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About This Book

“And what is the use of a book,” thought Alice, “without pictures
or conversations?”

—Lewis Carroll (Alice in Wonderland)

A First Course in Complex Analysis was written for a one-semester undergrad-
uate course developed at Binghamton University (SUNY) and San Francisco
State University, and has been adopted at numerous other institutions. For
many of our students, Complex Analysis is their first rigorous analysis (if not
mathematics) class they take, and this book reflects this very much. We tried
to rely on as few concepts from Real Analysis as possible. In particular, series
and sequences are treated from scratch, which has the consequence that power
series are introduced late in the course. The goal our book works toward is
the Residue Theorem, including some nontraditional applications from both
continuous and discrete mathematics. More than 250 exercises and numerous
SageMath prompts are spread throughout the text.

A printed paperback version of this open textbook is available from Orthog-
onal Publishing? or your favorite bookseller.

3www.orthogonalpublishing.com
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A Note to Instructors

There are two versions of math in the lives of many Americans: the
strange and boring subject that they encountered in classrooms
and an interesting set of ideas that is the math of the world, and
is curiously different and surprisingly engaging. Our task is to
introduce this second version to today’s students, get them excited
about math, and prepare them for the future.

—Jo Boaler

The material in this book should be more than enough for a typical semester-
long undergraduate course in complex analysis; our experience taught us that
there is more content in this book than fits into one semester. Depending on
the nature of your course and its place in your department’s overall curriculum,
some sections can be either partially omitted or their definitions and theorems
can be assumed true without delving into proofs. Chapter 10 contains optional
longer homework problems that could also be used as group projects at the end
of a course.

We would be happy to hear from anyone who has adopted our book for
their course, as well as suggestions, corrections, or other comments.
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Chapter 1

Complex Numbers

Die ganzen Zahlen hat der liebe Gott geschaffen, alles andere ist
Menschenwerk. (God created the integers, everything else is made
by humans.)

—Leopold Kronecker (1823-1891)

The real numbers have many useful properties. There are operations such as
addition, subtraction, and multiplication, as well as division by any nonzero
number. There are useful laws that govern these operations, such as the commu-
tative and distributive laws. We can take limits and do calculus, differentiating
and integrating functions. But you cannot take a square root of —1; that is,
you cannot find a real root of the equation

2 +1=0. (1.1)
Most of you have heard that there is a “new” number i that is a root of
(1.1); that is, i> + 1 = 0 or i2 = —1. We will show that when the real numbers
are enlarged to a new system called the complexr numbers, which includes ¢, not
only do we gain numbers with interesting properties, but we do not lose many
of the nice properties that we had before.

The complex numbers, like the real numbers, will have the operations of
addition, subtraction, multiplication, as well as division by any complex number
except zero. These operations will follow all the laws that we are used to, such
as the commutative and distributive laws. We will also be able to take limits
and do calculus. And, there will be a root of (1.1).

As a brief historical aside, complex numbers did not originate with the search
for a square root of —1; rather, they were introduced in the context of cubic
equations. Scipione del Ferro (1465-1526) and Niccolo Tartaglia (1500-1557)
discovered a way to find a root of any cubic polynomial, which was publicized by
Gerolamo Cardano (1501-1576) and is often referred to as Cardano’s formula.
For the cubic polynomial 23 4 px 4 ¢, Cardano’s formula involves the quantity

\/% + ’2’—3 It is not hard to come up with examples for p and ¢ for which the
argument of this square root becomes negative and thus not computable within
the real numbers. On the other hand (e.g., by arguing through the graph of
a cubic polynomial), every cubic polynomial has at least one real root. This
seeming contradiction can be solved using complex numbers, as was probably
first exemplified by Rafael Bombelli (1526-1572).

In the next section we show exactly how the complex numbers are set up,
and in the rest of this chapter we will explore the properties of the complex
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numbers. These properties will be of both algebraic (such as the commutative
and distributive properties mentioned already) and geometric nature. You will
see, for example, that multiplication can be described geometrically. In the rest
of the book, the calculus of complex numbers will be built on the properties
that we develop in this chapter.

1.1 Definitions and Algebraic Properties

There are many equivalent ways to think about a complex number, each of
which is useful in its own right. In this section, we begin with a formal definition
of a complex number. We then interpret this formal definition in more useful
and easier-to-work-with algebraic language. Later we will see several more ways
of thinking about complex numbers.

Definition 1.1.1 The complex numbers are pairs of real numbers,

C = {(z,y): v,y eR},

equipped with the addition

(z,y) + (a,b) == (x+a,y+Db) (1.2)

and the multiplication
(z,y) - (a,b) := (xa— yb, b+ ya). (1.3)
O

One reason to believe that the definitions of these binary operations are
acceptable is that C is an extension of R, in the sense that the complex numbers
of the form (x,0) behave just like real numbers:

(z,0) + (y,0) = (z+y,0) and (2,0) - (y,0) = (xy,0).

So we can think of the real numbers being embedded in C as those complex
numbers whose second coordinate is zero.

The following result states the algebraic structure that we established with
our definitions.

Proposition 1.1.2 The set of complex numbers endowed with the operations
of addition and multiplication (C,+,-) is a field. More specifically, this means
that for all complex numbers (x,y), (a,b), and (¢,d),

(z+ y) ( b) € (1.4)
((z,y) + (a,b)) + z,y) + ((a,b) + (¢, d)) (1.5)
(z,y) + (a’b) = (a b) + (x,y) (1.6)
(@,y) +(0,0) = (z,y) (1.7)
(@,9) + (=z,—y) = (0,0) (1.8)
(z,9) - ((a,0) + (¢, d)) = (x,9) - (a,b) + (z,9) - (¢, d) (1.9)
(z,y) - (a,b) € C (1.10)
((:E,y) (a,b)) - (¢,d) = (z,y) - ((a,b) (e, d)) (1.11)
(@,9) - (a,0) = (a,b) - (2,y) (1.12)
(2,9) - (1,0) = (z,y) (1.13)
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(2.9) - (557 57 ) = (LO) f(w,y) € C\{(0,0)}.  (L14)

What we are stating here can be compressed in the language of algebra:
equations (1.4)—(1.8) say that (C,+) is an Abelian group with identity (0,0);
equations (1.9)—(1.14) say that (C\ {(0,0)}, ) is an Abelian group with identity
(1,0).

The proof of Proposition 1.1.2 is straightforward but nevertheless makes for
good practice (see Exercise 1.5.14). We give one sample, for (1.8):

Proof. By our definition for complex addition and properties of additive inverses
in R,
(@,9) + (=2, —y) = (z+ (=2), y+(=y)) = (0,0).

]
The definition of complex multiplication implies the innocent looking state-
ment

(0,1)-(0,1) = (~1,0). (1.15)
This identity together with the fact that

(@,0)- (z,y) = (az,ay)

allows an alternative notation for complex numbers. The latter implies that we
can write

(l‘,y) = ($70)+(07y) = (.23,0)'(1,0)+(y,0)'(0,1).

If we think—in the spirit of our remark about embedding R into C—of
(2,0) and (y, 0) as the real numbers = and y, then this means that we can write
any complex number (z,y) as a linear combination of (1,0) and (0,1), with
the real coefficients z and y. Now (1,0), in turn, can be thought of as the real
number 1. So if we give (0, 1) a special name, say 4, then the complex number
that we used to call (z,y) can be written as -1 +y - or

T +iy.

We invite you to check that the definitions of our binary operations and
Proposition 1.1.2 are coherent with the usual real arithmetic rules if we think
of complex numbers as given in the form x + iy.

The open-source mathematics software SageMath! can handle complex
numbers and functions; we will provide sample code throughout this book to
get you started.?

3+2x1 + 1-1i

(3+2%i) * (1-1)

-I +5

The second complex number in (1.14) is the (multiplicative) inverse of x +iy.

Lwww. sagemath.org
2In particular for readers of the print version of this book, you can execute sage commands,
e.g., via the SageMathCell.


https://www.sagemath.org
https://sagecell.sagemath.org/
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1/(3+2%1)

-2/13%x1 + 3/13

Definition 1.1.3 The number z is called the real part and y the imaginary
part? of the complex number = + iy and are often denoted as Re(z + iy) =
and Im(z + iy) = y. O

real ((3+2%i)*5)

-597

imaginary ((3+2%i)*5)

122
The identity (1.15) now reads

i2=—1.

In fact, much more can now be said with the introduction of the square root of
—1. It is not just that (1.1) has a root, but every nonconstant polynomial has
a root in C:

Theorem 1.1.4 Fundamental Theorem of Algebra. Fvery nonconstant
polynomial of degree d has d roots (counting multiplicity) in C.

The proof of this theorem requires some (important) machinery, so we defer
its proof and an extended discussion of it to Chapter 5 (see Theorem 5.3.2).

1.2 From Algebra to Geometry and Back

Although we just introduced a new way of writing complex numbers, let’s
for a moment return to the (z,y)-notation. It suggests that we can think
of a complex number as a two-dimensional real vector. When plotting these
vectors in the plane R?, we will call the z-axis the real azis and the y-axis the
imaginary axis. The addition that we defined for complex numbers resembles
vector addition; see Figure 1.2.1. The analogy stops at multiplication: there is
no “usual” multiplication of two vectors in R? that gives another vector, and
certainly not one that agrees with our definition of the product of two complex
numbers.

3These names have historical reasons: people thought of complex numbers as unreal,
imagined.
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Z1 + 29

zZ1

z2

Figure 1.2.1 Addition of complex numbers.

Any vector in R? is defined by its two coordinates. On the other hand, it is
also determined by its length and the angle it encloses with, say, the positive
real axis; let’s define these concepts thoroughly.

Definition 1.2.2 The absolute value (also called the modulus) of z = 2+ iy
is

r = |z| = Va2 +y?,
and an argument of z = z + iy is a number ¢ € R such that

T =TCos¢ and y=rsing.

abs (3+2x1i)

sqrt(13)

A given complex number z = x + iy has infinitely many possible arguments.
For instance, the number 1 = 1 4 0 lies on the positive real axis, and so has
argument 0, but we could just as well say it has argument 27, 47, —27, or
27k for any integer k. The number 0 = 0 4 0 has modulus 0, and every real
number ¢ is an argument. Aside from the exceptional case of 0, for any complex
number z, the arguments of z all differ by a multiple of 27, just as we saw for
the example z = 1.

SageMath returns the argument in the range (—m, .

arg(-1)

pi

arg(-1-.00001%1i)

-3.14158265358979

The absolute value of the difference of two vectors has a nice geometric
interpretation:

Proposition 1.2.3 Let z1,20 € C be two complex numbers, thought of as
vectors in R?, and let d(z1,22) denote the distance between (the endpoints of)
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the two vectors in R? (see Figure 1.2.4). Then

d(Zl,ZQ) = |2’1722‘ = |22721|.

Proof. Let z1 = x1 + iy1 and zo = x2 + iys. From geometry we know that

d(z1,22) = V(21— 22)2 + (y1 — y2)2.

This is the definition of |z; — 22|. Since (71 — 22)? = (23 — z1)? and
(y1 — y2)? = (y2 — y1)?, this is also equal to |22 — 21]. |
ral
Z1 — 22
Z2

Figure 1.2.4 Geometry behind the distance between two complex numbers.

That |21 — 22| = |22 — 21| simply says that the vector from z; to z5 has the
same length as the vector from z5 to z;.

It is very useful to keep this geometric interpretation in mind when thinking
about the absolute value of the difference of two complex numbers.

One reason to introduce the absolute value and argument of a complex num-
ber is that they allow us to give a geometric interpretation for the multiplication
of two complex numbers. Let’s say we have two complex numbers: z1 + iy;,
with absolute value r; and argument ¢, and x5 4 iys, with absolute value 7
and argument ¢o. This means we can write x1 + iy; = (r1 cos ¢1) + i(r1 sin ¢q)
and g + iys = (r2 cos ¢a) + i(re sin ¢3). To compute the product, we make use
of some classic trigonometric identities:

(x1 +iy1) (22 +iy2) = (r1coséy + irysingy) (1o cos g + iresin ¢o)
= (r17r2 oS 1 COS o — 179 Sin @1 Sin ¢2)
+ i(TlTQ COS ¢1 sin ¢2 —+ 7rire sin gbl COS ¢2>
1T ((cos ¢1 €OS 2 — sin ¢q sin ¢o)
+ i(cos ¢1 sin ¢o + sin ¢; cos ¢2))
= rira(cos(¢r + ¢2) +isin(¢py + ¢2)) .

So the absolute value of the product is 7172 and one of its arguments is

¢1 + ¢2. Geometrically, we are multiplying the lengths of the two vectors

representing our two complex numbers and adding their angles measured with
respect to the positive real axis.!

You should convince yourself that there is no problem with the fact that there are many
possible arguments for complex numbers, as both cosine and sine are periodic functions with
period 2.
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1+ P2
0P

22 21

$1

z1%22

Figure 1.2.5 Multiplication of complex numbers.

In view of the above calculation, it should come as no surprise that we will
have to deal with quantities of the form cos ¢ + isin ¢ (where ¢ is some real
number) quite a bit. To save space, bytes, ink, etc., we introduce a shortcut
notation and define

e = cos¢+ising.

Figure 1.2.6 shows three examples.

sk

Figure 1.2.6 Three sample complex numbers of the form e*?.

e*(pix*i)

-1

At this point, this exponential notation is indeed purely a notation.? We
will later see in Chapter 3 that it has an intimate connection to the complex ex-
ponential function. For now, we motivate this maybe strange seeming definition
by collecting some of its properties:

2In particular, while our notation “proves” Euler’s formula e2™ = 1, this simply follows
from the facts sin(27) = 0 and cos(2w) = 1. The connection between the numbers , 4, 1,
and the complex exponential function (and thus the number e) is somewhat deeper. We’ll
explore this in Section 3.5.
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Proposition 1.2.7 For any ¢, ¢1,¢2 € R,
(a) eiP1 pid2 — i(¢1+62)

(d) ei(P+2m) _ g
(e) ’eiﬂ =1
() % e'? = jel?,

You are encouraged to prove them (see Exercise 1.5.16); again we give a
sample (f).

Proof. By definition of e?,

%ew = %(cosqﬂrisingb)
= —sin¢ +icos¢
= i(cos¢ +isin¢)
= je'?.

|

Proposition 1.2.7 implies that (2% )" = 1 for any integers m and n > 0.

Thus numbers of the form €2 with ¢ € Q play a pivotal role in solving
equations of the form 2™ = 1, which is reason to give them a special name.

Definition 1.2.8 A root of unity is a number of the form e2*% for some
integers m and n > 0. Equivalently (by Exercise 1.5.17), a root of unity is a
complex number ¢ such that (™ = 1 for some positive integer n. In this case,
we call ¢ an n'* root of unity. If n is the smallest positive integer with the
property (" = 1, then ( is a primitive n'* root of unity. %

Example 1.2.9 The 4" roots of unity are +1 and +i = e % . The latter two
are primitive 4*" roots of unity. O

SageMath can picture roots of unity:

pts = [e*(Ix(theta)) for theta in srange (0, 2xpi, pi/8)]
list_plot([(real(p),imag(p)) for p in pts], aspect_ratio=1)

With our new notation, the sentence “the complex number z + ¢y has
absolute value r and argument ¢” now becomes the identity

r+iy = re'.

The left-hand side is often called the rectangular form, and the right-hand
side the polar form of this complex number.

We now have five different ways of thinking about a complex number: the
formal definition, in rectangular form, in polar form, and geometrically, using
Cartesian coordinates or polar coordinates. Each of these ways is useful in
different situations, and translating between them is an essential ingredient in
complex analysis. This list is not exhaustive; see, e.g., Exercise 1.5.21.
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Various ways of thinking about a complex number.

We collect the various ways we’ve seen of describing a complex
number.

Formal A complex number is formally defined to be an
definition  ordered pair of real numbers (z,y), as given in
Definition 1.1.1.

Rectangular
form We frequently represent a ;
complex number as
z=x+ 1y, Y
and we may visualize the num- —
ber using Cartesian coordi-
nates.
Exponential
form Similarly, a complex num- :
ber also has an exponential
form
z=re' y

and can be visualized using po-
lar coordinates.

1.3 Geometric Properties

From the chain of basic inequalities

_ /$24—y2 S _J/xQ S T S waﬁ S /z24—y2

(or, alternatively, by arguing with basic geometric properties of triangles), we
obtain the inequalities

—|z] < Re(z) < |7 and —lz] < Im(z) < |z|. (1.16)
The square of the absolute value has the nice property
z+iy]> = 22 +y? = (x+iy)(z —iy).

This is one of many reasons to give the process of passing from = + iy to
x — iy a special name.

Definition 1.3.1 The number x — iy is the (complex) conjugate of x 4 iy. We
denote the conjugate by

Tty = r—1y.

conjugate (3+2%1)

-2xI + 3

Geometrically, conjugating z means reflecting the vector corresponding to z
with respect to the real axis, as shown in Figure 1.3.2.
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Ny

Figure 1.3.2 The complex conjugate Z is obtained by reflecting z across the
real axis.

The following proposition collects some basic properties of the conjugate.
Proposition 1.3.3 For any z, 21,22 € C,
(a) 21X 20 =21+ %2

(b) ZiZ2 =71 - %

o (2)-%

(d) z ==

(e) Iz = 2]

(F) |o* =22
(8) Re(z) = 5 (2 +72)
(h) Im(z) = % (z—2)

(i) e = e o,

The proofs of these properties are straightforward (see Exercise 1.5.22); once
more we give a sample (b).

Proof. Let z1 = x1 + iy; and 29 = 2 + iy2. Then

(w172 — y1y2) + i(z1Y2 + T291)
(x122 — y1y2) — i(z1y2 + T291)
(x1 —iy1) (22 — iy2)

2 .

zZ1 R =

S

|
We note that the property \z|2 = 2Z yields a neat formula for the inverse of
a nonzero complex number, which is implicit already in (1.14):

1
27 =

A famous geometric inequality (which holds, more generally, for vectors

10
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in R™) goes as follows.

Proposition 1.3.4 Triangle inequality.  For any z1,20 € C we have
|21 + 22| < |z1] + |22l

By drawing a picture in the complex plane, you should be able to come up
with a geometric proof of the triangle inequality. Here we proceed algebraically:

Proof. We make extensive use of Proposition 1.3.3:

|21 + 22|2 = (214 22) (21 + 22)
(214 22) (Z1 + 22)

2121 + 2122 + 22%21 + 22%2

|21|2+215+ﬁ+ |Z2|2
1211 + 2Re (21%3) + | 22|
< lal’ +2]z17] + |2

= |zl + 2|z 7] + |22f

= |zf* + 2|z |2 + |22/

= (1] + |22])°,

where the inequality follows from (1.16). Taking square roots on the left- and
right-hand sides proves our claim. |
For future reference we list several useful variants of the triangle inequality:

Corollary 1.3.5 For z1,23,...,2z, € C, we have the following relations:
(a) The triangle inequality:

|:|:Zl :l:22| S |Zl| + |ZQ| .

(b) The reverse triangle inequality:

|:|:Zl :l:ZQ‘ Z H,Zl‘ — |22|| .

(¢) The triangle inequality for sums:

n

S

k=1

n
<Y el
k=1

The first item (a) is just a rewrite of the original triangle inequality, using
the fact that |[+z| = |z|, and (c) follows by induction. The proof of the reverse
triangle inequality is left as Exercise 1.5.25.

1.4 Elementary Topology of the Plane

In Section 1.2 we saw that the complex numbers C, which were initially defined
algebraically, can be identified with the points in the Euclidean plane R2. In
this section we collect some definitions and results concerning the topology of
the plane.
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C[2+1,2]

vy | NS

Figure 1.4.1 Sample circle and disk.

In Proposition 1.2.3, we interpreted |z — w| as the distance between the
complex numbers z and w, viewed as points in the plane. So if we fix a complex
number a and a positive real number r, then all z € C satisfying |z —a| = r
form the set of points at distance r from a; that is, this set is the circle with
center a and radius r, which we denote by

Cla,r] = {z€C: |z—a|=71}.

The inside of this circle is called the open disk with center a and radius r;
we use the notation

Dia,r] == {z€C: |z—a|l <r}.

Note that D[a,r] does not include the points on Cla,r]. Figure 1.4.1
illustrates these definitions.
Next we need some terminology for talking about subsets of C.

Definition 1.4.2 Suppose G is a subset of C.

(a) A point a € G is an interior point of G if some open disk with center a is
a subset of G.

(b) A point b € C is a boundary point of G if every open disk centered at b
contains a point in G and also a point that is not in G.

(c) A point ¢ € C is an accumulation point of G if every open disk centered
at ¢ contains a point of G different from ec.

(d) A point d € G is an isolated point of G if some open disk centered at d
contains no point of G other than d.

O

The idea is that if you don’t move too far from an interior point of G then

you remain in G; but at a boundary point you can make an arbitrarily small

move and get to a point inside G and you can also make an arbitrarily small
move and get to a point outside G.
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Definition 1.4.3 A set is open if all its points are interior points. A set is
closed if it contains all its boundary points. %

Example 1.4.4 For r > 0 and a € C, the sets {z € C: |z —a|] <r} = Dla,r]
and {z € C: |z —a| > r} are open. The closed disk

Dla,r] == {z€C: |z—a| <7}
is an example of a closed set. O

A given set might be neither open nor closed. The complex plane C and
the empty set @ are (the only sets that are) both open and closed.

Definition 1.4.5 The boundary OG of a set G is the set of all boundary points
of G. The interior of G is the set of all interior points of G. The closure of G

is the set G U 0G. O
Example 1.4.6 The closure of the open disk D[a, 7] is D]a,r]. The boundary
of Dla,r] is the circle Cla,r]. O
Definition 1.4.7 The set G is bounded if G C D[0, r] for some r. O

One notion that is somewhat subtle in the complex domain is the idea of
connectedness. Intuitively, a set is connected if it is “in one piece.” In R a set is
connected if and only if it is an interval, so there is little reason to discuss the
matter. However, in the plane there is a vast variety of connected subsets.

Definition 1.4.8 Two sets X,Y C C are separated if there are disjoint open
sets A,BC Csothat X C Aand Y C B. A set G C C is connected if it is
impossible to find two separated nonempty sets whose union is G. A region is
a connected open set. O
The idea of separation is that the two open sets A and B ensure that X
and Y cannot just “stick together.” It is usually easy to check that a set is not
connected. On the other hand, it is hard to use the above definition to show
that a set is connected, since we have to rule out any possible separation.

Example 1.4.9 The intervals X = [0,1) and ¥ = (1,2] on the real axis
are separated: There are infinitely many choices for A and B that work; one
choice is A = DJ0,1] and B = D[2,1], depicted in Figure 1.4.10. Hence
XUY =10,2]\ {1} is not connected.

Y

Figure 1.4.10 The intervals [0,1) and (1, 2] are separated.

O
One type of connected set that we will use frequently is a path.

Definition 1.4.11 A path (or curve) in C is a continuous function 7: [a, b] — C,
where [a, b] is a closed interval in R.  We may think of v as a parametrization of
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the image that is painted by the path and will often write this parametrization
as y(t), a <t <b. The path is smooth if ~ is differentiable and the derivative
~' is continuous and nonzero.! O

This definition uses the calculus notions of continuity and differentiability;
that is, v: [a,b] — C being continuous means that for all tg € [a, b]

lim (t) = y(to),

t—to

and the derivative of v at tg is defined by

Example 1.4.12 Figure 1.4.13 shows two examples of paths. On the left, we
see the path parametrized by

Yi(t) = —2+2e“,g <t<or,

while the path shown on the right is

34i(t—2) if0<t<s3,
’72(t): i .
6-5+i(t—1) if3<t<5.
Y
t
.l 72(t)

Y1 ()

Figure 1.4.13 Two paths and their parametrizations; v; is smooth and 75 is
continuous and piecewise smooth (a term which we will define in Section 4.1).

|
We remark that each path comes with an orientation, i.e., a sense of direction.
For example, the path v; in Figure 1.4.13 is different from

v3(t) = —2+2e7",  0<t<3E,

even though both v, and 73 yield the same picture: v, features a counter-
clockwise orientation, where as that of ~3 is clockwise.

It is a customary and practical abuse of notation to use the same letter
for the path and its parametrization. We emphasize that a path must have a

IThere is a subtlety here, because « is defined on a closed interval. For 7 : [a,b] — C to
be smooth, we demand both that +/(t) exists for all @ < t < b, and that lim,_, ,+ +/(¢) and
lim, _,,— ~/(t) exist.
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parametrization, and that the parametrization must be defined and continuous
on a closed and bounded interval [a,b]. Since topologically we may identify C
with R?, a path can be specified by giving two continuous real-valued functions
of a real variable, x(t) and y(t), and setting v(¢) = x(t) + i y(t).

Definition 1.4.14 The path « : [a,b] — C is simple if y(t) is one-to-one, with
the possible exception that v(a) = (b) (in plain English: the path does not
cross itself). A path v : [a,b] = C is closed if y(a) = v(b). O

Example 1.4.15 The unit circle C[0, 1], parametrized, e.g., by v(t) = e, 0 <
t < 2w, is a simple closed path. ([l

As seems intuitively clear, any path is connected; however, a proof of this
fact requires a bit more preparation in topology. The same goes for the following
result, which gives a useful property of open connected sets.

Theorem 1.4.16 If any two points in G C C can be connected by a path in G,
then G is connected. Conversely, if G C C is open and connected, then any two
points of G can be connected by a path in G; in fact, we can connect any two
points of G by a chain of horizontal and vertical segments lying in G.

Here a chain of segments in G means the following: there are points
20, %1, - - -, 2n, 50 that zx and zp41 are the endpoints of a horizontal or vertical
segment in G, for all k =0,1,...,n — 1. (It is not hard to parametrize such a
chain, so it determines a path.)

Example 1.4.17 Consider the open unit disk D[0,1]. Any two points in D|0, 1]
can be connected by a chain of at most two segments in D[0, 1], and so D0, 1]
is connected. Now let G = D0, 1] \ {0}; this is the punctured disk obtained by
removing the center from D[0,1]. Then G is open and it is connected, but now
you may need more than two segments to connect points. For example, you
need three segments to connect f% to % since we cannot go through 0. g

We remark that the second part of Theorem 1.4.16 is not generally true if G
is not open. For example, circles are connected but there is no way to connect
two distinct points of a circle by a chain of segments that are subsets of the
circle. A more extreme example, discussed in topology texts, is the “topologist’s
sine curve,” which is a connected set S C C that contains points that cannot
be connected by a path of any sort within S.
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1.5 Exercises

1. Let z=1+4 2 and w = 2 — i. Compute the following:
(a) z+ 3w
Answer. 7—i
(b) w—z
Answer. 1—3i
(c) 23
Answer. —11—2i
(d) Re(w? + w)
Answer. 5
(e) 22 +z+i

Answer. —2+4+7i

2. Find the real and imaginary parts of each of the following:

(a) =2 for any a € R

z+a
3450
(b) Z7i
19 8
Answer. 55 — o5l
1+iv/3 3
— 2
(o) (=152)
Answer. -1

(d) " for any n € Z

3. Find the absolute value and conjugate of each of the following:
(a) =2+
Answer. /5, -2 —i
(b) (2+14)(4+349)
Answer. 5v/5,5—10i

3—i
(c) V2+3i
Answer. 10 344
(d) (1+44)°

Answer. 8, 8i

4. Write in polar form:
(a) 2¢
Answer. 2¢'3
(b) 1+4
Answer. /2¢'i
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(c) =3+ V3i
Answer. 2v3¢%
(d) —i

Answer. e
(e) (2—1i)?
(£) |3 — 44
(8) Vb —i
m) ()
5.  Write in rectangular form:
(a) V2T

Answer. —1+471

3T
73

(b) 34ei2
Answer. 34:
(c) —ei250m
Answer. -1
(d) 2etm

Answer. 2

6. Write in both polar and rectangular form:

(a) eln(S)i

(b) % edtio

17

7. Show that the quadratic formula works. That is, for a,b,c € R with a # 0,

prove that the roots of the equation az? + bz + ¢ = 0 are

—b+ Vb% —4dac

Here we define vb2 — dac = iv/—b2 + 4ac if the discriminant b% — 4ac

is negative.

8. Use the quadratic formula to solve the following equations.

(a) 22+25=0

(b) 222 +22+5=0
(c) 522 +42+1=0
(d) 22—2=1

(e) 22 =2z

9. Find all solutions of the equation 22 + 2z + (1 — i) = 0.

; T
Answer. +¢e'7 —1
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10.

11.

12.
13.

14.
15.
16.
17.

18.

19.

20.

21.

Fix a € C and b € R. Show that the equation |2%| + Re(az) + b =0 has a
solution if and only if |a?| > 4b. When solutions exist, show the solution
set is a circle.

Find all solutions to the following equations:

(a) 26 =1
Answer. z=¢'5% £=0,1,...,5
(b) z*=-16
Answer. z=2¢71t%F £ =0,1,23
(c) 25=-9
(d) 26 —22-2=0
Show that [z| = 1 if and only if 1 = z.

Show that

(a) z is a real number if and only if z = Z.

(b) z is either real or purely imaginary if and only if (z)? = 22.
Prove Proposition 1.1.2.

Show that if z1 zo0 = 0 then z; = 0 or 2o = 0.
Prove Proposition 1.2.7.

Fix a positive integer n. Prove that the solutions to the equation 2" =1
are precisely z = e?™% where m € Z.
Hint. To show that every solution of 2™ =1 is of this form, first prove

2 &

that it must be of the form z = e*™*» for some a € R, then write a = m+b
for some integer m and some real number 0 < b < 1, and then argue that
b has to be zero.

Show that

=1 = (2=1) (2 +2zcos T +1) (2> —2zcos 2 + 1)

and deduce from this closed formulas for cos ¥ and cos %”

Answer. cosT = 1(V5+1)and cos & = 1(v5 - 1)

Fix a positive integer n and a complex number w. Find all solutions to
2" =w.

Hint. Write w in terms of polar coordinates.

Use Proposition 1.2.7 to derive the triple angle formulas:

(a) cos(3¢) = cos® ¢ — 3cos ¢sin? ¢
(b) sin(3¢) = 3cos? psin ¢ — sin® ¢

Given z,y € R, define the matrix M(z,y) := [Z _xy} . Show that

M(z,y) + M(a,b) = M(z+a,y+Db)
and
M(x,y) M(a,b) = M(xza— yb, b+ ya).

(This means that the set {M(x,y) : x,y € R}, equipped with the usual
addition and multiplication of matrices, behaves exactly like C = {(z,y) :
z,y € R}.)
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22. Prove Proposition 1.3.3.
23. Sketch the following sets in the complex plane:

24.

25.

26.

27.

28.
29.

30.

(a) {z€C: |z—1+i|=2}
(b) {z€C: |z —1+i] <2}

(c) {z€C: Re(z+2—2i) =3}
(d) {z€C: |z—i|+ |z +i] = 3}
() {€C: |zl = |z + 1]}

() {z€C: |z~ 1| =2z +1]}

() {z€C: Re(z?) =1}

(h) {z€C: Im(z2) =1}

Suppose p is a polynomial with real coefficients.

(a) Prove that p(z) = p(Z).

(b) Prove that p(z) = 0 if and only if p (z) = 0.
Prove the reverse triangle inequality (Corollary 1.3.5(b)) |z1 — 22| > |21| —
|22].
Use Exercise 1.5.25 to show that

1
< =
-3

1
22 -1
for every z on the circle C[0, 2].

Sketch the sets defined by the following constraints and determine whether
they are open, closed, or neither; bounded; connected.

(a) |z +3] <2

(b) |Im(z)| <1

(c) 0<]z—1]<2

(d) [z=1[+|z+1|=2
(e) |z—1]+|z+1] <3

(f) |z[ > Re(z) +1
What are the boundaries of the sets in Exercise 1.5.277

Let G be the set of points z € C satisfying either z is real and —2 < z < —1,
or |zl <l,orz=1orz=2.

(a) Sketch the set G, being careful to indicate exactly the points that
are in G.

(b) Determine the interior points of G.
(c) Determine the boundary points of G.

(d) Determine the isolated points of G.

The set G in Exercise 1.5.29 can be written in three different ways as the
union of two disjoint nonempty separated subsets. Describe them, and in
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31.

32.

33.

34.

35.

each case say briefly why the subsets are separated.

Show that the union of two regions with nonempty intersection is itself a
region.

Show that if A C B and B is closed, then 0A C B. Similarly, if A C B
and A is open, show that A is contained in the interior of B.

Find a parametrization for each of the following paths:
(a) the circle C[1 + 4, 1], oriented counter-clockwise
Answer. For instance: () = (1 +14) + €', 0 <t < 2.
(b) the line segment from —1 — 4 to 2¢

Answer. For instance: y(t) = (-1 —4)(1 —t) + (2))t = -1 —i +
(1+3i)t,0<t<1.

(c) the top half of the circle C[0, 34], oriented clockwise
Answer. For instance: (t) = 3e(m i = 34~ 0<t<m
(d) the rectangle with vertices 1 4 24, oriented counter-clockwise
(e) the ellipse {z € C: |z — 1|+ |z + 1| =4}, oriented counter-clockwise

Draw the path parametrized by

~(t) = cos(t) |cos(t)| + isin(t) [sin(¢)], 0<t<2r.

Let G be the annulus determined by the inequalities 2 < |z| < 3. This is a
connected open set. Find the maximum number of horizontal and vertical
segments in G needed to connect two points of G.
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1.6 Optional Lab

1. Convert the following complex numbers into their polar representation, i.e., give the absolute value and
the argument of the number.

1
34 — i= = 242 = —5(\/5—1—2'):

After you have finished computing these numbers, check your answers with SageMath.

2. Convert the following complex numbers given in polar representation into their rectangular representation.

260 = 3ez = %e”: e 2 = 2¢z =

After you have finished computing these numbers, check your answers with SageMath.

3. Pick your favorite five numbers z1, 29, z3, 24, and z5 from the ones that you’ve played around with and
put them in the table below, in both rectangular and polar form. Apply the functions listed to your
numbers. Think about which representation is more helpful in each instance.

21 Z2 z3 24 Z5

rectangular

polar
z+1
z+2—1
2z

—Z

M V1IN

<
I3

|

N
N

4. Play with other examples until you get a feel for these functions.



Chapter 2

Differentiation

Despite the saying that “for every epsilon there is a delta,” (which
is really rather romantic, when you think about it) I often could not
get my epsilons paired off with suitable deltas.

—Herbert Wilf (1931-2012)

We will now start our study of complex functions. The fundamental concept
on which all of calculus is based is that of a limit—it allows us to develop the
central properties of continuity and differentiability of functions. Our goal in
this chapter is to do the same for complex functions.

2.1 Limits and Continuity

Definition 2.1.1 A (complex) function f is a map from a subset G C C to C;
in this situation we will write f : G — C and call G the domain of f. This
means that each element z € G gets mapped to exactly one complex number,
called the image of z and usually denoted by f(z). O

So far there is nothing that makes complex functions any more special than,
say, functions from R™ to R". In fact, we can construct many familiar looking
functions from the standard calculus repertoire, such as f(z) = z (the identity
map), f(z) =2z+1, f(z) = 2%, or f(z) = 1. The former three could be defined
on all of C, whereas for the latter we have to exclude the origin z = 0 from the
domain. On the other hand, we could construct some functions that make use
of a certain representation of z, for example, f(z,y) = = —2iy, f(z,y) = y? —ix,
or f(r,¢) = 2reH@+m),

Next we define limits of a function. The philosophy of the following definition
is not restricted to complex functions, but for sake of simplicity we state it only
for those functions.

Definition 2.1.2 Suppose f: G — C and zq is an accumulation point of G. If
wp is a complex number such that for every € > 0 we can find § > 0 so that, for
all z € G satisfying 0 < |z — zg| < 0, we have |f(z) — wo| < €, then wq is the
limit of f as z approaches zg; in short,

zli>nz10 f(z) = wo.

O

This definition is the same as is found in most calculus texts. The reason

we require that zp is an accumulation point of the domain is just that we need
to be sure that there are points z of the domain that are arbitrarily close to
zp. Just as in the real case, our definition (i.e., the part that says 0 < |z — 2|)

22



CHAPTER 2. DIFFERENTIATION 23
does not require that zg is in the domain of f and, if zg is in the domain of f,
the definition explicitly ignores the value of f(zg).

Example 2.1.3 Let’s prove that lim 2% = —1.

z—1
Given € > 0, we need to determine § > 0 such that 0 < |z — i| < § implies
|22 + 1] < e. We rewrite
|22+1| = lz—i|llz+i] < d|lz+1].

If we choose 4, say, smaller than 1 then the factor |z + i| on the right can
be bounded by 3 (draw a picture!). This means that any 6 < min{§, 1} should
do the trick: in this case, 0 < |z — i| < J implies

|22+1f < 30 < €.

This was a proof written out in a way one might come up with it. Here’s a
short, neat version:
Given € > 0, choose 0 < § < min{§,1}. Then 0 < [z —i| < § implies

lz+i] = [z—i4+2i] < |z—i|+]2¢] < 3
from which we conclude that
2 1.2 _ . .
|22 = (=1)] = |2 +1] = |z—i|[z+1i] < 30 < e.

This proves lim,_,; 22 = —1. O

f(z) = sin(z)/z
f.limit(z=0)

z |-->1

Just as in the real case, the limit wy is unique if it exists (see Exercise 2.5.3).
It is often useful to investigate limits by restricting the way the point z ap-
proaches zg. The following result is a direct consequence of the definition.

