
1

`

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ

„КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ІМЕНІ ІГОРЯ СІКОРСЬКОГО”

КАФЕДРА АВТОМАТИКИ ТА УПРАВЛІННЯ У ТЕХНІЧНИХ СИСТЕМАХ

Архітектура новітніх мікроконтролерів

Програмування мікропроцесорних систем на базі мікроконтролерів

сімейства ARM

Надано гриф «Затверджено Вченою радою КПІ ім. Ігоря Сікорського як

навчальний посібник для студентів, які навчаються за спеціальністю

«Автоматизація та комп`ютерно–інтегровані технології»

(Протокол №1 від 16 січня 2017 року)

Київ КПІ ім. Ігоря Сікорського 2017

2

`

Архітектура новітніх мікроконтролерів: Програмування

мікроконтролерів сімейства ARM: Навчальний посібник для студентів

спеціальності 151 «Автоматизація та комп’ютерно–інтегровані технології»

/ Автор: А.О. Новацький–Київ: КПІ ім. Ігоря Сікорського, 2017–138с.

Відповідальний за випуск: к. т. н., доц. Л.Ю. Юрчук

Рецензенти: доктор фіз. мат. наук, професор А.Ю.Дорошенко,

к. т. н., доц. О.А.Чемерис

Посібнику надано гриф «Затверджено Вченою радою КПІ ім. Ігоря

Сікорського як навчальний посібник для студентів, які навчаються за

спеціальністю «Автоматизація та комп`ютерно–інтегровані технології»

(Протокол №1 від 16 січня 2017 року)

Навчальний посібник охоплює теоретичний матеріал та практичні

завдання, які необхідні для вивчення базової частини дисципліни «Архіте-

ктура новітніх мікроконтролерів». Робота містить п`ять розділів, в яких ро-

зглядаються питання, що пов`язані із програмуванням мікропроцесорних

систем на базі ARM–мікроконтролерів: загальна характеристика мікрокон-

тролерів сімейства ARM; структура типового мікроконтролера ядра ARM7;

характеристика ядра ARM–мікроконтролерів; способи адресації операндів

та команди ARM–мікроконтролерів ядра ARM7.

Робота може бути корисною студентам відповідних спеціальностей

при вивченні дисциплін, які пов’язані із проектуванням та використанням

мікропроцесорних систем, а також при виконанні бакалаврських та магіс-

терських робіт, курсових та дипломних проектів, в яких використовуються

мікропроцесорні пристрої. Останнє було враховано при оформленні робо-

ти, яку виконано згідно вимог до конструкторської документації.

3

`

ЗМІСТ
ВСТУП ... 5

СПИСОК СКОРОЧЕНЬ .. 6

1 ЗАГАЛЬНА ХАРАКТЕРИСТИКА МІКРОКОНТРОЛЕРІВ СІМЕЙСТВА
ARM .. 9

1.1 RISC–архітектура мікроконтролерів .. 9

1.2 Загальний огляд мікроконтролерів сімейства ARM 12

1.3 Сімейство ядер ARM ... 22

2 СТРУКТУРА ТИПОВОГО МІКРОКОНТРОЛЕРА З ARM–ЯДРОМ 25

2.1. Загальні відомості .. 25

2.2. Мікроконтролер LPC2378 .. 27

2.3. Мікроконтролер STM32 ... 36

3 ХАРАКТЕРИСТИКА ЯДРА ARM–МІКРОКОНТРОЛЕРІВ 41

3.1 Основні положення .. 41

3.2 Конвейер команд ... 41

3.3 Регістри регістрового файлу ... 43

3.4 Регістр поточного стану програми ... 44

3.5 Режими обробки виняткових ситуацій... 47

3.6 Набір команд ARM7 .. 51

3.7 Команда обміну .. 60

3.8 Команди зміни регістрів стану ... 60

3.9 Команда програмного переривання ... 61

3.10 Команди множення чисел ... 62

3.11 Набір Команд Thumb... 63

4

`

4 СПОСОБИ АДРЕСАЦІЇ ОПЕРАНДІВ ТА ФОРМАТИ КОМАНД.......... 68

4.1 Префікси команд .. 68

4.2 Формати команд обробки операндів ... 71

4.3 Формати команд завантаження/збереження .. 79

4.4 Команди множинного запису/читання ... 92

4.5 Адресація команд роботи з співпроцесорами 96

4.6 Приклади способів адресацій ... 99

5 ОПИС КОМАНД ЯДРА ARM7TDMI .. 106

5.1 Набір команд ядра ARM7 ... 106

5.2 Дослідження виконання команд у налагоджувачі µVision Keil 4 111

ПРЕДМЕТНИЙ ПОКАЖЧИК .. 136

СПИСОК РЕКОМЕНДОВАНОЇ ЛІТЕРАТУРИ 137

5

`

ВСТУП

Курс „Архітектура новітніх мікроконтролерів” належить до циклу

дисцилін „Комп”ютерна електроніка та мікропроцесорна техніка” та є од-

ним з основних при підготовці магістра в області комп'ютеризованих сис-

тем управління та автоматики. В ньому висвітлюються проблеми проекту-

вання, програмування і застосування мікропроцесорних систем на

прикладі мікроконтролерів LPC2378 сімейства ARM7.

Архітектура ARM (Advanced RISC Machine) – 32–бітна RISC–

архітектура процесорів. Розроблена компанією ARM Limited. Процесори

ARM мають низьке енергоспоживання, тому завоювали сегмент масових

мобільних продуктів (стільникові телефони, кишенькові комп'ютери) і

знаходять широке застосування у вбудованих системах середньої і високої

продуктивності (від мережевих маршрутизаторів і точок доступу до

телевізорів). Станом на 2014 р. 95% смартфонів у світі, 80% усіх цифрових

камер і 35% усіх електронних пристроїв використовують ARM–технології.

В результаті вивчення дисципліни студент повинен вміти проектува-

ти мікропроцесорні системи на сучасних мікроконтролерах, розробляти

алгоритми та керуючі програми на асемблері та мовах високого рівня.

У практичному плані студент повинен навчитися проектувати та

програмувати мікропроцесорні системи за модульним принципом, кори-

стуватися науково–технічною і додатковою літературою, самостійно

опановувати нові питання, які відносяться до даної дисципліни. Вивчення

курсу базується на знаннях, набутих у процесі вивчення дисциплін:

мікропроцесорні системи, проектування мікропроцесорних систем,

архітектура комп'ютерних систем та мереж, комп'ютерна електроніка,

алгоритмічні мови програмування, проектування мікропроцесорних систем

та мереж.

6

`

СПИСОК СКОРОЧЕНЬ

АЦП – аналого–цифровий перетворювач

БО – безпосередній операнд

ГТІ – генератор тактових імпульсів

ДК – двійковий код

ЗПД – зовнішня пам’ять даних

ЗПП – зовнішня пам’ять програм

КОП – код операції

МК – мікроконтролер

МП – мікропроцесор

МПС – мікропроцесорна система

МЦ – машинний цикл

ОК – об’єкт керування

ПВВ – пристрій введення/виведення

ПВВ – пристрій введення/виведення

РГ – регістр

РЗП – регістр загального призначення

РКС – регістр керуючого слова

РПД – резидентна пам’ять даних

РПП – резидентна пам’ять програм

СБ – старший байт

СД – світлодіод

СМА – суматор адреси

СУР – схема узгодження рівнів

США – системна шина адреси

ЦАП – цифро–аналоговий перетворювач

ЦПП – центральний процесорний пристрій

Access Line – тактова частота

7

`

ACP – Accelerator Coherency Port

AHB – Advanced High–Performance Bus

AMP – Asymmetric Multi–Processing

APB (Advanced Peripheral Bus) – покращена периферійна шина

ARM – Advanced RISC Machine

Block System Functions – блок системних функцій

CISC – Complex Instruction Set Computing

CPSR (Current Program Status Register) – регістр поточного стану

програми

DBX (Direct Bytecode eXecution) – пряме виконання байт-коду

EMC – контролер зовнішньої пам'яті

GIC – Generic Interrupt Controller

ICE (In–Circuit Emulator) – схемний емулятор

IoT – Internet of Things

Java ME – Java Mobile Edition

LLPP – Low Latency Peripheral Port

MIPS (Million Instructions Per Second) – мільйон інструкцій за

секунду

MMU (Memory Management Unit) – блок управління пам'яттю

MPU (Memory Protection Unit) – модуль захисту пам’яті

MSB (Most Significant Bit) – старший біт

NVRAM(Non–Volatile Random–Access Memory) – енергонезалежна

пам'ять

PLL – Phase Locked Loop

RISC – Restricted (reduced) Instruction Set Computer

SCU – Snoop Control Unit

SIMD (Single Instruction, Multiple Data) – одиночний потік команд,

множинний потік даних

SMP – Symmetric Multi–Processing

8

`

SPSR – Stored Processor State Register

SPSR (Saved Program Status Register) – регістр збереженого стану

програми

TCM (Tightly–Coupled Memory) – тісно зв’язана пам'ять

TDMI – Thumb + Debug + Multiplier + ICE

VIC (Vector Interrupt Controller) – векторний контролер переривань

9

`

1 ЗАГАЛЬНА ХАРАКТЕРИСТИКА МІКРОКОНТРОЛЕРІВ

СІМЕЙСТВА ARM

1.1 RISC–архітектура мікроконтролерів

Усі х86–процесори компанії Intel, рішення компанії Motorola і

переважна більшість випущених в 1980–і роки кристалів мали архітектуру

CISC (complex instruction set computing). У ній набори команд виконували

якомога більше роботи, аби полегшити ручне написання програм на мовах

асемблерів чи прямо в машинних кодах, а також для спрощення реалізації

компіляторів. Нерідко в набори включалися команди для прямої підтримки

конструкцій мов високого рівня. Інша особливість цих наборів – більшість

команд, як правило, допускали всі можливі методи адресації – наприклад, і

операнди, і результат в арифметичних операціях доступні не тільки в

регістрах, але і через безпосередню адресацію, і прямо в пам'яті.

В якийсь момент тогочасні чипи стали не тільки складними і дорогими

у виробництві, але і досягли своєї межі продуктивності. Для подальшого

збільшення швидкодії необхідно було нарощувати кількість транзисторів,

однак освоєні технологічні норми не дозволяли створювати більш складні

рішення. Для підвищення продуктивності треба було вносити зміни в

архітектуру процесорів.

Було проведено дослідження і показано, що багато компіляторів просто

не використовували всіх можливостей наборів команд CISC (наприклад,

система Unix при компіляції використовувала лише 30% команд), а на складні

методи адресації йшло багато часу через додаткові звернення до повільної

пам'яті. Було показано, що такі функції краще виконувати послідовністю

простіших команд, якщо при цьому процесор спрощується і в ньому

залишається місце для більшого числа регістрів, завдяки яким можна

скоротити кількість звернень до пам'яті.

10

`

Так у 1980 році, в університеті Берклі, був початий проект RISC

(restricted (reduced) instruction set computer). Планувалося створити такий

процесор, який би містив лише найнеобхідніші інструкції. Дослідження

базувалися на використанні конвеєрної обробки і агресивного використання

техніки регістрового вікна. У звичайному процесорі є невелика кількість

регістрів, і програма може використовувати будь–який регістр в будь–який

час. У процесорі, що використовує технологію регістрового вікна, дуже

велика кількість регістрів (наприклад, 128), але програми можуть

використовувати обмежену кількість (наприклад, тільки 8 в кожен момент

часу).

Програма, обмежена лише вісьмома регістрами для кожної процедури,

може виконувати дуже швидкі виклики процедур: «вікно» просто зрушується

до 8–регістрового блоку потрібної процедури, а при поверненні з процедури

зсувається назад до регістрів цієї процедури. У звичайному процесорі

більшість процедур при виклику змушені зберігати значення деяких регістрів

в стеку для того, щоб користуватися цими регістрами при виконанні

процедури. При поверненні з процедури значення регістрів відновлюються зі

стека.

У перших архітектурах, що зараховуються до RISC, більшість команд

для спрощення декодування мають однакову довжину і схожу структуру,

арифметичні операції працюють тільки з регістрами, а робота з пам'яттю йде

через окремі команди завантаження (load) і збереження (store). Ці властивості

і дозволили краще збалансувати етапи конвеєризації, зробивши конвеєри в

RISC значно ефективнішими, дозволивши підвищити тактову частоту і

ефективність суперскалярності (розпаралелювання команд між декількома

виконавчими блоками).

Нерідко слова «скорочений набір команд» неправильно розуміється, як

мінімізація кількості команд в системі команд. Насправді, команд у багатьох

RISC–процесорів більше, ніж у CISC–процесорів. Термін «скорочений»

11

`

описує той факт, що скорочений обсяг і час роботи, що виконується кожною

окремою командою – максимум один такт доступу до пам'яті – тоді як

складні команди CISC–процесорів можуть вимагати для свого виконання

сотень тактів доступу до пам'яті.

Характерні особливості RISC–процесорів:

– фіксована довжина машинних команд (наприклад, 32 біти) і

простий формат команди;

– спеціалізовані команди для операцій з пам'яттю – читання або

запису. Операції виду «прочитати–змінити–записати» відсутні. Будь–які

операції «змінити» виконуються тільки над вмістом регістрів (т. зв.

архітектура load–and–store);

– велика кількість регістрів загального призначення (32 і більше);

– відсутність підтримки операцій виду «змінити» над укороченими

типами даних: байт або 16–бітове слово. Так, наприклад, система команд

DEC Alpha містила лише операції над 64–бітними словами, і вимагала

розробки і подальшого виклику процедур для виконання операцій над

байтами, 16– і 32–бітними словами;

– відсутність мікропрограм всередині самого процесора. Те, що в

CISC–процесорі виконується мікропрограмами, в RISC–процесорі

виконується як звичайний (хоча і поміщений в спеціальне сховище)

машинний код, який не відрізняється принципово від коду ядра ОС і додатків.

В даний час багато архітектур процесорів є RISC–подібними,

наприклад, ARM, DEC, Alpha, SPARC, AVR, MIPS, POWER і PowerPC.

Найбільш широко використовувані в настільних комп'ютерах процесори

архітектури x86 раніше були CISC–процесорами, проте нові процесори,

починаючи з Intel Pentium Pro, є CISC–процесорами з RISC–ядром. Вони

безпосередньо перед виконанням перетворять CISC–інструкції x86–

процесорів в більш простий набір внутрішніх інструкцій RISC.

12

`

Після того, як процесори архітектури x86 були переведені на

суперскалярну RISC–архітектуру, можна сказати, що більшість існуючих нині

процесорів засновані на архітектурі RISC.

1.2 Загальний огляд мікроконтролерів сімейства ARM

Архітектура ARM (Advanced RISC Machine) – 32–бітна RISC–

архітектура процесорів. Розроблена компанією ARM Limited. Процесори

ARM мають низьке енергоспоживання, тому завоювали сегмент масових

мобільних продуктів (стільникові телефони, кишенькові комп'ютери) і

знаходять широке застосування у вбудованих системах середньої і високої

продуктивності (від мережевих маршрутизаторів і точок доступу до

телевізорів). Станом на 2014 р., 95% смартфонів у світі, 80% усіх цифрових

камер і 35% усіх електронних пристроїв використовують ARM технології.

Історія ARM почалася, коли компанія Acorn Computers після успіху з

комп'ютером BBC Micro задумалася над переходом від відносно слабких

процесорів MOS Technology 6502, яким не вистачало потужності для

підтримки графічного інтерфейсу, до більш продуктивних рішень. Жодна з

доступних 16–бітних архітектур не задовольняла їхніх вимог. Тому компанія

вирішила розробити нову 32–бітну архітектуру на основі нової на той час

архітектури RISC. Проект дістав назву Acorn RISC Machine (1983р.).

Ключовим завданням було досягнення низьких затримок при обробці

переривань, як у MOS Technology 6502. Архітектура доступу до пам'яті з

6502 дозволила розробникам досягнути хорошої продуктивності без

використання дорогого модуля прямого доступу до пам'яті. Процесор

вперше запрацював у 1985р. і був названий ARM1. Це був повністю

функціональний 32–розрядний процесор з 26–розрядним (64 Мбайт)

адресним простором. Він мав шістнадцять 32–бітних регістрів,

ортогональний набір 32–бітних інструкцій, тобто при виконанні інструкції не

було обмеження на використання тільки визначених для неї регістрів.

13

`

Лічильник команд був обмежений 26–ма бітами, тому що верхні 6 біт 32–

розрядних регістрів були зарезервовані в якості статус–міток. Тому

програмний код перебував всередині перших 64 Мбайт пам'яті.

Перші серійні процесори під назвою ARM2 стали доступні в

наступному році. У ньому додали інструкції множення, апаратну підтримку

співпроцесорів математики з плаваючою комою. ARM2, можливо, є

найпростішими із використовуваних 32–бітних мікропроцесорів в світі,

робота якого забезпечена лише 30000 транзисторами (для порівняння,

старіша на 6 років модель Motorola 68000 містила близько 70000

транзисторів). Така простота обумовлювалася відсутністю мікропрограми,

яка, наприклад, у процесорі 68000 становила від 1/4 до 1/3 площі кристалу, і

відсутністю кешу. Це привело до низьких витрат енергії, і той же час ARM

був набагато продуктивніший, ніж Intel 80286 – до 4 MIPS (million instructions

per second – мільйонів інструкцій за секунду).

Наступний процесор – ARM3 – уже мав кеш (4 КБ). Тактова частота

зросла до 25 МГц, продуктивність склала 13 MIPS.

В кінці 1980–х років компанія Apple почала працювати з Acorn

Computers над новими версіями ядра ARM. В результаті співробітництва був

створений ARM6 (1992 р.). Адресну шину розширили до 32 біт, зберігаючи

сумісність з попереднім 26–бітним режимом. Введені два нові режими

процесора – для обробки помилок звернення до пам'яті та невизначених

інструкцій. Додані два нові регістри: регістр поточного стану процесора

(CPSR, Current Processor State Register) і регістр збереженого стану

процесора (SPSR, Stored Processor State Register). ARM6 працював на частоті

20, 30 і 33 МГц і виконував в середньому 17, 26, і 28 MIPS відповідно. Це був

також енергоефективний процесор, з низькою для того часу напругою

живлення ядра 3.3В. Ядро ARM, попри всі зміни, залишилося фактично

такого ж розміру: кількість транзисторів зросла всього до 35000. Це був

початок для мобільних вбудованих систем: першим продуктом, який

14

`

використовував ARM6, став Apple Newton MessagePad – одна з перших серій

кишенькових персональних комп'ютерів.

У ARM7 (1993р.) збільшили розмір кеш–пам'яті до 8 KБ. Також був

представлений розширений набір команд – Thumb. Thumb – це інший 16–

бітний набір інструкцій, що дозволяє (теоретично), щоб програми займали

половину від їх розміру в пам'яті. Використовуючи всього 8 регістрів, за

відсутності підтримки умовного виконання, він працює повільніше, але був

відповіддю на інші вбудовані 8–бітні і 16–бітні процесори. У ARM7

удосконалили множення – з’явилися як 32–розрядні, так і 64–бітні інструкції

множення і множення/накопичення. Реалізація виявилася настільки

успішною, що її використали в наступних версіях ядер – ARM8, ARM9 і

StrongARM. В ARM7 вперше представили апаратне відлагодження (on–chip

debugging).

ARM7TDMI є удосконаленням ядра ARM7. TDMI розшифровується, як

«Thumb + Debug + Multiplier + ICE», де ICE (In–Circuit Emulator, схемний

емулятор) – апаратний пристрій, який підключаються до системи через

спеціальний порт, і дає можливість взяти контроль над вбудованою системою

з метою відлагодження. З продуктивністю до 130 MIPS, це було одне з

найбільш широко використовуваних ядер у вбудованих системах, Apple iPod,

Nintendo Game Boy Advance і більшості популярних мобільних телефонів.

ARM8 (1996р.) включав модуль передбачення переходів (branch

prediction) і пам'ять з подвійною пропускною здатністю. Тут з’явився

п’ятиатапний конвеєр, у той час як в ARM7 тільки три. Завдяки цьому ARM8

вдвічі продуктивніший порівняно з ARM7.

У ARM9 (1998р.) відбувся перехід з класичної архітектури фон Неймана

на модифіковану Гарвардську, з відділенням шини команд від шини даних і

кешу. Завдяки цьому вибірка команди і доступ до даних може відбуватися

одночасно. ARM9 також використовував п’ятиетапний конвеєри, введений у

ARM8.

15

`

ARM9TDMI став заміною для надзвичайно популярного ARM7TDMI.

Додатки, призначені для ARM7TDMI, були приблизно на 30% швидше на

ARM9TDMI.

Для ARM10 задачею було подвоїти продуктивність ARM9. Для цього

ARM працювали над двома основними аспектами: оптимізацією конвеєра і

швидкістю виконання команд. Для підвищення швидкості конвеєра, етап

декодування розділили на два, де на одному декодується частина інструкції,

на другому читаються регістри з залишком декодованої послідовності. В

ARM10 з’явилося нове ядро множення – швидкий 16 × 32 апаратний

помножувач. Це дозволило виконувати одну 32–бітну операцію множення і

накопичення за один такт, що є величезне поліпшення в порівнянні з 3–5

тактами на ARM9.

Архітектура, що використовується в ARM9 і ARM10, впровадила

технологію Jazelle DBX (Direct Bytecode eXecution, пряме виконання байт–

коду), яка дозволяє виконання Java байт–коду на апаратному рівні.

