

ТОВ «ТЕХНІЧНИЙ УНІВЕРСИТЕТ
«МЕТІНВЕСТ ПОЛІТЕХНІКА»

ЕЛЕКТРОНІКА
ТА МІКРОПРОЦЕСОРНА ТЕХНІКА:

ПРОГРАМУВАННЯ
МІКРОКОНТРОЛЕРІВ AVR

Навчальний посібник

Одеса • 2025 • Олді+

УДК	 004.896(075.8)
	 Е50

Автори:
С. П. Сокол, О. О. Койфман, А. Б. Ісаєв, В. І. Мірошниченко

Рецензенти:
О. В. Бондар, начальник відділу автоматизації Управління проєктуванням

ТОВ «МЕТІНВЕСТ СІЧСТАЛЬ»;
О. В. Разживін, кандидат технічних наук, доцент, доцент кафедри

автоматизації, електро- та робототехнічних систем, ТОВ «Технічний університет
«Метінвест Політехніка»;

О. Є. Марков, доктор технічних наук, професор, завідувач кафедри
автоматизації виробничих процесів, Донбаська державна машинобудівна академія

Робота друкується за рішенням Вченої ради
ТОВ «Технічний університет «Метінвест Політехніка»

(протокол № 5 від 30.01.2025 р.)

Е50
Електроніка та мікропроцесорна техніка: програмування мікро-

контролерів AVR : навчальний посібник / С. П. Сокол, О. О. Койфман,
А. Б. Ісаєв, В. І. Мірошниченко ; ТОВ «Технічний університет «Метінвест
Політехніка». – Одеса : Олді+, 2025. – 428 с.

ISВN 978-966-289-960-3
У посібнику розглянуто загальні відомості про мікропроцесорні системи, архітектуру мікро-

контролерів сімейства AVR, їх цифрові порти вводу-виводу, системний скид, переривання,
а також робочі режими таймерів. Наведено загальну інформацію про асинхронно-синхронний
приймач-передавач USART, послідовні синхронні інтерфейси SPI та I2C, аналогові модулі, а також
наведено формули для розрахунку швидкості обміну даними та похибки передачі, приклади
налаштування мікроконтролерів сімейства AVR, програмування пам’яті за допомогою послідов-
ного інтерфейсу. Надано методичні поради та рекомендації щодо порядку виконання практичних
робіт з дисципліни «Електроніка та мікропроцесорна техніка» на прикладі мікроконтролерів AVR,
наведено приклади програм та варіанти завдань для самостійного виконання. Розглянуто вико-
ристання програми SimulIDE для програмування та симуляції роботи мікроконтролерів. У прак-
тичних роботах показано використання більшості можливостей мікроконтролерів AVR таких як:
цифрові порти вводу-виводу, переривання, таймери, послідовні цифрові інтерфейси, аналогові
модулі. Набуті навички можуть бути використані при програмуванні мікроконтролерів інших
моделей і виробників.

Посібник призначений для здобувачів вищої освіти всіх форм навчання, зокрема за спеціаль-
ністю G7 (174) «Автоматизація, комп’ютерно-інтегровані технології та робототехніка», та може
використовуватись інженерно-технічним персоналом при розробці та обслуговуванні автомати-
зованих систем керування.

УДК 004.896(075.8)

© С. П. Сокол, О. О. Койфман, А. Б. Ісаєв, В. І. Мірошниченко, 2025
ISВN 978-966-289-960-3  © ТОВ «Технічний університет «Метінвест Політехніка», 2025

ЗМІСТ___

ПЕРЕДМОВА	 8

1  ЗАГАЛЬНІ ВІДОМОСТІ
ПРО МІКРОПРОЦЕСОРНІ СИСТЕМИ	 10
1.1  Конструкція та принцип роботи мікроконтролерів	 10
1.2  Архітектура процесорів	 15
1.3  Типи пам’яті мікроконтролерів	 21
Контрольні запитання до теми 1	 26
Використана література	 27
2  АРХІТЕКТУРА МІКРОКОНТРОЛЕРІВ
СІМЕЙСТВА AVR	 28
2.1  Основні характеристики мікроконтролерів AVR

на прикладі МК ATMega8	 28
2.2  Коротка характеристика архітектури	 32
2.3  Регістровий файл	 36
2.4  Арифметико-логічний пристрій (АЛУ)	 37
2.5  Доступ до пам’яті та виконання інструкцій	 37
2.6  Пам’ять вводу-виводу	 38
2.7  EEPROM	 40
2.8  Порти вводу-виводу	 41
2.9  Таймер	 42
2.10  Система переривань	 43
2.11  Вбудований сторожовий таймер (Watchdog)	 46
2.12  Режими роботи з низьким споживанням енергії	 47
Контрольні запитання до теми 2	 48
Використана література	 49
3  ЦИФРОВІ ПОРТИ ВВОДУ-ВИВОДУ
МІКРОКОНТРОЛЕРІВ СІМЕЙСТВА AVR	 51
3.1  Конфігурація виводів	 51
3.2  Читання стану виводу	 55

4 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

3.3  Альтернативні функції портів вводу-виводу	 58
3.4  Опис регістрів вводу-виводу	 65
3.5  Бітові операції	 66
Контрольні запитання до теми 3	 72
Використана література	 73
4  СИСТЕМНИЙ СКИД, ПЕРЕРИВАННЯ ТА РОБОЧІ
РЕЖИМИ МІКРОКОНТРОЛЕРІВ СІМЕЙСТВА AVR	 74
4.1  Система тактування	 74
4.2  Режими роботи мікроконтролера	 77
4.3  Системний скид	 82
4.4  Сторожовий таймер	 84
4.5  Переривання	 87
Контрольні запитання до теми 4	 94
Використана література	 95
5  ТАЙМЕРИ МІКРОКОНТРОЛЕРІВ
СІМЕЙСТВА AVR	 96
5.1  8-бітний таймер-лічильник 0 мікроконтролера

ATMega8	 96
5.2  16-бітний таймер-лічильник 1 мікроконтролера

ATMega8	 103
Контрольні запитання до теми 5	 133
Використана література	 134
6  АСИНХРОННО-СИНХРОННИЙ ПРИЙМАЧ-
ПЕРЕДАВАЧ USART	 135
6.1  Загальні відомості про інтерфейс UART	 135
6.2  Апаратна частина UART мікроконтролерів AVR	 139
6.3  Регістри вводу-виводу модуля USART	 143
6.4  Приклади налаштування швидкості передачі даних	 150
Контрольні запитання до теми 6	 152
Використана література	 153
7  ПОСЛІДОВНІ СИНХРОННІ ІНТЕРФЕЙСИ
SPI ТА I2C	 154
7.1  Загальні відомості про інтерфейс SPI	 154
7.2  Регістри вводу-виводу модуля SPI	 159

5Зміст

7.3  Загальні відомості про інтерфейс I2C	 164
7.4  Модуль TWI мікроконтролерів AVR	 170
7.5  Регістри вводу-виводу модуля TWI	 175
Контрольні запитання до теми 7	 202
Використана література	 203
8  АНАЛОГОВІ МОДУЛІ МІКРОКОНТРОЛЕРІВ
СІМЕЙСТВА AVR	 204
8.1  Аналоговий компаратор	 204
8.2  Загальні відомості про АЦП	 208
8.3  Модуль АЦП мікроконтролерів AVR	 211
Контрольні запитання до теми 8	 226
Використана література	 227
9  ПРОГРАМУВАННЯ МІКРОКОНТРОЛЕРІВ
СІМЕЙСТВА AVR	 228
9.1  Пам’ять мікроконтролерів AVR	 228
9.2  Самопрограмування пам’яті	 236
9.3  Біти фьюзів та блокування пам’яті	 252
9.4  Програмування пам’яті за допомогою

послідовного інтерфейсу	 254
Контрольні запитання до теми 9	 258
Використана література	 259
10  ПРАКТИЧНА РОБОТА № 1
«СИМУЛЯЦІЯ СХЕМ З МІКРОКОНТРОЛЕРАМИ
З ВИКОРИСТАННЯМ ПРОГРАМИ SIMULIDE»	 260
10.1  Завдання	 260
10.2  Теоретичні дані	 261

10.2.1 Призначення програми SimulIDE	 261
10.2.2  Встановлення необхідних програм та засобів	 262
10.2.3 Подання на екрані та основні елементи керування	 265
10.2.4 Основні прийоми створення та коригування схеми	 268
10.2.5 Написання програмного коду	 276
10.2.6 Компіляція файлу прошивки та запуск симуляції	 280

10.3  Завдання до практичної роботи	 284
Питання для самоперевірки	 285
Перелік рекомендованих джерел	 285

6 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

11  ПРАКТИЧНА РОБОТА № 2
«ПРОГРАМУВАННЯ ЦИФРОВИХ ПОРТІВ
ВВОДУ-ВИВОДУ МІКРОКОНТРОЛЕРА AVR»	 286
11.1  Завдання	 286
11.2  Теоретичні дані	 287

11.2.1  Робота з портами вводу-виводу
мікроконтролерів AVR	 287
11.2.2 Бітові операції на мові С	 289
11.2.3 Бітові операції	 290
11.2.4 Очищення та встановлення бітів	 292
11.2.5 Макрос керування значенням біту _BV()	 293
11.2.6 Перевірка значення біту	 294
11.2.7 Приклад програми	 295
11.2.8 Принципова електрична схема	 296
11.2.9 Програмний код	 297

11.3 Завдання до практичної роботи	 301
Питання для самоперевірки	 304
Перелік рекомендованих джерел	 304
12  ПРАКТИЧНА РОБОТА № 3
«ПРОГРАМУВАННЯ ТАЙМЕРІВ
МІКРОКОНТРОЛЕРА AVR»	 306
12.1 Завдання	 306
12.2 Теоретичні дані	 306

12.2.1 Переривання	 306
12.2.2 8-бітний таймер-лічильник 0
мікроконтролера ATMega8	 313

12.3 Приклад програми	 346
12.3.1 Принципова електрична схема	 346
12.3.2 Програмний код	 347

12.4 Завдання до практичної роботи	 355
Питання для самоперевірки	 358
Перелік рекомендованих джерел	 359

7Зміст

13  ПРАКТИЧНА РОБОТА № 4
«ПРОГРАМУВАННЯ ЦИФРОВИХ ІНТЕРФЕЙСІВ
МІКРОКОНТРОЛЕРА AVR»	 360
13.1 Завдання	 360
13.2 Теоретичні дані	 361

13.2.1 Загальні відомості про інтерфейс UART	 361
13.2.2 Апаратна частина UART мікроконтролерів AVR	 363
13.2.3 Регістри вводу-виводу модуля USART	 367
13.2.4 Приклади налаштування швидкості передачі даних	 374

13.3 Приклад програми	 377
13.3.1 Принципова електрична схема	 377
13.3.2 Програмний код	 381
13.3.3 Симуляція роботи програми	 389

13.4 Завдання до практичної роботи	 392
Питання для самоперевірки	 395
Перелік рекомендованих джерел	 395
14  ПРАКТИЧНА РОБОТА № 5
«ПРОГРАМУВАННЯ АНАЛОГОВИХ МОДУЛІВ
МІКРОКОНТРОЛЕРА AVR»	 397
14.1 Завдання	 397
14.2 Теоретичні дані	 398

14.2.1 Аналоговий компаратор	 398
14.2.2 Модуль АЦП мікроконтролерів AVR	 402

14.3 Приклад програми з використанням аналогового
компаратора та аналого-цифрового перетворювача	 414

14.4 Принципова електрична схема	 415
14.4.1 Програмний код	 417
14.4.2 Симуляція роботи програми	 422

14.5 Завдання до практичної роботи	 424
Питання для самоперевірки	 427
Перелік рекомендованих джерел	 427

ПЕРЕДМОВА_____________________________________

Електроніка та мікропроцесорна техніка – фундаментальна
навчальна дисципліна, яка забезпечить наявність необхідних знань
для вирішення практичних задач у процесі інженерної діяльності,
яка пов’язана з розробкою принципових електричних схем різно-
манітних приладів та систем, а також програмного забезпечення
для мікроконтролерів. Посібник призначений для набуття студен-
тами знань та вмінь щодо конструювання та принципів дії сучас-
них електронних компонентів, базових схем аналогової та цифро-
вої електроніки, основ булевої алгебри та комбінаторної логіки,
сучасних підходів до аналізу і синтезу електронних пристроїв,
програмування мікроконтролерів з використанням мов високого
рівня. Особливістю посібника є акцент на саме практичному вико-
ристанні сучасних програмних засобів створення та моделювання
електронних схем, проте будуть надані й необхідні теоретичні
знання, що дозволять самостійно конструювати різноманітні елект-
ронні пристрої, синтезувати та розробляти системи автоматичного
управління. Отримані знання будуть корисними для проектування
систем автоматизації як побутового, так і промислового рівня.

Основні результати навчання, які передбачаються:
−	здатність застосовувати знання електроніки і мікропро-

цесорної техніки, в обсязі, необхідному для розуміння про-
цесів в системах автоматизації та комп’ютерно-інтегрованих
технологіях;

−	здатність обґрунтовувати вибір технічної структури мікро-
процесорних систем;

−	спроможність за допомогою сучасних інформаційних тех-
нологій до самостійного пошуку, аналізу та вибору необхідної
інформації для оптимального розв’язання інженерних завдань,
програмувати та використовувати прикладні та спеціалізо-
вані комп’ютерно-інтегровані середовища для вирішення задач
автоматизації;

9Передмова

−	спроможність застосовувати сучасні інформаційні техноло-
гії для розробки електричних схем та програмування мікроконт-
ролерів з використанням мов високого рівня.

В посібнику розглянуто загальні відомості про мікропроце-
сорні системи, архітектуру мікроконтролерів сімейства AVR,
їхні цифрові порти вводу-виводу, системний скид, переривання,
робочі режимів таймерів. Надано загальну інформацію про асин-
хронно-синхронний приймач-передавач USART, послідовні син-
хронні інтерфейси SPI та I2C, аналогові модулі, а також формули
для розрахунку швидкості обміну даними та похибки передачі,
приклади налаштування мікроконтролерів сімейства AVR, про-
грамування пам’яті за допомогою послідовного інтерфейсу.

Метою виконання практичних робіт з дисципліни «Електроніка
та мікропроцесорна техніка» є закріплення здобувачами знань
щодо розробки принципових електричних схем різноманітних
приладів та систем та програмного забезпечення для мікроконт-
ролерів. В результаті виконання практичних робіт передбачає-
ться набуття здобувачами навичок у конструюванні схем цифро-
вої електроніки на базі мікроконтролерів, використанні булевої
алгебри та комбінаторної логіки, а також програмування мікро-
контролерів мовами високого рівня.

Практичні роботи здобувачами виконуються за допомогою
обчислювальної техніки в середовищі SimulIDE. Результатом
виконання практичної роботи є оформлений за вимогами та зда-
ний звіт.

1___
ЗАГАЛЬНІ ВІДОМОСТІ

ПРО МІКРОПРОЦЕСОРНІ СИСТЕМИ

Метою вивчення теми є ознайомлення з мікроконтролерами,
їх типами пам’яті та архітектурою процесорів.

Завдання вивчення теми збігаються з переліком питань для
розгляду, що наведений нижче.

Перелік питань до розділу:
1.1.	 Конструкція та принцип роботи мікроконтролерів.
1.2.	 Архітектура процесорів.
1.3.	 Типи пам’яті мікроконтролерів.

Мікроконтролер – це компактна інтегральна схема, призначена
для керування певною операцією у вбудованій системі. Типовий
мікроконтролер включає в себе процесор, пам’ять і периферійні
пристрої вводу-виводу (I/O) на одній мікросхемі.

Мікроконтролери, які іноді називають вбудованим контроле-
ром або просто мікроконтролером (MCU), використовуються серед
інших пристроїв у системах керування автомобільними двигунами,
роботах, офісних машинах, медичних пристроях, мобільних радіо-
станціях, торгових автоматах і побутовій техніці. Це прості мініа-
тюрні ПК, призначені для керування невеликими функціями біль-
шого компонента без складної зовнішньої операційної системи.

1.1 Конструкція та принцип роботи мікроконтролерів

Мікроконтролер вбудовано в систему для виконання однієї функ-
ції в пристрої. Він використовує свій центральний процесор для
інтерпретації даних, які він отримує від периферійних пристроїв
введення-виведення. Інформація, яку отримує мікроконтролер,

111	 Загальні відомості про мікропроцесорні системи

тимчасово зберігається в його пам’яті даних, де процесор отримує
до неї доступ і використовує інструкції, що зберігаються в пам’яті
програм, щоб розшифрувати та застосувати вхідні дані. Потім він
використовує свої периферійні пристрої вводу-виводу для зв’язку
та виконання відповідних дій.

Мікроконтролери використовуються в ряді систем і пристроїв.
Пристрої часто використовують кілька мікроконтролерів, які пра-
цюють разом для виконання відповідних завдань.

Наприклад, автомобіль має багато мікроконтролерів, які керують
різними окремими системами, такими як антиблокувальна система
гальм, контроль тяги, упорскування палива та керування підвіс-
кою. Кожен мікроконтролер спілкується з іншими, щоб повідомити
їм про правильні дії. Деякі можуть спілкуватися з більш складним
центральним комп’ютером у автомобілі, а інші можуть спілкуватися
лише з іншими мікроконтролерами. Вони надсилають і отримують
дані за допомогою своїх периферійних пристроїв вводу-виводу
та обробляють ці дані для виконання призначених завдань.

Основними елементами, з яких складається мікроконтролер,
є центральний процесор (CPU, ЦП), пам’ять і периферійні пристрої
вводу-виводу.

ЦП. Також відомий як процесор. Центральний процесор
є мозком пристрою. Він обробляє та відповідає на різні інструк-
ції, які керують функціями мікроконтролера. Це передбачає вико-
нання основних арифметичних, логічних операцій і операцій
вводу-виводу. Він також виконує операції передачі даних, які пере-
дають команди іншим компонентам у більшій вбудованій системі.

Пам’ять. Пам’ять мікроконтролера зберігає дані, які отримує
процесор і використовує для відповіді на інструкції, на які він
запрограмований. Мікроконтролер має два основних типи пам’яті:

1.	Програмна пам’ять. Вона зберігає довготривалу інформацію
про інструкції, які виконує ЦП. Пам’ять програм є енергонезалеж-
ною пам’яттю, тобто вона зберігає інформацію протягом тривалого
часу без потреби в джерелі живлення.

2.	Пам’ять даних. Це тимчасове сховище даних використо-
вується під час виконання інструкцій. Пам’ять даних є енерго-
незалежною, тобто дані, які в ній зберігаються, є тимчасовими

12 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

та зберігаються, лише якщо пристрій підключено до джерела
живлення.

Периферійні пристрої вводу-виводу. Пристрої вводу-виводу
є для процесора інтерфейсом із зовнішнім світом. Вхідні порти
отримують інформацію і передають її процесору у вигляді двійко-
вих даних. Процесор отримує ці дані та надсилає необхідні інструк-
ції до пристроїв виведення, які виконують зовнішні завдання щодо
мікроконтролера.

Інші елементи. Хоча процесор, пам’ять і периферійні при-
строї вводу-виводу є визначальними елементами мікропроцесора,
є й інші елементи, які часто включають в мікроконтролери. Термін
«периферійний пристрій вводу-виводу» означає допоміжний ком-
понент, який взаємодіє з пам’яттю та процесором. Існує багато
допоміжних компонентів, які можна віднести до периферійних
пристроїв. Наявність певного прояву периферійного пристрою вве-
дення-виведення є елементарним для мікропроцесора, оскільки
це механізм, за допомогою якого функціонує процесор.

Інші допоміжні елементи мікроконтролера включають наступне:
–	 Аналого-цифровий перетворювач. АЦП – це схема, яка

перетворює аналогові сигнали в цифрові. Це дозволяє процесору
всередині мікроконтролера взаємодіяти з зовнішніми аналоговими
пристроями, такими як датчики.

–	 Цифро-аналоговий перетворювач. ЦАП виконує зворотну
функцію АЦП, дозволяючи процесору мікроконтролера передавати
свої вихідні сигнали зовнішнім аналоговим компонентам.

–	 Системна шина. Системна шина – це сполучний провід, який
з’єднує всі компоненти мікроконтролера.

–	 Послідовний порт. Послідовний порт є одним із прикладів
порту вводу-виводу, який дозволяє мікроконтролеру підключатися
до зовнішніх компонентів. Він має подібну функцію до USB або
паралельного порту, але відрізняється способом обміну бітами.

Особливості мікроконтролерів. Процесори мікроконтро-
лерів відрізняються залежно від застосування. Варіанти варію-
ються від простих 4-розрядних, 8- або 16-розрядних процесорів
до складніших 32- або 64-розрядних процесорів. Мікроконтролери
можуть використовувати енергозалежну пам’ять, таку як RAM,

131	 Загальні відомості про мікропроцесорні системи

і типи енергонезалежної пам’яті, включаючи флеш-пам’ять, про-
грамовану постійну пам’ять, що стирається, і програмовану ПЗУ,
що електрично стирається.

Як правило, мікроконтролери можна використовувати без додат-
кових обчислювальних компонентів. Вони розроблені з достатньою
кількістю вбудованої пам’яті, а також пропонують контакти для
загальних операцій вводу-виводу, тому вони можуть безпосередньо
взаємодіяти з датчиками та іншими компонентами.

Архітектура мікроконтролера базується на архітектурі
Гарвардського університету або архітектурі фон Неймана. Вони про-
понують різні методи обміну даними між процесором і пам’яттю.
У гарвардській архітектурі шина даних і інструкції є роздільними,
що забезпечує одночасну передачу. В архітектурі фон Неймана
одна шина використовується як для даних, так і для інструкцій.

Процесори мікроконтролерів засновані на комп’ютері зі склад-
ним набором команд (CISC) або комп’ютері зі скороченим набо-
ром команд (RISC). CISC зазвичай має близько 80 інструкцій, тоді
як RISC має близько 30. CISC також має більше режимів адресації,
від 12 до 24 у порівнянні з RISC від трьох до п’яти.

Приклади моделей мікроконтролерів:
–	 MCS-51. Intel розробила цей тип однокристального мікро-

контролера в 1980 році. Його також називають мікроконтролером
8051. Він використовував CISC і архітектуру Гарвардського уні-
верситету та мав 8-, 16- та 32-розрядні розміри даних. Intel припи-
нила виробництво MCS-51 на початку 2000-х, хоча інші виробники
мікросхем пропонують його вдосконалені версії.

–	 AVR. Компанія Atmel розробила цей 8-розрядний одно-
кристальний мікроконтролер RISC у 1996 році, використовуючи
модифіковану гарвардську архітектуру. Це сімейство мікроконт-
ролерів було одним із перших, хто використовував флеш-пам’ять
комп’ютера для зберігання програм. Microchip Technology при-
дбала Atmel у 2016 році та продовжує виробляти мікроконтролери
AVR.

–	 Програмований інтелектуальний комп’ютер (РІС). Компанія
General Instrument розробила мікроконтролер PIC у 1976 році під назвою
Контролер програмованого інтерфейсу. Це сімейство мікроконтролерів

14 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

можна запрограмувати для виконання різних завдань, таких як керу-
вання електричними процесами в будинках, транспортних засобах
і медичних установах.

–	 ARM. Мікроконтролери Arm також відомі як мікроконтро-
лери Arm Cortex-M. Ці легкі мікроконтролери використовуються
в мобільних електронних пристроях, а також у виробничих уста-
новках. Вони розроблені таким чином, щоб бути енергоефектив-
ними та придатними для ряду вбудованих систем. Ці мікроконт-
ролери є частиною сімейства процесорів Arm, розроблених Acorn
Computers на початку 1980-х років.

Застосування мікроконтролерів. Мікроконтролери вико-
ристовуються в багатьох галузях промисловості, зокрема вдома
та на підприємствах, автоматизації будівель, виробництві, робо-
тотехніці, автомобільній промисловості, освітленні, інтелекту-
альній енергетиці, промисловій автоматизації, зв’язку та додатках
Інтернету речей у бізнес-налаштуваннях. Основні області, де вико-
ристовуються мікроконтролери, включають наступні:

–	 Цифрові сигнальні процесори (DSP). Одним із застосу-
вань мікроконтролера є його використання як DSP. Часто вхідні
аналогові сигнали мають певний рівень шуму. Шум у цьому кон-
тексті означає неоднозначні значення, які не можна легко пере-
вести в стандартні цифрові значення. Мікроконтролер може
використовувати свій АЦП і ЦАП для перетворення вхідного
шумового аналогового сигналу в рівномірний вихідний цифро-
вий сигнал.

–	 Побутова техніка. Найпростіші мікроконтролери полегшу-
ють роботу електромеханічних систем, які є в побутових предме-
тах, таких як печі, холодильники, тостери, мобільні пристрої, бре-
локи, системи відеоігор, телевізори та системи поливу газонів.

–	 Офісні машини. Мікроконтролери також поширені в офісних
машинах, таких як фотокопіювальні апарати, сканери, факсимільні
апарати та принтери, а також в розумних лічильниках, банкоматах
і системах безпеки.

–	 Більш складні програми. Мікроконтролери виконують важ-
ливі функції в літаках, космічних кораблях, океанських суднах
і роботах.

151	 Загальні відомості про мікропроцесорні системи

–	 Медичні застосування. У медичних сценаріях мікроконтро-
лери можуть регулювати роботу штучного серця, нирок або інших
органів. Вони також можуть сприяти функціонуванню протезів.

Мікроконтролери проти мікропроцесорів. Основна від-
мінність мікроконтролерів від мікропроцесорів полягає в рівні
функціональності. Мікроконтролери функціонують самостійно,
безпосередньо підключаючись до датчиків і виконавчих механіз-
мів. Мікропроцесори розроблені для максимізації обчислюваль-
ної потужності чіпу за допомогою внутрішніх шинних з’єднань,
а не для прямого вводу-виводу на допоміжне обладнання, таке
як оперативна пам’ять і послідовні порти. Простіше кажучи, в каво-
варках використовуються мікроконтролери; настільні комп’ютери
використовують мікропроцесори.

Різниця між мікроконтролерами та мікропроцесорами стала менш
чіткою, оскільки щільніші та складніші мікросхеми стали відносно
дешевими у виробництві. Ця тенденція дозволила мікроконтролерам
використовувати комп’ютерні функції загального призначення.

Мікроконтролери дешевші та споживають менше енергії, ніж
мікропроцесори. Мікропроцесори не мають вбудованої ОЗП, ПЗУ
чи інших периферійних пристроїв на чіпі, а приєднуються до них
за допомогою контактів. Мікропроцесор вважається серцем комп’ю-
терної системи, тоді як мікроконтролер є серцем вбудованої системи.

1.2 Архітектура процесорів

CISC проти RISC. Комп’ютер зі скороченим набором інструк-
цій (RISC) – це тип або категорія процесора або архітектура набору
інструкцій (ISA). Якщо говорити в широкому сенсі, то ISA – це сере-
довище, за допомогою якого процесор спілкується з людиною-про-
грамістом (хоча між процесором і програмістом є кілька інших фор-
мально ідентифікованих рівнів). Інструкція – це команда, яка дається
процесору для виконання певної дії. Набір інструкцій – це повний
набір інструкцій для певного процесора, а термін «архітектура»
означає певний спосіб побудови системи, яка створює процесор.

16 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

RISC зазвичай відноситься до спрощеної версії свого попередника,
CISC. На зорі процесорів не існувало офіційної ідентифікації, відомої
як CISC, але з тих пір цей термін був придуманий, щоб ідентифіку-
вати їх як відмінні від архітектури RISC. Деякі приклади архітектур
набору інструкцій мікропроцесора CISC (ISA) включають Motorola
68000 (68K), DEC VAX, PDP-11, кілька поколінь Intel x86 і 8051.

Приклади процесорів з RISC-архітектурою включають MIPS,
PowerPC, Atmel AVR, процесори Microchip PIC, процесори Arm,
RISC-V, і всі сучасні мікропроцесори мають принаймні деякі еле-
менти RISC. Перехід від 8- і 16-розрядних до 32-розрядних архі-
тектур по суті викликав потребу в архітектурах RISC. Тим не менш,
знадобилося десятиліття, перш ніж архітектури RISC почали закрі-
плюватися, в основному через відсутність програмного забезпе-
чення, яке б працювало на архітектурах RISC. Корпорація Intel
також вплинула на неї, оскільки вона мала засоби продовжувати
використовувати архітектуру CISC і не виявила потреби перероб-
ляти її з нуля. Архітектура MIPS була однією з перших RISC ISA
і широко використовувалася для навчання архітектурі RISC.

Які відмінності між RISC і CISC? Коротка відповідь полягає
в тому, що багато хто сприймає RISC як покращення порівняно
з CISC. Не існує найкращої архітектури, оскільки різні архітектури
можуть просто бути кращими в одних сценаріях, але менш ідеаль-
ними в інших. Машини на основі RISC виконують одну інструкцію
за такт. Машини CISC можуть мати спеціальні інструкції, а також
інструкції, для виконання яких потрібно більше одного такту.
Це означає, що одна і та сама інструкція, що виконується на архі-
тектурі CISC, може потребувати кількох інструкцій для виконання
на машині RISC. Архітектура RISC потребуватиме більше робочої
(RAM) пам’яті, ніж CISC, щоб зберігати значення, коли вона заван-
тажує кожну інструкцію, виконує її, а потім завантажує наступну.

Архітектура CISC може виконувати одну, хоча й більш складну
інструкцію, яка виконує ті самі операції, усі одночасно, безпосеред-
ньо в пам’яті. Таким чином, архітектура RISC вимагає більше опе-
ративної пам’яті, але завжди виконує одну інструкцію за такт для
передбачуваної обробки, що добре для конвеєрної обробки. Однією
з головних відмінностей між RISC і CISC є те, що RISC підкреслює

171	 Загальні відомості про мікропроцесорні системи

ефективність в циклах на інструкцію, а CISC підкреслює ефектив-
ність в інструкціях на програму. Швидкість процесора залежить від
того, скільки часу потрібно для виконання кожного такту, скільки
циклів потрібно для виконання інструкцій і кількості інструкцій
у кожній програмі. RISC потребує більших розмірів програмного
коду (через менший набір інструкцій, тому кілька послідовних кро-
ків можуть прирівнюватися до одного кроку в CISC).

RISC ISA наголошує на програмному забезпеченні, а не на апа-
ратному забезпеченні. Набір інструкцій RISC вимагає написання
більш ефективного програмного забезпечення (наприклад, компіля-
торів або коду) з меншою кількістю інструкцій. CISC ISA використо-
вують більше транзисторів в апаратному забезпеченні для реалізації
більшої кількості інструкцій, а також більш складних інструкцій.

RISC потребує більше оперативної пам’яті, тоді як CISC наго-
лошує на меншому розмірі коду та використовує менше оператив-
ної пам’яті загалом, ніж RISC. Проте багато мікропроцесорів сьо-
годні містять суміш RISC- і CISC-подібних атрибутів, наприклад
CISC-подібний ISA, який розглядає інструкції так, ніби вони є ряд-
ком інструкцій типу RISC. Деякі основні відмінності між архітек-
турами CISC і RISC наведено в таблиці 1.1.

Таблиця 1.1 – Порівняння архітектур CISC і RISC
RISC CISC

RISC – це скорочений набір
інструкцій.

CISC – це складний набір
інструкцій.

Кількість інструкцій менша порів-
няно з CISC.

Кількість інструкцій більше
в порівнянні з RISC.

Менше режимів адресації. Режимів адресації більше.
Працює у фіксованому форматі
інструкцій.

Працює у форматі змінних
інструкцій.

RISC споживає мало енергії. CISC споживає багато енергії.
Процесори RISC високо конвеєрні. Процесори CISC менш конвеєрні.
Оптимізує продуктивність, зосе-
реджуючись на програмному
забезпеченні.

Оптимізує продуктивність, зосе-
реджуючись на апаратному
забезпеченні.

Потрібно більше оперативної
пам’яті.

Вимагає менше оперативної
пам’яті.

18 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Гарвардська архітектура проти фон-Нейманівської.
Архітектури фон Неймана та Гарвардська є основними в області
комп’ютерної архітектури, які пояснюють спосіб взаємодії пам’яті
та блоків процесів у комп’ютерній системі. У той час як перша займає
домінуюче положення, її принципові відмінності від останньої, пере-
ваги та недоліки будуть обговорюватися далі, щоб надати вам інфор-
мацію про те, яка структура більше підходить для певної програми.

Архітектура фон Неймана. Архітектура фон Неймана – це циф-
рова комп’ютерна архітектура, дизайн якої базується на концепції
комп’ютерів із збереженими програмами, де дані програми та дані
інструкцій зберігаються в одній пам’яті. Цю архітектуру спроектував
відомий математик і фізик Джон фон Нейман у 1945 році (рис. 1.1).

 Рисунок 1.1 – Архітектура фон Неймана

191	 Загальні відомості про мікропроцесорні системи

Переваги архітектури фон Неймана
–	 Простота: Той факт, що всі дані та інструкції зберігаються

в одному просторі пам’яті, допомагає процесу проектування
комп’ютерної системи, оскільки немає необхідності створювати
складні системи маршрутизації, оскільки шляхи можуть збігатися.

–	 Рентабельність: потрібна менша кількість компонен-
тів порівняно з іншими архітектурними проектами, отже, вона
є економічнішою.

–	 Гнучкість: програму можна завжди змінювати, не роблячи
істотних змін у деяких основних фізичних аспектах, таких як схема.

Недоліки архітектури фон Неймана
–	 Проблеми з вузькими місцями: спільна шина може бути

проблемою, оскільки дані та керуючі інструкції не можуть бути
отримані одночасно, і тому вона стає повільною.

–	 Пошкодження пам’яті: оскільки дані та інструкції збе-
рігаються в одній пам’яті, виникає ризик, що одне стирає інше,
що призводить до системних збоїв.

Гарвардська архітектура. Гарвардська архітектура – це циф-
рова комп’ютерна архітектура, дизайн якої базується на концепції,
де є окреме сховище та окремі шини (шлях сигналу) для інструкцій
і даних. В основному вона була розроблена, щоб подолати вузьке
місце архітектури фон Неймана (рис. 1.2).

Особливості:
–	 Окремі простори пам’яті.
–	 Фіксована довжина інструкції.
–	 Паралельні інструкції та доступ до даних.
–	 Більш ефективне використання пам’яті.
–	 Підходить для вбудованих систем.
–	 Обмежена гнучкість.
Переваги Гарвардської архітектури:
–	 Швидша обробка: наявність двох шин для даних і інструк-

цій дозволяє уникнути проблеми суперечок, коли використовується
лише одна шина, і це підвищує швидкість роботи системи.

–	 Покращена безпека: у такий спосіб ймовірність пошко-
дження пам’яті зменшується принаймні вдвічі, оскільки дані збері-
гаються не в тих самих місцях, що й інструкції.

20 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

–	 Ефективне використання ресурсів: дозволяє використову-
вати різну пам’ять для даних і інструкцій різного розміру, оскільки
це сприяє оптимальному використанню шин та інших ресурсів.

Недоліки Гарвардської архітектури:
–	 Складність: конструкція та реалізація цього типу є більш

складними, тому потрібні інші апаратні засоби.
–	 Вища вартість: оскільки концепція гарвардської архітектури

передбачає два набори пам’яті та дві окремі шини, вартість їх реа-
лізації порівняно висока, ніж архітектури фон Неймана.

–	 Менша гнучкість: зміна або навіть покращення системи
також може бути дещо складними через різні області пам’яті.

 Рисунок 1.2 – Гарвардська архітектура

211	 Загальні відомості про мікропроцесорні системи

Гарвардська і фон-Нейманівська архітектури мають певні пере-
ваги і недоліки, і можна вибрати ту, що залежить від подальшого
застосування пристрою. Для обчислень загального призначення
здебільшого використовується архітектура фон Неймана, оскільки
її легше та дешевше реалізувати, тоді як гарвардська архітектура
використовується широко, особливо коли швидкість є основним
фактором, як у використанні вбудованих систем.

1.3 Типи пам’яті мікроконтролерів

Кількість внутрішньої пам’яті в MCU залежить від того,
як пам’ять категоризовано. На найвищому рівні є два типи:

–	 оперативна пам’ять (RAM);
–	 постійна пам’ять (ROM).
Але, якщо нас цікавить продуктивність пам’яті, існують різні

типи RAM і ROM. І ці різні типи пам’яті можуть використовува-
тися для різних функцій, таких як кеш-пам’ять, основна пам’ять,
пам’ять програм і так далі. З іншого боку, існує питання визначення
віртуальної та фізичної пам’яті.

Двома основними типами оперативної пам’яті є статична опе-
ративна пам’ять (SRAM) і динамічна оперативна пам’ять (DRAM).
Обом потрібна напруга, щоб зберегти інформацію. DRAM є про-
стою і вимагає лише одного транзистора та одного конденсатора
для базової реалізації. DRAM є найпоширенішою з усіх технологій
пам’яті. Якщо вона інтегрована в MCU, то називається вбудованою
DRAM (eDRAM). Ціна за біт для eDRAM вища порівняно з екві-
валентними автономними мікросхемами DRAM, які використову-
ються як зовнішня пам’ять. Тим не менш, переваги продуктивності
розміщення eDRAM на тому ж чіпі, що й процесор, переважують
недоліки у вартості високопродуктивних програм.

SRAM є складнішим, ніж eDRAM, і зазвичай реалізується
за допомогою шістьох транзисторів типу CMOS. SRAM також
швидше, ніж DRAM, що робить її дуже придатною для інтегра-
ції в мікроконтролери. Це одна з найбільш використовуваних

22 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

технологій внутрішньої пам’яті MCU. SRAM зазвичай використо-
вується як кеш-пам’ять і для регістрів процесора.

Енергонезалежна пам’ять у мікроконтролерах включає
флеш-пам’ять і та програмоване ПЗУ з електричним стиранням
(EEPROM). Флеш-пам’ять є формою EEPROM. Основна відмін-
ність між ними полягає в тому, як ними керують; Flash управляється
(записується або стирається) на рівні блоку, а EEPROM можна керу-
вати на рівні байтів. Флеш-пам’ять доступна в архітектурах NAND
і NOR. NAND Flash обробляє дані блоками та читає швидше, ніж
записує. Вона може швидко передавати сторінки даних. Вона забез-
печує більшу місткість на одиницю площі, ніж NOR, і використо-
вується для зберігання з високою щільністю. NOR Flash підтримує
більш детальну роботу та забезпечує високошвидкісний довільний
доступ. NOR Flash може читати та записувати дані певним чином.

Фудзіо Масуока винайшов флеш-пам’ять, коли працював
у Toshiba у 1980-х роках. Його колега Шодзі Аріідзумі використо-
вував термін Flash для опису нової технології, оскільки стирання
всіх даних нагадувало йому спалах камери. Технології енергоза-
лежної та енергонезалежної пам’яті можна порівняти за кількома
критеріями продуктивності:

–	 Швидкість: Енергозалежна пам’ять зазвичай швидша.
–	 Вартість: Енергозалежна пам’ять коштує дешевше.
–	 Термін служби: енергозалежна пам’ять має довший термін

служби. Енергонезалежна пам’ять має обмежений термін служби
через її можливості повторного запису.

–	 Енергоспоживання. Енергозалежна пам’ять, наприклад
DRAM, потребує повторного оновлення даних, що споживає додат-
кову енергію. Енергонезалежна пам’ять зазвичай споживає менше
енергії.

Ієрархії пам’яті. Кеш-пам’ять є критично важливою системою
в MCU. Є два способи класифікації кеш-пам’яті: ієрархія або функ-
ціональність. При описі в термінах ієрархії може бути до 4 рівнів
кеш-пам’яті. Кеш складається зі швидкої пам’яті, такої як SRAM
та eDRAM, щоб компенсувати повільніший час доступу до основ-
ної флеш-пам’яті. Кеш рівня 1 – це невеликий блок пам’яті, який
може працювати так само швидко, як ЦП, щоб підтримувати

231	 Загальні відомості про мікропроцесорні системи

максимальну швидкість обробки. Кеші рівня 2 і рівня 3 підтриму-
ють кеш рівня 1. Вони більші та повільніші, ніж кеш рівня 1, але
мають швидший час доступу, ніж основна пам’ять (рис. 1.3).

Рисунок 1.3 – Кеш-пам’ять, що встановлюється між процесором
і основною пам’яттю, щоб забезпечити швидший час доступу,

необхідний для підтримки ефективної роботи процесора

З точки зору продуктивності та розміру, eDRAM знаходиться
між кеш-пам’яттю рівня 3 і звичайною DRAM на шині пам’яті
та функціонує як кеш рівня 4. Вища щільність eDRAM порівняно
з SRAM може підтримувати набагато ширші шини та вищі робочі
швидкості. І більші обсяги eDRAM можна інтегрувати в меншу
область, ніж SRAM. Виготовити eDRAM складніше, ніж SRAM,
але 3-кратна економія площі за допомогою eDRAM може компенсу-
вати витрати на виготовлення, коли потрібні великі обсяги пам’яті.

Для будь-якого рівня кеш-пам’яті всі блоки мають однаковий
розмір і асоціативність. Нижчі рівні, такі як кеш рівня 1, мають
менше блоків, менші розміри блоків і менше блоків у наборі, але
вони забезпечують дуже швидкий час доступу. Коли рівень під-
вищується до 2 і 3, кеш-пам’ять має все більшу кількість блоків,
більший розмір блоків і більше блоків у наборі. Але кожен рівень

24 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

кеш-пам’яті набагато швидший, ніж основна пам’ять. На додаток
до основної кеш-пам’яті для певних функцій використовуються
спеціалізовані типи. Приклади:

–	 Кеш конвеєра. Конвеєрні процесори, наприклад, у RISC
MCU, отримують доступ до пам’яті з кількох точок конвеєра, вклю-
чаючи вибірку інструкцій вибірки даних і трансляцію адреси з вір-
туальної у фізичну. Конвеєр використовує три спеціалізовані кеші:
дані, інструкції та буфер перегляду трансляції (TLB).

–	 Кеш жертовних даних. Блоки даних, які були замінені
та видалені з кешу процесора, зберігаються в кеші жертовних
даних. Він встановлюється між основним кеш-пам’яттю та шляхом
поповнення. Він повністю асоціативний і призначений для змен-
шення кількості промахів конфліктів у програмах, які можуть отри-
мати вигоду від високоасоціативного відображення. У деяких реа-
лізаціях кеш рівня 4 може функціонувати як кеш жертовних даних.

–	 Кеш мікрооперацій (μop). Цей кеш зберігає мікрооперації
декодованих інструкцій, отриманих з кешу інструкцій або декодера
інструкцій. Це може прискорити обробку. Кеш μop перевіряється,
коли інструкція потребує декодування, щоб побачити, чи є її деко-
дована форма вже доступною. Якщо вона недоступна в кеші μop,
інструкція декодується та кешується для майбутнього використання.

Організація пам’яті та архітектура МК. Різні типи МК, такі
як архітектура AVR і ARM, використовують різні способи організації
пам’яті. Гарвардська архітектура AVR організовує пам’ять як флеш-
пам’ять, внутрішню та зовнішню DRAM та EEPROM (рис. 1.4).

У результаті системи, які використовують ці MCU, організову-
ють пам’ять як певні розділи, зокрема:

–	 Текст (text).
–	 Дані (data).
–	 Символ початку блоку (BSS).
–	 Стек (Stack).
–	 Купа (Heap).
Текстовий розділ містить інструкції, завантажені у флеш-пам’ять;

розділ даних містить змінні, які були ініціалізовані, BSS містить
неініціалізовані дані, стек містить дані функцій і переривань, а купа
містить змінні, створені під час виконання.

251	 Загальні відомості про мікропроцесорні системи

У ARM MCU карти пам’яті використовуються з іншою конфігу-
рацією адреси 32-, 36- та 40-біт, що залежить від вимог системного
адресного простору та додаткової DRAM. Блок керування пам’яттю
(MMU) керує інструкціями доступу до пам’яті, які можна вико-
ристовувати в коді високого рівня для керування модулями перери-
вань та вбудованими периферійними пристроями.

Основне призначення MMU – дозволити процесору незалежно
виконувати кілька завдань у просторі віртуальної пам’яті. MMU
використовує таблиці перекладу для з’єднання адрес віртуальної
та фізичної пам’яті. Віртуальними адресами керують за допомогою
програмного забезпечення з інструкціями пам’яті. Фізичні адреси
контролюються на основі вхідних даних таблиці перекладу, зада-
них віртуальною адресою (рис. 1.5).

MMU – це спеціалізований блок пам’яті, який включає блок
обходу таблиці, який зчитує таблиці перекладу з пам’яті та TLB,
які кешують нещодавно використані переклади. Усі адреси пам’яті
з програмного забезпечення ЦП є віртуальними. MMU перевіряє
TLB на наявність нещодавно кешованого перекладу. Якщо його
не існує, блок обходу таблиці зчитує відповідний запис таблиці або
записи з пам’яті.

Рисунок 1.4 – Організація пам’яті у мікроконтролері AVR

гарвардської архітектури

26 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Висновки. MCU включають різні форми RAM і ROM для під-
тримки конкретних вимог до продуктивності. Найпоширеніші
форми пам’яті в мікроконтролерах включають енергозалежну
пам’ять eDRAM і SRAM, а також енергонезалежну пам’ять Flash
і EEPROM. Flash і EEPROM зазвичай використовуються для основ-
ної пам’яті, тоді як eDRAM і SRAM використовуються для різ-
них функцій кеш-пам’яті. Крім того, пам’ять MCU організована
на основі віртуальних і фізичних адрес і функціональних можливо-
стей і управляється за допомогою MMU.

Контрольні запитання до теми 1
1.	 Які основні типи мікроконтролерів?
2.	 Що таке вбудовані мікроконтролери і які їхні основні характеристики?
3.	 Які функції можуть додатково реалізувати більш складні вбудовані

мікроконтролери?
4.	 Чим відрізняються мікроконтролери з зовнішньою пам’яттю від вбу-

дованих мікроконтролерів?
5.	 Що таке цифрові сигнальні процесори (DSP) і для чого вони

призначені?

 Рисунок 1.5 – У гібридному процесорі ARM таблиці трансляції

відображаються між віртуальною та фізичною пам’яттю

271	 Загальні відомості про мікропроцесорні системи

6.	 Яка технологія використовується для виготовлення сучасних мікро-
контролерів і які її переваги?

7.	 Які типові значення максимальної частоти тактових сигналів для різ-
них мікроконтролерів?

8.	 Для яких завдань найкраще підходять мікроконтролери з зовнішньою
пам’яттю?

9.	 Який класичний приклад мікроконтролера з зовнішньою пам’яттю
наводиться в тексті, і які його основні характеристики?

10.	 Які основні функції виконує ALU в цифрових сигнальних процесорах?
11.	 Що означають абревіатури CISC та RISC?
12.	 Чому вважається, що RISC-процесори швидші за CISC-процесори?
13.	 Чим відрізняється набір команд у CISC- та RISC-процесорах?
14.	 Як умовні переходи реалізуються у CISC- та RISC-процесорах?
15.	 Яка основна перевага RISC-процесорів?
16.	 Що являє собою архітектура фон Неймана?
17.	 Яка проблема може виникнути у процесорів з Прінстонською архітек-

турою і як її вирішують?
18.	 Яка головна перевага Гарвардської архітектури порівняно з архітекту-

рою фон Неймана?
19.	 Які три основні види пам’яті використовуються в мікроконтролерах?
20.	 Для чого призначена пам’ять програм в мікроконтролерах?
21.	 Які види постійної пам’яті використовуються для зберігання програм

в мікроконтролерах?
22.	 Які недоліки масочної пам’яті ROM обмежують її використання?
23.	 Як програмується і стирається пам’ять EPROM?
24.	 Які переваги має пам’ять EEPROM перед EPROM?
25.	 Чим функціонально відрізняється Flash-пам’ять від EEPROM?

Використана література
1.	 What is a microcontroller (MCU)? URL: https://www.techtarget.com/

iotagenda/definition/microcontroller
2.	 RISC vs. CISC Architectures: Which one is better? URL:

https://www.microcontrollertips.com/risc-vs-cisc-architectures-one-better/
3.	 Difference between Von Neumann and Harvard Architecture.

URL: https://www.geeksforgeeks.org/difference-between-von-neu-
mann-and-harvard-architecture/

4.	 How many internal memories does an MCU have? URL:
https://www.microcontrollertips.com/how-many-internal-memories-does-
-an-mcu-have-faq/

https://www.techtarget.com/iotagenda/definition/microcontroller
https://www.microcontrollertips.com/risc-vs-cisc-architectures-one-better/
https://www.geeksforgeeks.org/difference-between-von-neumann-and-harvard-architecture/
https://www.microcontrollertips.com/how-many-internal-memories-does-an-mcu-have-faq/

2___
АРХІТЕКТУРА МІКРОКОНТРОЛЕРІВ

СІМЕЙСТВА AVR

Метою вивчення теми є ознайомлення з основними характе-
ристиками мікроконтролерів AVR на прикладі МК ATMega8.

Завдання вивчення теми збігаються з переліком питань для
розгляду, що наведений нижче.

Перелік питань до розділу:
2.1. Основні характеристики мікроконтролерів AVR на прикладі

МК ATMega8.
2.2. Коротка характеристика архітектури.
2.3. Регістровий файл.
2.4. Арифметико-логічний пристрій (АЛУ).
2.5. Доступ до пам’яті та виконання інструкцій.
2.6. Пам’ять вводу-виводу.
2.7. EEPROM.
2.8. Порти вводу-виводу.
2.9. Таймер.
2.10. Система переривань.
2.11. Вбудований сторожовий таймер (Watchdog).
2.12. Режими роботи з низьким споживанням енергії.

2.1 Основні характеристики мікроконтролерів AVR
на прикладі МК ATMega8

Мікроконтролер AVR був виготовлений корпорацією Atmel
у 1996 році, а його архітектуру розробили Альф-Егіл Боген і Вегард
Воллан. Назву цього мікроконтролера було взято від його розробни-
ків, а саме RISC від Альф-Егіла Богена і Вегарда Воллана. Першим

292	 Архітектура мікроконтролерів сімейства AVR

мікроконтролером на основі архітектури AVR є AT90S8515, але пер-
ший комерційний мікроконтролер був AT90S1200.

Atmel AVR є одним із найпопулярніших сімейств мікроконт-
ролерів сьогодні. Причиною такої величезної популярності є від-
носна простота використання та низька вартість мікроконтролерів,
які можна придбати за ціною від 1 до 10 доларів.

Мікроконтролер AVR містить процесор, програмовані пери-
ферійні пристрої вводу-виводу та пам’ять. Мікроконтролер AVR
забезпечує цифрове керування будь-якими електричними, автомо-
більними чи механічними системами, промисловими установками,
різними пристроями, електронними гаджетами тощо.

Мікроконтролери AVR доступні в 3 серіях, як-от TinyAVR,
MegaAVR і XmegaAVR.

Мікроконтролери TinyAVR доступні в невеликих розмірах,
мають менше пам’яті та оптимізовані під простіші програми.

Мікроконтролери MegaAVR дуже поширені, оскільки вони
мають до 256 Кб пам’яті, включають максимальну кількість пери-
ферійних пристроїв і використовуються в додатках середнього
та складного рівня.

XmegaAVR часто використовується для складних програм,
де потрібна висока швидкість і велика пам’ять програм.

Таблиця 2.1 – Порівняння серій мікроконтролерів AVR
Назва
серії

Кількість
виводів

Об’єм
флеш-пам’яті Особливості

TinyAVR від 6 до 32 від 0,5 до 8 Кб Маленький розмір

MegaAVR від 28 до 100 від 4 до 256 КБ Розширені периферійні
пристрої

XmegaAVR від 44 до 100 від 16 до 384 КБ Включає DMA та систему
подій

ATMega8 є восьмирозрядним мікроконтролером із внутріш-
ньою програмованою Flash-пам’яттю розміром 8 Кбайт.

Загальні відомості:
•	 Високопродуктивний 8-розрядний мікроконтролер Atmel®AVR®

з низьким енергоспоживанням.

30 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

•	 Розширена архітектура RISC:
–	 130 потужних інструкцій – більшість з яких виконуються

за один такт.
–	 32 × 8 робочих регістрів загального призначення.
–	 Повністю статична архітектура.
–	 Продуктивність до 16 MIPS на 16 МГц.
–	 Вбудований двотактний множник.
•	 Сегменти енергонезалежної пам’яті високої витривалості:
–	 8 Кбайт внутрішньосистемної самопрограмованої флеш-

пам’яті програм.
–	 512 байт EEPROM.
–	 1 Кбайт внутрішньої SRAM.
–	 Цикли запису-стирання: 10 000 Flash/100 000 EEPROM.
–	 Зберігання даних: 20 років при 85 °C/100 років при 25 °C.
–	 Додатковий розділ коду завантаження з незалежними бітами

блокування.
–	 Внутрішньосистемне програмування за допомогою вбудова-

ної програми завантаження.
–	 Справжня операція читання під час запису.
–	 Блокування програмування для безпеки програмного забезпечення.
•	 Периферійні функції:
–	 Два 8-бітних таймера-лічильника з окремим попереднім діль-

ником, один режим порівняння.
–	 Один 16-бітний таймер-лічильник з окремим попереднім діль-

ником, режимом порівняння та захоплення.
–	 Лічильник реального часу з окремим осцилятором.
–	 Три канали ШІМ.
–	 8-канальний АЦП в корпусі TQFP і QFN/MLF – вісім каналів

10-бітної точності.
–	 6-канальний АЦП в корпусі PDIP – шість каналів 10-бітної

точності.
–	 Байт-орієнтований двопровідний послідовний інтерфейс.
–	 Програмований послідовний USART.
–	 Послідовний інтерфейс SPI Master/Slave.
–	 Програмований сторожовий таймер з окремим вбудованим

генератором.
–	 Вбудований аналоговий компаратор.

312	 Архітектура мікроконтролерів сімейства AVR

•	 Спеціальні функції мікроконтролера:
–	 Скидання під час увімкнення живлення та програмоване вияв-

лення зниження напруги живлення.
–	 Внутрішній калібрований RC осцилятор.
–	 Зовнішні та внутрішні джерела переривань.
–	 П’ять режимів сну: неактивний режим, зменшення шуму

АЦП, енергозбереження, вимкнення та Режим очікування.
•	 Введення-виведення та корпуси:
–	 23 програмовані лінії вводу-виводу.
–	 28-вивідний PDIP, 32-вивідний TQFP і 32-вивідний QFN/MLF

(рис. 2.1).

Рисунок 2.1 – Виводи вводу-виводу:

а) PDIP корпус, b) TQFP корпус, c) MLF корпус

32 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

•	 Робоча напруга:
–	 2,7 В – 5,5 В (ATmega8L).
–	 4,5 В – 5,5 В (ATmega8).
•	 Тактові частоти:
–	 0–8 МГц (ATmega8L).
–	 0–16 МГц (ATmega8).
•	 Енергоспоживання при 4 МГц, 3 В, 25 °C:
–	 Активний: 3,6 мА.
–	 Неактивний: 1,0 мА.
–	 Режим вимкнення живлення: 0,5 мкА.

2.2 Коротка характеристика архітектури

AVR використовує гарвардську архітектуру. Це передбачає
окремі шини пам’яті даних і програм. На рис. 2.2 показано струк-
турну схему контролера.

Шина даних пам’яті даних є 8-розрядною і з’єднує більшість пери-
ферійних компонентів з файлом регістру. Шина даних програмної
пам’яті має ширину 16 біт і підключена лише до регістру інструкцій.

Незважаючи на те, що рис. 2.2 стосується контролера AVR ATMega8,
він однаково добре підходить для всіх процесорів і відрізняється лише
наявністю додаткових (або менших) периферійних компонентів,
а також різницею в обсязі пам’яті програм і пам’яті даних.

Пам’ять програм – це безперервна частина флеш-пам’яті.
Точна кількість залежить від процесора. ATTiny13, мікроконтро-
лер базового рівня, має 1 Кбайт програмної пам’яті, організованої
як 512-X-16 біт, тоді як ATMega128 має 128 Кбайт пам’яті, орга-
нізованої як 64K-X-16 біт. K тут дорівнює 1024, а не 1000. Доступ
до пам’яті програми здійснюється кожного такту, і команда заван-
тажується в регістр інструкцій. Регістр інструкцій передає дані
файлу регістрів, вибираючи, який із регістрів використовувати-
меться ALU для виконання інструкцій.

Вихідний сигнал регістру команд також декодується декодером
команд, щоб вирішити, які керуючі сигнали будуть активовані для
завершення поточної команди. Пам’ять програми, крім зберігання

332	 Архітектура мікроконтролерів сімейства AVR

Рисунок 2.2 – Мікроконтролер ATMega8

34 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

інструкцій, також зберігає вектори переривань, починаючи з адреси
$0000. Фактична програма повинна починатися з місця пам’яті
за межами простору, призначеного для векторів. Кількість векторів
залежить від процесора.

Пам’ять даних, з іншого боку, розділена на різні типи.
На рис. 2.3 показано різні типи пам’яті, доступні для процесора
AVR. Пам’ять даних складається з п’яти різних компонентів:

1.	Регістровий файл із 32 регістрами шириною 8 біт. Всі проце-
сори сімейства AVR мають цей реєстровий файл.

2.	64 регістри вводу-виводу по 8 біт кожен. Всі процесори
не мають усіх 64 регістрів. Деякі мають більше, ніж інші,
залежно від кількості периферійних компонентів на мікросхемі.
Ці регістри насправді є частиною вбудованої SRAM, і до них
можна отримати доступ як до SRAM з адресами від $20 до $5F,
або як до регістрів вводу-виводу з адресами від $00 до $3F.
Найчастіше до всіх цих регістрів звертаються як до регістрів
вводу-виводу, а не як до SRAM.

Рисунок 2.3 – Пам’ять мікроконтролерів AVR

352	 Архітектура мікроконтролерів сімейства AVR

3.	Внутрішня SRAM. Вона доступна в більшості процесорів
AVR, за винятком базових процесорів, таких як ATTiny12. Обсяг
SRAM коливається від 32 байт до 8 Кбайт. SRAM використовує-
ться для стека, а також для зберігання змінних. Під час викликів
переривань і підпрограм поточне значення лічильника програми
зберігається в стеку. Розмір стека обмежений доступною SRAM
на кристалі. Поточне розташування стека вказується вказівником
стека. Покажчик стека має бути ініціалізований після скидання
та перед використанням стека. Для тих процесорів, які не мають
вбудованої SRAM, доступний апаратний стек для зберігання про-
грамних адрес повернення. Цей апаратний стек може зберігати
лише до 3 адрес.

4.	Зовнішня SRAM. Вона доступна лише на більших процесорах
сімейства AVR. Ті процесори, які мають зовнішні порти доступу
до даних і пам’яті (такі як ATMega8535), можуть використовувати
будь-яку доступну зовнішню SRAM, яку користувач може вирі-
шити застосувати.

5.	EEPROM. EEPROM доступний майже у всіх процесорах
AVR і доступ до нього здійснюється в окремій області пам’яті.
Початкова адреса EEPROM завжди $0000. Різні процесори
мають від 64 байт до 8 Кбайт EEPROM. EEPROM може читатися
та записуватися будь-якою програмою. Читання EEPROM від-
бувається швидше, ніж запис. EEPROM можна записувати при-
близно 100 000 разів.

Більшість інструкцій AVR мають довжину в 1 слово (2 байти),
тому займають 1 місце в пам’яті програми. Багато інструкцій вико-
нуються за один такт, а деякі займають 2 або більше тактів. Таке
одноциклове виконання досягається за рахунок використання
2-ступінчастого конвеєру. Конвеєр працює шляхом одночасного
отримання нової інструкції з пам’яті програми, поки попередня
інструкція виконується в іншій частині процесора. Таким чином,
вибірка інструкцій, декодування та виконання є процесами, які
виконуються процесором одночасно.

36 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

2.3 Регістровий файл

Усі процесори AVR мають 32 загальнопризначені регістри. Деякі
з цих регістрів мають додаткові спеціальні функції. Регістри нази-
ваються від R0 до R31. Регістровий файл розділений на дві частини
по 16 регістрів: R0–R15 і R16–R31. Усі інструкції, що працюють
із регістрами, мають прямий доступ і виконуються за один цикл
для всіх регістрів.

Регістри R0 та R26–R31 мають додаткові функції. R0 використо-
вується в інструкції LPM (завантаження пам’яті програми), тоді
як R26–R31 працюють як вказівні (pointer) регістри, як показано
на рис. 2.4. Ці вказівні регістри широко використовуються в бага-
тьох інструкціях непрямого доступу до регістрів.

Рисунок 2.4 – Регістровий файл мікроконтролерів AVR

372	 Архітектура мікроконтролерів сімейства AVR

2.4 Арифметико-логічний пристрій (АЛУ)

Арифметико-логічний пристрій (АЛУ) виконує операції над
вмістом регістрів, зокрема побітові, арифметичні та логічні опе-
рації, і записує результат назад у регістровий файл у визначений
регістр.

Ці операції виконуються за один тактовий цикл. Кожна операція
ALU впливає на прапори у STATUS-регістрі, залежно від викону-
ваної інструкції.

2.5 Доступ до пам’яті та виконання інструкцій

Процесор AVR працює від системного тактового сигналу, який
може надходити ззовні або, якщо він доступний і активований,
використовувати внутрішній RC-генератор. Цей тактовий сигнал
без поділу використовується безпосередньо для всіх операцій усе-
редині процесора.

Процесор має двоступеневий конвеєр, і вибірка-декодування
інструкції виконується одночасно з виконанням попередньої
інструкції.

Якщо вибрана інструкція пов’язана з АЛУ, вона може бути вико-
нана за один тактовий цикл.

З іншого боку, доступ до SRAM займає два тактові цикли.
Це пояснюється тим, що доступ до SRAM здійснюється за допомо-
гою регістра-вказівника (X, Y або Z).

•	 Перший тактовий цикл використовується для доступу
до файлу регістрів і виконання операцій над регістром-вказівником
(інструкції доступу до SRAM можуть виконувати автоінкремент
або автодекремент адреси вказівника).

•	 Наприкінці першого тактового циклу АЛУ виконує обчис-
лення адреси.

•	 Другий тактовий цикл використовується для доступу до від-
повідної комірки SRAM і запису або зчитування даних у призначе-
ний регістр.

38 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

2.6 Пам’ять вводу-виводу

Пам’ять вводу-виводу є шлюзом до всіх периферійних компо-
нентів процесора AVR. Вона реалізована як оперативна пам’ять
(SRAM) і може бути доступна двома способами: як SRAM, а також
як регістри вводу-виводу.

Як SRAM, адреси знаходяться в діапазоні від $20 до $5F,
а як регістри вводу-виводу – від $00 до $3F.

Ми розглядатимемо регістри вводу-виводу саме як регістри,
а не як SRAM.

Для доступу до регістрів вводу-виводу AVR надає інструк-
ції IN і OUT. Ці інструкції можуть працювати з усіма регістрами
вводу-виводу в діапазоні $00–$3F.

Крім IN і OUT, AVR також підтримує побітову адресацію для
деяких регістрів у діапазоні $00–$1F. Завдяки інструкціям SBI
(Set Bit in I/O Register) і CBI (Clear Bit in I/O Register) будь-який
біт у регістрах цього діапазону можна встановити або скинути
без необхідності читання регістра, зміни біта та запису зміненого
значення назад у регістр. Це економить час порівнянні зі стан-
дартним методом, який потребує приблизно втричі більше тактів
процесора.

Для решти регістрів необхідно використовувати інший метод,
який передбачає читання, зміну та запис значення, що займає
більше тактів процесора.

Регістр стану (STATUS register, SREG). Регістр стану містить
8 бітів прапорців, які вказують на поточний стан процесора.

Після скидання всі біти встановлюються в нуль. Програма може
як зчитувати, так і змінювати їх.

Адреса вводу-виводу регістра стану: $3F (Адреса в пам’яті: $5F)
Основні прапорці SREG і їхні функції (рис. 2.5):
Біт 7 (I): Глобальне увімкнення переривань
○	Якщо цей біт встановлений (1), усі переривання дозволені.
○	Якщо біт скинутий (0), усі переривання заборонені.
Біт 6 (T): Буферне збереження біта
○	Використовується разом з інструкціями BLD (Bit Load) і BST

(Bit Store).

392	 Архітектура мікроконтролерів сімейства AVR

○	Дозволяє завантаження та збереження окремих бітів між
регістрами.

Біт 5 (H): Прапорець напівпереносу (Half Carry Flag)
○	Вказує на виникнення напівпереносу у деяких арифметичних

операціях.
Біт 4 (S): Прапорець знаку (Sign Flag)
○	Обчислюється як виключне АБО (XOR) між прапорцями N

(негативний результат) і V (переповнення).
Біт 3 (V): Прапорець переповнення у додатковому коді (Two’s

Complement Overflow Flag)
○	Вказує на переповнення при операціях у двійковому

доповненні.
Біт 2 (N): Прапорець негативного результату (Negative Flag)
○	Встановлюється, якщо результат арифметичної або логічної

операції має встановлений старший біт (означає від’ємне число
у додатковому коді).

Біт 1 (Z): Прапорець нульового результату (Zero Flag)
○	Встановлюється, якщо після арифметичної або логічної опе-

рації отримано нульовий результат.
Біт 0 (C): Прапорець переносу (Carry Flag)
○	Вказує на перенесення (або позичку) при виконанні арифме-

тичної або логічної операції.
Примітка: Регістр стану не зберігається автоматично під час

обробки переривання. Оскільки інструкції в обробнику переривань
можуть змінювати біти SREG, програміст повинен самостійно збері-
гати та відновлювати його значення під час роботи з перериваннями.

Рисунок 2.5 – Регістр стану SREG

40 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

SP: РЕГІСТР УКАЗІВНИКА СТЕКУ. Цей регістр має ширину
1 байт для процесорів з обсягом SRAM до 256 байт і 2 байти (нази-
ваються SPH і SPL) для процесорів з обсягом SRAM понад 256 байт.

Цей регістр використовується для вказування області в SRAM,
яка є вершиною стеку. Стек використовується процесором для збе-
реження зворотних адрес під час виклику переривань і підпрограм.
Оскільки SP ініціалізується значенням $00 (або $0000 для 2-байто-
вого SP) під час скидання, користувацька програма повинна пра-
вильно ініціалізувати SP, оскільки початкова адреса SRAM не є
$00. Початкова адреса SRAM – $60. Стек зростає вниз у пам’яті,
тобто розміщення значення в стеку призводить до зменшення SP.
Витягування значення зі стеку збільшує SP.

2.7 EEPROM

Усі контролери AVR мають вбудовану EEPROM. Кількість
EEPROM варіюється від 0 байтів у ATTiny4 до 4 Кбайт у ATMega2560.
EEPROM доступна через реєстри доступу до EEPROM, а саме:
реєстр адреси EEPROM (EEAR), реєстр даних EEPROM (EEDR)
і реєстр керування EEPROM (EECR).

Для пристроїв з EEPROM обсягом більше 256 байт, EEAR
насправді є двома реєстрами, EEARL і EEARH. EEAR (як у вигляді
одного реєстру, так і у вигляді двох реєстрів) використовується для
встановлення адреси EEPROM, в яку буде записано дані або з якої
дані будуть зчитані. EEAR – це реєстр для читання-запису, тобто
реєстр можна читати, щоб побачити, яка адреса EEPROM була
встановлена.

EEDR – це реєстр даних EEPROM і є реєстром для читання-запису.
Коли потрібно записати дані в EEPROM, необхідно завантажити
потрібні дані в EEDR. Коли потрібно зчитати дані з EEPROM,
після завершення процесу зчитування потрібно прочитати EEDR
для отримання даних. EECR містить необхідні контрольні біти для
читання і запису в EEPROM. Запис в EEPROM не такий простий,
як запис в SRAM, наприклад. Час доступу для запису в EEPROM

412	 Архітектура мікроконтролерів сімейства AVR

на контролерах AVR складає від 2,5 до 4,0 мс, в залежності від
напруги живлення. Контрольний біт EEWE в EECR дозволяє
користувачу виявити, коли раніше запитуване дані були записані
в EEPROM і чи можна записати новий байт.

2.8 Порти вводу-виводу

Усі контролери AVR мають певну кількість портів вводу-виводу,
що варіюється від 4 шт. у ATtiny4 до 86 шт. у АТMega2560. Усі
вихідні порти контролерів AVR можуть споживати до 20 мА струму,
що робить їх дуже зручними для прямого підключення світлодіодів
без потреби у зовнішніх буферах.

Усі порти вводу-виводу мають три регістри вводу-виводу, пов’я-
зані з ними. Три регістри необхідні для налаштування окремих бітів
як вхід або вихід; інший регістр потрібна для виведення даних на ці
(або всі) виводи, налаштовані як виходи, а третій регістр потрі-
бен для зчитування даних з цих (або всіх) виводів, налаштованих
як входи.

Ці регістри позначаються як DDRx, PORTx, PINx для відпо-
відного порту x. DDRx – це реєстр напрямку даних. Запис «1»
в біт DDR робить відповідний вивід вихідним на порті x. Після
цього, щоб вивести «1» у вивід порту, відповідний біт можна
встановити або скинути за допомогою інструкцій CBI чи SBI або
інструкції OUT.

Аналогічно, для зчитування даних з вхідного виводу порту вико-
ристовується реєстр PINx. Реєстр PINx безпосередньо підключений
до виводу порту. Порти можна забезпечити внутрішнім підтягу-
вальним резистором, записавши «1» в біт порту за адресою PORTx.
Значення цього підтягувального резистора складає від 30 кОм до
150 кОм. Відповідне значення струму підтягування знаходиться
в межах від 160 мкА до 33 мкА. Замість цього, якщо записати «0»
в біт порту за адресою PORTx, підтягувальний резистор буде вида-
лений, і вхідний пін залишиться в плаваючому стані з високим
імпедансом.

42 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

2.9 Таймер

Таймер в контролері AVR може працювати як таймер або лічиль-
ник. Як таймер використовується внутрішній тактовий сигнал або
його похідне для тактування таймера, а як лічильник – зовнішній
сигнал на піні порту для тактування таймера-лічильника.

Блок-схема 8-бітного таймера-лічильника 0 зображена
на рисунку 2.6.

Рисунок 2.6 – Структурна схема 8-бітного таймера

8-бітний таймер-лічильник 0 може вибирати джерело тактового
сигналу з CK, поділеного CK або зовнішнього піну. Крім того, його
можна зупинити за допомогою керуючих бітів у реєстрі керування
таймером-лічильником 0 (TCCR0).

Флаг переповнення знаходиться в регістрі флагів переривань
таймера-лічильника TIFR. Керуючі сигнали знаходяться в регістрі
керування таймером-лічильником 0 (TCCR0).

432	 Архітектура мікроконтролерів сімейства AVR

Налаштування увімкнення-вимкнення переривань для тай-
мера-лічильника 0 знаходяться в регістрі маски переривань тай-
мера-лічильника (TIMSK). Коли таймер-лічильник 0 тактується
зовнішнім сигналом, зовнішній сигнал синхронізується з частотою
осцилятора процесора. Для забезпечення правильного зчитування
зовнішнього тактового сигналу мінімальний час між двома пере-
ходами зовнішнього тактового сигналу повинен бути не меншим
за один внутрішній тактовий період процесора. Зовнішній такто-
вий сигнал зчитується на фронті підвищення внутрішнього такто-
вого сигналу процесора. 8-бітний таймер-лічильник 0 має високу
роздільну здатність і точність при використанні з нижчими можли-
востями переддільника.

2.10 Система переривань

Переривання – це механізм керування ходом програми, реалі-
зований на більшості контролерів. У системі процесора, яка взає-
модіє із зовнішнім світом, багато речей відбувається асинхронно,
наприклад, користувач може натиснути перемикач, щоб виконати
певну дію, тоді як на послідовний порт може надійти байт даних.
Для процесора було б абсолютно неможливо відстежувати всі речі,
просто запитуючи ці пристрої для отримання даних. Натомість було
б краще, якби ці пристрої могли «оголошувати» про надходження
даних. Це те, що робить механізм переривання. Периферійний
пристрій може «перервати» виконання основної програми, а про-
цесор бере час для нормального виконання програми, щоб пере-
вірити джерело переривання та вжити необхідних заходів. Після
виконання необхідної дії перерване виконання програми відновлю-
ється. Програма переривання схожа на підпрограму, за винятком
того, що виконання цієї підпрограми переривання не передбачає-
ться процесором у певний момент часу.

AVR має розвинену систему переривань. Для більшості перифе-
рійних пристроїв надано можливість переривання, тому головній
програмі не потрібно постійно опитувати ці пристрої.

44 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Послідовність подій при виникненні переривання така:
1.	Периферійний пристрій перериває роботу процесора.
2.	Виконання поточної інструкції завершується.
3.	Адреса наступної інструкції зберігається в стеку (апаратному

або програмному).
4.	Адреса ISR (підпрограми переривання) завантажується

в лічильник програми.
5.	Процесор виконує ISR.
6.	Про завершення виконання ISR вказує інструкція RETI (повер-

нення з переривання).
7.	Процесор завантажує лічильник програми зі значен-

ням, що зберігається в стеку, і нормальне виконання програми
відновлюється.

Оскільки переривання може відбутися в будь-який момент, стан
процесора (прапори тощо) повинен бути збережений, щоб нор-
мальне виконання програми могло відновитися після завершення
ISR. Статус процесора міститься в регістрі SREG. ISR має зберегти
SREG перед виконанням будь-якої іншої інструкції, а перед повер-
ненням керування головній програмі має відновити регістр SREG.
Це можна зробити двома способами: або SREG копіюється в інший
регістр, скажімо, R1, який не можна використовувати для будь-яких
інших цілей, і перед тим, як ISR виконає інструкцію RETI, R1 копі-
юється назад в SREG. Іншим способом збереження SREG є збере-
ження його в стеку (за допомогою інструкції PUSH SREG), а потім
перед виконанням інструкції RETI значення SREG копіюється
зі стеку (за допомогою інструкції POP SREG). Цей спосіб можли-
вий тільки для тих процесорів, які мають програмний стек.

На рис. 2.7 показано, як переривається основна програма. Також
можна перервати ISR, якщо виникає інше переривання, а глобаль-
ний прапор переривання встановлено на «1» у ISR для interrupt1
(за допомогою інструкції SEI). У цьому випадку ISR1 перерива-
ється, і виконується інший ISR, ISR2. Виконання ISR1 відновлю-
ється після завершення ISR2, а після завершення ISR1 основна про-
грама відновлює виконання.

Зазвичай після того, як переривання виникає та обслуговується
відповідним ISR, глобальні переривання вимикаються автоматично

452	 Архітектура мікроконтролерів сімейства AVR

(еквівалентно виконанню інструкції CLI); однак, можна ввімкнути
переривання під час виконання ISR, виконавши інструкцію SEI
в ISR. Якщо інше переривання відбувається протягом часу, коли
ISR вже працює, тоді воно буде обслуговуватися шляхом перери-
вання початкового ISR. Пріоритет переривань визначається спосо-
бом призначення векторів переривань. Вектор переривання за ниж-
чою адресою в пам’яті програми має вищий пріоритет.

Пріоритет переривання використовується для визначення того,
яке переривання обслуговується першим, якщо в будь-який момент
часу очікується більше одного переривання. Така ситуація може
виникнути, якщо глобальні переривання були вимкнені в системі,
щоб дозволити виконання деяких критичних розділів програми.
Після завершення критичної секції програма вмикає глобальні
переривання. Тепер, під час виконання критичної секції, виникає
два переривання, зовнішнє Interrupt0 і UART Rx Complete. Тоді,
оскільки зовнішнє Interrupt0 має вищий пріоритет, ніж переривання
UART, буде виконано ISR, що відповідає зовнішньому Interrupt0,
а після цього буде виконано ISR для переривання UART.

Дуже важливий фактор під час використання переривань –
це те, наскільки швидко процесор може реагувати на переривання.
Це багато в чому залежить від архітектури процесора. Для конт-
ролерів AVR відповідь на виконання переривання для всіх увімк-
нених переривань AVR становить мінімум чотири такти. Через
чотири такти після встановлення прапора переривання виконується
адреса програмного вектора для фактичної процедури обробки

Рисунок 2.7 – Виконання вкладених переривань

46 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

переривання. Протягом цього чотиритактового періоду програм-
ний лічильник (2 байти) надсилається в стек, а вказівник стека
зменшується на 2. Вектор зазвичай є відносним переходом до про-
цедури переривання, і цей стрибок займає два тактові цикли. Якщо
переривання виникає під час виконання багатоциклової інструкції,
ця інструкція завершується до того, як переривання обслуговується.
Повернення з процедури обробки переривань займає чотири такти.
Протягом цих чотирьох тактових циклів програмний лічильник
(2 байти) повертається зі стеку, покажчик стека збільшується на 2,
а прапор I у SREG встановлюється. Коли AVR виходить із перери-
вання, він завжди повертатиметься до основної програми та вико-
нуватиме ще одну інструкцію, перш ніж буде обслуговано будь-яке
очікуване переривання.

2.11 Вбудований сторожовий таймер (Watchdog)

Сторожовий таймер – це керований таймер, який використовує-
ться як пристрій для скидання, якщо програмне забезпечення потра-
пило в нескінченний цикл або виникла помилка виконання про-
грами. Сторожовий таймер має вихід, який може скинути контролер.
На рисунку 2.8 показано блок-схему сторожового таймера.

Сторожовий таймер працює від окремого внутрішнього
RC осцилятора. Регулюючи переддільник сторожового таймера,
можна налаштувати інтервал скидання сторожового таймера.
Інтервали скидання сторожового таймера також залежать від
напруги живлення.

Інструкція скидання сторожового таймера (WDR) скидає сторо-
жовий таймер. Можна вибрати вісім різних періодів тактових циклів
для визначення періоду скидання. Якщо період скидання спливає
без іншого скидання сторожовим таймером, контролер AVR скида-
ється і починає виконувати програму з вектора скидання. Для запо-
бігання ненавмисному вимкненню сторожового таймера потрібно
дотримуватися спеціальної послідовності вимкнення, як описано
в розділі про регістр керування сторожовим таймером.

472	 Архітектура мікроконтролерів сімейства AVR

2.12 Режими роботи з низьким споживанням енергії

Контролер AVR пропонує різноманітні схеми зниження спо-
живаної потужності. Для того щоб увійти в режими сну, потрібно
встановити біт SE в регістрі MCUCR (встановити в 1) і виконати
інструкцію SLEEP. Якщо під час перебування в режимі сну виникає
переривання, контролер AVR прокидається, виконує обробку пере-
ривання та продовжує виконання з інструкції, що йде після SLEEP.
Вміст регістра файлу, SRAM і пам’яті I/O не змінюється. Якщо під
час режиму сну відбувається скидання, контролер AVR прокида-
ється і виконує програму з вектору скидання.

Коли біт SM очищено (0), інструкція SLEEP змушує MCU
перейти в режим простою, зупиняючи процесор, але дозволяючи
працювати таймерам-лічильникам, сторожовому таймеру та сис-
темі переривань. Це дозволяє MCU прокидатися від зовнішніх
переривань, а також від внутрішніх, таких як переривання від

Рисунок 2.8 – Блок-схема сторожового таймера

48 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

переповнення таймера та скидання сторожовим таймером. Якщо
прокидання від переривання аналого-цифрового компаратора
не потрібно, то компаратор можна вимкнути, встановивши біт ACD
в регістрі керування і стану аналого-цифрового компаратора ACSR.
Це дозволить знизити споживання енергії в режимі простою. Коли
MCU прокидається з режиму простою, процесор починає викону-
вати програму без затримок.

Коли біт SM встановлено (1), інструкція SLEEP змушує MCU
перейти в режим вимкнення. У цьому режимі зовнішній осцилятор
вимикається, в той час як зовнішні переривання та сторожовий тай-
мер (якщо він увімкнений) продовжують працювати. Прокинути
MCU може тільки зовнішнє скидання, скидання сторожовим тай-
мером (якщо увімкнений) або зовнішнє переривання рівня на INT0
чи INT1. Зауважте, що коли для прокидання з режиму вимкнення
використовується переривання рівня, то низький рівень пови-
нен триматися довше, ніж час затримки скидання tTOUT. В іншому
випадку пристрій не прокинеться.

Контрольні запитання до теми 2
1.	 Які основні характеристики архітектури AVR-RISC у мікроконтролері

ATMega8?
2.	 Які типи пам’яті використовуються у мікроконтролері ATMega8 та їх

основні характеристики?
3.	 Які типи таймерів-лічильників інтегровані у мікроконтролер ATMega8?
4.	 Які спеціальні мікроконтролерні функції підтримуються мікроконт-

ролером ATMega8?
5.	 Які робочі частоти та напруги підтримує мікроконтролер ATMega8?
6.	 Які особливості Гарвардської архітектури використовує мікроконтро-

лер ATMega8?
7.	 Як реалізується конвеєрна обробка команд у мікроконтролері ATMega8?
8.	 Які функції виконують регістри X, Y, Z у мікроконтролері ATMega8?
9.	 Як здійснюється робота з регістром стану під час виклику процедури

обробки переривань?
10.	 Які способи адресації підтримує пам’ять даних SRAM у мікроконтро-

лері ATMega8?

492	 Архітектура мікроконтролерів сімейства AVR

11.	 Які модулі ядра AVR синхронізуються за допомогою тактового сиг-
налу clkcpu?

12.	 Як здійснюється робота зовнішніх переривань в умовах відсутності
тактового сигналу clkI/O?

13.	 Які джерела тактового сигналу можуть бути використані у мікро-
контролері, і як їх вибір здійснюється?

14.	 Які три спеціальні регістри має кожний порт вводу-виводу мікроконт-
ролера ATMega8, і яке їх основне призначення?

15.	 Як впливає запис логічної одиниці у будь-який розряд регістра PINxn
на відповідний розряд регістру даних PORTxn?

16.	 Що таке вектор переривань у мікроконтролері AVR, і які особливості
його використання?

17.	 Які основні резервовані адреси програмної пам’яті в мікроконтролері
ATMega8 і яке призначення у них?

18.	 Як відрізняються внутрішні та зовнішні переривання
в мікроконтролерах?

19.	 Що відбувається, якщо в програмі для мікроконтролера не використо-
вуються механізми переривань?

20.	 Яким чином встановлюються адреси векторів переривань у мікро-
контролері ATMega8?

21.	 Які основні функції виконують конфігураційні комірки (Fuse Bits)
у мікроконтролері ATMega8?

22.	 Які параметри можна змінювати за допомогою конфігураційних комі-
рок мікроконтролера?

23.	 Які переваги має використання конфігураційних комірок Fuse Bits
у порівнянні з програмованою пам’яттю EEPROM чи Flash?

24.	 Як впливає стан незапрограмованих Fuse-комірок (які містять оди-
ницю) на роботу мікроконтролера ATMega8?

25.	 Як відбувається програмування та перепрограмування конфігурацій-
них комірок у мікроконтролері?

Використана література
1.	 Розробка радіоелектронних схем на основі мікроконтролерів (на при-

кладі AVR мікроконтролерів фірми Atmel) : методичний посібник
до курсу «Проектування радіоелектронних схем» для студентів радіо-
фізичного факультету / уклад.: Д. А. Пархоменко, Є. М. Смирнов.
Київ : Радіофізичний факультет Київського національного універси-
тету імені Тараса Шевченка, 2013. 74 с.

2.	 Методичний посібник для виконання лабораторних робіт з курсу
«Мікропроцесорна техніка» для студентів факультету радіофізики,

50 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

електроніки та комп’ютерних систем / упоряд.: А. І. Білецький та ін.;
за ред. А. М. Веклича. Київ : ВЦ «Київський університет», 2021. 40 с.

3.	 Конспект лекцій з дисципліни «Мікропроцесорна техніка» для здо-
бувачів вищої освіти першого (бакалаврського) рівня зі спеціа-
льності 153 «Мікро- та наносистемна техніка» за освітньо-про-
фесійною програмою «Мікро- та наносистемна техніка» та зі
спеціальності 171 «Електроніка» за освітньо-професійною про-
грамою «Електроніка» / уклад. О. М. Гулєша. Кам’янське : ДДТУ,
2020. 57 с.

3___
ЦИФРОВІ ПОРТИ ВВОДУ-ВИВОДУ

МІКРОКОНТРОЛЕРІВ СІМЕЙСТВА AVR

Метою вивчення теми є ознайомлення з цифровими портами
вводу-виводу мікроконтролерів сімейства AVR, а саме з їх конфі-
гураціями виводів, альтернативними функціями портів, читанням
стану виводу та бітовими операціями.

Завдання вивчення теми збігаються з переліком питань для
розгляду, що наведений нижче.

Перелік питань до розділу:
3.1.	 Конфігурація виводів.
3.2.	 Читання стану виводу.
3.3.	 Альтернативні функції портів вводу-виводу.
3.4.	 Опис регістрів вводу-виводу.
3.5.	 Бітові операції.

3.1 Конфігурація виводів

Усі порти AVR мають функціональність читання – зміни – запису
при використанні їх як загальних цифрових портів вводу-виводу.
Це означає, що напрямок одного виводу порту можна змінити без
випадкової зміни напрямку будь-якого іншого виводу за допо-
могою інструкцій SBI та CBI. Те саме стосується зміни зна-
чення вихідної напруги (якщо вивід налаштовано як вихід) або
ввімкнення/вимкнення підтягувальних резисторів (якщо вивід
налаштовано як вхід). Кожен вихідний буфер має симетричні
характеристики виходу з високою навантажувальною здатністю.
Драйвер порту достатньо потужний, щоб керувати світлодіодними
індикаторами безпосередньо. Усі виводи порту мають індивідуальні

52 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

підтягуювальні резистори з опором, що не залежить від напруги
живлення. Усі контакти вводу-виводу мають захисні діоди як для
VCC, так і для заземлення, як показано на рисунку 3.1.

Рисунок 3.1 – Схема виводів портів вводу-виводу

Усі регістри та посилання на біти в цьому розділі записані
в загальному вигляді. Мала літера “x“ представляє номер порту,
а мала літера “n“ представляє номер біта. Однак, коли в програмі
використовується визначення регістру або біту, необхідно вико-
ристовувати точну форму (тобто PORTB3 для біта 3 у порту B, тут
записано у загальному вигляді як PORTxn).

Для кожного порту виділено три адреси у пам’яті вводу-виводу,
по одній для регістра даних – PORTx, регістра напрямку
даних – DDRx і вхідного стану порту – PINx. Регістр вхідного
стану порту призначений лише для читання, тоді як регістр
даних і регістр напрямку даних доступні для читання / запису.
Крім того, біт “Pull-up Disable” – PUD у регістрі SFIOR вимикає
функцію підтягування для всіх контактів у всіх портах, якщо він
встановлений, як 1.

Більшість контактів порту мультиплексовано з альтернативними
функціями периферійних пристроїв мікроконтролера.

533	 Цифрові порти вводу-виводу мікроконтролерів сімейства AVR

Порти є двонаправленими портами вводу-виводу з додатковими
внутрішніми підтягувальними резисторами. На рисунку 3.2 пока-
зано функціональний опис одного контакту порту вводу-виводу,
який тут узагальнено називається Pxn.

Рисунок 3.2 – Функціональний опис одного контакту порту вводу-виводу

Кожен вивід порту визначається бітами трьох регістрів: DDxn,
PORTxn і PINxn. Доступ до бітів DDxn здійснюється за адресою
регістру вводу-виводу DDRx, до бітів PORTxn – за адресою регі-
стру вводу-виводу PORTx, а до бітів PINxn – за адресою регістру
вводу-виводу PINx.

54 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Біт DDxn у регістрі DDRx вибирає напрямок відповідного
виводу. Якщо у DDxn записується логічна одиниця, Pxn налашто-
вується, як вихідний контакт. Якщо DDxn у записується логічний
нуль, Pxn налаштовується, як вхідний контакт.

Якщо у PORTxn записується логічна одиниця, коли вивід нала-
штовано як вхідний, активується підтягувальний резистор. Щоб
вимкнути підтягувальний резистор, у PORTxn має бути записаний
логічний нуль або вивід має бути налаштований як вихід. Виводи
порту переводяться у високоімпедансний стан в режимі скиду,
навіть якщо тактовий генератор не працює.