Proposition 2.1.4 Suppose f : G — C and lim,_,,, f(z) = wo. Suppose
G C G and zq_is an accumulation point of G. If f is the restriction of f to G,
then lim,_,,, f(z) exists and has the value wy.

The definition of limit in the complex domain has to be treated with a little
more care than its real companion; this is illustrated by the following example.

Example 2.1.5 The limit of % as z — 0 does not exist.
To see this, we try to compute this limit as z — 0 on the real and on the
imaginary axis. In the first case, we can write z = x € R, and hence

Iim— = lim— = lim— = 1.
z—0 2 x—0 I x—0 2

In the second case, we write z = iy where y € R, and then

Lz oy .
lim — = lim — = lim — = —1.
2—0 2z y—0 1y y—=0 gy
So we get a different “limit” depending on the direction from which we
approach 0. Proposition 2.1.4 then implies that the limit of = as z — 0 does
not exist. O
On the other hand, the following usual limit rules are valid for complex
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functions; the proofs of these rules are everything but trivial and make for nice
practice (see Exercise 2.5.4); as usual, we give a sample proof.

Proposition 2.1.6 Let f and g be complex functions with domain G, let z
be an accumulation point of G, and let ¢ € C. If lim,_,,, f(2) and lim,_, ., g(2)
exist, then

(a) lim (f(2z) +cg(z)) = lim f(2)+c lim g(z).

(b) lim (f(2)-9(2)) = lim f(z)- lim g(z).
. f(Z) _ hmz—>Z0 f(Z)
(c) Jim. g(z)  lim._., g(z)

where in the last identity we also require that lim,_,,, g(z) # 0.

Proof. We will prove (a). Assume that ¢ # 0 (otherwise there is nothing to
prove), and let L =lim,,,, f(z) and M = lim,,,, g(z). Then we know that,
given € > 0, we can find d1,d2 > 0 such that

0 < |z — 20| < 61 implies |f(z) — L| < %
and
0 < |z — 20| < &2 implies |g(z) — M| < ﬁ
Thus, choosing § = min{dq,d2}, we infer that 0 < |z — zp| < § implies
[(f(2) +cg(2)) = (L+cM)| < [f(2) = LI+ |e|[g(2) = M| < e.

Here we used the triangle inequality (Proposition 1.3.4). This proves that
lim, ., (f(2) + cg(z)) = L + ¢ M, which was our claim. [ |
Because the definition of the limit is somewhat elaborate, the following
fundamental definition looks almost trivial.
Definition 2.1.7 Suppose f: G — C. If zg € G and either z, is an isolated
point of G or
lim f(z) = f(z0)

z2—20
then f is continuous at zy. More generally, f is continuous on E C G if f is
continuous at every z € F. O
However, in almost all proofs using continuity it is necessary to interpret
this in terms of €’s and d’s. So here is an alternate definition:

Definition 2.1.8 Suppose f: G — C and 2y € G. Then f is continuous at z
if, for every positive real number ¢, there is a positive real number § so that

| f(z) — f(z0)| < € forall z€ G satisfying |z — 20| <.

See Exercise 2.5.11 for a proof that these definitions are equivalent.

Example 2.1.9 We already proved (in Example 2.1.3) that the function
f : C — C given by f(z) = 22 is continuous at z = i. You're invited (see
Exercise 2.5.8) to extend our proof to show that, in fact, this function is
continuous on C.
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On the other hand, let g : C — C be given by

(2) = % ifz#0,
(A EET

In Example 2.1.5 we proved that g is not continuous at z = 0. However, this is
its only point of discontinuity (see Exercise 2.5.9). O

Just as in the real case, we can “take the limit inside” a continuous function,
by considering composition of functions.

Definition 2.1.10 The image of the function ¢ : G — C is the set
{g9(2) : z € G}. If the image of g is contained in the domain of another function
f: H — C, we define the composition fog:G — C through

(fog)z) = f(g(2)).

O

Proposition 2.1.11 Let g : G — C with image contained in H, and let
f+ H— C. Suppose zq is an accumulation point of G, lim,_,,, g(z) = wo € H,
and f is continuous at wg. Then lim,_,., f(g(2)) = f(wo); in short,

i 7o) = 1 (m g())

Z—20 Z—r20

Proof. Given € > 0, we know there is an n > 0 such that
|w — wp| < n implies |f(w) — f(wo)| < €.
For this 7, we also know there is a § > 0 such that
0 < |z — z0] < § implies |g(z) —wo| < 7.
Stringing these two implications together gives that
0 < |z — 20| < ¢ implies |f(g(z)) — f(wo)| < €.

We have thus proved that lim,_,., f(g(2)) = f(wo). [ |

2.2 Differentiability and Holomorphicity

The fact that simple functions such as g do not have limits at certain points
illustrates something special about complex numbers that has no parallel in the
reals—we can express a function in a very compact way in one variable, yet it
shows some peculiar behavior in the limit. We will repeatedly notice this kind
of behavior; one reason is that when trying to compute a limit of a function
f(z) as, say, z — 0, we have to allow z to approach the point 0 in any way.
On the real line there are only two directions to approach O0—from the left or
from the right (or some combination of those two). In the complex plane, we
have an additional dimension to play with. This means that the statement A
complex function has a limit ... is in many senses stronger than the statement
A real function has a limit . ... This difference becomes apparent most baldly
when studying derivatives.
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Definition 2.2.1 Suppose f : G — C is a complex function and zy is an interior
point of G. The derivative of f at zy is defined as

f(z0) == lim FE) = fG) (2.1)
z—20 Z— 29
provided this limit exists. In this case, f is called differentiable at z.

If f is differentiable for all points in an open disk centered at zg then f is
called holomorphic' at zy. The function f is holomorphic on the open set E C G
if it is differentiable (and hence holomorphic) at every point in E. Functions
that are differentiable (and hence holomorphic) in the whole complex plane C
are called entire. O

Example 2.2.2 The function f : C — C given by f(z) = 2? is entire, that is,
holomorphic in C: For any zy € C,

fR) = 1Go) _ o P

lim
zZ—20 zZ— 20 zZ—z0 Z — 20
2 2
. 294 zz0 + 25)(2 — 20
i 3)(z — z0)
zZ—20 zZ— 20
_ 2
= 3z -

The difference quotient limit (2.1) can be rewritten as

f/(zo) _ }Ll_% f(Z0+h})L_f(z0) )

This equivalent definition is sometimes easier to handle. Note that h need not
be a real number but can rather approach zero from anywhere in the complex

plane.
The notions of differentiability and holomorphicity are not interchangeable:

Example 2.2.3 The function f : C — C given by f(z) = (2)? is differentiable
at 0 and nowhere else; in particular, f is not holomorphic at 0. To see why,
let’s write z = zg + r €*®. Then

2 2 (atred) %
z—z9 20 +ret® — 2
(%5 + re=¢)? — 252
ret®
T2+ 275 e + 12e—2i% _ 72
- rel®
27ZgT e 4 e 20
- r et

= 2%75e 2 4 re %%,

If 20 # 0 then taking the limit of f(2) as z — 2o thus means taking the limit
of 2Z5e72¢ 4+ re=39 as r — 0, which gives 2% e~ 2*?, a number that depends
on ¢, i.e., on the direction that z approaches zy. Hence this limit does not exist.

On the other hand, if zy = 0 then the right-hand side above equals r e3¢ =

1Some sources use the term analytic instead of holomorphic. As we will see in Chapter 8,
in our context, these two terms are synonymous. Technically, though, these two terms have
different definitions. Since we will be using the above definition, we will stick with using the
term holomorphic instead of the term analytic.
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|z| e3¢, Hence

z

lim

= lim||z|e*3i¢| = lim |z| = 0,
z—0 z—0

z—0

which implies, by Exercise 2.5.5, that

2 -7 .z
lim ——— = lim — = 0.
z—z0 2 — 20 z—0 2

]

Example 2.2.4 The function f : C — C given by f(z) = Z is nowhere
differentiable:

. Z—Z . zZ— 20 .z
lim = lim = lim —,
z2—z0 Z — 20 z—z20 2 — 20 z—0 2z
which does not exist, as discussed in Example 2.1.5. O
f(z)=z"2
diff (f)
z |--> 2%z

The basic properties for derivatives are similar to those we know from real
calculus. In fact, the following rules follow mostly from properties of the limit.

Proposition 2.2.5 Suppose f and g are differentiable at z € C and h is
differentiable at g(z). Then

(a) (f(z)+cg(z)) = ['(2)+cg/(2) for anyceC

!

(b) (f(2)g(2)) = f'(2)9(2) + f(2)4'()

O LG C R (OY/C
© (15) - PBE provided that g(z)” # 0

(
(d) (z")/ = n2""! for any nonzero integer n

(e) g is continuous at z

(f) (h(g(2))" = W(9(2)g'(2).

Proof. We give a sample proof (b):

flz+h)g(z+h) - () 9(2)

(f(2)9(2))" = lim

h—0 h
o FEER) (g4 h) — () + (F 4B~ £(2) o(2)
h—0 h
o 9(z+h) —g(2)
= fim Sz +h) h
. fz+h) - f(2)
iy ————9(3)
= [(2)g'(2) + ['(2) 9(2) .
Note that we have used the definition of the derivative and Proposition 2.1.6
(a) & (b) (the addition and multiplication rules for limits). [ |

A prominent application of the differentiation rules is the composition of a
complex function f(z) with a path (¢). The proof of the following result gives
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a preview.

Proposition 2.2.6 Suppose f is holomorphic at a € C with f'(a) # 0 and
suppose y1 and o are two smooth paths that pass through a, making an angle
of ¢ with each other. Then f transforms vy, and 72 into smooth paths which
meet at f(a), and the transformed paths make an angle of ¢ with each other.

In words, a holomorphic function with nonzero derivative preserves angles.
Functions that preserve angles in this way are called conformal.

Proof. Let 71(t) and 72(t) be parametrizations of the two paths such that
~71(0) = 42(0) = a. Then +{(0) (considered as a vector) is the tangent vector
of 1 at the point a, and v5(0) is the tangent vector of o at a. Moving to the
image of ;1 and 7, under f, the tangent vector of f(71) at the point f(a) is

d

/@) T F(11(0))71(0) = f'(a)71(0),
and similarly, the tangent vector of f(72) at the point f(a) is f’(a)~4(0). This
means that the action of f multiplies the two tangent vectors 4 (0) and ~5(0)
by the same nonzero complex number f’(a), and so the two tangent vectors
got dilated by |f’(a)| (which does not affect their direction) and rotated by the
same angle (an argument of f/(a)). |

SageMath allows you to draw images behind complex functions. Try to

explain what’s behind this picture:

£(2) = 1/(1+2+2)
complex_plot(f, (-5,5), (-5, 5))

We end this section with yet another differentiation rule, that for inverse
functions. As in the real case, this rule is only defined for functions that are
bijections.

Definition 2.2.7 A function f : G — H is one-to-one if, for every image
w € H, there is a unique z € G such that f(z) = w. The function is onto
if every w € H has a preimage z € G (that is, there exists z € G such that
f(z) = w). A bijection is a function that is both one-to-one and onto. If
f: G — H is a bijection, then g : H — G is the inverse of f if f(g(w)) = w for
all w € H and ¢g(f(2)) = z for all z € G; in other words, the composition f o g
is the identity function on H, and g o f is the identity function on G. O

Proposition 2.2.8 Suppose G, H C C are open sets, f : G — H is a bijection,
g: H — G is the inverse function of f, and wg € H. If f is differentiable at
g(wo) with f'(g(wo)) # 0 and g is continuous at wy, then g is differentiable at

wo with
1

700 = gt
Proof. Since f(g(w)) = w for all w € H,

g/(wo) — hm M
= lim g(w) — g(wO)
wwo (g(w)) — f(g(wo))
) 1
= S Fe@) — Fglan))
g(w) — g(wp)

(=)
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Now define zp := g(wo) and set
f(z) = fz0) .
o(2) = o if 2 # 2o
f'(20) if z2=2.

This is continuous at zg and lim,, ., g(w) = z¢ by continuity of g, so we can
apply Proposition 2.1.11:

J(wo) = 1 1 1 1 1
u}O = 1m = = 7 = 7 .
RS (g ) T T

2.3 The Cauchy—Riemann Equations

When considering a real-valued function f : R? — R of two variables, there is no
notion of the derivative of a function. For such a function, we instead only have
partial derivatives %(mo, yo) and g—i(xo, yo) (and also directional derivatives)
which depend on the way in which we approach a point (xg,y) € R

For a complex-valued function f(z), we now have a new concept of the
derivative f’(zg), which by definition cannot depend on the way in which we
approach a point zo = (zo,y0) € C. It is logical, then, that there should be a
relationship between the complex derivative f'(zg) and the partial derivatives

%(zo) — lim f(®,y0) — f(®0,y0)
Ox Tz T — Tg
of — lim f(z0,y) — f(wo,y0)
571/(20) =, Y — 1o

(so this definition is exactly as in the real-valued case).

This relationship between the complex derivative and partial derivatives
is very strong, and it is a powerful computational tool. It is described by the
Cauchy—Riemann equations, named after Augustin Louis Cauchy (1789-1857)
and Georg Friedrich Bernhard Riemann (1826-1866), even though the equations
appeared already in the works of Jean le Rond d’Alembert (1717-1783) and
Leonhard Euler (1707-1783).

Theorem 2.3.1

(a) Suppose f is differentiable at zo = xg + iyo. Then the partial derivatives
of [ exist and satisfy

of

O (20) = —i4-(20) (2.2)

and the derivative is given by

fe) = L),

(b) Suppose f is a complex function such that the partial derivatives % and

g—;j exist in an open disk centered at zg and are continuous at zy. If these

partial derivatives satisfy (2.2) then f is differentiable at z.
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Before proving Theorem 2.3.1, we note several comments and give two
applications. It is traditional, and often convenient, to write the function f
in terms of its real and imaginary parts. That is, we write f(z) = f(z,y) =
u(z,y) + iv(z,y) where u is the real part of f and v is the imaginary part.
Then, using the usual shorthand f, = g—i and f, = %’

f;v = Uz + 1V

—ify = —i(uy +1ivy) = vy —iuy.
With this terminology we can rewrite (2.2) as the pair of equations

us(zo,90) = vy(2o,yo) (2.3)
uy(xo, y()) = _'U:n(an yO) .

As stated, parts (a) and (b) in Theorem 2.3.1 are not quite converse
statements. However, we will show in Corollary 5.1.6 that if f is holomorphic
at zo = xg + iyo then u and v have continuous partials (of any order) at z.
That is, in Chapter 5 we will see that f = w + ¢v is holomorphic in an open set
G if and only if v and v have continuous partials that satisfy (2.3) in G.

If uw and v satisfy (2.3) and their second partials are also continuous, then

Uzm(xmyO) = ”Uym(ﬂﬂo,yo) = Uzy($07yo) = 7uyy(x07y0)a (24)

that is,
Um(IO, yO) + Uyy(xo, yO) =0

(and an analogous identity for v). Functions with continuous second partials
satisfying this partial differential equation on a region G C C (though not
necessarily (2.3)) are called harmonic on G; we will study such functions in
Chapter 6. Again, as we will see later, if f is holomorphic in an open set G
then the partials of any order of u and v exist; hence we will show that the
real and imaginary parts of a function that is holomorphic in an open set are
harmonic on that set.

Example 2.3.2 We revisit Example 2.2.2 and again consider f : C — C given
by
flz) = 22 = (x+1iy)? = (x3 — 3xy2) +i (3x2y — y3) .

So
fo(2) = 322 —3y*> + 6izy and fylz) = —6ay+ 3iz? — 3iy?

are continuous on C and satisfy f, = —if,. Thus by Theorem 2.3.1(b), f(z) = 23
is entire.

DN

~—

Example 2.3.3 Revisiting Example 2.2.3 (you saw that coming, didn’t you?
we consider f : C — C given by

)

fz2) = (2)° = (@—iy)? = o —y* — 2izy.
Now
fu(2) = 2z —2iy and fy(z2) = =2y —2ix,

which satisfy f, = —if, only when z = 0. (The contrapositive of) Theo-
rem 2.3.1(a) thus implies that f(z) = (Z)? is not differentiable on C \ {0}.
O
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Proof. (a) If f is differentiable at zo = (zg, yo) then

As we know by now, we must get the same result if we restrict Az to be on
the real axis and if we restrict it to be on the imaginary axis. In the first case,
Az = Az and

f(z0+ Az) — f(z0)

, - .
flz) = fim, Ax
— lim f(l’o + A%E/O) - f(5507y0)
Az—0 Az

0
= 8%;(95073/0)-

In the second case, Az =i Ay and

f(z0 +iAy) — f(20)

! — 1~
flzo) = Jim i Ay
g 1 f(x0,y0 + Ay) — f(x0,%0)
= im -
Ay—0 1 Ay

= i Y ()
- 8y 0,Y0) -

Thus we have shown that f'(z0) = fz(20) = —ify(20).

(b) Suppose the Cauchy—Riemann equation (2.2) holds and the partial
derivatives f, and f, are continuous in an open disk centered at zy. Our goal
is to prove that f'(z0) = f.(20). By (2.2),

Az +iAy
Az

Ax Ay |

= Al fz(20) + Az i f(20)

A A
= A Fel0) + T2 fyz0)

On the other hand, we can rewrite the difference quotient for f'(zo) as

f(z0 + Az) — f(z0)

Az
_ flao+A2) — f(z0 + Az) + f(20 + Az) — f(20)
Az
_ flz0 + Az +iAy) — f(20 + Az) + f(z0 + Az) — f(20)
N Az Az '
Thus
. flz0+Az) — f(20)
Aligo : Az : ~ falz0)
B Ay [ f(z0 + Az +iAy) — f(z0 + Ax)
A0 KZ < Ay B fy(zo))
Az zo0 + Ax) — f(z
2 (LB GO p)) (25)

We claim that both limits on the right-hand side are 0, so we have achieved our
set goal. The fractions ﬁ—z and % are bounded in absolute value by 1, so we



CHAPTER 2. DIFFERENTIATION 32

just need to see that the limits of the expressions in parentheses are 0. The
second term on the right-hand side of (2.5) has a limit of 0 since, by definition,

fulzo) = Jim_ ! <Zo+AA92—f<zo>

and taking the limit here as Az — 0 is the same as taking the limit as Az — 0.

We cannot do something equivalent for the first term in (2.5), since now
both Az and Ay are involved, and both change as Az — 0. Instead we apply
the Mean-Value Theorem A.0.2 for real functions, to the real and imaginary
parts u(z) and v(z) of f(z). Theorem A.0.2 gives real numbers 0 < a,b < 1
such that

u(zo + Az, yo + Ay) — u(xo + Az, yo)

= uy(zo + Az, yo + a Ay)

Ay
U(mo + AI, Yo + Ay) - ”U(.TO + AZC, yO) — 'Uy(xO + Agj, Yo + bAy) )
Ay
Thus
f(z0 + Az +iAy) — f(z0 + Ax) £,(20)
Ay A
_ (u(xo + Az, yo + Ay) — u(xo + Az, y0)
- A - uy(zo)
Yy
A Ay) — A
g (U(xo + Az, yo + Ay) — v(zo + Az, o) _ Uy(20)>
Ay
= (uy(ro + A, yo + aAy) — uy(x0,%0)) (2.6)

+ i (vy (w0 + Az, yo + bAY) — vy (70, o)) -
Because u, and v, are continuous at (2o, %),
lim uy(zo + Az, yo +aAy) = uy(zo, o)
Az—0
lim vy (zo + Az, yo + bAy) = vy(xo, Yo),
Az—0

and so (2.6) goes to 0 as Az — 0, which we set out to prove. [ ]

2.4 Constant Functions

As a sample application of the definition of the derivative of a complex function,
we consider functions that have a derivative of 0. In a typical calculus course,
one of the first applications of the Mean-Value Theorem for real-valued functions
(Theorem A.0.2) is to show that if a function has zero derivative everywhere on
an interval then it must be constant.

Proposition 2.4.1 If I is an interval and f : I — R is a real-valued function
with f'(x) defined and equal to O for all x € I, then there is a constant ¢ € R
such that f(x) = ¢ for allz € I.

Proof. The Mean-Value Theorem A.0.2 says that for any z,y € I,

fw) = fx) = fz+aly—=2)(y—2)

for some 0 < a < 1. Now f/(z + a(y — z)) = 0, so the above equation yields
f(y) = f(z). Since this is true for any z,y € I, the function f must be constant
on [. |
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We do not (yet) have a complex version of the Mean-Value Theorem, and
so we will use a different argument to prove that a complex function whose
derivative is always 0 must be constant.

Our proof of Proposition 2.4.1 required two key features of the function f,
both of which are somewhat obviously necessary. The first is that f be differ-
entiable everywhere in its domain. In fact, if f is not differentiable everywhere,
we can construct functions that have zero derivative almost everywhere but
that have infinitely many values in their image.

The second key feature is that the interval I is connected. It is certainly
important for the domain to be connected in both the real and complex cases.
For instance, if we define the function f : {x 4+ iy € C: z # 0} — C through

F2) im {1 if Rez >0,

2 if Rez <0,

then f’(z) = 0 for all z in the domain of f, but f is not constant. This may
seem like a silly example, but it illustrates a pitfall to proving a function is
constant that we must be careful of. Recall that a region of C is an open
connected subset.

Theorem 2.4.2 If G C C is a region and f : G — C is a complez-valued
function with f'(z) defined and equal to 0 for all z € G, then f is constant.

Proof. We will first show that f is constant along horizontal segments and along
vertical segments in G.

Suppose that H is a horizontal line segment in G. Thus there is some
number yo € R such that the imaginary part of any z € H is Im(z) = yo. Now
consider the real part u(z) of the function f(z), for z € H. Since Im(z) = yp
is constant on H, we can consider u(z) = u(x,yo) to be just a function of z,
the real part of z = x + iyp. By assumption, f'(z) =0, so for z € H we have
uz(2) = Re(f'(2)) = 0. Thus, by Proposition 2.4.1, u(z) is constant on H.

We can argue the same way to see that the imaginary part v(z) of f(z) is
constant on H, since v,(z) = Im(f’(z)) = 0 on H. Since both the real and
imaginary parts of f(z) are constant on H, the function f(z) itself is constant
on H.

This same argument works for vertical segments, interchanging the roles of
the real and imaginary parts. We have thus proved that f is constant along
horizontal segments and along vertical segments in G. Now if x and y are two
points in G that can be connected by a path composed of horizontal and vertical
segments, we conclude that f(z) = f(y). But any two points of a region may
be connected by finitely many such segments by Theorem 1.4.16, so f has the
same value at any two points of GG, thus proving the theorem. ]

There are a number of surprising applications of Theorem 2.4.2; see, e.g.,
Exercise 2.5.21 and Exercise 2.5.22.

2.5 Exercises

1. Use the definition of limit to show for any zg € C that lim (az+4b) = azg+b.

Z—20
2. Evaluate the following limits or explain why they don’t exist.

i3 —1

li
(a) zl—% z +Z

Answer. 0
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10.

11.

12.

13.
14.

15.

16.

(b) lim (z+i(2z+y))

Answer. 141
Prove that, if a limit exists, then it is unique.
Prove Proposition 2.1.6.

Let f: G — C and suppose zj is an accumulation point of G. Show that
lim, ., f(z) = 0 if and only if lim,,,, | f(z)] = 0.

Proposition 2.1.4 is useful for showing that limits do not exist, but it is
not at all useful for showing that a limit does exist. For example, define
F) = =L iy 0
z)=——""- where z=2x+1 .
it 2 Yy

Show that the limits of f at 0 along all straight lines through the origin
exist and are equal, but lir% f(2) does not exist.
z—r

Hint. Consider the limit along the parabola y = x2.
Suppose that f(z) = u(x,y) +iv(z,y) and zg = xg + i yo. Prove that

lim f(z) =wup+ivg

Z—20
if and only if
lim u(z,y) = u and lim v(x,y) =g .
(o) gy ) = 0 (o) gy LT Y) = 0

Show that the function f : C — C given by f(z) = 22 is continuous on C.
Show that the function g : C — C given by

(2) = Z ifz#£0,
g 1 ifz=0

is continuous on C\ {0}.

Determine where each of the following functions f : C — C is continuous:

0 if z =0 or |z| is irrational,

if |z = 2 € Q\ {0} (written in lowest terms).

(@f@={1
0 if z=0,
(b) f(z) = {sinq’) if z=re? #£0.

Show that the two definitions of continuity in Section 2.1 are equivalent.
Consider separately the cases where z( is an accumulation point of G and
where zq is an isolated point of G.

Consider the function f : C\ {0} — C given by f(z) = 1. Apply the
definition of the derivative to give a direct proof that f'(z) = — 2.
Prove Proposition 2.1.11.

Prove Proposition 2.2.5.

Find the derivative of the function T'(z) := ijr's, where a, b, ¢, d € C with
ad — be # 0. When is T'(z) = 0?

Prove that if f(z) is given by a polynomial in z then f is entire. What
can you say if f(z) is given by a polynomial in z = Rez and y = Im 27
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17. Prove or find a counterexample: If v and v are real valued and contin-
uous, then f(z) = u(z,y) + iv(x,y) is continuous; if v and v are (real)
differentiable then f is (complex) differentiable.

18. Where are the following functions differentiable? Where are they holomor-
phic? Determine their derivatives at points where they are differentiable.

(a) f(z)=e"e™
Hint. Use the Cauchy—Riemann equations (2.3).

Answer. differentiable and holomorphic in C with derivative

—e Te W

(d) f(2) =22 + izy?
Answer. nowhere differentiable or holomorphic
(c) f(z)=a®+iy?

Answer. differentiable only on {z+iy € C: z = y} with derivative
2z, nowhere holomorphic

(d) f(z) =e"e™™
Answer. nowhere differentiable or holomorphic
(e) f(z) =cosxzcoshy — isinzsinhy

Answer. differentiable and holomorphic in C with derivative
—sinz coshy —icosxsinhy

(f) f(z) =Imz

Answer. nowhere differentiable or holomorphic

(8) f(2) =I2* =a?+y?

Answer. differentiable only at 0 with derivative 0, nowhere holo-
morphic

(h) f(z) =zImz

Answer. differentiable only at 0 with derivative 0, nowhere holo-
morphic

(i) f(e) = =t

Answer. differentiable only at ¢ with derivative ¢, nowhere holo-
morphic

(4) f(2) = 4(Rez)(Imz) — i(2)”

Answer. differentiable and holomorphic in C with derivative 2y —
201 = —2iz

(k) f(2) = 2zy —i(x +y)?

Answer. differentiable only at 0 with derivative 0, nowhere holo-
morphic

() f(z) =22 -2

Answer. differentiable only at 0 with derivative 0, nowhere holo-
morphic
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19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

29.

30.

The Jacobian of a transformation v = u(x,y), v = v(zx,y) is the determi-
nant of the matrix
u  Ou
[Bm 8y]
v ov |

oz Oy

Show that if f = u + iv is holomorphic then the Jacobian equals | f(z)]*.

Define f(z) = 0 if Re(z) - Im(z) = 0, and f(z) = 1 if Re(z) - Im(z) # 0.
Show that f satisfies the Cauchy—Riemann equation (2.2) at z = 0, yet f is
not differentiable at z = 0. Why doesn’t this contradict Theorem 2.3.1(b)?
Prove: If f is holomorphic in the region G C C and always real valued,
then f is constant in G.

Hint. Use the Cauchy-Riemann equations (2.3) to show that f’ = 0.

Prove: If f(z) and f(z) are both holomorphic in the region G C C then
f(2) is constant in G.

Suppose f is entire and can be written as f(z) = u(x) + i v(y), that is,
the real part of f depends only on = Re(z) and the imaginary part of f
depends only on y = Im(z). Prove that f(z) = az + b for some a € R and
beC.

Suppose f is entire, with real and imaginary parts w and v satisfying
u(z,y)v(z,y) = 3 for all z =z + iy. Show that f is constant.

Prove that the Cauchy-Riemann equations take on the following form in
polar coordinates:

ou 1 Ov 1ou  Ov

or r O¢ rop  Or’
For each of the following functions u, find a function v such that u + v is
holomorphic in some region. Maximize that region.

and

(a) u(z,y) =2? -y

Answer. 2zy
(b) u(z,y) = cosh(y) sin(z)
Answer. cos(x)sinh(y)

(c) u(x,y) =222+ +1—2y°
(d) u(z,y) =

Is u(z,y) =

_z
z24y?

77157 harmonic on C? What about u(z,y) = %?
Consider the general real homogeneous quadratic function u(z,y) = ax? +

bxy + cy? , where a, b and c are real constants.
(a) Show that u is harmonic if and only if a = —c.

(b) If u is harmonic then show that it is the real part of a function of

the form f(z) = Az? for some A € C. Give a formula for A in terms
of a, b and c.

Re-prove Proposition 2.2.5 by using the formula for f’ given in Theo-

rem 2.3.1.

Prove that, If G C Cisaregion and f : G — C is a complex-valued function

with f”(z) defined and equal to 0 for all z € G, then f(z) = az + b for

some a,b € C.
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Hint. Use Theorem 2.4.2 to show that f’(z) = a, and then use Theo-
rem 2.4.2 again for the function f(z) — az.



Chapter 3

Examples of Functions

To many, mathematics is a collection of theorems. For me, mathe-
matics is a collection of examples; a theorem is a statement about
a collection of examples and the purpose of proving theorems is to
classify and explain the examples...

—John B. Conway

In this chapter we develop a toolkit of complex functions. Our ingredients
are familiar from calculus: linear functions, exponentials and logarithms, and
trigonometric functions. Yet, when we move these functions into the complex
world, they take on—at times drastically different—mnew features.

3.1 Mobius Transformations
The first class of functions that we will discuss in some detail are built from
linear polynomials.

Definition 3.1.1 A [linear fractional transformation is a function of the form

az+b
cz+d

f(z) =

where a,b,c,d € C. If ad — bc # 0 then f is called a Mobius' transformation.
O

Exercise 2.5.16 said that any polynomial in z is an entire function, and so

the linear fractional transformation f(z) = Zzz—tdb is holomorphic in C\ {—% ,
unless ¢ = 0 (in which case f is entire). If ¢ # 0 then %ig = % implies
ad — bc = 0, which means that a Mébius transformation f(z) = ‘Zj_ts will never

take on the value 2. Our first proposition in this chapter says that with these

small observations about the domain and image of a M&bius transformation, we
obtain a class of bijections, which are quite special among complex functions.

Proposition 3.1.2 Let a,b,c,d € C with ¢ # 0. Then f: C\ {-4%} = C\ {¢}

Ziven by f(2) = ijrrdb has the inverse function f=1: C\ {2} — C\ {—%} given
Y

dz—b
—cz+a’

f7U2) =

INamed after August Ferdinand Mobius (1790-1868).

38



CHAPTER 3. EXAMPLES OF FUNCTIONS 39

If this reminds you of the inverse of a 2 x 2 matrix, you should do Exer-
cise 3.6.10.

We remark that the formula for f~!(z) in Proposition 3.1.2 works also when
¢ = 0, except that in this case both domain and image of f are C; see Exer-
cise 3.6.2. In either case, we note that the inverse of a Mébius transformation
is another Mobius transformation.

Example 3.1.3 Consider the linear fractional transformation f(z) = fzjrll

This is a Mébius transformation (check the condition!) with domain C\ {—1}
whose inverse can be computed via

z—1 w+ 1
" T = W < Z = —F,
12+ 1 —w + 1
so that f~!(z) = 2L with domain C\ {—i}. O

f(z) = (z-1)/(i*z+1i)
complex_plot(f, (-5,5), (-5, 5))

Proof. We first prove that f is one-to-one. If f(z1) = f(22), that is,

az1 +b azg +b

cz1+d  em+d’

then (azy 4+ b)(cza + d) = (aza + b)(cz1 + d), which can be rearranged to
(ad —bc)(z1 — z2) = 0.

Since ad — bc # 0 this implies that z; = 2z5. This shows that f is one-to-one.

Exercise 3.6.1 verifies that the Mobius transformation g(z) = jljzfa is the
inverse of f, and by what we have just proved, g is also one-to-one. But this
implies that f: C\ {—%} — C\ {2} is onto. ]

We remark that Mobius transformations provide an immediate application

of Proposition 2.2.6, as the derivative of f(z) = %:[s is
Flz) = a(cz+d) —claz+b)  ad—bc
N (cz +d)? "~ (cz+d)?

and thus never zero. Proposition 2.2.6 implies that M&bius transformations are
conformal, that is, they preserve angles.

Mobius transformations have even more fascinating geometric properties.
En route to an example of such, we introduce some terminology. Special cases
of Mobius transformations are translations f(z) = z + b, dilations f(z) = az,
and inversion f(z) = 2. The next result says that if we understand these
three special Mobius transformations, we understand them all.

Proposition 3.1.4 Suppose f(z) = ‘CIZZ_T_Z is a linear fractional transformation.
If ¢ =0 then
a b
Z) = —z+-

and if ¢ # 0 then

f() = bc—ad 1 +g.

c2 z+% c

In particular, every linear fractional transformation is a composition of
translations, dilations, and inversions.
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Proof. Simplify. |

Theorem 3.1.5 Mdbius transformations map circles and lines into circles and
lines.

Proof. Translations and dilations certainly map circles and lines into circles
and lines, so by Proposition 3.1.4, we only have to prove the statement of the
theorem for the inversion f(z) = 1.

The equation for a circle centered at xg + iy with radius r is (z — zg)? +
(y — y0)? = 72, which we can transform to

a(@®+y*) +Br+yy+d5 = 0 (3.1)

for some real numbers «, 3, v, and § that satisfy 8% + 4% > 4ad (see Exer-
cise 3.6.3). The form (3.1) is more convenient for us, because it includes the
possibility that the equation describes a line (precisely when o = 0).

Suppose z = x + iy satisfies (3.1); we need to prove that v+ v := % satisfies
a similar equation. Since

— iy
U+ = 7,2 R
we can rewrite (3.1) as
x y §
O =
a+ﬁz2+y2 +7I2+y2 + x2+y2
= a+ fu—yv+5u? +0?). (3.2)
But this equation, in conjunction with Exercise 3.6.3, says that u + v lies on a
circle or line. ]
Example 3.1.6 Continuing Example 3.1.3, consider again f(z) = lell For
¢ €R,
; i1 e —1) (e7 +1
fley = oL (e r )
ie'+i ilei® 41|
e -7 2Im (") 2sing
ilei® + 1) lei® + 1| lei® + 1)

which is a real number. Thus Theorem 3.1.5 implies that f maps the unit circle
to the real line. O

Figure 3.1.7 demonstrates the effect that the inversion f(z) = % has on
horizontal and vertical lines. In particular, the vertical line defined by Re(z) =

zo is mapped into the circle of radius i centered at (ﬁ, 0).
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Figure 3.1.7 Inversion maps vertical lines, shown on the left, into the circles
centered on the real axis. Horizontal lines are mapped into circles centered on
the imaginary axis.

3.2 Infinity and the Cross Ratio

In the context of M&bius transformations, it is useful to introduce a formal way
of saying that a function f “blows up” in absolute value, and this gives rise to
a notion of infinity.

Definition 3.2.1 Suppose f: G — C.

(a) lim,_,,, f(2) = co means that for every M > 0 we can find § > 0 so that,
for all z € G satisfying 0 < |z — zo| < 0, we have |f(z)| > M.

(b) lim, s f(2) = L means that for every e > 0 we can find N > 0 so that,
for all z € G satisfying |z| > N, we have |f(z) — L| < e.

(¢) lim, 0 f(2) = 00 means that for every M > 0 we can find N > 0 so
that, for all z € G satisfying |z| > N, we have |f(2)| > M.

In the first definition we require that zy be an accumulation point of G while
in the second and third we require that oo be an extended accumulation point
of G, in the sense that for every B > 0 there is some z € G with |z| > B. ¢

As in Section 2.1, the limit, in any of these senses, is unique if it exists.

Example 3.2.2 We claim that lim,_,q Z% = oo: Given M > 0, let § := ﬁ
Then 0 < |z| < § implies

1

> — = M.
22

IF)I =

O

Example 3.2.3 Let f(z) = ‘C‘j_ts be a Mobius transformation with ¢ # 0. Then
lim, o f(2) = %.
To simplify the notation, introduce the constant L := |ad — bc|. Given € > 0,

let N:= 4 + |%| Then |z| > N implies, with the reverse triangle inequality

le[?e

(Corollary 1.3.5(b)), that

L
cle

ez +d] > lellz| —|dl] > |ellz] —|d] >
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and so

c(az +b) —alcz +d) L -
c(cz +d) | |ez +d

€.

a
We stress that oo is not a number in C, just as +co are not numbers in R.
However, we can extend C by adding on oo, if we are careful. We do so by
realizing that we are always talking about a limit when handling co. It turns out
(see Exercise 3.6.11) that the usual limit rules behave well when we mix complex
numbers and co. For example, if lim,_,,, f(z) = oo and lim,,,, g(z) = a is
finite then the usual limit of sum = sum of limits rule still holds and gives
lim,_,,,(f(2) + g(%)) = co. The following definition captures the philosophy of
this paragraph.

Definition 3.2.4 The extended complex plane is the set C:=Cu {0}, together
with the following algebraic properties: For any a € C,

(a) co+a=a+o00=00
(b) if a# 0 then co-a=a-00 =00

(¢) o0 00=00

(@ =

(e) if a # 0 then § = oo.

a

=0

The extended complex plane is also called the Riemann sphere or the complex
projective line, denoted CP'. %

If a calculation involving oo is not covered by the rules above then we must
investigate the limit more carefully. For example, it may seem strange that
00 4 oo is not defined, but if we take the limit of z + (—z) =0 as z — oo we
will get 0, even though the individual limits of z and —z are both oo.