Спрямована головним чином на ринок мобільних телефонів, Jazelle давала

змогу Java ME (Java Mobile Edition) додаткам і іграм працювати швидше

шляхом перетворення байт–коду в машинні інструкції ARM. ARM стверджує,

що приблизно 95% байт–коду в типових програмах обробляється на

апаратному рівні.

У 2002р. ARM випустила ядро ARM11. Його архітектура реалізовує

технологію SIMD (Single Instruction, Multiple Data – одиночний потік команд,

множинний потік даних) – принцип комп'ютерних обчислень, що дозволяє

забезпечити паралелізм на рівні даних. Інструкції SIMD розроблені для

виконання повторюваних інструкцій на багатьох наборах даних, що широко

використовується в аудіо – і відеокодеках, зокрема, для MPEG–4 на ринку

мобільних телефонів. Додавання інструкцій SIMD подвоїла швидкість

обробки MPEG–4. П’ятиетапний конвеєр замінили на восьмиетапний,

підвищивши очікувану частоту до 1 ГГц. ARM11 також підтримує обмежене

16

`

позачергове виконання команд, дозволяючи конвеєру продовжити виконання,

якщо результат попередньої команди не потрібен наступним командам.

ARM11 був величезним успіхом, ARM–процесори стають все

потужнішими, але й дорожчими. Тим не менш, деякі клієнти не були

зацікавлені в дуже швидких процесорах та складній архітектурі і шукали

більш «легкі» рішення, в той же час отримуючи всі переваги від останніх

технологічних досліджень. ARM перелаштували свою лінію процесорів для

задоволення потреб особливих сфер. Так у 2004р. було повідомлено про нове

сімейство Cortex (рисунок 1.1).

До сімейства Cortex входить 3 класи процесорів: Cortex–А, Cortex–R і

Cortex–M. Cortex–A («A» – application) призначено для пристроїв, що

вимагають високої продуктивності (смартфони, планшети), на яких працює

багатозадачна операційна система. Cortex–R («R» – real time) розроблено для

додатків реального часу, де час реакції повинен бути мінімальний. Cortex–М

(«M» – microcontroller) призначено для мікроконтролерів і недорогих

вбудованих пристроїв.

Рисунок 1.1 – Графік виходу ядер сімейства Cortex

Процесор Cortex–A призначено для прикладних систем. Це потужні

чипи, які дозволяють запустити повноцінну операційну систему,

високопродуктивні мультимедійні кодеки і вимогливі до ресурсів додатки.

Серія Cortex–A оснащено MMU (memory management unit, блок управління

17

`

пам'яттю) – апаратний компонент, що відповідає за управління доступом до

пам'яті, який запитується процесором. Додавши декілька зовнішніх

компонентів, можна створювати передові платформи. На Cortex–A працюють

смартфони, планшети, цифрові телевізори та інформаційно–розважальні

системи, і навіть були розроблені ноутбуки на багатоядерних Cortex–A. В

таблиці 1.1 наведено характеристики деяких процесорів сімейства Cortex.

Таблиця 1.1 – Характеристика процесорів Cortex–A

Cortex–A8

(2005р.)

Перший Cortex–A– процесор.

Одноядерний, Thumb–2, NEON, TrustZone , динамічне

передбачення переходів (заявлена точність 95%),

оптимізований кеш 1 рівня, інтегрований налаштовуваний

кеш 2 рівня (0КБ–1МБ). Частота до 1Гц. Бінарна сумісність з

ARM926, ARM1136 і ARM1176

Cortex–A9

(2007р.)

Динамічна довжина конвеєра (8–11 етапів).

До 4 ядер, Thumb–2, NEON, Jazelle DBX, оптимізований кеш

1 рівня до 64КБ, кеш 2 рівня до 8 КБ.

Частота до 1.5 Гц (до 50% продуктивніший за Cortex–A8)

Cortex–A5

(2009р.)

Енергоефективний, багатоядерний (до 4 ядер), Thumb–2,

SIMD, TrustZone, NEON, FPU (Floating–Point Unit),

налаштовуваний кеш (4–64КБ).

Частота до 1Гц.

Бюджетний процесор для дешевих смартфонів і деяких

мультимедійних пристроїв.

18

`

Продовження таблиці 1.1

Cortex–A15

(2010р.)

15–етапний конвеєр.

Технологія big.LITTLE, Thumb–2, NEON, TrustZone,

оптимізований кеш 1 рівня (32КБ + 32КБ), інтегрований

налаштовуваний кеш 2 рівня до 4МБ, Large Physical Address

Extensions (LPAE) до 1ТБ.

Частота до 2–2.5Гц (до 40% продуктивніший за Cortex–A9)

Cortex–A7

(2011р.)

Має ті ж головні властивості і бінарну сумісність з Cortex–

A15.

Частота 1.2–1.6 Гц.

Енергоефективний, для дешевих і середніх смартфонів і

портативних пристроїв.

Cortex–A17

(2013р.)

15–етапний конвеєр.

Технологія big.LITTLE, Thumb–2, NEON, TrustZone,

оптимізований кеш 1 рівня (32–64КБ + 32КБ), інтегрований

налаштовуваний кеш 2 рівня до 8МБ, LPAE до 1ТБ.

Частота до 2.5Гц (до 60% продуктивніший за Cortex–A9)

Наприкінці 2011 р. була опублікована нова версія архітектури, ARMv8.

У ній з'явилося визначення архітектури AArch64, в якій виконується 64–

бітний набір команд A64. Підтримка 32–бітових команд отримала назву A32 і

виконується на архітектурах AArch32. Інструкції Thumb підтримуються в

режимі T32, тільки при використанні 32–бітних архітектур. Допускається

виконання 32–бітних додатків в 64–бітній ОС і запуск віртуалізованої 32–

бітної ОС за допомогою 64–бітного гіпервізора.

Особливості AArch64:

– новий набір команд A64;

– 31 регістр загального призначення, кожен довжиною 64 біт;

– окремі регістри SP і PC;

19

`

– інструкції мають розмір 32 біта, багато збігаються з командами

A32;

– більшість інструкцій працюють як з 32–, так і з 64–бітними

аргументами;

– адреси мають розмір 64 біта;

– підтримує обчислення з числами з плаваючою комою подвійної

точності (64–біт double);

– нова система виняткових ситуацій;

– трансляція віртуальних адрес з 48–бітного формату працює за

допомогою існуючих механізмів LPAE.

У 2012р. з’явилися перші процесори з новою архітектурою – Cortex–

A53 і Cortex–A57, які завдяки технології big.LITTLE можуть застосуватися

разом. Підтримують до 16 ядер. Вони мають розширені можливості для

управління кешем та інструкціями SIMD, що робить їх ідеальними

процесорами для вимогливих мобільних додатків.

У 2014р. анонсовано процесор Cortex–A72. Заявлена частота 2.5Гц і в

3.5 рази вища енергоефективність порівняно з Cortex–A15. У широкий

продаж він надійде у 2016р.

Процесор Cortex–R (таблиця 1.2) призначено для додатків реального

часу, для критичних систем, де вирішальними є надійність і швидкість.

Системи реального часу призначено для обробки даних, що швидко

змінюються, і повинні бути достатньо чутливими для негайної обробки

потоку даних без уповільнення. Тому процесори Cortex–R знаходять своє

застосування в жорстких дисках, мережевому устаткуванні, у вбудованих

критичних системах, як, наприклад, гальмівна система автомобіля. Існують

як одноядерна, так і багатоядерна (до 4 ядер на одному чипі) реалізації. Для

максимальної реактивності Cortex–R можуть мати тісно зв’язану пам'ять

(tightly–coupled memory, TCM), а також модулі захисту пам’яті (memory

protection unit, MPU) замість повного MMU.

20

`

Таблиця 1.2 – Характеристика процесорів Cortex–R

Cortex–R4

(2007р.)

8–етапний конвеєр з можливістю одночасного виконання двох

інструкцій (dual issue) і предвибіркою коду (instruction pre–

fetch), передбачення переходів.

Thumb–2, DSP (Digital Signal Processing), FPU, TCM (8–12

регіонів), налаштовуваний кеш (4–64МБ), ECC (Error–

correcting code).

Частота до 1.4Гц

Cortex–R5

(2010р.)

TCM (12–16 регіонів), додано LLPP (Low Latency Peripheral

Port) та ACP (Accelerator Coherency Port), удосконалена

підтримка багатопроцесорної обробки для двоядерної

конфігурації.

Бінарна сумісність з Cortex–R4.

Частота до 1.4Гц.

Cortex–R7

(2011р.)

11–етапний конвеєр.

TCM (16 регіонів), додано GIC (Generic Interrupt Controller),

SCU (Snoop Control Unit), повна підтримка SMP (Symmetric

Multi–Processing) і AMP (Asymmetric Multi–Processing).

Частота до 1.5Гц.

Процесор Cortex–M (таблиця 1.3) призначено для додатків до

мікроконтролерів. Ці додатки не вимагають великої обчислювальної

потужності, але потребують багато ліній введення і виведення, дуже малий

форм–фактор, детерміновану реакцію на переривання і виключно низьке

енергоспоживання. Cortex–M активно використовуються в Bluetooth–

пристроях, контролерах сенсорного екрану, пристроях дистанційного

керування.

21

`

Таблиця 1.3 – Характеристика процесорів Cortex–M

Cortex–M3

(2004р.)

3–етапний конвеєр з передбаченням переходів.

Повний набір Thumb. Більший, ніж в Cortex–M0, набір

Thumb–2 (включаючи команди ділення). Підтримка

апаратного множення.

MPU для 8 регіонів.

Немасковане переривання, до 240 фізичних переривань, за-

тримка переривання – 12 тактів.

Cortex–M1

(2007р.)

Оптимізоване ядро, спеціально для завантаження в чипи

FPGA.

Той самий набір інструкцій, що і в Cortex–M0.

Незначне падіння продуктивності модуля множення (3–33

такти проти 1–32 у Cortex–M0).

Cortex–M0

(2009р.)

3–етапний конвеєр без передбачення переходів.

Thumb (окрім команд CBZ, CBNZ, IT).

Thumb–2 (тільки команди BL, DMB, DSB, ISB, MRS, MSR).

Немасковане переривання, до 32 фізичних переривань,

затримка переривання – 16 тактів.

Cortex–M4

(2010р.)

Додано DSP, підтримку додаткового FPU.

Трохи швидший, ніж Cortex–M3, завдяки поліпшеному пе-

редбаченню переходів.

Cortex–

M0+

(2012р.)

Той самий набір інструкцій, що і в Cortex–M0. Поєднує влас-

тивості Cortex–M3 і Cortex–М4.

2–етапний конвеєр для більшої енергоефективності.

Додано Micro Trace Buffer для покращеного відлагодження та

однотактний інтерфейс введення–виведення.

22

`

Продовження таблиці 1.3

Cortex–M7

(2014р.)

6–етапний суперскалярний конвеєр з передбаченням

переходів.

Додано ECC, кеш для інструкцій (до 64КБ), кеш для даних

(до 64КБ), TCM для інструкцій (до 16MБ), TCM для даних

(до 16MБ).

Застосовується в автомобільній і промисловій автоматизації,

медичних пристроях, обробці аудіо і відео, для розгортання

IoT (Internet of Things)

1.3 Сімейство ядер ARM

Нумерація версій ARM–ядер не відповідає нумерації версій ARM–

архітектури, тому часто виникає плутанина (таблиця 1.4). Версії архітектури

записуються, як ARMv, а версії ядра – як ARM. Крім того, перше число у

версії ядра не завжди однакове з першим числом у версії архітектури, до якої

це ядро належить.

Наприклад, ядро ARM1 належить до архітектури ARMv1, а ядра ARM2

і ARM3 – до архітектури ARMv2. Хоча різниця між ARM2 і ARM3 більша,

ніж між ARM2 і ARM1. Ядер ARM4 і ARM5 не існувало. Ядра ARM6 і ARM7

належать до архітектури ARMv3 і т.д. (таблиця 1.4). Після ARM11 всі ядра

називають Cortex.

Таблиця 1.4 – Приналежність ядер ARM до архітектури

Архітектура Ядро
ARMv1 ARM1

ARMv2 ARM2, ARM3

ARMv3 ARM6, ARM7

ARMv4 StrongARM, ARM7TDMI, ARM8, ARM9TDMI

ARMv5 ARM7EJ, ARM9E, ARM10E, XScale

23

`

Продовження таблиці 1.4

Архітектура Ядро
ARMv6 ARM11

ARMv6–M Cortex–M0, Cortex–M0+, Cortex–M1

ARMv7–A

Cortex–A5, Cortex–A7, Cortex–A8, Cortex–A9, Cortex–

A12, Cortex–A15

ARMv7–R Cortex–R4, Cortex–R5, Cortex–R7

ARMv7–M Cortex–M3

ARMv7E–M Cortex–M4

ARMv8–A Cortex–A53, Cortex–A57

24

`

ПИТАННЯ ДЛЯ САМОКОНТРОЛЮ

1) Назвіть характерні особливості CISC-архітектури.

2) Назвіть характерні особливості RISC-процесорів.

3) Які архітектури процесорів є RISC-подібними?

4) Як розуміти слова «скорочений набір команд» у RISC-процесорів?

5) Дайте визначення архітектурі ARM.

6) Де сьогодні широко використовуються ARM-контролери?

7) Коли відбувся перехід з класичної архітектури фон Неймана на модифі-

ковану Гарвардську архітектуру ARM-контролерів?

8) Чим відрізняються Гарвардська архітектура та архітектури фон Нейма-

на?

9) Які класи процесорів входять до сімейства Cortex ?

10) Охарактеризуйте процесор Cortex-A.

11) Охарактеризуйте процесор Cortex-R.

12) Охарактеризуйте процесор Cortex-M.

13) Чим відрізняються версії ARM–ядер від версій ARM– архітекту-

ри?

14) Назвіть відмінності між ARM7 та ARM7TDMI?

25

`

2 СТРУКТУРА ТИПОВОГО МІКРОКОНТРОЛЕРА З ARM–ЯДРОМ

2.1. Загальні відомості
Мікроконтролерне ядро ARM було розроблене однойменною

англійською компанією, яка була організована в 1990 році. Назва ARM похо-

дить від "Advanced RISC Machines". Слід зауважити, що компанія

спеціалізується суто на розробці мікропроцесорних ядер і периферійних

блоків, при цьому не має виробничих потужностей з випуску мікроконтроле-

рів. Компанія ARM постачає свої розробки в електронній формі, на основі

якої клієнти конструюють свої власні мікроконтролери. Клієнтами компанії є

понад 60 компаній–виробників напівпровідників, серед яких можна виділити

таких популярних виробників на ринку напівпровідникових компонентів

країн СНД, як Altera, Analog Devices, Atmel, Cirrus Logic, Fujitsu, MagnaChip

(Hynix), Intel, Motorola, National Semiconductor, Philips , ST Microelectronics,

Texas Instruments і т. ін.

В даний час архітектура ARM займає лідируючі позиції і охоплює зна-

чну частину ринку 32–розр. вбудованих RISC–мікропроцесорів. Поширеність

даного ядра пояснюється його стандартністю, що надає можливість розроб-

ником більш гнучко використовувати, як свої, так і сторонні програмні на-

працювання, як при переході на нове процесорний ARM–ядро, так і при міг-

раціях між різними типами ARM–мікроконтролерів.

Деякі компанії використовують розроблені ARM–процесори для спеці-

альних застосувань, проте більшості вони потрібні для мобільних телефонів,

систем управління автомобільними двигунами, лазерних принтерів PostScript

та інших пристроїв масового застосування. Для всіх цих пристроїв необхідні

такі якості, як висока швидкодія, помірна ціна і низьке енергоспоживання.

Фірмою розроблено цілий ряд 32–розрядних RISC–процесорів з різни-

ми можливостями і різною продуктивностю, а її процесор ARM, який розро-

блено ще в 1994 році, використовується до теперішнього часу.

26

`

Сама фірма визначає процесор ARM7 як універсальне ядро 32–

розрядного RISC–мікропроцесора з малим енергоспоживанням, яке призна-

чене для використання в різних замовних і спеціальних ІС. Малі розміри

RISC–ядра дозволяють успішно інтегрувати його в великі замовні схеми, які

можуть містити RAM, ROM, DSP, додаткову логіку та інші елементи.

Основні характеристики ядра ARM7:

– 32–розрядний RISC–процесор (32–розрядні шини даних і адреси)

з продуктивністю 17 MIPS при тактовій частоті 25 МГц (пікова

продуктивність 25 MIPS);

– 32–розрядна адресація – лінійний адресний простір в 4 Гб –

виключає потребу в сегментованій, розділеній на банки або оверлійній

пам'яті;

– тридцять один 32–розрядний регістр загального призначення і

шість регістрів стану;

– регістри адрес, запису і конвеєра;

– циклічний пристрій зі зсувом і перемножувач;

– трирівневий конвеєр (вибірка команди, її декодування і виконан-

ня);

– робочі режими Big Endian і Little Endian;

– напруга живлення 3,3 і 5 В;

– мале енергоспоживання 0,6 мА / МГц, при виготовленні за

CMOS–технологією з топологічними нормами 0,8 мкм;

– повністю статична робота, що дозволяє додатково знижувати

споживання за рахунок зменшення тактової частоти, що ідеально для кри-

тичних до споживання застосувань;

– швидке реагування на переривання застосувань реального мас-

штабу часу;

– підтримка систем віртуальної пам'яті;

– проста, але потужна система команд.

27

`

В роботі розглядається ядро ARM7 та мікроконтролери LPC2378,

STM32, які використовують це ядро.

2.2. Мікроконтролер LPC2378

LPC2378 – один із старших контролерів свого сімейства. Йому

притаманні такі основні особливості:

– 32 бітне ядро ARM7TDMI–S;

– тактова частота до 72 МГц;

– 512 КБ Flash + 58 КБ SRAM;

– Ethernet 10/100 MAC + DMA;

– USB 2.0 в режимі Full–speed;

– двоканальний CAN 2.0B;

– контролер DMA;

– I2S, три I2C, три SPI / SSP, чотири UART;

– можлива робота з зовнішніми картами SD / MMC;

– АЦП (8 каналів, 10 біт), ЦАП (1 канал, 10 біт);

– і т. ін.

Більш повний перелік периферії наведено в документі «LPC2378

Preliminary datasheet».

Контролер зазвичай упаковується виробником в 144–вивідний корпус

TQFP, зовнішній вигляд якого наведено на рисунку 2.1.

Зовні контролер нічим не примітний, окрім як великою кількістю

виводів. Для того щоб визначити функцію того чи іншого виводу необхідно

звернутися до відповідної документації. На рисунку 2.2 наведено рекомендо-

ване електричне підключення контролера.

28

`

Рисунок 2.1 – Зовнішній вигляд мікроконтролера LPC2378 (вид зверху)

Для того, щоб контролер запустився, необхідно забезпечити його

якісним живленням 3,3В і поставити необхідні фільтруючі конденсатори. Для

внутрішніх потреб контролера (для живлення ядра) потрібно джерело напру-

гою 1,8В, але контролери цього сімейства мають вбудований перетворювач

напруги і, тому, потрібні лише конденсатори (C47…C49). Для тактування

контролера потрібно як мінімум один кварц на входи X1, X2 (основний вхід

тактового генератора) або на входи R1TCX1 + R1TCX2 (вхід тактового гене-

ратора для годинника реального часу). Кварц можна і не ставити, скористав-

шись внутрішнім (вбудованим в чіп) генератором, але через його низьку

точність, використовувати деяку периферію не вдасться (так, наприклад USB

працювати не буде, оскільки йому потрібні тактові сигнали з точними

інтервалами часу, які не може забезпечити мініатюрний кварц). Великий 20–

контактний роз'єм (JTAG) зліва вгорі (рисунок 2.2) призначено для налагод-

ження та програмування контролера. При необхідності до нього

підключається штекер з шлейфом, що йде від відлагоджувача JTAG. З вико-

ристанням відповідного програмного забезпечення, наприклад, що входить в

IDE Keil for ARM7, в контролер записується програма, яку програміст (кори-

стувач) набрав і відкомпілював. Програми створюються з використанням

модифікації мови C, що включає розширення для програмування

контролерів.

29

`

Рисунок 2.2 – Рекомендоване електричне підключення контролера

Нижче в таблиці 2.1 наведено порівняння мікроконтролера LPC2378 з

іншими мікроконтролерами ряду LPC23хх.

30

`

Таблиця 2.1 – Характеристики мікроконтролерів LPC23хх

З таблиці видно, що контролер відрізняється наявністю USB–

інтерфейсу, але не може виступати в якості хосту USB (тобто не може до се-

бе підключати пристрої USB). Також у контролера є Ethernet–контролер, 8

аналогових входів (АЦП), і 104 виводи загального призначення. Кількості

швидкої пам'яті (ОЗП) на локальній шині 32 Кб достатньо для виконання

більшості завдань автоматики, так само як і постійної пам'яті Flash, об'ємом

512 Кб. При необхідності користувач може підключати зовнішні мікросхеми

пам'яті і, таким чином, збільшити об`єм пам'яті.

Для того, щоб більш детально ознайомитися з контролером, розглянемо

його структурну схему (рисунок 2.3).

Структура досить складна, тому її умовно розділено червоною смугою

на важливі складові контролера: ядро і швидкі пристрої та іншу периферію

(нижче червоної смуги). З першого погляду видно, що на контролері

присутні кілька шин даних (AHB, APB, Local Bus – на рисунку без назви).

