
Comprehensive Rust

Martin Geisler

Contents

Welcome to Comprehensive Rust 12

1 Running the Course 14
1.1 Course Structure . 15
1.2 Keyboard Shortcuts . 19
1.3 Translations . 19

2 Using Cargo 21
2.1 The Rust Ecosystem . 21
2.2 Code Samples in This Training . 22
2.3 Running Code Locally with Cargo . 23

I Day 1: Morning 25

3 Welcome to Day 1 26

4 Hello, World 28
4.1 What is Rust? . 28
4.2 Benefits of Rust . 29
4.3 Playground . 29

5 Types and Values 31
5.1 Hello, World . 31
5.2 Variables . 32
5.3 Values . 32
5.4 Arithmetic . 33
5.5 Type Inference . 33
5.6 Exercise: Fibonacci . 34

5.6.1 Solution . 35

6 Control Flow Basics 36
6.1 Blocks and Scopes . 36
6.2 if expressions . 37
6.3 match Expressions . 37
6.4 Loops . 39

6.4.1 for . 39
6.4.2 loop . 39

6.5 break and continue . 40

1

6.5.1 Labels . 40
6.6 Functions . 41
6.7 Macros . 41
6.8 Exercise: Collatz Sequence . 42

6.8.1 Solution . 43

II Day 1: Afternoon 44

7 Welcome Back 45

8 Tuples and Arrays 46
8.1 Arrays . 46
8.2 Tuples . 47
8.3 Array Iteration . 48
8.4 Patterns and Destructuring . 48
8.5 Exercise: Nested Arrays . 49

8.5.1 Solution . 50

9 References 51
9.1 Shared References . 51
9.2 Exclusive References . 52
9.3 Slices . 53
9.4 Strings . 53
9.5 Reference Validity . 54
9.6 Exercise: Geometry . 55

9.6.1 Solution . 56

10 User-Defined Types 57
10.1 Named Structs . 57
10.2 Tuple Structs . 58
10.3 Enums . 59
10.4 Type Aliases . 61
10.5 const . 62
10.6 static . 62
10.7 Exercise: Elevator Events . 63

10.7.1 Solution . 64

III Day 2: Morning 67

11 Welcome to Day 2 68

12 Pattern Matching 69
12.1 Irrefutable Patterns . 69
12.2 Matching Values . 70
12.3 Structs . 72
12.4 Enums . 72
12.5 Let Control Flow . 73

12.5.1 if let Expressions . 73
12.5.2 while let Statements . 74
12.5.3 let else Statements . 74

2

12.6 Exercise: Expression Evaluation . 75
12.6.1 Solution . 79

13 Methods and Traits 82
13.1 Methods . 82
13.2 Traits . 84

13.2.1 Implementing Traits . 84
13.2.2 Supertraits . 85
13.2.3 Associated Types . 86

13.3 Deriving . 86
13.4 Exercise: Logger Trait . 87

13.4.1 Solution . 88

14 Generics 89
14.1 Generic Functions . 89
14.2 Trait Bounds . 90
14.3 Generic Data Types . 91
14.4 Generic Traits . 92
14.5 impl Trait . 93
14.6 dyn Trait . 94
14.7 Exercise: Generic min . 95

14.7.1 Solution . 96

IV Day 2: Afternoon 97

15 Welcome Back 98

16 Closures 99
16.1 Closure Syntax . 99
16.2 Capturing . 100
16.3 Closure traits . 100
16.4 Exercise: Log Filter . 102

16.4.1 Solution . 102

17 Standard Library Types 104
17.1 Standard Library . 104
17.2 Documentation . 104
17.3 Option . 105
17.4 Result . 106
17.5 String . 106
17.6 Vec . 107
17.7 HashMap . 108
17.8 Exercise: Counter . 109

17.8.1 Solution . 111

18 Standard Library Traits 112
18.1 Comparisons . 112
18.2 Operators . 114
18.3 From and Into . 114
18.4 Casting . 115
18.5 Read and Write . 116

3

18.6 The Default Trait . 116
18.7 Exercise: ROT13 . 117

18.7.1 Solution . 118

V Day 3: Morning 120

19 Welcome to Day 3 121

20 Memory Management 122
20.1 Review of Program Memory . 122
20.2 Approaches to Memory Management . 123
20.3 Ownership . 124
20.4 Move Semantics . 125
20.5 Clone . 127
20.6 Copy Types . 128
20.7 The Drop Trait . 129
20.8 Exercise: Builder Type . 130

20.8.1 Solution . 132

21 Smart Pointers 134
21.1 Box<T> . 134
21.2 Rc . 136
21.3 Owned Trait Objects . 136
21.4 Exercise: Binary Tree . 138

21.4.1 Solution . 140

VI Day 3: Afternoon 144

22 Welcome Back 145

23 Borrowing 146
23.1 Borrowing a Value . 146
23.2 Borrow Checking . 147
23.3 Borrow Errors . 149
23.4 Interior Mutability . 149

23.4.1 Cell . 149
23.4.2 RefCell . 150

23.5 Exercise: Health Statistics . 151
23.5.1 Solution . 152

24 Lifetimes 154
24.1 Borrowing with Functions . 154
24.2 Returning Borrows . 155
24.3 Multiple Borrows . 155
24.4 Borrow Both . 156
24.5 Borrow One . 157
24.6 Lifetime Elision . 158
24.7 Lifetimes in Data Structures . 159
24.8 Exercise: Protobuf Parsing . 160