Якщо у PORTxn записується логічна одиниця, коли вивід нала-
штовано як вихід, то вивід порту має високий рівень напруги (оди-
ниця). Якщо у PORTxn записується логічний нуль, коли вивід нала-
штовано як вихід, на виводі порту встановлюється низький рівень
напруги (нуль).

Під час перемикання між високоімпедансним станом
({DDxn, PORTxn} = 0b00) і виходом з високим рівнем напруги
({DDxn, PORTxn} = 0b11), проміжним станом є або стан з увімкне-
ним підтягуванням ({DDxn, PORTxn} = 0b01), або вихід з низьким
рівнем напруги ({DDxn, PORTxn} = 0b10). Зазвичай стан з актив-
ним підтягування є цілком прийнятним, оскільки схема з високим
вхідним імпедансом не помітить різниці між виходом з високим
рівнем напруги і підтягуванням. Якщо це не прийнято, біт PUD
у регістрі SFIOR можна встановити так, щоб відключити всі підтя-
гування у всіх портах.

Перемикання між входом із підтягуванням і виходом з низь-
ким рівнем напруги створює ту саму проблему. Користувач
повинен або використовувати високоімпедансний стан
({DDxn, PORTxn} = 0b00), або вихідний стан з високою напругою
({DDxn, PORTxn} = 0b11) як проміжний крок.

Таблиця 3.1 підсумовує контрольні сигнали для значення
контакту.

553	 Цифрові порти вводу-виводу мікроконтролерів сімейства AVR

Таблиця 3.1 – Контрольні сигнали для значення контакту

DDxn PORTxn PUD
(у SFIOR)

Стан
виводу

Підтя-
гування Коментар

0 0 Х Вхід Ні Високоімпедансний
стан

0 1 0 Вхід Так

Pxn буде джерелом
струму, якщо
зовнішня схема
підключена до
нижчої напруги

0 1 1 Вхід Ні Високоімпедансний
стан

1 0 Х Вихід Ні Вихід з низьким
рівнем напруги

1 1 Х Вихід Ні Вихід з високим
рівнем напруги

3.2 Читання стану виводу

Незалежно від налаштування біта напрямку даних DDxn, стан
виводу порту можна прочитати через біт регістру PINxn. Як пока-
зано на рис. 3.3, біт регістра PINxn і попередній тригер утворю-
ють синхронізатор. Це необхідно, щоб уникнути метастабільності,
якщо вивід змінює фізичне значення біля зміни сигналу внутріш-
нього тактового генератора, але це також створює затримку.

На рис. 3.4 показано часову діаграму синхронізації під час зчи-
тування зовнішнього значення виводу. Максимальна та мінімальна
затримки поширення позначаються tpd,max та tpd,min відповідно.

Припустимо, що зміна стану виводу відбувається незабаром
після першого спаду фронту системного тактового сигналу. Тригер
закривається, коли тактовий сигнал має низький рівень, і відкри-
вається, коли тактовий сигнал має високий рівень, на що вказує
заштрихована область сигналу “SYNC LATCH”. Значення сигналу
фіксується, коли системний тактовий сигнал стає низьким.

56 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Рисунок 3.3 – Спрощена схема порту вводу-виводу

Рисунок 3.4 – Часова діаграма синхронізації під час зчитування

зовнішнього значення виводу

573	 Цифрові порти вводу-виводу мікроконтролерів сімейства AVR

Він синхронізується в регістрі PINxn на наступному позитив-
ному фронті тактового сигналу. Як вказано двома стрілками tpd,max
і tpd,min, передача сигналу на виводі може бути затримана між ½ і 1½
системного тактового періоду залежно від часу виникнення.

Під час зчитування програмно встановленого значення піна
необхідно вставити інструкцію nop, як показано на рис. 3.5.
Інструкція out встановлює сигнал “SYNC LATCH” на позитивному
фронті тактового сигналу. У цьому випадку затримка tpd через син-
хронізатор становить 1 системний такт.

Рисунок 3.5 – Вставлення інструкції nop під час зчитування
програмно встановленого значення піна

Робота цифрових входів у режимі сну. Як показано
на рисунку 3.3, цифровий вхідний сигнал може бути заземлений
на вході тригера Шмідта. Сигнал, позначений на рисунку 3.3 –
SLEEP, встановлюється контролером сну MCU у режимі вимкнення
живлення, режимі енергозбереження та режимі очікування, щоб
уникнути високого енергоспоживання, якщо деякі вхідні сигнали
залишаються плаваючими або мають рівень аналогового сигналу,
близький до VCC/2.

Сигнал SLEEP нехтується для контактів порту, увімкнених
як контакти зовнішнього переривання. Якщо запит зовнішнього

58 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

переривання не ввімкнено, сигнал SLEEP активний також і для цих
контактів. SLEEP також перекривається різними іншими альтерна-
тивними функціями.

Непідключені виводи. Якщо деякі виводи не використовуються,
рекомендується переконатися, що ці виводи мають певний рівень.
Незважаючи на те, що більшість цифрових входів вимкнено в режи-
мах глибокого сну, як описано вище, слід уникати плаваючих входів,
щоб зменшити споживання струму в усіх інших режимах, де циф-
рові входи ввімкнено (скид, активний режим і режим очікування).

Найпростіший спосіб забезпечити певний рівень невикориста-
ного виводу – увімкнути внутрішнє підтягування. Але у цьому
випадку підтягування буде вимкнено під час скиду. Якщо важливе
низьке енергоспоживання і під час скиду, рекомендується вико-
ристовувати зовнішнє підтягування. Підключати невикористову-
вані контакти безпосередньо до VCC або GND не рекомендується,
оскільки це може спричинити надмірні струми, якщо вивід буде
випадково налаштовано як вихід.

3.3 Альтернативні функції портів вводу-виводу

Більшість виводів портів мають альтернативні функції на дода-
ток до загальних цифрових входів/виходів. На рисунку 3.6 пока-
зано, як сигнали керування контактами порту можуть бути замі-
нені альтернативними функціями. Альтернативні сигнали можуть
бути присутні не на всіх контактах порту, але рисунок 3.6 служить
загальним описом, застосовним до всіх контактів порту сімейства
мікроконтролерів AVR.

Альтернативні функції порту В:
XTAL2/TOSC2 – порт B, біт 7
XTAL2: Вивід 2 генератора тактового сигналу мікросхеми.

Використовується як вивід підключення кварцового або низькочастот-
ного кварцового резонатора. Якщо використовується як вивід такто-
вого сигналу, його не можна використовувати як контакт вводу-виводу.

593	 Цифрові порти вводу-виводу мікроконтролерів сімейства AVR

Рисунок 3.6 – Приклад заміщення сигналів керування контактами

порту на альтернативні функції

TOSC2: Вивід 2 генератора таймера. Використовується, лише
якщо внутрішній калібрований RC-генератор вибрано як дже-
рело тактування мікросхеми, а асинхронний таймер увімкнено
за допомогою правильного налаштування в ASSR. Коли біт AS2
в ASSR встановлено (один), щоб увімкнути асинхронне так-
тування таймеру Timer/Counter2, вивід PB7 від’єднується від

60 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

порту та стає інвертуючим виходом підсилювача генератора.
У цьому режимі кварцовий генератор підключено до цього
контакту, і цей контакт не можна використовувати як контакт
введення/виведення.

Якщо PB7 використовується як вивід тактування, DDB7,
PORTB7 і PINB7 читатимуться, як 0.

XTAL1/TOSC1 – порт B, біт 6
XTAL1: Вивід 1 генератора тактового сигналу мікросхеми.

Використовується для всіх джерел тактового сигналу мікросхеми,
крім внутрішнього каліброваного RC-генератора. Якщо вико-
ристовується як вивід тактування, його не можна використовувати
як вивід вводу-виводу.

TOSC1: Вивід 1 генератора таймера. Використовується, лише
якщо внутрішній калібрований RC-генератор вибрано як дже-
рело тактування мікросхеми, а асинхронний таймер увімкнено
за допомогою правильного налаштування в ASSR. Коли біт AS2
в ASSR встановлено (один), щоб увімкнути асинхронне такту-
вання Timer/Counter2, вивід PB6 від’єднується від порту та стає
входом підсилювача інвертувального генератора. У цьому режимі
до цього контакту підключається кварцовий генератор, і цей кон-
такт не можна використовувати як контакт введення/виведення.

Якщо PB6 використовується як вивід тактування, DDB6,
PORTB6 і PINB6 читатимуться як 0.

SCK – порт B, біт 5
SCK: Вихід тактового сигналу головного або вхід тактового сиг-

налу підлеглого приладу шини SPI. Коли SPI увімкнено як підлег-
лий, цей контакт налаштовано як вхід незалежно від налаштування
DDB5. Коли SPI увімкнено як головний, напрям даних цього кон-
такту контролюється DDB5. Коли SPI змушує вивід бути входом,
підтягування все ще керується бітом PORTB5.

MISO – порт B, біт 4
MISO: вхід даних головного або вихід даних підлеглого приладу

шини SPI. Коли SPI увімкнено як головний, цей контакт налашто-
вано як вхід незалежно від налаштування DDB4. Коли SPI увімк-
нено як підлеглий, напрям даних цього контакту контролюється

613	 Цифрові порти вводу-виводу мікроконтролерів сімейства AVR

DDB4. Коли SPI змушує вивід бути входом, підтягування все
ще керується бітом PORTB4.

MOSI/OC2 – порт B, біт 3
MOSI: вихід даних головного або вхід даних підлеглого при-

ладу шини SPI. Коли SPI увімкнено як підлеглий, цей контакт
налаштовано як вхід незалежно від налаштування DDB3. Коли SPI
увімкнено як головний, напрям даних цього контакту контролю-
ється DDB3. Коли SPI змушує вивід бути входом, підтягування все
ще керується бітом PORTB3.

OC2, вихід збігу при порівнянні: вивід PB3 може служити
зовнішнім виходом для збігу при порівнянні таймера-лічильника
2. Вивід PB3 має бути налаштований як вихід (DDB3 встановлено
(один)), щоб виконувати цю функцію. Вивід OC2 також є вихідним
виводом для функції ШІМ таймера.

SS/OC1B – порт B, біт 2
SS: Вибір підлеглого приладу шини SPI. Коли SPI увімкнено

як підлеглий, цей контакт налаштовано як вхід, незалежно від
налаштування DDB2. Як підлеглий, SPI активується, коли на цьому
виводі знаходиться низький рівень. Коли SPI увімкнено як голов-
ний, напрям даних цього контакту контролюється DDB2. Коли SPI
змушує вивід бути входом, підтягуванням все ще можна керувати
бітом PORTB2.

OC1B, вихід збігу при порівнянні: Вивід PB2 може служити
зовнішнім виходом для збігу при порівнянні В таймера-лічильника
1. Вивід PB2 має бути налаштований як вихід (DDB2 встановлений
(один)), щоб виконувати цю функцію. Вивід OC1B також є вихід-
ним виводом для таймера в режимі ШІМ.

OC1A – порт B, біт 1
OC1A, вихід збігу при порівнянні: вивід PB1 може служити

зовнішнім виходом для збігу при порівнянні В таймера-лічиль-
ника 1. Вивід PB1 має бути налаштований як вихід (DDB1 вста-
новлений (один)), щоб виконувати цю функцію. Вивід OC1A також
є вихідним виводом для таймера в режимі ШІМ.

ICP1 – порт B, біт 0
ICP1 – Вивід захоплення вхідного сигналу: вивід PB0 може діяти

як вхід захоплення вхідного сигналу для таймера-лічильника 1.

62 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Таблиця 3.2 – Альтернативні функції порту В
Вивід Альтернативні функції

РВ7 XTAL2 (вивід 2 тактового генератора мікросхеми)
TOSC2 (вивід 2 генератора таймера)

РВ6
XTAL1 (вивід 1 генератора тактового сигналу або вхід
зовнішнього тактового сигналу)
TOSC1 (вивід 1 генератора таймера)

РВ5 SCK (вхід/вихід тактового сигналу шини SPI)
РВ4 MISO (вхід головного/вихід підлеглого приладу шини SPI)

РВ3 MOSI (вихід головного/вхід підлеглого приладу шини SPI)
OC2 (вихід збігу при порівнянні таймера-лічильника 2)

РВ2 SS (вхід/вихід вибору підлеглого приладу шини SPI)
OC1B (вихід збігу при порівнянні В таймера-лічильника 1)

РВ1 OC1А (вихід збігу при порівнянні А таймера-лічильника 1)
РВ0 ICP1 (вхід захоплення сигналу таймера-лічильника 1)

Альтернативні функції порту С:
RESET – порт C, біт 6
RESET, вхід скиду: коли запобіжник RSTDISBL запрограмо-

вано, цей контакт функціонує як звичайний контакт вводу-виводу,
і мікроконтролер повинен покладатися на скид при включенні жив-
лення та скид при зниженні напруги, як на джерела скиду. Коли
запобіжник RSTDISBL не запрограмований, схема скиду підклю-
чається до виводу, і його не можна використовувати як контакт
вводу-виводу. Якщо PC6 використовується як вхід скиду, DDC6,
PORTC6 і PINC6 читатимуться як 0.

SCL/ADC5 – порт C, біт 5
SCL, тактовий сигнал двопровідного послідовного інтерфейсу

TWI: коли біт TWEN у TWCR встановлено (один) для ввімкнення TWI,
вивід PC5 від’єднується від порту та стає контактом вводу-виводу
послідовного тактового сигналу для двопровідного інтерфейсу.
У цьому режимі на виводі є фільтр для придушення викидів напруги,
коротших за 50 нс, у вхідному сигналі, а вивід керується драйвером
з відкритим стоком з обмеженням швидкості наростання.

PC5 також можна використовувати як вхідний канал АЦП 5.
Зауважте, що вхідний канал АЦП 5 використовує цифрове живлення.

633	 Цифрові порти вводу-виводу мікроконтролерів сімейства AVR

SDA/ADC4 – порт C, біт 4
SDA, дані двопровідного послідовного інтерфейсу TWI: коли

біт TWEN у TWCR встановлено (один) для ввімкнення TWI, вивід
PC4 від’єднується від порту та стає контактом вводу-виводу послі-
довних даних для двопровідного інтерфейсу. У цьому режимі
на виводі є фільтр для придушення викидів напруги, коротших за
50 нс, у вхідному сигналі, а вивід керується драйвером відкритого
стоку з обмеженням швидкості наростання.

PC4 також можна використовувати як вхідний канал АЦП 4.
Зауважте, що вхідний канал 4 АЦП використовує цифрове
живлення.

ADC3 – порт C, біт 3
PC3 також можна використовувати як вхідний канал АЦП 3.

Зауважте, що вхідний канал 3 АЦП використовує аналогове живлення.
ADC2 – порт C, біт 2
PC2 також можна використовувати як вхідний канал АЦП 2.

Зауважте, що вхідний канал 2 АЦП використовує аналогове живлення.
ADC1 – порт C, біт 1
PC1 також можна використовувати як вхідний канал АЦП 1.

Зауважте, що вхідний канал АЦП 1 використовує аналогове живлення.
ADC0 – порт C, біт 0
PC0 також можна використовувати як вхідний канал АЦП 0.

Зауважте, що вхідний канал АЦП 0 використовує аналогове
живлення.

Таблиця 3.3 – Альтернативні функції порту С
Вивід Альтернативні функції
РС6 RESET (вхід скиду)

РС5 ADC5 (вхідний канал АЦП 5)
SCL (лінія тактування шини TWI)

РС4 ADC4 (вхідний канал АЦП 4)
SDA (лінія даних шини TWI)

РС3 ADC3 (вхідний канал АЦП 3)
РС2 ADC2 (вхідний канал АЦП 2)
РС1 ADC1 (вхідний канал АЦП 1)
РС0 ADC0 (вхідний канал АЦП 0)

64 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Альтернативні функції порту D:
AIN1 – порт D, біт 7
AIN1, негативний вхід аналогового компаратора. Налаштуйте

контакт порту як вхід із вимкненим внутрішнім підтягуванням,
щоб функція цифрового порту не перешкоджала роботі аналого-
вого компаратора.

AIN0 – порт D, біт 6
AIN0, позитивний вхід аналогового компаратора. Налаштуйте

контакт порту як вхід із вимкненим внутрішнім підтягуванням,
щоб функція цифрового порту не перешкоджала роботі аналого-
вого компаратора.

T1 – порт D, біт 5
T1, вхід зовнішнього лічильника таймера-лічильника 1.
XCK/T0 – порт D, біт 4
XCK, зовнішній сигнал тактування USART.
T0, вхід зовнішнього лічильника таймера-лічильника 0.
INT1 – порт D, біт 3
INT1, зовнішнє джерело переривання 1: вивід PD3 може слу-

жити зовнішнім джерелом переривання.
INT0 – порт D, біт 2
INT0, зовнішнє джерело переривання 0: вивід PD2 може слу-

жити зовнішнім джерелом переривання.
TXD – порт D, біт 1
TXD, передача даних (вихід даних для USART). Коли передавач

USART увімкнено, цей контакт налаштовано як вихід незалежно
від значення DDD1.

RXD – порт D, біт 0
RXD, прийом даних (контакт для вводу даних для USART).

Коли приймач USART увімкнено, цей контакт налаштовано
як вхід незалежно від значення DDD0. Коли USART змушує цей
вивід бути входом, підтягування все ще може контролюватися
бітом PORTD0.

653	 Цифрові порти вводу-виводу мікроконтролерів сімейства AVR

Таблиця 3.4 – Альтернативні функції D
Вивід Альтернативні функції
РD7 AIN1 (негативний вхід аналогового компаратора)
РD6 AIN0 (позитивний вхід аналогового компаратора)
РD5 T1 (вхід зовнішнього лічильника таймера-лічильника 1)

РD4 XCK (вхід/вихід зовнішнього сигналу тактування USART)
T0 (вхід зовнішнього лічильника таймера-лічильника 0)

РD3 INT1 (вхід зовнішнього переривання 1)
РD2 INT0 (вхід зовнішнього переривання 0)
РD1 TXD (вихідний контакт USART)
РD0 RXD (вхідний контакт USART)

3.4 Опис регістрів вводу-виводу

На рисунках 3.7–3.9 показані регістри вводу-виводу, що вико-
ристовуються для керуванням портами вводу-виводу мікроконтро-
лера ATMega8. Як можна бачити, всі вони є однотипними і відріз-
няються лише останньою літерою, що відповідає назві порту.

У порті С старший біт регістрів DDRC, PORTC та PINC
завжди читається як нуль, оскільки вивід РС7 відсутній у цьому
мікроконтролері.

Рисунок 3.7 – Регістри вводу-виводу порту В

66 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

3.5 Бітові операції

Біти та байти
Біт може приймати одне з двох можливих значень: 1 або 0 (ана-

логічно: увімк/вимк, встановлено/очищено, високий/низький логіч-
ний рівень). Декілька бітів утворюють число в двійковому вигляді,
де кожен біт є одним розрядом даного числа. В мікроконтролерах
AVR 8 бітів з’єднані разом, формують один байт, в якому молодший
біт (LSB – Least Significant Bit) знаходиться справа. Нумерація бітів
починається з нуля від молодшого біта. Для прикладу розглянемо

 Рисунок 3.8 – Регістри вводу-виводу порту С

Рисунок 3.9 – Регістри вводу-виводу порту D

673	 Цифрові порти вводу-виводу мікроконтролерів сімейства AVR

десяткове число 15. Його можна відобразити у двійковій 8-бітній
формі:

00001111
Чотири молодші біти встановлені.
Інший приклад, десяткове число 40, відображене у двійковій

формі:
00101000
Біти 3 та 5 встановленні.
У програмах мовою C для мікроконтролерів AVR числові зна-

чення можуть виражатися у трьох формах, залежно від контек-
сту або вибору програміста. Шістнадцяткові числа визначаються
з використанням 0x-префіксу, двійкові – 0b-префіксу. Наступний
C код демонструє три варіанти ініціалізації змінних десятковим
значенням 15.

uint8_t a = 15; // десяткове значення
uint8_t b = 0x0F; // шістнадцяткове
uint8_t c = 0b00001111; // двійкове

uint8_t – один з типів даних рівноширокого цілого типу, зі стан-
дарту C99. Стандарт передбачає 8-бітний беззнаковий цілий тип.
Типи даних стандарту C99 будуть і надалі використовуватись
у цьому посібнику.

Бітові операції. Виходячи з того, що кожен окремий біт – носій
важливої інформації при програмуванні для AVR мікроконтроле-
рів, бітові операції є значною складовою цього процесу.

У результаті виконання побітової операції AND, вихідні біти буде
встановлено лише у випадку, коли у обох операндах вони дорівнюють
одиниці. Іншими словами, біт n буде встановлено, якщо у першому
операнді та (AND) у другому операнді біт n також встановлено.

У мові програмування C побітовий оператор AND позначається
одинарним знаком амперсанд.

uint8_t a = 0xAA; // 10101010
uint8_t b = 0x0F; // 00001111
uint8_t c = a & b; //00001010

68 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

У результаті виконання побітової операції OR, вихідні біти буде
встановлено у випадку, якщо хоча б в одному з операндів вони також
були встановлені. Іншими словами, біт n буде встановлено, якщо у пер-
шому операнді або (OR) у другому операнді біт n також встановлено.

У мові програмування C для позначення побітової операції
OR використовується одинарна вертикальна риска (|).

uint8_t a = 0xAA; // 10101010
uint8_t b = 0x0F; // 00001111
uint8_t c = a | b; //10101111

У результаті виконання побітової операції XOR (виключне OR)
вихідні біти буде встановлено тільки в тому разі, якщо в одному
з операндів вони були встановлені, а в іншому ні. Іншими словами,
біт n буде встановлено, якщо виключно в одному з операндів біт
n також встановлено.

Оператор XOR у мові C позначається символом каретки (^).

uint8_t a = 0xAA; // 10101010
uint8_t b = 0x0F; // 00001111
uint8_t c = a ^ b; //10100101

Операція NOT, відома як порозрядне доповнення, є унарною
операцією. Це означає, що така операція потребує лише одного
операнду, а не двох, як інші. NOT просто перетворює кожен біт
на протилежний. Тобто, кожен біт, що дорівнює 1, перетворюється
на 0, а кожен, що дорівнює 0, перетворюється на 1.

У мові програмування C операція NOT позначається знаком
тильда (~).

uint8_t a = 0xAA; // 10101010
uint8_t b = ~a; // 01010101

Операція зсуву (shift), переміщує всі біти вліво або вправо. При
зсуві вліво, біти зсуваються «назовні» зліва, та нульові біти зсува-
ються «всередину» справа.

693	 Цифрові порти вводу-виводу мікроконтролерів сімейства AVR

В мові програмування C два знаки «менше ніж» () позначають
операцію зсуву вправо. З правої сторони від оператора вказується
числове значення – кількість розрядів для зсуву.

uint8_t a = 0x99; // 10011001
uint8_t b = a<<1; // 00110010
uint8_t c = a>>3; // 00010011

Очищення та встановлення бітів. Встановлення та очищення
окремого біту, без зміни всіх інших бітів, одна з найважливіших
задач при програмуванні мікроконтролерів AVR. Ви будете кори-
стуватись цією схемою знов і знов.

Отже, загалом для керування окремо взятим бітом, зазвичай, потрі-
бен байт в якому нас цікавить лише один встановлений біт. Цей байт
надалі, за допомогою побітових операцій, можна використовувати для
керування потрібним бітом. Такий принцип керування бітами назива-
ється бітова маска. Для прикладу, розглянемо бітову маску для біта
номер 2 : 00000100, та бітову маску для біту номер 6 : 01000000.

Якщо взяти число 1, то маємо двійкове число в якому встанов-
лено лише нульовий розряд, але за допомогою зсуву вліво на деяку
кількість розрядів, можна отримати потрібну маску. Для прикладу
наведена бітова маска для біту номер 2, яку отримали з числа 1
за допомогою зсуву вліво на два розряди.

Для встановлення потрібного біту у мові C, застосовується опе-
рація OR до потрібного байту разом з бітовою маскою.

uint8_t a = 0x08; // 00001000
// встановлення біту 2
a |= (1<<2); // 00001100

Для встановлення більше ніж одного біту використовується
декілька операторів OR.

uint8_t a = 0x08; // 00001000
// встановлення бітів 1 та 2
a |= (1<<2)|(1<<1); // 00001110

70 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Для очищення біту застосовується операція NOT до бітової
маски, у результаті тільки потрібний біт буде не встановлено, після
цього потрібно застосувати операцію AND до потрібного байту
разом з бітовою маскою.

uint8_t a = 0x0F; // 00001111
// очищення біту 2
a &= ~(1<<2); // 00001011

Так само – для очищення більше ніж одного біту використовує-
ться декілька операторів OR.

uint8_t a = 0x0F; // 00001111
// очищення бітів 1 та 2
a &= ~((1<<2)|(1<<1)); // 00001001

Для того, щоб, так би мовити, перемикати потрібний біт, вста-
новлюючи його, або в 1, або в 0, можна скористатись операцією
XOR та, знов ж таки, – бітовою маскою.

uint8_t a = 0x0F; // 00001111
// змінення значення біту 2
a ^= (1<<2); // 00001011
a ^= (1<<2); // 00001111

Макрос керування значенням біту _BV(). В AVR Libc визна-
чено макрос _BV() для керування значенням біту. Цей макрос зручно
використовувати для отримання потрібної бітової маски. Головна
ідея в тому, щоб зробити код більш читабельним використовуючи
побітовий зсув вліво. Застосування _BV(n) еквівалентно вживанню
(1<<n).

// встановлення біту 0, використовуючи _BV()
a |= _BV(0);
// встановлення біту 0, використовуючи зсув
a |= (1<<0);

713	 Цифрові порти вводу-виводу мікроконтролерів сімейства AVR

Який метод використовувати – залежить від вас. Ви побачили
обидва методи в дії і тепер зможете вибрати, що для вас зручніше.
Також, треба зазначити, що оскільки макрос _BV() є унікальним для
GCC, то такий метод, на відміну від (1<<n), не сумісний з іншими
компіляторами. Але цим зазвичай не дуже переймаються аматори,
та й не зрідка _BV() виявляється зручнішим для початківців.

Перевірка значення біту. В операторах умовного переходу або
в циклах іноді треба перевіряти значення окремого біту у байті. Для
цього використовується операція побітового AND.

Перевірка на те, чи є значення біту логічною одиницею, запису-
ється наступним чином:

uint8_t a = 0x0F; // 00001111
// Перевірка, чи дорівнює одиниці біт № 5 у числі а
if (a & (1 << 5))
{
//Зробити щось
}

Вираз (a & (1 << 5)) буде істинним тільки тоді, коли біт № 5
у числі а дорівнює 1, у всіх інших випадках цей вираз буде хибним.

У цих перевірках можна також використовувати макрос _BV():

if (a & _BV(5))
{
//Зробити щось
}

Перевірка на те, чи є значення біту логічним нулем виконується
аналогічним чином, тільки результат перевірки інвертується:

uint8_t a = 0x0F; // 00001111
// Перевірка, чи дорівнює нулю біт № 5 у числі а
if (!(a & (1 << 5)))
{
//Зробити щось
}

72 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Можна робити інверсію не всього результату, а тільки числа, яке
перевіряється. Результат перевірки буде таким самим:

if (~a & (1 << 5))
{
//Зробити щось
}

З точки зору процесору, перший варіант запису є кращим,
оскільки в ньому є команди умовного переходу і якщо результат
операції дорівнює нулю, і якщо він відрізняється від нуля. У дру-
гому випадку треба виконати додаткову операцію інверсії, що від-
німає процесорний час та займає додаткову пам’ять.

Контрольні запитання до теми 3
1.	 Які основні функції виконують вихідні буфери портів вводу-виводу

мікроконтролера AVR ATMega8?
2.	 Які переваги має можливість зміни напрямку та стану виводів порту

без впливу на інші виводи?
3.	 Як відбувається активація підтягувальних резисторів для вхідних

виводів у мікроконтролері ATMega8?
4.	 Які функції виконують регістри DDRx, PORTx і PINx у керуванні пор-

тами вводу-виводу мікроконтролера?
5.	 Яким чином можна відключити всі підтягувальні резистори у всіх

портах мікроконтролера AVR?
6.	 Які функції виконує тригер синхронізації у системі читання стану

виводу мікроконтролера AVR ATMega8?
7.	 Які проблеми вирішує використання синхронізатора для читання

стану виводу мікроконтролера?
8.	 Як впливає час затримки та метастабільність на зчитування стану

виводу через PIN регістри мікроконтролера?
9.	 Які інструкції необхідно використовувати для коректного зчитування

програмно встановленого значення піна у мікроконтролері AVR?
10.	 Які стратегії рекомендується використовувати для мінімізації спожи-

вання енергії на невикористовуваних виводах мікроконтролера?
11.	 Які основні альтернативні функції порту В представлені в мікро-

контролерах AVR?

733	 Цифрові порти вводу-виводу мікроконтролерів сімейства AVR

12.	 Які альтернативні функції доступні для порту С, і як вони впливають
на функції вводу-виводу та інші операції?

13.	 Які альтернативні функції доступні для порту D, і в яких випадках
вони використовуються?

14.	 Яка роль виводів XTAL1 і TOSC1 на порту B, і чому їх не можна вико-
ристовувати як вивід вводу-виводу у деяких випадках?

15.	 Як альтернативна функція SCL на порту C впливає на взаємодію
з двопровідним послідовним інтерфейсом TWI, і які особливості
її використання?

16.	 Які можливі значення може приймати один біт в мікроконтролерах
AVR, і як це відображається у двійковій формі?

17.	 Які існують форми представлення числових значень в мові програму-
вання C для AVR, зокрема для числа 15?

18.	 Які операції виконуються при побітовому AND, і як вони впливають
на біти операндів?

19.	 Яким чином за допомогою побітового OR можна комбінувати біти двох
чисел?

20.	 Як відбувається операція побітового XOR і в яких випадках вона корисна?
21.	 Як працює операція побітового NOT і що вона робить з кожним бітом

операнду?
22.	 Як відбувається зсув бітів вліво та вправо, і як це використовується

у програмуванні мікроконтролерів?
23.	 Яким чином можна встановити окремий біт у визначеному байті

за допомогою бітової маски?
24.	 Як здійснити очищення конкретного біту у байті за допомогою побі-

тової маски та операції AND?
25.	 Які практичні застосування можуть мати перевірки значення кон-

кретного біту за допомогою побітового AND у програмуванні
мікроконтролерів?

Використана література
1.	 Конспект лекцій з дисципліни «Мікропроцесорна техніка» для здо-

бувачів вищої освіти першого (бакалаврського) рівня зі спеціа-
льності 153 «Мікро- та наносистемна техніка» за освітньо-про-
фесійною програмою «Мікро- та наносистемна техніка» та зі
спеціальності 171 «Електроніка» за освітньо-професійною про-
грамою «Електроніка» / уклад. О. М. Гулєша. Кам’янське : ДДТУ,
2020. 57 с.

2.	 Atmel: ATMega8, ATmega8L : технічна документація на мікроконтро-
лер. URL: https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-
2486-8-bit-AVR-microcontroller-ATmega8_L_datasheet.pdf

https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-2486-8-bit-AVR-microcontroller-ATmega8_L_datasheet.pdf

4___
СИСТЕМНИЙ СКИД, ПЕРЕРИВАННЯ

ТА РОБОЧІ РЕЖИМИ
МІКРОКОНТРОЛЕРІВ СІМЕЙСТВА AVR

Метою вивчення теми є ознайомлення з системами тактування,
режимами роботи мікроконтролерів сімейства AVR та проведенням
системного скиду та переривання.

Завдання вивчення теми збігаються з переліком питань для
розгляду, що наведений нижче.

Перелік питань до розділу:
4.1.	 Система тактування.
4.2.	 Режими роботи мікроконтролера.
4.3.	 Системний скид.
4.4.	 Сторожовий таймер.
4.5.	 Переривання.

4.1 Система тактування

На рисунку 4.1 представлені основні системи тактування мікро-
контролерів AVR та їх розподіл. Не всі тактові сигнали повинні
бути активними в певний час. Щоб зменшити енергоспоживання,
тактування модулів, які не використовуються, можна зупинити
за допомогою різних режимів сну.

Тактовий сигнал ЦП – clkCPU подається до частин системи,
пов’язаних з роботою ядра AVR. Прикладами таких модулів є регі-
стровий файл загального призначення, регістр стану та пам’ять
даних, що містить покажчик стека. Зупинення тактового сиг-
налу процесора зупиняє виконання ядром загальних операцій
і обчислень.

754	 Системний скид, переривання та робочі режими мікроконтролерів сімейства AVR

Тактовий сигнал вводу-виводу – clkI/O використовується біль-
шістю модулів вводу-виводу, такими, як таймери/лічильники, SPI
та USART. Тактовий сигнал вводу-виводу також використовується
модулем зовнішнього переривання, але зауважте, що деякі зовнішні
переривання виявляються асинхронною логікою, що дозволяє вияв-
ляти такі переривання, навіть якщо тактовий сигнал вводу-виводу
зупинено. Також зауважте, що розпізнавання адреси в модулі TWI
виконується асинхронно, навіть коли clkI/O зупиняється, що дозво-
ляє приймати адресу TWI в усіх режимах сну.

Тактовий сигнал Flash пам’яті – clkFLASH контролює роботу
інтерфейсу Flash. Тактовий сигнал флеш-пам’яті зазвичай актив-
ний одночасно з тактовим сигналом ЦП.

Рисунок 4.1 – Основні системи тактування мікроконтролерів AVR

та їх розподіл

76 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Тактовий сигнал асинхронного таймера – clkASY дозволяє так-
тувати асинхронний таймер-лічильник безпосередньо від зовніш-
нього кристала синхронізації 32 кГц. Спеціальний домен тактування
дозволяє використовувати цей таймер-лічильник як лічильник реаль-
ного часу, навіть коли пристрій перебуває в режимі сну. Асинхронний
таймер-лічильник використовує ті самі контакти XTAL, що й
основний тактовий генератор процесора, але вимагає, щоб основна
тактова частота ЦП хоча б у чотири рази перевищувала частоту гене-
ратора. Таким чином, асинхронна робота доступна лише тоді, коли
чіп працює від внутрішнього тактового генератора.

Тактовий сигнал АЦП – clkADC. АЦП забезпечений спеціаль-
ним доменом тактування. Це дозволяє зупинити ЦП і тактовий сиг-
нал вводу-виводу, щоб зменшити шум, створюваний цифровими
схемами. Це дає більш точні результати перетворення АЦП.

Джерела тактування. Мікроконтролер має такі параметри
джерел тактування, які можна вибрати за допомогою бітів фьюзів,
як показано у таблиці 4.1. Тактовий сигнал з вибраного джерела
вводиться в тактовий генератор AVR і направляється до відповід-
них модулів.

Таблиця 4.1 – Джерела тактування, відповідні бітам фьюзів
Джерело тактування CKSEL3..0
Зовнішній кварцовий/керамічний резонатор 1111-1010
Зовнішній низькочастотний кварцовий резонатор 1001
Зовнішній RC-осцилятор 1000-0101
Калібрований внутрішній RC-осцилятор 0100-0001
Зовнішній тактовий сигнал 0000

Коли ЦП виходить із режиму вимкнення або енергозбереження,
вибране джерело синхронізації використовується для визначення
часу запуску, забезпечуючи стабільну роботу осцилятора перед
початком виконання інструкцій. Коли ЦП запускається після ски-
дання, існує додаткова затримка, яка дозволяє досягти стабільного
рівня живлення перед початком нормальної роботи. Тактовий гене-
ратор сторожового таймера використовується для визначення часу
цієї частини часу запуску в реальному часі.

774	 Системний скид, переривання та робочі режими мікроконтролерів сімейства AVR

Пристрій поставляється з CKSEL = «0001» і SUT = «10» (внут-
рішній RC-генератор 1 МГц, напруга живлення повільно зростає).

4.2 Режими роботи мікроконтролера

Управління живленням і режими сну. Режими сну дозволяють
програмі вимикати невикористовувані модулі в мікроконтролері,
заощаджуючи таким чином енергію. AVR забезпечує різні режими
сну, що дозволяє користувачеві налаштовувати енергоспоживання
відповідно до вимог програми.

Щоб увійти в будь-який з п’яти режимів сну, біт SE в регістрі
MCUCR має бути встановлений, як логічна одиниця, після чого
повинна бути виконана інструкція SLEEP. Біти SM2, SM1 і SM0
у регістрі MCUCR визначають, який режим сну (неактивний, змен-
шення шуму АЦП, вимкнення, енергозбереження або очікування)
буде активовано інструкцією SLEEP (дивіться таблицю 4.2). Якщо
дозволене переривання виникає, коли MCU перебуває в режимі сну,
MCU прокидається. Після цього MCU зупиняється на чотири цикли
на додаток до часу запуску, він виконує функцію обробки пере-
ривання та відновлює виконання з інструкції після SLEEP. Вміст
реєстрового файлу та SRAM не змінюється, коли пристрій вихо-
дить із режиму сну. Якщо скидання відбувається під час режиму
сну, MCU прокидається та починає виконання програми з вектору
скиду.

Таблиця 4.2 – Визначення режиму сну
SM2 SM1 SM0 Режим сну

0 0 0 Неактивний
0 0 1 Зменшення шуму АЦП
0 1 0 Вимкнення
0 1 1 Енергозбереження
1 0 0 Зарезервоване
1 0 1 Зарезервоване
1 1 0 Очікування

78 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Регістр керування мікроконтролером – MCUCR містить біти
для керування живленням.

Рисунок 4.2 – Регістр керування мікроконтролером – MCUCR

Біт 7 – SE: увімкнення режиму сну
Біт SE повинен бути встановлений, як логічна одиниця, щоб

MCU перейшов у режим сну, коли виконується інструкція SLEEP.
Щоб уникнути переходу MCU в режим сну, якщо це не є метою
програміста, рекомендується встановити біт Sleep Enable (SE) без-
посередньо перед виконанням інструкції SLEEP.

Біти 6..4 – SM2..0: Біти вибору режиму сну 2, 1 і 0
Ці біти вибирають між п’ятьма доступними режимами сну,

як показано в таблиці 4.2.
Неактивний режим. Коли біти SM2..0 встановлені як 000,

інструкція SLEEP змушує MCU перейти в неактивний режим, зупи-
няючи ЦП, але дозволяючи SPI, USART, аналоговому компаратору,
АЦП, TWI, таймерам/лічильникам, сторожовому таймеру і системі
переривання продовжувати роботу. Цей режим сну фактично зупиняє
clkCPU та clkFLASH, дозволяючи іншим тактовим сигналам працювати.
Неактивний режим дозволяє мікроконтролеру виходити з режиму
сну через зовнішні переривання, а також внутрішні, такі як пере-
повнення таймера та переривання USART. Якщо пробудження від
переривання аналогового компаратора не потрібне, аналоговий ком-
паратор можна вимкнути, встановивши біт ACD у регістрі керування
та стану аналогового компаратора – ACSR. Це зменшить споживання
енергії в режимі очікування. Якщо АЦП увімкнено, перетворення
починається автоматично при вході в цей режим.

Режим зменшення шуму АЦП. Коли біти SM2..0 встановлені
як 001, інструкція SLEEP змушує MCU перейти в режим змен-
шення шуму АЦП, зупиняючи ЦП, але дозволяючи АЦП, зовнішнім

794	 Системний скид, переривання та робочі режими мікроконтролерів сімейства AVR

перериванням, контролю адреси TWI, таймеру/лічильнику 2 і сто-
рожовому таймеру продовжувати роботу (якщо вони ввімкнені).
Цей режим сну фактично зупиняє clkI/O, clkCPU та clkFLASH, дозволя-
ючи іншим тактовим сигналам працювати.

Це покращує шумове середовище для АЦП, що дозволяє про-
водити вимірювання з вищою роздільною здатністю. Якщо АЦП
увімкнено, перетворення починається автоматично при вході в цей
режим. Крім переривання по завершенню перетворення АЦП,
тільки зовнішнє скидання, скидання від сторожового таймера, ски-
дання від детектору зниженої напруги, переривання по збігу адреси
TWI, переривання таймера-лічильника 2, переривання готовності
SPM/EEPROM або зовнішнє переривання INT0 або INT1, може
розбудити MCU з режиму зменшення шуму АЦП.

Режим вимкнення. Коли біти SM2..0 встановлені як 010,
інструкція SLEEP змушує MCU перейти в режим вимкнення жив-
лення. У цьому режимі зовнішній генератор зупиняється, тоді
як зовнішні переривання, контроль адреси TWI та сторожовий
таймер продовжують працювати (якщо вони ввімкнені). Лише
зовнішнє скидання, скидання від сторожового таймера, скидання
при зниженні напруги живлення, переривання збігу адреси TWI
або зовнішнє переривання INT0 або INT1 можуть розбудити MCU.
Цей режим сну фактично зупиняє всі джерела тактування, дозволя-
ючи працювати лише асинхронним модулям.

Зауважте, що якщо зовнішнє переривання, викликане рівнем,
використовується для пробудження з режиму вимкнення жив-
лення, змінений рівень потрібно утримувати деякий час, щоб роз-
будити MCU.

Під час пробудження з режиму вимкнення існує затримка від
моменту початку стану пробудження до моменту, коли пробу-
дження дійсно настає. Це дозволяє перезапустити та стабілізувати
тактові сигнали після зупинки. Період пробудження визначається
тими самими фьюзами CKSEL, які визначають період очікування
скидання.

Режим енергозбереження. Коли біти SM2..0 встановлені як 011,
інструкція SLEEP змушує MCU перейти в режим енергозбереження.
Цей режим ідентичний режиму вимкнення, за одним винятком:

80 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Якщо таймер-лічильник 2 тактується асинхронно, тобто встанов-
лено біт AS2 у ASSR, таймер-лічильник 2 працюватиме під час сну.
Пристрій може вийти з режиму сну через подію «переповнення тай-
мера» або «збіг при порівнянні» від таймера-лічильника 2, якщо від-
повідні біти дозволу переривань встановлені в TIMSK, а біт дозволу
глобального переривання встановлений в SREG.

Якщо асинхронний таймер НЕ працює асинхронно, рекоменду-
ється використовувати режим вимкнення живлення замість режиму
енергозбереження, оскільки вміст регістрів в асинхронному тай-
мері слід вважати невизначеним після пробудження в режимі енер-
гозбереження, якщо AS2 дорівнює 0. Цей режим сну фактично
зупиняє всі годинники, крім clkASY, дозволяючи працювати лише
асинхронним модулям, включаючи таймер-лічильник 2, якщо він
тактується асинхронно.

Режим очікування. Коли біти SM2..0 дорівнюють 110 і вибрано
опцію тактування від зовнішнього резонатора, інструкція SLEEP
змушує MCU перейти в режим очікування. Цей режим ідентичний
режиму вимкнення, за винятком того, що осцилятор продовжує
працювати. В режимі очікування пристрій виходить з режиму сну
за 6 тактів.

Мінімізація енергоспоживання. Є кілька питань, які слід врахову-
вати, намагаючись мінімізувати споживання електроенергії в системі,
керованій AVR. Загалом, режими сну слід використовувати якомога
частіше, а тип режиму сну слід вибирати таким чином, щоб працю-
вало якомога менше функцій пристрою. Усі непотрібні функції слід
відключити. Зокрема, наступні модулі можуть потребувати особливої
уваги, якщо ви намагаєтесь досягти найменшого енергоспоживання.

Аналого-цифровий перетворювач (АЦП). Якщо він ввімкне-
ний, АЦП буде залишатися ввімкненим в усіх режимах сну. Щоб
заощадити енергію, АЦП слід вимкнути перед переходом у режим
сну. Коли АЦП вимкнеться та знову ввімкнеться, наступне перетво-
рення буде розширеним.

Аналоговий компаратор. Під час переходу в неактивний режим
аналоговий компаратор слід вимкнути, якщо він не використовує-
ться. Під час входу в режим зменшення шуму АЦП аналоговий
компаратор має бути вимкнено. В інших режимах сну аналоговий

814	 Системний скид, переривання та робочі режими мікроконтролерів сімейства AVR

компаратор автоматично вимикається. Проте, якщо аналоговий
компаратор налаштовано на використання внутрішньої опорної
напруги як вхідної, аналоговий компаратор слід вимкнути в усіх
режимах сну. Інакше внутрішня опорна напруга буде ввімкнена
незалежно від режиму сну.

Детектор зниження напруги живлення. Якщо детектор зни-
ження напруги живлення не потрібен у програмі, цей модуль слід
вимкнути. Якщо детектор зниження напруги ввімкнений фьюзом
BODEN, він залишиться ввімкненим в усіх режимах сну, а отже,
завжди споживатиме електроенергію. У режимах глибшого сну
це значно впливає на загальне споживання струму.

Внутрішня опорна напруга. Внутрішня опорна напруга буде
ввімкнена, коли це необхідно для детектора зниження напруги жив-
лення, аналогового компаратора або АЦП. Якщо ці модулі вимк-
нено, як описано в розділах вище, внутрішня опорна напруга буде
вимкнена, і вона не споживатиме електроенергію. Після повторного
ввімкнення користувач повинен дозволити модулю опорної напруги
запуститися перед його використанням. Якщо опорний сигнал увімк-
нено в сплячому режимі, його можна використовувати одразу.

Сторожовий таймер. Якщо сторожовий таймер не потрібен
у програмі, цей модуль слід вимкнути. Якщо ввімкнути сторожо-
вий таймер, він буде ввімкненим в усіх режимах сну, а отже, завжди
споживатиме енергію. У режимах глибшого сну це значно вплине
на загальне споживання струму.

Порти вводу-виводу. Під час переходу в режим сну усі порти
мають бути налаштовані на використання мінімальної потуж-
ності. Найважливіше переконатися, що ніякі виводи не підключені
до резистивних навантажень. У режимах сну, коли тактовий сигнал
вводу-виводу (clkI/O) і тактовий сигнал АЦП (clkADC) зупиняються,
вхідні буфери пристрою будуть вимкнені. Це гарантує, що вхідна
логіка не споживає електроенергію, коли вона не потрібна. У деяких
випадках вхідна логіка потрібна для виявлення умов пробудження,
і тоді її буде ввімкнено. Якщо вхідний буфер увімкнено, а вхідний
сигнал залишається плаваючим або має рівень аналогового сиг-
налу, близький до VCC/2, вхідний буфер споживатиме надмірну
потужність.

82 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

4.3 Системний скид

Під час скиду всі регістри вводу-виводу встановлюються на їхні
початкові значення, і програма починає виконання з вектору скиду.
Якщо програма не використовує переривання, вектори переривань
не використовуються, і звичайний код програми можна розмістити
в цих місцях. На електричній схемі на рисунку 4.3 показано логіку
скидання.

Порти вводу-виводу AVR одразу скидаються до початкового
стану, коли джерело скиду стає активним. Для цього не потрібно,
щоб будь-який тактовий сигнал був запущений.

Рисунок 4.3 – Логіка скидання

834	 Системний скид, переривання та робочі режими мікроконтролерів сімейства AVR

Після того, як усі джерела скиду стають неактивними, запуска-
ється лічильник затримки, розтягуючи внутрішній скид. Це дозво-
ляє досягти стабільного рівня напруги перед початком нормаль-
ної роботи. Період очікування лічильника затримки визначається
користувачем за допомогою фьюзів CKSEL.

ATmega8 має чотири джерела скиду:
‒	 скид під час увімкнення. MCU скидається, коли напруга

живлення нижча за порогове значення скидання при включенні
(VPOT);

‒	 зовнішній скид. MCU скидається, коли низький рівень при-
сутній на виводі RESET довше, ніж мінімальна довжина імпульсу;

‒	 скид від сторожового таймера. MCU перезавантажується,
коли період сторожового таймера закінчується при умові, що сто-
рожовий таймер увімкнений;

‒	 скид при зниженні напруги живлення. MCU скидається, коли
напруга живлення VCC нижча за порогове значення перезапуску
(VBOT), а детектор зниження напруги увімкнено.

Регістр керування та стану мікроконтролера – MCUCSR.
Регістр керування та стану мікроконтролера надає інформацію про
те, яке джерело викликало скид мікроконтролера (рис. 4.4).

Рисунок 4.4 – Регістр керування та стану

мікроконтролера – MCUCSR

Біти 7..4 – Res: зарезервовані біти
Ці біти є зарезервованими бітами в ATmega8 і завжди читаються

як нуль.
Біт 3 – WDRF: прапор скиду від сторожового таймера
Цей біт встановлюється, якщо відбувається скид від сторожо-

вого таймера. Біт скидається при скиді під час увімкнення жив-
лення або записом логічного нуля у цей прапор.

84 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Біт 2 – BORF: прапор скиду при зниженні напруги живлення
Цей біт встановлюється, якщо відбувається скидання при

зниженні напруги живлення. Біт скидається при скиді під час
увімкнення живлення або записом логічного нуля у цей прапор.

Біт 1 – EXTRF: прапор зовнішнього скиду
Цей біт встановлюється, якщо відбувається зовнішній скид. Біт

скидається при скиді під час увімкнення живлення або записом
логічного нуля у цей прапор.

Біт 0 – PORF: прапор скиду під час увімкнення
Цей біт встановлюється, якщо відбувається скид під час

увімкнення живлення. Біт скидається тільки шляхом запису логіч-
ного нуля у цей прапор.

Щоб використовувати прапор скидання для визначення стану
скидання, користувач повинен прочитати та скинути MCUCSR яко-
мога раніше в програмі.

4.4 Сторожовий таймер

Сторожовий таймер (рис. 4.5) тактується від окремого вбудованого
генератора, який працює на частоті 1 МГц. Це типове значення при
VCC = 5 В. Керуючи попереднім дільником сторожового таймера,
інтервал скиду можна налаштувати, як показано на рисунку 4.6.

WDR – Watchdog Reset – інструкція, що скидає сторожовий тай-
мер. Сторожовий таймер також скидається, якщо його вимкнено
та коли відбувається скид мікроконтролера. Для визначення періоду
скиду можна вибрати вісім різних періодів тактового генератора.

Якщо період скидання сторожового таймера закінчується без
повторного скиду самого таймера, ATmega8 скидається, а програма
починає виконуватися з вектору скиду. Щоб запобігти випадковому
вимкненню Watchdog, слід дотримуватися спеціальної послідовно-
сті вимкнення, коли Watchdog вимкнено.

Регістр керування сторожовим таймером – WDTCR (рис. 4.7).
Біти 7..5 – Res: зарезервовані біти
Ці біти є зарезервованими бітами в ATmega8 і завжди читаються

як нуль.

854	 Системний скид, переривання та робочі режими мікроконтролерів сімейства AVR

Рисунок 4.5 – Функціональна схема сторожового таймера

Рисунок 4.6 – Значення попереднього дільника та відповідні їм

періоди очікування

Рисунок 4.7 – Регістр керування сторожовим таймером – WDTCR

86 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Біт 4 – WDCE: дозвіл зміни сторожового таймера
Цей біт потрібно встановити, коли в біт WDE записаний логіч-

ний нуль. В іншому випадку сторожовий таймер не буде вимкнено.
Після запису одиниці в цей біт, він буде апаратно скинутий в 0 після
чотирьох тактів. На рівнях безпеки 1 і 2 цей біт також потрібно
встановлювати під час зміни бітів попереднього дільника.

Біт 3 – WDE: ввімкнення сторожового таймера
Коли у WDE записується логічна одиниця, сторожовий таймер

увімкнено, а якщо у WDE записується логічний нуль, функція сто-
рожового таймера вимкнена. WDE можна очистити, лише якщо
біт WDCE має логічний рівень один. Щоб вимкнути ввімкнений
сторожовий таймер, необхідно виконати наступну процедуру:

1.  У тій самій операції запишіть логічну одиницю в WDCE
і WDE. Логічну одиницю потрібно записати в WDE, навіть якщо
він вже встановлений перед початком операції вимкнення.

2.  Протягом наступних чотирьох тактів запишіть логічний нуль
у WDE. Це вимикає сторожовий таймер.

Біти 2..0 – WDP2, WDP1, WDP0: Попередній дільник сторо-
жового таймера 2, 1 і 0

Біти WDP2, WDP1 і WDP0 визначають попередній дільник сто-
рожового таймера, коли він увімкнений.

У наступному прикладі коду показано функцію на мові C для
вимкнення WDT. У прикладі припускається, що переривання
контролюються програмою (наприклад, шляхом глобального
вимкнення переривань), щоб жодних переривань не виникало під
час виконання цих функцій.

void WDT_off(void)
{
/* Скид сторожового таймера*/
_WDR();
/* Запис логічної одиниці у WDCE та WDE */
WDTCR |= (1<<WDCE) | (1<<WDE);
/* Вимкнення сторожового таймера */
WDTCR = 0x00;
}

874	 Системний скид, переривання та робочі режими мікроконтролерів сімейства AVR

Послідовність зміни конфігурації сторожового таймера дещо
відрізняється для різних рівнів безпеки. Для кожного рівня описані
окремі процедури.

Рівень безпеки 1 (фьюз WDTON не запрограмований)
У цьому режимі сторожовий таймер спочатку вимкнено, але

його можна ввімкнути записом 1 у біт WDE без будь-яких обме-
жень. Під час зміни періоду тайм-ауту сторожового таймера або
вимкнення увімкненого сторожового таймера потрібна певна
послідовність. Щоб вимкнути ввімкнений сторожовий таймер і/або
змінити час очікування сторожового таймера, необхідно виконати
таку процедуру:

1.  В одній і тій самій операції запишіть логічну одиницю
в WDCE і WDE. Логічна одиниця повинна бути записана в WDE
незалежно від попереднього значення біта WDE.

2.  Протягом наступних чотирьох тактів в одній і тій самій опе-
рації запишіть біти WDE та WDP за бажанням, але з очищеним
бітом WDCE.

Рівень безпеки 2 (фьюз WDTON запрограмований)
У цьому режимі сторожовий таймер завжди ввімкнено, а біт

WDE завжди читаєься як одиниця. Під час зміни періоду тайм-ауту
сторожового таймера необхідна певна послідовність. Щоб змінити
тайм-аут сторожового таймера, потрібно виконати таку процедуру:

1.  В одній і тій самій операції запишіть логічну одиницю в WDCE
і WDE. Незважаючи на те, що WDE завжди встановлено, в WDE
потрібно записати одиницю, щоб розпочати часову послідовність.

2.  Протягом наступних чотирьох тактів у тій самій операції
запишіть біти WDP за бажанням, але з очищеним бітом WDCE.
Значення, записане в біт WDE, не має значення.

4.5 Переривання

AVR забезпечує кілька різних джерел переривань. Ці перери-
вання та окремий вектор скиду мають окремий програмний век-
тор у просторі пам’яті програм. Усім перериванням призначаються

88 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

окремі біти дозволу, які повинні бути встановлені, як логічні оди-
ниці разом із бітом дозволу глобального переривання в регістрі
стану, щоб дозволити переривання. Залежно від значення програм-
ного лічильника, переривання можуть бути автоматично вимкнені,
коли запрограмовані біти блокування завантажувача BLB02 або
BLB12. Ця функція покращує безпеку програмного забезпечення.

Найнижчі адреси в просторі пам’яті програм за замовчуванням
визначені як вектори скидання та переривання. Повний список
векторів показано далі. Список також визначає рівні пріоритету
різних переривань. Чим нижче адреса, тим вищий рівень пріори-
тету. RESET має найвищий пріоритет, а наступним є INT0 – запит
зовнішнього переривання 0. Вектори переривань можна перемі-
стити на початок секції завантажувача флеш-пам’яті, встановивши
біт вибору вектору переривань (IVSEL) у загальному регістрі керу-
вання перериваннями (GICR).

Коли виникає переривання, біт І «Глобальний дозвіл перери-
вань» очищується, і всі переривання вимикаються. Програмне
забезпечення користувача може записати логічну одиницю в біт I,
щоб увімкнути вкладені переривання. Тоді всі дозволені пере-
ривання можуть переривати поточну процедуру переривання.
I-біт встановлюється автоматично, коли виконується інструкція
повернення з переривання – RETI.

В основному існує два типи переривань.
Перший тип ініціюється подією, яка встановлює прапор пере-

ривання. Для цих переривань програмний лічильник переходить
до фактичного вектору переривань, щоб виконати процедуру
обробки переривань, а апаратне забезпечення очищає відповідний
прапор переривання. Прапори переривання можна також очистити
шляхом запису логічної одиниці до біта прапору, який потрібно
очистити. Якщо умова переривання виникає, коли відповідний біт
дозволу переривання скинутий, прапор переривання буде встанов-
лено та запам’ятовано, доки переривання не буде дозволено, або
прапор не буде очищений програмним забезпеченням. Подібним
чином, якщо одне або більше умов переривань виникають, коли
біт дозволу глобального переривання очищено, відповідні пра-
пори переривань будуть встановлені та запам’ятовані, доки не буде

894	 Системний скид, переривання та робочі режими мікроконтролерів сімейства AVR

встановлено біт дозволу глобального переривання, а потім викону-
ватимуться за порядком пріоритету.

Другий тип переривань запускатиметься, доки існує умова пере-
ривання. Ці переривання не обов’язково мають прапори перери-
вань. Якщо умова переривання зникає до того, як переривання буде
дозволено, переривання не буде ініційовано.

Коли AVR виходить із переривання, він завжди повертається
до основної програми та виконує ще одну інструкцію, перш ніж
буде обслуговано будь-яке очікуване переривання.

Зауважте, що регістр стану не зберігається автоматично під час
входу в програму переривання та не відновлюється під час повер-
нення з процедури переривання. Це повинно оброблятися програм-
ним забезпеченням.

Якщо використовувати інструкцію CLI для вимкнення пере-
ривань, переривання буде негайно вимкнено. Жодне переривання
не буде виконано після інструкції CLI, навіть якщо воно відбува-
ється одночасно з інструкцією CLI.

У разі використання інструкції SEI для ввімкнення переривань,
інструкція, що слідує після SEI, буде виконана перед будь-якими
незавершеними перериваннями.

Час від настання переривання до початку його виконання для
всіх увімкнених переривань мікроконтролерів AVR становить міні-
мум чотири такти. Після чотирьох тактів виконується фактична
процедура обробки переривання за адресою програмного вектора.
Протягом цього 4-тактового періоду лічильник програм зберігається
в стеку. Вектор зазвичай є переходом до процедури переривання,
і цей перехід займає три такти. Якщо під час виконання багатотак-
тової інструкції виникає переривання, ця інструкція завершується
до того, як переривання обслуговується. Якщо переривання вини-
кає, коли мікроконтролер знаходиться в режимі сну, час відповіді
на виконання переривання збільшується на чотири такти. Це збіль-
шення відбувається на додаток до часу запуску з вибраного режиму
сну. Повернення з процедури обробки переривань займає чотири
такти. Протягом цих чотирьох тактових циклів програмний лічиль-
ник (2 байти) повертається зі стеку, вказівник стека збільшується
на 2 і встановлюється біт І у регістрі SREG.

90 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Зовнішні переривання. Зовнішні переривання викликаються
виводами INT0 і INT1. Зауважте, що якщо їх ввімкнено, перери-
вання запускатимуться, навіть якщо контакти INT0..1 налаштовані
як виходи. Ця функція забезпечує спосіб генерації програмного пере-
ривання. Зовнішні переривання можуть бути викликані спадаючим
та/або наростаючим фронтом або низьким рівнем. Це налаштову-
ється за допомогою регістру керування мікроконтролером – MCUCR.
Якщо зовнішнє переривання ввімкнено та налаштоване для спрацьо-
вування по рівню, воно запускатиметься, доки контакт утримується
на низькому логічному рівні. Зауважте, що розпізнавання переривань
по спадаючому або наростаючому фронту на INT0 і INT1 вимагає
наявності тактового сигналу вводу-виводу. Переривання по низь-
кому рівню на INT0/INT1 виявляються асинхронно. Це означає, що ці
переривання можна використовувати для виведення мікроконтролера
із режимів сну, відмінних від неактивного режиму. Тактовий сигнал
вводу-виводу зупиняється в усіх режимах сну, крім неактивного.

Зауважте, що якщо переривання, викликане рівнем, використо-
вується для пробудження з режиму вимкнення живлення, зміне-
ний рівень потрібно утримувати деякий час, щоб розбудити MCU.
Це робить MCU менш чутливим до шуму. Змінений рівень двічі пере-
віряється тактовим сигналом сторожового таймера. Номінальний
період генератора сторожового таймера становить 1 мкс при 5,0 В
і 25 °C. Мікроконтролер вийде з режиму сну, якщо вхідний сигнал

Рисунок 4.8 – Вектори переривань ATMega8

914	 Системний скид, переривання та робочі режими мікроконтролерів сімейства AVR

має необхідний рівень протягом цієї вибірки або якщо цей рівень
утримується до кінця часу запуску. Якщо низький рівень виявля-
ється протягом двох тактових імпульсів сторожового таймера, але
зникає до закінчення часу запуску, мікроконтролер все одно вийде
з режиму сну, але переривання не буде створено. Необхідний рівень
має утримуватись достатньо довго, щоб мікроконтролер завершив
пробудження, щоб ініціювати переривання по рівню.

Регістр керування мікроконтролером – MCUCR містить біти
для керування зовнішніми перериваннями і загальними функціями
мікроконтролера (рис. 4.9).

Рисунок 4.9 – Регістр керування мікроконтролером – MCUCR

Біти 3, 2 – ISC11, ISC10: управління умовою настання
зовнішнього переривання 1, Біт 1 і Біт 0

Зовнішнє переривання 1 активується зовнішнім виводом INT1,
якщо встановлено біт I у регістрі SREG і відповідну маску перери-
вання в регістрі GICR. Рівень і фронти на зовнішньому контакті INT1,
які активують переривання, визначені в таблиці 4.3. Значення на кон-
такті INT1 зчитується перед виявленням фронтів.

Таблиця 4.3 – Рівень і фронти на зовнішньому контакті INT1
ISC11 ISC10 Опис

0 0 Низький рівень на виводі INT1 генерує запит
на переривання

0 1 Будь-яка зміна рівня на виводі INT1 генерує запит
на переривання

1 0 Спадаючий фронт на виводі INT1 генерує запит
на переривання

1 1 Наростаючий фронт на виводі INT1 генерує запит
на переривання

92 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Якщо вибрано переривання по фронту або перемикання, імпульси,
які тривають довше одного тактового періоду, генеруватимуть пере-
ривання. Коротші імпульси не гарантують створення переривання.
Якщо вибрано переривання по низькому рівню, то він має утримува-
тися до завершення поточної інструкції, щоб створити переривання.

Біти 1, 0 – ISC01, ISC00: управління умовою настання
зовнішнього переривання 0, Біт 1 і Біт 0

Зовнішнє переривання 0 активується зовнішнім виводом INT0,
якщо встановлено біт I у регістрі SREG і відповідну маску пере-
ривання в регістрі GICR. Рівень і фронти на зовнішньому контакті
INT0, які активують переривання, визначені в таблиці 4.3. Значення
на контакті INT0 зчитується перед виявленням фронтів. Якщо
вибрано переривання по фронту або перемикання, імпульси, які
тривають довше одного тактового періоду, генеруватимуть пере-
ривання. Коротші імпульси не гарантують створення переривання.
Якщо вибрано переривання по низькому рівню, то він має утримува-
тися до завершення поточної інструкції, щоб створити переривання.

Загальний регістр керування перериваннями – GICR (рис. 4.10).

Рисунок 4.10 – Загальний регістр керування перериваннями – GICR

Біт 7 – INT1: дозвіл запиту зовнішнього переривання 1
Коли біт INT1 встановлено (один) і біт I в регістрі стану SREG

встановлено (один), зовнішнє переривання ввімкнено. Біти 1/0 керу-
вання умовою настання переривання (ISC11 та ISC10) у загальному
регістрі керування мікроконтролера MCUCR визначають, чи активу-
ється зовнішнє переривання наростаючим та/або спадаючим фрон-
том на виводі INT1, або низьким рівнем. Зміна рівня виводу спричи-
нить запит на переривання, навіть якщо INT1 налаштовано як вихід.
Відповідне переривання «Запит зовнішнього переривання 1»
виконується з вектору переривання INT1.

934	 Системний скид, переривання та робочі режими мікроконтролерів сімейства AVR

Біт 6 – INT0: дозвіл запиту зовнішнього переривання 0
Коли біт INT0 встановлено (один) і біт I в регістрі стану SREG

встановлено (один), зовнішнє переривання ввімкнено. Біти 1/0
керування умовою настання переривання (ISC01 та ISC00) у загаль-
ному регістрі керування мікроконтролера MCUCR визначають,
чи активується зовнішнє переривання наростаючим та/або спада-
ючим фронтом на виводі INT0, або низьким рівнем. Зміна рівня
виводу спричинить запит на переривання, навіть якщо INT0 налаш-
товано як вихід. Відповідне переривання «Запит зовнішнього пере-
ривання 0» виконується з вектору переривання INT0.

Загальний регістр прапорів переривань – GIFR (рис. 4.11).

Рисунок 4.11 – Загальний регістр прапорів переривань – GIFR

Біт 7 – INTF1: прапор зовнішнього переривання 1
Коли подія на виводі INT1 викликає запит на переривання, біт

INTF1 встановлюється (стає одиницею). Якщо біт І в регістрі SREG
і біт INT1 біт в регістрі GICR встановлені (один), мікроконтролер
перейде до відповідного вектору переривань. Прапор очищується,
коли виконується підпрограма переривання. Крім того, прапор
можна очистити, записавши в нього логічну одиницю. Цей прапор
завжди скинутий, коли INT1 налаштовано як переривання по рівню.

Біт 6 – INTF0: прапор зовнішнього переривання 0
Коли подія на виводі INT0 викликає запит на переривання,

біт INTF0 встановлюється (стає одиницею). Якщо біт І в регістрі
SREG і біт INT0 біт в регістрі GICR встановлені (один), мікро-
контролер перейде до відповідного вектору переривань. Прапор
очищується, коли виконується підпрограма переривання. Крім
того, прапор можна очистити, записавши в нього логічну оди-
ницю. Цей прапор завжди скинутий, коли INT0 налаштовано
як переривання по рівню.

94 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Контрольні запитання до теми 4
1.	 Яким чином можна зменшити енергоспоживання мікроконтро-

лера AVR?
2.	 Які модулі використовують тактовий сигнал clkI/O і що відбувається

з перериваннями, коли цей сигнал зупинено?
3.	 Яка основна функція тактового сигналу clkFLASH і коли він зазвичай

активний?
4.	 Як тактовий сигнал clkASY дозволяє використовувати асинхронний

таймер-лічильник в режимі реального часу?
5.	 Які джерела тактування можна вибрати для мікроконтролера AVR і як

вони визначаються за допомогою бітів фьюзів?
6.	 Яким чином режим сну впливає на енергоспоживання мікроконтро-

лера AVR?
7.	 Які функції можуть продовжувати працювати, коли мікроконтролер

знаходиться в неактивному режимі сну?
8.	 Які події можуть пробудити MCU з режиму зменшення шуму АЦП?
9.	 Які модулі слід вимкнути для мінімізації енергоспоживання в режи-

мах сну?
10.	 Які регістри встановлюються на початкові значення під час скиду

мікроконтролера AVR?
11.	 Які джерела скиду має ATmega8 і які умови для кожного з них?
12.	 Як регістр MCUCSR інформує про джерело скиду мікроконтролера,

і які біти він містить?
13.	 Яка роль лічильника затримки під час скиду мікроконтролера і як він

налаштовується користувачем?
14.	 Як працюють біти в регістрі MCUCSR, що відповідають за скидання

від сторожового таймера, зниження напруги живлення, зовнішнього
скиду та скиду під час увімкнення живлення?

15.	 Чому важливо читати та скидувати регістр MCUCSR якомога раніше
після скиду мікроконтролера?

16.	 Яка частота вбудованого генератора сторожового таймера в ATmega8?
17.	 Як можна налаштувати інтервал скиду сторожового таймера за допо-

могою попереднього дільника?
18.	 Які біти містить регістр керування сторожовим таймером (WDTCR)

і які їх функції?
19.	 Яка процедура вимкнення сторожового таймера для рівня безпеки 1

(фьюз WDTON не запрограмований)?
20.	 Які кроки необхідно виконати для зміни часу очікування сторожового

таймера при рівні безпеки 2 (фьюз WDTON запрограмований)?

954	 Системний скид, переривання та робочі режими мікроконтролерів сімейства AVR

21.	 Яким чином AVR забезпечує переривання та як вони пов’язані з про-
грамним простором пам’яті?

22.	 Як визначаються пріоритети різних переривань у AVR, і яке перери-
вання має найвищий пріоритет?

23.	 Що відбувається з глобальним дозволом переривань (біт І) при виник-
ненні переривання, і як можна увімкнути вкладені переривання?

24.	 Як функціонують прапори переривань у AVR, і яким чином можна
очистити відповідний прапор переривання?

25.	 Які умови необхідні для активації зовнішніх переривань через
виводи INT0 і INT1, і як вони налаштовуються за допомогою регістру
MCUCR?

Використана література
1.	 Конспект лекцій з дисципліни «Мікропроцесорна техніка» для здо-

бувачів вищої освіти першого (бакалаврського) рівня зі спеціа-
льності 153 «Мікро- та наносистемна техніка» за освітньо-про-
фесійною програмою «Мікро- та наносистемна техніка» та зі
спеціальності 171 «Електроніка» за освітньо-професійною про-
грамою «Електроніка» / уклад. О. М. Гулєша. Кам’янське : ДДТУ,
2020. 57 с.

2.	 Atmel: ATMega8, ATmega8L : технічна документація на мікроконтро-
лер. URL: https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-
2486-8-bit-AVR-microcontroller-ATmega8_L_datasheet.pdf

https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-2486-8-bit-AVR-microcontroller-ATmega8_L_datasheet.pdf

5___
ТАЙМЕРИ МІКРОКОНТРОЛЕРІВ

СІМЕЙСТВА AVR

Метою вивчення теми є ознайомлення з таймерами мікроконт-
ролерів сімейства AVR, а саме 8-бітним таймер-лічильником 0 та
16-бітним таймер-лічильником 1 мікроконтролера ATMega8.

Завдання вивчення теми збігаються з переліком питань для
розгляду, що наведений нижче.

Перелік питань до розділу:
5.1.	 8-бітний таймер-лічильник 0 мікроконтролера ATMega8.
5.2.	 16-бітний таймер-лічильник 1 мікроконтролера ATMega8.

5.1 8-бітний таймер-лічильник 0
мікроконтролера ATMega8

Таймер-лічильник 0 – одноканальний 8-розрядний модуль тай-
мера-лічильника загального призначення. Основні особливості:

‒	 одноканальний лічильник;
‒	 генератор частоти;
‒	 лічильник зовнішніх подій;
‒	 10-бітовий попередній дільник тактового сигналу.
Спрощена блок-схема 8-розрядного таймера-лічильника пока-

зана на рисунку 5.1.
Регістри. Таймер-лічильник (TCNT0) є 8-розрядним регі-

стром. Усі сигнали запиту на переривання (скорочено Int. Req.
на рисунку 5.1) відображаються в регістрі прапорів переривання
таймера (TIFR). Всі переривання індивідуально маскуються
за допомогою регістра маски переривання таймера (TIMSK). TIFR
і TIMSK не показані на рисунку 5.1, оскільки ці регістри спільно
використовуються іншими блоками таймерів.

975	 Таймери мікроконтролерів сімейства AVR

Таймер-лічильник може тактуватися внутрішньо або через попе-
редній дільник, або зовнішнім джерелом імпульсів на контакті T0.
Логічний блок вибору тактового сигналу контролює, яке джерело
та фронт тактового сигналу таймер-лічильник використовує для
збільшення свого значення. Таймер-лічильник неактивний, якщо
не вибрано джерело тактового сигналу. Вихід блоку вибору такто-
вого сигналу називається тактовим сигналом таймера (clkT0).

Визначення. Багато посилань на регістри та біти в цьому роз-
ділі написані у загальній формі. Літера “n” замінює номер тай-
мера-лічильника, у цьому випадку, 0. Однак, коли в програмі
використовується регістр або біт, необхідно використовувати
точну форму, тобто TCNT0 для доступу до значення лічильника
таймера-лічильника 0 і так далі. Визначення в таблиці 5.1 також
широко використовуються далі.

Джерела тактового сигналу таймера-лічильника. Таймер-
лічильник може тактуватися внутрішнім або зовнішнім джерелом
тактового сигналу. Джерело вибирається блоком вибору тактового сиг-
налу, який керується бітами вибору тактового сигналу (CS02:0), розта-
шованими в регістрі керування таймером-лічильником (TCCR0).

Рисунок 5.1 – Спрощена блок-схема

8-розрядного таймера-лічильника

98 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Таблиця 5.1 – Визначення
Визначення Значення

Нижнє значення Лічильник досягає нижнього значення, коли стає 0x00

Максимум Лічильник досягає свого максимуму, коли він стає
0xFF (десяткове число 255)

Лічильник. Основною частиною 8-розрядного таймера-лічиль-
ника є блок програмованого лічильника. На рисунку 5.2 показана
блок-схема лічильника та його оточення.

Рисунок 5.2 – Блок-схема лічильника та його оточення

Опис сигналів (внутрішні сигнали):
‒	 count збільшує TCNT0 на 1;
‒	 clkTn тактовий сигнал таймера-лічильника, далі згадується

як clkT0;
‒	 max сигналізує, що TCNT0 досяг максимального значення.
Лічильник збільшується на кожному такті таймера (clkT0).

clkT0 може генеруватися зовнішнім або внутрішнім джерелом
тактового сигналу за допомогою бітів вибору тактового сиг-
налу (CS02 : 0). Якщо джерело тактового сигналу не вибрано
(CS02 : 0 = 0), таймер зупиняється. Однак ЦП може отримати
доступ до значення TCNT0, незалежно від того, присутній clkT0
чи ні. Значення, записане за допомогою ЦП, перевизначає зна-
чення таймера, отримане при операціях очищення чи рахунку
лічильника.

995	 Таймери мікроконтролерів сімейства AVR

Принцип дії. Напрямок рахунку лічильника завжди
вгору (збільшення), а очищення лічильника не виконується.
Лічильник просто переповнюється, коли він проходить макси-
мальне 8-бітне значення (MAX = 0xFF), а потім перезапускається
з нижнього значення (0x00). У нормальній роботі прапор перепов-
нення таймера-лічильника (TOV0) буде встановлено в той самий
цикл таймера, коли TCNT0 стає нульовим. Прапор TOV0 у цьому
випадку поводиться як дев’ятий біт, за винятком того, що він може
лише бути встановленим, а не скинутим. Однак у поєднанні з пере-
риванням переповнення таймера, яке автоматично очищає прапор
TOV0, роздільну здатність таймера можна збільшити за допомогою
програмного забезпечення. Нове значення лічильника можна запи-
сати будь-коли.

Часові діаграми таймера-лічильника. Таймер-лічильник
є синхронним модулем, тому на рисунках тактовий сигнал
таймера (clkT0) показаний як сигнал увімкнення тактового сигналу.
Рисунки містять інформацію про те, коли встановлюються прапори
переривання. Рисунок 5.3 містить дані тактування при нормаль-
ній роботі таймера-лічильника. Показана послідовність рахунку,
близька до максимального значення.

На рисунку 5.4 показані ті самі дані про тактування, але з увімк-
неним попереднім дільником (fclkI/O/8).

Рисунок 5.3 – Дані тактування при нормальній роботі
таймера-лічильника

100 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Опис регістрів 8-бітного таймера-лічильника 0 мікроконт-
ролера ATMega8

Регістр керування таймером-лічильником – TCCR0 зобра-
жено на рис. 5.5.

Рисунок 5.4 – Дані про тактування з увімкненим попереднім дільником

Рисунок 5.5 – Регістр керування таймером-лічильником – TCCR0

Біти 2:0 – CS02:0: Вибір тактового сигналу
Три біти вибору тактового сигналу вибирають джерело так-

тового сигналу, яке буде використовуватися таймером-лічиль-
ником.

Якщо для таймера-лічильника 0 використовуються режими так-
тування від зовнішніх сигналів, зміни на виводі T0 змінюватимуть
лічильник, навіть якщо цей вивід налаштовано як вихід. Ця функ-
ція дозволяє програмно контролювати рахунок таймера.

Налаштування таймера за бітами тактового сигналу представ-
лено у таблиці 5.2.

1015	 Таймери мікроконтролерів сімейства AVR

Таблиця 5.2 – Налаштування таймера за бітами тактового сигналу
CS02 CS01 CS00 Опис

0 0 0 Немає тактового сигналу
(таймер-лічильник зупинений)

0 0 1 clkI/O (без попереднього дільника)
0 1 0 clkI/O /8 (від попереднього дільника)
0 1 1 clkI/O /64 (від попереднього дільника)
1 0 0 clkI/O /256 (від попереднього дільника)
1 0 1 clkI/O /1024 (від попереднього дільника)

1 1 0 Зовнішній тактовий сигнал на виводі T0.
Синхронізація по спадаючому фронту

1 1 1 Зовнішній тактовий сигнал на виводі T0.
Синхронізація по зростаючому фронту

Регістр таймера-лічильника – TCNT0 зображено на рис. 5.6.

Рисунок 5.6 – Регістр таймера-лічильника – TCNT0

Регістр таймера-лічильника надає прямий доступ як для опера-
цій читання, так і для запису до 8-розрядного лічильника модуля
таймера-лічильника.

Регістр маски переривання таймерів-лічильників – TIMSK
зображено на рис 5.7.

Рисунок 5.7 – Регістр маски переривання

таймерів-лічильників – TIMSK

102 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Біт 0 – TOIE0: Ввімкнення переривання по переповненню
таймера-лічильника 0

Коли біт TOIE0 встановлено як 1, і біт I в регістрі стану також
встановлений як 1, переривання по переповненню таймера-лічиль-
ника 0 увімкнено. Відповідне переривання генерується, якщо
відбувається переповнення таймера-лічильника 0, тобто коли
встановлюється біт TOV0 в регістрі прапорів переривання тай-
мерів-лічильників TIFR.

Регістр прапорів переривання таймерів-лічильників – TIFR
(рис. 5.8)

Рисунок 5.8 – Регістр прапорів переривання

таймерів-лічильників – TIFR

Біт 0 – TOV0: прапор переповнення таймера-лічильника 0
Біт TOV0 встановлюється в 1, коли відбувається переповнення

таймера-лічильника 0. TOV0 очищується апаратним забезпеченням
під час виконання відповідного вектору обробки переривань. Крім
того, TOV0 очищується шляхом запису логічної одиниці у біт пра-
пора. Коли встановлено біт І регістру SREG, TOIE0 регістру TIMSK
і TOV0 у регістрі TIFR, генерується переривання по переповненню
таймера-лічильника 0.

1035	 Таймери мікроконтролерів сімейства AVR

5.2 16-бітний таймер-лічильник 1
мікроконтролера ATMega8

16-розрядний блок таймера-лічильника дозволяє точно визначати
час виконання програми (керування подіями), генерувати прямокут-
ний сигнал та вимірювати тривалість сигналів. Основні особливості:

‒	 справжній 16-бітний дизайн (тобто дозволяє 16-бітний ШІМ);
‒	 два незалежних блоки порівняння;
‒	 подвійно буферизовані регістри порівняння;
‒	 один блок захоплення;
‒	 фільтр шуму на вході захоплення;
‒	 очистка таймеру під час порівняння (автоматичне

перезавантаження);
‒	 широтно-імпульсний модулятор (ШІМ) без збоїв, і з корек-

цією фази;
‒	 змінний період ШІМ;
‒	 генератор частоти;
‒	 лічильник зовнішніх подій;
‒	 чотири незалежних джерела переривань (TOV1, OCF1A,

OCF1B і ICF1).
Більшість посилань на регістри та біти в цьому розділі написані

у загальній формі. Літера “n” замінює номер таймера-лічильника,
а літера “x” замінює вихідний канал порівняння. Однак, коли в про-
грамі використовується регістр або біт, необхідно використовувати
точну форму, тобто TCNT1 для доступу до значення лічильника
таймера-лічильника тощо.

Спрощена блок-схема 16-розрядного таймера-лічильника 1
показана на рисунку 5.9.

Регістри. Таймер-лічильник (TCNT1), регістри порівняння
(OCR1A/B) і регістр захоплення (ICR1) є 16-розрядними регістрами.
Під час доступу до 16-розрядних регістрів необхідно дотримува-
тися спеціальних процедур, що описані далі. Регістри керування
таймером-лічильником (TCCR1A/B) є 8-розрядними регістрами і не
мають обмежень доступу до ЦП. Усі сигнали запитів на переривання
(скорочено Int. Req. на рисунку 5.9) відображаються в реєстрі пра-
порів переривання таймера (TIFR). Усі переривання індивідуально

104 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

маскуються за допомогою регістра маски переривань таймерів
(TIMSK). TIFR і TIMSK не показані на рисунку 5.9, оскільки ці регі-
стри спільно використовуються іншими блоками таймерів.

Рисунок 5.9 – Спрощена блок-схема 16-розрядного

таймера-лічильника 1

Таймер-лічильник можна тактувати внутрішньо, через попередній
дільник, або зовнішнім джерелом тактування на виводі T1. Логічний
блок вибору тактового сигналу контролює джерело тактового сиг-
налу та фронт, які таймер-лічильник використовує для збільшення
(або зменшення) свого значення. Таймер-лічильник неактивний,

1055	 Таймери мікроконтролерів сімейства AVR

якщо не вибрано джерело тактування. Вихід блоку вибору тактового
сигналу називається тактовим сигналом таймера (clkT1).

Подвійно буферизовані регістри порівняння (OCR1A/B) постійно
порівнюються зі значенням таймера-лічильника. Результат порів-
няння може бути використаний генератором сигналів для генерації
вихідного сигналу ШІМ або змінної частоти на виводах порівняння
(OC1A/B). Подія «Збіг при порівнянні» також встановлює прапор
збігу при порівнянні (OCF1A/B), який можна використовувати для
створення запиту на відповідне переривання.

Регістр захоплення може фіксувати значення таймера-лічиль-
ника при заданій зовнішній події на виводі захоплення (ICP1) або
на виводах аналогового компаратора. Блок захоплення вхідного
сигналу містить блок цифрової фільтрації для зменшення ймовір-
ності захоплення шумових змін на вході.

Верхнє або максимальне значення таймера-лічильника в деяких
режимах роботи може бути визначено регістром OCR1A, регістром
ICR1 або набором фіксованих значень. Якщо OCR1A використо-
вується як верхнє значення у режимі ШІМ, регістр OCR1A не може
використовуватися для генерації виходу ШІМ. Однак у цьому
випадку верхнє значення буде подвійно буферизовано, що дозволяє
змінювати його під час виконання. Якщо потрібне фіксоване верхнє
значення, регістр ICR1 можна використовувати як альтернативу,
звільняючи OCR1A для використання як виходу ШІМ.

Визначення. У цьому розділі широко використовуються такі
визначення:

Таблиця 5.3 – Визначення
Визначення Значення

Нижнє значення Лічильник досягає нижнього значення, коли стає 0x0000

Максимум Лічильник досягає свого максимуму, коли він стає 0xFFFF
(десяткове число 65535)

Верхнє значення

Лічильник досягає верхнього значення, коли стає рівним
найвищому значенню в послідовності підрахунку. Верхнє
значення можна встановити рівним одному з фіксова-
них значень: 0x00FF, 0x01FF або 0x03FF, або значенню,
що зберігається в регістрі OCR1A або ICR1

106 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Джерела тактового сигналу таймера-лічильника 1.
Таймер-лічильник може тактуватися внутрішнім або зовнішнім
джерелом тактового сигналу. Джерело тактового сигналу виби-
рається блоком вибору тактового сигналу, який керується бітами
вибору тактового сигналу (CS12:0), розташованими в регістрі керу-
вання таймером-лічильником B (TCCR1B).

Модуль лічильника. Основною частиною 16-бітного тай-
мера-лічильника 1 є програмований 16-бітний двонаправлений
лічильник. На рисунку 5.10 показана блок-схема лічильника та його
оточення.

Рисунок 5.10 – Блок-схема лічильника та його оточення

Опис сигналів (внутрішні сигнали):
‒	 count збільшення або зменшення TCNT1 на 1;
‒	 direction вибір напрямку рахунку таймера між збільшенням

і зменшенням;
‒	 clear очистити TCNT1 (встановити всі біти як 0);
‒	 clkT1 тактовий сигнал таймера-лічильника;
‒	 TOP сигналізує, що TCNT1 досяг верхнього значення;
‒	 BOTTOM сигналізує, що TCNT1 досяг нижнього значення (нуль).
16-розрядний лічильник розташований в двох 8-розряд-

них комірках пам’яті вводу-виводу: старшому байті лічильника
(TCNT1H), що містить вісім старших бітів лічильника, і нижчому
байті лічильника (TCNT1L), що містить нижні вісім бітів. ЦП може

1075	 Таймери мікроконтролерів сімейства AVR

отримати доступ до регістру TCNT1H лише опосередковано. Коли
ЦП здійснює доступ до регістру вводу-виводу TCNT1H, він отри-
мує доступ до тимчасового регістра старшого байту (TEMP).
Тимчасовий регістр оновлюється значенням TCNT1H під час зчи-
тування TCNT1L, а TCNT1H оновлюється значенням тимчасового
регістру під час запису TCNT1L. Це дозволяє процесору читати
або записувати все 16-бітне значення лічильника протягом одного
такту через 8-бітну шину даних. Важливо зауважити, що існують
особливі випадки запису в регістр TCNT1 під час рахунку лічиль-
ника, які дадуть непередбачувані результати.

Залежно від використовуваного режиму роботи лічильник очи-
щується, збільшується або зменшується на кожному такті таймера
(clkT1). ClkT1 може бути згенерований зовнішнім або внутріш-
нім джерелом тактового сигналу, вибраним бітами вибору так-
тового сигналу (CS12:0). Якщо джерело тактування не вибрано
(CS12:0 = 0), таймер зупиняється. Однак ЦП може отримати доступ
до значення TCNT1 незалежно від того, присутній clkT1 чи ні. Запис
за допомогою ЦП перевизначає значення отримані в результаті усіх
операцій очищення чи рахунку лічильника.

Послідовність рахунку визначається налаштуванням бітів
режиму генерації сигналу (WGM13:0), розташованих у регістрах
керування таймером-лічильником A та B (TCCR1A та TCCR1B).
Існують тісні зв’язки між тим, як лічильник поводиться (рахує), і як
сигнали генеруються на виходах порівняння OC1x.

Прапор переповнення таймера-лічильника (TOV1) встановлю-
ється відповідно до режиму роботи, вибраного бітами WGM13:0.
TOV1 можна використовувати для генерації переривання.

Блок захоплення. Таймер-лічильник містить блок захоплення
лічильника, який може фіксувати зовнішні події та надавати
їм мітку часу, що вказує на час їх виникнення. Зовнішній сигнал,
що вказує на подію або кілька подій, може бути подано на вивід
ICP1 або альтернативно через блок аналогового компаратора.
Потім мітки часу можна використовувати для розрахунку частоти,
робочого циклу та інших характеристик сигналу, що подається.
Крім того, мітки часу можна використовувати для створення жур-
налу подій.

108 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Блок захоплення ілюструється блок-схемою, показаною
на рисунку 5.11. Елементи блок-схеми, які безпосередньо не є части-
ною блоку захоплення, виділені сірим кольором. Маленька буква
“n” у назвах регістрів і бітів вказує на номер таймера-лічильника.

Коли зміна логічного рівня (подія) відбувається на вхідному
виводі захоплення (ICP1), або на виході аналогового компаратора
(ACO), і ця зміна відповідає налаштуванням детектора фронту,
запускається захоплення. При цьому, 16-бітне значення лічильника
(TCNT1) записується у вхідний регістр захоплення (ICR1). Прапор
захоплення (ICF1) встановлюється у той самий такт системного
тактового сигналу, що й значення TCNT1 копіюється в регістр
ICR1. Прапор захоплення генерує переривання захоплення, якщо
воно ввімкнено (TICIE1 = 1). Прапор ICF1 автоматично очищу-
ється, коли виконується підпрограма обробки переривання. Крім
того, прапор ICF1 можна скинути програмним забезпеченням,
записавши логічну одиницю у відповідний біт.

Рисунок 5.11 – Блок-схема блоку захоплення

1095	 Таймери мікроконтролерів сімейства AVR

Зчитування 16-бітного значення з регістру захоплення (ICR1)
виконується шляхом спочатку зчитування молодшого байту
(ICR1L), а потім старшого байту (ICR1H). Коли зчитується молод-
ший байт, старший байт копіюється в тимчасовий регістр старшого
байту (TEMP). Коли ЦП зчитує значення регістру вводу-виводу
ICR1H, він отримує доступ до реєстру TEMP.

