the result must be estimated first in order to calculate
2 2
;—’ or ;—’ as well as Ryy ,, and Jg ,, before the values may be inserted into Equations 13.89
and 13.90. A consecutive iteration step starts with the newly obtained y; and y,.
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Calculation of the water surface profile

For a deeper understanding of the direct step method, we will again focus on the example
from Chapter 13.10.2.5 on page 259. The input data are repeated in the table below. In
addition, the following flow depths have been determined:

b=80m |Q=25m/s |Jp=03% n=25x10"2s/m3
YN = 1.396m Yups = 1.853m Ydowns — 0.596m YILH] = 0.686m

The planning engineer will be interested in how far the influence of the backwater extends
and how far the toe (impingement point) of the hydraulic jump is placed from the bed
sill.

We calculate Ax for the upstream backwater with y, = yyps = 1.853m and y; = yy =
1.396m and obtain explicitly Ax =341.62m. The distance Ax between the bed sill and the
hydraulic jump is calculated with y; = yqowns = 0.596m and y, = y; ;15 = 0.686m. Since the
flow depths are given, the velocity heights may also be calculated; we obtain Ax = 8.43m.
If you are interested, for example, in the flow depth at a distance of 200 m upstream from
the bed sill, you must proceed iteratively.

After a single calculation step with the Octave routine, one obtains ys,—20om = 1.530m
for the flow depth 200 m upstream from the bed sill. If the flow depth of the open section
is iteratively calculated with 200 steps of 1.0m in order to reduce the error from the
averaging of the energy grade line gradient, ys,—200m = 1.540m is obtained. The reason
why the difference is not significant is because we are in the region of backwater, where
the water flows slowly and the difference of the flow depths is rather small.

Let’s look at the conditions in supercritical flow. But beware! The iterations in supercrit-
ical flow converge very poorly. It is best to resort to an equation solver. According to the
knowledge acquired above, the supercritical jet has a length of Ax = 8.43m. Let’s calculate
the flow depth at Ax =7.0m. For a single calculation step, the program provides a flow
depth of ypo,—7m = 0.670m. Even when dividing the calculation domain into small 10cm
disks, there is hardly any impact on the result since the section of length 7.0 m is rather
short and the flow depth difference is again small; we also obtain ysy—7m = 0.670m.

This chapter is licensed under the terms of the Creative Commons Attribution 4.0 In-
ternational License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons licence, unless indicated otherwise in a credit line to the material. If
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material is not included in the chapter’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
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Chapter 14
Unsteady free surface flow

14.1 Saint-Venant differential equations

We base the unsteady open channel hydraulics on what we have learned so far. We casually
revert to the differential equation of the water surface profile (13.62) and add the normed
local derivative of the velocity é%. Making use of the small-angle approximation, we set
the two directions s and x equal to each other and stay in the one-dimensional context.
We therefore write Equation 13.62 with the local derivative and the partial differential
operator d in order to be able to clearly distinguish the local (%) from the convective

. . 2
derivative (V% = %%)

dy 1 ? 19v

dx 2g dx got
The continuity condition is to be described at the differential element. Generally, the
discharge changed from Q by the differential quantity dQ to @+ dQ. Thereby, the volume
in the element under consideration must have changed to the same extent since p = const.
When emptying a reservoir, for example at constant inflow Q by discharging QO +dQ, the
volume dQdr discharged over the emptying period must be missing there (we did exactly
the same in Chapter 9). The discharged volume may be calculated via the change of
the cross-sectional area dA times the length dx. Taking into account the definition of the
surface normal pointing out of the volume (just as in Chapters 5.8 and 9), the continuity
condition may be written as follows:

—Jp—J (14.1)

000t = —dAdx rearranging: (Z—g %\ =0 (14.2)

Equations 14.1 and 14.2 are together referred to as Saint-Venant® differential equations.

A Adhémar Jean Claude Barré de Saint-Venant, %1797, Villiers-en-Biére, France 11886, St.-Ouen,
France

© The Author(s) 2024
C. Rapp, Hydraulics in Civil Engineering,
https://doi.org/10.1007/978-3-031-54860-4_14
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14.2 Upsurge and downsurge

The abrupt opening and closing of regulating devices in free surface water bodies cause
the occurrence of what are known as upsurge and downsurge (see Figure 14.1). The
propagation velocity of these waves is approximately as high as the one derived in Chapter
13.2 (¢ = \/gy); however, due to its magnitude, the wave height has an influence on it.

AQ<0 AQ>0
sudden closure sudden opening

Figure 14.1: Conditions and designations during upsurge and downsurge phenomena.

We try a derivation that differs from pertinent works such as [13, 49], but accept the idea
of Engels [11] that a bulkhead (in Figure 14.2, represented by a dark blue line drawn to
the right of 7) closing the entire cross-section of the open channel may move by a certain
infinitesimal distance ds to the right. Furthermore, we look at Figure 14.3 which, for the
sake of simplicity, one may imagine in a stationary coordinate system. The conditions prior
to the discharge variation are in effect in the light blue coloured region; the associated
water level defines the cross-sectional area Ayg. Now, the bulkhead is moved within dr by
the distance ds. A wave is generated; it propagates the distance d/ above the original
water surface at velocity ¢ and with wave height 4 during the same time dt.

AVA
t+dt h

/ tR\JtHdt

Figure 14.2: Propagation of an upsurge wave.



14.2. UPSURGE AND DOWNSURGE 269

Figure 14.3: Cross-section at the propagation of a surge wave.

We approach the problem via an examination of the forces and start by considering mass
conservation (see Figures 14.2 and 14.3). For continuity reasons, the water volume above
the original water level (indicated by the red hatch lines //) results from the displacement
that was caused by the bulkhead during the time period from ¢ to ¢ +dt (indicated by the
blue hatch lines \\).

(Ao +h-bws-surge) - ds = h - bws-surge - dl (14.3)
We divide Equation 14.3 by dr:

ds dl

a =h- bWS-surge* =h- bWS-surge - C (144)

(AO +h- bWS-surge) : dr

The mass p -Ag-ds was stationary at time ¢ and is accelerated during time period dt to
velocity ¢ (the upper portion with yellow background need not be accelerated because
the velocity there is already c¢). We already know from Chapter 3.4.1 that a mass m is
accelerated by a = % when a force is applied. The rate of change of momentum reads:

d
F= pAodsd—j (14.5)

With the above considerations, this force stems from the movement of the bulkhead, but
with a propagating wave in a free waterbody it results from the difference between the
pressure forces to the left and right of the wave (see Figure 14.2, vertical green lines
||-lines). The pressure force is:

(14.6)

h-b -surge
Fp = pgh <A0+ WSg>

2

The water must, so to speak, push itself off from the left boundary in order to be able
to propagate at velocity ¢ to the right. Taking the sign into account, terms 14.5 and 14.6
are equated as follows:

d h-bws.
pAg dsd—: =pgh (Ao + W;S“rge> (14.7)

From Equation 14.4,

@ _ h- bWS-surge - C (14 8)
dr h- bWS-surge +AO .

which, inserted into Equation 14.7, results:
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h- bWS-surge - C ( h- bWS-surge )
Agdc =pgh|Ay+ —M= 14.9
pPAg - by surgo + Ao pg 0 > ( )

Since the mass was stationary at time ¢ (see above), the change of ¢ (dc) corresponds to
c. Additionally, we divide by 4 and p and multiply by Ao+ /- bws-surge, Which yields:

h- bWS-surge

) ) ’ (A0+h'bWS-Surge) (1410)

- bWS-surge ‘Ap=g <AO +

Now, the right side is expanded:

+Ao- h- bWS—surge + )

h-bws. W2 b
Cz'bWS—surge-Ao=g<A%+AoWstge — “WS-surge |

(14.11)

3 h2 'b2 »
=8 (A% + EAO h- bWS—surgc + w

In the next step, we place A(z) before the bracket and divide by Aobws-surge:

(14.12)

2= 8Ao 1+ ; h- bWS—surge + th ’ b%?VS—surge
bWS—surge 2 Ag 2 A(z)

Finally, we calculate the square root in order to obtain the propagation velocity of the
upsurge and downsurge waves:

c—= gAO 1+ Eh ' bWS—surge + 1 h- bWS—surge 2 (14 13)
bWS—surge 2 Ao 2 Ag '

Perhaps you ask yourself why the cut was made exactly at this place and why, in
terms of the continuity condition, part of the wave was included in the calculation
while in the case of the rate of change of momentum, it was not. I appreciate
that this must drive you crazy. But it must be like this. If the cut is made at the
location where the wave has not yet arrived, there will be no difference in pressure
forces. Therefore, this part of the wave must be included in the calculation of
the mass. However, this part need not be accelerated to velocity ¢ because it
is already propagating at that velocity. The part of the mass that adds to the
wave propagation results solely from that part originally flowing at velocity vy
and with area Ag.

The first root corresponds to the propagation velocity of a shallow water wave. In physical
terms only, however, this velocity depends on the respective depth at each point of the
open channel cross-section, but not on the width of the water level. The second root
results from the variation of the flow depth due to wave formation.

In general, the above derived movement may also be overlaid by a basic flow at velocity
vo. Even when moving the coordinate system at velocity ¢, in a sense “riding the wave”, as
Lagrange would do (see Chapter 2.3.1), the formulas will be derived in the same manner.
This is because the momentum flux of an overlaid basic flow at velocity vg is cancelled-out
since it has the same magnitude on the right and on the left in opposite directions. And
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in the moving reference system too, the water for the propagation of the wave must be
taken from the body of water originally moving at velocity vg through flow area Ag.
Thereby, we obtain the absolute propagation velocity (see Figure 13.1) in the downstream
direction:

Cabs = Vo +¢C (14.14)

In the upstream direction, it is:
Cabs = Vo —C (14.15)

Upsurge and downsurge in a laboratory flume

We examine the propagation velocity of a surge wave that is generated by the abrupt
closing of a sluice gate by means of an experiment carried out in the flume with which we
are already familiar (b= 0.20m).

Figure 14.4: Upsurge at the abrupt closing of a sluice gate [44].

In this experiment, the original flow depth was yop = 0.054m at a discharge of Q =6.3L/s;
vo = 0.58m/s. The height of the upsurge was determined to be h =0.049m. The relative
propagation velocity of the surge wave ¢ may be calculated by means of Equation 14.13:

 [g-020-0.054 [ 3 0.049-020 1 (0.049-0.20\>
C_\/T 143 020-0054 T2\ 0200052 ) ~ Hm/s (1416)
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The result is ¢ = 1.21m/s and, using Equation 14.15, caps = vo —c = —0.63m/s. The vari-
ation in discharge may be verified via the continuity condition: AQ = c,psbh = —6.2L/s.
This agrees quite well with the total blockage of the original discharge that was 6.3L/s.

Hydropeaking in a headrace channel of a power plant

Let’s practise using the formulas by means of a small example. In a trapezoidal headrace
channel with a bottom width of »=6.0m and a lateral inclination of m = 1.5, a discharge
of Q =50m?/s flows at a depth of y =4.0m. The discharge is abruptly reduced by AQ =
25m’/s, i. e. AQ = —25m3/s. In the following discussion, we determine the height of the
upsurge that is generated.

In the first step for calculating ¢, we assume that & equals zero®. This yields:

[ A | 48
= —_— _—= . 1 .1
c gbws 813 5.11m/s (14.17)

The propagation velocity opposite to the original flow direction for the upsurge is found
to be:

Cabs =V0 —C= %—CZ —4.07m/s (14.18)
This allows the determination of the surge height in the first iteration step:
AQ =25
h= = =0.341m 14.19
Cabs * bWS-surge —4.07-18 ( )

The propagation velocity is calculated anew with this surge height since the propagation
velocity itself has changed by the surge height. Using Equation 14.13, we see that ¢ =
5.539m/s and subsequently c,ps = vo —c = —4.50m/s, which leads to A = 0.300m. In the
next iteration step, the variations of the quantities are hardly noticeable: ¢ = 5.49m/s,
Cabs = —4.45m/s, h =0.305m, all of which ultimately correspond to the converged solution.
By the way, the same configuration leads to a downsurge of 4 = —0.242m in the tailrace
channel, in case you want to check. Needless to say, you may find a script in the provided
program library by means of which downsurge and upsurge waves may be calculated ;-).

B For checking, I recommend using the routines for calculating area and width of the water surface:
flowArea(’trapezoid’, [6,1.5],4) and bWS(’trapezoid’,[6,1.5],4).
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This chapter is licensed under the terms of the Creative Commons Attribution 4.0 In-
ternational License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
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Chapter 15
Introduction to groundwater flow

Potential theory is a good choice for the calculation of groundwater flows because they are
laminar due to the thin capillaries and low flow velocities. Those who want to quench their
thirst for knowledge beyond the mathematical contents described herein should consult
[64].

Darcy found a linear relationship between the gradient % of the water level and the
so-called filter velocity vy by means of the filter experiment named after him (see Figure
15.1). The proportionality factor ks is known as permeability coefficient with the unit of

a velocity.
0 oh Ah

_ I 15.1
YT A P I (15.1)

This law applies to creeping flows, which are characterised by a very small Reynolds
number Re = @ <4 (with the mean grain diameter ds).

K

Ah=A®

Figure 15.1: Filter experiment according to Darcy.

© The Author(s) 2024
C. Rapp, Hydraulics in Civil Engineering,
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In the following discussion, we will see how Darcy’s law is connected with potential theory,
which was derived in Chapter 4. First, we write down Equation 15.1 with Einstein’s sum
convention in a general form:

oh
vhi= kg (15.2)

The continuity condition must also apply to Formula 15.2, which is why the divergence
of the filter velocity must be zero: divvy = 0. Written out, the divergence reads:

0 ) oh 9°h

Thus, Equation 15.3 is also a Laplace differential equation (see Chapter 4), or groundwater
movements may also be interpreted as potential flows. Simultaneously, the analogy to the
description of the potential function in Equation 4.1 may be noted; there, the velocity is
defined as the gradient of the potential function. In groundwater flow, the filter velocity
corresponds to the negative gradient of the potential function multiplied by the coefficient
of permeability k.
0P
vyi=—kf I (15.4)

The open source library contains a code for solving potential theory questions related to
groundwater flows via elementary solutions.
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Extraction well and contamination

In this example, we investigate whether a drinking water well has been contaminated by
oil from a car accident. The aquifer has a coefficient of permeability ky = 1.0 x 103 m/s.
The well withdrawal rate (¢ = —0.02m3/(sm) at (x,y) = (0,0)) is overlaid by a parallel
flow in the x-direction with velocity ugp = 1.0 x 107> m/s. The accident occured at the
coordinate (xp,yo) = (300,200).

For the solution of this problem, we describe the Lagrangian path of the oil contamination
in the aquifer. To this end, we may use the program for the calculation of potential flows
provided in the Octave library.

The Lagrangian path that a particle covers in Euler’s field theory is the integral of the
velocity with respect to time.

L r{om Lom\ L,

The result for the x- and y-directions is:
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u u Ju u u
x://( ay)dt /(u0+8tdt+u8d aydt)dt

15.
=xo+ dr+a—dt2+ a—dt2+ @dﬂ 1)
— Yoo ot “ox v&y
—//( v, gv)dt —/<v0+3:dt+ugvdt+v§vdt>dt
Y * Y (15.7)

8 v v
= dr+ 2 a? +uZ ar v
Yo+Vvo +8t —i—uax +v8y

Due to the steadiness of the flow, the local derivatives % and % are zero. The velocities ug
and vg are the constants of integration at location (xo,yo), which in turn are the constants
of integration and the starting values of the path.

The two velocity components may be determined in the field (u,v) = f(x,y) via the calcula-
tion of the potential and flow function (see Figure 15.2). Starting from (xo,yo) = (300,200),
the Lagrangian path shows that the oil contamination does not reach the well (see red
streamline in Figure 15.2).

400

300 S

100 N

-100 b

-200 [ b

-300 [ B

400 | | I I
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Figure 15.2: Example: Contamination of an extraction well?
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Cooling water extraction and injection well

For the provision of district cooling, water is to be withdrawn from an aquifer, passed
through a heat exchanger and resupplied to the aquifer. In this context, the question of
whether the heated and resupplied water enters the extraction well must be examined. The
boundary conditions are as follows: the coefficient of permeability of the aquifer amounts
to kr = 1.0 x 1073 m/s; the well withdrawal rate ¢ = —0.01m3/(sm) is in effect at (x,y) =
(—50,—50), while the same quantity ¢ = 0.01m?/(sm) is returned at (x,y) = (150,150);
the groundwater flows in the x-direction with velocity ug = 1.0 x 107> m/s.

Will there be a hydraulic short circuit, i. e. ingress of heated water into the extraction
well? When entering the corresponding parameters, the potential and streamlines shown
in Figure 15.3 result. Red streamlines with heated fluid lead from the injection well into
the extraction well. Therefore, the distance that was chosen is too short.

400

300 1

200 = 1

100 -

-100 | N
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-300 | b

-400
-4nn -200 n 200 ann

Figure 15.3: Example: Cooling water withdrawal and return via an injection well.

This chapter is licensed under the terms of the Creative Commons Attribution 4.0 In-
ternational License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons licence and your intended
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use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
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1 Hydrostatics

FExercise 1.1

Draw the horizontal and vertical pressure diagrams in the figures below.

LN

A The exercises were developed by the author and were set in a form similar to those in diploma
examinations between 2003 and 2012 at the Technical University of Munich.
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FExercise 1.2

A roller dam (D =3.0m) closes at an angle of a = 20° with respect to vertical.

a) Draw the vertical pressure diagram for the case of maximum buoyancy.
b) Calculate the magnitude and direction of the resulting force acting on the roller.
¢) Calculate the moment of force that must be counteracted by the roller axis.

FExercise 1.3

An oil-filled (po; = 800kg/m?) rotation-symmetrical vessel with hemispherical bottom is
located in a water-filled container that is also rotation-symmetrical. Answer the questions
in parts a) through d) on the basis of the following values:

D=40m,d=2.5m,h=5.0m

spot welding

Draw the resulting pressure distribution on all the walls.
Calculate the support force of the foundation.

a)

b)

¢) Calculate the pressure force acting on the bottom of the water-filled container.
d)

Calculate the force that the weld seam must resist.

Exercise 1.4

A cylindrical glass of mass 116 g and with dimensions R =2.5cm and &= 10.0cm is placed
upside-down in a square container that is filled with water. Contact between the glass and
the container is not tight; hence, water may flow in and out. The atmospheric pressure
amounts to po = 101300N/m?. Assume that the glass does not tip over.
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5.0cm )
10.0cm
, leak/7 , ’
! 40.0cm

a) How much water must be poured into the container so that the glass floats?
b) Draw the pressure distribution on the glass at the moment shortly before it floats.

FEzxercise 1.5

The retaining wall illustrated in the sketch below is modelled by the equation y = x%;x €
(0...3). The water level is at 9.0 m.

B
|
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X
12345
a) Draw the resulting horizontal and vertical pressure diagrams on the sketch.

b) Calculate the resulting forces per unit width in the horizontal and vertical direction.
¢) Calculate the magnitude and direction of the resulting force.

FExercise 1.6

The weir shown below may turn about point A and opens clockwise. The lower part of the
weir has the shape of a quadrant with radius R = 3.0m. The weight force is F; = 30kN/m
and the centre of gravity CG of the weir is shown. Forces due to friction are assumed to

be negligible.
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a) Draw the resulting pressure diagram at the closed weir baffle, and determine the
resulting magnitude and direction of the pressure force per unit width at a water level
of h=5.0m.

b) Determine the moment of force that is required to open the weir, when the water level
is at h=5.0m.