24.8.1 Solution . 165

4

VII Day 4: Morning 170

25 Welcome to Day 4 171

26 Iterators 172
26.1 Motivating Iterators . 172
26.2 Iterator Trait . 173
26.3 Iterator Helper Methods . 174
26.4 collect . 175
26.5 IntoIterator . 175
26.6 Exercise: Iterator Method Chaining . 177

26.6.1 Solution . 178

27 Modules 179
27.1 Modules . 179
27.2 Filesystem Hierarchy . 180
27.3 Visibility . 181
27.4 Visibility and Encapsulation . 182
27.5 use, super, self . 183
27.6 Exercise: Modules for a GUI Library . 184

27.6.1 Solution . 186

28 Testing 190
28.1 Unit Tests . 190
28.2 Other Types of Tests . 191
28.3 Compiler Lints and Clippy . 192
28.4 Exercise: Luhn Algorithm . 192

28.4.1 Solution . 193

VIII Day 4: Afternoon 196

29 Welcome Back 197

30 Error Handling 198
30.1 Panics . 198
30.2 Result . 199
30.3 Try Operator . 200
30.4 Try Conversions . 201
30.5 Dynamic Error Types . 203
30.6 thiserror . 203
30.7 anyhow . 204
30.8 Exercise: Rewriting with Result . 205

30.8.1 Solution . 207

31 Unsafe Rust 209
31.1 Unsafe Rust . 209
31.2 Dereferencing Raw Pointers . 210
31.3 Mutable Static Variables . 211
31.4 Unions . 212
31.5 Unsafe Functions . 212

31.5.1 Unsafe Rust Functions . 212

5

31.5.2 Unsafe External Functions . 213
31.5.3 Calling Unsafe Functions . 214

31.6 Implementing Unsafe Traits . 215
31.7 Safe FFI Wrapper . 215

31.7.1 Solution . 218

IX Android 222

32 Welcome to Rust in Android 223

33 Setup 224

34 Build Rules 225
34.1 Rust Binaries . 225
34.2 Rust Libraries . 226

35 AIDL 228
35.1 Birthday Service Tutorial . 228

35.1.1 AIDL Interfaces . 228
35.1.2 Generated Service API . 229
35.1.3 Service Implementation . 229
35.1.4 AIDL Server . 230
35.1.5 Deploy . 231
35.1.6 AIDL Client . 232
35.1.7 Changing API . 233
35.1.8 Updating Client and Service . 233

35.2 Working With AIDL Types . 234
35.2.1 Primitive Types . 234
35.2.2 Array Types . 234
35.2.3 Sending Objects . 235
35.2.4 Parcelables . 236
35.2.5 Sending Files . 237

36 Testing in Android 239
36.1 GoogleTest . 240
36.2 Mocking . 242

37 Logging 244

38 Interoperability 246
38.1 Interoperability with C . 246

38.1.1 A Simple C Library . 247
38.1.2 Using Bindgen . 247
38.1.3 Running Our Binary . 248
38.1.4 A Simple Rust Library . 249
38.1.5 Calling Rust . 249

38.2 With C++ . 250
38.2.1 The Bridge Module . 250
38.2.2 Rust Bridge Declarations . 251
38.2.3 Generated C++ . 252
38.2.4 C++ Bridge Declarations . 252

6

38.2.5 Shared Types . 253
38.2.6 Shared Enums . 254
38.2.7 Rust Error Handling . 255
38.2.8 C++ Error Handling . 255
38.2.9 Additional Types . 255
38.2.10Building in Android . 256
38.2.11Building in Android . 257
38.2.12Building in Android . 257

38.3 Interoperability with Java . 257

X Chromium 260

39 Welcome to Rust in Chromium 261

40 Setup 262

41 Comparing Chromium and Cargo Ecosystems 264

42 Chromium Rust policy 266

43 Build rules 268
43.1 Including unsafe Rust Code . 268
43.2 Depending on Rust Code from Chromium C++ 269
43.3 Visual Studio Code . 269
43.4 Build rules exercise . 270

44 Testing 272
44.1 rust_gtest_interop Library . 273
44.2 GN Rules for Rust Tests . 273
44.3 chromium::import! Macro . 274
44.4 Testing exercise . 274

45 Interoperability with C++ 275
45.1 Example Bindings . 276
45.2 Limitations of CXX . 276
45.3 CXX Error Handling . 277

45.3.1 CXX Error Handling: QR Example . 277
45.3.2 CXX Error Handling: PNG Example 278

45.4 Using cxx in Chromium . 279
45.5 Exercise: Interoperability with C++ . 279

46 Adding Third Party Crates 281
46.1 Configuring the Cargo.toml file to add crates 281
46.2 Configuring gnrt_config.toml . 282
46.3 Downloading Crates . 282
46.4 Generating gn Build Rules . 283
46.5 Resolving Problems . 283