Регістр ICR1 можна записувати лише у режимі генерації сиг-
налу, який використовує регістр ICR1 для визначення верхнього
значення лічильника. У цих випадках біти режиму генерації сиг-
налу (WGM13:0) повинні бути встановлені до того, як значення
верхнього значення можна буде записати в регістр ICR1. Під час
запису в регістр ICR1 старший байт має бути записаний до регістру
ICR1H перед тим, як молодший байт буде записаний до ICR1L.

Джерело захоплення. Основним джерелом запуску для
блоку захоплення є вивід захоплення вхідних даних (ICP1).
Таймер/Лічильник 1 може альтернативно використовувати вихід
аналогового компаратора як джерело запуску для блоку захоп-
лення. Аналоговий компаратор вибирається як джерело запуску
шляхом встановлення біта захоплення входу аналогового компара-
тора (ACIC) у регістрі керування та стану аналогового компаратора
(ACSR). Майте на увазі, що зміна джерела тригера може ініціювати
захоплення. Таким чином, прапор захоплення має бути очищеним
після зміни.

Вхідні сигнали виводу захоплення (ICP1) і виходу аналогового
компаратора (ACO) вибираються з використанням тієї ж методики,
що й для контакту T1. Детектор фронтів також ідентичний. Однак,
коли фільтр шуму увімкнено, перед детектором фронту вставля-
ється додатковий блок, що збільшує затримку на чотири такти сис-
теми. Зауважте, що вхід фільтра шуму та детектора фронту завжди
ввімкнено, якщо таймер-лічильник не налаштовано в режимі гене-
рації сигналу, який використовує ICR1 для визначення верхнього
значення. Захоплення може бути ініційовано програмним забезпе-
ченням, керуючи портом контакту ICP1.

Фільтр шуму. Фільтр шуму покращує завадостійкість за допо-
могою простої цифрової схеми фільтрації. Вхідний сигнал зчиту-
ється фільтром шуму чотири рази, і всі чотири результати мають

110 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

бути однаковими для зміни вихідного сигналу, який, у свою чергу,
використовується детектором фронту. Фільтр шуму вмикається
встановленням біта фільтру шуму блока захоплення (ICNC1) у регі-
стрі керування таймером-лічильником B (TCCR1B). Коли ввімкнуто
фільтр шуму, до оновлення регістру ICR1 додається чотири цикли
системного тактового сигналу затримки від моменту зміни сигналу
на вході. Фільтр шуму використовує системний тактовий генератор
і, отже, на нього не впливає попередній дільник.

Використання блоку захоплення. Основною складністю при
використанні модуля захоплення є виділення достатнього процесор-
ного часу для обробки вхідних подій. Час між двома подіями є кри-
тичним. Якщо процесор не прочитав захоплене значення в регістрі
ICR1 до наступної події, ICR1 буде перезаписано новим значенням.
У цьому випадку результат захоплення буде некоректним.

При використанні переривання захоплення регістр ICR1
слід зчитати якомога раніше в підпрограмі обробки переривань.
Незважаючи на те, що переривання захоплення має відносно висо-
кий пріоритет, максимальний час відповіді на переривання зале-
жить від максимальної кількості тактових циклів, необхідних для
обробки будь-яких інших запитів на переривання.

Не рекомендується використовувати блок захоплення
у будь-якому режимі роботи, коли верхнє значення (роздільна здат-
ність) активно змінюється під час роботи.

Вимірювання робочого циклу зовнішнього сигналу вимагає
зміни фронту запуску після кожного захоплення. Змінити визна-
чення фронту слід якомога раніше після зчитування регістру ICR1.
Після зміни фронту прапор захоплення вхідного сигналу (ICF1)
має бути очищено програмним забезпеченням (записуючи логічну
одиницю у відповідний біт). Для вимірювання лише частоти очи-
щення прапора ICF1 не потрібно (якщо використовується обробник
переривань).

Блоки порівняння. 16-розрядний компаратор безперервно порів-
нює TCNT1 з регістром порівняння (OCR1x). Якщо TCNT дорівнює
OCR1x, компаратор сигналізує про збіг. При цьому встановлюється
прапор порівняння (OCF1x) на наступному такті таймера. Прапор
порівняння генерує відповідне переривання, якщо воно ввімкнене

1115	 Таймери мікроконтролерів сімейства AVR

(OCIE1x = 1). Прапор OCF1x автоматично очищується, коли викону-
ється підпрограма обробки переривання. Крім того, прапор OCF1x
може бути очищений програмним забезпеченням, при записі логіч-
ної одиниці у нього. Генератор сигналів використовує сигнал збігу
для генерування вихідних даних відповідно до режиму роботи, вста-
новленого бітами режиму генерації сигналу (WGM13:0) і режиму
порівняння (COM1x1:0). Сигнали нижнього і верхнього значень
використовуються генератором сигналів для обробки особливих
випадків граничних значень у деяких режимах роботи.

Спеціальна функція блоку порівняння A дозволяє йому визна-
чати верхнє значення таймера-лічильника (тобто роздільну здат-
ність лічильника). Окрім роздільної здатності лічильника, верхнє
значення визначає тривалість періоду для сигналів, створених гене-
ратором сигналів.

На рисунку 5.12 показана блок-схема блоку порівняння.
Маленьке “n” в іменах регістрів і бітів вказує на номер таймера
(n = 1 для таймера-лічильника 1), а “x” вказує на назву блока порів-
няння вихідних даних (A/B). Елементи блок-схеми, які безпосе-
редньо не є частиною блоку порівняння вихідних даних, виділені
сірим кольором.

Регістр OCR1x подвійно буферизується при використанні
будь-якого з дванадцяти режимів широтно-імпульсної модуляції
(ШІМ). Для нормального режиму роботи та режиму «Очищення
таймера при збігу» подвійна буферизація вимкнена. Подвійна
буферизація синхронізує оновлення регістра порівняння OCR1x
до верхнього або нижнього значення рахунку. Синхронізація запо-
бігає появі непарної довжини несиметричних ШІМ-імпульсів, тим
самим роблячи вихідний сигнал без збоїв.

Доступ до регістру OCR1x може здатися складним, але це не
так. Коли подвійну буферизацію ввімкнено, ЦП має доступ до регі-
стру буфера OCR1x, і якщо подвійну буферизацію вимкнено, ЦП має
доступ до OCR1x безпосередньо. Вміст регістра OCR1x (буфер або
порівняння) змінюється лише операцією запису (таймер-лічильник
не оновлює цей регістр автоматично, як регістри TCNT1 та ICR1).
Тому OCR1x не читається через тимчасовий регістр старшого байту
(TEMP). Однак, як під час доступу до інших 16-бітних регістрів,

112 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

рекомендується спочатку читати молодший байт. Запис регістрів
OCR1x має здійснюватися через регістр TEMP, оскільки порівняння
всіх 16-розрядних даних виконується постійно. Першим потрібно
записати старший байт (OCR1xH). Коли значення старшого байту
записується центральним процесором, регістр TEMP буде онов-
лено записаним значенням. Потім, коли записується молодший байт
(OCR1xL), старший байт буде скопійовано у старші 8 бітів або буфера
OCR1x, або регістра порівняння OCR1x у тому самому тактовому
циклі системи.

Примусове порівняння. У режимах генерації сигналу без
ШІМ вихідний сигнал компаратора можна примусово встановити,
записавши одиницю в біт «Примусове порівняння» (FOC1x).
Примусове порівняння не встановлює прапор OCF1x і не пере-
завантажує/скидає таймер, але вивід OC1x буде оновлено так,

Рисунок 5.12 – Блок-схема блоку порівняння

1135	 Таймери мікроконтролерів сімейства AVR

ніби відбулося справжнє порівняння (параметри бітів COM1x1:0
визначають, чи вивід ОС1х буде встановлено, скинуто або
перемкнуто).

Блокування збігу при порівнянні шляхом запису у TCNT1.
Усі записи центральним процесором в регістр TCNT1 блокувати-
муть будь-який збіг при порівнянні, який відбувається в наступному
такті таймера, навіть якщо таймер зупинено. Ця функція дозволяє
встановити у OCR1x таке саме значення, що й TCNT1, не запуска-
ючи переривання, коли ввімкнено тактування таймера-лічильника.

Використання блоку порівняння. Оскільки запис у TCNT1
у будь-якому режимі роботи блокуватиме всі збіги при порівнянні
протягом одного тактового циклу таймера, є ризики, пов’язані зі змі-
ною TCNT1 під час використання будь-якого з вихідних каналів порів-
няння, незалежно від того, працює таймер-лічильник чи ні. Якщо
значення, записане в TCNT1, дорівнює значенню OCR1x, збіг при
порівнянні буде пропущено, що призведе до неправильної генерації
сигналу. Не записуйте TCNT1 рівним верхньому значенню у режи-
мах ШІМ зі змінними верхніми значеннями. Збіг при порівняльний
для верхнього значення буде проігноровано, а лічильник продов-
жить рахувати до 0xFFFF. Так само не записуйте значення TCNT1,
що дорівнює нижньому значенню, коли лічильник рахує вниз.

Налаштування OC1x слід виконати перед налаштуванням регі-
стра напрямку даних для порту вводу-виводу. Найпростішим спосо-
бом встановлення значення OC1x є використання біту «Примусове
порівняння» (FOC1x) у нормальному режимі. Регістр OC1x збері-
гає своє значення навіть при зміні режимів генерації сигналу.

Майте на увазі, що біти COM1x1:0 не буферизуються подвійно,
як регістри порівняння. Зміна бітів COM1x1:0 набуде чинності негайно.

Блок збігу при порівнянні. Біти режиму виводів порівняння
(COM1x1:0) мають дві функції. Генератор сигналу використовує біти
COM1x1:0 для визначення стану порівняння (OC1x) під час наступ-
ного збігу при порівнянні. По-друге, біти COM1x1:0 керують джере-
лом вихідного сигналу OC1x. На рисунку 5.13 показано спрощену
схему логіки, на яку впливає налаштування бітів COM1x1:0. Регістри
вводу-виводу, біти вводу-виводу та контакти вводу-виводу на рисунку
виділені жирним шрифтом.

114 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Показано лише частини загальних регістрів керування портом
вводу-виводу (DDR і PORT), на які впливають біти COM1x1:0. Коли
йдеться про стан OC1x, посилання стосується внутрішнього регістру
OC1x, а не контакту OC1x. Якщо відбувається скидання системи,
регістр OC1x скидається у «0».

Функція загального порту вводу-виводу перевизначається
на вихід порівняння (OC1x) від генератора сигналу, якщо встанов-
лено один із бітів COM1x1:0. Однак напрямок виводу OC1x (вхід
або вихід) усе ще контролюється регістром напряму даних (DDR)
для виводу порту. Біт регістра направлення даних для виводу OC1x
(DDR_OC1x) має бути встановлений як вихідний, перш ніж значення
OC1x буде видно на виводі. Функція перевизначення порту зазвичай
не залежить від режиму генерації сигналу, але є деякі винятки.

Конструкція логіки виводу порівняльного дозволяє ініціалізу-
вати стан OC1x до ввімкнення виводу. Зауважте, що деякі налаш-
тування бітів COM1x1:0 зарезервовані для певних режимів роботи.

Біти COM1x1:0 не впливають на блок захоплення.
Режим порівняння та генерація сигналу. Генератор сигналів

по-різному використовує біти COM1x1:0 у звичайному режимі, режимі

Рисунок 5.13 – Спрощена схема логіки блоку збігу

1155	 Таймери мікроконтролерів сімейства AVR

очищення таймера при збігу і ШІМ. Для всіх режимів встановлення
COM1x1:0 = 0 повідомляє генератору сигналу, що жодних дій у регі-
стрі OC1x не потрібно виконувати під час наступного порівняння.

Зміна стану бітів COM1x1:0 матиме ефект під час першого збігу
при порівнянні після запису бітів. Для режимів без ШІМ дію можна
примусово виконати за допомогою бітів FOC1x.

Режими роботи. Режим роботи (тобто поведінка таймера-лічиль-
ника та виводів порівняння) визначається комбінацією бітів режиму
генерації сигналу (WGM13:0) і режиму порівняння (COM1x1:0).
Біти режиму порівняння не впливають на послідовність рахунку,
тоді як біти режиму генератора сигналу впливають. Біти COM1x1:0
визначають, чи слід інвертувати згенерований вихід ШІМ чи ні
(інвертований чи неінвертований ШІМ). Для режимів без ШІМ
біти COM1x1:0 контролюють, чи вихідний сигнал під час збігу при
порівнянні має бути встановлений, очищений або перемкнутий.

Звичайний режим. Найпростішим режимом роботи є звичай-
ний режим (WGM13:0 = 0). У цьому режимі напрямок рахунку
завжди спрямований вгору (збільшується), а очищення лічиль-
ника не виконується. Лічильник просто переповнюється, коли
він проходить максимальне 16-бітне значення (MAX = 0xFFFF),
а потім перезапускається з нижнього значення (0x0000). У звичай-
ній роботі прапор переповнення таймера-лічильника (TOV1) буде
встановлено в той самий цикл таймера, коли TCNT1 стає рівним 0.
Прапор TOV1 у цьому випадку поводиться як 17-й біт, за винятком
того, що він може бути тільки встановленим, а не скинутим. Однак
у поєднанні з перериванням переповнення таймера, яке автома-
тично очищає прапор TOV1, роздільну здатність таймера можна
збільшити за допомогою програмного забезпечення. У звичай-
ному режимі немає особливих випадків, нове значення лічильника
можна записати будь-коли.

Блок захоплення просто використовувати в звичайному режимі.
Однак зауважте, що максимальний інтервал між зовнішніми поді-
ями не повинен перевищувати роздільну здатність лічильника.
Якщо інтервал між подіями занадто тривалий, для збільшення роз-
дільної здатності блоку захоплення слід використовувати перери-
вання переповнення таймера або попередній дільник.

116 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Блоки порівняння можна використовувати для генерації перери-
вань у певний момент часу. Використання порівняння для генеру-
вання сигналів у нормальному режимі не рекомендується, оскільки
це займе надто багато часу ЦП.

Очищення таймеру при збігу (ОТЗ). У режимі очищення таймеру
при збігу (WGM13:0 = 4 або 12) регістри OCR1A або ICR1 використо-
вуються для керування роздільною здатністю лічильника. У режимі
ОТЗ лічильник обнулюється, коли значення лічильника (TCNT1) збі-
гається з OCR1A (WGM13:0 = 4) або ICR1 (WGM13:0 = 12). OCR1A
або ICR1 визначають верхнє значення для лічильника, отже, також його
роздільну здатність. Цей режим дозволяє краще контролювати вихідну
частоту таймера. Це також спрощує роботу рахунку зовнішніх подій.
Часова діаграма для режиму ОТЗ показана на рисунку 5.14. Значення
лічильника (TCNT1) збільшується, доки не відбудеться збіг зі значен-
ням OCR1A або ICR1, а потім лічильник (TCNT1) очищується.

Кожного разу, коли значення лічильника досягає верхнього зна-
чення, може бути згенероване переривання, використовуючи пра-
пор OCF1A або ICF1 відповідно до регістру, який використовується
для визначення верхнього значення. Якщо переривання ввімкнено,
програму обробки переривань можна використовувати для онов-
лення верхнього значення.

Однак, змінюючи верхнє значення на значення, близьке
до нижнього, коли лічильник працює без попереднього дільника

Рисунок 5.14 – Часова діаграма для режиму ОТЗ

1175	 Таймери мікроконтролерів сімейства AVR

або з низьким значенням попереднього дільника, слід викону-
вати обережно, оскільки режим ОТЗ не має функції подвійної
буферизації. Якщо нове значення, записане в OCR1A або ICR1,
є нижчим за поточне значення TCNT1, лічильник пропустить збіг
при порівнянні. Тоді лічильнику доведеться рахувати до свого
максимального значення (0xFFFF) і починати з 0x0000, перш
ніж відбудеться порівняння. У багатьох випадках ця функція
є небажаною. Альтернативою буде використання режиму швид-
кої ШІМ з використанням OCR1A для визначення верхнього
значення (WGM13:0 = 15), оскільки тоді OCR1A буде подвійно
буферизований.

Для генерування вихідного сигналу в режимі ОТЗ вихід OC1A
може бути налаштований на перемикання свого логічного рівня при
кожному збігу при порівнянні, установивши біти режиму виводу
порівняння на режим перемикання (COM1A1:0 = 1). Значення OC1A
не з’явиться на виводі, якщо напрям даних для нього не налаштовано
як вихід (DDR_OC1A = 1). Згенерований сигнал матиме максимальну
частоту fOC1A = fclk_I/O/2, коли OCR1A встановлено як нуль (0x0000).
Частота вихідного сигналу визначається наступним рівнянням:

f
f

N OCRnAOCnA
CLK I O�

� � �� �
_ /

2 1
. (5.1)

Змінна N представляє коефіцієнт попереднього поділення (1, 8,
64, 256 або 1024). Що стосується звичайного режиму роботи, пра-
пор TOV1 встановлюється в той самий тактовий цикл таймера,
в який лічильник рахує від максимального значення до 0x0000.

Режим швидкого ШІМ. Режим швидкої широтно-імпульсної
модуляції або режим швидкого ШІМ (WGM13:0 = 5, 6, 7, 14 або 15)
забезпечує можливість генерації високочастотного сигналу ШІМ.
Швидкий ШІМ відрізняється від інших варіантів ШІМ однонахилою
роботою. Лічильник веде відлік від нижнього до верхнього значення,
а потім перезапускається з нижнього. У неінвертованому режимі
порівняння вихід порівняння (OC1x) очищується при збігу між
TCNT1 і OCR1x і встановлюється при нижньому значенні. В режимі
інвертування вихідний сигнал встановлюється при збігу і очищується
при нижньому значенні. Завдяки роботі з одним нахилом робоча

118 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

частота швидкого ШІМ-режиму може бути вдвічі вищою, ніж при
фазо-коректному режимі, і фазо- і частото-коректному режимі ШІМ,
які використовують подвійний нахил. Ця висока частота робить
режим швидкого ШІМ добре придатним для регулювання потужності,
випрямлення та додатків ЦАП. Висока частота дозволяє використо-
вувати зовнішні компоненти фізично невеликого розміру (котушки,
конденсатори), що знижує загальну вартість системи.

Роздільна здатність ШІМ для швидкого ШІМ може бути встанов-
лена як 8-біт, 9-біт або 10-біт або визначена за допомогою ICR1 або
OCR1A. Мінімальна дозволена роздільна здатність – 2 біти (ICR1 або
OCR1A встановлено як 0x0003), а максимальна – 16 бітів (ICR1 або
OCR1A встановлено на максимальне значення). Роздільну здатність
ШІМ у бітах можна обчислити за допомогою такого рівняння:

R
log

logШІІМ �
�� �

� �
верхнє значення� 1

2
. (5.2)

У режимі швидкого ШІМ лічильник збільшується, доки значення
лічильника не збігається з одним із фіксованих значень 0x00FF,
0x01FF або 0x03FF (WGM13:0 = 5, 6 або 7), значенням у ICR1
(WGM13:0 = 14), або значенням в OCR1A (WGM13:0 = 15). Потім
лічильник обнулюється в наступному такті таймера. Часова діаграма
для режиму швидкої ШІМ показана на рисунку 5.15. Тут показано
режим швидкої ШІМ, коли OCR1A або ICR1 використовуються для
визначення верхнього значення. Значення TCNT1 на часовій діа-
грамі показано як гістограму для ілюстрації роботи з одним нахилом.
На схемі представлені неінвертований і інвертований ШІМ-виходи.
Маленькі горизонтальні лінії на схилах TCNT1 представляють збіги
при порівнянні між OCR1x і TCNT1. Прапор переривання OC1x буде
встановлено, коли відбувається збіг при порівнянні.

Прапор переповнення таймера-лічильника (TOV1) встановлю-
ється щоразу, коли лічильник досягає верхнього значення. Крім
того, прапор OCF1A або ICF1 встановлюється на той самий такт
таймера, що й TOV1, коли OCR1A або ICR1 використовуються для
визначення верхнього значення Якщо одне з переривань увімкнено,
підпрограма обробки переривань може бути використана для онов-
лення верхнього значення і порівняння значень.

1195	 Таймери мікроконтролерів сімейства AVR

Рисунок 5.15 – Часова діаграма для режиму швидкої ШІМ

Під час зміни верхнього значення програма повинна перекона-
тися, що нове верхнє значення вище або дорівнює значенню всіх
регістрів порівняння. Якщо верхнє значення нижче за будь-який
з регістрів порівняння, порівняння ніколи не відбудеться між
TCNT1 і OCR1x. Зауважте, що при використанні фіксованих верх-
ніх значень невикористані біти маскуються як нулі під час запису
будь-якого з регістрів OCR1x.

Процедура оновлення ICR1 відрізняється від оновлення OCR1A,
коли він використовується для визначення верхнього значення.
Регістр ICR1 не має подвійної буферизації. Це означає, що якщо
ICR1 змінено на низьке значення, коли лічильник працює без попе-
реднього дільника або з низьким значенням попереднього дільника,
існує ризик того, що нове записане значення ICR1 буде нижчим
за поточне значення TCNT1. Тоді результатом буде те, що лічильник
пропустить збіг при порівнянні із верхнім значенням. Потім лічиль-
ник буде рахувати до максимального значення (0xFFFF) і починати
з 0x0000, перш ніж відбудеться порівняння. Регістр OCR1A, однак,
має подвійну буферизацію. Ця функція дозволяє будь-коли запису-
вати будь-яке значення у OCR1A. Після запису у OCR1A записане
значення буде поміщено в буферний регістр OCR1A. Потім регістр
порівняння OCR1A буде оновлено значенням у регістрі буфера під

120 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

час наступного такту таймера, коли TCNT1 відповідає верхньому
значенню. Оновлення виконується у той самий цикл таймера, коли
TCNT1 очищується та встановлюється прапор TOV1. Застосування
регістра ICR1 для визначення верхнього значення добре працює
при використанні фіксованих верхніх значень. Використовуючи
ICR1, регістр OCR1A можна вільно застосовувати для генерації
виходу ШІМ на OC1A. Однак, якщо базова частота ШІМ активно
змінюється (шляхом зміни верхнього значення), використання
OCR1A як верхнього значення є кращим вибором через його функ-
цію подвійної буферизації.

У режимі швидкого ШІМ блоки порівняння дозволяють генеру-
вати сигнали ШІМ на виводах OC1x. Встановлення бітів COM1x1:0
як 2 створить неінвертований ШІМ, а інвертований вихід ШІМ
можна отримати, встановивши COM1x1:0 як 3. Фактичне значення
OC1x буде видно на виводі порту, якщо напрям даних для цього
виводу встановлено як вихід (DDR_OC1x). ШІМ-сигнал генеру-
ється встановленням (або очищенням) регістра OC1x при збігу між
OCR1x і TCNT1, а також очищенням (або встановленням) регістра
OC1x під час очищення лічильника таймера (коли його значення
змінюється з верхнього на нижнє).

Частоту ШІМ можна розрахувати за таким рівнянням:

f
f

NOCnx
CLK I O

ШІМ верхнє значення
�

� �� �
_ /

1
. (5.3)

Змінна N представляє собою значення попереднього дільника
(1, 8, 64, 256 або 1024).

Крайні значення регістра OCR1x уявляють собою особливі випадки
під час генерації сигналу ШІМ у режимі швидкого ШІМ. Якщо OCR1x
встановлено рівним нижньому значенню (0x0000), результатом буде
вузький сплеск для кожного такту таймера TOP+1. Встановлення
OCR1x рівним верхньому значенню призведе до постійного високого
або низького рівня вихідного сигналу (залежно від полярності вихід-
ного сигналу, встановленого бітами COM1x1:0).

Прямокутний вихідний сигнал (з робочим циклом 50 %) у швид-
кому ШІМ-режимі може бути досягнутий шляхом налаштування

1215	 Таймери мікроконтролерів сімейства AVR

OC1A на перемикання логічного рівня під час кожного збігу при
порівнянні (COM1A1:0 = 1). Це стосується лише того випадку,
коли OCR1A використовується для визначення верхнього значення
(WGM13:0 = 15). Згенерований сигнал матиме максимальну час-
тоту fOC1A = fclk_I/O /2, коли OCR1A встановлено як нуль (0x0000).
Ця функція подібна до перемикання OC1A в режимі ОТЗ, за винят-
ком того, що функція подвійної буферизації блоку порівняння
увімкнена в режимі швидкого ШІМ.

Режим фазо-коректної широтно-імпульсної модуляції. Режим
фазо-коректної широтно-імпульсної модуляції або фазо-коректного
ШІМ (WGM13:0 = 1, 2, 3, 10 або 11) забезпечує генерацію сиг-
налу ШІМ з високою роздільною здатністю. Режим фазо-корект-
ного ШІМ, як і фазо- та частото-коректного ШІМ, заснований
на роботі з подвійним нахилом. Лічильник спочатку веде рахунок
від нижнього значення (0x0000) до верхнього, а потім від верхнього
до нижнього. У неінвертованому режимі порівняння вихідний
вивід (OC1x) очищується при збігу між TCNT1 і OCR1x під час під-
рахунку вгору та встановлюється при збігу під час зворотного під-
рахунку. У режимі інвертування результатів порівняння операція
інвертується. Робота з подвійним нахилом має нижчу максимальну
робочу частоту, ніж робота з одним нахилом. Однак через симе-
тричну особливість режимів ШІМ з подвійним нахилом ці режими
є кращими для додатків керування двигуном.

У фазо-коректному режимі ШІМ лічильник збільшується, доки
його значення не збігається з одним із фіксованих значень 0x00FF,
0x01FF або 0x03FF (WGM13:0 = 1, 2 або 3), значенням у ICR1
(WGM13:0 = 10) або значенням в OCR1A (WGM13:0 = 11). Після
цього лічильник досягає верхнього значення та змінює напрямок
підрахунку. Значення TCNT1 дорівнюватиме верхньому значенню
протягом одного такту таймера. Часова діаграма для фазо-корект-
ного режиму ШІМ показана на рисунку 5.16. Тут показано
фазо-коректний режим ШІМ, коли OCR1A або ICR1 використо-
вуються для визначення верхнього значення. Значення TCNT1
на часовій діаграмі показано як гістограма для ілюстрації роботи
подвійного нахилу. На схемі представлені неінвертований і інвер-
тований ШІМ-виходи.

122 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Маленькі горизонтальні лінії на схилах TCNT1 представляють
порівняльні збіги між OCR1x і TCNT1. Прапор переривання OC1x
буде встановлено, коли відбувається збіг при порівнянні.

Режим фазо- та частото-коректного ШІМ. Режим фазо- та час-
тото-коректної широтно-імпульсної модуляції або фазо- та час-
тото-коректного ШІМ (WGM13:0 = 8 або 9) забезпечує генерацію
ШІМ-сигналу високої роздільної здатності з правильною фазою
та частотою. Режим фазо- та частото-коректного ШІМ, як і режим
фазо-коректного ШІМ, заснований на роботі з подвійним нахи-
лом. Лічильник багаторазово веде підрахунок від нижнього
значення (0x0000) до верхнього, а потім від верхнього до ниж-
нього. У неінвертованому режимі порівняння вихід порівняння
(OC1x) очищується при збігу між TCNT1 і OCR1x під час рахунку
вгору та встановлюється при збігу при порівнянні під час зворот-
ного рахунку. У режимі інвертування виходу порівняння операція
інвертується. Робота з подвійним нахилом дає нижчу максимальну
робочу частоту порівняно з роботою з одним нахилом. Однак
через симетричну особливість режимів ШІМ з подвійним нахилом
ці режими є кращими для додатків керування двигуном.

Рисунок 5.16 – Часова діаграма для фазо-коректного режиму ШІМ

1235	 Таймери мікроконтролерів сімейства AVR

Основна відмінність між режимом фазо-коректного ШІМ
та фазо- та частото-коректного ШІМ полягає в часі оновлення регі-
стра OCR1x буферним регістром OCR1x (див. рисунок 5.17).

Опис регістрів 16-бітного таймера-лічильника 1 мікроконт-
ролера ATMega8

Регістр керування A таймера-лічильника 1 – TCCR1A зображено
на рисунку 5.18.

Біт 7:6 – COM1A1:0: режим порівняння для каналу A
Біт 5:4 – COM1B1:0: режим порівняння для каналу B
COM1A1:0 і COM1B1:0 керують поведінкою виводів порівняння

(OC1A і OC1B відповідно). Якщо один або обидва біти COM1A1:0
записані як 1, вихід OC1A перекриває нормальну роботу виводу,
до якого він підключений. Якщо один або обидва біти COM1B1:0
записуються як 1, вихід OC1B перекриває нормальну роботу виводу,

Рисунок 5.17 – Часова діаграма фазо- та частото-коректного ШІМ

Рисунок 5.18 – Регістр керування А таймера-лічильника 1

124 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

до якого він підключений. Однак зауважте, що біт регістра направ-
лення даних (DDR), який відповідає виводу OC1A або OC1B, має
бути встановлено окремо, щоб увімкнути вихідний драйвер. Коли
OC1A або OC1B підключено до виводу, функція бітів COM1x1:0
залежить від налаштування бітів WGM13:0. Таблиця 5.4 показує
функціональні можливості бітів COM1x1:0, коли біти WGM13:0
встановлено, як звичайний режим або режим ОТЗ (не ШІМ).

Таблиця 5.4 – Функціональні можливості бітів COM1x1:0, коли біти
WGM13:0 встановлено, як звичайний режим або режим ОТЗ (не ШІМ)

COM1A1/
COM1B1

COM1A0/
COM1B0 Опис

0 0 Нормальна робота виводу, OC1A/OC1B
відключено

0 1 Перемикання OC1A/OC1B при збігу
1 0 Очищення OC1A/OC1B при збігу (встано-

вити вихід на низький рівень)
1 1 Встановлення OC1A/OC1B при збігу (встано-

вити вихід на високий рівень)

Таблиця 5.5 показує функціональність бітів COM1x1:0, коли
біти WGM13:0 встановлено як режим швидкого ШІМ (особливий
випадок виникає, коли OCR1A/OCR1B дорівнює верхньому зна-
ченню і встановлено COM1A1/COM1B1. У цьому випадку збіг при
порівнянні ігнорується, але встановлення або очищення викону-
ється при нижньому значенні).

Таблиця 5.6 показує функціональність бітів COM1x1:0, коли
біти WGM13:0 встановлені, як фазо-коректний, або фазо- та час-
тото-коректний ШІМ.

Біт 3 – FOC1A: Примусове порівняння для каналу A
Біт 2 – FOC1B: Примусове порівняння для каналу B
Біти FOC1A/FOC1B активні лише тоді, коли біти WGM13:0

встановлюють режим без ШІМ. Однак для забезпечення сумісно-
сті з майбутніми пристроями ці біти повинні бути встановлені як
0, при запису TCCR1A під час роботи в режимі ШІМ.

1255	 Таймери мікроконтролерів сімейства AVR

Таблиця 5.5 – Функціональність бітів COM1x1:0, коли біти
WGM13:0 встановлено, як режим швидкого ШІМ

COM1A1/
COM1B1

COM1A0/
COM1B0 Опис

0 0 Нормальна робота виводу, OC1A/OC1B
відключено

0 1

При WGM13:0 = 15: перемикання OC1A при
збігу, OC1B відключено (нормальна робота
порту). Для всіх інших налаштувань WGM1 –
нормальна робота порту, OC1A/OC1B
відключено

1 0
Очищення OC1A/OC1B при збігу, встанов-
лення OC1A/OC1B при нижньому значенні
(режим без інвертування)

1 1
Встановлення OC1A/OC1B при збігу, очи-
щення OC1A/OC1B при верхньому значенні
(режим з інвертуванням)

Таблиця 5.6 – Функціональність бітів COM1x1:0,
коли біти WGM13:0 встановлені, як фазо-коректний,
або фазо- та частото-коректний ШІМ

COM1A1/
COM1B1

COM1A0/
COM1B0 Опис

0 0 Нормальна робота виводу, OC1A/OC1B
відключено

0 1

При WGM13:0 = 9 або 14: перемикання OC1A
при порівнянні, OC1B відключено
(нормальна робота порту). Для всіх інших
налаштувань WGM1 – нормальна робота
порту, OC1A/OC1B відключено

1 0
Очищення OC1A/OC1B при збігу при
рахунку вгору. Встановлення OC1A/OC1B
при збігу при рахунку вниз

1 1
Встановлення OC1A/OC1B при збігу при
рахунку вгору. Очищення OC1A/OC1B при
збігу при рахунку вниз

126 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Під час запису логічної одиниці в біт FOC1A/FOC1B негай-
ний збіг при порівняні примусово виконується у модулі генерації
сигналу. Вихід OC1A/OC1B змінюється відповідно до налашту-
вання бітів COM1x1:0.

Встановлення бітів FOC1A/FOC1B не генеруватиме жодних
переривань і не очищатиме таймер у режимі ОТЗ, використовуючи
OCR1A як верхнє значення.

Біти FOC1A/FOC1B завжди читаються як нульові.
Біт 1:0 – WGM11:0: режим генерації сигналу
У поєднанні з бітами WGM13:2, що знаходяться в регістрі TCCR1B,

ці біти керують послідовністю рахунку лічильника, джерелом верх-
нього значення лічильника та видом генерації сигналу. Режими роботи,
що підтримує блок таймера-лічильника: звичайний режим (лічиль-
ник), режим очищення таймера при збігу (ОТЗ) і три типи режимів
широтно-імпульсної модуляції (ШІМ). Відповідність між значеннями
бітів WGM13:0 та режимами роботи показана у таблиці 5.7.

Таблиця 5.7 – Відповідність між значеннями бітів WGM13:0
та режимами роботи

Ре
ж

им

W
G

M
13

W
G

M
12

W
G

M
11

W
G

M
10 Режим роботи

таймера-
лічильника

Верхнє
значення

Оновлення
OCR1x

Встановлення
прапору TOV1

при

1 2 3 4 5 6 7 8 9
0 0 0 0 0 Звичайний 0xFFFF Одразу максимальному зн.

1 0 0 0 1
Фазо-коректний
ШІМ (8-бит)

0x00FF Верхнє зн. нижньому зн.

2 0 0 1 0
Фазо-коректний
ШІМ (9-бит)

0x01FF Верхнє зн. нижньому зн.

3 0 0 1 1
Фазо-коректний
ШІМ (10-бит)

0x03FF Верхнє зн. нижньому зн.

4 0 1 0 0 ОТЗ OCR1A Одразу максимальному зн.

5 0 1 0 1
Швидкий ШІМ
(8-бит)

0x00FF Нижнє зн. верхньому зн.

6 0 1 1 0
Швидкий ШІМ
(9-бит)

0x01FF Нижнє зн. верхньому зн.

1275	 Таймери мікроконтролерів сімейства AVR

1 2 3 4 5 6 7 8 9

7 0 1 1 1
Швидкий ШІМ
(10-бит)

0x03FF Нижнє зн. верхньому зн.

8 1 0 0 0
Фазо- та частото-
коректний ШІМ

ICR1 Нижнє зн. нижньому зн.

9 1 0 0 1
Фазо- та частото-
коректний ШІМ

OCR1A Нижнє зн. нижньому зн.

10 1 0 1 0
Фазо-коректний
ШІМ

ICR1 Верхнє зн. нижньому зн.

11 1 0 1 1
Фазо-коректний
ШІМ

OCR1A Верхнє зн. нижньому зн.

12 1 1 0 0 ОТЗ ICR1 Одразу максимальному зн.
13 1 1 0 1 Зарезервовано - - -
14 1 1 1 0 Швидкий ШІМ ICR1 Нижнє зн. верхньому зн.
15 1 1 1 1 Швидкий ШІМ OCR1A Нижнє зн. верхньому зн.

Регістр керування B таймера-лічильника 1 – TCCR1B зобра-
жено на рисунку 5.19.

Продовження таблиці 5.7

Рисунок 5.19 – Регістр керування B таймера-лічильника 1

Біт 7 – ICNC1: фільтр шуму блока захоплення
Встановлення цього біта (в одиницю) активує фільтр шуму

блока захоплення. Коли фільтр шуму активовано, вхідний сиг-
нал із входу захоплення (ICP1) фільтрується. Для роботи фільтра
потрібні чотири послідовні однакові значення виводу ICP1 для
зміни вихідного сигналу. Тому захоплення вхідного сигналу затри-
мується на чотири цикли осцилятора, коли фільтр шуму увімкнено.

Біт 6 – ICES1: вибір фронту захоплення
Цей біт вибирає фронт на вході захоплення (ICP1), який

використовується для запуску події захоплення. Коли біт ICES1

128 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

записаний як нуль, спадаючий (негативний) фронт використовує-
ться як тригер, а коли біт ICES1 записаний як одиниця, нароста-
ючий (позитивний) фронт ініціює захоплення. Коли захоплення
запускається відповідно до налаштування біту ICES1, значення
лічильника копіюється у вхідний регістр захоплення (ICR1).
Подія також встановлює прапор захоплення (ICF1), і його можна
використовувати для виклику переривання захоплення, якщо
це переривання ввімкнено. Коли ICR1 використовується як верхнє
значення (див. опис бітів WGM13:0, розташованих у TCCR1A
та регістрі TCCR1B), вивід ICR1 від’єднується, і, отже, функція
захоплення вимикається.

Біт 5 – зарезервований біт
Цей біт зарезервовано для майбутнього використання. Для

забезпечення сумісності з майбутніми пристроями цей біт має бути
записаний як нуль під час запису TCCR1B.

Біти 4:3 – WGM13:2: Режим генерації сигналу
Див. опис реєстру TCCR1A.

Таблиця 5.8 – Налаштування таймера-лічильника
в залежності від бітів
CS12 CS11 CS10 Опис

0 0 0 Немає тактового сигналу (таймер-лічильник
зупинений)

0 0 1 clkI/O (без попереднього дільника)
0 1 0 clkI/O/8 (від попереднього дільника)
0 1 1 clkI/O/64 (від попереднього дільника)
1 0 0 clkI/O/256 (від попереднього дільника)
1 0 1 clkI/O/1024 (від попереднього дільника)

1 1 0 Зовнішній тактовий сигнал на виводі T1.
Синхронізація по спадаючому фронту

1 1 1 Зовнішній тактовий сигнал на виводі T1.
Синхронізація по зростаючому фронту

Біт 2:0 – CS12:0: Вибір тактового сигналу
Три біти вибору тактового сигналу вибирають джерело такто-

вого сигналу, який буде використовуватися таймером-лічильни-
ком. Якщо для таймера-лічильника 1 використовуються режими

1295	 Таймери мікроконтролерів сімейства AVR

зовнішніх імпульсів, зміни рівня на виводі T1 будуть тактувати
лічильник, навіть якщо цей контакт налаштовано як вихід. Ця функ-
ція дозволяє програмно контролювати рахунок.

Таймер-Лічильник 1 – TCNT1H і TCNT1L (рис. 5.20).

Рисунок 5.20 – Таймер-лічильник 1 – TCNT1H і TCNT1L

Два регістри вводу-виводу таймера-лічильника (TCNT1H
і TCNT1L, комбінований TCNT1) забезпечують прямий доступ
до 16-розрядного лічильника блоку таймера-лічильника як для
операцій читання, так і для запису. Щоб переконатися, що стар-
ший і молодший байти читаються і записуються одночасно, коли
ЦП отримує доступ до цих регістрів, доступ виконується за допо-
могою 8-розрядного тимчасового регістра старшого байту (TEMP).
Цей тимчасовий регістр спільно використовується всіма іншими
16-розрядними регістрами.

Зміна значення лічильника (TCNT1) під час його роботи ство-
рює ризик втрати події збігу при порівнянні між TCNT1 і одним
із регістрів OCR1x.

Запис у регістр TCNT1 блокує (видаляє) збіг при порівнянні
на наступному тактовому імпульсі таймера для всіх модулів
порівняння.

Регістр порівняння 1 A – OCR1AH і OCR1AL (рис 5.21).

Рисунок 5.21 – Регістр порівняння 1 A – OCR1AH і OCR1AL

130 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Регістр порівняння 1 В – OCR1BH і OCR1BL (рис. 5.22).

Регістри порівняння містять 16-бітне значення, яке постійно
порівнюється зі значенням лічильника (TCNT1). Збіг може бути
використаний для генерації переривання при збігу при порівнянні
або для генерації вихідного сигналу на виводі OC1x.

Регістри порівняння мають 16-бітний розмір. Щоб переконатися,
що старший і молодший байти записуються одночасно, коли ЦП запи-
сує в ці регістри, доступ виконується за допомогою 8-розрядного тим-
часового регістра старшого байту (TEMP). Цей тимчасовий регістр
спільно використовується всіма іншими 16-розрядними регістрами.

Регістр захоплення 1 – ICR1H і ICR1L (рис. 5.23).

Рисунок 5.22 – Регістр порівняння 1 В – OCR1BH і OCR1BL

Рисунок 5.23 – Регістр захоплення 1 – ICR1H і ICR1L

Регістр захоплення оновлюється значенням лічильника (TCNT1)
кожного разу, коли відбувається подія на виводі ICP1 (або за бажан-
ням на виході аналогового компаратора для таймера-лічильника1).
Регістр захоплення можна використовувати для встановлення верх-
нього значення лічильника.

Регістр захоплення має 16-бітний розмір. Щоб забезпечити одно-
часне зчитування як старшого, так і молодшого байтів, коли ЦП зверта-
ється до цих регістрів, доступ виконується за допомогою 8-розрядного

1315	 Таймери мікроконтролерів сімейства AVR

тимчасового регістра старшого байту (TEMP). Цей тимчасовий регістр
спільно використовується всіма іншими 16-розрядними регістрами.

Регістр маски переривання таймерів-лічильників – TIMSK
(рис. 5.24)

Біт 5 – TICIE1: таймер-лічильник 1, увімкнення перери-
вання при захопленні

Коли цей біт встановлено як 1, і прапор I у регістрі стану вста-
новлено (глобальні переривання ввімкнено), переривання при захо-
пленні для таймера-лічильника1 увімкнено. Відповідний вектор
переривання активується, коли встановлюється прапор ICF1, роз-
ташований у TIFR.

Біт 4 – OCIE1A: таймер-лічильник 1, увімкнення перери-
вання при збігу при порівнянні А

Коли цей біт встановлено як 1, і прапор I у регістрі стану вста-
новлено, переривання при збігу при порівнянні A для таймера-
лічильника1 увімкнено. Відповідний вектор переривання активу-
ється, коли встановлюється прапор OCF1A, розташований у TIFR.

Біт 3 – OCIE1B: таймер-лічильник 1, увімкнення перери-
вання при збігу при порівнянні В

Коли цей біт встановлено як 1, і прапор I у регістрі стану вста-
новлено, переривання при збігу при порівнянні В для таймера-
лічильника 1 увімкнено. Відповідний вектор переривання активу-
ється, коли встановлюється прапор OCF1В, розташований у TIFR.

Біт 2 – TOIE1: таймер-лічильник 1, увімкнення перери-
вання при переповненні

Коли цей біт встановлено як 1, і прапор I у регістрі стану вста-
новлено, переривання при переповненні таймера-лічильника 1
увімкнено. Відповідний вектор переривання активується, коли
встановлюється прапор TOV1, розташований у TIFR.

Рисунок 5.24 – Регістр маски переривання таймерів-лічильників – TIMSK

132 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Регістр прапорів переривання таймерів-лічильників – TIFR
(рис. 5.25).

Рисунок 5.25 – Регістр прапорів переривання таймерів-лічильників – TIFR

Біт 5 – ICF1: таймер-лічильник 1, прапор захоплення
Цей прапор встановлюється, коли подія захоплення відбувається

на виводі ICP1. Коли регістр захоплення вхідних даних (ICR1) вста-
новлений бітами WGM13:0 для використання як верхнє значення,
прапор ICF1 встановлюється, коли лічильник досягає значення
верхнього значення. ICF1 автоматично очищується, коли викону-
ється підпрограма обробки переривання захоплення. Крім того,
ICF1 можна очистити, записавши логічну одиницю у нього.

Біт 4 – OCF1A: таймер-лічильник 1, прапор збігу при
порівнянні А

Цей прапор встановлюється в наступному тактовому циклі тай-
мера після того, як значення лічильника (TCNT1) збігається з вихід-
ним регістром порівняння A (OCR1A). Зверніть увагу, що строб
примусового порівняння (FOC1A) не встановлює прапор OCF1A.
OCF1A автоматично очищується, коли виконується підпрограма
обробки переривання збігу при порівнянні А. Крім того, OCF1A
можна очистити, записавши логічну одиницю в нього.

Біт 4 – OCF1A: таймер-лічильник 1, прапор збігу при
порівнянні В

Цей прапор встановлюється в наступному тактовому циклі тай-
мера після того, як значення лічильника (TCNT1) збігається з вихід-
ним регістром порівняння В (OCR1В). Зверніть увагу, що строб
примусового порівняння (FOC1В) не встановлює прапор OCF1В.
OCF1В автоматично очищується, коли виконується підпрограма
обробки переривання збігу при порівнянні В. Крім того, OCF1В
можна очистити, записавши логічну одиницю в нього.

1335	 Таймери мікроконтролерів сімейства AVR

Біт 2 – TOV1: таймер-лічильник 1, прапор переповнення
Налаштування цього прапора залежить від налаштування

бітів WGM13:0. У звичайному режимі та режимі ОТЗ прапор
TOV1 встановлюється, коли таймер переповнюється. Зверніться
до таблиці 5.7 щодо поведінки прапора TOV1 під час використання
інших налаштувань бітів WGM13:0. TOV1 автоматично очищу-
ється, коли виконується підпрограма обробки переривання пере-
повнення таймера-лічильника 1. Альтернативно, TOV1 можна очи-
стити, записавши логічну одиницю в нього.

Контрольні запитання до теми 5
1.	 Яка основна особливість таймера-лічильника 0 мікроконтролера

ATMega8?
2.	 Що таке TCNT0 і яку функцію він виконує?
3.	 Які регістри використовуються для маскування переривань у тай-

мері/лічильнику 0?
4.	 Як таймер-лічильник 0 може тактуватися?
5.	 Що відбувається, коли таймер-лічильник 0 досягає свого максималь-

ного значення?
6.	 Які біти у регістрі TCCR0 відповідають за вибір тактового сигналу

таймера-лічильника 0?
7.	 Що трапляється з таймером-лічильником 0, якщо біти CS02:0 у регі-

стрі TCCR0 встановлені в значення 0?
8.	 Як можна збільшити роздільну здатність таймера-лічильника за допо-

могою програмного забезпечення?
9.	 Що означає, коли встановлюється біт TOV0 у регістрі TIFR?
10.	 Які основні функції 16-розрядного таймера-лічильника мікроконтро-

лера ATMega8?
11.	 Як використовуються подвійно буферизовані регістри порівняння

(OCR1A/B) у 16-розрядному таймері/лічильнику?
12.	 Що таке регістр захоплення (ICR1) і як він працює в контексті 16-роз-

рядного таймера-лічильника?
13.	 Які режими роботи доступні для 16-розрядного таймера-лічильника

і як вони впливають на функціонування лічильника?
14.	 Які джерела тактового сигналу можуть використовуватися для тай-

мера-лічильника 1 і як вибирається джерело тактового сигналу?
15.	 Які регістри керують роботою 16-розрядного таймера-лічильника і як

здійснюється доступ до них?

134 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

16.	 Які основні джерела запуску для блоку захоплення даних?
17.	 Як вибрати аналоговий компаратор як джерело запуску для блоку

захоплення?
18.	 Що відбувається, коли увімкнено фільтр шуму?
19.	 Чому важливо своєчасно читати регістр ICR1 при використанні пере-

ривання захоплення?
20.	 Як впливає запис значення в регістр TCNT1 на роботу блоку

порівняння?
21.	 Які функції виконують біти COM1x1:0 при порівнянні і їх взаємозв’я-

зок з генератором сигналу?
22.	 Як впливають біти COM1x1:0 на перевизначення порту виводу OC1x?
23.	 Яким чином біти COM1x1:0 впливають на вихідний сигнал в режимі

очищення таймера при збігу (ОТЗ)?
24.	 Які режими роботи таймера визначаються комбінацією бітів WGM13:0

та COM1x1:0?
25.	 Як відрізняється робота таймера у режимі швидкого ШІМ від режиму

ОТЗ з точки зору генерації сигналу?

Використана література
1.	 Конспект лекцій з дисципліни «Мікропроцесорна техніка» для здо-

бувачів вищої освіти першого (бакалаврського) рівня зі спеціальності
153 «Мікро- та наносистемна техніка» за освітньо-професійною
програмою «Мікро- та наносистемна техніка» та зі спеціальності
171 «Електроніка» за освітньо-професійною програмою
«Електроніка» / уклад. О. М. Гулєша. Кам’янське : ДДТУ, 2020. 57 с.

2.	 Atmel: ATMega8, ATmega8L : технічна документація на мікроконт-
ролер. URL: https://ww1.microchip.com/downloads/en/DeviceDoc/
Atmel-2486-8-bit-AVR-microcontroller-ATmega8_L_datasheet.pdf

https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-2486-8-bit-AVR-microcontroller-ATmega8_L_datasheet.pdf

6___
АСИНХРОННО-СИНХРОННИЙ ПРИЙМАЧ-

ПЕРЕДАВАЧ USART

Метою вивчення теми є ознайомлення з загальними відомо-
стями інтерфейсу UART, його апаратною частиною та регістрами
вводу-виводу.

Завдання вивчення теми збігаються з переліком питань для
розгляду, що наведений нижче.

Перелік питань до розділу:
6.1.	 Загальні відомості про інтерфейс UART.
6.2.	 Апаратна частина UART мікроконтролерів AVR.
6.3.	 Регістри вводу-виводу модуля USART.
6.4.	 Приклади налаштування швидкості передачі даних.

6.1 Загальні відомості про інтерфейс UART

Цифрові системи – це обмін і зберігання інформації у формі
одиниць і 0. Щоб поділитися цією інформацією з кількома при-
строями з різною архітектурою, нам потрібен універсальний під-
хід до обміну даними. Тут в дію вступають різноманітні протоколи
зв’язку, одним із яких є універсальний асинхронний приймач-пере-
давач (UART). Це один із найбільш поширених протоколів зв’язку
у вбудованій електроніці. Це послідовний, повнодуплексний, асин-
хронний протокол зв’язку «плата-плата».

Оскільки UART є повнодуплексним і асинхронним протоколом
зв’язку, передача та прийом даних можуть відбуватися одночасно.
Тому нам потрібні окремі піни для передачі та отримання даних.
У нас є контакт TX для передачі та контакт RX для прийому даних.
Передані дані з порту TX одного пристрою приймаються портом

136 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

RX іншого пристрою і навпаки. Тому з’єднання між пристроями
встановлюються таким чином, що TX1 під’єднується до RX2,
а TX2 – до RX1 для здійснення зв’язку. На рис. 6.1 показано,
як виконуються підключення для протоколу UART.

Рисунок 6.1 – Схема підключення пристроїв по інтерфейсу UART

Однією з найпоширеніших помилок під час першого налашту-
вання апаратного забезпечення UART є підключення TX1 до TX2
і RX1 до RX2. Цю помилку важко помітити, і вона викликає розча-
рування. Тому завжди переконайтеся, що ви з’єднуєте TX одного
пристрою з RX іншого. Ще одна важлива річ, на яку слід звернути
увагу, це те, що GND пристроїв також має бути підключена. Це важ-
ливо, оскільки електронні пристрої зчитують або записують дані
про різницю напруги (5 В або 3,3 В ВИСОКА або 1 і 0 В: НИЗЬКА).

Щоб виміряти різницю напруг, нам потрібна опорна напруга.
Підключення землі забезпечує те посилання, яке запобігає пошко-
дженню даних під час зв’язку. Зробивши підключення, ми завер-
шуємо налаштування апаратного забезпечення. Давайте перейдемо
до розуміння того, що таке пакет даних UART і що в ньому є (рис. 6.2).

1.	Біти синхронізації. Є 1 стартовий біт і 1 або 2 стоп-біти
(рис. 6.3). Вони вказують на початок і кінець пакета. лінія підтягу-
ється до 0, коли передача ініціюється, що вказує на початок кадру,
і знову підтягується до 1, коли передача завершується.

1376	 Асинхронно-синхронний приймач-передавач USART

Коли лінія має значення 1, це вважається неактивним станом
і означає відсутність передачі даних. Існує лише 1 біт для представ-
лення «початку», але стопові біти можна налаштувати на 1 або 2.
Для деяких мікроконтролерів, наприклад серії STM32F4xx, стопові
біти також можна налаштувати на 1,5.

2.	Біти даних. Ця частина кадру даних є суттю питання,
оскільки вона переносить інформацію, яку потрібно надіслати
одержувачу. Довжина цього блоку може варіюватися від 5 до 9 біт,
залежно від узгодженої конфігурації між пристроями. Стан-
дартний розмір даних становить 8 біт або 1 байт. Відповідно до стан-
дартів UART, протокол дотримується порядку від LSB (молодшого
значущого біта) до MSB (старшого значущого біта), але його також
можна налаштувати для дотримання порядку байтів від MSB до LSB.

3.	Біт парності. UART постачається з механізмом перевірки помилок
для перевірки цілісності отриманих фрагментів даних. Оскільки дані
надсилаються байт за байтом в UART, перевірка помилок виконується
для кожного отриманого байта. Для цього використовується біт парності;
це код перевірки помилок, який надсилається після бітів даних.

Існує два режими біта парності: непарний або парний. Перевірка
на непарність: щоб перевірити цілісність блоку, програма перевіряє

Рисунок 6.2 – Формат пакету даних UART

Рисунок 6.3 – Стартовий і стоповий біти для синхронізації в UART

138 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

кількість одиниць у даних, включаючи біт парності. Передавач
виконує наступні кроки для генерації біта парності для кадру даних.

1)	Підраховує кількість одиниць у бітах даних.
2)	Якщо кількість одиниць непарна, тоді біт парності встановлю-

ється в 0, інакше він встановлюється в 1. Цей процес робить загальну
кількість одиниць у фрагменті (біти даних + біт парності) непарною.

Одержувач перевіряє, чи число одиниць у отриманій послідовності
(включаючи біт парності) є парним чи непарним. Якщо є непарна кіль-
кість 1, дані дійсні. Якщо є парна кількість 1, дані хибні.

Перевірка парності на парність: замість непарної кількості оди-
ниць у даних парна перевірка перевіряє на парну кількість одиниць
і дотримується тих самих методів на стороні передавача та при-
ймача. Біт парності встановлюється в 1, якщо є непарна кількість
одиниць, і в 0, якщо є парна кількість одиниць у фрагменті.

Кінцева мета полягає в тому, щоб кількість одиниць у передачі
даних була рівною. Приймач перевіряє парність одиниць у фраг-
менті (біти даних + біт парності), щоб перевірити передачу даних.
Це простий механізм перевірки помилок, і він не працює, якщо під
час передачі пошкоджено більше одного біта. Він також не може
визначити, який біт було пошкоджено під час передачі.

У нас готові дані для надсилання. Але як UART синхронізує
передачу даних без загального годинника? Це робиться за допомо-
гою конфігурації під назвою «Швидкість передачі даних».

4.	Швидкість передачі даних. Вона визначає швидкість передачі
даних у б/с (бітах за секунду). Щоб зв’язок UART мав місце, пристрої
мають бути налаштовані на ідентичні швидкості передачі даних. Деякі
стандартні швидкості передачі: 9600, 38400, 115200, 921600 тощо.

Інвертуйте швидкість передачі, і ви матимете час, який потрібен
кожному біту для передачі. Наприклад,

1

9600
104 16= , .�мкс

Отже, зі швидкістю передачі даних 9600 бод кожен біт пере-
дається за 104,16 мікросекунди. Що стосується апаратного
забезпечення, пристрій підтягне лінію вгору або вниз протягом
104,16 мікросекунди.

1396	 Асинхронно-синхронний приймач-передавач USART

6.2 Апаратна частина UART мікроконтролерів AVR

Модуль складається з 3-х основних частин (рисунок 6.4): такто-
вого генератора (контролера) швидкості передачі, блоку приймача
та блоку передавача.

Рисунок 6.4 – Схема модуля UART

Блок передавача містить однорівневий буфер, зсувний регістр,
схему формування біта парності та схему керування. Блок приймача
містить схеми відновлення тактового сигналу та даних, схему конт-
ролю парності, дворівневий буфер, зсувний регістр та схему керування.

Буферні регістри приймача та передавача розміщуються за єди-
ним адресом простору вводу-виводу та позначаються як регістр
даних UDR. У цьому регістрі зберігаються молодші 8 розрядів
даних, що приймаються чи передаються. При читанні UDR вико-
нується звертання до буферного регістра приймача, а при записі –
до буферного регістра передавача.

140 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

У модулях USART буфер приймача дворівневий (FIFO-буфер).
При будь-якому звертанні до регістра UDR цей буфер змінює свій
стан. Тому необхідно спершу зчитати дані з цього регістра, а потім
вже виконувати необхідні маніпуляції над ним.

Регістр контролера швидкості UBRR задає необхідний коефі-
цієнт поділу для системного тактового сигналу, після чого цей сиг-
нал ще поступає на додаткові дільники, вибір яких здійснюється
за допомогою додаткового біта U2X.

Схема відновлення тактового сигналу (у приймачі) призначена
для синхронізації внутрішнього тактового сигналу, що формується
контролером швидкості передачі, та пакетів з даними, що поступа-
ють на вивід RxD. Схема відновлення даних виконує зчитування
та фільтрацію кожного розряду для отримуваного пакету.

Швидкість прийому/передачі. Швидкість обміну задається
контролером швидкості передачі, що функціонує як подільник
системного тактового сигналу з програмованим коефіцієнтом поділу,
значення якого знаходиться у регістрі UBRR. Регістр UBRR є 12-роз-
рядним та фізично розміщується у 2-х регістрах UBRRH та UBRRL.

В асинхронному режимі швидкість обміну визначається не лише
значенням регістра UBRR, але і станом розряду U2X у регістрі
керування UCSRA. Якщо цей біт встановлений в «1», то коефіцієнт
поділу подільника зменшується у 2 рази, а швидкість, відповідно,
подвоюється. Швидкість обміну в асинхронному режимі визнача-
ється за такими формулами:

приU X
XTAL

UBBR

XTAL

BAUD
2 0

16 1 16
1� � � � �� �

�� �
�

�
�: ;BAUD UBRR ; (6.1)

приU X
XTAL

UBBR

XTAL

BAUD
2 1

8 1 8
1� � � �� �

�� �
�

�
�: ;BAUD UBRR . (6.2)

Прийняті такі стандартні швидкості обміну даними: 1200, 1800,
2400, 4800, 7200, 9600, 14400, 19200, 28800, 38400, 57600, 76800,
115200, 230400 бод.

Для уникнення виникнення помилок передачі рекомендується
використовувати стабілізований кварцовий тактовий генератор.

1416	 Асинхронно-синхронний приймач-передавач USART

Також має значення і величина частоти, на якій працює кварцовий
кристал. На деяких частотах можна отримати нульову похибку при
передачі даних відносно ряду стандартних швидкостей. Похибка
передачі обчислюється за такою формулою:

Error
BAUD

BAUD
% %� � � �

�

�
�

�

�
� �

розрах. 1 100 . (6.3)

Розрахуємо похибку для стандартної швидкості 9600 бод при
частоті тактового генератора 8МГц.

UBRR �
�
�

� � �� �8 10

16 9600
1 51 083 51

6

. ; (6.4)

BAUDрозрах. Бод�
�
�� �

�� 8 10
16 51 1

9615 38
6

, ; (6.5)

Error %
.

% . %.� � � ��
�
�

�
�
� � �

9615 38

9600
1 100 0 16 (6.6)

Рекомендується використовувати значення регістра UBRR, при
яких отримана швидкість передачі відрізняється від необхідного
значення менше, аніж на 0,5 %.

Передача та прийом даних, переривання модуля UART.
Для активації прийому/передачі модуля UART необхідно надати
дозволи на роботу передавача та приймача, встановивши відпо-
відні біти TXEN та RXEN у регістрі керування UCSRB. Тоді від-
повідні виводи МК, позначені як TxD та RxD, підключаються
до модуля UART та працюють на прийом і передачу, незалежно
від налаштувань регістрів керування портом, до якого вони
належать.

Для відправки байту даних необхідно записати його значення
у регістр даних UDR. Після цього ці дані пересилаються із UDR
у зсувний регістр передавача. Якщо в регістр UDR відправити
одразу ще один байт даних, то ці дані будуть відправлені у зсувний
регістр лише після того, як у зсувному регістрі буде відправлений
останній біт з кадру. Отже, частота запису даних в UDR визнача-
ється швидкістю обміну даними модуля UART.

142 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Прийом даних починається з моменту виявлення приймачем
коректного старт-біту. Далі, кожен наступний біт кадру зчитується
зі швидкістю, заданою для модуля UART, та розміщується у зсув-
ному регістрі, аж поки не буде виявлений перший стоп-біт. Після
цього вміст зсувного регістра пересилається у буфер приймача
UDR, звідки прийняте значення має бути зчитаним.

Якщо формат кадру передбачає 9 біт даних, тоді перед записом
в регістр UDR молодших 8 біт необхідно виставити у потрібне зна-
чення біт TXB8 (регістр UCSRB). Аналогічно і при прийомі даних,
спершу необхідно прочитати значення біту RXB8 (регістр UCSRB),
а потім вже читати значення молодших 8-ми бітів у регістрі UDR.

При прийомі даних також можемо виконати перевірку прапорів
помилок (регістр UCSRA), які мають бути перевіреними ще перед
читанням регістру даних UDR:

UPE – прапор помилки контролю парності, який виставляється
при виявлені помилки парності у прийнятих даних.

DOR – прапор переповнення, який виставляється при виявленні
нового старт-біта у зсувному регістрі, а буфер приймача у цей
момент є заповнений (2 значення).

FE – прапор помилки кадрування, який виставляється при вияв-
ленні у прийнятому кадрі «0» на місці першого стоп-біта.

Для сповіщення про події: прийнято новий байт даних, завер-
шено передачу даних, регістр даних UDR порожній – передбачені
відповідні прапори RXC, TXC, UDRE (регістр UCSRA).

На основі цих прапорів також можуть бути згенеровані перери-
вання для обробки цих подій. Дозвіл на переривання визначаються
відповідними прапорами дозволів (регістр UCSRB):

RXCIE – дозвіл на переривання по завершенню прийому;
TXCIE – дозвіл на переривання по завершенню передачі;
UDRIE – дозвіл на переривання при спорожненні регістра UDR.
Переривання по завершенню передачі даних використовуються

лише в окремих випадках. Наприклад, для переключення кінцевого
пристрою у режим прийому по завершенню передачі даних в про-
токолі передачі даних RS-485.

1436	 Асинхронно-синхронний приймач-передавач USART

6.3 Регістри вводу-виводу модуля USART

Регістр даних USART – UDR (рис. 6.5)

Рисунок 6.5 – Регістр даних USART – UDR

Регістр буфера передачі даних USART і регістр буфера прийому
даних USART спільно використовують ту саму адресу вводу-виводу,
що називається регістром даних USART або UDR. Регістр буфера
передачі даних (TXB) буде місцем призначення для даних, запи-
саних до регістру UDR. Зчитування регістру UDR повертає вміст
регістру буфера прийому даних (RXB).

Для 5-бітних, 6-бітових або 7-бітових символів передавач ігно-
руватиме верхні невикористані біти, а приймач встановлюватиме
їх як нуль.

Буфер передачі може бути записаний лише тоді, коли вста-
новлено прапор UDRE у регістрі UCSRA. Дані, записані в UDR,
коли прапор UDRE не встановлено, передавач USART ігнору-
ватиме. Коли дані записані в буфер передачі, і передавач увімк-
нено, він завантажуватиме дані в регістр зсуву передачі, коли
той порожній. Потім дані будуть послідовно передаватися
на вивід TxD.

Буфер прийому складається з дворівневого FIFO. FIFO змінює
свій стан кожного разу, коли здійснюється доступ до буфера при-
йому. Через таку поведінку буфера прийому не використовуйте
інструкції читання-зміни-запису (SBI та CBI) для цього регістру.
Будьте також обережні, використовуючи інструкції перевірки
бітів (SBIC і SBIS), оскільки вони також змінять стан FIFO.

144 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Регістр контролю та статусу USART A – UCSRA (рис. 6.6)

Рисунок 6.6 – Регістр контролю та статусу USART A – UCSRA

Біт 7 – RXC: прийом USART завершено
Цей прапор встановлюється, коли в буфері прийому є непро-

читані дані, і очищається, коли буфер прийому порожній (тобто
не містить непрочитаних даних). Якщо приймач вимкнено,
буфер прийому буде очищено, і, отже, біт RXC стане нульовим.
Прапор RXC можна використовувати для генерації переривання
по завершенню прийому даних.

Біт 6 – TXC: передача USART завершена
Цей прапор встановлюється, коли весь кадр у регістрі зсуву

передачі було передано, а в буфері передачі (UDR) наразі немає
нових даних. Біт прапора TXC автоматично очищається, коли вико-
нується переривання по завершенню передачі, або його можна ски-
нути, записавши в нього одиницю. Прапор TXC може генерувати
переривання по завершенню передачі даних.

Біт 5 – UDRE: Регістр даних USART порожній
Прапор UDRE вказує, чи буфер передачі (UDR) готовий прий-

мати нові дані. Якщо UDRE дорівнює 1, буфер порожній і, отже,
готовий до запису. Прапор UDRE може генерувати переривання
порожнього регістру даних. UDRE дорівнює 1 після скидання, щоб
вказати, що передавач готовий.

Біт 4 – FE: Помилка кадру
Цей біт встановлюється, якщо наступний символ у приймальному

буфері мав помилку кадру під час отримання (тобто, коли перший
стоп-біт наступного символу в приймальному буфері дорівнював
нулю). Цей біт дійсний, доки не буде зчитано буфер прийому (UDR).
Біт FE дорівнює нулю, коли стоп-біт отриманих даних дорівнює оди-
ниці. Завжди встановлюйте цей біт як нуль під час запису в UCSRA.

1456	 Асинхронно-синхронний приймач-передавач USART

Біт 3 – DOR: Переповнення даних
Цей біт встановлюється, якщо виявлено стан переповнення

даних. Це відбувається, коли буфер прийому заповнений (два
символи), присутній новий символ, який очікує в регістрі зсуву
прийому, і виявлено новий початковий біт. Цей біт дійсний, доки
не буде зчитано буфер прийому (UDR). Завжди встановлюйте цей
біт як нуль під час запису в UCSRA.

Біт 2 – PE: помилка парності
Цей біт встановлюється, якщо наступний символ у буфері при-

йому мав помилку парності під час отримання, та перевірка пар-
ності була ввімкнена в цей момент (UPM1 = 1). Цей біт дійсний,
доки не буде зчитано буфер прийому (UDR). Завжди встановлюйте
цей біт як нуль під час запису в UCSRA.

Біт 1 – U2X: подвоєна швидкість передачі USART
Цей біт працює лише для асинхронного режиму. Встановіть цей біт

як нуль при використанні синхронного режиму. Запис одиниці у цей біт
зменшить значення дільника швидкості передачі з 16 до 8, фактично
подвоюючи швидкість передачі для асинхронного зв’язку.

Біт 0 – MPCM: багатопроцесорний режим зв’язку
Цей біт вмикає багатопроцесорний режим зв’язку. Коли біт

MPCM записаний як 1, усі вхідні кадри, отримані приймачем
USART, які не містять інформації про адресу, ігноруватимуться.
Налаштування MPCM не впливає на передавач.

Регістр контролю та статусу USART В – UCSRВ (рис. 6.7).

Рисунок 6.7 – Регістр контролю та статусу USART В – UCSRВ

Біт 7 – RXCIE: дозвіл переривання по завершенню прийому
даних

Запис одиниці в цей дозволяє переривання при встановленні
прапору RXC. Переривання по завершенню прийому даних буде

146 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

створено, лише якщо біт RXCIE встановлений як 1, глобальний
прапор переривання в SREG встановлений як 1 і біт RXC в регістрі
UCSRA встановлено.

Біт 6 – TXCIE: дозвіл переривання по завершенню передачі даних
Запис одиниці у цей біт дозволяє переривання при встановленні

прапору TXC. Переривання по завершенню передачі даних буде
створено, лише якщо біт TXCIE встановлений як 1, глобальний
прапор переривання в SREG встановлений як 1 і біт ТXC в регістрі
UCSRA встановлено.

Біт 5 – UDRIE: дозволено переривання порожнього регістру
даних USART

Запис цього біта в одиницю дозволяє переривання при вста-
новленні прапору UDRE. Переривання порожнього регістру даних
буде згенеровано, лише якщо біт UDRIE встановлений як 1, гло-
бальний прапор переривання в SREG встановлений як 1 і біт UDRE
в регістрі UCSRA встановлено.

Біт 4 – RXEN: увімкнення приймача
Запис одиниці в цей біт вмикає приймач USART. Приймач замі-

нює звичайний режим порту для виводу RxD, якщо він ввімкнений.
Вимкнення приймача очистить буфер прийому, зробивши прапори
FE, DOR і PE недійсними.

Біт 3 – TXEN: увімкнення передавача
Запис одиниці в цей біт вмикає передавач USART. Передавач

замінює звичайний режим порту для виводу TxD, якщо він ввім-
кнений. Вимкнення передавача (записування 0 у TXEN) не набуде
чинності, доки поточні та незавершені передачі не будуть завер-
шені (тобто, коли регістр зсуву передачі та регістр буфера передачі
не будуть містити даних для передачі). Якщо передавач вимкнений,
він більше не займає вивід TxD.

Біт 2 – UCSZ2: довжина символу
Біт UCSZ2 у поєднанні з бітами UCSZ1:0 в UCSRC встановлю-

ють кількість бітів даних (довжину символу) у кадрі, який вико-
ристовують приймач і передавач.

Біт 1 – RXB8: Біт 8 прийнятих даних
RXB8 є дев’ятим бітом даних отриманого символу під час

роботи з послідовними кадрами з дев’ятьма бітами даних. Його
необхідно прочитати перед читанням молодших бітів з UDR.

1476	 Асинхронно-синхронний приймач-передавач USART

Біт 0 – TXB8: Біт 8 даних для передачі
TXB8 є дев’ятим бітом даних у символі, що передається під час

роботи з послідовними кадрами з дев’ятьма бітами даних. Його
потрібно записати перед записом молодших бітів до UDR.

Регістр контролю та статусу USART С – UCSRС (рис. 6.8).

Рисунок 6.8 – Регістр контролю та статусу USART С – UCSRС

Біт 7 – URSEL: вибір регістра
Регістр UCSRC має ту саму адресу, що й регістр UBRRH. Тому

під час доступу до нього необхідно звернути особливу увагу.
Під час запису у цю адресу старший біт записаного значення

(біт вибору реєстру USART (URSEL)) контролює, який із двох регі-
стрів буде записано. Якщо URSEL дорівнює нулю під час операції
запису, буде оновлено значення UBRRH. Якщо URSEL дорівнює
одиниці, буде оновлено регістр UCSRC.

Здійснення читання регістру UBRRH чи UCSRC є більш склад-
ною операцією. Однак у більшості програм зрідка потрібно читати
будь-який із цих регістрів. Доступ для читання контролюється певною
послідовністю. Одноразове зчитування з цієї адреси повертає вміст
регістру UBRRH. Якщо значення регістра було прочитано в попе-
редньому системному такті, повторне читання регістру в поточному
такті поверне вміст UCSRC. Зауважте, що часова послідовність для
читання UCSRC є неподільною операцією. Таким чином, переривання
повинні контролюватися (наприклад, шляхом глобального вимкнення
переривань) під час операції читання. Читання вмісту UBRRH не є
неподільною операцією, тому його можна читати як звичайний регістр,
якщо попередня інструкція не зчитувала значення з цього регістру.

Біт 6 – UMSEL: вибір режиму USART
Цей біт вибирає між асинхронним (коли він дорівнює 0) і син-

хронним (коли він дорівнює 1) режимами роботи.

148 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Біти 5:4 – UPM1:0: режим парності
Ці біти вмикають і задають тип генерації та перевірки парності.

Якщо перевірку парності ввімкнено, передавач автоматично гене-
руватиме та надсилатиме біт парності переданих бітів даних у кож-
ному кадрі. Приймач генеруватиме значення біту парності для вхід-
них даних і порівнюватиме його з налаштуванням UPM0. Якщо буде
виявлено невідповідність, буде встановлено прапор PE в UCSRA.

Таблиця 6.1 – Режими контролю парності у відповідності
до налаштувань бітів

UPM1 UPM0 Режим контролю парності
0 0 Вимкнено
0 1 Зарезервовано
1 0 Ввімкнено, контроль парності
1 1 Ввімкнено, контроль непарності

Біт 3 – USBS: вибір стопових бітів
Цей біт вибирає кількість стоп-бітів, які вставляє передавач.

Одержувач ігнорує це налаштування. Якщо цей біт дорівнює 0,
то передається один стоп-біт, а якщо дорівнює 1, то передається
два стоп-біти.

Біти 2:1 – UCSZ1:0: довжина символу
Біти UCSZ1:0 у поєднанні з бітом UCSZ2 в регістрі UCSRB

встановлюють кількість бітів даних (довжина символу) у кадрі,
який використовують приймач і передавач.

Біт 0 – UCPOL: полярність тактового сигналу
Цей біт використовується лише для синхронного режиму. Записуйте

цей біт як 0, коли використовуєте асинхронний режим. Біт UCPOL
встановлює співвідношення між зміною вихідних даних і вибіркою
вхідних даних, а також синхронним тактовим сигналом (XCK).

Таблиця 6.2 – Довжина символу в залежності від налаштувань
UCSZ2 UCSZ1 UCSZ0 Довжина символу

1 2 3 4
0 0 0 5 біт
0 0 1 6 біт

1496	 Асинхронно-синхронний приймач-передавач USART

1 2 3 4
0 1 0 7 біт
0 1 1 8 біт
1 0 0 Зарезервовано
1 0 1 Зарезервовано
1 1 0 Зарезервовано
1 1 1 9 біт

Регістри швидкості передачі даних USART – UBRRL
і UBRRH (рис. 6.9).

Продовження таблиці 6.2

Рисунок 6.9 – Регістри швидкості передачі даних USART – UBRRL

і UBRRH

Біт 15 – URSEL: вибір регістра
Цей біт вибирає між доступом до UBRRH або UCSRC. Читається

як нуль при читанні UBRRH. URSEL має дорівнювати нулю під час
запису у UBRRH.

Біти 14:12 – зарезервовані біти
Ці біти зарезервовано для використання в майбутньому. Для

сумісності з майбутніми пристроями ці біти повинні бути записані
як 0 під час запису UBRRH.

Біти 11:0 – UBRR11:0: Регістр швидкості передачі даних USART
Це 12-бітний регістр, який містить швидкість передачі USART.

UBRRH містить чотири старші біти, а UBRRL містить вісім молод-
ших бітів швидкості передачі USART. Поточні передачі переда-
вача та приймача будуть пошкоджені, при зміні швидкості передачі

150 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

даних. Запис UBRRL ініціює негайне оновлення попереднього
дільника швидкості передачі.

Для стандартних частот кварцових резонаторів найбільш часто
використовувані швидкості передачі даних для асинхронної роботи
можна створити за допомогою налаштувань UBRR, що показані
у розділі 6.4. Значення UBRR, які дають фактичну швидкість пере-
дачі даних, що відрізняється від цільової швидкості передачі даних
менш ніж на 0,5 %, виділені жирним шрифтом у таблиці. Вищі зна-
чення помилок прийнятні, але приймач матиме меншу завадостій-
кість, коли значення помилок високі, особливо для великих довжин
символів.

6.4 Приклади налаштування швидкості передачі даних

На рис. 6.10–6.13 представлені розраховані значення регістрів
UBRRH та UBRRL для різних швидкостей передачі UART та для
різних тактових частот мікропроцесора за формулами (6.1) та (6.2).

Рисунок 6.10 – Налаштування регістрів UBRRH та UBRRL
при тактових частотах процесора від 1 МГц до 2 МГц

1516	 Асинхронно-синхронний приймач-передавач USART

Рисунок 6.11 – Налаштування регістрів UBRRH та UBRRL

при тактових частотах процесора від 3,6864 МГц до 7,3728 МГц

 Рисунок 6.12 – Налаштування регістрів UBRRH та UBRRL
при тактових частотах процесора від 8 МГц до 14,7456 МГц

152 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Значення регістрів UBRRH та UBRRL представлені для двох
варіантів – коли біт U2X регістра UCSRA встановлено та очищено.

При використанні тієї чи іншої швидкості передачі треба спочатку
впевнитися, що відхилення частоти (рядок Error) не перебільшує
0.5 %. Такі значення на рис. 6.10–6.13 виділені жирним шрифтом.

Контрольні запитання до теми 6
1.	 Що таке USART і які основні режими роботи він підтримує?
2.	 В чому полягає відмінність між синхронною та асинхронною переда-

чею даних через UART?
3.	 Які основні функції виконує стартовий біт в кадрі даних UART?
4.	 Як визначається біт парності в кадрі даних UART і яка його роль?
5.	 Які параметри формату кадру даних UART визначаються за допомо-

гою регістрів керування UCSRB та UCSRC?
6.	 Як підключаються два модулі UART для передачі даних між собою?
7.	 Які основні компоненти входять до складу модуля UART, які їх функції?
8.	 Які функції виконує блок передавача UART? Опишіть його основні

компоненти.

Рисунок 6.13 – Налаштування регістрів UBRRH та UBRRL

при тактових частотах процесора від 16 МГц до 20 МГц

1536	 Асинхронно-синхронний приймач-передавач USART

9.	 Що включає в себе блок приймача UART? Які його основні функції?
10.	 Які регістри використовуються для зберігання даних в UART? Як вони

організовані?
11.	 Які функції виконує регістр контролера швидкості UBRR? Яким

чином він впливає на швидкість обміну даними?
12.	 Як визначається швидкість обміну даними в асинхронному режимі

UART? Як впливає розряд U2X на цей процес?
13.	 Які основні прапори помилок та статусні біти використовуються для

відстеження прийому даних в UART?
14.	 Який регістр використовується для передачі і прийому даних в USART?
15.	 Що відбувається, якщо спроба запису до UDR відбувається без вста-

новлення прапорця UDRE?
16.	 Як визначається кількість бітів у символі даних для приймача і передавача?
17.	 Яка особливість FIFO буфера прийому USART?
18.	 Які події можуть призвести до встановлення біту FE (помилка кадру)

в регістрі UCSRA?
19.	 Які можливості надає біт U2X у регістрі UCSRA?
20.	 Як активувати переривання по завершенню прийому даних (RXC)

в USART?
21.	 Які дії потрібно виконати для вимкнення передавача в USART?
22.	 Які параметри визначають довжину символу в USART?
23.	 Як визначити кількість стопових бітів в передачі USART?
24.	 Що відбувається, якщо спроба зчитування UCSRC регістру не вико-

нана правильно відповідно до послідовності?
25.	 Які переваги використання дворівневого FIFO буфера в реалізації USART?

Використана література
1.	 Конспект лекцій з дисципліни «Мікропроцесорна техніка» для здо-

бувачів вищої освіти першого (бакалаврського) рівня зі спеціальності
153 «Мікро- та наносистемна техніка» за освітньо-професійною
програмою «Мікро- та наносистемна техніка» та зі спеціальності
171 «Електроніка» за освітньо-професійною програмою «Електроніка» /
уклад. О. М. Гулєша. Кам’янське : ДДТУ, 2020. 57 с.

2.	 Atmel: ATMega8, ATmega8L : технічна документація на мікроконтро-
лер. URL: https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-
2486-8-bit-AVR-microcontroller-ATmega8_L_datasheet.pdf

3.	 UART – Universal Asynchronous Receiver Transmitter. URL:
https://www.circuitbread.com/tutorials/uart-universal-asynchronous-
receiver-transmitter

https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-2486-8-bit-AVR-microcontroller-ATmega8_L_datasheet.pdf
https://www.circuitbread.com/tutorials/uart-universal-asynchronous-receiver-transmitter

7___
ПОСЛІДОВНІ СИНХРОННІ ІНТЕРФЕЙСИ

SPI ТА I2C

Метою вивчення теми є ознайомлення з послідовними син-
хронними інтерфейсами SPI та I2C та модулем TWI мікроконтро-
лерів AVR.

Завдання вивчення теми збігаються з переліком питань для
розгляду, що наведений нижче.

Перелік питань до розділу:
7.1.	 Загальні відомості про інтерфейс SPI.
7.2.	 Регістри вводу-виводу модуля SPI.
7.3.	 Загальні відомості про інтерфейс I2C.
7.4.	 Модуль TWI мікроконтролерів AVR.
7.5.	 Регістри вводу-виводу модуля TWI.

7.1 Загальні відомості про інтерфейс SPI

Послідовний периферійний інтерфейс (Serial Peripheral
Interface, SPI) – це один із найпоширеніших протоколів зв’язку,
який мікроконтролери використовують для зв’язку з периферій-
ними пристроями, такими як SRAM, SD-карти, регістри зсуву,
датчики тощо.

Це синхронний, повнодуплексний протокол на основі головного
та підлеглого. Він підтримує високошвидкісну передачу даних,
і існує пряма залежність між швидкістю передачі даних (біт/с)
і тактовою частотою (Гц) у протоколі SPI. Наприклад, якщо тактова
частота SPI становить 36 МГц, швидкість передачі становитиме
36 Мбіт/с. Таким чином, швидкість передачі даних за протоколом
SPI не обмежена. Це залежить виключно від тактової частоти, яку

1557	 Послідовні синхронні інтерфейси SPI та I 2C

підтримує пристрій. Якщо говорити про підключення, SPI – це
4-провідний інтерфейс із такими сигнальними лініями:

–	 Master Out Slave In (MOSI).
–	 Master In Slave Out (MISO).
–	 Clock (SCLK).
–	 Slave Select (SS).
Схема підключення пристроїв за інтерфейсом SPI показана

на рис. 7.1.

Рисунок 7.1 – Інтерфейс SPI

MISO та MOSI є основними лініями передачі даних. SCLK –
це тактовий сигнал, який генерує головний пристрій для вибірки
даних на шині. Нарешті, SS – це сигнальна лінія з активним низь-
кім рівнем (високий рівень, коли неактивна, і низький, коли вико-
ристовується) для вибору веденого на шині.

Підключення пристроїв за допомогою SPI просте та зрозуміле.
Кожен контакт на головному з’єднується з тим самим контактом
на підлеглому, не залишаючи місця для плутанини. MOSI голов-
ного підключається до MOSI підлеглого пристрою, а MISO голов-
ного – до MISO підлеглого. Те саме стосується SCLK і також SS.

Як згадувалося раніше, SPI є повнодуплексним інтерфейсом,
тобто головний і підлеглий можуть одночасно передавати та отри-
мувати за допомогою відповідних ліній MOSI та MISO. Однією
з головних переваг SPI є те, що немає потреби в стартових і стопо-
вих бітах, оскільки лінія SCLK шини синхронізує дані. Лінія SCLK
синхронізує зсув і дискретизацію бітів на лініях даних.

Щодо кількості бітів, які можна передати, підтримувана довжина
слова для протоколу SPI коливається від 3 до 16 бітів, але стандартом
є 8 бітів. Якщо головний і ведений хочуть поділитися 2 байтами одно-
часно, вони можуть вибрати довжину слова 16 біт і використовувати

156 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

16-бітний регістр даних (якщо доступний в MCU) або передати його
у вигляді фрагмента з двох 8-бітних пакетів даних.

SPI також підтримує кілька підлеглих пристроїв, підключе-
них до одного головного. Для кожного підлеглого має бути окрема
лінія SS. Обмін даними відбувається тільки між провідним і обра-
ним веденим; решта підлеглих пристроїв на шині залишаються
неактивними і не можуть використовувати свої лінії MOSI та MISO.

Реалізація інтерфейсу SPI в мікроконтролері ATMega8 пред-
ставлено на рисунку 7.2.

ATmega8 SPI містить такі функції:
‒	 повнодуплексна трипровідна синхронна передача даних;
‒	 головний або ведений режим;
‒	 обмін даними старшим чи молодшим бітом вперед;

Рисунок 7.2 – Схема інтерфейсу SPI в мікроконтролері ATMega8

1577	 Послідовні синхронні інтерфейси SPI та I 2C

‒	 сім програмованих швидкостей передачі;
‒	 прапор переривання по закінченню передачі;
‒	 прапор колізії при записі;
‒	 виведення з режиму очікування;
‒	 подвійна швидкість (CK/2) в головному режимі SPI.
Зв’язок між головним і підлеглим процесорами за допомогою SPI

показано на рисунку 7.3. Система складається з двох регістрів зсуву
та головного тактового генератора. Головний пристрій SPI (Master)
ініціює цикл зв’язку, коли виставляє низький рівень на виводі Slave
Select SS потрібного веденого пристрою (Slave). Головний і ведений
пристрої готують дані для надсилання у відповідних регістрах зсуву,
а головний пристрій генерує необхідні тактові імпульси на лінії SCK
для обміну даними. Дані завжди переміщуються від Master до Slave
на лінії Master Out – Slave In, MOSI, і від Slave до Master на лінії Master
In – Slave Out, MISO. Після кожного пакета даних головний синхро-
нізує веденого, підтягуючи до логічної 1 лінію вибору підлеглого, SS.

Коли інтерфейс SPI налаштований як головний, він не має авто-
матичного керування лінією SS. Це має бути оброблено програмним
забезпеченням користувача перед початком зв’язку. Коли це зроб-
лено, запис байту в регістр даних SPI запускає тактовий генератор
SPI, а апаратне забезпечення зсуває вісім бітів у ведений. Після зсуву
на один байт тактовий генератор SPI зупиняється, встановлюючи
прапор кінця передачі (SPIF). Якщо встановлено біт дозволу перери-
вання SPI (SPIE) у регістрі SPCR, генерується переривання. Головний

Рисунок 7.3 – Зв’язок між головним і підлеглим процесорами

за допомогою SPI

158 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

пристрій може продовжувати передавати наступний байт, записуючи
його в SPDR, або сигналізувати про кінець пакету, підтягуючи рівень
SS до логічної 1. Останній прийнятий байт буде зберігатися в буфер-
ному регістрі для подальшого використання.

Якщо інтерфейс SPI налаштовано як ведений, він залишатиметься
в режимі сну з високоімпедансним станом MISO, доки на виводі
SS буде високий рівень. У цьому стані програмне забезпечення може
оновлювати вміст регістра даних SPI, SPDR, але дані не будуть змі-
щені вхідними синхронізуючими імпульсами на виводі SCK, доки
на виводі SS не буде встановлено низький рівень. Після того, як один
байт повністю зсувається, встановлюється прапор кінця передачі,
SPIF. Якщо встановлено біт дозволу переривання SPI, SPIE, у регі-
стрі SPCR, генерується переривання. Підлеглий пристрій може
продовжувати розміщувати нові дані для надсилання в SPDR перед
читанням вхідних даних. Останній прийнятий байт буде зберігатися
в буферному регістрі для подальшого використання.

Система має одинарну буферизацію в напрямку передачі та подвійну
буферизацію в напрямку прийому. Це означає, що байти для передачі
не можуть бути записані в регістр даних SPI до завершення всього
циклу зсуву. Однак під час отримання даних отриманий символ має
бути прочитаний із регістру даних SPI до того, як буде повністю прий-
нято наступний символ. Інакше перший байт буде втрачено.

У веденому режимі SPI логіка керування буде зчитувати вхід-
ний сигнал з виводу SCK. Щоб забезпечити правильне зчитування
тактового сигналу, мінімальний періоди низького і високого рівнів
повинні бути довше 2 тактів ЦП.

Коли SPI увімкнено, напрямок даних контактів MOSI, MISO,
SCK і SS змінюється відповідно до таблиці 7.1.

Таблиця 7.1 – Напрямок контактів MOSI, MISO, SCK і SS
при ввімкненому SPI

Вивід Напрямок, режим Master Напрямок, режим Slave
MOSI Визначається користувачем Вхід
MISO Вхід Визначається користувачем
SCK Визначається користувачем Вхід
SS Визначається користувачем Вхід

1597	 Послідовні синхронні інтерфейси SPI та I 2C

7.2 Регістри вводу-виводу модуля SPI

Регістр управління SPI – SPCR зображено на рисунку 7.4.