¢) Determine the maximum support force that the thrust bearing at point B must exert
when the baffle is closed. What is the water level when this force applies?

2 Outflow through openings

FExercise 2.1

Two basins identically constructed with base area A = 100m? are connected via a pipeline
(L=20.0m; fp = const. =0.03; d =0.10m). Both the inlets and outlets are located at the
bottom of the containers. One of the containers is situated 5.0m higher than the other
and is filled with water up to a height of 4~ = 2.0m; the lower one is completely empty.
The water level of the upper basin is to be lowered to 1.0 m. How long does that take? In
your calculation, neglect the acceleration of the water column as well as the water in the
pipeline.

FExercise 2.2

The aeration basin of a treatment plant is to be designed for a wastewater flow rate of
0.2 m3/s to 1.0 m3/s. The available base area of the basin is 20m by 40 m. The discharge is
spilled over a fixed weir (4 = 0.6) along the entire short side of the basin. The minimum
average dwell time of the wastewater in the basin should be assumed to be 40 min.

a) Determine the minimum required basin depth and weir height.
b) Calculate the dwell time at minimum inflow.



3. MOMENTUM EQUATION 287
FExercise 2.3

A container with a constant base area A; = 1.0m? is drained into an immediately adjacent
container that is initially empty with cross-sectional area A, = 0.5 X A;. The discharge
from the first container into the second is via an opening that is located 1.0m above the
bottom of the container (see sketch). The orifice has a cross-sectional area of 5.0 cm? with
a discharge coefficient of yu = 0.65.

-

0.75m

P

avs

1.0m

L

A, A=05A

a) Where (at what height) is the balanced condition established?
b) During how much time does a free discharge take place? This may be solved without

subtask a).
c) How long does it take for the balanced condition to be established?

Exercise 2.4

The completely drained rainwater retention basin in the Munich Hirschgarten is filled
continuously during a heavy rain event at the rate of 10m?/s. Assume a constant base
area A = 2.0 x 10° m?. The overflow (round crested weir) is located 10.0 m above the bottom
of the basin (b =5.0m, g =0.70). Accounting for a potential influence from backwater is
not the object of this problem.

a) When does the rain-induced overflow start?

b) At what level of the water in the rainwater retention basin is a balanced condition
established?

c¢) Calculate the time it takes for this condition to be reached.

d) How much untreated wastewater has entered the receiving water up to this point of
time?

3 Momentum equation

FExercise 3.1

Calculate the horizontal support force for the Y-pipe, shown in the sketch, of a hydropower
plant. At cross-section 1, the pressure height is determined to be 30mH;O and the dis-
charge is 10m?/s. Furthermore, the diameters d; = 1.0m and d, = 0.60m as well as the
energy loss between cross-sections 1 and 2, Aej_, =2.0m, are given.
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FExercise 3.2

Consider a U-pipe with a circular cross-section whose inlet diameter tapers from d; = 0.4m
to the outlet diameter dp = 0.2m. The pipe axes are spaced 0.5 m apart. For a discharge
of 0 =0.05 m3/ s, a pressure height of 0.5 mH,0 exists at the inlet.

<_

0.5m

—

What is the magnitude of the horizontal force acting on the pipe curvature if

a) the U-pipe lies horizontally and friction losses are neglected?
b) the U-pipe stands vertically (inlet cross-section on top) and the minor (local) losses

are set to Ae=10.2 (AZ—V;)?

FExercise 3.3

The problems below are to be solved for a water cannon used by the police. Water is
withdrawn from a hydrant (location 1). Answer the following questions regarding locations
1-5:

1.0m
0L 4,
2.0m d ®

L]
9] L
QO O 1om I @

2
d =0.10m|dpoy1e = 0.01m| fp = 0.03|Kpend = 0.80|Knozzle = 0.2%3%16

a) Draw a completely labelled energy diagram (locations 1 — 5).
b) Determine the discharge if the pressure is p, =4.0bar at location 2.

If you have not calculated the values in subtask b), you may use the following alternative
values for exercises ¢), d) and e): discharge Q = 4.0L/s; pressure height just before the
nozzle at location 4 is ps =30.0m

c¢) Calculate the resulting horizontal force acting on the police car.
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d) What force is the connection between nozzle and pipe subjected to?

e) How far does the water splash? Please note the formula for the horizontal trajectory
(assume a loss-free situation).
— Vo -t
xX(t) =
" (—é g f2>

Exercise 3.4

A horizontal pipe expansion is attached to the feed pipe by a flange. The cross-sectional
area Ay, the velocity v; and the pressure p; are given.

>

|A1 =7.00cm*[v; =4.00m/s|p; = 1.0 x 10°N/m?|

a) First, the cross-sectional area A; is to be determined such that the velocity height in
A, corresponds to one-seventh of the velocity height in cross-sectional area Aj.

b) Now calculate the pressure in cross-sectional area A,. Take the energy losses into
account: Kexp = 0.5 (related to vy).

¢) What is the magnitude of the horizontal force acting on the flange?

FExercise 3.5

Water in a channel with a circular cross-section is redirected with a deflection angle of
90° in a shaft structure. At a discharge of 40L/s, the flow depth upstream from the shaft
corresponds to the flow depth downstream. The pipe diameter is 30.0cm and the flow
depth was measured as 15.0cm.

a) What type of flow exists (sub- or supercritical flow)?
b) What is the resulting horizontal force counteracted by the shaft?
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4 Free surface flows

FExercise 4.1

A sketch of a rectangular open channel section with a width of 5.0m and a discharge of
20m?/s is shown below. A stilling basin with a concrete bottom is arranged downstream
from a block ramp with w; = 1.5m. The stilling basin ends with a vertical step w, =0.50m.

| block |

2
c

0 =20m*/s|w; =1.5mng, = 1.43x102s/m5  |Jp, =08%  |Aej o =4

2
0.1 "VN.channel
2g

b=5.0m wy =0.5m Nchannel — 2.86 % ]072 s/m% JB,channol =0.8%|Ae3z_4 =

a) Calculate the normal water depths, the critical depth and the corresponding specific
energies in all areas.

b) Calculate the length L in such a manner that the hydraulic jump does not quite reach
into the area of the block ramp.

LHJ = 8.5y[ (FI‘[ — 1.7)

¢) Draw a completely labelled energy diagram.

FExercise 4.2

The bridge over the Isar River in Munich-Thalkirchen is to be examined for a possible
flood situation. In this area, the Isar may be approximated by a rectangular cross-section
(width b = 30.0m). Make the assumptions regarding measurements and quantities as
indicated in the following sketch:

. —
1.25m 10.0m
250m £ D 4+
10.0m
250m £ D 4
10.0m
1.25m _
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|0 =500m3/s|[b = 30.0m|Jg = 0.3%|n = 2.86 x 10~2s/m5|

a) Calculate the normal water conditions.

b) Due to a log jam in the confined area, a loss of K = 0.5 related to the critical velocity
in the constriction, V¢ cons, occurs. Determine the course of the water level and draw
the energy diagram.

c¢) Calculate the total length of the influence of the log-jammed bridge on the flow.

Exercise 4.3

A weir (u =0.60, w=1.50m, Az =1.0m) is built in a channel with rectangular cross-
section (b =8.0m) and a discharge of Q = 40m3/s. At the tail of the weir, the open
channel width changes to b = 12.0m. The backwater influence need not be examined. The
downstream normal water flow depth amounts to yy = 1.35m.

a) Calculate the overflow height as well as the flow depths both upstream and down-
stream from the weir.

b) A hiker measures the distance between the tail of the weir and the toe of the hydraulic
jump as 20.0 m. Calculate the Manning coefficient and the gradient of the bed for this
open channel section.

Exercise 4.4

An existing open channel with rectangular cross-section (b =5.0m) is to be developed
over a length of 5.0km in a more natural way (renaturated). To stabilise the bed, the
original open channel has a bottom step of 1.0m every 1000 m along its length. Assume
that energy losses of 0.1k, occur in the area of the bottom step. The new open channel
is to be expanded to a width of bpew = 8.0m and provided with twice the flow length by
the meanders. Secondary flows are not to be taken into account. The roughness of the
bed will not change.
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top view

j  longitudinal
— section

|
prior Meach
I A

b

new

|0=15m%/s|b=5m|n = 2.86 x 10"25/m5 |J5 prior = 0.5%|bnew = 8m|

a) Evaluate whether bottom steps are required for the new open channel. Note: the mean

flow velocity must not increase; normal water conditions are to be considered.

In the following subtasks, only the transition from the existing to the renaturated open

channel is to be considered (see right-hand figure).

b) Quantitatively specify the course of the water level along the illustrated flow sections

(right-hand figure). There is no air entrainment at the bottom step.

c¢) Specify the length of the required bottom reinforcement in the renaturated section.

The length of the hydraulic jump may be calculated by means of the following formula:

LHJ = 8.5y1 (FI“] - 1.7)

d) Draw an energy diagram of the region where the existing geometry connects to the

renaturated one (see right-hand figure).

FExercise 4.5

A channel with rectangular cross-section widens from b; to by. The first part of the open
channel has gradient Jg; = Jpp until point 3. From there, the open channel has slope Jps.
In each of the sections 1 — 3, normal water conditions are attained.

section 3

| section 1 | | section 2
l L ]
] A ]
! b, ! b,
A 4
I N y

A

b,

y
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0=2.0m3/s |by=1.0m|n; =3.33x10"2s/m3 |Jp =2.0%
Aei_r=Ax-Jg|bp =4.0m|ny =2.5 % 1072 s/m% Jgp =2.0%
by =4.0m|n3 =2.5% 10~2s/m3 |Jg3 = 1.0

a) Calculate the normal conditions for all sections.

b) Specify the flow conditions in the individual sections. Substantiate the flow depths in
cross-sections 1 — 3.

¢) Draw a complete energy diagram that contains all characteristic specific energies and
flow depths.

FExercise 4.6

A rectangular channel (Q = 40.0m?/s) is depicted below. It tapers between cross-sections
A and B (distance 5.0m) from width b; to b,. The tapering causes an energy loss of
Ae=0.1-ky (kyp = velocity height of the normal conditions in section 2). Simultaneously,
slope and roughness change at cross-section A. In both sections, normal conditions occur.
Complete parts a), b) and ¢) using the given quantities.

section 1|Jg; = 1.5%|n; :0.0255/m% b1 =12.0m
section 2|Jz = 0.3%]|n; = 0.020s/m3 |b, = 8.0m

a) Calculate the normal depths with their associated specific energies and flow types in
the open channel sections.

b) Determine the course of the water level.

¢) Draw a complete energy diagram.

5 Pipe flow
FEzxercise 5.1

The sketch shows a hydropower plant. Upstream and downstream from the turbine, pipes
with different diameters are installed.

A o
1 B
2

.||4
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L= 2000m d1 =1.0m fD1 =0.025
L2 =1000m d2 =1.5m sz =0.020
H, = 1050m|Hp = 300m|n7 = 0.80

a) For what discharge does the power of the turbine Pr reach the maximum value?
b) What net head is available?
¢) What power does the turbine reach?

FExercise 5.2

A pipeline is to be laid between two containers. For the transport of water from container
A to container B, a pump that is to operate an average of 10 hours per day must be
installed. Assume the price of electricity is 0.15 €/kWh.

H,= 460m
z

v

KB45°
H,=450m
z

>

K, Kyss

[L=5000m][K; = 0.5[Kpss> = 0.3]k, = 3.0mm|T = 10°C[np = 0.80]

a) Determine the pump costs per year for a pipe with diameter d = 1.5m and a discharge
of 0.7m3/s.

The construction costs for one metre of pipeline, depending on the diameter d, amount
to d-7000€/m.

b) Determine the optimum (most cost-effective) diameter of the pipe for Q = 0.7m?/s
assuming that the construction is designed to last 30 years. The friction coeflicient fp
from subtask a) may be used in subtask b) (substitute result fp = 0.024).

FExercise 5.3

A pumped storage power plant is shown below.

2000m

60° 1500m

80° 809

80°~80°

d = 2.0m|L = 5000m[ 17, — 0.9]Kzeo- — 0.5]Kaso- — 0.7]k; = 0.l mm|T = 5°C
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a) Calculate the design discharge if a power of 92.9 MW is to be tapped at the turbine.
Note: Start the fp iteration with fp step 0 =0.01.

b) Draw a labelled energy diagram.

c¢) Calculate the discharge for a pump that consumes S0MW of electrical power using
the friction coefficient of the pipe, fp, that was determined in subtask a).

d) What is the maximum geodetic height at which the pump turbine can be installed
while avoiding cavitation? Assume an energy height of 1500 m.a.s.1. and local velocities
in the pump turbine of 25m/s.

Exercise 5.4

A simplified sketch of the drinking water supply system for the city of Munich near Oberau
is shown below. Water is pumped from the confined aquifer into a large tank. From there,
the water, driven only by the pressure gradient, flows to the reservoir in Forstenrieder
Park. Perform the calculations requested in subtasks a) and b).

570m v

A000m, 3000m

500m

T 60km

confined

© Q aquifer

z+p/(pg)=560m

100m

[T =5.0°C[day = 1.40m[k, = 0.5mm[np = 0.7]K; = 0.5]

a) Calculate the steady discharge in the pipeline to Munich. Use the pipe friction coef-
ficient determined herein for subtask b).

b) Two identical pumps that consume the same amount of power are to be employed for
the two feed pipes. Calculate the partial discharges in feed pipes @ and @ as well
as the power consumption of the pumps for the discharge that was determined in the
previous exercise.

FExercise 5.5

A pipeline system with three containers is shown below. Water is pumped from container
2 into the two containers 1 and 3. You may refer to further data from the table below.



460m o

]
|
|
|
l
|
Q o 450m o
< @ B
© l l
| |
| |
410m i i
C l |
H, = 460m|Pp — 500kW]I; = 3000m|d; = 1.00m|fp; = 0.018
H, —450m|np —0.85 |l = 2000m|d> = 1.00m]| fps = 0.020
Hy —410m|K; =05 |3 = 2000m|ds = 0.30m| fp3 — 0.020

a) Draw a complete energy diagram.
b) Specify the equations for the discharges in lines 1, 2 and 3 if the pump power con-
sumption is Pp = 500kW. Specify the equation for the pressure height at the junction.

10000 m> water per day are to be delivered into container 3.

¢) How much water flows into container 1 during the operating time of the pump?
d) What are the electricity costs per day? Assume 0.20 € for 1.0kWh.

6 Cross-cutting issues

FExercise 6.1

The water supply for a village in the Ecuadorian rain forest is to be investigated. Consider
the idealised system illustrated in the following figure. The upper tank that is initially
filled up to 570 m.a.s.l. is continuously supplied with water at a rate of 0.9L/s from a
mountain spring. The discharge from tank A with base area A4 = 1.35m? is controlled by
the consumers in the village (pipeline data: d =4.0cm, I = 100m, fp = 0.02). The water
level in tank B remains constant.

1.20m[

a) What loss must the valve exhibit in order to keep the water level in tank A constant?
b) Calculate the time that elapses until the water level in tank A has dropped to the
inflow of the pipe when the valve is fully open (Ky = 0).

570m

0.05m] 567m <

B

K,
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FExercise 6.2

For a drinking water supply, unconfined groundwater is to be accessed. Cold water at 5°C
is delivered via a pipeline of length 8.0km into a tank.

4

ST R
20.0m
—¥\I +
gl .
TRVX NARARY74
rl rO

np=0.80 [Kz=0.4 [dpipe=0.40m[k,=1.0mm
hy =40.0m|rg = 0.20m|r; =3000m [k;=1.0x 10 *m/s

a) How much water could initially be delivered (without lowering the groundwater level
(that is, ho = hy)) if the pump consumes 7.5kW of electrical power?

Use the friction coefficient determined in question a) for the following subtasks of the prob-
lem. Bear in mind that the groundwater level decreases due to withdrawal (see following

equation).
h2 _ h2

Q — - kf 1 0

In (’—1>

o

b) Replace the discharge in the energy equation with the above expression.
¢) How much water actually flows into the tank?
d) How far does the groundwater level drop?

FExercise 6.3

The pipeline shown below has a constant slope. The valve V of the rotation-symmetrical
air vessel (pa = 1013 mbar) is initially closed. The following subtasks of the problem are
to be solved for the respective steady-state cases, and T = const.

a) Calculate the pressure in the pipe where the air vessel is located.

b) How much would the water level in the air vessel increase if the valve were opened?
¢) How does the water level change qualitatively when throttling the discharge at the

lower tank?
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560m h=1.50m
R=0.50m

.||q

500m

.M

10.0m

[L=8000m[dyipe = 0.50m]fp = 0.020]

FEzxercise 6.4

A trash rack of width b is positioned at the rectangular headwater of a hydropower
plant. In the upstream water, normal conditions prevail. The minor energy losses K were
measured at the rack depending on vypstream- Assume that the discharge per unit width
does not change in the vicinity of the rack.

a) What water depth results downstream from the rack?
b) What is the magnitude of the horizontal forces acting on the rack?

/g = 2.0%|b =7.0m[Q = 30m*/s|K = 0.2|n = 0.025/m5|

7 Unsteady free surface flows

FExercise 7.1

In a rectangular channel of width b = 7.50m, each of two gauges that are spaced 2.0km
apart indicate a flow depth of y =2.10m. Separated by a time interval of 589 s, both jump
to y =2.55m. Specify:

a) the propagation velocity of the disturbance;
) the original discharge;

) the change in the discharge;

)

b
¢
d) the name of the phenomenon.

FExercise 7.2

At the Finsing power plant located at the Mittlere Isar Kanal, the discharge must be
reduced abruptly from 55m?/s to 30m?/s (assume that we are dealing with an idealised
rectangular cross-section). Solve the following subtasks taking into account the given
conditions:
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|Qo =55m’/s|AQ = —25m’/s[yp = 6.0m|b = 9.0m|

a) Calculate the propagation velocity of the disturbance.

b) State whether the freeboard of 1.0 m is maintained during the regulation process if it
was 1.5m in the steady-state condition.

¢) When does the regulation process have an influence on the water level at the weir in
Oberfohring situated 8.0 km upstream?

FExercise 7.3

The following photo was taken after the sudden closure of the sluice gate in a laboratory
flume (upstream from the sluice gate). The width of the open channel is 0.20m, and the
steady-state discharge was 5.0L/s.

=N AL

1.38m to sluice gate

a) What was the steady-state flow velocity?

) Record the height of the surge seen in the photo.

) Calculate the propagation velocity of the surge wave.

) What is the magnitude of the propagation velocity of the surge wave?
) When was the photo taken?

)

b
c
d
e
f) What is the percentage of the discharge reduction?

This chapter is licensed under the terms of the Creative Commons Attribution 4.0 In-
ternational License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.



Chapter 17
Solutions

1 Solutions: hydrostatics

Solution 1.1

Draw a vertical line from the base point as illustrated below:

© The Author(s) 2024
C. Rapp, Hydraulics in Civil Engineering,
https://doi.org/10.1007/978-3-031-54860-4_17

pgh,

base point

Check for
updates

base point

K

pgh,
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Solution 1.2

a) Preferably, draw a vertical line from the base point.