46.5.1 Build Scripts Which Generate Code 283
46.5.2 Build Scripts Which Build C++ or Take Arbitrary Actions 284

46.6 Depending on a Crate . 284
46.7 Auditing Third Party Crates . 284

7

46.8 Checking Crates into Chromium Source Code 285
46.9 Keeping Crates Up to Date . 285
46.10Exercise . 285

47 Bringing It Together --- Exercise 287

48 Exercise Solutions 289

XI Bare Metal: Morning 290

49 Welcome to Bare Metal Rust 291

50 no_std 293
50.1 A minimal no_std program . 294
50.2 alloc . 294

51 Microcontrollers 296
51.1 Raw MMIO . 296
51.2 Peripheral Access Crates . 298
51.3 HAL crates . 299
51.4 Board support crates . 300
51.5 The type state pattern . 300
51.6 embedded-hal . 301
51.7 probe-rs and cargo-embed . 301

51.7.1 Debugging . 302
51.8 Other projects . 302

52 Exercises 304
52.1 Compass . 304
52.2 Bare Metal Rust Morning Exercise . 306

XII Bare Metal: Afternoon 310

53 Application processors 311
53.1 Getting Ready to Rust . 311
53.2 Inline assembly . 314
53.3 Volatile memory access for MMIO . 315
53.4 Let's write a UART driver . 315

53.4.1 More traits . 316
53.4.2 Using it . 317

53.5 A better UART driver . 318
53.5.1 Bitflags . 318
53.5.2 Multiple registers . 319
53.5.3 Driver . 320

53.6 safe-mmio . 321
53.6.1 Driver . 322
53.6.2 Using It . 323

53.7 Logging . 324
53.7.1 Using it . 325

53.8 Exceptions . 326

8

53.9 aarch64-rt . 328
53.10Other projects . 329

54 Useful crates 330
54.1 zerocopy . 330
54.2 aarch64-paging . 331
54.3 buddy_system_allocator . 331
54.4 tinyvec . 332
54.5 spin . 332

55 Bare-Metal on Android 334
55.1 vmbase . 335

56 Exercises 336
56.1 RTC driver . 336
56.2 Bare Metal Rust Afternoon . 343

XIII Concurrency: Morning 348

57 Welcome to Concurrency in Rust 349

58 Threads 350
58.1 Plain Threads . 350
58.2 Scoped Threads . 351

59 Channels 353
59.1 Senders and Receivers . 353
59.2 Unbounded Channels . 354
59.3 Bounded Channels . 354

60 Send and Sync 356
60.1 Marker Traits . 356
60.2 Send . 356
60.3 Sync . 357
60.4 Examples . 357

61 Shared State 359
61.1 Arc . 359
61.2 Mutex . 360
61.3 Example . 361

62 Exercises 363
62.1 Dining Philosophers . 363
62.2 Multi-threaded Link Checker . 364
62.3 Solutions . 367

XIV Concurrency: Afternoon 372

63 Welcome 373

9

64 Async Basics 374
64.1 async/await . 374
64.2 Futures . 375
64.3 State Machine . 376
64.4 Runtimes . 378

64.4.1 Tokio . 378
64.5 Tasks . 379

65 Channels and Control Flow 380
65.1 Async Channels . 380
65.2 Join . 381
65.3 Select . 382

66 Pitfalls 383
66.1 Blocking the executor . 383
66.2 Pin . 384
66.3 Async Traits . 386
66.4 Cancellation . 388

67 Exercises 391
67.1 Dining Philosophers --- Async . 391
67.2 Broadcast Chat Application . 392
67.3 Solutions . 395

XV Idiomatic Rust 400

68 Welcome to Idiomatic Rust 401

69 Leveraging the Type System 404
69.1 Newtype Pattern . 405

69.1.1 Semantic Confusion . 405
69.1.2 Parse, Don't Validate . 406
69.1.3 Is It Truly Encapsulated? . 407

69.2 Extension Traits . 408
69.2.1 Extending Foreign Types . 409
69.2.2 Method Resolution Conflicts . 409
69.2.3 Trait Method Conflicts . 411
69.2.4 Extending Other Traits . 412
69.2.5 Should I Define An Extension Trait? 413

69.3 Typestate Pattern: Problem . 414
69.3.1 Typestate Pattern: Example . 415
69.3.2 Beyond Simple Typestate . 417
69.3.3 Typestate Pattern with Generics . 419

69.4 Using the Borrow checker to enforce Invariants 424
69.4.1 Lifetimes and Borrows: the Abstract Rules 426
69.4.2 Single-use values . 427
69.4.3 Mutually Exclusive References / ”Aliasing XOR Mutability” 429
69.4.4 PhantomData 1/4: De-duplicating Same Data & Semantics 430
69.4.5 PhantomData 2/4: Type-level tagging 431
69.4.6 PhantomData 3/4: Lifetimes for External Resources 432
69.4.7 PhantomData 4/4: OwnedFd & BorrowedFd 434

10

69.5 Token Types . 436
69.5.1 Permission Tokens . 437
69.5.2 Token Types with Data: Mutex Guards 437
69.5.3 Variable-Specific Tokens (Branding 1/4) 438
69.5.4 PhantomData and Lifetime Subtyping (Branding 2/4) 439
69.5.5 Implementing Branded Types (Branding 3/4) 442
69.5.6 Branded Types in Action (Branding 4/4) 443

XVI Unsafe 446

70 Welcome to Unsafe Rust 447

71 Setting Up 448

72 Motivations 449
72.1 Interoperability . 449
72.2 Data Structures . 453
72.3 Performance . 453

73 Foundations 454
73.1 What is “unsafety”? . 454
73.2 When is unsafe used? . 456
73.3 Data structures are safe ... 456
73.4 ... but actions on them might not be . 457
73.5 Less powerful than it seems . 457

XVII Final Words 459

74 Thanks! 460

75 Glossary 461

76 Other Rust Resources 465

77 Credits 467

11

Welcome to Comprehensive Rust

build passing contributors 332 stars 32k

This is a free Rust course developed by the Android team at Google. The course covers the
full spectrum of Rust, from basic syntax to advanced topics like generics and error handling.