Рисунок 7.4 – Регістр управління SPI – SPCR

Біт 7 – SPIE: дозвіл переривання SPI
Цей біт викликає виконання переривання SPI, якщо встановлено

біт SPIF у регістрі SPSR і встановлено біт дозволу глобального
переривання в SREG.

Біт 6 – SPE: дозвіл роботи SPI
Коли біт SPE встановлено як одиниця, SPI вмикається. Цей біт

має бути встановлено, щоб дозволити будь-які операції SPI.
Біт 5 – DORD: порядок даних
Коли біт DORD встановлено як одиниця, спочатку передається

молодший біт байту даних. Коли біт DORD встановлено як 0, стар-
ший біт байту даних передається першим.

Біт 4 – MSTR: вибір головного/веденого
Цей біт вибирає режим Master, коли він встановлений як оди-

ниця, і режим Slave, коли він встановлений як логічний нуль. Якщо
SS налаштовано як вхід, і його рівень низький, коли встановлено
MSTR, MSTR буде очищено, а SPIF у регістрі SPSR стане встанов-
леним. Потім користувачеві доведеться налаштувати MSTR для
повторного ввімкнення режиму SPI Master.

Біт 3 – CPOL: полярність тактового сигналу
Коли цей біт встановлений як одиниця, SCK має високий рівень

під час простою. Коли CPOL встановлений як нуль, SCK має низь-
кий рівень під час простою. Короткий опис функціональності CPOL
наведено в таблиці 7.2:

160 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Таблиця 7.2 – Опис функціональності CPOL
CPOL Передній фронт Задній фронт

0 Наростаючий Спадаючий
1 Спадаючий Наростаючий

Біт 2 – CPHA: фаза тактового сигналу
Налаштування біта фази тактового сигналу (CPHA) визнача-

ють, чи вибірка даних здійснюється на передньому (першому)
чи задньому (останньому) фронті сигналу SCK. Функціональність
CPHA підсумована у таблиці 7.3.

Таблиця 7.3 – Функціональність CPHA
CPHA Передній фронт Задній фронт

0 Вибірка Зсув
1 Зсув Вибірка

Біти 1, 0 – SPR1, SPR0: вибір тактової частоти SPI 1 і 0
Ці два біти контролюють швидкість сигналу SCK пристрою,

налаштованого як головний. SPR1 і SPR0 не впливають на веде-
ний пристрій. Зв’язок між SCK і тактовою частотою осцилятора fosc
показано в наступній таблиці 7.4.

Таблиця 7.4 – Зв’язок між SCK і тактовою частотою осцилятора fosc

SPI2X SPR1 SPR0 Частота сигналу SCK

0 0 0 fosc /4

0 0 1 fosc /16

0 1 0 fosc /64

0 1 1 fosc /128

1 0 0 fosc /2

1 0 1 fosc /8

1 1 0 fosc /32

1 1 1 fosc /64

1617	 Послідовні синхронні інтерфейси SPI та I 2C

Регістр статусу SPI – SPSR (рис. 7.5).

Рисунок 7.5 – Регістр статусу SPI – SPSR

Біт 7 – SPIF: прапор переривання SPI
Після завершення послідовної передачі встановлюється прапор

SPIF. Переривання генерується, якщо встановлено біт SPIE у регі-
стрі SPCR і ввімкнено глобальні переривання. Якщо SS є входом
і має низький рівень, коли SPI перебуває в режимі Master, це також
встановить прапор SPIF. SPIF очищується апаратним забезпечен-
ням під час виконання відповідного вектору обробки переривань.
Крім того, біт SPIF очищується, якщо спочатку зчитати регістр
стану SPI із встановленим SPIF, а потім звернутися до регістру
даних SPI (SPDR).

Біт 6 – WCOL: прапор колізії при запису
Біт WCOL встановлюється при запису в регістр даних SPI

(SPDR) під час передачі даних. Біт WCOL (та біт SPIF) очищується,
якщо спочатку зчитати регістр стану SPI із встановленим WCOL,
а потім звернутися до регістру даних SPI.

Біти 5..1 – Res: зарезервовані біти
Ці біти є зарезервованими бітами в ATmega8 і завжди читати-

муться як нуль.
Біт 0 – SPI2X: біт подвоєння швидкості SPI
Коли цей біт встановлено, як логічна одиниця, швидкість

SPI (частота SCK) буде подвоєна, якщо SPI перебуває в режимі
Master (див. таблицю 7.4). Це означає, що мінімальний період
SCK становитиме 2 тактових періоди ЦП. Коли SPI налашто-
вано як Slave, SPI гарантовано працюватиме лише на fosc/4
або нижче.

Інтерфейс SPI у ATmega8 також використовується для заванта-
ження чи зчитування програмної пам’яті та EEPROM.

162 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Регістр даних SPI – це регістр призначений для читання/запису.
Він використовується для передачі даних між регістровим файлом
та регістром зсуву SPI. Запис до регістру ініціює передачу даних.
Читання регістру викликає зчитування буфера прийому регістра
зсуву.

Режими роботи SPI. Існує чотири комбінації фази і полярності
SCK відносно до даних, які визначаються керуючими бітами CPHA
і CPOL. Формати передачі даних SPI показано на рисунку 7.7.
Біти даних зсуваються та фіксуються на протилежних фронтах сиг-
налу SCK, забезпечуючи достатній час для стабілізації сигналів
даних. Це чітко видно з наступної таблиці 7.5:

Таблиця 7.5 – Комбінації фази і полярності SCK відносно до даних
Комбінація

бітів
Передній

фронт
Задній
фронт

Режим
SPI

CPOL = 0
CPHA = 0

Вибірка
(наростаючий)

Зсув
(спадаючий)

0

CPOL = 0
CPHA = 1

Зсув
(наростаючий)

Вибірка
(спадаючий)

1

CPOL = 1
CPHA = 0

Вибірка
(спадаючий)

Зсув
(наростаючий)

2

CPOL = 1
CPHA = 1

Зсув
(спадаючий)

Вибірка
(наростаючий)

3

Рисунок 7.6 – Регістр даних SPI – SPDR

Регістр даних SPI – SPDR (рис. 7.6).

1637	 Послідовні синхронні інтерфейси SPI та I 2C

Рисунок 7.7 – Формати передачі даних SPI

164 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

7.3 Загальні відомості про інтерфейс I2C

Inter-Integrated Circuit Protocol (I2C або IIC) – це послідов-
ний, синхронний, напівдуплексний протокол зв’язку між платами
з декількома головними пристроями. Як випливає з назви, він
в основному використовується для зв’язку всередині друкова-
них плат (PCB). Компанія Philips Semiconductors винайшла його
в 1982 році з метою використання меншої кількості контактів
мікроконтролера для роботи з іншими електронними пристроями
(рис. 7.8). Він використовує лише дві лінії для зв’язку з підключе-
ними пристроями; тому іноді його також називають двопровідним
протоколом. I2C підтримує конфігурацію провідний-підлеглий,
але термінологія тут змінюється з провідного-підлеглого на контр-
олер-ціль або контролер-периферійний пристрій.

Рисунок 7.8 – Кілька підлеглих підключені до однієї шини з одним

головним пристроєм

Апаратний інтерфейс. Фізичний інтерфейс I2C складається
з двох ліній: SDA і SCL. SCL (Serial Clock) – це тактовий сигнал
головного пристрою шини, а SDA (Serial Clock) – це сигнал даних.
Драйвери I2C є «відкритими стоками», тобто пристрій може лише
заземлити вихід або перевести свій вихід у стан високого опору,
що означає, що він не може встановити свій вихід в стан логіч-
ної 1 (рис. 7.9). Стан високого опору означає, що вихід ні до чого
не підключений, тобто він знаходиться в плаваючому стані. Пара
зовнішніх резисторів, кожен на лініях SDA і SCA, підключається

1657	 Послідовні синхронні інтерфейси SPI та I 2C

для підтягування ліній, коли пристрої переводять свої виходи
в стан високого опору. Ця конфігурація з відкритим стоком запобі-
гає короткому замиканню в лініях, оскільки головний і всі підлеглі
пристрої, з’єднані разом, ніколи не можуть подавати конфліктні
напруги на одну лінію.

 Рисунок 7.9 – Драйвери з відкритим стоком шини I2C

Буфери Clock In і Data In драйверів I2C служать вхідними даними
для пристроїв I2C, оскільки вони використовуються для зчитування
стану ліній. З іншого боку, MOSFET контролює вихід на лінії, коли
пристрій записує на шину.

Шина I2C підтримує різні режими, які підтримують різні
бітрейти для обміну даними (таблиця 7.6).

Таблиця 7.6 – Режими роботи шини I2C
Режим Швидкість

Стандартний 100 кб/с
Швидкий 400 кб/с
Швидкий плюс 1 Мб/с
Високої швидкості 3,4 Мб/с

166 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Слід зазначити, що ці бітрейти визначають швидкість передачі
даних по шині, а не швидкість обробки пристрою.

Пакет даних. Протокол I2C працює в конфігурації головний-
підлеглий (контролер-периферійний пристрій), тому привілеї
читання-запису на шині має лише головний. Головний вирішує,
який підлеглий пристрій буде отримувати або надсилати дані
головному. I2C має спеціалізований пакет даних (рис. 7.10) і може
спілкуватися з до 128 пристроями на шині.

Рисунок 7.10 – Формат пакету даних шини I2C

Умова «СТАРТ» (START). У неактивному стані зв’язку лінії SDA
і SCL підтягуються до напруги живлення за допомогою підтягу-
вальних резисторів. Щоб ініціювати зв’язок, головний пристрій
перемикає лінію SDA в низький рівень, поки лінія SCL залиша-
ється високою, і попереджає підлеглі пристрої на шині про готов-
ність до зв’язку.

Адресація підлеглого пристрою. Після цієї початкової умови
головний пристрій надсилає 7-бітну адресу для підлеглого при-
строю, з яким він хоче спілкуватися. Адреса зчитується всіма при-
строями, підключеними до шини, і пристрій з цією адресою відпо-
відає на запити головного.

Операція читання-запису (R/W). За 7-бітовою адресою слід
один біт R/W – «1» для операції читання, і «0» для операції запису.
R/W вирішує, хто отримає лінію SDA для передачі даних: головний
чи підлеглий. Операції читання та запису виконуються з точки зору
головного пристрою та є такими:

–	 Операція зчитування – головний отримає дані, які передає під-
леглий, тому це також називається зчитуванням із шини.

Операція запису – головний передає дані підлеглому. Тому
це називається записом в шину.

1677	 Послідовні синхронні інтерфейси SPI та I 2C

Важливо відзначити, що саме головний (а не підлеглий) генерує
тактовий сигнал на лінії SCL для вибірки даних на лінії SDA.

Підтвердження / не підтвердження (ACK/NACK). Щоб пере-
вірити, чи підлеглий пристрій під’єднано до шини, чи зайнятий
він чи ні, головний пристрій очікує підтвердження від підлеглого
пристрою, тобто головний пристрій чекає, поки підлеглий пристрій
підтягне лінію SDA до низького рівня на 9-му такті. Якщо така
умова задовольняється, головний отримує позитивну відповідь від
підлеглого, що називається ACK. Але якщо лінія SDA залишається
високою на 9-му такті, це називається NACK. Цей механізм дозво-
ляє головному перевірити, чи присутній ведений із заданою адре-
сою на шині чи ні. Інше використання ACK/NACK полягає в тому,
щоб визначити, чи підлеглий пристрій отримав передані біти без
помилок чи ні.

Дані (DATA). Дані, надіслані або отримані майстром, є фактич-
ними даними, для яких здійснюється зв’язок. Усі інші розділи кадру
даних є допоміжними механізмами протоколу. Як згадувалося
раніше, є дві операції: запис і читання.

Операція запису. Спочатку головний адресує ведений на шині,
надсилаючи 7-бітну адресу. Якщо ведений присутній або активний
на шині, він готується до обміну даними. Після цього головний при-
стрій надсилає біт W, щоб сповістити підлеглий пристрій, що він
перейме на себе лінію SDA та надішле дані підлеглому. Головний
чекає ACK від підлеглого під час наступного такту. Отримавши
ACK від підлеглого пристрою, головний пристрій надсилає «дані»
біт за бітом на кожному такті. Головний записує дані в шину, і тому
це називається операцією «запису» в протоколі I2C.

Операція читання. Якщо головний пристрій бажає отримати дані
від підлеглого, він звертається до підлеглого на шині та надсилає біт R
і очікує ACK від підлеглого. Після отримання ACK від підлеглого
пристрою, головний пристрій дозволяє йому перейти на лінію SDA
для передачі даних головному. Головний тут зчитує дані з шини,
тому це називається операцією «читання» в протоколі I2C.

Одна з переваг використання I2C перед UART полягає в тому,
що зв’язок підтримується головним, і немає необхідності пов-
торно ініціалізувати зв’язок, доки не буде завершена передача всіх

168 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

даних, тобто немає обмежень на кількість бітів, які можна пере-
дати на кадр даних. Наприклад: якщо головний пристрій хоче запи-
сати 32 біти даних у підлеглий пристрій, немає потреби починати
та завершувати зв’язок 4 рази (8 біт за раз). Після кожного ACK
від підлеглого пристрою може бути надісланий ще один фрагмент
із 8 біт. На відміну від UART, I2C зменшує накладні витрати, спри-
чинені початковими та стоповими бітами для кожного кадру даних.
Але нам потрібно завершити кадр, якщо ми хочемо змінити режим
роботи з читання на запис або навпаки.

Окрім зменшення накладних витрат бітів, ACK/NACK також
працює як механізм перевірки помилок у шині I2C. Для операції
запису, якщо головний отримує NACK від підлеглого, він повторно
надсилає дані підлеглому. І якщо NACK отримано, коли головний
зчитує з підлеглого, головний відкидає отримані біти.

Умова «СТОП» (STOP). Коли передача завершена, головний
надсилає умову «СТОП», змінюючи лінію SDA з низького на висо-
кий, тоді як SCL є високим. Це завершує транзакцію та повертає
зв’язок у стан очікування.

На цьому ми завершили пояснення кадру даних I2C і всіх його
розділів. Але це ще не все. I2C пропонує кілька додаткових функ-
цій, які надзвичайно корисні для створення надійної системи.
Ці функції підтримуються не всіма пристроями I2C, але про них
потрібно знати.

Розтягування тактового сигналу. Як згадувалося раніше,
швидкість передачі даних, яку підтримує пристрій для зв’язку I2C,
не обов’язково відповідає швидкості обробки даних пристроєм.
Тож що, якщо головний просить деякі дані від підлеглого, але він
ще не готовий із запитаними даними? Оскільки головний пристрій
очікує ACK від підлеглого під час наступного тактового циклу,
і якщо підлеглому не вдасться підтягнути лінію SDA до низького
рівня, головний пристрій вважатиме, що зв’язок перервався. Щоб
подолати це обмеження зв’язку, підлеглий пристрій використовує
«розтягнення тактового сигналу», щоб сповістити головний, що він
зайнятий і потребує більше часу для обробки даних. Підлеглий
пристрій досягає цього шляхом підтягування лінії SCL до низь-
кого рівня, що призупиняє зв’язок, оскільки вибірка даних в I2C

1697	 Послідовні синхронні інтерфейси SPI та I 2C

виконується по передньому фронту лінії SCL (рис. 7.11). Не всі
пристрої I2C підтримують розтягування тактового сигналу; отже,
для підтвердження цього необхідна специфікація пристрою. Іноді
це також може спричинити проблеми, тому що якщо пристрій
несправний і тримає лінію SCL у низькому стані, вся шина зупиня-
ється, і головний не може спілкуватися з іншими підлеглими.

Рисунок 7.11 – Реалізація розтягування тактового сигналу

Арбітраж шини. Шина I2C підтримує кілька головних при-
строїв і може спілкуватися з усіма пристроями, підключеними
до шини. Головні, підключені до шини, постійно контролюють лінії
SDA та SCL для умов запуску та зупинки та утримують незавер-
шені передачі, доки шина знову не буде вільна. Таким чином вони
працюють одночасно на одній шині, але може виникнути ситуація,
коли передача ініціюється обома майстрами одночасно. Щоб уник-
нути цього, майстри на шині постійно контролюють лінію SDA,
щоб перевірити, чи лінія SDA підтягнута вниз іншим головним
чи ні. Якщо один із них виявляє, що SDA має низький рівень, тоді
як він повинен бути високим, він робить висновок, що інший голов-
ний наразі активний, і негайно припиняє власну передачу. Ця про-
цедура називається арбітражем шини (рис. 7.12).

170 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Як показано на рис. 7.12, і Master A, і Master B ініціюють пере-
дачу даних одночасно. Однак Майстру B вдається підтягнути лінію
SDA вниз, тоді як Майстер A хоче, щоб лінія SDA мала високий
рівень. Цей конфлікт виявляє Master A, і він програє арбітраж,
тобто більше не контролює лінію SDA.

7.4 Модуль TWI мікроконтролерів AVR

Двопровідний послідовний інтерфейс TWI (Two Wire
Interface)

Апаратний модуль TWI входить до складу багатьох мікроконт-
ролерів AVR.

Основні характеристики інтерфейсу TWI наступні:
Простий, але потужний і гнучкий інтерфейс зв’язку, потрібно

лише дві лінії шини.
Підтримка як головного (Master), так і веденого (Slave) режимів

роботи.

Рисунок 7.12 – Арбітраж шини І2С

1717	 Послідовні синхронні інтерфейси SPI та I 2C

Пристрій може працювати як передавач або приймач.
7-бітний адресний простір дозволяє підключити до 128 різних

ведених пристроїв.
Підтримка арбітражу для конфігурації з багатьма головними

пристроями (multimaster).
Швидкість передавання даних до 400 кГц.
Обмеження швидкості наростання вихідних сигналів.
Схема придушення шуму відфільтровує імпульсні завади

на лініях шини.
Повністю програмована адреса веденого пристрою з підтрим-

кою загального виклику (General Call).
Розпізнавання адреси дозволяє вихід із режиму сну для AVR.
Двопровідний послідовний інтерфейс (TWI) ідеально підхо-

дить для типових застосувань мікроконтролерів. Протокол TWI
дозволяє системному розробнику з’єднувати до 128 різних при-
строїв, використовуючи лише дві двонаправлені шини: одну для
тактування (SCL) і одну для даних (SDA). Єдиним зовнішнім апа-
ратним забезпеченням, необхідним для реалізації шини, є один
підтягувальний резистор для кожної з ліній TWI (рис. 7.13).
Усі пристрої, підключені до шини, мають унікальні адреси,
а механізми розв’язання конфліктів на шині є невід’ємною части-
ною протоколу TWI.

Модуль TWI складається з кількох підмодулів, як показано
на рисунку 7.14. Усі регістри, позначені жирною лінією, доступні
через шину даних AVR.

Рисунок 7.13 – Реалізація шини

172 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Виводи SCL і SDA. Ці виводи забезпечують інтерфейс між
модулем TWI AVR та рештою системи МК. Вихідні драйвери містять
обмежувач швидкості наростання сигналу для відповідності специ-
фікації TWI. Вхідні каскади оснащені схемою придушення імпульс-
них завад, що відфільтровує імпульси тривалістю менше ніж 50 нс.

Зверніть увагу, що внутрішні підтягувальні резистори у виво-
дах AVR можна ввімкнути, встановивши відповідні біти PORT
для ліній SCL і SDA, як описано в розділі про порти вводу-виводу.
У деяких системах це дозволяє обійтися без зовнішніх підтягуваль-
них резисторів.

Блок генератора швидкості передачі. Цей блок керує періодом
сигналу SCL під час роботи в режимі головного (Master). Період
SCL визначається налаштуваннями в регістрі швидкості передачі
TWI (TWBR) та бітах попереднього дільника (Prescaler) у регістрі
стану TWI (TWSR).

Рисунок 7.14 – Модуль TWI

1737	 Послідовні синхронні інтерфейси SPI та I 2C

Режим веденого (Slave) не залежить від налаштувань швидкості
передачі або дільника, але тактова частота процесора у веденому
пристрої має бути принаймні в 16 разів вищою за частоту SCL.
Зверніть увагу, що ведені пристрої можуть подовжувати низький
рівень сигналу SCL, тим самим збільшуючи середній період такту-
вання шини TWI.

Частота SCL розраховується за такою формулою:

f
f

TWBRSCL
Q

TWPS
�

� � �16 2 4
, (7.1)

де	 fQ – частота кварцового генератора МК;
TWBR – значення регістра швидкості передачі TWI (TWI Bit

Rate Register);
TWPS – значення бітів попереднього дільника в регістрі стану

TWI (TWI Status Register).
Блок шинного інтерфейсу. Цей блок містить регістр зсуву

даних і адреси (TWDR), контролер START/STOP і апаратний
модуль виявлення арбітражу. TWDR зберігає адресні або інфор-
маційні байти, що передаються або приймаються. Окрім 8-бітного
TWDR, блок інтерфейсу шини містить також регістр, що зберігає
біти (N)ACK для передавання або приймання. Цей регістр (N)ACK
недоступний безпосередньо для програмного забезпечення, але
при прийманні його можна встановлювати або скидати, змінюючи
значення у регістрі керування TWI (TWCR). У режимі передавача
(Transmitter) значення прийнятого біта (N)ACK можна визначити
за вмістом регістра стану TWI (TWSR).

Контролер START/STOP відповідає за генерацію та виявлення
умов START, REPEATED START і STOP. Він може розпізнавати
ці умови навіть тоді, коли мікроконтролер AVR перебуває в одному
з режимів сну, що дозволяє пробудження МК у разі звернення
до нього головного пристрою (Master).

Якщо TWI ініціює передавання в режимі головного (Master), цей
модуль постійно контролює передавання, намагаючись визначити,
чи відбувається арбітраж. Якщо пристрій втрачає арбітраж, блок
керування отримує відповідне сповіщення. Після цього можуть
бути виконані коригувальні дії та згенеровані відповідні коди стану.

174 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Блок порівняння адреси. Блок порівняння адреси переві-
ряє, чи збігається отриманий адресний байт із семибітною адре-
сою в регістрі адреси TWI (TWAR). Якщо біт TWI General Call
Recognition Enable (TWGCE) у TWAR записано в одиницю, всі
вхідні адресні біти також будуть порівнюватися з адресою загаль-
ного виклику. При збігу адреси блок керування отримує повідом-
лення, що дозволяє виконати відповідні дії. TWI може або під-
твердити свою адресу, або ні, залежно від налаштувань у TWCR.
Блок порівняння адреси може порівнювати адреси навіть коли
AVR MCU знаходиться в режимі сну, що дозволяє MCU прокину-
тися, якщо до нього звертається головний пристрій. Якщо під час
порівняння адреси в режимі Power-down виникає інше переривання
(наприклад, INT0), яке пробуджує процесор, TWI припиняє опера-
цію і повертається в стан очікування. Якщо це викликає проблеми,
переконайтеся, що порівняння адреси TWI є єдиним активним
перериванням при вході в Power-down.

Блок керування. Блок керування моніторить шину TWI і гене-
рує відповіді відповідно до налаштувань у регістрі керування TWI
(TWCR). Коли на шині TWI відбувається подія, яка вимагає уваги
програми, встановлюється прапор переривання TWI (TWINT).
У наступному такті тактового сигналу регістр стану TWI (TWSR)
оновлюється статусним кодом, що ідентифікує подію. TWSR
містить релевантну інформацію про статус тільки коли прапор
переривання TWI встановлений. В інші часи TWSR містить спеці-
альний код стану, що вказує на відсутність релевантної інформації
про статус. Поки прапор TWINT встановлений, лінія SCL утриму-
ється в низькому стані. Це дозволяє програмному забезпеченню
завершити свої завдання перед тим, як дозволити продовження
передачі TWI.

Прапор TWINT встановлюється в таких ситуаціях:
Після того, як TWI передав умову START/REPEATED START.
Після того, як TWI передав SLA+R/W.
Після того, як TWI передав адресний байт.
Після того, як TWI втратив арбітраж.
Після того, як TWI отримав адресу свого веденого пристрою або

загальний виклик.

1757	 Послідовні синхронні інтерфейси SPI та I 2C

Після того, як TWI отримав байт даних.
Після того, як було отримано умову STOP або REPEATED

START, перебуваючи в режимі веденого.
Коли сталася помилка шини через нелегальну умову START або

STOP.

7.5 Регістри вводу-виводу модуля TWI

Регістр швидкості зв’язку TWI – TWBR (рис. 7.15).

Рисунок 7.15 – Регістр швидкості зв’язку TWI – TWBR

TWBR вибирає коефіцієнт поділу для генератора швидкості
передачі. Генератор швидкості передачі є дільником частоти, який
генерує частоту тактового сигналу SCL у режимах головного при-
строю (Master).

Регістр управління TWI – TWCR (рис 7.16).

Рисунок 7.16 – Регістр управління TWI – TWCR

TWCR використовується для керування роботою TWI. Він
використовується для увімкнення TWI, ініціації доступу веденого
шляхом подачі умови START на шину, генерації підтвердження
приймача (Receiver acknowledge), генерації умови STOP і для керу-
вання зупинкою шини під час запису даних до шини через TWDR.

176 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Він також вказує на зіткнення запису, якщо спробувати записати
дані в TWDR, коли регістр недоступний.

Біт 7 – TWINT: Прапор переривання TWI
Цей біт встановлюється апаратно, коли TWI завершив свою

поточну операцію і чекає відповіді від програмного забезпечення.
Якщо біти I у SREG і TWIE у TWCR встановлені, МК перейде
до вектору переривання TWI. Поки прапор TWINT встановлений,
період низького рівня сигналу SCL подовжується. Прапор TWINT
повинен бути очищений програмним забезпеченням шляхом запису
логічної одиниці. Зверніть увагу, що цей прапор не очищається
автоматично апаратно під час виконання обробника переривання.
Також зверніть увагу, що очищення цього прапора ініціює роботу
TWI, тому всі звернення до регістра адреси TWI (TWAR), регістра
стану TWI (TWSR) і регістра даних TWI (TWDR) повинні бути
завершені до очищення цього прапора.

Біт 6 – TWEA: Біт підтвердження TWI (TWI Enable
Acknowledge Bit).

Біт TWEA контролює генерацію імпульсу підтвердження. Якщо
біт TWEA записано в одиницю, імпульс ACK генерується на шині
TWI, якщо виконуються такі умови:

1.	Була отримана адреса власного веденого пристрою.
2.	Була отримана адреса загального виклику, коли біт TWGCE

у TWAR встановлено в одиницю.
3.	Був отриманий байт даних у режимі приймача веденого або

приймача головного пристрою.
Записавши біт TWEA в нуль, пристрій можна тимчасово відклю-

чити від шини TWI. Визнання адреси можна відновити, знову запи-
савши біт TWEA в одиницю.

Біт 5 – TWSTA: Біт умови START TWI (TWI START Condition
Bit). Програма записує біт TWSTA в одиницю, коли вона бажає стати
головним пристроєм на шині TWI. Апаратне забезпечення TWI пере-
віряє, чи вільна шина, і генерує умову START на шині, якщо вона
вільна. Якщо ж шина не вільна, TWI чекає, поки не буде виявлена
умова STOP, а потім генерує нову умову START, щоб отримати ста-
тус головного пристрою. Біт TWSTA повинен бути очищений про-
грамним забезпеченням після того, як умова START буде передана.

1777	 Послідовні синхронні інтерфейси SPI та I 2C

Біт 4 – TWSTO: Біт умови STOP TWI (TWI STOP Condition
Bit).

Записавши біт TWSTO в одиницю в режимі головного пристрою,
буде згенеровано умову STOP на шині TWI. Коли умова STOP вико-
нується на шині, біт TWSTO автоматично очищається.

У режимі веденого пристрою, запис цього біта використовує-
ться для відновлення після помилкової умови. Це не генерує умову
STOP, але TWI повертається до чітко визначеного стану веденого
пристрою без адреси та звільняє лінії SCL і SDA до стану високого
імпедансу.

Біт 3 – TWWC: Біт зіткнення запису TWI (TWI Write Collision
Flag).

Біт TWWC встановлюється, коли спроба запису в реєстр даних
TWI (TWDR) здійснюється, коли TWINT низький. Цей прапор очи-
щується записом у реєстр TWDR, коли TWINT високий.

Біт 2 – TWEN: Біт увімкнення TWI (TWI Enable Bit).
Біт TWEN дозволяє роботу TWI та активує інтерфейс TWI. Коли

TWEN записано в одиницю, TWI бере під контроль I/O піни, під-
ключені до пінів SCL і SDA, увімкнувши обмежувачі швидкості
наростання та фільтри імпульсів. Якщо цей біт записано в нуль,
TWI вимикається, і всі передачі TWI припиняються, незважаючи
на будь-які поточні операції.

Біт 1 – Res: Зарезервований біт.
Цей біт зарезервований і завжди читається як нуль.
Біт 0 – TWIE: Увімкнення переривання TWI (TWI Interrupt

Enable).
Коли цей біт записано в одиницю, а біт I в SREG встановлений,

запит на переривання TWI активується, поки біт TWINT високий.

Регістр стану TWI – TWSR (рис. 7.17).

Рисунок 7.17 – Регістр стану TWI – TWSR

178 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Біти 7..3 – TWS: Стан TWI
Ці 5 біт відображають стан логіки TWI та шини Two-wire Serial

Bus. Різні коди стану описані далі. Зверніть увагу, що значення, яке
читається з TWSR, містить як 5-бітне значення стану, так і 2-бітне
значення переддільника. Розробнику програми слід маскувати біти
переддільника в нуль під час перевірки стану. Це робить перевірку
стану незалежною від налаштування переддільника.

Біт 2 – Res: Зарезервований біт.
Цей біт зарезервований і завжди читається як нуль.
Біти 1..0 – TWPS: Біти переддільника TWI (TWI Prescaler Bits).
Ці біти можуть бути прочитані та записані і контролюють перед-

дільник швидкості передачі, як показано в табл. 7.7.

Таблиця 7.7 – Значення переддільника TWI за бітами
TWPS1 TWPS0 Значення переддільника

0 0 1
0 1 4
1 0 16
1 1 64

Регістр даних TWI – TWDR (рис. 7.18).

Рисунок 7.18 – Регістр даних TWI – TWDR

У режимі передачі TWDR містить наступний байт для передачі.
У режимі прийому TWDR містить останній отриманий байт. Він
може бути записаний, коли TWI не знаходиться в процесі зміщення
байта. Це відбувається, коли біт переривання TWI (TWINT) встанов-
лено апаратно. Зверніть увагу, що реєстр даних не може бути ініціа-
лізований користувачем до того, як відбудеться перше переривання.
Дані в TWDR залишаються стабільними, поки TWINT встанов-
лено. Поки дані передаються, дані на шині одночасно приймаються.

1797	 Послідовні синхронні інтерфейси SPI та I 2C

TWDR завжди містить останній байт, що присутній на шині,
за винятком випадку пробудження з режиму сну через переривання
TWI. У цьому випадку вміст TWDR не визначений. У разі втрати
арбітражу на шині дані не втрачаються при переході від головного
пристрою до веденого. Обробка біта ACK контролюється автома-
тично логікою TWI, ЦП не може безпосередньо отримувати доступ
до біта ACK.

Біти 7..0 – TWD: Реєстр даних TWI (TWI Data Register).
Ці вісім біт складають наступний байт даних для передачі або

останній байт даних, отриманий на шині TWI.

Регістр адреси веденого шини TWI – TWAR (рис. 7.19).

Рисунок 7.19 – Регістр адреси веденого шини TWI – TWAR

TWAR має бути завантажений 7-бітною адресою веденого при-
строю (у семи найбільш значущих бітах TWAR), на яку TWI від-
повідатиме при налаштуванні як ведений передавач або приймач.
У головному режимі це не потрібно. У мультимастерних системах
TWAR має бути налаштований у головних пристроях, які можуть
бути адресовані іншими головними пристроями як ведені.

Молодший біт TWAR використовується для увімкнення розпізна-
вання загальної адреси виклику (0x00). Існує відповідний компара-
тор адреси, який перевіряє отриману серійну адресу на збіг із адре-
сою веденого пристрою (або загальною адресою виклику, якщо вона
увімкнена). Якщо знайдено збіг, генерується запит на переривання.

Біти 7..1 – TWA: Регістр адреси веденого пристрою TWI.
Ці сім біт утворюють адресу веденого пристрою у блоці TWI.
Біт 0 – TWGCE: Біт увімкнення розпізнавання загального

виклику TWI.
Якщо встановлено, цей біт увімкне розпізнавання загального

виклику, переданого через двопровідну послідовну шину.

180 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Використання модулю TWI. TWI у мікроконтролерах AVR
є байторієнтованим і працює на основі переривань. Переривання
генеруються після всіх подій на шині, таких як отримання байта
або передача умови START. Завдяки тому, що TWI працює на основі
переривань, прикладне програмне забезпечення може виконувати
інші операції під час передачі байта через TWI.

Зверніть увагу, що біт увімкнення переривань TWI (TWIE)
у TWCR разом із бітом глобального увімкнення переривань у SREG
дозволяють прикладному програмному забезпеченню визначати,
чи повинно встановлення прапора TWINT спричиняти запит пере-
ривання. Якщо біт TWIE скинуто, прикладна програма має опиту-
вати прапор TWINT, щоб визначити дії на шині TWI.

Коли прапор TWINT встановлено, TWI завершив операцію
та очікує відповіді від прикладного програмного забезпечення.
У цьому випадку регістр стану TWI (TWSR) містить значення, яке
вказує поточний стан шини TWI. Потім прикладна програма може
визначити, як TWI повинен поводитися в наступному циклі шини,
змінюючи значення регістрів TWCR і TWDR.

На Рисунку 7.20 наведено простий приклад взаємодії приклад-
ної програми з апаратною частиною TWI. У цьому прикладі голов-
ний пристрій бажає передати один байт даних веденому пристрою.
Цей опис досить абстрактний, більш детальне пояснення наведено

Рисунок 7.20 – Приклад підключення до шини TWI

1817	 Послідовні синхронні інтерфейси SPI та I 2C

далі в цьому розділі. Також представлений простий кодовий при-
клад, що реалізує бажану поведінку.

1.	Першим кроком у передачі через TWI є передача умови START.
Це виконується шляхом запису певного значення в TWCR, що нака-
зує апаратному забезпеченню TWI передати умову START. Яке саме
значення потрібно записати, буде описано далі. Однак важливо, щоб
у записаному значенні було встановлено біт TWINT. Запис одиниці
в TWINT очищає цей прапор. TWI не почне жодної операції, доки
біт TWINT у TWCR встановлений. Одразу після того, як прикладна
програма очистить TWINT, TWI розпочне передачу умови START.

2.	Коли умова START буде передана, прапор TWINT у TWCR
встановиться, а регістр стану TWSR оновиться кодом стану, що вка-
зує на успішну передачу умови START.

3.	Тепер прикладна програма повинна перевірити значення
TWSR, щоб переконатися, що умову START було успішно пере-
дано. Якщо TWSR вказує інше, програма може виконати певні дії,
наприклад, викликати процедуру обробки помилок.

Припустимо, що код стану відповідає очікуваному, тоді необхідно
завантажити значення SLA+W у TWDR. Пам’ятайте, що TWDR
використовується як для адреси, так і для даних. Після заванта-
ження TWDR потрібним значенням SLA+W слід записати певне зна-
чення в TWCR, яке наказує апаратному забезпеченню TWI передати
SLA+W, що міститься у TWDR. Яке саме значення слід записати,
буде описано далі.

Однак важливо, щоб у записаному значенні було встановлено біт
TWINT. Запис одиниці в TWINT очищає цей прапор. TWI не почне
жодної операції, доки біт TWINT у TWCR встановлений.

Одразу після того, як прикладна програма очистить TWINT,
TWI розпочне передачу пакета адреси.

4.	Коли пакет адреси буде передано, прапор TWINT у TWCR
встановиться, а регістр стану TWSR оновиться кодом стану, що вка-
зує на успішну передачу пакета адреси. Код стану також покаже,
чи ведений пристрій підтвердив отримання пакета.

5.	Тепер прикладна програма повинна перевірити значення
TWSR, щоб переконатися, що пакет адреси було успішно передано
і що значення біта ACK відповідає очікуваному. Якщо TWSR вказує

182 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

інше, програма може виконати певні дії, наприклад, викликати про-
цедуру обробки помилок.

Припустимо, що код стану відповідає очікуваному, тоді необ-
хідно завантажити пакет даних у TWDR. Після цього слід записати
певне значення в TWCR, яке наказує апаратному забезпеченню
TWI передати пакет даних, що міститься у TWDR. Яке саме зна-
чення слід записати, буде описано далі.

Однак важливо, щоб у записаному значенні було встановлено біт
TWINT. Запис одиниці в TWINT очищає цей прапор. TWI не почне
жодної операції, доки біт TWINT у TWCR встановлений.

Одразу після того, як прикладна програма очистить TWINT,
TWI розпочне передачу пакета даних.

6.	Коли пакет даних буде передано, прапор TWINT у TWCR вста-
новиться, а регістр стану TWSR оновиться кодом стану, що вка-
зує на успішну передачу пакета даних. Код стану також покаже,
чи ведений пристрій підтвердив отримання пакета.

7.	Тепер прикладна програма повинна перевірити значення
TWSR, щоб переконатися, що пакет даних було успішно передано
і що значення біта ACK відповідає очікуваному. Якщо TWSR вказує
інше, програма може виконати певні дії, наприклад, викликати про-
цедуру обробки помилок.

Припустимо, що код стану відповідає очікуваному, тоді необ-
хідно записати певне значення в TWCR, яке наказує апаратному
забезпеченню TWI передати умову STOP. Яке саме значення слід
записати, буде описано далі.

Однак важливо, щоб у записаному значенні було встановлено біт
TWINT. Запис одиниці в TWINT очищає цей прапор. TWI не почне
жодної операції, доки біт TWINT у TWCR встановлений.

Одразу після того, як прикладна програма очистить TWINT,
TWI розпочне передачу умови STOP.

Зверніть увагу, що після передачі умови STOP прапор TWINT
НЕ встановлюється.

Хоча цей приклад є простим, він демонструє основні принципи
всіх передавань через TWI. Їх можна підсумувати так:

•	 Коли TWI завершує операцію і очікує відповіді від прикладної
програми, прапор TWINT встановлюється. Лінія SCL утримується
в низькому рівні, доки TWINT не буде очищено.

1837	 Послідовні синхронні інтерфейси SPI та I 2C

•	 Коли прапор TWINT встановлено, користувач повинен оно-
вити всі регістри TWI відповідними значеннями для наступного
циклу роботи шини TWI. Наприклад, у TWDR слід завантажити
значення, яке буде передано в наступному циклі шини.

•	 Після оновлення всіх регістрів TWI та виконання інших очі-
куючих завдань прикладного програмного забезпечення слід запи-
сати значення в TWCR. При записі в TWCR біт TWINT повинен
бути встановлений. Запис одиниці в TWINT очищає прапор. Після
цього TWI розпочне виконання операції, заданої значенням TWCR.

Нижче, у табл. 7.8, наведено реалізацію цього прикладу на мові C.
Зверніть увагу, що наведений код передбачає наявність певних визна-
чень, наприклад, шляхом використання заголовкових файлів.

Таблиця 7.8 – Програма на С з коментарями
№ Програма на С Коментар
1 2 3

1 TWCR = (1<<TWINT) |
(1<<TWSTA) | (1<<TWEN) Надіслати умову START.

2 while (!(TWCR &
(1<<TWINT)));

Очікувати встановлення прапора
TWINT. Це вказує, що умова START
була передана.

3

if ((TWSR & 0xF8) !=
START) ERROR();

Перевірити значення Регістра стану
TWI. Замаскувати біти переддільника.
Якщо стан відрізняється від START,
перейти до ERROR.

TWDR = SLA_W;
TWCR = (1<<TWINT) |
(1<<TWEN);

Завантажити SLA_W у регістр TWDR.
Очистити біт TWINT у TWCR, щоб
розпочати передавання адреси.

4 while (!(TWCR &
(1<<TWINT)));

Очікувати встановлення біта TWINT.
Це вказує на те, що SLA+W було пере-
дано, і отримано ACK/NACK.

5

if ((TWSR & 0xF8) !=
MT_SLA_ACK)
ERROR();

Перевірити значення Регістра Стану
TWI. Замаскувати біти переддільника.
Якщо стан відрізняється від MT_SLA_
ACK, перейти до ERROR.

TWDR = DATA;
TWCR = (1<<TWINT) |
(1<<TWEN);

Завантажити DATA у регістр TWDR.
Очистити біт TWINT у TWCR, щоб
розпочати передавання даних.

184 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

1 2 3

6 while (!(TWCR &
(1<<TWINT)));

Чекати встановлення біта TWINT.
Це вказує на те, що DATA було пере-
дано, і отримано ACK/NACK.

7

if ((TWSR & 0xF8) ! =
MT_DATA_ACK)
ERROR();

Перевірити значення реєстру стану
TWI. Маскувати біти переддільника.
Якщо статус відрізняється від MT_
DATA_ACK, перейти до ERROR.

TWCR = (1<<TWINT) |
(1<<TWEN) | (1<<TWSTO);

Передати умову STOP.

Режими роботи. ТWI може працювати в одному з чоти-
рьох основних режимів: «Головний Передавач» (MT), «Головний
Приймач» (MR), «Ведений Передавач» (ST) і «Ведений Приймач»
(SR). У межах однієї програми можна використовувати кілька режи-
мів. Наприклад, TWI може працювати в режимі MT для запису даних
у TWI EEPROM, а в режимі MR – для зчитування даних із EEPROM.
Якщо в системі є інші головні пристрої, деякі з них можуть переда-
вати дані у TWI, у такому разі буде використовуватися режим SR.
Вибір дозволених режимів визначається програмним забезпеченням.

Коли прапорець TWINT встановлено, код стану в TWSR вико-
ристовується для визначення необхідних програмних дій. Для кож-
ного коду стану у табл. 7.14, 7.19, 7.22, 7.25 наведено необхідні
дії програмного забезпечення та деталі подальшого послідовного
передавання. Зверніть увагу, що в цих таблицях біти переддільника
замасковані як нуль.

Режим «Головний Передавач» (Master Transmitter Mode).
У режимі «Головний Передавач» передається кілька байтів даних
до Веденого Приймача.

Щоб увійти в режим Головного пристрою, необхідно передати
умову START. Формат наступного пакета адреси визначає, який
режим буде активовано:

•	 Якщо передається SLA+W, активується режим «Головний
Передавач» (MT).

•	 Якщо передається SLA+R, активується режим «Головний
Приймач» (MR).

Продовження таблиці 7.8

1857	 Послідовні синхронні інтерфейси SPI та I 2C

Усі коди стану, згадані в цьому розділі, припускають, що біти
переддільника мають значення нуль.

Умова START передається записом наступного значення
в TWCR (табл. 7.9):

Таблиця 7.9 – Формування на шині умови START
TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE

1 x 1 0 x 1 0 x
Скинути
прапор
TWINT

Сформувати
умову
START

Дозволити
роботу
TWI

TWEN має бути встановлений для увімкнення інтерфейсу TWI,
TWSTA має бути записаний у 1 для передавання START-умови,
а TWINT має бути записаний у 1 для очищення прапора TWINT.
Після цього TWI перевірить шину TWI і згенерує START-умову,
щойно шина стане вільною. Після передавання START-умови
прапор TWINT встановлюється апаратно, а код стану
в TWSR буде 0x08.

Щоб увійти в режим «Головний Передавач», необхідно передати
SLA+W. Це виконується шляхом запису SLA+W у TWDR. Після
цього біт TWINT слід очистити (записавши в нього 1) для про-
довження передавання. Це виконується записом такого значення
в TWCR (табл. 7.10):

Таблиця 7.10 – Значення, занесене у регістр TWCR
TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE

1 x 0 0 x 1 0 x
Скинути
прапор
TWINT

Дозволити
роботу
TWI

Коли SLA+W було передано і отримано біт підтвердження,
TWINT встановлюється знову, і в TWSR можливі різні коди стану.
У головному режимі можливі коди стану: 0x18, 0x20 або 0x38.
Відповідні дії для кожного з цих кодів стану детально описані
в табл. 7.14.

186 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Коли SLA+W успішно передано, слід передати пакет даних.
Це виконується шляхом запису байта даних у TWDR. TWDR можна
записувати тільки тоді, коли TWINT встановлений. В іншому
випадку доступ буде відхилено, а біт зіткнення запису (TWWC)
буде встановлений у регістрі TWCR.

Після оновлення TWDR біт TWINT слід очистити (записавши
в нього 1) для продовження передавання. Це виконується записом
такого значення в TWCR:

Таблиця 7.11 – Значення, після якого почнеться передача пакету
TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE

1 x 0 0 x 1 0 x
Скинути
прапор
TWINT

Дозволити
роботу

TWI

Ця схема повторюється, доки не буде передано останній байт,
після чого передавання завершується шляхом генерування умови
STOP або повторної умови START. Умова STOP генерується запи-
сом такого значення в TWCR:

Таблиця 7.12 – Запис у регістр TWCR для формування STOP
TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE

1 x 0 1 x 1 0 x
Скинути
прапор
TWINT

	 Сформувати
умову
STOP

Дозволити
роботу
TWI

Умова REPEATED START генерується записом такого значення
в TWCR:

Таблиця 7.13 – Запис у регістр TWCR для формування умови
REPEATED START

TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
1 x 1 0 x 1 0 x

Скинути
прапор
TWINT

Сформувати
умову
START

Дозволити
роботу
TWI

1877	 Послідовні синхронні інтерфейси SPI та I 2C

Після умови REPEATED START (стан 0x10) інтерфейс TWI може
знову звернутися до того ж самого Slave або до нового Slave без пере-
дачі STOP умови. Умова REPEATED START дозволяє головному при-
строю перемикатися між веденими пристроями, режимами головного
передавача та головного приймача без втрати контролю над шиною.

Таблиця 7.14 – Коди статусу для режиму «Головний передавач»

Код
статусу

Стан шини
і модуля TWI

Дії програми

Наступна дія,
що виконується

модулем TWI
в/із

TWDR

в регістр
TWCR

ST
A

ST
O

TW
IN

T
TW

EA

1 2 3 4 5 6 7 8

$08 Умова START
була передана.

Завантажити
SLA + W Х 0 1 Х

SLA+W буде передано;
буде отримано ACK або

NACK.

$10

Умова
REPEATED
START була

передана.

Завантажити
SLA + W Х 0 1 Х

SLA+W буде передано;
буде отримано ACK або

NACK.

Завантажити
SLA + R Х 0 1 Х

SLA+R буде передано;
логіка переключиться
на режим «Головний

Приймач».

$18

SLA+W було
передано;

було отримано
ACK.

Завантажити
дані 0 0 1 Х

Дані будуть передані,
і буде отримано ACK або

NACK.

Немає дій 1 0 1 Х Буде передано
REPEATED START.

Немає дій 0 1 1 Х
Буде передано умову

STOP, і прапор TWSTO
буде скинуто.

Немає дій 1 1 1 Х

Буде передано умову
STOP, за якою слідує

умова START, і прапор
TWSTO буде скинуто.

$20

SLA+W було
передано;

було отримано
NACK.

Аналогічно діям для коду статусу $18

188 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

1 2 3 4 5 6 7 8

$28
Байт даних

був переданий;
було отримано

ACK.
Аналогічно діям для коду статусу $18

$30
Байт даних

був переданий;
було отримано

NACK.
Аналогічно діям для коду статусу $18

$38

Втрата арбіт-
ражу під

час передачі
SLA+W або
байтів даних.

Немає дій 0 0 1 Х
Шина буде звільнена,

і пристрій перейде
в неадресований режим

Slave.

Немає дій 1 0 1 Х
Умова START буде пере-

дана, коли шина стане
вільною.

Режим «Головний Приймач»
У режимі «Головний Приймач» приймається кілька байтів даних

від Веденого Передавача. Для входу в режим головного пристрою
необхідно передати умову START. Формат наступного адресного
пакету визначає, чи буде активований режим «Головний Передавач»
чи «Головний Приймач». Якщо передається SLA+W, то активується
режим «Головний Передавач», якщо SLA+R – режим «Головний
Приймач». Всі статусні коди, згадані в цьому розділі, припускають,
що біти переддільника рівні нулю або маскуються як нулі.

Умова START передається шляхом запису наступного значення
в TWCR:

Таблиця 7.15 – Запису у регістр TWCR для формування умови
START

TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
1 x 1 0 x 1 0 x

Скинути
прапор
TWINT

Сформувати
умову
START

Дозволити
роботу
TWI

TWEN потрібно записати в одиницю для увімкнення інтер-
фейсу TWI, TWSTA потрібно записати в одиницю для передачі

Продовження таблиці 7.14

1897	 Послідовні синхронні інтерфейси SPI та I 2C

умови START, а TWINT потрібно встановити в одиницю для очи-
щення прапорця TWINT. Тоді TWI перевірить шину TWI і згенерує
умову START, як тільки шина стане вільною. Після передачі умови
START, прапорець TWINT буде встановлений апаратно, а код стану
в TWSR буде 0x08 (див. табл. 7.19). Для того щоб увійти в режим
«Головний Приймач», потрібно передати SLA+R. Це робиться шля-
хом запису SLA+R в TWDR. Після цього прапорець TWINT слід
очистити (записавши в нього одиницю), щоб продовжити передачу.
Це досягається записом наступного значення в TWCR:

Таблиця 7.16 – Занесення у регістр TWCR для перемикання
модуля в режим «Головний Приймач»

TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
1 x 0 0 x 1 0 x

Скинути
прапор
TWINT

	 Дозволити
роботу
TWI

Коли SLA+R було передано і отримано підтвердження, прапо-
рець TWINT знову встановлюється, і в TWSR можуть бути можливі
різні коди стану. Можливі коди стану в режимі Головного Приймача
(MR) – 0x38, 0x40 або 0x48. Відповідні дії для кожного з цих кодів
стану детально описані в таблиці 7.19. Отримані дані можна про-
читати з реєстру TWDR, коли прапорець TWINT встановлений
апаратно в одиницю. Ця схема повторюється, поки не буде отри-
мано останній байт. Після отримання останнього байта Головний
Приймач (MR) повинен сповістити Ведений Передавач (ST), надіс-
лавши NACK після останнього отриманого байта. Передачу завер-
шує генерування умови STOP або повторної умови START. Умова
STOP генерується шляхом запису наступного значення в TWCR:

Таблиця 7.17 – Запис у регістр TWCR для сформування на шині
умови STOP

TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
1 x 0 1 x 1 0 x

Скинути
прапор
TWINT

Сформувати
стан

СТОП

Дозволити
роботу

I2С

190 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Умова REPEATED START генерується шляхом запису наступ-
ного значення в TWCR:

Таблиця 7.18 – Запис у регістр TWCR для сформування на шині
умови REPEATED START

TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
1 x 1 0 x 1 0 x

Скинути
прапор
TWINT

Сформувати
стан

СТАРТ

Дозволити
роботу

I2С

Після умови REPEATED START (стан 0x10) Головний пристрій може
знову звернутися до того ж самого Веденого або до нового Веденого
без передачі умови STOP. Повторний START дозволяє Головному змі-
нювати Ведених, перемикатися між режимами Головного Передавача
і Головного Приймача без втрати контролю над шиною.

Коди статусу для режиму «Головний Приймач» наведено
в таблиці 7.19.

Таблиця 7.19 – Коди статусу для режиму «Головний Приймач»

Код
статусу

Стан шини
і модуля

TWI

Дії програми

Наступна дія,
що виконується

модулем TWI
в/із

TWDR

в регістр
TWCR

ST
A

ST
O

TW
IN

T
TW

EA

1 2 3 4 5 6 7 8

$08
Умова

START була
передана.

Завантажити
SLA + R Х 0 1 Х

SLA+R буде передано;
підтвердження (ACK) або
непідтвердження (NACK)

будуть отримані.

$10
Умова

REPEATED
START була

передана.

Завантажити
SLA + R Х 0 1 Х

SLA+R буде передано;
підтвердження (ACK) або
непідтвердження (NACK)

будуть отримані.

Завантажити
SLA + W Х 0 1 Х

SLA+W буде передано;
логіка перемикатиметься

в режим «Головний
Передавач».

1917	 Послідовні синхронні інтерфейси SPI та I 2C

1 2 3 4 5 6 7 8

$38

Втрата
арбітражу

при передачі
SLA+R або
біт NACK.

Нема дій 0 0 1 Х

Шина TWI буде звіль-
нена, а пристрій перейде
в режим неадресованого

Веденого.

Нема дій 1 0 1 Х
Умова START буде пере-

дана, коли шина стане
вільною.

$40

SLA+R було
передано;
отримано
підтвер-
дження
(ACK).

Нема дій 0 0 1 0 Байт даних буде отримано,
і повернеться NACK.

Нема дій 0 0 1 1 Байт даних буде отримано,
і повернеться ACK.

$48

SLA+R було
передано;
отримано
непідтвер-

дження
(NACK).

Нема дій 1 0 1 Х Буде передана умова
REPEATED START.

Нема дій 0 1 1 Х
Буде передана умова

STOP, і прапор TWSTO
буде скинутий.

Нема дій 1 1 1 Х

Буде передана умова
STOP, за якою слідує

умова START, і прапор
TWSTO буде скинутий.

$50

Байт даних
отримано;
повернено
підтвер-
дження
(ACK).

Прочитати
дані 0 0 1 0

Буде отриманий байт
даних, і буде повернено

NACK.

Прочитати
дані 1 0 1 1

Буде отриманий байт
даних, і буде повернено

ACK.

$58

Байт даних
отримано;
повернено
непідтвер-

дження
(NACK).

Прочитати
дані 1 0 1 Х Буде передана умова

REPEATED START.

Прочитати
дані 0 1 1 Х

Буде передана умова
STOP, і прапор TWSTO

буде скинутий.

Прочитати
дані 1 1 1 Х

Буде передана умова
STOP, за якою слідує

умова START, і прапор
TWSTO буде скинутий.

Продовження таблиці 7.19

192 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Режим «Ведений Приймач»
У режимі Ведений Приймач кілька байтів даних отримуються

від Головного Передавача. Усі статусні коди, згадані в цьому роз-
ділі, передбачають, що біти переддільника рівні нулю або маску-
ються як нулі.

Для ініціалізації режиму Веденого Приймача необхідно ініціалі-
зувати TWAR та TWCR наступним чином:

Таблиця 7.20 – Запис у регістр TWAR
TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE

Власна ведена адреса пристрою (Slave Address). X

Старші 7 біт – це адреса, на яку інтерфейс двопровідної серій-
ної передачі відповідатиме, коли буде адресований Головним. Якщо
найменший значущий біт (LSB) встановлений, TWI відповідатиме
на загальний виклик (адреса 0x00), в іншому випадку він ігнорува-
тиме загальний виклик.

Таблиця 7.21 – Запис у регістр TWCR
TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE

0 1 0 0 x 1 0 x

Дозволити
підтвердження 	

Дозволити
роботу
TWI

TWEN має бути записаний в одиницю, щоб увімкнути TWI.
Біт TWEA має бути записаний в одиницю для увімкнення підтвер-
дження власної адреси пристрою або адреси загального виклику.
Біти TWSTA і TWSTO мають бути записані в нуль.

Коли TWAR і TWCR ініціалізовані, TWI чекає, поки не буде адре-
совано його власною адресою пристрою (або адресою загального
виклику, якщо це дозволено) разом із бітом напрямку передачі даних.
Якщо біт напрямку «0» (запис), TWI працює в режимі «Ведений
Приймач», в іншому випадку він переходить у режим «Ведений
Передавач». Після отримання власної адреси пристрою та біта
запису, флаг TWINT буде встановлений, і можна буде прочитати

1937	 Послідовні синхронні інтерфейси SPI та I 2C

дійсний код стану з TWSR. Код стану використовується для визна-
чення відповідної дії програмного забезпечення. Деталі необхідних
дій для кожного з цих кодів стану наведені в таблиці 7.22.

Таблиця 7.22 – Коди статусу для режиму «Ведений приймач»

Код
статусу

Стан шини
і модуля

TWI

Дії
програми

Наступна дія,
що виконується

модулем TWI в/із TWDR

в регістр
TWCR

ST
A

ST
O

TW
IN

T
TW

EA

1 2 3 4 5 6 7 8

$60
Отримано власну
SLA+W; повер-

нуто ACK

Немає дій Х 0 1 0
Байт даних буде отри-
мано, і буде надіслано

непідтвердження
(NACK).

Немає дій Х 0 1 1
Байт даних буде отри-
мано, і буде надіслано
підтвердження (ACK).

$68

Втрачено арбіт-
раж у SLA+R/W

в режимі
Головного при-

строю; отримано
власну SLA+W;
повернуто ACK

Немає дій Х 0 1 0
Байт даних буде отри-
мано, і буде надіслано

непідтвердження
(NACK).

Немає дій Х 0 1 1
Байт даних буде отри-
мано, і буде надіслано
підтвердження (ACK).

$70
Отримано адресу

загального
виклику; повер-

нуто ACK

Немає дій Х 0 1 0
Байт даних буде отри-
мано, і буде надіслано

непідтвердження
(NACK).

Немає дій Х 0 1 1
Байт даних буде отри-
мано, і буде надіслано
підтвердження (ACK).

$78

Втрачено арбіт-
раж в SLA+R/W

в режимі
Головного при-

строю; отримано
адресу загаль-
ного виклику;

повернуто ACK

Немає дій Х 0 1 0
Байт даних буде отри-
мано, і буде надіслано

непідтвердження
(NACK).

Немає дій Х 0 1 1
Байт даних буде отри-
мано, і буде надіслано
підтвердження (ACK).

194 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

1 2 3 4 5 6 7 8

$80

Раніше адресо-
вано власним
SLA+W; байт

даних отримано;
повернуто ACK

Прочитати дані Х 0 1 0
Байт даних буде отри-
мано, і буде надіслано

непідтвердження
(NACK).

Прочитати дані Х 0 1 1
Байт даних буде отри-
мано, і буде надіслано
підтвердження (ACK).

$88

Раніше адресо-
вано власним
SLA+W; байт
дані отримано;

повернуто
NACK

Прочитати дані 	 0 0 1 0

Перехід до режиму
«неадресованого веде-
ного пристрою»; немає
розпізнавання власної
SLA або адреси загаль-

ного виклику.

$88

Раніше адресо-
вано власним
SLA+W; байт
дані отримано;

повернуто
NACK

Прочитати дані 	 0 0 1 1

Перехід до режиму
«неадресованого

веденого пристрою»;
власна SLA буде

розпізнана; адресу
загального виклику

буде розпізнано, якщо
TWGCE = «1».

Прочитати дані 1 0 1 0

Перехід до режиму
«неадресованого

веденого пристрою»;
немає розпізнавання

власної SLA або адреси
загального виклику;

умова START буде пере-
дана, коли шина стане

вільною.

Прочитати дані 1 0 1 1

Перехід до режиму
«неадресованого

веденого пристрою»;
власна SLA буде

розпізнана; адресу
загального виклику

буде розпізнано, якщо
TWGCE = «1»; умова

START буде пере-
дана, коли шина стане

вільною.

Продовження таблиці 7.22

1957	 Послідовні синхронні інтерфейси SPI та I 2C

$90

Раніше адресо-
вано загальним
викликом; дані

отримано; повер-
нуто ACK

Прочитати дані Х 0 1 0
Байт даних буде отри-
мано, і буде надіслано

непідтвердження
(NACK).

Прочитати дані Х 0 1 1
Байт даних буде

отримано, і буде надіс-
лано підтвердження

(ACK).

$98

Раніше адресо-
вано загальним
викликом; дані

отримано; повер-
нуто ACK

Прочитати дані 0 0 1 0

Перехід до режиму
«неадресованого веде-
ного пристрою»; немає
розпізнавання власної
SLA або адреси загаль-

ного виклику.

Прочитати дані 0 0 1 1

Перехід до режиму
«неадресованого

веденого пристрою»;
власна SLA буде

розпізнана; адресу
загального виклику

буде розпізнано, якщо
TWGCE = «1».

Раніше адресо-
вано загальним
викликом; дані

отримано; повер-
нуто ACK

Прочитати дані 1 0 1 0

Перехід до режиму
«неадресованого

веденого пристрою»;
немає розпізнавання

власної SLA або адреси
загального виклику;

умова START буде пере-
дана, коли шина стане

вільною.

Прочитати дані 1 0 1 1

Перехід до режиму
«неадресованого

веденого пристрою»;
власна SLA буде

розпізнана; адресу
загального виклику

буде розпізнано, якщо
TWGCE = «1»; умова

START буде пере-
дана, коли шина стане

вільною.

Продовження таблиці 7.22

196 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

$А0

Отримано
умову STOP

або REPEATED
START, поки

пристрій ще був
адресований
як Ведений

Прочитати дані 0 0 1 0

Перехід до режиму
«неадресованого веде-
ного пристрою»; немає
розпізнавання власної
SLA або адреси загаль-

ного виклику.

Прочитати дані 0 0 1 1

Перехід до режиму
«неадресованого

веденого пристрою»;
власна SLA буде

розпізнана; адресу
загального виклику

буде розпізнано, якщо
TWGCE = «1».

Прочитати дані 1 0 1 0

Перехід до режиму
«неадресованого

веденого пристрою»;
немає розпізнавання

власної SLA або адреси
загального виклику;

умова START буде пере-
дана, коли шина стане

вільною.

Прочитати дані 1 0 1 1

Перехід до режиму
«неадресованого

веденого пристрою»;
власна SLA буде

розпізнана; адресу
загального виклику

буде розпізнано, якщо
TWGCE = «1»; умова

START буде пере-
дана, коли шина стане

вільною.

Режим «Ведений Приймач» також може бути ініційований, якщо
відбулося втрата арбітражу під час роботи TWI в режимі головного
пристрою (стани 0x68 і 0x78).

Якщо під час передачі біт TWEA скидається, TWI поверне
«Непідтвердження» («1») на лінії SDA після отриманого наступного
байту даних. Це може використовуватися для вказівки, що ведений
пристрій більше не може приймати байти. Поки TWEA дорівнює

Продовження таблиці 7.22

1977	 Послідовні синхронні інтерфейси SPI та I 2C

нулю, TWI не підтверджує свою власну адресу. Проте, інтерфейс
шини TWI все ще моніториться, і розпізнавання адреси може поно-
витися в будь-який час після встановлення TWEA. Це означає,
що біт TWEA може використовуватися для тимчасового ізолю-
вання TWI від шини.

У всіх режимах сну, окрім режиму Idle, тактова система для TWI
вимикається. Якщо біт TWEA встановлений, інтерфейс може все одно
підтвердити свою власну адресу пристрою або адресу загального
виклику, використовуючи тактовий сигнал шини TWI як джерело так-
тового сигналу. Пристрій тоді вийде зі сну, і TWI утримає лінію SCL
в низькому стані під час пробудження і до того часу, поки флаг TWINT
не буде очищений (записавши одиницю). Далі отримання даних буде
здійснюватися як звичайно, з нормальним робочим станом тактових
сигналів AVR. Зверніть увагу, що якщо AVR налаштований на довгий
час запуску, лінія SCL може бути утримувана в низькому стані протя-
гом тривалого часу, блокуючи інші передачі даних.

Зауважте, що реєстр даних інтерфейсу Two-wire Serial Interface –
TWDR не відображає останній байт на шині при пробудженні з цих
режимів сну.

Коди статусу для режиму «Ведений приймач» наведено
в таблиці 7.23.

Режим «Ведений Передавач»
У режимі «Ведений Передавач» передається кілька байтів даних

до Головного Приймача. Усі згадані статусні коди (табл. 7.24)
припускають, що біти переддільника дорівнюють нулю або вони
замасковані як нулі.

Щоб ініціалізувати режим Веденого Передавача, потрібно нала-
штувати TWAR і TWCR наступним чином:

Таблиця 7.23 – Запис у регістр TWAR
TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE

Власна ведена адреса пристрою (Slave Address). X

Сім старших біт – це адреса, на яку модуль TWI буде реагувати,
коли буде адресований Головним пристроєм. Якщо наймолодший біт

198 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

увімкнений, TWI буде реагувати на адресу загального виклику (0x00),
в іншому випадку він ігноруватиме адресу загального виклику.

Таблиця 7.24 – Запис у регістр TWCR для передачі даних головному
TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE

0 1 0 0 x 1 0 x

Дозволити
підтвердження

Дозволити
роботу
TWI

TWEN повинен бути записаний в одиницю, щоб увімкнути TWI.
Біт TWEA повинен бути записаний в одиницю, щоб увімкнути
підтвердження власної адреси пристрою або адреси загального
виклику. Біти TWSTA і TWSTO повинні бути записані в нуль.

Після ініціалізації TWAR і TWCR, TWI чекає, поки не буде адре-
сований своєю власною адресою (або адресою загального виклику,
якщо це увімкнено), після чого передається біт напрямку даних. Якщо
біт напрямку дорівнює «1» (читання), TWI працюватиме в режимі
«Ведений Передавач», в іншому випадку буде увійдено в режим
«Ведений Приймач». Після отримання власної адреси пристрою і біту
запису, біт TWINT встановлюється, і можна прочитати код статусу
з TWSR. Код статусу використовується для визначення відповідної дії
програмного забезпечення. Відповідну дію для кожного коду статусу
можна побачити в таблиці 7.26. Режим «Ведений Передавач» також
може бути активований, якщо під час роботи в режимі Головного при-
строю сталася втрата арбітражу (див. стан 0xB0).

Якщо біт TWEA буде записаний в нуль під час передачі, TWI
передасть останній байт передачі. В залежності від того, чи пере-
дасть Головний Приймач NACK або ACK після останнього байта,
буде введено стан 0xC0 або 0xC8. TWI буде переведено в режим
неадресованого Slave, і він буде ігнорувати Головний пристрій,
якщо той продовжить передачу. Таким чином, Головний Приймач
отримає всі «1» як серійну передачу. Стан 0xC8 буде введено, якщо
Головний пристрій вимагатиме додаткові байти даних (передаючи
ACK), навіть якщо Ведений вже передав останній байт (TWEA
нуль і очікується NACK від Головного пристрою).

1997	 Послідовні синхронні інтерфейси SPI та I 2C

Поки TWEA дорівнює нулю, TWI не реагує на свою власну
адресу пристрою. Однак шина TWI все ще моніториться, і розпіз-
навання адреси може бути відновлене в будь-який момент, якщо
TWEA буде знову увімкнено. Це означає, що біт TWEA може бути
використаний для тимчасової ізоляції TWI від шини.

У всіх режимах сну, крім режиму Idle, система тактування
для TWI вимкнена. Якщо біт TWEA встановлений, інтерфейс все
ще може підтверджувати свою власну адресу пристрою або адресу
загального виклику, використовуючи тактовий сигнал TWI як дже-
рело такту. Пристрій прокидається з режиму сну, і TWI утримує
лінію SCL на низькому рівні під час пробудження і до тих пір, поки
біт TWINT не буде очищений (записом в один). Подальша пере-
дача даних відбуватиметься як зазвичай, з нормальним тактуван-
ням AVR. Зверніть увагу, що якщо AVR налаштовано на довгий час
запуску, лінія SCL може залишатися на низькому рівні довгий час,
блокуючи інші передачі даних.

Зазначте, що при прокиданні з цих режимів сну, Регістр даних
Two-wire Serial Interface – TWDR не відображає останній байт, при-
сутній на шині.

Коди статусу для режиму «Ведений передавач» наведено
в таблиці 7.25.

Таблиця 7.25 – Коди статусу для режиму «Ведений передавач»

Код
статусу

Стан шини
і модуля TWI

Дії програми

Наступна дія,
що виконується

модулем TWI
в/із

TWDR

в регістр
TWCR

ST
A

ST
O

TW
IN

T
TW

EA

1 2 3 4 5 6 7 8

$A8
Отримано

власну SLA+R;
повернуто ACK.

Завантажити
дані Х 0 1 0

Останній байт даних
буде передано, і має

бути отримано NACK.

Завантажити
дані Х 0 1 1

Байт даних буде пере-
дано, і має бути отри-

мано ACK.

200 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

1 2 3 4 5 6 7 8

$В0

Втрата
арбітражу

в SLA+R/W
в режимі

Головного
пристрою; отри-

мано власну
SLA+R; повер-

нуто ACK.

Завантажити
дані Х 0 1 0

Останній байт даних
буде передано, і має

бути отримано NACK.

Завантажити
дані Х 0 1 1

Байт даних буде пере-
дано, і має бути отри-

мано ACK.

$В8

Байт даних
у TWDR було

передано; отри-
мано ACK.

Завантажити
дані Х 0 1 0

Останній байт даних
буде передано, і має

бути отримано NACK.

Завантажити
дані Х 0 1 1

Байт даних буде пере-
дано, і має бути отри-

мано ACK.

$С0

Байт даних
у TWDR було

передано; отри-
мано NACK.

Немає дій 0 0 1 0

Переключено в режим
неадресованого веде-

ного пристрою; не буде
розпізнано ані свій SLA,

ані адреса загального
виклику.

Немає дій 0 0 1 1

Переключено в режим
неадресованого

веденого пристрою;
буде розпізнано свій
SLA; адресу загаль-
ного виклику буде
розпізнано, якщо

TWGCE = «1».

$С0

Був переданий
байт даних
і отримано
непідтвер-

дження (NACK).

Немає дій 1 0 1 0

Переключено в режим
неадресованого веде-

ного пристрою; не буде
розпізнано ані свій SLA,

ані адреса загального
виклику; умова START

буде передана, коли
шина стане вільною.

Продовження таблиці 7.25

2017	 Послідовні синхронні інтерфейси SPI та I 2C

1 2 3 4 5 6 7 8

Немає дій 1 0 1 1

Переключено в режим
неадресованого

веденого пристрою;
буде розпізнано свій
SLA; адресу загаль-
ного виклику буде
розпізнано, якщо

TWGCE = «1»; умова
START буде пере-

дана, коли шина стане
вільною.

$С8

Останній байт
даних у TWDR
було передано
(TWEA = «0»);
отримано ACK.

Те саме, що й для коду $С0

Різні стани
Є два кодів стану, які не відповідають визначеному стану TWI,

див. табл. 7.26.
Статус 0xF8 вказує, що немає доступної релевантної інформа-

ції, оскільки прапор TWINT не встановлений. Це трапляється між
іншими станами, коли TWI не бере участі в серійному передаванні.
Статус 0x00 вказує на помилку шини, що сталася під час передачі
по шині TWI. Помилка шини виникає, коли умова START або STOP
відбувається в недозволеній позиції у форматі кадру. Прикладами
таких недозволених позицій є під час серійної передачі байту
адреси, байту даних або біту підтвердження. Коли відбувається
помилка шини, біт TWINT встановлюється. Для відновлення
після помилки шини необхідно встановити прапор TWSTO і очи-
стити TWINT, записавши логічну одиницю в нього. Це призводить
до того, що TWI переходить в режим неадресованого веденого при-
строю і очищає прапор TWSTO (інші біти в TWCR не змінюються).
Лінії SDA і SCL звільняються, і умова STOP не передається.

Продовження таблиці 7.25

202 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Таблиця 7.26 – Різні коди статусів

Код
статусу

Стан шини
і модуля TWI

Дії програми

Наступна дія,
що виконується

модулем TWI
в/із

TWDR

в регістр
TWCR

ST
A

ST
O

TW
IN

T
TW

EA

$F8

Немає доступ-
ної релевант-
ної інформа-
ції про стан;
TWINT = «0»

Немає
дій

Немає
дій

Очікувати або продовжити
поточну передачу.

0x00

Помилка шини
через недоз-
волену умову
START або

STOP

Немає
дій 0 1 1 X

Тільки внутрішнє обладнання
зазнає впливу, жодна умова

STOP не відправляється
на шину. У всіх випадках

шина звільняється, а TWSTO
очищається.

Контрольні запитання до теми 7
1.	 Які основні компоненти складають інтерфейс SPI і як вони

взаємодіють?
2.	 Яким чином визначається напрямок передачі даних для кожного

з чотирьох сигнальних виводів SPI?
3.	 Що таке сигнал NSS (Slave Select) і як він використовується у протоколі SPI?
4.	 Які особливості передачі даних у режимі повнодуплексної передачі SPI?
5.	 Як головний і ведений режими SPI впливають на організацію обміну

даними між пристроями?
6.	 Які основні функції виконує регістр управління SPI (SPCR) у мікро-

контролері ATmega8?
7.	 Що визначає біт DORD у регістрі управління SPI (SPCR)? Які можливі

значення цього біту і як вони впливають на порядок передачі даних?
8.	 Яким чином біти SPR1 і SPR0 у регістрі управління SPI (SPCR) вплива-

ють на швидкість передачі даних через інтерфейс SPI у режимі Master?
9.	 Що означає біт SPIF у регістрі статусу SPI (SPSR)? Як він використо-

вується для управління передачею даних через SPI?
10.	 Як відрізнити режими передачі даних SPI за допомогою бітів CPOL

і CPHA у мікроконтролері ATmega8?

2037	 Послідовні синхронні інтерфейси SPI та I 2C

11.	 Які основні компоненти входять до складу загальних рішень для сис-
тем, які використовують шину I2C?

12.	 Які переваги має шина I2C порівняно з іншими інтерфейсами зв’язку?
13.	 Яким чином здійснюється адресація пристроїв на шині I2C?
14.	 Як вирішується проблема колізій на шині I2C? Яка процедура вико-

ристовується для цього?
15.	 Які особливості формату байту в передачі даних по шині I2C?
16.	 Які основні переваги використання двопровідного послідовного

інтерфейсу TWI у мікроконтролерах AVR?
17.	 Які характеристики і особливості апаратного модуля TWI дозволяють

забезпечити стабільну роботу шини в системах з великою кількістю
підключених пристроїв?

18.	 Яким чином блок керування TWI виявляє події на шині і забезпечує
обробку відповідних запитів від програми?

19.	 Які режими швидкості підтримує модуль TWI, і як вони регулюються
в програмовому середовищі?

20.	 Які функціональні блоки складають модуль TWI, і яку роль виконує
кожен з них в процесі передачі даних через шину?

21.	 Які основні характеристики двопровідного інтерфейсу TWI в мікро-
контролерах AVR?

22.	 Які компоненти входять до складу модуля TWI мікроконтролера?
23.	 Як функціонує блок виявлення адреси в модулі TWI?
24.	 Як визначається частота синхронізації SCL у модулі TWI?
25.	 Які режими передачі підтримуються в модулі TWI?

Використана література
1.	 Конспект лекцій з дисципліни «Мікропроцесорна техніка» для здобувачів

вищої освіти першого (бакалаврського) рівня зі спеціальності 153 «Мікро-
та наносистемна техніка» за освітньо-професійною програмою
«Мікро-та наносистемна техніка» та зі спеціальності 171 «Електроніка»
за освітньо-професійною програмою «Електроніка» / уклад. О. М. Гулєша.
Кам’янське : ДДТУ, 2020. 57 с.

2.	 Atmel: ATMega8, ATmega8L : технічна документація на мікроконтро-
лер. URL: https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-
2486-8-bit-AVR-microcontroller-ATmega8_L_datasheet.pdf

3.	 SPI Demystified: Understanding the Basics and Beyond. URL:
https://www.circuitbread.com/tutorials/spi-demystified-understanding-the-
-basics-and-beyond

4.	 What is the I2C Communication Protocol? URL: https://www.circuitbread.com/
tutorials/what-is-the-i2c-communication-protocol

https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-2486-8-bit-AVR-microcontroller-ATmega8_L_datasheet.pdf
https://www.circuitbread.com/tutorials/spi-demystified-understanding-the-basics-and-beyond
https://www.circuitbread.com/tutorials/what-is-the-i2c-communication-protocol

8___
АНАЛОГОВІ МОДУЛІ МІКРОКОНТРОЛЕРІВ

СІМЕЙСТВА AVR

Метою вивчення теми є ознайомлення з аналоговими моду-
лями мікроконтролерів сімейства AVR.

Завдання вивчення теми збігаються з переліком питань для
розгляду, що наведений нижче.

Перелік питань до розділу:
8.1.	 Аналоговий компаратор.
8.2.	 Загальні відомості про АЦП.
8.3.	 Модуль АЦП мікроконтролерів AVR.

8.1 Аналоговий компаратор

Аналоговий компаратор порівнює вхідні значення на позитивному
вході AIN0 і негативному вході AIN1. Коли напруга на позитивному
вході AIN0 перевищує напругу на негативному вході AIN1, вихід ана-
логового компаратора ACO стає рівним логічній 1. Вихід компаратора
можна налаштувати для запуску функції захоплення таймера-лічиль-
ника 1. Крім того, компаратор може ініціювати окреме переривання,
виділене для аналогового компаратора. Користувач може вибрати тип
спрацьовування переривання при зростанні, падінні або перемиканні
вихідного сигналу компаратора. Блок-схема компаратора та його ото-
чуюча логіка показані на рисунку 8.1.

Регістри аналогового компаратору мікроконтролера
ATMega8.

Регістр спеціальних функцій вводу-виводу – SFIOR (рис. 8.2).
Біт 3 – ACME: увімкнення мультиплексора аналогового

компаратора

2058	 Аналогові модулі мікроконтролерів сімейства AVR

Рисунок 8.1 – Блок-схема компаратора та його оточуюча логіка

Рисунок 8.2 – Регістр спеціальних функцій вводу-виводу – SFIOR

Коли в цей біт записується логічна одиниця, і АЦП вимкнено
(ADEN в ADCSRA дорівнює нулю), мультиплексор АЦП виби-
рає негативний вхід для аналогового компаратора. Коли в цей біт
записується логічний нуль, вхід AIN1 під’єднується до негативного
входу аналогового компаратора. Детальний опис цього біта буде
розглянуто далі.

Регістр управління та стану аналогового компаратора –
ACSR (рис. 8.3).

Біт 7 – ACD: вимкнення аналогового компаратора
Коли в цей біт записується логічна одиниця, живлення ана-

логового компаратора вимикається. Цей біт можна встано-
вити в будь-який час, щоб вимкнути аналоговий компаратор.

206 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Це зменшить енергоспоживання в активному режимі та режимі очі-
кування. При зміні біта ACD необхідно вимкнути переривання ана-
логового компаратора шляхом очищення біта ACIE в ACSR. Інакше
при зміні біта може виникнути переривання.

Рисунок 8.3 – Регістр управління та стану аналогового

компаратора – ACSR

Біт 6 – ACBG: вибір забороненої зони аналогового
компаратора

Коли цей біт установлено, опорна напруга фіксованої забороне-
ної зони замінює позитивний вхід аналогового компаратора. Коли
цей біт очищено, вхід AIN0 під’єднується до позитивного входу
аналогового компаратора.

ATmega8 має внутрішнє джерело опорної напруги забороненої
зони. Цей еталонний сигнал використовується для виявлення зни-
ження напруги живлення, і його можна використовувати як вхідний
сигнал для аналогового компаратора або АЦП. Величина напруги
цього джерела дорівнює 2,56 В для АЦП та аналогового компаратору.

Біт 5 – ACO: вихід аналогового компаратора
Вихід аналогового компаратора синхронізується, а потім безпо-

середньо підключається до ACO. Синхронізація вносить затримку
в 1–2 такти.

Біт 4 – ACI: прапор переривання аналогового компаратора
Цей біт встановлюється апаратним забезпеченням, коли вихідна

подія компаратора, визначена бітами ACIS1 і ACIS0, генерує пере-
ривання. Процедура переривання аналогового компаратора вико-
нується, якщо встановлено біт ACIE та встановлено біт I у SREG.
ACI очищається апаратним забезпеченням під час виконання від-
повідного вектору обробки переривань. Крім того, ACI очищається
шляхом запису логічної одиниці до прапора.

2078	 Аналогові модулі мікроконтролерів сімейства AVR

Біт 3 – ACIE: увімкнення переривання аналогового компаратора
Коли в біт ACIE записується логічна одиниця, і біт I у регістрі стану

встановлений, активується переривання аналогового компаратора.
Коли в нього записується логічний нуль, переривання відключається.

Біт 2 – ACIC: увімкнення захоплення від аналогового
компаратора

Коли в цей біт записана логічна одиниця, він дозволяє аналого-
вому компаратору запускати функцію захоплення у таймері/лічиль-
нику 1. Вихід компаратора в цьому випадку безпосередньо підклю-
чений до зовнішньої логіки захоплення, завдяки чому компаратор
використовує придушувач шуму і функції вибору фронту перери-
вання по захопленню таймера-лічильника 1. Коли в цей біт записа-
ний логічний нуль, зв’язок між аналоговим компаратором і функ-
цією захоплення розривається. Щоб змусити компаратор запускати
переривання по захопленню таймера-лічильника 1, необхідно вста-
новити біт TICIE1 у регістрі маски переривання таймерів (TIMSK).

Біти 1,0 – ACIS1, ACIS0: вибір режиму переривання від ана-
логового компаратора

Ці біти визначають, які події компаратора викликають пере-
ривання аналогового компаратора. Різні налаштування наведено
в таблиці 8.1.

Таблиця 8.1 – Вибір режиму переривання від аналогового
компаратора
ACIS1 ACIS0 Режим переривання

0 0 Переривання компаратора при будь-якій зміні стану виходу
0 1 Зарезервовано

1 0 Переривання компаратора по спадаючому вихідному
фронту

1 1 Переривання компаратора по наростаючому вихідному
фронту

Під час зміни бітів ACIS1/ACIS0 переривання від аналогового
компаратора має бути відключено шляхом очищення його біта
дозволу переривання в регістрі ACSR. Інакше при зміні бітів може
виникнути переривання.

208 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Мультиплексований вхід аналогового компаратора. Можна
вибрати будь-який з входів ADC7..0 для підключення до негативного
входу аналогового компаратора. Мультиплексор АЦП використо-
вується для вибору цього входу, отже, АЦП має бути вимкнено, щоб
використовувати цю функцію. Якщо встановлено біт увімкнення
мультиплексора аналогового компаратора (ACME у SFIOR), а АЦП
вимкнено (ADEN у ADCSRA дорівнює нулю), MUX2..0 у ADMUX
вибирає вхідний контакт для підключення до негативного входу
аналогового компаратора, як показано у таблиці 8.2. Якщо ACME
скинуто або встановлено ADEN, вхід AIN1 використовується
як негативний вхід аналогового компаратора.

Таблиця 8.2 – Вибір вхідного контакту для підключення
до негативного входу аналогового компаратора
ACME ADEN MUX2..0 Негативний вхід аналогового компаратора

0 х ххх AIN1
1 1 ххх AIN1
1 0 000 ADC0
1 0 001 ADC1
1 0 010 ADC2
1 0 011 ADC3
1 0 100 ADC4
1 0 101 ADC5
1 0 110 ADC6
1 0 111 ADC7

8.2 Загальні відомості про АЦП

АЦП (analog-to-digital converter, ADC або A/D) дає еквівалентне
представлення аналогового сигналу у цифровому (двійковому)
коді. Це дає можливість МК працювати з аналоговими пристроями,
наприклад, знімати покази з різноманітних давачів, що мають ана-
логовий вихід, виконувати контроль за рівнем напруги живлення,
контролювати робочий струм виконавчих пристроїв тощо.

2098	 Аналогові модулі мікроконтролерів сімейства AVR

Основними параметрами будь-якого АЦП є розрядність
та швидкодія, тобто максимальна частота дискретизації (вибі-
рок за сек.). Розрядність АЦП визначає кількість рівнів кванту-
вання, якими перетворювач може представити аналоговий сигнал.
8-ми розрядний АЦП забезпечує 28 = 256 рівнів, тобто діапа-
зон значень на виході перетворювача 0…255; 10-розрядний –
108 = 1024 рівнів (значення від 0 до 1023). Якщо розрядність АЦП
становить 10 біт, діапазон вхідної напруги від 0 до 5 В, тоді розряд-
ність за напругою:(5–0) / 1024 = ~4,88 мВ.

Рисунок 8.4 – Аналоговий сигнал за часом та амплітудою
квантування

Частота дискретизації визначає, як часто ми можемо здійсню-
вати вибірки цифрових значень з аналогового сигналу.

Швидкодія АЦП та його розрядність визначаються типом архі-
тектури. Наприклад, паралельні АЦП можуть мати розрядність
8–12 біт та частоту дискретизації від 10 МГц до понад 1 ГГц;
АЦП послідовного наближення – 10–16 біт та швидкодію від
100кГц до понад 1 МГц; сігма-дельта АЦП – 16–24 біт та швид-
кодію від 1 до 100 кГц; інтегруючі АЦП – 16–24 біт та швидкодію
від 10 до 200 Гц. Розрядність та швидкодія взаємопов’язані параме-
три: більша розрядність – нижча швидкодія, і навпаки.

Деякі МК AVR мають інтегровані модулі АЦП послідовного
наближення. Спрощена схема АЦП послідовних наближень

210 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

представлена на рисунку 8.5. Перетворювач складається з ЦАП
(цифро-аналогового перетворювача), регістра послідовних
наближень, компаратора та блоку синхронізації. У початковому
стані у всіх розрядах (D7, … , D0) регістра послідовних набли-
жень встановлені значення «0». Цикл вимірювання починається
з того, що старший розряд D7 регістру встановлюється в «1».
Після цього за допомогою компаратора порівнюється напруга
на виході ЦАП та на вході АЦП. Якщо напруга на вході вияв-
ляється більшою, тоді значення логічного сигналу у розряді D7
зберігається рівним «1». У іншому випадку, старший розряд
регістра обнулюється. Після цього розряд D6 встановлюється в
«1», та знову проводиться порівняння напруг. Цей цикл опера-
цій послідовно застосовується до всіх решта розрядів регістра.
Робота схеми синхронізується за допомогою сигналів початку
та закінчення перетворення.

Рисунок 8.5 – Спрощена схема АЦП послідовних наближень

2118	 Аналогові модулі мікроконтролерів сімейства AVR

8.3 Модуль АЦП мікроконтролерів AVR

АЦП мікроконтролера ATMega8.
Особливості:
‒	 10-бітна роздільна здатність;
‒	 інтегральна нелінійність 0,5 LSB;
‒	 абсолютна точність ±2 LSB;
‒	 час перетворення 13 мкс – 260 мкс;
‒	 до 15 kSPS при максимальній роздільній здатності;
‒	 6 мультиплексованих односторонніх вхідних каналів;
‒	 2 додаткові мультиплексовані односторонні вхідні канали

(тільки для корпусів TQFP і QFN/MLF);
‒	 опціональне вирівнювання результату перетворення ліворуч;
‒	 діапазон вхідної напруги АЦП 0 – VCC;
‒	 вибір опорної напруги АЦП 2,56 В;
‒	 режим безперервного або одноразового перетворення;
‒	 переривання після завершення перетворення АЦП;
‒	 пригнічувач шуму в режимі сну.
ATmega8 має 10-бітний АЦП послідовного наближення. АЦП

підключений до 8-канального аналогового мультиплексора, який
дозволяє підключати вісім односторонніх входів напруги, підклю-
чених до виводів порту C. Вхідна напруга вимірюється відносно 0
В (GND).

АЦП містить схему вибірки та утримання, яка гарантує,
що вхідна напруга АЦП утримується на постійному рівні під час
перетворення. Блок-схема АЦП показана на рисунку 8.6.

АЦП має окремий аналоговий вхід напруги живлення, AVCC.
AVCC не має відрізнятися більше ніж на ±0,3 В від VCC.

АЦП перетворює аналогову вхідну напругу в 10-бітне цифрове
значення шляхом послідовного наближення. Мінімальне значення
являє собою GND, а максимальне значення являє собою напругу
на виводі AREF мінус 1 LSB. За бажанням, AVCC або внутрішня
опорна напруга 2,56 В може бути підключена до виводу AREF шля-
хом запису в біти REFSn у регістрі ADMUX. Таким чином, вну-
трішня опорна напруга може бути розв’язана зовнішнім конденса-
тором на виводі AREF для підвищення завадостійкості.

212 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Аналоговий вхідний канал вибирається шляхом запису в біти
MUX у регістрі ADMUX. Будь-який із вхідних контактів АЦП,
а також GND і опорну напругу з фіксованою забороненою зоною
можна вибрати як входи АЦП. АЦП вмикається встановленням
біта ввімкнення АЦП ADEN у регістрі ADCSRA. Вибір опорної

Рисунок 8.6 – Блок-схема АЦП

2138	 Аналогові модулі мікроконтролерів сімейства AVR

напруги та вхідного каналу не набуде чинності, доки не буде вста-
новлено ADEN. АЦП не споживає електроенергію, коли ADEN
очищено, тому рекомендується вимкнути АЦП перед переходом
у енергозберігаючі режими сну.