As such, it will become obvious where the maximum buoyancy results. The water
level may rise up to the height where the vertical line from the base point intersects
the roller dam. This is, of course, the case at an angle of 20° relative to vertical.

b) For the horizontal force, we first need the height:

h
20° = —— =2.81
c0s20 715 — h 819m

1 1
Fy ., = Epgh2 = Epg.2.8192 =3.898 x 10*N/m

The buoyancy area of the circle segment may be calculated via the area of the sector
minus the area of the triangle; this corresponds to the green area in the diagram.
5 140°

I
Asegment = Asector _Atriangle =R 7[3600 - EhR sin20” = 2.026 m2

With this, the buoyancy force is calculated:
Fyt = PgAsegment = pg-2.026m? = 1.987 x 10*N/m

The resultant force that is applied at atan% = 27.01° with respect to the horizontal

direction has a magnitude of |F| = \/F? + F3 = 4.375 x 10*N/m.

¢) The moment caused by the water pressure may be calculated via the centres of gravity
of the areas that represent the vertical and the horizontal pressure force. Thereby, the
lever arm of the horizontal force is spaced two thirds of the way from the water surface
to the bottom, i. e. %h = 0.470m from the centre of the circle towards the bottom.
The lever arm of the buoyancy area corresponds to the distance between its centre of
gravity and the centre of the circle. This is (for example, as seen in [52, p. 2.12]):

h3
XCG,segment — 1A =0.922m

Thus, the clockwise-rotating moment of force about the centre of the circle becomes:

1
M, = Fy - XcG segment — Fth = OONm/m
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We can do without all this calculation if we just think a little. The sum of the moments

about the centre is — of course — zero because the pressure is applied perpendicularly
along the boundary and is therefore directed towards the centre at each point of the

roller surface.

Solution 1.3

a)

1K
1K
1K

A

pwgh (p\\_poi])gh
b) The weight is determined by the products of the volumes of the oil and the water

with their respective densities:

2 (d\’ d\ (d\? ;
Vol = 5 <2> T+ <h—2> <2> 7T =22.498m

2
D
Vivater = <2> T-h— Ve = 62.832 —22.498 = 40.333m’>

Fioundation = Pwater * & * Vivater T Poil - & * Voil = 5.722 X 10°N

c¢) The force due to pressure acting on the bottom corresponds to the pressure applied
there times the area.

D 2
Fp = pwater - g h- (2) T=6.164 x 105N

d) The weld seam must absorb the resulting force because otherwise the oil container

would float.
Fweld seam — Fp— Ffoundation =4.415x 104N

Solution 1.4

We write down the air pressure in the glass:
P1=po+pgAh
The gravity force of the glass, that must be counteracted, is:
Fg=m-g=0.116kg-9.81m/s*> = 1.138N

The downward-directed force due to atmospheric pressure is written as:
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Fyo = poA = poR’m
The upward-directed force due to pressure within the glass is generally expressed as:
Fpl = p1R27T
a) The balance of forces for our problem reads as follows:

poA+mg = (po+pgAh)A

mg 0.116
pgA  1000-0.0252%

This yields the pressure within the glass:

Ah= =0.0591m

p1 = 101300+ p-g-0.0591 = 101 880N /m?

And with pressure pi, the volume V; = 22Y2 may of course be calculated and thereby

also the height of the air-filled space hy: 8

Vi 101300-0.10-R*x
A 101880-R’m

hy = =0.0994m

Thus, the water volume in the glass is:

Viwater in the glass = 0.0257 (0.10 —0.0994) = 1.12 x 10 ®m®

In total, the following volume must be filled; the entire area is wetted to 0.10m —

0.0994m, additionally, the area outside of the glass is filled farther by A#h:

Vivater total = 0.40% (0.10 — 0.0994) + (0.40% — 0.025°7) Ah = 9.43 x 10 m’

K
K

Ah

K

Solution 1.5

a) I'm confident that you can find the solution. Just focus on finding the base point.
b) You can certainly shake the horizontal pressure force out of your sleeve:

1
Fue =5p -g-9°=3.973x 10°N/m
The vertical pressure force per unit width is determined via the buoyancy area:

2
FVT:p-g-§-3-9:1.766><105N/m
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¢) The magnitude of the force and its direction are obtained via the components of the

force vector:
|F| = \/F2+F3 =4.348 x 10°N/m

Fy
o = atan — = 23.96°
atan -

Solution 1.6

a)

i<

pg(h-R) M,

B

pgh

1
Fy = 5pgh2 = 1.226 x 10°N/m

1
Fy = pg <ZR27r+R(h—R)> =1.282x 10°N/m
|F| =1.774 x 10°N/m
2
B= atan — = 46.27°
Fu

b) The water pressure acting upon the quadrant is radial and therefore has no moment
about point A; only the portion that acts on the vertical wall causes a moment.
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M, = ( p2(h—R) );(h—R)—FG-O.SS-R
| (17.1)
= <2pg(5—3)2> 3 (5—3)—3.0x10*.0.55-3.0 = —3.642 x 10*Nm/m

c¢) The force that must be counteracted at point B is constant for all 0 < A < R because
the lines of action of the pressure acting on the quadrant pass through A. If the
water level rises beyond the quadrant, the portion above it turns clockwise around A,
which reduces the bearing force Fz. Thus, the stabilisation of the dead weight must
be compensated at point B:
F5-0.55-R

Fpmax = ——p—— = 16.5x 10°N/m

2 Solutions: outflow through openings

Solution 2.1

Well, this looks a bit difficult, although we should be happy that the container area A is
constant along the height of the container. And we readily set up the discharge from the

container: s
Ah=—2 (fD’ + 1)
p1pe2g d

Ah is initially 7.0m and is reduced with each drop that flows through the pipe. However,
each drop that flows from the upper container causes a higher water level in the lower
container. Therefore, we establish the following expression for Ak, noting that z is directed
downward from the upper water level: Ah =7 —2z. For Q, it follows that:

(722 A2, .28

ol
(%5 +1)

With it, we formulate the continuity condition which, due to the downward coordinate
direction z, does not include a negative sign as in Equation 9.20:

t:/ ——dz
2t (7-22)A%.  2g

pipe

BCON

We may move the constant part of the expression outside the integral and calculate it

separately:

A 1
= 00 =7605.2

A2 2 (7.85x10-3)%2¢
(fD’+1) (*g1°+1)

The integral now looks much more friendly:




2. SOLUTIONS: OUTFLOW THROUGH OPENINGS 307

1.0

%W 1 2
t:7605.2/ dz=7605.2 | —V7—-2
2t \/7_2Z ¢ |:_2 Z:|

— 7605.2 [—\/7—2- T+ \ﬁ} —3115.7s

0

The factor 2 results from the integration of the expression with the square root in the
denominator, and the division by —2 is due to the term —2z.

Solution 2.2

a) With a maximum discharge of 1.0m?/s, an impoundment basin of V = [Qdr =
1.0m3/s - 40min - 60s/min = 2400m? is required. With an area of A = 40-20 = 800m?,
this corresponds to a basin depth of 3.0 m.

The overflow, which must also be designed for the discharge of 1.0 m?/s, is determined
via the Poleni equation (13.25). Solving for hw, it follows that:

2
3

3 1
JA— —0.0927m
wi <2 0.60~20-\/19.62>

From that we determine the height of the weir:

3.0— hWH =2.907m

b) The overflow height at minimum discharge is:

3.0 j
i (Oumin) = (m) — 0.032m

This results in a water depth of A(Qmin) = 2.907m + 0.032m = 2.939m. Thus, the
volume is Viasin = 20-40-2.939 = 2351.2m> and:

o Vbasin

t =11756s = 196 min

min

Solution 2.3

a) The balance is established as follows:

1.75-A

= =1.1
h 154, 67m

b) From the continuity condition, we obtain:

/zb A . A 025 | .
= — —_— = — Az
Jz UAoV2gz UAoV2g Joas /z

— —694.65 [2¢/2] 31 = ~694.65 [2v/0.25 ~ 2v/0.75| = 508.55
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»

¢) This is a really tricky question. Preferably, you draw a coordinate Ah4
system that shows the height z on the abscissa and the height 7
difference Ah on the ordinate. At z =0.25m, Ah = 0.25m. The
point of intersection of the straight line with the abscissa, where ./
Ah =0, lies at z=0.167m. The line intersects the ordinate at
Ah = —0.50m and the gradient is 3z. And our equation is hereby /
established:

Ah=-05+3z

/Zh A q A 0.167 1 d
t=— | ———dg=———— — 4
2 UAo\28Ah UAo0V2g Joo2s —0.5+3z
2 0.167
= —694.65 [3 vV—=0.5+ 32}

0.25

= —694.65 B\/ —-0.543-0.167 — %\/ —-05+3- 0.25} =21609s

By the way, the 2 in the factor % results from the division by % (from the integration of

Zf%) and the 3 from the term 3z. Thus, the process takes a total of 508.5s+216.9s =
725.4s.

Solution 2.4

a) The answer is trivial:

A-h
t=—— =200000s
0

b) This is what we obtain from the rearranged Poleni equation:

2
3 10 3
=2 ——— ) —~0.978m
wH (2 0.70-5-\/19.62)

¢) Bear in mind that filling takes place in the positive z-direction. This means that the
negative sign from Equation 9.19 is not written:

=

2 A /0978 200000
= Z
% 10—2.p-b- @g.Z% 10—10.335-72

This integral may hardly be solved analytically. We use the computer and integrate
numerically:
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We obtain 3.123 x 10° s together with the already elapsed 2 x 107 s for the time it took

to fill the basin to the weir crest.
d) This is easy to calculate. The volume retained “above the weir crest” is:

Vabove crest = A - hywr = 200000 -0.978 = 1.956 x 10° m*

The following total volume has flowed in during the 1.123 x 10%s:

Vinflow = Q-1 =10-1.123 x 10° = 1.123 x 10° m?

The difference, of course, was spilled into the receiving water:

5.3
Vreceiving water = Vinflow — Vabove crest = 9.274 x 10°m

3 Solutions: momentum equation

Solution 3.1
2

10 v
=—— =12.73m/s; -L =8.26
0.5027 m/s; 5, m

LS

vy =

v—Q—L—1768m/S'ﬁ—1594m

2T AT 0302 "2
2

PLL M _3826m

pg  2g

EGLy =EGL| —Ae;_» =38.26-2.0=36.26m

P2 V3
=EGL, — 2—2 =36.26—-1594=20.32m
8

EGL, =

pg
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Fr = p1A1 +pQ1vi —2(p2A2 +pQrv2)
=30-p-g-0.5’w+p-10-12.73-2(20.32-p--0.3°w+p-5-17.68)
=6.892 x 10*N

Solution 3.2

a) Consider the Bernoulli equation where z; = z:

2 2
i op_v

26 pg 28 pg
With this equation and the velocities from the continuity condition

0.05

V=G50 =0.398m/s
and 0.05
V) = m = 1592m/S

we obtain an expression for the pressure height at the outlet:

22 3982 1.5922
PPN M50, 0380 L3200
pg pg 28 28 28 28

Substituting, the force balance becomes:

Fy = p1A1 + p2Ay +pQvi +p 02

0.052 0.052
—~  =832.7N
02z Porzs 8

=0.5-p-g-02>14+0.379-p-g-0.12m+p

b) The energy loss is calculated as follows:

V2 V2
Ae=02(-2—--1)=0.2.0.121=0.0242m
2¢ 2g

The energy loss must be subtracted from the pressure height calculated above. Addi-
tionally, however, the static pressure of 0.5 mH;O from the curvature is in effect.

5—2 =0.379-0.024240.50 = 0.855m
8

The result for the horizontal force is:

Fy = p1A1 + p2A2 +pQvi +pOwvs

0.05% 0.052
+p—>—=979.3N

=05-p-¢-0.221+0.855-p-2-0.12
prglam+ P& Ot P TP o2
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Solution 3.3

a) Moo EGL

--------- -\"\,,KNVZ/Zg

@ @ ® @ O

b) With 4.0bar = 40.77mH,O0, it follows that:

v v [ fpl
40774104+ — — — | =
oo 28 2 < d

2 2
87742 (1 _ I —KB) & Kwmet1)=0
(0.0527)" 2¢g d (0.00527)"2g

0? 0.03-3 0?
38.77 1— —08)|-——=—_(1.2)=0
+1.21><10—3 0.10 1.21><10—7< )

2
1%
+KB> - %gzle (Knozzle + 1) =3.0

This yields Q = 1.977 x 103 m%/s.
¢) The force with which the nozzle must be held in place corresponds to the momentum

flux: )
. ~1000(1.98 x1073) _ 4976N
= POVnozzle = 0.00527 =49.
d) To find the attachment force, the pressure conditions upstream from the nozzle must
also be known.
0 v
v==—=0.252m/s; — =3.23mm
A 2g
Q  _25172m/ Vhosle _ 33 295
0 = —— =25.172m/s; 2222 =32.295m
Pnozzle Anozzle 28

The energy height upstream from the nozzle is:
2
Hpefore nozzle = 2+ % + Aenozzte = 3.0+ 32.295(140.2) = 41.754m
8
The hydraulic grade line (or the piezometric pressure) upstream from the nozzle is:
2

v p
HGLbefore nozzle — Hbefore nozzle — i =41.751m; — & = HGLbefore nozzle =3 = 38.751m

This allows the calculation of the force with which the nozzle must be attached to the
hose:
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F= va+pA - pQVnozzle
=1000-1.98 x 1072 -0.252 +38.702-1000-9.81-7.85 x 107> — 1000-1.98 x 107>-25.172
= 0.499 +2981.9 —49.8 = 2932 N

e) The distance traversed by the water jet depends on the time the jet is in the air.
1
3=_g
28
t=0.782s
x=vg-t=25.172-0.782 = 19.686m

Solution 3.4

a) This is our easiest exercise. We calculate the area A, with the velocity height and the
continuity condition:

1407 3 1
T _0.815m — 22 = - 2L = 0.116m; v, = 1.512m/s
2g 2g 2¢  T2g

Q=viA; =2.8x103m’/s; Ay = Q_ 1.852 x 1073 m?
V2

b) When setting up the Bernoulli equation and accounting for energy losses, we obtain:

2 2
Z1+Q+E—Ae:zz+&+vf2
pg  2g pg  2g
1.0 x 10° P2
— 4+ 0.815-0.5-0.116 = == +0.116
1.O><103-g+ pg+

P2 _ 10.84mH,0
pg

p2 = 1.063 x 10°N/m?
¢) Ultimately, this yields the flange force:

Fy =pOvi +p1A; — p0Ovy — prAs
=1.0x10°-28%x1073-40+1.0x10°-7x10*—-1.0x10°-2.8 x 1073-1.512
—1.063%10°-1.852 x 1073 = —119.885N

Therefore, Fy acts in the direction of flow.

Solution 3.5

a) Here, the Froude number is required:
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r2

3

A= =0.0353m?>

v=—=1.132m/s

N0

1.132
FI‘: vA =
0.035
\/gm \/gm

b) The centre of gravity of the semicircle is spaced 0.4244 - R from the centre of the circle.

= 1.054; — SUPER

Hip = 0.15-0.4244 = 0.0637m
pcG = pghcg = 624.5N/m’?
Fp = pcgA = 624.5-0.0353 = 22.05N
Fy = pQv = 1000-0.04-1.132 = 45.28N
Fyp = Fy + Fp = 67.33N

And because the entering and leaving momentum and pressure forces act on the shaft
with an angle of deflection of 90°, the reaction force to be applied is:

Fr=1\/Fjp+F4p=952IN

4 Solutions: free surface flows

You may track the individual water level courses via the Bernoulli-Manning discussions,
which are not explicitly given here.

Solution 4.1

a) open channel|yy = 1.381m|vy =2.896m/s|Hy = 1.809m |Fry =0.787
Ye=1.17Tm |v, =3.398m/s |Hpin = 1.766m|Ae;_» = 0.589m
stilling basin |yy = 0.860m|vy =4.651m/s|Hy = 1.963m |Fry = 1.601

Ye =1.177m v, =3.398m/s |Hpyin = 1.766m|Aez_4 = 0.0428 m

b) At point(4), normal water conditions must exist. I leave the Manning-Bernoulli dis-

cussion to you (also, see example on page 259). The specific energy at point@ is

Hy =Hy +0.1;—12V +wy = 2.352m; from the Bernoulli equation, the flow depth that re-
sults is y3 = 2.181m. The crucial hint for the water level course is already hidden in
the specification. We would normally assume that downstream from the ramp, an
increasing flow depth in supercritical flow followed by a hydraulic jump occurs. But
we should first find out what’s behind that hint; the hydraulic jump is to occur im-
mediately downstream from the ramp without the section where energy decreases in

2
supercritical flow. A specific energy of Hyi, +wi — ;—; =2.677m exists downstream from
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the ramp®. With the Bernoulli equation, we obtain the flow depth in supercritical flow:
vy, =0.631m at Fr, =2.548. This results in a conjugated flow depth in subcritical flow of
vy = 1.980m at a specific energy of H.pj =2.188m. Eureka! H,.pj < H3. Thus, there
must be an energy build-up in the stilling basin. The length of the backwater in the
stilling basin is determined by means of the direct step method (directStepDeltaX.m)
where y; =y, 17 = 1.980m and y, = y3 = 2.181m yield Ax = 22.34m. For the length of
the hydraulic jump, we obtain Ly = 4.54m. The total length of the stilling basin
must be Lgtilling basin = Liy +Ax = 26.88mb.
¢) The complete course of the water level appears as seen below.

L S

open channel @ @ stilling basin @ open channel

Solution 4.2

a) lyy =4.026m|vy = 4.140m/s|Hy = 4.900m|Fry = 0.659)
b) In the following steps, the characteristic specific energies and flow depths are calcu-
lated:
o

Geons = 35 = 22.22m%/(sm)

3 2
Hmin,cons = E \ Lcons =5.539m
\/ 8

V% cons
Ye.cons = 3.692m; Ve cons = 6.019m/s; Ae = 0.57’2 =0.923m
' ' 8

Hypstream = Hmin,cons +Ae = 6.462m > Hy — energy build-up necessary

The flow depth for Hypstream cons = 6.462m in subcritical flow is obtained with the
Bernoulli equation:

A Nature adapts to the minimum required energy. Hy is not required until the ramp is reached,
but is gradually reduced to Hpp.

B If it were shorter, the energy build-up for the normal water conditions at point(4) would never-
theless be required. The hydraulic jump would “travel into the ramp”.
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Yupstream cons = 6.079m; Vupstream cons — 2.742 m/s

As indicated, no further energy loss occurs downstream from the bridge; from the
Bernoulli equation, the flow depth in supercritical flow is as follows:

Hdownstream cons — Hpyin — Ydownstream cons = 2.00m

The specific energy downstream from the constriction is greater than Hy; therefore,
energy is reduced in supercritical flow with increasing flow depth up to y; 11y and yn
is in effect immediately downstream from the hydraulic jump.

YIHI = %N < 1+ 8Fry, — 1) =2.245m

I will skip the energy diagram ;-).
We use the direct step method here (directStepDeltaX.m). The flow depth on the
right corresponds to that upstream from the constriction; the normal depth is to be
inserted on the left.

AXupstream = 1150.2m

The length of the supercritical section is:
AXdownstream = 25.3m

Since the Froude number Fr; = 1.58 upstream from the hydraulic jump is smaller than
1.7, we see an undulating hydraulic jump; here, no statement relating to the length
is possible. The total length of the effect may be given as 1175.5m + Lye;.