The latest version of the course can be found at https://google.github.io/
comprehensive-rust/. If you are reading somewhere else, please check there for
updates.

The course is available in other languages. Select your preferred language in the
top right corner of the page or check the Translations page for a list of all available
translations.

The course is also available as a PDF.

The goal of the course is to teach you Rust. We assume you don't know anything about Rust
and hope to:

• Give you a comprehensive understanding of the Rust syntax and language.
• Enable you to modify existing programs and write new programs in Rust.
• Show you common Rust idioms.

We call the first four course days Rust Fundamentals.

Building on this, you're invited to dive into one or more specialized topics:

• Android: a half-day course on using Rust for Android platform development (AOSP).
This includes interoperability with C, C++, and Java.

• Chromium: a half-day course on using Rust in Chromium-based browsers. This includes
interoperability with C++ and how to include third-party crates in Chromium.

• Bare-metal: a whole-day class on using Rust for bare-metal (embedded) development.
Both microcontrollers and application processors are covered.

• Concurrency: a whole-day class on concurrency in Rust. We cover both classical con-
currency (preemptively scheduling using threads and mutexes) and async/await con-
currency (cooperative multitasking using futures).

12

https://github.com/google/comprehensive-rust/actions/workflows/build.yml?query=branch%3Amain
https://github.com/google/comprehensive-rust/graphs/contributors
https://github.com/google/comprehensive-rust/stargazers
https://google.github.io/comprehensive-rust/
https://google.github.io/comprehensive-rust/
https://google.github.io/comprehensive-rust/comprehensive-rust.pdf

Non-Goals

Rust is a large language and we won't be able to cover all of it in a few days. Some non-goals
of this course are:

• Learning how to develop macros: please see the Rust Book and Rust by Example instead.

Assumptions

The course assumes that you already know how to program. Rust is a statically-typed language
and we will sometimes make comparisons with C and C++ to better explain or contrast the
Rust approach.

If you know how to program in a dynamically-typed language such as Python or JavaScript,
then you will be able to follow along just fine too.

This is an example of a speaker note. We will use these to add additional information to
the slides. This could be key points which the instructor should cover as well as answers to
typical questions which come up in class.

13

https://doc.rust-lang.org/book/
https://doc.rust-lang.org/rust-by-example/macros.html

Chapter 1

Running the Course

This page is for the course instructor.

Here is a bit of background information about how we've been running the course internally
at Google.

We typically run classes from 9:00 am to 4:00 pm, with a 1 hour lunch break in the middle.
This leaves 3 hours for the morning class and 3 hours for the afternoon class. Both sessions
contain multiple breaks and time for students to work on exercises.

Before you run the course, you will want to:

1. Make yourself familiar with the course material. We've included speaker notes to help
highlight the key points (please help us by contributing more speaker notes!). When
presenting, you should make sure to open the speaker notes in a popup (click the link
with a little arrow next to ”Speaker Notes”). This way you have a clean screen to present
to the class.

2. Decide on the dates. Since the course takes four days, we recommend that you schedule
the days over two weeks. Course participants have said that they find it helpful to have
a gap in the course since it helps them process all the information we give them.

3. Find a room large enough for your in-person participants. We recommend a class size
of 15-25 people. That's small enough that people are comfortable asking questions ---
it's also small enough that one instructor will have time to answer the questions. Make
sure the room has desks for yourself and for the students: you will all need to be able to
sit and work with your laptops. In particular, you will be doing a lot of live-coding as an
instructor, so a lectern won't be very helpful for you.

4. On the day of your course, show up to the room a little early to set things up. We
recommend presenting directly using mdbook serve running on your laptop (see the
installation instructions). This ensures optimal performance with no lag as you change
pages. Using your laptop will also allow you to fix typos as you or the course participants
spot them.

5. Let people solve the exercises by themselves or in small groups. We typically spend 30-45
minutes on exercises in the morning and in the afternoon (including time to review the
solutions). Make sure to ask people if they're stuck or if there is anything you can help
with. When you see that several people have the same problem, call it out to the class

14

https://github.com/google/comprehensive-rust#building

and offer a solution, e.g., by showing people where to find the relevant information in
the standard library.

That is all, good luck running the course! We hope it will be as much fun for you as it has
been for us!

Please provide feedback afterwards so that we can keep improving the course. We would
love to hear what worked well for you and what can be made better. Your students are also
very welcome to send us feedback!

Instructor Preparation

• Go through all the material: Before teaching the course, make sure you have gone
through all the slides and exercises yourself. This will help you anticipate questions
and potential difficulties.

• Prepare for live coding: The course involves a lot of live coding. Practice the examples
and exercises beforehand to ensure you can type them out smoothly during the class.
Have the solutions ready in case you get stuck.

• Familiarize yourself with mdbook: The course is presented using mdbook. Knowing
how to navigate, search, and use its features will make the presentation smoother.