АЦП генерує 10-бітний результат, який представляється в регі-
страх даних АЦП ADCH і ADCL. За замовчуванням результат
представлено з вирівнюванням праворуч, але за бажанням його
можна представити вирівняним ліворуч шляхом встановлення біта
ADLAR у ADMUX.

Якщо результат вирівняний ліворуч, і не потрібна точність
більше 8 біт, достатньо прочитати ADCH. В іншому випадку спо-
чатку потрібно прочитати ADCL, а потім ADCH, щоб переконатися,
що вміст регістрів даних належить до того самого перетворення.
Після зчитування ADCL доступ ADC до регістрів даних блокується.
Це означає, що якщо ADCL було прочитано, і перетворення завер-
шується до того, як буде зчитано ADCH, жоден регістр не онов-
люється, і результат перетворення втрачається. Коли зчитується
ADCH, доступ ADC до регістрів ADCH і ADCL знову вмикається.

АЦП має власне переривання, яке може бути викликане після
завершення перетворення. Коли доступ ADC до регістрів даних
заборонено між читанням ADCH і ADCL, переривання спрацює,
навіть якщо результат буде втрачено.

Початок перетворення. Одиночне перетворення почина-
ється записом логічної одиниці в біт початку перетворення АЦП,
ADSC. Цей біт залишається високим, доки триває перетворення,
і буде очищено апаратним забезпеченням після завершення пере-
творення. Якщо під час перетворення вибрано інший канал даних,
АЦП завершить поточне перетворення перед виконанням зміни
каналу.

У режимі безперервного перетворення АЦП постійно виконує
вибірку та оновлює регістр даних АЦП. Режим безперервного
перетворення вибирається записом одиниці у біт ADFR в регістрі
ADCSRA. Перше перетворення має бути розпочато із запису логіч-
ної одиниці до біта ADSC у регістрі ADCSRA. У цьому режимі
АЦП виконуватиме послідовні перетворення незалежно від того,
чи скинуто прапор переривання АЦП, ADIF чи ні.

214 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Попереднє поділення та час перетворення. За замовчуванням
схема послідовного наближення вимагає вхідної тактової частоти
від 50 до 200 кГц для отримання максимальної роздільної здатно-
сті. Якщо необхідна роздільна здатність нижче 10 біт, вхідна так-
това частота АЦП може бути вищою за 200 кГц, щоб отримати
вищу частоту дискретизації.

Модуль АЦП містить попередній дільник, який генерує прий-
нятну тактову частоту АЦП на будь-якій частоті ЦП вище 100 кГц.
Попереднє поділення встановлюється бітами ADPS в ADCSRA.
Попередній дільник починає відлік з моменту ввімкнення АЦП
установкою біта ADEN в ADCSRA. Попередній дільник продовжує
працювати до тих пір, поки встановлено біт ADEN, і постійно ски-
дається, коли ADEN низький.

Якщо ініціювати перетворення шляхом встановлення біта ADSC
у ADCSRA, воно починається з наступного наростаючого фронту
тактового циклу АЦП. Нормальне перетворення займає 13 тактів
АЦП. Перше перетворення після ввімкнення АЦП (встановлено
ADEN в ADCSRA) потребує 25 тактових циклів АЦП для ініціалі-
зації аналогової схеми.

Фактична вибірка й утримання займає 1,5 тактів АЦП після початку
звичайного перетворення та 13,5 такту АЦП після початку першого
перетворення. Після завершення перетворення результат записується
в регістри даних АЦП і встановлюється ADIF. У режимі одиночного
перетворення одночасно очищується біт ADSC. Після цього програмне
забезпечення може знову встановити ADSC, і нове перетворення буде
ініційовано на першому наростаючому фронті синхронізації АЦП.

У безперервному режимі нове перетворення розпочнеться
відразу після завершення перетворення, поки біт ADSC залиша-
ється високим.

Зміна вхідного каналу або джерела опорної напруги. Біти
MUXn і REFS1:0 у регістрі ADMUX буферизуються через тимчасо-
вий регістр, до якого ЦП має довільний доступ. Це гарантує, що під
час перетворення вибір каналів і опорної напруги відбуватиметься
лише в безпечному місці протягом перетворення. Вибір каналу
та опорної напруги може постійно оновлюватися, доки не розпоч-
неться перетворення.

2158	 Аналогові модулі мікроконтролерів сімейства AVR

Після початку перетворення вибір каналу та опорної напруги
блокується, щоб забезпечити достатній час вибірки для АЦП.
Безперервне оновлення відновлюється в останньому такті АЦП
перед завершенням перетворення (встановлено ADIF в ADCSRA).
Зверніть увагу, що перетворення починається на наступному наро-
стаючому фронті синхронізації АЦП після запису ADSC. Таким
чином, користувачеві рекомендується не записувати нові значення
вибору каналу або опорної напруги в ADMUX до тих пір, поки
не пройде хоча б один такт АЦП після запису ADSC.

Якщо і ADFR, і ADEN записані як одиниці, переривання може
відбутися в будь-який час. Якщо реєстр ADMUX змінено про-
тягом цього періоду, користувач не зможе визначити, чи базу-
ється наступне перетворення на старих чи нових налаштуваннях.
ADMUX можна безпечно оновити такими способами:

1.  Коли ADFR або ADEN очищено.
2.  Під час перетворення, через мінімум один такт АЦП після

старту перетворення.
3.  Після перетворення, перш ніж прапор переривання, який

використовується як джерело запуску, буде очищено.
Під час оновлення ADMUX при одній із цих умов нові параме-

три вплинуть на наступне перетворення АЦП.

Рисунок 8.7 – Попереднє поділення АЦП

216 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Вхідні канали АЦП. Змінюючи вхідний канал, користувач
повинен дотримуватися наведених нижче вказівок, щоб перекона-
тися, що вибрано правильний канал:

У режимі одиночного перетворення завжди вибирайте канал
перед початком перетворення. Вибір каналу можна змінити через
один такт АЦП після запису в біт ADSC. Однак найпростіший спо-
сіб – дочекатися завершення перетворення перед зміною каналу.

У режимі безперервного перетворення завжди вибирайте канал
перед початком першого перетворення. Вибір каналу можна змі-
нити через один такт АЦП після запису в ADSC. Однак найпро-
стіший спосіб – дочекатися завершення першого перетворення,
а потім змінити канал. Оскільки наступне перетворення вже поча-
лося автоматично, наступний результат відображатиме поперед-
ній вибір каналу. Подальші перетворення відображатимуть новий
вибраний канал.

Опорна напруга АЦП. Опорна напруга для АЦП (VREF) задає
діапазон перетворення для АЦП. Значення каналів, які переви-
щують VREF, призведуть до отримання кодів, близьких до 0x3FF.
VREF можна вибрати як AVCC, внутрішній опорний сигнал 2,56 В
або зовнішня напруга AREF.

AVCC підключається до АЦП через пасивний комутатор.
Внутрішній опорний сигнал 2,56 В подається з внутрішнього опор-
ного джерела забороненої зони (VBG) через внутрішній підсилю-
вач. У будь-якому випадку зовнішній вивід AREF підключається
безпосередньо до АЦП, і опорну напругу можна зробити більш
стійкою до шуму, підключивши конденсатор між виводом AREF
і землею. VREF також можна виміряти на виводі AREF за допомо-
гою вольтметра з високим опором. Зауважте, що VREF є джерелом
високого імпедансу, тому до системи слід підключати лише ємнісне
навантаження.

Якщо користувач має фіксоване джерело напруги, підключене
до виводу AREF, він не може використовувати інші варіанти опор-
ної напруги в програмі, оскільки вони будуть закорочені з зов-
нішньою напругою. Якщо до виводу AREF не подається зовнішня
напруга, користувач може перемикатися між AVCC і 2,56 В в якості
опорного вибору. Перший результат перетворення АЦП після

2178	 Аналогові модулі мікроконтролерів сімейства AVR

перемикання джерела еталонної напруги може бути неточним, тому
користувачеві рекомендується відхилити цей результат.

Пригнічувач шуму АЦП. АЦП має пригнічувач шуму, який
дозволяє робити перетворення під час режиму сну, щоб зменшити
шум, викликаний ядром процесора та іншими периферійними при-
строями вводу-виводу. Пригнічувач шуму можна використовувати
в режимі зменшення шуму АЦП і в неактивному режимі. Щоб ско-
ристатися цією функцією, необхідно виконати таку процедуру:

1.  Переконайтеся, що АЦП увімкнений та не зайнятий пере-
творенням. Необхідно вибрати режим одиночного перетворення
та ввімкнути переривання по завершенню перетворення АЦП.

2.  Увійдіть у режим зменшення шуму АЦП (або неактивний
режим). АЦП розпочне перетворення після зупинки ЦП.

3.  Якщо до завершення перетворення АЦП не виникає жодних
інших переривань, переривання АЦП виведе з режиму сну ЦП і вико-
нає процедуру переривання по завершенню перетворення АЦП.
Якщо інше переривання активує ЦП до завершення перетворення
АЦП, це переривання буде виконано, і після завершення перетво-
рення АЦП буде згенеровано запит на переривання по завершенню
перетворення АЦП. ЦП залишатиметься в активному режимі, доки
не буде виконано нову команду сну. Зауважте, що АЦП не вимика-
тиметься автоматично під час входу в інші режими сну, крім неак-
тивного режиму та режиму зменшення шуму АЦП. Користувачеві
рекомендується записати нуль в ADEN перед входом у такі режими
сну, щоб уникнути надмірного споживання енергії.

Аналогова вхідна схема. Аналогова вхідна схема показана
на рисунку 8.8. Аналогове джерело, що подається до АЦП, підда-
ється впливу ємності на виводі та вхідного струму цього виводу,
незалежно від того, чи обрано цей канал як вхід для АЦП. Коли
канал вибрано, джерело має зарядити конденсатор S/H через послі-
довний опір (комбінований опір у вхідному тракті).

АЦП оптимізовано для аналогових сигналів з вихідним опором
приблизно 10 кОм або менше. Якщо використовується таке дже-
рело, час вибірки буде незначним. Якщо використовується джерело
з вищим імпедансом, час вибірки залежатиме від того, скільки часу
потрібно джерелу для заряджання конденсатора S/H, і може значно

218 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

відрізнятися. Користувачеві рекомендується використовувати лише
джерела з низьким імпедансом із повільно змінними сигналами,
оскільки це мінімізує необхідну передачу заряду до конденсатора S/H.

Компоненти сигналу, вищі за частоту Найквіста (fADC/2),
не повинні бути присутніми для жодного типу каналів, щоб
уникнути спотворень через непередбачувану згортку сигналу.
Користувачеві рекомендується видалити високочастотні компо-
ненти за допомогою фільтра низьких частот перед подачею сигна-
лів на входи АЦП.

Рисунок 8.8 – Аналогова вхідна схема

Методи пригнічування аналогового шуму. Цифрові схеми
всередині та зовні пристрою створюють електромагнітні пере-
шкоди, які можуть вплинути на точність аналогових вимірювань.
Якщо точність перетворення має вирішальне значення, рівень
шуму можна зменшити за допомогою наступних методів:

1.  Тримайте шляхи аналогового сигналу якомога коротшими.
Переконайтеся, що аналогові доріжки проходять по площині зазем-
лення, і тримайте їх подалі від високошвидкісних комутаційних
цифрових доріжок.

2.  Вивід AVCC на пристрої має бути підключений до цифрової
напруги живлення VCC через LC-ланцюжок.

3.  Використовуйте функцію пригнічення шуму АЦП, щоб змен-
шити індукований шум від ЦП.

2198	 Аналогові модулі мікроконтролерів сімейства AVR

4.	Якщо будь-які контакти порту ADC [3..0] використовуються
як цифрові виходи, важливо, щоб вони не перемикалися під час
перетворення. Однак використання двопровідного інтерфейсу
(ADC4 і ADC5) вплине лише на перетворення на ADC4 і ADC5,
а не інших каналах ADC.

Показники точності АЦП. n-розрядний АЦП лінійно перетво-
рює напругу між GND і VREF на 2n кроків (LSB). Найнижчий код
читається як 0, а найвищий код читається як 2n-1. Декілька парамет-
рів описують відхилення від ідеальної поведінки.

Зміщення (рисунок 8.9)

Рисунок 8.9 – Помилка зміщення

Це відхилення першого переходу (від 0x000 до 0x001) порівняно
з ідеальним переходом (при 0,5 LSB). Ідеальне значення: 0 LSB.

Помилка посилення (рисунок 8.10)
Після коригування зсуву помилка посилення визначається як від-

хилення останнього переходу (0x3FE до 0x3FF) порівняно з ідеальним
переходом (на 1,5 LSB нижче максимального). Ідеальне значення: 0 LSB.

Інтегральна нелінійність (INL) (рисунок 8.11)
Після коригування зсуву та похибки посилення INL є макси-

мальним відхиленням фактичного переходу порівняно з ідеальним
переходом для будь-якого коду. Ідеальне значення: 0 LSB.

220 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Диференціальна нелінійність (DNL) (рисунок 8.12)
Максимальне відхилення фактичної ширини коду (інтервал між

двома сусідніми переходами) від ідеальної ширини коду (1 LSB).
Ідеальне значення: 0 LSB.

 Рисунок 8.10 – Помилка посилення

Рисунок 8.11 – Інтегральна нелінійність

2218	 Аналогові модулі мікроконтролерів сімейства AVR

Помилка квантування
Через квантування вхідної напруги в скінченну кількість кодів

діапазон вхідних напруг (шириною 1 LSB) кодуватиме однакове
значення. Завжди ± 0,5 LSB.

Абсолютна точність
Максимальне відхилення фактичного (нескоригованого) переходу

порівняно з ідеальним переходом для будь-якого коду. Це сукупний
ефект зміщення, помилки посилення, диференціальної помилки, нелі-
нійності та помилки квантування. Ідеальне значення: ±0,5 LSB.

Результат перетворення АЦП. Після завершення перетво-
рення (ADIF дорівнює 1), результат перетворення можна зчитати
з регістрів результатів АЦП (ADCL, ADCH).

Результат визначається за наступною формулою:

ADC
V

V
IN

REF

�
�1023, (8.1)

де	VIN – напруга на вибраному вхідному контакті, а VREF – вибрана
опорна напруга. 0x000 представляє напругу землі, а 0x3FF пред-
ставляє вибрану опорну напругу мінус один LSB.

Рисунок 8.12 – Диференціальна нелінійність

222 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Регістри АЦП:
Регістр мультиплексора АЦП – ADMUX (рис. 8.13):

Рисунок 8.13 – Регістр мультиплексора АЦП – ADMUX

Біти 7:6 – REFS1:0: біти вибору опорної напруги
Ці біти вибирають опорну напругу для АЦП, як показано

в таблиці. Якщо ці біти змінено під час перетворення, зміна не всту-
пить у силу, доки це перетворення не буде завершено (ADIF в регі-
стрі ADCSRA не буде встановлено). Внутрішню опорну напругу
не можна використовувати, якщо зовнішня опорна напруга пода-
ється на вивід AREF.

Таблиця 8.3 – Біти вибору опорної напруги
REFS1 REFS0 Опорна напруга

0 0 AREF, внутрішній Vref вимкнено
0 1 AVCC із зовнішнім конденсатором на виводі AREF
1 0 Зарезервовано

1 1 Внутрішня опорна напруга 2,56 В із зовнішнім конден-
сатором на виводі AREF

Біт 5 – ADLAR: вирівнювання результату АЦП ліворуч
Біт ADLAR впливає на представлення результату перетворення

АЦП у регістрі даних АЦП. Запис одиниці у ADLAR вирівнює
результат перетворення ліворуч. В іншому випадку результат вирів-
нюється праворуч. Зміна біта ADLAR негайно вплине на регістр
даних АЦП, незалежно від будь-яких поточних перетворень.
Повний опис цього біта буде наведено далі.

Біти 3:0 – MUX3:0: біти вибору аналогового каналу
Значення цих бітів визначає, який аналоговий вхід підклю-

чаються до АЦП (див. таблицю 8.4). Якщо ці біти змінено під

2238	 Аналогові модулі мікроконтролерів сімейства AVR

час перетворення, зміна не набуде чинності, доки це перетво-
рення не буде завершено (біт ADIF у регістрі ADCSRA не буде
встановлено).

Таблиця 8.4 – Біти вибору аналогового каналу
MUX3..0 Вхід

0000 ADC0
0001 ADC1
0010 ADC2
0011 ADC3
0100 ADC4
0101 ADC5
0110 ADC6
0111 ADC7
1000 Зарезервовано
1001 Зарезервовано
1010 Зарезервовано
1011 Зарезервовано
1100 Зарезервовано
1101 Зарезервовано
1110 1,3 В (VBG)
1111 0 B (земля)

Регістр управління та стану АЦП A – ADCSRA (рис. 8.14):

Рисунок 8.14 – Регістр управління та стану АЦП A – ADCSRA

Біт 7 – ADEN: увімкнення АЦП
Запис одиниці в цей біт вмикає АЦП. При запису в нього нуля

АЦП вимикається. Вимкнення АЦП під час перетворення призведе
до припинення цього перетворення.

224 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Біт 6 – ADSC: початок перетворення АЦП
У режимі одиночного перетворення записуйте в цей біт оди-

ницю, щоб почати кожне перетворення. У безперервному режимі
запишіть в цей біт одиницю, щоб розпочати перше перетворення.
Перше перетворення після запису ADSC після ввімкнення АЦП,
або якщо ADSC записується одночасно з увімкненням АЦП, займе
25 тактів АЦП замість звичайних 13. Це перше перетворення вико-
нує ініціалізацію АЦП. ADSC читатиметься як один, поки триває
перетворення. Після завершення перетворення він повертається
до нуля. Запис нуля в цей біт не має ефекту.

Біт 5 – ADFR: вибір режиму безперервного перетворення АЦП
Коли цей біт встановлено (один), АЦП працює у режимі безпе-

рервного перетворення. У цьому режимі АЦП безперервно збирає
та оновлює регістри даних. Очищення цього біта (нуль) призведе
до завершення режиму безперервного перетворення.

Біт 4 – ADIF: прапор переривання АЦП
Цей біт встановлюється після завершення перетворення АЦП

і оновлення регістрів даних. Переривання по завершенню пере-
творення АЦП виконується, якщо встановлено біт ADIE та біт I у
регістрі SREG. ADIF очищується апаратним забезпеченням під час
виконання відповідного вектору обробки переривань. Крім того,
ADIF очищується записом логічної одиниці до нього.

Біт 3 – ADIE: дозвіл переривання АЦП
Коли в цей біт записано одиницю, і встановлено біт I у регістрі

SREG, активується переривання по завершенню перетворення АЦП.
Біти 2:0 – ADPS2:0: біти вибору попереднього дільника АЦП
Ці біти визначають коефіцієнт ділення між частотою XTAL

і тактовою частотою на вході АЦП (див. табл. 8.5).

Таблиця 8.5 – Біти вибору попереднього дільника АЦП
ADPS2 ADPS1 ADPS0 Коефіцієнт ділення

1 2 3 4
0 0 0 2
0 0 1 2
0 1 0 4
0 1 1 8

2258	 Аналогові модулі мікроконтролерів сімейства AVR

1 2 3 4
1 0 0 16
1 0 1 32
1 1 0 64
1 1 1 128

Регістр даних АЦП – ADCL і ADCH (рис. 8.15).

Продовження таблиці 8.5

Рисунок 8.15 – Регістр даних АЦП – ADCL і ADCH

Після завершення перетворення АЦП результат знаходиться
в цих двох регістрах.

Коли ADCL зчитується, регістр даних ADC не оновлюється,
доки ADCH не буде зчитано. Отже, якщо результат вирівняний
ліворуч і не потрібна точність більше 8 біт, достатньо прочитати
ADCH. В іншому випадку спочатку потрібно прочитати ADCL,
а потім ADCH.

Біт ADLAR в ADMUX і біти MUXn в ADMUX впливають на спо-
сіб зчитування результату з регістрів. Якщо встановлено ADLAR,
результат вирівняно ліворуч. Якщо ADLAR очищено (за замовчу-
ванням), результат вирівняно праворуч.

ADC9:0: результат перетворення АЦП
Ці біти представляють результат перетворення.

226 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Контрольні запитання до теми 8
1.	 Які основні функції виконує аналоговий компаратор?
2.	 Які вимоги до живлення аналогового компаратора?
3.	 Яким чином вибирається опорна напруга фіксованої забороненої зони?
4.	 Які режими спрацьовування переривань від аналогового компаратора

доступні?
5.	 Як можна увімкнути або вимкнути аналоговий компаратор?
6.	 Як вибирається вхідний контакт для підключення до негативного

входу аналогового компаратора?
7.	 Як компаратор ініціює функцію захоплення таймера-лічильника?
8.	 Яким чином налаштовується вихід аналогового компаратора?
9.	 Що таке АЦП і яке його призначення в мікроконтролерах?
10.	 Як розрядність впливає на точність вимірювань АЦП?
11.	 Які основні параметри АЦП потрібно враховувати при виборі для кон-

кретного застосування?
12.	 Що таке швидкодія АЦП і чому вона важлива?
13.	 Які типи АЦП існують і які їхні відмінності?
14.	 Як працює АЦП послідовного наближення? Наведіть основні кроки.
15.	 Які можливості використання мультиплексора АЦП для підключення

аналогових входів?
16.	 Які переваги та обмеження використання вбудованих АЦП в мікро-

контролерах AVR?
17.	 Яка роздільна здатність АЦП мікроконтролера ATMega8?
18.	 Яка інтегральна нелінійність у АЦП ATMega8?
19.	 Яка абсолютна точність результату перетворення у мікроконтролера

ATMega8?
20.	 Який час перетворення у режимі з максимальною роздільною

здатністю?
21.	 Скільки мультиплексованих односторонніх вхідних каналів має АЦП

ATMega8?
22.	 Як підключається внутрішня опорна напруга АЦП мікроконтролера

ATMega8?
23.	 Як можна вибрати опорну напругу АЦП ATMega8 для перетворення?
24.	 Як відрізняється режим безперервного перетворення від режиму

одноразового перетворення у АЦП ATMega8?
25.	 Які особливості вибору вхідного каналу та опорної напруги в режимі

перетворення АЦП мікроконтролера ATMega8?

2278	 Аналогові модулі мікроконтролерів сімейства AVR

Використана література
1.	 Atmel: ATMega8, ATmega8L: технічна документація на мікроконтро-

лер. URL: https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-
2486-8-bit-AVR-microcontroller-ATmega8_L_datasheet.pdf

https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-2486-8-bit-AVR-microcontroller-ATmega8_L_datasheet.pdf

9___
ПРОГРАМУВАННЯ МІКРОКОНТРОЛЕРІВ

СІМЕЙСТВА AVR

Метою вивчення теми є ознайомлення з типами пам’яті мікро-
контролерів AVR та їх програмуванні за допомогою послідовного
інтерфейсу.

Завдання вивчення теми збігаються з переліком питань для
розгляду, що наведений нижче.

Перелік питань до розділу:
9.1.	 Пам’ять мікроконтролерів AVR.
9.2.	 Самопрограмування пам’яті.
9.3.	 Біти фьюзів та блокування пам’яті.
9.4.	 Програмування пам’яті за допомогою послідовного інтерфейсу.

9.1 Пам’ять мікроконтролерів AVR

Вбудована перепрограмована флеш-пам’ять програм.
ATmega8 містить вбудовану перепрограмовану флеш-пам’ять
об’ємом 8 Кбайт, для зберігання програм. Оскільки всі інструкції
AVR мають ширину 16 або 32 біти, флеш-пам’ять організовано
як 4K × 16 бітів. Для безпеки програмного забезпечення простір
флеш-пам’яті поділено на два розділи: розділ завантажувача і роз-
діл програми.

Флеш-пам’ять має витривалість щонайменше 10 000 циклів
запису/стирання. Лічильник програм ATmega8 (PC) має ширину
12 біт, таким чином маючи можливість адресувати пам’ять програм
4K. Функціонування розділу завантажувача та відповідних бітів
блокування завантажувача для захисту програмного забезпечення
детально розглянемо далі.

2299	 Програмування мікроконтролерів сімейства AVR

Таблиці констант можна розміщувати в межах адресного про-
стору пам’яті програми за допомогою команди LPM (Load Program
Memory – Читання з пам’яті програми).

Пам’ять даних SRAM. На рисунку 9.2 показано, як організо-
вана пам’ять SRAM.

Нижні 1120 комірок пам’яті даних адресують регістровий файл,
пам’ять вводу-виводу та внутрішній SRAM даних. Перші 96 комі-
рок адресують регістровий файл і пам’ять вводу-виводу, а наступні
1024 комірки адресують внутрішні дані SRAM.

П’ять різних режимів адресації для пам’яті даних охоплюють:
прямий, непрямий із зміщенням, непрямий, непрямий із переде-
крементом і непрямий із постінкрементом. У регістровому файлі
регістри від R26 до R31 містять регістри покажчиків непрямої
адресації.

Рисунок 9.1 – Вбудована перепрограмована флеш-пам’ять програм

230 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Пряма адресація охоплює весь простір даних.
Непрямий режим зі зміщенням досягає 63 адресних позицій від

базової адреси, наданої Y-регістром або Z-регістром.
При використанні режимів непрямої адресації з автоматич-

ним передекрементом і постінкрементом адресні регістри X, Y
і Z декрементуються або інкрементуються.

32 робочі регістри загального призначення, 64 регістри
вводу-виводу та 1024 байти внутрішньої пам’яті SRAM даних
у ATmega8 доступні через усі ці режими адресації.

Пам’ять даних EEPROM. ATmega8 містить 512 байт пам’яті
даних EEPROM. Вона організована як окремий простір даних,
у якому можна читати та записувати окремі байти. EEPROM має

Рисунок 9.2 – Організація пам’яті SRAM

2319	 Програмування мікроконтролерів сімейства AVR

витривалість щонайменше 100 000 циклів запису/стирання. Доступ
між EEPROM і центральним процесором описано нижче, вико-
ристовуючи адресні регістри EEPROM, регістр даних EEPROM
і регістр керування EEPROM.

Доступ для читання-запису EEPROM. Регістри доступу
до EEPROM доступні в просторі вводу-виводу.

Час доступу до запису для EEPROM наведено в таблиці далі.
Проте функція самосинхронізації дозволяє програмному забезпе-
ченню користувача визначити, коли можна записати наступний байт.
Якщо код користувача містить інструкції, які записують EEPROM,
необхідно вжити деяких запобіжних заходів. У джерелах живлення
з сильною фільтрацією VCC, ймовірно, буде повільно зростати або
падати під час увімкнення/вимкнення живлення. Це змушує при-
стрій деякий час працювати з напругою, нижчою, ніж зазначено
як мінімальне для використовуваної тактової частоти.

Щоб запобігти ненавмисному запису EEPROM, слід дотримува-
тися спеціальної процедури запису.

Коли EEPROM зчитується, ЦП зупиняється на чотири такти
перед виконанням наступної інструкції. Коли EEPROM запису-
ється, ЦП зупиняється на два такти перед виконанням наступної
інструкції.

Регістри пам’яті даних EEPROM:
Адресний регістр EEPROM – EEARH і EEARL (рис. 9.3):
Біти 15..9 – Res: зарезервовані біти
Ці біти є зарезервованими бітами в ATmega8 і завжди читати-

муться як нуль.

Рисунок 9.3 – Адресний регістр EEPROM – EEARH і EEARL

232 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Біти 8..0 – EEAR8..0: адреса EEPROM
Адресні регістри EEPROM – EEARH і EEARL – визначають

адресу EEPROM у просторі EEPROM розміром 512 байт. Байти
даних EEPROM адресуються лінійно від 0 до 511. Початкове зна-
чення EEAR не визначено. Перед доступом до EEPROM необхідно
записати правильне значення.

Регістр даних EEPROM – EEDR (рис. 9.4).

Рисунок 9.4 – Регістр даних EEPROM – EEDR

Біти 7..0 – EEDR7..0: дані EEPROM
При операції запису EEPROM регістр EEDR містить дані для

запису в EEPROM за адресою, наданою регістром EEAR. Для опе-
рації читання EEPROM EEDR містить дані, зчитані з EEPROM
за адресою, наданою EEAR.

Регістр керування EEPROM – EECR (рис. 9.5):

Рисунок 9.5 – Регістр керування EEPROM – EECR

Біти 7..4 – Res: зарезервовані біти
Ці біти є зарезервованими бітами в ATmega8 і завжди читати-

муться як нуль.
Біт 3 – EERIE: Дозвіл переривання при готовності EEPROM
Запис одиниці в EERIE увімкне переривання при готовності

EEPROM, якщо встановлено біт I у регістрі SREG. Запис нуля
в EERIE вимикає переривання. Переривання готовності EEPROM
створює постійне переривання, поки біт EEWE очищено.

2339	 Програмування мікроконтролерів сімейства AVR

Біт 2 – EEMWE: дозвіл можливості запису в EEPROM
Біт EEMWE визначає, чи спричиняє встановлення біту EEWE

в одиницю запис в EEPROM. Якщо встановлено EEMWE, вста-
новлення біту EEWE протягом чотирьох тактів записуватиме дані
в EEPROM за вибраною адресою. Якщо EEMWE дорівнює нулю,
встановлення EEWE не матиме ефекту. Коли програмне забезпе-
чення записує одиницю в EEMWE, апаратне забезпечення очищує
цей біт через чотири такти.

Біт 1 – EEWE: дозвіл запису в EEPROM
Біт дозволу запису в EEPROM EEWE є стробом запису

в EEPROM. Коли адреса та дані встановлені правильно, у біт EEWE
потрібно записати одиницю, щоб записати значення в EEPROM.
У біт EEMWE має бути записана одиниця перед тим, як одиниця
буде записана в EEWE, інакше запис EEPROM не відбудеться.
Під час запису EEPROM слід дотримуватися наступної процедури
(порядок кроків 3 і 4 не є суттєвим):

1.	Зачекайте, поки EEWE не стане рівним нулю.
2.	Зачекайте, доки біт SPMEN у регістрі SPMCR не стане рів-

ним нулю.
3.	Запишіть нову адресу EEPROM до EEAR (необов’язково).
4.	Запишіть нові дані EEPROM до EEDR (необов’язково).
5.	Запишіть логічну одиницю в біт EEMWE, одночасно запису-

ючи нуль у біт EEWE в регістрі EECR.
6.	Протягом чотирьох тактів після встановлення EEMWE запи-

шіть логічну одиницю в EEWE.
EEPROM не може бути записана під час запису ЦП у флеш-пам’ять.

Програмне забезпечення повинно перевірити, чи завершено програ-
мування флеш-пам’яті, перш ніж ініціювати новий запис EEPROM.
Крок 2 має сенс, лише якщо програмне забезпечення містить заван-
тажувач, який дозволяє ЦП програмувати флеш-пам’ять. Якщо вона
ніколи не оновлюється ЦП, крок 2 можна пропустити.

Застереження: переривання між кроком 5 і кроком 6 призведе
до збою циклу запису, оскільки тайм-аут основного дозволу запису
EEPROM завершиться. Якщо процедура переривання доступу
до EEPROM перериває інший доступ до EEPROM, регістр EEAR
або EEDR буде змінено, що призведе до збою перерваного доступу

234 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

до EEPROM. Щоб уникнути цих проблем, рекомендовано зняти
глобальний прапор переривання під час усіх кроків.

Коли час доступу до запису минув, біт EEWE очищається апа-
ратно. Програмне забезпечення користувача може опитувати цей
біт і чекати нуля перед записом наступного байту. Коли встановлено
EEWE, ЦП зупиняється на два цикли перед виконанням наступної
інструкції.

Біт 0 – EERE: дозвіл читання з EEPROM
Біт дозволу читання з EEPROM EERE є стробом читання

EEPROM. Коли в регістрі EEAR встановлено правильну адресу,
в біт EERE потрібно записати логічну одиницю, щоб запустити
зчитування з EEPROM. Доступ для читання EEPROM виконується
за одну інструкцію, і запитані дані доступні негайно. Коли EEPROM
зчитується, ЦП зупиняється на чотири цикли перед виконанням
наступної інструкції. Користувач повинен перевірити біт EEWE
перед початком операції читання. Якщо виконується операція
запису, неможливо ні прочитати EEPROM, ні змінити реєстр EEAR.

Робота з EEPROM. Калібрований осцилятор використовується
для визначення часу доступу до EEPROM. У таблиці 9.1 наведено
типовий час програмування для доступу до EEPROM з ЦП.

Таблиця 9.1 – Типовий час програмування для доступу до EEPROM

Операція

Кількість циклів каліброваного
RC осцилятора (Використовується
тактова частоту 1 МГц незалежно

від налаштувань бітів CKSEL)

Типовий час
програмування

Запис
EEPROM

(з ЦП)
8448 8.5 ms

У наведеному нижче прикладі коду показано функцію C для
запису в EEPROM. Приклад передбачає, що переривання контро-
люються (наприклад, шляхом глобального вимкнення переривань),
щоб під час виконання цієї функції не виникало жодних перери-
вань. У прикладі також передбачається, що в програмному забез-
печенні відсутній завантажувач Flash. Якщо такий код присутній,

2359	 Програмування мікроконтролерів сімейства AVR

функція запису EEPROM також повинна чекати завершення
будь-якої поточної команди SPM.

void EEPROM_write(unsigned int uiAddress, unsigned
char ucData)

{
// Очікування на завершення попереднього запису
while(EECR & (1<<EEWE));
// Встановлення регістрів адреси і даних
EEAR = uiAddress;
EEDR = ucData;
// Запис логічної одиниці в EEMWE
EECR |= (1<<EEMWE);
// Початок запису в EEPROM, встановивши EEWE
EECR |= (1<<EEWE);
}

Наступний приклад коду показує функцію C для читання
EEPROM. У прикладі припускається, що переривання керуються
таким чином, що під час виконання цієї функцій не буде жодних
переривань.

unsigned char EEPROM_read(unsigned int uiAddress)
{
// Очікування на завершення попереднього запису
while(EECR & (1<<EEWE));
// Встановлення регістру адреси
EEAR = uiAddress;
// Початок читання EERPM шляхом встановлення біту EERE
EECR |= (1<<EERE);
// Повертання зчитаних даних з реєстру даних
return EEDR;
}

Запис EEPROM під час режиму сну. Під час входу в спля-
чий режим вимкнення, коли операція запису EEPROM активна,

236 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

операція запису EEPROM продовжуватиметься та завершиться
до того, як мине час доступу до запису. Однак після завершення
операції запису осцилятор продовжує працювати, і, як наслідок,
пристрій не вимикається повністю. Тому рекомендується пере-
конатися, що операція запису EEPROM завершена перед входом
у режим вимкнення.

Запобігання пошкодженню EEPROM. Під час зниже-
ної напруги живлення дані EEPROM можуть бути пошкоджені,
оскільки вона надто низька для належної роботи ЦП і EEPROM.

Пошкодження даних EEPROM може бути викликано двома
ситуаціями, коли напруга надто низька. По-перше, звичайна послі-
довність запису в EEPROM вимагає мінімальної напруги для пра-
вильної роботи. По-друге, сам ЦП може неправильно виконувати
інструкції, якщо напруга живлення занадто низька.

Пошкодження даних EEPROM можна легко уникнути, дотри-
муючись цієї рекомендації щодо проектування: утримуйте AVR
RESET активним (низьким) протягом всього часу зниженої напруги
живлення. Це можна зробити, увімкнувши внутрішній детектор
зниження напруги живлення (BOD). Якщо рівень напруги спрацю-
вання внутрішнього BOD не відповідає необхідному рівню вияв-
лення, можна використати зовнішню схему захисту від зниження
VCC. Якщо скидання відбувається під час операції запису, операція
запису буде завершена за умови достатньої напруги живлення.

9.2 Самопрограмування пам’яті

Підтримка завантажувача забезпечує реальний механізм
самопрограмування шляхом читання під час запису для заванта-
ження та вивантаження програмного коду самим мікроконтроле-
ром. Ця функція дозволяє гнучко оновлювати прикладне програмне
забезпечення під управлінням ЦП за допомогою програми заван-
тажувача, що знаходиться у флеш-пам’яті. Програма завантажу-
вача може використовувати будь-який доступний інтерфейс даних
і пов’язаний протокол для читання коду та запису (програмування)

2379	 Програмування мікроконтролерів сімейства AVR

цього коду у флеш-пам’ять або читання коду з пам’яті програми.
Програмний код у розділі завантажувача має можливість запису-
вати всю флеш-пам’ять, включаючи пам’ять завантажувача. Таким
чином, завантажувач може навіть змінювати себе, а також може
стерти себе з коду, якщо функція більше не потрібна. Розмір пам’яті
завантажувача налаштовується за допомогою фьюз-бітів. Крім
того, завантажувач має два окремих набори бітів блокування заван-
таження, які можна встановити незалежно. Це дає користувачеві
унікальну гнучкість у виборі різних рівнів захисту:

‒	 самопрограмування шляхом читання під час запису;
‒	 гнучкий розмір завантажувальної пам’яті;
‒	 високий рівень безпеки (окремі біти блокування для гнучкого

захисту);
‒	 окремий фьюз для вибору вектору скидання;
‒	 оптимізований розмір сторінки (Сторінка – це розділ

у флеш-пам’яті, що складається з кількох байтів, який використо-
вується під час програмування. Сторінкова організація не впливає
на звичайну роботу);

‒	 ефективний код завантажувача;
‒	 ефективна підтримка читання – зміни – запису.
Розділи пам’яті програми користувача та завантажувача.

Флеш-пам’ять складається з двох основних розділів: розділу програми
та розділу завантажувача. Розмір різних секцій налаштовується фью-
зами BOOTSZ, як буде показано далі. Ці дві секції можуть мати різний
рівень захисту, оскільки вони мають різні набори бітів блокування.

Розділ програми – це частина флеш-пам’яті, яка використовується
для зберігання коду програми. Рівень захисту для розділу програми
можна вибрати за допомогою бітів блокування завантаження про-
грами. Розділ програми ніколи не може зберігати будь-який код заван-
тажувача, оскільки інструкція SPM (Store Program Memory – Запис
в пам’ять програми) вимкнена під час виконання з розділу програми.

Хоча розділ програми використовується для зберігання коду
програми, програмне забезпечення завантажувача має бути роз-
ташоване в області завантажувача, оскільки інструкція SPM може
ініціювати програмування під час виконання лише з неї. Інструкція
SPM може отримати доступ до всієї флеш-пам’яті, включаючи сам

238 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

розділ завантажувача. Рівень захисту для розділу завантажувача
можна вибрати за допомогою бітів блокування завантажувача.

Флеш-секції «читання під час запису» і «без читання під час
запису». Чи підтримує ЦП читання під час запису, чи він зупиня-
ється під час оновлення програмного забезпечення завантажувача,
залежить від адреси, яка програмується. На додаток до двох розді-
лів, які можна налаштувати за допомогою фьюзів BOOTSZ, як опи-
сано вище, флеш-пам’ять також розділено на дві фіксовані секції:
секцію «Читання під час запису» (RWW) і секцію «Без читання під
час запису» (NRWW). Обмеження між розділами RWW і NRWW
наведено в таблиці 9.2 і на рисунку 9.6.

Таблиця 9.2 – Обмеження між розділами RWW і NRWW
До якого розділу

звертається
вказівник Z під час

програмування?

Який розділ можна
прочитати під час
програмування?

Процесор
зупинено?

Читання під
час запису

підтримується?

Розділ RWW Розділ NRWW Ні Так
Розділ NRWW Немає Так Ні

Рисунок 9.6 – Розділення флеш-пам’яті на дві фіксовані секції

2399	 Програмування мікроконтролерів сімейства AVR

Основна відмінність між цими двома розділами:
‒	 під час стирання або запису сторінки, розташованої всере-

дині розділу RWW, розділ NRWW може бути зчитаним під час
операції;

‒	 під час стирання або запису сторінки, розташованої всередині
розділу NRWW, ЦП зупиняється протягом усієї операції.

Зверніть увагу, що програмне забезпечення користувача ніколи
не може прочитати будь-який код, який знаходиться всередині
розділу RWW під час роботи програмного забезпечення заванта-
жувача. Фраза «розділ читання під час запису» вказує на те, який
розділ програмується (стирається чи записується), а не на те, який
розділ фактично читається під час оновлення програмного забезпе-
чення завантажувача.

Біти блокування завантажувача. Якщо завантажувач
не потрібен, вся пам’ять флеш доступна для програмного коду.
Завантажувач має два окремих набори біт блокування заванта-
ження, які можна встановити незалежно. Це дає користувачеві
унікальну гнучкість у виборі різних рівнів захисту. Користувач
може вибрати:

‒	 для захисту всього Flash від оновлення програмного забезпе-
чення процесором;

‒	 для захисту лише розділу завантажувача від оновлення про-
грамного забезпечення процесором;

‒	 для захисту лише розділу Flash програми від оновлення про-
грамного забезпечення процесором;

‒	 дозволити оновлення програмного забезпечення в усьому роз-
ділі флеш.

Біти блокування завантажувача можуть бути встановлені
в програмному забезпеченні та в режимі послідовного або пара-
лельного програмування, але їх можна очистити лише командою
стирання мікросхеми. Загальне блокування запису (режим бло-
кування 2) не контролює програмування флеш-пам’яті за допо-
могою інструкції SPM. Подібним чином загальне блокування
читання/запису (режим блокування 3) не контролює ні читання,
ні запис за допомогою LPM/SPM.

240 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Таблиця 9.3 – Біти блокування завантажувача режиму BLB0
Режим
BLB0 BLB02 BLB01 Захист

1 1 1
Жодних обмежень для доступу SPM або LPM
до розділу програми

2 1 0 SPM заборонено писати в розділ програми

3 0 0

SPM не дозволяється писати в розділ про-
грами, а LPM, що виконується з розділу заван-
тажувача, заборонено читати із розділу про-
грами. Якщо вектори переривань розміщені
в розділі завантажувача, переривання вимкнені
під час виконання із розділу програми

4 0 1

LPM, що виконується із розділу завантажу-
вача, заборонено читати з розділу програми.
Якщо вектори переривань розміщені у розділі
завантажувача, переривання вимкнені під час
виконання із розділу програми

Таблиця 9.4 – Біти блокування завантажувача режиму BLB1
Режим
BLB1 BLB12 BLB11 Захист

1 1 1 Жодних обмежень для доступу SPM або LPM
до розділу завантажувача

2 1 0 SPM заборонено писати в розділ
завантажувача

3 0 0

SPM не дозволяється писати в розділ заванта-
жувача, а LPM, що виконується з розділу про-
грами, заборонено читати із розділу заванта-
жувача. Якщо вектори переривань розміщені
в розділі програми, переривання вимкнені під
час виконання із розділу завантажувача

4 0 1

LPM, що виконується із розділу програми,
заборонено читати з розділу завантажувача.
Якщо вектори переривань розміщені у розділі
програми, переривання вимкнені під час вико-
нання із розділу завантажувача

2419	 Програмування мікроконтролерів сімейства AVR

Вхід у програму завантажувача. Вхід до завантажувача від-
бувається шляхом переходу або виклику з програми користувача.
Це може бути ініційовано тригером, таким як команда, отримана
через інтерфейс USART або SPI. Крім того, фьюз завантажувача
при скиді BOOTRST можна запрограмувати так, щоб вектор ски-
дання вказував на початкову адресу завантажувача після скидання.
У цьому випадку завантажувач запускається після скидання. Після
завантаження коду програми мікроконтролер може розпочати
її виконання. Зверніть увагу, що фьюзи не можуть бути змінені
самим ЦП. Це означає, що коли фьюз завантажувача при скиді
запрограмовано, вектор скидання завжди вказуватиме на скид
завантажувача, а фьюз можна змінити лише через послідовний або
паралельний інтерфейс програмування.

Таблиця 9.5 – Програмування фьюзу завантажувача при скиді
BOOTRST Адреса при скиді

0 Скидання програми (адреса 0x0000)
1 Скидання завантажувача

Регістр керування пам’яттю програм – SPMCR (рис. 9.7):
Біт 7 – SPMIE: дозволено переривання SPM
Коли в біт SPMIE записано одиницю, а біт I в регістрі стану вста-

новлений, буде включено переривання готовності SPM. Воно буде
активним весь час, поки біт SPMEN у регістрі SPMCR очищено.

Рисунок 9.7 – Регістр керування пам’яттю програм – SPMCR

Біт 6 – RWWSB: розділ «читання під час запису» зайнятий
Коли починається операція самопрограмування (стирання сто-

рінки або запис сторінки) у розділі RWW, RWWSB буде встановлено
(один) апаратним забезпеченням. Коли встановлено біт RWWSB,

242 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

доступ до розділу RWW заборонено. Біт RWWSB буде очищено,
якщо в біт RWWSRE буде записано одиницю після завершення
операції самопрограмування. Крім того, біт RWWSB буде автома-
тично очищено, якщо розпочато операцію завантаження сторінки.

Біт 5 – Res: зарезервований біт
Цей біт є зарезервованим в ATmega8 і завжди читається як нуль.
Біт 4 – RWWSRE: увімкнути читання розділу «читання під

час запису»
Під час програмування (стирання сторінки або запису сторінки)

розділу RWW, він блокується для читання (біт RWWSB встанов-
люється апаратно). Щоб знову ввімкнути розділ RWW, програмне
забезпечення користувача має дочекатися завершення програму-
вання (поки SPMEN буде очищено). Потім, якщо біт в RWWSRE
записати одиницю одночасно з SPMEN, наступна інструкція SPM
протягом чотирьох тактових циклів повторно вмикає розділ RWW.
Розділ RWW не можна повторно ввімкнути, поки флеш-пам’ять
зайнята стиранням сторінки або записом сторінки (встанов-
лено SPMEN). Якщо біт RWWSRE записати під час заванта-
ження флеш-пам’яті, операцію завантаження флеш-пам’яті буде
перервано, а завантажені дані буде втрачено (буфер сторінки буде
очищено, коли розділ читання під час запису знову ввімкнено).

Біт 3 – BLBSET: встановити біт блокування завантаження
Якщо в цей біт записати одиницю одночасно з SPMEN, наступна

інструкція SPM протягом чотирьох тактових циклів встановлює
біти блокування завантаження відповідно до даних у R0. Дані в R1
і адреса у вказівнику Z ігноруються. Біт BLBSET буде автоматично
очищено після завершення встановлення біта блокування або якщо
жодна інструкція SPM не буде виконана протягом чотирьох тактів.
Інструкція LPM протягом трьох циклів після встановлення BLBSET
і SPMEN у регістрі SPMCR зчитує біти блокування або фьюз-біти
(залежно від значення Z0 у вказівнику Z) у регістр призначення.

Біт 2 – PGWRT: запис сторінки
Якщо в цей біт записати одиницю одночасно з SPMEN, наступна

інструкція SPM протягом чотирьох тактів виконує запис сто-
рінки із збереженням даних у тимчасовому буфері. Адреса сто-
рінки береться з верхньої частини вказівника Z. Дані в R1 і R0

2439	 Програмування мікроконтролерів сімейства AVR

ігноруються. Біт PGWRT автоматично очищається після завер-
шення запису сторінки або якщо жодна інструкція SPM не вико-
нується протягом чотирьох тактів. ЦП зупиняється протягом усієї
операції запису сторінки, якщо адресовано розділ NRWW.

Біт 1 – PGERS: стирання сторінки
Якщо в цей біт записати одиницю одночасно з SPMEN, наступна

інструкція SPM протягом чотирьох тактових циклів виконує сти-
рання сторінки. Адреса сторінки береться з верхньої частини вка-
зівника Z. Дані в R1 і R0 ігноруються. Біт PGERS автоматично
очищається після завершення стирання сторінки або якщо жодна
інструкція SPM не виконується протягом чотирьох тактів. ЦП зупи-
няється протягом усієї операції запису сторінки, якщо адресовано
розділ NRWW.

Біт 0 – SPMEN: увімкнення пам’яті для збереження програм
Цей біт дозволяє інструкцію SPM протягом наступних чоти-

рьох тактів. Якщо записати одиницю в цей біт разом із RWWSRE,
BLBSET, PGWRT або PGERS, наступна інструкція SPM матиме
особливе значення, див. опис вище. Якщо записати лише SPMEN,
наступна інструкція SPM зберігатиме значення в R1:R0 у тимчасо-
вому буфері сторінок, адресованому вказівником Z. LSB вказівника
Z ігнорується. Біт SPMEN автоматично очищається після завер-
шення інструкції SPM або якщо жодна інструкція SPM не викону-
ється протягом чотирьох тактів. Під час стирання сторінки та запису
сторінки біт SPMEN залишається високим до завершення операції.

Запис будь-якої іншої комбінації, крім «10001», «01001»,
«00101», «00011» або «00001», у молодші п’ять бітів цього регістру
не матиме ефекту.

Адресація флеш під час самопрограмування. Вказівник Z
використовується для адресації команд SPM.

Оскільки флеш організований у сторінки, програмний лічиль-
ник можна вважати двома різними розділами. Один розділ,
що складається з молодших бітів, адресує слова на сторінці, тоді
як старші біти адресують сторінки. Це показано на рисунку 9.9.
Зверніть увагу, що операції стирання сторінки та запису сторінки
адресуються незалежно. Тому дуже важливо, щоб програмне забез-
печення завантажувача зверталося до однієї сторінки як під час

244 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

операції стирання сторінки, так і під час її запису. Після початку
операції програмування адреса фіксується, і вказівник Z можна
використовувати для інших операцій. Єдиною операцією SPM,
яка не використовує вказівник Z, є встановлення бітів блокування
завантажувача. Вміст вказівника Z ігнорується та не матиме жод-
ного впливу на роботу. Інструкція LPM також використовує вказів-
ник Z для збереження адреси. Оскільки ця інструкція звертається
до флеш-пам’яті побайтно, також використовується LSB (біт Z0)
Z-вказівника.

Рисунок 9.8 – Адресація флеш під час самопрограмування

Рисунок 9.9 – Адресування флеш

2459	 Програмування мікроконтролерів сімейства AVR

Самопрограмування флеш-пам’яті. Пам’ять програми онов-
люється посторінково. Перед програмуванням сторінки даними,
що зберігаються у тимчасовому буфері сторінки, її необхідно
стерти. Тимчасовий буфер сторінки заповнюється по одному слову
за допомогою SPM, і він може бути заповнений перед командою
стирання сторінки або між операцією стирання сторінки та запису
сторінки:

Варіант 1, заповнити буфер перед стиранням сторінки:
1.	Заповнити тимчасовий буфер сторінки.
2.	Ввиконати стирання сторінки.
3.	Виконати запис сторінки.
Варіант 2, заповнити буфер після стирання сторінки:
1.	Виконати стирання сторінки.
2.	Заповнити тимчасовий буфер сторінки.
3.	Виконати запис сторінки.
Якщо потрібно змінити лише частину сторінки, решту сто-

рінки потрібно зберегти (наприклад, у тимчасовому буфері
сторінки) перед стиранням, а потім переписати. При викорис-
танні варіанта 1 завантажувач забезпечує ефективну функцію
читання-зміни-запису, яка дозволяє програмному забезпеченню
користувача спочатку прочитати сторінку, внести необхідні
зміни, а потім записати змінені дані. Якщо використовується
варіант 2, неможливо прочитати старі дані під час завантаження,
оскільки сторінку вже стерто. Доступ до буфера тимчасової сто-
рінки можна отримати у довільній послідовності. Важливо, щоб
адреса сторінки, яка використовується як в операції стирання
сторінки, так і в операції запису сторінки, була спрямована на ту
саму сторінку.

Виконання стирання сторінки за допомогою SPM. Щоб вико-
нати стирання сторінки, установіть адресу у вказівнику Z, запишіть
“X0000011” у SPMCR і виконайте SPM протягом чотирьох тактів
після запису SPMCR. Дані в R1 і R0 ігноруються. Адреса сторінки
повинна бути записана в PCPAGE в Z-реєстрі. Під час цієї операції
інші біти в Z-покажчику ігноруватимуться.

1.	Стирання сторінки у розділі RWW: розділ NRWW можна про-
читати під час стирання сторінки.

246 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

2.	Стирання сторінки у розділі NRWW: ЦП зупиняється під час
операції.

Примітка. Якщо в часовій послідовності виникає переривання,
чотиритактний доступ не може бути гарантований.

Щоб забезпечити неподільну роботу, вимкніть переривання
перед записом у SPMCSR.

Заповнення тимчасового буфера (завантаження сторінки).
Щоб написати слово з інструкцією, встановіть адресу в Z-покажчику
та дані в R1:R0, запишіть «00000001» у SPMCR і виконайте SPM
протягом чотирьох тактів після запису SPMCR. Вміст PCWORD
у Z-реєстрі використовується для адресації даних у тимчасовому
буфері сторінки. Тимчасовий буфер автоматично стирається після
операції запису сторінки або запису біта RWWSRE у SPMCR. Він
також стирається після скидання системи. Зверніть увагу, що немож-
ливо записати більше одного разу у кожну адресу без видалення тим-
часового буфера.

Примітка. Якщо EEPROM записати в середині операції заванта-
ження сторінки SPM, усі завантажені дані буде втрачено.

Виконання запису сторінки. Щоб виконати запис сторінки,
установіть адресу у вказівнику Z, запишіть “X0000101” у SPMCR
і виконайте SPM протягом чотирьох тактів після запису SPMCR.
Дані в R1 і R0 ігноруються. Адреса сторінки повинна бути записана
в PCPAGE. Інші біти в Z-покажчику повинні бути записані в нуль
під час цієї операції.

1.	Запис сторінки в розділ RWW: розділ NRWW можна прочи-
тати під час запису сторінки.

2.	Запис сторінки в розділ NRWW: ЦП зупиняється під час
операції.

Використання переривання SPM. Якщо переривання SPM
увімкнено, воно генеруватиме постійне переривання, коли біт
SPMEN у SPMCR очищено. Це означає, що переривання можна
використовувати замість опитування регістру SPMCR у програм-
ному забезпеченні. При використанні переривання SPM вектори
переривань слід перемістити до розділу завантажувача, щоб уник-
нути того, що переривання звертається до розділу RWW, коли його
заблоковано для читання.

2479	 Програмування мікроконтролерів сімейства AVR

Замітки щодо оновлення завантажувача. Необхідно бути
особливо обережним, якщо користувач дозволяє оновлювати
розділ завантажувача, залишаючи незапрограмованим біт 11
блокування завантаження. Випадковий запис до самого заван-
тажувача може пошкодити весь завантажувач, і подальше онов-
лення програмного забезпечення може бути неможливим. Якщо
немає необхідності змінювати саме програмне забезпечення
завантажувача, рекомендується запрограмувати біт 11 блоку-
вання завантажувача, щоб захистити програмне забезпечення
завантажувача від будь-яких внутрішніх змін програмного
забезпечення.

Запобігання читання розділу RWW під час самопрограму-
вання. Під час самопрограмування (або стирання сторінки, або
запису сторінки) розділ RWW завжди блокується для читання.
Саме програмне забезпечення користувача повинно запобігати
зверненню до цього розділу під час операції самопрограмування.
RWWSB у SPMCR буде залишатися встановленим, доки розділ
RWW зайнятий. Під час самопрограмування таблицю векторів
переривань слід перемістити до розділу завантажувача, або пере-
ривання мають бути вимкнені. Перед зверненням до розділу RWW
після завершення програмування програмне забезпечення користу-
вача має очистити RWWSB, записавши біт RWWSRE.

Встановлення бітів блокування завантажувача за допомо-
гою SPM. Щоб установити біти блокування завантажувача, запи-
шіть потрібні дані в R0, запишіть “X0001001” у SPMCR і виконайте
SPM протягом чотирьох тактів після запису SPMCR. Єдиними
доступними бітами блокування є біти блокування завантажувача,
які можуть запобігти будь-якому оновленню програмного забезпе-
чення MCU для розділу програми та завантажувача.

Якщо біти 5..2 у R0 очищено, відповідний біт блокування заван-
таження буде запрограмований, якщо інструкція SPM виконується
протягом чотирьох циклів після встановлення BLBSET і SPMEN
у SPMCR. Вказівник Z не має значення під час цієї операції, але
для майбутньої сумісності рекомендується завантажити 0x0001
у вказівник Z (те саме, що використовується для читання бітів
блокування).

248 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Для майбутньої сумісності також рекомендується встановити
біти 7, 6, 1 і 0 у R0 у «1» під час запису бітів блокування. Під час
програмування бітів блокування всю флеш-пам’ять можна зчиту-
вати протягом всієї операції.

Запис EEPROM запобігає запису в SPMCR. Зверніть увагу,
що операція запису EEPROM блокує все програмування флеш-пам’яті.
Зчитування фьюзів і бітів блокування з програмного забезпечення також
буде заблоковано під час операції запису EEPROM. Рекомендується,
щоб користувач перевірив біт стану (EEWE) у регістрі EECR і переко-
нався, що біт очищено перед записом у регістр SPMCR.

Зчитування фьюзів і бітів блокування з програмного забезпе-
чення. З програмного забезпечення можна зчитувати як фьюзи, так і біти
блокування. Щоб прочитати біти блокування, завантажте у вказівник
Z 0x0001 і встановіть біти BLBSET і SPMEN у SPMCR. Коли інструкція
LPM виконується протягом трьох тактів ЦП після встановлення бітів
BLBSET і SPMEN у SPMCR, значення бітів блокування буде заванта-
жено в регістр призначення. Біти BLBSET і SPMEN автоматично очи-
щаються після завершення читання бітів блокування або якщо жодна
інструкція LPM не виконується протягом трьох циклів ЦП або жодна
інструкція SPM не виконується протягом чотирьох циклів ЦП.

Алгоритм зчитування бітів молодшого байту фьюза подібний
до описаного вище для зчитування бітів блокування. Щоб прочи-
тати біти молодшого байту фьюза, завантажте у вказівник Z 0x0000
і встановіть біти BLBSET і SPMEN у SPMCR. Коли інструкція

Рисунок 9.10 – Встановлення бітів блокування завантажувача

за допомогою SPM

Рисунок 9.11 – Зчитування фьюзів і бітів блокування з програмного

забезпечення

2499	 Програмування мікроконтролерів сімейства AVR

LPM виконується протягом трьох тактів після встановлення бітів
BLBSET і SPMEN у SPMCR, значення бітів молодшого байта
фьюза (FLB) буде завантажено в регістр призначення.

Рисунок 9.12 – Алгоритм зчитування бітів молодшого байта фьюза

Подібним чином, для зчитування бітів старшого байту фьюза,
завантажте 0x0003 у вказівник Z. Коли інструкція LPM виконується
протягом трьох тактів після встановлення бітів BLBSET і SPMEN
у SPMCR, значення бітів старшого байту фьюза (FHB) буде заван-
тажено в регістр призначення.

Рисунок 9.13 – Зчитування бітів старшого байта фьюза

Запрограмовані біти фьюзів та блокування будуть читатися
як нуль. Незапрограмовані біти читатимуться як одиниці.

Запобігання пошкодженню флеш-пам’яті. Під час зниженої
напруги живлення програма у флеш-пам’яті може бути пошкоджена,
оскільки напруга живлення надто низька для належної роботи ЦП
і флеш-пам’яті. Пошкодження програми у флеш-пам’яті може бути
викликано двома ситуаціями, коли напруга надто низька. По-перше, зви-
чайна послідовність запису у флеш вимагає мінімальної напруги для пра-
вильної роботи. По-друге, сам центральний процесор може виконувати
інструкції некоректно, якщо напруга живлення для виконання інструк-
цій занадто низька. Пошкодження флеш-пам’яті можна легко уникнути,
дотримуючись цих рекомендацій щодо дизайну (достатньо однієї):

1.	Якщо в системі немає потреби в оновленні завантажувача,
запрограмуйте біти блокування завантажувача, щоб запобігти
будь-яким оновленням програмного забезпечення завантажувача.

250 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

2.	Тримайте AVR RESET активним (низьким) протягом періодів
недостатньої напруги живлення. Це можна зробити, увімкнувши
внутрішній детектор зниження напруги живлення (BOD), якщо
робоча напруга відповідає рівню виявлення. Якщо ні, можна вико-
ристовувати зовнішню схему захисту. Якщо скидання відбувається
під час операції запису, операція запису буде завершена за умови
достатньої напруги живлення.

3.	Утримуйте ядро AVR у режимі сну протягом періодів низь-
кого VCC. Це запобігатиме спробам центрального процесора деко-
дувати та виконувати інструкції, ефективно захищаючи регістр
SPMCR і, таким чином, флеш-пам’ять від ненавмисних записів.

Час програмування флеш-пам’яті при використанні SPM.
Відкалібрований RC осцилятор використовується для визначення
часу доступу до флеш. У таблиці 9.6 показано типовий час програ-
мування для доступу до флеш-пам’яті із ЦП.

Таблиця 9.6 – Типовий час програмування для доступу
до флеш-пам’яті із ЦП

Операція Мін. час
програмування

Макс. час
програмування

Запис у флеш (стирання сторінки,
запис сторінки, запис бітів блоку-
вання за допомогою SPM)

3,7 мс 4,5 мс

Параметри завантажувача ATmega8:
Конфігурація розміру завантажувача представлена у таблиці 9.7.

Таблиця 9.7 – Конфігурація розміру завантажувача

BO
O

TS
Z1

BO
O

TS
Z0

Ро
зм

ір

за
ва

нт
а-

ж

ув
ач

а

С
то

рі
нк

и

Ро
зд

іл

пр
ог

ра
ми

ко

ри
ст

ув
ач

а

Ро
зд

іл

за
ва

нт
а-

ж

ув
ач

а

К
ін

ец
ь

пр
ог

ра
ми

ко

ри
ст

ув
ач

а

А
др

ес
а

ск
ид

ан
ня

за

ва
нт

аж
у-

ва
ча

 (п
оч

а-
то

к
ро

зд
іл

у
за

ва
нт

аж
у-

ва
ча

)

1 1 128 слів 4 0x000-0xF7F 0xF80-0xFFF 0xF7F 0xBFF
1 0 256 слів 8 0x000-0xEFF 0xF00-0xFFF 0xEFF 0xF00
0 1 512 слів 16 0x000-0xDFF 0xE00-0xFFF 0xDFF 0xE00
0 0 1024 слова 32 0x000-0xBFF 0xC00-0xFFF 0xBFF 0xC00

2519	 Програмування мікроконтролерів сімейства AVR

Границі розділу «читання під час запису» розміщено у таблиці 9.8.

Таблиця 9.8 – Границі розділу «читання під час запису»
Розділ Сторінки Адреси

Розділ читання під час запису (RWW) 96 0x000-0xBFF
Розділ без читання під час запису (NRWW) 32 0xC00-0xFFF

Пояснення різних змінних, які використовуються на рисунку 9.9,
і зіставлення з вказівником Z розміщено у таблиці 9.9.

Таблиця 9.9 – Пояснення змінних

Змінна Біти Відповідне
значення Z Опис

PCMSB 11
Старший біт у програмному лічиль-
нику (Програмний лічильник
є 12-бітним РС [11:0])

PAGEMSB 4

Старший біт, який використовується
для адресації слів на одній сторінці
(32 слова на сторінці, потрібні 5 біт РС
[4:0])

ZPCMSB Z12
Біт у Z-регістрі, який відображається
на PCMSB. Оскільки Z0 не використо-
вується, ZPCMSB дорівнює PCMSB + 1

ZPAGEMSB Z5

Біт у Z-регістрі, який відображається
на PAGEMSB. Оскільки Z0 не вико-
ристовується, ZPAGEMSB дорівнює
PAGEMSB + 1

PCPAGE PC[11:5] Z12:Z6
Адреса сторінки програмного лічиль-
ника: вибір сторінки для стирання
та запису

PCWORD PC[4:0] Z5:Z1

Адреса слова програмного лічильника:
вибір слова для заповнення тимчасо-
вого буфера (має дорівнювати нулю під
час операції запису сторінки)

Біти Z15:Z13: завжди ігноруються
Біт Z0: має дорівнювати нулю для всіх команд SPM, вибирає

байт для інструкції LPM.

252 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

9.3 Біти фьюзів та блокування пам’яті

Біти блокування пам’яті програм та даних. ATmega8 забез-
печує шість бітів блокування, які можна залишити незапрограмо-
ваними («1») або запрограмувати («0») для отримання додаткових
функцій, перелічених у таблиці. Біти блокування можна стерти
до «1» лише за допомогою команди Chip Erase.

Таблиця 9.10 – Біти блокування пам’яті програм та даних

Біт блокування Номер біта Опис Значення
за замовчанням

7 – 1 (незапрограмований)
6 – 1 (незапрограмований)

BLB12 5 Біт блокування
завантажувача 1 (незапрограмований)

BLB11 4 Біт блокування
завантажувача 1 (незапрограмований)

BLB02 3 Біт блокування
завантажувача 1 (незапрограмований)

BLB01 2 Біт блокування
завантажувача 1 (незапрограмований)

LB2 1 Біт блокування 1 (незапрограмований)
LB1 0 Біт блокування 1 (незапрограмований)

Опис бітів LBx наведений у таблиці 9.11.

Таблиця 9.11 – Опис бітів LBx
Режим

LB LB2 LB1 Тип захисту

1 1 1 Функції блокування пам’яті вимкнено

2 1 0
Подальше програмування Flash та EEPROM вимкнено
в режимі паралельного та послідовного програмування.
Біти фьюзів заблоковані як у режимі послідовного, так
і паралельного програмування

3 0 0
Подальше програмування та перевірка флеш-пам’яті
та EEPROM вимкнені в режимі паралельного та послідов-
ного програмування. Біти фьюзів заблоковані як у режимах
послідовного, так і паралельного програмування

2539	 Програмування мікроконтролерів сімейства AVR

Фьюз-біти. ATmega8 має два байти фьюзів. Наступні дві таблиці
(таблиця 9.12 та таблиця 9.13) коротко описують функціональні можли-
вості всіх фьюзів і те, як вони розташовані в байтах фьюзів. Зауважте,
що фьюзи зчитуються як логічний нуль, «0», якщо вони запрограмовані.

Таблиця 9.12 – Функціональні можливості фьюзів
і їх розташовання в старших байтах фьюзів

Старший
байт

фьюзів
Номер

біта Опис Значення
за замовчанням

RSTDISBL 7
Вибирає, чи є PC6 кон-
тактом вводу-виводу
чи входом RESET

1 (незапрограмований,
PC6 є входом RESET)

WDTON 6
Сторожовий тай-
мер (WDT) завжди
ввімкнений

1 (незапрограмований,
WDT вмикається регі-
стром WDTCR)

SPIEN 5
Увімкнене послідовне
завантаження програм
і даних

0 (запрограмований,
програмування через
SPI увімкнене)

CKOPT 4 Опції генератора такто-
вого сигналу 1 (незапрограмований)

EESAVE 3
Пам’ять EEPROM збе-
рігається при виконанні
команди Chip Erase

1 (незапрограмо-
ваний, EEPROM
не зберігається)

BOOTSZ1 2 Вибір розміру
завантажувача 0 (запрограмований)

BOOTSZ0 1 Вибір розміру
завантажувача 0 (запрограмований)

BOOTRST 0 Вибір вектору скиду 1 (незапрограмований)

Таблиця 9.13 – Функціональні можливості фьюзів
і їх розташовання в молодших байтах фьюзів

Молодший
байт фьюзів

Номер
біта

Опис Значення
за замовчанням

1 2 3 4

BODLEVEL 7
Рівень спрацювання
детектора зниженої
напруги живлення

1 (незапрограмований)

254 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

1 2 3 4

BODEN 6
Увімкнення детек-
тора зниженої напруги
живлення

1 (незапрограмований,
BOD вимкнено)

SUT1 5 Вибір час запуску 1 1 (незапрограмований)
SUT0 4 Вибір час запуску 0 0 (запрограмований)

CKSEL3 3 Вибір джерела тактового
сигналу 3 0 (запрограмований)

CKSEL2 2 Вибір джерела тактового
сигналу 2 0 (запрограмований)

CKSEL1 1 Вибір джерела тактового
сигналу 1 0 (запрограмований)

CKSEL0 0 Вибір джерела тактового
сигналу 0 1 (незапрограмований)

Команда Chip Erase не впливає на стан бітів фьюзів. Зауважте,
що ці біти заблоковані, якщо запрограмовано біт блокування 1 (LB1).
Запрограмуйте фьюз-біти перед програмуванням бітів блокування.

Фіксування фьюзів. Значення фьюзів фіксуються, коли при-
стрій переходить у режим програмування, і зміни значень фьюзів
не матимуть ефекту, доки мікроконтролер не вийде з режиму про-
грамування. Це не стосується фьюза EESAVE, який починає діяти
одразу після програмування. Фьюзи також фіксуються під час
увімкнення живлення в нормальному режимі.

9.4 Програмування пам’яті за допомогою
послідовного інтерфейсу

Як флеш-пам’ять, так і пам’ять EEPROM можна програмувати
за допомогою послідовної шини SPI, коли вивід RESET підтягу-
ється до GND. Послідовний інтерфейс складається з контактів
SCK, MOSI (вхід) і MISO (вихід). Після того, як на RESET вста-
новлено низький рівень, спочатку потрібно виконати інструкцію
Programming Enable, перш ніж можна буде виконувати операції
програмування / стирання.

Продовження таблиці 9.13

2559	 Програмування мікроконтролерів сімейства AVR

У таблиці 9.14 та на рисунку 9.14 наведено виводи для програ-
мування через SPI.

Таблиця 9.14 – Виводи для програмування через SPI
Назва Вивід Вхід/вихід Опис
MOSI PB3 Вхід Вхід послідовних даних
MISO PB4 Вихід Вихід послідовних даних
SCK PB5 Вхід Тактовий сигнал

Якщо пристрій тактується внутрішнім генератором, немає необ-
хідності підключати джерело тактового сигналу до контакту XTAL1.

Під час програмування EEPROM цикл автоматичного стирання
вбудовано в операцію автоматичного програмування (ТІЛЬКИ
в послідовному режимі), і немає необхідності спочатку виконувати
інструкцію Chip Erase. Операція Chip Erase перетворює вміст кож-
ної комірки пам’яті як флеш, так і EEPROM, на 0xFF.

Залежно від значення фьюзів CKSEL, має бути присутнім пра-
вильний тактовий сигнал. Мінімальний низький і високий періоди
для входу Serial Clock (SCK) визначаються таким чином:

Рисунок 9.14 – Виводи для програмування через SPI

256 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Низький:> 2 такти ЦП для fck <12 МГц, 3 такти ЦП для fck >=12 МГц
Високий:> 2 такти ЦП для fck <12 МГц, 3 такти ЦП для fck >=12 МГц
Алгоритм послідовного програмування. Під час запису послі-

довних даних до ATmega8 дані синхронізуються з наростаючим
фронтом SCK. Під час зчитування даних з ATmega8 дані синхроні-
зуються зі спадаючим фронтом SCK (див. рис. 9.15).

Рисунок 9.15 – Синхронізування даних зі спадаючим фронтом SCK

Для програмування та перевірки ATmega8 у режимі послідов-
ного програмування рекомендується наступна послідовність:

1.  Послідовність увімкнення: Подайте живлення між VCC
і GND, поки на виводи RESET і SCK подається «0». У деяких
системах програматор не може гарантувати, що SCK утримується
на низькому рівні під час увімкнення. У цьому випадку на вивід
RESET потрібно подати позитивний імпульс тривалістю принаймні
два тактових цикли ЦП після того, як SCK було встановлено у «0».

2.  Зачекайте принаймні 20 мс і ввімкніть послідовне програму-
вання, надіславши інструкцію Programming Enable на вивід MOSI.

3.  Інструкції послідовного програмування не працюватимуть,
якщо зв’язок не синхронізований. Після синхронізації другий
байт (0x53) відобразиться під час видачі третього байту інструк-
ції “Programming Enable”. Незалежно від того, правильний зворот-
ній байт чи ні, всі чотири байти інструкції повинні бути передані.
Якщо 0x53 не повертається назад, подайте на вивід RESET пози-
тивний імпульс і видайте нову команду Programming Enable.

2579	 Програмування мікроконтролерів сімейства AVR

4.  Флеш-пам’ять програмується по одній сторінці. Сторінка
пам’яті завантажується по байтам за допомогою надання 5 молод-
ших бітів адреси та даних разом із інструкцією Load Program
memory Page. Щоб забезпечити правильне завантаження сторінки,
молодший байт даних має бути завантажений перед тим, як стар-
ший байт даних буде передано до даної адреси. Сторінка пам’яті
програми зберігається шляхом завантаження інструкції Write
Program memory Page з 7 старшими бітами адреси. Якщо опиту-
вання пам’яті не використовується, користувач повинен зачекати
принаймні 4.5 мс перед тим, як видати наступну сторінку.

Примітка. Якщо до завершення будь-якої операції запису
(FLASH, EEPROM, біти блокування, фьюзи) застосовуються інші
команди, крім опитування (читання), це може призвести до непра-
вильного програмування.

5.  Масив EEPROM програмується по одному байту шляхом
надання адреси та даних разом із відповідною інструкцією Write.
Комірка пам’яті EEPROM спочатку автоматично стирається перед
записом нових даних. Якщо опитування пам’яті не використовує-
ться, користувач повинен зачекати принаймні 9 мс перед видачею
наступного байту.

6.  Будь-яку комірку пам’яті можна перевірити за допомогою
інструкції Read, яка повертає вміст за вибраною адресою на послі-
довний вихід MISO.

7.  Наприкінці сеансу програмування вивід RESET можна вста-
новити у високий рівень, щоб розпочати нормальну роботу.

8.  Послідовність вимкнення живлення (за потреби):
Встановіть RESET у «1».
Вимкніть живлення VCC.
Опитування флеш пам’яті. Коли сторінка програмується

у флеш-пам’ять, читання будь-якої комірки з адреси на сторінці,
що програмується, дасть значення 0xFF. Коли пристрій буде гото-
вий до нової сторінки, запрограмоване значення читатиметься пра-
вильно. Це використовується, щоб визначити, коли можна запи-
сати наступну сторінку. Зауважте, що вся сторінка записується
одночасно, і для опитування можна використовувати будь-яку
адресу на сторінці. Опитування флеш-пам’яті не працюватиме для

258 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

значення 0xFF, тому під час програмування цього значення корис-
тувачеві доведеться чекати принаймні 4,5 мс перед програмуван-
ням наступної сторінки. Оскільки пристрій зі стертими мікросхе-
мами містить 0xFF у всіх комірках, програмування адрес, які мають
містити 0xFF, можна пропустити.

Опитування пам’яті EEPROM. Коли новий байт був записа-
ний і запрограмований в EEPROM, зчитування запрограмованої
адреси дасть значення 0xFF. Коли пристрій буде готовий до нового
байту, запрограмоване значення буде читатися правильно. Це вико-
ристовується для визначення того, коли можна записати наступний
байт. Це не працюватиме для значення 0xFF, але користувачеві
слід пам’ятати наступне: оскільки пристрій із стертою пам’яттю
містить 0xFF у всіх комірках, програмування адрес, які мають
містити 0xFF, можна пропустити. Це не стосується випадку, коли
EEPROM було перепрограмовано без стирання мікросхеми при-
строю. У цьому випадку опитування даних не можна використо-
вувати для значення 0xFF, і користувачеві доведеться чекати при-
наймні 9 мс перед програмуванням наступного байту.

Контрольні запитання до теми 9
1.	 Як організована пам’ять EEPROM у мікроконтролері ATmega8?
2.	 Яка є витривалість пам’яті EEPROM і чому це важливо для її ефектив-

ного використання?
3.	 Які регістри використовуються для доступу до пам’яті EEPROM,

і яким чином вони конфігуруються?
4.	 Яким чином здійснюється запис в пам’ять EEPROM у мікроконтро-

лері ATmega8? Покажіть приклад коду.
5.	 Як здійснюється читання з пам’яті EEPROM, і чому важливо переві-

ряти статус готовності перед операцією читання?
6.	 Які є основні процедури та умови для запобігання пошкодження

даних у EEPROM в ATmega8?
7.	 Як впливає знижена напруга живлення на операції запису та читання

в EEPROM, і які заходи слід прийняти для її захисту?
8.	 Які переваги надає функція самопрограмування пам’яті мікроконтролера?
9.	 Як завантажувач дозволяє гнучке оновлення прикладного програм-

ного забезпечення?

2599	 Програмування мікроконтролерів сімейства AVR

10.	 Яким чином можна налаштувати розмір завантажувальної пам’яті
за допомогою фьюз-бітів?

11.	 Які є рівні захисту завантажувача і як вони встановлюються?
12.	 Що таке розділ «читання під час запису» і «без читання під час запису»

у флеш-пам’яті? Яка в них основна відмінність?
13.	 Як вибирається розділ, до якого звертається вказівник Z під час

програмування?
14.	 Які можливості мають біти блокування завантажувача і як вони вико-

ристовуються для захисту пам’яті?
15.	 Як відбувається вхід до програми завантажувача і які можливості

надає фьюз BOOTRST?
16.	 Які функції виконують біти блокування пам’яті програм та даних

у мікроконтролері ATmega8?
17.	 Які є можливості і обмеження щодо стирання та програмування бітів

блокування пам’яті в ATmega8?
18.	 Як впливає біт LB1 на можливості програмування фьюзів у мікро-

контролері ATmega8?
19.	 Які функції виконують старший і молодший байти фьюзів в ATmega8?
20.	 Які механізми фіксації фьюзів існують у мікроконтролері ATmega8

і як вони впливають на налаштування пристрою?
21.	 Які основні кроки для підготовки до програмування пам’яті через SPI

у мікроконтролері ATmega8?
22.	 Як функціонує цикл автоматичного стирання EEPROM під час послі-

довного програмування в ATmega8?
23.	 Як впливає налаштування фьюзів CKSEL на процес програмування

через SPI в ATmega8?
24.	 Яким чином синхронізуються дані під час запису та зчитування через

послідовний інтерфейс у мікроконтролері ATmega8?
25.	 Які особливості програмування флеш-пам’яті та EEPROM у режимі

послідовного програмування потрібно враховувати для забезпечення
коректності операцій?

Використана література
1.	 Atmel: ATMega8, ATmega8L : технічна документація на мікроконтро-

лер. URL: https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-
2486-8-bit-AVR-microcontroller-ATmega8_L_datasheet.pdf

https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-2486-8-bit-AVR-microcontroller-ATmega8_L_datasheet.pdf

10__
ПРАКТИЧНА РОБОТА № 1

«СИМУЛЯЦІЯ СХЕМ
З МІКРОКОНТРОЛЕРАМИ

З ВИКОРИСТАННЯМ ПРОГРАМИ
SIMULIDE»

Перелік питань до розділу:
10.1. Завдання.
10.2. Теоретичні дані.

10.2.1. Призначення програми SimulIDE.
10.2.2. Встановлення необхідних програм та засобів.
10.2.3. Подання на екрані та основні елементи керування.
10.2.4. Основні прийоми створення та коригування схеми.
10.2.5. Написання програмного коду.
10.2.6. Компіляція файлу прошивки та запуск симуляції.

10.3. Завдання до практичної роботи.

10.1 Завдання
Завдання практичної роботи:
‒	 встановлення програми SimulIDE та компілятора AVR GCC

на комп’ютер;
‒	 ознайомлення з інтерфейсом програми SimulIDE;
‒	 створення електричної схеми у програмі SimulIDE та запуск

її симуляції;
‒	 написання програми для мікроконтролеру у програмі SimulIDE

та створення файлу прошивки мікроконтролера.
Посилання на сторінку завантаження програми SimulIDE
https://www.simulide.com/p/downloads.html

26110	 Практична робота № 1 «Симуляція схем з мікроконтролерами з використанням програми SimulIDE»

Посилання на сторінку завантаження компілятора AVR GCC
https://www.microchip.com/en-us/tools-resources/develop/

microchip-studio/gcc-compilers

10.2 Теоретичні дані

10.2.1 Призначення програми SimulIDE

Програма SimulIDE, так само, як і розглянута у минулому
семестрі LTspice, дозволяє креслити на екрані комп’ютера принци-
пові електричні схеми електричних пристроїв та виконувати іміта-
цію чи симуляцію роботи всієї схеми. Набір інструментів дозволяє
контролювати роботу схеми та графіки зміни сигналів.

На відміну від LTSpice, SimulIDE виконує симуляцію у реаль-
ному часі, дозволяючи впливати на схему (натиснути кнопку,
змінити опір змінного резистора, ввімкнути-вимкнути напругу
та інше) і одразу бачити результат цього впливу.

SimulIDE базується на спрощених моделях електронних ком-
понентів, то ж її не можна використовувати для серйозних дослі-
джень, але для того, щоб мати уявлення про роботу тієї чи іншої
схеми, вона підходить дуже добре.

Головною відмінністю SimulIDE від LTSpice, через яку
ми і будемо її використовувати в цьому семестрі, є можливість
симулювати роботу мікроконтролерів, завантажуючи в них файл
прошивки, який можна зробити прямо в цій програмі, що є дуже
зручним.

Головним конкурентом програми SimulIDE є Proteus, який вже
став де-факто стандартом, якщо йде мова про симуляцію схем
на базі мікроконтролерів. Але Proteus є платною програмою,
що в максимальному варіанті коштує декілька тисяч доларів, в той
час як SimulIDE є безкоштовною і з відкритим кодом.

Звичайно, можливості SimulIDE поступаються можли-
востям Proteus, але для навчальних цілей першої більш ніж
достатньо.

https://www.microchip.com/en-us/tools-resources/develop/microchip-studio/gcc-compilers

262 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

10.2.2  Встановлення необхідних програм та засобів

SimulIDE – це вільно-розповсюджувана програма, яку можна
безкоштовно завантажити з офіційного сайту її однойменного роз-
робника за посиланням https://www.simulide.com/p/downloads.html.
На сторінці загрузки ви можете обрати варіант дистрибутиву для
саме вашої операційної системи (рис. 10.1).

Після вибору версії (для прикладу була обрана версія для
Windows 64), відкривається наступне вікно (рис. 10.2).

Рисунок 10.1 – Завантаження SimulIDE

Рисунок 10.2 – Придбання SimulIDE

26310	 Практична робота № 1 «Симуляція схем з мікроконтролерами з використанням програми SimulIDE»

Як вже було сказано раніше, програма SimulIDE є безкоштов-
ною, то ж у полі «Назвіть справедливу ціну» ви можете вказати
0 і натиснути на кнопку «Я хочу це!». Звичайно, ви можете вка-
зати і більшу суму, якщо хочете задонатити авторам програми, але
це не обов’язково.

У наступному вікні (рис. 10.3) треба ввести вашу електронну
адресу і натиснути на кнопку «Получить».

Рисунок 10.3 – Отримання SimulIDE

Після цього почнеться завантаження архіву з програ-
мою, який на момент написання цього керівництва має назву
“SimulIDE_1.0.0-SR1_Win64.zip” і розмір близько 18 МБ.

Програма не потребує встановлення. Треба лише розпаку-
вати отриманий архів у будь-яку теку, і програмою вже можна
користуватися.

Для запуску програми треба зайти у теку “SimulIDE_1.0.0-SR1_
Win64» та запустити файл “simulide.exe”. Після чого відкриється
вікно, показане на рис. 10.4.

Більш детально ми розглянемо цю програму у наступному розділі,
а поки нам ще потрібно встановити компілятор AVR GCC, призначе-
ний для створення файлів прошивки для мікроконтролерів AVR.

Краще за все завантажити компілятор з офіцій-
ного сайту виробника цих мікроконтролерів – компанії
Microchip – за наступним посиланням: https://www.microchip.
com/en-us/tools-resources/develop/microchip-studio/gcc-compilers.
На цій сторінці треба доскролити до кінця, та завантажити файл,
що відповідає вашій операційній системі (рис. 10.5).

264 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Будьте уважні, на цій сторінці є також посилання на заванта-
ження компілятора для 32-бітних мікроконтролерів ARM, який
нам не потрібний. То ж обирайте один з компіляторів “AVR 8-bit
Toolchain” і натискайте на кнопку “Download” у правому стовпчику
таблиці.

Рисунок 10.4 – Інтерфейс програми SimulIDE

Рисунок 10.5 – Завантаження компілятора AVR GCC

26510	 Практична робота № 1 «Симуляція схем з мікроконтролерами з використанням програми SimulIDE»

Після цього завантажиться архів, який на момент написання
цього керівництва має для Windows назву “avr8-gnu-toolchain-
3.7.0.1796-win32.any.x86_64.zip” і розмір приблизно 51 МБ. Його
також треба розархівувати у будь-яку теку, і поки що залишити,
ми повернемося до нього пізніше.

10.2.3 Подання на екрані та основні елементи керування

Інтерфейс програми SimulIDE більш простий та інтуїтивно-зро-
зумілий порівняно з деякими іншими програмами (рис. 10.6).
У ньому є такі основні елементи.

Рисунок 10.6 – Інтерфейс програми SimulIDE

1 – Вибір лівої панелі (2). Тут є два варіанти:
Components – у лівій панелі (2) показуються всі компоненти,

що підтримуються програмою на даний момент;
File Explorer – у лівій панелі (2) замість компонентів показується

поточний каталог та файлова система комп’ютера, так що прямо
звідти можна відкрити файл схеми або програми;

266 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

2 – Ліва панель. Як вже було зазначено, в ній може відо-
бражатися або список компонентів, або файловий менеджер.
Компонентів у SimulIDE досить багато, і деякі з них є доволі
просунутими (наприклад, датчики, дисплеї, тощо), що дозволяє
симулювати відносно складні пристрої. Зараз ми не будемо роз-
глядати тут всі існуючі компоненти, лише коротенько пройдемося
по підзаголовках:

Meters – вимірювальні прилади: вольтметр, амперметр, частото-
мер, осцилоскоп та логічний аналізатор;

Sources – джерела живлення (як напруги, так і струму);
Switches – кнопки, вимикачі, реле, клавіатури;
Passive – пасивні компоненти: резистори, конденсатори, котушки

індуктивності тощо;
Active – активні компоненти: діоди, транзистори, тиристори,

операційні підсилювачі та інше;
Outputs – різні компоненти, якими можна керувати: світло-

діоди, світлодіодні індикатори та матриці, дисплеї, двигуни,
динамік;

Micro – це власне мікроконтролери та додаткові компоненти
та плати. SimulIDE підтримує декілька видів мікроконтроле-
рів: AVR (які ми і будемо використовувати в цьому курсі), PIC,
I51 та Arduino. Останній, до речі, не є окремим типом мікроконтро-
лера, бо базується на базі AVR, але має власну мову програмування
та власні бібліотеки, то ж його винесено окремо;

Logic – різноманітні логічні компоненти, тригери, лічильники,
регістри, АЦП, ЦАП та інше;

Connectors – роз’єми різних типів;
Graphical – графічні примітиви, які також можна додати до схеми;
Other – компоненти, що не підійшли до жодної з перелічених

категорій.
3 – Панель керування принциповою електричною схемою,

на якій знаходяться наступні кнопки (табл. 10.1).
4 – Панель керування програмним кодом, на якій знаходяться

наступні кнопки (табл. 10.2).
5 – Робоче поле для створення принципової електричної схеми

пристрою.

26710	 Практична робота № 1 «Симуляція схем з мікроконтролерами з використанням програми SimulIDE»

6 – Поле для написання програмного коду.
7 – Вікно інформації про стан роботи симулятора.
8 – Вікно інформації про процес компіляції та про знайдені

у тексті програми помилки.

Таблиця 10.1 – Кнопки панелі керування принциповою
електричною схемою програми SimulIDE

Кнопка ПризначенняКнопка

Налаштування симуляції

Кнопка

Список останніх відкритих файлів схем

Кнопка

Створити нову схему

Кнопка

Відкрити існуючу схему

Кнопка

Зберегти поточну схему з поточним ім’ям

Кнопка

Зберегти поточну схему з новим ім’ям

Кнопка

Запустити або зупинити симуляцію схеми

Кнопка

Призупинити або знову запустити симуляцію

Таблиця 10.2 – Кнопки панелі керування програмним кодом
програми SimulIDE

Кнопка Призначення
1 2

Кнопка

Інформація про SimulIDE

Кнопка

Налаштування редактора коду або компілятора

Кнопка

Список останніх відкритих файлів програм

Кнопка

Створити новий файл програми

Кнопка

Відкрити існуючу програму

Кнопка

Зберегти поточну програму з поточним ім’ям

268 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

1 2

Кнопка

Зберегти поточну програму з новим ім’ям

Кнопка

Знайти або замінити текст у програмі

Кнопка

Створити файл прошивки

Кнопка

Завантажити файл прошивки у мікроконтролер

Кнопка

Запустити налагодження програми

10.2.4 Основні прийоми створення та коригування схеми

Процес створення схеми у SimulIDE максимально інтуїтивно
зрозумілий. Для того, щоб додати якийсь компонент на робоче
поле (5), треба його знайти у бібліотеці компонентів (2) та перетяг-
нути лівою кнопкою миші.