Solution 4.3

a)

The rearranged Poleni equation reads:

2
3 40 3
hwa= (2 — ) —=1997m
wi <2 0.60-8\/19.62>

Yupstream = hwua+w=3.497m

With this, we calculate the specific energy upstream from the weir:

( 40 )2
Hypstream = 3.497 + 832& =3.601m
8

With Az added to Hyupstream, this corresponds to the specific energy Hyownstream =
4.601 m downstream from the weir because no energy losses are indicated. With b =
12.0m the flow depth in supercritical flow downstream from the weir yqownstream =
0.366m follows from the Bernoulli equation.

We know that the additional built-up energy is dissipated again in supercritical flow
and that yy exists immediately downstream from the hydraulic jump.
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135
YLHI = y’% (\/l—i—S-Frf— 1) e (\/1 18-0.6782— 1) —0.786m

By means of the continuity condition, it follows that v; = vaownstream = 9-11m/s and
v, = vy = 4.24m/s; that is, v, = 6.67m/s and also Ryy, = 0.526m. Ultimately,
H, = H;py = 1.702m and H; = Hyownstream = 4.601 m. With the Manning equation,
we formulate n for normal water conditions

VI AS VT

Q0 p} 2314

and insert the expression for the coefficient into the rearranged direct step method
equation; we now have an equation with one unknown, Jp:

H,—Hy = Ax | Jp— "
I31y,m
2
2 ( \/E>
m 2.314
= Ax JB - 7
R}31y,m
6.67> . &
1702 — 4.601 =20 | Jp — ——2314
0.5263

By means of the Octave equation solver, we obtain: Jg = 7.79 x 107> and n =
0.0381s/m3.

Solution 4.4

a) The height difference Az amounts to Az=Jg-5000+5-1.0 =30m. In a new flow section
of 10km, a gradient of Jp new = 0.3 % results.

yv =1.331m vy =2.253m/s Hy = 1.590m Fry =0.624

YN new = 1.086m|vy new = 1.726m/s|Hy new = 1.238m|Fry new = 0.529
The flow velocity is lower in the new section so that no bottom steps are required.

b) At the change in slope, critical conditions prevail with y. =0.972m and Hyi, = 1.458 m.
Downstream from the bottom step, a specific energy of

2
Hyownstream step = 1.458 +1.0 — 0.1;—; =2.458—-0.049 =2.409m

exists. Via the Bernoulli equation, this results in the flow depth yqownstream step =
0.291m. The supercritical flow depth increases until y; gy = 0.434m is reached.

¢) The direct step method yields Ax = 10.25m. The length of the hydraulic jump is
Lyy = 1.45m, which means that a total length of Lista = 11.7m must be paved.
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Solution 4.5

a) section 1|yy1 =0.984m|vy | =2.033m/s|Hy, = 1.195m|Fry,; = 0.654
section 2|yy2 =0.244m|vy 2 =2.047m/s|Hy o = 0.458 m|Fry» = 1.323
section 3|yy3 =0.640m|vy3 =0.781m/s|Hy3 = 0.671m|Fry3 =0.311

b)

The specific energy in section 2 is lower than in section 1. This results in energy
reduction. There is no reason for the specific energy to remain at Hy,; until the end of

the section; nature aims at the lowest energy state. At cross—section@ s Hyin1=1.11m
exists at y.1 = 0.742m.

The energy loss in the expansion corresponds to the gradient at the bottom in this
section. Thus, we obtain H, = 1.11m for the specific energy at cross-section(2). Since

the critical conditions have already been passed in cross—section@ (Hmin,1 > Hmin2
and thus crucial), supercritical low with y, =0.113m is the result. The specific energy

in cross—section@ is also too high for the normal conditions of this section; it is
continuously reduced to Hy, (or, that is, to yy2 in supercritical flow). This flow
depth remains unchanged because it is stated that normal conditions occur in all
sections.

However, we see that the specific energy at normal conditions is smaller in section
2 than that in section 3. There must be an energy build-up, which is possible only
in subcritical flow. In section 2, there is a hydraulic jump with yy on its left. Im-
mediately downstream from the hydraulic jump, the flow depth y.pj = 0.351m is
conjugated to yy .

Downstream from the hydraulic jump — still in section 2 — the energy is built-up. The
flow depth increases until it reaches yy 3 precisely at the transition to section 3. From
there, nothing will change.



Solution 4.6

a) section 1|yy 1 =0.836m|vy =3.986m/s|Hy = 1.646m|Fry; = 1.392
section 2 IN2 = 1.647m VN2 = 3.035 m/s HN72 =2.117m FI‘N72 =0.755

b) Since Hyi < Hyz, Hyy is found immediately downstream from the constriction. To-
gether with Aecons = 0.0469m and Az =5.0-Jpy = 0.015m, this results in:

Hp = Hypstream cons = Hn2 +Aecons —Az=2.149m

With this specific energy, we may calculate the flow depth upstream from the con-
striction by means of the Bernoulli equation: yypstream cons = ya = 2.009m.

Initially, normal conditions occur in section 1 until a transition to subcritical flow takes
place (y,my = 1.280m). From there, energy is built-up until, immediately upstream
from the constriction, yupstream cons = 2.009m (that is Hypstream cons = 2.149m) is
reached. This is just enough for achieving normal conditions with the energy losses in
the constriction immediately at the beginning of section 2.

¢) I'm sure you can manage the energy diagram yourself.

5 Solutions: pipe flow

Solution 5.1

a) Initially, we establish the energy equation:

0 (ol @ (foola
AR2g \ 4 AR2g \ b

Hy —|—1>—HT:HB
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With the specified values, it follows that:

Hy

0? (0.025 : 2000> 0? <0.020~ 1000

_ — 1)—Hr=H
0.78522¢ 1.0 1.76722g 5 ) r—us
With the power equation for the turbine, we may write:

o — Pr Pr
T hpg0 ~ 0.80-9.81-1000-Q

=750 —4.131- 0% —0.234 - 0
Consequently:
Pr = (750 —4.365 - Q%) - 7848 - Q = 5.886 x 10°- 0 — 3.426 x 10* - 0°

The maximum value of Py is found by differentiation:

P
c(liQT:5.886><106—3-3.426><104~Q2:!0

Finally, we obtain Prm.x when Q = 7.568m3/s.
b) The above established power equation for the turbine yields Hry:

Hr =750 —4.365 - Q% = 750 — 4.365 - 7.568% = 500.0m
¢) Finally, we calculate the turbine power:

Pr =npgQHr =0.80-p - g-7.568-500 = 29.7MW

Solution 5.2

a) For determination of the pump power, we set up the energy equation and determine
the pipe friction coefficient for the required discharge.

V= % =0.396m/s

With pc(’circle’,1.5,1.5,0.7,3e-3,10), we find that fp = 0.024.

2
v L
Hy— 2 (f]; 1K)+ 2Kys0 +1> +Hp = Hp

1
Hp =10+0.656 = 10.656 m; Pp = n—ngHp =91.47kW
P
This results in the pump costs per year:
Cp=Pp(10-365)-0.15=50080€/a

b) In this case, too, we cannot bypass the energy equation.
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16-0° [ fpL 0.0405 /120
Hp = 10 U141 ) =10+ —— [ = +2.1
P +d4n22g< PRI + = ot

1
Pp = o -pgQHp = 8583.8-Hp
P

Pp is calculated in watts; however, the costs are indicated in €/kW/h; therefore, we
must divide by 1000:

1
Cp3o = O.lSm (10-365-30)-8583.8- Hp = 140988 - Hp

Cinvest = L-7000-d =3.5x 10" -d
0.0405 /120
Ciotal = Cp30 + Cinvest = 140988 <IO+ g <d +2.1>> +3.5%x107-d
6.852x 10°  1.199 x 10*
d’ + d*
The total cost must be differentiated with respect to the diameter and set to zero:

1.410 x 10+ +35%x10"-d

dCiotal 7 6.852 x 10° 1.199 x 10*
=3.5%x10"-5- —4. =
i = 33x107=5 = = 0

With function C=f(d) and the above equation, we obtain with
[d,fval,infol=fsolve(@f,.4) an optimum diameter of:

dopt = 0.680m

Solution 5.3

a) First, let’s set up the energy equation:

0> (oL
2000 — — | — K;+Kp | —Hr = 1500
A22g d +lzzl i+ Ko T
Furthermore:
0? fb - 5000 _
2000 3142228 20 +2 KB,()OO +4 KB,SOO +1 Hp = 1500
0* 92.9 x 10°
500 — ———— (2500 48)— —— =
3.14222g( fo+48) 09-p-g-0

With fpstep 0 = 0.010, we obtain a discharge of Qstep o = 27.32m3/s. From the
Prandtl-Colebrook algorithm, fp step 1 = 0.0108 results from Qgtep 0. When inserted
into the energy equation, Q becomes Qstep 1 = 29.32m3/s7 with which the fric-
tion coeflicient is again determined via the Prandtl-Colebrook equations. We obtain
D .step 2 = 0.0108 and may stop at this point. We calculated with the correct fp.
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b) 2000m <
= LKk
L Kk
60° ST T Kk
T Kk
L _7
H,
L Kk
LFK[ 30°k
L _|k=v*2g~~1500m
60° 80° 80|

800-65‘80O

¢) The discharge is calculated from the energy equation with the given pump power:

250 x 10 0.90-50 x 10° 2
n-30x 107 _ 090-50x10° _ 55 QO

_ 2 (2500-0.0108+4.8
p-g 0 1000-9.81-0 3.14222g( +438)

We obtain Q = 8.94m?/s.
d) Here, the geodetic height must be taken into consideration since the total pressure
(the sum of atmospheric pressure and water pressure) must not drop below the vapour

pressure.
, 2
Zmax + Prmin + Lmax = 1500
pgs 28
2
With v‘z“g" =31.855m and p;)“g,“ = —7.5mH,0, we find that zm. = 1475.6m.a.s.1.

Solution 5.4

a) The solution starts again with the energy equation:

Q* (foL
- | —=+15) =
570 22 ( p 5 500

With fpstep 0 = 0.020, QOstep 0 = 1.947m3/s; subsequently, fp step 1 = 0.0161 and
Ostep 1 = 2.169m/8; 1D step 2 = 0.0160 and Qstep 2 = 2.172m3/s. This confirms and
ends the process because fp step 3 = 0.0160.

b) We set up the following system of equations:
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2 L
560 + Hp) — A%g (fDd L 1) — HGLjunet

2 L
560+ Hpy — -2 (fD 2 1) = HGLjunet

A2g \ d
(014 02)* [ fols
HOLjunct =~ 125 ) =570

Substituting values, and with Q; +Q, = 2.172m?/s, the result is the following:

Pp;-0.7 2 0160-11
5604 11 07 O 0.0160-1100
pg01  1.53922¢ 1.40

. 2 .
560+Pp2 07 03 0.0160- 100
pg0>  1.53922¢ 1.40

2.172%  /0.0160-3000
HGLjunct — ( ) =570

+ 1) = HGLjunct

+ 1) = HGLjunct

1.53922¢ 1.40

With the third equation, we may quite comfortably calculate the piezometric pressure
height at the junction: HGLjunct = 573.48m.a.s.l. With Pp; = Ppy = Pp, we solve the

first two equations for Pp, as follows, and then substitute @, =2.172 — Q; in the second
equation to obtain the system as seen here:

2 .
P, P8O <13.48+ 0> (o.omo 1100_1>>

0.7 1.53922¢ 1.40
080> 03 0.0160 - 100
Pp= 13.48 —1
"7 07 ( T 1539724 1.40
2
_ pg(2.172-0y) 13%+(2.172 Q1)" (0.0160-100
0.7 1.53922¢ 1.40

By equating the expressions for PpC, we ultimately determine that Q) = 1.0748m3/s

and Q) = 1.0972m3/s. Likewise, we find that Pp = 208.12kW, Hp; = 13.817m and
Hp2 = 13.536m.

C Preferably, use the Octave solver again and equate the two expressions for Pp since the pump
powers are identical.
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Solution 5.5

X 2/) i v, 2g
\'% g .2
460m_ KoK g o= e F T
g o 7// HG junction |H
(D 7 i P
© [k
< o O
k=v?/2g

b) This is the system of equations with the boundary condition being that the hydraulic
gradient lines intersect at the junction:

(014 03)* [ fook
450 + Hp — Ki+1) =HGL:y,
+ Hp Rgﬂ_22g d2 + K+ junct
1
Pp= —pgQHp
ne
5.0 % 10°-0.85 43.32
Hp = -
10x103-981-0, 0>
43.32
450+ —3.430- (Q1 +03)* = HGLjunct
2
07 Jpih _
HGLjunct — et ( gy ) =460 = @1 = \/ (HGLjct —460) -0.224
03 Jo3ls\ _ )
HGLjunas — gt (70 ) =410 03 \/(HGLjyct —410)-7.35 x 10
43.32
450 + —3.430-

/(HGL jynet — 460) -0.224 + \/(HGLjunet — 410) -7.35 x 10
2
: <\/ (HGLjunet — 460) -0.224 + \/ (HGLjunct —410)-7.35 % 10—4> = HGLjunet

(17.2)

When entering this equation into Octave, one thankfully obtains the following for the
piezometric pressure height at the junction:

HGLjunct = 468.55m

This results in

01 = |/ (HGLjuner —460) -0.224 = 1384m’/s

and:

0 = \/(HGLjumct —410)-7.35 x 1074 = 0.207m’/s
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¢) A rule of proportion is required.

1.384 B 43
0207 10000 = 6.686 x 10°m

d) Now the question remains: For how long must the pump operate?

Vs 10000 4
— - = —_— 4. 1 - 1 .42h
1= = ga07 = 483X 10's=13

Cpump = 500-13.42.0.20 = 1342.0€/d

6 Solutions: cross-cutting issues

Solution 6.1

a) The energy equation is required:

(0.9x1073)* £0.02-100
3.0= 14K,
0.024-71'2-2g< 004 T V>

This results in Ky = 63.75.
b) We now use the continuity condition in the form Qdr = —Adz:

/ Ah 4 o

, /0 Ax d /0 1.35
- 1= —
1.15 Qoutflow — Pinflow 115 7.794 x 10~4-4/1.85+7—0.9 x 103

We may solve the integral numerically by means of Octave:

dz=75428s
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Solution 6.2

a) The energy supplied by the pump must be sufficient to overcome the static head and
the hydraulic losses:
Q> (/oL
Hp=20+—— | —— +Kp+1
P + A5\ d +Kp+

We proceed with the power formula for pumps:

7500-0.8 0? fp - 8000
=20
+ < 0.40

0.4+1
pg0 0.1257% - 2g * +>

For fp step 0 = 0.020, it follows that Qgtep 0 = 0.0290m3/s; then fp step 1 = 0.0272 and
Ostep 1 = 0.0285m’/s; D step 2 = 0.0272, which confirms and ends the process, and
the discharge is the same as with fp step 1-

b) The function therefore generally reads:

2
),
7500-0.8 In( 73 0.0272 - 8000
o = (20+h1 —ho)—i— 0.12572'28 ( 0.40 +0.4+1>
. 1~
PTG
Substituting values:
2 2
1.0x 1074290
7500-0.8 (” RO ) £0.0272-8000
= (60— ho) + +14
0.12572-2g 0.40

402—p2
pg (ﬂ: 1.0 x 10_411’1(30000)>

0.2

And finally one obtains, thanks to Octave, hg = 31.119m.
¢) We have only to insert hg:

h; —hg
In (’—1)
ro

d) This is the difference between h; and hy:

Q=nm ky = 0.0206m>/s

Ah="h; —hyp=28.881m

Solution 6.3

a) With

0’ ( /oL >
60 = —=— +1
A22g \ dpipe

Q =0.376m3/s and v = 1.915m/s; hence, % =0.187m is the result.
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60 —0.187

2 =529.91m.a.s.l. at Zpipe@air vessel = 320m.a.s.1.

Ppiezo@air vessel = 500+
This is to determine the total pressure in the pipe at the air vessel:
Ptotal@air vessel = P & 9.91 +po= 1.9852 x 105 N/mz

b) The air volume in the air vessel is:

4
Vair vessel = §R3n+h~R2n+o.12-n.o.5 = 1.717m3

_ poVo _ 101300-1.717
T p 1.9852x10°

In the upper hemisphere, the volume is %RS -w=0.262m?>; it is 0.876 —0.262 = 0.614 m>

in the remaining part. From the contact point of the upper hemisphere, i’ = Okgl:‘ =

0.782m. The water level in the air vessel rises up to 5204+0.5+0.54+1.5—-0.782 =
521.72m.a.s.l.

¢) The water level rises. Due to the lower discharge, the losses in the pipe section to the
valve are lower; therefore, the pressure height is greater and the air volume is further
compressed.

Vi =0.876m>

Solution 6.4

a) yy =0.804m|vy =5.328m/s|Hy =2.252m
Fry =1.897 |y, =1.233m |Hpyin =1.849m

2
We are in supercritical flow and Hy — K ;—’; > Hpin. Thus, there will be no backwater

2
and the energy loss occurs at the trash rack. With Hyowns = Hy —K% = 1.963m,
Ydowns = 0.972m follows (also supercritical flow).
b) Here again, the momentum equation is the means of choice. The control volume

extends from upstream to downstream from the rack.

Q2 1 2 Q2 1 2
Fiop. L peVib=p. —2 11 .5g. b
+p by + 3 P& YN P b - Ydowns + ) P& Ydowns
Fepe 2 L 007227 p. 20 L 080427 — 1740 % 10°N
—P T oo T2 PEY P 770804 2 P87 -

7 Solutions: unsteady free surface flows

Solution 7.1

a) Velocity is distance per unit time.
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x 2000

Cabs =

b) We calculate the relative propagation velocity with surge height 2 = 0.45m.

g-7.5-2.1 3 045-75 1/045-7.5\°
— U I - =5.26
TV s T2 7521 T2\75 21 m/s
Only now we see that the absolute propagation velocity has a negative sign. This
means that:

x _ —2000
t 589
But we have to go back to the calculation of the original flow velocity vy

Cabs = = —3.396m/s
V9 = Cabs +¢=—3.40+5.26=1.86m/s

and to the discharge Qy:
Qo = voAp = 29.30m>/s

¢) The reduction in discharge results from the continuity condition:
AQ = Caps-h-b=—3.40-0.45-7.50 = —11.475m3/s

d) It is an upsurge.

Solution 7.2

a) With the routine surge.m, the result readsP:
c=28.05m/s

Cabs = —7.03m/s
b) We determine the height of the surge:

hupsurge = 0.395m

Thus, the freeboard is maintained because 1.5 —0.395 > 1.0.
¢) Time corresponds to distance divided by velocity.

= =1138s = 18.97 min

Cabs

Solution 7.3

a) And it is the continuity condition which saves us yet again:

D Please note that you may display the associated propagation velocities after the while loop via
disp(c); the routine displays the result for & only.
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Qo 5.0x107%
= e T 020-005  0m/s
b) A clever technique!
h=0.04m

¢) We once more set up the equation for the propagation velocity of shallow water waves,
which are affected by the surge height A.

_ [2020:005 [ 3 0.04:020 1/004-020\* Lm/s
= 0.20 2 0.20-0.05 2\020-0.05)
d) The propagation of the surge wave takes place opposite (—c) to the direction of flow
“+vo:

Cabs =Vo—c=0.50—1.11=—-0.61m/s
e) time = distance / velocity:

X —1.38
=X 2% 506
cobs | —0.61 s

The result is 2.26 s after the closing of the open channel.
f) The continuity condition is necessary:

AQ=0.04-(—0.61)-0.20 = —4.88L /s

The discharge reduction amounted to —97.6 %; i. e. the sluice gate was (almost)
completely closed.