• Slice size helper: Press Ctrl + Alt + B to toggle a visual guide showing the amount of
space available when presenting. Expect any content outside of the red box to be hidden
initially. Use this as a guide when editing slides. You can also enable it via this link.

Creating a Good Learning Environment

• Encourage questions: Reiterate that there are no ”stupid” questions. A welcoming
atmosphere for questions is crucial for learning.

• Manage time effectively: Keep an eye on the schedule, but be flexible. It's more
important that students understand the concepts than sticking rigidly to the timeline.

• Facilitate group work: During exercises, encourage students to work together. This
can help them learn from each other and feel less stuck.

1.1 Course Structure

This page is for the course instructor.

Rust Fundamentals

The first four days make up Rust Fundamentals. The days are fast-paced and we cover a lot
of ground!

Course schedule:

• Day 1 Morning (2 hours and 10 minutes, including breaks)

Segment Duration

Welcome 5 minutes
Hello, World 15 minutes
Types and Values 40 minutes

15

https://github.com/google/comprehensive-rust/discussions/86
https://github.com/google/comprehensive-rust/discussions/100

Segment Duration

Control Flow Basics 45 minutes

• Day 1 Afternoon (2 hours and 45 minutes, including breaks)

Segment Duration

Tuples and Arrays 35 minutes
References 55 minutes
User-Defined Types 1 hour

• Day 2 Morning (2 hours and 50 minutes, including breaks)

Segment Duration

Welcome 3 minutes
Pattern Matching 50 minutes
Methods and Traits 45 minutes
Generics 50 minutes

• Day 2 Afternoon (2 hours and 50 minutes, including breaks)

Segment Duration

Closures 30 minutes
Standard Library Types 1 hour
Standard Library Traits 1 hour

• Day 3 Morning (2 hours and 20 minutes, including breaks)

Segment Duration

Welcome 3 minutes
Memory Management 1 hour
Smart Pointers 55 minutes

• Day 3 Afternoon (2 hours and 10 minutes, including breaks)

Segment Duration

Borrowing 55 minutes
Lifetimes 1 hour and 5 minutes

• Day 4 Morning (2 hours and 50 minutes, including breaks)

Segment Duration

Welcome 3 minutes

16

Segment Duration

Iterators 55 minutes
Modules 45 minutes
Testing 45 minutes

• Day 4 Afternoon (2 hours and 20 minutes, including breaks)

Segment Duration

Error Handling 55 minutes
Unsafe Rust 1 hour and 15 minutes

Deep Dives

In addition to the 4-day class on Rust Fundamentals, we cover some more specialized topics:

Rust in Android

The Rust in Android deep dive is a half-day course on using Rust for Android platform
development. This includes interoperability with C, C++, and Java.

You will need an AOSP checkout. Make a checkout of the course repository on the same
machine and move the src/android/ directory into the root of your AOSP checkout. This
will ensure that the Android build system sees the Android.bp files in src/android/.

Ensure that adb sync works with your emulator or real device and pre-build all Android
examples using src/android/build_all.sh. Read the script to see the commands it runs
and make sure they work when you run them by hand.

Rust in Chromium

The Rust in Chromium deep dive is a half-day course on using Rust as part of the Chromium
browser. It includes using Rust in Chromium's gn build system, bringing in third-party
libraries (”crates”) and C++ interoperability.

You will need to be able to build Chromium --- a debug, component build is recommended for
speed but any build will work. Ensure that you can run the Chromium browser that you've
built.

Bare-Metal Rust

The Bare-Metal Rust deep dive is a full day class on using Rust for bare-metal (embedded)
development. Both microcontrollers and application processors are covered.

For the microcontroller part, you will need to buy the BBC micro:bit v2 development board
ahead of time. Everybody will need to install a number of packages as described on the
welcome page.

17

https://source.android.com/docs/setup/download/downloading
https://github.com/google/comprehensive-rust
https://microbit.org/

Concurrency in Rust

The Concurrency in Rust deep dive is a full day class on classical as well as async/await
concurrency.

You will need a fresh crate set up and the dependencies downloaded and ready to go. You
can then copy/paste the examples into src/main.rs to experiment with them:

cargo init concurrency
cd concurrency
cargo add tokio --features full
cargo run

Course schedule:

• Morning (3 hours and 20 minutes, including breaks)

Segment Duration

Threads 30 minutes
Channels 20 minutes
Send and Sync 15 minutes
Shared State 30 minutes
Exercises 1 hour and 10 minutes

• Afternoon (3 hours and 30 minutes, including breaks)

Segment Duration

Async Basics 40 minutes
Channels and Control Flow 20 minutes
Pitfalls 55 minutes
Exercises 1 hour and 10 minutes

Idiomatic Rust

The Idiomatic Rust deep dive is a 2-day class on Rust idioms and patterns.

You should be familiar with the material in Rust Fundamentals before starting this course.

Course schedule:

• Morning (5 hours and 5 minutes, including breaks)

Segment Duration

Leveraging the Type System 5 hours and 5 minutes

Unsafe (Work in Progress)

The Unsafe deep dive is a two-day class on theunsafeRust language. It covers the fundamentals
of Rust's safety guarantees, the motivation for unsafe, review process for unsafe code, FFI
basics, and building data structures that the borrow checker would normally reject.