Створимо просту схему, в яку буде входити мікроконтролер,
світлодіод та резистор, що обмежує струм через цей світлодіод.

Щоб додати до схеми мікроконтролер, треба знайти підзаголовок
“Micro”, всередині нього розгорнути підзаголовок “AVR”, натис-
нувши на трикутник зліва від назви. Всередині ми побачимо ще два
підзаголовка: “attiny” та “atmega”, які відповідають мікроконтроле-
рам сімейств ATTiny та ATMega. Перше сімейство включає в себе
більш прості мікроконтролери з невеликим об’ємом пам’яті (0,5–32
кБ), невеликою кількістю виводів (8–32) та скороченим набором
периферійних модулів, в той час, як друге сімейство є більш про-
сунутим, має більше пам’яті (4–256 кБ), більше виводів (28–100),
та більшу кількість периферійних модулів.

Розгорнемо підзаголовок “atmega”, оберемо мікроконтролер
“mega8” та за допомогою миші перетягнемо його на робоче поле
(рис. 10.7).

Решту виводів, що мають чорний колір, можна довільно підклю-
чати до будь-яких компонентів (або навіть з’єднувати їх з іншими
виводами того ж самого компоненту).

Тепер таким самим чином розкриємо підзаголовок “Passive” –
“Resistors” та витягнемо до схеми компонент “Resistor” (рис. 10.8).

Продовження таблиці 10.2

26910	 Практична робота № 1 «Симуляція схем з мікроконтролерами з використанням програми SimulIDE»

Рисунок 10.7 – Додавання мікроконтролера ATMega8 до схеми

Рисунок 10.8 – Додавання резистора до схеми

270 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Аналогічно, розкриємо підзаголовок “Outputs” – “LEDs”,
та витягнемо до схеми компонент “LED” (рис. 10.9).

Рисунок 10.9 – Додавання світлодіоду до схеми

Нарешті, до схеми треба додати землю, як і в усіх інших подіб-
них програмах, щоб симулятор знав, де точка з нульовим потен-
ціалом. Для цього розгорнемо підзаголовок “Sources” та витягнемо
компонент “Ground (0V)» (рис. 10.10).

Нарешті, всі необхідні компоненти знаходяться на місці, тепер
необхідно їх з’єднати між собою.

Для того, щоб це зробити, треба натиснути лівою кнопкою
миші на виводі, який ми хочемо під’єднати, після чого кно-
пку можна відпустити, і помітити, що тепер за курсором миші
тягнеться чорний провід. Треба підвести його до того виводу,
до якого ми хочемо підключитися, і знову натиснути на ньому
лівою кнопкою миші. Тепер два виводи з’єднані між собою.
Аналогічним чином з’єднуються всі інші компоненти. В резуль-
таті маємо наступну схему (рис. 10.11).

Тепер розглянемо, що саме ми зробили, і як воно має працювати.

27110	 Практична робота № 1 «Симуляція схем з мікроконтролерами з використанням програми SimulIDE»

Мікроконтролер спілкується з навколишнім світом через порти
вводу-виводу. У мікроконтролерів AVR такі порти є восьмибіт-
ними, тобто кожний порт може мати не більше восьми виводів.
Всі порти позначаються великою латинською літерою від А і далі
по алфавіту. Деякі літери можуть бути відсутні.

У мікроконтролера ATMega8 23 лінії вводу-виводу: 8 ліній порту
В (В0-В7), 7 ліній порту С (С0-С6) та 8 ліній порту D (D0-D7), див.
рис. 10.11.

Рисунок 10.10 – Додавання землі до схеми

Рисунок 10.11 – З’єднана схема

272 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

У мікроконтролерів AVR всі виводи є рівнозначними, це озна-
чає, що будь який вивід може бути сконфігурованим або як вхід
(тобто приймати вхідний сигнал від інших приладів), або як вихід
(тобто подавати на цей вивід або високий логічний рівень, або
низький).

В нашій схемі (рис. 10.11) ми підключили світлодіод до виводу С5,
але таким самим чином ми могли б використати будь-який вивід.
Далі ми напишемо програму, яка буде періодично переклю-
чати стан виводу С5, подаючи та прибираючи напругу на ньому.
В момент подачі на вивід С5 високого рівня світлодіод ввімкнеться,
а в момент подачі низького рівня напруги він вимкнеться. Таким
чином ми реалізуємо блимання світлодіодом із заданою частотою.

Перед тим, як переходити до написання програми, треба встано-
вити правильні параметри для всіх компонентів.

Для того, щоб налаштувати параметри компонента, треба двічі
клацнути на ньому лівою кнопкою миші.

Вікно налаштувань мікроконтролера виглядає наступним чином
(рис. 10.12).

Як можна бачити, самих налаштувань не так багато.
−	Якщо натиснути на кнопку “Help”, то праворуч відкриється

детальна інформація про даний компонент.
−	Поле “Label” дозволяє задати ім’я компонента на схемі. Можна

його залишити без змін.

Рисунок 10.12 – Вікно налаштувань мікроконтролера

27310	 Практична робота № 1 «Симуляція схем з мікроконтролерами з використанням програми SimulIDE»

−	Власне налаштування розбиті на дві вкладки: “Main” та
“Config”. На вкладці “Main” розташовані такі параметри:

○	“Frequency” – робоча частота мікроконтролера. За замовчан-
ням вона встановлена, як 16 МГц, але ми зменшимо її до 1 МГц.
Для чого це потрібно, буде пояснено пізніше.

○	“Firmware” – файл прошивки мікроконтролера. Можна його
прописати прямо тут, а можна вибрати у спеціальному пункті меню,
про який також буде сказано пізніше.

○	“Reload hex at simulation start” – досить корисна опція, що доз-
воляє автоматично завантажувати прошивку мікроконтролера перед
стартом симуляції. Таким чином ми будемо впевнені, що симуляція
відбувається з найновішою версією прошивки. За замовчанням,
ця опція відключена, то ж її рекомендується включити.

−	На вкладці “Config” (рис. 10.13) розташовані наступні
налаштування:

○	“Enable Reset Pin” – ввімкнути вхід скиду.
○	“External Oscillator” – ввімкнути зовнішнє джерело тактових

імпульсів для мікроконтролера.
○	“Enable Watchdog” – ввімкнути вбудований сторожовий тай-

мер мікроконтролера.
Всі налаштування з вкладки “Config” треба залишити вимкне-

ними. Поки що ми не будемо зупинятися на них, а розглянемо пізніше
у подальших лекціях та практичних роботах. Єдине, що тут треба

Рисунок 10.13 – Вікно налаштувань мікроконтролера

274 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

зазначити, що деякі мікроконтролери мають окремий вивід скиду, який
не можна відключити. В такому разі його треба під’єднати до джерела
з напругою +5 В інакше симуляція не зможе запуститися через помилку.

Вікно налаштувань світлодіоду виглядає наступним чином
(рис. 10.14).

Рисунок 10.14 – Налаштування світлодіоду

Структура вікна налаштувань така ж сама, як і для
мікроконтролера.

На вкладці “Main” розташовані такі опції:
“Color” – колір світлодіоду. Можна обрати один з шести запро-

понованих варіантів. За замовчанням стоїть жовтий колір.
“Grounded” – якщо встановити цю опцію, то катод світлодіоду

автоматично буде під’єднано до землі, тобто до нульового потен-
ціалу. Таким чином можна не використовувати окремий елемент
“Ground”, до якого підключено катод, як це зробили ми.

На вкладці “Electric” розташовані такі опції (рис. 10.15):
−	“Forward Voltage” – падіння напруги на світлодіоді у відкри-

тому стані.
−	“Max Current” – максимальний струм через світлодіод.
−	“Resistance” – опір світлодіоду у відкритому стані.
Ці налаштування можна не змінювати, але їх треба запам’я-

тати, адже вони нам знадобляться для розрахунку опору резистору,
що обмежує струм через світлодіод.

Нарешті, налаштування резистора представлені на рис. 10.16.

27510	 Практична робота № 1 «Симуляція схем з мікроконтролерами з використанням програми SimulIDE»

Як бачимо, у нього є лише один параметр “Resistance”, який
задає опір резистора.

Давайте порахуємо цей опір базуючись на знаннях параметрів
світлодіоду (рис. 10.15).

Мікроконтролер видає на своїх виводах близько 5 В, що відпові-
дає логічній одиниці. Падіння напруги на світлодіоді складає 2.4 В
(рис. 10.15). То ж на резистор припадає напруга 5 – 2.4 = 2.6 В.

Струм через світлодіод (він же і струм через резистор)
складає 0.03 А, тому величина опору ланцюга повинна бути
2.6 / 0.03 = 86.6 Ом. Оскільки сам світлодіод має опір 0.6 Ом

Рисунок 10.15 – Налаштування світлодіоду

Рисунок 10.16 – Налаштування резистора

276 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

(рис. 10.15), то опір резистора повинен бути 86.6 – 0.6 = 86 Ом,
що ми й встановили на рис. 10.16.

Тепер всі параметри задані, можна зберегти схему і переходити
до написання програми.

10.2.5 Написання програмного коду

Щоб почати писати програму, треба у панелі задач (4 на рис. 10.6)
натиснути на кнопку , а потім у полі 6 (рис. 10.6) написати
наступний код (рис. 10.17).

Рисунок 10.17 – Програмний код для блимання світлодіодом

з частотою 1 Гц

Перед тим, як розглянути сам код, нагадаємо, що керування
всіма модулями мікроконтролера відбувається за допомогою спе-
ціальних комірок пам’яті, які називаються регістрами спеціального
призначення. Кожен з цих регістрів має власне ім’я і розташований
у закріпленій за ним адресі.

Порти вводу-виводу також конфігуруються за допомогою регі-
стрів, яких у мікроконтролерах AVR є три типи:

−	DDRx – регістр напрямку передачі даних. Замість літери
“х” підставляється назва порту. Як вже було зазначено, порти

27710	 Практична робота № 1 «Симуляція схем з мікроконтролерами з використанням програми SimulIDE»

називаються великими латинськими літерами. То ж, наприклад, для
мікроконтролера ATMega8, у якого є порти В, С та D, є, відповідно,
три регістри DDR: DDRB, DDRC та DDRD.

Кожен з регістрів є 8-бітним (бо AVR є 8-бітною архітектурою).
І кожен біт регістру конфігурує відповідний вивід мікроконтролеру.
Наприклад, біт № 0 регістру DDRB відповідає за вивід В0, біт № 1
цього ж регістру відповідає за вивід В1 і т.д.

То ж, якщо якийсь біт регістру DDR дорівнює 0, то відповідний
йому вивід працює як вхід, тобто на нього можна подавати сигнали
з якихось зовнішніх пристроїв, а мікроконтролер буде їх зчитувати
і якимось чином обробляти.

А якщо якийсь біт регістру DDR дорівнює 1, то відповідний
вивід працює як вихід, тобто контролер сам встановлює логічний
рівень, який буде на цьому виводі, що дозволяє передавати сигнал
на якісь зовнішні пристрої.

−	PORTx – має два значення, але ми в цій роботі поки що позна-
йомимося лише з одним з них. Замість літери «х» тут так само під-
ставляється ім’я порту. і так само кожен біт цього регістру відпові-
дає за однойменний вивід.

Якщо якийсь вивід сконфігурований, як вихід (тобто значення
біту в регістрі DDR для нього дорівнює 1), то значення будь-якого
біту регістру PORTx задає вихідний рівень напруги на відповід-
ному виводі: 1 відповідає високому рівню напруги (5 В), а 0 відпо-
відає низькому рівню напруги (0 В).

−	PINx – це регістр стану порту вводу-виводу. Значення бітів
цього регістру відповідають логічному рівню на відповідному
виводі. Наприклад, якщо на вході В3 присутній високий логіч-
ний рівень, то біт № 3 регістру PINB буде дорівнювати 1, а якщо
на цьому вході буде низький логічний рівень, то і значення
біта № 3 буде 0.

Тепер можна детально розглянути програмний код (рис. 10.17).
Програма написана на мові С, то ж тут ми не будемо вдаватися
в основи власне мови, бо вважається, що ви з ними вже знайомі
з попередніх курсів. У цій програмі ми сконфігуруємо вивід С5
як вихід і будемо поперемінно видавати на нього високий і низький
логічний рівні, вмикаючи та вимикаючи світлодіод з частотою 1 Гц.

278 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Розглянемо програму порядково.
1.	#include <avr/io.h> – тут ми підключаємо заголовний файл

“avr/io.h”. В цьому файлі описані відповідності між усіма регі-
страми мікроконтролера та їх реальними адресами, то ж додавати
цей файл в програму обов’язково, якщо ви хочете використовувати
назви регістрів у вашій програмі, а не просто їх адреси, які ще треба
знайти в документації.

2.	#include <util/delay.h> – цей заголовний файл потрібен у разі,
якщо ми хочемо використовувати функції затримки роботи мікро-
контролера на деякий час. Ці функції також використовуються
досить часто, то ж рекомендується додавати і цей файл до про-
грами, але це не обов’язково.

3.	Порожній рядок
4.	int main (void) – початок головної функції програми main.

Зазвичай головна функція при програмуванні мікроконтролерів
розділяється на дві частини: ініціалізація та нескінченний цикл.
Частина ініціалізації виконується один раз при запуску мікроконт-
ролера, і в ній ініціалізуються всі необхідні периферійні модулі
за допомогою відповідних регістрів. У нескінченному циклі
пишеться та частина програми, яка повинна виконуватися весь
час, поки подана напруга живлення на мікроконтролер. Відповідно
до нашого випадку, в ініціалізаційній частині ми повинні сконфі-
гурувати вивід С5 як вихід. А в нескінченному циклі переключати
стан цього виводу.

5.	{ – Відкриття головної функції main.
6.	DDRC = _BV(PC5); – цей рядок заслуговує більш деталь-

ного пояснення. В ньому ми зустрічаємо вже знайомий нам регістр
DDRC, який відповідає за напрямок передачі інформації виводів
порту С. Макрос PC5 відповідає виводу С5. Його значення насправді
дорівнює просто 5, то ж можна було б замість PC5 написати про-
сто 5, але РС5 виглядає більш наочно. Макрос _BV(x) встановлює
1 у біті, чий номер заданий параметром “х”. Тобто, результатом
запису _BV(PC5) стане число, у якому буде 1 в біті № 5 і нулі в усіх
інших бітах: 001000002. Таким чином, всі виводи порту С будуть
сконфігуровані, як входи, окрім виводу С5, який сконфігурований,
як вихід. До речі, цей рядок можна було б записати і таким чином:

27910	 Практична робота № 1 «Симуляція схем з мікроконтролерами з використанням програми SimulIDE»

DDRC = 0b00100000; Префікс 0b перед числом означає, що воно
подається у двійковому форматі.

7.	while (1) – початок нескінченного циклу програми. При про-
грамуванні на комп’ютері ми звикли, що такі записи, що утворю-
ють нескінченні цикли, є вкрай небажаними, бо вони «підвішують»
програму. У мікроконтролерах, навпаки, це – цілком нормальна
практика, що використовується для того, щоб уникнути повторної
ініціалізації програми. Якщо не використовувати нескінчений цикл,
покажчик адресу програми пройде по всім адресам флеш-пам’яті
та почне виконання з самого початку, що є небажаним.

8.	{ – Відкриття нескінченного циклу.
9.	PORTC = _BV(PC5); – цей запис дуже схожий на рядок 6,

тільки замість регістру DDRC тут записаний регістр PORTC.
Результатом виконання цього рядку стане поява високого логічного
рівня на виводі С5, що призведе до ввімкнення світлодіоду.

10.	 _delay_ms(500); – затримка виконання програми на 500 мс.
Функція _delay_ms описана у файлі “util/delay.h”, який ми підклю-
чили у рядку 2, і вона виконує затримку на задану кількість мілісе-
кунд. Для того, щоб отримати частоту блимання світлодіоду в 1 Гц,
треба на половину періоду, тобто на 500 мс, його ввімкнути, потім
на 500 мс вимкнути, тому ми й задали таке значення затримки.
Якщо не використовувати затримку, то світлодіод буде перемика-
тися з дуже високою частотою (приблизно 1/10 від тактової час-
тоти, тобто десь 100 кГц).

11. PORTC = 0; – тут ми встановлюємо всі біти регістру PORTC
у нулі, таким чином, встановлюючи на всіх виводах порту С (включно
з С5) низький логічний рівень, що призведе до вимкнення світлодіоду.

12. _delay_ms(500); – знову затримка на виконання програми на
500 мс, тепер для того, щоб утримати світлодіод вимкненим. Після
цього рядку виконання програми знову повернеться до початку нескін-
ченного циклу (до рядку 9), і знов ввімкне світлодіод, і так далі.

13. } – Закриття нескінченного циклу.
14. } – Закриття головної функції програми.
Далі треба зберегти написаний програмний код у файл. Цей

файл повинен мати розширення «.c”, яке треба записати власноруч,
встановивши тип файлів, як “All files (*.*)» (рис. 10.18).

280 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

10.2.6 Компіляція файлу прошивки та запуск симуляції

Тепер треба з програмного коду створити файл прошивки.
Для цього нам нарешті знадобиться компілятор AVR GCC, який
ми завантажили та розпакували раніше.

Спочатку треба показати програмі SimulIDE, де саме знахо-
диться цей компілятор. Для цього натискаємо кнопку та у випа-
даючому меню обираємо пункт “Compiler Settings” (рис. 10.19).

У відкритому вікні треба обрати зі списку компілятор
(“Compiler”) типу “Avrgcc” (рис. 10.20).

Тепер треба вказати шляхи, де встановлений власне компіля-
тор “Tool Path” та де знаходяться заголовні файли “Include Path”
(рис. 10.21).

Компілятор знаходиться у теці “avr8-gnu-toolchain-win32_
x86_64/bin/”, де “avr8-gnu-toolchain-win32_x86_64” – це назва теки,
в яку розпакувався архів “avr8-gnu-toolchain-3.7.0.1796-win32.any.
x86_64.zip”. У вас ця назва може дещо відрізнятися, то ж в загаль-
ному вигляді цей шлях знаходиться за таким шляхом «<шлях
до теки, куди розпакувався завантажений архів>/bin/».

Рисунок 10.18 – Збереження файлу програми

28110	 Практична робота № 1 «Симуляція схем з мікроконтролерами з використанням програми SimulIDE»

Рисунок 10.19 – Відкриття вікна налаштувань компілятора

Рисунок 10.20 – Вибір компілятора

282 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Заголовні файли знаходяться за шляхом «<шлях до теки, куди
розпакувався завантажений архів>/avr/include/».

У полі “Device” треба задати тип мікроконтролера, для якого
буде створюватися прошивка. Тобто, в нашому випадку це буде
“atmega8» (рис. 10.21).

Тепер можна повернутися на головний екран і спробувати
скомпілювати програму, натиснувши на кнопку . Якщо у про-
грамі немає помилок, і якщо всі шляхи вказані вірно, то у полі 8
(рис. 10.6) ви повинні побачити інформацію про успішне створення
файлу «.hex” (рис. 10.22).

Рисунок 10.21 – Налаштування компілятора

Рисунок 10.22 – Інформація про успішне створення файлу прошивки

28310	 Практична робота № 1 «Симуляція схем з мікроконтролерами з використанням програми SimulIDE»

Також на рис. 10.22 можна побачити попередження, що “F_CPU
not defined for <util/delay.h>”. Це означає, що ми не задали значення
макросу F_CPU, який використовується файлом “delay.h”, щоб пра-
вильно розраховувати затримку. За замовчанням ця частота вста-
новлена в самому цьому файлі, як 1 МГц. Саме тому в налаштуван-
нях мікроконтролера ми встановили саме цю частоту (рис. 10.12).

Тепер натискаємо на кнопку , щоб загрузити створений файл
у мікроконтролер. У вікні 8 бачимо інформацію, що файл заванта-
жено успішно (рис. 10.23).

Рисунок 10.23 – Інформація про успішне завантаження файлу

прошивки у мікроконтролер

Тепер треба натиснути на кнопку , щоб запустити симуляцію.
Якщо все зроблено вірно, то можна побачити, що світлодіод блимає
жовтим кольором з частотою 1 Гц (рис. 10.24).

На цьому завдання поточної практичної роботи можна вважати
виконаним.

 Рисунок 10.24 – Світлодіод у ввімкненому та вимкненому стані

284 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

10.3 Завдання до практичної роботи

1.	Завантажити та розпакувати програму SimulIDE та компіля-
тор AVR GCC.

Ознайомитись з поданням програми SimulIDE та її інтерфейсом.
Створити принципову електричну схему, схожу на рис. 10.11,

яка включає мікроконтролер, обраний згідно з варіантом завдань
(табл. 10.3), резистор та світлодіод. Останній підключити до виводу,
також вказаному в таблиці 10.3. Змінити колір світлодіоду відпо-
відно до таблиці 3. У другому стовпчику таблиці 10.3 у дужках вка-
зано справжню назву мікроконтролеру, яку треба вводити у нала-
штуваннях компілятора (рис. 10.21).

Написати програму блимання світлодіодом з частотою, вказа-
ною в таблиці 10.3.

Створити файл прошивки, загрузити його у мікроконтролер
та переконатися, що все працює, як треба.

Таблиця 10.3 – Варіанти завдань до практичної роботи № 1

Номер
варіанта

Мікроконтролер
У SimulIDE

(у компіляторі)

Вивід для
підключення
світлодіоду

Частота
блимання,

Гц

Колір
світлодіоду

1 2 3 4 5

1 tiny44
(attiny44) A0 2 Жовтий

2 mega48
(atmega48) C4 4 Червоний

3 tiny45
(attiny45) B1 0.5 Зелений

4 mega88
(atmega88) D6 0.25 Синій

5 tiny2313
(attiny2313) D3 2.5 Помаранчевий

6 mega168
(atmega168) C1 5 Бузковий

7 tiny84
attiny84) B2 0.2 Жовтий

28510	 Практична робота № 1 «Симуляція схем з мікроконтролерами з використанням програми SimulIDE»

1 2 3 4 5

8 mega328
(atmega328) D7 0.4 Червоний

9 tiny85
(attiny85) B5 0.8 Зелений

10 m48 TQFP
(atmega48) C2 6 Синій

11 tiny24
(attiny24) A7 0.3 Помаранчевий

12 m88 TQFP
(atmega88) B0 3 Бузковий

Питання для самоперевірки
1.	 Призначення елементів інтерфейсу програми SimulIDE.
2.	 Додавання та налаштування електронних компонентів.
3.	 Написання програм у програмі SimulIDE.
4.	 Завантаження файлу прошивку у мікроконтролер у програмі SimulIDE.
5.	 Симуляція електричних схем у програмі SimulIDE.

Перелік рекомендованих джерел
1.	 SimulIDE Tutorial. URL: https://simulide.com/p/simulidekb/ (дата звер-

нення: 02.12.2024).
2.	 ATMega8: технічна документація на мікроконтролер. URL:

https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-2486-8-
bit-AVR-microcontroller-ATmega8_L_datasheet.pdf (дата звернення:
02.12.2024).

3.	 8-bit AVR® MCUs: інформація про мікроконтролери. URL:
https://www.microchip.com/en-us/products/microcontrollers-and-
microprocessors/8-bit-mcus/avr-mcus (дата звернення: 02.12.2024).

Продовження таблиці 10.3

https://simulide.com/p/simulidekb/
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-2486-8-bit-AVR-microcontroller-ATmega8_L_datasheet.pdf
https://www.microchip.com/en-us/products/microcontrollers-and-microprocessors/8-bit-mcus/avr-mcus

11__
ПРАКТИЧНА РОБОТА № 2

«ПРОГРАМУВАННЯ ЦИФРОВИХ ПОРТІВ
ВВОДУ-ВИВОДУ МІКРОКОНТРОЛЕРА AVR»

Перелік питань до розділу:
11.1. Завдання.
11.2. Теоретичні дані.

11.2.1. Робота з портами вводу-виводу мікроконтролерів AVR.
11.2.2. Бітові операції на мові С.
11.2.3. Бітові операції.
11.2.4. Очищення та встановлення бітів.
11.2.5. Макрос керування значенням біту _BV().
11.2.6. Перевірка значення біту.
11.2.7. Приклад програми.
11.2.8. Принципова електрична схема.
11.2.9. Програмний код.

11.3. Завдання до практичної роботи.

11.1 Завдання

Освоєння прийомів програмування мікроконтролерів на при-
кладі портів вводу-виводу мікроконтролерів AVR.

Завдання практичної роботи:
‒	 Створення електричної схеми у програмі SimulIDE відповідно

до завдання на практичну роботу.
‒	 Написання програми для мікроконтролеру відповідно

до завдання на практичну роботу.

28711	 Практична робота № 2 «Програмування цифрових портів вводу-виводу мікроконтролера AVR»

11.2 Теоретичні дані

11.2.1  Робота з портами вводу-виводу мікроконтролерів AVR1

Порти вводу-виводу є основним засобом зв’язку мікроконтроле-
рів AVR з навколишнім світом. Спрощена схема порту вводу-виводу
показана на рис. 11.1.

На кожній ніжці МК стоять захисні діоди. На них сильно не розрахо-
вують, якщо напруга на вході перевищить 5,5 В, вони напевно не витри-
мають. Ніжка МК здатна пропустити через себе струм не більше
20 мА. Кожний вхід мікроконтролера
має паразитну ємність Сpin. Далі йдуть
перемикачі (у МК замість перемикачів
стоять польові транзистори). Кожний
перемикач замикається при певній кон-
фігурації регістрів керування портів
вводу-виводу – DDRxn, PORTxn, PINxn
і біта 2 (PUD) регістру SFIOR. x – ім’я
порту (наприклад «В»), n – номер біта
порту (0–7). У різних мікроконтролерів
різна кількість портів. Наприклад, роз-
глянемо МК Atmega8.

1  Даний підрозділ викладений на основі матеріалів [1]

Рисунок 11.1 – Схема порту вводу-виводу

Рисунок 11.2 –

Мікроконтролер Atmega8

288 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

З рис. 11.2 видно, що в МК Mega8 три порти вводу-виводу.
Два повні порти (по 8 біт) – “PB” і “PD” і один неповний (7 біт) – “PC”.

PINxn – Регістр читання стану порту. Із цього регістру можна
тільки читати. Цей регістр містить інформацію про логічний рівень
на виводах МК і це не залежить від налаштувань порту.

DDRxn – регістр напрямку порту.
PORTxn – регістр керування станом виводу.
Біт 2 SFIOR: PUD(pullup disable) – забороняє резистор, що під-

тягує, незалежно від того дозволений він регістром керування чи ні
(«0» – дозволений pullup, «1» – заборонений pullup).

Варіанти установок бітів регістрів показано в таблиці 11.1.

Таблиця 11.1 – Варіанти установок бітів регістрів вводу-виводу

DDxn PORTxn PUD
(у SFIOR)

Стан
виводу

Підтягу-
вання Коментар

0 0 Х Вхід Ні Високоімпедансний
стан

0 1 0 Вхід Так

Pxn буде джерелом
струму, якщо зовнішня

схема підключена
до нижчої напруги

0 1 1 Вхід Ні Високоімпедансний
стан

1 0 Х Вихід Ні Вихід з низьким рівнем
напруги

1 1 Х Вихід Ні Вихід з високим рівнем
напруги

Вихід (DDRxn = 1). Тут якщо в PORTxn записати «1», на виході
й буде логічна одиниця, якщо записати «0» – логічний нуль.

Вхід (DDRxn = 0). Якщо в PORTxn записати «0», це буде режим
високоімпедансного входу (DDRxn = 0, PORTxn = 0 – включений
за замовчуванням). Якщо подивитися на рисунок вище, цей режим
відповідає ситуації коли всі перемикачі розімкнуті, при цьому вхід-
ний опір входу можна вважати рівним нескінченності.

Якщо в PORTxn записати «1», це буде режим з резистором,
що підтягує.

28911	 Практична робота № 2 «Програмування цифрових портів вводу-виводу мікроконтролера AVR»

Також кожна ніжка МК має альтернативні функції. За замовчу-
ванням вони відключені. Якщо альтернативна функція включена,
то ніжка управляється периферійним обладнанням і тоді запис
в DDRxn і PORTxn нічого не дає.

Якщо ніжка МК не використовується, тоді рекомендується
забезпечити на ній певний рівень. Це потрібно щоб зменшити
енергоспоживання мікроконтролера через наведення виникаючих
на виводах. Найпростіший спосіб забезпечити рівень – включити
резистор, що підтягує. Підключати невикористовувані ніжки без-
посередньо до шини живлення або до шини заземлення не реко-
мендується. Це може привести до надмірного струму, якщо вивід
випадково налаштований на вихід.

11.2.2 Бітові операції на мові С2

Біт може приймати одне з двох можливих значень: 1 або 0 (анало-
гічно: увімк/вимк, встановлено/очищено, високий/низький логічний
рівень). Декілька бітів утворюють число в двійковому вигляді, де кожен
біт є одним розрядом даного числа. В мікроконтролерах AVR 8 бітів
з’єднані разом, формують один байт, в якому молодший біт (LSB –
Least Significant Bit) знаходиться справа. Нумерація бітів починається
з нуля від молодшого біта. Для прикладу розглянемо десяткове число
15. Його можна відобразити у двійковій 8-бітній формі:

00001111

Чотири молодші біти встановлені.
Якщо є потреба більш докладно зупинитися на темі перетворень

між десятковими, двійковими та шістнадцятковими числами, то можна
пошукати статті до цієї теми, або скористатись цією таблицею. Інший
приклад, десяткове число 40, відображене у двійковій формі:

00101000

Біти 3 та 5 встановленні.
2  Даний підрозділ викладений на основі матеріалів [2]

290 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

У програмах мовою C для мікроконтролерів AVR числові зна-
чення можуть виражатися у трьох формах, залежно від контексту або
вибору програміста. Шістнадцяткові числа визначаються з викорис-
танням 0x-префіксу, двійкові – 0b-префіксу. Наступний C код демон-
струє три варіанти ініціалізації змінних десятковим значенням 15.

uint8_t a = 15; // десяткове значення
uint8_t b = 0x0F; // шістнадцяткове
uint8_t c = 0b00001111; // двійкове

uint8_t – один з типів даних рівноширокого цілого типу, зі стан-
дарту C99. Стандарт передбачає 8-бітний беззнаковий цілий тип.
Типи даних стандарту C99 будуть і надалі використовуватись
у цьому курсі.

11.2.3 Бітові операції3

Виходячи з того, що кожен окремий біт – носій важливої інфор-
мації при програмуванні для AVR мікроконтролерів, бітові операції
є значною складовою цього процесу.

У результаті виконання побітової операції AND, вихідні біти
буде встановлено лише у випадку, коли у обох операндах вони
дорівнюють одиниці. Іншими словами, біт n буде встановлено,
якщо у першому операнді та (AND) у другому операнді біт n також
встановлено.

У мові програмування C побітовий оператор AND позначається
одинарним знаком амперсанд.

uint8_t a = 0xAA; // 10101010
uint8_t b = 0x0F; // 00001111
uint8_t c = a & b; // 00001010

У результаті виконання побітової операції OR, вихідні біти буде
встановлено у випадку, якщо хоча б в одному з операндів вони

3  Даний підрозділ викладений на основі матеріалів [2]

29111	 Практична робота № 2 «Програмування цифрових портів вводу-виводу мікроконтролера AVR»

також були встановлені. Іншими словами, біт n буде встановлено,
якщо у першому операнді або (OR) у другому операнді біт n також
встановлено.

У мові програмування C для позначення побітової операції
OR використовується одинарна вертикальна риска (|).

uint8_t a = 0xAA; // 10101010
uint8_t b = 0x0F; // 00001111
uint8_t c = a | b; // 10101111

У результаті виконання побітової операції XOR(виключне OR)
вихідні біти буде встановлено тільки в тому разі, якщо в одному
з операндів вони були встановлені, а в іншому ні. Іншими словами,
біт n буде встановлено, якщо **виключно **в одному з операндів
біт n також встановлено.

Оператор XOR у мові C позначається символом каретки (^).

uint8_t a = 0xAA; // 10101010
uint8_t b = 0x0F; // 00001111
uint8_t c = a ^ b; // 10100101

Операція NOT, відома як порозрядне доповнення, є унарною
операцією. Це означає, що така операція потребує лише одного
операнду, а не двох, як інші. NOT просто перетворює кожен біт
на протилежний. Тобто, кожен біт, що дорівнює 1, перетворюється
на 0, а кожен, що дорівнює 0, перетворюється на 1.

У мові програмування C операція NOT позначається знаком
тильда (~).

uint8_t a = 0xAA; // 10101010
uint8_t b = ~a; // 01010101

Операція зсуву (shift), переміщує всі біти вліво або вправо. При
зсуві вліво, біти зсуваються «назовні» зліва, та нульові біти зсува-
ються «всередину» справа.

292 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

В мові програмування C два знаки «менше ніж» () позначають
операцію зсуву вправо. З правої сторони від оператора вказується
числове значення – кількість розрядів для зсуву.

uint8_t a = 0x99; // 10011001
uint8_t b = a<<1; // 00110010
uint8_t c = a>>3; // 00010011

11.2.4 Очищення та встановлення бітів4

Встановлення та очищення окремого біту, без зміни всіх інших
бітів, одна з найважливіших задач при програмуванні мікроконтро-
лерів AVR. Ви будете користуватись цією схемою знов і знов.

Отже, загалом для керування окремо взятим бітом, зазвичай,
потрібен байт в якому нас цікавить лише один встановлений біт.
Цей байт надалі, за допомогою побітових операцій, можна вико-
ристовувати для керування потрібним бітом. Такий принцип керу-
вання бітами називається бітова маска. Для прикладу, розглянемо
бітову маску для біта номер 2: 00000100, та бітову маску для біту
номер 6: 01000000.

Якщо взяти число 1, то маємо двійкове число в якому встанов-
лено лише нульовий розряд, але за допомогою зсуву вліво на деяку
кількість розрядів, можна отримати потрібну маску. Для прикладу
наведена бітова маска для біту номер 2, яку отримали з числа 1
за допомогою зсуву вліво на два розряди.

Для встановлення потрібного біту у мові C, застосовується опе-
рація OR до потрібного байту разом з бітовою маскою.

uint8_t a = 0x08; // 00001000
// встановлення біту 2
a |= (1<<2); // 00001100

Для встановлення більше ніж одного біту використовується
декілька операторів OR.

4  Даний підрозділ викладений на основі матеріалів [2]

29311	 Практична робота № 2 «Програмування цифрових портів вводу-виводу мікроконтролера AVR»

uint8_t a = 0x08; // 00001000
// встановлення бітів 1 та 2
a |= (1<<2)|(1<<1); // 00001110

Для очищення біту застосовується операція NOT до бітової
маски, у результаті тільки потрібний біт буде не встановлено, після
цього потрібно застосувати операцію AND до потрібного байту
разом з бітовою маскою.

uint8_t a = 0x0F; // 00001111
// очищення біту 2
a &= ~(1<<2); // 00001011

Так само – для очищення більше ніж одного біту використовує-
ться декілька операторів OR.

uint8_t a = 0x0F; // 00001111
// очищення бітів 1 та 2
a &= ~((1<<2)|(1<<1)); // 00001001

Для того, щоб, так би мовити, перемикати потрібний біт, вста-
новлюючи його, або в 1, або в 0, можна скористатись операцією
XOR та, знов ж таки, – бітовою маскою.

uint8_t a = 0x0F; // 00001111
// змінення значення біту 2
a ^= (1<<2); // 00001011
a ^= (1<<2); // 00001111

11.2.5 Макрос керування значенням біту _BV()5

В AVR Libc визначено макрос _BV() для керування значенням
біту. Цей макрос зручно використовувати для отримання потріб-
ної бітової маски. Головна ідея в тому, щоб зробити код більш

5  Даний підрозділ викладений на основі матеріалів [2]

294 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

читабельним використовуючи побітовий зсув вліво. Застосування
_BV(n) еквівалентно вживанню (1<<n).

// встановлення біту 0, використовуючи _BV()
a |= _BV(0);
// встановлення біту 0, використовуючи зсув
a |= (1<<0);

Який метод використовувати – залежить від вас. Ви побачили
обидва методи в дії і тепер зможете вибрати, що для вас зручніше.
Також, треба зазначити, що оскільки макрос _BV() є унікаль-
ним для GCC, то такий метод, на відміну від (1<<n), не сумісний
з іншими компіляторами. Але цим зазвичай не дуже перейма-
ються аматори, та й нерідко _BV() виявляється зручнішим для
початківців.

11.2.6 Перевірка значення біту6

В операторах умовного переходу або в циклах іноді треба пере-
віряти значення окремого біту у байті. Для цього використовується
операція побітового AND.

Перевірка на те, чи є значення біту логічною одиницею запису-
ється наступним чином:

uint8_t a = 0x0F; // 00001111
// Перевірка, чи дорівнює одиниці біт № 5 у числі а
if (a & (1 << 5))
{
//Зробити щось
}

Вираз (a & (1 << 5)) буде істинним тільки тоді, коли біт № 5
у числі а дорівнює 1, у всіх інших випадках цей вираз буде
хибним.

6  Даний підрозділ викладений на основі матеріалів [2]

29511	 Практична робота № 2 «Програмування цифрових портів вводу-виводу мікроконтролера AVR»

У цих перевірках можна також використовувати макрос _BV():

if (a & _BV(5))
{
//Зробити щось
}

Перевірка на те, чи є значення біту логічним нулем виконується
аналогічним чином, тільки результат перевірки інвертується:

uint8_t a = 0x0F; // 00001111
// Перевірка, чи дорівнює нулю біт № 5 у числі а
if (!(a & (1 << 5)))
{
//Зробити щось
}

Можна робити інверсію не всього результату, а тільки числа, яке
перевіряється. Результат перевірки буде таким самим:

if (~a & (1 << 5))
{
//Зробити щось
}

З точки зору процесору, перший варіант запису є кращим,
оскільки в ньому є команди умовного переходу і якщо результат
операції дорівнює нулю, і якщо він відрізняється від нуля. У дру-
гому випадку треба виконати додаткову операцію інверсії, що від-
німає процесорний час та займає додаткову пам’ять.

11.2.7 Приклад програми

Виконаємо наступне завдання на базі мікроконтролера
ATMega8. Підключити два світлодіоди LED1 та LED2 до виво-
дів PC5 та РС2, відповідно, та дві кнопки S1 та S2 до виводів

296 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

РВ5 та РВ1, відповідно. При утриманні натиснутою кнопки S1
блимати світлодіодом LED1 з частотою 2 Гц, а при відпусканні
кнопки світлодіод погасити. При натисканні кнопки S2 пере-
микати світлодіод LED2 у протилежний стан один раз на кожне
натискання.

11.2.8 Принципова електрична схема

Принципова електрична схема, що реалізує поставлену задачу,
показана на рис. 11.3.

Рисунок 11.3 – Принципова електрична схема

Окрім вже відомих нам компонентів з попередньої практичної
роботи, у цій схемі присутні дві кнопки, які у SimulIDE знаходяться
у підзаголовку Switches і називаються Push (рис. 11.4).

Світлодіоди LED1 та LED2 підключаються так само,
як і в попередній практичній роботі. Кнопки S1 та S2 підключа-
ються так, що один їх кінець під’єднаний до виводу мікроконтро-
лера, а інший – до нульового проводу. Таким чином, коли кнопка
натиснута, на вході мікроконтролера, до якого вона підключена,
напруга дорівнює 0, що відповідає логічному 0 у відповідному
біті регістру PINx.

29711	 Практична робота № 2 «Програмування цифрових портів вводу-виводу мікроконтролера AVR»

Але тоді, коли кнопка не натиснута, на вході повинна бути висока
напруга, щоб можна було чітко розрізнити стани кнопки. Для того,
щоб забезпечити цю високу напругу, як раз і використовуються під-
тягувальні резистори (рис. 11.1). Їхній опір складає кілька десятків
кілоом, що набагато менше опору кнопки у ненатиснутому стані,
тому на вході мікроконтролера встановлюється високий логічний
рівень. Коли кнопку натискають, її опір різко знижується майже
до 0 Ом, і тепер на вході з’являється низький логічний рівень.

У мікроконтролерах AVR внутрішні резистори можуть підтя-
гувати потенціал тільки до напруги живлення (у той час, як деякі
більш просунуті мікроконтролери мають внутрішні резистори,
що можуть підтягувати потенціал, як до напруги живлення, так
і до 0), тому зазвичай кнопки до них підключаються саме так,
як вказано на рис. 11.3.

11.2.9 Програмний код

Розглянемо тепер програму, що реалізує поставлену задачу
(рис. 11.5).

Рядки 1–4 вже зустрічалися у попередній практичній роботі,
то ж ми на них не будемо зупинятися тут.

Рисунок 11.4 – Кнопка у бібліотеці компонентів

298 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Рисунок 11.5 – Програмний код

29911	 Практична робота № 2 «Програмування цифрових портів вводу-виводу мікроконтролера AVR»

У рядку 6 виводи РС5 та РС2 конфігуруються, як виходи
(оскільки до них під’єднані світлодіоди), шляхом встановлення
відповідних бітів у регістрі DDRC. Зверніть увагу, що тут замість
простого присвоєння ми використовуємо операцію побітове АБО
для того, щоб змінити тільки біти РС5 та РС2, залишаючи всі інші
біти у тому стані, в якому вони були до виконання цієї операції.

В конкретному даному випадку можна було б використати
й операцію звичайного присвоєння (=), але в загальному випадку
краще користуватися побітовим АБО для встановлення
бітів та побітовим І з інверсією для їх скидання, як показано
в п. 11.2.4.

У рядку 7 ми скидаємо біти РВ1 та РВ5 у регістрі DDRB, таким
чином конфігуруючи їх як входи, оскільки до них під’єднані кно-
пки S2 та S1, відповідно. Знову ж таки, цей рядок не є обов’язко-
вим, адже після скидання всі виводи сконфігуровані, як входи. Але
правилом гарного тону у програмуванні мікроконтролерів є явна
конфігурація усіх використаних виводів (а у деяких випадках,
і невикористаних).

У рядку 8 ми встановлюємо біти РВ5 та РВ1 у регістрі PORTВ.
Оскільки відповідні виводи сконфігуровані як входи, то встанов-
лення цих бітів вмикає внутрішні підтягувальні резистори на цих
виводах. Для чого вони потрібні на входах, до яких підключені кно-
пки, було написано у попередньому розділі.

На цьому конфігураційна частина програми закінчується,
і з 9 рядку починається головний безкінечний цикл програми.
У ньому обробляються натискання на кнопки: S2 (рядки 11–23)
та S1 (рядки 24–40). Як можна побачити, обробка кнопок є досить
нелегкою задачею.

Спочатку завжди перевіряється, чи дорівнює нулю біт регістру
PINx, що відповідає виводу, до якого підключена кнопка. У рядку
11 як раз і відбувається це: ми перевіряємо, чи дорівнює нулю біт
РВ1 регістру PINB. Якщо це так, це значить, що кнопка натис-
нута. Але якщо бути більш точним, це означає, що кнопка тільки
у процесі натискання. Контакти реальних кнопок є неідеальними,
і в момент натискання може відбуватися так званий брязкіт кон-
тактів. Це явище полягає у зміні стану кнопки під час натискання

300 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

або відпускання через те, що контакти то замикаються, то розмика-
ються з високою частотою. Таким чином, навіть одне натискання
кнопки може бути зчитане мікроконтролером, як декілька послідов-
них натискань через те, що він опитує стан виводів з дуже високою
частотою. Для програмної боротьби з брязкотом контактів вводять
затримку величиною 20–30 мс. Це час, протягом якого відбувається
перехідний процес натискання кнопки. По закінченню цього часу
вважається, що контакти вже щільно прилягають один до одного
(або повністю розімкнені), і стан кнопки є визначеним.

То ж у рядку 13 ми виконуємо цю затримку на брязкіт контак-
тів. Після цього ми ще раз перевіряємо стан біту РВ1 регістру
PINB (рядок 14). Якщо він все ще 0, це означає, що кнопка таки
була натиснута. Після цього ми просто чекаємо, поки кнопка зна-
ходиться у натиснутому стані, і нічого не робимо, використову-
ючи цикл типу while (рядок 16). Це також один із стандартних
методів обробки натискання кнопки. Зазвичай, якусь однократну
дію, яку повинна робити кнопка, виконують після її відпускання,
щоб уникнути повторного виконання. Якщо ж потрібно зробити
щось, поки кнопка утримується натиснутою, це якраз і робиться
всередині цього циклу (це ми побачимо при розгляданні другої
кнопки).

З циклу while ми можемо вийти тільки при умові, що аргумент
циклу стає хибним, тобто біт РВ1 регістру PINB перестає бути рів-
ним 0. Це означає, що почався процес відпускання кнопки. Цей про-
цес також супроводжується брязкотом контактів. То ж ми робимо
ще одну затримку величиною в 30 мс (рядок 17), після чого пере-
віряємо, чи дійсно біт РВ1 регістру PINB став рівним 1 (рядок 18).
І лише в тому випадку, коли виконується ця умова, ми переходимо
до власне дії, яка повинна відбуватися при натисканні кнопки.
Тобто усі рядки від 11 до 19 – це просто обробка натискання кнопки,
а корисна дія, що виконується при цьому, займає лише рядок 20.

В ньому відбувається перемикання біту РС2 регістру PORTC
у протилежний стан за допомогою операції «Побітове виключне
АБО», або XOR (див. п. 11.2.2). При цьому світлодіод LED2
перемкнеться у стан, протилежний тому, у якому він був до того.
Це як раз те, що і потрібно виконати, відповідно до завдання.

30111	 Практична робота № 2 «Програмування цифрових портів вводу-виводу мікроконтролера AVR»

Рядки 24–29 аналогічні рядкам 11–16, тільки відносяться
до виводу (і, відповідно, біту) РВ5, до якого підключена
кнопка S1. Відміна наступає у рядку 30, коли ми замість того, щоб
просто очікувати, поки кнопка буде утримуватися натиснутою,
виконуємо якусь повторну дію. В даному випадку це перемикання
світлодіоду LED1 у протилежний стан (рядок 31) з наступною
затримкою у 250 мс (рядок 32), для того, щоб блимання відбува-
лося з частотою 2 Гц.

Частоті 2 Гц відповідає період 1/2 = 0.5 с = 500 мс. Світлодіод
повинен половину періоду бути ввімкненим, а половину періоду –
вимкненим, тому затримка між переключеннями стану світлодіоду
повинна бути 500/2 = 250 мс.

Після відпускання кнопки S1 (коли умова виконання циклу while
у рядку 29 стає хибною), ми знов виконуємо затримку на брязкіт
контактів (рядок 34), після чого перевіряємо, чи кнопка дійсно від-
пущена (рядок 35), і якщо так, то вимикаємо світлодіод LED1, ски-
даючи біт РС5 у регістрі PORTC (рядок 37).

Ось, в принципі, і вся програма. Тепер можна скомпілювати
файл .hex, завантажити його у мікроконтролер та запустити симу-
ляцію. Для «натискання» на кнопку треба натиснути на сірий ква-
драт під позначенням кнопки за допомогою лівої кнопки миші.
Якщо все написано вірно, робота програми буде відповідати
завданню.

11.3 Завдання до практичної роботи

1.	Створити принципову електричну схему, згідно з варіантом
завдань (таблиця 11.2).

2.	Написати програму, що виконує поставлене завдання
(табл. 11.2).

3.	Створити файл прошивки, загрузити його у мікроконтролер
та переконатися, що все працює, як треба.

302 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Таблиця 11.2 – Варіанти завдань до практичної роботи № 2

Номер
варіанта

Мікроконтролер
У SimulIDE

(у компіляторі)
Завдання

1 2 3

1 tiny44
(attiny44)

Підключити кнопку до виводу РА6, а світлодіод
до виводу РВ2. При натисканні на кнопку про-
тягом 1 секунди, перемикати світлодіод у про-
тилежний стан. Якщо тривалість натискання
менша за 1 секунду, нічого не здійснювати.

2 mega48
(atmega48)

Підключити кнопку до виводу РD0, а світло-
діод до виводу РC3. При першому натисканні
на кнопку починати блимання світлодіодом
з частотою 2 Гц. При наступному натисканні
кнопки блимання заборонити, а світлодіод
погасити. Процес повторювати циклічно.

3 tiny45
(attiny45)

Підключити кнопку до виводу РВ2, а світло-
діод до виводу РВ1. При запуску контролера
здійснювати блимання світлодіодом із часто-
тою 1 Гц. При натисканні на кнопку цю частоту
змінювати циклічно таким чином:
2 – 4 – 8 – 1 Гц. Одному натисканню кнопки
відповідає одна зміна частоти.

4 mega88
(atmega88)

Підключити кнопку до виводу РС1, а світлодіод
до виводу РD5. При запуску контролера чекати
натискання кнопки. При її натисканні рахувати
тривалість утримання кнопки в натиснутому
стані. При відпусканні кнопки увімкнути світ-
лодіод на час, що дорівнює часу натискання
кнопки, після чого погасити світлодіод і знову
чекати натискання кнопки.

5 tiny2313
(attiny2313)

Підключити кнопку до виводу РВ3, світло-
діод LED1 до виводу РA0, а світлодіод LED2
до виводу РА1. При запуску контролера
здійснювати блимання світлодіодом LED1
із частотою 1 Гц. При натисканні на кнопку
світлодіод LED1 погасити, і почати блимання
світлодіодом LED2 із частотою 2 Гц. При пов-
торному натисканні на кнопку погасити 6 світ-
лодіод LED2 і знову почати блимати світлодіо-
дом LED1. Процес повторювати циклічно.

30311	 Практична робота № 2 «Програмування цифрових портів вводу-виводу мікроконтролера AVR»

1 2 3

6 mega168
(atmega168)

Підключити кнопку до виводу РВ1, а світлодіод
до виводу РС2. При запуску контролера чекати
натискання кнопки. При її натисканні видати
серію із п’яти світлових імпульсів за допомо-
гою світлодіоду наступної тривалості:
0,25 с – 0,5 с – 1 с – 0,5 с – 0,25 с. Пауза між
усіма імпульсами постійна та дорівнює 0,5 с.
Після видачі серії імпульсів знову чекати натис-
кання кнопки.

7 tiny84
(attiny84)

Підключити кнопку до виводу РВ2, світло-
діод LED1 до виводу РA4, а світлодіод LED2
до виводу РА6. Організувати генератор випад-
кових чисел в такий спосіб. При натисканні
на кнопку рахувати число проходів циклу,
поки кнопка натиснута. Якщо під час від-
пускання кнопки це число парне, увімкнути
світлодіод LED1, якщо непарне – LED2. Через
1 секунду обидва світлодіоди погасити. Процес
повторювати циклічно.

8 mega328
(atmega328)

Підключити кнопку до виводу РD7, світло-
діод LED1 до виводу РВ0, а світлодіод LED2
до виводу РВ1. Організувати генератор
випадкових чисел в такий спосіб. При запуску
контролера рахувати кількість проходів голов-
ного циклу програми. При натисканні на кно-
пку перевіряти число, що вийшло. Якщо воно
парне, увімкнути світлодіод LED2, а якщо
непарне – LED1. При відпусканні кнопки
обидва світлодіоди погасити, а лічильну змінну
обнулити. Процес повторювати циклічно.

9 tiny85
(attiny85)

Підключити кнопку до виводу РВ4, світло-
діод LED1 до виводу РВ3, а світлодіод LED2
до виводу РВ2. Рахувати кількість натискань
кнопки та індикувати її за допомогою світ-
лодіодів LED1 (молодший розряд) та LED2
(старший розряд) у двійковій системі відліку
в діапазоні від 0 (обидва світлодіоди погашені)
до 3 (обидва світлодіоди включені).

Продовження таблиці 11.2

304 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

1 2 3

10 m48 TQFP
(atmega48)

Підключити кнопку S1 до виводу РD6, кнопку
S2 до виводу РD3, а світлодіод до виводу РВ7.
При натисканні на кнопку S1 починати бли-
мання світлодіодном з частотою 4 Гц. При
натисканні на кнопку S2 блимання закінчити,
а світлодіод погасити.

11 tiny24
(attiny24)

Підключити кнопку до виводу РА2, світло-
діод до виводу РВ3. При натисканні на кнопку
протягом довше 2 секунд ввімкнути світлодіод,
а при натисканні коротше 1 секунди вимкнути
його. Якщо час натискання знаходиться у діапа-
зоні від 1 до 2 секунд, не робити нічого.

12 m88 TQFP
(atmega88)

Підключити кнопку до виводу РD0, а світло-
діод до виводу РС3. При запуску контролера
чекати натискання кнопки. При її натисканні
видати сигнал SOS за допомогою світлодіоду:
три коротких імпульси, пауза, три довгих
імпульси, пауза, три коротких імпульси.
Довжина короткого імпульсу і паузи всередині
літери 0.5 с, довжина довгого імпульсу та паузи
між літерами 1.5 с. Після видачі сигналу знову
чекати натискання кнопки.

Питання для самоперевірки
1.	 Призначення регістрів DDRx, PORTx i PINx.
2.	 Як встановити та скинути окремий біт у байті?
3.	 Як перевірити, чи встановлений чи скинутий окремий біт у байті?
4.	 Як записуються побітові операції на мові С?

Перелік рекомендованих джерел
1.	 Конспект лекцій з дисципліни «Мікропроцесорна техніка» для

здобувачів вищої освіти першого (бакалаврського) рівня зі спе-
ціальності 153 «Мікро- та наносистемна техніка» за освітньо-про-
фесійною програмою «Мікро- та наносистемна техніка» та зі спе-
ціальності 171 «Електроніка» за освітньо-професійною програмою
«Електроніка» / уклад. О. М. Гулєша. Кам’янське : ДДТУ, 2020. 57 с.

Продовження таблиці 11.2

30511	 Практична робота № 2 «Програмування цифрових портів вводу-виводу мікроконтролера AVR»

2.	 Основи Програмування AVR C. DevZone. URL: https://devzone.org.ua/
post/osnovy-prohramuvannia-avr-c (дата звернення: 02.12.2024).

3.	 ATMega8 : технічна документація на мікроконтролер. URL:
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-2486-8-
bit-AVR-microcontroller-ATmega8_L_datasheet.pdf (дата звернення:
02.12.2024).

4.	 8-bit AVR® MCUs : інформація про мікроконтролери. URL:
https://www.microchip.com/en-us/products/microcontrollers-and-
microprocessors/8-bit-mcus/avr-mcus (дата звернення: 02.1 2.2024).

https://devzone.org.ua/post/osnovy-prohramuvannia-avr-c
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-2486-8-bit-AVR-microcontroller-ATmega8_L_datasheet.pdf
https://www.microchip.com/en-us/products/microcontrollers-and-microprocessors/8-bit-mcus/avr-mcus

12__
ПРАКТИЧНА РОБОТА № 3

«ПРОГРАМУВАННЯ ТАЙМЕРІВ
МІКРОКОНТРОЛЕРА AVR»

Перелік питань до розділу:
12.1. Завдання.
12.2. Теоретичні дані.

12.2.1. Переривання.
12.2.2. 8-бітний таймер-лічильник 0 мікроконтролера ATMega8.

12.3. Приклад програми.
12.3.1. Принципова електрична схема.
12.3.2. Програмний код.

12.4. Завдання до практичної роботи.

12.1 Завдання

Освоєння прийомів програмування таймерів мікроконтролерів AVR.
Завдання практичної роботи:
‒	 Створення електричної схеми у програмі SimulIDE відповідно

до завдання на практичну роботу.
‒	 Написання програми для мікроконтролеру відповідно

до завдання на практичну роботу.

12.2 Теоретичні дані

12.2.1 Переривання

AVR забезпечує кілька різних джерел переривань. Ці перери-
вання та окремий вектор скиду мають окремий програмний вектор

30712	 Практична робота № 3 «Програмування таймерів мікроконтролера AVR»

в просторі пам’яті програм. Усім перериванням призначаються
окремі біти дозволу, які повинні бути встановлені, як логічні оди-
ниці разом із бітом дозволу глобального переривання в регістрі
стану, щоб дозволити переривання. Залежно від значення програм-
ного лічильника, переривання можуть бути автоматично вимкнені,
коли запрограмовані біти блокування завантажувача BLB02 або
BLB12. Ця функція покращує безпеку програмного забезпечення.

Найнижчі адреси в просторі пам’яті програм за замовчуванням
визначені як вектори скидання та переривання. Повний список векто-
рів показано далі. Список також визначає рівні пріоритету різних пере-
ривань. Чим нижче адреса, тим вищий рівень пріоритету. RESET має
найвищий пріоритет, а наступним є INT0 – запит зовнішнього пере-
ривання 0. Вектори переривань можна перемістити на початок секції
завантажувача флеш-пам’яті, встановивши біт вибору вектору перери-
вань (IVSEL) у загальному регістрі керування перериваннями (GICR).

Коли виникає переривання, біт І «Глобальний дозвіл перери-
вань» очищується, і всі переривання вимикаються. Програмне
забезпечення користувача може записати логічну одиницю в біт I,
щоб увімкнути вкладені переривання. Тоді всі дозволені пере-
ривання можуть переривати поточну процедуру переривання.
I-біт встановлюється автоматично, коли виконується інструкція
повернення з переривання – RETI.

В основному існує два типи переривань.
Перший тип ініціюється подією, яка встановлює прапор пере-

ривання. Для цих переривань програмний лічильник переходить
до фактичного вектору переривань, щоб виконати процедуру
обробки переривань, а апаратне забезпечення очищає відповідний
прапор переривання. Прапори переривання можна також очистити
шляхом запису логічної одиниці до біта прапору, який потрібно
очистити. Якщо умова переривання виникає, коли відповідний біт
дозволу переривання скинутий, прапор переривання буде встанов-
лено та запам’ятовано, доки переривання не буде дозволено, або
прапор не буде очищений програмним забезпеченням. Подібним
чином, якщо одне або більше умов переривань виникають, коли
біт дозволу глобального переривання очищено, відповідні пра-
пори переривань будуть встановлені та збережені, доки не буде

308 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

встановлено біт дозволу глобального переривання, а потім викону-
ватимуться за порядком пріоритету.

Другий тип переривань запускатиметься, доки існує умова пере-
ривання. Ці переривання не обов’язково мають прапори перери-
вань. Якщо умова переривання зникає до того, як переривання буде
дозволено, переривання не буде ініційовано.

Коли AVR виходить із переривання, він завжди повертається
до основної програми та виконує ще одну інструкцію, перш ніж
буде обслуговано будь-яке очікуване переривання.

Зауважте, що регістр стану не зберігається автоматично під час
входу в програму переривання та не відновлюється під час повер-
нення з процедури переривання. Це повинно оброблятися програм-
ним забезпеченням.

Якщо використовувати інструкцію CLI для вимкнення пере-
ривань, переривання буде негайно вимкнено. Жодне переривання
не буде виконано після інструкції CLI, навіть якщо воно відбува-
ється одночасно з інструкцією CLI.

У разі використання інструкції SEI для ввімкнення переривань,
інструкція, що слідує після SEI, буде виконана перед будь-якими
незавершеними перериваннями.

Час від настання переривання до початку його виконання для
всіх увімкнених переривань мікроконтролерів AVR становить міні-
мум чотири такти. Після чотирьох тактів виконується фактична
процедура обробки переривання за адресою програмного вектору.
Протягом цього 4-тактового періоду лічильник програм зберігається
в стеку. Вектор зазвичай є переходом до процедури переривання,
і цей перехід займає три такти. Якщо під час виконання багатотак-
тової інструкції виникає переривання, ця інструкція завершується
до того, як переривання обслуговується. Якщо переривання вини-
кає, коли мікроконтролер знаходиться в режимі сну, час відповіді
на виконання переривання збільшується на чотири такти. Це збіль-
шення відбувається на додаток до часу запуску з вибраного режиму
сну. Повернення з процедури обробки переривань займає чотири
такти. Протягом цих чотирьох тактових циклів програмний лічиль-
ник (2 байти) повертається зі стеку, вказівник стека збільшується
на 2 і встановлюється біт І у регістрі SREG.

30912	 Практична робота № 3 «Програмування таймерів мікроконтролера AVR»

Зовнішні переривання. Зовнішні переривання викликаються
виводами INT0 і INT1. Зауважте, що якщо їх ввімкнено, перери-
вання запускатимуться, навіть якщо контакти INT0..1 налаштовані
як виходи. Ця функція забезпечує спосіб генерації програмного
переривання. Зовнішні переривання можуть бути викликані спада-
ючим та/або наростаючим фронтом або низьким рівнем. Це нала-
штовується за допомогою регістру керування мікроконтролером –
MCUCR. Якщо зовнішнє переривання увімкнено та налаштоване
для спрацьовування по рівню, воно запускатиметься, доки кон-
такт утримується на низькому логічному рівні. Зауважте, що роз-
пізнавання переривань по спадаючому або наростаючому фронту
на INT0 і INT1 вимагає наявності тактового сигналу вводу-виводу.
Переривання по низькому рівню на INT0/INT1 виявляються асин-
хронно. Це означає, що ці переривання можна використовувати для
виведення мікроконтролера із режимів сну, відмінних від неактив-
ного режиму. Тактовий сигнал вводу-виводу зупиняється в усіх
режимах сну, крім неактивного.

Зауважте, що якщо переривання, викликане рівнем, вико-
ристовується для пробудження з режиму вимкнення живлення,
змінений рівень потрібно утримувати деякий час, щоб розбудити
MCU. Це робить MCU менш чутливим до шуму. Змінений рівень
двічі перевіряється тактовим сигналом сторожового таймера.
Номінальний період генератора сторожового таймера становить

Рисунок 12.1 – Вектори переривань ATMega8

310 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

1 мкс при 5,0 В і 25 °C. Мікроконтролер вийде з режиму сну, якщо
вхідний сигнал має необхідний рівень протягом цієї вибірки або
якщо цей рівень утримується до кінця часу запуску. Якщо низький
рівень виявляється протягом двох тактових імпульсів сторожового
таймера, але зникає до закінчення часу запуску, мікроконтролер
все одно вийде з режиму сну, але переривання не буде створено.
Необхідний рівень має утримуватись достатньо довго, щоб мікро-
контролер завершив пробудження, щоб ініціювати переривання
по рівню.

Регістр керування мікроконтролером – MCUCR містить біти
для керування зовнішніми перериваннями і загальними функціями
мікроконтролера (рис. 12.2).

Рисунок 12.2 – Регістр керування мікроконтролером – MCUCR

Біти 3, 2 – ISC11, ISC10: управління умовою настання
зовнішнього переривання 1, Біт 1 і Біт 0. Зовнішнє переривання
1 активується зовнішнім виводом INT1, якщо встановлено біт
I у регістрі SREG і відповідну маску переривання в регістрі GICR.
Рівень і фронти на зовнішньому контакті INT1, які активують пере-
ривання, визначені в таблиці 12.1.

Таблиця 12.1 – Рівень і фронти на зовнішньому контакті INT1
ISC11 ISC10 Опис

0 0
Низький рівень на виводі INT1 генерує запит
на переривання

0 1 Будь-яка зміна рівня на виводі INT1 генерує запит
на переривання

1 0 Спадаючий фронт на виводі INT1 генерує запит
на переривання

1 1 Наростаючий фронт на виводі INT1 генерує запит
на переривання

31112	 Практична робота № 3 «Програмування таймерів мікроконтролера AVR»

Значення на контакті INT1 зчитується перед виявленням фрон-
тів. Якщо вибрано переривання по фронту або перемикання,
імпульси, які тривають довше одного тактового періоду, генерува-
тимуть переривання. Коротші імпульси не гарантують створення
переривання. Якщо вибрано переривання по низькому рівню, то він
має утримуватися до завершення поточної інструкції, щоб ство-
рити переривання.

Біти 1, 0 – ISC01, ISC00: управління умовою настання
зовнішнього переривання 0, Біт 1 і Біт 0. Зовнішнє перери-
вання 0 активується зовнішнім виводом INT0, якщо встановлено
біт I у регістрі SREG і відповідну маску переривання в регістрі
GICR. Рівень і фронти на зовнішньому контакті INT0, які акти-
вують переривання, визначені в таблиці 4.3. Значення на контакті
INT0 зчитується перед виявленням фронтів. Якщо вибрано перери-
вання по фронту або перемикання, імпульси, які тривають довше
одного тактового періоду, генеруватимуть переривання. Коротші
імпульси не гарантують створення переривання. Якщо вибрано
переривання по низькому рівню, то він має утримуватися до завер-
шення поточної інструкції, щоб створити переривання. Загальний
регістр керування перериваннями – GICR (рис. 12.3).

Рисунок 12.3 – Загальний регістр керування перериваннями – GICR

Біт 7 – INT1: дозвіл запиту зовнішнього переривання 1.
Коли біт INT1 встановлено (один) і біт I в регістрі стану SREG
встановлено (один), зовнішнє переривання увімкнено. Біти
1/0 керування умовою настання переривання (ISC11 та ISC10)
у загальному регістрі керування мікроконтролера MCUCR
визначають, чи активується зовнішнє переривання наростаючим
та/або спадаючим фронтом на виводі INT1, або низьким рівнем.
Зміна рівня виводу спричинить запит на переривання, навіть

312 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

якщо INT1 налаштовано як вихід. Відповідне переривання
«Запит зовнішнього переривання 1» виконується з вектору пере-
ривання INT1.

Біт 6 – INT0: дозвіл запиту зовнішнього переривання 0. Коли
біт INT0 встановлено (один) і біт I в регістрі стану SREG встанов-
лено (один), зовнішнє переривання увімкнено. Біти 1/0 керування
умовою настання переривання (ISC01 та ISC00) у загальному регі-
стрі керування мікроконтролера MCUCR визначають, чи акти-
вується зовнішнє переривання наростаючим та/або спадаючим
фронтом на виводі INT0, або низьким рівнем. Зміна рівня виводу
спричинить запит на переривання, навіть якщо INT0 налаштовано
як вихід. Відповідне переривання «Запит зовнішнього переривання
0» виконується з вектору переривання INT0.

Загальний регістр прапорів переривань – GIFR (рис. 12.4).

Рисунок 12.4 – Загальний регістр прапорів переривань – GIFR

Біт 7 – INTF1: прапор зовнішнього переривання 1.
Коли подія на виводі INT1 викликає запит на переривання,
біт INTF1 встановлюється (стає одиницею). Якщо біт І в регістрі
SREG і біт INT1 біт в регістрі GICR встановлені (один), мікро-
контролер перейде до відповідного вектору переривань. Прапор
очищується, коли виконується підпрограма переривання. Крім
того, прапор можна очистити, записавши в нього логічну оди-
ницю. Цей прапор завжди скинутий, коли INT1 налаштовано
як переривання по рівню.

Біт 6 – INTF0: прапор зовнішнього переривання 0. Коли подія
на виводі INT0 викликає запит на переривання, біт INTF0 встанов-
люється (стає одиницею). Якщо біт І в регістрі SREG і біт INT0
біт в регістрі GICR встановлені (один), мікроконтролер перейде
до відповідного вектору переривань. Прапор очищується, коли

31312	 Практична робота № 3 «Програмування таймерів мікроконтролера AVR»

виконується підпрограма переривання. Крім того, прапор можна
очистити, записавши в нього логічну одиницю. Цей прапор завжди
скинутий, коли INT0 налаштовано як переривання по рівню.

12.2.2 8-бітний таймер-лічильник 0 мікроконтролера ATMega8

Таймер-лічильник 0 – одноканальний 8-розрядний модуль тай-
мера-лічильника загального призначення. Основні особливості:

‒	 Одноканальний лічильник.
‒	 Генератор частоти.
‒	 Лічильник зовнішніх подій.
‒	 10-бітовий попередній дільник тактового сигналу.
Спрощена блок-схема 8-розрядного таймера-лічильника пока-

зана на рисунку 12.5.
Регістри. Таймер-лічильник (TCNT0) є 8-розрядним регістром.

Усі сигнали запиту на переривання (скорочено Int. Req. на рис. 12.5)
відображаються в регістрі прапорів переривання таймера (TIFR).
Всі переривання індивідуально маскуються за допомогою регі-
стра маски переривання таймера (TIMSK). TIFR і TIMSK не пока-
зані на рис. 12.5, оскільки ці регістри спільно використовуються
іншими блоками таймерів.

Таймер-лічильник може тактуватися внутрішньо або через
попередній дільник, або зовнішнім джерелом імпульсів на кон-
такті T0. Логічний блок вибору тактового сигналу контролює,
яке джерело та фронт тактового сигналу таймер-лічильник вико-
ристовує для збільшення свого значення. Таймер-лічильник
неактивний, якщо не вибрано джерело тактового сигналу. Вихід
блоку вибору тактового сигналу називається тактовим сигналом
таймера (clkT0).

Визначення. Багато посилань на регістри та біти в цій лек-
ції написані у загальній формі. Літера “n” замінює номер тай-
мера-лічильника, у цьому випадку, 0. Однак, коли в програмі
використовується регістр або біт, необхідно використовувати
точну форму, тобто TCNT0 для доступу до значення лічильника
таймера-лічильника 0 і так далі. Визначення в таблиці 12.2 також
широко використовуються далі.

314 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Джерела тактового сигналу таймера-лічильника. Таймер-
лічильник може тактуватися внутрішнім або зовнішнім джерелом так-
тового сигналу. Джерело вибирається блоком вибору тактового сигналу,
який керується бітами вибору тактового сигналу (CS02:0), розташова-
ними в регістрі керування таймером-лічильником (TCCR0).

Таблиця 12.2 – Визначення
Визначення Значення

Нижнє значення,
BOTTOM

Лічильник досягає нижнього значення,
коли стає 0x00

Максимум,
MAX

Лічильник досягає свого максимуму,
коли він стає 0xFF (десяткове число 255)

Лічильник. Основною частиною 8-розрядного таймера-лічиль-
ника є блок програмованого лічильника. На рис. 12.6 показана
блок-схема лічильника та його оточення.

Опис сигналів (внутрішні сигнали):
‒	 count Збільшує TCNT0 на 1;
‒	 clkTn Тактовий сигнал таймера-лічильника, далі згадується як clkT0;
‒	 max Сигналізує, що TCNT0 досяг максимального значення.

Рисунок 12.5 – Спрощена блок-схема 8-розрядного

таймера-лічильника

31512	 Практична робота № 3 «Програмування таймерів мікроконтролера AVR»

Лічильник збільшується на кожному такті таймера (clkT0).
clkT0 може генеруватися зовнішнім або внутрішнім джерелом так-
тового сигналу за допомогою бітів вибору тактового сигналу
(CS02:0). Якщо джерело тактового сигналу не вибрано (CS02:0 = 0),
таймер зупиняється. Однак ЦП може отримати доступ до значення
TCNT0, незалежно від того, присутній clkT0 чи ні. Значення, запи-
сане за допомогою ЦП, перевизначає значення таймера, отримане
при операціях очищення чи рахунку лічильника.

Принцип дії. Напрямок рахунку лічильника завжди вгору
(збільшення), а очищення лічильника не виконується. Лічильник
просто переповнюється, коли він проходить максимальне 8-бітне
значення (MAX = 0xFF), а потім перезапускається з нижнього
значення (0x00). У нормальній роботі прапор переповнення тай-
мера-лічильника (TOV0) буде встановлено в той самий цикл тай-
мера, коли TCNT0 стає нульовим. Прапор TOV0 у цьому випадку
поводиться як дев’ятий біт, за винятком того, що він може лише
бути встановленим, а не скинутим. Однак у поєднанні з перериван-
ням переповнення таймера, яке автоматично очищає прапор TOV0,
роздільну здатність таймера можна збільшити за допомогою про-
грамного забезпечення. Нове значення лічильника можна записати
будь-коли.

Часові діаграми таймера-лічильника. Таймер-лічильник
є синхронним модулем, тому на рисунках тактовий сигнал тай-
мера (clkT0) показаний як сигнал увімкнення тактового сигналу.
Рисунки містять інформацію про те, коли встановлюються прапори

Рисунок 12.6 – Блок-схема лічильника та його оточення

316 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

переривання. Рис. 12.7 містить дані тактування при нормаль-
ній роботі таймера-лічильника. Показана послідовність рахунку,
близька до максимального значення.

На рис. 12.8 показані ті самі дані про тактування, але з увімкне-
ним попереднім дільником (fclkI/O/8).

Рисунок 12.7 – Дані тактування при нормальній роботі

таймера-лічильника

Рисунок 12.8 – Дані про тактування з увімкненим попереднім

дільником

Опис регістрів 8-бітного таймера-лічильника 0 мікроконт-
ролера ATMega8:

Регістр керування таймером-лічильником – TCCR0 зобра-
жено на рис. 12.9.

31712	 Практична робота № 3 «Програмування таймерів мікроконтролера AVR»

Біти 2:0 – CS02:0: Вибір тактового сигналу. Три біти вибору
тактового сигналу вибирають джерело тактового сигналу, яке буде
використовуватися таймером-лічильником.

Якщо для таймера-лічильника0 використовуються режими так-
тування від зовнішніх сигналів, зміни на виводі T0 змінюватимуть
лічильник, навіть якщо цей вивід налаштовано як вихід. Ця функ-
ція дозволяє програмно контролювати рахунок таймера.

Налаштування таймера за бітами тактового сигналу представ-
лено у таблиці 12.3.

Таблиця 12.3 – Налаштування таймера за бітами тактового сигналу
CS02 CS01 CS00 Опис

0 0 0 Немає тактового сигналу (таймер-лічильник
зупинений)

0 0 1 clkI/O (без попереднього дільника)
0 1 0 clkI/O/8 (від попереднього дільника)
0 1 1 clkI/O/64 (від попереднього дільника)
1 0 0 clkI/O/256 (від попереднього дільника)
1 0 1 clkI/O/1024 (від попереднього дільника)

1 1 0 Зовнішній тактовий сигнал на виводі T0.
Синхронізація по спадаючому фронту

1 1 1 Зовнішній тактовий сигнал на виводі T0.
Синхронізація по зростаючому фронту

Регістр таймера-лічильника – TCNT0 зображено на рис. 12.10.
Регістр таймера-лічильника надає прямий доступ як для опера-

цій читання, так і для запису до 8-розрядного лічильника модуля
таймера-лічильника.

Регістр маски переривання таймерів-лічильників – TIMSK
зображено на рис 12.11.

Рисунок 12.9 – Регістр керування таймером-лічильником – TCCR0

318 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Біт 0 – TOIE0: Ввімкнення переривання по переповненню
таймера-лічильника 0. Коли біт TOIE0 встановлено як 1, і біт I
в регістрі стану також встановлений як 1, переривання по перепов-
ненню таймера-лічильника 0 увімкнено. Відповідне переривання
генерується, якщо відбувається переповнення таймера-лічильника
0, тобто коли встановлюється біт TOV0 в регістрі прапорів перери-
вання таймерів-лічильників TIFR.

Регістр прапорів переривання таймерів-лічильників – TIFR
зображено на рис. 12.12.

Рисунок 12.10 – Регістр таймера-лічильника – TCNT0

Рисунок 12.11 – Регістр маски переривання

таймерів-лічильників – TIMSK

Рисунок 12.12 – Регістр прапорів переривання

таймерів-лічильників – TIFR

Біт 0 – TOV0: прапор переповнення таймера-лічильника 0.
Біт TOV0 встановлюється в 1, коли відбувається переповнення тай-
мера-лічильника 0. TOV0 очищується апаратним забезпеченням
під час виконання відповідного вектору обробки переривань. Крім
того, TOV0 очищується шляхом запису логічної одиниці у біт пра-
пора. Коли встановлено біт І регістру SREG, TOIE0 регістру TIMSK

31912	 Практична робота № 3 «Програмування таймерів мікроконтролера AVR»

і TOV0 у регістрі TIFR, генерується переривання по переповненню
таймера-лічильника 0.

16-бітний таймер-лічильник 1 мікроконтролера ATMega8
16-розрядний блок таймера-лічильника дозволяє точно визна-

чати час виконання програми (керування подіями), генерувати
прямокутний сигнал та вимірювати тривалість сигналів. Основні
особливості:

‒	 Справжній 16-бітний дизайн (тобто дозволяє 16-бітний ШІМ).
‒	 Два незалежних блоки порівняння.
‒	 Подвійно буферизовані регістри порівняння.
‒	 Один блок захоплення.
‒	 Фільтр шуму на вході захоплення.
‒	 Очистка таймеру під час порівняння (автоматичне пере-

завантаження).
‒	 Широтно-імпульсний модулятор (ШІМ) без збоїв, і з корек-

цією фази.
‒	 Змінний період ШІМ.
‒	 Генератор частоти.
‒	 Лічильник зовнішніх подій.
‒	 Чотири незалежних джерела переривань (TOV1, OCF1A,

OCF1B і ICF1).
Більшість посилань на регістри та біти в цьому розділі написані

у загальній формі. Літера “n” замінює номер таймера-лічильника,
а літера “x” замінює вихідний канал порівняння. Однак, коли в про-
грамі використовується регістр або біт, необхідно використовувати
точну форму, тобто TCNT1 для доступу до значення лічильника
таймера-лічильника тощо.

Спрощена блок-схема 16-розрядного таймера-лічильника 1
показана на рис. 12.13.

Регістри. Таймер-лічильник (TCNT1), регістри порівняння
(OCR1A/B) і регістр захоплення (ICR1) є 16-розрядними регі-
страми. Під час доступу до 16-розрядних регістрів необхідно
дотримуватися спеціальних процедур, що описані далі. Регістри
керування таймером-лічильником (TCCR1A/B) є 8-розрядними
регістрами і не мають обмежень доступу до ЦП. Усі сигнали
запитів на переривання (скорочено Int. Req. на рисунку 3.13)

320 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

відображаються в реєстрі прапорів переривання таймера (TIFR).
Усі переривання індивідуально маскуються за допомогою регістра
маски переривань таймерів (TIMSK). TIFR і TIMSK не показані
на рисунку 12.13, оскільки ці регістри спільно використовуються
іншими блоками таймерів.

Рисунок 12.13 – Спрощена блок-схема 16-розрядного

таймера-лічильника 1

Таймер-лічильник можна тактувати внутрішньо, через попередній
дільник, або зовнішнім джерелом тактування на виводі T1. Логічний
блок вибору тактового сигналу контролює джерело тактового сигналу

32112	 Практична робота № 3 «Програмування таймерів мікроконтролера AVR»

та фронт, які таймер-лічильник використовує для збільшення (або
зменшення) свого значення. Таймер-лічильник неактивний, якщо
не вибрано джерело тактування. Вихід блоку вибору тактового сиг-
налу називається тактовим сигналом таймера (clkT1).

Подвійно буферизовані регістри порівняння (OCR1A/B) постійно
порівнюються зі значенням таймера-лічильника. Результат порів-
няння може бути використаний генератором сигналів для генерації
вихідного сигналу ШІМ або змінної частоти на виводах порівняння
(OC1A/B). Подія «Збіг при порівнянні» також встановлює прапор
збігу при порівнянні (OCF1A/B), який можна використовувати для
створення запиту на відповідне переривання.

Регістр захоплення може фіксувати значення таймера-лічиль-
ника при заданій зовнішній події на виводі захоплення (ICP1) або
на виводах аналогового компаратора. Блок захоплення вхідного
сигналу містить блок цифрової фільтрації для зменшення ймовір-
ності захоплення шумових змін на вході.

Верхнє або максимальне значення таймера-лічильника в деяких
режимах роботи може бути визначено регістром OCR1A, регі-
стром ICR1 або набором фіксованих значень. Якщо OCR1A вико-
ристовується як верхнє значення у режимі ШІМ, регістр OCR1A
не може використовуватися для генерації виходу ШІМ. Однак
у цьому випадку верхнє значення буде подвійно буферизовано,
що дозволяє змінювати його під час виконання. Якщо потрібне
фіксоване верхнє значення, регістр ICR1 можна використову-
вати як альтернативу, звільняючи OCR1A для використання
як виходу ШІМ.

Визначення. У цій практичній роботі широко використову-
ються такі визначення (табл 12.4).

Джерела тактового сигналу таймера-лічильника 1.
Таймер-лічильник може тактуватися внутрішнім або зовнішнім
джерелом тактового сигналу. Джерело тактового сигналу виби-
рається блоком вибору тактового сигналу, який керується бітами
вибору тактового сигналу (CS12:0), розташованими в регістрі керу-
вання таймером-лічильником B (TCCR1B).

Модуль лічильника. Основною частиною 16-бітного тай-
мера-лічильника 1 є програмований 16-бітний двонаправлений

322 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

лічильник. На рисунку 12.14 показана блок-схема лічильника
та його оточення.

Таблиця 12.4 – Визначення
Визначення Значення

Нижнє значення,
BOTTOM

Лічильник досягає нижнього значення, коли стає 0x0000

Максимум,
MAX

Лічильник досягає свого максимуму, коли він стає
0xFFFF (десяткове число 65535)

Верхнє значення,
TOP

Лічильник досягає верхнього значення, коли стає рівним
найвищому значенню в послідовності підрахунку. Верхнє
значення можна встановити рівним одному з фіксова-
них значень: 0x00FF, 0x01FF або 0x03FF, або значенню,
що зберігається в регістрі OCR1A або ICR1

Рисунок 12.14 – Блок-схема лічильника та його оточення

Опис сигналів (внутрішні сигнали):
count – Збільшення або зменшення TCNT1 на 1;
direction – Вибір напрямку рахунку таймера між збільшенням

і зменшенням;
clear – Очистити TCNT1 (встановити всі біти як 0);
clkT1 – Тактовий сигнал таймера-лічильника;
TOP – Сигналізує, що TCNT1 досяг верхнього значення;
BOTTOM – Сигналізує, що TCNT1 досяг нижнього значення (нуль);
16-розрядний лічильник розташований в двох 8-розряд-

них комірках пам’яті вводу-виводу: старшому байті лічильника

32312	 Практична робота № 3 «Програмування таймерів мікроконтролера AVR»

(TCNT1H), що містить вісім старших бітів лічильника, і нижчому
байті лічильника (TCNT1L), що містить нижні вісім бітів. ЦП може
отримати доступ до регістру TCNT1H лише опосередковано. Коли
ЦП здійснює доступ до регістру вводу-виводу TCNT1H, він отри-
мує доступ до тимчасового регістра старшого байту (TEMP).
Тимчасовий регістр оновлюється значенням TCNT1H під час зчи-
тування TCNT1L, а TCNT1H оновлюється значенням тимчасового
регістру під час запису TCNT1L. Це дозволяє процесору читати
або записувати все 16-бітне значення лічильника протягом одного
такту через 8-бітну шину даних. Важливо зауважити, що існують
особливі випадки запису в регістр TCNT1 під час рахунку лічиль-
ника, які дадуть непередбачувані результати.

Залежно від використовуваного режиму роботи лічильник очи-
щується, збільшується або зменшується на кожному такті таймера
(clkT1). ClkT1 може бути згенерований зовнішнім або внутріш-
нім джерелом тактового сигналу, вибраним бітами вибору так-
тового сигналу (CS12:0). Якщо джерело тактування не вибрано
(CS12:0 = 0), таймер зупиняється. Однак ЦП може отримати доступ
до значення TCNT1 незалежно від того, присутній clkT1 чи ні. Запис
за допомогою ЦП перевизначає значення отримані в результаті усіх
операцій очищення чи рахунку лічильника.

Послідовність рахунку визначається налаштуванням бітів
режиму генерації сигналу (WGM13:0), розташованих у регістрах
керування таймером-лічильником A та B (TCCR1A та TCCR1B).
Існують тісні зв’язки між тим, як лічильник поводиться (рахує),
і як сигнали генеруються на виходах порівняння OC1x.

Прапор переповнення таймера-лічильника (TOV1) встановлю-
ється відповідно до режиму роботи, вибраного бітами WGM13:0.
TOV1 можна використовувати для генерації переривання.

Блоки порівняння. 16-розрядний компаратор безперервно порів-
нює TCNT1 з регістром порівняння (OCR1x). Якщо TCNT дорівнює
OCR1x, компаратор сигналізує про збіг. При цьому встановлюється
прапор порівняння (OCF1x) на наступному такті таймера. Прапор
порівняння генерує відповідне переривання, якщо воно увімкнено
(OCIE1x = 1). Прапор OCF1x автоматично очищується, коли викону-
ється підпрограма обробки переривання. Крім того, прапор OCF1x

324 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

може бути очищений програмним забезпеченням, при записі логіч-
ної одиниці у нього. Генератор сигналів використовує сигнал збігу
для генерування вихідних даних відповідно до режиму роботи, вста-
новленого бітами режиму генерації сигналу (WGM13:0) і режиму
порівняння (COM1x1:0). Сигнали нижнього і верхнього значень
використовуються генератором сигналів для обробки особливих
випадків граничних значень у деяких режимах роботи.

Спеціальна функція блоку порівняння A дозволяє йому визначати
верхнє значення таймера-лічильника (тобто роздільну здатність лічиль-
ника). Окрім роздільної здатності лічильника, верхнє значення визначає
тривалість періоду для сигналів, створених генератором сигналів.

На рис. 12.15 показана блок-схема блоку порівняння. Маленьке
“n” в іменах регістрів і бітів вказує на номер таймера (n = 1 для тай-
мера-лічильника 1), а “x” вказує на назву блока порівняння вихідних
даних (A/B). Елементи блок-схеми, які безпосередньо не є части-
ною блоку порівняння вихідних даних, виділені сірим кольором.

Рисунок 12.15 – Блок-схема блоку порівняння

32512	 Практична робота № 3 «Програмування таймерів мікроконтролера AVR»

Регістр OCR1x подвійно буферизується при використанні
будь-якого з дванадцяти режимів широтно-імпульсної модуляції
(ШІМ). Для нормального режиму роботи та режиму «Очищення
таймера при збігу» подвійна буферизація вимкнена. Подвійна
буферизація синхронізує оновлення регістра порівняння OCR1x
до верхнього або нижнього значення рахунку. Синхронізація запо-
бігає появі непарної довжини несиметричних ШІМ-імпульсів, тим
самим роблячи вихідний сигнал без збоїв.

Доступ до регістру OCR1x може здатися складним, але це не так.
Коли подвійну буферизацію ввімкнено, ЦП має доступ до регістру
буфера OCR1x, і якщо подвійну буферизацію вимкнено, ЦП має
доступ до OCR1x безпосередньо. Вміст регістра OCR1x (буфер або
порівняння) змінюється лише операцією запису (таймер-лічильник
не оновлює цей регістр автоматично, як регістри TCNT1 та ICR1).
Тому OCR1x не читається через тимчасовий регістр старшого байту
(TEMP). Однак, як під час доступу до інших 16-бітних регістрів,
рекомендується спочатку читати молодший байт. Запис регістрів
OCR1x має здійснюватися через регістр TEMP, оскільки порівняння
всіх 16-розрядних даних виконується постійно. Першим потрібно
записати старший байт (OCR1xH). Коли значення старшого байту
записується центральним процесором, регістр TEMP буде онов-
лено записаним значенням. Потім, коли записується молодший
байт (OCR1xL), старший байт буде скопійовано у старші 8 бітів або
буфера OCR1x, або регістра порівняння OCR1x у тому самому так-
товому циклі системи.

Примусове порівняння. У режимах генерації сигналу без
ШІМ вихідний сигнал компаратора можна примусово встано-
вити, записавши одиницю в біт «Примусове порівняння» (FOC1x).
Примусове порівняння не встановлює прапор OCF1x і не переза-
вантажує/скидає таймер, але вивід OC1x буде оновлено так, ніби
відбулося справжнє порівняння (параметри бітів COM1x1:0 визна-
чають, чи вивід ОС1х буде встановлено, скинуто або перемкнуто).