Now we reconsider Mobius transformations with oo in mind. For example,
f(z) =1 is now defined for z = 0 and z = oo, with f(0) = oo and f(c0) =0,
and so we might argue the proper domain for f(z) is actually C. Let’s consider
the other basic types of Mobius transformations. A translation f(z) =z 4+ b is
now defined for z = oo, with f(c0) = co+b = o0, and a dilation f(z) = az (with
a # 0) is also defined for z = oo, with f(c0) = a - 0o = c0. Since every Mobius
transformation can be expressed as a composition of translations, dilations and
inversions (Proposition 3.1.4), we see that every Mobius transformation may be
interpreted as a transformation of C onto C. This general case is summarized
in the following extension of Proposition 3.1.2.

Corollary 3.2.5 Suppose ad — bc # 0 and ¢ # 0, and consider f : C-C
defined through

cta zeC\{-}

fz)i=qo0  ifz=-4

e if z=00.
Then f is a bijection.
This corollary also holds for ¢ = 0 if we then define f(o00) = o0.

Example 3.2.6 Continuing Example 3.1.3 and Example 3.1.6, consider once

more the Mdbius transformation f(z) = £5%. With the definitions f(—1) = oo
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and f(co) = —i, we can extend f to a function C — C. O

With oo on our mind we can also add some insight to Theorem 3.1.5. We
recall that in Example 3.1.6, we proved that f(z) = fzj_lz maps the unit circle to
the real line. Essentially the same proof shows that, more generally, any circle
passing through —1 gets mapped to a line (see Exercise 3.6.4). The original
domain of f was C\ {—1}, so the point z = —1 must be excluded from these
circles. However, by thinking of f as function from C to C, we can put z = —1
back into the picture, and so f transforms circles that pass through —1 to
straight lines plus oco. If we remember that oo corresponds to being arbitrarily
far away from any point in C, we can visualize a line plus co as a circle passing
through co. If we make this a definition, then Theorem 3.1.5 can be expressed
as: any Mdbius transformation of ¢ transforms circles to circles.

We can take this remark a step further, based on the idea that three distinct
points in C determine a unique circle passing through them: If the three points
are in C and nonlinear, this fact comes straight from Euclidean geometry; if
the three points are on a straight line or if one of the points is co, then the
circle is a straight line plus oco.

Example 3.2.7 The Mébius transformation f : C — C given by f(z) = f;_lz
maps
1—0, =1, and —1+—00.

The points 1, ¢, and —1 uniquely determine the unit circle and the points
0, 1, and oo uniquely determine the real line, viewed as a circle in C. Thus
Corollary 3.2.5 implies that f maps the unit circle to R, which we already
concluded in Example 3.1.6. ]

Conversely, if we know where three distinct points in C are transformed by
a Mobius transformation then we should be able to figure out everything about
the transformation. There is a computational device that makes this easier to
see.

Definition 3.2.8 If z, 21, 29, and z3 are any four points in C with 2y, z2, and
z3 distinct, then their cross ratio is defined as

(2 — 21)(22 — 23)
(z—23)(22 — 21)

[2,21722,23] =

This includes the implicit definitions [z3, 21, 22, 23] = 0o and, if one of z, 21, 23,
or z3 is 0o, then the two terms containing co are canceled; e.g., [z, 00, 22, 23]

2223 . <>

zZ—2ZzZ3
Example 3.2.9 Our running example f(z) = fZ:LlZ can be written as f(z) =

[2,1,i,—1]. O

Proposition 3.2.10 The function f : C — C defined by f(2) = [z, 21, 22, 73] is
a Mébius transformation that satisfies

f(z1)=0,  f(z2)=1,  f(z3) = 0.

Moreover, if g is any Mdébius transformation with g(z1) = 0, g(z2) = 1, and
g(z3) = 00, then [ and g are identical.

Proof. Most of this follows from our definition of co, but we need to prove
the uniqueness statement. By Proposition 3.1.2, the inverse f~! is a M&bius
transformation and, by Exercise 3.6.10, the composition h := go f~! is again a
Mébius transformation. Note that h(0) = g(f~1(0)) = g(z1) = 0 and, similarly,
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h(1) =1 and h(co) = co. If we write h(z) = ‘cljis then

b
0=h0) =5 = b=0

00 = h(w) = — = ¢=0
c

a+b a+0 a
c+d 0+d d

and so 40
az a
(2) = fracaz + bez + 0t d 77 z,
the identity function. But since h = g o f~!, this means that f and g are
identical. ]

So if we want to map three given points of C to 0, 1 and oo by a Mobius
transformation, then the cross ratio gives us the only way to do it. What if we
have three points z1, zo and z3 and we want to map them to three other points
wy, wg and ws?

Corollary 3.2.11 Suppose 21, 22 and z3 are distinct points in C and wy, Wo
and wsz are distinct points in C. Then there is a unique Mdbius transformation
h satisfying h(z1) = w1, h(z2) = we, and h(z3) = ws.

Proof. Let h = g~! o f where f(z) = [z, 21, 22, z3] and g(w) = [w, w1, wa, ws].
Uniqueness follows as in the proof of Proposition 3.2.10. ]

This theorem gives an explicit way to determine i from the points z; and
w; but, in practice, it is often easier to determine A directly from the conditions
f(2;) = w; (by solving for a, b, ¢ and d).

3.3 Stereographic Projection

The addition of co to the complex plane C gives the plane a useful structure.
This structure is revealed by a famous function called stereographic projection,
which gives us a way of visualizing the extended complex plane—that is, with
the point at infinity—in R®, as the unit sphere. It also provides a way of seeing
that a line in the extended complex plane really is a circle, and of visualizing
Mébius functions.

To begin, we think of C as the (z, y)-plane in R3, that is, C = {(z,y,0) € R3}.
To describe stereographic projection, we will be less concerned with actual
complex numbers z + ¢y and more concerned with their coordinates. Consider
the unit sphere

S* = {(z,y,2) ER®: ® +y* + 27 =1} .

The sphere and the complex plane intersect in the set {(z,y,0) : 2%+ y? = 1},

which corresponds to the equator on the sphere and the unit circle on the
complex plane. Let N := (0,0, 1), the north pole of S?, and let S := (0,0, —1),
the south pole.

Definition 3.3.1 The stereographic projection of S? to C from N is the map
¢: S? = C defined as follows. For any point P € S2\ {N}, as the z-coordinate
of P is strictly less than 1, the line through N and P intersects C in exactly one
point, which define to be ¢(P). We also declare that ¢(N) := co. Figure 3.3.2
provides an illustration of this definition. O
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Figure 3.3.2 The definition of stereographic projection.
Proposition 3.3.3 The map ¢ is given by

o(z,y,2) = (133’ 122,0) ifz#1,

00 ifz=1.

It is bijective, with inverse map

~ 2p 2q PP+ -1
(b 1(p7Q70) = 2 2 b 2 2 ) 2 2
PP+ +1 pP+q¢>+1 p?+q¢2+1

and =1 (o0) = (0,0,1).
Proof. Given P = (x,y,z) € S?\ {N}, the straight line through N and P is
parametrized by
r(t) = N+t(P—N)
(Oa 0, 1) + t[(.’I}, Y, Z) - (07 0, 1)]
(tz, ty, 1 +t(z — 1))

where ¢ € R. When r(¢) hits C, the third coordinate is 0, so it must be that
t= 1;. Plugging this value of ¢ into the formula for r yields ¢ as stated.

To see the formula for the inverse map ¢!, we begin with a point Q =
(p,q,0) € C and solve for a point P = (z,y,2) € S? so that ¢(P) = Q. The
point P satisfies the equation 22 + 3% + 22 = 1. The equation ¢(P) = Q tells us
that - = p and £ = ¢. Thus, we solve three equations for three unknowns.

The latter two equations yield

% 492 1—22 142
p2—|—q2 = 3 = ) = .
(1-2) (1-2) 1—=2

Solving p? + ¢*> = }fz for z and then plugging this into the identities

x=p(l —2) and y = ¢(1 — z) proves the desired formula. It is easy to check
that ¢ 0 ¢~ and ¢! o ¢ are both the identity map; see Exercise 3.6.24. |

Theorem 3.3.4 The stercographic projection ¢ takes the set of circles in S?
bijectively to the set of circles in C, where for a circle y C S? we have co € ¢(7)
(that is, ¢(7) is a line in C) if and only if N € ~.
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Proof. A circle in S? is the intersection of S? with some plane H. If (2¢, yo, 20)
is a normal vector to H, then there is a unique real number k so that H is
given by

H = {(w,y,z) ER?’: (3371/72)'(250,1/0720) :k}
= {(as,y,z) e R3: zzo + yyo + 220 :k} .

By possibly changing k, we may assume that (zo,v0,20) € S?. We may
also assume that 0 < k < 1, since if k& < 0 we can replace (zo, Yo, 20) with
(=20, —Y0, —20), and if k£ > 1 then H NS? = @.

Consider the circle of intersection H N'S2. A point (p, ¢,0) in the complex
plane lies on the image of this circle under ¢ if and only if ¢~1(p, g,0) satisfies
the defining equation for H. Using the equations from Proposition 3.3.3 for

¢~ 1(p,q,0),
(20 — k)p® + (2z0)p + (20 — k)¢* + (2y0)q = 20+ k.

If zo — k = 0, this is a straight line in the (p, ¢)-plane. Moreover, every line
in the (p, g¢)-plane can be obtained in this way. Note that zg = k if and only if
N € H, which is if and only if the image under ¢ is a straight line.

If z9 — k # 0, then completing the square yields

2 2 2
To Yo 1—-k
+ +(q+ = ——.
(p Zo—k> (q 20 —k) (Zo —k‘)2
Depending on whether the right hand side of this equation is positive, 0, or
negative, this is the equation of a circle, point, or the empty set in the (p, q)-
plane, respectively. These three cases happen when k < 1, k=1, and k > 1,

respectively. Only the first case corresponds to a circle in S?. Exercise 3.6.27
verifies that every circle in the (p, ¢)-plane arises in this manner. |

We can now think of the extended complex plane as a sphere in R3, the
afore-mentioned Riemann sphere.

It is particularly nice to think about the basic Mébius transformations via
their effect on the Riemann sphere. We will describe inversion. It is worth
thinking about, though beyond the scope of this book, how other Mobius
functions behave. For instance, a rotation f(z) = ¢z, composed with ¢!, can
be seen to be a rotation of S?. We encourage you to verify this and consider
the harder problems of visualizing a real dilation, f(z) = rz, or a translation,
f(z) = z+b. We give the hint that a real dilation is in some sense dual
to a rotation, in that each moves points along perpendicular sets of circles.
Translations can also be visualized via how they move points along sets of
circles.

We now use stereographic projection to take another look at f(z) = % We
want to know what this function does to the sphere S?. We will take a point
(x,9,2) € S%, project it to the plane by the stereographic projection ¢, apply f
to the point that results, and then pull this point back to S by ¢~ 1.

We know ¢(z,y,2) = (1%, 1%, 0) which we now regard as the complex
number

o y
ptig = 1—z+ll—z'
14z
1—2?

We know from a previous calculation that p? + ¢* = which gives

224+ y? = (1 +2)(1 — 2). Thus
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T Ly N
f(lz—i—zlz)  xtiy
(1= 2)(z —iy)
$2+y2
T .Y

14z 14z

Rather than plug this result into the formulas for ¢=!, we can just ask what
triple of numbers will be mapped to this particular pair using the formulas
é(z,y,2) = (%, 1%, 0). The answer is (z, —y, —2).

Thus we have shown that the effect of f(z) = L on S? is to take (z,y,2) to
(z,—y,—z). This is a rotation around the z-axis by 180 degrees.

We now have a second argument that f(z) = % takes circles and lines to
circles and lines. A circle or line in C is taken to a circle on S? by ¢~!. Then
f(z) = % rotates the sphere which certainly takes circles to circles. Now ¢
takes circles back to circles and lines. We can also say that the circles that
go to lines under f(z) = % are the circles through 0, because 0 is mapped to
(0,0, —1) under ¢!, and so a circle through 0 in C goes to a circle through the
south pole in S?. Now 180-degree rotation about the z-axis takes the south
pole to the north pole, and our circle is now passing through N. But we know
that ¢ will take this circle to a line in C.

We end by mentioning that there is, in fact, a way of putting the complex
metric on S2. It is certainly not the (finite) distance function induced by R3.
Indeed, the origin in the complex plane corresponds to the south pole of S2.
We have to be able to get arbitrarily far away from the origin in C, so the
complex distance function has to increase greatly with the z coordinate. The
closer points are to the north pole N (corresponding to oo in C), the larger
their distance to the origin, and to each other! In this light, a “line” in the
Riemann sphere S? corresponds to a circle in S? through N. In the regular
sphere, the circle has finite length, but as a line on the Riemann sphere with
the complex metric, it has infinite length.

3.4 Exponential and Trigonometric Functions

To define the complex exponential function, we once more borrow concepts
from calculus, namely the real exponential function' and the real sine and
cosine, and we finally make sense of the notation e = cost 4 isint.

Definition 3.4.1 The (complex) exponential function is exp : C — C, defined
for z=x+ 1y as

exp(z) = €”(cosy+isiny) = e“e'.

O

This definition seems a bit arbitrary. Our first justification is that all
exponential rules that we are used to from real numbers carry over to the

1How to define the real exponential function is a nontrivial question. Our preferred way
to do this is through a power series: e” = Zkzo %mk In light of this definition, you might
think we should have simply defined the complex exponential function through a complex
power series. In fact, this is possible (and an elegant definition); however, one of the promises
of this book is to introduce complex power series as late as possible. We agree with those
readers who think that we are cheating at this point, as we borrow the concept of a (real)
power series to define the real exponential function.



CHAPTER 3. EXAMPLES OF FUNCTIONS 48

complex case. They mainly follow from Proposition 1.2.7 and are collected in
the following.

Proposition 3.4.2 For all z,2z1,20 € C,
(a) exp (21)exp (22) = exp (21 + 22)
1
b
(b) exp (2)
(c

(d

= exp (—2)

exp (z + 2mi) = exp (2)
lexp (2)| = exp (Rez)
(e) exp(z) #0

(f) & exp(z) =exp(2).

Item (c) is very special and has no counterpart for the real exponential
function. It says that the complex exponential function is periodic with period
2mi. This has many interesting consequences; one that may not seem too
pleasant at first sight is the fact that the complex exponential function is not
one-to-one.

Item (f) is not only remarkable, but we invite you to meditate on its proof
below; it gives a strong indication that our definition of exp is reasonable. We
also note that (f) implies that exp is entire.

We leave the proof of Proposition 3.4.2 as Exercise 3.6.33 but give one
sample.

)
)
)
)

Proof. (f) The partial derivatives of f(z) = exp(z) are

% = e”(cosy + isiny) and % = e (—siny +icosy).

They are continuous in C and satisfy the Cauchy—Riemann equation (2.2):

of Of
%(Z) = -1 @(Z)

for all z € C. Thus Theorem 2.3.1 says that f(z) = exp(z) is entire with
derivative 9
) = ) = ewle).

|
We should make sure that the complex exponential function specializes to
the real exponential function for real arguments: indeed, if z = 2 € R then

exp(xz) = e”(cos0+isin0) = e”.
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Figure 3.4.3 The domain of the complex exponential function is shown on the
left and the codomain on the right. The function maps the blue vertical lines
on the left into circles on the right and maps the red dashed horizontal lines on
the left into the rays on the right.

The trigonometric functions—sine, cosine, tangent, cotangent, etc.—also
have complex analogues; however, they do not play the same prominent role
as in the real case. In fact, we can define them as merely being special
combinations of the exponential function.

Definition 3.4.4 The (complex) sine and cosine are defined as

sinz := 3 (exp(iz) — exp(—iz))
cosz = 3 (exp(iz) + exp(—iz)) ,

respectively. The tangent and cotangent are defined as

sin z cexp(2iz) — 1
tanz = = —i—
COos 2 exp(2iz) + 1
oS 2 _exp(2iz) + 1
cotz (= — =1 - )
sin z exp(2iz) — 1
respectively. o

Note that to write tangent and cotangent in terms of the exponential
function, we used the fact that exp(z) exp(—z) = exp(0) = 1. Because exp is
entire, so are sin and cos.

As with the exponential function, we should make sure that we’re not
redefining the real sine and cosine: if z =z € R then

sinz = 3 (exp(iz) — exp(—iz))
2 (cosz + isinz — cos(—z) — isin(—x))
= sinz.
A similar calculation holds for the cosine. Not too surprisingly, the following
properties follow mostly from Proposition 3.4.2.
Proposition 3.4.5 For all z,2z1,20 € C,
sin(—z) = —sinz
cos(—z) = cos z

)

)

sin(z 4 27) = sin z

cos(z + 2m) = cos z
)

tan(z + 7) = tan z
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cot(z +m) = cot z
sin(z + §) = cos z
cos(z+ §) = —sinz

sin (21 4 22) = sin 21 cos 25 + cos 21 sin 29
cos (271 + 22) = €08 21 €OS 73 — sin 21 sin 2o
cos?z+sin?z=1

cos? z — sin” z = cos(22)

—sinz = cos z

dz
icosz = —sinz.
Finally, one word of caution: unlike in the real case, the complex sine and
cosine are not bounded—consider, for example, sin(iy) as y — £oo.
We end this section with a remark on hyperbolic trig functions. The
hyperbolic sine, cosine, tangent, and cotangent are defined as in the real case:

Definition 3.4.6

sinhz = 1 (exp(z) — exp(—2))
(

3 —2))

coshz = 3 (exp(z)+ exp

tanh s — sinhz exp(2z) — 1
cosh z exp(2z) + 1
h 2 1

coth s — c?s z exp(2z) + .
sinh z exp(2z) — 1

O

As such, they are yet more special combinations of the exponential function.
They still satisfy the identities you already know, e.g.,

—sinhz = coshz and —coshz = sinhz.
dz dz
Moreover, they are related to the trigonometric functions via
sinh(iz) = isinz and cosh(iz) = cosz.
sin(2*1i)
Ixsinh(2)

3.5 Logarithms and Complex Exponentials

The complex logarithm is the first function we’ll encounter that is of a somewhat
tricky nature. It is motivated as an inverse to the exponential function, that is,
we’re looking for a function Log such that

exp(Log(z)) = z = Log(expz). (3.3)

But because exp is not one-to-one, this is too much to hope for. In fact,
given a function Log that satisfies the first equation in (3.3), the function
f(z) = Log(z) + 2mi does as well, and so there cannot be an inverse of exp
(which would have to be unique). On the other hand, exp becomes one-to-one
if we restrict its domain, so there is hope for a logarithm if we are careful about
its construction and about its domain.
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Definition 3.5.1 Given a region G, any continuous function Log : G — C that
satisfies exp(Log z) = z is a branch of the logarithm (on G ). O

To make sure this definition is not vacuous, let’s write, as usual, z = r *?,
and suppose that Log z = u(z) + iv(z). Then for the first equation in (3.3) to
hold, we need

exp(Logz) = e’ = re® = z,

that is, e* = r and e” = €'?. The latter equation is equivalent to v = ¢ + 27k
for some k € Z, and denoting the natural logarithm of the positive real number
x by In(z), the former equation is equivalent to v = In|z|. A reasonable
definition of a logarithm function Log would hence be Logz = In |z| + i Arg z
where Arg z gives the argument for the complex number z according to some
convention—here is an example.

Definition 3.5.2 Let Arg z denote the unique argument of z # 0 that lies in
(=, 7] (the principal argument of z). Then the principal logarithm is the
function Log : C \ {0} — C defined through

Log(z) :=In|z| + i Arg(z) .
O

Example 3.5.3 Here are a few evaluations of Log to illustrate this function:

Log(2) = In(2) +iArg(2) = In(2)
Log(i) = In(1) + i Arg(i) — %l
Log(~3) = In(3) +iArg(—3) = In(3) + mi
Log(l —i) = In(v2) +iArg(l —i) = %m(z)f%@.

SageMath computes “our” principal logarithm.

real (log(1-1i))

log(sqrt(2))

imaginary (log(1-1i))

-1/4*pi

The principal logarithm is not continuous on the negative part of the real
line, and so Log is a branch of the logarithm on C\ R<g. Any branch of the
logarithm on a region G can be similarly extended to a function defined on
G\ {0}. Furthermore, the evaluation of any branch of the logarithm at a specific
2o can differ from Log(zp) only by a multiple of 27i; the reason for this is once
more the periodicity of the exponential function.

So what about the second equation in (3.3), namely, Log(exp z) = 27 Let’s
try the principal logarithm: if z = x + iy then

Log(expz) = In|e®e™|+ i Arg(ee™)
= Ine” +1iArg(e”)
= z+iArg(e?).
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The right-hand side is equal to z = z + 4y if and only if y € (—m, 7]. Something
similar will happen with any other branch Log of the logarithm—there will
always be many z’s for which Log(exp z) # z.

A warning sign pointing in a similar direction concerns the much-cherished
real logarithm rule In(zy) = In(x) +1n(y); it has no analogue in C. For example,

Log(i) + Log(i—1) = i3 +Inv2+ 3 = {In24 57

but
s _ . _ 1 3 .
Log(i(i —1)) = Log(—-1—-1i) = 5In2— .
The problem is that we need to come up with an argument convention to
define a logarithm and then stick to this convention. There is quite a bit of

subtlety here; e.g., the multi-valued map
arg z := all possible arguments of z
gives rise to a multi-valued logarithm via
logz := In|z|+iargz.

Neither arg nor log is a function, yet exp(log z) = z. We invite you to check
this thoroughly; in particular, you should note how the periodicity of the
exponential function takes care of the multi-valuedness of log.

To end our discussion of complex logarithms on a happy note, we prove
that any branch of the logarithm has the same derivative; one just has to be
cautious with regions of holomorphicity.

Proposition 3.5.4 If Log is a branch of the logarithm on G, then Log is

differentiable on G with
d

dz
Proof. The idea is to apply Proposition 2.2.8 to exp and Log, but we need to
be careful about the domains of these functions. Let H := {Log(z) : z € G},
the image of Log. We apply Proposition 2.2.8 with f : H — G given by
f(z) = exp(z) and g : G — H given by g(z) = Log(z); note that g is continuous,
and Exercise 3.6.47 checks that f and g are inverses of each other. Thus
Proposition 2.2.8 gives

Log(z) = %

oy 1 _ 1 _ 1
fog(2) = exp/(Logz)  exp(fogz) =z

|
We finish this section by defining complex exponentials.

Definition 3.5.5 Given a,b € C with a # 0, the principal value of a® is defined
as
a® = exp(bLog(a)).

O

Naturally, we can just as well define a® through a different branch of the

logarithm; our convention is that we use the principal value unless otherwise

stated. Exercise 3.6.50 explores what happens when we use the multi-valued
log in the definition of a’.
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real (i*i)

e*(-1/2xpi)

imaginary(i”*i)

One last remark: it now makes sense to talk about the function f(z) =
e*, where e is Fuler’s' number and can be defined, for example, as e =
lim,, 0 (1 + %)n In calculus we can prove the equivalence of the real exponen-
tial function (as given, for example, through a power series) and the function
f(z) = €. With our definition of a®, we can now make a similar remark about
the complex exponential function. Because e is a positive real number and
hence Arge =0,

e® = exp(zLog(e))

— exp (2 (In |e| + i Arg(¢e)))
= exp (zln(e))

= exp(z).

A word of caution: this only works out this nicely because we have carefully
defined a® for complex numbers. Using a different branch of logarithm in the
definition of a® can easily lead to e* # exp(z).

3.6 Exercises

. _ az+b s s . 1 _ dz—b
Show that if f(z) = £Z7; is a Mobius transformation then f~'(2) = 2.

2. Complete the picture painted by Proposition 3.1.2 by considering Mébius
transformations with ¢ = 0. That is, show that f : C — C given by f(z) =
%er is a bijection, with f~1(2) given by the formula in Proposition 3.1.2.

3. Show that (3.1) is the equation for a circle or line if and only if 3% + 42 >
4 . Conclude that x + iy is a solution to (3.1) if and only if u 4 v is a
solution to (3.2).

4. Extend Example 3.1.6 by showing that f(z) = fz_jl maps any circle passing
through —1 to a line.

5. Prove that any M&bius transformation different from the identity map can
have at most two fixed points. (A fized point of a function f is a number
z such that f(z) = z.)

Prove Proposition 3.1.4.

7. Show that the Mobius transformation f(z) = }%ﬁ maps the unit circle

(minus the point z = 1) onto the imaginary axis.

8.  Suppose that f is holomorphic in the region G and f(G) is a subset of the
unit circle. Show that f is constant.

9. Fix a € C with |a| < 1 and consider

fa(2) =

(a) Show that f,(z) is a Mdbius transformation.

zZ—a

1—az’

INamed after Leonard Euler (1707-1783). Continuing our footnote on p. Footnote 1.2.2
we have now honestly established Euler’s formula e>™ = 1.
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10.

11.

12.

13.

14.

(b) Show that f,1(2) = f_a(2).

(c) Prove that f,(z) maps the unit disk D[0, 1] to itself in a bijective
fashion.
Suppose

is a 2 X 2 matrix of complex numbers whose determinant ad — be is nonzero.
Then we can define a corresponding Mobius transformation on C by
Ta(z) = fzzj_'s Show that T4 o Tg = T'4.g, where o denotes composition
and - denotes matrix multiplication.

Show that our definition of C honors the “finite” limit rules in Proposi-
tion 2.1.6, by proving the following, where a € C:

(a) If lim,,,, f(2) = oo and lim,,,, g(z) = a then lim, ., (f(2) +

9(2)) = oo.
(b) If lim,_,,, f(2) = o0 and lim,_,,, g(z) = a # 0 then lim,_,,, (f(2) -
9(2)) = oc.

(2)) = o0

(d) If lim,_,,, f(z) = co and lim,_,,, g(z) = a then lim,_,,, ?8 0.

(c) If lim, ., f(2) = lim,_,, g(2) = oo then lim,_,, (f(2) -

Q

(e) If lim,,,, f(z) =0 and lim,,,, g(z) = a # 0 then lim,_, 9(z)

f(z)
00.
Fix cg,c1,...,cq-1 € C. Prove that
. Cd— Cd— ¢
lim 14 41 222 20— g
z— 00 yA z z

Let f(2) = 22_52. Draw two graphs, one showing the following six sets in

the z-plane and the other showing their images in the w-plane. Label the
sets. (You should only need to calculate the images of 0, £2, +(1 + i),
and oo; remember that Mébius transformations preserve angles.)

(a) the z-axis plus co

(b) the y-axis plus oo

(c) the line x =y plus oo

(d) the circle with radius 2 centered at 0
(e) the circle with radius 1 centered at 1

(f) the circle with radius 1 centered at —1

Find Mébius transformations satisfying each of the following. Write your

answers in standard form, as ‘;zzis

(a) 1—-0,2—1,3—>00

Answer. =2tl
z—3

)1 —-0,14i—1,2—>

(i—1)z+1—i

Answer. —J= T
1z—21

(c) 0—=i,1—=1,00— —i
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15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

1z—1
—z+1

Using the cross ratio, with different choices of zy, find two different M6bius
transformations that transform C[1 + ¢, 1] onto the real axis plus co. In
each case, find the image of the center of the circle.

Answer.

Let v be the unit circle. Find a Mo6bius transformation that transforms
onto v and transforms 0 to %

Describe the image of the region under the transformation:

(a) The disk |z| <1 under w = 7.

(b) The quadrant x > 0, y > 0 under w = z—jrz

(c) The strip 0 < 2 < 1 under w = =5.

Find a Mobius transformation that maps the unit disk to {x + iy € C :
x4y >0}

Find the fixed points in C of f(z) = ;Z;}

Find each Mobius transformation f:
(a) fmaps0—1,1— oo, 00— 0.
(b) fmapsl—1, -1 =i, —i — —1.

(c) f maps the z-axis to y = z, the y-axis to y = —z, and the unit circle
to itself.

(a) Find a Mobius transformation that maps the unit circle to {x + iy €
C: z+y=0}

(b) Find two Mébius transformations that map the unit disk

{r+iyeC: x4y >0} and

eC: <1 t
{z 2l <1} © {z+iyeC: z4+y <0},

respectively.

Given a € R\ {0}, show that the image of the line y = a under inversion

is the circle with center 5 and radius ﬁ

Suppose z1, 2o and z3 are distinct points in C. Show that z is on the circle

passing through z1, zo and z3 if and only if [z, 21, 22, 23] is real or co.

Prove that the stereographic projection of Proposition 3.3.3 is a bijection

by verifying that ¢ o ¢~! and ¢! o ¢ are the identity map.

Find the image of the following points under the stereographic projection ¢:
(Oa 07 _1)7 (Oa 0) 1)7 (1a 07 0)7 (Oa 17 0)

Consider the plane H determined by = +y — z = 0. What is a unit normal

vector to H? Compute the image of H N'S? under the stereographic
projection ¢.

Prove that every circle in the extended complex plane C is the image of
some circle in S? under the stereographic projection ¢.

Describe the effect of the basic Mdbius transformations rotation, real
dilation, and translation on the Riemann sphere.

Hint. For the first two, consider all circles in S? centered on the NS
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axis, and all circles through both N and S. For translation, consider
two families of circles through N, orthogonal to and perpendicular to the
translation.

29. Prove that sin(z) = sin(z) and cos(z) = cos(Zz).
30. Let z = x + iy and show that

(a) sinz = sinx coshy + i cos rsinh y.

(b) cos z = cosz coshy — isinxsinhy.
31. Prove that the zeros of sin z are all real valued. Conclude that they are
precisely the integer multiples of 7.

32. Describe the images of the following sets under the exponential function
exp(z):
(a) the line segment defined by z =iy, 0 <y < 2=«
(b) the line segment defined by z =141y, 0 <y <27

(c) therectangle {z=2+iyeC: 0<x<1,0<y <27}
33. Prove Proposition 3.4.2.
34. Prove Proposition 3.4.5.
35. Let z =z + iy and show that

(a) |sinz|® = sin?z 4 sinh? y = cosh? y — cos? x

(b) |cos z|* = cos? z + sinh? y = cosh?y — sin? x

(c) If cosz = 0 then

2 J—
lcot z|* = C()Shigél < 1.
cosh”y
(d) If |[y| > 1 then
sinh®y + 1 1 1
ot z|* < 7% =1+ —5 < 1+ —u
sinh” y sinh®y sinh” 1

36. Show that tan(iz) = itanh(z).

37. Draw a picture of the images of vertical lines under the sine function. Do
the same for the tangent function.

38. Determine the image of the strip {z € C: =% < Rez < T} under the sine
function.

Hint. Exercise 3.6.30 makes it easy to convert parametric equations for
horizontal or vertical lines to parametric equations for their images. Note
that the equations z = Asint and y = B cost represent an ellipse and the
equations © = Acosht and y = Bsinht represent a hyperbola. Start by
finding the images of the boundary lines of the strip, and then find the
images of a few horizontal segments and vertical lines in the strip.

39. Find the principal values of
(a) Log(2i)
Answer. In(2)+ %
(b) (-1)°

Answer. e

—T



CHAPTER 3. EXAMPLES OF FUNCTIONS 57

40.

41.

42.

43.

(c) Log(—1+71).
Answer. $In(2)+ 27

Convert the following expressions to the form x + iy. (Reason carefully.)

(a) €™

(b) "

(c) i’

(d) esin(i)

(e) exp(Log(3 + 4i))

(f) (1+1i)2

(8) V3(1-19)

w ()
Is arg(z) = — arg(z) true for the multiple-valued argument? What about
Arg(z) = — Arg(z) for the principal branch?

4

For the multiple-valued logarithm, is there a difference between the set of
all values of log(2?) and the set of all values of 2log 2?7

Hint. Try some fixed numbers for z.

For each of the following functions, determine all complex numbers for
which the function is holomorphic. If you run into a logarithm, use the
principal value unless otherwise stated.

(a) 72

Answer. differentiable at 0, nowhere holomorphic

(b) %5

Answer. differentiable and holomorphic on C\ {—1, €5, e~!5}

(c) Log(z—2i+1) where Log(z) = In|z|+i Arg(z) with 0 < Arg(z) < 27

Answer. differentiable and holomorphic on C \
{r+iyeC: z> -1, y=2}
(d) exp(z)

Answer. nowhere differentiable or holomorphic

(e) (z—3)

Answer. differentiable  and  holomorphic ~on  C \
{z+iyeC: <3, y=0}
(F) #3.

Answer. differentiable and holomorphic in C (i.e., entire)

44. Find all solutions to the following equations:

(a) Log(z) = %
Answer. z =1

(b) Log(z) = %5*
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45.

46.

47.

48.
49.

50.

51.

52.

Answer. there is no solution
(c) exp(z) =mi

Answer. z=Inm+i(5 +27k), k€ Z
(d) sin(z) = cosh(4)

Answer. z= 75 +2rk+4i, keZ
(e) cos(z) =0

Answer. z=5 +7k, k€Z
(f) sinh(z) =0

Answer. z=nmki, kE€Z
(g) exp(iz) = exp(iz)

Answer. z=n7k, kE€Z
(h) 22 =1+3i.

Answer. z =21

Find the image of the annulus 1 < |z| < e under the principal value of the
logarithm.

Use Exercise 2.5.25 to give an alternative proof that Log is holomorphic
in C \ Rgo.

Let Log be a branch of the logarithm on G, and let H := {Log(z) : z € G},
the image of Log. Show that Log : G — H is a bijection whose inverse
map is f(z) : H — G given by f(z) = exp(z) (i.e., f is the exponential
function restricted to H).

Show that |a*| = a*¢# if a is a positive real constant.

Fix ¢ € C\ {0}. Find the derivative of f(z) = z°.

Answer. f'(z) =cz¢!

Prove that exp(bloga) is single valued if and only if b is an integer. (Note
that this means that complex exponentials do not clash with monomials
2™, no matter which branch of the logarithm is used.) What can you say
if b is rational?

Describe the image under exp of the line with equation y = z. To do
this you should find an equation (at least parametrically) for the image
(you can start with the parametric form = = ¢, y = t), plot it reasonably
carefully, and explain what happens in the limits as t — oo and t — —o0.

For this problem, f(z) = 22.

(a) Show that the image under f of a circle centered at the origin is a
circle centered at the origin.

Hint. Use polar coordinates.

(b) Show that the image under f of a ray starting at the origin is a ray
starting at the origin.

(c) Let T be the figure formed by the horizontal segment from 0 to 2,
the circular arc from 2 to 2¢, and then the vertical segment from 2¢
to 0. Draw T and f(T).



CHAPTER 3. EXAMPLES OF FUNCTIONS 59

53.

(d) Is the right angle at the origin in (c) preserved? Is something wrong
here?
As in Exercise 3.6.52, let f(z) = 22. Let Q be the square with vertices
at 0, 2, 2+ 2¢ and 2i. Draw f(Q) and identify the types of image curves
corresponding to the segments from 2 to 2+ 2 and from 2+ 27 to 2i. They
are not parts of either straight lines or circles.

Hint. You can write the vertical segment parametrically as z(t) = 2 + it.
Eliminate the parameter in u + iv = f(z(¢)) to get a (u,v) equation for
the image curve.) Exercise 3.6.52 and Exercise 3.6.53 are related to the
cover picture of the print version of this book.
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Integration

Nature laughs at the difficulties of integration.
—Pierre-Simon de Laplace (1749-1827)

We are now ready to start integrating complex functions—and we will not stop
doing so for the remainder of this book: it turns out that complex integration
is much richer than real integration (in one variable). The initial reason for
this is that we have an extra dimension to play with: the calculus integral
f: f(x) dz has a fixed integration path, from a to b along the real line. For
complex functions, there are many different ways to go froma to b...

4.1 Definition and Basic Properties

At first sight, complex integration is not really different from real integration.
Let a,b € R and let g : [a,b] — C be continuous. Then we define

/bg(t) dt = /bReg(t)dt + i/blmg(t) dt. (4.1)

This definition is analogous to that of integration of a parametric curve in
R2. For a function that takes complex numbers as arguments, we typically
integrate over a path « (in place of a real interval). If you meditate about the
substitution rule for real integrals (Theorem A.0.6), the following definition,
which is based on (4.1), should come as no surprise.

Definition 4.1.1 Suppose v is a smooth path parametrized by v(t), a <t <b,
and f is a complex function which is continuous on v. Then we define the
integral of f on 7y as

[1= [era = [ rowmoa.

This definition immediately extends to paths that are piecewise smooth:
Suppose 7 is parametrized by v(t), a <t < b, which is smooth on the intervals
[a,c1],[c1,¢2], - -5 [en—1, Cn], [cn, B].1 Then, assuming again that f is continuous
on v, we define

60
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[r=] W )t + / " )y @) de

b
TR / FOY ) (t) dt

O

Example 4.1.2 To see this definition in action, we compute the integral of the
function f : C — C given by f(z) = Z? over several paths from 0 to 1 +i.

(a) Let v be the line segment from 0 to 1 + 4. A parametrization of this path
is y(t) =t+it, 0 <t <1. Here /(t) = 1 +i and f(y(t)) = (t —it)*, and
SO

Lf - /Ol(t—it)2(1+i)dt = 2(1—i)/01t2dt = %(l—i).