Course schedule:

18

• Day 1 Morning (1 hour, including breaks)

Segment Duration

Setup 2 minutes
Motivations 20 minutes
Foundations 25 minutes

Format

The course is meant to be very interactive and we recommend letting the questions drive the
exploration of Rust!

1.2 Keyboard Shortcuts

There are several useful keyboard shortcuts in mdBook:

• Arrow-Left: Navigate to the previous page.

• Arrow-Right: Navigate to the next page.

• Ctrl + Enter: Execute the code sample that has focus.

• s: Activate the search bar.

• Mention that these shortcuts are standard for mdbook and can be useful when navigating
any mdbook-generated site.

• You can demonstrate each shortcut live to the students.

• The s key for search is particularly useful for quickly finding topics that have been
discussed earlier.

• Ctrl + Enter will be super important for you since you'll do a lot of live coding.

1.3 Translations

The course has been translated into other languages by a set of wonderful volunteers:

• Brazilian Portuguese by @rastringer, @hugojacob, @joaovicmendes, and @henrif75.
• Chinese (Simplified) by @suetfei, @wnghl, @anlunx, @kongy, @noahdragon, @super-

whd, @SketchK, and @nodmp.
• Chinese (Traditional) by @hueich, @victorhsieh, @mingyc, @kuanhungchen, and

@johnathan79717.
• Farsi by @DannyRavi, @javad-jafari, @Alix1383, @moaminsharifi , @hamidrezakp and

@mehrad77.
• Japanese by @CoinEZ-JPN, @momotaro1105, @HidenoriKobayashi and @kantasv.
• Korean by @keispace, @jiyongp, @jooyunghan, and @namhyung.
• Spanish by @deavid.
• Ukrainian by @git-user-cpp, @yaremam and @reta.

Use the language picker in the top-right corner to switch between languages.

19

https://google.github.io/comprehensive-rust/pt-BR/
https://github.com/rastringer
https://github.com/hugojacob
https://github.com/joaovicmendes
https://github.com/henrif75
https://google.github.io/comprehensive-rust/zh-CN/
https://github.com/suetfei
https://github.com/wnghl
https://github.com/anlunx
https://github.com/kongy
https://github.com/noahdragon
https://github.com/superwhd
https://github.com/superwhd
https://github.com/nodmp
https://google.github.io/comprehensive-rust/zh-TW/
https://github.com/hueich
https://github.com/victorhsieh
https://github.com/mingyc
https://github.com/kuanhungchen
https://github.com/johnathan79717
https://google.github.io/comprehensive-rust/fa/
https://github.com/DannyRavi
https://github.com/javad-jafari
https://github.com/alix1383
https://github.com/moaminsharifi
https://github.com/hamidrezakp
https://github.com/mehrad77
https://google.github.io/comprehensive-rust/ja/
https://github.com/CoinEZ
https://github.com/momotaro1105
https://github.com/HidenoriKobayashi
https://github.com/kantasv
https://google.github.io/comprehensive-rust/ko/
https://github.com/keispace
https://github.com/jiyongp
https://github.com/jooyunghan
https://github.com/namhyung
https://google.github.io/comprehensive-rust/es/
https://github.com/deavid
https://google.github.io/comprehensive-rust/uk/
https://github.com/git-user-cpp
https://github.com/yaremam
https://github.com/reta

Incomplete Translations

There is a large number of in-progress translations. We link to the most recently updated
translations:

• Arabic by @younies
• Bengali by @raselmandol.
• French by @KookaS, @vcaen and @AdrienBaudemont.
• German by @Throvn and @ronaldfw.
• Italian by @henrythebuilder and @detro.

The full list of translations with their current status is also available either as of their last
update or synced to the latest version of the course.

If you want to help with this effort, please see our instructions for how to get going. Transla-
tions are coordinated on the issue tracker.

• This is a good opportunity to thank the volunteers who have contributed to the transla-
tions.

• If there are students in the class who speak any of the listed languages, you can encourage
them to check out the translated versions and even contribute if they find any issues.

• Highlight that the project is open source and contributions are welcome, not just for
translations but for the course content itself.

20

https://google.github.io/comprehensive-rust/ar/
https://github.com/younies
https://google.github.io/comprehensive-rust/bn/
https://github.com/raselmandol
https://google.github.io/comprehensive-rust/fr/
https://github.com/KookaS
https://github.com/vcaen
https://github.com/AdrienBaudemont
https://google.github.io/comprehensive-rust/de/
https://github.com/Throvn
https://github.com/ronaldfw
https://google.github.io/comprehensive-rust/it/
https://github.com/henrythebuilder
https://github.com/detro
https://google.github.io/comprehensive-rust/translation-report.html
https://google.github.io/comprehensive-rust/translation-report.html
https://google.github.io/comprehensive-rust/synced-translation-report.html
https://github.com/google/comprehensive-rust/blob/main/TRANSLATIONS.md
https://github.com/google/comprehensive-rust/issues/282

Chapter 2

Using Cargo

When you start reading about Rust, you will soon meet Cargo, the standard tool used in the
Rust ecosystem to build and run Rust applications. Here we want to give a brief overview of
what Cargo is and how it fits into the wider ecosystem and how it fits into this training.

Installation

Please follow the instructions on https://rustup.rs/.

This will give you the Cargo build tool (cargo) and the Rust compiler (rustc). You will also
get rustup, a command line utility that you can use to install different compiler versions.