Найголовніший блок – ARM7TDMI–S – це ядро мікроконтролера, до

якого відносяться всі основні функції по керуванню пам'яттю, обчисленням,

обробці програми і т.ін.

31

`

Рисунок 2.3 – Структурна схема мікроконтролера LPC2378

Блок System Functions (блок системних функцій) призначено для кон-

тролю роботи контролера, скидання (вхід RESET) та тактування (XTAL1,

XTAL2). До блоку приєднано блоки вбудованого низькоточного RC–

осцилятора (Internal RC Oscillator), з якого здійснюється запуск контролера, а

також фазового автопідстроювання частоти (PLL = Phase Locked Loop), що

відповідає за розподіл частоти і тактування контролера. Не дивлячись на

відсутність зв'язку на структурній схемі від ядра до цих блоків, існує

можливість налаштовувати їх роботу з програми через регістри (не

обов'язково під час запуску контролера).

32

`

На рисунку 2.4 наведено ядро та швидкі пристрої з перекладом на

українську мову деяких блоків.

Рисунок 2.4 – Швидка периферія і ядро контролера LPC2378

Зв'язок з периферією проводиться за допомогою наступних

спеціальних шин (рисунок 2.5):

– ARM7 local bus (локальна шина). Шина забезпечує швидкий дос-

туп до пам'яті чіпа та швидкий обмін через паралельний порт (GPIO);

– AHB (Advanced High performance Bus – покращена високопро-

дуктивна шина) – зв'язує ядро зі швидкістною периферією і зовнішнюю

пам'яттю. На контролері є дві шини: AHB1 і AHB2;

– APB (Advanced Peripheral Bus–покращена периферійна шина) –

зв'язує інші периферійні пристрої на чипі;

– Шина AHB1 – зв'язує ядро з:

– VIC (vector interrupt controller) – векторний контролер перери-

вань (32 вектори) та контролер USB;

– GP DMA – контролер прямого доступу до пам'яті загального при-

значення (дозволяє скоротити кількість переривань при роботі з модулями, з

33

`

якими проводиться інтенсивний обмін даними через буфери, наприклад

Ethernet, USB і т.ін.);

– EMC – контролер зовнішньої пам'яті. Забезпечує доступ до

зовнішньої пам'яті (Flash) і різної зовнішньої периферії, яка є проектована на

адресний простір пам'яті.

Рисунок 2.5 – Зв'язок шин даних контролера LPC2378

Шина AHB2 – зв'язує тільки ядро і Ethernet модуль (в тому числі і

внутрішню пам'ять Ethernet = 16 КБ SRAM). AHB2 виділена в окрему шину,

щоб не заважати роботі іншим пристроям, тому що обсяг даних, який

передається через Ethernet може бути значним і повністю завантажити

периферійну високопродуктивну шину даних.

Шини AHB незалежні, але можуть бути підключені в режим Master–

Slave (рисунок 2.6).

У такому разі:

– AHB2 працює в режимі Master;

– AHB1 – в режимі Slave;

34

`

Рисунок 2.6 – З'єднання периферійних шин AHB1 і AHB2 через міст

AHB–to–AHB

– AHB2 може запитувати з основної пам'яті контролера чи

зовнішньої пам'яті додаткове місце під буфер Ethernet;

– адресація шиною АНВ завжди 32–бітна, та прозора для

програміста, тобто програміст напряму не працює з шиною;

– усім пристоям на шині AHB виділяється адресний простір нижче

адреси 4.0 Гб (0xFFFF FFFF);

– кожен пристрій отримує блок 16 Кб (рисунок 2.7).

Також важливо зазначити наступні моменти, які викликані такою

конфігурацією шин даних:

– пам’ять SRAM буфера Ethernet 16 КБ і пам'ять SRAM, яка

використовується контролером GP DMA = 8 КБ, також може бути викори-

стана для зберігання даних або коду;

Рисунок 2.7 – Поділ на блоки адресного простору пристроїв шин AHB і

APB

35

`

– пам'ять 2 Кб годинника реального часу (RTC), можна використо-

вувати тільки для зберігання даних. Оскільки вона належить до повільної

шини, зчитувати з неї код недоцільно, тому що це уповільнило б ядро

контролера, який постійно очікує передачі нової порції коду;

– пам'ять годинника реального часу (RTC) можна використовувати

в ролі NVRAM (Non–volatile random–access memory – енергонезалежної

пам'яті), оскільки вона живиться від батарейки і її вміст зберігається у вимк-

неному стані.

– шина APB (Advanced Peripheral Bus – покращена периферійна

шина) – призначена для розщеплення і з'єднання безлічі більш повільних

периферійних пристроїв.

APB – ще більш повільна шина, ніж AHB. Зв'язок з APB здійснюється

за допомогою мосту AHB–APB. Пристрої на шині APB також адресуються

блоком, який лежить вище 3.5 Гб (рисунок 2.7). Блок займає 2 Мб. Кожен

пристрій в блоці резервує за собою 16 Кб адресного простору із загального

блоку (послідовно).

На рисунку 2.8 наведено пристрої, які з’єднуються шиною APB.

Кожний периферійний пристрій має по одній лінії, що сполучає його і

VIC (векторний контролер переривань).

Будь–яка ніжка порту Port0 або Port2, незалежно від функцій, може бу-

ти запрограмована на генерацію переривань (сумарно 46 ніжок):

– за наростанням;

– за спаданням;

– за наростанням і спаданням вхідного сигналу.

Ці запити переривань будуть скомбіновані із запитом переривання

EINT3.

36

`

Рисунок 2.8 – Пристрої, які з’єднуються шиною APB

2.3. Мікроконтролер STM32
Враховуючи велику кількість компаній, що виробляють мікроконтро-

лери архітектури ARM, велику кількість цих контролерів навіть у однієї ком-

панії, коротко зупинимося на контролерах серії STM32 компанії

STMicroelectronics.

STMicroelectronics – європейська мікроелектронна компанія, одна з

найбільших, що займаються розробкою, виготовленням та продажем різних

напівпровідникових електронних і мікроелектронних компонентів. Сьогодні

штаб–квартира компанії знаходиться в Женеві, в той же час, її холдингова

компанія STMicroelectronics NV зареєстрована в Амстердамі, однак компанія

37

`

історично пов'язана з Італією та Францією, де значно взаємодіє з ринком.

Компанія має представництва в США, Китаї та Японії.

Мікроконтролери STM32 використовують ядро Cortex–M3. Сімейство

ARM Cortex – нове покоління процесорів, які виконані за стандартною архі-

тектурою і відповідають різним технологічним вимогам. На відміну від ін-

ших ЦПП (цифровий процесорний пристрій) ARM, сімейство Cortex є завер-

шеним процесорним ядром, яке об'єднує стандартне ЦПП і системну архітек-

туру. Сімейство Cortex доступно в трьох основних профілях: профіль A для

високопродуктивних застосувань, профіль R для застосувань у реальному

часі і профіль M для чутливих до вартості мікроконтролерних застосувань.

Мікроконтролери STM32 виконано на основі профілю Cortex–M3, яке

спеціально розроблене для застосувань, де необхідні розвинені системні ре-

сурси і, при цьому, мале енергоспоживання. Вони характеризуються настіль-

ки низькою вартістю, що можуть конкурувати з традиційними 8 і 16–бітними

мікроконтролерами. І хоча ЦПП ARM7 і ARM9 були з успіхом інтегровані в

стандартні мікроконтролери, в них все ж таки простежується початкова оріє-

нтованість на системи на кристалі (SoC). Це особливо помітно за способами

обробки виняткових ситуацій та переривань, тому у різних виробників мік-

роконтролерів ці способи обробки реалізовано різним чином. Cortex–M3 є

стандартизованим мікроконтролерним ядром, яке крім ЦПП, містить всі інші

основні елементи мікроконтролера (в т.ч. система переривань, системний

таймер SysTick, відлагоджувальна система та карта пам'яті). 4 гігабайтний

адресний простір Cortex–M3 розділено на чітко розподілені області коду про-

грами, статичного ОЗП, пристроїв введення–виведення і системних ресурсів.

На відміну від ядра ARM7, Cortex–M3 виконано за Гарвардською архі-

тектурою і, тому, має декілька шин, що дозволяють виконувати операції па-

ралельно. Сімейство Cortex має можливість оперувати з фрагментованими

даними (unaligned data), що також відрізняє його від попередніх архітектур

ARM. Цим гарантується максимальна ефективність використання внутріш-

38

`

нього статичного ОЗП. Сімейство Cortex також підтримує можливості вста-

новлення і скидання біт в межах двох областей пам'яті розміром 1 Мбайт за

методом bit banding. Цей метод надає ефективний доступ до регістрів і пра-

порців ПВВ, розташованих в області статичного ОЗП, і виключає необхід-

ність інтеграції повнофункціонального бітового процесора.

Основою STM32 є процесор Cortex–M3. Він являє собою стандартизо-

ваний мікроконтролер, який інтегрує 32–бітний ЦПП, шинну структуру, блок

вкладених переривань, відлагоджувальну систему і відповідну організацію

пам'яті.

До появи STM32 компанія ST вже мала у своєму асортименті 4 сімейс-

тва мікроконтролерів на основі ядер ARM7 і ARM9, однак саме у мікроконт-

ролерів STM32 було досягнуто суттєве поліпшення співвідношення вартості і

робочих характеристик. Мікроконтролери STM32, ціна яких за штуку при

покупці великих кількостей становить трохи більше одного Євро, кидають

серйозний виклик існуючим 8–бітним мікроконтролерам. Мікроконтролери

STM32, які спочатку випускалися в 14 різних варіантах, розділено на дві гру-

пи: Performance Line, до якої увійшли мікроконтролери з тактовою частотою

ЦПП до 72 МГц, і Access Line (тактова частота до 36 МГц). Обидві групи мі-

кроконтролерів сумісні за розташуванням виводів і програмному забезпечен-

ню. Обсяг їх вбудованої Flash–пам'яті досягає 128 Кбайт, а статичного ОЗП –

20 Кбайт. З моменту появи перших мікроконтролерів STM32 їх асортимент

був істотно розширений новими представниками з підвищеними розмірами

ОЗП і Flash–пам'яті, а також з більш складними ПВВ.

Сімейство STM32 складається з двох груп. Група Performance Line

працює на тактових частотах до 72 МГц й оснащена повним набором ПВВ, а

група Access Line працює на частотах до 36 МГц та інтегрує обмежений на-

бір ПВВ.

Сімейство STM32 – це не тільки мікроконтролери на ядрі Cortex–M3.

Архітектура Сortex–M включає в себе також ядра Сortex–M0 і Cortex–M4.

39

`

Cortex–M0 – це Cortex–M3 з скороченим набором команд, призначено

для більш дешевих і менш вимогливих з точки зору продуктивності рішень.

Cortex–M0 дозволить замінити 16–бітові мікроконтролери і, в меншій мірі, 8–

бітові мікроконтролери. Cortex–M4 – це Cortex–M3, збагачено новими ко-

мандами для обробки даних і призначено для застосувань, що вимагають

більш високої продуктивності, з більш складною обробкою сигналу (операції

з плаваючою комою на апаратному рівні). Cortex–M4 можна буде використо-

вувати в нижньому сегменті DSP–додатків.

Програмний код, що працює на ядрі Cortex–M0, буде в повному обсязі

працювати і на ядрі Cortex–M3, оскільки для Cortex–M3 діють всі інструкції

Cortex–M0. Програмний код, що працює на ядрі Cortex–M3, також буде пра-

цювати на Cortex–M4, оскільки для Cortex–M4 залишаються чинними всі ін-

струкції Cortex–M3. Тобто, зробивши виріб на Cortex–M3, можна буде далі

зробити його більш дешеві і прості варіанти на Cortex–M0 або більш дорогі і

складні вироби на Cortex–M4 з мінімальними витратами на переробку про-

грамного коду. Оскільки Сortex–M3 вже став світовим стандартом, і оскільки

Cortex–M0 і Cortex–M4 є натуральними продовженнями Cortex–M3, нікого не

здивує, якщо вони також стануть стандартами найближчим часом. Інші виро-

бники також активно працюють у цьому напрямку (Texas Instruments,

Freescale, NXP і т.ін.)

У підсумку можна сказати, що обираючи STM32, розробник обирає до-

сить популярний мікроконтролер на Cortex–M3, з перспективою переходу на

інші ядра Cortex–M, але при цьому не закриває двері для продукції інших ви-

робників.

40

`

ПИТАННЯ ДЛЯ САМОКОНТРОЛЮ

1) Ким було розроблено мікроконтролерне ядро ARM?

2) Від чого походить назва ARM?

3) На чому спеціалізується компанія "Advanced RISC Machines"?

4) Які компанії є клієнтами компанії ARM?

5) Які основні характеристики ядра ARM7?

6) Назвіть основні особливості мікроконтролера LPC2378.

7) Опишіть відмінності мікроконтролера LPC2378 від інших мікро-

контролерів ряду LPC23хх.

8) Охарактеризуйте детальніше такі особливості мікроконтролера

LPC2378 як:

– структурна схема;

– швидка периферія і ядро контролера;

– зв'язок з периферією;

– шина AHB1;

– шина AHB2;

– міст AHB-to-AHB.

9) Чим займається компанія STMicroelectronics?

10) На основі якого ядра виконані мікроконтролери STM32?

11) Охарактеризуйте склад та основні характеристики мікроконтро-

лера STM32.

12) За якою архітектурою виконано мікроконтролер STM32?

13) Опишіть сімейство STM32.

41

`

3 ХАРАКТЕРИСТИКА ЯДРА ARM–МІКРОКОНТРОЛЕРІВ

3.1 Основні положення

Характеристику ядра ARM–мікроконтролерів розглянемо на прикладі

сімейства LPC2300, побудованого на основі ЦПП ARM7. Щоб використову-

вати ці мікроконтролери, вам зовсім не потрібно бути експертом в області

програмування процесора ARM7, оскільки турботу про більшість складних

моментів бере на себе компілятор мови С. Тим не менш, щоб розробити

надійний пристрій, ви повинні мати хоча б загальне уявлення про те, як

працює ЦПП і які у нього є особливості.

У цьому розділі ми розглянемо основні характеристики ядра ARM7 ра-

зом з його моделлю програмування, а також коротко обговоримо набір ко-

манд, який використовується даним процесором. В результаті ви отримаєте

всю необхідну інформацію про процесор, що є «серцем» сімейства LPC2300.

Для більш поглибленого вивчення процесорів ARM рекомендуємо звернути-

ся до книг, зазначених в списках літератури.

Головний принцип, що лежить в основі процесора ARM, це простота.

Ядро ARM7 є RISC–машиною, яка передбачає використання невеликої

кількості команд і відповідно складається з відносно невеликої кількості

логічних елементів. Завдяки цьому процесор ARM7 ідеально підходить для

використання у вбудованих системах. Він має високу продуктивність, низьке

енергоспоживання і займає невелику частину загальної площі кристала.

3.2 Конвейер команд

Основний елемент ЦПП ARM7 це конвеєр команд, який використову-

ється для обробки команд, які зчитуються з пам'яті програм. Конкретно, в

ядрі ARM7 реалізовано триступеневий конвеєр (рисунок 3.1).

42

`

Рисунок 3.1 – Робота триступеневого конвеєра

Триступеневий конвеєр є найпростішою різновидністю конвеєрів і не

схильний до виникнення різних небезпечних ситуацій, таких як «читання ра-

ніше запису», які зустрічаються в конвеєрах з великим числом ступенів.

Конвеєр має три апаратно–незалежні ступені, завдяки яким одночасно з

виконанням однієї команди здійснюється декодування другої і вибірка тре-

тьої.

Він настільки ефективно прискорює проходження команд через ЦПП,

що більшість команд ARM можуть виконуватися за один такт. Конвеєр

найбільш ефективний при виконанні лінійного коду. При виявленні переходу

конвеєр скидається, і для відновлення виконання програми з максимальною

швидкістю він повинен спочатку заповнитися. Пізніше ми з вами побачимо,

що набір команд процесора ARM має кілька цікавих особливостей, що доз-

воляють виключити з коду короткі переходи для поліпшення проходження

коду по конвеєру. Оскільки конвеєр є складовою частиною ЦПП, він

повністю прихований від програміста. Однак, важливо пам'ятати, що зна-

чення лічильника команд (Program Counter – PC) на 8 байт перевищує зна-

чення адреси поточної виконуваної команди. У зв'язку з цим необхідно обе-

режно підходити до обчислення зсувів у разі відносної адресації з викори-

станням лічильника команд.

43

`

Наприклад, команда:

0x4000 LDR PC, [PC, # 4]

завантажить в лічильник команд PC вміст, що знаходиться за адресою PC +

4. Оскільки PC випереджає поточну команду на 8 байт, в нього буде додано

вміст за адресою 0х400С, а не 0x4004.

3.3 Регістри регістрового файлу

Процесор ARM7 має архітектуру «load–and–store» (завантаження –

збереження), тому для виконання будь–якої команди обробки даних

необхідно спочатку перенести ці дані з пам'яті в певні регістри, виконати ко-

манду обробки даних і потім записати отримані значення назад в пам’ять

(рисунок 3.2).

Рисунок 3.2 – Обробка даних

Основний регістровий файл складається з 16 призначених регістрів: R0

... R15 (рисунок 3.3).

Кожен з цих регістрів є 32–бітовим. У вітчизняній літературі прийнято

користуватися поняттями «розряд», «розрядний». Двійковий розряд – це біт.

У даних лекціях ми будемо дотримуватися зарубіжної термінології («біт»,

«бітний»), що більш відповідає сучасній тенденції в цифровій техніці.

ЦПП АRM7 має архітектуру «Load-and-
store». Усі команди обробки даних мо-
жуть працювати тільки з основним
регістровим файлом.

44

`

Рисунок 3.3 – Структура основного регістрового файлу

Регістри R0 ... R12 призначено виключно для потреб користувача і не

виконують ніяких інших функцій, в той час як регістри R13 ... R15 мають

додаткові функції. Регістр R13 використовується як покажчик стека (Stack

Pointer – SP). Регістр R14 називається регістром зв'язку (Link Register – LR).

При виклику підпрограми адреса повернення автоматично запам'ятовується в

регістрі зв'язку, звідки потім зчитується при поверненні. Таке рішення

дозволяє швидко переходити до «кінцевих» функцій (функції, які не викли-

кають інших функцій) і повертатися з них. Якщо функція входить до складу

«гілки», тобто викликає інші функції, вміст регістра зв'язку необхідно

зберігати в стеку (R13). Нарешті, регістр R15 виконує функції лічильника

команд (PC). Що цікаво, багато команд можуть працювати з регістрами R13

... R15, як із звичайними користувацькими регістрами.

3.4 Регістр поточного стану програми

Поряд з банком регістрів у ЦПП є додатковий 32–бітний регістр, який

називається регістром поточного стану програми (Current Program Status

Register – CPSR). Регістр CPSR містить набір прапорців, які керують

функціонуванням ЦПП ARM7 і відображають його стан (рисунок 3.4).

В основний регістровий файл входять шістнадцять
32-бітних регістрів і один додатковий регістр ЦПП,
який називається регістром поточного стану про-
грами. R0 ... R12-користувальницькі регістри, а
регістри R13 ... R15 виконують спеціальні функції.

15 користувальницьких регістрів + PC

 R13 використовується як покажчик стека
 R14 - регістр зв'язку
 R15 - лічильник команд

Регістр поточного стану програми

45

`

Рисунок 3.4 – Регістр поточного стану програми

У старших чотирьох бітах регістра CPSR зберігаються прапорці умов,

значення яких визначаються процесором. Ці прапорці відображають резуль-

тат виконання чергової команди обробки даних. Завдяки їм ви можете дізна-

тися, чи не було отримано в результаті виконання команди від’ємне або ну-

льове значення, а також чи не відбулося перенесення або переповнення. Мо-

лодші вісім бітів регістра CPSR містять прапорці, значення яких прикладна

програма може змінювати. Біти 7 і 8 є прапорцями I і F відповідно. Ці прапо-

рці використовуються для дозволу і заборони двох ліній переривань, які є

зовнішніми по відношенню до ЦПП ARM7.

Як ми з вами побачимо пізніше, усі периферійні модулі мікроконтроле-

рів LPC2300 підключені до цих двох ліній переривань. При роботі з даними

бітами потрібно дотримуватися обережності, оскільки для заборони будь–

якого з джерел переривань у відповідний біт необхідно записати 1, а не 0, як

можна було б припустити. П'ятий біт регістра є прапорцем THUMB.

ЦПП ARM7 підтримує два набори команд – 32–бітний набір команд

ARM і 16–бітний набір команд THUMB. Відповідно прапорець Т показує,

який з наборів команд використовується. Врахуйте, що програма не повинна

Регістр СРSR містить прапорці умов, що відображають
результат виконання команд обробки даних, а також
набір користувальницьких прапорців, що визначають
режим роботи процесора і керують перериваннями.
Прапорець Т призначений тільки для читання.

46

`

намагатися безпосередньо встановлювати або скидати цей прапорець для пе-

ремикання між наборами команд. Коректний механізм зміни поточного на-

бору команд ми розглянемо трохи пізніше. Останні п'ять молодших бітів ре-

гістра CPSR є прапорцями режиму. Процесор ARM7 підтримує 7 режимів

роботи (рисунок 3.5).