(b) Let v be the arc of the parabola y = x2 from 0 to 1 +4. A parametrization
of this path is y(t) = ¢t +it?, 0 <t < 1. Now we have +/(t) = 1 + 2it and
() = (t—it?)* =2 —t* — 2it3

whence

1
/f = /(t27t472it3)(1+2it) dt
v 0

1 .

14 7

= 24+ 3t — 25t dt = — — -
/0( * it”) 53

(c¢) Let y be the union of the two line segments y; from 0 to 1 and ~, from 1
to 1+4. Parametrizations are v1(¢) =¢, 0 <t < 1, and y(t) = 1+it, 0 <

t < 1. Hence
fr=1+/7
2l 71 Y2
1 1
= / tzdt+/(1—it)2idt
0 0

1 1
= 7+z'/ (1 —2it — %) dt
3 0

1 1 1
= -+i|(1—-2i-— =
3+z< z2 3)

LOur footnote on Definition 1.4.11 about the subtlety of the definition of a smooth path
applies also here, at the subdivision points ¢;. Note that we do not require that the left and
right derivatives match at these points.
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var('t')

gamma = t + ix*t

f(z) = conjugate(z)*2

integral (f.subs(z=gamma) x diff(gamma, t), t, @, 1)

z |--> -2/3%1 + 2/3

It is apparent but nevertheless noteworthy that these integrals evaluate to
different results; in particular—unlike in calculus—a complex integral does not
simply depend on the endpoints of the path of integration.

On the other hand, the complex integral has some standard properties,
most of which follow from their real siblings in a straightforward way. Our first
observation is that the actual choice of parametrization of v does not matter.
More precisely, if y(t), a <t <band o(t), ¢ <t < d are parametrizations of a
curve then we say that o is a reparametrization of  if there is an increasing
piecewise smooth map of [c, d] onto [a,b] that takes v to o, in the sense that
o=7vyoT.

Proposition 4.1.3 If y(t), a <t < b is a piecewise smooth parametrization of
a curve and o(t), ¢ <t <d is a reparametrization of v then

d b
| sewyowd = [ o)y o
(& a
Example 4.1.4 To appreciate this statement, consider the two parametrizations
() =¢t, 0<t <2m, and o(t) =™ o<t <1,

of the unit circle. Then we could write f,y f in the two ways:

[yf = z'/o%f(e”)e”dt

™

2 - -
/f _ 27”-/ f (627rz sm(t)) eQTr'L sin(t) COS(t) dt .
o 0

A quick substitution shows that the two integrals on the respective right-hand
sides are indeed equal. (|

and

Proposition 4.1.3 says that a similar equality will hold for any integral and
any parametrization. Its proof is left as Exercise 4.5.9, which also shows that
the following definition is unchanged under reparametrization.

Definition 4.1.5 The length of a smooth path - is

length(y) = / (1)) dt

for any parametrization v(¢), a < t < b. Naturally, the length of a piecewise
smooth path is the sum of the lengths of its smooth components. %

Example 4.1.6 Let v be the line segment from 0 to 1 + ¢, which can be
parametrized by v(t) = ¢t + it for 0 <t < 1. Then ~/(¢t) = 1 + 4 and so

1 1
length(y) = / 11 +id|dt = / V2dt = V2.
0 0
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Example 4.1.7 Let «y be the unit circle, which can be parametrized by v(t) = e
for 0 <t < 2m. Then /(t) = ie" and

2m 2m
length(y) = / liel|dt = / dt
0 0

2.

var('t"')
gamma = e”(i*t)
integral (abs(diff(gamma,t)), t, @, 2*pi)

2*%pi

Now we observe some basic facts about how the line integral behaves with
respect to function addition, scalar multiplication, inverse parametrization, and
path concatenation; we also give an upper bound for the absolute value of an
integral, which we will make use of time and again.

Proposition 4.1.8 Suppose v is a piecewise smooth path, f and g are complex
functions which are continuous on vy, and ¢ € C.

(a)l(f+cg) =Lf+CL9-

(b) If ~ is parametrized by v(t), a < t < b, we define the path —v by
—(t) :=~(a+b—1t), a<t<b. Then

Lol

(¢) If v1 and 72 are piecewise smooth paths so that vy starts where v; ends,
we define the path 172 by following v1 to its end and then continuing on

Y2 to its end. Then
Y1772 Y1 2

@ | [ 1] < maxlse))-ensenia).

The path —v defined in (b) is the path that we obtain by traveling through
v in the opposite direction.

Proof. (a) follows directly from the definition of the integral and Theorem A.0.4,
the analogous theorem from calculus.
(b) follows with the real change of variables s = a + b — t:

b
[f:/wam—mmﬁw4Wﬁ

b
—/ f(yla+b—t)y(a+b—1t)dt

AU@@W%Ms

—LW@@M@MSz—Lf
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For (c), we need a suitable parametrization ~y(t) for v1vy2. If 77 has domain
[a1,b1] and 2 has domain [ag, bo] then we can use

(t) L ’yl(t) lf aq StSbl,
T Yot — b1 +a2) by <t <b+by—as,

with domain [ag, b; + by — a2]. Now we break the integral over ;72 into two
pieces and apply the change of variables s =t — by + ao:

b1+bz—az
;= / FOr) (8) dt

Y1772 ai

b1 bi+ba—as
— [ o war + / FOH )Y (1) dt

al bl
— [+ ]
71 Y2
The last step follows since v restricted to [aq,b;] is 71 and + restricted to

[b1,b1 + b2 — as] is a reparametrization of vo.

For (d), let ¢ = (Arg [, f). Then [ f =|[, f

/j‘ = e”%f = Re (ew /abf(fy(t))fy/(t) dt)

b
- / Re (f(v(1))e~ /(1)) dt

e'® and so, since ‘fy f‘ €R,

b b
< [lr6®e @l = [ il old
b
< ! = . :
< max GO [ WOl = max| ()] -length)
Here we have used Theorem A.0.5 for both inequalities. |

Example 4.1.9 In Exercise 4.5.4, you are invited to show

d
/ o,
,.YZ*’lU

where v is any circle centered at w € C, oriented counter-clockwise. Thus
Proposition 4.1.8(b) says that the analogous integral over a clockwise circle
equals —2mi. Incidentally, the same example shows that the inequality in
Proposition 4.1.8(d) is sharp: if 4 has radius r, then

dz
< max
N Z—W zEy

2T =

1
length(y) = —-27r.
z—w r

4.2 Antiderivatives

The central result about integration of a real function is the Fundamental
Theorem of Calculus (Theorem A.0.3), and our next goal is to discuss complex
versions of this theorem. The Fundamental Theorem of Calculus makes a
number of important claims: that continuous functions are integrable, their an-
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tiderivatives are continuous and differentiable, and that antiderivatives provide
easy ways to compute values of definite integrals. The difference between the
real case and the complex case is that in the latter, we need to think about
integrals over arbitrary paths in C.

Definition 4.2.1 If F is holomorphic in the region G C C and F'(z) = f(z)
for all z € G, then F is an antiderivative of f on G, also known as a primitive

of f on G. 0

Example 4.2.2 We have already seen that F'(z) = 22 is entire and has derivative
f(z) = 2z. Thus, F is an antiderivative of f on any region G C C. The same
goes for F(z) = 22 + ¢, where ¢ € C is any constant. O

Example 4.2.3 Since

(g ewtis) —expl-i2))) = 5(expliz) +exp(-i),

F(z) = sin z is an antiderivative of f(z) = cosz on C. O

Example 4.2.4 The function F(z) = Log(z) is an antiderivative of f(z) = 1

on C\ R<g. Note that f is holomorphic in the larger region C\ {0}; however,
we will see in Example 4.2.8 that f cannot have an antiderivative on that region.
O

Here is the complex analogue of Theorem A.0.3(b).

Theorem 4.2.5 Suppose G C C is a region and v C G is a piecewise smooth
path with parametrization y(t), a <t < b. If f is continuous on G and F is
any antiderivative of f on G then

/ f = F(() - F (1) .

Proof. This follows immediately from the definition of a complex integral and
Theorem A.0.3(b), since 4 F(y(t)) = f(v(t)) ' (¢):

b
/ ;= / FH@) V(B dt = F (b)) - F ((a)) -

|
Example 4.2.6 Since F(z) = 1 22 is an antiderivative of f(z) = z in C,
1 1
Lf = §(l+i)2—§02 =i
for each of the three paths in Example 4.1.2. O

There are several interesting consequences of Theorem 4.2.5. For starters, if
~ is closed (that is, v(a) = (b)) we effortlessly obtain the following.

Corollary 4.2.7 Suppose G C C is open, v C G is a piecewise smooth closed
path, and f is continuous on G and has an antiderivative on G. Then

szo.

This corollary is immediately useful as a test for existence of antiderivatives:

Example 4.2.8 The function f : C\ {0} — C given by f(z) = 1 satisfies
f,y f = 2mi for the unit circle v C C\ {0}, by Exercise 4.5.4. Since this integral
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is nonzero, f cannot have an antiderivative in C\ {0}. O
We now turn to the complex analogue of Theorem A.0.3(a).

Theorem 4.2.9 Suppose G C C is a region and zg € G. Let f : G — C be a
continuous function such that f7 f =0 for any closed piecewise smooth path
v C G. Then the function F : G — C defined by

Fz) = / ke

where v, is any piecewise smooth path in G from zy to z, is an antiderivative

for f on G.

Proof. There are two statements that we have to prove: first, that our definition
of F is sound—that is, the integral defining F' does not depend on which path
we take from zy to z—and second, that F'(z) = f(z) for all z € G.

Suppose G C C is a region, 2y € G, and f : G — C is a continuous function
such that f,y f = 0 for any closed piecewise smooth path v C G. Then fa f
evaluates to the same number for any piecewise smooth path o C G from zg
to z € G, because any two such paths o; and o2 can be concatenated to a
closed path first tracing through o; and then through oo backwards, which by
assumption yields a zero integral:

Lo L=l =

F(z) = f

RE

This means that

is well defined. By the same argument,

for any path v C G from z to z+ h. The constant function 1 has the antideriva-
tive z on C, and so f,y 1 = h, by Theorem 4.2.5. Thus

F(z+h)— F(2) 1 f(z)
HEBTE g = g [ sne - B2 [
1

- / (f(w) — £(2)) dw.

If |h| is sufficiently small then the line segment A from z to z + h will be
contained in G, and so, by applying the assumptions of our theorem for the
third time,

F(z+h)— F(z) 1
PR 56 = g [ - s

1
= 3 [ = @) du. (12)

We will show that the right-hand side goes to zero as h — 0, which will conclude
the theorem. Given ¢ > 0, we can choose § > 0 such that

lw—=2l<d = [flw)-f(z)]<e€
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because f is continuous at z. (We also choose d small enough so that (4.2)
holds.) Thus if |h| < J, we can estimate with Proposition 4.1.8(d)

1

1

1+ [ = FE ] < maxl i) - ) g
= max |f(w) — £(2)
<E€.

|

There are several variations of Theorem 4.2.9, as we can play with the

assumptions about paths in the statement of the theorem. We give one such

variation, namely, for polygonal paths, i.e., paths that are composed as unions

of line segments. You should convince yourself that the proof of the following
result is identical to that of Theorem 4.2.9.

Corollary 4.2.10 Suppose G C C is a region and zo € G. Let f : G — C be
a continuous function such that fy f =20 for any closed polygonal path v C G.
Then the function F : G — C defined by

e = [ 1.

z

where v, is any polygonal path in G from zy to z, is an antiderivative for f
on G.

If you compare our proof of Theorem 4.2.9 to its analogue in R, you will
see similarities, as well as some complications due to the fact that we now
have to operate in the plane as opposed to the real line. Still, so far we have
essentially been “doing calculus” when computing integrals. We will now take a
radical departure from this philosophy by studying complex integrals that stay
invariant under certain transformations of the paths we are integrating over.

4.3 Cauchy’s Theorem

The central theorem of complex analysis is based on the following concept.

Definition 4.3.1 Suppose 7y and 1 are closed paths in the region G C C,
parametrized by 7 (t), 0 <t <1, and y1(t), 0 <t <1, respectively. Then 7
is G-homotopic to v, if there exists a continuous function & : [0,1]2> — G such
that, for all s, ¢t € [0, 1],

h tvo = ’VO(t )
h(ta 1) =N (t) ; (43)
h(0,s) = h(1,s)

We use the notation v, ~g 72 to mean ~y; is G-homotopic to vs. O

The function h(t,s) is called a homotopy. For each fixed s, a homotopy
h(t,s) is a path parametrized by ¢, and as s goes from 0 to 1, these paths
continuously transform from -y to ;. The last condition in (4.3) simply says
that each of these paths is also closed.

Example 4.3.2 Figure 4.3.3 attempts to illustrate that the unit circle is
(C\ {0})-homotopic to the square with vertices £3 + 3i. Indeed, you should
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check (Exercise 4.5.20) that

1+ 8it ifo<t<i,
2—8t+i if § <t<2,

h(t,s) = (1—s)e®™ +3sx ¢ —144i(1—2t) if2<t<3,  (44)
8t—6—i if2<t<I,
1+8i(t—1) ifI<t<1

gives a homotopy. Note that h(t,s) # 0 for any 0 <¢,s <1 (hence “(C\ {0})-
homotopic”). Figure 4.3.3 shows the paths h(t, s) for s = 0,0.25,0.5,0.75 and
1. U

-
\

==

Figure 4.3.3 This square and circle are (C\ {0})-homotopic.

Exercise 4.5.23 shows that ~¢ is an equivalence relation on the set of closed
paths in GG. The definition of homotopy applies to parametrizations of curves;
but Exercise 4.5.24, together with transitivity of ~g, shows that homotopy is
invariant under reparametrizations.

Theorem 4.3.4 Cauchy’s Theorem. Suppose G C C is a region, f is
holomorphic in G, vy and vy, are piecewise smooth paths in G, and vy ~g V1-

Then
[yo I = 7 .

As a historical aside, it is assumed that Johann Carl Friedrich Gauf
(1777-1855) knew a version of this theorem in 1811 but published it only
in 1831. Cauchy (of Cauchy-Riemann equations fame) published his version in
1825, Karl Theodor Wilhelm Weierstraf§ (1815-1897) his in 1842. Theorem 4.3.4
is often called the Cauchy—Goursat Theorem, since Cauchy assumed that the
derivative of f was continuous, a condition that was first removed by Edouard
Jean-Baptiste Goursat (1858-1936).

Before discussing a proof of Theorem 4.3.4, we give a basic, yet prototypical
application of it:

Example 4.3.5 We claim that

/% = 2mi (4.5)
y 2
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where v is the square in Figure 4.3.3, oriented counter-clockwise. We could,
of course, compute this integral by hand, but it is easier to apply Cauchy’s
Theorem 4.3.4 to the function f(z) = %, which is holomorphic in G = C\ {0}.
We showed in (4.4) that v is G-homotopic to the unit circle. Exercise 4.5.4 says
that integrating f over the unit circle gives 2mi and so Cauchy’s Theorem 4.3.4
implies (4.5). O

Proof of Theorem 4.3.4. The full proof of Cauchy’s Theorem is beyond the scope
of this book. However, there are several easier proofs under more restrictive
hypotheses than Theorem 4.3.4. We shall present a proof under the following
extra assumptions:

o The derivative f’ is continuous in G.

e The homotopy h from vy to 1 has piecewise, continuous second deriva-
tives.

Technically, this is the assumption on h:

hl(t,S) 1f0§t§t1,

ho(t,s) ifty <t<t,,
h(t,s) = 2(t,5) ' ?

ho(t,s) ift,_1 <t<1,

where each h;(t, s) has continuous second partials. (Example 4.3.2 gives one
instance.) Now we turn to the proof under these extra assumptions.

For 0 < s < 1, let s be the path parametrized by h(t,s), 0 < ¢t < 1.
Consider the function I : [0,1] — C given by

1) = [ 1.

s

so that 1(0) = f% fand I(1) = f% f. We will show that I is constant; in
particular, I(0) = I(1), which proves the theorem. By Leibniz’s rule (Theo-
rem A.0.9),

W = g [ reen Ga = [ (o0 G

1 2
[ (o) G5t + 1 e )

_ /Olgt <f(h(t,s)) ZZ) dt.

Note that we used Theorem A.0.7 to switch the order of the second partials
in the penultimate step—here is where we need our assumption that h has
continuous second partials. Also, we needed continuity of f’ in order to apply
Leibniz’s rule. If h is piecewise defined, we split up the integral accordingly.

Finally, by the Fundamental Theorem of Calculus (Theorem A.0.3), applied
separately to the real and imaginary parts of the above integrand,
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sy = /O 1% (f(h(t,s»g’;) dt

oh Ooh
= 0’
where the last step follows from h(0, s) = h(1, s) for all s. |

Definition 4.3.6 Let G C C be a region. If the closed path v is G-homotopic
to a point (that is, a constant path) then v is G-contractible, and we write
v~ 0. (See Figure 4.3.7 for an example.) %

Figure 4.3.7 This ellipse is (C \ R)-contractible.

The fact that an integral over a point is zero has the following immediate
consequence.

Corollary 4.3.8 Suppose G C C is a region, f is holomorphic in G, 7y is
piecewise smooth, and v ~g 0. Then

Af:o.

This corollary is worth meditating over. For example, you should compare
it with Corollary 4.2.7: both results give a zero integral, yet they make truly
opposite assumptions (one about the existence of an antiderivative, the other
about the existence of a derivative).

Naturally, Corollary 4.3.8 gives many evaluations of integrals, such as this:

Example 4.3.9 Since Log is holomorphic in G = C \ R<( and the ellipse 7 in
Figure 4.3.7 is G-contractible, Corollary 4.3.8 gives

[YLog(z) dz = 0.

O
Exercise 4.5.25(a) says that any closed path is C-contractible, which yields
the following special case of Corollary 4.3.8.
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Corollary 4.3.10 If f is entire and 7y is any piecewise smooth closed path, then

Lf_o.

The theorems and corollaries in this section are useful not just for showing
that certain integrals are zero:

Example 4.3.11 We'd like to compute

/ dz
. 22 — 2z

where v is the unit circle, oriented counter-clockwise. (Try computing it from
first principles.) We use a partial fractions expansion to write

/ dz 1 / dz 1 [dz
4 22 =22 2/, 22 2/, z
The first integral on the right-hand side is zero by Corollary 4.3.8 applied
to the function f(z) = -5 (note that f is holomorphic in C \ {2} and 7 is

2
(C\ {2})-contractible). The second integral is 27wi by Exercise 4.5.4, and so

/ 7dz = —m
. 22 — 22
|

Sometimes Corollary 4.3.8 itself is known as Cauchy’s Theorem. See Exer-
cise 4.5.26 for a related formulation of Corollary 4.3.8, with a proof based on
Green’s Theorem.

4.4 Cauchy’s Integral Formula

We recall our notations

Cla,r]={2€C:|z—a|=1r}
Dla,r]={z€C:|z—a| <7}
Dla,r]={2€C:|z—a|<r}

for the circle, open disk, and closed disk, respectively, with center a € C and
radius r > 0. Unless stated otherwise, we orient C[a, r] counter-clockwise.

Theorem 4.4.1 If f is holomorphic in an open set containing D[w, R] then

1 f(z
flw) = m/C’[w,R] 7z—wdz'

This is Cauchy’s Integral Formula for the case that the integration path
is a circle; we will prove the general statement at the end of this chapter.
However, already this special case is worth meditating over: the data on the
right-hand side of Theorem 4.4.1 is entirely given by the values that f(z) takes
on for z on the circle Cw, R]. Thus Cauchy’s Integral Formula says that this
data determines f(w). This has the flavor of mean-value theorems, which the
following corollary makes even more apparent.

Corollary 4.4.2 If f = u+iv is holomorphic in an open set containing D[w, R],
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then
1 2 .
flw) = o ; f(w+R6”)dt,
1 27 "
1
w(w) = o J, u(w+ Re™)dt,
1 27 +
v(w) = o/, v(w+ Re)dt.

Proof. By assumption, f is holomorphic in an open set G' that contains D[w, R},
and so % is holomorphic in H := G \ {w}. For any 0 < r < R,

Clw,r] ~g Clw, R],

and so Cauchy’s Theorem 4.3.4 and Exercise 4.5.4 give

/ /(z) dz — 27 f(w)
Clw,R)]

Z—w

f(z) 3 dz
/C[w,r] Z-w az f(w) /C[w,r] Z-w

[ s,
Clw,r]

zZ— W
< _max W length (C[w, 7]) (4.6)
N € R A ) P
z€Clw,r] r
— 20 _max [£(:) - f(w)].

Here the inequality comes from Proposition 4.1.8(d).
Now let € > 0. Because f is continuous at w, there exists § > 0 such that

|z — w| < § implies
€

1) = f@)] < o

In particular, this will hold for z € C[w, g], and so (4.6) implies, with r = g,

< €.
zZ—w

/ /(z) dz — 27 f(w)
Clw,R]

Since we can choose € as small as we’d like, the left-hand side must be zero,
which proves Theorem 4.4.1.
Corollary 4.4.2 now follows by definition of the complex integral:

1 2m f(w—l—Re”)
2w Jo w4+ Re? —w

27
fw) = iRet dt = i/ f(w+ Re™)dt,
27T 0

which splits into real and imaginary parts as
1 2 ) 1 27 )
ww) +iv(w) = — u(w+ Re™)dt + z—/ v(w+ Re')dt.
2 0 27 0
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Theorem 4.4.1 can be used to compute integrals of a certain nature.

Example 4.4.3 We'd like to determine

/ dz
Cli,1] 22 +1 '

The function f(z) = —%= is holomorphic in C \ {4}, which contains D]i, 1].

z+1

Thus we can apply Theorem 4.4.1:

—- = =T dz = 27T’Lf(’L) = 2mi— = m.
Cli,1] 22 +1 Cli,1] zZ—1 24

|

Now we would like to extend Theorem 4.4.1 by replacing Clw, R] with

any simple closed piecewise smooth path + around w. Intuitively, Cauchy’s

Theorem 4.3.4 should supply such an extension: assuming that f is holomorphic

in a region G that includes v and its inside, we can find a small R such that

Dlw, R] C G, and since % is holomorphic in H := G\{w} and v ~g Clw, R],
Theorem 4.3.4 and Theorem 4.4.1 yield

fw) = = Lf(z) s

211 Z—w

This all smells like good coffee, except ... intuition doesn’t prove anything.
We'll look at it carefully, fill in the gaps, and then we’ll see what we have
proved.

First, we need a notion of the inside of a simple closed path. The fact that
any such path 7 divides the complex plane into two connected open sets of ~y
(the bounded one of which we call the inside or interior of -y) is one of the first
substantial theorems ever proved in topology, the Jordan Curve Theorem, due
to Camille Jordan (1838-1922).! In this book we shall assume the validity of
the Jordan Curve Theorem.

Second, we need to specify the orientation of -, since if the formula gives
f(w) for one orientation then it will give — f(w) for the other orientation.

Definition 4.4.4 A piecewise smooth simple closed path « is positively oriented
if it is parametrized so that its inside is on the left as our parametrization
traverses 7. An example is a counter-clockwise oriented circle. O

Third, if 7 is positively oriented and D[w, R] is a closed disk inside v then we
need a homotopy from 7 to the counterclockwise circle Clw, R] that stays inside
~ and away from D[w, R]. This is provided directly by another substantial
theorem of topology, the Annulus Theorem, although there are other methods.
Again, in this book we shall assume the existence of this homotopy.

These results of topology seem intuitively obvious but are surprisingly
difficult to prove. If you'd like to see a proof, we recommend that you take a
course in topology.

There is yet another subtle problem. We assumed that v is in G, but we also
need the interior of v to be contained in G, since we need to apply Cauchy’s
Theorem to the homotopy between v and C[w, R]. We could just add this
as an assumption to our theorem, but the following formulation will be more
convenient later.

IThis is the Jordan of Jordan normal form fame, but not the one of Gauf—Jordan
elimination.
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Theorem 4.4.5 Cauchy’s Integral Formula. Suppose f is holomorphic
in the region G and 7y is a positively oriented, simple, closed, piecewise smooth
path, such that w is inside v and v ~c 0. Then
1 [ f(z)

flw) = 2mi ,Yszdz'

So all that we need to finish the proof of Theorem 4.4.5 is one more fact
from topology. But we can prove this one:

Proposition 4.4.6 Suppose v is a simple, closed, piecewise smooth path in the
region G. Then G contains the interior of v if and only if v ~g 0.

Proof. One direction is easy: If G contains the interior of v and D[w, R] is any
closed disk in the interior of v then there is a G-homotopy from v to Clw, R],
and Clw, R] ~¢ 0.

In the other direction, we argue by contradiction: Assume v ~g 0 but G
does not contain the interior of . So we can find a point w in the interior of ~
which is not in G.

Define g(z) = Ziw for z # w. Now g is holomorphic on G and v ~¢g 0,
so Corollary 4.3.8 applies, and we have f7 g9(z)dz = 0. On the other hand,
choose R > 0 so that D[w, R] is inside . There is a homotopy in C \ {w }
from ~ to Cfw, R], so Cauchy’s Theorem 4.3.4, plus Exercise 4.5.4, shows that
[, 9(2) dz = 2mi.

This contradiction finishes the proof. |

Notice that, instead of using topology to prove a theorem about holomorphic
functions, we just used holomorphic functions to prove a theorem about topology.

Example 4.4.7 Continuing Example 4.4.3, Theorem 4.4.5 says that

/ dz
o
2
427 +1
for any positively oriented, simple, closed, piecewise smooth path ~ that contains
i on its inside and that is (C\ {—i})-contractible. O

[,
0[073] 22— 2z

we use the partial fractions expansion from Example 4.3.11:

/ e;(p(z) de — }/ exp(2) de — 1/ exp(2) ds .
clo,3] 2° — 22 2 Jops 2—2 2 Jops %

For the two integrals on the right-hand side, we can use Theorem 4.4.1 with
the function f(z) = exp(z), which is entire, and so (note that both 2 and 0 are
inside )

Example 4.4.8 To compute

1 1
/C[o,g] ;XIi(’;)Z dz = 3 2mi - exp(2) — 3 2mi - exp(0) = i (62 ).
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4.5 Exercises

1.

6.

Find the length of the following paths. Draw pictures of each path and
convince yourself that the lengths you computed are sensible.

(a) v(t)=3t+1i, -1<t<1
Answer. 6

(b) y(t)=i+e™ 0<t<1
Answer. w

(c) v(t) =isin(t), -7 <t<m
Answer. 4

(d) y(t) =t—ie ® 0<t<2r
Answer. 8

The last path is a cycloid, the trace of a fixed point on a wheel as it makes
one rotation.

Compute the lengths of the paths from Exercise 1.5.33:
(a) the circle C[1 + i, 1]
(b) the line segment from —1 — i to 2¢
(c) the top half of the circle C0, 34]
(d) the rectangle with vertices £1 4 2i

Integrate the function f(z) = Z over the three paths given in Example 4.1.2.

Compute | % where 7 is the unit circle, oriented counterclockwise. More
generally, show that for any w € C and r > 0,

d
/ SE— 21 .
Clw,y] 2 — W

Integrate the following functions over the circle C0, 2J:
(a) f(z) =2+
Answer. 8mi
() f(z2)=2%2-22+3
Answer. 0
(c) f(=) = %
Answer. 0
(d) f(z) =y

Answer. 0

Evaluate the integrals fv zrdz, f7 ydz, fv zdz and fvidz along each of
the following paths.

(a) ~ is the line segment from 0 to 1 —4

Answer. (1—1i), 2(i—1), —i, 1
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(b) v=C10,1]
Answer. wi, —m, 0, 27t
(c) v=Cla,r] for some a € C

Answer. mir?, —mr?, 0, 2mir?

7. Evaluate f,y exp(3z) dz for each of the following paths:
(a) ~ is the line segment from 1 to i
Answer. (e — ¢?)
(b) v=CI0,3]
Answer. 0
(c) « is the arc of the parabola y = 22 from z =0 to z = 1
Answer. L(exp(3+3i)—1)
8. Compute [ f for the following functions f and paths ~:

(@) f(z)=2%andy(t)=t+it2, 0 <t <1.
(b) f(z) = z and + is the semicircle from 1 through i to —1.
(c) f(z) =exp(z) and 7 is the line segment from 0 to a point 2.
(d) f(2) = |z|? and 7 is the line segment from 2 to 3 + .
) =

(e) f(2) =2+ 1 and v is parametrized by y(t), 0 < ¢ < 1, and satisfies
Im~(t) >0 v(0) = —4 + 4, and (1) = 6 + 2i.
(f) f(2) =sin(z) and 7 is some piecewise smooth path from i to .

9. Prove Proposition 4.1.3 and the fact that the length of v does not change
under reparametrization.

Hint. Assume 7, o, and 7 are smooth. Start with the definition of fa I
apply the chain rule to o = v o 7, and then use the change of variables
formula, Theorem A.0.6.

10. Prove the following integration by parts statement: Let f and g be holo-
morphic in G, and suppose v C G is a piecewise smooth path from v(a)
to v(b). Then

fg = f(v(b))g(v(b))*f(v(a))g(v(a))*/f’g-

.
1 2m
11. Let I(k) := 7/ et dt.
2 0
(a) Show that I(0) =
(b) Show that I(k) = 0 if k is a nonzero integer.
(c) What is I(3)?
12. Compute / 2% dz.
C[0,2]

Answer. — %
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13.

14.

15.

16.
17.

18.

19.

20.

21.

22,

23.
24.

Show that fﬂ/ 2™ dz = 0 for any closed piecewise smooth v and any integer
n # —1. (If n is negative, assume that v does not pass through the origin,
since otherwise the integral is not defined.)

Exercise 4.5.13 excluded n = —1 for a good reason: Exercise 4.5.4 gives a
counterexample. Generalizing these, if m is any integer, find a closed path
v so that fv 27V dz = 2mi.

Taking the previous two exercises one step further, fix zy € C and let v be
a simple, closed, positively oriented, piecewise smooth path such that zq is
inside . Show that, for any integer n,

A(z —20)"dz =

Prove that f7 zexp(z?) dz = 0 for any closed path .

21 ifn=-1,
0 otherwise.

Show that F(z) = % Log(z + i) — % Log(z — i) is an antiderivative of ﬁ
for Re(z) > 0. Is F(2) equal to arctan z?

Compute the following integrals, where « is the line segment from 4 to 4i.

(a) [/Z;rldz

Answer. —4+i(4+ )

(b) [y z2dj- z

Answer. In(5) — 2In(17) +i(% — Arg(4i + 1))
(c) / 272 dz
¥
Answer. 2v/2—4+ 22
(d) / sin?(z) dz
2l

Answer. 1sin(8) — 2+ (2— 1sinh(8))

Compute the following integrals.

(a) z'dz where v (t) = €', -2 <t < Z.
"1

(b) / z'dz where yo(t) = €', T <t < 3T
72

Show that (4.4) gives a homotopy between the unit circle and the square
with vertices +3 + 3i.

Use Exercise 1.5.34 give a homotopy that is an alternative to (4.4) and
does not need a piecewise definition.

Suppose a € C and 7y and y; are two counterclockwise circles so that a is
inside both of them. Give a homotopy that proves 7o ~c\ {4} 71-

Prove that ~¢ is an equivalence relation.

Suppose that v is a closed path in a region G, parametrized by (t), t €
[0,1], and 7 is a continuous increasing function from [0, 1] onto [0, 1]. Show
that + is G-homotopic to the reparametrized path o 7.
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Hint. Make use of 74(t) = s7(t) + (1 — s)t for 0 < s < 1.

25.

26.

27.

28.

29.

30.

31.

(a) Prove that any closed path is C-contractible.

(b) Prove that any two closed paths are C-homotopic.

This exercise gives an alternative proof of Corollary 4.3.8 via Green’s
Theorem A.0.10. Suppose G C C is a region, f is holomorphic in G, f’
is continuous, 7 is a simple piecewise smooth closed curve, and v ~¢ 0.
Explain that we may write

dz = +iv)(de +idy) = de —vdy + ¢ de +ud
Lf(z) /v(u 1v)(dx +idy) Luaz vdy z/va: udy

Y

and show that these integrals vanish, by using Green’s Theorem A.0.10
together with Proposition 4.4.6, and then the Cauchy—Riemann equa-

tions (2.2).
d
I(r) = / —
clo,r] #—a

Fix a € C. Compute
(You should get different answers for r < |a| and r > |a.)

Hint. In one case 7, is contractible in C \ {a}. In the other you can
combine Exercise 4.5.4 and Exercise 4.5.22.

Answer. 0 for r < |a|; 27 for r > |a

Suppose p(z) is a polynomial in z and + is a closed piecewise smooth path
in C. Show that [ p = 0.

¥
Show that

/ dz _ 0
cog 22 +1

by arguing that this integral does not change if we replace C[0, 2] by C|0, ]
for any r > 1, then use Proposition 4.1.8 Item d to obtain an upper bound
for | 01049 = that goes to 0 as r — oo.

o 2+sing

by writing the sine function in terms of the exponential function and
making the substitution z = €*® to turn the real integral into a complex
integral.

Compute the real integral

2m

V3
Prove that for 0 < r < 1,

1 [ 1—r2
—/ " dp = 1
21 o 1—2rcos(¢) + 12

(The function P.(¢) := % is the Poisson kernel' and plays

an important role in the world of harmonic functions, as we will see in

Exercise 6.3.13.)

Answer.

INamed after Siméon Denis Poisson (1781-1840).
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32.

33.

34.

35.

36.

37.

38.

39.

Suppose f and g are holomorphic in the region G and ~ is a simple
piecewise smooth G-contractible path. Prove that if f(z) = g(z) for all
z € 7, then f(2) = g(z) for all z inside ~.

Show that Corollary 4.3.8, for simple paths, is also a corollary of Theo-
rem 4.4.5.

Compute
dz
I = —_
(") /C[—Qi,r] 2 +1
for r # 1, 3.
Answer. 0
Find

/ dz
clo,r] 22 —22—8

Hint. Compute a partial-fractions expansion of the integrand.

forr=1,r=3and r =5.

Answer. 0 forr=1; f%i forr=3;0forr=25

Use the Cauchy Integral Formula (Theorem 4.4.1) to evaluate the integral
in Exercise 4.5.35 when r = 3.
Compute the following integrals.

@ [
a —dz
Cl-1,2) 4 — 2*

Answer. 2w

(b)/ szdz
clo,1]

Answer. 0

. exp(z) .
() /0[0,2] z(z = 3) a

Answer. -— %

exp(z) .
(d) /(,‘[0,4] z(z = 3) a

Answer. 2(e® —1)

Let f(z) = 7 and define the two paths v = C[1, 1] oriented counter-
clockwise and o = C[~1, 1] oriented clockwise. Show that [ f = [ f
even though v #¢ o where G = C\ {£1}, the region of holomorphicity
of f.

This exercise gives an alternative proof of Cauchy’s Integral Formula (The-
orem 4.4.5) that does not depend on Cauchy’s Theorem (Theorem 4.3.4).
Suppose the region G is convex; this means that, whenever z and w are in
G, the line segment between them is also in G. Suppose f is holomorphic in
G, f' is continuous, and + is a positively oriented, simple, closed, piecewise
smooth path, such that w is inside v and v ~¢ 0.

(a) Consider the function g : [0,1] — C given by

g(t) = /_f(w—i—t(z—w)) dz .

Z—w
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Show that ¢’ = 0.

Hint. Use Theorem A.0.9 (Leibniz’s rule) and then find an an-
tiderivative for %{ (w+t(z —w)).

(b) Prove Theorem 4.4.5 by evaluating ¢(0) and g(1).

(c) Why did we assume G is convex?



Chapter 5

Consequences of Cauchy’s The-
orem

Analysis is the art of taming infinity.
—Neil Falkner

Cauchy’s Theorem and Integral Formula (Theorem 4.3.4 and Theorem 4.4.5),
which we now have at our fingertips, are not just beautiful results but also
incredibly practical. In a quite concrete sense, the rest of this book will reap
the fruits that these two theorems provide us with. This chapter starts with a
few highlights.

5.1 Variations of a Theme
We now derive formulas for f/ and f”” which resemble Cauchy’s Integral Formula
(Theorem 4.4.5).

Theorem 5.1.1 Suppose f is holomorphic in the region G and v is a positively
oriented, simple, closed, piecewise smooth, G-contractible path. If w is inside ~y

then ) 12)
, B z
Moreover, f"(w) exists, and
" 1 f

Proof. The idea of our proof is very similar to that of Cauchy’s Integral Formula
(Theorem 4.4.1 and Theorem 4.4.5). We will study the following difference
quotient, which we rewrite using Theorem 4.4.5.

flw+ AW) f(w)

B 1 L[ f(2)
Aw(2m/z w—I—Aw)dZ2m'[/z—de>

n e ]
2m[y(z—w Aw)(z w)d '

81
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Theorem 5.1.1 will follow if we can show that the following expression gets
arbitrarily small as Aw — 0:

fordw)fw) L[ S0,

Aw 2w J., (z —w)?

iy a— N C I

2mi z—w—Aw)(z—w) (z—w)?

_ aw ) ]
_ /7( dz. (5.1)

2mi z—w— Aw)(z — w)?

This can be made arbitrarily small if we can show that the integral on the
right-hand side stays bounded as Aw — 0. In fact, by Proposition 4.1.8(d), it
suffices to show that the integrand stays bounded as Aw — 0 (because v and
hence length(v) are fixed).