After installing Rust, you should configure your editor or IDE to work with Rust. Most editors
do this by talking to rust-analyzer, which provides auto-completion and jump-to-definition
functionality for VS Code, Emacs, Vim/Neovim, and many others. There is also a different IDE
available called RustRover.

• On Debian/Ubuntu, you can install rustup via apt:

sudo apt install rustup

• On macOS, you can use Homebrew to install Rust, but this may provide an outdated
version. Therefore, it is recommended to install Rust from the official site.

2.1 The Rust Ecosystem

The Rust ecosystem consists of a number of tools, of which the main ones are:

• rustc: the Rust compiler that turns .rs files into binaries and other intermediate
formats.

• cargo: the Rust dependency manager and build tool. Cargo knows how to download
dependencies, usually hosted on https://crates.io, and it will pass them to rustc when
building your project. Cargo also comes with a built-in test runner which is used to
execute unit tests.

21

https://doc.rust-lang.org/cargo/
https://rustup.rs/
https://rust-analyzer.github.io/
https://code.visualstudio.com/
https://rust-analyzer.github.io/manual.html#emacs
https://rust-analyzer.github.io/manual.html#vimneovim
https://www.jetbrains.com/rust/
https://brew.sh/
https://crates.io

• rustup: the Rust toolchain installer and updater. This tool is used to install and update
rustc and cargo when new versions of Rust are released. In addition, rustup can also
download documentation for the standard library. You can have multiple versions of
Rust installed at once and rustup will let you switch between them as needed.

Key points:

• Rust has a rapid release schedule with a new release coming out every six weeks. New
releases maintain backwards compatibility with old releases --- plus they enable new
functionality.

• There are three release channels: ”stable”, ”beta”, and ”nightly”.

• New features are being tested on ”nightly”, ”beta” is what becomes ”stable” every six
weeks.

• Dependencies can also be resolved from alternative registries, git, folders, and more.

• Rust also has editions: the current edition is Rust 2024. Previous editions were Rust
2015, Rust 2018 and Rust 2021.

– The editions are allowed to make backwards incompatible changes to the language.

– To prevent breaking code, editions are opt-in: you select the edition for your crate
via the Cargo.toml file.

– To avoid splitting the ecosystem, Rust compilers can mix code written for different
editions.

– Mention that it is quite rare to ever use the compiler directly not through cargo
(most users never do).

– It might be worth alluding that Cargo itself is an extremely powerful and compre-
hensive tool. It is capable of many advanced features including but not limited
to:

* Project/package structure

* workspaces

* Dev Dependencies and Runtime Dependency management/caching

* build scripting

* global installation

* It is also extensible with sub command plugins as well (such as cargo clippy).

– Read more from the official Cargo Book

2.2 Code Samples in This Training

For this training, we will mostly explore the Rust language through examples which can be
executed through your browser. This makes the setup much easier and ensures a consistent
experience for everyone.

Installing Cargo is still encouraged: it will make it easier for you to do the exercises. On the
last day, we will do a larger exercise that shows you how to work with dependencies and for
that you need Cargo.

The code blocks in this course are fully interactive:

22

https://doc.rust-lang.org/cargo/reference/registries.html
https://doc.rust-lang.org/edition-guide/
https://doc.rust-lang.org/cargo/reference/workspaces.html
https://doc.rust-lang.org/cargo/reference/build-scripts.html
https://doc.rust-lang.org/cargo/commands/cargo-install.html
https://github.com/rust-lang/rust-clippy
https://doc.rust-lang.org/cargo/

fn main() {
println!("Edit me!");

}

You can use Ctrl + Enter to execute the code when focus is in the text box.

Most code samples are editable like shown above. A few code samples are not editable for
various reasons:

• The embedded playgrounds cannot execute unit tests. Copy-paste the code and open it
in the real Playground to demonstrate unit tests.

• The embedded playgrounds lose their state the moment you navigate away from the
page! This is the reason that the students should solve the exercises using a local Rust
installation or via the Playground.

2.3 Running Code Locally with Cargo

If you want to experiment with the code on your own system, then you will need to first
install Rust. Do this by following the instructions in the Rust Book. This should give you a
working rustc and cargo. At the time of writing, the latest stable Rust release has these
version numbers:

% rustc --version
rustc 1.69.0 (84c898d65 2023-04-16)
% cargo --version
cargo 1.69.0 (6e9a83356 2023-04-12)

You can use any later version too since Rust maintains backwards compatibility.

With this in place, follow these steps to build a Rust binary from one of the examples in this
training:

1. Click the ”Copy to clipboard” button on the example you want to copy.

2. Use cargo new exercise to create a new exercise/ directory for your code:

$ cargo new exercise
Created binary (application) `exercise` package

3. Navigate into exercise/ and use cargo run to build and run your binary:

$ cd exercise
$ cargo run

Compiling exercise v0.1.0 (/home/mgeisler/tmp/exercise)
Finished dev [unoptimized + debuginfo] target(s) in 0.75s
Running `target/debug/exercise`

Hello, world!

4. Replace the boilerplate code in src/main.rs with your own code. For example, using
the example on the previous page, make src/main.rs look like

fn main() {
println!("Edit me!");

}

5. Use cargo run to build and run your updated binary:

23

https://doc.rust-lang.org/book/ch01-01-installation.html

$ cargo run
Compiling exercise v0.1.0 (/home/mgeisler/tmp/exercise)
Finished dev [unoptimized + debuginfo] target(s) in 0.24s
Running `target/debug/exercise`

Edit me!