This chapter is licensed under the terms of the Creative Commons Attribution 4.0 In-
ternational License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
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Chapter 18
Forces and moments of force at the weir in Wieblingen

For the weir in Wieblingen at the river Neckar, which consists of roller dams, a deter-
mination of the forces and moments of force to be counteracted by the structure will be
made. The width of weir field 6 is 12.94 m. Figure 18.1 is a schematic illustration of the
cross-section.

Wehrschwelle 6 Pfeiler 6

-
HW, 1624 5 G I .‘4&\ /.‘, ’
/ | / !,.v
L /
St 10806 ol
e E .
—  — /
e — / g
/ 2,56 EE;_W#;‘
/ ize in Staulsge
[ innersr g=320m
| x101.08" .
S— S o o
> gase 11 iy Vorsatzbeton 145NN 1 122 _,-‘- i
7 o 7 _Grolpfiastersisine 7exstxit - |
_ 5 iy
7 s 7 77 .
/// /,'/%“ =e.»// //an’ Vx/fl' 1% 1 :/ D o i
e e Z i g

Figure 18.1: Sectional view of field 6 of the weir in Wieblingen (source: WSA Heidelberg).

The design drawing was accessed in order to be able to indicate the relevant dimensions
(see Figure 18.2). The centres of gravity of the areas were calculated, transferred into the
plan and the respective lever arm of the partial area was measured.

Thanks to the constant width, the horizontal force Fy is easy to calculate:

© The Author(s) 2024
C. Rapp, Hydraulics in Civil Engineering,
https://doi.org/10.1007/978-3-031-54860-4_18
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Figure 18.2: Area and lever arm calculations for the roller dam at Wieblingen.

Fy :/pghdAz %~p~g~h2~b:%-p-g-5.6142~12.94:2.00>< 10°N (18.1)

The vertical force is determined via a vertical line drawn from the base point and the
resulting partial areas (or, in three dimensions, the volumes). The red areas (i. e. in three
dimensions, the red volumes) of width 12.94m result in the following downward force:

LF=p-g-12.94-(0.024+0.353) = 4.786 x 10*N (18.2)

The green-coloured areas are summed up to calculate the corresponding volume with
width 12.94 m which results in the following upward force:

+F=p-g-12.94-(0.3084+0.077 + 1.001 + 1.142 +0.337) = 3.637 x 10°N (18.3)

Adding the forces vectorially, we obtain a resultant upward vertical force of F, = 3.158 x
10°N. The lines of action of the partial vertical forces pass through the centres of gravity
of the respective areas. These may easily be determined by means of the partial areas
(circular sections, triangles and trapezoids) that have already been used for calculating
the vertical force.

The determination of the resultant moment of force about the pivot point is more complex;
however, the essential work is already included in Figure 18.2. Rotating in a clockwise
direction all buoyancy areas (volumes) with their respective lever arms, are to be specified.

M;, = (0.308-0.855+0.077-1.515+1.001-0.969 + 1.142-0.940+0.337-1.192) -b - p - g

—=2.825-12.94-p-g=3.59 x 10°Nm
(18.4)

Rotating in an anticlockwise direction, the resulting horizontal force on %h at a distance
of 0.887 m from the pivot point, and the load areas (volumes) with their lever arms are
to be specified.
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M5 =2.00 x 10°-0.887 + (0.024-0.084 +0.353-0.417) - b-p g

18.5
=1.77 x 10°+1.894 x 10* = 1.79 x 10°N'm (185)

From that, an anticlockwise rotating moment of force results:
M sresulting = Moy — My, = 1.79 x 10° —3.59 x 10° = 1.43 x 10°Nm (18.6)

Please note, that only forces and moments of force induced by the water pressure were
calculated. The dead loads are not to be considered here.

This chapter is licensed under the terms of the Creative Commons Attribution 4.0 In-
ternational License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
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Chapter 19

Determination of the bearing forces in the
Leitzachwerk pumped-storage power station

The Leitzachwerk is a pumped-storage power station where parts of three rivers are di-
verted into the upper basin, Lake Seeham, before it is used for power generation and
subsequently stored in the lower basins. Later, it will probably be pumped back into Lake
Seeham or released from the lower basins in the nearby river. Actually, there are two
power plants with two separate penstocks. Plant 1 was first built in 1913 and completely
reconstructed during the 1980s. In Plant 1, a single Francis pump turbine with vertical
shaft is installed. Plant 2, which we will analyse, was built in the 1960s and comprises
two ternary units. In ternary units, pump and turbine are separate from one another;
however, they share a common motor generator. In pump operation, the motor drives the
pump; in turbine mode, the generator converts the mechanical energy into electric power.
In order to supply the two units, the penstock is split-up by a Y-pipe, which is illustrated
in the left part of Figure 19.1. The two pipe strands are divided yet again to supply water
to the respective turbine or to receive the water from the pump. In Figure 19.1, the left
(upper) strands in the direction of flow lead to the turbine; the right (lower) strands lead
to or rather come from the pump.

Inclination of the system

The upper area of Figure 19.1 shows the section of the penstock system with the vertical
inclination of 5°20’. If we intend to determine the resulting forces for the three nodes at
the Y-pipes, we may apply the first simplification. With an angle of 5°20" with respect
to the horizontal, the cosine is almost one. We therefore look at the system as if it were
located on a horizontal plane.

Pressure

At a gross head of approximately 130m, the pressure in the penstock is about p =
p-g-130 =1.275 x 10°N/m?. In the design of bearing forces, it is recommended that cal-
culations not be made with excessive precision. The pressures may be far higher because
of regulating processes (see also Chapter 12). In our case, pressures up to approximately
20bar (that is, 1.962 x 10° N/m?) are to be expected.

© The Author(s) 2024
C. Rapp, Hydraulics in Civil Engineering,
https://doi.org/10.1007/978-3-031-54860-4_19
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CHAPTER 19. BEARING FORCES IN THE HPS LEITZACHWERK
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Figure 19.1: Penstock of the Leitzachwerk 2.

From the discharges at various operating conditions, the maximum momentum fluxes
result with the respective minimum pipe diameters:

|0perating mode| discharge |tightest cross—section| max. velocity | momentum flux
2 turbines |[Q=44m3/s| A= T” =12.57m? |vpax = 3.50m/s|p Qvinax = 1.54 x 10°N/m?
1 turbine [Q=22m’/s| A= 54 =4.91m? |vyax = 4.48m/s|pQvinax = 9.86 x 10*N/m?
1 pump Q=13m’/s| A= 8 =2.54m? |Vpax = 5.11m/s|pQvinax = 6.64 x 10*N/m?

It is obvious that the momentum fluxes are one order smaller than the pressure forces.
Therefore, they will be neglected for the design of the bearings in the following discussion.

Decomposition of the elements

Figure 19.2 shows in more detail how the flow forces are counteracted by the system.
The individual penstock elements are connected by gland packages (or stuffing boxes)
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which cannot transfer axial forces (identified by <+ in the drawing). The bearings are also
identified in the drawing (movable in the direction of the pipe Aor unmovable 4). It is
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Figure 19.2: Decomposition of the support elements

evident that the bearing of the Y-pipe of unit 1 counteracts the forces in the y-direction
and that the axial forces must be transferred in the x-direction to the fixed point at the

bend.



338 CHAPTER 19. BEARING FORCES IN THE HPS LEITZACHWERK
Big Y-pipe

At the fixed point, the discharge is divided into two branches that are both at an angle of
30°, clockwise and anticlockwise, relative to the original direction”*. We set up the balance
of forces:

2 2

4°r S
< Fy1 = piA;—2- prArcos30° = 1.962 x 106 e —2-1.962 x 10°- -cos30°

(19.1)
=2.466 x 10’ —2-9.631-cos30° = 2.466 x 10’ —1.668 x 10’ =7.974 x 10°N

Force balance at the Y-pipe of the right machine unit
The angle between the branch and the pump, relative to the x-axis, is 47°; the diameter
is specified as 1.80 m.

1.8%n

tF3=—pr -sin47° = —3.651 x 10°N (19.2)
The force in the y-direction is applied directly. However, the bearing may not counteract
forces in the x-direction. The horizontal force in the x-direction is transferred to the large
bend and its bearing.

Big bend

At the bend in the lower left of the figure, the deflection is 34°. From the upstream
pressure force calculated above, it follows proportionately for the x-direction 1.962 x 10°-
# -c0s34° = 7.984 x 10°N; for the y-direction, we obtain 1.962 x 10°- # -sin34° =
5.386 x 10°N.

2.5%n 2.5%1 1.8%x

-cos34° — p, -cos47°

4 Py (19.3)
=9.631 x 10°-c0s34° —9.631 x 10° —4.993 x 10° - cos47° = —5.052 x 10°N

—Fo2=p

We plotted F, against the x-direction to the left. Because of the negative sign, the
horizontal reaction force points in the positive x-direction to the right.

T Fyp = piA; -sin34° + p,A, -sin0° = 5.386 x 10° +0 = 5.386 x 10°N (19.4)

Therefore, the resultant force at the bend is:

J Frio = \/(5.386 x 109)% + (—5.052 x 106)* = 7.384 x 10°N (19.5)

A The main penstock is actually rotated by 4° relative to the global x-direction, which is perpen-
dicular to the axes of the machine sets.
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Force balance at the Y-pipe of the left machine unit

The branch to the pump is tilted at an angle of 47° with respect to the main pipe and
has a diameter of 1.80m; the bearing is movable and counteracts forces perpendicularly
to the main pipe only.

2

N Foormald = Pre— 2 -sin47° = 3.651 x 100N (19.6)

The axial force is absorbed at the right end of the pipe just upstream from the bend,
which supplies the water directly to the turbine; a journal bearing with a diameter of
d =3.75m is located there.
1.8°7 . 6
" Faxials = Pr—y— -cos47° =3.405 x 10°N (19.7)

Finally, the load acting on the journal bearing per circumferential metre is Ficaring =

6
340x10° — 2 89 x 10°N/m.

Vertical forces

The vertical forces consist of the dead loads of the pipes and the weight of the water,
pgV, therein.

This chapter is licensed under the terms of the Creative Commons Attribution 4.0 In-
ternational License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
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Chapter 20
Dimensioning of an interceptor sewer in Hamburg

Waltershof

We shall consider here a complex part of the sewage system in Hamburg®. The project
comprises the construction of a waste water sewer at the Altenwerder Damm in Waltershof
(see Figure 20.1). From both station 1 at 0.50 m.a.s.1. and station 2 at 0.80 m.a.s.1., water is
pumped into an interceptor sewer with a water level of 3.11 m.a.s.l. The hydraulic system
shown in Figure 20.2 was accessed from the planning data.

A hydrologic estimate resulted in maximum flows of Q1 = 0.70m?/s and Q, = 0.04m?/s for
the two pump stations (PS1 and PS2). In the calculations for sewage pipes, the kinematic
viscosity is usually set at v =1.31 x 107°m?/s (see DWA-A110 [12]); this corresponds to
a temperature of T = 10°C.

Section 1

The length of the pipe between pump station 1 and the junction of the two strands is
L; =1894.91m; in the present example, a steel pipe lined with alumina cement and with
an equivalent sand grain roughness of ks; = 3 x 107> m is to be installed®. The individual
minor (local) losses that occur at the inlet and due to pipeline curvatures amount to
Y K| = 1.463.

Section 2
The length of the pipe between pump station 2 and the junction is Ly, = 394.75m, wherein

PE, with an equivalent sand grain roughness of k» = 1 x 107> m, is to be employed in this
case. The minor (local) losses add up to YK, = 0.28.

A Thanks to Mrs. Dipl.-Ing. Iris Carstensen with HamburgWasser for providing the planning data.

B This material selection is purely fictitious. HamburgWasser uses PE pipes in accordance with the
state of the art (see strand 2). These are better suited for the sometimes highly acidic environment.
The alumina cement-lined steel pipe only serves to didactically process the influence of the different
roughness values.

© The Author(s) 2024
C. Rapp, Hydraulics in Civil Engineering,
https://doi.org/10.1007/978-3-031-54860-4_20
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Figure 20.1: Schematic diagram of an interceptor sewer at the Altenwerder Damm in Hamburg

‘Waltershof.
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Figure 20.2: Pipeline system at the Altenwerder Damm in Hamburg Waltershof.

Section 3

The length of the pipe between section 3 and the junction is Lz = 225.38m. The minor
(local) losses amount to Y K3 = 0.28. The use of an alumina cement-lined steel pipe is
specified here as well (k3 = 3 x 107>m); also, the diameter is to be the same as that of
strand 1 d3 =d; (as to the material selection, see strand 1).

Pump station 1

The characteristic of the identified pump in station 1 is generated from the set of points
in Table 20.1:

Table 20.1: Relationship between delivery head and discharge values in pump station 1.

[0 [m/s[[H [m]]

0 28.87
0.144 23.56
0.288 19.58
0.432 17.14
0.576 14.79
0.684 13.26
0.792 11.73
0.900 10.00
1.008 7.96
1.080 6.53

You may graph the relationship between delivery head and discharge and derive a function
by means of the least squares method. When approximating the table values via a third-
degree polynomial, the result for the delivery head, depending on the discharge, is:

Hpy = —21.094-Q° +42.311-0* —41.817- 0 +28.812 (20.1)

For redundancy reasons, for achieving maximum discharge and for improving energy ef-
ficiency, two pumps are connected in parallel. In the parallel configuration, the charac-
teristics, according to Figure 11.15 in Chapter 11.7.1, are such that the discharges are
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“added” while the delivery head remains constant. For two pumps connected in parallel,
the result from the discharges of Table 20.1, multiplied by 2, is:

Hp1 2parallel pumps = —2-637- Q% +10.578 - 0% —20.908 - Q +28.812 (20.2)

The manufacturer of a pump that is suitable for pump station 2 indicates the relationship
between discharge and delivery head in Table 20.2:

Table 20.2: Relationship between delivery head and discharge in pump station 2.

Q0 [m/s[[H [m]]

0 9.00
0.0436 | 6.867
0.055 0

Since only three points are given, it follows that with linear approximation, for discharges
less than 0.0436 m?/s:

Hpy = —48.944-0+9.00 for0 < Q < 0.0436m?/s (20.3)
And for discharges greater than 0.0436 m3/s, delivery head is:
Hpr = —601.31-Q+33.072 for0.0436 < Q < 0.055m’/s (20.4)

As in pump station 1, two pumps connected in parallel are also installed in pump station
2. Consequently, the result for the lower discharge range is

Hpa2parallel pumps = —24.472-0+9.00 for0 < Q <0.0872m?/s (20.5)
and for the greater one, it is:

Hp 2 parallel pumps = —300.66-Q +33.072  for0.0872 < 0 < 0.11m%/s (20.6)

~~~~~  EKQ(A29)
£.3.11m

desc':}ptive / @

Figure 20.3: Energy diagram for the sewage system in Hamburg.
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With the energy diagram in Figure 20.3, Equations 20.7 through 20.9 may be established
for the three pipe sections. For the sake of clarity, no units are indicated. The result for

strand 1 is: 5
Q1 <fDLl

0.50+H —

+Y K+ 1) = HGLjunct (20.7)
From pump station 2, it follows that for the second strand:

03 (fDLZ

0.80 + Hps(Q) — bl
2

+Y K+ 1> = HGLjunct (20.8)

From the junction to the interceptor sewer, we obtain:

(01+02)° ( fols
HGLi et — K. ) =3.11 20.9
Junct r§7‘[22g ds +Z k ( )

Ideally, the equations for the delivery heads are now solved for the required maximum
discharges and inserted into Equations 20.7 and 20.9. For strand 1, we obtain

Hp(Q) = —2.637- 0.70° +10.578 - 0.70%> —20.908 - 0.70 + 28.812 = 18.455 (20.10)
and for strand 2:
Hpy(Q) = —24.472-0.04+9.00 = 8.021 for0 < Q < 0.0872m%/s (20.11)

Equation 20.7 reads with the results from the throttle curve of the pump for Hp;(Q) =
18.455m from Equation 20.10 with Q1 = 0.70m?/s:

03 <fDL1

0.50+18.455 —
* rin?2g \ d

And with Q> = 0.040m?/s, Equation 20.8 converts to (see Equation 20.11):

03 (fDL2

0.80+8.021 —
* 1Br22g \ da

+Y K+ 1> = HGLjunct (20.13)
For a first approach, let’s start with a diameter of d; = 0.50m. It then follows that:

0.50 +18.455 —

0.70° ( fp - 1894.91

0.25%n22g 050 T L1463+ 1) = HGLjunct (20.14)
For the determination of fp, the Reynolds number is required:

vd 0.70-0.5
v 0252-m-131x10°6

Re = =136 x 10° (20.15)

Finally, it follows with the Prandtl-Colebrook algorithm for the smooth wall:

1 2.5
it —2log <Re\/fT;> — fp =0.011 (20.16)

Hence, Equation 20.14, which results from 20.7, becomes:
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0.50 +18.455 —

0.70% <0.011 -1894.91

0.254722¢g 0.50 +1.463 + 1) = HGLjuncet = —9.646  (20.17)

At this point, one may already see that the pipe that has been selected is too small. The
pressure height at the place of the junction is —9.646 m.a.s.l., which is lower than the final
water level of 3.11 m.a.s.l. We therefore try a DN600 pipe:

0.50+18.455 —

0.70> [ fp-1894.91
0.34722g 0.60

+1.463+ 1> = HGLjunet (20.18)

We will again be in the turbulent region. The pipe friction coeflicient is also determined
for the smooth wall as follows:

1 2.5
7= —2-log <Re\/fT>> — fp=0.011 (20.19)

With fp; =0.011, Equation 20.18 reads:

702 011-1894.91
0.50+ 18.455 — 0.70 (00 894.9

0.30*722¢ 060 T 1463+ 1) — HGLjunet = 7.333  (20.20)

It might work with this diameter. We may first try to see whether the energy dissipated
over the distance downstream from the junction is available. With d3 = d; and Q3 =
O1+0,= O.74m3/ s, we also obtain fp3 =0.011 as the pipe friction coefficient for strand
3.

7.333 —

(0.70+0.04)* (0.011 .225.38

0378 060 +0.28> =5.793 (20.21)

Thus, the discharge of Q = 0.70m3/s to the junction and Q = 0.74m?/s from the junction
to the interceptor sewer is possible.

Now we will deal with strand 2 and select a PE DN200 pipe (ks = 1 x 1075 m). The pipe
friction coefficient is to be determined by means of the equation for the smooth wall with
fp2=0.016:

0.016-394.75
0.20

0.042
0.80+8.021 — (

284 1) = HGLiypet = 6.1 20.22
0105 +0 8+> GLjunet = 6.106  (20.22)

In this way, the dimensioning seems to work. It is known that the required maximum
discharges may be pumped through the pipes to the interceptor sewer; the exact discharge
is not known. Those who want a more precise answer will have to adjust the discharges by
trying some more in such a manner that, on the one hand, all three pipes at the junction
exhibit the same pressure and, on the other hand, that the water level actually results
in the manhole at the end of strand 3. By establishing a system of linear equations and
checking the pump equation to be used (pump station 2 has two ranges of validity), the
result will be obtained. The system of linear equations reads:
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[ (Rfftyki+1)s 0 1'
&g )
! LisyRY) Ql 0.50 +HP172 parallel pumps
(3245 k5+1)8 ! _loso
0 2# 1| X Q2 - . +HP2,2 parallel pumps
Joals ohre HGLjunet 3.11
(TJFZKS)S (T"FZK%)S
- din’g B din’g ]

0.50 —2.637- 0% +10.578 - 0> —20.908 - 0 +28.812
= 0.80 —24.472-Q+9.00
3.11
(20.23)

For the solution of this system of equations, one may, for example, use the code shown in
Chapter A.7 to obtain:

Q1 =0.745m%/s (20.24)
Q> = 0.047m’/s (20.25)
03 =0.792m’/s (20.26)

This chapter is lcensed under the terms of the Creative Commons Attribution 4.0 In-
ternational License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
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Chapter 21

Optimisation of the operation level at Uppenbornwerk
1

The two Uppenborn power plants are situated near Moosburg, Germany, at the Mittlere
Isar Kanal (MIK). In addition to the upstream power stations, water is diverted from
the Amper River into the Isar River and further through the so-called Alter Werkkanal
(AWK) into the MIK (see Figure 21.1). The basin has no bearing on our task.

UP1

aqueduct

L=2275m basin

Isar

WWww.maps.google.com

Figure 21.1: Schematic water course of the Uppenborn plants. The plant Uppenbornwerk 2 is situ-
ated approximately 8 km downstream near Landshut and not shown in the sketch.

A design discharge of 130 m3/s flows through the MIK, while an additional 70 m3/s may be
supplied via the AWK. The maximum operation level at the hydropower plant Uppenborn
1 (UP1) is 412.47 m.a.s.l. The operation level at the Isar Weir (i. e. at the inlet structure
of the AWK) is also specified as 412.47m.a.s.1.

It is obvious that the water does not flow with a water level difference of 0.00 m. The power
equation (11.54) shows that it is desirable to divert as much water as possible through the

© The Author(s) 2024
C. Rapp, Hydraulics in Civil Engineering,
https://doi.org/10.1007/978-3-031-54860-4_21
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turbines at the greatest feasible gross head. Depending on the available discharge at the
Isar Weir, we establish a functional relationship for the optimal operation level at power
plant UP1. As an example, suppose we execute the method with a discharge in the MIK
of OMIK total = 200m?/s and a discharge in the AWK of Qawk = 70m?3/s for the operation
level hop, = 412.00m.a.s.1.A.

Furthermore, the following parameters of the trapezoidal channels are known from mea-

surements, plans and other investigations:

MIK |1 =0.02s/m3| J5 =6.25 x 1075 [b = 19m|[m = 1.5
AWK |n = 0.02s/m3 |Jg = 7.033 x 10~4|p = 12m|m = 1.5

The inlet structure is shown in Figure 21.2. It must be taken into consideration that the
former log raft passage has been sealed in the meantime (crossed-out in red).

Jsan == > _Grundniss M.=4: 200

Tsar-Weht

EjEL‘L =

m%@r"

e des Upperizarrik-oftwasie
Ao, 4 g

TEK?uv‘Pldﬂ YC/M

Umbaou des OW, Kanals
des alfen Upp,Werks

Sicherungionbeiten o Kanalsinlouf

Minghen,den Mal Ao

Gasuehsteliar- Panertizar-

F-94-29 386

Figure 21.2: Inlet structure of the AWK.

At the end of the AWK, there is an aqueduct that introduces a higher channel bed and a

constriction (see Figure 21.3). The following table lists the heights of the channel bed at
the characteristic locations.

A Because of the three variables hor, Omik and Qawk, we actually obtain one value for each
combination, i. e. a three-dimensional matrix. To not make the matter unnecessarily complicated,
we shall abandon the effort for the determination of all of the combinations; nevertheless, we will
look later at the result from the comprehensive calculation (see Figure 21.5).
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longitudinal 408.7
section [m.a.s.l.] 407,30

406.40§

top view e
L H NG B 7 215
______ I 40m T
12.0m 13.2m 4.0m 12.0m
______ L 40m L
S LN S 2
trapezoidal P rectangular P trapezoidal
Figure 21.3: Dimensions of the aqueduct
| UP1 | AWK-MIK [AWK upstream from aqueduct| Isar AWK |
[404.00 m.a.s.1.[404.10 m.a.s.1. | 406.40m.a.s.l. [408.00 m.a.s.1.|
Fundamentals

In order to discover the flow type, we calculate the normal conditions (normalConditions.m)
in the MIK for Onk = 200m3/ s; subcritical flow occurs.

[ [m®/s[|yw [m][vy [m/s]|Hy [m][Fry [-]]
[ 200 [6.527] 1.064 | 6.585] 0.154 |

We do the same for Qawk = 7Om3/ s. In this case, too, subcritical flow is in effect.

[ [m’/s][yw [m][vy [m/s]|Hy [m][Fry [-]|
[ 70 [2.329] 1.940 [2.521] 0.449 |

This means that we are in subcritical flow everywhere®. We therefore calculate the flow
depth at the inlet structure of the AWK, which is 1600 m away, for hor, = 412.00m.a.s.1.
at power station UP1 by means of the direct step method.

The section within the MIK

This can be done with 10 m sections by means of a computation routine (directStep.m);
otherwise, a computation for a single section could be made since the error is marginal
due to the low flow velocity. Beginning with a flow depth of yyp; = 412.00m.a.s.l. —
404.00m.a.s.l. = 8.0m at the power station, we obtain the flow depth at the inlet structure
of the AWK: 7.946 m. There, the water level is at 412.046 m.a.s.1.

B However, we will still have to check whether or not we reach the critical conditions on the
aqueduct.
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The aqueduct

Initially, we assume that the same water level is present at the end of the AWK in
which 70m?/s must flow in order to have 200m?/s in the MIK. From the flow depth of
7.946m, a flow area of 190m? in the AWK results, which leads to a velocity height of
approximately 7.0 mm. Since it is so small, we do not consider any proportionate loss at
this point. Thus, we obtain a specific energy of 7.953 m downstream from the aqueduct,
which corresponds to an energy height of 412.053 m.a.s.I. We see immediately that the
specific energy of the normal conditions upstream from the aqueduct will definitely be
insufficient (Hy +406.40m = 408.921 m.a.s.l. < 412.053m.a.s.1.). Backwater must occur!
Let’s check the critical conditions in the area of the sill upstream from the pillars with
b=13.2m: Hyj, =2.131 m. At the pillars, with b = 12.0m, we obtain: Hy;, = 2.271m.
Thus, an energy height of 408.70 4+ 2.131 = 410.831 m.a.s.l. is required on the front sill
of the aqueduct. At the pillars, the required energy height is 407.30m.a.s.l. +2.271m =
409.571m.a.s.l. Here, the conditions again are clear. Even with the lower discharges, the
critical conditions are not passed through because the downstream energy height, which
is defined by the optimal operation level of the power station, is the determining factor.
First, we estimate the flow velocity on the sill and at the pillars by solving the Bernoulli
equation in order to obtain the flow depth from H = 412.053m.a.s.l. — 408.70m.a.s.1.:

2
ysil = 3.214m; vgy = 1.650m/s; VE—;}I = 0.139m. At the pillars, it follows that with
Hpijlar =412.053m.a.s.1. —407.30m.a.s.1. and b = 12.0m, ypijjar =4.674m, v, = 1.248m/s

2

and Bt — 0,079m,

When comparing the velocity heights on the sill and downstream from the aqueduct,
the substantial difference is striking. We may assume that, except for the portion of
the velocity height downstream from the aqueduct, the energy that is required for the
acceleration of the water to the high velocity at the aqueduct dissipates; i. e. the difference
between the velocity heights on the sill and downstream from the aqueduct is to be
considered a loss. That’s how we do it.

Losses at the aqueduct

Consequently, on the aqueduct and upstream from it, Hyy, /ups aqueduct =412.053m.a.s.1. —

2
7.0mm + % must be determined. We may obtain the flow depth on the sill only by an
iterative approach because the losses are expressed as the difference between the velocity
2

heights. With vszil;’o =0.139m, we obtain ygj 0 = 3.358m thanks to the Bernoulli equation,

2 2
which again leads to Vs;§,1 = 0.127m. This becomes ygi1 = 3.345m and vsé“‘z =0.128m,
which may finally be confirmed by ygn» = 3.346m. With the height of the bottom, we
may determine the specific energy and thus the flow depth upstream from the aqueduct:
Hups aqueduct — 5.774m; Yups aqueduct = 5.757m.

Section to the Isar Weir

We have just determined the boundary conditions for the application of the direct step
method at the AWK. With the given values we obtain a water level of 412.237 m.a.s.l. at
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its beginning, downstream from the inlet structure. With an area of 77.77 m?, the velocity
head is 0.0413 m and the energy height 412.28 m.a.s.1.

Inlet structure

It is obvious that the water must be accelerated towards the AWK because the diversion
is perpendicular to the direction of flow of the Isar River. We assume that the water level
at the Isar Weir corresponds to the energy height and calculate the velocity height at the
smallest cross-section. At the sluice gates, y = 1.528m is the flow depth (obtained with
the Bernoulli equation for b =36.2m and H = 412.28 — 410.67 = 1.61m), which results
in a flow area of A = 55.31m?. Therefore, the water must be accelerated to 1.266m/s,
which corresponds to a velocity height of 0.082 m. The water level on the inlet sill sinks
to 412.28 —0.082 = 412.20m.a.s 1.

In effect this means that with an operation level of 412.00m at power station UP1, an
energy height of 412.237m.a.s.l. +4.13cm = 412.28 m.a.s.l. must exist upstream from the
Isar Weir so that an additional discharge of Qawk = 70m3/ s may feed into the MIK with
an upstream discharge of Oy = 13Om3/ s. Have a close look at the course of the water
level in Figure 21.4 in order to comprehend the conditions.

! 412.00!
17.95 8.001
I

1

' 1408.70

! R AR
I

I

406.40]
R 14

Figure 21.4: Energy diagram for the case described above.

Conclusions for multiple discharge and operation level combinations

As an example, when automating the process, which is simple with the available codes, one
obtains the flow depths at the Isar Weir when Qawk = 10...70 m3/s, Omik =70...200 m3/s
and a range of the operation levels of hor,aup1 =412.00...412.50m.a.s.1. The blue surface
in Figure 21.5 indicates the optimal operation level for the maximum power at UP1; for
all these conditions, the water level at the Isar Weir is 412.47 m.a.s.]. By means of this
graph, it is possible to optimise the operation of the power plant for various discharges
in the Mittlere Isar Kanal and in the Alter Werkkanal by adjusting the operation level at
power station UP1€.

C A small side note: The linear dependency on the gross head follows from the power formula
(Equation 11.54), which is why the optimal operation level, that depends on the discharge, is
maximized. However, it is obvious that the increase in discharge exceeds by far the increase in gross
head. We use as an example an operation level of hor,aup1 =412.47m.a.s.l. in the AWK at a possible
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Figure 21.5: Combinations of discharge and optimal operation levels resulting in a water level of
412.47 m.a.s.l. at the Isar Weir.
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discharge of Qawk = 70m3/s and of Onmik = 130m3/s in the MIK. Since the optimal operation levels
at the Isar Weir and at power station UP1 are identical, no water flows into the AWK and we
obtain Pyp; = p-g-130-13.0 as theoretically achievable power. In comparison, an operation level
of hoLaup1 ~412.15m.a.s.l. (see Figure 21.5) allows feeding an additional Qawk = 70m?/s into the
turbines of the power station. Nonetheless, the gross head is to be set here at only 12.68 m. The
power Pypi = p-g-200-12.68, however, is significantly greater.



Appendix A

A.1 Dipole of a potential flow

The dipole is formed by the superposition of source and sink of identical strength and
opposite sign at one point and is, in mathematical terms, a singularity. We take up the
idea of Schneider [53, S. 117] and successively shift a source, located at a distance ! to
the left of the sink, towards this sink (see also [23]). Since the elementary solutions may
be overlaid, the potential function may be transferred directly from Equation 4.13:

=11 ()c—l—l)2+y2—iln\/)cz—l—y2 (A1)
27 2

The next step is to reduce the distance [ between sink and source to zero as indicated on

the x-axis. Hence, we consider the limit of a function as [ approaches zero. We also use

Taylor’s theorem, which may be found, for example, in [8, p. 404]:

If a function f(x) is continuous in the interval [a, a+ h], and if it is differentiable through order
n within the interval, then the function may be expressed as a Taylor series expansion:

_ h df(a) K 3*f(a)
flath)=[(a )+F da 21 9a?
rt9n f(a) | W 9" f(a+6h)

(n=1)! da*! n! da"

(A.2)
+

0 < 6 < 1; h can be positive or negative.

One can easily see that the Taylor series expansion is tailored for our problem. In our
case, a =x and h =[. Thus, we may write:

®=1lim | -Lin\/(x+0)2+y2 - Lin/x2+y2
1-0 _27r 2

=lim <ln\/x +y? —i—Fa—ln X —i—yz—i—...)—zqﬂln\/xz—kyz (A.3)

=0
=lim ililn\/xz—i-y2 zililn\/xz—i-yz
-0 | 2 dx 2w dx

We terminated the Taylor series in Equation A.3 at the first derivative because the influ-
ence of higher derivations increasingly diminishes. The source and sink terms themselves

© The Author(s) 2024
C. Rapp, Hydraulics in Civil Engineering,
https://doi.org/10.1007/978-3-031-54860-4
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(5 <ln\/ x? +y2)) cancel each other out and only the term from the limit value analy-
sis remains. By the definition of the dipole strength m = ¢l, it follows for the potential

function: 5
m
d=——Iny/x2+y? A4
27 dx nVrTEY (A4)

When deriving the source and sink flow by means of Equation 4.12, we integrated the
expression ﬁ with respect to x and obtained In+/x% +y2. Conversely, the derivative of

this result with respect to x reverses the integration, yielding once again ﬁ Thus, the
potential function reads:

m x
=——= A5
27 x2 +y? (45)
We establish the following equation for the streamlines:
m .y
V=——— A.6
21 x* +y? (4.6)

We demonstrate via the formula indicated in [8, S.234] that the tangents of the streamlines
and of the potential lines of the dipole are perpendicular to each other at one point:

oF OF
E(X—x)-l—afy(Y—y):O (A7)

Therein, X and Y are the moving coordinates, while the tangent equation is formulated
for the point at (x,y). First, we write the tangent equation for the potential lines:

0P 0P o m x o m x

O o I U = g M e Y
_ﬂﬂ(x_ )+ —2xy (¥ —y) (49
TP U amegep

Since the expression on the right side corresponds to zero, we may significantly simplify
the equation with division by 7% 1

(x2+)’2)2:
4y (X —x) = 2xy (Y —y) (A.9)
Thereby, .
(¥ =)= 5 (X ) (4.10)
and finally, the gradient of the tangent is:
V(®(x,y)) = ‘2?2 (A.11)

We proceed identically with the stream function:
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0¥ 0¥ Jd m —y Jd m —y
0= (X))t (V=)= e (X —x) o2 (¥ —
8x( x)+8y( y) 8x27rx2+y2( x)+8y27rx2+y2( Y)
m 0—2x(—y m —x* 4y A12
S OO g Yy (A12)
2 (2 +)2) 27 (x2 +y?)
=2xy(X —x)+ (—x2 +y2) (Y —y)
For Y —y it follows that
2xy
(r=3) = 52 (K- (A.13)
and ultimately
2xy
V(¥xy) =5 — (A.14)

which corresponds exactly to the negative reciprocal value of the gradient of the potential
function at point (x,y). We therefore see that the streamlines and potential lines extend
perpendicularly to each other.

A.2 Shear stress balance at the differential element

We establish the shear stress balance (see Figure 5.4) on a two-dimensional element (see
Figure A.1) by means of an example. We may safely ignore inertia since Truckenbrodt [60]
shows that the moment of force depends on the angular acceleration of the length of our
minute element raised to the fifth power, while the moment of the shear stress depends
on the length raised only to the third power. To exemplify the symmetry of the stress
tensor [16], we sketch the shear stresses that are applied to the element in the y- (or x;-)
direction (see Figure A.1).

Tow + OTzq dz

0z 2
—>
ZA
Tz + 8522 (—d; )l dz - i TTZ'Z + Bgf de
dx
4_
Tz + 852; (_dzz)

Figure A.1: Shear stresses on a two-dimensional element.

We now calculate the moment about the centre, i. e. about the y-axis pointing into the

drawing plane. The lever arms are % and %, where the signs result from the “right-hand

rule” (see e. g. [15]).
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. 3731 dz dz 81’31 dz dz

M—{Ql*a@z]d’c“‘yﬁ[@*a@ T )| By
8113 dx dx 3713 dx dx (A.15)

‘Hﬂ3+(9mz]d1dyz+{f‘3+am 2 )| YT

= 731 dxdydz — 113 dXdde

The internal forces must not lead to a moment. To achieve shear stress balance, it is
necessary that 7i3 = 73;. Transferred to the spatial directions, this corresponds to 7;; = 7j;,

which is why we may also write a;’_’ = a;’( with Einstein’s sum convention, which is the
J J

usual notation.

A.3 Derivation of the friction coefficient fp

A.3.1 Reynolds averaging

In Chapter 6, what is known as Reynolds averaging was introduced for statistically steady
flows. A time-dependent quantity u(z) was divided into its time-averaged value (1) and
the fluctuation «’. Even if a flow field exhibits time-converged mean values, friction is gen-

erated by the conditions that exist at any given time. Therefore, an additional term, the
o,

so-called Reynolds stress tensor p(uéu’j} or rather its gradient p ((;4;]) must be included
J

when averaging the Navier—Stokes equation (see Equation A.16). The indices of the sec-
ondary diagonal elements may be interchanged (see Appendix A.2); hence, six additional
unknowns are present in what is termed the Reynolds-Averaged Navier—Stokes equation
(6.2).
AWy IWV) u'w')
(') IS S
ap'u'y V) a(w)
dx dy Jz (A'16)
oWy aw'V') aw'w')
ox dy dz

Let’s have a look on the channel with two parallel plates depicted in Figure A.2. u'w/

Figure A.2: /v, an eddy in the direction normal to the wall.

corresponds to an eddy that occurs in the direction normal to the wall, and (u'w') is
the time averaging of these fluctuations. Since these mean fluctuations multiplied by the
density possess the unit of stress, they are referred to as “Reynolds stresses”.

Re

77 = —p(u'w') (A.17)
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A.3.2 Prandtl’s mixing length

Joseph Boussinesq® assumed that the Reynolds stresses are linearly dependent on the

mean velocity gradient in the direction normal to the wall %Lz') He introduced the turbu-

lent viscosity vr [mz/ s] because the chaotic turbulences generate additional friction.

9u)
Re _
T, ¢ =—pvr 3z (A.18)
The turbulent viscosity vr, which is also referred to as eddy viscosity, may be determined
via Prandtl’s mixing length approach. Prandtl developed the concept that fluid parcels
vary in a turbulent flow with Fw’ within 4/, the mixing length, until they collide with
other fluid parcelsP.

Z, WA U(Z)
e+ ) = () +
VA
R Eulzr = bn)) = (u(21)) = 5 I

Figure A.3: Prandtl’s mixing length approach.

In a manner similar to that of Adams [1], we use Figure A.3 as a reminder in order

to correctly indicate the signs. On the coordinate z; — I, the mean velocity in the x-

direction is smaller by the velocity gradient %Z) times —[y, (opposite the positive z-

axis): (u(z; —Im)) = (u(z1)) — Im 85?. If a fluid parcel fluctuates by +w’ about I, to zy, it

transports fluid that is slower by —lm%? to z1, implying a deviation compared to the time-
averaged velocity (u(z1)) in z; by o' = —lm%?. We may summarise these considerations
as follows: 5
u ~ ilmﬂ (A.19)
dz

We have already stated above that —w’ shifts faster fluid to z; and +w’ shifts slower
fluid. In order to meet the continuity condition, |w/| has to adjust to the same order of
magnitude as |u'|. The order of magnitude of w' follows in Formula A.20:

d{u
w o~ Fly 8<z> (A.20)
Similarly, for the order of magnitude of u/'w':
9 (u) | 9(u)
1o _ 2
!~ | = = (A.21)

A Joseph Valentin Boussinesq, #1842, Saint-André-de-Sangonis, France, 11929, Paris, France
B Please refer to the thought example on page 72.
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This, along with Equation A.17, leads to the time-averaged velocity fluctuations (u'w'):

1
Re 12
TR =

9u)
dz

o (u)
2z

(A.22)

Via a comparison of the approximation A.22 with the Boussinesq assumption A.18, vy
can be written as:
9 (u)

0z

vr =12, (A.23)

A.3.3 Law of the wall

The distribution of the shear stress for a flow without pressure gradient along a flat
plate, as shown in Figure A.4, may be experimentally determined via the boundary layer
thickness 6 [51]. The boundary layer thickness is the extent of the region between the
wall and the point at which (u) ~0.99u. (i. e. where 99 % of the uninfluenced velocity is
to be found), as measured perpendicularly to the wall. The total stress 720" is the sum of

XZ
viscous stresses n‘;—’z and Reynolds stresses —p (u'w').

Taz A

T 1 6 2

Figure A.4: Shear stress distribution in the boundary layer according to Adams [1].

Figure A.4 shows that the viscous stresses are predominant in the immediate vicinity
of the wall; there, the velocity fluctuations play a minor role (region I). This region is
also referred to as the viscous sublayer of thickness 8,. With increasing wall distance,
the influence of viscosity decreases, and the Reynolds stresses dominate (region IT is also
referred to as the transition layer). In the outer region (region III, also known as the
logarithmic layer) the influence of the viscous stresses is negligible.

Before continuing, we define two quantities by which velocity and length are divided so
that these can be written in a dimensionless form. We introduce the shear stress velocity
ur [m/s] making use of the wall shear stress ty. By means of Equation 11.22; where
Ty = p%’uz, ur may also be written as:

_ jw_ [Ip
ur—\/j—\/;u (A.24)

The turbulent length scale [, is likewise defined via dimensional analysis:

=v /2 =Y (A.25)
TW Ur
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A.3.3.1 Regionl

In the region extremely close to the wall, the viscous stresses dominate and 72" = 7y =

11'98(—?. Region I is normally also referred to as a viscous sublayer. By integration with
respect to z, the mean velocity in the x-direction may be expressed as follows:

Tw Tw
u~—z+C=—z¢ A.26
(u) 0 0 (A.26)

Here, the constant of integration C disappears with u(z =0) = 0. When inserting the wall
shear stress from Equation A.24 into Formula A.26, the result is:

2 2

M’L' MT
~ oy — T A27
)~ ap = (4.27)
The wall distance may be expressed in dimensionless form via the turbulent length scale

Iy (see Formula A.25) as 7" = %, which, via Equation A.27 with u™ = %, leads to:
u+ = @ ~ ﬁz = Z+ (A28)
Ur 1%

Thus, a linear relationship between velocity and wall distance in wall units u™ ~ z* exists
in the viscous sublayer. This region in which the viscous stresses alone are dominant,
extends up to z+ < 5. We leave the viscous sublayer behind and focus on the description
of the outer region of what is called the boundary layer.

A.3.3.2 Region II and III

It is assumed here that T)Eft = ‘L‘Ee ~ Ty (refer again to Figure A.4). Viscosity plays only
a minor role and turbulent stresses dominate. Thereby, TX° ~ Ty (see Equation A.18) is
established as the Boussinesq assumption and inserted into the mixing length approach
(Equation A.22). T is consequently assumed to be identical with the wall shear stress tw

and to be evenly distributed over the cross-section®.

9 (u)

0z

I (u)
0z

Ty~ pl2, (A.29)

Now the von KérmanP constant x is introduced to indicate the linear dependency be-

tween the mixing length and the wall distance. Prandtl made this assumption, although
Nikuradse had demonstrated that it is applicable at the wall only [5, p. 171].

lm
K== A.30
z ( )

This constantx is inserted into Equation A.29, resulting in:

€ Bollrich [5, p. 171] notes that this assumption has been made quite randomly.
D Theodore von Kérmén, 1881, Budapest, Hungary, 11963, Aachen, Germany
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9 (u) | 9(u)
2.2
~~ A3l
W PKT 5| oz ( )
With the shear stress velocity u; and Equation A.24, it follows:

2w 22| 9(u) | I(u)

= ~ A.32
e 9z | oz (A-32)

With the reasonable assumption of a positive mean velocity gradient in a boundary layer

%’?, which means that the mean velocity (u) in the z-direction increases, we write:

0w d(u)  ug
Up & KZTZ hence, % (A.33)

In order to obtain (u(z)), we must integrate. With f%dz =1In|z|, where In is the natural
logarithm, it follows that:

d{u) Ug Ur Ug
= —=—tdz= [ —dz=—1 c=—1 Cc A.34
<M(Z)> / 0z ¢ / KZ ¢ K 1'1|Z| + K nz+ ( )
For the determination of the integration constant C, Equation A.34 with the boundary
condition u(z = zw) =0 is solved. zw is a small wall distance, and so this condition is still
met (see Figure A.5).

pipe axis

- TR i ahe

Figure A.5: Explanation of coordinates z and r, the radius R as well as the wall distance zy at which
the velocity becomes zero; i. e. u(z =zw) = 0, according to Bollrich [5].

C= —u—’;lnzw (A.35)
With this constant of integration C inserted into Equation A.34, we obtain:
Ug Ug ur . 2
=—Inz——1 =—In— A.36
(1(2) = iz —Fhnzy = i = (4.36)

Next, we introduce the radial coordinate r = R —z and thereby replace z with R—r in
Expression A.36. A.37 is also referred to as the von Kdarmén-Prandtl equation:

e R (A.37)
K w
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It is obvious that the maximum velocity (umax) occurs at the centre of the pipe, i. e. at

r=0:
R

- (A.38)

u
(thmax) = f In

We eliminate zy by means of a smart technique:

ur, R—r u; R Ur R—r zw ur . R—r
_ " :71 _71 7:i1 - —_ :*1 A.39
<M(r)> <I/tma > K n w K nZW K Il( w R > i R ( )

This leads to an expression for (u(r)):

u;, R—r
<“(”)>:<umaX>+;ln R

(A.40)

We proceed stepwise, following the same process as Bollrich [5]. Next, we want to deter-
mine the mean velocity in the pipe cross-section; therefore we must integrate (u(r)) with
respect to the cross-section and divide it by the area. In the following steps, the time-
and space-averaged velocity (&) in the direction of the pipe axis is expressed as u. The
Jacobian factor r should be borne in mind.

1 r2m (R 1 R
u=(0) = [ [Cutr)rdrds = o [omlu(r)rar
2 R t, (R—r 2 (R 2 Ru, (R—r
= %/0 <<umax)—|—b;ln (R)>rdr: ﬁ/o <umax>rdr—|—ﬁ/0 %ln (R)rdr

2 R 2u, (R R—r 2u; (R R—r
L (ze)rdr: () + 5 ) <R>’"dr

An attempt to solve the integral in Equation A.41 means virtually insurmountable prob-
lems for a non-mathematician. In a first step we prepare the integral to make it suitable

for integral tables:
/ln <RR_r>rdr = /rln <_r—RR> dr (A.42)

Herein the integration limits are to be omitted for the sake of clarity. We continue with

partial integration [@'I'dr= @I — [ @I"dr, where ' =r and I' = In(—"£) (see, for

(A.41)

I

example, [8, p. 446]). These become @ = 72 and I'" = #, respectively™.

2 _R }"2
o'r :qbr—/q>r’ ~Tm(-2 —/7 Ad

/ dr ar="n (- s (A.43)

After we got rid of the logarithm in the integral, we have “only” to solve the simple
integral.

r? 1 r?
—dr=— d A4
/2(r—R) " Z/r—R " ( )

E I' is derived via the chain rule (see e. g. [8, p. 396]):

d(n(=8)) _ (_ 1 >.d(_r—R):_ R ‘(_‘fr(r)+(fr(—R)> _ R(R) 1
dr % dr R r—R R r—R r—R
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With the substitution s = r— R, it follows that $ =1 and r =s+R (see e. g. [8, p. 446]).
Equation A.44 becomes:

1 2 1 [(s+R)? R
— == =0. ~ 412R
Z/r—Rdr 2/ . ds 05/s—|—s+ ds
1
:0.5/sds+0.5R2/fds+R/1ds (A.45)
S

0.5
= 76‘2 + 05R2 hlS +RS

To be quite honest, the goal will ultimately be reached only gradually. We resubstitute
s =r—R in Equation A.44:

./
2
Thereby, we return to Expression A.42:

/m <R;r>rdr= r;ln <—r;R) —/2(rriR)dr

P2 r—R 2 5
:Eln —R —0.25(r—R)*—0.5R°In(r—R)—R(r—R)

2 0.5
r R dr= 7s2 +0.5R?Ins+Rs =0.25(r—R)*+0.5R?In(r —R)+R(r—R) (A.46)
r—

(A.47)

We now place the entire expression inside square brackets and write the integration limits
0 and RY.

[’;m <’;R) R;ln(rR)O.ZS(rR)ZR(rR)Ij

- {Rz In (—R;R> —R;ln(R—R)—0.25(R—R)2—R(R—R)]

_ [02 In <_OR) —R;ln(O—R)—0.25(0—R)2—R(0—R)}

_ {Rz n (_R;R : R1R> ~0.25 (O)Z—R(O)] (A.48)

- [o - R;ln (~R)—0.25R* —R (R)]

= {Rzln (—;ﬂ - {—Rzln(—R) —0.25R +R2}

K 1 +R—21 (—R) +0.25R*> — R?
= n R 3 n .
R2 1 2 2 R2 2 2

F The mathematical rampage, dividing by zero, is spared only if we formally integrate to R —zw
(and not to R, see Figure A.5).
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It is unbelievable that nothing but —0.75R? remains after the nasty integration. We return
to Equation A.41 and set the von Kédrmén constant to kK = 0.4:

1.5 N ufr
0.4

2u
1 = (Umax) — TRTZ -0.75R% = (Umax) —

= (Umax) — 3.75 - uzg (A.49)

By inserting Equation A.24 (ur = uy/ %D) into the Expression A.40, the velocity distribu-
tion with k¥ = 0.4 becomes:

U(r) = (ttmax) + % . @.m (1 _ %) = (Umax) +1-0.884-\/fp-1n (1 - %) (A.50)

We also combine Equations A.24 and A.49:

= (ttmax) — 3.75 - 1tz = (imax) — 375 -1 %D — () — 13264/ T (A51)
For u and (umax), we obtain:
u= e alternatively: (Umax) = u (1 +1.326- \/fD> (A.52)
1+1.326- v/

The result of Equation A.52 inserted into A.50 yields

<umax> r
u(r) = <”max>+m'0'884.\/fil).ln (1_E) (A.53)

and furthermore:

u(r) 0.884-\/fp ,
) T4 1326 (1 - ﬁ) (A.54)

A.3.4 Smooth conditions

For smooth walls (in particular, see Figure 11.3), the wall distance zy, where u(zw) =0,

was experimentally determined to be zw = éb%; [5]%. We refer back to Equation A.38 and
insert into it Kk = 0.4 and the experimentally determined expression for the wall distance

_1lv.
w = Our”

R- R- 1 R-
(tmax) = = In ot = 2 (ln - ln> = 2.5u;- (ln - +1n9>
kK g-v 04 v 9 \

A.55
Reu (A.55)

R-
= u; (2.5-ln +2.5.2.197) = ug (2.5.111 v”T +5.5>

The constant 5.5 is explicitly used elsewhere without the detour via zw. When inserting
the expression given above for the maximum velocity (umax) into the equation for the
mean cross-sectional velocity A.49, we obtain:

v
urg”

G Malcherek [27, p. 159] indicates a value of zy = 53z
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R- R-
T (2.5 T +5.5> —3.75ur = ug (2.5 n— 1.75) (A.56)
From u; = uy/ %D, i.e. % = f%’ we furthermore obtain:
8 R-u;
— =2.5-In +1.75 A.57
V7 , (A.57)
We divide by v/8:
1 R'MT
——= =0.884-1n +0.619 (A.58)
VIp
By means of Equation A.24, we modify the argument of the logarithm:
Ruf D u Ur MD Uur MT fD u 1
—=——--—=—:—=Re—=Rey/— - —=——-Re-/ A.59
v 2w v T v o e TR g T s ROV (A.59)
Inserting A.59 into A.58 yields:
1 Re- \/fD 1
——==0.884-In————=+0.619=0.884-In ( Re - / 0.884-In —— +0.619
o "Se6 n(Re- /) + "566 (A.60)

—0.884In (Re~ \/fT)) —0.913

In the next step, the natural logarithm is replaced by the common logarithm. The relevant
. . _ In(x)
conversion may be found, for example, in [8, p. 10] as log(x) = =+ or, rearranged, as

= In(10)
In (x) =log (x)-In(10):

1
7 = 0:884:1n(10). log (Re~ \/fT)) —0.913 = 2.035 - log (Re~ \/JTD> —0.913
0.913

=2.035 (log (Re- Vo ) - 2.035) = 2.035 (log <Re- \/JTD) - 0.449) (A.61)

Re- /b Re-v/fp
=2.035log (100449) =2.035log (281

Bollrich [5, p. 177] notes that the numeric values differ slightly from those that were
determined experimentally due to the assumptions that were made (k = % and 7(r) =
Ty = const.). When inserting these values into Equation A.61, one obtains the well-known
law for the friction coefficient for hydraulically smooth conditions:

| Re-vVifp\ _ 2.5
N 2.0log (25> = —2.0log (Rew/jTD) (A.62)
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A.3.5 Rough conditions

In experiments for rough conditions, Nikuradse determined a wall distance zy = % by
adhering grains of sand onto smooth pipe walls, for which u(zy) = 0 applies. We insert
this expression for zy into Equation A.38:

u 30-R D
(Umax) = ?Tln = 2.5 u; <1n <k> +1n]5>

S S

D D
= u; (2.5-111 (k> +2.5-1n 15) = u; (2.5-1n <k> +6.77>

This maximum velocity is substituted into Equation A.49, which is u = (umax) — 3.75 - ux,

resulting in:
D D
u=ug (2.5 -In <k> +6.77 — 3.75) =ug (2.5 -In <k> + 3.02) (A.64)
Al S

We continue the calculation with %% = %D (see Equation A.24):

u [ 8 D
— =4/—=25In| — ) +3.02 A.65
2% fo <k3> ( )

At this point, we again divide by v/8 and introduce the common logarithm as in Equation
A.61:

(A.63)

1 2.5 D 3.02 D 1.07
——==—=-In(10)-log| — | + —==2.035-{log| — | + =——=
Vb V8 (19) g(’cs) V8 ( g(ks> 2035)

D J D
=12.035-log (k : 102‘.0‘?5> =12.035-log <3.36- k)

S s

(A.66)

The equation for the rough region is also adjusted on the basis of the constants that were
found empirically. We ultimately obtain:

D
——==2.0-log <3.7~ k) = —2.0-log (A.67)

)
VIp s 3.7-D

A.3.6 Transition region

The transition region between smooth and rough conditions, where influences of viscosity
and roughness are in effect, was proposed by Colebrook on the basis of measurements.
The above derived Expressions A.62 and A.67 result from the limit value analyses ks — 0
and Re — oo, respectively, of Equation A.68.

1 2.5 k,
= —2.0-log (Re\/f; + 3'7_D> (A.68)