Let M := max,c | f(2)| (whose existence is guaranteed by Theorem A.0.1).
Choose ¢ > 0 such that D[w, ] N~y = @; that is, |z —w| > § for all z on v. By
the reverse triangle inequality (Corollary 1.3.5(b)), for all z € v,

£2) _ el
(z—w—-Aw)(z—w)?| = (]z —w| - |Aw|)|z — w|?
<M
(60— |Aw|)s?”

which certainly stays bounded as Aw — 0. This proves (5.1) and thus the
Cauchy Integral Formula for f’.

The proof of the formula for f” is very similar and will be left to Exercise 5.4.2.

|

Theorem 5.1.1 suggests that there are similar formulas for the higher deriva-
tives of f. This is in fact true, and theoretically we could obtain them one by
one with the methods of the proof of Theorem 5.1.1. However, once we start
studying power series for holomorphic functions, we will obtain such a result
much more easily; so we save the derivation of integral formulas for higher
derivatives of f for later (Corollary 8.1.12).

Theorem 5.1.1 has several important consequences. For starters, it can be
used to compute certain integrals.

Example 5.1.2

= 2micos(0) = 2mi.

i d
/ smgz) dz = 2mi — sin(z)
cfo,1) dz 2=0

z

Example 5.1.3 To compute the integral

/ dz
C[0,2] 22(z—1)°

we could employ a partial fractions expansion similar to the one in Exam-
ple 4.3.11, or moving the integration path similar to the one in Exercise 4.5.29.
To exhibit an alternative, we split up the integration path as illustrated in
Figure 5.1.4: we introduce an additional path that separates 0 and 1. If we
integrate on these two new closed paths (v and v2) counterclockwise, the two
contributions along the new path will cancel each other.
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Y2

N\

71

Figure 5.1.4 The integration paths v; and ~s.

The effect is that we transformed an integral for which two singularities
were inside the integration path into a sum of two integrals, each of which has
only one singularity inside the integration path; these new integrals we know
how to deal with, using Theorem 4.4.1 and Theorem 5.1.1:

/ dz B / dz +/ dz
clo2 22z = 1) o 22z —1) b 22(z—1)

1

1
z—1 22
dz—i—/ = dz
/Yl z? sz_l
1

. d
= 27T'L %f]_ . + 27T'L 17
=2 ! +2
i e i

= 0.

O
Example 5.1.5
d2
/ cosgz) dz = i —5 cos(z) = mi(—cos(0)) = —mi
coa  # dz 2=0

(]

Theorem 5.1.1 has another powerful consequence: just from knowing that
f is holomorphic in G, we know of the existence of f”, that is, f’ is also
holomorphic in G. Repeating this argument for f’, then for f”, f”, etc., shows
that all derivatives f(™ exist and are holomorphic. We can translate this
into the language of partial derivatives, since the Cauchy-Riemann equations
(Theorem 2.3.1) show that any sequence of n partial differentiations of f results
in a constant times f(").

So we have the following statement, which has no analogue whatsoever in
the reals (see, e.g., Exercise 5.4.6).

Corollary 5.1.6 If f is differentiable in a region G then f is infinitely dif-
ferentiable in G, and all partials of f with respect to x and y exist and are
continuous.
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5.2 Antiderivatives Again

Theorem 4.2.9 gave us an antiderivative for a function that has zero integrals
over closed paths in a given region. Now that we have Corollary 5.1.6, meditating
just a bit more over Theorem 4.2.9 gives a converse of sorts to Corollary 4.3.8.

Corollary 5.2.1 Morera’s' Theorem. Suppose f is continuous in the region

/'y

for all piecewise smooth closed paths v C G. Then f is holomorphic in G.

Proof. Theorem 4.2.9 yields an antiderivative F for f in G. Because F is
holomorphic in G, Corollary 5.1.6 implies that f is also holomorphic in G. B

Just like there are several variations of Theorem 4.2.9, we have variations of
Corollary 5.2.1. For example, by Corollary 4.2.10, we can replace the condition
for all piecewise smooth closed paths v C G in the statement of Corollary 5.2.1
by the condition for all closed polygonal paths v C G (which, in fact, gives a
stronger version of this result).

A special case of Theorem 4.2.9 applies to regions in which every closed
path is contractible.

Definition 5.2.2 A region G C C is simply connected if v ~g 0 for every
closed path v in G. O

Loosely speaking, a region is simply connected if it has no holes.

Example 5.2.3 Any disk Dla,r] is simply connected, as is C \ R<g. (You
should draw a few closed paths in C \ R<( to convince yourself that they are
all contractible.) The region C\ {0} is not simply connected as, e.g., the unit
circle is not (C\ {0})-contractible. O

If f is holomorphic in a simply-connected region then Corollary 4.3.8 implies
that f satisfies the conditions of Theorem 4.2.9, whence we conclude:

Corollary 5.2.4 Every holomorphic function on a simply-connected region
G C C has an antiderivative on G.

Note that this corollary gives no indication of how to compute an antideriva-
tive. For example, it says that the (entire) function f : C — C given by
f(2) = exp(2?) has an antiderivative F in C; it is an entirely different matter
to derive a formula for F'.

Corollary 5.2.4 also illustrates the role played by two of the regions in
Example 5.2.3, in connection with the function f(z) = % This function has
no antiderivative on C \ {0}, as we proved in Example 4.2.8. Consequently (as
one can see much more easily), C\ {0} is not simply connected. However, the
function f(z) = % does have an antiderivative on the simply-connected region
C\ R<p (namely, Log(z)), illustrating one instance implied by Corollary 5.2.4.

Finally, Corollary 5.2.4 implies that, if we have two paths in a simply-
connected region with the same endpoints, we can concatenate them—changing

direction on one—to form a closed path, which proves:

Corollary 5.2.5 If f is holomorphic in a simply-connected region G then f7 f
is independent of the piecewise smooth path v C G between vy(a) and v(b).

When an integral depends only on the endpoints of the path, the integral
is called path independent. Example 4.1.2 shows that this situation is quite
special; it also says that the function Z2 does not have an antiderivative in, for

INamed after Giancinto Morera (1856-1907).
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example, the region {z € C : |z| < 2}. (Actually, the function 22 does not have
an antiderivative in any nonempty region—see Exercise 5.4.7.)

5.3 Taking Cauchy’s Formulas to the Limit

Several beautiful applications of Cauchy’s Integral Formulas (such as Theo-
rem 4.4.5 and Theorem 5.1.1) arise from considerations of the limiting behavior
of the integral as the path gets arbitrarily large. The first and most famous
application concerns the roots of polynomials. As a preparation we prove the
following inequality, which is generally quite useful. It says that for |z| large

enough, a polynomial p(z) of degree d looks almost like a constant times 2.

Proposition 5.3.1 Suppose p(z) is a polynomial of degree d with leading
coefficient aq. Then there is a real number R such that

d d
3 laal|2]” < Ip(2)] < 2laql 2]
for all z satisfying |z| > R.

Proof. Since p(z) has degree d, its leading coefficient a4 is not zero, and we can

factor out ag z%:
Ip(2)| = |ad2d +ag-12"" +ag02m P+t arz + ao’
d ad—1 aq—2 ay ag
- 1 T I U
lad| || + a2 ag22 agzd=1 " qyzd

Then the sum inside the last factor has limit 1 as z — oo (by Exercise 3.6.12),

and so its modulus is between % and 2 as long as |z| is large enough. |

Theorem 5.3.2 Fundamental Theorem of Algebra'. Every nonconstant
polynomial has a root in C.

Proof. Suppose (by way of contradiction) that p does not have any roots, that
is, p(z) # 0 for all z € C. Then ﬁ is entire, and so Cauchy’s Integral Formula

(Theorem 4.4.1) gives

for any R > 0. Let d be the degree of p(z) and a4 its leading coefficient.
Proposition 4.1.8(d) and Proposition 5.3.1 allow us to estimate, for sufficiently

large R,
1 1 / dz 1 1 2
— | = — < — max 2rR < —.
‘p(O) ’ 27 | Jepo,r) 2P(2) 27 zeC[o,R] | z p(z) lag| R4

The left-hand side is independent of R, while the right-hand side can be made
arbitrarily small (by choosing R sufficiently large), and so we conclude that

ﬁ = 0, which is impossible. -

IThe Fundamental Theorem of Algebra was first proved by Gauf$ (in his doctoral dis-
sertation in 1799, which had a flaw—Ilater, he provided three rigorous proofs), although its
statement had been assumed to be correct long before Gauf}’s time. It is amusing that such
an important algebraic result can be proved purely analytically. There are proofs of the
Fundamental Theorem of Algebra that do not use complex analysis. On the other hand,
all proofs use some analysis (such as the Intermediate Value Theorem). The Fundamental
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Theorem 5.3.2 implies that any polynomial p can be factored into linear
terms of the form z — a where a is a root of p, as we can apply the corollary,
after getting a root a, to ’Z’ (fi (which is again a polynomial by the division
algorithm), etc. (see also Exercise 5.4.11).

A compact reformulation of the Fundamental Theorem of Algebra (The-
orem 5.3.2) is to say that C is algebraically closed. In contrast, R is not

algebraically closed.

Example 5.3.3 The polynomial p(z) = 2x* + 522 + 3 has no roots in R. The
Fundamental Theorem of Algebra (Theorem 5.3.2) states that p must have a
root (in fact, four roots) in C:

p(z) = (2% +1) (22 +3)
= (z+1)(z—1) (\/§w+\/§2> (\/Ex—\/gz)

var('x")
p = 2*x"4 + 5%x"2 + 3
p.roots(multiplicities=False)

[-I, I, -1/2xIxsqrt(3)*sqrt(2), 1/2xIxsqrt(3)*sqrt(2)]

Another powerful consequence of Theorem 5.1.1 is the following result,
which again has no counterpart in real analysis (consider, for example, the real
sine function).

Corollary 5.3.4 Liouville’s? Theorem. Any bounded entire function is
constant.

Proof. Suppose |f(z)] < M for all z € C. Given any w € C, we apply
Theorem 5.1.1 with the circle Clw, R]; note that we can choose any R > 0
because f is entire. By Proposition 4.1.8(d),

/ 1 / f(z)

— | A/

|7 w)l 270 Jepw,r) (2 — w)? ‘
< i max & 2R

2T zeClw,R] (Z — w)2
_ max,eCw,R] ‘f(2)|
R

<M
= R .

The right-hand side can be made arbitrarily small, as we are allowed to choose
R as large as we want. This implies that f' = 0, and hence, by Theorem 2.4.2,
f is constant. |

As an example of the usefulness of Liouville’s theorem (Corollary 5.3.4), we
give another proof of the Fundamental Theorem of Algebra, close to Gaufl’s
original proof.

Theorem of Algebra refers to algebra in the sense that it existed in 1799, not to modern
algebra. Thus one might say that the Fundamental Theorem of Algebra is neither fundamental
to algebra nor even a theorem of algebra. The proof we give here is due to Anton R. Schep
and appeared in the American Mathematical Monthly (January 2009).

2This theorem is for historical reasons erroneously attributed to Joseph Liouville
(1809-1882). It was published earlier by Cauchy; in fact, Gaufl may well have known
about it before Cauchy.
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Second proof of Theorem 5.3.2. Suppose (by way of contradiction) that p
does not have any roots, that is, p(z) # 0 for all z € C. Thus the function
flz) = ﬁ is entire. But f — 0 as |z| = oo, by Proposition 5.3.1; consequently,
by Exercise 5.4.10, f is bounded. Now we apply Corollary 5.3.4 to deduce that
f is constant. Hence p is constant, which contradicts our assumptions. |

As one more example of the theme of getting results from Cauchy’s Integral
Formulas by taking the limit as a path “goes to infinity,” we compute an
improper integral.

Example 5.3.5 We will compute the (real) integral

/°° dx
= 7.
e 22 +1

Let or be the counterclockwise semicircle formed by the segment [—R, R|
of the real axis from —R to R, followed by the circular arc yr of radius R in
the upper half plane from R to —R, where R > 1; see Figure 5.3.6.

TR

Figure 5.3.6 The integration paths in Example 5.3.5.

We computed the integral over oi already in Example 4.4.7;

/ dz
—_— = .
on 22 +1

This holds for any R > 1, and so we can take the limit as R — oco. By
Proposition 4.1.8(d) and the reverse triangle inequality (Corollary 1.3.5(b)),

— | 7™R
2241 T

dz
T < max
e 20t 1 2€VR

1
< _ R
= %?§(|z|21>“

TR
R?2 -1
which goes to 0 as R — oco. Thus
. dz
7 = lim —_
R—o00 oR 22 +1
. dz . dz
= lim - + lim 3
R— o [—R,R] 24+ 1 R— o0 YR zZ +1

[T dx
I A
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Of course this integral can be evaluated almost as easily using standard
formulas from calculus. However, just slight modifications of this example
lead to improper integrals that are beyond the scope of basic calculus; see
Exercise 5.4.18 and Exercise 5.4.19. ]

5.4 Exercises

1. Compute the following integrals, where [ is the boundary of the square
with vertices at +4 =+ 44, positively oriented:

(a) /D exp(2”) dz

23

Answer. 2w
exp(3z)

b —d

(b) /D(z—m')2 i

Answer. —06mi

sin(2z)
(c) /D o2 dz

Answer. 4mi
() /Dexl()iz)c;)sg(z)dz

Answer. 0
2.  Prove the formula for f” in Theorem 5.1.1.

Hint. Modify the proof of the integral formula for f’(w) as follows:
a) Write a difference quotient for f”(w), and use the formula for f’(w)

in Theorem 5.1.1 to convert this difference quotient into an integral
of f(z) divided by some polynomial.

b) Subtract the desired integral formula for f”(w) from your integral
for the difference quotient, and simplify to get the analogue of (5.1).

¢) Find a bound as in the proof of Theorem 5.1.1 for the integrand,
and conclude that the limit of the difference quotient is the desired
integral formula.

3. Integrate the following functions over the circle C[0, 3]:
(a) Log(z — 41)
Answer. 0
1
1

z —

(b)

2

Answer. 2mi
1

22 -4

Answer. 0

(c)

exp z

(d)

23

Answer. 71
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10.

11.

cosz>2

ON
Answer. 0

(1)

z

Answer. 0

(i) exp(2z)
(z—-1)*(z—-2)
Compute / &22 dz where w is any fixed complex number with
C[0,2] (z —w)

] £ 2.
Answer. 2miexp(w)
Define f : D[0,1] — C through

dw
ﬂ@:=l4ﬂ1_wz

(the integration path is from 0 to 1 along the real line). Prove that f is
holomorphic in the unit disk D[0, 1].

To appreciate Corollary 5.1.6, show that the function f: R — R given by

fx) =

a?sin(L) ifx#£0,
0 ifx=0

is differentiable in R, yet f’ is not even continuous (much less differentiable)
at 0.

Prove that f(z) = z? does not have an antiderivative in any nonempty
region.

Show that exp(sin z) has an antiderivative on C. (What is it?)

Find a region on which f(z) = exp(%) has an antiderivative. (Your region
should be as large as you can make it. How does this compare with the
real function f(z) = ex?)
Suppose f is continuous on C and lim,_, f(z) is finite. Show that f is
bounded.
Hint. If lim, . f(z) = L, use the definition of the limit at infinity to
show that there is R > 0 so that |f(z) — L| < 1if |z| > R.

Now argue that |f(z)| < |L| + 1 for |z| > R. Use an argument from
calculus to show that |f(2)| is bounded for |z| < R.

Let p be a polynomial of degree n > 0. Prove that there exist complex
numbers ¢, 21, 22, . . ., 2 and positive integers ji, ..., jr such that

p(z) = c(z— Zl)jl (z— 22)j2 N Zk)jk ’

where j1 + - -+ + ji = n.
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12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Show that a polynomial of odd degree with real coefficients must have a
real zero.

Hint. Use Exercise 1.5.24.

Suppose f is entire and |f(z)| < /|z| for all z € C. Prove that f is
identically 0.

Hint. Show first that f is constant.

Suppose [ is entire and there exists M > 0 such that |f(z)| > M for all
z € C. Prove that f is constant.

Suppose f is entire with bounded real part, i.e., writing f(z) = u(z)+iv(z),
there exists M > 0 such that |u(z)| < M for all z € C. Prove that f is
constant.

Hint. Consider the function exp(f(z)).

Suppose f is entire and there exist constants a and b such that |f(z)] <
alz| + b for all z € C. Prove that f is a polynomial of degree at most 1.
Hint. Use Theorem 5.1.1 and Exercise 2.5.30.

Suppose f : D[0,1] — DJ0, 1] is holomorphic. Prove that for |z| < 1,

, 1
O T

c . < dx
ompute )
P oo TEH1

Answer. =
V2

In this problem f(z) = e’;gff) and R > 1. Modify our computations in
Example 5.3.5 as follows.

(a) Show that foR [ = I where o is again (as in Figure 5.3.6) the
counterclockwise semicircle formed by the segment [—R, R] on the
real axis, followed by the circular arc vz of radius R in the upper
half plane from R to —R.

(b) Show that |exp(iz)| < 1 for z in the upper half plane, and conclude
that | f(2)| < % for sufficiently large |z|.

|z

us
P

(c) Show that limp fw f =0 and hence limgr_, f[iR rf=

(d) Conclude, by just considering the real part, that

/OO cos(z) do = =
€

feo X241

*° cos(z)
C t dz.
ompue/_OO A%

T . 1 T
Answer. e sin <\/§ + 4)
This exercise outlines how to extend some of the results of this chapter to
the Riemann sphere as defined in Section 3.2. Suppose G C C is a region
that contains 0, let f be a continuous function on G, and let v C G\ {0}
be a piecewise smooth path in G avoiding the origin, parametrized as ~(t),
a<t<hb.
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Af(z)dz - /Uf(i) Z%dz (5.2)

where o(t) := %, a<t<hb.

(a) Show that

(b) Now suppose v is closed and lim._,o f(1) & = L is finite. Let

H:={1:2¢eG\{0}} and define the function g : H U {0} — C by

_Jr@&) & ifzeHd,
9le) = {L if 2 = 0.

Thus g is continuous on H U {0} and (5.2) gives the identity

fr= 1o

In particular, we can transfer certain properties between these two
integrals. For example, if fa g is path independent, so is fv f. Here
is but one application:

i) Show that fv 2" dz is path independent for any integer n # —1.

ii) Conclude (once more) that fy 2" dz = 0 for any integer n # —1.



Chapter 6

Harmonic Functions

The shortest route between two truths in the real domain passes
through the complex domain.

—Jacques Hadamard (1865-1963)

We will now spend a short while on certain functions defined on subsets of the
complex plane that are real valued, namely those functions that are harmonic
in some region. The main motivation for studying harmonic functions is that
the partial differential equation they satisfy is very common in the physical
sciences. Their definition briefly showed its face in Chapter 2, but we study
them only now in more detail, since we have more machinery at our disposal.
This machinery comes from complez-valued functions, which are, nevertheless,
intimately connected to harmonic functions.

6.1 Definition and Basic Properties

Recall from Section 2.3 the definition of a harmonic function:

Definition 6.1.1 Let G C C be a region. A function u : G — R is harmonic in
G if it has continuous second partials in G and satisfies the Laplace' equation

Ugg + Uyy = 0.

O

Example 6.1.2 The function u(z,y) = xy is harmonic in C since uyy + uyy =
04+0=0. O

Example 6.1.3 The function u(z,y) = e® cos(y) is harmonic in C because
Upg + Uyy = e”cos(y) —e®cos(y) = 0.

|
There are (at least) two reasons why harmonic functions are part of the
study of complex analysis, and they can be found in the next two results.

Proposition 6.1.4 Suppose f = u+ v is holomorphic in the region G. Then
u and v are harmonic in G.

INamed after Pierre-Simon Laplace (1749-1827).
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Proof. First, by Corollary 5.1.6, u and v have continuous second partials. By
Theorem 2.3.1, u and v satisfy the Cauchy—Riemann equations (2.3)

Ug = Uy and Uy = —Vy
in G. Hence we can repeat our argumentation in (2.4),
Uao gy = (), + (), = (v), + (~0), = Vya —vay = 0.

Note that in the last step we used the fact that v has continuous second partials.
The proof that v satisfies the Laplace equation is practically identical. |
Proposition 6.1.4 gives us an effective way to show that certain functions are

harmonic in G by way of constructing an accompanying holomorphic function
on G.

Example 6.1.5 Revisiting Example 6.1.2, we can see that u(z,y) = xy is
harmonic in C also by noticing that

f2) = 32% = 3 (2% —y°) + iy
is entire and Im(f) = u. O

Example 6.1.6 A second reason that the function u(x,y) = e® cos(y) from
Example 6.1.3 is harmonic in C is that

f(z) = exp(z) = €”cos(y) +ie”sin(y)

is entire and Re(f) = w. O

Proposition 6.1.4 practically shouts for a converse. There are, however,
functions that are harmonic in a region G but not the real part (say) of
a holomorphic function in G (Exercise 6.3.5). We do obtain a converse of
Proposition 6.1.4 if we restrict ourselves to simply-connected regions.

Theorem 6.1.7 Suppose u is harmonic on a simply-connected region G. Then
there exists a harmonic function v in G such that f = u+ iv is holomorphic in

G.

The function v is called a harmonic conjugate of u.

Proof. We will explicitly construct a holomorphic function f (and thus v = Im f).
First, let
g = Uy — LUy

The plan is to prove that g is holomorphic, and then to construct an
antiderivative of g, which will be almost the function f that we’re after. To
prove that g is holomorphic, we use Theorem 2.3.1: first because w is harmonic,
Reg = u; and Im g = —u, have continuous partials. Moreover, again because
u is harmonic, Re g and Im g satisfy the Cauchy—Riemann equations (2.3):

and
(Reg)y = Upy = Uy, = —(Imyg), .

Theorem 2.3.1 implies that g is holomorphic in G, and so we can use
Corollary 5.2.4 to obtain an antiderivative h of g on G (here is where we use
the fact that G is simply connected). Now we decompose h into its real and
imaginary parts as h = a + ¢b. Then, again using Theorem 2.3.1,

g = h/ = am+2bx == aI—iay.
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(The second equation follows from the Cauchy-Riemann equations (2.3).) But
the real part of g is u;, so we obtain u, = a, and thus u(z,y) = a(z,y) + c(y)
for some function ¢ that depends only on y. On the other hand, comparing the
imaginary parts of g and b’ yields —u, = —a, and so u(z,y) = a(z,y) + c(x)
where ¢ depends only on x. Hence ¢ has to be constant, and u(z,y) = a(x,y) +c.
But then

f(z) == h(z) +c
is a function holomorphic in G whose real part is u, as promised. |
As a side remark, with hindsight it should not be surprising that the function

g that we first constructed in our proof is the derivative of the sought-after
function f. Namely, by Theorem 2.3.1 such a function f = u 4+ iv must satisfy

J'= up+ivg = uy —iuy.

(The second equation follows from the Cauchy—Riemann equations (2.3).) It
is also worth mentioning that our proof of Theorem 6.1.7 shows that if u is
harmonic in G, then u, is the real part of the function g = u; — iu,, which is
holomorphic in G regardless of whether G is simply connected or not.

As our proof of Theorem 6.1.7 is constructive, we can use it to produce
harmonic conjugates.

Example 6.1.8 Revisiting Example 6.1.2 for the second time, we can construct a
harmonic conjugate of u(x,y) = xy along the lines of our proof of Theorem 6.1.7:
first let

g = Up — Uy = Y—1T = —i2

which has antiderivative

whose real part is v and whose imaginary part

v(w,y) = —3 (¢ —y°)
gives a harmonic conjugate for wu. O
Var( ! , |y ' )
u = Xx*xy

diff(u,x) - i*diff(u,y)

-I*x + vy

var('z"')

g = -ixz

h = integral(g,z)
imaginary (h)

1/2*imag_part(z)*2 - 1/2*real_part(z)*2

We can give a more practical machinery for computing harmonic conjugates,
which only depends on computing certain (calculus) integrals; thus this can be
easily applied, e.g., to polynomials. We state it for functions that are harmonic
in the whole complex plane, but you can easily adjust it to functions that are
harmonic on certain subsets of C.2

2Theorem 6.1.9 is due to Sheldon Axler and the basis for his Mathematica package Harmonic
Function Theory.
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Theorem 6.1.9 Suppose u is harmonic on C. Then

Yy x
v(z,y) ::/O gZ“;(a:,t)dt—/o g—;‘(t,o)dt

s a harmonic conjugate for u.

Proof. We will prove that u + v satisfies the Cauchy—Riemann equations (2.3).

The ﬁl"Sl fOllOWS from
av (:[ ) ) au ('T7 ) I

by the Fundamental Theorem of Calculus (Theorem A.0.3).
Second, by Leibniz’s Rule (Theorem A.0.9), the Fundamental Theorem of
Calculus (Theorem A.0.3), and the fact that « is harmonic,

v Y 9%u ou
%(%Zy) =/, @(%t)dt—afy(ﬂfao)
Y 924 ou
=/ w(x’ﬂdt—aﬁy(%o)
ou ou ou
=- <8y(z’y) - ay(%@) - @(xao)
ou
|
Var('t" Ile Iyl)

u = X*y
integral ( diff(u.subs(y=t),x), t, @, y) - integral(
diff(u.subs(x=t),y).subs(y=0), t,0 , x)

=1/2%xx%2 + 1/2%y*2

As you might imagine, Proposition 6.1.4 and Theorem 6.1.7 allow for a
powerful interplay between harmonic and holomorphic functions. In that spirit,
the following theorem appears not too surprising. You might appreciate its
depth better when looking back at the simple definition of a harmonic function.

Corollary 6.1.10 A harmonic function is infinitely differentiable.

Proof. Suppose u is harmonic in G and zp € G. We will show that (™ (z)
exists for all positive integers n. Let r > 0 such that the disk D[zg,r] is
contained in G. Since D]z, r] is simply connected, Theorem 6.1.7 asserts the
existence of a holomorphic function f in D]z, 7] such that u = Re f on D[z, r].
By Corollary 5.1.6, f is infinitely differentiable on D][zg, 7], and hence so is its
real part u. |

This proof is the first in a series of proofs that uses the fact that the property
of being harmonic is local—it is a property at each point of a certain region.
Note that in our proof of Corollary 6.1.10 we did not construct a function f
that is holomorphic in G; we only constructed such a function on the disk
Dlzg,r]. This f might very well differ from one disk to the next.
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6.2 Mean-Value and Maximum/Minimum Prin-
ciple

We have established an intimate connection between harmonic and holomorphic
functions, and so it should come as no surprise that some of the theorems
we proved for holomorphic functions have analogues in the world of harmonic
functions. Here is such a harmonic analogue of Cauchy’s Integral Formula
(Theorem 4.4.1 and Theorem 4.4.5).

Theorem 6.2.1 Suppose u is harmonic in the region G and D[w,7] C G. Then

1 2m .
u(w) = o J, u(w+ret)dt.
Proof. Exercise 6.3.14 provides R so that D[w,r] C Dw,R] C G. The open
disk D[w, R] is simply connected, so by Theorem 6.1.7 there is a function
f holomorphic in D[w, R] such that u = Re f on D[w, R]. Now we apply
Corollary 4.4.2 to f:

1 2m .
flw) = o ), flw+re?)dt.
Theorem 6.2.1 follows by taking the real part on both sides. |

Corollary 4.4.2 and Theorem 6.2.1 say that holomorphic and harmonic
functions have the mean-value property. Our next result is an important
consequence of this property to extreme values of a function.

Definition 6.2.2 Let G C C be a region. The function v : G — R has a
strong relative mazimum at w € G if there exists a disk D]w,r] C G such that
u(z) < u(w) for all z € D[w,r| and u(z) < u(w) for some zy € D[w,r]. The
definition of a strong relative minimum is analogous. %

Theorem 6.2.3 If u is harmonic in the region G, then it does not have a
strong relative maximum or minimum in G.

Proof. Assume, by way of contradiction, that w is a strong relative maximum.
Then there is a disk in G centered at w containing a point zo with u(zp) < u(w).
Let r := |29 — w| and apply Theorem 6.2.1:

1 2m )
u(w) = — u(w +ret)dt.
@ = o [ uwrre
Intuitively, this cannot hold, because some of the function values we’re inte-
grating are smaller than u(w), contradicting the mean-value property. To make
this into a thorough argument, suppose that zg = w + r e for 0 < tg < 27.
Because u(zp) < u(w) and u is continuous, there is a whole interval of parame-
ters [to,t1] C [0, 27] such that u(w + re®) < u(w) for ty <t < t;. Now we split
up the mean-value integral:

2m

u(w) = 2 /. u(w+re)dt

1 to tl
</ (w—i—re dt+/ uw—f—re dt
27T 0 to

27
+/ w—|—re dt)
ty
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All the integrands can be bounded by u(w); for the middle integral we get a
strict inequality. Hence

w(w) < % < /0 " w) dt + /; w(w) dt + /:W u(w) dt) — u(w),

a contradiction.

The same argument works if we assume that « has a relative minimum. But
in this case there’s a shortcut argument: if u has a strong relative minimum
then the harmonic function —u has a strong relative maximum, which we just
showed cannot exist. |

So far, harmonic functions have benefited from our knowledge of holomorphic
functions. Here is a result where the benefit goes in the opposite direction.

Corollary 6.2.4 If f is holomorphic and nonzero in the region G, then |f|
does not have a strong relative mazximum or minimum in G.

Proof. By Exercise 6.3.6, the function In|f(z)| is harmonic on G and so, by
Theorem 6.2.3, does not have a strong relative maximum or minimum in G.
But then neither does | f(z)|, because In is monotonic. [ |

We finish our excursion about harmonic functions with a preview and its
consequences. We say a real valued function u on a region G has a weak relative
mazimum at w if there exists a disk D[w,r] C G such that all z € D[w,r]
satisfy u(z) < u(w). We define weak relative minimum similarly. In Chapter 8
we will strengthen Theorem 6.2.3 and Corollary 6.2.4 to Theorem 8.2.4 and
Corollary 8.2.7 by replacing strong relative extremum in the hypotheses with
weak relative extremum.® A special but important case of the maximum/
minimum principle for harmonic functions, Corollary 8.2.7, concerns bounded
regions. In Chapter 8 we will establish that, if v is harmonic in a bounded
region G and continuous on its closure, then

iggu(z) = ?el%éU(Z) and Zlggu(z) = ngé%;u(z) (6.1)

where, as usual, G denotes the boundary of G. We will exploit this in the
next two corollaries.

Corollary 6.2.5 Suppose u is harmonic in the bounded region G and continuous
on its closure. If u is zero on OG then u is zero in G.

Proof. By (6.1),

u(z) < jtelgu(z) = %%}éu(z) =0
and
u(z) > Zuelgu(z) = nggcl;u(z) =0,
so w must be zero in G. |

Corollary 6.2.6 Suppose u and v are harmonic in the bounded region G and
continuous on its closure. If u(z) = v(z) for all z € G then u(z) = v(z) for
all z € G.

Proof. w — v is harmonic in G (Exercise 6.3.2) and is continuous on the closure
G, and v — v is zero on G. Now apply Corollary 6.2.5. |

Corollary 6.2.6 says that if a function u is harmonic in a bounded region
G and is continuous on the closure G then the values of u at points in G are
completely determined by the values of u on the boundary of G. We should

n particular, we will show that one does not have to assume that f is nonzero in a region
G to have a strong relative maximum in G.
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remark, however, that this result is of a completely theoretical nature: it says
nothing about how to extend a continuous function u given on the boundary of
a region to be harmonic in the full region. This problem is called the Dirichlet?
problem, and it has a solution for all bounded simply-connected regions. If the
region is the unit disk and u is a continuous function on the unit circle, define

ﬁ(ei‘z’) = u(ei¢) and
1 27

ﬂ(rei¢) = o ; u(e”)Pr(¢—t)dt for r<1,

where P.(¢) is the Poisson kernel which we introduced in Exercise 4.5.31. Then
4 is the desired extension: it is continuous on the closed unit disk, harmonic
in the open unit disk, and agrees with u on the unit circle. In simple cases
this solution can be converted to solutions in other regions, using a conformal
map to the unit disk. All of this is beyond the scope of this book, though
Exercise 6.3.13 gives some indication why the above formula does the trick. At
any rate, we remark that Corollary 6.2.6 says that the solution to the Dirichlet
problem is unique.

6.3 Exercises

1. Show that all partial derivatives of a harmonic function are harmonic.

Suppose u(z,y) and v(z,y) are harmonic in G, and ¢ € R. Prove that
u(z,y) + cv(z,y) is also harmonic in G.

3. Give an example that shows that the product of two harmonic functions
is not necessarily harmonic.

4. Let u(z,y) = e”siny.

(a) Show that w is harmonic on C.

(b) Find an entire function f such that Re(f) = u.
5. Consider u(z,y) = In (22 + y?).

(a) Show that w is harmonic on C\ {0}.

(b) Prove that u is not the real part of a function that is holomorphic in
C\ {0}.
6. Show that, if f is holomorphic and nonzero in G, then In|f(z,y)| is
harmonic in G.

7. Suppose u(x,y) is a function R? — R that depends only on 2. When is u
harmonic?

8. Is it possible to find a real function v(x,y) so that =3 + y3 + iv(z,y) is
holomorphic?

9. Suppose f is holomorphic in the region G C C with image H :=
{f(2): z € G}, and w is harmonic on H. Show that u(f(z)) is harmonic
on G.

10. Suppose u(r, ¢) is a function R? — R given in terms of polar coordinates.

(a) Show that the Laplace equation for u(r, @) is

1 1
;ur—f—umﬂ—i-ﬁuw = 0.

2Named after Johann Peter Gustav Dirichlet (1805-1859).
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(b) Show that u(r, ¢) = r2 cos(2¢) is harmonic on C. Generalize.
(c) If u(r, ¢) depends only on 7, when is « harmonic?

(d) If u(r, ¢) depends only on ¢, when is u harmonic?
11. Prove that, if u is harmonic and bounded on C, then u is constant.
Hint. Use Theorem 6.1.7 and Liouville’s Theorem (Corollary 5.3.4).

12. Suppose u(z,y) is a harmonic polynomial in z and y. Prove that the
harmonic conjugate of u is also a polynomial in z and y.

13. Recall from Exercise 4.5.31 the Poisson kernel

1—r2
1 —2rcos(¢p) + 12’

PT(¢) =

where 0 < r < 1. In this exercise, we will prove the Poisson Integral
Formula: if u is harmonic on an open set containing the closed unit disk
DJ0,1] then for any r < 1

1 27

u(re’) = ), u(e™) P(¢ —t)dt. (6.2)

Suppose u is harmonic on an open set containing D[0,1]. By Exer-
cise 6.3.14 we can find Ry > 1 so that u is harmonic in D[0, R].
(a) Recall the Mobius function

zZ—a

fa(z) =

1—az’

for some fixed a € C with |a] < 1, from Exercise 3.6.9. Show that
u(f-a(2)) is harmonic on an open disk DI[0, R;] containing D0, 1].

(b) Apply Theorem 6.2.1 to the function u(f_,(z)) with w = 0 to deduce

L W),
u(a) = /C . dz. (6.3)

211 z

(c) Recalling, again from Exercise 3.6.9, that f,(z) maps the unit circle
to itself, apply a change of variables to (6.3) to prove

L™ 1—af?

- it
u(a) = 21 Jo u(e )|eit_a|2

(d) Deduce (6.2) by setting a = r e'®.
14. Suppose G is open and Dla,r] C G. Show that there is R > r so that
Dla,r] C Dla, R] C G.
Hint. If G = C just take R =r + 1. Otherwise choose some w € C\ G,
let M = |w —al, and let K = D[a, M]\ G. Show that K is nonempty,

closed and bounded, and apply Theorem A.0.1 to find a point zg € K that
minimizes f(z) = |z — a| on K. Show that R = |zp — a| works.



Chapter 7

Power Series

It is a pain to think about convergence but sometimes you really
have to.

—Sinai Robins

Looking back to what machinery we have established so far for integrating
complex functions, there are several useful theorems we developed in Chapter 4
and Chapter 5. But there are some simple-looking integrals, such as

exp(2)
/0[2,3} Sin(2) dz, (7.1)

that we cannot compute with this machinery.

(O
v\ A\

Figure 7.0.1 Modifying the integration path for (7.1).

The problems, naturally, comes from the singularities at 0 and 7 inside the
integration path, which in turn stem from the roots of the sine function. We
might try to simplify this problem a bit by writing the integral as the sum of
integrals over the two “D” shaped paths shown in Figure 5.1.4 (the integrals
along the common straight line segments cancel). Furthermore, by Cauchy’s
Theorem 4.3.4, we may replace these integrals with integrals over small circles
around 0 and 7. This transforms (7.1) into a sum of two integrals, which we

100
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are no closer to being able to compute; however, we have localized the problem,
in the sense that we now “only” have to compute integrals around one of the
singularities of our integrand.

This motivates developing techniques to approximate complex functions
locally, in analogy with the development of Taylor series in calculus. It is clear
that we need to go further here, as we’d like to have such approximations near
a singularity of a function. At any rate, to get any of this started, we need to
talk about sequences and series of complex numbers and functions, and this
chapter develops them.

7.1 Sequences and Completeness

As in the real case,! a (complex) sequence is a function from the positive
(sometimes the nonnegative) integers to the complex numbers. Its values
are usually written as a,, (as opposed to a(n)) and we commonly denote the
sequence by (a,),> |, (an), >, or simply (a,). Considering such a sequence as
a function of n, the notion of convergence is merely a repeat of the definition
we gave in Section 3.2, adjusted to the fact that n is an integer.