Рисунок 3.5 – Режими роботи процесора

Прикладні програми, як правило, виконуються в режимі User. У цьому

режимі програма може звертатися до регістрів R0 ... R15 і CPSR. Однак при

виникненні виняткових ситуацій (таких як переривання, помилка пам'яті, або

виконання команди генерації програмного переривання) режим роботи про-

цесора змінюється. При цьому регістри R0 ... R12 і R15 залишаються тими ж

самими, а регістри R13 (SP) і R14 (LR) замінюються новою парою регістрів,

унікальної для кожного режиму. Таким чином, кожен режим має власні

регістр зв'язку та покажчик стека. Більш того, в режимі швидких переривань

ЦПП ARM7 має 6 різних робочих режимів, які використовуються для обробки ви-
няткових ситуацій. Затінені регістри представляють собою дублюючі регістри,
які «включаються» при зміні режиму роботи. Регістр SPSR використовується для
збереження вмісту регістра CPSR при перемиканні режимів.

47

`

(FIQ) дублюються і регістри R7 ... R12. Це дозволяє відразу приступити до

обробки переривання FIQ, не витрачаючи час на збереження регістрів в сте-

ку.

У кожному з режимів, за винятком режиму User, є додатковий регістр,

який називається регістром збереженого стану програми (Saved Program Sta-

tus Register – SPSR). Якщо в момент виникнення виняткової ситуації програ-

ма знаходилася в режимі User, відбувається зміна режиму і поточний зміст

регістра CPSR зберігається в регістрі SPSR.

Після обробки виняткової ситуації (при поверненні з обробника) вміст

регістра CPSR відновлюється з SPSR, забезпечуючи відновлення виконання

прикладної програми.

3.5 Режими обробки виняткових ситуацій

При виникненні виняткової ситуації змінюється режим роботи ЦПП, і в

РС завантажується адреса відповідного вектора переривання (таблиця 3.1).

Таблиця векторів починається з нульової адреси. Першим в таблиці розташо-

вано вектор скидання, а за ним інші вектори (по 4 байти на кожен).

При одночасному виникненні декількох виняткових ситуацій викорис-

товується метод пріоритетів. Пріоритети переривань наведено в таблиці 3.2.

Коли виникає виняткова ситуація, наприклад, переривання IRQ, проце-

сор виконує наступні дії (рисунок 3.6). По–перше, адреса наступної викону-

ваної команди (РС + 4) зберігається в регістрі зв’язку.

Таблиця 3.1 – Адреси векторів переривань

Виняткова ситуація Режим Адреса

вектора

 Reset (скидання) Supervisor 0x00000000

Undefined instruction (невизначена

команда)

Undefined 0x00000004

Кожному режиму роботи
відповідає свій вектор
переривання. При зміні
процесором режиму про-
водиться перехід з цього
вектора. Зверніть увагу!
Вектор за адресою
0x00000014 відсутній!

48

`

Продовження таблиці 3.1

Виняткова ситуація Режим Адреса

вектора

SWI (програмне переривання) Supervisor 0x00000008

Prefetch Abort (помилка звернення

до пам'яті при вибірці команди)

Abort 0x0000000С

Data Abort (помилка звернення до

пам'яті при доступі до даних)

Abort 0x00000010

IRQ (переривання) IRQ 0x00000018

FIQ (швидке переривання) FIQ 0x0000001С

Таблиця 3.2 – Пріоритети переривань

Пріоритет Виняткова ситуація

Найвищий 1 Reset

 2 Data Abort

 3 FIQ

 4 IRQ

 5 Prefetch Abort

Найнижчий 6 Undefined instruction /

SWI

Потім регістр CPSR копіюється в регістр SPSR кінцевого режиму (в

нашому випадку SPSR irq). Після цього в РС заноситься адреса вектора пере-

ривання режиму виняткової ситуації. Для режиму IRQ це адреса –

0x00000018. У той самий час режим роботи процесора змінюється на IRQ, в

результаті чого регістри R13 і R14 замінюються відповідними регістрами

цього режиму.

Зауваження. У таблиці векторів є «дірка», оскільки вектор з адресою 0x00000014 відсутній. Ця адреса використову-
вався в попередніх версіях процесорів ARM, а в процесорі ARM7 він збережений, щоб забезпечити програмну сумісність
між різними архітектурами ARM. Однак, як ми побачимо пізніше, в мікроконтролерах сімейства LPC2300, ці чотири
байти грають дуже важливу роль.

Кожне джерело виняткової ситуації має
фіксований пріоритет. Вбудовані
периферійні пристрої обслуговуються
перериваннями FIQ і IRQ. Пріоритети
переривань від периферійних пристроїв
можна призначати всередині цих груп.

49

`

Рисунок 3.6 – Обробка виняткових ситуацій

При вході в режим IRQ встановлюється прапорець I регістра CPSR, що

призводить до відключення лінії IRQ. Якщо потрібно використовувати вкла-

дені переривання, то треба вручну дозволити переривання IRQ в програмі і

занести вміст регістра зв'язку в стек, щоб зберегти вихідну адресу повернен-

ня.

З вектора переривання програма перейде до виконання підпрограми

обробки переривань. Перше, що необхідно зробити в цій підпрограмі, – збе-

регти у стеку IRQ всі регістри з діапазону R0 ... R12, які будуть в ній викори-

стовуватися. Потім можна приступати до обробки виняткової ситуації.

Після завершення обробки виняткової ситуації необхідно повернутися

в режим User і продовжити виконання програми з перерваного місця. Проте в

наборі команд ARM відсутні команди типу «повернення» або «повернення з

підпрограми», тому маніпуляції з лічильником команд PC необхідно здійс-

нювати, використовуючи звичайні команди. Ситуація ускладнюється тим, що

існує декілька різних варіантів повернення.

Для початку глянемо на команду SWI. При виконанні цієї команди ад-

реса наступної виконуваної команди зберігається в регістрі зв'язку, після чо-

При виникненні виняткової
ситуації відбувається зміна
режиму роботи ЦПП і перехід за
відповідним вектором.

50

`

го проводиться обробка виняткової ситуації. Все, що потрібно зробити для

повернення з виняткової ситуації, – це завантажити вміст регістра зв'язку на-

зад в PC, і програма продовжить своє виконання.

Однак щоб ЦПП при цьому переключився назад у режим User, необ-

хідно використовувати спеціальну команду пересилання MОVS (більш до-

кладно ми розглянемо її трохи пізніше). Таким чином, команда повернення з

програмного переривання буде наступною:

MOVS R15, R14 ; Скопіювати регістр зв'язку в PC і переключити режими.

А при виникненні виняткової ситуації за перериваннями FIQ і IRQ, по-

точна виконувана команда скидається і виконується перехід до обробника

виняткової ситуації. При поверненні з виняткової ситуації в регістрі зв'язку

знаходиться адреса відкинутої команди плюс 4. Щоб відновити виконання

програми з потрібного місця, треба зменшити значення, що зберігається в

регістрі зв'язку, на 4. В даному випадку для зменшення вмісту регістра зв'яз-

ку і збереження результату в PC ми використовуємо спеціальну команду від-

німання, яка також відновлює і режим роботи ЦПП. Команда повернення з

режимів FIQ, IRQ і Abort виглядає наступним чином:

SUBS R15, R14, # 4 ; R15 <– R14 – #4.

У випадку, якщо відбулася помилка звернення до пам'яті, виняткова

ситуація виникне через одну команду після тієї, виконання якої стало її при-

чиною. В ідеалі, в цьому випадку треба перейти до підпрограми обробки пе-

реривання Data Abort, з'ясувати і усунути причину труднощів і знову спробу-

вати виконати команду, що викликала виняткову ситуацію. Відповідно, треба

«відмотати» PC назад на дві команди – відкинуту і ту, яка викликала виник-

нення виняткової ситуації. Іншими словами, потрібно відняти від регістра

зв'язку число вісім і зберегти результат в PC. Таким чином, команда повер-

нення з переривання Data Abort має вигляд:

51

`

SUBS R15, R14, # 8 ; R15 <– R14 – #8.

При виконанні команди повернення модифікований вміст регістра зв'я-

зку завантажується в лічильник команд, ЦПП перемикається назад у режим

User, а вміст регістра SPSR переписується назад в CPSR. У разі виникнення

виняткових ситуацій FIQ або IRQ додатково дозволяються відповідні пере-

ривання. В результаті всіх цих дій процесор виходить з привілейованого ре-

жиму і повертається до виконання користувальницької програми (рисунок

3.7).

Рисунок 3.7 – Завершення обробки виняткової ситуації

3.6 Набір команд ARM7

Тепер, коли отримано загальне уявлення про ядро ARM, його моделі

програмування і режими роботи, настав час познайомитися з його набором,

або, якщо точніше, наборами команд. Оскільки сьогодні для програмування

МК–в широко використовується мова Сі, немає необхідності бути експертом

в області програмування на асемблері ARM7.

При закінченні обробки виняткової
ситуації ЦПП повертається в режим
User, а відновлення контексту про-
грами проводиться шляхом копіювання
регістра SPSR в регістр CPSR.

52

`

Однак, щоб розробляти дійсно ефективні програми, дуже важливо ро-

зуміти машинний код, який переховується за рядками програми на мові ви-

сокого рівня. Перш ніж приступити до вивчення команд ARM7, необхідно

зазначити, що насправді ЦПП ARM7 підтримує два набори команд: набір

команд ARM з 32–бітними командами і набір команд THUMB з 16–бітними

командами. Далі в посібнику слово ARM означатиме 32–бітний набір ко-

манд, а слово ARM7 – власне ЦПП.

Ядро ARM7 було розроблено таким чином, щоб його можна було вико-

ристовувати як у якості процесора із зворотним порядком байтів (big–endian

processor), так і в якості процесора з прямим порядком байтів (little–endian

processor). У першому випадку старший біт (Most Significant Bit – MSB) 32–

бітного слова розташовується на початку слова, а в другому випадку – в кінці

(рисунок 3.8). В сімействі LPC2300 використовується тільки прямий порядок

байтів (тобто MSB є бітом з самою старшою адресою), що значно полегшує

роботу з процесором. Проте використовуваний вами компілятор для ARM7

повинен вміти компілювати код в обох форматах. У зв'язку з цим необхідно

упевнитися, що формат слів задано правильно, інакше отриманий код буде

«вивернуто навиворіт».

Одна з найбільш цікавих особливостей набору команд ARM полягає в

тому, що кожна команда підтримує умовне виконання. У традиційних мікро-

контролерах єдиними умовними командами є команди умовних переходів, і,

можливо, ряд інших, таких як команди перевірки або зміни стану окремих

бітів.

53

`

Рисунок 3.8 – Прямий і зворотний порядок байтів

В наборі команд ARM старші 4 біти коду команди завжди порівнюють-

ся з прапорцями умов в регістрі CPSR (рисунок 3.9). Якщо їх значення не

співпадають, команда не виконується і проходить через конвеєр як команда

NOP (немає операції).

Рисунок 3.9 – Положення бітів порівняння в команді ARM

Таким чином, можна виконати будь–яку команду обробки даних, що

змінює прапорці умов в регістрі CPSR. Потім, залежно від результату, насту-

пна команда може бути виконана, а може і ні. До базових мнемонічних поз-

начень команд асемблера, таким як MОV або ADD, можна додати будь–який

з шістнадцяти префіксів, що визначають тестований стан прапорців умов

(таблиця 3.3).

Прямий порядок

Зворотний порядок

ЦПП АRM7 підтримує як прямий,
так і зворотний порядок байтів. Тим
не менш, в мікроконтролерах NXP
використовується тільки прямий
порядок байтів (little endian).

Умова

Кожна команда ARM (32-бітна) є умовно
виконуваної. Між 4 старшими бітами коду
команди і прапорцями умов регістра CPSR
проводиться операція «Логічне І». Якщо зна-
чення не співпадають, виконується команда
NOP.

54

`

Таблиця 3.3 – Префікси команд

КОД Префікс Прапорці Значення

0000 EQ Z встановлений Дорівнює

0001 NE Z скинутий Не дорівнює

0010 CS C встановлений Більше або дорівнює (беззнакове)

0011 CC C скинутий Менше (беззнакове)

0100 MI N встановлений Від’ємний результат

0101 PL N скинутий Додатний результат

0110 VS V встановлений Переповнення

0111 VC V скинутий Немає переповнення

1000 HI C встановлений, Z скинутий Більше (беззнакове)

1001 LS C скинутий, Z встановлений Менше або дорівнює (беззнакове)

1010 GE N дорівнює V Більше або дорівнює (беззнакове)

1011 LT N не дорівнює V Менше (знакове)

1100 GT Z скинутий І (N = V) Більше (знакове)

1101 LE Z встановлений АБО (N < >

V)

Менше або дорівнює (знакове)

1110 AL (ігнорується) Безумовне виконання

Наприклад, команда:

EQMOV R1, # 0x00800000

виконує завантаження числа 0x00800000 в регістр R1 тільки в тому ви-

падку, якщо результат виконання останньої команди обробки даних був «до-

рівнює» і відповідно встановлено прапорець Z регістра CPSR. Метою такого

умовного виконання команд є забезпечення безперервності потоку команд

через конвеєр, тому що при кожному виконанні команд переходу конвеєр

скидається і на його повторне заповнення потрібен час, що різко знижує за-

гальну продуктивність. На практиці існує певний поріг, при якому примусове

«проштовхування» команд NOP через конвеєр виявляється ефективніше ви-

55

`

конання традиційних команд умовного переходу і пов'язаного з цим повтор-

ним заповненням буферу.

Зазначений поріг дорівнює трьом командам, тому короткий перехід, такий

як:

 if (x < 100)

{ x++; }

при використанні умовно–виконуваних команд ARM буде реалізовано більш

ефективно.

Всі команди ARM можна розбити на 6 основних груп: команди розга-

луження, команди обробки даних, команди передачі даних, команди передачі

блоків даних, команди множення і команда програмного переривання.

3.6.1 Команди розгалуження

Базова команда переходу (В), як випливає з її назви, дозволяє викону-

вати перехід в діапазоні до 32 Мбайт як вперед, так і назад. Модифікована

версія команди, команда переходу зі збереженням адреси (ВL), виконує ту ж

операцію, проте при цьому зберігає в регістрі зв'язку поточне значення РС,

яке збільшене на чотири (рисунок 3.10).

Таким чином, команда переходу зі збереженням адреси використову-

ється як команди виклику підпрограм, що зберігає адресу повернення в регіс-

трі зв'язку. Для повернення з підпрограм можна використовувати команду

звичайного переходу, що виконує перехід за адресою, яка знаходиться в регі-

стрі зв'язку.

56

`

Рисунок 3.10 – Команди переходу B і BL

Використовуючи префікси умов, виконуються умовні переходи і умов-

ні виклики підпрограм. Існує ще два різновиди команди переходу: «перехід зі

зміною стану» (ВХ) і «перехід зі зміною стану та збереженням адреси»

(BLX). Ці команди виконують ті ж операції, що і попередні команди, але при

цьому ще й виконують переключення з набору команд ARM на THUMB і на-

зад (рисунок 3.11).

Це єдиний спосіб, який трнба застосовувати для зміни використовува-

ного набору команд, так як безпосередні маніпуляції з прапорцем Т регістра

СРSR можуть привести до непередбачуваних результатів.

Рисунок 3.11 – Команди переходу BX і BLX

Команда переходу має кілька різновидів.
Звичайна команда переходу (В) здійснює
перехід за заданою адресою. Команда пере-
ходу зі збереженням адресу (ВL) здійснює
перехід за заданою адресою, зберігаючи
при цьому адресу повернення в регістрі
R14.

Команди переходу зі зміною стану (BX) і
переходу зі зміною стану та збереженням
адреси (BLX) виконують такі ж операції, я
к і звичайні команди переходу та переходу
зі збереженням адреси (B і BL), додатково
здійснюючи перемикання між наборами
команд ARM і THUMB.

57

`

3.6.2 Команди обробки даних

Команди обробки даних наведено в таблиці 3.4, а узагальнений формат

всіх команд обробки даних наведено на рисунку 3.12.

Таблиця 3.4 – Команди обробки даних

Мнемокод Опис команди Мнемокод Опис команди

AND Логічне побітове « І » TST Перевірка бітів

EOR Логічне побітове
« виключне АБО »

TEQ Побітове порівняння

SUB Віднімання CMP Порівняння

RSB Зворотне віднімання CMN Порівняння з запереченням

ADD Додавання ORR Логічне побітове « АБО »

ADC Додавання з урахуван-
ням перенесення

MOV Пересилання

SBC Віднімання з запози-
ченням

BIC Скидання бітів (маскування)

RSC Зворотне віднімання з
запозиченням

MVN Пересилання з інверсією

Рисунок 3.12 – Формат команд обробки даних

У кожній команді є регістр результату і два операнди. Перший операнд

обов'язково повинен бути регістром,тоді як другий може бути як регістром,

так і константою.

Використовуваний формат команд
обробки даних дозволяє реалізувати в
одному такті умовне виконання,
логічний зсув на величину до 32 біт і
обробку даних.

58

`

Крім цього, в ЦПП ARM7 є багаторегістровий пристрій циклічного

зсуву (barrel shifter), що дозволяє при виконанні команди зсувати значення 2–

го операнда на величину до 32 біт. Біт S використовується для керування

прапорцями умов. Якщо цей біт встановлено, прапорці умов змінюються від-

повідно до результату виконання команди.

Якщо цей біт скинуто, стан прапорців умов не змінюється. Однак якщо

при встановленому біті S в якості регістра результату вказаний лічильник

команд (R15), проводиться копіювання вмісту регістра SPSR поточного ре-

жиму в регістр CPSR. Ця можливість використовується для відновлення PC і

перемикання в початковий режим в кінці обробки виняткових ситуацій. Не

намагайтеся виконати таку команду в режимі User, оскільки в цьому режимі

відсутній регістр SPSR і відповідно результат виконання цієї команди немо-

жливо передбачити.

 Ці особливості надають нам багатий набір команд обробки даних (таб-

лиця 3.4), який, з одного боку, дозволяє створювати дуже ефективні програ-

ми, а з іншого – є джерелом «нічних кошмарів» для розробників компілято-

рів.

Наприклад, в результаті компіляції виразу
if (Z == 1)

R1 = R2 + (R3 х 4);

може бути згенерована наступна команда:

EQADDS R1, R2, R3, LSL # 2.

3.6.3 Команди передачі даних

3.6.3.1 Команди завантаження/збереження

Наступну групу складають команди передачі даних (таблиця 3.5). ЦПП

ARM7 підтримує команди завантаження / збереження, які дозволяють пере-

59

`

силати знакові і беззнакові числа різного розміру (слово, напівслово, байт) в /

із заданого регістра.

Таблиця 3.5 – Команди передачі даних

Мнемокод Опис команди Мнемокод Опис команди
LDR Завантажити слово STR Зберегти слово
LDRH Завантажити напівслово STRH Зберегти напівслово
LDRSH Завантажити напівслово зі

знаком
STRSH Зберегти напівслово

зі знаком
LDRB Завантажити байт STRB Зберегти байт
LDRSB Завантажити байт зі знаком STRSB Зберегти байт зі

знаком

Оскільки набір регістрів повністю незалежний, можна завантажувати

32–бітове значення безпосередньо в РС, здійснюючи, таким чином, перехід в

межах всього адресного простору процесора. Якщо кінцева адреса лежить

поза діапазоном команди переходу, можна просто завантажити збережену

константу в лічильник команд.

3.6.3.2 Групове копіювання регістрів

Крім команд завантаження / збереження вмісту окремих регістрів, в на-

борі команд ARM є команди для завантаження (LDM) і збереження (STM)

груп регістрів (рисунок 3.13). Таким чином, за допомогою однієї команди

можна скопіювати в пам'ять весь блок регістрів або його частину, а за допо-

могою іншої – відновити його вміст.

Рисунок 3.13 – Команди LDM і STM

Команди групового завантаження /
збереження дозволяють однією ко-
мандою зберігати / відновлювати
вміст всього регістрового файлу або
будь-якої підмножини регістрів.

60

`

3.6.4 Команда обміну

У наборі команд ARM є також команда обміну (SWP), завдяки якій за-

безпечується підтримка семафорів реального часу. Ця неперервна команда

здійснює одночасний обмін вмісту двох регістрів (рисунок 3.14). Завдяки та-

кому рішенню запобігається переривання процесу обміну критичними дани-

ми при виникненні виняткової ситуації. У мові Сі ця команда безпосередньо

недоступна та підтримується вбудованими функціями бібліотек компілято-

рів.

Рисунок 3.14 – Команди обміну

3.6.5 Команди зміни регістрів стану

Як вже було зазначено вище регістри CPSR і SPSR є регістрами ЦПП,

однак не входять до складу основного банку регістрів. Безпосередньо зверта-

тися до цих регістрів можуть тільки дві команди ARM – MSR і MRS. Зазна-

чені команди забезпечують пересилання вмісту регістра CPSR або SPSR в / із

заданого регістра (рисунок 3.15). Наприклад, щоб заборонити переривання

IRQ, необхідно скопіювати вміст регістра CPSR в робочий регістр, встанови-

ти прапорець I (шляхом виконання операції «І» між цим регістром і числом

0x00000080) і завантажити отримане значення назад в регістр CPSR. Коман-

ди MSR і MRS доступні у всіх режимах процесора, за винятком режиму User.

Команда обміну (SWР) дозволяє
переставляти вміст двох регістрів
Ця операція виконується за два
такти, проте обробляється як одна
елементарна команда. Тому перери-
вання не може порушити процес
обміну.

61

`

Таким чином, тільки перебуваючи в привілейованому режимі, можна зміню-

вати робочий режим процесора і дозволяти / забороняти переривання,.