Блокування збігу при порівнянні шляхом запису у TCNT1.
Усі записи центральним процесором в регістр TCNT1 блокувати-
муть будь-який збіг при порівнянні, який відбувається в наступному
такті таймера, навіть якщо таймер зупинено. Ця функція дозволяє

326 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

встановити у OCR1x таке саме значення, що й TCNT1, не запуска-
ючи переривання, коли ввімкнено тактування таймера-лічильника.

Використання блоку порівняння. Оскільки запис у TCNT1
у будь-якому режимі роботи блокуватиме всі збіги при порів-
нянні протягом одного тактового циклу таймера, є ризики, пов’я-
зані зі зміною TCNT1 під час використання будь-якого з вихідних
каналів порівняння, незалежно від того, працює таймер-лічиль-
ник чи ні. Якщо значення, записане в TCNT1, дорівнює зна-
ченню OCR1x, збіг при порівнянні буде пропущено, що призведе
до неправильної генерації сигналу. Не записуйте TCNT1 рівним
верхньому значенню у режимах ШІМ зі змінними верхніми зна-
ченнями. Збіг при порівняльний для верхнього значення буде про-
ігноровано, а лічильник продовжить рахувати до 0xFFFF. Так само
не записуйте значення TCNT1, що дорівнює нижньому значенню,
коли лічильник рахує вниз.

Налаштування OC1x слід виконати перед налаштуванням регі-
стра напрямку даних для порту вводу-виводу. Найпростішим спосо-
бом встановлення значення OC1x є використання біту «Примусове
порівняння» (FOC1x) у нормальному режимі. Регістр OC1x збері-
гає своє значення навіть при зміні режимів генерації сигналу.

Майте на увазі, що біти COM1x1:0 не буферизуються подвійно,
як регістри порівняння. Зміна бітів COM1x1:0 набуде чинності
негайно.

Блок збігу при порівнянні. Біти режиму виводів порівняння
(COM1x1:0) мають дві функції. Генератор сигналу використо-
вує біти COM1x1:0 для визначення стану порівняння (OC1x) під
час наступного збігу при порівнянні. По-друге, біти COM1x1:0
керують джерелом вихідного сигналу OC1x. На рис. 12.16 пока-
зано спрощену схему логіки, на яку впливає налаштування бітів
COM1x1:0. Регістри вводу-виводу, біти вводу-виводу та контакти
вводу-виводу на рисунку виділені жирним шрифтом. Показано
лише частини загальних регістрів керування портом вводу-виводу
(DDR і PORT), на які впливають біти COM1x1:0. Коли йдеться про
стан OC1x, посилання стосується внутрішнього регістру OC1x,
а не контакту OC1x. Якщо відбувається скидання системи, регістр
OC1x скидається у «0».

32712	 Практична робота № 3 «Програмування таймерів мікроконтролера AVR»

Функція загального порту вводу-виводу перевизначається
на вихід порівняння (OC1x) від генератора сигналу, якщо встанов-
лено один із бітів COM1x1:0. Однак напрямок виводу OC1x (вхід
або вихід) усе ще контролюється регістром напряму даних (DDR)
для виводу порту. Біт регістра направлення даних для виводу OC1x
(DDR_OC1x) має бути встановлений як вихідний, перш ніж зна-
чення OC1x буде видно на виводі. Функція перевизначення порту
зазвичай не залежить від режиму генерації сигналу, але є деякі
винятки.

Конструкція логіки виводу порівняльного дозволяє ініціалізу-
вати стан OC1x до ввімкнення виводу. Зауважте, що деякі налаш-
тування бітів COM1x1:0 зарезервовані для певних режимів роботи.

Біти COM1x1:0 не впливають на блок захоплення.

Режим порівняння та генерація сигналу. Генератор сигналів
по-різному використовує біти COM1x1:0 у звичайному режимі,
режимі очищення таймера при збігу і ШІМ. Для всіх режимів вста-
новлення COM1x1:0 = 0 повідомляє генератору сигналу, що жодних

Рисунок 12.16 – Спрощена схема логіки блоку збігу

328 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

дій у регістрі OC1x не потрібно виконувати під час наступного
порівняння.

Зміна стану бітів COM1x1:0 матиме ефект під час першого збігу
при порівнянні після запису бітів. Для режимів без ШІМ дію можна
примусово виконати за допомогою бітів FOC1x.

Режими роботи. Режим роботи (тобто поведінка тай-
мера-лічильника та виводів порівняння) визначається комбінацією
бітів режиму генерації сигналу (WGM13:0) і режиму порівняння
(COM1x1:0). Біти режиму порівняння не впливають на послідов-
ність рахунку, тоді як біти режиму генератора сигналу вплива-
ють. Біти COM1x1:0 визначають, чи слід інвертувати згенеро-
ваний вихід ШІМ чи ні (інвертований чи неінвертований ШІМ).
Для режимів без ШІМ біти COM1x1:0 контролюють, чи вихідний
сигнал під час збігу при порівнянні має бути встановлений, очи-
щений або перемкнутий.

Звичайний режим. Найпростішим режимом роботи є звичай-
ний режим (WGM13:0 = 0). У цьому режимі напрямок рахунку
завжди спрямований вгору (збільшується), а очищення лічиль-
ника не виконується. Лічильник просто переповнюється, коли
він проходить максимальне 16-бітне значення (MAX = 0xFFFF),
а потім перезапускається з нижнього значення (0x0000). У звичай-
ній роботі прапор переповнення таймера-лічильника (TOV1) буде
встановлено в той самий цикл таймера, коли TCNT1 стає рівним 0.
Прапор TOV1 у цьому випадку поводиться як 17-й біт, за винятком
того, що він може бути тільки встановленим, а не скинутим. Однак
у поєднанні з перериванням переповнення таймера, яке автома-
тично очищає прапор TOV1, роздільну здатність таймера можна
збільшити за допомогою програмного забезпечення. У звичай-
ному режимі немає особливих випадків, нове значення лічильника
можна записати будь-коли.

Блок захоплення просто використовувати в звичайному режимі.
Однак зауважте, що максимальний інтервал між зовнішніми поді-
ями не повинен перевищувати роздільну здатність лічильника.
Якщо інтервал між подіями занадто тривалий, для збільшення роз-
дільної здатності блоку захоплення слід використовувати перери-
вання переповнення таймера або попередній дільник.

32912	 Практична робота № 3 «Програмування таймерів мікроконтролера AVR»

Блоки порівняння можна використовувати для генерації перери-
вань у певний момент часу. Використання порівняння для генеру-
вання сигналів у нормальному режимі не рекомендується, оскільки
це займе надто багато часу ЦП.

Очищення таймеру при збігу (ОТЗ). У режимі очищення
таймеру при збігу (WGM13:0 = 4 або 12) регістри OCR1A або
ICR1 використовуються для керування роздільною здатністю
лічильника. У режимі ОТЗ лічильник обнулюється, коли значення
лічильника (TCNT1) збігається з OCR1A (WGM13:0 = 4) або ICR1
(WGM13:0 = 12). OCR1A або ICR1 визначають верхнє значення
для лічильника, отже, також його роздільну здатність. Цей режим
дозволяє краще контролювати вихідну частоту таймера. Це також
спрощує роботу рахунку зовнішніх подій. Часова діаграма для
режиму ОТЗ показана на рис. 12.17. Значення лічильника (TCNT1)
збільшується, доки не відбудеться збіг зі значенням OCR1A або
ICR1, а потім лічильник (TCNT1) очищується.

Рисунок 12.17 – Часова діаграма для режиму ОТЗ

Кожного разу, коли значення лічильника досягає верхнього
значення, може бути згенероване переривання, використовуючи
прапор OCF1A або ICF1 відповідно до регістру, який використо-
вується для визначення верхнього значення. Якщо переривання
ввімкнено, програму обробки переривань можна використовувати

330 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

для оновлення верхнього значення. Однак, змінюючи верхнє зна-
чення на значення, близьке до нижнього, коли лічильник працює
без попереднього дільника або з низьким значенням попереднього
дільника, слід виконувати обережно, оскільки режим ОТЗ не має
функції подвійної буферизації. Якщо нове значення, записане
в OCR1A або ICR1, є нижчим за поточне значення TCNT1, лічиль-
ник пропустить збіг при порівнянні. Тоді лічильнику доведеться
рахувати до свого максимального значення (0xFFFF) і починати
з 0x0000, перш ніж відбудеться порівняння. У багатьох випад-
ках ця функція є небажаною. Альтернативою буде використання
режиму швидкої ШІМ з використанням OCR1A для визначення
верхнього значення (WGM13:0 = 15), оскільки тоді OCR1A буде
подвійно буферизований.

Для генерування вихідного сигналу в режимі ОТЗ вихід OC1A
може бути налаштований на перемикання свого логічного рівня при
кожному збігу при порівнянні, установивши біти режиму виводу
порівняння на режим перемикання (COM1A1:0 = 1). Значення
OC1A не з’явиться на виводі, якщо напрям даних для нього не нала-
штовано як вихід (DDR_OC1A = 1). Згенерований сигнал матиме
максимальну частоту fOC1A = fclk_I/O/2, коли OCR1A встановлено
як нуль (0x0000). Частота вихідного сигналу визначається наступ-
ним рівнянням:

f
f

N OCRnAOCnA
CLK I O�

� � �� �
_ / .

2 1
 (12.1)

Змінна N представляє коефіцієнт попереднього поділення (1, 8,
64, 256 або 1024). Що стосується звичайного режиму роботи, пра-
пор TOV1 встановлюється в той самий тактовий цикл таймера,
в який лічильник рахує від максимального значення до 0x0000.

Режим швидкого ШІМ. Режим швидкої широтно-імпульсної
модуляції або режим швидкого ШІМ (WGM13:0 = 5, 6, 7, 14 або 15)
забезпечує можливість генерації високочастотного сигналу ШІМ.
Швидкий ШІМ відрізняється від інших варіантів ШІМ однонахи-
лою роботою. Лічильник веде відлік від нижнього до верхнього
значення, а потім перезапускається з нижнього. У неінвертова-
ному режимі порівняння вихід порівняння (OC1x) очищується при

33112	 Практична робота № 3 «Програмування таймерів мікроконтролера AVR»

збігу між TCNT1 і OCR1x і встановлюється при нижньому зна-
ченні. В режимі інвертування вихідний сигнал встановлюється при
збігу і очищується при нижньому значенні. Завдяки роботі з одним
нахилом робоча частота швидкого ШІМ-режиму може бути вдвічі
вищою, ніж при фазо-коректному режимі, і фазо- і частото-корект-
ному режимі ШІМ, які використовують подвійний нахил. Ця висока
частота робить режим швидкого ШІМ добре придатним для регу-
лювання потужності, випрямлення та додатків ЦАП. Висока час-
тота дозволяє використовувати зовнішні компоненти фізично
невеликого розміру (котушки, конденсатори), що знижує загальну
вартість системи.

Роздільна здатність ШІМ для швидкого ШІМ може бути встанов-
лена як 8-біт, 9-біт або 10-біт або визначена за допомогою ICR1 або
OCR1A. Мінімальна дозволена роздільна здатність – 2 біти (ICR1
або OCR1A встановлено як 0x0003), а максимальна – 16 бітів (ICR1
або OCR1A встановлено на максимальне значення). Роздільну здат-
ність ШІМ у бітах можна обчислити за допомогою такого рівняння:

R
log верхнє значення

logШШІМ �
�� �

� �
� 1

2
. (12.2)

У режимі швидкого ШІМ лічильник збільшується, доки значення
лічильника не збігається з одним із фіксованих значень 0x00FF,
0x01FF або 0x03FF (WGM13:0 = 5, 6 або 7), значенням у ICR1
(WGM13:0 = 14), або значенням в OCR1A (WGM13:0 = 15). Потім
лічильник обнулюється в наступному такті таймера. Часова діа-
грама для режиму швидкої ШІМ показана на рис. 12.18. Тут пока-
зано режим швидкої ШІМ, коли OCR1A або ICR1 використовуються
для визначення верхнього значення. Значення TCNT1 на часовій діа-
грамі показано як гістограму для ілюстрації роботи з одним нахилом.
На схемі представлені неінвертований і інвертований ШІМ-виходи.
Маленькі горизонтальні лінії на схилах TCNT1 представляють збіги
при порівнянні між OCR1x і TCNT1. Прапор переривання OC1x буде
встановлено, коли відбувається збіг при порівнянні.

Прапор переповнення таймера-лічильника (TOV1) встанов-
люється щоразу, коли лічильник досягає верхнього значення.

332 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Крім того, прапор OCF1A або ICF1 встановлюється на той самий
такт таймера, що й TOV1, коли OCR1A або ICR1 використовуються
для визначення верхнього значення Якщо одне з переривань увімк-
нено, підпрограма обробки переривань може бути використана для
оновлення верхнього значення і порівняння значень.

Рисунок 12.18 – Часова діаграма для режиму швидкої ШІМ

Під час зміни верхнього значення програма повинна перекона-
тися, що нове верхнє значення вище або дорівнює значенню всіх
регістрів порівняння. Якщо верхнє значення нижче за будь-який
з регістрів порівняння, порівняння ніколи не відбудеться між
TCNT1 і OCR1x. Зауважте, що при використанні фіксованих верх-
ніх значень невикористані біти маскуються як нулі під час запису
будь-якого з регістрів OCR1x.

Процедура оновлення ICR1 відрізняється від оновлення OCR1A,
коли він використовується для визначення верхнього значення. Регістр
ICR1 не має подвійної буферизації. Це означає, що якщо ICR1 змінено
на низьке значення, коли лічильник працює без попереднього діль-
ника або з низьким значенням попереднього дільника, існує ризик
того, що нове записане значення ICR1 буде нижчим за поточне зна-
чення TCNT1. Тоді результатом буде те, що лічильник пропустить збіг
при порівнянні із верхнім значенням. Потім лічильник буде рахувати
до максимального значення (0xFFFF) і починати з 0x0000, перш ніж

33312	 Практична робота № 3 «Програмування таймерів мікроконтролера AVR»

відбудеться порівняння. Регістр OCR1A, однак, має подвійну буфери-
зацію. Ця функція дозволяє будь-коли записувати будь-яке значення
у OCR1A. Після запису у OCR1A записане значення буде поміщено
в буферний регістр OCR1A. Потім регістр порівняння OCR1A буде
оновлено значенням у регістрі буфера під час наступного такту тай-
мера, коли TCNT1 відповідає верхньому значенню. Оновлення вико-
нується у той самий цикл таймера, коли TCNT1 очищується та вста-
новлюється прапор TOV1. Застосування регістра ICR1 для визначення
верхнього значення добре працює при використанні фіксованих верх-
ніх значень. Використовуючи ICR1, регістр OCR1A можна вільно
застосовувати для генерації виходу ШІМ на OC1A. Однак, якщо базова
частота ШІМ активно змінюється (шляхом зміни верхнього значення),
використання OCR1A як верхнього значення є кращим вибором через
його функцію подвійної буферизації.

У режимі швидкого ШІМ блоки порівняння дозволяють генеру-
вати сигнали ШІМ на виводах OC1x. Встановлення бітів COM1x1:0
як 2 створить неінвертований ШІМ, а інвертований вихід ШІМ
можна отримати, встановивши COM1x1:0 як 3. Фактичне значення
OC1x буде видно на виводі порту, якщо напрям даних для цього
виводу встановлено як вихід (DDR_OC1x). ШІМ-сигнал генеру-
ється встановленням (або очищенням) регістра OC1x при збігу між
OCR1x і TCNT1, а також очищенням (або встановленням) регістра
OC1x під час очищення лічильника таймера (коли його значення
змінюється з верхнього на нижнє).

Частоту ШІМ можна розрахувати за таким рівнянням:

f
f

N верхнє значенняOCnxШІМ
CLK I O�

� �� �
_

�
/ .

1
 (12.3)

Змінна N представляє собою значення попереднього дільника
(1, 8, 64, 256 або 1024).

Крайні значення регістра OCR1x уявляють собою особливі
випадки під час генерації сигналу ШІМ у режимі швидкого ШІМ.
Якщо OCR1x встановлено рівним нижньому значенню (0x0000),
результатом буде вузький сплеск для кожного такту таймера TOP+1.
Встановлення OCR1x рівним верхньому значенню призведе

334 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

до постійного високого або низького рівня вихідного сигналу
(залежно від полярності вихідного сигналу, встановленого бітами
COM1x1:0).

Прямокутний вихідний сигнал (з робочим циклом 50 %) у швид-
кому ШІМ-режимі може бути досягнутий шляхом налаштування
OC1A на перемикання логічного рівня під час кожного збігу при
порівнянні (COM1A1:0 = 1). Це стосується лише того випадку,
коли OCR1A використовується для визначення верхнього значення
(WGM13:0 = 15). Згенерований сигнал матиме максимальну частоту
fOC1A = fclk_I/O/2, коли OCR1A встановлено як нуль (0x0000). Ця функ-
ція подібна до перемикання OC1A в режимі ОТЗ, за винятком того,
що функція подвійної буферизації блоку порівняння увімкнена
в режимі швидкого ШІМ.

Режим фазо-коректної широтно-імпульсної модуляції. Режим
фазо-коректної широтно-імпульсної модуляції або фазо-коректного
ШІМ (WGM13:0 = 1, 2, 3, 10 або 11) забезпечує генерацію сиг-
налу ШІМ з високою роздільною здатністю. Режим фазо-корект-
ного ШІМ, як і фазо- та частото-коректного ШІМ, заснований
на роботі з подвійним нахилом. Лічильник спочатку веде рахунок
від нижнього значення (0x0000) до верхнього, а потім від верхнього
до нижнього. У неінвертованому режимі порівняння вихідний
вивід (OC1x) очищується при збігу між TCNT1 і OCR1x під час під-
рахунку вгору та встановлюється при збігу під час зворотного під-
рахунку. У режимі інвертування результатів порівняння операція
інвертується. Робота з подвійним нахилом має нижчу максимальну
робочу частоту, ніж робота з одним нахилом. Однак через симе-
тричну особливість режимів ШІМ з подвійним нахилом ці режими
є кращими для додатків керування двигуном.

У фазо-коректному режимі ШІМ лічильник збільшується, доки
його значення не збігається з одним із фіксованих значень 0x00FF,
0x01FF або 0x03FF (WGM13:0 = 1, 2 або 3), значенням у ICR1
(WGM13:0 = 10) або значенням в OCR1A (WGM13:0 = 11). Після
цього лічильник досягає верхнього значення та змінює напрямок
підрахунку. Значення TCNT1 дорівнюватиме верхньому значенню
протягом одного такту таймера. Часова діаграма для фазо-корект-
ного режиму ШІМ показана на рис. 12.19.

33512	 Практична робота № 3 «Програмування таймерів мікроконтролера AVR»

На рис. 12.19 показано фазо-коректний режим ШІМ, коли
OCR1A або ICR1 використовуються для визначення верхнього зна-
чення. Значення TCNT1 на часовій діаграмі показано як гістограма
для ілюстрації роботи подвійного нахилу. На схемі представлені
неінвертований і інвертований ШІМ-виходи. Маленькі горизон-
тальні лінії на схилах TCNT1 представляють порівняльні збіги між
OCR1x і TCNT1. Прапор переривання OC1x буде встановлено, коли
відбувається збіг при порівнянні.

Режим фазо- та частото-коректного ШІМ. Режим фазо- та час-
тото-коректної широтно-імпульсної модуляції або фазо- та час-
тото-коректного ШІМ (WGM13:0 = 8 або 9) забезпечує генерацію
ШІМ-сигналу високої роздільної здатності з правильною фазою
та частотою. Режим фазо- та частото-коректного ШІМ, як і режим
фазо-коректного ШІМ, заснований на роботі з подвійним нахи-
лом. Лічильник багаторазово веде підрахунок від нижнього зна-
чення (0x0000) до верхнього, а потім від верхнього до нижнього.
У неінвертованому режимі порівняння вихід порівняння (OC1x)
очищується при збігу між TCNT1 і OCR1x під час рахунку вгору

Рисунок 12.19 – Часова діаграма для фазо-коректного режиму ШІМ

336 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

та встановлюється при збігу при порівнянні під час зворотного
рахунку. У режимі інвертування виходу порівняння операція інвер-
тується. Робота з подвійним нахилом дає нижчу максимальну
робочу частоту порівняно з роботою з одним нахилом. Однак
через симетричну особливість режимів ШІМ з подвійним нахилом
ці режими є кращими для додатків керування двигуном.

Основна відмінність між режимом фазо-коректного ШІМ
та фазо- та частото-коректного ШІМ полягає в часі оновлення регі-
стра OCR1x буферним регістром OCR1x (рис. 12.20).

Рисунок 12.20 – Часова діаграма фазо- та частото-коректного ШІМ

Опис регістрів 16-бітного таймера-лічильника 1 мікроконт-
ролера ATMega8:

Регістр керування A таймера-лічильника 1 – TCCR1A зобра-
жено на рис. 12.21

Біти 7:6 – COM1A1:0: режим порівняння для каналу A.
Біти 5:4 – COM1B1:0: режим порівняння для каналу B
COM1A1:0 і COM1B1:0 керують поведінкою виводів порівняння

(OC1A і OC1B відповідно). Якщо один або обидва біти COM1A1:0
записані як 1, вихід OC1A перекриває нормальну роботу виводу,
до якого він підключений.

33712	 Практична робота № 3 «Програмування таймерів мікроконтролера AVR»

Якщо один або обидва біти COM1B1:0 записуються як 1, вихід
OC1B перекриває нормальну роботу виводу, до якого він підклю-
чений. Однак зауважте, що біт регістра направлення даних (DDR),
який відповідає виводу OC1A або OC1B, має бути встановлено
окремо, щоб увімкнути вихідний драйвер. Коли OC1A або OC1B
підключено до виводу, функція бітів COM1x1:0 залежить від
налаштування бітів WGM13:0. Таблиця 12.5 показує функціональні
можливості бітів COM1x1:0, коли біти WGM13:0 встановлено,
як звичайний режим або режим ОТЗ (не ШІМ).

Таблиця 12.5 – Функціональні можливості бітів COM1x1:0,
коли біти WGM13:0 встановлено, як звичайний режим
або режим ОТЗ (не ШІМ)
COM1A1/
COM1B1

COM1A0/
COM1B0 Опис

0 0 Нормальна робота виводу, OC1A/OC1B відключено
0 1 Перемикання OC1A/OC1B при збігу
1 0 Очищення OC1A/OC1B при збігу (встановити вихід

на низький рівень)
1 1 Встановлення OC1A/OC1B при збігу (встановити

вихід на високий рівень)

Таблиця 12.6 показує функціональність бітів COM1x1:0, коли
біти WGM13:0 встановлено як режим швидкого ШІМ (особли-
вий випадок виникає, коли OCR1A/OCR1B дорівнює верхньому
значенню і встановлено COM1A1/COM1B1. У цьому випадку
збіг при порівнянні ігнорується, але встановлення або очищення
виконується при нижньому значенні). Таблиця 12.7 показує функ-
ціональність бітів COM1x1:0, коли біти WGM13:0 встановлені,
як фазо-коректний, або фазо- та частото-коректний ШІМ.

Рисунок 12.21 – Регістр керування А таймера-лічильника 1

338 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Таблиця 12.6 – Функціональність бітів COM1x1:0, коли біти
WGM13:0 встановлено, як режим швидкого ШІМ
COM1A1/
COM1B1

COM1A0/
COM1B0 Опис

0 0 Нормальна робота виводу, OC1A/OC1B відключено

0 1

При WGM13:0 = 15: перемикання OC1A при збігу,
OC1B відключено (нормальна робота порту).
Для всіх інших налаштувань WGM1 – нормальна
робота порту, OC1A/OC1B відключено

1 0
Очищення OC1A/OC1B при збігу, встановлення
OC1A/OC1B при нижньому значенні (режим без
інвертування)

1 1
Встановлення OC1A/OC1B при збігу, очищення
OC1A/OC1B при верхньому значенні (режим
з інвертуванням)

Таблиця 12.7 – Функціональність бітів COM1x1:0, коли
біти WGM13:0 встановлені, як фазо-коректний або фазо-
та частото-коректний ШІМ
COM1A1/
COM1B1

COM1A0/
COM1B0 Опис

0 0 Нормальна робота виводу, OC1A/OC1B відключено

0 1

При WGM13:0 = 9 або 14: перемикання OC1A при
порівнянні, OC1B відключено (нормальна робота
порту). Для всіх інших налаштувань WGM1 – нор-
мальна робота порту, OC1A/OC1B відключено

1 0
Очищення OC1A/OC1B при збігу при рахунку вгору.
Встановлення OC1A/OC1B при збігу при рахунку
вниз

1 1
Встановлення OC1A/OC1B при збігу при рахунку
вгору. Очищення OC1A/OC1B при збігу при рахунку
вниз

Біт 3 – FOC1A: Примусове порівняння для каналу A.
Біт 2 – FOC1B: Примусове порівняння для каналу B.
Біти FOC1A/FOC1B активні лише тоді, коли біти WGM13:0

встановлюють режим без ШІМ. Однак для забезпечення сумісності
з майбутніми пристроями ці біти повинні бути встановлені як 0, при

33912	 Практична робота № 3 «Програмування таймерів мікроконтролера AVR»

запису TCCR1A під час роботи в режимі ШІМ. Під час запису логіч-
ної одиниці в біт FOC1A/FOC1B негайний збіг при порівняні при-
мусово виконується у модулі генерації сигналу. Вихід OC1A/OC1B
змінюється відповідно до налаштування бітів COM1x1:0.

Встановлення бітів FOC1A/FOC1B не генеруватиме жодних
переривань і не очищатиме таймер у режимі ОТЗ, використовуючи
OCR1A як верхнє значення.

Біти FOC1A/FOC1B завжди читаються як нульові.
Біти 1:0 – WGM11:0: режим генерації сигналу. У поєднанні

з бітами WGM13:2, що знаходяться в регістрі TCCR1B, ці біти
керують послідовністю рахунку лічильника, джерелом верхнього
значення лічильника та видом генерації сигналу. Режими роботи,
що підтримує блок таймера-лічильника: звичайний режим (лічиль-
ник), режим очищення таймера при збігу (ОТЗ) і три типи режимів
широтно-імпульсної модуляції (ШІМ). Відповідність між значен-
нями бітів WGM13:0 та режимами роботи показана у таблиці 12.8.

Таблиця 12.8 – Відповідність між значеннями бітів WGM13:0
та режимами роботи

Ре
ж

им
W

G
M

13
W

G
M

12
W

G
M

11
W

G
M

10 Режим роботи
таймера-

лічильника

Верхнє
значення

Оновлення
OCR1x

Встановлення
прапору TOV1

при

1 2 3 4 5 6 7 8 9

0 0 0 0 0 Звичайний 0xFFFF Одразу Максимальному
значенню

1 0 0 0 1 Фазо-коректний
ШІМ (8-бит) 0x00FF Верхнє

значення
Нижньому
значенню

2 0 0 1 0 Фазо-коректний
ШІМ (9-бит) 0x01FF Верхнє

значення
Нижньому
значенню

3 0 0 1 1 Фазо-коректний
ШІМ (10-бит) 0x03FF Верхнє

значення
Нижньому
значенню

4 0 1 0 0 ОТЗ OCR1A Одразу Максимальному
значенню

5 0 1 0 1 Швидкий ШІМ
(8-бит) 0x00FF Нижнє

значення
Верхньому
значенню

6 0 1 1 0 Швидкий ШІМ
(9-бит) 0x01FF Нижнє

значення
Верхньому
значенню

340 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

1 2 3 4 5 6 7 8 9

7 0 1 1 1 Швидкий ШІМ
(10-бит) 0x03FF Нижнє

значення
Верхньому
значенню

8 1 0 0 0
Фазо- та час-

тото-коректний
ШІМ

ICR1 Нижнє
значення

Нижньому
значенню

9 1 0 0 1
Фазо- та час-

тото-коректний
ШІМ

OCR1A Нижнє
значення

Нижньому
значенню

10 1 0 1 0 Фазо-коректний
ШІМ ICR1 Верхнє

значення
Нижньому
значенню

11 1 0 1 1 Фазо-коректний
ШІМ OCR1A Верхнє

значення
Нижньому
значенню

12 1 1 0 0 ОТЗ ICR1 Одразу Максимальному
значенню

13 1 1 0 1 Зарезервовано - - -

14 1 1 1 0 Швидкий ШІМ ICR1 Нижнє
значення

Верхньому
значенню

15 1 1 1 1 Швидкий ШІМ OCR1A Нижнє
значення

Верхньому
значенню

Регістр керування B таймера-лічильника 1 – TCCR1B зобра-
жено на рис. 12.22.

Продовження таблиці 12.8

Рисунок 12.22 – Регістр керування B таймера-лічильника 1

Біт 7 – ICNC1: фільтр шуму блока захоплення. Встановлення
цього біта (в одиницю) активує фільтр шуму блока захоплення.
Коли фільтр шуму активовано, вхідний сигнал із входу захоплення
(ICP1) фільтрується. Для роботи фільтра потрібні чотири послі-
довні однакові значення виводу ICP1 для зміни вихідного сигналу.
Тому захоплення вхідного сигналу затримується на чотири цикли
осцилятора, коли фільтр шуму увімкнений.

34112	 Практична робота № 3 «Програмування таймерів мікроконтролера AVR»

Біт 6 – ICES1: вибір фронту захоплення. Цей біт вибирає фронт
на вході захоплення (ICP1), який використовується для запуску
події захоплення. Коли біт ICES1 записаний як нуль, спадаючий
(негативний) фронт використовується як тригер, а коли біт ICES1
записаний як одиниця, наростаючий (позитивний) фронт ініціює
захоплення. Коли захоплення запускається відповідно до налаш-
тування біту ICES1, значення лічильника копіюється у вхідний
регістр захоплення (ICR1). Подія також встановлює прапор захоп-
лення (ICF1), і його можна використовувати для виклику перери-
вання захоплення, якщо це переривання ввімкнено. Коли ICR1
використовується як верхнє значення (див. опис бітів WGM13:0,
розташованих у TCCR1A та регістрі TCCR1B), вивід ICR1 від’єд-
нується, і, отже, функція захоплення вимикається.

Біт 5 – зарезервований біт. Цей біт зарезервовано для майбут-
нього використання. Для забезпечення сумісності з майбутніми
пристроями цей біт має бути записаний як нуль під час запису
TCCR1B.

Біти 4:3 – WGM13:2: Режим генерації сигналу. Див. опис реє-
стру TCCR1A.

Біт 2:0 – CS12:0: Вибір тактового сигналу. Три біти вибору
тактового сигналу обирають джерело тактового сигналу, який
буде використовуватися таймером-лічильником. Якщо для тай-
мера-лічильника 1 використовуються режими зовнішніх імпульсів,
зміни рівня на виводі T1 будуть тактувати лічильник, навіть якщо
цей контакт налаштовано як вихід (табл. 12.9). Ця функція дозволяє
програмно контролювати рахунок.

Таблиця 12.9 – Налаштування таймера-лічильника в залежності
від бітів
CS12 CS11 CS10 Опис

1 2 3 4
0 0 0 Немає тактового сигналу (таймер-лічильник зупинений)
0 0 1 clkI/O (без попереднього дільника)
0 1 0 clkI/O/8 (від попереднього дільника)
0 1 1 clkI/O/64 (від попереднього дільника)
1 0 0 clkI/O/256 (від попереднього дільника)

342 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

1 0 1 clkI/O/1024 (від попереднього дільника)
1 1 0 Зовнішній тактовий сигнал на виводі T1.

Синхронізація по спадаючому фронту
1 1 1 Зовнішній тактовий сигнал на виводі T1.

Синхронізація по зростаючому фронту

Таймер-Лічильник 1 – TCNT1H і TCNT1L зображено
на рис. 12.23.

Продовження таблиці 12.9

Рисунок 12.23 – Таймер-Лічильник 1 – TCNT1H і TCNT1L

Два регістри вводу-виводу таймера-лічильника (TCNT1H
і TCNT1L, комбінований TCNT1) забезпечують прямий доступ
до 16-розрядного лічильника блоку таймера-лічильника як для
операцій читання, так і для запису. Щоб переконатися, що стар-
ший і молодший байти читаються і записуються одночасно, коли
ЦП отримує доступ до цих регістрів, доступ виконується за допо-
могою 8-розрядного тимчасового регістра старшого байту (TEMP).
Цей тимчасовий регістр спільно використовується всіма іншими
16-розрядними регістрами.

Зміна значення лічильника (TCNT1) під час його роботи ство-
рює ризик втрати події збігу при порівнянні між TCNT1 і одним
із регістрів OCR1x.

Запис у регістр TCNT1 блокує (видаляє) збіг при порівнянні
на наступному тактовому імпульсі таймера для всіх модулів
порівняння.

Регістр порівняння 1 A – OCR1AH і OCR1AL зображено
на рис 12.24.

Регістр порівняння 1 В – OCR1BH і OCR1BL зображено
на рис. 12.25.

34312	 Практична робота № 3 «Програмування таймерів мікроконтролера AVR»

Регістри порівняння містять 16-бітне значення, яке постійно
порівнюється зі значенням лічильника (TCNT1). Збіг може бути
використаний для генерації переривання при збігу при порівнянні
або для генерації вихідного сигналу на виводі OC1x.

Регістри порівняння мають 16-бітний розмір. Щоб переконатися,
що старший і молодший байти записуються одночасно, коли ЦП запи-
сує в ці регістри, доступ виконується за допомогою 8-розрядного тим-
часового регістра старшого байту (TEMP). Цей тимчасовий регістр
спільно використовується всіма іншими 16-розрядними регістрами.

Регістр захоплення 1 – ICR1H і ICR1L зображено на рис. 12.26.
Регістр захоплення оновлюється значенням лічильника (TCNT1)

кожного разу, коли відбувається подія на виводі ICP1 (або за бажан-
ням на виході аналогового компаратора для таймера-лічильника 1).

Рисунок 12.24 – Регістр порівняння 1 A – OCR1AH і OCR1AL

Рисунок 12.25 – Регістр порівняння 1 В – OCR1BH і OCR1BL

Рисунок 12.26 – Регістр захоплення 1 – ICR1H і ICR1L

344 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Регістр захоплення можна використовувати для встановлення верх-
нього значення лічильника.

Регістр захоплення має 16-бітний розмір. Щоб забезпечити
одночасне зчитування як старшого, так і молодшого байтів, коли
ЦП звертається до цих регістрів, доступ виконується за допомо-
гою 8-розрядного тимчасового регістра старшого байту (TEMP).
Цей тимчасовий регістр спільно використовується всіма іншими
16-розрядними регістрами.

Регістр маски переривання таймерів-лічильників – TIMSK
зображено на рис. 12.27.

Рисунок 12.27 – Регістр маски переривання

таймерів-лічильників – TIMSK

Біт 5 – TICIE1: таймер-лічильник1, увімкнення перери-
вання при захопленні. Коли цей біт встановлено як 1, і прапор
I у регістрі стану встановлено (глобальні переривання увімкнено),
переривання при захопленні для таймера-лічильника 1 увімкнуно.
Відповідний вектор переривання активується, коли встановлюється
прапор ICF1, розташований у TIFR.

Біт 4 – OCIE1A: Таймер/Лічильник1, увімкнення перери-
вання при збігу при порівнянні А. Коли цей біт встановлено як 1,
і прапор I у регістрі стану встановлено, переривання при збігу при
порівнянні A для таймера-лічильника1 увімкнено. Відповідний век-
тор переривання активується, коли встановлюється прапор OCF1A,
розташований у TIFR.

Біт 3 – OCIE1B: Таймер/Лічильник1, увімкнення перери-
вання при збігу при порівнянні В. Коли цей біт встановлено як 1,
і прапор I у регістрі стану встановлено, переривання при збігу при
порівнянні В для таймера-лічильника1 увімкнено. Відповідний век-
тор переривання активується, коли встановлюється прапор OCF1В,
розташований у TIFR.

34512	 Практична робота № 3 «Програмування таймерів мікроконтролера AVR»

Біт 2 – TOIE1: таймер-лічильник1, увімкнення перери-
вання при переповненні. Коли цей біт встановлено як 1, і пра-
пор I у регістрі стану встановлено, переривання при переповненні
таймера-лічильника1 увімкнено. Відповідний вектор переривання
активується, коли встановлюється прапор TOV1, розташований
у TIFR.

Регістр прапорів переривання таймерів-лічильників – TIFR
зображено на рис. 12.28.

Рисунок 12.28 – Регістр прапорів переривання

таймерів-лічильників – TIFR

Біт 5 – ICF1: таймер-лічильник1, прапор захоплення. Цей
прапор встановлюється, коли подія захоплення відбувається
на виводі ICP1. Коли регістр захоплення вхідних даних (ICR1)
встановлений бітами WGM13:0 для використання як верхнє зна-
чення, прапор ICF1 встановлюється, коли лічильник досягає зна-
чення верхнього значення. ICF1 автоматично очищується, коли
виконується підпрограма обробки переривання захоплення. Крім
того, ICF1 можна очистити, записавши логічну одиницю у нього.

Біт 4 – OCF1A: Таймер/Лічильник 1, прапор збігу при порів-
нянні А. Цей прапор встановлюється в наступному тактовому
циклі таймера після того, як значення лічильника (TCNT1) збіга-
ється з вихідним регістром порівняння A (OCR1A). Зверніть увагу,
що строб примусового порівняння (FOC1A) не встановлює прапор
OCF1A. OCF1A автоматично очищується, коли виконується під-
програма обробки переривання збігу при порівнянні А. Крім того,
OCF1A можна очистити, записавши логічну одиницю в нього.

Біт 4 – OCF1A: Таймер/Лічильник 1, прапор збігу при
порівнянні В. Цей прапор встановлюється в наступному такто-
вому циклі таймера після того, як значення лічильника (TCNT1)

346 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

збігається з вихідним регістром порівняння В (OCR1В). Зверніть
увагу, що строб примусового порівняння (FOC1В) не встановлює
прапор OCF1В. OCF1В автоматично очищується, коли викону-
ється підпрограма обробки переривання збігу при порівнянні В.
Крім того, OCF1В можна очистити, записавши логічну одиницю
в нього.

Біт 2 – TOV1: таймер-лічильник1, прапор переповнення.
Налаштування цього прапора залежить від налаштування бітів
WGM13:0. У звичайному режимі та режимі ОТЗ прапор TOV1 вста-
новлюється, коли таймер переповнюється. Зверніться до таблиці
3.8 щодо поведінки прапора TOV1 під час використання інших
налаштувань бітів WGM13:0. TOV1 автоматично очищується, коли
виконується підпрограма обробки переривання переповнення тай-
мера-лічильника 1. Альтернативно, TOV1 можна очистити, запи-
савши логічну одиницю в нього.

12.3 Приклад програми

Виконаємо наступне завдання на базі мікроконтролера ATMega8.
Підключити два світлодіоди LED1 та LED2 до виводів PB4 та PB1
(OC1A).

Встановити тактову частоту таймера 0 як fCLK_I/O/1024. При пере-
повненні таймера 0 перемикати світлодіод LED1 у протилежний
стан.

Встановити тактову частоту таймера 1 як fCLK_I/O/8, та режим
як швидкий ШІМ (10 біт). Світлодіод LED2 повинен керуватися
виводом ОС1А модуля порівняння. Яскравість світлодіоду підви-
щувати на 1 при кожному переповненні таймера 1. При досяганні
максимальної яскравості, встановити її рівною 0.

12.3.1 Принципова електрична схема

Принципова електрична схема, що реалізує поставлену задачу,
показана на рис. 12.29.

34712	 Практична робота № 3 «Програмування таймерів мікроконтролера AVR»

Ніяких нових компонентів тут немає, єдина відмінність від
попередніх схем полягає в тому, що тут замість зовнішнього під-
ключення катодів світлодіодів до землі, вони підключені до неї
за допомогою опції “Grounded” у налаштуваннях світлодіодів. Але
на функціональність це ніяк не впливає, то ж можна підключати
їх як завгодно.

12.3.2 Програмний код

Розглянемо тепер програму, що реалізує поставлену задачу
(рис. 12.30).

У рядку 1 підключається заголовковий файл “io.h”, який містить
назви всіх бітів та регістрів, що використовуватимуться далі
у програмі.

У рядку 2 підключається заголовковий файл “interrupt.h”,
який потрібно додавати, якщо в програмі планується використо-
вувати переривання. Оскільки ми тут будемо мати справу з пере-
риваннями по переповненню таймерів, то цей файл необхідно
додати.

Рисунок 12.29 – Принципова електрична схема

348 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Рядки 4–16 поки пропустимо, і перейдемо до головної функції
програми, що розташована у рядках 18–28. Її відмінність від всіх
інших головних функцій, що ми розглядали раніше, полягає в тому,
що в ній основний цикл програми є порожнім (рядок 27). Тобто
процесор більшу частину часу не робить нічого, а тільки чекає
на переривання. У такому випадку було б логічніше перевести його
у неактивний режим сну, і у реальних пристроях так і рекомендо-
вано робити для зменшення енергоспоживання, але оскільки у про-
грамі SimulIDE режими сну не працюють коректно, ми тут цього
не робимо. Не дивлячись на те, що процесор весь час тільки очікує

Рисунок 12.30 – Програмний код

34912	 Практична робота № 3 «Програмування таймерів мікроконтролера AVR»

на переривання, не можна не створювати основний безкінечний
цикл, оскільки без нього програма буде періодично перезаванта-
жуватися з початку й ініціалізувати модулі мікроконтролера знову
і знову, що є небажаним.

У рядку 20 виводи РВ4 та РВ1 конфігуруються, як виходи
(оскільки до них під’єднані світлодіоди), шляхом встановлення від-
повідних бітів у регістрі DDRВ.

Тепер розглянемо ініціалізаційну частину головної функції
(рядки 20–26).

У рядку 21 ми конфігуруємо таймер 0. У нього насправді не так
і багато налаштувань. Все, що ми можемо зробити – це обрати
тактовий сигнал таймера, після чого він одразу почне рахунок.
За завданням нам треба встановити частоту тактування тай-
мера як fCLK_I/O/1024. Це відповідає наступній комбінації бітів
CS02…CS00 (відповідно до таблиці на 3.3): CS02 = 1, CS01 = 0,
CS00 = 1. То ж у рядку 21 ми встановлюємо біти CS02 та CS00
у регістрі TCCR0. Оскільки ми використовуємо просту операцію
присвоєння «=«, біт CS01 автоматично стає рівним 0.

Порахуємо, з якою частотою буде блимати світлодіод у даному
випадку. Якщо тактова частота процесора дорівнює 1 МГц, то так-
това частота таймера 0 буде дорівнювати 1000000 Гц / 1024 ≈
977 Гц. Таймер 0 є 8-розрядним. Це значить, що він може раху-
вати від 0 до 255, після чого станеться переповнення і згенерується
переривання. То ж частота між перериваннями буде дорівнювати
977 / 256 = 3,8 Гц. Оскільки при кожному перериванні по перепов-
ненню таймера стан світлодіоду буде змінено на протилежний, час-
тота його блимання буде дорівнювати 3.8 / 2 = 1.9 Гц.

У рядках 22–23 ми конфігуруємо таймер 1 за допомогою регі-
стрів TCCR1A та TCCR1B. За завданням треба встановити частоту
таймера 1 як fCLK_I/O/8. Ця частота задається бітами CS12…CS10
регістру TCCR1B відповідно до таблиці 3.9. Для частоти fCLK_I/O/8:
CS12 = 0, CS11 = 1, CS10 = 0. То ж у рядку 23 ми встановлюємо
лише біт CS11, залишаючи CS12 і CS10 рівними 0.

Режим роботи таймера 1 задається бітами WGM13…WGM10,
причому перша половина з них знаходиться у регістрі TCCR1B,
а друга – у регістрі TCCR1A. За завданням треба встановити

350 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

режим роботи «Швидкий ШІМ (10 біт)». З таблиці 3.8 знаходимо,
що цьому режиму відповідає така комбінація цих бітів: WGM13 = 0,
WGM12 = 1, WGM11 = 1, WGM10 = 1.

Порахуємо частоту між перериваннями таймера 1. Його так-
това частота дорівнює 1 000 000 Гц / 8 = 125 000 Гц. Період тай-
мера становить 1024 тактів (це відповідає 10-бітній розрядності
210 = 1024), тому повний цикл таймера відбувається з частотою
125000 / 1024 ≈ 122 Гц. Щоб не було помітно блимання світлодіоду,
частота повного циклу таймера повинна бути не менше 50 Гц.

Далі треба налаштувати функціональність виводу ОС1А блоку
порівняння таймера 1. У мікроконтролера ATMega8 цей вивід сумі-
щений з виводом РВ1. У завданні не сказано явно, але яскравість
світлодіоду можна змінювати у режимі ШІМ. Оберемо неінверто-
ваний режим роботи виводу ОС1А за допомогою бітів СОМ1А1
та СОМ1А0, що розташовані у регістрі TCCR1A, відповідно
до верхньої таблиці 3.6. Режим без інвертування задається такою
комбінацією цих бітів: СОМ1А1 = 1, СОМ1А0 = 0.

То ж, підсумовуючи все вище сказане, треба встановити біти
СОМ1А1, WGM11 та WGM10 у регістрі TCCR1A, та біти WGM12
та CS11 у регістрі TCCR1B, залишивши всі інші біти цих регістрів
як 0. Як раз це ми й робимо у рядках 22, 23.

У рядку 24 ми записуємо 0 у регістр OCR1A. Це регістр блока
порівняння А таймера 1, відповідно до таблиці 3.6. Чим більше зна-
чення, записане у цей регістр, тим пізніше буде встановлюватися
низький рівень на виводі ОС1А, і тим більша буде середня напруга
на ньому, і тим більша буде яскравість світлодіоду. Таким чином,
змінюючи лише значення, записане у цей регістр, можна керу-
вати величиною вихідної напруги за допомогою ШІМ. Оскільки
ми записали 0 у цей регістр, спочатку яскравість світлодіоду буде
мінімальною, а точніше, він буде вимкнений.

Вже після цього рядку обидва таймери починають працювати,
і ШІМ починає генеруватися на виводі ОС1А без будь-якої участі
з боку процесору.

У рядку 25 ми демаскуємо (дозволяємо) переривання по перепов-
ненню таймера 0 та таймера 1, встановлюючи біти ТОІЕ0 та ТОІЕ1
у регістрі TIMSK. Тепер лишилося тільки дозволити глобальні

35112	 Практична робота № 3 «Програмування таймерів мікроконтролера AVR»

переривання за допомогою функції sei (рядок 26). Ця функція вико-
нує команду процесора SEI, що встановлює біт І у регістрі статусу,
і вона описана у файлі “interrupt.h”, що ми підключили у другому
рядку нашої програми.

У рядку 27, як вже було сказано, знаходиться порожній безкінеч-
ний цикл, у якому процесор знаходиться в очікуванні спрацювання
переривань від переповнення таймерів.

Тепер розглянемо безпосередньо підпрограми обробки пере-
ривань. Вони уявляють собою просто функції, але на відміну
від звичайних функцій, вони не викликаються явно з програми,
а викликаються апаратно при настанні умови генерації перери-
вання: встановлений біт І у регістрі статусу, переривання доз-
волено за допомогою регістру маскування, встановився прапор
переривання.

Всі функції обробки переривань мають назву ISR, що як раз
і означає підпрограма обробки переривання (Interrupt SubRoutine).
В якості аргументу цієї функції передається назва переривання.
Назви всіх переривань описані у заголовковому файлі для кожного
конкретного мікроконтролера. Але їх можна взяти також з таблиці
на рис. 12.1, замінивши пробіли на знак підкреслення, і додавши
в кінці «_vect”. Наприклад, для переривання по переповненню тай-
мера 0, яке у таблиці називається “TIMER0 OVF” відповідна назва
переривання, що передається у функцію ISR, буде “TIMER0_OVF_
vect”. Цю назву ми і записуємо у рядку 4, де починається функ-
ція обробки переривання по переповненню таймера 0. Відповідно
до завдання, кожен раз при переповненні таймера 0, ми повинні
перемикати стан світлодіоду LED1 у протилежний. Це ми робимо
у рядку 6 за допомогою оператора «виключне АБО», що перемикає
біт PB4 регістра PORTB.

У рядку 9 починається нова функція обробки переривання, але
цього разу по переповненню таймера 1, тому в якості аргументу
у функцію ISR передається TIMER1_OVF_vect. У цій функції, від-
повідно до завдання, ми повинні збільшувати яскравість світло-
діоду на 1. Раніше ми вже з’ясували, що яскравість задається зна-
ченням, записаним у регістр OCR1A. То ж всередині цієї функції
ми спочатку збільшуємо цей регістр на 1 (рядок 11). Якщо його

352 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

значення стає більшим 0х03FF (рядок 12), що відповідає десятко-
вому числу 1023 (тобто 210-1), то регістр OCR1A треба обнулити
(рядок 14). Таким чином, яскравість буде поступово збільшуватися,
і при досягнені максимальної величини скинеться у нуль.

Ось, в принципі, і вся програма. Тепер можна скомпілювати
файл .hex, завантажити його у мікроконтролер та запустити симуля-
цію. Для того, щоб подивитися форму сигналу, програма SimulIDE
пропонує прилад, який називається осцилограф (у програмі –
“Oscope”), який знаходиться у підзаголовку “Meters” (рис. 12.31).

Рисунок 12.31 – Знаходження осцилографа у бібліотеці компонентів

Цей осцилограф є 4-канальним, тобто дозволяє одночасно диви-
тися до 4 сигналів. Схему з підключеним осцилографом показано
на рис. 12.32.

Як бачите, його перший канал підключений до аноду світло-
діоду LED2, щоб побачити сигнал ШІМ, що приходить на нього.
Щоб змінити налаштування осцилографа, треба натиснути на кно-
пку “Expand” на ньому. Після чого він розгорнеться у окреме вікно,
показане на рис. 12.33.

Тут можна встановити роздільну здатність по осі часу “Time Div”
та по осі напруги “Volt Div”, зміщення графіку по осі абсцис “Time
Pos” та по осі ординат “Volt Pos”, задати тригер, по якому буде син-
хронізуватися графік “Trigger”, задати режим роботи “Auto”, прихо-
вати графіки “Hide” та встановити кількість осей абсцис “Tracks”.

35312	 Практична робота № 3 «Програмування таймерів мікроконтролера AVR»

Рисунок 12.32 – Принципова електрична схема з осцилографом

Рисунок 12.33 – Вікно осцилографа

Після запуску симуляції можна побачити, що при малій ширині
імпульсів ШІМ яскравість світлодіоду LED2 невелика (рис. 12.34),
а при її збільшенні вона також збільшується (рис. 12.35).

354 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Рисунок 12.34 – Яскравість світлодіоду LED2 при малій ширині

імпульсів

Рисунок 12.35 – Яскравість світлодіоду LED2 при великій ширині

імпульсів

При цьому світлодіод LED1 блимає з постійною частотою неза-
лежно від яскравості світлодіоду LED2.

35512	 Практична робота № 3 «Програмування таймерів мікроконтролера AVR»

12.4 Завдання до практичної роботи

1.	Створити принципову електричну схему, згідно з варіантом
завдань (таблиця 12.10).

2.	Написати програму, що виконує поставлене завдання.
3.	Створити файл прошивки, загрузити його у мікроконтролер

та переконатися, що все працює, як треба.

Таблиця 12.10 – Варіанти завдань до практичної роботи № 3
Варіант Завдання

1 2

1

Підключити кнопку до виводу РD6, а світлодіод до виводу РВ2
(OC1B).
Встановити тактову частоту таймера 1 як fCLK_I/O, та режим як швидкий
ШІМ з верхнім значенням, що задається регістром ICR1. Встановити
частоту повного циклу таймера 1, як 256 Гц.
Яскравість світлодіоду повинна керуватися виводом ОС1В модуля
порівняння за допомогою ШІМ. При запуску програми встановити
яскравість рівною 0. При кожному натисканні на кнопку збільшувати
яскравість на 20 % від максимальної величини. При досяганні мак-
симального значення при наступному натисканні кнопки встановити
яскравість рівною 0.

2

Підключити світлодіод LED1 до виводу РВ1 (OC1A), а світло-
діод LED2 до виводу РВ2 (OC1B).
Встановити тактову частоту таймера 1 як fCLK_I/O /8, та режим як швид-
кий ШІМ (8 біт).
Яскравість світлодіодів повинна керуватися виводами ОС1А та ОС1В
модуля порівняння за допомогою ШІМ. При запуску програми вста-
новити яскравість LED1 рівною 0, а яскравість LED2 максимальною.
При кожному переповненні таймера 1 змінювати яскравість світ-
лодіодів у протифазі. При збільшенні яскравості світлодіоду LED1,
яскравість світлодіоду LED2 зменшувати. При досягненні світло-
діодом LED1 максимальної яскравості, її стрибком зменшити до 0,
а яскравість світлодіоду LED2 встановити максимальною.

3

Підключити світлодіод LED1 до виводу РВ2 (OC1B).
Встановити тактову частоту таймера 1 як fCLK_I/O, та режим як швидкий
ШІМ з верхнім значенням, що задається регістром OCR1A.
Встановити частоту повного циклу таймера 1, як 128 Гц.

356 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

1 2
Яскравість світлодіоду повинна керуватися виводом ОС1В модуля
порівняння за допомогою ШІМ. При запуску програми встановити
яскравість LED1 рівною 0. При кожному переповненні таймера 1
змінювати яскравість світлодіоду, спочатку збільшуючи її на 1, а при
досяганні максимального значення – зменшуючи на 1 до досягання 0,
потім знову збільшуючи і т.д.

4

Підключити світлодіод LED1 до виводу РВ2 (OC1B), а кнопку
до виводу PD2.
Встановити тактову частоту таймера 1 як fCLK_I/O /64, та режим як швид-
кий ШІМ з верхнім значенням, що задається регістром OCR1A.
Встановити частоту повного циклу таймера 1, як 32 Гц.
Яскравість світлодіоду повинна керуватися виводом ОС1В модуля
порівняння за допомогою ШІМ. При запуску програми встановити
яскравість LED1 рівною 0.
Натискання на кнопку обробляти за допомогою переривання INT0.
При натисканні на кнопку, копіювати значення лічильника таймера 1
в регістр OCR1B, тим самим випадковим чином змінюючи яскравість
світлодіоду.

5

Підключити світлодіод LED1 до виводу РВ1 (OC1A), а кнопку
до виводу PD3.
Встановити тактову частоту таймера 1 як fCLK_I/O, та режим як швидкий
ШІМ з верхнім значенням, що задається регістром ICR1.
Встановити частоту повного циклу таймера 1, як 100 Гц.
Яскравість світлодіоду повинна керуватися виводом ОС1A модуля
порівняння за допомогою ШІМ. При запуску програми встановити
яскравість LED1 максимальною.
Натискання на кнопку обробляти за допомогою переривання INT1.
При натисканні на кнопку, записувати в регістр OCR1A випадкове
число в діапазоні від 0 до ICR1, тим самим випадковим чином зміню-
ючи яскравість світлодіоду.

6

Підключити світлодіод LED1 до виводу РВ1 (OC1А).
Встановити тактову частоту таймера 1 як fCLK_I/O, та режим
як фазо-коректний ШІМ (8 біт).
Встановити тактову частоту таймера 0 як fCLK_I/O /256.
Яскравість світлодіоду повинна керуватися виводом ОС1А модуля
порівняння за допомогою ШІМ. При запуску програми встановити
яскравість LED1 рівною половині максимальної.

Продовження таблиці 12.10

35712	 Практична робота № 3 «Програмування таймерів мікроконтролера AVR»

1 2
При кожному переповненні таймера 0 змінювати яскравість світло-
діоду, спочатку збільшуючи її на 1, а при досяганні максимального зна-
чення – зменшуючи на 1 до досягання 0, потім знову збільшуючи і т. д.

7

Підключити світлодіод LED1 до виводу РВ2 (OC1B), а кнопку
до виводу PD0.
Встановити тактову частоту таймера 1 як fCLK_I/O /64, та режим як ОТП
з верхнім значенням, що задається регістром OCR1A.
Встановити частоту повного циклу таймера 1, як 1 Гц.
Стан світлодіоду повинен керуватися виводом ОС1В модуля порів-
няння, перемикаючись при кожному збігу при порівнянні. При натис-
канні на кнопку змінювати частоту повного циклу таймера у такій
послідовності: 1 Гц – 2 Гц – 4 Гц – 8 Гц – 1 Гц…

8

Підключити світлодіод LED1 до виводу РВ2 (OC1В).
Встановити тактову частоту таймера 1 як fCLK_I/O, та режим
як фазо-коректний ШІМ з верхнім значенням, що задається регістром
OCR1A.
Встановити частоту повного циклу таймера 1, як 300 Гц.
Встановити тактову частоту таймера 0 як fCLK_I/O /1024.
Яскравість світлодіоду повинна керуватися виводом ОС1В модуля
порівняння за допомогою ШІМ. При запуску програми встановити
яскравість LED1 рівною максимальній. При кожному переповненні
таймера 0 копіювати значення лічильника таймера 1 в регістр OCR1B,
тим самим випадковим чином змінюючи яскравість світлодіоду.

9

Підключити світлодіод LED1 до виводу РВ1 (OC1A), світлодіод LED2
до виводу РВ2 (OC1B), а кнопку до виводу РD2.
Встановити тактову частоту таймера 1 як fCLK_I/O, та режим
як фазо-коректний ШІМ (10 біт).
Яскравість світлодіодів повинна керуватися виводами ОС1А та ОС1В
модуля порівняння за допомогою ШІМ. При запуску програми встано-
вити яскравість LED1 рівною 20 %, а яскравість LED2 рівною 80 % від
максимальної.
Натискання на кнопку обробляти за допомогою переривання INT0.
При кожному натисканні на кнопку міняти місцями яскравості
світлодіодів.

10
Підключити світлодіод LED1 до виводу РВ1 (OC1A), світлодіод LED2
до виводу РВ2 (OC1B).
Встановити тактову частоту таймера 1 як fCLK_I/O /8, та режим

Продовження таблиці 12.10

358 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Продовження таблиці 12.10
1 2

як фазо-коректний ШІМ (9 біт).
Встановити тактову частоту таймера 0 як fCLK_I/O /1024.
Яскравість світлодіодів повинна керуватися виводами ОС1А та ОС1В
модуля порівняння за допомогою ШІМ. При запуску програми встано-
вити яскравість LED1 рівною 30 %, а яскравість LED2 рівною 70 % від
максимальної.
При кожному переповненні таймера 0 міняти місцями яскравості
світлодіодів.

11

Підключити світлодіод LED1 до виводу РВ1 (OC1А), а кнопку
до виводу PD5.
Встановити тактову частоту таймера 1 як fCLK_I/O /64, та режим як ОТП
з верхнім значенням, що задається регістром ІCR1.
Встановити частоту повного циклу таймера 1, як 2 Гц.
Встановити тактову частоту таймера 0 як fCLK_I/O /1024.
Стан світлодіоду повинен керуватися виводом ОС1А модуля
порівняння, перемикаючись при кожному збігу при порів-
нянні. При кожному десятому переповненню таймера 0 зміню-
вати частоту повного циклу таймера 1 у такій послідовності:
2 Гц – 3 Гц – 4 Гц – 5 Гц – 1 Гц…

12

Підключити світлодіод LED1 до виводу РВ2 (OC1А), а кнопку
до виводу PD2.
Встановити тактову частоту таймера 1 як fCLK_I/O /8, та режим як швид-
кий ШІМ (8 біт).
Встановити тактову частоту таймера 0 як fCLK_I/O.
Яскравість світлодіоду повинна керуватися виводом ОС1А модуля
порівняння за допомогою ШІМ. При запуску програми встановити
яскравість LED1 рівною половині максимальної.
Натискання на кнопку обробляти за допомогою переривання INT1.
При натисканні на кнопку, копіювати значення лічильника таймера 0
в регістр OCR1А, тим самим випадковим чином змінюючи яскравість
світлодіоду.

Питання для самоперевірки
1.	 Принцип роботи таймера 0 і таймера 1 мікроконтролера ATMega8.
2.	 Як налаштувати тактову частоту таймера?
3.	 Які є режими роботи модуля порівняння таймера 1?

35912	 Практична робота № 3 «Програмування таймерів мікроконтролера AVR»

4.	 Які переривання можуть генерувати таймери мікроконтролера
ATMega8?

Перелік рекомендованих джерел
1.	 ATMega8 : технічна документація на мікроконтролер. URL:

https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-2486-8-
bit-AVR-microcontroller-ATmega8_L_datasheet.pdf (дата звернення:
02.12.2024).

2.	 8-bit AVR® MCUs : інформація про мікроконтролери. URL:
https://www.microchip.com/en-us/products/microcontrollers-and-
microprocessors/8-bit-mcus/avr-mcus (дата звернення: 02.12.2024).

3.	 Конспект лекцій з дисципліни «Мікропроцесорна техніка» для здо-
бувачів вищої освіти першого (бакалаврського) рівня зі спеціа-
льності 153 «Мікро- та наносистемна техніка» за освітньо-про-
фесійною програмою «Мікро- та наносистемна техніка» та зі
спеціальності 171 «Електроніка» за освітньо-професійною про-
грамою «Електроніка» / уклад. О. М. Гулєша. Кам’янське : ДДТУ,
2020. 57 с.

4.	 Основи Програмування AVR C. DevZone. URL: https://devzone.org.ua/
post/osnovy-prohramuvannia-avr-c (дата звернення: 02.12.2024).

https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-2486-8-bit-AVR-microcontroller-ATmega8_L_datasheet.pdf
https://www.microchip.com/en-us/products/microcontrollers-and-microprocessors/8-bit-mcus/avr-mcus
https://devzone.org.ua/post/osnovy-prohramuvannia-avr-c

13__
ПРАКТИЧНА РОБОТА № 4

«ПРОГРАМУВАННЯ ЦИФРОВИХ
ІНТЕРФЕЙСІВ МІКРОКОНТРОЛЕРА AVR»

Перелік питань до розділу:
13.1. Завдання.
13.2. Теоретичні дані.

13.2.1. Загальні відомості про інтерфейс UART.
13.2.2. Апаратна частина UART мікроконтролерів AVR.
13.2.3. Регістри вводу-виводу модуля USART.
13.2.4. Приклади налаштування швидкості передачі даних.

13.3. Приклад програми.
13.3.1. Принципова електрична схема.
13.3.2. Програмний код.
13.3.3. Симуляція роботи програми.

13.4. Завдання до практичної роботи.

13.1 Завдання

Освоєння прийомів програмування цифрових інтерфейсів
мікроконтролерів AVR.

Завдання практичної роботи:
‒	 Створення електричної схеми у програмі SimulIDE відповідно

до завдання на практичну роботу.
‒	 Написання програми для мікроконтролеру відповідно

до завдання на практичну роботу.

36113	 Практична робота № 4 «Програмування цифрових інтерфейсів мікроконтролера AVR»

13.2 Теоретичні дані

13.2.1 Загальні відомості про інтерфейс UART1

Універсальний синхронний/асинхронний послідовний прийо-
мопередавач (USART) забезпечує обмін даними МК AVR з зовніш-
німи пристроями по послідовному каналу в повнодуплексному
режимі. При цьому передача даних може бути як асинхронна, так
і синхронна.

При синхронному послідовному вводі/виводі передача окремих
бітів даних синхронізується за допомогою тактового сигналу, який
передається одночасно з даними. Синхронна послідовна передача
даних використовується, основним чином, на рівні друкованих
плат, у тому числі, для обміну даними між різними інтегрованими
блоками у складі схеми МК та різними периферійними схемами.

При асинхронній передачі даних синхронізація виконується
у часі за допомогою стартових та стопових бітів, що визначають
початок та кінець передачі слова даних. Асинхронна передача
даних використовується для комунікації блоків, розділених у прос-
торі та які мають певну автономність один від одного. Наприклад,
між ПК та принтером, між пристроєм на базі МК та комп’ютером.

Модуль USART підтримує як синхронний, так і асинхронний
режими роботи. Однак на практиці його найчастіше використову-
ють саме в асинхронному режимі, а синхронний режим реалізують
за допомогою модуля SPI. Тому в курсі лекцій ми розглядатимемо
лише асинхронний режим, і надалі модуль називатимемо UART.

Формат передачі кадру даних UART. За своєю структурою він
ідентичний інтерфейсу RS-232, з тією лиш відмінністю, що в інтер-
фейсі RS-232 логічні рівні формуються напругами від ±3 до ±12В,
а в модулі UART логічні рівні відповідають TTL-рівням (0 та 5 В).

Початок кадру даних завжди фіксується низьким рівнем стар-
тового біту (рисунок 13.1). Після цього йде байт даних (5–9 бітів)
з молодшими розрядами спереду. Якщо дозволена перевірка
на парність, то далі йде біт парності, що доповнює байт даних «1»

1  Даний підрозділ викладений на основі матеріалів [1].

362 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

чи «0» так, щоб кількість «1» байту даних була парною (при опції
«Парність») чи непарною (при опції «Непарність»). Цей простий
засіб дає можливість виявляти непарну кількість спотворених бітів.
Останніми передаються стопові (1 чи 2) біти, що представлені
високим рівнем. Якщо на лінії передача даних відсутня, тоді на ній
завжди присутній високий рівень. Швидкість передачі вимірюється
у бодах (baud), бітів за секунду (bps), і на рис. 13.1 кадр даних скла-
дається з 12 бодів.

Формат кадру задається відповідними бітами регістрів керу-
вання UCSRB та UCSRC (див. рис. 13.2).

Вибір кількості стоп-бітів здійснюється за допомогою розряду
USBS у регістрі керування UCSRC. Якщо цей розряд скинутий

Рисунок 13.1 – Діаграма швидкості передачі

Рисунок 13.2 – Визначення розміру байту даних та керування

контролем парності

36313	 Практична робота № 4 «Програмування цифрових інтерфейсів мікроконтролера AVR»

в «0», тоді передавач формує 1 стоп-біт у кінці посилки. Якщо
ж встановлений в «1», тоді – 2 стоп-біти. Варто зазначити, що при-
ймачем другий стоп-біт ігнорується, і відповідно, помилки кадру-
вання виявляються лише для першого стоп-біта. Найбільш популяр-
ним є формат кадру 8n1 (1 старт, 8 біт даних, 1 стоп) без контролю
парності.

Підключення UART. У МК AVR протокол передачі даних
UART реалізований апаратно. На деяких моделях навіть є реалізо-
вано декілька модулів UART. Приймач даних під’єднаний до виводу
з надписом RxD, а передавач до виводу TxD. При з’єднанні між
собою двох модулів UART для передачі даних, необхідно з’єд-
нати навхрест між собою виводи модулів передачі та приймання,
як на рисунку 13.3.

13.2.2 Апаратна частина UART мікроконтролерів AVR2

Модуль складається з 3-х основних частин (рисунок 13.4): такто-
вого генератора (контролера) швидкості передачі, блоку приймача
та блоку передавача.

Блок передавача містить однорівневий буфер, зсувний регістр,
схему формування біта парності та схему керування. Блок при-
ймача містить схеми відновлення тактового сигналу та даних, схему
контролю парності, дворівневий буфер, зсувний регістр та схему
керування.

2  Даний підрозділ викладений на основі матеріалів [1]

Рисунок 13.3 – З’єднання двох модулів UART для передачі даних

364 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Буферні регістри приймача та передавача розміщуються за єди-
ним адресом простору вводу-виводу та позначаються як регістр
даних UDR. У цьому регістрі зберігаються молодші 8 розрядів
даних, що приймаються чи передаються. При читанні UDR вико-
нується звертання до буферного регістра приймача, а при записі –
до буферного регістра передавача.

У модулях USART буфер приймача дворівневий (FIFO-буфер).
При будь-якому звертанні до регістра UDR цей буфер змінює свій
стан. Тому необхідно спершу зчитати дані з цього регістра, а потім
вже виконувати необхідні маніпуляції над ним.

Регістр контролера швидкості UBRR задає необхідний коефі-
цієнт поділу для системного тактового сигналу, після чого цей сиг-
нал ще поступає на додаткові дільники, вибір яких здійснюється
за допомогою додаткового біта U2X.

Схема відновлення тактового сигналу (у приймачі) призна-
чена для синхронізації внутрішнього тактового сигналу, що фор-
мується контролером швидкості передачі, та пакетів з даними,

Рисунок 13.4 – Схема модуля UART

36513	 Практична робота № 4 «Програмування цифрових інтерфейсів мікроконтролера AVR»

що поступають на вивід RxD. Схема відновлення даних виконує
зчитування та фільтрацію кожного розряду для отримуваного
пакету.

Швидкість прийому-передачі. Швидкість обміну задається
контролером швидкості передачі, що функціонує як подільник
системного тактового сигналу з програмованим коефіцієнтом
поділу, значення якого знаходиться у регістрі UBRR. Регістр UBRR
є 12-розрядним та фізично розміщується у 2-х регістрах UBRRH
та UBRRL.

В асинхронному режимі швидкість обміну визначається не лише
значенням регістра UBRR, але і станом розряду U2X у регістрі
керування UCSRA. Якщо цей біт встановлений в «1», то коефіцієнт
поділу подільника зменшується у 2 рази, а швидкість, відповідно,
подвоюється. Швидкість обміну в асинхронному режимі визнача-
ється за такими формулами:

при � � � � � �U X
XTAL

UBBR

XTAL

BAUD
2 0

16 1 16
1� �

�� �
�

�
�: ; ;BAUD UBRR (13.1)

при � � � � � �U X
XTAL

UBBR

XTAL

BAUD
2 1

8 1 8
1� �

�� �
�

�
�: ; .BAUD UBRR (13.2)

Прийняті такі стандартні швидкості обміну даними: 1200, 1800,
2400, 4800, 7200, 9600, 14400, 19200, 28800, 38400, 57600, 76800,
115200, 230400 бод.

Для уникнення виникнення помилок передачі рекомендується
використовувати стабілізований кварцовий тактовий генератор.
Також має значення і величина частоти, на якій працює кварцовий
кристал. На деяких частотах можна отримати нульову похибку при
передачі даних відносно ряду стандартних швидкостей. Похибка
передачі обчислюється за такою формулою:

Error
BAUD

BAUD
% %.� � � �

�

�
�

�

�
� �

розрах. 1 100 (13.3)

Розрахуємо похибку для стандартної швидкості 9600 бод при
частоті тактового генератора 8МГц.

366 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

UBRR �
�
�

� � �� �8 10

16 9600
1 51 083 51

6

. ;

BAUDрозрах. Бод�
�
�� �

��
�

�8 10

16 51 1
9615 38

6

, ;

Error %
.

% . %.� � � ��
�
�

�
�
� � �

9615 38

9600
1 100 0 16

Рекомендується використовувати значення регістра UBRR, при
яких отримана швидкість передачі відрізняється від необхідного
значення менше, аніж на 0,5 %.

Передача та прийом даних, переривання модуля UART. Для
активації прийому-передачі модуля UART необхідно надати доз-
воли на роботу передавача та приймача, встановивши відповідні
біти TXEN та RXEN у регістрі керування UCSRB. Тоді відповідні
виводи МК, позначені як TxD та RxD, підключаються до модуля
UART та працюють на прийом і передачу, незалежно від налашту-
вань регістрів керування портом, до якого вони належать.

Для відправки байту даних необхідно записати його значення
у регістр даних UDR. Після цього ці дані пересилаються із UDR
у зсувний регістр передавача. Якщо в регістр UDR відправити
одразу ще один байт даних, то ці дані будуть відправлені у зсувний
регістр лише після того, як у зсувному регістрі буде відправлений
останній біт з кадру. Отже, частота запису даних в UDR визнача-
ється швидкістю обміну даними модуля UART.

Прийом даних починається з моменту виявлення приймачем
коректного старт-біту. Далі, кожен наступний біт кадру зчитується
зі швидкістю, заданою для модуля UART, та розміщується у зсув-
ному регістрі, аж поки не буде виявлений перший стоп-біт. Після
цього вміст зсувного регістра пересилається у буфер приймача
UDR, звідки прийняте значення має бути зчитаним.

Якщо формат кадру передбачає 9 біт даних, тоді перед записом
в регістр UDR молодших 8 біт необхідно виставити у потрібне зна-
чення біт TXB8 (регістр UCSRB). Аналогічно і при прийомі даних,
спершу необхідно прочитати значення біту RXB8 (регістр UCSRB),
а потім вже читати значення молодших 8-ми бітів у регістрі UDR.

36713	 Практична робота № 4 «Програмування цифрових інтерфейсів мікроконтролера AVR»

При прийомі даних також можемо виконати перевірку прапорів
помилок (регістр UCSRA), які мають бути перевіреними ще перед
читанням регістру даних UDR:

UPE – прапор помилки контролю парності, який виставляється
при виявлені помилки парності у прийнятих даних.

DOR – прапор переповнення, який виставляється при виявленні
нового старт-біта у зсувному регістрі, а буфер приймача у цей
момент є заповнений (2 значення).

FE – прапор помилки кадрування, який виставляється при вияв-
ленні у прийнятому кадрі «0» на місці першого стоп-біта.

Для сповіщення про події: прийнято новий байт даних, завер-
шено передачу даних, регістр даних UDR порожній – передбачені
відповідні прапори RXC, TXC, UDRE (регістр UCSRA).

На основі цих прапорів також можуть бути згенеровані перери-
вання для обробки цих подій. Дозвіл на переривання визначаються
відповідними прапорами дозволів (регістр UCSRB):

RXCIE – дозвіл на переривання по завершенню прийому;
TXCIE – дозвіл на переривання по завершенню передачі;
UDRIE – дозвіл на переривання при спорожненні регістра UDR.
Переривання по завершенню передачі даних використовуються

лише в окремих випадках. Наприклад, для переключення кінцевого
пристрою у режим прийому по завершенню передачі даних в про-
токолі передачі даних RS-485.

13.2.3 Регістри вводу-виводу модуля USART

Регістр даних USART – UDR (рис. 13.5).
Регістр буфера передачі даних USART і регістр буфера прийому

даних USART спільно використовують ту саму адресу вводу-виводу,
що називається регістром даних USART або UDR. Регістр буфера

Рисунок 13.5 – Регістр даних USART – UDR

368 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

передачі даних (TXB) буде місцем призначення для даних, запи-
саних до регістру UDR. Зчитування регістру UDR повертає вміст
регістру буфера прийому даних (RXB).

Для 5-бітних, 6-бітових або 7-бітових символів передавач ігно-
руватиме верхні невикористані біти, а приймач встановлюватиме
їх як нуль.

Буфер передачі може бути записаний лише тоді, коли встанов-
лено прапор UDRE у регістрі UCSRA. Дані, записані в UDR, коли
прапор UDRE не встановлено, передавач USART ігноруватиме.
Коли дані записані в буфер передачі, і передавач увімкнено, він
завантажуватиме дані в регістр зсуву передачі, коли той порожній.
Потім дані будуть послідовно передаватися на вивід TxD.

Буфер прийому складається з дворівневого FIFO. FIFO змінює
свій стан кожного разу, коли здійснюється доступ до буфера при-
йому. Через таку поведінку буфера прийому не використовуйте
інструкції читання-зміни-запису (SBI та CBI) для цього регістру.
Будьте також обережні, використовуючи інструкції перевірки бітів
(SBIC і SBIS), оскільки вони також змінять стан FIFO.

Регістр контролю та статусу USART A – UCSRA (рис. 13.6).

Рисунок 13.6 – Регістр контролю та статусу USART A – UCSRA

Біт 7 – RXC: прийом USART завершено. Цей прапор встанов-
люється, коли в буфері прийому є непрочитані дані, і очищається,
коли буфер прийому порожній (тобто не містить непрочитаних
даних). Якщо приймач вимкнено, буфер прийому буде очищено,
і, отже, біт RXC стане нульовим. Прапор RXC можна використо-
вувати для генерації переривання по завершенню прийому даних.

Біт 6 – TXC: передача USART завершена. Цей прапор вста-
новлюється, коли весь кадр у регістрі зсуву передачі було передано,
а в буфері передачі (UDR) наразі немає нових даних. Біт прапора
TXC автоматично очищається, коли виконується переривання

36913	 Практична робота № 4 «Програмування цифрових інтерфейсів мікроконтролера AVR»

по завершенню передачі, або його можна скинути, записавши
в нього одиницю. Прапор TXC може генерувати переривання
по завершенню передачі даних.

Біт 5 – UDRE: Регістр даних USART порожній. Прапор UDRE
вказує, чи буфер передачі (UDR) готовий приймати нові дані. Якщо
UDRE дорівнює 1, буфер порожній і, отже, готовий до запису.
Прапор UDRE може генерувати переривання порожнього регістру
даних. UDRE дорівнює 1 після скидання, щоб вказати, що переда-
вач готовий.

Біт 4 – FE: Помилка кадру. Цей біт встановлюється, якщо
наступний символ у приймальному буфері мав помилку кадру під
час отримання (тобто, коли перший стоп-біт наступного символу
в приймальному буфері дорівнював нулю). Цей біт дійсний, доки
не буде зчитано буфер прийому (UDR). Біт FE дорівнює нулю, коли
стоп-біт отриманих даних дорівнює одиниці. Завжди встановлюйте
цей біт як нуль під час запису в UCSRA.

Біт 3 – DOR: Переповнення даних. Цей біт встановлюється,
якщо виявлено стан переповнення даних. Це відбувається, коли
буфер прийому заповнений (два символи), присутній новий символ,
який очікує в регістрі зсуву прийому, і виявлено новий початковий
біт. Цей біт дійсний, доки не буде зчитано буфер прийому (UDR).
Завжди встановлюйте цей біт як нуль під час запису в UCSRA.

Біт 2 – PE: помилка парності. Цей біт встановлюється, якщо
наступний символ у буфері прийому мав помилку парності під час
отримання, та перевірка парності була ввімкнена в цей момент
(UPM1 = 1). Цей біт дійсний, доки не буде зчитано буфер при-
йому (UDR). Завжди встановлюйте цей біт як нуль під час запису
в UCSRA.

Біт 1 – U2X: подвоєна швидкість передачі USART. Цей біт
працює лише для асинхронного режиму. Встановіть цей біт як нуль
при використанні синхронного режиму. Запис одиниці у цей біт
зменшить значення дільника швидкості передачі з 16 до 8, фак-
тично подвоюючи швидкість передачі для асинхронного зв’язку.

Біт 0 – MPCM: багатопроцесорний режим зв’язку. Цей біт
вмикає багатопроцесорний режим зв’язку. Коли біт MPCM запи-
саний як 1, усі вхідні кадри, отримані приймачем USART, які

370 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

не містять інформації про адресу, ігноруватимуться. Налаштування
MPCM не впливає на передавач.

Регістр контролю та статусу USART В – UCSRВ (рис. 13.7).

Рисунок 13.7 – Регістр контролю та статусу USART В – UCSRВ

Біт 7 – RXCIE: дозвіл переривання по завершенню прийому
даних. Запис одиниці в цей дозволяє переривання при встановленні
прапору RXC. Переривання по завершенню прийому даних буде
створено, лише якщо біт RXCIE встановлений як 1, глобальний
прапор переривання в SREG встановлений як 1 і біт RXC в регістрі
UCSRA встановлено.

Біт 6 – TXCIE: дозвіл переривання по завершенню передачі
даних. Запис одиниці у цей біт дозволяє переривання при встанов-
ленні прапору TXC. Переривання по завершенню передачі даних
буде створено, лише якщо біт TXCIE встановлений як 1, глобальний
прапор переривання в SREG встановлений як 1 і біт ТXC в регістрі
UCSRA встановлено.

Біт 5 – UDRIE: дозволено переривання порожнього регістру
даних USART. Запис цього біта в одиницю дозволяє переривання
при встановленні прапору UDRE. Переривання порожнього регі-
стру даних буде згенеровано, лише якщо біт UDRIE встановле-
ний як 1, глобальний прапор переривання в SREG встановлений
як 1 і біт UDRE в регістрі UCSRA встановлено.

Біт 4 – RXEN: увімкнення приймача. Запис одиниці в цей біт
вмикає приймач USART. Приймач замінює звичайний режим порту
для виводу RxD, якщо він ввімкнений. Вимкнення приймача очи-
стить буфер прийому, зробивши прапори FE, DOR і PE недійсними.

Біт 3 – TXEN: увімкнення передавача. Запис одиниці в цей
біт вмикає передавач USART. Передавач замінює звичайний режим
порту для виводу TxD, якщо він ввімкнений. Вимкнення переда-
вача (записування 0 у TXEN) не набуде чинності, доки поточні

37113	 Практична робота № 4 «Програмування цифрових інтерфейсів мікроконтролера AVR»

та незавершені передачі не будуть завершені (тобто, коли регістр
зсуву передачі та регістр буфера передачі не будуть містити даних
для передачі). Якщо передавач вимкнений, він більше не займає
вивід TxD.

Біт 2 – UCSZ2: довжина символу. Біт UCSZ2 у поєднанні
з бітами UCSZ1:0 в UCSRC встановлюють кількість бітів даних
(довжину символу) у кадрі, який використовують приймач
і передавач.

Біт 1 – RXB8: Біт 8 прийнятих даних. RXB8 є дев’ятим бітом
даних отриманого символу під час роботи з послідовними кадрами
з дев’ятьма бітами даних. Його необхідно прочитати перед читан-
ням молодших бітів з UDR.

Біт 0 – TXB8: Біт 8 даних для передачі. TXB8 є дев’ятим бітом
даних у символі, що передається під час роботи з послідовними
кадрами з дев’ятьма бітами даних. Його потрібно записати перед
записом молодших бітів до UDR.

Регістр контролю та статусу USART С – UCSRС (рис. 13.8).

Рисунок 13.8 – Регістр контролю та статусу USART С – UCSRС

Біт 7 – URSEL: вибір регістра. Регістр UCSRC має ту саму
адресу, що й регістр UBRRH. Тому під час доступу до нього необ-
хідно звернути особливу увагу.

Під час запису у цю адресу старший біт записаного значення
(біт вибору реєстру USART (URSEL)) контролює, який із двох регі-
стрів буде записано. Якщо URSEL дорівнює нулю під час операції
запису, буде оновлено значення UBRRH. Якщо URSEL дорівнює
одиниці, буде оновлено регістр UCSRC.

Здійснення читання регістру UBRRH чи UCSRC є більш склад-
ною операцією. Однак у більшості програм рідко потрібно читати
будь-який із цих регістрів. Доступ для читання контролюється пев-
ною послідовністю. Одноразове зчитування з цієї адреси повертає

372 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

вміст регістру UBRRH. Якщо значення регістра було прочитано
в попередньому системному такті, повторне читання регістру
в поточному такті поверне вміст UCSRC. Зауважте, що часова
послідовність для читання UCSRC є неподільною операцією. Таким
чином, переривання повинні контролюватися (наприклад, шля-
хом глобального вимкнення переривань) під час операції читання.
Читання вмісту UBRRH не є неподільною операцією, тому його
можна читати як звичайний регістр, якщо попередня інструкція
не зчитувала значення з цього регістру.

Біт 6 – UMSEL: вибір режиму USART. Цей біт вибирає між
асинхронним (коли він дорівнює 0) і синхронним (коли він дорів-
нює 1) режимами роботи.

Біти 5:4 – UPM1:0: режим парності. Ці біти вмикають і зада-
ють тип генерації та перевірки парності. Якщо перевірку парності
ввімкнено, передавач автоматично генеруватиме та надсилатиме біт
парності переданих бітів даних у кожному кадрі. Приймач генеру-
ватиме значення біту парності для вхідних даних і порівнюватиме
його з налаштуванням UPM0. Якщо буде виявлено невідповідність,
буде встановлено прапор PE в UCSRA.

Таблиця 13.1 – Режими контролю парності у відповідності
до налаштувань бітів

UPM1 UPM0 Режим контролю парності
0 0 Вимкнено
0 1 Зарезервовано
1 0 Ввімкнено, контроль парності
1 1 Ввімкнено, контроль непарності

Біт 3 – USBS: вибір стопових бітів. Цей біт вибирає кількість
стоп-бітів, які вставляє передавач. Одержувач ігнорує це налаш-
тування. Якщо цей біт дорівнює 0, то передається один стоп-біт,
а якщо дорівнює 1, то передається два стоп-біти.

Біти 2:1 – UCSZ1:0: довжина символу. Біти UCSZ1:0 у поєд-
нанні з бітом UCSZ2 в регістрі UCSRB встановлюють кількість
бітів даних (довжина символу) у кадрі, який використовують при-
ймач і передавач (табл. 13.2).

37313	 Практична робота № 4 «Програмування цифрових інтерфейсів мікроконтролера AVR»

Таблиця 13.2 – Довжина символу в залежності від налаштувань

UCSZ2 UCSZ1 UCSZ0 Довжина
символу

0 0 0 5 біт
0 0 1 6 біт
0 1 0 7 біт
0 1 1 8 біт
1 0 0 Зарезервовано
1 0 1 Зарезервовано
1 1 0 Зарезервовано
1 1 1 9 біт

Біт 0 – UCPOL: полярність тактового сигналу. Цей біт вико-
ристовується лише для синхронного режиму. Записуйте цей біт
як 0, коли використовуєте асинхронний режим. Біт UCPOL вста-
новлює співвідношення між зміною вихідних даних і вибіркою
вхідних даних, а також синхронним тактовим сигналом (XCK).

Регістри швидкості передачі даних USART – UBRRL і UBRRH
(рис. 13.9).

Рисунок 13.9 – Регістри швидкості передачі даних USART –

UBRRL і UBRRH

Біт 15 – URSEL: вибір регістра. Цей біт вибирає між доступом
до UBRRH або UCSRC. Читається як нуль при читанні UBRRH.
URSEL має дорівнювати нулю під час запису у UBRRH.

Біти 14:12 – зарезервовані біти. Ці біти зарезервовано для вико-
ристання в майбутньому. Для сумісності з майбутніми пристроями
ці біти повинні бути записані як 0 під час запису UBRRH.

374 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Біти 11:0 – UBRR11:0: Регістр швидкості передачі даних
USART. Це 12-бітний регістр, який містить швидкість передачі
USART. UBRRH містить чотири старші біти, а UBRRL містить
вісім молодших бітів швидкості передачі USART. Поточні передачі
передавача та приймача будуть пошкоджені, при зміні швидкості
передачі даних. Запис UBRRL ініціює негайне оновлення попе-
реднього дільника швидкості передачі.

Для стандартних частот кварцових резонаторів найбільш часто
використовувані швидкості передачі даних для асинхронної роботи
можна створити за допомогою налаштувань UBRR, що показані
у розділі 13.2.4. Значення UBRR, які дають фактичну швидкість
передачі даних, що відрізняється від цільової швидкості передачі
даних менш ніж на 0,5 %, виділені жирним шрифтом у таблиці.
Вищі значення помилок прийнятні, але приймач матиме меншу
завадостійкість, коли значення помилок високі, особливо для вели-
ких довжин символів.

13.2.4 Приклади налаштування швидкості передачі даних

На рис. 13.10–13.13 представлені розраховані значення регістрів
UBRRH та UBRRL для різних швидкостей передачі UART та для різ-
них тактових частот мікропроцесора за формулами (13.1) та (13.2).

Значення регістрів UBRRH та UBRRL представлені для двох
варіантів – коли біт U2X регістра UCSRA встановлено та очищено.

При використанні тієї чи іншої швидкості передачі треба спо-
чатку впевнитися, що відхилення частоти (рядок Error) не пере-
більшує 0.5 %. Такі значення на рис. 13.10 – 13.13 виділені жирним
шрифтом.

37513	 Практична робота № 4 «Програмування цифрових інтерфейсів мікроконтролера AVR»

Рисунок 13.10 – Налаштування регістрів UBRRH та UBRRL

при тактових частотах процесора від 1 МГц до 2 МГц

Рисунок 13.11 – Налаштування регістрів UBRRH та UBRRL

при тактових частотах процесора від 3,6864 МГц до 7,3728 МГц

376 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Рисунок 13.12 – Налаштування регістрів UBRRH та UBRRL при

тактових частотах процесора від 8 МГц до 14,7456 МГц

Рисунок 13.13 – Налаштування регістрів UBRRH та UBRRL при
тактових частотах процесора від 16 МГц до 20 МГц

37713	 Практична робота № 4 «Програмування цифрових інтерфейсів мікроконтролера AVR»

13.3 Приклад програми

Виконаємо наступне завдання на базі мікроконтролера
ATMega8. Підключити трирозрядний семисегментний індикатор
зі спільним катодом наступним чином: А – РВ5, В – РВ4, С – РВ3,
D – PB2, E – PB1, F – PB0, G – PB7, перший розряд – РС1, дру-
гий розряд – РС2, третій розряд – РС3. Підключити дві кнопки
до виводів РD2 (INT0) та РD3 (INT1). Налаштувати модуль USART
для роботи в асинхронному режимі з такими параметрами: швид-
кість 9600 бод, кількість бітів даних – 8, кількість стопових бітів –
1, перевірка парності відсутня.