Definition 7.1.1 Suppose (a,,) is a sequence and L € C such that for all € > 0
there is an integer N such that for all n > N, we have |a,, — L| < e. Then the
sequence (a,,) is convergent and L is its limit; in symbols we write

lim a, = L.
n—oo
If no such L exists then the sequence (a,,) is divergent. O

As in our previous definitions of limit, the limit of a sequence is unique if it
exists. See Exercise 7.5.7.
Example 7.1.2 We claim that lim % = 0: Given € > 0, choose N > % Then
n— oo
for any n > N,
|d

" 1
:7:—<—
n n — N

var('n')
limit(i*n/n, n=o00)

To prove that a sequence (a,,) is divergent, we have to show the negation
of the statement that defines convergence, that is: given any L € C, there
exists € > 0 such that, given any integer N, there exists an integer n such that
|a, — L| > e. (If you have not negated many mathematical statements, this is
worth meditating about.)

Example 7.1.3 The sequence (a,, = i") diverges: Given L € C, choose € = %
We consider two cases: If Re(L) > 0, then for any N, choose n > N such that
a, = —1. (This is always possible since apio = i***2 = —1 for any k& > 0.)

Then ]

IThere will be no surprises in this chapter of the nature real versus comples.



CHAPTER 7. POWER SERIES 102

If Re(L) < 0, then for any N, choose n > N such that a,, = 1. (This is
always possible since ay;, = i** =1 for any k > 0.) Then

1
an—Ll = 1-L| > 1> 5.

This proves that (a, = i™) diverges. O

var('n')
limit(i*n, n=o00)

ind
The following limit laws are the cousins of the identities in Proposition 2.1.6
and Proposition 2.1.11, with one little twist.

Proposition 7.1.4 Let (ay) and (b,) be convergent sequences and ¢ € C. Then

(a) lim a, +c¢ lim b, = lim (a, +cby,)
n— o0 n—oo n—0o0

(b) lim a, - lim b, = lim (a, -b,)

n—o0 n—o0 n—00
limy, 00 ap . n . :
(c) H = n]gg() (Zn) provided lim, o b, # 0

(d) lim a, = lim anp41.
n—oo n—oo

Furthermore, if f : G — C is continuous at L := lim,, , a, and all a,, € G,

then

Again, the proof of this proposition is essentially a repeat from arguments
we have given in Chapter 2 and Chapter 3, as you should convince yourself in
Exercise 7.5.4.

We will assume, as an axiom, that R is complete. To phrase this precisely,
we need the following.

Definition 7.1.5 The sequence (a,) is monotone if it is either nondecreasing
(an+1 > ay, for all n) or nonincreasing (a,+1 < a, for all n). O

There are many equivalent ways of formulating the completeness property
for the reals. Here is what we’ll go by:

Axiom 7.1.6 Monotone Sequence Property. Any bounded monotone
sequence converges.

This axiom (or one of its many equivalent statements) gives arguably the
most important property of the real number system; namely, that we can, in
many cases, determine that a given sequence converges without knowing the
value of the limit. In this sense we can use the sequence to define a real number.

Example 7.1.7 Consider the sequence (a,) defined by

a, = 1+1+1+...+l_
’ 2 6 n!
This sequence is increasing (by definition) and each a,, < 3 by Exercise 7.5.9.
By the Monotone Sequence Property, (a,) converges, which allows us to define
one of the most famous numbers in all of mathematics,

e := 1+ lim a,.
n—oo
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Example 7.1.8 Fix 0 < r < 1. We claim that lim, .., 7" = 0: First, the
sequence (a, = ") converges because it is decreasing and bounded below by 0.
Let L :=lim;,_o r". By Proposition 7.1.4,

L = lim 7" = lim 7" = 7 lim " = rL.
n—oo n— 00 n—oo
Thus (1 —r)L =0, and so (since 1 — r # 0) we conclude that L = 0. O

We remark that the Monotone Sequence Property implies the Least Upper
Bound Property: every nonempty set of real numbers with an upper bound has
a least upper bound. The Least Upper Bound Property, in turn, implies the
following theorem, which is often listed as a separate axiom.?

Theorem 7.1.9 Archimedean® Property. If x is any real number then
there is an integer N that is greater than x.

For a proof, see Exercise 7.5.10. Theorem 7.1.9 essentially says that infinity
is not part of the real numbers. Note that we already used Theorem 7.1.9 in
Example 7.1.2. The Archimedean Property underlies the construction of an
infinite decimal expansion for any real number, while the Monotone Sequence
Property shows that any such infinite decimal expansion actually converges to
a real number.

We close this discussion of limits with a pair of standard limits. The
first of these can be established by calculus methods (such as L’Hopital’s rule
(Theorem A.0.11), by treating n as the variable); both of them can be proved by
more elementary considerations. Either way, we leave the proof of the following
to Exercise 7.5.11.

Proposition 7.1.10

(a) Exponentials beat polynomials: for any polynomial p(n) (with complex
coefficients) and any c € C with |c| > 1,

lim M

n—oo "

= 0.

(b) Factorials beat exponentials: for any c € C,

7.2 Series

Definition 7.2.1 A series is a sequence (a,) whose members are of the form
an = > gy bi (or a, = > p_obi); we call (by) the sequence of terms of the
series. The a, =Y ,_, b, (or a, = Y _,bx) are the partial sums of the series.
O

If we wanted to be lazy we would define convergence of a series simply by
referring to convergence of the partial sums of the series—after all, we just
defined series through sequences. However, there are some convergence features
that take on special appearances for series, so we mention them here explicitly.

?Both the Archimedean Property and the Least Upper Bound Property can be used in
(different) axiomatic developments of R.

3Archimedes of Syracuse (287-212 BCE) attributes this property to Eudoxus of Cnidus
(408-355 BCE).



CHAPTER 7. POWER SERIES 104

For starters, a series converges to the limit (or sum) L by definition if

n—oo n— oo

n
lim a, = lim Zbk = L.
k=1

To prove that a series converges we use the definition of limit of a sequence:
for any € > 0 we have to find an N such that for all n > N,

ibk - L
k=1

In the case of a convergent series, we usually write its limit as L = Z;O:l by, or
L=3%" k>1 Ok

Example 7.2.2 Fix z € C with |z| < 1. We claim that the geometric series
Y 4sq 2% converges with limit

< €.

k>1

In this case, we can compute the partial sums explicitly:

n n+1
z—z
sz e Z+Z2+...+Zn = —-—,
1-=2
k=1
whose limit as n — oo exists by Example 7.1.8, because |z| < 1. O

var('k', 'z")
assume (abs(z) < 1)
sum(z*k,k,1, +o00)

-z/(z - 1)

Example 7.2.3 Another series whose limit we can compute by manipulating
the partial sums is

Z; LNl 1
kE2+k  nooo k k+1

|
5
N

E>1
. 1 1 4 1 1 T 1 1
= lim ——F+ - - =
n—o0 2 2 3 n n -+ 1
1
= lim <1 = ) =
A series where most of the terms cancel like this is called telescoping. ]
var('k")

sum(1/(k*2+k),k,1, +o00)

Most of the time we can use the completeness property to check convergence
of a series, and it is fortunate that the Monotone Sequence Property has a
convenient translation into the language of series of real numbers. The partial
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sums of a series form a nondecreasing sequence if the terms of the series are
nonnegative, and this observation immediately yields the following:
Corollary 7.2.4 If b, € R>g then Y, -, by, converges if and only if the partial
sums are bounded. -
Example 7.2.5 With this new terminology, we can revisit Example 7.1.7: Let
b = % In Example 7.1.7 we showed that the partial sums
n n
1

Db =D

k=1 k=1
are bounded, and } -, -, m=e—1 O

Although Corollary 7.2.4 is a mere direct consequence of the completeness
property of R, it is surprisingly useful. Here is one application, sometimes
called the Comparison Test:

Corollary 7.2.6 If by > ¢, > 0 for allk > 1 and ), -, by converges then so
does > sy C- -

Proof. By Corollary 7.2.4, the partial sums >, _, by are bounded, and thus so

are
n n
Dok €D i
k=1 k=1
But this means, again by Corollary 7.2.4, that Ekzl ci converges. |

Proposition 7.2.7 If Zk>1 by, converges then lim,,_,~ b, = 0.
The contrapositive of this proposition is often used, sometimes called the
Test for Divergence:

Corollary 7.2.8 If lim,, o b, # 0 or lim, . b, does not exist, then Zk>1 bk
diverges. a

Example 7.2.9 Continuing Example 7.2.2, for |z| > 1 the geometric series
Zk>1 Zk diverges since in this case lim,, ., 2™ either does not exist or is not 0.
- |
A common mistake is to try to use the converse of Proposition 7.2.7, but
the converse is false:

Example 7.2.10 The harmonic series ) ;. % diverges (even though the terms
go to 0): If we assume the series converges to L, then

L=1+-+-+-F+-+=+

a contradiction. O

Proposition 7.2.11 Integral Test. If f:[1,00) — R>¢ is continuous and
nonincreasing, then

[ rwd < Y < s+ [ swar,

k>1
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The Integral Test literally comes with a proof by picture—see Figure 7.2.12:
the integral of f on the interval [k, k+ 1] is bounded between f(k) and f(k+1).
Adding the pieces gives the inequalities above for the nth partial sum versus
the integrals from 1 to n and from 1 to n + 1, and the inequality persists in the
limit.

f(z) f(z)

Figure 7.2.12 The integral test.

Corollary 7.2.13 If f : [1,00) = R>q is continuous and nonincreasing, then
Y w1 f(k) converges if and only if floo f(t)dt is finite.

Proof. Suppose floo f(t)dt = oco. Then the first inequality in Proposition 7.2.11
implies that the partial sums Y ;'_, f(k) are unbounded, and so Corollary 7.2.4
says that >, -, f(k) cannot converge.

Conversely, if floo f(t)dt is finite then the second inequality in Proposi-
tion 7.2.11 says that the partial sums >.;'_, f(k) are bounded; thus, again with
Corollary 7.2.4, we conclude that >, f(k) converges. |

Example 7.2.14 The series ), ., kip converges for p > 1 and diverges for
p < 1 (and the case p = 1 was the subject of Example 7.2.10) because

/°° de y q~Ptl N 1
1 xP o aggcprrl p—1

is finite if and only if p > 1. ]

By now you might be amused that we have collected several results on series
whose terms are nonnegative real numbers. One reason is that such series are a
bit easier to handle, another one is that there is a notion of convergence special
to series that relates any series to one with only nonnegative terms:

Definition 7.2.15 The series ), -, by converges absolutely if ), -, |b| con-
verges. - - ¢

Theorem 7.2.16 If a series converges absolutely then it converges.
This seems like an obvious statement, but its proof is, nevertheless, nontriv-
ial.

Proof. Suppose ), |bi| converges. We first consider the case that each by is
real. Let B

b if b, >0 b if b 0
b=t RS ang = BORS
0 otherwise 0 otherwise.

Then 0 < kaL < |b| and 0 < —b, < |bg| for all & > 1, and so by Corollary 7.2.6,
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both

b and = by

E>1 k>1
converge. But then so does

Db =D br+> by

k>1 k>1 k>1

For the general case b, € C, we write each term as by = ¢ + i di. Since
0 < |ck| < |bg| for all k& > 1, Corollary 7.2.6 implies that >, ¢, converges
absolutely, and by an analogous argument, so does >, dx. But now we can
use the first case to deduce that both Y, ¢; and >, dj converge, and thus

so does
Zbk = ch+i2dk.

k>1 k>1 k>1

Example 7.2.17 Continuing Example 7.2.14,

() = Y o

k>1

converges for Re(z) > 1, because then (using Exercise 3.6.48)

Z‘k—z‘ — Zk—Re(z)

E>1 k>1

converges. Viewed as a function in z, the series ((z) is the Riemann zeta
function, an indispensable tool in number theory and many other areas in
mathematics and physics.! O

Another common mistake is to try to use the converse of Theorem 7.2.16,
which is also false:

k
Example 7.2.18 The alternating harmonic series 21@1 % converges:

(—1)k+1 1 1 1 1 1
L

(-8)+G-3)+(G5)

(There is a small technical detail to be checked here, since we are effectively
ignoring half the partial sums of the original series; see Exercise 7.5.16.) Since

1 1 1 < 1 < 1
2k—1 2k 2k(2k—1) — (2k—1)2 — k2’
Zkzl % converges by Corollary 7.2.6 and Example 7.2.14.
However, according to Example 7.2.10, Zk21 (_1;“ does not converge
absolutely. O

1The Riemann zeta function is the subject of the arguably most famous open problem in
mathematics, the Riemann hypothesis. It turns out that ¢(z) can be extended to a function
that is holomorphic on C \ {1}, and the Riemann hypothesis asserts that the roots of this

extended function in the strip 0 < Re(z) < 1 are all on the critical line Re(z) = %
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var('k"')
sum((-1)"k/k,k,1, +o00)

-log (2)

7.3 Sequences and Series of Functions

The fun starts when we study sequences of functions.

Definition 7.3.1 Let G C C and f, : G — C for n > 1. We say that (f,)
converges pointwise to f : G — C if for each z € G,
Jim fo(2) = f(2).

We say that (f,) converges uniformly to f: G — C if for all € > 0 there is an
N such that for all z € G and for all n > N

[fn(2) = f(2)] < e

Sometimes we want to express that either notion of convergence holds only on
a subset H of G, in which case we say that (f,) converges pointwise/uniformly
on H. O

It should be clear that uniform convergence on a set implies pointwise
convergence on that set; but the converse is not generally true.

Let’s digest these two notions of convergence of a function sequence by
describing them using quantifiers; as usual, ¥V denotes for all and 3 means there
exists. Pointwise convergence on G says

VYe>0 VzeG IN Vn>N |fulz) — f(2)] < e,
whereas uniform convergence on G translates into
Ve>0 AN VzeG Vn>N |folz) — f(2)] < €.

No big deal — we only exchanged two of the quantifiers. In the first case, N
may well depend on z, in the second case we need to find an N that works for
all z € G. And this can make all the difference ...

Example 7.3.2 Let f, : D[0,1] — C be defined by f,(z) = 2. We claim
that this sequence of functions converges pointwise to f : D[0,1] — C given by
f(z) = 0. This is immediate for the point z = 0. Now given any € > 0 and

0 < |z| <1, choose N > 29 Then for all n > N,

In|z|*

[fu(2) = f(2)] = [2" =0 = [z]* < o]V < e.

(You ought to check carefully that all of our inequalities work the way we claim
they do.) O

Example 7.3.3 Let f, : DI0, %] — C be defined by f,(z) = z"™. We claim
that this sequence of functions converges uniformly to f : DI0, %] — C given
by f(z) = 0. Given any € > 0 and |z| < %, choose N > —1%9  Then for all

27 In(2)
n> N,

al2) = @) = 2" < 12Y < (3)Y < e

(Again, you should carefully check our inequalities.) |
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The differences between Example 7.3.2 and Example 7.3.3 are subtle, and
we suggest you meditate over them for a while with a good cup of coffee. You
might already suspect that the function sequence in Example 7.3.2 does not
converge uniformly, as we will see in a moment.

The first application illustrating the difference between pointwise and uni-
form convergence says, in essence, that if we have a sequence of functions (f,,)
that converges uniformly on G then for all zg € G

lim lim f,(z) = lim lim f,(z).
n—oo z2—r2zg Z—2z0 M—o0

We will need similar interchanges of limits frequently.

Proposition 7.3.4 Suppose G C C and f, : G — C is continuous, for each
n > 1. If (f,) converges uniformly to f : G — C then f is continuous.

Proof. Let zp € G; we will prove that f is continuous at zy. By uniform
convergence, given € > 0, there is an N such that for all z € G and all n > N

€

()= 1) < 5.

Now we make use of the continuity of the f,,’s. This means that given (the
same) € > 0, there is a 6 > 0 such that whenever |z — zg| < 6,

€

|fn(z) - fn(ZO)| < g

All that’s left is putting those two inequalities together: by the triangle
inequality (Corollary 1.3.5 c)),

1£(2) = f(20)l = [f(2) = fu(2) + fn(2) = fn(20) + fu(20) — f(20)]
< f ) = Fu@) + [fn(2) = fu(20)] + | Fn(20) = f(20)]
<

€.

This proves that f is continuous at zg. ]

Proposition 7.3.4 can sometimes give a hint that a function sequence does
not converge uniformly.

Example 7.3.5 We modify Example 7.3.2 and consider the real function
sequence f, : [0,1] — R given by f,(z) = 2™. It converges pointwise to
f:]0,1] — R given by

0 ifo<z<l,
xTr) =
J@) {1 ifr=1.

As this limiting function is not continuous, the above convergence cannot be
uniform. This gives a strong indication that the convergence in Example 7.3.2
is not uniform either, though this needs a separate proof, as the domain of the
functions in Example 7.3.2 is the unit disk (Exercise 7.5.20(b)). O

Now that we have established Proposition 7.3.4 about continuity, we can ask
about integration of sequences or series of functions. The next theorem should
come as no surprise; however, its consequences (which we will see shortly) are
wide ranging.

Proposition 7.3.6 Suppose f, : G — C is continuous, for n > 1, (fn)
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converges uniformly to f : G — C, and v C G is a piecewise smooth path. Then

g 0= [

Proof. We may assume that 7 is not just a point, in which case the proposition
holds trivially. Given e > 0, there exists N such that for all z € G and all
n> N,

€

|fn(z) — f(2)] < length(7)

With Proposition 4.1.8(d) we can thus estimate
J/j£__J/j¢ =
¥ ¥
]

All of these notions for sequences of functions hold verbatim for series of
functions. For example, if ), -, fr(2) converges uniformly on G and v C G is
a piecewise smooth path, then

/Wka(Z)d k>1/fk

k>1

[ 5= 1] < w1 ) - 1) teng) < e
¥ =Y

In some sense, the above identity is the reason we care about uniform conver-
gence.

There are several criteria for uniform convergence; see, e.g., Exercise 7.5.19
and Exercise 7.5.20, and the following result, sometimes called the Weierstrajs
M -test.

Proposition 7.3.7 Suppose fi : G — C fork > 1, and | fr(2)| < My, for all z €
G, where ) .~ My, converges. Then) , <, |fx| and ), <, fir converge uniformly
in G. (We say the series 3, fi converges absolutely and uniformly.)

Proof. For each fixed z, the series ), ., fr(2) converges absolutely by Corol-
lary 7.2.6. To show that the convergence is uniform, let € > 0. Then there
exists N such that for all n > N,

ZM,FZM,C = > My < e.

k>1 k>n

Thus for all z € G and n > N,

Yo uz) =Y ful2)
k=1

k>1

> f(2)] <

k>n

DRG] < D My < e,

k>n k>n

which proves uniform convergence. Replace fi with |fx| in this argument to
see that >, -, | fx| also converges uniformly. [ |

Example 7.3.8 We revisit Example 7.2.2 and consider the geometric series
Y usq 2¥ as a series of functions in 2. We know from Example 7.2.2 that this
function series converges pointwise for |z| < 1:

z
E 2k = 1>

—z
k>1

To study uniform convergence, we apply Proposition 7.3.7 with fj(2) = 2*.

We need a series of upper bounds that converges, so fix a real number 0 < r < 1
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and let M), = r*. Then
[fi(z)] = [z/F < * for |z <,

and Zk21 r* converges by Example 7.2.2. Thus, Proposition 7.3.7 says that
Y i>q 2" converges uniformly for |z| < r.

We note the subtle distinction of domains for pointwise/uniform convergence:
> 4usq 2% converges (absolutely) for |z| < 1, but to force uniform convergence,

we need to shrink the domain to |z| < r for some (arbitrary but fixed) r < 1.
|

7.4 Regions of Convergence

For the remainder of this chapter (indeed, this book) we concentrate on some
very special series of functions.

Definition 7.4.1 A power series centered at zy is a series of the form

Z ek (z — zo)k

k>0

where cg, c1,co,... € C. %

Example 7.4.2 A slight modification of Example 7.3.8 gives a fundamental
power series, namely the geometric series

1
2=

k>0

So here zp = 0 and ¢ = 1 for all £ > 0. We note that, as in Example 7.3.8, this
power series converges absolutely for |z| < 1 and uniformly for |z| < r, for any
fixed 7 < 1. Finally, as in Example 7.2.9, the geometric series ), Z* diverges
for |z| > 1. O

A general power series has a very similar convergence behavior which, in
fact, comes from comparing it to a geometric series.

Theorem 7.4.3 Given a power series Y . cr(z — 20)¥, there exists a real
number R > 0 or R = oo, such that B

(&) D psocr(z — 20)* converges absolutely for |z — z| < R;

(b) Y isocr(z — 20)F converges absolutely and uniformly for |z — zo| < r, for
any r < R;

(¢) Dopsocklz — 20)* diverges for |z — zo| > R.

We remark that this theorem says nothing about the convergence/divergence
of > o cr(z — 20)* for |z — 29| = R.

Definition 7.4.4 The number R in Theorem 7.4.3 is called the radius of
convergence of 3, <, cx(z — z0)*. The open disk D[z9, R] in which the power
series converges absolutely is the region of convergence. (If R = co then this
is C.) O

In preparation for the proof of Theorem 7.4.3, we start with the following
observation.

Proposition 7.4.5 If >~ ci(w — 20)F converges, then Zkzo ce(z — 20)F

converges absolutely whenever |z — zo| < |w — zo].
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Proof. Let 1 := |w — zo|. If Y, cn(w — 20)¥ converges then limy_, oo cx(w —
20)* = 0 and so this sequence of terms is bounded (by Exercise 7.5.6), say

|ck(w—zo)k| = |ep|r® < M.

Now if |z — 29| < |w — %], then

chk(z—zo)k| = Z|Ck|7’k <|Zrz0|>k < MZ(M)IC

k>0 k>0 k>0

The sum on the right-hand side is a convergent geometric sequence, since
|z — zo| <7, and so > ;< ck(z — 20)* converges absolutely by Corollary 7.2.6.
- |

With this preparation, we can now prove Theorem 7.4.3.

Proof of Theorem 7.4.3. Consider the set

S = {xeR>p: E cr ¥ converges
k>0

(This set is nonempty since 0 € S.)

If S is unbounded then 3, <, ¢k (2 — 20)* converges absolutely and uniformly
for |z — zo| < r, for any r (and so this gives the R = oo case of Theorem 7.4.3):
choose x € S with & > r, then Proposition 7.4.5 says that >, cx r* converges

absolutely. Since |cx(z — 20)¥| < |ex|r*, we can now use Proposition 7.3.7.

If S is bounded, let R be its least upper bound. If R = 0 then Zkzo ck(z —

k converges only for z = zp, which establishes Theorem 7.4.3 in this case.

Now assume R > 0. If |z — 29| < R then (because R is a least upper bound
for S) there exists r € S such that

Zo)

|z — 20| <r < R.

Thus >, cr(w — 20)¥ converges for w = zy + r, and so Y k>0 Ck(z — 20)F
converges absolutely by Proposition 7.4.5. This finishes (a).

If |z — 20| < r for some r < R, again we can find = € S such that r <z < R.
Then Y, |ck|r* converges by Proposition 7.4.5, and so Y, <, ck(z — 20)"
converges absolutely and uniformly for |z — zo| < r by Proposition 7.3.7. This
proves (b).

Finally, if |z — 29| > R then there exists r ¢ S such that

R<r<|z— 2.

But Y, - ¢k r® diverges, so (by the contrapositive of Theorem 7.2.16)
Y k>0 lck| 7 diverges, and so (by the contrapositive of Proposition 7.4.5)
> k>0 Ck(z — 20)¥ diverges, which finishes (c). [ ]

Corollary 7.4.6 If limy_, o ¥/|ck| exists then the radius of convergence of

> k>0 Ck(z — 20)¥ equals

00 if img_o0 ¥/|ck| =0,

R = 1
limg 00 k\‘/ lek|

otherwise.
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Proof. We treat the case that R is finite and leave the case R = oo to
Exercise 7.5.31.

Given R as in the statement of the corollary, it suffices (by Theorem 7.4.3)
to show that >, o, ck(z — 20)" converges for |z — zp| < R and diverges for
|z — 20| > R.

Suppose 7 := |z — 29| < R. Since lim; o ¥/|ck| = & and RLH > £, there
exists N such that ¥/|c| < R%FT for k > N. For those k we then have

k 2r \"
e =0 = lalle -l = (Valr)" < ()

R+r

and so Y .o v ck(z — 20)" converges (absolutely) by Proposition 7.3.7, be-

cause -2~ < 1 and thus Y k>0 (RQ—];T) converges as a geometric series. Thus

R+r
> k0 Ck(z — 20)* converges.
Now suppose r = |z — 29| > R. Again because limy_, o v/|cx| = % and now

RL_‘_T < 4, there exists N such that {/|c| > RL—H" for £ > N. For those &,

k 2 k
‘ck(z—zo)k| = (\k/|ck\r) > (er) > 1,

and so the sequence cj(z — 2p)* cannot converge to 0. Subsequently (by

Corollary 7.2.8), 37~ ck(z — 20)* diverges. |

You might remember this corollary from calculus, where it goes by the name
root test. Its twin sister, the ratio test, is the subject of Exercise 7.5.32.

Example 7.4.7 For the power series Y, .,k 2* we compute

. . k . 1 . In(k)
lim /x| = lim VE = lim e® ™) = glimeoe 5= — o0 — 7
k—o0 k—o0 k—oo

and Corollary 7.4.6 gives the radius of convergence 1. (Alternatively, we can
argue by differentiating the geometric series.) O

Example 7.4.8 Consider the power series Y, - 77 2*. Since

Cht1 k!

Ck

lim =

k—o0

= l. [ == 1
koo (B+ 1)  koook+ 1

the ratio test (Exercise 7.5.32) implies that the radius of convergence of
> k>0 71 27 i 00, and so the power series converges absolutely in C.* O

By way of Proposition 7.3.4, Theorem 7.4.3 almost immediately implies the
following.

Corollary 7.4.9 Suppose the power series Y .~ ck(z — 20)F has radius of
convergence R > 0. Then the series represents a function that is continuous on
D[Zo, R] .

Proof. Given any point w € D[z, R], we can find r < R such that w € D[z, 7]
(e.g., if R # oo then r = W will do the trick). Theorem 7.4.3 says
that Y, ck(z — 20)¥ converges uniformly in D[z, r], and so Proposition 7.3.4
implies that the power series is continuous in D[zg,7], and so particularly at w.
|

Finally, mixing Proposition 7.3.6 with Theorem 7.4.3 gives:

n the next chapter, we will see that this power series represents the exponential function.
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Corollary 7.4.10 Suppose the power series >, ck(z — z0)* has radius of
convergence R > 0 and v is a piecewise smooth path in D[zo, R]. Then

L S ez — z0)Fde = ch/(z—zo)kdz.

k>0 k>0 v

In particular, if v is closed then / ch(z —z)dz = 0.
7 k>0

Proof. Let r := max,c~ |7(2) — 20| (whose existence is guaranteed by The-
orem A.0.1). Then v C Dl[zp,7] and r < R. Theorem 7.4.3 says that
D ko Ck (2 — zo)k converges uniformly in D[z, 7], and so Proposition 7.3.6
allows us to switch integral and summation.

The last statement follows now with Exercise 4.5.15. |

These corollaries will become extremely useful in the next chapter.

7.5 Exercises

1. For each of the sequences, prove convergence or divergence. If the sequence
converges, find the limit.

min

(a) a,=e1

Answer. divergent

n

(b) a, = 0"
Answer. convergent (limit 0)
(c) a, = cos(n)
Answer. divergent
(d) an=2— 5t
Answer. convergent (limit 2 — £)
(e) a, =sin(L)
Answer. convergent (limit 0)

2. Determine whether each of the following series converges or diverges.

)

3 (5)

02 (5

@ %
- 1

3. Compute Z

-
n 2n
et +
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10.
11.
12.
13.
14.

15.
16.

17.

18.

19.

Answer. %

Prove Proposition 7.1.4.
Prove the following:

(a) lim a, =a = lim |a,|=]al.
n— oo n—roo

(b) lim ap, =0<«= lim |a,| =0.
n—oo n—oo
Show that a convergent sequence is bounded, i.e.: if lim,_, a, exists,
then there is an M such that |a,| < M for all n > 1.
Show that the limit of a convergent sequence is unique.

Let (ay,) be a sequence. A point a is an accumulation point of the sequence
if for every € > 0 and every N € Z~( there exists some n > N such that
|an, — a] < e. Prove that if a sequence has more than one accumulation
point then the sequence diverges.

(a) Show that 7 < ﬁ for any positive integer k.

(b) Conclude with Example 7.2.3 that for any positive integer n,

1 1 1
l4+=+-+-+— < 3.
ottt <3

Derive the Archimedean Property from the Monotone Sequence Property.
Prove Proposition 7.1.10.

Prove that (¢, ) converges if and only if (Rec,) and (Im¢,) converge.
Prove that Z is complete and that Q is not complete.

Prove that, if a,, < b, < ¢, for all n and lim,,_, a, = lim,,_, ¢, = L,
then lim,, ,o. b, = L. This is called the Squeeze Theorem, and is useful in
testing a sequence for convergence.

Find the least upper bound of the set {Re (62““) :teQ) Z}.

(a) Suppose that the sequence (c,,) converges to zero. Show that )" - ¢y
converges if and only if >~ . (cor + cor41) converges. Moreover, if
the two series converge then they have the same limit.

(b) Give an example where (c,,) does not converge to 0 and one of the
series in (a) diverges while the other converges.

Prove that the series Z by, converges if and only if lim Z b, =0.
k>1 " en

k
(a) Show that Z Pl diverges.
k>1
(b) Show that Z L converges
k341 8es

k>1

(a) Suppose G C C and f,, : G — C for n > 1. Suppose (a,) is a
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sequence in R with lim,,_,, a,, = 0 and, for each n > 1,
|fn(2)] < an forall z € G.

Show that (f,,) converges uniformly to the zero function in G.

(b) Re-prove the statement of Example 7.3.3 using part a).
20.

(a) Suppose G CC, f,, : G — C forn > 1, and (f,,) converges uniformly
to the zero function in G. Show that, if (z,) is any sequence in G,
then

lim fo(z,) = 0.
n—oo

(b) Apply a) to the function sequence given in Example 7.3.2, together
with the sequence (z, = e_%), to prove that the convergence given
in Example 7.3.2 is not uniform.

21. Consider f, : [0,7] — R given by f,(z) = sin™(z), for n > 1. Prove that
(fn) converges pointwise to f : [0, 7] — R given by

Figure 7.5.1 The functions f,(z) := sin”(x) in Exercise 7.5.21.

22. Where do the following sequences converge pointwise? Do they converge
uniformly on this domain?

(a) (n2")
(b) (%)
(c) (%) where Re(z) > 0
23. Let fu(z) =nze ",
(a) Show that lim, e fu(z) = 0 for all z > 0.

Hint. Treat = 0 as a special case; for z > 0 you can use
L’Hépital’s rule (Theorem A.0.11) — but remember that n is the
variable, not x.

(b) Find lim, o [ fo(z)dz.

Hint. The answer is not 0.
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(c) Why doesn’t your answer to part (b) violate Proposition 7.3.67

24. The product of two power series centered at zg is another power series cen-
tered at zg. Derive a formula for its coeflicients in terms of the coefficients
of the original two power series.

25. Find a power series (and determine its radius of convergence) for the
following functions.

1
(a) 1+4z

Answer. Zkzo(_4)k P

(b) o

T2

Answer. >, ., 5tr 2

52
(c) TE]
Answer. k>0 ’;'Z,% Zht+2
26. Find a power series representation about the origin of each of the following
functions.
(a) cosz

1k
Answer. Zkzo ((2;;! 2%k
(b) cos(2?)

K
Answer. Ekzo ((2,3! 24k

(c) 2%sinz

(=D*  2k+3
2k+1)‘

Answer. o Grrni
(d) (sin 2)?
(—1)kt1g2k—1

Answer. 3, W 22k

27.

(a) Suppose that the sequence (¢) is bounded. Show that the radius of
convergence of > ;- cx(z — 20)¥ is at least 1.

(b) Suppose that the sequence (c) does not converge to 0. Show that
the radius of convergence of Y, cx(z — 20)" is at most 1.

28. Find the power series centered at 1 and compute its radius of convergence
for each of the following functions:

(@) f(z)=;
Answer. Zkzo(_l)k (z — 1)k
(b) f(z) = Log(z)

Answer. ., %(z — 1)k
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29. Use the Weierstra3 M-test to show that each of the following series con-
verges uniformly on the given domain:

(a) Z—onDOl

k>1

(b) Zz—lkon{ze(c: 12 > 2}

k>0
Lk
()Z o 1onD[O7’}vvhereO<T<1
k0% T

N
30. Fix z € C and r > |z|. Prove that Z (—) converges uniformly in the
k>0
variable w for |w| > r.

31. Complete our proof of Corollary 7.4.6 by considering the case R = co.

32. Prove that, if limy_,

exists then the radius of convergence of

Ck+1
Ck

> ko Ch(z — 20)* equals

Ck+41
Ck

00 if limy oo =0,

R = o

- otherwise.
Chk+1

limy o0

33. Find the radius of convergence for each of the following series.
(a) Z a*’ 2% where a € C
k>0

Answer. oo

(b) Z E"2* where n € Z
E>0

Answer. 1
(C) sz!
k>0
Answer. 1
—1)k
(d) Z( k) Zk(kJrl)
k>1

Answer. 1

(© >

k>1

) Z cos(k)z*
k>0

(8) 3 4(— 2"
k>0

34. Find a function representing each of the following series.

52k
(a) Z T

k>0
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Answer. exp(z?)
(b) Y k(z—D1!
k>1

1
Answer. m

(c) Z k(k—1)2"
k>2
222
Answer. Rl

35. Recall the function f : D[0,1] — C defined in Exercise 5.4.5 through

dw
f(2) = /H L

Find a power series for f.

36. Define the functions f, : R>g — R via f,,(t) = %e*%, for n > 1.
(a) Show that the maximum of f,(t) is L.
(b) Show that f,(t) converges uniformly to the zero function on Rxg.

(c) Show that [ f,(t)dt does not converge to 0 as n — oco.

(d) Why doesn’t this contradict Proposition 7.3.67



Chapter 8

Taylor and Laurent Series

First, it is necessary to study the facts, to multiply the number of
observations, and then later to search for formulas that connect them
so as thus to discern the particular laws governing a certain class of
phenomena. In general, it is not until after these particular laws have
been established that one can expect to discover and articulate the
more general laws that complete theories by bringing a multitude of
apparently very diverse phenomena together under a single governing
principle.

—Augustin Louis Cauchy (1789-1857)

Now that we have developed some machinery for power series, we are ready
to connect them to the earlier chapters. Our first big goal in this chapter is
to prove that every power series represents a holomorphic function in its disk
of convergence and, vice versa, that every holomorphic function can be locally
represented by a power series.

Our second goal returns to our motivation to start Chapter 7: we’d still like

to compute (7.1),
/ exp(z) ;-
C[2,3] sin(z)
exp(z)

Looking back at Figure 7.0.1 suggests that we expand the function Sin(z) locally
into something like power series centered at 0 and 7, and with any luck we can
then use Proposition 7.3.6 to integrate. Of course, z’i?:((j)) has singularities at 0
and 7, so there is no hope of computing power series at these points. We will
develop an analogue of a power series centered at a singularity.

8.1 Power Series and Holomorphic Functions

Here is the first (and easier) half of the first goal we just announced.

Theorem 8.1.1 Suppose f(z) = ;~qck (2 — zo)k has radius of convergence
R > 0. Then f is holomorphic in D[z, R).

Proof. Corollary 7.4.9 says that f is continuous in D[zp, R]. Given any closed
piecewise smooth path v C D[z, R], Corollary 7.4.10 gives f,y f =0. Now apply
Morera’s theorem (Corollary 5.2.1). |

120
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A special case of this result concerns power series with infinite radius of
convergence: those represent entire functions.

Now that we know that power series are differentiable in their regions of
convergence, we can ask how to find their derivatives. The next result says that
we can simply differentiate the series term by term.

Theorem 8.1.2 Suppose f(z) =Y ;5o ck(2 — 20)* has radius of convergence
R > 0. Then B

f'(z) = > ker(z—20)""" forany z € D[z, R],
k>1

and the radius of convergence of this power series is also R.

Proof. If z € D]z, R] then |z — zp| < R, so we can choose R; so that |z — zo| <
Ry < R. Then the circle v := C[zp, R1] lies in D[z, R] and z is inside 7.
Since f is holomorphic in D[z, R] we can use Cauchy’s Integral Formula for f’
(Theorem 5.1.1), as well as Corollary 7.4.10:

/ 1 f(w) 1 1 k
7@ 2mi J, (w — 2)? v 2mi J, (w— 2)? ’;)Ck(w 20)" dw
B 1 (w — z0)k _ d &
o ch 27m'/ (w — 2)? dw = ch dw(w 20) _
k>0 v k>0 w=z
= Z kep(z — 20)F L.
E>1

Note that we used Theorem 5.1.1 again in the penultimate step, but now applied
to the function (z — 29)*.