Рисунок 3.15 – Зміна регістрів стану

Після входу в режим User ви можете з нього вийти тільки при виник-

ненні виняткової ситуації, скиданні, генерації переривань FIQ і IRQ або ж в

результаті виконання команди SWI.

3.6.6 Команда програмного переривання

Команда програмного переривання SWI генерує виняткову ситуацію, в

результаті чого процесор перемикається в режим Supervisor, а в лічильник

команд заноситься значення 0x00000008. Як і всі інші команди ARM, коман-

да SWI містить в чотирьох старших бітах прапорці умовного виконання, за

якими розташовується код операції (рисунок 3.16). Інша частина слова ко-

манди залишається вільною. Однак у цих невикористовуваних бітах може

зберігатися число. Дані біти можна перевіряти на початку підпрограми обро-

бки переривання, щоб визначити, яку саме частину підпрограми слід викону-

вати. Таким чином, за допомогою команди SWI можна перемикатися в захи-

щений режим для виконання привілейованих ділянок програми або обробки

системних викликів.

62

`

Рисунок 3.16 – Команда SWI

Після компіляції команди

SWI # 3

в невикористовуваних бітах слова команди буде записано число 3. У підпро-

грамі обробки переривання SWI ми можемо перевірити значення слова ко-

манди наступним чином (текст написаний на псевдокоді):

switch (* (R14 – 4) & OxOOFFFFFF) / / Повернутися на 4 байти назад

 { / / Замаскувати старші 8 бітів і

/ / Виконати перехід

/ / відповідно до результату

case (SWI–1)

 ...

Залежно від використовуваного компілятора доводиться реалізовувати

таку перевірку самостійно або ж компілятор автоматично вставить необхідні

команди в код програми.

3.6.7 Команди множення чисел

Поряд з багаторегістровим пристроєм циклічного зсуву в ядрі ARM7 є

вбудований модуль помножувача / суматора (MAC). Модуль MAC підтримує

множення чисел типу integer і long integer. Команди множення чисел типу

integer виконують множення двох 32–бітних регістрів і поміщають результат

в третій 32–бітний регістр. Команда множення з накопиченням виконує мно-

Команда програмного переривання (SWI) перемикає ЦПП в режим Supervisor і переходить за адресою век-
тора SWI. Біти О...23 не задіяні, проте в них можна передавати значення, визначені користувачем.

63

`

ження і додає результат до проміжної суми. Команди множення чисел типу

long integer перемножують вміст двох 32–бітних регістрів і поміщають 64–

бітний результат у два регістри. Аналогічно, є команда довгого множення з

накопиченням (таблиця 3.6).

Таблиця 3.6 – Команди множення

Мнемокод Опис команди Роздільна здатність

MUL Множення 32–бітний результат

MULA Множення з накопиченням 32–бітний результат

UMULL Беззнакове множення 32–бітний результат

UMLAL Беззнакове множення з накопиченням 32–бітний результат

SMULL Знакове множення 32–бітний результат

SMLAL Знакове множення з накопиченням 32–бітний результат

3.7 Набір команд Thumb

Незважаючи на те, що ARM7 є 32–бітовим процесором, він підтримує

ще один набір команд (16–бітний), який називається THUMB (рисунок 3.17).

Насправді, цей набір команд є стислою формою набору команд ARM. За ра-

хунок цього команди, збережені в 16–бітному форматі, розпаковуються в ко-

манди ARM, а потім виконуються. Хоча команди THUMB забезпечують ме-

ншу продуктивність в порівнянні з командами ARM, завдяки їм досягається

більш висока щільність коду. Таким чином, для створення компактних про-

грам, що розміщуються в невеликих однокристальних мікроконтролерах, код

програм необхідно компілювати у вигляді сукупності функцій THUMB і

ARM.

64

`

Рисунок 3.17 – Набір команд THUMB

Цей процес називається interworking і елементарно підтримується всіма

компіляторами. При компіляції з використанням набору команд THUMB ви

отримаєте 30–відсоткову економію пам'яті програм, у той час як цей же код,

скомпільований з використанням команд ARM, буде виконуватися на 40%

швидше.

Набір команд THUMB набагато більше схожий на набори команд тра-

диційних мікроконтролерів. На відміну від команд ARM, команди THUMB

не підтримують умовного виконання (за винятком команд умовних перехо-

дів). Команди обробки даних мають двоадресний формат, причому як регістр

результату використовується один з регістрів–джерел:

Команди THUMB не мають повного доступу до всіх регістрів регістро-

вого файлу (рисунок 3.18). З регістрами R0 ... R7 (так званими молодшими

регістрами) можуть працювати всі команди обробки даних. А до регістрів R8

.... R12 (старші регістри) можуть звертатися тільки 3 з них:

MOV, ADD, CMP.

Набір команд THUMB призначений для збільшення щільності коду,
щоб можна було використовувати невеликі однокристальні
мікроконтролери з ядром ARM7.

65

`

Рисунок 3.18 – Доступ до регістрового файлу

У наборі команд THUMB відсутні команди MSR і MRS, тому змінюва-

ти регістри CPSR і SPSR можна тільки за допомогою непрямої адресації.

Якщо треба змінити будь–які користувацькі біти в регістрі CPSR, необхідно

переключитися в режим ARM. Змінювати режими можна за допомогою ко-

манд ВХ і BLX (рисунок 3.19). Крім того, автоматичне перемикання в режим

ARM відбувається при скиданні, або при переході до обробки виняткової си-

туації.

У складі набору команд THUMB є більш звичні команди роботи зі сте-

ком PUSH і POP (рисунок 3.20). За допомогою цих команд реалізується спа-

даючий стек, який жорстко прив'язаний до регістра R13.

 І, нарешті, в наборі команд THUMB є команда SWI, що працює так са-

мо, як і аналогічна команда набору ARM, але містить тільки 8 невикори–

стовуваних бітів, що обмежує максимальну кількість викликів SWI до 255.

При використанні команд THUMB всі
команди працюють з регістрами
R0 ... R7. До регістрів R8 ... R12 можуть
звертатися тільки деякі команди.

66

`

Рисунок 3.19 – Перемикання в режим ARM

Рисунок 3.20 – Команди PUSH і POP

Після скидання ARM7 буде викону-
вати команди ARM (32-бітні).
Набір команд можна змінити в
будь-який момент, використовую-
чи команду ВХ, BLX. При
виникненні виняткової ситуації
процесор автоматично
перемикається на 32-бітний набір
команд ARM.

У наборі команд THUMB є спеціальні команди PUSH і POP, які
реалізують спадаючий стек, використовуючи в якості покажчика
стека регістр R13.

67

`

ПИТАННЯ ДЛЯ САМОКОНТРОЛЮ

1) Охарактеризуйте конвеєр команд ЦПП ARM7.

2) Яку має архітектуру процесор ARM7?

3) Перелічіть регістри ARM7 та опишіть структуру основного

регістрового файлу.

4) Опишіть призначення та формат регістра поточного стану програми.

5) Які режими роботи підтримує процесор ARM7?

6) Опишіть відмінність режимів обробки виняткових ситуацій від ос-

новних режимів роботи процесора.

7) Чим відрізняються процесори із зворотним порядком байтів (big–

endian processor) від процесорів з прямим порядком байтів (little–

endian processor)?

8) Як команди процесорів ядра ARM7 підтримують умовне виконан-

ня?

9) Дайте пояснення префіксам команд (їх прапорці і значення):

EQ; NE; CS; CC; VC; VS; MI; PL; HI; LS; GE; LT; GT; LE; AL.

10) Опишіть особливості виконання наступних груп команд: переходів;

обробки даних; копіювання регістрів; копіювання груп регістрів; обміну;

зміни регістрів стану; програмного переривання та множення..

68

`

4 СПОСОБИ АДРЕСАЦІЇ ОПЕРАНДІВ ТА ФОРМАТИ КОМАНД

В командах АRМ використовуються наступні види адресацій:

– неявна;

– регістрова;

– непряма;

– безпосередня;

– преіндексна з регістровим зміщенням без оновлення бази;

– преіндексна з масштабованим регістровим зміщенням без

оновлення бази;

– преіндексна з безпосереднім зміщенням без оновлення бази;

– преіндексна з регістровим зміщенням та оновленням бази;

– преіндексна з масштабованим регістровим зміщенням та

оновленням бази;

– преіндексна з безпосереднім зміщенням та оновленням бази;

– постіндексна з регістровим зміщенням;

– постіндексна з масштабованим регістровим зміщенням;

– постіндексна з безпосереднім зміщенням.

Всі команди ARM можна розбити на 6 основних груп: команди

обробки даних, команди розгалуження, команди передачі даних, команди

передачі блоків даних, команди множення, команда програмного

переривання і команди роботи з співпроцесами.

4.1 Префікси команд

Одна з найбільш цікавих особливостей набору команд ARM полягає

в тому, що кожна команда підтримує умовне виконання. У традиційних

мікроконтролерах єдиними умовними командами є команди умовних пе-

реходів, і, можливо, ряд інших, таких як команди перевірки або зміни ста-

ну окремих бітів.

69

`

А в наборі команд ARM старші 4 біти коду команди завжди порів-

нюються з прапорцями умов в регістрі CPSR (рисунок 4.1).

Рисунок 4.1  Положення бітів порівняння в команді ARM

Якщо їх значення не співпадають, команда не виконується і прохо-

дить через конвеєр як команда NOP (немає операції).

Таким чином, можна виконати будь–яку команду обробки даних, що

змінює прапорці умов в регістрі CPSR. Потім, залежно від результату, на-

ступна команда може бути виконана, а може і ні. До базових мнемонічних

позначень команд асемблера, таким як M0V або ADD, можна додати будь–

який з шістнадцяти префіксів, що визначають тестовий стан прапорців

умов (таблиця 4.1).

Таблиця 4.1  Префікси команд

КОД Префікс Прапорці Значення

0000 EQ Z встановлений Дорівнює

0001 NE Z скинутий Не дорівнює

0010 CS C встановлений Більше або дорівнює (беззнакове)

0011 CC C скинутий Менше (беззнакове)

0100 MI N встановлений Від’ємний результат

0101 PL N скинутий Додатний результат

0110 VS V встановлений Переповнення

Умова

Кожна команда ARM (32-бітна) є умовно виконуваної. Між 4
старшими бітами коду команди і прапорцями умов регістра
CPSR проводиться операція «Логічне І». Якщо значення не
співпадають, виконується команда NOP.

70

`

Продовження таблиці 4.1

КОД Префікс Прапорці Значення

0111 VC V скинутий Немає переповнення

1000 HI C встановлений, Z скинутий Більше (беззнакове)

1001 LS C скинутий, Z встановлений Менше або дорівнює (беззнакове)

1010 GE N дорівнює V Більше або дорівнює (беззнакове)

1011 LT N не дорівнює V Менше (знакове)

1100 GT Z скинутий І (N = V) Більше (знакове)

1101 LE Z встановлений АБО (N < >

V)

Менше або дорівнює (знакове)

1110 AL (ігнорується) Безумовне виконання

Наприклад, команда:

EQMOV R1, # 0x00800000

виконає завантаження числа 0x00800000 в регістр R1 тільки в тому випад-

ку, якщо результат виконання останньої команди обробки даних був «дорі-

внює» і відповідно встановлено прапорець Z регістра CPSR. Метою такого

умовного виконання команд є забезпечення безперервності потоку команд

через конвеєр, тому що при кожному виконанні команд переходу конвеєр

скидається і на його повторне заповнення потрібен час, що різко знижує

загальну продуктивність. На практиці існує певний поріг, при якому при-

мусове «проштовхування» команд NOP через конвеєр виявляється ефекти-

вніше виконання традиційних команд умовного переходу і пов'язаного з

цим повторним заповненням буфера.

Встановлення прапорців CPSR не є обов'язковою, і управляється бі-

том S інструкції.

71

`

4.2 Формати команд обробки операндів

 На рисунку 4.2 наведено машинний код (формат) команд обробки

операндів.

Рисунок 4.2 – Формат команд обробки операндів

Нижче наведено пояснення окремих полів формату команд, наведе-

ного на рисунку 4.2:

– cond (біти 31…28) формує компілятор в залежності від

префіксу команди (таблиця 3.3), якщо останній використовується;

– розряди 27, 26 дорівнюють нулю;

– # (25 р) залежить від того, де знаходиться операнд, який може

зсуватися: якщо 25 р = 1, зсувається безпосередній 8–розрядний операнд

(8–bit immediate) на величину зсуву, яка визначається полем #rot

72

`

(11 p…8 p); якщо 25 р = 0, зсувається вміст регістра Rm на величину зсуву,

яка визначається полем #shift (11 р…7 р), або полем Rs (11 р…8 р), яке

визначає один з регістрів, в яких знаходиться величина зсуву;

– opcode (24 р…21 р) являє собою код операції команди (КОП),

який визначається мнемокодом команди;

– S (20 p) дозволяє/забороняє зміну прапорців умов за

результатом виконання команди, наприклад:

AND R1, #0x0 ; не змінюватиме прапорці;

ANDS R1, #0x0; встановить прапорець Z в одиницю.

В інструкціях CMP, CMN, TST та TEQ цей розряд завжди = 1;

– Rn (19 p…16 p) визначає 1–й операнд–джерело (один з регіст-

рів основного регістрового файлу);

– Rd (15 p…12 p) визначає регістр–приймач (один з регістрів ос-

новного регістрового файлу);

– operand 2 (11 p…0 p) визначає 2–й операнд, вміст якого може

зсуватися: #rot – число: 0…15, яке визначає величину зсуву 2–го 8–бітного

безпосереднього операнда (8–bit immediate); #shift – визначає величину

зсуву: (0…31), а поле Sh (6 р, 5 р) – визначає тип зсуву: Sh = 00 – арифме-

тичний/логічний вліво; 01 логічний вправо; 10– арифметичний вправо; 11

– циклічний вправо; 4 р = 0, що визначає, що зсувається в залежності від

поля Sh операнд Rm на величину #shift; Rm визначає другий операнд (один

з регістрів основного регістрового файлу); якщо 4 р = 1, то поле Rs (11

p…8 p) визначає один з регістрів основного регістрового файлу, в якому

записано величину зсуву, при цьому 7 р = 0, а 6 р, 5 р виконують функцію

поля Sh, яка описана вище.

На рисунку 4.3 наведено приклади трьох форматів команд, які відпо-

відають рисунку 4.2.

73

`

Рисунок 4.3 – Види форматів команд при обробці операндів

Нижче наведено приклади мнемокодів та форматів команд, які від-

повідають рисунку 4.3.

4.2.1 Безпосередній операнд

Операндом в даному випадку являється 32–бітне число. При цьому,

дозволені лише ті числа. які можуть бути утворені циклічним зсувом впра-

во 8–бітного значення (immed – 8) на парну кількість позицій.

ADD R1, R2, #0xFF00 ; R1=R2+ 65280
E2821CF
1110 0010 1000 0010 0001 1100 1111 1111

74

`

4.2.2 Регістровий операнд

MOV R2, R0 ; R2=R0

MOV R2, R1 ; R2=R1

ADD R4, R3, R2 ; R4=R3+R2

E1A02000 = 1110 0001 1010 0000 0010 0000 0000 0000

E1A02001 = 1110 0001 1010 0000 0010 0000 0000 0001

E0834002 = 1110 0000 1000 0011 0100 0000 0000 0010

75

`

4.2.3 Логічний зсув регістра вліво

<Rm>, LSL #<shift_imm>;

<Rm>, LSL <Rs>;

<Rm> вказує регістр, чиє значення буде зсунуто;

LSL вказує логічний зсув вліво;

<shift_imm> вказує зсув. Значення у діапазоні 0..31;

<Rs>  регістр, що містить значення зсуву;

ADD R9, R4, R5, LSL #3 ; R9 = R4 + R5 x 8

ADD R9, R4, R5, LSL R1 ; R9 = R4 + R5 x R1

4.2.4 Логічний зсув регістра вправо

Рисунок 4.3  Логічний зсув вправо

76

`

<Rm>, LSR #<shift_imm>

<Rm>, LSR <Rs>

<Rm> вказує регістр, чиє значення буде зсунуто

<shift_imm > вказує зсув (1..32, при значенні 32 : shift_imm = 0.)

<Rs> регістр, що містить значення зсуву

ADD R9, R3, R5, LSR #3; R9=R3+R5/8

ADD R9, R3, R5, LSR R1; R9=R3+R5/R1

4.2.5 Арифметичний зсув регістра вправо

Рисунок 4.4  Арифметичний зсув вправо

77

`

<Rm>, АSR #<shift_imm>

<Rm>, АSR <Rs>

<Rm> вказує регістр, чиє значення буде зсунуто

<shift_imm > вказує зсув (1..32, при значенні 32 : shift_imm = 0.)

<Rs> регістр, що містить значення зсуву

ADD R9, R2, R5, ASR #3; R9=R2+R5/8

ADD R9, R2, R5, ASR R1; R9=R2+R5/R1

4.2.6 Циклічний зсув вправо

Рисунок 4.5  Циклічний зсув вправо

78

`

<Rm>, ROR #<shift_imm>

<Rm>, ROR <Rs>

<Rm> вказує регістр, чиє значення буде зсунуто

<shift_imm > вказує зсув (1..32, при значенні 0: RRX.)

<Rs> регістр, що містить значення зсуву

MOV R2, R2, ROR #5 ; R2 = R2 ROR #5

MOV R2, R2, ROR R1 ; R2 = R2 ROR R1

4.2.7 Циклічний зсув вправо (розширений)

Рисунок 4.6  Циклічний зсув вправо (розширений)

<Rm>, RRX

<Rm> вказує регістр, чиє значення буде зсунуто

MOVS R2,R2,RRX ; змінює папорці CPSR

MOV R2,R2,RRX ; не змінює прапорці CPSR

79

`

Приклади команд зі зсувом:

ADD R9, R4, R5, LSL #3 ;

E0849185 = 1110 0000 1000 0100 1001 0001 1000 0101

ADD R9, R3, R5, LSR R1;

E0839135 = 1110 0000 1000 0011 1001 0001 0011 0101

ADD R9, R2, R5, ASR #3;

E08291C5 = 1110 0000 1000 0010 1001 0001 1100 0101

MOV R2, R2, ROR R1

E1A02172 = 1110 0001 1010 0000 0010 0001 0111 0010

MOVS R2,R2, RRX

E1B02062 = 1110 0001 1011 0000 0010 0000 0110 0010

4.3 Формати команд завантаження/збереження
Команди завантаження (load) та зберігання (store) мають декілька

форматів.

4.3.1 Команди завантаження/ збереження слова або байта без

знаку

На рисунку 4.7 наведено формати команд завантаження та зберігання

слова або байта без знаку.

Нижче наведено пояснення окремих полів формату команд, наведе-

них на рисунку 4.7:

– cond (біти 31…28) формує компілятор в залежності від префік-

су команди (таблиця 4.1), якщо останній використовується;

– 27 р = 0; 26 р = 1;

– # (25 р) залежить від того, де знаходиться зміщення (offset_12),

яке може використовуватись командою: якщо 25 р = 0, то в якості зміщення

використовується 12–розрядне число; якщо 25 р = 1, то зміщення

знаходиться в одному з регістрів основного регістрового файлу – Rm;

80

`

Рисунок 4.7  Формат команд завантаження/збереження слова або

байта без знаку

– 24 р (P) залежить від виду адресації, яка використовується:

преіндексна (Р = 1), або постіндексна (Р = 0);

– 23 р (U) визначає, яка операція виконується над базою: дода-

вання (U = 1), або віднімання (U = 0);

– 22 р (В) визначає вид операнда: байт без знаку (В=1), або слово

(В=0);

– 21 р (W) приймає значення в залежності від значення 24 розря-

ду (Р): Р=0, W=0, якщо виконуються команди LDR, LDRB, STR або STRB

та здійснюється нормальний доступ до пам’яті; Р=0, W=1, якщо викону-

ються інструкції LDRBT, LDRT, STRBT, STRT та здійснюється непривіле-

81

`

йований доступ до пам’яті (режим користувача); Р=1, W=0, якщо базовий

регістр не оновлюється (адресація зі зміщенням); Р=1, W=1, якщо розрахо-

вана адреса пам’яті записується назад у базовий регістр (преіндексна адре-

сація);

– 20 р (L) визначає вид операції: завантаження (L=1), або збері-

гання (L=0);

– 19 p…16 p (Rn) визначає один з регістрів основного регістро-

вого файлу, який виступає в якості бази;

– 15 р … 12 р (Rd) визначає один із регістрів основного регістро-

вого файлу в якості джерела (при збереженні) або приймача (при заванта-

женні);

– 11 р … 0 р (offset_12) визначає, де знаходиться зміщення: якщо

25р (#)=0, то в якості зміщення використовується 12–розрядне число; якщо

25р (#)=1, то в якості зміщення використовується один із регістрів основ-

ного регістрового файлу – Rm. Регістр Rm називають індексом, значення Rm

також може зсувається на величину, яка визначається полем #shift. Вид

зсуву визначається бітами 6, 5 (Sh): Sh=00 –логічний (арифметичний) влі-

во; 01 – логічний вправо; 10 – арифметичний вправо; 11 – циклічний впра-

во; 4 р = 0; 3 р … 0 р (Rm) визначає один із регістрів основного регістрово-

го файлу – індекс.

На рисунку 4.8 наведено приклади трьох форматів команд, які відпо-

відають рисунку 4.7.