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Oumeraci [33] specifies the validity range for Equation A.68 as 65 < Re% < 1300. Sigloch

[57, p. 139] sees the transition region at 25 < Re087 % < 350. The widely quoted validity
limit between transition region and rough behaviour is, according to Blasius (who was
Prandtl’s assistant), Re-+/fp - % =200 (see for example [5, p. 179]). We rely on Schlichting
[51, p. 573] and indicate the validity limit between hydraulically smooth conditions and the
transition region as kf% <5, which, via the turbulent length scale [, = 17\/7 (see Equation
A.25), corresponds to the thickness of the viscous sublayer of 8, =~ 5/, (see Equation A.28

with z+ < 5)H. From k, ~ SM—"T and using Expression A.24, the final result is ks &~ 5—Y—

w2
The introduction of the Reynolds number ¥ = £ results in k, ~ R;'\l/)@ = g{'g@%. From

this, the Inequality A.69 follows as the validity limit between smooth conditions and the
transition region:

Re fD% <5-V8=14.14 (A.69)

In Schlichting [51, p. 573], it is stated further that the validity limit between the transition
region and the rough conditions is at ks% < 70 which, in a manner similar to the above
approach, leads to Inequality A.70:

ks
Rey/fp < 70-v/8 ~ 198.0 ~ 200 (A.70)

It should be noted here that these considerations are of an academic nature. The equa-
tion for the transition region (A.68) is often used universally since the deviations from
the smooth and rough laws are marginal. The influence of assumptions concerning the
condition of the pipe wall, the laying technique or the like is far greater.

A.4 Calculation of the determinant of a matrix

The determinant of a matrix is evaluated by successively multiplying the elements of the
first row by their corresponding subdeterminants and adding the results of each such
operation. Thereby, the column and the line (the first line) of the element are omitted
and the matrix is reduced to the remaining elements. This has to be repeated until a
scalar remains. However, care must be taken with the signs of each multiplication. Mul-
tiplications by elements of the first row in uneven columns are added positively, whereas
multiplications by elements of the first row in even columns are added negatively. By the
way, in the case of a 2 x 2 matrix, the subdeterminant is a scalar.

ap a az
b b b1 b b1 b

det(A) = b1 b2 by = cj cz B Ci C§ Ci cz ATL

c1 ¢ c3 (A.71)

=aj (byes —b3cy) —ay (bics —bacy) + a3 (bica — bacy)

H For the determination of the thickness of the viscous sublayer, various equations can be found in
the reference literature.
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A.5 Derivation of the critical conditions for selected cross-sections

A.5.1 Trapezoid

The Bernoulli equation for a trapezoidal open channel with the bank slope m and area

A= (b+my)y reads: ) ,

0 v+ 0 ;
28[(b+my)y]

The derivative of y is first taken with respect to y, yielding one. It then follows “from the

outside to the inside” that (by—i—myz)_2 yields —2- (by—‘-myz)_3 (for the derivative inside

the bracket) and - (b+2my) (for the derivative of (by+my?).

2 2 _ |
dH_<y+[ 0 )1_1+Q 2(b+2my) 1 (AT3)

H_

=+ e = (A.72)

dy (b+my)yP2e ) & 28 (by+my?)?

The equation cannot be solved explicitly for the desired variable. We obtain an implicit
solution:

g _ b+ 2’/nyc,trapezoid
0 ; 3 (A.74)
(byc,trapezoid + myc,trapezoid)
We check the equation for a rectangular open channel with m = 0:
b+2-0-y. b 1
& T L - (A.75)
Q" (bye+0-33)"  (bye) Dy
Solving for y., we obtain the same expression as that of Equation 13.7:
2
3/ O
Ye = @ (A.76)
A.5.2 Triangle
For the special case of a trapezoid with b =0, i. e. for a triangle, it follows that
g 0+2-my 2my 2
Yl 23: 23: 24,5 (A77>
Q" (0-y+my)” (my?)”  my
and thus for y,,
Q2
Ye triangle = 02 (A78)

gm?
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A.5.3 Parabola

A parabola is generally described by:

y=ax? (A.79)

x= \/3 (A.80)

The area of the right-hand branch is obtained by integration with respect to y:

A= /\[dy / dy_%y—za (A.81)

Inserted as (2-A)* (for the two branches at the right- and left-hand side of the coordinate
origin) in the Bernoulli equation, the result is:

Solving for x yields:

Q2

H=y+
16 y3
9528

(A.82)

To find the minimum value of H, take its derivative with respect to y and set it equal to
Z€ro:

dH 2. (=3 27 aQ?
- = +Q16+g4):1f372%éo (A.83)
Y 9 QY y'8

Solving for y, which we again designate as y., we obtain:

127 aQ?
Ye,parabola = ¥ 372? (A84)

A.6 Wave theory

The description of water waves dates back to George Airy!. In the linear wave theory’
named after him, a frictionless, incompressible and irrotational flow of average depth is
assumed. Therein, the fluid particles move on elliptical paths about their centres, as shown
in Figure A.6, while the wave propagates at velocity c. The maximum wave height &nax
that is measured from the undisturbed water level z =0 is to be small relative to both the
wavelength Ayave and the depth of the water body & (3 éma" < 1 and é‘"a" < 1) in order to
be able to describe the problem linearly [25].

According to the Airy theory, the fluid particles oscillate about their centre positions; their
mean velocity is zero. To satisfy the continuity condition, they move towards the wave
crest and move away from the wave trough. The radius of movement of the particles at

T George Biddell Airy, 1801, Alnwick, England 11892, Greenwich, England

7 A more detailed derivation of the equations may be found in [25, p. 219 ff.] or in [28, p. 117]; at
this point, the relationships will be mentioned briefly and placed into the context of open channel
hydraulics.
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Figure A.6: Sketch of the wave movement and the elliptical particle paths.

the bottom is very small compared to the range at the water surface. By the way, Bollrich
[5] indicates that waves surge at a proportion h < 1.3 because of their translational
movement.

The above assumptions of a frictionless, incompressible and irrotational flow permit the
definition of a velocity potential (see Chapter 4):

0D 0P
— : - A.
“Tox VT e (A.85)
Thus, Laplace’s equation reads:
’?d I
—_— — A..
ox? + 27> 0 (A.86)

Due to the freedom of rotation and friction, we may use the Bernoulli equation (5.41).
With the local derivative that is integrated along the streamline [ % ds = aa—‘f, it reads:

oD 1,, ., p B
R G )+E+gz—f(t) (A.87)

We may derive the boundary conditions for Laplace’s equation (A.86) from this equation.
When generally setting up a cosine function with the wave number k = -2*— and the

ave

rotational frequency @ for the description of the water surface, the result is:

& (x,1) = Emax cos (kx — 1) (A.88)
Kundu and Cohen [25] indicate the solution for the associated velocity potential as follows:

B(x,2,1) = ém;:“’ - Cosii(fh' ((zi }3 M) gin (ko — o) (A.89)

Equations A.88 and A.89, with the boundary conditions of the velocity potential [25],
result in:

o = \/gktanh (kh) (A.90)
With the propagation velocity ¢ = %, Equation A.90 may be written as:

o= = [ (274) Ao
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Now there must be a case-by-case analysis because for small values of the argument of the
hyperbolic tangent function, the value of the function approximates the argument itself,
whereas when the argument of the function x approaches oo, the value of the function

approaches 1; i. e. lim tanh(x) = 1.
X—ro0

A.6.1 Deep water waves

T— =0.25, one obtains tanh (2-7-0.25) =0.917 ~ 1, and for z2— =0.4,

the result is tanh (2- 7-0.4) = 0.987 ~ 1. One may therefore confidently refer to “deep-water
waves” when the water depth is greater than approximately one-third of the wavelength.

For example, for

With the assumption that tanh( f”h ) ~ 1, it follows for the propagation velocity of

‘wave

_ |18 _ 8Awave
c—\/;—\/ o (A.92)

The propagation velocity of deep-water waves is dependent on the wavelength Ayave.

deep-water waves:

A.6.2 Shallow-water waves

On the other hand, for & < Awave, the hyperbolic tangent becomes tanh( 27h ) ~ 2Th

Afwave )Lwave :
With a ratio of kw};ve =0.1, the result is tanh (2- - 0.1) = 0.557, whereas % itself has the
value 0.628. If the water depth is 2—10 of the wavelength, then one obtains tanh (2-7-0.05) =
0.304, whereas 2 - -0.05 itself is approximately 0.314.

%) ~ %7 the propagation velocity of

By means of the limit value analysis for tanh (

shallow-water waves is obtained:

c= \/gg”;ve (Ai” h) = /3h (A.93)

The propagation velocity of shallow-water waves is dependent on the depth of the water
body h. This velocity plays a particularly important role, especially when focusing on the
Froude similarity, where it may be directly read from the dimensionless Navier—Stokes
equation (5.33).

A.6.3 Capillary waves

For capillary waves, the surface tension of the water is the determining force (per unit
meter). Although line forces are not considered in this book, the capillary waves shall be
mentioned briefly. When setting up the Bernoulli equation along the water surface with
the surface tension height % as an additional term (with surface curvature r), one arrives
at the description of the propagation velocity of a capillary wave:
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c_\/glwaveJr 210 (A.94)

2r PAwave

With wavelength Awave = 1.71 cm, the minimum propagation velocity of a capillary wave is
found to be cpin capillary = 0.231m/s. The influence of the surface tension relative to gravity
decreases considerably with increasing wavelength. According to Kallenrode [22, p. 166],
it is already negligibly small (less than 3 %) with a wavelength of Ayave = 10cm. When
projecting this ratio onto the propagation velocity of a disturbance with surface tension,
one obtains a propagation velocity of ccapillary = 0.401m/s; without surface tension, the
propagation velocity is ¢ =0.395m/s at this wavelength. This means that the capillary

effects play a minor role at water depths greater than h = % = 1.6cm or propagation
velocities above ¢ = 0.40m/s.
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A.7 Solution for the practical example of the Hamburg interceptor sewer

% Program for the solution of the set of equations of the pipeflow example 'Hamburg

o°
o°
o°

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

o0 d° oo
o0 d° oo
o0 d° oo

(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

o0 d° o o
o0 d° o o
o0 d° o o

% % % You should have received a copy of the GNU General Public License

% % % along with this program. If not, see <http://www.gnu.org/licenses/>
292990000000 000000000000000000000000000000000000000

SRR AR R A AR R R R A h R R A h R R A iR R Akl b b A kb b bk kR

% input

file="'dataHH.csv';

delimiter='=";

header=2;

dataInput (file,delimiter,header);

% input

% cross sections

if cs==
cs='circle'

csP1l=dl;

csP2=d2;

csP3=d3;

’

else

error('Valid for circular cross sections only.'")
end
% crosssections

03=0Q1+02; % [m3/s]

% INITIAL VALUE ONLY

Q3=1; % [m3/s] INITIAL VALUE ONLY

% INITIAL VALUE ONLY

k=0;

while abs(Q1-(Q3-Q2))>1:-2
03=01+02;
Hpl=-2>

0.578%Q142=-20.908%Q1+28.812; % throttle curve for 2 parallel

2%Q2+9; % throttle curve for 2 parallel pumps

elseif Q<.

Hp2=-
else

66%Q2+33.072; % throttle curve for 2 parallel pumps

error ('Pumps in pump station 2 are to small.')
end
fDl=pc(cs,csPl,csP1,Q1,ksl,T); %
fD2=pc(cs,csP2,csP2,02,ks2,T); % fD via subroutine pc
fD3=pc(cs,csP3,csP3,03,ks3,T); %

fD via subroutine pc

fD via subroutine pc
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end

a0

set of equations

= [(fD1*L1/dl+sumKl+1)/(d1*4*piro*g/8) ,0,1;

, (ED2*L2/d2+sumK2+1) / (d2*4*pirl*g/8) , 1 ;

1% (£D3*L3/d3+sumK3+1) / (d3*4*pirl*g/8) ,-1* (£D3*L3/d3+sumkK3+1) / (d3*4*pit*g/8),11;
set of equations

o

solution matrix
= [.54Hpl; . .8+Hp2;3.111;
solution matrix

o0 oo

a°

X=A\E; % solving of the set of equations
Ql=sqgrt (X(1)); % solving of the substitution
Q2=sgrt (X(2)); %

D1Kn=X(3) ;

solving of the substitution

fname=sprintf ('0l = $1.3f m3/s,\n02 = %21.3f m3/s,\n03 = %1.3f m3/s',01,02,03);

o

disp(fname) % display of the results

The program uses data from file dataHH. csv. It contains the following entries line-by-line:
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A.8 Results for the example of the unsteady pipe flow from page 202

Table A.1: Results for the example of the unsteady pipe flow from page 202.

i[=DaAdl  Je(,1) | Je(i,2) | Je(i3) v(i, 1) | v(i,2)  [v(i,3)
[s] (] [m/s]

1] 0.00 2.33x 1077 [ 233 x 1073 [2.33 x 1073]] 0.7054 0.7054  ]0.7054
21 2.39 NaN 2.33%x 1073 NaN NaN 0.7054 NaN
31 478 || 2.33x1073 NaN 2.33x 1073|| 0.7054 NaN 0.7053
41 717 NaN 2.33%x1073 NaN NaN 0.7053 NaN
5( 9.56 || 2.33x1073 NaN 2.33x 1073|| 0.7052 NaN 0.7052
61| 11.96 NaN 2.33%x 1073 NaN NaN 0.7051 NaN
71 1435 || 2.33x 1073 NaN 2.32x 1073|| 0.7050 NaN 0.7048
81|l 16.74 NaN 2.32x 1073 NaN NaN 0.7047 NaN
91 19.13 || 2.32x 1073 NaN 2.32x 1073|| 0.7044 NaN 0.7038
10|| 21.52 NaN 2.32x 1073 NaN NaN 0.7036 NaN
11|| 2391 || 2.31x1073 NaN 2.29 x 1073]| 0.7030 NaN 0.7001
12|| 26.30 NaN 2.29x 1073 NaN NaN 0.6997 NaN
13|| 28.69 || 2.27x 1073 NaN 1.81 x 1073|| 0.6970 NaN 0.6201
14|| 31.09 NaN 1.82x 1073 NaN NaN 0.6233 NaN
15|| 33.48 || 1.48x 1073 NaN 0.00 0.5602 NaN 0
16| 35.87 NaN —723%x107° NaN NaN —0.0377 | NaN
17| 38.26 ||—1.70x 1073 NaN 0.00 —0.6008 NaN 0
18| 40.65 NaN —1.39%x1073| NaN NaN —0.5434 | NaN
19|| 43.04 ||—-1.15x1073 NaN 0.00 —0.4931 NaN 0
20|| 45.43 NaN —7.44x 1075 NaN NaN —0.1207 | NaN
21|| 47.82 || 2.50x 10~* NaN 0.00 0.2265 NaN 0
22| 50.22 NaN 2.42x 1074 NaN NaN 0.2227 NaN
23|| 52.61 || 2.35x10°* NaN 0.00 0.2191 NaN 0
24| 55.00 NaN —251x10"% NaN NaN |—6.88 x 10~4| NaN
25| 57.39 ||—2.26 x 10~* NaN 0.00 —0.2150 NaN 0
26|| 59.78 NaN —2.19x10~%| NaN NaN —0.2116 | NaN
2711 62.17 ||-2.13x10~* NaN 0.00 —0.2085 NaN 0
28|| 64.56 NaN 1.95x 1078 NaN NaN | 5.33x107* | NaN
29| 66.95 || 2.05x 107 NaN 0.00 0.2045 NaN 0
30|| 69.34 NaN 2.00x 1074 NaN NaN 0.2016 NaN
31| 71.74 || 1.94x 1074 NaN 0.00 0.1988 NaN 0
32| 74.13 NaN —1.47x10"% NaN NaN |—4.04 x 1074| NaN
33| 76.52 ||—1.87x107* NaN 0.00 —0.1950 NaN 0
34| 78.91 NaN —1.82x 1074 NaN NaN —0.1925 | NaN
35|| 81.30 |[|—1.78x10~* NaN 0.00 —0.1900 NaN 0
36|| 83.69 NaN 1.07 x 1078 NaN NaN | 2.94x10~* | NaN
37| 86.08 || 1.71x10~* NaN 0.00 0.1864 NaN 0
38|| 88.47 NaN 1.67 x 104 NaN NaN 0.1841 NaN
39| 90.87 || 1.64x10~* NaN 0.00 0.1819 NaN 0
40( 93.26 NaN —7.32x107°| NaN NaN |—2.01 x 1074| NaN
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Table A.2: Results of the exercise example related to nonstationary pipe hydraulics.

Index iflr = (i—1)At||K*(i,j = 1)|KT(i,j =2)|KT (i, j =3)
[s] [m]
1 0 —395.26 | —388.28 | —381.29
2 2.39 NaN —388.28 NaN
3 4.78 —395.26 NaN —381.29
4 7.17 NaN —388.28 NaN
5 9.56 —395.25 NaN —381.30
6 11.96 NaN —388.27 NaN
7 14.35 —395.22 NaN —381.29
8 16.74 NaN —388.25 NaN
9 19.13 —395.16 NaN —381.29
10 21.52 NaN —388.21 NaN
11 23.91 —395.00 NaN —381.32
12 26.30 NaN —388.12 NaN
13 28.69 —394.36 NaN —382.71
14 31.09 NaN —388.89 NaN
15 33.48 —379.25 NaN —388.89
16 35.87 NaN —379.27 NaN
17 38.26 —240.22 NaN —379.27
18 40.65 NaN —244.39 NaN
19 43.04 —-252.35 NaN —244.39
20 45.43 NaN —252.57 NaN
21 47.82 —340.23 NaN —252.57
22 50.22 NaN —339.51 NaN
23 52.61 —339.33 NaN —339.51
24 55.00 NaN —339.33 NaN
25 57.39 —285.17 NaN —339.33
26 59.78 NaN —285.83 NaN
27 62.17 —285.97 NaN —285.83
28 64.56 NaN —285.97 NaN
29 66.95 —337.55 NaN —285.97
30 69.34 NaN —336.96 NaN
31 71.74 —336.85 NaN —336.96
32 74.13 NaN —336.85 NaN
33 76.52 —287.61 NaN —336.85
34 78.91 NaN —288.15 NaN
35 81.30 —288.23 NaN —288.15
36 83.69 NaN —288.23 NaN
37 86.08 —335.33 NaN —288.23
38 88.47 NaN —334.83 NaN
39 90.87 —334.78 NaN —334.83
40 93.26 NaN —334.78 NaN
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Table A.3: Results of the exercise example related to nonstationary pipe hydraulics.

Index illr = (i—1)At||[K~(i,j =1)|K~(i,j =2)|K (i, j =3)
[s] [m]
1 0 —228.74 | —221.75 | —214.76
2 2.39 NaN —221.75 NaN
3 4.78 —228.74 NaN —214.78
4 7.17 NaN —221.77 NaN
5 9.56 —228.75 NaN —214.82
6 11.96 NaN —221.80 NaN
7 14.35 —228.78 NaN —214.90
8 16.74 NaN —221.87 NaN
9 19.13 —228.84 NaN —215.11
10 21.52 NaN —222.06 NaN
11 23.91 —229.00 NaN —215.94
12 26.30 NaN —222.82 NaN
13 28.69 —229.64 NaN —234.85
14 31.09 NaN —240.32 NaN
15 33.48 —244.75 NaN —388.89
16 35.87 NaN —388.87 NaN
17 38.26 —383.78 NaN —379.27
18 40.65 NaN —375.10 NaN
19 43.04 —371.65 NaN —283.24
20 45.43 NaN —283.02 NaN
21 47.82 —283.77 NaN —283.24
22 50.22 NaN —283.97 NaN
23 52.61 —284.67 NaN —339.51
24 55.00 NaN —339.51 NaN
25 57.39 —338.83 NaN —339.33
26 59.78 NaN —338.67 NaN
27 62.17 —338.03 NaN —285.83
28 64.56 NaN —285.83 NaN
29 66.95 —286.45 NaN —285.97
30 69.34 NaN —286.56 NaN
31 71.74 —287.15 NaN —336.96
32 74.13 NaN —336.96 NaN
33 76.52 —336.39 NaN —336.85
34 78.91 NaN —336.31 NaN
35 81.30 —335.77 NaN —288.15
36 83.69 NaN —288.15 NaN
37 86.08 —288.67 NaN —288.23
38 88.47 NaN —288.73 NaN
39 90.87 —289.22 NaN —334.83
40 93.26 NaN —334.83 NaN
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Table A.4: Results of the exercise example related to nonstationary pipe hydraulics. The coloured

cells identify values that were limited to the the vapour pressure.

Index il[t = (i—1) At A hy(iyj=1)|hy(i, j =2)|hy(i, j = 3)
[s] [m?] [m]
1 0 7.07 x 1072 312 305.01 298.03
2 2.39 6.51x1072|| NaN 305.01 NaN
3 4.78 5.94 x 1072 312 NaN 298.04
4 7.17 538x1072|| NaN 305.02 NaN
5 9.56 4.81 x 1072 312 NaN 298.06
6 11.96 425%x1072|| NaN 305.03 NaN
7 14.35 3.69 x 1072 312 NaN 298.10
8 16.74 3.12x 1072|| NaN 305.06 NaN
9 19.13 2.56 x 1072 312 NaN 298.20
10 21.52 2.00x 1072|| NaN 305.13 NaN
11 23.91 1.43 x 1072 312 NaN 298.63
12 26.30 8.71 x 1073|| NaN 305.47 NaN
13 28.69 3.08x 1073 312 NaN 308.78
14 31.09 0 NaN 314.61 NaN
15 33.48 0 312 NaN 388.89
16 35.87 0 NaN 384.07 NaN
17 38.26 0 312 NaN 379.27
18 40.65 0 NaN 309.74 NaN
19 43.04 0 312 NaN 283.24
20 45.43 0 NaN 290.24 NaN
21 47.82 0 312 NaN 283.24
22 50.22 0 NaN 311.74 NaN
23 52.61 0 312 NaN 339.51
24 55.00 0 NaN 339.42 NaN
25 57.39 0 312 NaN 339.33
26 59.78 0 NaN 312.25 NaN
27 62.17 0 312 NaN 285.83
28 64.56 0 NaN 290.24 NaN
29 66.95 0 312 NaN 285.97
30 69.34 0 NaN 311.76 NaN
31 71.74 0 312 NaN 336.96
32 74.13 0 NaN 336.90 NaN
33 76.52 0 312 NaN 336.85
34 78.91 0 NaN 312.23 NaN
35 81.30 0 312 NaN 288.15
36 83.69 0 NaN 290.24 NaN
37 86.08 0 312 NaN 288.23
38 88.47 0 NaN 311.78 NaN
39 90.87 0 312 NaN 334.83
40 93.26 0 NaN 334.80 NaN
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