The last statement of the theorem is easy to show: the radius of convergence
of f'(z) is at least R (since we have shown that the series for f’ converges
whenever |z — zp| < R), and it cannot be larger than R by comparison to
the series for f(z), since the coefficients for (z — z) f/(z) are larger than the

corresponding ones for f(z). ]
Example 8.1.3 Let
k
z
f(z) = Z T
k>0

In Example 7.4.8, we showed that f converges in C. We claim that f(z) = exp(z),
in analogy with the real exponential function. First, by Theorem 8.1.2,

) d e Sh—1 ok
f(z) = @Zg = Zi(k—l)! = Zﬁ = f(z).

k>0 k>1 k>0
Thus

d f(z) d
dz exp(2) dz

and so, by Theorem 2.4.2, e){ 1()2) is constant. Evaluating at z = 0 gives that

this constant is 1, and so f(z) = exp(z). O
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var('k', 'z")
sum(z*k/factorial(k),k,0, +o00)

etz

Example 8.1.4 We can use the power series expansion for exp(z) to find power
series for the trigonometric functions. For instance,

iz)k —iz)¥
sinz = %(GXP(Z'Z) — exp(—iz)) = i Z ( kl) B Z e

2 ! k!
k>0 k>0
11, ) 1 2(iz)*
Y 7 ((Zz)k - (71)1@(%)1@) = % Z Ll
k>0 k>0 odd ’
_ EZM _ Zw _ Z(;WZ”“
- - T - ' - T
i 5 (27 + 1)! = (25 + 1)! = (27 +1)!
23 25 T
T T

Note that we are allowed to rearrange the terms of the two added sums because
the corresponding series have infinite radii of convergence. O

var('z")
taylor(sin(z),z,0,10)

1/362880%xz*9 - 1/5040%z"7 + 1/120%z"5 - 1/6%z"3 + z

Naturally, Theorem 8.1.2 can be repeatedly applied to f/, then to f”, and so
on. The various derivatives of a power series can also be seen as ingredients of
the series itself—this is the statement of the following Taylor series expansion.*

Corollary 8.1.5 Suppose f(z) = > <o ck(z — 20)* has a positive radius of
convergence. Then B
F® (z0)
kKl
Proof. For starters, f(z9) = co. Theorem 8.1.2 gives f'(2¢) = ¢1. Applying the

same theorem to [’ gives

F(z) = > k(= 1) (2 — 20)" 2

k>2

Cp —

and so f”(z9) = 2¢2. A quick induction game establishes f*)(zy) = k!c;. W
Taylor’s formula shows that the coefficients of any power series converging

to f on some open disk D can be determined from the function f restricted to

D. Tt follows immediately that the coefficients of a power series are unique:

Corollary 8.1.6 If >, - ck (2 — 20)F and >, di (2 — 20)" are two power
series that both converge to the same function on an open disk centered at 2,
then ¢, = dy, for all k > 0.

Example 8.1.7 We'd like to compute a power series expansion for f(z) = exp(z)

!Named after Brook Taylor (1685-1731).
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centered at zy = 7. Since

FP(20) = exp(2) =€,

Z=T

Corollary 8.1.5 suggests that this power series is

Z%(z—w)’a

k>0

which converges for all z € C (essentially by Example 7.4.8). |

We now turn to the second cornerstone result of this section, that a holo-
morphic function can be locally represented by a power series.

Theorem 8.1.8 Suppose f is a function holomorphic in D[z, R]. Then f can
be represented as a power series centered at zy, with a radius of convergence
> R:

f(z) _ ch(z—zo)k with Ccr = eri/wﬂ:gmdw,
¥

k>0

where v is any positively oriented, simple, closed, piecewise smooth path in
Dlzo, R] for which zy is inside 7.
Proof. Let g(2) := f(z + 20); so g is a function holomorphic in D[0, R]. Given
z € D[0, R], let r := M%R. By Cauchy’s Integral Formula (Theorem 4.4.5),
1
g(z) = — / gw) dw
21t Jepg w— 2

The factor ﬁ in this integral can be expanded into a geometric series (note
that w € C[0,7] and so |Z| < 1):

1

w—z

-Lx @)

1
Z
1 w k>0

gl

which converges uniformly in the variable w € C[0, r| by Exercise 7.5.30. Hence
Proposition 7.3.6 applies:

_ 1 9(w)
g<Z) o 211 clo,r] w—z dw

L AR )

% Clo,r] k>0
1 g(w) k
_ Z<2m/c wkHdw)z.
k>0 [0,r]

Now, since f(z) = g(z — z0), we apply a change of variables to obtain

1 w
f(Z) - Z (277& /C'[zo,r] (wf(z(lim dw) = ZO)k.

k>0

The only differences of this right-hand side to the statement of the theorem are
the paths we're integrating over. However, by Cauchy’s Theorem 4.3.4,

f(w) [
/C[ZOJ'] de o [,(w—zo)k+l dw .
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We note a remarkable feature of our proof: namely, if we are given a
holomorphic function f : G — C and are interested in expanding f into a power
series centered at zy € G, then we may maximize the radius of convergence R
of this power series, in the sense that its region of convergence reaches to the
boundary of G. Let’s make this precise.

Definition 8.1.9 For a region G C C and a point zg € G, we define the
distance of zy to OG, the boundary of G, as the greatest lower bound of
{|z — 20| : z € OG}; if this set is empty, we define the distance of zg to G to
be oo. O

What we have proved above, on the side, is the following.

Corollary 8.1.10 If f : G — C is holomorphic and zy € G, then f can be
expanded into a power series centered at zy whose radius of convergence is at
least the distance of zy to 0G.

Example 8.1.11 Consider f: C\ {£i} — C given by f(z) := ﬁ and zo = 0.
Corollary 8.1.10 says that the power series expansion of f at 0 will have radius
of convergence 1. (Actually, it says this radius is at least 1, but it cannot be
larger since +i are singularities of f.) In fact, we can use a geometric series to
compute this power series:

with radius of convergence 1. ]
Corollary 8.1.10 is yet another example of a result that is plainly false when
translated into R; see Exercise 8.4.6.
Comparing the coefficients of the power series obtained in Theorem 8.1.8
with those in Corollary 8.1.5, we arrive at the long-promised extension of
Theorem 4.4.5 and Theorem 5.1.1.

Corollary 8.1.12 Suppose f is holomorphic in the region G and vy is a positively
oriented, simple, closed, piecewise smooth path, such that w is inside v and
v ~g 0. Then

k! f(z)
(k) = — [ —————dz.
[ (w) o L (z — w)F+i “
Corollary 8.1.12 combined with our often-used Proposition 4.1.8(d) gives an
inequality which is often called Cauchy’s Estimate:

Corollary 8.1.13 Suppose f is holomorphic in D{w, R] and |f(2)] < M for

all z € D{w, R]. Then
k' M
O] <

Proof. Let r < R. By Corollary 8.1.12 and Proposition 4.1.8(d),

k! f(z)
21 /C[w,r] (Z —w k+1 dz

)
K f(2)
)

— max G—w

FPw)| =

IN

length(Clw, r])

m.
2T zeClw,r) k+1

kKl M

% 7rk+1 2mr
k' M

P

IN

r

The statement now follows since r can be chosen arbitrarily close to R. |
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A key aspect of this section is worth emphasizing: namely, we have developed
an alternative characterization of what it means for a function to be holomorphic.
In Chapter 2, we defined a function to be holomorphic in a region G if it is
differentiable at each point zy € G. We now define what it means for a function
to be analytic in G.

Definition 8.1.14 Let f : G — C and 29 € G. If there exist R > 0 and

co,C1,C2,... € C such that the power series
Z cr(z — 20)"
E>0

converges in D[zg, R] and agrees with f(z) in D[z, R], then f is analytic at z.
We call f analytic in G if f is analytic at each point in G. O
What we have proved in this section can be summed up as follows:

Theorem 8.1.15 For any region G, the class of all analytic functions in G
coincides with the class of all holomorphic functions in G.

While the terms holomorphic and analytic do not always mean the same
thing, in the study of complex analysis they do and are frequently used inter-
changeably.

8.2 Classification of Zeros and the Identity Prin-
ciple

When we proved the Fundamental Theorem of Algebra (Theorem 5.3.2; see
also Exercise 5.4.11), we remarked that, if a polynomial p(z) of degree d > 0
has a zero at a (that is, p(a) = 0), then p(z) has z — a as a factor. That is, we
can write p(z) = (2 — a) ¢(2) where ¢(z) is a polynomial of degree d — 1. We
can then ask whether ¢(z) itself has a zero at a and, if so, we can factor out
another (z — a). Continuing in this way, we see that we can factor p(z) as

p(z) = (z=a)"g(2)

where m is a positive integer < d and g(z) is a polynomial that does not have a
zero at a. The integer m is called the multiplicity of the zero a of p(z). Almost
exactly the same thing happens for holomorphic functions.

Theorem 8.2.1 Classification of Zeros. Suppose f : G — C is holomorphic
and f has a zero at a € G. Then either

(a) f is identically zero on some open disk D centered at a (that is, f(z) =0
forall z€ D); or

(b) there exist a positive integer m and a holomorphic function g : G — C,
such that g(a) # 0 and

f(z) = (z—a)"g(z) forallz e G.

In this case the zero a is isolated: there is a disk Dl[a,r] which contains
no other zero of f.

The integer m in the second case is uniquely determined by f and a and is
called the multiplicity of the zero at a.
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Proof. By Theorem 8.1.8, there exists R > 0 such that we can expand

flz) = ch(z—a)k for z € Dfa, R],

k>0
and ¢y = f(a) = 0. There are now exactly two possibilities: either
(a) ¢ =0 for all k > 0; or
(b) there is some positive integer m so that ¢, = 0 for all K < m but ¢, # 0.

The first case gives f(z) = 0 for all z € DJa, R]. So now consider the second
case. We note that for z € D[a, R],

f(Z) = Cm(Z—CL)m+Cm+1(Z—a,)m+1_|_...
(Z_a)m(cm-i-cm+1(z—a)+--~)
= (z—a)" ZCker (z —a).

k>0

Thus we can define a function g : G — C through

Z Cham(z —a)* if z € Dla, R,
E>0

9(z) = f(z)

if z€ G\ {a}.

(According to our calculations above, the two definitions give the same value
when z € D[a, R] \ {a}.) The function ¢ is holomorphic in Dl[a, R] by the first
definition, and g is holomorphic in G \ {a} by the second definition. Note that
g(a) = ¢ # 0 and, by construction,

f(z) = (z—a)"g(2) forall z € G.

Since g(a) # 0 there is, by continuity, 7 > 0 so that g(z) # 0 for all
z € Dla,r], so Dla,r] contains no other zero of f. The integer m is unique,
since it is defined in terms of the power series expansion of f at a, which is
unique by Corollary 8.1.6. |

Theorem 8.2.1 gives rise to the following result, which is sometimes called
the identity principle or the uniqueness theorem.

Theorem 8.2.2 Suppose G is a region, f : G — C is holomorphic, and
f(an) = 0 where (a,) is a sequence of distinct numbers that converges in G.
Then f is the zero function on G.

Applying this theorem to the difference of two functions immediately gives
the following variant.

Corollary 8.2.3 Suppose f and g are holomorphic in a region G and f(ay) =
g(ar) at a sequence that converges to w € G with ay # w for all k. Then
f(z) =g(z) forall z in G.

Proof. Consider the following two subsets of G:

X :={a € G : there exists r such that f(z) =0 for all z € DJa,r]}
Y :={a € G : there exists r such that f(z) # 0 for all z € D[a,r]\ {a}}.

If f(a) # 0 then, by continuity of f, there exists a disk centered at a in
which f is nonzero, and so a € Y.
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If f(a) =0, then Theorem 8.2.1 says that either a € X or a is an isolated
zero of f,soa €Y.

We have thus proved that G is the disjoint union of X and Y. Exercise 8.4.11
proves that X and Y are open, and so (because G is a region) either X or Y has
to be empty. The conditions of Theorem 8.2.2 say that lim,_, . a, is not in Y,
and thus it has to be in X. Thus G = X and the statement of Theorem 8.2.2
follows. |

The identity principle yields the strengthenings of Theorem 6.2.3 and Corol-
lary 6.2.4 promised in Chapter 6. We recall that that we say the function
u: G — R has a weak relative mazimum w if there exists a disk D[w,r] C G
such that all z € D{w, r| satisfy u(z) < u(w).

Theorem 8.2.4 Maximum-Modulus Theorem. Suppose f is holomorphic
and nonconstant in a region G. Then |f| does not attain a weak relative
mazximum in G.

There are many reformulations of this theorem, such as:

Corollary 8.2.5 Suppose f is holomorphic in a bounded region G and continu-
ous on its closure. Then

sup [f(z)] = max|f(=)].

Proof. This is trivial if f is constant, so we assume f is non-constant. By the
Extreme Value Theorem A.0.1 there is a point zyp € G so that max_ el f(2)] =
|f(20)|- Clearly sup,cq |f(2)] < max__z[f(2)], and this is easily seen to be an
equality using continuity at zg, since there are points of G arbitrarily close to
zg. Finally, Theorem 8.2.4 implies zg € G, so zg must be in 0G. |

Theorem 8.2.4 has other important consequences; we give two here, whose
proofs we leave for Exercise 8.4.12 and Exercise 8.4.13.

Corollary 8.2.6 Minimum-Modulus Theorem. Suppose f is holomorphic
and nonconstant in a region G. Then |f| does not attain a weak relative
minimum at a point a in G unless f(a) = 0.

Corollary 8.2.7 If u is harmonic and nonconstant in a region G, then it does
not have a weak relative mazimum or minimum in G.

Note that (6.1) in Chapter 6 follows from Corollary 8.2.7 using essentially
the same argument as in the proof of Corollary 8.2.5.

Proof. Suppose there exist a € G and R > 0 such that |f(a)| > |f(2)| for all
z € Dla, R]. We will show that then f is constant.

If f(a) = 0 then f(z) = 0 for all z € Dla, R], so f is identically zero by
Theorem 8.2.2.

Now assume f(a) # 0, which allows us to define the holomorphic function
g:G — Cviag(z) = ;EZ; This function satisfies

lg(z)] < Jg(a)] = 1 for all z € Dla, R],

Also g(a) =1, so, by continuity of g, we can find » < R such that Re(g(z)) > 0
for z € D[a,r]. This allows us, in turn, to define the holomorphic function
h : Dla,r] — C through h(z) := Log(g(z)), which satisfies

h(a) = Log(g(a)) = Log(1) = 0

and
Re(h(z)) = Re(Log(9(2))) = In(lg(2)]) < In(1) = 0.

Exercise 8.4.35 now implies that A must be identically zero in D[a,r]. Hence
g(z) = exp(h(z)) must be equal to exp(0) =1 for all z € DJa,r], and so f(z) =
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f(a) g(z) must have the constant value f(a) for all z € Dla,r]. Corollary 8.2.3
then implies that f is constant in G. ]

8.3 Laurent Series

Theorem 8.1.8 gives a powerful way of describing holomorphic functions. It
is, however, not as general as it could be. It is natural, for example, to think
about representing exp(2) as

1 1 /1\" 1,
exp<z> = Zm() =D "
k>0 k>0

a “power series” with negative exponents. To make sense of expressions like
the above, we introduce the concept of a double series

g ap = g ak—i—g a_j .
keZ k>0 k>1

Here aj, € C are terms indexed by the integers. The double series above
converges if and only if the two series on the right-hand side do. Absolute and
uniform convergence are defined analogously. Equipped with this, we can now
introduce the following central concept.

Definition 8.3.1 A Laurent' series centered at z; is a double series of the form

ch(z — 2)*.

keZ
O
Example 8.3.2 The series that started this section is the Laurent series of
exp(1) centered at 0. O

Example 8.3.3 Any power series is a Laurent series (with ¢, = 0 for k < 0).

|

We should pause for a minute and ask for which z a general Laurent series
can possibly converge. By definition

ZCk (z—2)" = ch (z—zo)kJch_k (z—20) "
ke k>0 k>1

The first series on the right-hand side is a power series with some radius of con-
vergence Ra, thus with Theorem 7.4.3, it converges in {z € C: |z — 29| < Ra},
and the convergence is uniform in {z € C: |z — 29| < 12}, for any fixed 73 < Ro.
For the second series, we invite you (in Exercise 8.4.30) to revise our proof of
Theorem 7.4.3 to show that this series converges for
1 1

|z — 20| Ry
for some R;p, and that the convergence is uniform in {z € C: |z — 20| > r1},
for any fixed r; > R;. Thus the Laurent series converges in the annulus

A = {ZGC1R1<|Z*ZO|<R2}

(assuming this set is not empty, i.e., Ry < Rg), and the convergence is uniform
on any set of the form

{zeC:ri <|z—2 <12} for Ri<ri<res<Ry.

L After Pierre Alphonse Laurent (1813-1854).
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Example 8.3.4 We’d like to compute the start of a Laurent series for ﬁ
centered at zy = 0. We start by considering the function g : D[0, 7] — C defined

by
1 1 :
g(z) = T~ = 12 F0
0 ifz=0.

A quick application of L’Hépital’s Rule (Theorem A.0.11) shows that g is
continuous (see Exercise 8.4.31). Even better, another round of L’Hopital’s

Rule proves that
1 p—
lim sin(z)
z—0 z 6

w =
—

But this means that

% if z=0,
in particular, g is holomorphic in D[0,7].2 By Theorem 8.1.8, g has a power
series expansion at 0, which we may compute using Corollary 8.1.5. It starts
with 1 . 31
—_ - .3 54 ...

96) = 55 50 ” T st
and it converges, by Corollary 8.1.10, for |z| < 7. But this gives our sought-after
Laurent series

1 U SO AU N
=z —z+ =2t ———=2"+ -
sin(z) 6 360 15120
which converges for 0 < |z| < 7. O

SageMath has a hard time with Laurent series with infinitely many negative
exponents:

var('z"')
taylor(exp(1/z),z,0,20)

er(1/z)

But it can handle finitely many negative exponents:

var('z")
taylor(1/sin(z),z,0,10)

73/3421440%xz*9 + 127/604800%z"7 + 31/15120%xz*5 + 7/360%xz"3
+ 1/6%xz + 1/z

Theorem 8.1.1 implies that a Laurent series represents a function that is
holomorphic in its annulus of convergence. The fact that we can conversely
represent any function holomorphic in such an annulus by a Laurent series is
the substance of the next result.

Theorem 8.3.5 Suppose f is a function that is holomorphic in A :=
{z€C: Ry <|z— 2| < Ra}. Then f can be represented in A as a Laurent

2This is a (simple) example of analytic continuation: the function g is holomorphic
in D[0, 7] and agrees with e i in D[0,7] \ {0}, the domain in which the latter
function is holomorphic. When we said, in Footnote 7.2.1, that the Riemann zeta function
¢(z) = Zk>1 k% can be extended to a function that is holomorphic on C\ {1}, we were also

talking about analytic continuation.
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series centered at zg,

f2) = D ez —2)"
keZ

with ) Fw)

w

cr = — —————dw,
210 Jopzg,n) (W0 — 20)kt+1
where Ry <r < Rs.
By Cauchy’s Theorem 4.3.4 we can replace the circle C|zp, 7] in the formula

for the Laurent coefficients by any path vy ~4 C[z, r].

Proof. Let g(z2) = f(z + 20); so g is a function holomorphic in
{z€eC: Ry <|z| <Rg}. Fix Ry <11 < |2| < r2 < Ry, and let v be the
path in Figure 8.3.6, where 71 := C[0,71] and 72 := C[0,r3]. By Cauchy’s
Integral Formula (Theorem 4.4.5),

1 g(w)
9(z) = 21 ﬂ{w—zdw
1 1
R N (C)) dw——,/ 9) gy (8.1)
27 by W= Z 21 W=z
Y2

\\k

—

Figure 8.3.6 The path v in our proof.

For the integral over v, we play exactly the same game as in our proof
of Theorem 8.1.8. The factor ﬁ in this integral can be expanded into a
geometric series (note that w € y2 and so |Z] < 1)

1 1 1 1 Z\k
e e )

z
w k>0

which converges uniformly in the variable w € v by Exercise 7.5.30. Hence
Proposition 7.3.6 applies:

[ = [ a3 (2 = ([ A2 )

k>0 k>0

The integral over ~; is computed in a similar fashion; now we expand the
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1

w—=z

factor

into the following geometric series (note that w € v, and so [%| < 1)
T 1 1 1 (w) k
w—z  z1-%2 z z/)

which converges uniformly in the variable w € ;. Again Proposition 7.3.6

applies:
[ 2=~ [ s 5 (2)

I
I
N\
T
=
g
S

x>
U
g
N——
N
|
T

06 = g |2 () Bhaw) e 3 ([ Shaw)

k>0 k<—1

By Cauchy’s Theorem 4.3.4, we can now change both v, and v to C|[0,7], as
long as Ry < r < Ro, which finally gives

1 g(w
g(z) = o (/ Ec+)1 dw) 2~
™ kez Clo,r] w

The statement follows now with f(z) = g(z — z9) and a change of variables
in the integral. |

This theorem, naturally, has several corollaries that have analogues in the
world of Taylor series. Here are two samples:

Corollary 8.3.7 If >, ., cr(z — 20)* and 3", o, di(z — 20)* are two Laurent
series that both converge, for Ry < |z — z9| < Rz, to the same function, then
cx =di for all k € Z.

Corollary 8.3.8 If G is a region, zg € G, and f is holomorphic in G\ {20},
then f can be expanded into a Laurent series centered at zy that converges for
0 < |z — 20| < R where R is at least the distance of zy to 0G.

Finally, we come to the analogue of Corollary 7.4.10 for Laurent series. We
could revisit its proof, but the statement that would follow is actually the
special case k = —1 of Theorem 8.3.5, read from right to left:

Corollary 8.3.9 Suppose f is a function that is holomorphic in A :=
{z € C: Ry < |z — 2| < Rz}, with Laurent series

flz) = ch (z — 20)".

kEZ

If v is any simple, closed, piecewise smooth path in A, such that zg is inside v,
then

/f(z)dz = 2mic_q .
~

This result is profound: it says that we can integrate (at least over closed
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curves) by computing Laurent series—in fact, we “only” need to compute one
coefficient of a Laurent series. We will have more to say about this in the next
chapter; for now, we give just one application, which might have been bugging
you since the beginning of Chapter 7.

Example 8.3.10 We will (finally!) compute (7.1), the integral [, 5 Z’i(f((;)) dz.
Our plan is to split up the integration path C[2, 3] as in Figure 7.0.1, which

gives, say,

/ SPE) / exp(s) / exp(z)
Cf2,3) sin(z) clo,1) sin(z) Clr) SiN(2)
To compute the two integrals on the right-hand side, we can use Corollary 8.3.9,

ZTE((,:)) centered at 0 and 7.

for which we need the Laurent expansions of
By Example 8.1.3 and Example 8.3.4,

exp(z) L, 1, 1 73
sin(z) ( tetga T P a0

2
= z_1+1+§z+~-~

exp(z)

sin(z)
For the integral around 7, we use the fact that sin(z) = sin(7w — 2), and so

we can compute the Laurent expansion of —+— at 7 also via Example 8.3.4:

dz = 2mi.

and so Corollary 8.3.9 gives fc[o 1

sin(z)
1 1
sin(z)  sin(z —7)
L St S Sy
N 6 360

Adding Example 8.1.7 to the mix yields

~—

exp(z

_ (e”—i—e”(z—w)—i—---)(—(z—w)_l—é(z—w)—--->

1

sin(z)

= —€e(z—7m)  —e"—z€e"(z—m)+ -

3

and now Corollary 8.3.9 gives [ il Z’ff((j))

yields the integral we’ve been after for two chapters:

/ D) 4o i (1— e
C[2,3] sin(z)

dz = —2mi e™. Putting it all together

8.4 Exercises

1. For each of the following series, determine where the series converges
absolutely and where it converges uniformly:

1
(a) kzzo 2k + 1)! S

Answer. C, {z€C: |z| <r} for any r
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10.

11.

1 \*
b -
COME
k>0
Answer. {z€C: |z—3|>1},{z€C: r<|z—3| <R} for any
1<r<R.
What functions are represented by the series in the previous exercise?
Answer. (a) sinh(z)
(b) z—3

z—4

Find the power series centered at 7 for sin(z).
Re-prove Proposition 3.4.2 using the power series of exp(z) centered at 0.

Find the terms through third order and the radius of convergence of the
power series for each of the following functions, centered at zy. (Do not
find the general form for the coefficients.)

@) f()= 0 =1
(b) [(2) = sy 20 =0

0

(©) f(2)=(1+2)2, 2

(d) f(2) =exp(z?), z0 =1
Consider f : R — R given by f(x) := ﬁ, the real version of our function
in Example 8.1.11, to show that Corollary 8.1.10 has no analogue in R.!

Prove the following generalization of Theorem 8.1.1: Suppose (f,) is
a sequence of functions that are holomorphic in a region G, and (f,)
converges uniformly to f on G. Then f is holomorphic in G. (This result
is called the Weierstrafl convergence theorem.)

Use the previous exercise and Corollary 8.1.13 to prove the following;:
Suppose (f,) is a sequence of functions that are holomorphic in a region
G and that (f,,) converges uniformly to f on G. Then for any k € N, the

sequence of kth derivatives ( f,gk)) converges (pointwise) to f(*).

Suppose |c| > 2% for all k. What can you say about the radius of
convergence of >, ¢k 2*?

Suppose the radius of convergence of Y, ¢, z¥ is R. What is the radius
of convergence of each of the following?

(@) k>0 crz"
(b) Zkzo 3 cp,2"
(€) X0 cpz

(d) >i>o k2cpz®
Suppose G is a region and f : G — C is holomorphic. Prove that the sets

X = {a € G: there exists r such that f(z) =0 for all z € Dl[a,r]}
Y = {a € G: there exists r such that f(z) # 0 for all z € Dla,r]\ {a}}

ncidentally, the same example shows, once more, that Liouville’s theorem (Corollary 5.3.4)

has no analogue in R.
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12.

13.

14.

15.

16.

17.

18.

19.

20.

in our proof of Theorem 8.2.2 are open.

Prove the Minimum-Modulus Theorem (Corollary 8.2.6): Suppose f is
holomorphic and nonconstant in a region G. Then |f| does not attain a
weak relative minimum at a point a in G unless f(a) = 0.

Prove Corollary 8.2.7: Assume that u is harmonic in a region G and has a
weak local maximum at a € G.

(a) If G is simply connected then apply Theorem 8.2.4 to exp(u(z) +
iv(z))), where v is a harmonic conjugate of u. Conclude that w is
constant on G.

(b) If G is not simply connected, then the above argument applies to u
on any disk Dla, R] C G. Conclude that the partials u, and u, are
zero on GG, and adapt the argument of Theorem 2.4.2 to show that u
is constant.
Let f : C — C be given by f(z) = 22 —2. Find the maximum and minimum
of |f(2)] on the closed unit disk.

Answer. The maximum is 3 (attained at z = £¢), and the minimum is 1
(attained at z = +1).

Give another proof of the Fundamental Theorem of Algebra (Theo-
rem 5.3.2), using the Minimum-Modulus Theorem (Corollary 8.2.6).
Hint. Use Proposition 5.3.1 to show that a polynomial does not achieve
its minimum modulus on a large circle; then use the Minimum-Modulus
Theorem to deduce that the polynomial has a zero.
Give another proof of (a variant of) the Maximum-Modulus Theorem 8.2.4
via Corollary 8.1.12, as follows: Suppose f is holomorphic in a region
containing D[a, ], and |f(z)| < M for z € Cla,r]. Given a point zy €
Dia, ], show (e.g., by Corollary 8.1.12) that there is a constant ¢ € C such
that

|f(zo)k| < cM*,

Conclude that |f(z0)] < M.

Find a Laurent series for

1
G-D(E+1)

centered at z = 1 and specify the region in which it converges.
Answer. One Laurent series is Y, - ,(—2)*(z — 1)7%72, converging for
|z — 1| > 2. -

Find a Laurent series for 1

z(z —2)?
centered at z = 2 and specify the region in which it converges.

Answer. One Laurent series is Y, - ,(—2)*(z — 2)7%73, converging for
|z —2| > 2. B

z2—2

Find a Laurent series for =

it converges.

centered at z = —1 and the region in which

Answer. One Laurent series is —3 (2 +1)~! + 1, converging for z # —1.

Find the terms ¢, 2" in the Laurent series for Wl(z) centered at z = 0, for
—4 <n<4.
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21. Find the first four nonzero terms in the power series expansion of tan(z)
centered at the origin. What is the radius of convergence?

22,

(a) Find the power series representation for exp(az) centered at 0, where
a € C is any constant.

(b) Show that
1 , )
exp(z) cos(z) = 3 (exp((1419)z) + exp((1 —1)z2)) .
(c) Find the power series expansion for exp(z) cos(z) centered at 0.

23. Show that 1 1
z—
D D
k>0

for |z — 1| > 1.

24. Prove: If f is entire and Im(f) is constant on the closed unit disk then f
is constant.
25.

(a) Find the Laurent series for “%* centered at z = 0.

_\k
Answer. }; ., ((2;;! z2k=2

(b) Prove that f: C — C is entire, where

cosz—1 i
ro={ "5 BT

% if2=0.

26. Find the Laurent series for sec(z) centered at the origin.

27. Suppose that f is holomorphic at zg, f(z9) = 0, and f/(29) # 0. Show
that f has a zero of multiplicity 1 at zg.

28. Find the multiplicities of the zeros of each of the following functions:
(a) f(z) =exp(z) — 1, 2o = 2kmi, where k is any integer.
(b) f(2) =sin(z) — tan(z), zo = 0.
(c) f(z) =cos(z) — 1+ §sin’(z), 2o = 0.
29. Find the zeros of the following functions and determine their multiplicities:
(a) (1427
(b) sin?(z)
(c) 1+ exp(z)
(d) 2z3cos(z)

30. Prove that the series of the negative-index terms of a Laurent series

Zc_k (z—2) "

k>1

converges for
1 1

J— < R
|z — 20| Ry
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31.

32.

33.

34.

35.

36.

for some Ry, and that the convergence is uniform in {z € C: |z — 29| > r1},
for any fixed ry > R;.

Show that ) .
lim ( — ) =0
z—0 \sin(z) =z
and ) )
lim sin(z) =z _ }
z—0 z 6

(These are the limits we referred to in Example 8.3.4.)

Find the three Laurent series of

3

1) = 1-2)(z+2)’

centered at 0, defined on the three regions |z| < 1, 1 < |z| < 2, and 2 < |z|,
respectively.

Hint. Use a partial fraction decomposition.

Suppose that f(z) has exactly one zero, at a, inside the circle -, and that
it has multiplicity 1. Show that

L[,
“= 2mL i)

Recall that a function f: G — C is even if f(—z) = f(z) for all z € G,
and f is odd if f(—z) = —f(z) for all z € G. Prove that, if f is even
(resp., odd), then the Laurent series of f at 0 has only even (resp., odd)
powers.

Suppose f is holomorphic and not identically zero on an open disk D
centered at a, and suppose f(a) = 0. Use the following outline to show
that Re f(z) > 0 for some z in D.

(a) Why can you write f(z) = (¢ — a)™g(z) where m > 0, g is holomor-
phic, and g(a) # 07

—i

(b) Write g(a) in polar coordinates as ce'® and define G(z) = e~ *g(z).

Why is Re G(a) > 07

(c) Why is there a positive constant ¢ so that ReG(z) > 0 for all
z € Dla,d]?

(d) Write z = a +re' for 0 < r < §. Show that f(z) = r™ei™?ei*G(z).

(e) Find a value of 6 so that f(z) has positive real part.

(a) Find a Laurent series for
1
EETIEEr)
centered at z = 2 and specify the region in which it converges.
k
Answer. One Laurent series is } 5, , (42—133(2 — 2)*, converging
for 0 < |z —2] < 4.

dz
b) Compute / —_—
) A )
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jus’

Answer. — 5

37.
(a) Find the power series of exp(z) centered at z = —1.

Answer. ), L (z+1)*

exp(2)
b Compute/ ——dz.
(®) Cl-2,2) (2 +1)3

Answer. 62T”3’,
exp(z)

38. Compute / dz where v is a closed curve not passing through

- sin(z)

integer multiples of 7.



Chapter 9

Isolated Singularities and the
Residue Theorem

%2 has a nasty singularity at r = 0, but it did not bother Newton—the
moon is far enough.

—Edward Witten

We return one last time to the starting point of Chapter 7 and Chapter 8: the

quest for
/ e}fp(Z) o
C[2,3] sin(z)

We computed this integral in Example 8.3.10 crawling on hands and knees (but
we finally computed it!), by considering various Taylor and Laurent expansions
of exp(z) and ﬁ In this chapter, we develop a calculus for similar integral
computations.

9.1 Classification of Singularities

What are the differences among the functions %, Z%, and exp(%) at z =07

None of them are defined at 0, but each singularity is of a different nature. We
will frequently consider functions in this chapter that are holomorphic in a disk
except at its center (usually because that’s where a singularity lies), and it will
be handy to define the punctured disk with center zy and radius R,

D[z0,R] := {z€C:0<|z—2z| <R} = D[20,R]\ {2}.
We extend this definition naturally with D[z, 00] := C \ {20}. For complex
functions there are three types of singularities, which are classified as follows.

Definition 9.1.1 If f is holomorphic in the punctured disk D[z, R] for some
R > 0 but not at z = zg, then zq is an isolated singularity of f. The singularity
zp is called

(a) removable if there exists a function g holomorphic in Dizp, R] such that
f =g in D[z, R],

(b) a pole if lim |f(z)| = oo,
Z—r20

(c) essential if zg is neither removable nor a pole.

138
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O
Example 9.1.2 Let f: C\ {0} — C be given by f(z) = %. Since

1
exp(z) —1 = Z o 2~

k>1

the function g : C — C defined by

1
g(z) = kzzo(k-i-l)! 2k,

which is entire (because this power series converges in C), agrees with f in
C\ {0}. Thus f has a removable singularity at 0. O

Example 9.1.3 In Example 8.3.4, we showed that f: C\ {jm: jeZ} —>C
given by f(z) = Sinl(z) — % has a removable singularity at 0, because we proved
0,

that ¢ : D[0, 7] — C defined by

L1 yf.-4o0,
g(Z) _ {sm(z) z

0 ifz=0

is holomorphic in D[0, 1] and agrees with f on D|0, 7]. O

Example 9.1.4 The function f : C\ {0} — C given by f(z) = 2 has a pole

at 0, as
1

lim
A

z—0

= 0.

O

Example 9.1.5 The function f: C\ {0} — C given by f(z) = exp(%) has an
essential singularity at 0: the two limits

1 1
lim exp <> = o and lim exp (> =0
r—0+ €T z—0~ T
show that f has neither a removable singularity nor a pole. O

To get a feel for the different types of singularities, we start with the following
criteria.

Proposition 9.1.6 Suppose zy is an isolated singularity of f. Then
(a) zo is removable if and only if lim,_,,, (z — z0) f(2) =0;

(b) 20 is a pole if and only if it is not removable and
lim,_,., (z — 20)""" f(2) = 0 for some positive integer n.

Proof.

(a) Suppose that zg is a removable singularity of f, so there exists_a holo-
morphic function h on D[zg, R] such that f(z) = h(z) for all z € D[z, R].
But then A is continuous at zg, and so

lim (2 —20) f(2) = lim (z— 20)h(z) = h(z) lim (2 —2) = 0.

Z—20 zZ—20 Z— 20

Conversely, suppose that lim,_,,, (z — 29) f(z) = 0 and f is holomorphic
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in D[z, R]. We define the function g : D[z, R] — C by

o) = {(z ~20)f(z) ifz# .

0 if z=2z.

Then g is holomorphic in D[zo, R] and

, o 9(2) = g(20)
g'(20) = zlggo EEp—
~ lim (z — 20)% f(2)
Z—rZz0 Z— 20
= JEEO(Z —20) f(2)
=0,

so g is holomorphic in D[zg, R]. We can thus expand g into a power series

9(2) = Y e (z—2)"

k>0

whose first two terms are zero: ¢g = g(z9) = 0 and ¢; = ¢'(29) = 0. But
then we can write

9(2) = (z=20)" ) crra(z — 20)"

k>0

and so

f(z) = chm(z—zo)k for all 2 € D[z, R].
k>0

But this power series is holomorphic in D[zg, R], so zy is a removable
singularity.

(b) Suppose that zy is a pole of f. Since f(z) — oo as z — zp we may
assume that R is small enough that f(z) # 0 for z € D[zg, R]. Then % is

holomorphic in D[z, R] and

lim —— = 0
2% F(2) ’

so part (a) implies that % has a removable singularity at z5. More precisely,
the function ¢ : D[z, R] — C defined by

- ifzeﬁzo,R,
o) = {75 EE Dl
0 if z = zg,

is holomorphic. By Theorem 8.2.1, there exist a positive integer n and
a holomorphic function h on Dz, R] such that h(zg) # 0 and g(z) =
(z — 20)™ h(z). Actually, h(z) # 0 for all z € D]z, R] since g(z) # 0 for
all z € D[z, R]. Thus

. N n+1 N M = I
Zlgr;g(z 20) flz) = ZILIEIO g(2) - zlingo h(z)

.
= @Zlgrzlo(z—zo) = 0.

zZ— 20
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Note that % is holomorphic and non-zero on D|zg, R], n > 0, and

1 1 1 .
f(z) = 0 = TETAL . 8] for all 2z € D[z, R].