У наведених нижче прикладах при виконанні деяких команд змінюєть-

ся вміст регістра, який називають базою. Таку зміну називають індексуван-

ням. Значення, на яке змінюється база, називають зміщенням. Останнє може

зберігатися у регістрі (регістрове зміщення), або задаватися безпосереднім

значенням (безпосереднє зміщення). Регістрове зміщення може масштабува-

тися (зсуватися вліво або вправо на відповідну величину). Адресацію, коли

база змінюється до виконання команди, називають преіндексною, а якщо база

82

`

змінюється після виконання команди, називають постіндексною. Преіндекс-

на адресація буває двох типів: без зберігання зміненої бази та зі зберіганням

змінної бази.

Рисунок 4.8  Види форматів команд завантаження/збереження сло-

ва, або байта без знаку

При преіндексній адресації без зберігання зміненої бази до виконання

команди до бази додається зміщення, потім виконується команда, але після

цього у базі зберігається значення, яке було до виконання команди. При пре-

індексній адресації зі зберіганням змінної бази до виконання команди до бази

додається зміщення, потім виконується команда, після цього у базі зберіга-

ється нове значення. При постіндексній адресації база змінюється після ви-

конання команди.

Нижче наведено приклади деяких команд розглянутого формату.

4.3.1.1 Безпосереднє зміщення (зсув) з преіндексною адресацією

без зміни бази

Rn – база;

offset_12 – 12–ти розрядне зміщення;

83

`

Рисунок 4.9  Безпосереднє зміщення (зсув) з преіндексною адреса-

цією без зміни бази

E581000C = 1110 0101 1000 0001 0000 0000 0000 1100

4.3.1.2 Безпосереднє зміщення (зсув) з преіндексною адресацією зі

зміною бази

Рисунок 4.10  Безпосередня преіндексна

E5A1000C = 1110 0101 1010 0001 0000 0000 0000 1100

84

`

4.3.1.3 Безпосередня постіндексна адресація

Рисунок 4.11  Безпосередня постіндексна

E481000C = 1110 0100 1000 0001 0000 0000 0000 1100

4.3.1.4 Регістрове зміщення (зсув)з преіндексною адресацією без

зміни бази

Рисунок 4.12 – Регістрове зміщення (зсув) з преіндексною адресаці-

єю без зміни бази

STR R0, [R1,R2]

85

`

4.3.1.5 Регістрове зміщення (зсув) з преіндексною адресацією та

зміною бази

Рисунок 4.13 – Преіндексна регістрова адресація

STR R0, [R1,R2]!

4.3.1.6 Регістрове зміщення (зсув) з постіндексною адресацією

Рисунок 4.14 – Регістрове зміщення (зсув) з постіндексною адресацією

86

`

STR R0, [R1], R2

4.3.1.7 Регістрове зміщення із зсувом та предіндексною адресаці-

єю з масштабованим регістровим зміщенням без оновлення бази

Варіанти адресації:

[<Rn>, +/–<Rm>, LSL #<shift_imm>];

[<Rn>, +/–<Rm>, LSR #<shift_imm>];

[<Rn>, +/–<Rm>, ASR #<shift_imm>];

[<Rn>, +/–<Rm>, ROR #<shift_imm>];

[<Rn>, +/–<Rm>, RRX];

<Rn>  база;

<Rm>  індекс;

<shift_imm>  зсув;

STR R0, [R1, R2, LSL #5]; M(R1 + R2x32) = R0,

4.3.1.8 Регістрове зміщення зі зсувом та преіндексною адресацією

з масштабованим регістровим зміщенням та оновленням бази

LDR R0, [R1, R2, LSL #2]! ; R0 = M(R1 + R2x4); R1 = R1 + R2x4.

87

`

Може використовуватись, наприклад, для доступу до елементів ма-

сиву із розміром значення більшим ніж один елемент з попереднім онов-

ленням покажчика елемента.

4.3.1.9 Регістрове зміщення з постіндексною адресацією

LDR R1, [R2], R3; R1 = M(R2) ; R2= R2 + R3.

4.3.1.10 Регістрове зміщення зі зсувом та постіндексною адресаці-

єю

LDR R0, [R1], R2, LSL #2 ; R0 = M(R1); R1 =R1+ R2x4.

Може використовуватись, наприклад, для доступу до елементів ма-

сиву із розміром більшим ніж один елемент з наступним оновленням по-

кажчика елемента.

4.3.2 Команди завантаження/збереження половини слова, або по-

двійного слова та завантаження байта зі знаком

На рисунку 4.15 наведено формат команд завантаження/збереження

половини слова, або подвійного слова та завантаження байта зі знаком.

88

`

Рисунок 4.15  Завантаження/збереження половини слова, або подвійного

слова та завантаження байта зі знаком

Пояснення більшості бітів співпадає з рисунком 4.7. Нижче наведено

тільки відмінності:

– 22р (#) визначає, де знаходиться зміщення відносно бази при

формуванні адреси пам’яті: якщо 22р=1, то в якості зміщення використо-

вується 8–розрядне число (розряди 11 … 8 (imm[7:4]) та 3 … 0(imm[3:0]);

якщо 22р=0, то зміщення знаходиться в одному з регістрів основного регі-

стрового файлу ;

– 21р (W) приймає значення в залежності від значення 24–ого

розряду (Р): Р=0, W=1 при преіндексній адресації (базовий регістр оновлю-

ється); W=0 при адресації зі зміщенням (базовий регістр не оновлюється);

 6р (S) та 7р (H) змінюється в залежності від виконуваної ко-

манди (таблиця 4.2).

89

`

Таблиця 4.2 – Зміни бітів L,S та H в залежності від виконуваної команди

L S H Результат

0 0 1 Зберегти половину слова

0 1 0 Завантажити подвійне слово

0 1 1 Зберегти подвійне слово

1 0 1 Завантажити половину слова без знаку

1 1 0 Завантажити байт зі знаком

1 1 1 Завантажити половину слова зі знаком

LDR|STR{<cond>}H|SH|SB|D <Rd>, <addressing_mode>

SH  Signed Halfword – половина слова зі знаком (лише LDR)

H  unsigned Halfword  половина слова без знаку

SB  Signed Byte – байт зі знаком (лише LDR)

D – Doubleword – подвійне слово.

Нижче наведено приклади деяких команд розглянутого формату.

90

`

4.3.2.1 Преіндексна адресація з безпосереднім зміщенням без оно-

влення бази

4.3.2.2 Преіндексна адресація з регістровим зміщенням без онов-

лення бази

91

`

4.3.2.3 Преіндексна адресація з безпосереднім зміщенням та оно-

вленням бази

4.3.2.4 Преіндексна адресація з регістровим зміщенням та онов-

ленням бази

92

`

4.3.2.5 Постіндексна адресація з безпосереднім зміщенням

4.3.2.6 Постіндексна адресація з регістровим зміщенням

4.3.3 Команди множинного запису/читання

На рисунку 4.16 наведено формат команд множинного запи-

су/читання.

LDM|STM{<cond>}<addressing_mode> <Rn>{!}, <registers>{^}

93

`

Рисунок 4.16 – Адресація множинного запису/читання

Нижче наведено пояснення окремих полів формату команд, наведе-

ного на рисунку 4.16:

– 31 р..28 р (cond) формує компілятор в залежності від префіксу

команди (таблиця 4.1), якщо останній використовується;

– 27 р дорівнює одиниці;

– 25 та 26 р дорівнюють нулю;

– 24 р (P) визначає, чи включене слово, яке адресоване базою, до

діапазону комірок пам’яті (0  так, 1 ні);

– 23 р (U) визначає, яка операція виконується над базою: дода-

вання (U = 1), або віднімання (U = 0);

– 22 р (S) встановлюється в 1, коли користувацькі регістри копі-

юються під час роботи в привілейованому режимі;

– 21 р (W) визначає, чи база оновлюється після пересилки;

– 20 р (L) визначає вид операції: завантаження (L=1), або збері-

гання (L=0);

– 19 р..16 р (Rn) визначає один з регістрів основного регістрово-

го файлу, який виступає в якості бази;

94

`

– 15 р..0 р (register list) визначає, які регістри будуть використо-

вуватись.

Зміну бітів L, P, U в залежності від використаних команд відображає

таблиця 4.3.

Таблиця 4.3 – Зміна бітів L, P, U в залежності від використаних команд

На рисунку 4.17 наведено пояснення виконання команд множинно-

го запису/читання

Рисунок 4.17 – Пояснення виконання команд множинного запи-

су/читання

95

`

4.3.3.1 Приклад виконання команди STMIA

 4.3.3.2 Приклад виконання команди STMIB

 4.3.3.3 Приклад виконання команди STMDA

96

`

4.3.3.4 Приклад виконання команди STMDB

4.4 Адресація команд роботи з співпроцесорами

На рисунку 4.18 наведено формат команд роботи зі співпроцесорами.

Команди цього класу використовуються для читання (LDC) або запису

(STC) регістрів співпроцесорів безпосередньо з / в пам'ять.

<LDC|STC>{<cond>}{L} <coproc>,<CRd>,<addressing_mode>

Рисунок 4.18 –Формат команд роботи з співпроцесорами

Нижче наведено пояснення окремих полів формату команд, наведе-

них на рисунку 4.18:

– 31 р..28 р (cond) формує компілятор в залежності від префіксу

команди (таблиця 4.1), якщо останній використовується;

– 27 р та 26 р дорівнюють одиниці;

97

`

– 25 р дорівнює нулю;

– 24 р (P) визначає тип адресації: Р=0 – постіндексна (біт W ви-

значає, яка саме), Р=1  преіндексна (біт W визначає, яка саме);

– 23р (U) визначає яка операція виконується над базою: додаван-

ня (U = 1), або віднімання (U = 0);

– 22 р (N) значення довжини передачі задається співпроцесором:

0–1 слово; 1 – більше;

– 21 р (W) визначає, чи база оновлюється після пересилки: 0 – ні;

1 – так;

– 20 р (L) визначає вид операції: завантаження (L=1), або збері-

гання (L=0);

– 19 р..16 р (Rn) визначає один з регістрів основного регістрово-

го файлу, який виступає в якості бази;

– 15 р..12 р (CRd) визначає регістр співпроцесора;

– 11 p..8 p (CP#) визначає номер співпроцесора;

– 7 p..0 p (8–bit offset) –8–бітне зміщення.

Поле CP # використовується для ідентифікації того співпроцесора,

який повинен передати або прийняти дані, при цьому команду виконає

тільки той співпроцесор, номер якого збігається з номером у полі CP #.

Регістр CRd завжди виконує роль регістра, який має бути переданий

(або перший регістр зі списку при блоковій передачі), а біт N визначає

довжину передачі: при N = 0 обмін проводитися тільки з одним регістром

(CRd), при N = 1  зі всіма регістрами (для перемикання контексту

завдань).

Нижче наведено приклади деяких команд розглянутого формату:

98

`

4.4.1 Команда з безпосереднім зміщенням з преіндексною

адресацією без зміни бази

4.4.2 Команда з безпосереднім зміщенням з преіндексною

адресацією зі зміною бази

4.4.3 Команда з безпосереднім зміщенням з постіндексною

адресацією

99

`

4.4.4 Команда з безіндексною адресацією

4.5 Приклади способів адресацій
1 Команда:ADDS R1, R2, #0xFF00.

Коментар до команди: R1←R2+0xFF00, запис до регістра R1 резуль-
тату додавання R2 та 0xFF00.

Способи адресації операндів: лівий – регістрова, правий – безпосе-
редня, отримувач результату –регістрова.

2 Команда: LDRSB R0, [R1, R2].

Коментар до команди: завантаження байта зі знаком у регістр R0 з
пам’яті за адресою: (R1 + R2).

Способи адресації операндів: джерело – преіндексна з регістровим
зміщенням без оновлення бази, отримувач – регістрова.

3 Команда: LDR R0, [R1], R2, LSR#2.

Коментар до команди: завантаження слова: R0 ← M (R1); R1← R1 +
(R2∙4).

Способи адресації операндів: джерело – постіндексна з масштабова-
ним регістровим зміщенням, отримувач –регістрова.

4 Команда: ADD R1, R2, #0xFF00.

100

`

Коментар до команди: R1←R2+0xFF00, запис до регістра R1 резуль-
тату додавання R2 та 0xFF00.

Способи адресації операндів: перший операнд–регістрова–R2,
другий операнд–безпосередня–0xFF00, отримувач–регістрова– R1.

5 Команда: ADDS R9, R4, R5, LSR R1.

Коментар до команди: R9 ← R4 + R5/2R1, запис до регістра R9 ре-
зультату додавання R4 та R5/2R1.

Способи адресації операндів: перший операнд – регістрова, другий –
регістрова з масштабуванням, отримувач  регістрова.

6 Команда: STR R0, [R2, #12].

Коментар до команди: зберігання слова: M (R1 + 12) ← R0.

Способи адресації операндів: джерело – регістрова, приймач – преі-
ндексна з безпосереднім зміщенням без оновлення бази.

7 Команда: STR R0, [R1, #0xAB]!.

Коментар до команди: R1 ← R1 + 0xAB; M (R1) ← R0 (зберігання
слова).

Способи адресації операндів: джерело – регістрова, отримувач – пре-
індексна з безпосереднім зміщенням та оновленням бази.

8 Команда: STR R5, [R2], #25.

Коментар до команди: M (R2) ← R5; R2 ← R2 + 25 (зберігання сло-
ва).

Способи адресації операндів: джерело – регістрова, отримувач –
постіндексна з безпосереднім зміщенням.

9 Команда: STR R0, [R1, R2].

Коментар до команди: M (R1+R2) ← R0 (зберігання слова).

Способи адресації операндів: джерело – регістрова, приймач – преі-
ндексна з регістровим зміщенням без оновлення бази.

10 Команда: STR R1, [R2].

101

`

Коментар до команди: M (R2) ← R1 (зберігання слова)

Способи адресації операндів: джерело – регістрова, отримувач –

непряма.

11 Команда: STR R0, [R1], R2.

Коментар до команди: M (R1) ← R0; R1 ← R1 + R2 (зберігання сло-
ва)

Способи адресації операндів: джерело – регістрова, отримувач –
постіндексна з регістровим зміщенням.

12 Команда: STR R0, [R1, R2, LSL#2].

Коментар до команди: M (R1+R2*22) ← R0 (зберігання слова).

Способи адресації операндів: джерело – регістрова, отримувач – пре-
індексна з масштабованим регістровим зміщенням без оновлення бази.

13 Команда: STR R0, [R1, R2, LSL#2]!.

Коментар до команди: R1 ← R1 + R2*22; M (R1) ← R0 (зберігання
слова).

Способи адресації операндів: джерело – регістрова, отримувач – пре-
індексна з масштабованим регістровим зміщенням та оновленням бази.

14 Команда: STR R0, [R1], R2 LSL#2.

Коментар до команди: M (R1) ← R0; R1← R1 + R2*22 (зберігання
слова).

Способи адресації операндів: джерело – регістрова, отримувач –
постіндексна з масштабованим регістровим зміщенням.

15 Команда: STR R2, [R1].

Коментар до команди: M (R1) ← R2 (зберігання слова).

Способи адресації операндів: джерело – регістрова, отримувач – не-
пряма.

16 Команда: ANDS R1, R0, #0x0FA00000.

102

`

Коментар до команди: R1 ← R0 & 0x0FA00000 , запис до регіс-
тра R1 результату логічного множення R0 та 0x0FA00000.

Способи адресації операндів: перший операнд – регістрова, другий
операнд – безпосередня, отримувач – регістрова.

17 Команда: ORRS R3, R0, #0xAB.

Коментар до команди: R3 ← R0 V 0xAB, запис до регістра R3 ре-
зультату логічного додавання R0 та 0xAB.

Способи адресації операндів: перший операнд – регістрова, другий
операнд – безпосередня, отримувач –регістрова.

18 Команда: EORS R3, R0, #0x35.

Коментар до команди: R3 ← R0 ⊕ 0x35, запис до регістра R3 ре-
зультату логічного додавання за модулем 2: R0 та 0x35.

Способи адресації операндів: перший операнд – регістрова, другий –
безпосередня, отримувач – регістрова.

19 Команда: SBCS R3, R2, #0xDE.

Коментар до команди: R3 ← R2 – 0xDE  CതF, запис до регістра R3
результату віднімання від регістра R2 безпосереднього операнда 0xDE та
інверсії CF (CതF).

Способи адресації операндів: перший операнд – регістрова, другий –
безпосередня, Cത F – неявна, отримувач – регістрова

20 Команда: LDRSB R0, [R1, #35].

Коментар до команди: завантаження байта зі знаком –

R0 ← M (R1 + 35).

Способи адресації операндів: джерело – преіндексна з безпосереднім
зміщенням без оновлення бази, отримувач – регістрова.

21 Команда: LDRB R0, [R1, 0x35]!.

Коментар до команди: завантаження байта 

R1 ← R1 ,+ 0x35; R0 ← M (R1).

103

`

Способи адресації операндів: джерело – преіндексна з безпосереднім
зміщенням та оновленням бази, отримувач – регістрова.

22 Команда: LDR R0, [R1], #0x78.

Коментар до команди: завантаження слова  R0 ← M (R1); R1← R1
+ 0x78.

Способи адресації операндів: джерело – постіндексна з безпосеред-
нім зміщенням, отримувач – регістрова.

23 Команда: LDR R0, [R1, R2].

Коментар до команди: завантаження слова  R0 ← M (R1 + R2).

Способи адресації операндів: джерело – преіндексна з регістровим
зміщенням без оновлення бази, отримувач – регістрова.

24 Команда: LDR R0, [R1, R2]!.

Коментар до команди: завантаження слова  R1 ← R1 + R2; R0 ←
M(R1).

Способи адресації операндів: джерело – преіндексна з регістровим
зміщенням та оновленням бази, отримувач – регістрова.

25 Команда: LDR R0, [R1], R2.

Коментар до команди: завантаження слова  R0 ← M (R1); R1← R1
+ R2.

Способи адресації операндів: джерело – постіндексна с регістровим
зміщенням, отримувач –регістрова.

26 Команда: LDR R0, [R1, R2, LSL#2].

Коментар до команди: завантаження слова  R0 ← M (R1 + R2*22).

Способи адресації операндів: джерело – преіндексна з масштабова-
ним регістровим зміщенням без оновлення бази, отримувач – регістрова.

27 Команда: LDR R0, [R1, R2, LSL#2]!.

Коментар до команди: завантаження слова  R1 ← R1 + R2*22;

104

`

R0 ← M(R1).

Способи адресації операндів: джерело – преіндексна з масштабова-
ним регістровим зміщенням та оновленням бази, отримувач – регістрова.

28 Команда: LDR R0, [R1], R2, LSL#2.

Коментар до команди: завантаження слова  R0 ← M (R1);

R1← R1 + R2*22.

Способи адресації операндів: джерело – постіндексна з масштабова-
ним регістровим зміщенням, отримувач – регістрова.

29 Команда: LDR R2, [R1].

Коментар до команди: завантаження слова  R2 ← M (R1).

Способи адресації операндів: джерело – непряма, отримувач –
регістрова.

30 Команда: RSCS R3, R1, R2.

Коментар до команди: R3 ← R2 - R1 - ܥிതതത, запис до регістра R3 ре-
зультату зворотного віднімання від регістра R2 регістра R1та інверсії пра-
порця CF (ܥிതതത).

Способи адресації операндів: перший операнд – регістрова, другий –
регістрова, прапорець Cത F – неявна, отримувач –регістрова.

105

`

ПИТАННЯ ДЛЯ САМОКОНТРОЛЮ

1) Які види адресацій використовуються в командах ARM?

2) На які основні групи можна розбити всі команди ARM?

3) За якої умови команда проводиться через конвеєр як команда

NOR (немає операції)?

4) Дати пояснення кожного з полів формату команд обробки

операндів.

5) Як в командах ARM задається умовне виконання?

6) Як в командах ARM задається встановлення прапорців регістра

CPSR?

7) Пояснити як відбувається виконання команд з преіндексною та

постіндексною адресаціями?

8) Пояснити виконання команд множинного запису/читання.

9) Пояснити виконання команд логічного, арифметичного та цик-

лічного зсувів.

10) Дати пояснення кожного з полів формату команд завантажен-

ня/збереження.

11) Дати пояснення кожного з полів формату команд роботи зі спів-

процесорами.

106

`

5 ОПИС КОМАНД ЯДРА ARM7TDMI

5.1 Набір команд ядра ARM7
Скорочений набір інструкцій ARM7 ARM7 представлений у таблиці

5.1.