Натискання кнопок обробляти за допомогою відповідних
переривань.

При натисканні на кнопку, підключену до виводу PD2, збільшу-
вати значення деякої змінної на 1.

При натисканні на кнопку, підключену до виводу PD3, зменшу-
вати значення тієї самої змінної на 1.

При будь-якій зміні змінної відправляти її значення через UART
у вигляді текстового рядку з символами повернення каретки (’\r’)
та переводу рядку (’\n’) наприкінці.

При прийомі через UART текстового рядка, перетворювати його
на число та відображати на семисегментному індикаторі. Символом
закінчення передачі рядка вважати повернення каретки. Якщо пере-
дане число більше 999, відображати 999 замість нього.

13.3.1 Принципова електрична схема

Принципова електрична схема, що реалізує поставлену задачу,
показана на рис. 13.14.

У схемі є новий елемент, який ще не траплявся раніше – це семи-
сегментний світлодіодний індикатор.

Всі бачили такі індикатори у різних побутових приладах – праль-
них машинах, мультиварках, кухонних таймерах та ін.

Принцип їх дії заснований на відображенні цифр за допомогою
лише 7 світлодіодів (тому вони і називаються семисегментними),
що розташовані у спеціальній формі, показаній на рис. 13.15.

378 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Сегменти уявляють собою пласкі світлодіоди і мають назви
у вигляді латинських літер від А до G. Окремо стоїть сегмент,
що відображає десяткову крапку, це також світлодіод, але круглої
форми, який позначається як DP (decimal point).

Світлодіодні індикатори можуть мати або спільний анод (СА),
або спільний катод (СК), відповідно до того, який вивід є спільним
у всіх світлодіодів, що утворюють один розряд (рис. 13.16).

Якщо використовуються багаторазрядні індикатори (в нашому
випадку – трирозрядний), то всі однойменні виводи сегмен-
тів об’єднані між собою (рис. 13.17). Це зроблено для того, щоб
зменшити кількість виводів, необхідних для підключення індика-
тора. Але при такому підключенні не можна одночасно виводити

Рисунок 13.14 – Принципова електрична схема

Рисунок 13.15 – Семисегментний індикатор

37913	 Практична робота № 4 «Програмування цифрових інтерфейсів мікроконтролера AVR»

значення на всі розряди, бо тоді зображення просто будуть накла-
датися одне на одне. У такому випадку використовують так звану
динамічну індикацію, при якій розряди переключаються по черзі
з великою частотою, що непомітна оку.

Рисунок 13.16 – Структура семисегментного індикатора

Рисунок 13.17 – Принципова електрична схема трирозрядного
семисегментного індикатора зі спільним анодом

У програмі SimulIDE семисегментний індикатор знаходиться
у підзаголовку “Outputs” – “Leds”, і називається «7 Segment”
(рис. 13.18).

Він має досить багато налаштувань (рис. 13.19).
Більшість параметрів у нього такі самі, як і у світлодіоду

(що недивно): колір (Color), пряме падіння напруги (Forward
Voltage), максимальний прямий струм (Max Current) та власний
опір (Resistance), то ж ми не будемо на них тут зупинятися.

380 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Параметр “Size” – це кількість розрядів індикатора. Може бути
від 1 до теоретично безкінечності. Нам, відповідно до завдання
треба встановити три розряди.

Параметр “Vertical Pins” переносить виводи сегментів з лівої
частини у верхню і нижню частини. Це зроблено просто для зруч-
ності створення схеми у деяких випадках.

Параметр “Common Cathode” задає, який вивід у індикатора
буде спільним. Якщо галочка встановлена, то спільним буде катод,
а якщо ні, то анод. Відповідно до завдання, нам потрібно використо-
вувати індикатор зі спільним катодом, то ж ми ставимо цю галочку.

Рисунок 13.18 – Розташування семисегментного індикатора

у бібліотеці компонентів

 Рисунок 13.19 – Налаштування семисегментного індикатора

38113	 Практична робота № 4 «Програмування цифрових інтерфейсів мікроконтролера AVR»

Струмообмежуючі резистори повинні підключатися до кож-
ного сегменту. Їх величина розраховується таким самим чином,
як і для звичайних світлодіодів. Але тут треба враховувати той
факт, що кожен розряд буде світитися не весь час, а лише частину,
що дорівнює одиниці, поділеній на кількість розрядів.

То ж у нашому випадку:

R = ((5 В – 2.4 В) / 0.02 А) / 3 – 1 Ом = 43 Ом.

Чим більша кількість розрядів, тим менший повинен бути опір,
щоб забезпечити необхідну яскравість індикації.

У реальному пристрої вивід RxD інтерфейсу UART суміще-
ний з виводом PD0, а вивід TxD – з виводом PD1, то ж для роботи
з цим інтерфейсом ми повинні були б підключити їх до передавача
та приймача сигналу, відповідно. Але у програмі SimulIDE є вбудо-
ваний термінал для роботи з UART, який підключений як би всере-
дині мікроконтролера, то ж ніяких додаткових під’єднань робити
не треба.

Все інше на схемі вже зустрічалося нам раніше, то ж ми не будемо
на ній зупинятися далі, а перейдемо до розглядання програмного
коду.

13.3.2 Програмний код

Розглянемо тепер програму, що реалізує поставлену задачу
(рис. 13.20).

У рядках 1–6 ми підключаємо необхідні заголовкові файли.
Файли “io.h” та “delay.h” ми вже використовували у минулих
програмах.

У рядку 3 підключається заголовковий файл “interrupt.h”, який
потрібно додавати, якщо в програмі планується використовувати
переривання. Оскільки ми тут будемо мати справу з зовнішніми
перериваннями INT0 та INT1, то цей файл необхідно додати.

Зверніть увагу, що у рядках 4–6 ми підключаємо стандартні заго-
ловкові файли компілятора С, які досить широко використовуються
і для звичайного програмування: “stdio.h”, “stdlib.h” та “string.h”.
Це значить, що компілятор AVR GCC підтримує і деякі стандартні

382 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

 Рисунок 13.20 – Програмний код

38313	 Практична робота № 4 «Програмування цифрових інтерфейсів мікроконтролера AVR»

функції мови С, що є загальноприйнятими. Про кожну з них буде
написано окремо, коли вони зустрінуться у тексті програми.

У рядках 8–17 ми визначаємо макровизначення, або просто
макроси за допомогою директиви препроцесора define. Це зроб-
лено просто для зручності подальшого написання і читання коду
і не є обов’язковим.

То ж, ми визначаємо макроси для кожного сегменту та розряду
індикатора, як назву виводу, до якого він підключений (рис. 13.14).
Наприклад, розряд А підключений до виводу РВ5, тому ми визна-
чаємо макрос з назвою «А», який тотожно дорівнює _BV(PB5),
тобто номеру біта, що відповідає виводу РВ5. Таким самим чином
ми визначаємо макроси для всіх інших сегментів (В-G), а також для
розрядів індикатора (D1-D3).

У рядку 19 ми визначаємо змінну digit і одразу ініціалізуємо
її значенням 1. Ця змінна буде відповідати номеру розряду семи-
сегментного індикатора, який в даний момент світиться.

У рядку 20 ми визначаємо змінну number_in, яка уявляє собою
число, що потрібно приймати через інтерфейс UART і виводити
на семисегментний індикатор.

У рядку 21 ми визначаємо змінну number_out, яка уявляє собою
число, що потрібно змінювати за допомогою кнопок та виводити
на через інтерфейс UART.

У рядку 22 визначається масив rx_buf, який буде використовува-
тися для того, щоб зберігати рядок, що надходить через інтерфейс
UART.

У рядку 23 визначається змінна rx_count, що уявляє собою
лічильник прийнятих символів.

У рядку 24 визначається змінна rx_complete, що є прапором,
який індикує про те, що коректний рядок прийнято.

У рядку 25 визначається змінна tx_count, що уявляє собою
лічильник переданих символів.

У рядку 26 визначається змінна tx_len, яка містить довжину
рядка, який потрібно передати.

У рядку 27 визначається масив tx_buf, що буде використовува-
тися для зберігання рядка, який потрібно передати через інтерфейс
UART.

384 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

У рядках 28–40 знаходиться знакогенератор для семисегмент-
ного індикатора. Це масив з десяти констант, кожна з яких містить
число, яке потрібно записати у PORTB, щоб відобразити ту чи іншу
цифру. Номер елемента масиву відповідає цифрі, що повинна
відображатись.

Наприклад, нульовий елемент масиву записаний, як “A | B | C | D |
E | F”. Макроси А-F в нас вже визначені раніше, і вони відповідають
тим бітам в регістри PORTB, які треба встановити, щоб засвітити від-
повідний сегмент. Для того, щоб відобразити цифру 0, треба засвітити
сегменти А, B, C, D, E та F (рис. 13.2), тому ми їх і записуємо сюди. Всі
біти, що не вказані тут, будуть встановлені, як 0, а відповідні сегменти
не будуть світитися. Аналогічним чином визначаються сегменти для
всіх інших цифр. Тут треба зазначити, що все, описане тут, стосується
індикатора зі спільним катодом. Для індикатора зі спільним ано-
дом всі елементи масиву повинні бути інвертованими, оскільки для
ввімкнення світлодіоду сегменту на його вивід треба подати низький
рівень, а на спільний анод – високий. То ж, для індикатора зі спільним
анодом елементи масиву будуть такими:

const uint8_t gen[10] =
{
~(A | B | C | D | E | F), //0
~(B | C), //1
…
…
}

Рядки 42–95 поки пропустимо, і перейдемо до головної функції
програми, що розташована у рядках 96–143.

Спочатку треба налаштувати всі необхідні порти вводу-виводу.
Виводи, до яких підключені і аноди, і катоди індикаторів, треба
налаштувати як виходи. У рядку 98 ми записуємо одиниці у біти,
які відповідають сегментам світлодіодного індикатора, у регістр
DDRB. А у рядку 99 ми записуємо одиниці у біти, що відповіда-
ють розрядам світлодіодного індикатора, у регістр DDRC. Зверніть
увагу, що тут так само використовуються описані раніше макроси.

38513	 Практична робота № 4 «Програмування цифрових інтерфейсів мікроконтролера AVR»

У рядку 100 ми скидаємо біти PD2 та PD3 у регістрі DDRD,
налаштовуючи відповідні виводи, до яких підключені кнопки,
як входи. А у рядку 101 ми вмикаємо підтягувальні резистори
на цих виводах, встановлюючи ті ж самі біти у регістрі PORTD.

У рядку 102 ми записуємо 0 у регістр PORTB, тим самим вими-
каючи одразу всі сегменти індикатора (для індикатора зі спільним
анодом треба записати в усі біти цього регістру одиниці).

У рядках 104–108 ми конфігуруємо модуль USART. Інформація
щодо регістрів цього модуля приведена у пункті 4.2.3.

Оскільки ми хочемо встановити швидкість передачі як 9600 бод
при частоті процесора 1 МГц, нам треба встановити біт U2X у регі-
стрі UCSRA, оскільки в іншому випадку ми не зможемо досягти
потрібної похибки (див. рис. 13.10). При скинутому біті U2X
та значенні регістру UBRR = 6 похибка складає −7 %, що є непри-
пустимим. А при встановленому біти U2X та UBRR = 12 похибка
зменшується до 0,2 %, що вкладається у допустимі межі ±0,5 %.
То ж ми встановлюємо біт U2X у регістрі UCSRA (рядок 104), зали-
шаючи всі інші біти як 0, оскільки більшість із них уявляє собою
прапори переривань або помилок і доступні лише для читання.

У регістрі UCSRB ми встановлюємо наступні біти (рядок 105):
RXCIE, щоб дозволити переривання при прийомі символу, RXEN
та TEXEN, щоб дозволити роботу прийому і передачі, відповідно.
Після встановлення двох останніх біт виводи PD0 та PD1 будуть
керуватися модулем USART, і їхній стан не буде залежати від зна-
чень регістрів DDRD та PORTD. Оскільки за завданням кількість
байтів даних у пакеті дорівнює 8, ми залишаємо біт UCSZ2 рів-
ним 0. Також ми залишаємо рівним нулю біт UDRIE, який дозволяє
переривання при спорожненні регістру UDR. Це зроблено через те,
що прапор UDRE завжди дорівнює 1, якщо регістр UDR порож-
ній, а це відбувається більшу кількість часу. При цьому постійно
буде генеруватися відповідно переривання, заважаючи нормальній
роботі програми. То ж цей біт будемо встановлювати лише тоді,
коли ми збираємося передавати якісь дані.

У регістрі UCSRC ми встановлюємо такі біти (рядок 106):
URSEL, тому що його потрібно встановлювати завжди, коли
ми хочемо щось записати у регістр UCSRC, UCSZ1 та UCSZ0, щоб

386 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

задати довжину символу 8 біт (див. табл. 4.2). Біт UMSEL залиша-
ємо рівним 0, щоб модуль працював у асинхронному режимі. Біти
UPM1 та UPM0 залишаємо рівними 0, щоб вимкнути режим конт-
ролю парності. Біт USBS також залишається рівним 0, щоб вста-
новити один стоповий біт. Значення біту UCPOL не має значення
у синхронному режимі, то ж ми залишимо його рівним 0 також.

У рядках 107, 108 ми встановлюємо старші 4 біти регістру UBRR
рівними 0, а молодші 8 біт рівними 12, відповідно до таблиці,
показаній на рис. 4.10, щоб отримати швидкість передачі даних
9600 бод.

У рядках 110–113 налаштовуються переривання. Спочатку
треба сконфігурувати фронти на виводах INT0 та INT1, по яким
будуть генеруватися переривання. Ми будемо генерувати перери-
вання в момент відпускання кнопки, при якому відбувається зміна
рівня на вході від 0 до 1, тобто наростаючий фронт. Біти, що керу-
ють цією логікою, знаходяться у регістрі MCUCR (табл. 13.1).
Відповідно до цієї таблиці, для того, щоб встановити наростаючий
фронт як джерело запиту на переривання, треба встановити обидва
біти ISCn0 та ISCn1, що ми і робимо у рядку 110.

У рядку 111 ми демаскуємо (дозволяємо) зовнішні переривання
INT0 та INT1, встановлюючи біти INT0 та INT1 у регістрі GICR її.
Також ми очищуємо прапори відповідних переривань у рядку 112,
записуючи одиниці у біти INTF0 та INTF0 регістру GIFR. Це зроб-
лено для того, щоб не генерувати переривання, що можуть виник-
нути при конфігурації портів вводу-виводу.

Тепер лишилося тільки дозволити глобальні переривання
за допомогою функції sei (рядок 113).

Тепер переходимо до основного циклу програми, що знахо-
диться у рядках 115–142. У ньому спочатку реалізований алгоритм
динамічної індикації (рядки 117–136), який детально описаний
в індивідуальному завданні № 1, то ж ми не будемо тут його розгля-
дати ще раз. Рядки 137–141 будуть пояснені пізніше, після розгля-
дання функцій обробки переривань і функцій обробки даних.

Всі функції обробки переривань, як вже було зазначено у попе-
редніх практичних роботах, мають назву ISR, а в якості їх аргументу
передається назва переривання, яку можна знайти у заголовковому

38713	 Практична робота № 4 «Програмування цифрових інтерфейсів мікроконтролера AVR»

файлі для кожного конкретного мікроконтролера або у таблиці 13.1,
замінивши пробіли на знак підкреслення, і додавши в кінці «_vect”.

У рядках 60–64 знаходиться функція обробки зовнішнього пере-
ривання INT0. Відповідно до завдання, «При натисканні на кно-
пку, підключену до виводу PD2, збільшувати значення деякої
змінної на 1». Це ми і робимо у рядку 62. Окрім того, ще потрібно
«При будь-якій зміні змінної відправляти її значення через UART
у вигляді рядка з символами повернення каретки (’\r’) та переводу
рядка (’\n’) наприкінці». Це відбувається у функції send_number,
що викликається у рядку 63, і яку ми розглянемо дуже скоро.

У рядках 66–70 описана аналогічна підпрограма обробки пере-
ривання, тільки на цей раз вона викликається при генерації зовніш-
нього переривання INT1 (рядок 66). Дія при настанні цього пере-
ривання протилежна попередній – значення змінної number_out
зменшується на 1 (рядок 68). І, як і в попередній функції, тут також
відбувається викликається функція send_number (рядок 69).

Розглянемо цю функцію більш детально. Вона знаходиться
у рядках 42–48 і приймає один аргумент – число num, що потрібно
передати через UART. У рядку 44 викликається стандартна функція
sprint, яка описана у файлі “stdio.h”, що ми підключили у рядку 4.
Ця функція дозволяє сформувати символьний рядок з аргументів
різного типу. В нашому випадку ми формуємо рядок tx_buf, в який
ми записуємо спочатку число num, як звичайне ціле число (пара-
метр «%d”), а потім додаємо символи повернення каретки (’\r’)
та переводу рядка (’\n’) для того, щоб після передачі цього рядка
новий текстовий рядок починався з нового рядка у вікні терміналу.

Далі ми знаходимо довжину рядка tx_buf, використовуючи
іншу стандартну функцію strlen (рядок 45). Ця функція описана
у заголовковому файлі “string.h”, що підключений у рядку 5. Потім
ми обнулюємо лічильник переданих символів tx_count (рядок 46),
і нарешті дозволяємо переривання по спорожненню регістру даних
UDR, встановлюючи біт UDRIE у регістрі UCSRB (рядок 47).
Оскільки ми ще нічого не записували у регістр UDR, прапор UDRE
у регістрі UCSRA встановлений, тому одразу буде згенеровано
переривання порожнього регістру даних. В обробнику цього пере-
ривання ми й будемо власне передавати дані.

388 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Цей обробник знаходиться у рядках 183–194. Відповідний вектор
цього переривання називається USART_UDRE_vect (рядок 183).
Всередині цього обробника ми спочатку перевіряємо, чи лічиль-
ник переданих символів менше, ніж довжина рядку, що ми хочемо
передати (рядок 85), тобто, чи є ще дані, які нам потрібно пере-
дати. Якщо є, то ми завантажуємо поточний елемент масиву tx_buf
у регістр UDR (рядок 87) і збільшуємо лічильник переданих симво-
лів tx_count (рядок 88). Після завантаження даних у регістр UDR,
вони передаються у регістр зсуву, якщо він вже порожній, з якого
ці дані видаються на вивід TxD. Якщо ж регістр зсуву ще містить
попередні дані, регістр UDR залишається повним, біт UDRE
не встановлюється, і нове переривання не генерується. Як тільки
цей регістр спорожніє, одразу встановиться прапор UDRE, згене-
рується відповідне переривання, і ми зможемо завантажити новий
символ. Таким чином, ми не витрачаємо процесорний час, опиту-
ючи значення біту UDRE, щоб дізнатися, коли можна буде заванта-
жити наступний символ, все це робиться автоматично за допомо-
гою переривання.

Коли всі символи вже передані (рядок 90), треба вимкнути
це переривання, скинувши біт UDRIE (рядок 92), щоб не відбува-
лося постійного викликання цієї підпрограми, коли нам нема чого
передавати.

Тепер розглянемо, як відбувається прийом даних. Для цього
використовується ще один обробник переривання, тільки цього разу,
він спрацьовує при прийомі символу у регістр даних (рядки 72–81).
Відповідний вектор переривання називається USART_RXC_vect
(рядок 72). Всередині цього обробника ми першим чином копію-
ємо прийняті дані з регістру UDR у масив rx_buf (рядок 74). Після
цього ми перевіряємо, чи не дорівнює прийнятий символ значенню
’\r’ (повернення каретки) (рядок 75). Цей символ є останнім у прий-
нятому пакеті даних, відповідно до завдання. Тому, коли ми його
прийняли, ми припиняємо прийом наступних даних і встановлю-
ємо прапор rx_complete (рядок 77), що індикує про те, що дані
прийняті, і можна тепер їх обробляти. Якщо ж ми прийняли якийсь
інший символ (рядок 79), ми просто збільшуємо лічильник прийня-
тих символів (рядок 80) і чекаємо на нові дані.

38913	 Практична робота № 4 «Програмування цифрових інтерфейсів мікроконтролера AVR»

Обробник цього переривання повинен бути якомога коротшим,
щоб не втратити дані, бо якщо новий символ прийде, поки відбу-
ватиметься обробка попереднього, то він просто буде втрачений.
Саме через це ми не виводимо нове число на індикатор всередині
цієї підпрограми, а просто встановлюємо прапор rx_complete,
який перевіряється в основному циклі програми (рядок 137). Коли
цей прапор встановлено, його першим чином потрібно скинути
(рядок 138), щоб коли прийде наступний пакет даних, він би знову
встановив цей прапор, і його також було б оброблено. А далі викли-
кається функція parse_data (рядок 149), у якій власне і оновлюється
значення, що показується на семисегментному індикаторі.

Ця функція знаходиться у рядках 50–58. В ній вхідний масив
символів rx_buf перетворюється на ціле число number_in за допо-
могою стандартної функції atoi, що описана у файлі “stdlib.h”, який
ми підключили у рядку 6. Після цього нам потрібно підготувати
масив rx_buf до прийому нових даних. То ж ми обнулюємо лічиль-
ник прийнятих символів rx_count (рядок 53), а також обнулюємо всі
елементи самого масиву (рядки 54–55). Ну і наостанок, відповідно
до завдання, якщо прийняте число більше 999 (рядок 56), ми вста-
новлюємо його як 999 (рядок 57).

На цьому опис програми можна вважати завершеним. Тепер
треба перевірити, як вона працює.

13.3.3 Симуляція роботи програми

Після компіляції програми та завантаження її у мікроконтролер
треба ввімкнути монітор послідовного порту. Для того, щоб це зро-
бити, треба натиснути правою кнопкою миші на мікроконтролері
і з випадаючого списку обрати пункт “Open Serial Monitor” і далі
“USART1» (рис. 13.21).

Після цього відкриється вікно, показане на рис. 13.22. Розберемо
його основні елементи більш детально:

1 – Поле для вводу рядка, який буде відправлено у мікроконт-
ролер. Для того, щоб надіслати рядок, треба набрати його на кла-
віатурі та натиснути кнопку Enter. Після цього переданий рядок
з’явиться у полі вхідних даних 5.

390 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Рисунок 13.21 – Відкриття монітору послідовного порту

Рисунок 13.22 – Вікно монітору послідовного порту

2 – Кнопка, що дозволяє додати символ повернення каретки ’\r’
в кінці рядка. Ми її як раз і будемо використовувати при відправці
числа у мікроконтролер як ознаку закінчення пакету даних.

3 – Відправка одного символу в ASCII-коді.

39113	 Практична робота № 4 «Програмування цифрових інтерфейсів мікроконтролера AVR»

4 – Вигляд поля вхідних і вихідних даних: або у вигляді звичай-
ного рядка (варіант ASCII), або у вигляді набору чисел, що відпові-
дають ASCII кодам переданих символів (варіант Value).

5 – Поле вхідних даних. Тут будуть відображатися дані, що над-
ходять у мікроконтролер.

6 – Поле вихідних даних. Тут відображаються дані, що переда-
ються мікроконтролером.

7 – Кнопка очищення поля вхідних даних 5.
8 – Кнопка очищення поля вихідних даних 6.
То ж тепер запустимо симуляцію і будемо натискати кнопки,

що підключені до мікроконтролеру. При цьому у полі вихідних
даних 6 повинні з’являтися числа, що або збільшуються, або змен-
шуються, відповідно до того, яка кнопка натиснута (рис. 13.23).

Рисунок 13.23 – Результат передачі даних мікроконтролером

Тепер перевіримо, як працює прийом даних. Для цього у полі
вводу рядка 1 введемо будь-яке число, наприклад, 236. І натис-
немо кнопку CR (2), щоб символ повернення каретки автоматично
додавався до кінця рядка. Якщо цього не зробити, но на індикаторі
не буде нічого відображатися відповідно до логіки роботи нашої
програми.

392 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Тепер якщо натиснути на клавіатурі клавішу Enter, введене
число повинно передатися до мікроконтролера і відобразитися
на семисегментному індикаторі. Одночасно воно повинно відобра-
зитися у полі вхідних даних 5 (рис. 13.24).

Рисунок 13.24 – Результат прийому даних мікроконтролером

Як бачимо, програма працює, як потрібно. Можна спробувати
вводити різні числа і переконатися, що вони відображаються корек-
тно. При вводі числа, більшого за 999, на індикаторі відобразиться
999. У програмі ніяк не опрацьовуються від’ємні числа, то ж при
їх вводі результат буде невірним.

13.4 Завдання до практичної роботи

1.	Створити принципову електричну схему, згідно з варіантом
завдань (табл. 13.3).

2.	Написати програму, що виконує поставлене завдання.
3.	Створити файл прошивки, загрузити його у мікроконтролер

та переконатися, що все працює, як треба.

39313	 Практична робота № 4 «Програмування цифрових інтерфейсів мікроконтролера AVR»

Таблиця 13.3 – Варіанти завдань до практичної роботи № 4
Варіант Завдання

1 2

1

Підключити дворозрядний семисегментний індикатор зі спільним ано-
дом наступним чином: А – РВ0, В – РВ1, С – РВ2, D – PB3,
E – PB4, F – PB5, G – PB6, перший розряд – РС0, другий розряд – РС1.
Налаштувати модуль USART для роботи в асинхронному режимі
з такими параметрами: швидкість 2400 бод, кількість бітів даних – 8,
кількість стопових бітів – 2, перевірка парності відсутня.
При прийомі числа у діапазоні від 0 до 255 через USART виводити
його на індикатор у шістнадцятковому форматі. У моніторі послідов-
ного порту число передавати саме як число за допомогою поля Send
Value.

2

Підключити трирозрядний семисегментний індикатор зі спільним
катодом наступним чином: А – РС0, В – РС1, С – РС2, D – PС3,
E – PС4, F – PС5, G – PС6, перший розряд – РD0, другий розряд –
РD1, третій розряд – РD4. Налаштувати модуль USART для роботи
в асинхронному режимі з такими параметрами: швидкість 4800
бод, кількість бітів даних – 8, кількість стопових бітів – 1, перевірка
парності – непарність.
При прийомі через UART рядка, перетворювати його на число зі зна-
ком та відображати його на семисегментному індикаторі. Символом
закінчення передачі рядка вважати повернення каретки. Якщо пере-
дане число більше 999, відображати 999 замість нього. Якщо передане
число менше -99, відображати -99.

3

Підключити до порту PB мікроконтролера вісім світлодіодів.
Налаштувати модуль USART для роботи в асинхронному режимі
з такими параметрами: швидкість 9600 бод, кількість бітів даних – 8,
кількість стопових бітів – 1, перевірка парності – парність.
При прийомі числа у діапазоні від 0 до 255 через USART виводити
його за допомогою світлодіодів у двійковому форматі. У моніторі
послідовного порту число передавати саме як число за допомогою
поля Send Value.

4

Підключити до портів PB та РС мікроконтролера десять світлодіо-
дів. Налаштувати модуль USART для роботи в асинхронному режимі
з такими параметрами: швидкість 2400 бод, кількість бітів даних – 5,
кількість стопових бітів – 1, перевірка парності – непарність.
При прийомі через USART символу від 0 до 9 вмикати відповідний
світлодіод. При прийомі будь-якого іншого символу всі світлодіоди
вимкнути. У моніторі послідовного порту символ передавати за допо-
могою поля Send Text.

394 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

1 2

5

Налаштувати модуль USART для роботи в асинхронному режимі
з такими параметрами: швидкість 4800 бод, кількість бітів даних – 8,
кількість стопових бітів – 2, перевірка парності – парність.
Налаштувати таймер 1 в режимі скиду при збігу з періодом спрацю-
вання 1 секунда.
При перериванні таймеру збільшувати якусь змінну на 1 та відправ-
ляти її значення через UART у вигляді рядка з символами повернення
каретки (’\r’) та переводу рядка (’\n’) наприкінці.

6

Налаштувати модуль USART для роботи в асинхронному режимі
з такими параметрами: швидкість 9600 бод, кількість бітів даних – 7,
кількість стопових бітів – 1, перевірка парності – непарність.
Налаштувати таймер 1 в режимі скиду при збігу з періодом спрацю-
вання 2 секунди.
При перериванні таймеру генерувати випадкове число у діапазоні
від 0 до 100 та відправляти його через UART у вигляді власне числа.

7

Підключити кнопку до виводу PD2.
Налаштувати модуль USART для роботи в асинхронному режимі
з такими параметрами: швидкість 2400 бод, кількість бітів даних – 8,
кількість стопових бітів – 2, перевірка парності – немає. Ввімкнути
таймер 0 без попереднього дільника частоти.
При натисканні на кнопку зчитувати поточне значення лічильника
таймера та передавати його через UART у вигляді рядка з символами
повернення каретки (’\r’) та переводу рядка (’\n’) наприкінці. Обробку
натискання кнопки робити за допомогою переривання INT0.

8

Підключити кнопку до виводу PD3.
Налаштувати модуль USART для роботи в асинхронному режимі
з такими параметрами: швидкість 4800 бод, кількість бітів даних – 6,
кількість стопових бітів – 1, перевірка парності – непарність.
При натисканні на кнопку генерувати випадкове число у діапазоні
від 0 до 63 та передавати його через UART у вигляді рядка з символами
повернення каретки (’\r’) та переводу рядка (’\n’) наприкінці. Обробку
натискання кнопки робити за допомогою переривання INT1.

9

Підключити кнопку до виводу PD2.
Налаштувати модуль USART для роботи в асинхронному режимі
з такими параметрами: швидкість 9600 бод, кількість бітів даних – 8,
кількість стопових бітів – 2, перевірка парності – парність.
При натисканні на кнопку, починати кожної секунди генерувати випад-
кове число у діапазоні від 0 до 255 та передавати його через UART
у вигляді власне числа. При повторному натисканні на кнопку гене-
рацію зупинити. Обробку натискання кнопки робити за допомогою
переривання INT0.

Продовження таблиці 13.3

39513	 Практична робота № 4 «Програмування цифрових інтерфейсів мікроконтролера AVR»

1 2

10

Підключити кнопку до виводу PD3.
Налаштувати модуль USART для роботи в асинхронному режимі
з такими параметрами: швидкість 2400 бод, кількість бітів даних – 8,
кількість стопових бітів – 2, перевірка парності – парність.
Налаштувати таймер 1 в звичайному режимі з тактовою частотою,
рівною частоті clkI/O.
При натисканні на кнопку зчитувати поточне значення лічильника
таймера та передавати його через UART у вигляді двох восьмибіто-
вих чисел: старшого і молодшого байтів. Обробку натискання кнопки
робити за допомогою переривання INT1.

11

Налаштувати модуль USART для роботи в асинхронному режимі
з такими параметрами: швидкість 4800 бод, кількість бітів даних – 8,
кількість стопових бітів – 1, перевірка парності – парність.
При прийомі через UART рядка довжиною до 64 символів, що закінчу-
ється символом повернення каретки, рахувати кількість цифр у ньому
і передавати це значення через UART як число.

12

Налаштувати модуль USART для роботи в асинхронному режимі
з такими параметрами: швидкість 9600 бод, кількість бітів даних – 8,
кількість стопових бітів – 2, перевірка парності – непарність.
При прийомі через UART рядка довжиною до 100 символів, що закін-
чується символом повернення каретки, замінити всі малі літери
на великі і передати новий рядка назад через UART.

Питання для самоперевірки
1.	 Принцип роботи модуля USART мікроконтролера ATMega8.
2.	 Як налаштувати швидкість передачі даних UART?
3.	 Які є налаштування пакету даних UART?
4.	 Які переривання може генерувати модуль USART мікроконтролера

ATMega8?

Перелік рекомендованих джерел
1.	 Конспект лекцій з навчальної дисципліни «Програмування мік-

ропроцесорних засобів вимірювальної техніки» зі спеціальності
152 «Метрологія та інформаційно-вимірювальна техніка» за освітньо-
професійною програмою «Комп’ютеризовані інформаційно-вимірю-
вальні системи» / розробник Чепюк Л. А. Житомир : Державний уні-
верситет «Житомирська політехніка», 2021. 144 с.

Продовження таблиці 13.3

396 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

2.	 ATMega8: технічна документація на мікроконтролер. URL:
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-2486-8-
bit-AVR-microcontroller-ATmega8_L_datasheet.pdf (дата звернення:
02.12.2024).

3.	 8-bit AVR® MCUs: інформація про мікроконтролери. URL:
https://www.microchip.com/en-us/products/microcontrollers-and-
microprocessors/8-bit-mcus/avr-mcus (дата звернення: 02.12.2024).

4.	 Конспект лекцій з дисципліни «Мікропроцесорна техніка» для здо-
бувачів вищої освіти першого (бакалаврського) рівня зі спеціа-
льності 153 «Мікро- та наносистемна техніка» за освітньо-про-
фесійною програмою «Мікро- та наносистемна техніка» та зі
спеціальності 171 «Електроніка» за освітньо-професійною про-
грамою «Електроніка» / уклад. О. М. Гулєша. Кам’янське : ДДТУ,
2020. 57 с.

5.	 Основи Програмування AVR C. DevZone. URL: https://devzone.org.ua/
post/osnovy-prohramuvannia-avr-c (дата звернення: 02.12.2024).

https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-2486-8-bit-AVR-microcontroller-ATmega8_L_datasheet.pdf
https://www.microchip.com/en-us/products/microcontrollers-and-microprocessors/8-bit-mcus/avr-mcus
https://devzone.org.ua/post/osnovy-prohramuvannia-avr-c

14__
ПРАКТИЧНА РОБОТА № 5

«ПРОГРАМУВАННЯ АНАЛОГОВИХ МОДУЛІВ
МІКРОКОНТРОЛЕРА AVR»

Перелік питань до розділу:
14.1. Завдання.
14.2. Теоретичні дані.

14.2.1. Аналоговий компаратор.
14.2.2. Модуль АЦП мікроконтролерів AVR.

14.3. Приклад програми з використанням аналогового компара-
тору та аналого-цифрового перетворювача.

14.4. Принципова електрична схема.
14.4.1. Програмний код.
14.4.2. Симуляція роботи програми.

14.5. Завдання до практичної роботи.

14.1 Завдання

Освоєння прийомів програмування аналогових модулів мікро-
контролерів AVR.

Завдання практичної роботи:
‒	 Створення електричної схеми у програмі SimulIDE відповідно

до завдання на практичну роботу.
‒	 Написання програми для мікроконтролеру відповідно

до завдання на практичну роботу.

398 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

14.2 Теоретичні дані

14.2.1 Аналоговий компаратор

Аналоговий компаратор порівнює вхідні значення на позитивному
вході AIN0 і негативному вході AIN1. Коли напруга на позитивному
вході AIN0 перевищує напругу на негативному вході AIN1, вихід ана-
логового компаратора ACO стає рівним логічній 1. Вихід компаратора
можна налаштувати для запуску функції захоплення таймера-лічиль-
ника 1. Крім того, компаратор може ініціювати окреме переривання,
виділене для аналогового компаратора. Користувач може вибрати тип
спрацьовування переривання при зростанні, падінні або перемиканні
вихідного сигналу компаратора. Блок-схема компаратора та його ото-
чуюча логіка показані на рис. 14.1.

Рисунок 14.1 – Блок-схема компаратора та його оточуюча логіка

Регістри аналогового компаратору мікроконтролера
ATMega8.

Регістр спеціальних функцій вводу-виводу – SFIOR
(рис. 14.2).

39914	 Практична робота № 5 «Програмування аналогових модулів мікроконтролера AVR»

Біт 3 – ACME: увімкнення мультиплексора аналогового
компаратора. Коли в цей біт записується логічна одиниця, і АЦП
вимкнено (ADEN в ADCSRA дорівнює нулю), мультиплексор АЦП
вибирає негативний вхід для аналогового компаратора. Коли в цей
біт записується логічний нуль, вхід AIN1 під’єднується до негатив-
ного входу аналогового компаратора. Детальний опис цього біта
буде розглянуто далі.

Регістр управління та стану аналогового компаратора –
ACSR (рис. 14.3).

Рисунок 14.2 – Регістр спеціальних функцій вводу-виводу – SFIOR

Рисунок 14.3 – Регістр управління та стану аналогового

компаратора – ACSR

Біт 7 – ACD: вимкнення аналогового компаратора. Коли
в цей біт записується логічна одиниця, живлення аналогового ком-
паратора вимикається. Цей біт можна встановити в будь-який час,
щоб вимкнути аналоговий компаратор. Це зменшить енергоспо-
живання в активному режимі та режимі очікування. При зміні біта
ACD необхідно вимкнути переривання аналогового компаратора
шляхом очищення біта ACIE в ACSR. Інакше при зміні біта може
виникнути переривання.

Біт 6 – ACBG: вибір забороненої зони аналогового компара-
тора. Коли цей біт установлено, опорна напруга фіксованої забо-
роненої зони замінює позитивний вхід аналогового компаратора.
Коли цей біт очищено, вхід AIN0 під’єднується до позитивного
входу аналогового компаратора.

400 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

ATmega8 має внутрішнє джерело опорної напруги забороненої
зони. Цей еталонний сигнал використовується для виявлення зни-
ження напруги живлення, і його можна використовувати як вхід-
ний сигнал для аналогового компаратора або АЦП. Величина
напруги цього джерела дорівнює 2,56 В для АЦП та аналогового
компаратору.

Біт 5 – ACO: вихід аналогового компаратора. Вихід аналого-
вого компаратора синхронізується, а потім безпосередньо підклю-
чається до ACO. Синхронізація вносить затримку в 1–2 такти.

Біт 4 – ACI: прапор переривання аналогового компаратора.
Цей біт встановлюється апаратним забезпеченням, коли вихідна
подія компаратора, визначена бітами ACIS1 і ACIS0, генерує пере-
ривання. Процедура переривання аналогового компаратора вико-
нується, якщо встановлено біт ACIE та встановлено біт I у SREG.
ACI очищається апаратним забезпеченням під час виконання від-
повідного вектору обробки переривань. Крім того, ACI очищається
шляхом запису логічної одиниці до прапора.

Біт 3 – ACIE: увімкнення переривання аналогового компа-
ратора. Коли в біт ACIE записується логічна одиниця, і біт I у регі-
стрі стану встановлений, активується переривання аналогового
компаратора. Коли в нього записується логічний нуль, переривання
відключається.

Біт 2 – ACIC: увімкнення захоплення від аналогового ком-
паратора. Коли в цей біт записана логічна одиниця, він дозволяє
аналоговому компаратору запускати функцію захоплення у тай-
мері/лічильнику 1. Вихід компаратора в цьому випадку безпосе-
редньо підключений до зовнішньої логіки захоплення, завдяки
чому компаратор використовує придушувач шуму і функції вибору
фронту переривання по захопленню таймера-лічильника 1. Коли
в цей біт записаний логічний нуль, зв’язок між аналоговим компа-
ратором і функцією захоплення розривається. Щоб змусити ком-
паратор запускати переривання по захопленню таймера-лічильника
1, необхідно встановити біт TICIE1 у регістрі маски переривання
таймерів (TIMSK).

Біти 1,0 – ACIS1, ACIS0: вибір режиму переривання від ана-
логового компаратора. Ці біти визначають, які події компаратора

40114	 Практична робота № 5 «Програмування аналогових модулів мікроконтролера AVR»

викликають переривання аналогового компаратора. Різні налашту-
вання наведено в таблиці 14.1.

Таблиця 14.1 – Вибір режиму переривання від аналогового
компаратора
ACIS1 ACIS0 Режим переривання

0 0 Переривання компаратора при будь-якій зміні стану виходу
0 1 Зарезервовано

1 0 Переривання компаратора по спадаючому вихідному
фронту

1 1 Переривання компаратора по наростаючому вихідному
фронту

Під час зміни бітів ACIS1/ACIS0 переривання від аналогового
компаратора має бути відключено шляхом очищення його біта
дозволу переривання в регістрі ACSR. Інакше при зміні бітів може
виникнути переривання.

Мультиплексований вхід аналогового компаратора. Можна
вибрати будь-який з входів ADC7..0 для підключення до негативного
входу аналогового компаратора. Мультиплексор АЦП використо-
вується для вибору цього входу, отже, АЦП має бути вимкнено, щоб
використовувати цю функцію. Якщо встановлено біт увімкнення
мультиплексору аналогового компаратора (ACME у SFIOR), а АЦП
вимкнено (ADEN у ADCSRA дорівнює нулю), MUX2..0 у ADMUX
вибирає вхідний контакт для підключення до негативного входу
аналогового компаратора, як показано у таблиці 14.2. Якщо ACME
скинуто або встановлено ADEN, вхід AIN1 використовується
як негативний вхід аналогового компаратора.

Таблиця 14.2 – Вибір вхідного контакту для підключення
до негативного входу аналогового компаратора
ACME ADEN MUX2..0 Негативний вхід аналогового компаратора

1 2 3 4
0 х ххх AIN1
1 1 ххх AIN1
1 0 000 ADC0

402 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

1 2 3 4
1 0 001 ADC1
1 0 010 ADC2
1 0 011 ADC3
1 0 100 ADC4
1 0 101 ADC5
1 0 110 ADC6
1 0 111 ADC7

14.2.2 Модуль АЦП мікроконтролерів AVR

АЦП мікроконтролера ATMega8.
Особливості:
‒	 10-бітна роздільна здатність.
‒	 Інтегральна нелінійність 0,5 LSB.
‒	 Абсолютна точність ±2 LSB.
‒	 Час перетворення 13 мкс – 260 мкс.
‒	 До 15 kSPS при максимальній роздільній здатності.
‒	 6 мультиплексованих односторонніх вхідних каналів.
‒	 2 додаткові мультиплексовані односторонні вхідні канали

(тільки для корпусів TQFP і QFN/MLF).
‒	 Опціональне вирівнювання результату перетворення ліворуч.
‒	 діапазон вхідної напруги АЦП 0 – VCC.
‒	 Вибір опорної напруги АЦП 2,56 В.
‒	 Режим безперервного або одноразового перетворення.
‒	 Переривання після завершення перетворення АЦП.
‒	 Пригнічувач шуму в режимі сну.
ATmega8 має 10-бітний АЦП послідовного наближення. АЦП

підключений до 8-канального аналогового мультиплексора,
який дозволяє підключати вісім односторонніх входів напруги,
підключених до виводів порту C. Вхідна напруга вимірюється
відносно 0 В (GND).

АЦП містить схему вибірки та утримання, яка гарантує,
що вхідна напруга АЦП утримується на постійному рівні під час
перетворення. Блок-схема АЦП показана на рис. 14.4.

Продовження таблиці 14.2

40314	 Практична робота № 5 «Програмування аналогових модулів мікроконтролера AVR»

АЦП має окремий аналоговий вхід напруги живлення, AVCC.
AVCC не має відрізнятися більше ніж на ±0,3 В від VCC.

АЦП перетворює аналогову вхідну напругу в 10-бітне цифрове
значення шляхом послідовного наближення. Мінімальне значення
являє собою GND, а максимальне значення являє собою напругу
на виводі AREF мінус 1 LSB. За бажанням, AVCC або внутрішня

Рисунок 14.4 – Блок-схема АЦП

404 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

опорна напруга 2,56 В може бути підключена до виводу AREF шля-
хом запису в біти REFSn у регістрі ADMUX. Таким чином, вну-
трішня опорна напруга може бути розв’язана зовнішнім конденса-
тором на виводі AREF для підвищення завадостійкості.

Аналоговий вхідний канал вибирається шляхом запису в біти
MUX у регістрі ADMUX. Будь-який із вхідних контактів АЦП,
а також GND і опорну напругу з фіксованою забороненою зоною
можна вибрати як входи АЦП. АЦП вмикається встановленням
біта ввімкнення АЦП ADEN у регістрі ADCSRA. Вибір опорної
напруги та вхідного каналу не набуде чинності, доки не буде вста-
новлено ADEN. АЦП не споживає електроенергію, коли ADEN
очищено, тому рекомендується вимкнути АЦП перед переходом
у енергозберігаючі режими сну.

АЦП генерує 10-бітний результат, який представляється в регі-
страх даних АЦП ADCH і ADCL. За замовчуванням результат
представлено з вирівнюванням праворуч, але за бажанням його
можна представити вирівняним ліворуч шляхом встановлення біта
ADLAR у ADMUX.

Якщо результат вирівняний ліворуч, і не потрібна точність
більше 8 біт, достатньо прочитати ADCH. В іншому випадку спо-
чатку потрібно прочитати ADCL, а потім ADCH, щоб переконатися,
що вміст регістрів даних належить до того самого перетворення.
Після зчитування ADCL доступ ADC до регістрів даних блокується.
Це означає, що якщо ADCL було прочитано, і перетворення завер-
шується до того, як буде зчитано ADCH, жоден регістр не онов-
люється, і результат перетворення втрачається. Коли зчитується
ADCH, доступ ADC до регістрів ADCH і ADCL знову вмикається.

АЦП має власне переривання, яке може бути викликане після
завершення перетворення. Коли доступ ADC до регістрів даних
заборонено між читанням ADCH і ADCL, переривання спрацює,
навіть якщо результат буде втрачено.

Початок перетворення. Одиночне перетворення почина-
ється записом логічної одиниці в біт початку перетворення АЦП,
ADSC. Цей біт залишається високим, доки триває перетворення,
і буде очищено апаратним забезпеченням після завершення пере-
творення. Якщо під час перетворення вибрано інший канал даних,

40514	 Практична робота № 5 «Програмування аналогових модулів мікроконтролера AVR»

АЦП завершить поточне перетворення перед виконанням зміни
каналу.

У режимі безперервного перетворення АЦП постійно виконує
вибірку та оновлює регістр даних АЦП. Режим безперервного
перетворення вибирається записом одиниці у біт ADFR в регістрі
ADCSRA. Перше перетворення має бути розпочато із запису логіч-
ної одиниці до біта ADSC у регістрі ADCSRA. У цьому режимі
АЦП виконуватиме послідовні перетворення незалежно від того,
чи скинуто прапор переривання АЦП, ADIF чи ні.

Попереднє поділення та час перетворення. За замовчуванням
схема послідовного наближення вимагає вхідної тактової частоти
від 50 до 200 кГц для отримання максимальної роздільної здатно-
сті. Якщо необхідна роздільна здатність нижче 10 біт, вхідна так-
това частота АЦП може бути вищою за 200 кГц, щоб отримати
вищу частоту дискретизації.

Модуль АЦП містить попередній дільник, який генерує
прийнятну тактову частоту АЦП на будь-якій частоті ЦП вище
100 кГц (рис. 14.5). Попереднє поділення встановлюється бітами
ADPS в ADCSRA. Попередній дільник починає відлік з моменту
ввімкнення АЦП установкою біта ADEN в ADCSRA. Попередній
дільник продовжує працювати до тих пір, поки встановлено біт
ADEN, і постійно скидається, коли ADEN низький.

Якщо ініціювати перетворення шляхом встановлення біта ADSC
у ADCSRA, воно починається з наступного наростаючого фронту
тактового циклу АЦП. Нормальне перетворення займає 13 тактів
АЦП. Перше перетворення після ввімкнення АЦП (встановлено
ADEN в ADCSRA) потребує 25 тактових циклів АЦП для ініціалі-
зації аналогової схеми.

Фактична вибірка й утримання займає 1,5 тактів АЦП після
початку звичайного перетворення та 13,5 такту АЦП після початку
першого перетворення. Після завершення перетворення результат
записується в регістри даних АЦП і встановлюється ADIF. У режимі
одиночного перетворення одночасно очищується біт ADSC. Після
цього програмне забезпечення може знову встановити ADSC, і нове
перетворення буде ініційовано на першому наростаючому фронті
синхронізації АЦП.

406 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

У безперервному режимі нове перетворення розпочнеться
відразу після завершення перетворення, поки біт ADSC залиша-
ється високим.

Зміна вхідного каналу або джерела опорної напруги. Біти
MUXn і REFS1:0 у регістрі ADMUX буферизуються через тим-
часовий регістр, до якого ЦП має довільний доступ. Це гарантує,
що під час перетворення вибір каналів і опорної напруги відбува-
тиметься лише в безпечному місці протягом перетворення. Вибір
каналу та опорної напруги може постійно оновлюватися, доки
не розпочнеться перетворення. Після початку перетворення вибір
каналу та опорної напруги блокується, щоб забезпечити достат-
ній час вибірки для АЦП. Безперервне оновлення відновлюється
в останньому такті АЦП перед завершенням перетворення (вста-
новлено ADIF в ADCSRA). Зверніть увагу, що перетворення почи-
нається на наступному наростаючому фронті синхронізації АЦП
після запису ADSC. Таким чином, користувачеві рекомендується
не записувати нові значення вибору каналу або опорної напруги
в ADMUX до тих пір, поки не пройде хоча б один такт АЦП після
запису ADSC.

Якщо і ADFR, і ADEN записані як одиниці, переривання може
відбутися в будь-який час. Якщо реєстр ADMUX змінено протя-
гом цього періоду, користувач не зможе визначити, чи базується

Рисунок 14.5 – Попереднє поділення АЦП

40714	 Практична робота № 5 «Програмування аналогових модулів мікроконтролера AVR»

наступне перетворення на старих чи нових налаштуваннях.
ADMUX можна безпечно оновити такими способами:

1.	Коли ADFR або ADEN очищено.
2.	Під час перетворення, через мінімум один такт АЦП після

старту перетворення.
3.	Після перетворення, перш ніж прапор переривання, який

використовується як джерело запуску, буде очищено.
Під час оновлення ADMUX при одній із цих умов нові параме-

три вплинуть на наступне перетворення АЦП.
Вхідні канали АЦП. Змінюючи вхідний канал, користувач

повинен дотримуватися наведених нижче вказівок, щоб перекона-
тися, що вибрано правильний канал:

У режимі одиночного перетворення завжди вибирайте канал
перед початком перетворення. Вибір каналу можна змінити через
один такт АЦП після запису в біт ADSC. Однак найпростіший спо-
сіб – дочекатися завершення перетворення перед зміною каналу.

У режимі безперервного перетворення завжди вибирайте канал
перед початком першого перетворення. Вибір каналу можна змі-
нити через один такт АЦП після запису в ADSC. Однак найпро-
стіший спосіб – дочекатися завершення першого перетворення,
а потім змінити канал. Оскільки наступне перетворення вже поча-
лося автоматично, наступний результат відображатиме поперед-
ній вибір каналу. Подальші перетворення відображатимуть новий
вибраний канал.

Опорна напруга АЦП. Опорна напруга для АЦП (VREF) задає
діапазон перетворення для АЦП. Значення каналів, які переви-
щують VREF, призведуть до отримання кодів, близьких до 0x3FF.
VREF можна вибрати як AVCC, внутрішній опорний сигнал 2,56 В
або зовнішня напруга AREF.

AVCC підключається до АЦП через пасивний комутатор.
Внутрішній опорний сигнал 2,56 В подається з внутрішнього опор-
ного джерела забороненої зони (VBG) через внутрішній підсилювач.
У будь-якому випадку зовнішній вивід AREF підключається без-
посередньо до АЦП, і опорну напругу можна зробити більш стій-
кою до шуму, підключивши конденсатор між виводом AREF і зем-
лею. VREF також можна виміряти на виводі AREF за допомогою

408 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

вольтметра з високим опором. Зауважте, що VREF є джерелом
високого імпедансу, тому до системи слід підключати лише ємнісне
навантаження.

Якщо користувач має фіксоване джерело напруги, підключене
до виводу AREF, він не може використовувати інші варіанти опор-
ної напруги в програмі, оскільки вони будуть закорочені з зов-
нішньою напругою. Якщо до виводу AREF не подається зовнішня
напруга, користувач може перемикатися між AVCC і 2,56 В в якості
опорного вибору. Перший результат перетворення АЦП після пере-
микання джерела еталонної напруги може бути неточним, тому
користувачеві рекомендується відхилити цей результат.

Пригнічувач шуму АЦП. АЦП має пригнічувач шуму, який
дозволяє робити перетворення під час режиму сну, щоб зменшити
шум, викликаний ядром процесора та іншими периферійними при-
строями вводу-виводу. Пригнічувач шуму можна використовувати
в режимі зменшення шуму АЦП і в неактивному режимі. Щоб ско-
ристатися цією функцією, необхідно виконати таку процедуру:

1.	Переконайтеся, що АЦП увімкнений та не зайнятий пере-
творенням. Необхідно вибрати режим одиночного перетворення
та ввімкнути переривання по завершенню перетворення АЦП.

2.	Увійдіть у режим зменшення шуму АЦП (або неактивний
режим). АЦП розпочне перетворення після зупинки ЦП.

3.	Якщо до завершення перетворення АЦП не виникає жодних
інших переривань, переривання АЦП виведе з режиму сну ЦП і вико-
нає процедуру переривання по завершенню перетворення АЦП.
Якщо інше переривання активує ЦП до завершення перетворення
АЦП, це переривання буде виконано, і після завершення перетво-
рення АЦП буде згенеровано запит на переривання по завершенню
перетворення АЦП. ЦП залишатиметься в активному режимі, доки
не буде виконано нову команду сну. Зауважте, що АЦП не вимика-
тиметься автоматично під час входу в інші режими сну, крім неак-
тивного режиму та режиму зменшення шуму АЦП. Користувачеві
рекомендується записати нуль в ADEN перед входом у такі режими
сну, щоб уникнути надмірного споживання енергії.

Аналогова вхідна схема. Аналогова вхідна схема показана
на рис. 14.6. Аналогове джерело, що подається до АЦП, піддається

40914	 Практична робота № 5 «Програмування аналогових модулів мікроконтролера AVR»

впливу ємності на виводі та вхідного струму цього виводу, неза-
лежно від того, чи обрано цей канал як вхід для АЦП. Коли канал
вибрано, джерело має зарядити конденсатор S/H через послідовний
опір (комбінований опір у вхідному тракті).

Рисунок 14.6 – Аналогова вхідна схема

АЦП оптимізовано для аналогових сигналів з вихідним опором
приблизно 10 кОм або менше. Якщо використовується таке дже-
рело, час вибірки буде незначним. Якщо використовується джерело
з вищим імпедансом, час вибірки залежатиме від того, скільки часу
потрібно джерелу для заряджання конденсатора S/H, і може значно
відрізнятися. Користувачеві рекомендується використовувати лише
джерела з низьким імпедансом із повільно змінними сигналами,
оскільки це мінімізує необхідну передачу заряду до конденсатора S/H.

Компоненти сигналу, вищі за частоту Найквіста (fADC/2), не повинні
бути присутніми для жодного типу каналів, щоб уникнути спотво-
рень через непередбачувану згортку сигналу. Користувачеві рекомен-
дується видалити високочастотні компоненти за допомогою фільтра
низьких частот перед подачею сигналів на входи АЦП.

Методи пригнічування аналогового шуму. Цифрові схеми
всередині та зовні пристрою створюють електромагнітні пере-
шкоди, які можуть вплинути на точність аналогових вимірювань.
Якщо точність перетворення має вирішальне значення, рівень
шуму можна зменшити за допомогою наступних методів:

410 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

1.	Тримайте шляхи аналогового сигналу якомога коротшими.
Переконайтеся, що аналогові доріжки проходять по площині зазем-
лення, і тримайте їх подалі від високошвидкісних комутаційних
цифрових доріжок.

2.	Вивід AVCC на пристрої має бути підключений до цифрової
напруги живлення VCC через LC-ланцюжок.

3.	Використовуйте функцію пригнічення шуму АЦП, щоб змен-
шити індукований шум від ЦП.

4.	Якщо будь-які контакти порту ADC [3..0] використовуються
як цифрові виходи, важливо, щоб вони не перемикалися під час
перетворення. Однак використання двопровідного інтерфейсу
(ADC4 і ADC5) вплине лише на перетворення на ADC4 і ADC5,
а не інших каналах ADC.

Результат перетворення АЦП. Після завершення перетво-
рення (ADIF дорівнює 1), результат перетворення можна зчитати
з регістрів результатів АЦП (ADCL, ADCH).

Результат визначається за наступною формулою:

ADC
V

V
IN

REF

�
�1023

, (14.1)

де VIN – напруга на вибраному вхідному контакті, а VREF – вибрана
опорна напруга. 0x000 представляє напругу землі, а 0x3FF пред-
ставляє вибрану опорну напругу мінус один LSB.

Регістри АЦП:
Регістр мультиплексора АЦП – ADMUX (рис. 14.7):

Рисунок 14.7 – Регістр мультиплексора АЦП – ADMUX

Біти 7:6 – REFS1:0: біти вибору опорної напруги. Ці біти виби-
рають опорну напругу для АЦП, як показано в таблиці. Якщо ці біти
змінено під час перетворення, зміна не вступить в силу, доки це пере-
творення не буде завершено (ADIF в регістрі ADCSRA не буде

41114	 Практична робота № 5 «Програмування аналогових модулів мікроконтролера AVR»

встановлено). Внутрішню опорну напругу не можна використову-
вати, якщо зовнішня опорна напруга подається на вивід AREF.

Таблиця 14.3 – Біти вибору опорної напруги
REFS1 REFS0 Опорна напруга

0 0 AREF, внутрішній Vref вимкнено
0 1 AVCC із зовнішнім конденсатором на виводі AREF
1 0 Зарезервовано
1 1 Внутрішня опорна напруга 2,56 В із зовнішнім конденсато-

ром на виводі AREF

Біт 5 – ADLAR: вирівнювання результату АЦП ліворуч. Біт
ADLAR впливає на представлення результату перетворення АЦП
у регістрі даних АЦП. Запис одиниці у ADLAR вирівнює результат
перетворення ліворуч. В іншому випадку результат вирівнюється
праворуч. Зміна біта ADLAR негайно вплине на регістр даних
АЦП, незалежно від будь-яких поточних перетворень. Повний опис
цього біта буде наведено далі.

Біти 3:0 – MUX3:0: біти вибору аналогового каналу. Значення
цих бітів визначає, який аналоговий вхід підключаються до АЦП
(див. таблицю 14.4). Якщо ці біти змінено під час перетворення,
зміна не набуде чинності, доки це перетворення не буде завершено
(біт ADIF у регістрі ADCSRA не буде встановлено).

Таблиця 14.4 – Біти вибору аналогового каналу
MUX3..0 Вхід

1 2
0000 ADC0
0001 ADC1
0010 ADC2
0011 ADC3
0100 ADC4
0101 ADC5
0110 ADC6
0111 ADC7
1000 Зарезервовано

412 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

1 2
1001 Зарезервовано
1010 Зарезервовано
1011 Зарезервовано
1100 Зарезервовано
1101 Зарезервовано
1110 1,3 В (VBG)
1111 0 B (земля)

Регістр управління та стану АЦП A – ADCSRA (рис. 14.8):

Рисунок 14.8 – Регістр управління та стану АЦП A – ADCSRA

Продовження таблиці 14.4

Біт 7 – ADEN: увімкнення АЦП. Запис одиниці в цей біт вмикає
АЦП. При запису в нього нуля АЦП вимикається. Вимкнення АЦП
під час перетворення призведе до припинення цього перетворення.

Біт 6 – ADSC: початок перетворення АЦП. У режимі оди-
ночного перетворення записуйте в цей біт одиницю, щоб почати
кожне перетворення. У безперервному режимі запишіть в цей біт
одиницю, щоб розпочати перше перетворення. Перше перетво-
рення після запису ADSC після ввімкнення АЦП, або якщо ADSC
записується одночасно з увімкненням АЦП, займе 25 тактів АЦП
замість звичайних 13. Це перше перетворення виконує ініціаліза-
цію АЦП. ADSC читатиметься як один, поки триває перетворення.
Після завершення перетворення він повертається до нуля. Запис
нуля в цей біт не має ефекту.

Біт 5 – ADFR: вибір режиму безперервного перетворення
АЦП. Коли цей біт встановлено (один), АЦП працює у режимі без-
перервного перетворення. У цьому режимі АЦП безперервно зби-
рає та оновлює регістри даних. Очищення цього біта (нуль) при-
зведе до завершення режиму безперервного перетворення.

41314	 Практична робота № 5 «Програмування аналогових модулів мікроконтролера AVR»

Біт 4 – ADIF: прапор переривання АЦП. Цей біт встановлю-
ється після завершення перетворення АЦП і оновлення регістрів
даних. Переривання по завершенню перетворення АЦП викону-
ється, якщо встановлено біт ADIE та біт I у регістрі SREG. ADIF
очищується апаратним забезпеченням під час виконання відповід-
ного вектору обробки переривань. Крім того, ADIF очищується
записом логічної одиниці до нього.

Біт 3 – ADIE: дозвіл переривання АЦП. Коли в цей біт запи-
сано одиницю, і встановлено біт I у регістрі SREG, активується
переривання по завершенню перетворення АЦП.

Біти 2:0 – ADPS2:0: біти вибору попереднього дільника АЦП.
Ці біти визначають коефіцієнт ділення між частотою XTAL і такто-
вою частотою на вході АЦП (див. табл. 14.5).

Таблиця 14.5 – Біти вибору попереднього дільника АЦП
ADPS2 ADPS1 ADPS0 Коефіцієнт ділення

0 0 0 2
0 0 1 2
0 1 0 4
0 1 1 8
1 0 0 16
1 0 1 32
1 1 0 64
1 1 1 128

Регістр даних АЦП – ADCL і ADCH (рис. 14.9).

Після завершення перетворення АЦП результат знаходиться
в цих двох регістрах.

Коли ADCL зчитується, регістр даних ADC не оновлюється,
доки ADCH не буде зчитано. Отже, якщо результат вирівняний
ліворуч і не потрібна точність більше 8 біт, достатньо прочитати
ADCH. В іншому випадку спочатку потрібно прочитати ADCL,
а потім ADCH.

Біт ADLAR в ADMUX і біти MUXn в ADMUX впливають на спо-
сіб зчитування результату з регістрів. Якщо встановлено ADLAR,

414 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

ADC9:0: результат перетворення АЦП. Ці біти представляють
результат перетворення.

14.3 Приклад програми з використанням аналогового
компаратора та аналого-цифрового перетворювача

Модифікуємо приклад, описаний в минулій практичній роботі.
Виконаємо наступне завдання на базі мікроконтролера ATMega8.

Підключити трирозрядний семисегментний індикатор зі спільним
катодом наступним чином: А – РВ5, В – РВ4, С – РВ3, D – PB2,
E – PB1, F – PB0, G – PB7, перший розряд – РD4, другий розряд –
РD3, третій розряд – РD2. Підключити два регульованих джерела
постійної напруги до входів аналогового компаратору AIN0 та AIN1
і одночасно до входів АЦП ADC0 та ADC1. Виводити на екран
напругу того джерела, в якого вона в даний момент більша, з роз-
дільною здатністю 10 мВ.

Рисунок 14.9 – Регістр даних АЦП – ADCL і ADCH

результат вирівняно ліворуч. Якщо ADLAR очищено (за замовчу-
ванням), результат вирівняно праворуч.

41514	 Практична робота № 5 «Програмування аналогових модулів мікроконтролера AVR»

14.4 Принципова електрична схема

Принципова електрична схема, що реалізує поставлену задачу,
показана на рис. 14.10.

Вона схожа на ту, що використовувалася у прикладі до попе-
редньої практичної роботи, але в ній є нові компоненти, які нам
ще не зустрічалися раніше. По-перше, це джерело напруги жив-
лення мікроконтролера, яке у програмі називається Rail та знахо-
диться у підзаголовку Sources (рис. 14.11).

Воно має лише один параметр – власне величину напруги
(рис. 14.12), яку ми залишимо за замовчанням рівною 5 В.

Це джерело треба підключити до входу AVCC мікроконтро-
лера, який у програмі SimulIDE називається “A+”. Цей вхід буде
використовуватися як джерело опорної напруги для АЦП, я якщо
на нього не подати ніякої напруги, то на виході АЦП завжди буде 0.

Ще нам потрібні два регульованих джерела постійної
напруги. Вони знаходяться у тому самому підзаголовку Sources
і називаються Volt. Source (рис. 14.11). На схемі вони виглядають
як прямокутники з круглим регулятором всередині (рис. 14.10).
Якщо покрутити регулятор мишкою, то вихідна напруга дже-
рела буде змінюватися від 0 (коли регулятор знаходиться у край-
ньому лівому положенні) до максимальної напруги (коли регу-
лятор знаходиться у крайньому правому положенні). Також
вихідну напругу можна задавати в налаштуваннях компоненту
(рис. 14.13).

Як бачимо, цей компонент має лише два параметри: поточна
напруга (Current Value) та максимальна напруга (Max. Voltage).
Зверніть увагу, що цей компонент треба ввімкнути, бо за замовчан-
ням він вимкнений, і виглядає наступним чином (рис. 14.14)

Для того, щоб ввімкнути це джерело напруги, треба натис-
нути на надпис “--V” всередині нього, і тоді замість прочерку
у надпису з’явиться величина поточної напруги, як показано
на рис. 14.10.

Входи компаратора AIN0 та AIN1 мікроконтролера ATMega8
суміщені з виводами PD6 та PD7, відповідно. А входи АЦП ADC0-
ADC6 суміщені з виводами РС0-РС6, відповідно.

416 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

Рисунок 14.10 – Принципова електрична схема

Рисунок 14.11 – Знаходження
компонентів Rail та Volt. Source

Як бачимо на рис. 14.10, регульовані джерела напруги одночасно
підключені до входів компаратора та АЦП. За допомогою компара-
тора ми будемо визначати, яка з двох напруг більша, і перемикати
вхідний мультиплексор АЦП, щоб виміряти цю напругу.

Рисунок 14.12 – Параметри
компонента Rail

41714	 Практична робота № 5 «Програмування аналогових модулів мікроконтролера AVR»

Рисунок 14.13 – Параметри
компонента Volt. Source

Рисунок 14.14 – Початковий

вигляд регульованого джерела
напруги

14.4.1 Програмний код

Розглянемо тепер програму, що реалізує поставлену задачу
(рис. 14.15).

Вона досить велика, але частину її ми вже розглядали в поперед-
ній практичній роботі. То ж тут ті рядки, які були вже розглянути
раніше, ми детально описувати не будемо.

У рядках 1, 2 ми підключаємо необхідні заголовкові файли.
Зверніть увагу, що в цій програмі ми не підключаємо файл delay.h,
бо ми не будемо використовувати функції затримки для роботи з семи-
сегментним індикатором, а замість того скористуємося таймером 0.

У рядках 4–15 ми визначаємо макроси для роботи з семи
сегментним індикатором.

У рядку 17 ми визначаємо змінну digit, яка буде відповідати
номеру розряду семисегментного індикатора, який в даний момент
світиться.

У рядку 18 ми визначаємо змінну number, яка уявляє собою
число, що відповідає виміряній напрузі і виводиться на семи-
сегментний індикатор.

У рядках 19–31 знаходиться знакогенератор для семисегмент-
ного індикатора.

Рядки 33–70 поки пропустимо, і перейдемо до головної функції
програми, що розташована у рядках 72–91.

Спочатку треба налаштувати всі необхідні порти вводу-виводу.
Виводи, до яких підключені і аноди, і катоди індикаторів, треба

418 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

 Рисунок 14.15 – Програмний код

налаштувати як виходи. У рядку 74 ми записуємо одиниці у біти,
які відповідають сегментам світлодіодного індикатора, у регістр
DDRB. А у рядку 75 ми записуємо одиниці у біти, що відповідають
розрядам світлодіодного індикатора, у регістр DDRD. Більше ніякі
виводи налаштовувати не потрібно, адже вони будуть працювати
в аналоговому режимі.

У рядку 77 ми вмикаємо таймер 0 з тактовою частотою clkI/O/64
(див. табл. 12.9), що в нашому випадку дорівнює 1 000 000 / 64 = 15 625 Гц.
Оскільки таймер 0 є восьмибітним, то період між його переповнен-
нями буде дорівнювати 1/15625 * 256 ≈ 16 мс. Цей таймер в нашій
програмі буде виконувати дві функції – запускати вимірювання АЦП

41914	 Практична робота № 5 «Програмування аналогових модулів мікроконтролера AVR»

та перемикати розряди семисегментного індикатора для реалізації
динамічної індикації. Для трирозрядного індикатора повний цикл буде
дорівнювати 3 * 16 = 48 мс, що відповідає частоті приблизно 20 Гц.
Це частота, що знаходиться на межі сприйняття, і в реальному при-
строї вже може бути помітно мерехтіння розрядів, але в симуляторі все
працює рівно, то ж ми залишимо це значення.

У рядках 80, 81 ми налаштовуємо аналоговий компаратор.
Спочатку ми відключаємо мультиплексор аналогового компаратора
(рядок 80), оскільки в цій програмі ми також будемо використо-
вувати і АЦП. Це робиться шляхом запису 0 у біт АСМЕ регістра
SFIOR. Насправді, можна було б цього і не робити, оскільки при
вмиканні АЦП мультиплексор автоматично підключається до нього.

У рядку 81 ми встановлюємо тільки біт АСІЕ у регістрі ACSR,
залишаючи всі інші біти нулями, тому налаштування будуть
наступні:

‒	 ACD = 0, компаратор ввімкнений.
‒	 ACBG = 0, в якості позитивного сигналу компаратора вико-

ристовується вхід AIN0.
‒	 АСІЕ = 1, переривання від аналогового компаратора ввімкнено.
‒	 АСІС = 0, захоплення таймера-лічильника 1 від аналогового

компаратора вимкнено.
‒	 ACIS1 = 0, ACIS0 = 1, переривання від аналогового компара-

тора відбувається при будь-якій зміні стану виходу.
У рядках 83, 84 ми налаштовуємо АЦП. Спочатку ми обираємо

вхідний канал та опорну напругу за допомогою регістру ADMUX.
В якості опорної напруги задамо AVCC, оскільки ми підключали
напругу до цього виводу (рис. 14.1), для цього треба записати 1
у біт REFS0. Далі обираємо в якості початкового каналу ADC0,
до якого підключене одне з джерел напруги (рис. 14.1). Тут одразу
можна було б перевірити вихід компаратора та обрати або канал
ADC0, або ADC1. Біт ADLAR цього регістру залишимо рівним 0,
то ж результат буде вирівняно праворуч.

У рядку 84 ми задаємо параметри власне модуля АЦП за допо-
могою регістру ADCSRA:

‒	 ADEN = 1, вмикаємо модуль АЦП.
‒	 ADSC = 0, поки не починаємо перетворення АЦП.

420 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

‒	 ADFR = 0, режим одноразового перетворення.
‒	 ADIE = 1, дозволяємо переривання по закінченню перетво-

рення АЦП.
‒	 ADPS2 = 0, APDS1 = 1, ADPS0 = 1, задаємо дільник частоти

АЦП рівним 8. При цьому тактова частота АЦП буде дорівнювати
1000000 Гц / 8 = 125 кГц, що входить у межі дозволених частот
АЦП 50 – 200 кГц.

У рядку 86 ми встановлюємо значення змінної digit рівним 0,
щоб почати індикацію з першої цифри.

Тепер лишилося тільки дозволити глобальні переривання
за допомогою функції sei (рядок 88).

Головний цикл програми цього разу буде порожній (рядок 90),
оскільки всі дії будуть виконуватися у підпрограмах обробки
переривань.

Всі ці підпрограми, як вже було зазначено у попередніх прак-
тичних роботах, мають назву ISR, а в якості їх аргументу переда-
ється назва переривання, яку можна знайти у заголовковому файлі
для кожного конкретного мікроконтролера або у таблиці 3.1, замі-
нивши пробіли на знак підкреслення, і додавши в кінці “_vect”.

У рядках 33–55 знаходиться функція обробки переривання по пере-
повненню таймера 0. Як вже було зазначено раніше, в цьому пере-
риванні ми будемо запускати перетворення АЦП та виконувати про-
цедуру динамічної індикації. Для початку перетворення АЦП треба
записати 1 у біт ADSC регістра ADCSRA (рядок 35). Процедура дина-
мічної індикації майже не відрізняється від тих, що ми вже використо-
вували у минулих роботах за декількома винятками. По-перше, тепер
нам треба вказувати напругу з точністю 2 знаки після коми, то ж після
першої цифри треба ввімкнути десяткову крапку. Це ми робимо дода-
ванням сегменту DP до регістру PORTB при вмиканні першого роз-
ряду (рядок 40). По-друге, тепер не потрібно додавати затримку після
вмикання кожного розряду, оскільки ця затримка тепер задається тай-
мером. Все інше залишається таким самим, то ж ми не будемо розгля-
дати цей алгоритм більш детально тут.

У рядках 57–62 знаходиться функція обробки переривання
по завершенню перетворення АЦП, вектор якого називається про-
сто ADC_vect. Після закінчення перетворення треба зберегти його

42114	 Практична робота № 5 «Програмування аналогових модулів мікроконтролера AVR»

результат. Оскільки результат вирівняний праворуч, треба зчитати
обидва його регістри – ADCH та ADCL. Починати зчитувати треба
завжди з регістра ADCL, щоб зафіксувати регістр ADCH і запобігти
його перезапису під час зчитування.

То ж у рядку 59 ми декларуємо локальну змінну res і спочатку
присвоюємо їй значення регістру ADCL. А у рядку 60 ми додаємо
до цієї змінної значення регістру ADCH, зсунуте вліво на 8 біт.
Таким чином, у змінній res після цих двох рядків буде збережено
результат перетворення у 10-бітному форматі, тобто число від 0 до
1023. Тепер ми повинні перетворити це число на напругу у діапа-
зоні від 0 до 5 В з роздільною здатністю 0,01 В. Оскільки десят-
кову крапку у числі, що виводиться, ми вже поставили (рядок 40),
напруга буде уявляти собою значення від 0 до 500. Згідно з (14.2),
результат перетворення визначається за наступною формулою:

ADC
V

V
IN

REF

�
�1023

, (14.2)

де VIN – напруга на вибраному вхідному контакті, а VREF – вибрана
опорна напруга. 0x000 представляє напругу землі, а 0x3FF пред-
ставляє вибрану опорну напругу мінус один LSB.

Звідси:

V
V ADC

IN
REF�

�
1023

. (14.3)

Тобто для отримання вхідної напруги треба взяти результат пере-
творення, помножити його на опорну напругу, яка в нашому випадку
дорівнює 5 В, або 500 х 0,01 В, і поділити на 1023. Це ми й робимо
у рядку 61. Перетворене значення зберігаємо у змінній number, яка
виводиться на індикатор. Зверніть увагу, що у рядку 61 спочатку вико-
нується операція множення, а потім поділення. Це важливо, оскільки,
якщо взяти і одразу поділити результат перетворення на 1023,
то ми завжди отримуватимемо 0, оскільки це є цілочисельне ділення.

У рядках 64–70 знаходиться функція обробки переривання
по зміні виходу компаратора, вектор якого називається ANA_
COMP_vect. У цій функції ми спочатку перевіряємо, чому дорівнює
значення біту АСО регістру ACSR (рядок 64). Цей біт уявляє собою

422 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

вихід аналогового компаратора. Якщо він дорівнює 1, це значить,
що напруга на позитивному вході AIN0 більша за напругу на нега-
тивному вході AIN1, і тому ми повинні зчитувати значення з джерела
напруги, що підключене до входу AIN0 та ADC0, тобто встановити
значення бітів MUX3…0 мультиплексора АЦП ADMUX рівними
0, що ми і робимо у рядку 67. Якщо ж значення АСО дорівнює 0,
це значить, що більша напруга на негативному вході AIN1, і тому
ми повинні зчитувати значення з джерела напруги, що підключене
до входу AIN1 та ADC1. Для цього треба встановити біт MUX0 у 1
відповідно до таблиці 14.4 (рядок 69).

На цьому опис програми можна вважати завершеним. Тепер
треба перевірити, як вона працює.

14.4.2 Симуляція роботи програми

Після компіляції програми та завантаження її у мікроконтролер
на індикаторі з’явиться напруга джерела, що підключене до входу
ADC0 (рис. 14.16).

Рисунок 14.16 – Результат роботи програми

42314	 Практична робота № 5 «Програмування аналогових модулів мікроконтролера AVR»

Значення на індикаторі може бути на 0,01 В менше, ніж напруга,
яку ми задаємо у регульованому джерелі напруги. Якщо тепер пок-
рутити регулятори обох джерел, можна побачити, що на індика-
торі відображається більша з двох напруг (рис. 14.17, 14.18), таким
чином, наша програма працює вірно.

Рисунок 14.17 – Друга напруга більша за першу

Рисунок 14.18 – Перша напруга більша за другу

424 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

14.5 Завдання до практичної роботи

1.	Створити принципову електричну схему, згідно з варіантом
завдань (табл. 14.6).

2.	Написати програму, що виконує поставлене завдання.
3.	Створити файл прошивки, загрузити його у мікроконтролер

та переконатися, що все працює, як треба.

Таблиця 14.6 – Варіанти завдань до практичної роботи № 5
Варіант Завдання

1 2

1

Підключити дворозрядний семисегментний індикатор зі спільним
анодом наступним чином: А – РВ0, В – РВ1, С – РВ2, D – PB3, E –
PB4, F – PB5, G – PB6, перший розряд – РС0, другий розряд – РС1.
Налаштувати аналоговий компаратор, щоб позитивний вхід був під-
ключений до внутрішнього джерела опорної напруги забороненої зони
(2.56 В), а негативний вхід – до виводу AIN1. Якщо напруга на вході
AIN1 більша за опорну, видавати на індикатор слово НІ, в протилеж-
ному випадку видавати слово LO.

2

Підключити світлодіод до виводу РВ2. Налаштувати аналоговий
компаратор, щоб позитивний вхід був підключений до виводу AIN0,
а негативний – до виводу ADC1 через мультиплексор АЦП. Якщо
вихід компаратора дорівнює 1, то плавно (протягом 3–4 секунд) під-
вищувати яскравість світлодіоду від 0 до максимального значення.
У протилежному випадку так само плавно знижувати яскравість від
максимуму до 0. Керувати яскравістю за допомогою модуля порів-
няння таймера-лічильника 1. Режими та частоту роботи таймера
обрати самостійно.

3

Підключити світлодіод до виводу РВ1. Налаштувати аналоговий
компаратор, щоб позитивний вхід був підключений до внутрішнього
джерела опорної напруги забороненої зони (2.56 В), а негативний –
до виводу ADC4 через мультиплексор АЦП. Якщо напруга на вході
AIN1 менша за опорну, встановити яскравість світлодіоду на рівні
70 %, а якщо більша, то на рівні 20 %. Керувати яскравістю за допо-
могою модуля порівняння таймера-лічильника 1. Режими та частоту
роботи таймера обрати самостійно.

4

Підключити світлодіод до виводу РВ1. Налаштувати аналоговий
компаратор, щоб позитивний вхід був підключений до виводу AIN0,
а негативний – до виводу ADC3 через мультиплексор АЦП. Якщо
вихід компаратора дорівнює 1, миготіти світлодіодом з частотою 4 Гц.

42514	 Практична робота № 5 «Програмування аналогових модулів мікроконтролера AVR»

1 2

4

У протилежному випадку частоту миготіння знизити до 1 Гц. Керувати
частотою миготіння світлодіоду за допомогою модуля порівняння
таймера-лічильника 1. Режими та частоту роботи таймера обрати
самостійно.

5

Підключити однорозрядний семисегментний індикатор зі спіль-
ним катодом наступним чином: А – РВ7, В – РВ6, С – РВ5, D – PB4,
E – PB3, F – PB2, G – PB1. Катод підключити просто на землю.
Налаштувати аналоговий компаратор, щоб позитивний вхід був
підключений до виводу AIN0, а негативний – до виводу ADC0 через
мультиплексор АЦП. Якщо вихід компаратора дорівнює 1, виводити
на індикатор цифру 1, а в протилежному випадку виводити цифру 0.

6

Підключити трирозрядний семисегментний індикатор зі спільним
катодом наступним чином: А – РВ0, В – РВ1, С – РВ2, D – PВ6, E –
PВ5, F – PВ4, G – PВ3, перший розряд – РD0, другий розряд – РD1,
третій розряд – РD2. Сконфігурувати таймер 1, щоб він генерував
переривання кожну секунду. Сконфігурувати АЦП наступним чином:
вхід – ADC3, вирівнювання результату – ліворуч, опорна напруга –
внутрішня величиною 2,56 В, одиночне перетворення. Підключити
до входу АЦП регульоване джерело напруги з максимальною напру-
гою 2,56 В. При спрацюванні таймера запускати перетворення АЦП.
На індикатор виводити результат перетворення з точністю 8 біт, тобто
число в діапазоні від 0 до 255.

7

Підключити трирозрядний семисегментний індикатор зі спільним ано-
дом наступним чином: А – РВ0, В – РВ7, С – РВ1, D – PВ6, E – PВ2,
F – PВ5 G – PВ3, перший розряд – РD6, другий розряд – РD4, тре-
тій розряд – РD0. Підключити кнопки до виводів РD2 (INT0) та PD3
(INT1). Натискання кнопок обробляти за допомогою переривання.
Сконфігурувати АЦП наступним чином: два входи – ADC1 або ADC2,
вирівнювання результату – праворуч, опорна напруга – AVCC величи-
ною 5 В, одиночне перетворення. Підключити до входів АЦП регульо-
вані джерела напруги з максимальною напругою 5 В.
При натисканні на кнопку INT0 виводити на індикатор напругу
джерела, підключеного до виводу ADC1, а при натисканні на кнопку
INT1 – напругу джерела, підключеного до виводу ADC2. Результат
виводити у вольтах з двома знаками після коми.

8

Підключити світлодіод до виводу РВ2. Сконфігурувати АЦП наступ-
ним чином: вхід – ADC6, вирівнювання результату – ліворуч,
опорна напруга – AVCC величиною 5 В, безперервне перетворення.
Підключити до входу АЦП регульоване джерело напруги з максималь-
ною напругою 5 В.

Продовження таблиці 14.6

426 Електроніка та мікропроцесорна техніка: програмування мікроконтролерів AVR

1 2

8

Встановлювати яскравість світлодіоду пропорційною напрузі на вході
АЦП, тобто при 0 В на вході світлодіод не горить, а при максимальній
напрузі – горить з повною потужністю. Керувати яскравістю за допо-
могою модуля порівняння таймера-лічильника 1. Режими та частоту
роботи таймера обрати самостійно.

9

Підключити світлодіоди до виводів РВ0 та РВ1. Сконфігурувати
АЦП наступним чином: два входи – ADC0 або ADC1, вирівнювання
результату – ліворуч, опорна напруга – внутрішня величиною 2,56 В,
одиночне перетворення. Підключити до входів АЦП регульовані дже-
рела напруги з максимальною напругою 2,56 В. Вимірювати по черзі
напруги від обох джерел з частотою 10 вимірювань на секунду. Якщо
напруга на вході ADC0 більша за напругу на вході ADC1, вмикати пер-
ший світлодіод і вимикати другий, якщо напруга на вході ADC0 менша
за напругу на вході ADC1, вмикати другий світлодіод і вимикати пер-
ший, якщо напруга на обох входах однакова, вмикати обидва світло-
діоди. Для порівняння використовувати тільки старші 8 біт результату.

10

Підключити дворозрядний семисегментний індикатор зі спільним ано-
дом наступним чином: А – РD5, В – РD6, С – РD0, D – PD1, E – PD3,
F – PD4 G – PD2, перший розряд – РB5, другий розряд – РВ7.
Сконфігурувати таймер 1, щоб він генерував переривання два рази
на секунду. Сконфігурувати АЦП наступним чином: вхід – ADC5,
вирівнювання результату – ліворуч, опорна напруга – AVCC величи-
ною 5 В, одиночне перетворення. Підключити до входу АЦП регульо-
ване джерело напруги з максимальною напругою 5 В. При спрацю-
ванні таймера запускати перетворення АЦП. На індикатор виводити
результат перетворення з точністю 8 біт у шістнадцятковій формі,
тобто число в діапазоні від 00 до FF.

11

Підключити вісім світлодіодів до виводів РВ0-РВ7. Сконфігурувати
АЦП наступним чином: вхід – ADC4, вирівнювання результату –
ліворуч, опорна напруга – AVCC величиною 5 В, безперервне пере-
творення. Підключити до входу АЦП регульоване джерело напруги
з максимальною напругою 5 В. За допомогою світлодіодів виводити
результат перетворення з точністю 8 біт у двійковій формі, тобто число
в діапазоні від 00000000 до 11111111, де 1 відповідає ввімкненому світ-
лодіоду, а 0 – вимкненому.

12

Підключити вісім світлодіодів до виводів РD0-РD7. Сконфігурувати
таймер 0, щоб він генерував 10–20 переривань на секунду.
Сконфігурувати АЦП наступним чином: вхід – ADC3, вирівнювання
результату – праворуч, опорна напруга – внутрішня величиною 2,56 В,
одиночне перетворення.

Продовження таблиці 14.6

42714	 Практична робота № 5 «Програмування аналогових модулів мікроконтролера AVR»

1 2
Підключити до входу АЦП регульоване джерело напруги з мак-
симальною напругою 2,56 В. При спрацюванні таймера запускати
перетворення АЦП. За допомогою світлодіодів індикувати результат
перетворення у вигляді гістограми, тобто при напрузі 0 В всі світло-
діоди погашені, при напрузі від 0 до 1/8 від максимальної ввімкнути
один нижній світлодіод, при напрузі від 1/8 до 2/8 від максимальної
ввімкнути два світлодіоди і т. д.

Питання для самоперевірки
1.	 Принцип роботи аналогового компаратора мікроконтролера ATMega8.
2.	 До чого можна підключати входи и вихід аналогового компаратора?
3.	 Принцип роботи АЦП мікроконтролера ATMega8.
4.	 Які є режими роботи АЦП?
5.	 Як можна виводити результат перетворення АЦП?

Перелік рекомендованих джерел
1.	 ATMega8: технічна документація на мікроконтролер. URL:

https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-2486-8-
bit-AVR-microcontroller-ATmega8_L_datasheet.pdf (дата звернення:
02.12.2024).

2.	 8-bit AVR® MCUs : інформація про мікроконтролери. URL:
https://www.microchip.com/en-us/products/microcontrollers-and-
microprocessors/8-bit-mcus/avr-mcus (дата звернення: 02.12.2024).

3.	 Конспект лекцій з дисципліни «Мікропроцесорна техніка» для
здобувачів вищої освіти першого (бакалаврського) рівня зі спе-
ціальності 153 «Мікро- та наносистемна техніка» за освіт-
ньо-професійною програмою «Мікро- та наносистемна техніка»
та зі спеціальності 171 «Електроніка» за освітньо-професійною про-
грамою «Електроніка» / уклад. О. М. Гулєша. Кам’янське : ДДТУ,
2020. 57 с.

4.	 Основи Програмування AVR C. DevZone. URL: https://devzone.org.ua/
post/osnovy-prohramuvannia-avr-c (дата звернення: 02.12.2024).

Продовження таблиці 14.6

https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-2486-8-bit-AVR-microcontroller-ATmega8_L_datasheet.pdf
https://www.microchip.com/en-us/products/microcontrollers-and-microprocessors/8-bit-mcus/avr-mcus
https://devzone.org.ua/post/osnovy-prohramuvannia-avr-c

Наукове видання

СОКОЛ Сергій Петрович
КОЙФМАН Олексій Олександрович

ІСАЄВ Андрій Борисович
МІРОШНИЧЕНКО Вікторія Ігорівна

ЕЛЕКТРОНІКА
ТА МІКРОПРОЦЕСОРНА ТЕХНІКА:

ПРОГРАМУВАННЯ МІКРОКОНТРОЛЕРІВ AVR

Навчальний посібник

Друкується за авторською редакцією

Дизайн обкладинки В. Савельєва
Технічний редактор О. Гринюк

Верстка Ю. Семенченко

Підписано до друку 23.04.2025 р.
Формат 60×84/16. Папір офсетний.
Цифровий друк. Гарнітура Times.
Ум. друк. арк. 24,88. Наклад 300.
Замовлення № 0225-004.

Видавництво та друк: Олді+
65101, м. Одеса, вул. Інглезі, 6/1
тел.: +38 (095) 559-45-45, e-mail: office@oldiplus.ua
Свідоцтво ДК № 7642 від 29.07.2022 р.
Замовлення книг:
тел.: +38 (050) 915-34-54, +38 (068) 517-50-33
e-mail: book@oldiplus.ua