Conversely, suppose zp is not a removable singularity and lim,_, ., (z —
20)" "1 f(2) = 0 for some non-negative integer n. We choose the smallest
such n. By part a), h(z) := (2 — 20)" f(z) has a removable singularity at
20, so there is a holomorphic function g on D[z, R] that agrees with h on
D[z, R]. Now if n = 0 this just says that f has a removable singularity
at zg, which we have excluded. Hence n > 0. Since n was chosen as small
as possible and n — 1 is a non-negative integer less than n, we must have
g(z0) = lim,,,, (2 — 20)" f(2) # 0. Summarizing, g is holomorphic on
DJzp, R] and non-zero at zg, n > 0, and

9(2)

for all 2z € D[z, R].
(z — z)"

flz) =

But then z( is a pole of f, since

. . h(z)
Jim 7G| = Jim |
T (O
z—z0 | (2 — 2z0)™
. 1
= |9(Zo)|zlgrzlom
= 0.

|
We underline one feature of the last part of our proof:

Corollary 9.1.7 Suppose f is holomorphic in D[zo, R]. Then f has a pole at
zo if and only if there exist a positive integer m and a holomorphic function
g : D[z0, R] = C, such that g(zo) # 0 and

flz) = (zi(;)))m forall  z € Dz, R].

If zg is a pole then m is unique.

Proof. The only part not covered in the proof of Proposition 9.1.6 is uniqueness
of m. Suppose f(z) = (z — 20) ™ ¢1(2) and f(z) = (2 — 29) ™2g2(z) both
work, with mg > my. Then go(z) = (2 — 20)"™2 "™ g1(2), and plugging in z = 2
yields g2(z9) = 0, violating g2(20) # 0. |

Definition 9.1.8 The integer m in Corollary 9.1.7 is the order of the pole zj.

O

This definition, naturally coming out of Corollary 9.1.7, parallels that of

the multiplicity of a zero, which naturally came out of Theorem 8.2.1. The two

results also show that f has a zero at zg of multiplicity m if and only if % has

a pole of order m. We will make use of the notions of zeros and poles quite
extensively in this chapter.

You might have noticed that the Proposition 9.1.6 did not include any result

on essential singularities. Not only does the next theorem make up for this but

it also nicely illustrates the strangeness of essential singularities. To appreciate
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the following result, we suggest meditating about its statement over a good cup
of coffee.

Theorem 9.1.9 Casorati'—~Weierstraf3. If zy is an essential singularity
of f and r is any positive real number, then every w € C is arbitrarily close
to a point in f(D[zo,r]), That is, for any w € C and any € > 0 there exists
z € Dz, 7] such that |w — f(z)] < e.

In the language of topology, Theorem 9.1.9 says that the image of any
punctured disk centered at an essential singularity is dense in C.

There is a stronger theorem, beyond the scope of this book, which implies
the Casorati—Weierstral Theorem 9.1.9 It is due to Charles Emile Picard
(1856-1941) and says that the image of any punctured disk centered at an
essential singularity misses at most one point of C. (It is worth coming up with
examples of functions that do not miss any point in C and functions that miss
exactly one point. Try it!)

Proof. Suppose (loy way of contradiction) that there exist w € C and € > 0 such
that for all z € D]z, 7]
lw—f(z)] = e.

Then the function g(z) := f(zifw stays bounded as z — zg, and so

2=z f(2) —w - ZILHQO(Zfzo)g(Z) =0

(Proposition 9.1.6(a) tells us that g has a removable singularity at zo.) Hence

M—w‘_oo

zZ— 20

lim
Z—Z20

and so the function fii)i;:“ has a pole at zg. By Proposition 9.1.6(b), there is a
positive integer n so that

lim (z—zo)"Hm = lim (z — 20)" (f(2) —w) = 0.

Z—r20 zZ— 20 Z—r20

Invoking Proposition 9.1.6 again, we conclude that the function f(z) —w has a
pole or removable singularity at zg, which implies the same holds for f(z), a
contradiction. ]

The following classifies singularities according to their Laurent series, and
is very often useful in calculations.

Proposition 9.1.10 Suppose zy is an isolated singularity of f with Laurent
series
f) = 3 enle — 20)",
kez

valid in some punctured disk centered at zo. Then

(a) zo is removable if and only if there are no negative exponents (that is, the
Laurent series is a power series);

(b) 2o is a pole if and only if there are finitely many negative exponents, and
the order of the pole is the largest k such that c_y # 0;

(¢c) zo is essential if and only if there are infinitely many negative exponents.

1Felice Casorati (1835-1890).
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Proof.

(a) Suppose zp is removable. Then there exists a holomorphic function
g : D[z, R] — C that agrees with f on D[z, R], for some R > 0. By
Theorem 8.1.8, g has a power series expansion centered at zy, which
coincides with the Laurent series of f at zg, by Corollary 8.3.7.

Conversely, if the Laurent series of f at zp has only nonnegative powers,
we can use it to define a function that is holomorphic at zg.

(b) Suppose zg is a pole of order n. Then, by Corollary 9.1.7, f(z) =
(z — 20)""g(z) on some punctured disk D[z, R], where g is holomorphic
on D[z, R] and g(z0) # 0. Thus g(z) = >~ ck(z — 20)F in D[z, R]
with co # 0, so -

f&) =2y ez =) = Y crpnlz —20)*,

k>0 k>—n

and this is the Laurent series of f, by Corollary 8.3.7.

Conversely, suppose that

fz) = ) alz—20)

k>—n
= (z—2)7 " Z cr(z — z)Ftm
k>—n
= (z—2)7" Z Cr—n(z — zo)k
k>0

where c_,, # 0. Define g(z) := 3,5 ck—n(2z — 20)". Then g is holomor-
phic at zg and g(z9) = ¢_,, # 0 so, by Corollary 9.1.7, f has a pole of
order n at zg.

(c¢) This part follows by definition: an essential singularity is neither removable
nor a pole.

Example 9.1.11 The order of the pole at 0 of f(z) = s”;# is 2 because (by
Example 8.1.4)

3 5
fo) = W) Aoty o 11 2
23 23 22 3! 5l
and the smallest power of z with nonzero coefficient in this series is —2. O

9.2 Residues

We now pick up the thread from Corollary 8.3.9 and apply it to the Laurent
series i
fz) = Sz - 20)
keZ

at an isolated singularity zo of f. It says that if v is any positively oriented,
simple, closed, piecewise smooth path in the punctured disk of convergence of
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this Laurent series, and zg is inside «, then

/f(z)dz = 2mic_q.
v

Definition 9.2.1 Suppose zj is an isolated singularity of f with Laurent series
> ke Crl(z— 20)*. Then c_; is the residue of f at 2o, denoted by Res,—., (f(z))
or Res(f(2), z = 20). O

Corollary 8.3.9 suggests that we can compute integrals over closed curves
by finding the residues at isolated singularities, and our next theorem makes
this precise.

Theorem 9.2.2 Residue Theorem. Suppose f is holomorphic in the region
G, except for isolated singularities, and y is a positively oriented, simple, closed,
piecewise smooth path that avoids the singularities of f, and v ~g 0. Then
there are only finitely many singularities inside v, and

/ f =27 3 Res.., (£(2)

k
where the sum is taken over all singularities zj, inside ~y.

Proof. First, let S be the set of singularities inside . The set S is closed
(since the points in G where f is holomorphic form an open set) and bounded
(since the inside of 7 is bounded), and the points of S are isolated in S (by
Theorem 8.2.1(b)). An application of Exercise 9.4.22 shows that S is finite.
Now we follow the approach started in Figure 7.0.1 as with that integration
path, we “subdivide” v so that we can replace it by closed curves around
the singularities inside . These curves, in turn, can then be transformed to
circles around the singularities, as suggested by Figure 9.2.3. By Cauchy’s
Theorem 4.3.4, fv f equals the sum of the integrals of f over these circles. Now
use Corollary 8.3.9. ]

Figure 9.2.3 Proof of Theorem 9.2.2.

Computing integrals is as easy (or hard!) as computing residues. The
following two propositions start the range of tricks you may use when computing
residues.
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Proposition 9.2.4
(a) If zp is a removable singularity of f then Res,—,,(f(z)) =0.
(b) If z¢ is a pole of f of order n then

dnfl

Res.—.,(f(2)) = ] Jim T ((z _ ZO)”f(Z)) )

Proof.
(a) This follows from Proposition 9.1.10(a).

(b) We know by Proposition 9.1.10(b) that the Laurent series at zo looks like

fz)= Z ck(z—zo)k.

k>—n

But then
(z=20)"f(2) = 3 eulz —z0)*

k>—n

is a power series, and we can use Taylor’s formula (Corollary 8.1.5) to
compute c_y.

|

It is worth noting that we are really coming full circle here: compare this

proposition to Cauchy’s Integral Formulas (Theorem 4.4.5, Theorem 5.1.1, and
Corollary 8.1.12).

exp(z)
sin(z)

Example 9.2.5 The integrand in Example 8.3.10 has poles of order 1 at

0 and 7. We thus compute

Resz=0<e},(p(z)) = lim (z eXp(Z)) = exp(0) lim —— = 1

sin(z) z—0 \ " sin(z) z—0 sin(z)
and
Res,—r e>.(p(z) = lim ( (z — ) e>.<p(z)
sin(z) zoT sin(z)
z—m
= 1. _—
exp(m) 2o sin(z)
= —6777
confirming our computations in Example 8.3.10. ]

Example 9.2.6 Revisiting Example 9.1.11, the function f(z) = S“;# has a
double pole at 0 with

e (35 - A ()
— lim <ZCOS(Z)SIH(Z)>

:0,

after a few iterations of L’Hopital’s Rule. (In this case, it is simpler to read the
residue off the Laurent series in Example 9.1.11.) g
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Proposition 9.2.7 Suppose f and g are holomorphic at zg, which is a simple
zero of g (i.e., a zero of multiplicity 1). Then

R (55) = T

Proof. The functions f and g have power series centered at zy; the one for g
has by assumption no constant term:

f(z) = > ar(z— 20)*
E>0

9(z) = Y bz —20)" = (z=20) ) b(z—2)"".
E>1 E>1

Let h(z) := Z br(z — 20)" ! and note that h(zy) = by # 0. Hence
k>1

OO
0 ~ -w)h()’

and the function % is holomorphic at zg. By Proposition 9.2.4 and Taylor’s
formula (Corollary 8.1.5,

Res,—, <£Ej§> - Zli_)rgo ((z B ZO)(Z—fZ(Oz))h(ZQ

f(20)
h(Zo)

ag
by
f(20)

g'(20)

|
An extension of Proposition 9.2.7 of sorts is given in Exercise 9.4.11.

Example 9.2.8 Revisiting once more Example 8.3.10, we note that f(z) =
exp(z) and g(z) = sin(z) fit the bill. Thus

exp(z)) _ exp(0)
ResZ_O(sin(z)) = os(0) |

and

b

Res,_. (exp(z)) _oexp(m) o

sin(z) cos()
confirming once more our computations in Example 8.3.10 and Example 9.2.5.

|
Example 9.2.9 We compute the residue of (o)(p(zi% at zg = 2mi, by
applying Proposition 9.2.7 with f(z) = 2242 4nd g(z) = exp(z) — 1. Thus

cos(z)

(2mi)? 42

Res . 22 +2 _ cos(2mi) —4m? +2
#=2m\ (exp(z) — D cos(z) ) exp(2mi)  cosh(2m)
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var('z"')
taylor ((z*2+2)/( (exp(z)-1)*cos(z) ), z, 2xpix*xi, -1)

=2x(2*%pi*2 - 1)/((-2*%Ixpi + z)*cosh(2*xpi))

9.3 Argument Principle and Rouché’s Theorem

In the previous section we saw how to compute integrals via residues, but in
many applications we actually do not have an explicit expression for a function
that we need to integrate (or this expression is very complicated). However,
it may still be possible to compute the value of a function at any given point.
In this situation we cannot immediately apply the Residue Theorem because
we don’t know where the singularities are. Of course, we could use numerical
integration to compute integrals over any path, but computationally this task
could be very resource intensive. But if we do know the singularities, we can
compute the residues numerically by computing a finite number of the integrals
over small circles around these singularities. And after that we can apply the
residue theorem to compute the integral over any closed path very effectively:
we just sum up the residues inside this path. The argument principle that we
study below, in particular, addresses this question. We start by introducing
the logarithmic derivative.

Suppose we have a differentiable function f. Differentiating Log f (where

Log is some branch of the logarithm) gives f—/, which is one good reason to call
this quotient the logarithmic derivative of f. It has some remarkable properties,
one of which we would like to discuss here.

Now let’s say we have two functions f and g holomorphic in some region.
Then the logarithmic derivative of their product behaves very nicely:

(fg) flg+fg g

= = — + =
fg fg [y
We can apply this philosophy to the following situation: Suppose that f
is holomorphic in a region G and f has (finitely many) zeros zi,...,z; of
multiplicities n1, ..., n;, respectively. By Theorem 8.2.1, we can express f as

f(z) = (z=2)" (2= 2)"g(2),

where g is also holomorphic in G and never zero. Let’s compute the logarithmic
derivative of f and play the same remarkable cancellation game as above:

() mi(z— ) (e ) ()
i) (= 2)m (2 = )" g(2)
mo L m o g)

= + ot + : (9.1)
z2—21 z— 2 z—z;  g(2)

Something similar happens if f has finitely many poles in G. In Exer-
cise 9.4.18, we invite you to prove that, if py, ..., pg are all the poles of f in G
with order my,...,mg, respectively, then the logarithmic derivative of f can
be expressed as

fz) _ m ma me . 9'(2)

fz)  z—=p1 z—po z—pr g(z)

: (9-2)

where ¢ is a function without poles in G. Naturally, we can combine the
expressions for zeros and poles, as we will do in a moment.
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Definition 9.3.1 A function f is meromorphic in the region G if f is holomor-
phic in G except for poles. %

Theorem 9.3.2 Argument Principle!. Suppose f is meromorphic in a
region G and 7y is a positively oriented, simple, closed, piecewise smooth path
that does mot pass through any zero or pole of f, and v ~g 0. Denote by
Z(f,7) the number of zeros of f inside y counted according to multiplicity and
by P(f,v) the number of poles of f inside v counted according to order. Then

L[ L~ 2.9 - Pty
omi ). = Y yY) -
Proof. Suppose the zeros of f inside v are z1,...,2; of multiplicities nq,...,n;,
respectively, and the poles inside v are p1,...,pr with order myq, ..., my, re-

spectively. (You may meditate about the fact why there can be only finitely
many zeros and poles inside v.) In fact, we may shrink G, if necessary, so that
these are the only zeros and poles in G. By (9.1) and (9.2),

f'(z) Mooy my my - 9'(2)

f(2) T oz— 2z z—zj zZ—p z—pr  g(z)

)

where g is a function that is holomorphic in G (in particular, without poles)
and never zero. Thanks to Cauchy’s Theorem 4.3.4 and Exercise 4.5.4, the
integral is easy:

f! dz dz
wf y 7= 21 N 2= Zj

Finally, £ is holomorphic in G (because g is never zero in G), so that Corol-

lary 4.3.8 gives
gl
[Z -0
v 9
|

As mentioned above, this beautiful theorem helps to locate poles and zeroes
of a function f. The idea is simple: we can first numerically integrate f7/ over a
big circle v that includes all possible paths over which we potentially will be
integrating f. Then the numerical value of ﬁ f,y fT, will be close to an integer
that, according to the Argument Principle, equals Z(f,~) — P(f,7). Then we
can integrate fT/ over a smaller closed path ~; that encompasses half of the
interior of v and find Z(f,v1) — P(f,v1). Continuing this process for smaller
and smaller regions will (after certain verification) produce small regions where
f has exactly one zero or exactly one pole. Integrating f over the boundaries
of those small regions that contain poles and dividing by 27i gives all residues
of f.

Another nice related application of the Argument Principle is a famous
theorem due to Eugene Rouché (1832-1910).

!’
IThe name Argument Principle stems from interpreting the integral fw fT as the change

in the argument of f(z) as z traverses v, since Log(f(z)) = ff,((zz)).
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Theorem 9.3.3 Rouché’s Theorem. Suppose f and g are holomorphic in
a region G and 7y is a positively oriented, simple, closed, piecewise smooth path,
such that v ~g 0 and |f(2)| > |g(2)| for all z € v. Then

Z(f+9,7v) = Z(f,7)-

This theorem is of surprising practicality. It allows us to locate the zeros of
a function fairly precisely. Here is an illustration.

Example 9.3.4 All the roots of the polynomial p(z) = 2°+2z*+23+22+2+1 have
modulus less than two.? To see this, let f(z) = 2% and g(2) = 24+ 23+ 22+ 2 +1.
Then for z € C[0, 2]

lg(2)] < |zt + 12+ 2P+ 2] +1 = 16+8+4+2+1 = 31
<32 = |2 = [f(2)].

So g and f satisfy the condition of the Theorem 9.3.3. But f has just one root,
of multiplicity 5 at the origin, whence

Z(p, C10,2]) = Z(f+49,C[0,2]) = Z(f,C[0,2]) = 5.

Proof. By (9.1) and the Argument Principle (Theorem 9.3.2)

L [(f+g)

%7f+g

L)

ity f(1+9)

1 f’+<”?)/

Z(f+g.7) =

omi J,\ F T 118
9 !
()
= 26+ 5 [
2mi /., 1—|—%

We are assuming that || <1 on v, which means that the function 1+ £
evaluated on ~ stays away from R<g. But then Log(1l + %) is a well-defined
holomorphic function on . Its derivative is

(eg)

g
1+f

which implies by Corollary 4.2.7 that

211

by g
1+f

2The Fundamental Theorem of Algebra (Theorem 5.3.2) asserts that p has five roots in
C. What’s special about the statement of Example 9.3.4 is that they all have modulus < 2.
Note also that there is no general formula for computing roots of a polynomial of degree 5.
(Although for this p it’s not hard to find all of its roots.)
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9.4 Exercises

5.

6.

Suppose that f has a zero of multiplicity m at a. Explain why has a
pole of order m at a.

Find the poles or removable singularities of the following functions and
determine their orders:

(@) (*+1)7°-1"
(b) zcot(z)

(c) 27 ?sin(z)

1
(d) 1 —exp(z)
(e) 1 —exp(z)

Suppose f is a nonconstant entire function. Prove that any complex
number is arbitrarily close to a number in f(C).

Hint. If f is not a polynomial, use Theorem 9.1.9 for f(%)
Evaluate the following integrals for v = C0, 3].

(a) /Wcot(z) dz

Answer. 273

) [ = eon(2)ds

Answer. @

dz
(c) L Gra)(2+1)

Answer. —7%

(d) /7 22 exp(1)dz

Answer. 5

exp(z)
(e) / sinh(z)
Answer. 2mi

()/ f:fa dz

Answer. 0
Suppose f has a simple pole (i.e., a pole of order 1) at zyp and g is
holomorphic at zg. Prove that

Res.—, (f(2) 9(2)) = g(z0) Res.—, (f(2)) -

Find the residue of each function at 0:

(a) z73cos(z)
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(b) csc(z)
(© L

(d) exp(1-3)

7. Use residues to evaluate the following integrals:

dz
(a) 1
Cli-1,1] 2° +4

dz
b %
(®) /C[i,Q] 2(22 +2—2)

(c) / eép(z) dz
c0,2] # +z
@ [
(e) /C'[O’g] (z jXZP)(QZS)inde

8. Use the Residue Theorem 9.2.2 to re-prove Cauchy’s Integral Formulas
(Theorem 4.4.5, Theorem 5.1.1 and Corollary 8.1.12).

9. Revisiting Exercise 8.4.34, show that if f is even then Res,—o(f(z)) = 0.

10. Suppose f has an isolated singularity at zg.

(a) Show that f’ also has an isolated singularity at zo.

(b) Find Res,—.,(f").
11. Extend Proposition 9.2.7 by proving, if f and g are holomorphic at zg,
which is a double zero of g, then

R (L) — S04 )2 )"0
9(2) 39" (20)

cos(z)

(2,3 sin”(2)

13. Generalize Example 5.3.5 and Exercise 5.4.18 as follows: Let p(x) and ¢(x)

be polynomials such that ¢(z) # 0 for € R and the degree of g(x) is at

least two larger than the degree of p(x). Prove that [~ %
p(2)

qu) at all poles in the upper half plane.

dz.

12. Compute /
c

dx equals 271

times the sum of the residues of

*° dx
14. Compute /;OO m

Answer. g

15. Generalize Exercise 5.4.19 by deriving conditions under which we can com-
pute ffooo % dz for polynomials p(x) and ¢(x), and give a formula
for this integral along the lines of Exercise 9.4.13.
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oo s
16. Compute / w dx.
oo L+t

17. Suppose f is entire and a,b € C with a # b and |a|, |b| < R. Evaluate

OIS
/C[O,R] (z—a)(z =) !

and use this to give an alternate proof of Liouville’s Corollary 5.3.4.
Hint. Show that if f is bounded then the above integral goes to zero as
R increases.

18. Prove (9.2).

19. Suppose [ is meromorphic in the region G, g is holomorphic in G, and -~y
is a positively oriented, simple, closed, piecewise smooth path that does
not pass through any zero or pole of f, and v ~g 0. Denote the zeros
and poles of f inside v by z1,...,2; and p, ..., pk, respectively, counted
according to multiplicity. Prove that

1 f! J k
i 97 = 3 atem) = D atom).

20. Find the number of zeros of
(a) 3exp(z) — z in D[0,1]
Answer. 0
(b) %exp(z) — z in D[0,1]
Answer. 1
(c) 22 =52z+1in{z€C: 1< 2] <2}

Answer. 4

21. Give another proof of the Fundamental Theorem of Algebra (Theo-
rem 5.3.2), using Rouché’s Theorem 9.3.3.
Hint. If p(2) = ap2" +an_12"" 1+ + a1z + 1, let f(2) = a,2" and
9(2) =an,_ 12"+ a, 22" 2+---+a1z+1, and choose as 7 a circle that
is large enough to make the condition of Rouché’s theorem work. You
might want to first apply Proposition 5.3.1 to g(z).

22. Suppose S C C is closed and bounded and all points of S are isolated
points of S. Show that S is finite, as follows:

(a) For each z € S we can choose ¢(z) > 0 so that D[z, ¢(z)] contains
no points of S except z. Show that ¢ is continuous.

Hint. This is easy if you use the first definition of continuity in
Section 2.1.

(b) Assume S is non-empty. By the Extreme Value Theorem A.0.1, ¢
has a minimum value, o > 0. Let r = r/2. Since S is bounded, it
lies in a disk D[0, M] for some M. Show that the small disks D[z, r],
for z € S, are disjoint and lie in D[0, M + r].

(c) Find a bound on the number of such small disks.

Hint. Compare the areas of D[z, r] and D[0, M + r].



Chapter 10

Discrete Applications of the
Residue Theorem

All means (even continuous) sanctify the discrete end.

—Doron Zeilberger

On the surface, this chapter is just a collection of exercises. They are more
involved than any of the ones we’ve given so far at the end of each chapter,
which is one reason why we will lead you through each of the following ones
step by step. On the other hand, these sections should really be thought of
as a continuation of the book, just in a different format. All of the following
problems are of a discrete mathematical nature, and we invite you to solve
them using continuous methods—namely, complex integration. There are very
few results in mathematics that so intimately combine discrete and continuous
mathematics as does the Residue Theorem 9.2.2.

10.1 Infinite Sums

.
In this exercise, we evaluate the sums Y, <, 25 and >, -, % We hope the

idea of how to compute such sums in general will become clear.

(1) Consider the function f(z) = %2(”) Compute the residues at all the
singularities of f.

(2) Let N be a positive integer and yy be the rectangular path from N+ —iN
to N+ 2 +iNto—N—2%+iNto—N—3—iN back to N+ 1 —iN.

(a) Show that |cot(nz)| < 2 for z € yn. (Hint: Use Exercise 3.6.35.)
(b) Show that limy_, va f=0.

(3) Use the Residue Theorem 9.2.2 to arrive at an identity for Y, 7\ 1oy 72

(4) Evaluate >, 5.

(5) Repeat the exercise with the function f(z) = ﬁ(m) to arrive at an
evaluation of
(=DF
D
k>1
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(Hint: To bound this function, you may use the fact that ﬁ =

1+ cot?(2).)

k
(6) Evaluate Zk>1 77 and Zk>1 ( ki) :

We remark that, in the language of Example 7.2.17, you have computed
the evaluations ¢ ( ) and ¢(4) of the Riemann zeta function. The function

"
C*(2) == Zk>1 = is called the alternating zeta function.

10.2 Binomial Coefficients

The binomial coefficient (7) = n(n —1)(n —2)---(n — k + 1) is a natural
candidate for being explored analytically, as the binomial theorem

(+y)" = i(k>w’“y” g

k=0

(for z,y € C and n € Zx) tells us that (}}) is the coefficient of 2* in (z + 1)".
You will derive two sample identities in the course of the exercises below.

n\ 1 (z4+1)"
(k) = omi L T

where v is any simple, closed, positively oriented, piecewise smooth path
such that 0 is inside ~.

(1) Convince yourself that

(2) Derive a recurrence relation for binomial coefficients from the fact that
141 = 2t (Hint: Multiply both sides by Et0")

(3) Now suppose ¢ € R with |z] < 1/4. Find a simple closed path ~
surrounding the origin such that

k
1 2
k>0 z
converges uniformly on v as a function of z. Evaluate this sum.
(4) Keeping x and « from (3), convince yourself that
2K\ z+1)%
S () = gy [ S
k>0 k>0

Use (3) to interchange summation and integral, and use the Residue
Theorem 9.2.2 to evaluate the integral, giving an identity for k>0 (2k)z .

10.3 Fibonacci Numbers

The Fibonacci' numbers are a sequence of integers defined recursively through
Jo=0
fi=1
fn = fao1+ fo-2 forn>2.

Let F(z) =3 150 fk 2",

INamed after Leonardo Pisano Fibonacci (1170-1250).
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(1) Show that F has a positive radius of convergence.

(2) Show that the recurrence relation among the f,, implies that F(z) =
—=—. (Hint: Write down the power series of z F'(z) and 2 F(z) and
rearrange both so that you can easily add.)

(3) Verify that
1
Res.—g <z"(1 e z2)> = fn.

(4) Use the Residue Theorem 9.2.2 to derive an identity for f,. (Hint:

Integrate
1

21—z —22)
around C[0, R] and show that this integral vanishes as R — 0.)

(5) Your identity should involve the golden ratio 1+2‘/5. Explain what is going

on in the output of the following SageMath prompt:

[n(golden_ratio*j/sqrt(5)) for j in range(1,20)]

[0.723606797749979,
.17082039324994,
.89442719099992,
.06524758424985,
.95967477524977,
8.02492235949962,
12.9845971347494,
21.0095194942490,
33.9941166289984,
55.0036361232474,
88.9977527522459,
144.001388875493,
232.999141627739,
377.000530503232,
609.999672130972,
987.000202634204,
1596.99987476518,
2584.00007739938,
4180.99995216456]

AW = =2

(6) Generalize to other sequences defined by recurrence relations, e.g., the
Tribonacci numbers

t():O
t1=0
to =1

tn, =tn_1+tn_o+th_3 for n> 3.

10.4 Dedekind Sums

This exercise outlines one more nontraditional application of the Residue
Theorem 9.2.2. Given two positive, relatively prime integers a and b, let

f(z) = cot(maz) cot(mbz) cot(rz).
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(1) Choose an € > 0 such that the rectangular path yg from 1 — e — iR to
1—€e+iRto —e+iR to —e — iR back to 1 — € — iR does not pass through
any of the poles of f.

(a) Compute the residues for the poles of f inside yg. Hint: Use the
periodicity of the cotangent and the fact that

1 1
cotz = — — 3% + higher-order terms .
z

(b) Prove that limp_,o va f = —2i and deduce that for any R > 0

fo= —2.
YR
(2) Define
b—1
1 wka wk

b) = — t | — t{— |. 10.1
s(a, b) 4b;co(b>co(b) (10.1)

Use the Residue Theorem 9.2.2 to show that

1 1 /(a 1 b

s(a,b) + s(b,a) = ~1 + 2 <b + o + a) . (10.2)

(3) Generalize (10.1) and (10.2).

Historical remark. The sum in (10.1) is called a Dedekind* sum. It first appeared
in the study of the Dedekind n-function

n(z) = exp (52) H (1 — exp(2mikz))

k>1

in the 1870’s and has since intrigued mathematicians from such different areas
as topology, number theory, and discrete geometry. The reciprocity law (10.2)
is the most important and famous identity of the Dedekind sum. The proof
that is outlined here is due to Hans Rademacher (1892-1969).

!Named after Julius Wilhelm Richard Dedekind (1831-1916).



Appendix A

Theorems from Calculus

Phyllis explained to him, trying to give of her deeper self, “Don’t
you find it so beautiful, math? Like an endless sheet of gold chains,
each link locked into the one before it, the theorems and functions,
one thing making the next inevitable. It’s music, hanging there in
the middle of space, meaning nothing but itself, and so moving...”

—John Updike (1932-2009)

Here we collect a few theorems from real calculus that we make use of in the
course of the text.

Theorem A.0.1 Extreme-Value Theorem. Suppose K C R"™ is closed and
bounded and f : K — R is continuous. Then f has a minimum and mazimum
value, i.e.,

min f(x) and max f(z)
exist in R.

Theorem A.0.2 Mean-Value Theorem. Suppose I C R is an interval,
f I — R is differentiable, and x, x + Ax € 1. Then there exists 0 < a < 1

such that
flz+ Az) — f(z)
Az
Many of the most important results of analysis concern combinations of limit
operations. The most important of all calculus theorems combines differentiation
and integration (in two ways):

= fl(x+aAz).

Theorem A.0.3 Fundamental Theorem of Calculus. Suppose f : [a,b] —
R is continuous.

(a) The function F : [a,b] — R defined by F(x) = [ f(t)dt is differentiable
and F'(z) = f(x).

(b) If F is any antiderivative of f, that is, F' = f, then f: fl@)dz =
F(b) — F(a).

Theorem A.0.4 If f,g: [a,b] = R are continuous functions and ¢ € R then

b(f(x)‘f'cg(x))dff = bf(x)dx+c bg(x)da;.
/ [ e |
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Theorem A.0.5 If f,g: [a,b] = R are continuous functions then

g/u 7)|do
(s r00) [ o

Theorem A.0.6 If g : [a,b] — R is differentiable, ¢’ is continuous, and
f:lg(a),g(d)] = R is continuous then

b g(b)
[ tewgwa = [ fa)d.
@ g(a)

For functions of several variables, we can perform differentiation/integration
operations in any order, if we have sufficient continuity:

IN

Theorem A.0.7 If the mized partzals
set G C R? and are continuous at a point (zo,y0) € G, then they are equal at
(z0,Y0)-

Theorem A.0.8 If f is continuous on [a,b] X [¢,d] C R? then

//fﬂcydyd:C //fxyd:cdy

We can apply differentiation and integration with respect to different vari-
ables in either order:

6y and aya are defined on an open

Theorem A.0.9 Leibniz’s Rule. Suppose f is continuous on [a,b] X [¢,d] C
R? and the partial derivative % exists and is continuous on [a,b] X [¢,d]. Then

d [¢ 9
@/C flz,y)dy = / ;ﬁ(%y)dy-

Leibniz’s Rule follows from the Fundamental Theorem of Calculus (The-
orem A.0.3). You can try to prove it, e.g., as follows: Define F(x) =

fcdf(a:,y) dy, get an expression for F(x) — F(a) as an iterated integral by
writing f(x,y) — f(a,y) as the integral of g—i, interchange the order of integra-
tion, and then differentiate using Theorem A.0.3.

Theorem A.0.10 Green’s Theorem. Let C' >be a positively oriented,
piecewise smooth, simple, closed path in R? and let D be the set bounded by
C. If f(z,y) and g(x,y) have continuous partial derivatives on an open region
containing D then

/fdx—!—gdy: @—%dmdy.
C Dax 3y

Theorem A.0.11 L’Héspital’s Rule. Suppose I C R is an open interval
and either ¢ is in I or c is an endpoint of I. Suppose f and g are differentiable
functions on I\ { ¢} with g'(x) never zero. Suppose

igﬂ@=&;gﬂ@=a;g§$=L
Then
i 1)

cg(x)
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There are many extensions of L’Hospital’s rule. In particular, the rule
remains true if any of the following changes are made:
e [ is infinite..
e [ is unbounded and c is an infinite endpoint of I.

o lim, . f(z) and lim,_,. g(x) are both infinite.
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accumulation point, 12, 22
addition, 2
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alternating zeta function, 154
analytic, 125
antiderivative, 64, 65, 84
Arg, 51
arg, 52
argument, 5
axis

imaginary, 4

real, 4

bijection, 28, 38

binary operation, 2
binomial coefficient, 154
boundary, 13, 97
boundary point, 12
bounded, 13

branch of the logarithm, 51

calculus, 1
Casorati—Weierstrafl theorem, 142
Cauchy’s estimate, 124
Cauchy’s integral formula, 71
extensions of, 81, 124
Cauchy’s theorem, 68
Cauchy—Goursat theorem, 68
Cauchy—Riemann equations, 29
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closed
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path, 15
set, 13
closure, 13
coffee, 73, 109, 142
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complete, 102
complex number, 2
complex plane, 4
extended, 42
complex projective line, 42
composition, 25
concatenation, 63
conformal, 28, 39, 98
conjugate, 9
connected, 13
continuous, 24
contractible, 70
convergence, 101
pointwise, 108
uniform, 108
convergent
sequence, 101
series, 104
cosine, 49
cotangent, 49, 156
cross ratio, 43
curve, 13
cycloid, 75

Dedekind sum, 155
dense, 142
derivative, 26
partial, 29
difference quotient, 26
differentiable, 26
dilation, 39
discriminant, 17
disk
closed, 13
open, 12
punctured, 138
unit, 15
distance of complex numbers, 6
divergent, 101
domain, 22
double series, 128
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embedding of R into C, 2
empty set, 13

entire, 26, 86

essential singularity, 138
Euclidean plane, 11

even, 136

exponential function, 47
exponential rules, 48
extended complex plane, 42

Fibonacci numbers, 154
field, 2
fixed point, 53
function, 22
conformal, 28, 39
even, 136
exponential, 47
logarithmic, 50
odd, 136
trigonometric, 49
fundamental theorem
of algebra, 4, 85, 134, 149, 152
of calculus, 64, 84, 157

geometric interpretation of
multiplication, 6

geometric series, 104

golden ratio, 155

Green’s theorem, 78, 158

group, 3

harmonic, 30, 92

harmonic conjugate, 93
holomorphic, 26

homotopic, 67

homotopy, 67

hyperbolic trig functions, 50

i, 3
identity, 3
identity map, 22
identity principle, 126
image

of a function, 25

of a point, 22
imaginary axis, 4
imaginary part, 4
improper integral, 87, 151
infinity, 41
inside, 73
integral, 60

path independent, 84
integral test, 105
integration by parts, 76
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interior point, 12
inverse function, 28

of a Mobius transformation, 38
inverse parametrization, 63
inversion, 39
isolated point, 12
isolated singularity, 138

Jacobian, 36
Jordan curve theorem, 73

Laplace equation, 92
Laurent series, 128
least upper bound, 103, 112
Leibniz’s rule, 69, 158
length, 62
limit

infinity, 41

of a function, 22

of a sequence, 101

of a series, 104
linear fractional transformation, 38
Liouville’s theorem, 86
Log, 51
log, 52
logarithm, 50
logarithmic derivative, 147

max/min property for harmonic
functions, 96, 127

maximum

strong relative, 96

weak relative, 97, 127
maximum-modulus theorem, 127
mean-value theorem

for harmonic functions, 96

for holomorphic functions, 71

for real functions, 157
meromorphic, 148
minimum

strong relative, 96

weak relative, 127
minimum-modulus theorem, 127
Mbobius transformation, 38
modulus, 5
monotone, 102
monotone sequence property, 102
Morera’s theorem, 84
multiplication, 2

north pole, 44

odd, 136
one-to-one, 28
onto, 28
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disk, 12
set, 13

order of a pole, 141
orientation, 14

partial derivative, 29
path, 13
closed, 15
inside of, 73
interior of, 73
polygonal, 67
positively oriented, 73
path independent, 84
periodic, 48, 156
Picard’s theorem, 142
piecewise smooth, 60
plane, 11
pointwise convergence, 108
Poisson integral formula, 99
Poisson kernel, 78, 98
polar form, 8
pole, 138
polynomial, 4, 19, 34, 85
positive orientation, 73
power series, 111
differentiation of, 121
integration of, 114
primitive, 65
primitive root of unity, 8
principal argument, 51
principal logarithm, 51
principal value of a®, 52
punctured disk, 138

real axis, 4

real number, 2

real part, 4
rectangular form, 8
region, 13

of convergence, 111
simply-connected, 84, 93
removable singularity, 138
reparametrization, 62
residue, 144
residue theorem, 144
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reverse triangle inequality, 11, 19

Riemann sphere, 42
Riemann zeta function, 107
root, 4
root of unity, 8

primitive, 8
root test, 113
Rouché’s theorem, 148

SageMath, 3

separated, 13

sequence, 101
convergent, 101
divergent, 101
limit, 101
monotone, 102

series, 103

simple, 15

simply connected, 84

sine, 49

smooth, 14
piecewise, 60

south pole, 44

stereographic projection, 44

tangent, 49

Taylor series expansion, 122

topology, 11, 73

translation, 39

triangle inequality, 11
reverse, 11

Tribonacci numbers, 155

trigonometric functions, 49

trigonometric identities, 6

trivial, 24

uniform convergence, 108
uniqueness theorem, 126
unit circle, 15

unit disk, 15

unit sphere, 44

vector, 4

Weierstral M-test, 110

Weierstrafl convergence theorem,
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