Таблиця 5.1 – Скорочений список інструкцій ARM7

Операції Коментар Синтаксис Асемблера

Пересилання Пересилання MOV {cond} {S} Rd,
<Oprnd2>

 Пересилання з інверсією MVN {cond} {S} Rd,
<Oprnd2>

 Пересилання регістра SPSR
в регістр

MRS {cond} Rd, SPSR

 Пересилання регістра CPSR
в регістр

MRS {cond} Rd, CPSR

 Пересилання регістра в ре-
гістр SPSR

MSR {cond} SPSR {field},
Rm

 Пересилання регістра в ре-
гістр CPSR

MSR {cond} CPSR
{field}, Rm

 Пересилання константи у
прапорці SPSR

MSR {cond} SPSR_f, #
32bit_Imm

 Пересилання константи у
прапорці CPSR

MSR {cond} CPSR_f, #
32bit_Imm

Арифметичні Додавання ADD {cond} {S} Rd, Rn,
<Oprnd2>

 Додавання з перенесенням ADC {cond} {S} Rd, Rn,
<Oprnd2>

107

`

Продовження таблиці 5.1

Операції Коментар Синтаксис Асемблера

 Віднімання SUB {cond} {S} Rd, Rn,
<Oprnd2>

 Віднімання з перенесенням SBC {cond} {S} Rd, Rn,
<Oprnd2>

 Зворотнє віднімання RSB {cond} {S} Rd, Rn,
<Oprnd2>

 Зворотнє віднімання з пере-
несенням

RSC {cond} {S} Rd, Rn,
<Oprnd2>

 Множення MUL {cond} {S} Rd, Rm,
Rs

 Множення з накопиченням MLA {cond} {S} Rd, Rm,
Rs, Rn

 Множення довгих беззна-
кових чисел

UMULL {cond} {S}
RdLo, RdHi, Rm, Rs

 Множення беззнакових чи-
сел з накопиченням

UMLAL {cond} {S}
RdLo, RdHi, Rm, Rs

 Множення довгих чисел зі
знаком

SMULL {cond} {S} RdLo,
RdHi, Rm, Rs

 Множення довгих чисел зі
знаком з накопиченням

SMLAL {cond} {S} RdLo,
RdHi, Rm, Rs

 Порівняння CMP {cond} Rd,
<Oprnd2>

 Порівняння від’ємне CMN {cond} Rd,
<Oprnd2>

Логічні Перевірка на I TST {cond} Rn, <Oprnd2>

108

`

Продовження таблиці 5.1

Операції Коментар Синтаксис Асемблера

 Перевірка на еквівалент-
ність

TEQ {cond} Rn,
<Oprnd2>

 Логічне І AND {cond} {S} Rd, Rn,
<Oprnd2>

 Виключне АБО EOR {cond} {S} Rd, Rn,
<Oprnd2>

 Логічне АБО ORR {cond} {S} Rd, Rn,
<Oprnd2>

 Скидання заданих бітів BIC {cond} {S} Rd, Rn,
<Oprnd2>>

Перехід Перехід B {cond} label

 Перехід зі збереженням ад-
реси

BL {cond} label

 Перехід та зміна набору ін-
струкцій

BX {cond} label

 Перехід зі зміною набору
інструкцій та збереженням
адреси

BLX {cond} label

Завантаження
(читання)

слова LDR {cond} Rd,
<a_mode2>

 слова з перевагою режиму
користувача

LDR {cond} T Rd,
<a_mode2P>

 байта LDR {cond} B Rd,
<a_mode2>

 байти з перевагою режиму
користувача

LDR {cond} BT Rd,
<a_mode2P>

109

`

Продовження таблиці 5.1

Операції Коментар Синтаксис Асемблера

 байта зі знаком LDR {cond} SB Rd,
<a_mode3>

 напівслова LDR {cond} H Rd,
<a_mode3>

 напівслова зі знаком LDR {cond} SH Rd,
<a_mode3>

Завантаження
(читання) групи

регістрів

з попередніми інкрементом LDM {cond} IB Rd {!},
<reglist> {^}

 з наступним інкрементом LDM {cond} IA Rd {!},
<reglist> {^}

 з попередніми декрементом LDM {cond} DB Rd {!},
<reglist> {^}

 з наступним декрементом LDM {cond} DA Rd {!},
<reglist> {^}

 операція над стеком LDM {cond} <a_mode4L>
Rd {!}, <reglist>

 операція над стеком і відно-
влення CPSR

LDM {cond} <a_mode4L>
Rd {!}, <reglist+pc> ^

 операція над стеком з регіс-
трами користувача

LDM {cond} <a_mode4L>
Rd {!}, <reglist> ^

Зберігання (за-
пис)

слова STR {cond} Rd,
<a_mode2>

 слова з перевагою режиму
користувача

STR {cond} T Rd,
<a_mode2P>

110

`

Продовження таблиці 5.1

Операції Коментар Синтаксис Асемблера

 байта STR {cond} B Rd,
<a_mode2>

 байти з перевагою режиму
користувача

STR {cond} BT Rd,
<a_mode2P>

 напівслова STR {cond} H Rd,
<a_mode3>

Зберігання (за-
пис) групи регі-
стрів

з попередніми інкрементом STM {cond} IB Rd {!},
<reglist> {^}

 з наступним інкрементом STM {cond} IA Rd {!},
<reglist> {^}

 з попередніми декрементом STM {cond} DB Rd {!},
<reglist> {^}

 з наступним декрементом STM {cond} DA Rd {!},
<reglist> {^}

 операція над стеком STM {cond} <a_mode4S>
Rd {!}, <reglist>

 операція над стеком з регіс-
трами користувача

STM {cond} <a_mode4S>
Rd {!}, <reglist> ^

Обмін між регіс-
тром і пам’яттю

слів SWP {cond} Rd, Rm, [Rn]

 байт SWP {cond} B Rd, Rm,
[Rn]

Команди роботи
з співпроцесо-
рами

Операція над даними CDP {cond} p <cpnum>,
<op1>, CRd, CRn, CRm,
<op2>

111

`

Продовження таблиці 5.1

Операції Коментар Синтаксис Асемблера

 Пересилання в ARM–
регістр з співпроцесора

MRC {cond} p <cpnum>,
<op1>, Rd, CRn, CRm,
<op2>

 Пересилання в співпроце-
сор з ARM–регістра

MCR {cond} p <cpnum>,
<op1>, Rd, CRn, CRm,
<op2>

 Завантаження (читання) LDC {cond} p <cpnum>,
CRd, <a_mode5>

 Зберігання (запис) STC {cond} p <cpnum>,
CRd, <a_mode5>

Програмне пе-
реривання

 SWI 24bit_Imm

5.2 Дослідження виконання команд у налагоджувачі µVision Keil 4

 5.2.1 Інсталяція

Завантажити µVision Keil 4 можна з сайту або з локального диску W.

Після запуску файлу інсталятора з’явиться вікно привітання (рисунок 5.1).

Далі необхідно виконати приведену нижче на рисунках послідовність дій.

112

`

Рисунок 5.1 – Вікно привітання

Тиснемо «Next», з’являється вікно ліцензійної угоди, ставимо відміт-

ку, як зображено на рисунку 5.2, і знову натискаємо «Next».

Рисунок 5.2 – Ліцензійна угода

113

`

У вікні вибору місця встановлення вказуємо шлях (рисунок 5.3) і на-

тискаємо «Next».

Рисунок 5.3 – Вибір місця встановлення

У наступному вікні вказуємо дані користувача (рисунок 5.4) і тисне-

мо «Next».

В останньому вікні вибираємо встановлення драйверу і тиснемо

«Finish» (рисунок 5.5), після чого інсталяція завершиться і програма буде

готова до використання.

114

`

Рисунок 5.4 – Введення даних користувача

Рисунок 5.5 – Завершення інсталяції

115

`

5.2.2 Перший запуск середовища

Після того, як було встановлено µVision Keil 4, можна здійснити його

перший запуск. Для запуску середовища в операційній системі Windows

можна скористатися ярликом на робочому столі, в підменю програм

головного меню «Пуск», або з папки, в яку було проведено встановлення.

Після запуску середовища можна побачити вікно, яке зображено на

рисунку 5.6.

Рисунок 5.6 – Загальний вигляд головного вікна середовища

5.2.3 Створення нового проекту

Коли середовище успішно запущено, для створення нового проекту

необхідно в головному меню обрати «Project  New µVision Project», після

чого відкриється вікно, що зображено на рисунку 5.7.

116

`

Рисунок 5.7 – Створення нового проекту

 У заздалегідь створену папку (або за бажанням створюємо нову)

створюємо проект, ввівши його назву, тиснемо «Сохранить» і переходимо

до вікна вибору мікроконтролера (рисунок 5.8). Вибираємо

ARM>ARM7(Little Endian) (прямий порядок байтів) або ARM>ARM7(Big

Endian) (зворотний порядок) і натискаємо «ОК». Варто пам’ятати, що при

написанні коду слід правильно задавати формат слів, інакше отриманий

код буде «вивернутий навиворіт».

117

`

Рисунок 5.8 – Вибір мікроконтролера зі списку

5.2.3.1 Створення нового файлу

В головному меню налагоджувача натискаємо «Filе>New…» або

комбінацією Ctrl+N створюємо новий текстовий файл. В цей файл пишемо

або вставляємо скопійований код програми (рисунок 5.9). Зверніть увагу,

що для правильної компіляції проекту в програмі слід писати рядки

«AREA ProgramName, CODE, READWRITE», «ENTRY», «END». Для збе-

реження файлу в головному меню «Filе>Save As…», з’явиться вікно, як на

рисунку 5.10. Зберігаємо в форматі:

«Ім’я_файлу.s».

118

`

Рисунок 5.9 – Створення файлу та додавання коду

Рисунок 5.10 – Збереження файлу

119

`

5.2.3.2 Додавання файлів у проект

 Для додавання файлів до проекту слід у вікні Projects (рисунок 5.9,

вікно ліворуч) лівою клавішею натиснути: + та правою клавішею миші

натиснути на Source Group 1 і вибрати Add Files to Group ‘Source Group 1’,

відкриється вікно типу (рисунок 5.11):

Обираємо збережений раніше файл «Ім’я_файлу.s», тиснемо Add, Close.

Файл додано.

Рисунок 5.11 – Додавання файлу до групи

5.2.3.3 Компіляція проекту

Для компіляції проекту обираємо у головному меню «Project>Build

Target» або натискаємо F7. У вікні Build Output можна побачити

інформацію про перебіг компіляції. Якщо отримано повідомленяя: «0

Error(s), 0 Warning(s)», це свідчить про успішну компіляцію (рисунок 5.12).

120

`

Рисунок 5.12 – Компіляція проекту

5.2.4 Налагодження проекту

Для налагодження проекту обираємо у головному меню

«Debug>Start/Stop Debug Session» або натискаємо Ctrl+F5. З`являється

попередження: EVALUATION MODE Running with Code Size Limit: 32 K

(об`єм коду до 32 К). Тиснемо ОК. З`являється вікно програми, яке

виглядатиме таким чином, як зображено на рисунку 5.13. Вікно регістрів

розширюємо лівою кнопкою миші.

121

`

Рисунок 5.13 – Налагодження проекту

5.2.4.1 Покрокове виконання команд

Після запуску налагодження покрокове виконання команд

забезпечується натисканням клавіші F10.

5.2.4.2 3міна регістрів та прапорців

Вміст регістрів змінюємо подвійним кліком лівої клавіші миші на

значенні потрібного регістра у вікні Registers. Для зміни прапорців слід

розкрити CPSR і аналогічно до регістрів змінити значення потрібних

прапорців.

5.2.4.3 Робота з пам’яттю

Задання діапазону адрес пам’яті, під час налагодження можна

зробити у меню Debug>Memory Map.

122

`

Для зміни пам’яті в нижньому правому куті вікна слід обрати

вкладку Memory 1, у полі Adress ввести необхідну адресу комірки. У полі

значень навпроти введеної адреси (рисунок 5.14) вносимо потрібні зміни.

Рисунок 5.14 – Задання діапазону адрес пам’яті

5.2.4.4 Перегляд машинних кодів паралельно з мнемокодом

Для перегляду машинних кодів та мнемокоду достатньо

перемкнутись на вікно Disassembly під час налагодження проекту (рисунок

5.13).

5.2.4.5 Зміни в коді програми

Для того, щоб внести зміни до коду слід зупинити налагодження,

натискаючи у головному меню «Debug>Start/Stop Debug Session». Вікно

повертається до вигляду як на рисунку 5.12. У файлі програми вносимо

необхідні зміни або додаємо нові команди, зберігаємо внесені поправки та

компілюємо проект: «Project>Build Target», або натискаємо F7.

123

`

5.2.5 Приклади окремих проектів для виконання у

налагоджувачі

 Нижче наведено три файли (проекти) для виконання окремих команд
у налагоджувачі:

– data_processing.s;

– lab2_load_store.s;

– JMP_MUL.s.

5.2.5.1 Data_processing.s

 AREA ProgramName, Code, ReadWrite

 ENTRY

start

 MOV R0, #0x01 ; R0 = 0x01

 MOV R1, #0x03 ; R1 = 0x03

 MOV R2, #0x08 ; R2 = 0x08

 MOV R0,#0 ; R0 = 0x00

 MOVS R0,#0; ; R0 = 0x00, Z=1

 MOVEQ R3,#0xFF ; if (Z == 1) R3=0xFF

 MOVNE R3,#0xAA ; if (Z == 0) R3=0xAA

 AND R3,R1,R0 ; R3 = R1 AND R0

 EOR R4,R2,R1 ; R4 = R2 EOR R1

 SUB R5,R2,R1 ; R5 = R2 – R1

 RSB R6,R2,R1 ; R6 = R1 – R2

 ;

 ADD R1,R1 ; R1 = R1 + R1

 ADD R7,R1,R0 ; R7 = R1 + R0

124

`

 ADD R7,R1 ; R7 = R7 + R1

 ADD R8,R1,R1, LSL #2 ; R8=R1+R1*(2^2) R8=0x06+(0x06*4)=0x1E

 MOV R4,#2 ; R4 = 0x02

 ADD R8,R1,R1, LSL R4 ; R8=R1+R1*(2^2) R8=0x06+(0x06*4)=0x1E

 ADD R9,R1,R2, LSR #1 ; R9=R1+(R2 << 1) R9=0x06+(0x08/2)=0x0A

 MOV R4,#1 ; R4=0x01

 ADD R9,R1,R2, LSR R4 ; R9=R1+(R2 << 1) R9=0x06+(0x08/2)=0x0A

 ADD R10,R1,R1, ROR #1 ; R10=R1+(R1 ROR 1) R10=0x06+(0x06
ROR 1)==0x80000007

 ADD R10,R1,R1, ROR R4 ; R10=R1+(R1 ROR 1) R10=0x06+(0x06
ROR 1)= 0x80000007

 ADD R11,R1,R1, RRX ; R11=R1+(R1.0 –> C, R1 >> 1)

 ADDLO R11,R1,R1 ; if (C==0) R11=0x06+0x06=0x0C

 MOV R3, #–5 ; R3 <– –5

 ADD R12,R0,R3, ASR #1 ; 5 >> 1 = 2 ; –2+1=–1 => 0xFFFFFFFE

 ADDMI R12,R0,R3, ASR R4 ; if (N == 1) {5 >> 1 = 2 ; –2+1=–1 =>
0xFFFFFFFE }

 ;

 ADC R8,R1,R0 ; R8 = R1 + R0+Carry

 SBC R9,R2,R1 ; R9 = R2 – R1–NOT(Carry)

 RSC R10,R2,R1 ; R10 = R1 – R2–NOT(Carry)

 TST R0, #0x09 ; R0 AND R11, affects flags

 MOV R0,#6 ; R0 = 0x06

 TEQ R0,#5 ; R0 EOR 0x1, affects flags

 ;

 CMP R7, #101 ; R7 – 101, affects flags

 ;

 MOV R7,#8 ; R7 = 0x08

 MOV R8,#8 ; R8 = 0x08

 CMN R8, R7 ; R8 + R7, N–>0,Z–>0

125

`

 ;

 MOV R0,#7 ; R0 = 0x07

 MOV R1,#8 ; R1 = 0x08

 CMN R0, R1 ; R0 + R1, N–>0,Z–>0

 ;

 MOV R0,#–8 ; R0 = 0xFFFFFFF8

 MOV R1,#–8 ; R1 = 0xFFFFFFF8

 CMN R0, R1 ; R0 + R1, N–>1,Z–>0,C–>1

 ;

 MOV R0,#–8 ; R0 = 0xFFFFFFF8

 MOV R1,#–8 ; R1 = 0xFFFFFFF8

 CMP R0, R1 ; R0 – R1, N–>0,Z–>1,C–>1

 ;

 MOV R0,#–5 ; R0 = 0xFFFFFFFB

 MOV R1,#–8 ; R1 = 0xFFFFFFF8

 CMP R0, R1 ; R0 – R1, N–>0,Z–>0,C–>1

 ;

 MOV R0,#–8 ; R0 = 0xFFFFFFF8

 MOV R1,#–5 ; R1 = 0xFFFFFFFB

 CMP R0, R1 ; R0 – R1, N–>1,Z–>0,C–>0

 ;

 ORR R12, R5, R2 ; R12 = R5 OR R2

 BIC R13, R6, #0xFF00 ; R13 = R6 AND NOT 0xFF00

 MVN R14, R6 ; R14 = NOT R6

stop

 END

5.2.5.2 Lab2_load_store.s

 AREA ProgramName, Code, ReadWrite

126

`

 ENTRY

start

;;; load commands ;;;

 MOV R0, #0x01; R0 = 0x01

 MOV R1, #0x03; R1 = 0x03

 MOV R2, #0xFFFFFF3C; R2 = 0xFFFFFF3C

 MOV R4, #0x05; R4 = 0x05

 MOV R5, #0xFFFFFF5C; R5 = 0xFFFFFF5C

 MOV R6, #0xFFFFFF01; R6 = 0xFFFFFF01

 MOV R7, #0x00000007; R7 = 0x00000007

 MOV R8, #0xFFFFFF30; R8 = 0xFFFFFF30

 LDR R3, [R2] ; R2 = 0xFFFFFF3C; M(R2)=12 34 56 78; R3 = 0x78563412

 LDRH R3, [R2]; R2 = 0xFFFFFF3C; M(R2)=12 34 56 78; R3 = 0x00003412, where
R3[31:16] := 0x0000, R3[15:0] := 0x3412

 LDRB R3, [R2]; R2 = 0xFFFFFF3C; M(R2)=12 34 56 78; R3 = 0x00000012, where
R3[31:8] := 0x000000, R3[7:0] := 0x12

 LDRT R3, [R2], #44; R2 = 0xFFFFFF3C; M(R2)=12 34 56 78; R3 = 0x78563412; R2
:= ((R2)2+44)16 = 0xFFFFFF68

 LDRT R3, [R2], #–44; R2 = 0xFFFFFF68; M(R2)=23 45 67 89; R3 = 0x89674523;
R2: = ((R2)2–44)16 = 0xFFFFFF3C

 LDRT R3, [R2], R1; R2 = 0xFFFFFF3C; M(R2)=12 34 56 78; R3 = 0x78563412; R2
:= R2+R1=FFFFFF3C+00000003 = 0xFFFFFF3F

 MOV R2, #0xFFFFFF3C; R2 = 0xFFFFFF3C

 LDRT R3, [R2], –R1; R2 = 0xFFFFFF3C; M(R2)=78 90 12 34; R3 = 0x34129078;
R2 := R2–R1=FFFFFF3C–00000003 = 0xFFFFFF39

 SUB R2, R2, R0; R2 = 0xFFFFFF39–0x01 = 0xFFFFFF38, stands for address align-
ment

127

`

 LDRT R3,[R2], R4, LSL #2 ; R2 = 0xFFFFFF38; M(R2) = 78 90 12 34; R3 =
0x34129078; R2 = R2+ (R4 lsl #2) = 0xFFFFFF4C

 LDRBT R3, [R2], #44; R2 = 0xFFFFFF4C; M(R2)=12 34 56 78; R3 = 0x00000012;
R2 := ((R2)2+44)16 = 0xFFFFFF78

 LDRBT R3, [R2], #–44; R2 = 0xFFFFFF78; M(R2)=12 34 56 78; R3 = 0x00000012;
R2: = ((R2)2–44)16 = 0xFFFFFF4C

 LDRBT R3, [R2], R1; R2 = 0xFFFFFF4C; M(R2)=12 34 56 78; R3 = 0x00000012;
R2 := R2+R1=FFFFFF4C+00000003 = 0xFFFFFF4F

 ADD R2, R2, R0; R2 = 0xFFFFFF4F+0x01 = 0xFFFFFF50, stands for address align-
ment

 LDRBT R3,[R2], R4, LSL #2 ; R2 = 0xFFFFFF50; M(R2) = 12 34 56 78; R3 =
0x00000012; R2 = R2+ (R4 lsl #2) = 0xFFFFFF64

 LDRSB R3, [R5]; R5 = 0xFFFFFF5C; M(R5)=11 12 13 14; R3 = 0x00000011; S :=
0, where R3[31:8] := 0xSSSSSS, R3[7:0] := 0x11

 LDRSB R9, [R8]; R8 = 0xFFFFFF30; M(R8)= E7 FF FF FF; R8[7:0]= E7; S := F, R9
= 0xFFFFFFE7, where R9[31:8] := 0xSSSSSS, R9[7:0] := 0xE7

 LDRSH R3, [R5]; R5 = 0xFFFFFF5C; M(R5)=11 12 13 14; R3 = 0x00001211; S :=
0, where R3[31:16] := 0xSSSS, R3[15:0] := 0x1211

 LDRSH R10, [R8]; R8 = 0xFFFFFF30; M(R8)= E7 FF FF FF; R8[7:0]= E7; S := F;
R10 = 0xFFFFFFE7; where R10[31:8] := 0xSSSS, R10[15:0] := 0xFFE7

 LDR R3, [R2, #0x04]; R2=0xFFFFFF64; R2+0x04 = 0xFFFFFF68; M(R2+0x04) =
11 12 13 14; R3 = 0x14131211

 LDR R3, [R5, #–0xA4]; R5 = FFFFFF5C; R5–0xA4=0xFFFFFEB8; M(R5–0xA4) =
11 12 13 14; R3 = 0x14131211

 LDR R3, [R0, #0xFFFFFF37]!; R0=0x00000001; R0+0xFFFFFF37 = 0xFFFFFF38;
M(R0+0xFFFFFF37) = 11 12 13 14; R3 = 0x14131211; R0 = 0xFFFFFF38

 LDR R3, [R5, #–0x30]!; R5=0xFFFFFF5C; R5–0x30 = 0xFFFFFF2C; M(R5–0x30) =
11 12 13 14; R3 = 14 13 12 11; R5 = 0xFFFFFF2C

 LDR R3,[R5,–R2]; R5=0xFFFFFF2C; R5–R2= 0xFFFFFF2C – 0xFFFFFF64 =
0xFFFFFFC8; M(R5–R2)=23 45 67 89; R3 = 0x89674523

 LDR R3,[R6,R7]; R6 = 0xFFFFFF01; R6+R7 = 0xFFFFFF08; M(R6+R7) = 11 12 13
14; R3 = 0x14131211

128

`

 LDR R3,[R5, –R2]!; R5=0xFFFFFF2C; R5–R2= 0xFFFFFF2C – 0xFFFFFF64 =
0xFFFFFFC8; M(R5–R2)=23 45 67 89; R3 = 0x89674523; R5 = 0xFFFFFFC8

 LDR R3,[R6,R7]!; R6 = 0xFFFFFF01; R6+R7 = 0xFFFFFF08; M(R6+R7) = 11 12
13 14; R3 = 0x14131211; R6 = 0xFFFFFF08

 MOV R2, #0xFFFFFF63; R2 = 0xFFFFFF63, stands for address alignment

 LDR R3,[R2, –R5, lsr #25]; R5 = 0xFFFFFFC8; R5 lsr #25 = 0x0000007F; R2 – R5
lsr #25 = 0xFFFFFEE4; M(R2 – R5 lsr #25) = 11 12 13 14; R3 = 0x14131211

 SUB R0,R0,R1; R0 = R0–R1 = 0xFFFFFF38–0x03=0xFFFFFF35, stands for address
alignment

 LDR R3,[R0, R5, lsr #26]; R5 = 0xFFFFFF35; R5 lsr #26 = 0x0000003F; R0 + R5 lsr
#26 = 0xFFFFFF74; M(R0 + R5 lsr #26) = 11 12 13 14; R3 = 0x14131211

 LDR R3,[R2, –R5, lsr #25]!; R5 = 0xFFFFFFC8; R5 lsr #25 = 0x0000007F; R2 – R5
lsr #25 = 0xFFFFFEE4; M(R2 – R5 lsr #25) = 11 12 13 14; R3 = 0x14131211; R2 =
0xFFFFFEE4

 LDR R3,[R0, R5, lsr #26]!; R5 = 0xFFFFFF35; R5 lsr #26 = 0x0000003F; R0 + R5 lsr
#26 = 0xFFFFFF74; M(R0 + R5 lsr #26) = 11 12 13 14; R3 = 0x14131211; R0 =
0xFFFFFF74

 LDR R3,[R2], #44; R2 = 0xFFFFFEE4; M(R2)= 11 12 13 14; R3 = 0x14131211; R2 =
0xFFFFFEE4+44 = 0xFFFFFF10

 LDR R3,[R5], #–44; R5 = 0xFFFFFF74; M(R5) = 11 12 13 14; R3 = 0x14131211; R5
= 0xFFFFFF74–44 = 0xFFFFFF9C

 LDR R3,[R0], –R1; R3 = 0xFFFFFF74; M(R0) = 11 12 13 14; R3 = 0x14131211; R0
= 0xFFFFFF74–0x03 = 0xFFFFFF71

 LDR R3,[R6], R0; R6 = 0xFFFFFF08; M(R6) = 11 12 13 14; R3 = 0x14131211; R6 =
0xFFFFFF08+0xFFFFFF71 = 0xFFFFFE79

 ADD R2, R2, #0x04; R2 = 0xFFFFFF10+0x04 = 0xFFFFFF14, stands for address
alignment

129

`

 LDR R3,[R2], R4, ror #30; R2 = 0xFFFFFF14; R4 ror #30 = 0x00000014; R2+R4 ror
#30 = 0xFFFFFF14+0x00000014 = 0xFFFFFF28; M(R2)= 11 12 13 14; R3 = 0x14131211

 LDR R3,[R2], –R4, ror #30;R2 = 0xFFFFFF28; R4 ror #30 = 0x00000014; R2–R4 ror
#30 = 0xFFFFFF14–0x00000014 = 0xFFFFFF14; M(R2)= 11 12 13 14; R3 = 0x14131211

;;; store commands ;;;

 MOV R0, #0x01; R0 = 0x01

 MOV R1, #0x03; R1 = 0x03

 MOV R2, #0xFFFFFF3C; R2 = 0xFFFFFF3C

 MOV R3, #0xFFFFFF12; R3 = 0xFFFFFF12

 MOV R4, #0x05; R4 = 0x05

 MOV R5, #0xFFFFFF5C; R5 = 0xFFFFFF5C

 MOV R6, #0xFFFFFF01; R6 = 0xFFFFFF01

 MOV R7, #0x00000007; R7 = 0x00000007

 STR R3, [R2] ; R2 = 0xFFFFFF3C; R3 = 0xFFFFFF12; M(R2)= 12 FF FF FF

 STRH R3, [R3]; R3 = 0xFFFFFF12; M(R3)=12 FF 00 99; where R3[31:16] :=
0x0000, R3[15:0] := 0x12FF

 STR R9,[R3]; clear M(R3)

 STR R9, [R2]; clear M(R2)

 STRB R3, [R2]; R3 = 0xFFFFFF12, R2 = 0xFFFFFF3C; M(R2)=12 00 00 00; where
R3[31:8] := 0x000000, R3[7:0] := 0x12

 STRT R3, [R2], #44; R3 = 0xFFFFFF12; R2 = 0xFFFFFF3C; M(R2)=12 FF FF FF;
R2 := ((R2)2+44)16 = 0xFFFFFF68

 STRT R3, [R2], #–44; R3 = 0xFFFFFF12; R2 = 0xFFFFFF68; M(R2)=12 FF FF FF;
R2: = ((R2)2–44)16 = 0xFFFFFF3C

 STRT R3, [R2], R1; R3 = 0xFFFFFF12; R2 = 0xFFFFFF3C; M(R2)=12 FF FF FF; R2
:= R2+R1=FFFFFF3C+00000003 = 0xFFFFFF3F

130

`

 MOV R2, #0xFFFFFF3C; R2 = 0xFFFFFF3C, stands for address alignment

 STRT R3, [R2], –R1; R3 = 0xFFFFFF12; R2 = 0xFFFFFF3C; M(R2) = 12 FF FF FF;
R2 := R2–R1=FFFFFF3C–00000003 = 0xFFFFFF39

 SUB R2, R2, R0; R2 = 0xFFFFFF39–0x01 = 0xFFFFFF38, stands for address align-
ment

 STRT R3,[R2], R4, LSL #2 ; R2 = 0xFFFFFF38; R3 = 0xFFFFFF12; M(R2) = 12 FF
FF FF; R2 = R2+ (R4 lsl #2) = 0xFFFFFF4C

 STRBT R3, [R2], #44; R2 = 0xFFFFFF4C; R3 = 0xFFFFFF12; M(R2)= 12 00 00 00;
R2 := ((R2)2+44)16 = 0xFFFFFF78

 STRBT R3, [R2], #–44; R2 = 0xFFFFFF78; R3 = 0xFFFFFF12; M(R2)=12 00 00 00;
R2: = ((R2)2–44)16 = 0xFFFFFF4C

 STRBT R6, [R2], R1; R2 = 0xFFFFFF4C; R6 = 0xFFFFFF01; M(R2)=01 00 00 00;
R2 := R2+R1=FFFFFF4C+00000003 = 0xFFFFFF4F

 ADD R2, R2, R0; R2 = 0xFFFFFF4F+0x01 = 0xFFFFFF50, stands for address align-
ment

 STRBT R3,[R2], R4, LSL #2 ; R2 = 0xFFFFFF50; R3 = 0xFFFFFF12; M(R2) = 12 00
00 00; R2 = R2+ (R4 lsl #2) = 0xFFFFFF64

 STR R3, [R2, #0x04]; R2=0xFFFFFF64; R3 = 0xFFFFFF12; R2+0x04 =
0xFFFFFF68; M(R2+0x04) = 12 FF FF FF

 STR R3, [R5, #–0xA4]; R5 = FFFFFF5C; R3 = 0xFFFFFF12; R5–
0xA4=0xFFFFFEB8; M(R5–0xA4) = 12 FF FF FF

 STR R6, [R0, #0xFFFFFF37]!; R0=0x00000001; R0+0xFFFFFF37 = 0xFFFFFF38;
R6 = 0xFFFFFF01; M(R0+0xFFFFFF37) = 01 FF FF FF; R0 = 0xFFFFFF38

 STR R3, [R5, #–0x30]!; R5=0xFFFFFF5C; R5–0x30 = 0xFFFFFF2C; R3 =
0xFFFFFF12; M(R5–0x30) = 12 FF FF FF; R5 = 0xFFFFFF2C

 STR R3,[R5,–R2]; R5=0xFFFFFF2C; R5–R2= 0xFFFFFF2C – 0xFFFFFF64 =
0xFFFFFFC8; R3 = 0xFFFFFF12; M(R5–R2)= 12 FF FF FF

 STR R3,[R6,R7]; R6 = 0xFFFFFF01; R6+R7 = 0xFFFFFF08; R3 = 0xFFFFFF12;
M(R6+R7) = 12 FF FF FF

131

`

 STR R6,[R5, –R2]!; R5=0xFFFFFF2C; R5–R2= 0xFFFFFF2C – 0xFFFFFF64 =
0xFFFFFFC8; R6 = 0xFFFFFF01; M(R5–R2)= 01 FF FF FF; R5 = 0xFFFFFFC8

 STR R0,[R6,R7]!; R6 = 0xFFFFFF01; R6+R7 = 0xFFFFFF08; R0 = 0xFFFFFF38;
M(R6+R7) = 38 FF FF FF; R6 = 0xFFFFFF08

 MOV R2, #0xFFFFFF63; R2 = 0xFFFFFF63, stands for address alignment

 STR R3,[R2, –R5, lsr #25]; R5 = 0xFFFFFFC8; R5 lsr #25 = 0x0000007F; R2 – R5
lsr #25 = 0xFFFFFEE4; R3 = 0xFFFFFF12; M(R2 – R5 lsr #25) = 12 FF FF FF

 SUB R0,R0,R1; R0 = R0–R1 = 0xFFFFFF38–0x03=0xFFFFFF35, stands for address
alignment

 STR R3,[R0, R5, lsr #26]; R5 = 0xFFFFFF35; R5 lsr #26 = 0x0000003F; R0 + R5 lsr
#26 = 0xFFFFFF74; R3 = 0xFFFFFF12; M(R0 + R5 lsr #26) = 12 FF FF FF

 STR R6,[R2, –R5, lsr #25]!; R5 = 0xFFFFFFC8; R5 lsr #25 = 0x0000007F; R2 – R5
lsr #25 = 0xFFFFFEE4; R6 = 0xFFFFFF08; M(R2 – R5 lsr #25) = 08 FF FF FF; R2 =
0xFFFFFEE4

 STR R6,[R0, R5, lsr #26]!; R5 = 0xFFFFFF35; R5 lsr #26 = 0x0000003F; R0 + R5 lsr
#26 = 0xFFFFFF74; R6 = 0xFFFFFF08; M(R0 + R5 lsr #26) = 08 FF FF FF; R0 =
0xFFFFFF74

 STR R3,[R2], #44; R2 = 0xFFFFFEE4; R3 = 0xFFFFFF12; M(R2)= 12 FF FF FF; R2
= 0xFFFFFEE4+44 = 0xFFFFFF10

 STR R3,[R5], #–44; R5 = 0xFFFFFFC8; R3 = 0xFFFFFF12; M(R5) = 12 FF FF FF;
R5 = 0xFFFFFFC8–44 = 0xFFFFFF9C

 STR R3,[R0], –R1; R0 = 0xFFFFFF74; R6 = 0xFFFFFF12; M(R0) = 12 FF FF FF; R0
= 0xFFFFFF74–0x03 = 0xFFFFFF71

 STR R5,[R6], R0; R6 = 0xFFFFFF08; R5 = 0xFFFFFF9C; M(R6) = 9C FF FF FF; R6
= 0xFFFFFF08+0xFFFFFF71 = 0xFFFFFE79

 ADD R2, R2, #0x04; R2 = 0xFFFFFF10+0x04 = 0xFFFFFF14, stands for address
alignment

 STR R3,[R2], R4, ror #30; R2 = 0xFFFFFF14; R4 ror #30 = 0x00000014; R2+R4 ror
#30 = 0xFFFFFF14+0x00000014 = 0xFFFFFF28; R3 = 0xFFFFFF12; M(R2)= 12 FF FF FF

132

`

 STR R3,[R2], –R4, ror #30;R2 = 0xFFFFFF28; R4 ror #30 = 0x00000014; R2–R4 ror
#30 = 0xFFFFFF14–0x00000014 = 0xFFFFFF14; R3 = 0xFFFFFF12; M(R2)= 12 FF FF FF

 ;;;; MULTIPLE REGISTERS

 MOV R8, #0xFFFFFF3C ; R8 = 0xFFFFFF3C

 STR R8,[R8] ; M(R8) = 0xFFFFFF3C

 STR R8,[R8,#4] ; M(R8+4) = 0xFFFFFF3C

 STR R8,[R8,#8] ; M(R8+8) = 0xFFFFFF3C

 LDM R8,{R0,R2,R9} ; R0=M(R8)=0xFFFFFF3C,
R1=M(R8+4)=0xFFFFFF3C, R2=M(R8+8)=0xFFFFFF3C

 LDMIA R8!,{R0,R1,R2} ; R0=M(R8)=0xFFFFFF3C,
R1=M(R8+4)=0xFFFFFF3C, R2=M(R8+8)=0xFFFFFF3C

 LDMIB R8!,{R0,R1,R2} ; R0=M(R8)=0xFFFFFF3C,
R1=M(R8+4)=0xFFFFFF3C, R2=M(R8+8)=0x00000000

 LDMDA R8!,{R0,R1,R2} ; R0=M(R8)=0x00000000,
R1=M(R8+4)=0x00000000, R2=M(R8+8)=0xFFFFFF3C

 LDMDB R8!,{R0,R1,R2} ; R0=M(R8)=0x00000000,
R1=M(R8+4)=0x00000000, R2=M(R8+8)=0x00000000

 ;

 MOV R0,#0xFFFFFFAA ; R0 = 0xFFFFFFAA

 MOV R1,#0xFFFFFFAA ; R1 = 0xFFFFFFAA

 MOV R2,#0xFFFFFFAA ; R2 = 0xFFFFFFAA

 STMIA R8!,{R0,R1,R2} ; M(R8)=0xFFFFFFAA,
M(R8+4)=0xFFFFFFAA, M(R8+8)=0xFFFFFFAA

 STMIB R8!,{R0,R1,R2} ; M(R8+4)=0xFFFFFFAA,
M(R8+8)=0xFFFFFFAA, M(R8+12)=0xFFFFFFAA

 STMDA R8!,{R0,R1,R2} ; M(R8)=0xFFFFFFAA, M(R8–
4)=0xFFFFFFAA, M(R8–8)=0xFFFFFFAA

 STMDB R8!,{R0,R1,R2} ; M(R8–4)=0xFFFFFFAA, M(R8–
8)=0xFFFFFFAA, M(R8–12)=0xFFFFFFAA

stop

133

`

 END

5.2.5.3 JMP_MUL.s

 AREA ProgramName, Code, ReadWrite

 ENTRY

start

 MOV R0, #0x01; R0 = 0x01

 MOV R2, #0xFFFFFFCE; R2 = 0xFFFFFFCE

 MOV R3, #0x04; R3 = 0x04

 MOV R4, #0x05; R4 = 0x05

 MOV R5, #0x06; R5 = 0x06

 MOV R6, #0xFFFFFFCD; R6 = 0xFFFFFFCD

 MOV R7, #0x08; R7 = 0x08

 MOV R8, #0x09; R8 = 0x09

 MOV R9, #0x10; R9 = 0x010

 B label ; Go to "label"

 MOV R10,#–5

label

 BL label2 ; R14 =0x00000030 Go to "label2"

 MOV R10,#–7

label2

 MOV R10,#0x40

 BX R10

 MUL R4, R3, R5 ; R4 = R3 x R5 = 0x18

134

`

 MULS R4, R2, R0 ; R4 = R2 x R0 = FFFFFFCE, N–>1

 MULS R4, R2, R1 ; R4 = R2 x R1 = 0, Z–>1

 MLA R4, R7, R8, R3 ; R4 = R7 x R8 + R3 = 0x4C

 UMULL R7, R8, R2, R6 ; R7, R8 = R2 x R6

 MOV R5, #0x05 ; R5 = 0x05

 UMLAL R5, R9, R2, R6 ; R2 x R6 = FFFFFF9B 000009F6, R5 = 0x9F6 + R5 =
0x9FB, R9 = FFFFFF9B + R9 = FFFFFFAB

 SMLAL R0, R3, R2, R7 ; R2 x R7 = FFFFFFFFF FFFE0DF4, R0 = R0 +
0xFFFE0DF4 = 0xFFFE0DF5, R3 = R3 + 0xFFFFFFFF = 0x03

stop

 END

135

`

ПИТАННЯ ДЛЯ САМОКОНТРОЛЮ

1) Поясніть синтаксис команд:

– пересилання;

– арифметичних;

– логічних;

– завантаження/збереження;

– групового завантаження/збереження;

– обміну;

– роботи зі співпроцесорами;

– програмного переривання.

2) Які дії необхідно виконати щоб створити новий проект у сере-

довищі µVision Keil 4?

3) Як додати файли по проекту?

4) Яку комбінацію клавіш потрібно натиснути для компілювання

проекту?

5) Як виконати перегляд машинних кодів та мнемокоду?

6) Як задається діапазон адрес памяті?

7) Як виконати покрокове виконання команд?

8) Як виконати зміну регістрів та прапорців?

136

`

ПРЕДМЕТНИЙ ПОКАЖЧИК

ARM-архітектура, 12

CISC-архітектура, 9

Cortex–M процесор, 20

RISC-процесори, 10

арифметичний зсув регістра, 76

Архітектура ARM, 5

безпосередній операнд, 73

види адресацій, 68

додатковий регістр, 47

команди ARM7, 51

команди LDM і STM, 59

команди Thumb, 63

команди

завантаження/збереження, 79

команди множення чисел, 62

команди обробки даних, 57

команди переходу B і BL, 56

команди розгалуження, 55

конвейер команд, 41

копіювання регістрів, 58

логічний зсув регістра вліво, 75

логічний зсув регістра вправо, 75

мікроконтролер LPC2378, 27

мікроконтролер STM32, 36

налагоджувач, 111

обробка виняткових ситуацій, 49

префікси команд, 54

програмне переривання, 61

регістр CPSR, 45

регістровий операнд, 74

сімейство Cortex, 16

сімейство STM32, 38

список інструкцій ARM7, 106

триступеневий конвеєр, 42

циклічний зсув, 77

шина AHB2, 33

шина APB, 35

137

`

СПИСОК РЕКОМЕНДОВАНОЇ ЛІТЕРАТУРИ

1. Тревор Мартин Микроконтроллеры ARM7 семейств

LPC2300/2400. Вводный курс разработчика / пер. с англ. Евстифеева А. В.

– М. : Додэка-XXI, 2010. – 336 с.: ил.

2. Редькин П.П. 32/16-битные микроконтроллеры ARM7 семейства

AT91SAM7 фирмы Atmel. Руководство пользователя (+ CD). – М. : Изда-

тельский дом «Додэка-XXI», 2008. – 704 с.: ил.

3. ARM® IAR Embedded Workbench™ IDE. User Guide for Advanced

RISC Machines Ltd's ARM Cores. 2005, IAR Systems.

4. ARM® IAR C/C++ Compiler. Reference Guide for Advanced RISC

Machines Ltd's ARM Cores. 2005, IAR Systems.

5. IAR Linker and Library Tools. Reference Guide. Version 4.59. 2005,

IAR Systems.

6. Редькин П.П. Микроконтроллеры ARM7 семейства LPC2000. Ру-

ководство пользователя (+ CD). – М. : Издательский дом «Додэка-XXI»,

2007.

7. Мартин Т. Микроконтроллеры ARM7. Семейство LPC2000 компа-

нии Philips. Вводный курс (+ CD).- М.: Издательский дом «Додэка-ХХI»,

2006.

8. Отладочная плата AS-sam7X. Руководство пользователя.

ARGUSSOFT. www.argussoft.ru.

9. Отладочная плата AS-sam7S64. Руководство пользователя.

ARGUSSOFT. www.argussoft.ru.

10. ARM-JTAG Wiggler COMPATIBLE DONGLE FOR PRO-

GRAMMING AND DEBUGGING. 2004, OLIMEX Ltd.,

www.olimex.com/dev.

11. Microchip 24AA64/24LC64 64K I2C ™ CMOS Serial EEPROM.

1999 Microchip Technology Inc. DS21189C.

138

`

12. ARM 7TDMI Data Sheet. Document Number: ARM DDI 0029E.

Issued: August 1995. Advanced RISC Machines Ltd (ARM) 1995.

13. ARM7TDMI-S Technical Reference Manual (Rev 4) ARM Lim-

ited. ARM DDI 0234A.

14. AT91 ARM Thumb-based Microcontrollers

AT91SAM7X256/AT91SAM7X128. Preliminary. 6120E-ATARM-04-Apr-06.