6. Use cargo check to quickly check your project for errors, use cargo build to com-
pile it without running it. You will find the output in target/debug/ for a normal
debug build. Use cargo build --release to produce an optimized release build in
target/release/.

7. You can add dependencies for your project by editing Cargo.toml. When you run
cargo commands, it will automatically download and compile missing dependencies
for you.

Try to encourage the class participants to install Cargo and use a local editor. It will make
their life easier since they will have a normal development environment.

24

Part I

Day 1: Morning

25

Chapter 3

Welcome to Day 1

This is the first day of Rust Fundamentals. We will cover a lot of ground today:

• Basic Rust syntax: variables, scalar and compound types, enums, structs, references,
functions, and methods.

• Types and type inference.
• Control flow constructs: loops, conditionals, and so on.
• User-defined types: structs and enums.

Schedule

Including 10 minute breaks, this session should take about 2 hours and 10 minutes. It contains:

Segment Duration

Welcome 5 minutes
Hello, World 15 minutes
Types and Values 40 minutes
Control Flow Basics 45 minutes

This slide should take about 5 minutes.

Please remind the students that:

• They should ask questions when they get them, don't save them to the end.
• The class is meant to be interactive and discussions are very much encouraged!

– As an instructor, you should try to keep the discussions relevant, i.e., keep the
discussions related to how Rust does things vs. some other language. It can be
hard to find the right balance, but err on the side of allowing discussions since they
engage people much more than one-way communication.

• The questions will likely mean that we talk about things ahead of the slides.
– This is perfectly okay! Repetition is an important part of learning. Remember that

the slides are just a support and you are free to skip them as you like.

The idea for the first day is to show the ”basic” things in Rust that should have immediate
parallels in other languages. The more advanced parts of Rust come on the subsequent days.

26

If you're teaching this in a classroom, this is a good place to go over the schedule. Note that
there is an exercise at the end of each segment, followed by a break. Plan to cover the exercise
solution after the break. The times listed here are a suggestion in order to keep the course on
schedule. Feel free to be flexible and adjust as necessary!

27

Chapter 4

Hello, World

This segment should take about 15 minutes. It contains:

Slide Duration

What is Rust? 10 minutes
Benefits of Rust 3 minutes
Playground 2 minutes

4.1 What is Rust?

Rust is a new programming language that had its 1.0 release in 2015:

• Rust is a statically compiled language in a similar role as C++
– rustc uses LLVM as its backend.

• Rust supports many platforms and architectures:
– x86, ARM, WebAssembly, ...
– Linux, Mac, Windows, ...

• Rust is used for a wide range of devices:
– firmware and boot loaders,
– smart displays,
– mobile phones,
– desktops,
– servers.

This slide should take about 10 minutes.

Rust fits in the same area as C++:

• High flexibility.
• High level of control.
• Can be scaled down to very constrained devices such as microcontrollers.
• Has no runtime or garbage collection.
• Focuses on reliability and safety without sacrificing performance.

28

https://blog.rust-lang.org/2015/05/15/Rust-1.0.html
https://doc.rust-lang.org/nightly/rustc/platform-support.html

4.2 Benefits of Rust

Some unique selling points of Rust:

• Compile time memory safety - whole classes of memory bugs are prevented at compile
time

– No uninitialized variables.
– No double-frees.
– No use-after-free.
– No NULL pointers.
– No forgotten locked mutexes.
– No data races between threads.
– No iterator invalidation.

• No undefined runtime behavior - what a Rust statement does is never left unspecified

– Array access is bounds checked.
– Integer overflow is defined (panic or wrap-around).

• Modern language features - as expressive and ergonomic as higher-level languages

– Enums and pattern matching.
– Generics.
– No overhead FFI.
– Zero-cost abstractions.
– Great compiler errors.
– Built-in dependency manager.
– Built-in support for testing.
– Excellent Language Server Protocol support.

This slide should take about 3 minutes.

Do not spend much time here. All of these points will be covered in more depth later.

Make sure to ask the class which languages they have experience with. Depending on the
answer you can highlight different features of Rust:

• Experience with C or C++: Rust eliminates a whole class of runtime errors via the borrow
checker. You get performance like in C and C++, but you don't have the memory unsafety
issues. In addition, you get a modern language with constructs like pattern matching
and built-in dependency management.

• Experience with Java, Go, Python, JavaScript...: You get the same memory safety as in
those languages, plus a similar high-level language feeling. In addition you get fast
and predictable performance like C and C++ (no garbage collector) as well as access to
low-level hardware (should you need it).

4.3 Playground

The Rust Playground provides an easy way to run short Rust programs, and is the basis for
the examples and exercises in this course. Try running the ”hello-world” program it starts
with. It comes with a few handy features:

• Under ”Tools”, use the rustfmt option to format your code in the ”standard” way.

29

https://play.rust-lang.org/

• Rust has two main ”profiles” for generating code: Debug (extra runtime checks, less
optimization) and Release (fewer runtime checks, lots of optimization). These are
accessible under ”Debug” at the top.

• If you're interested, use ”ASM” under ”...” to see the generated assembly code.

This slide should take about 2 minutes.

As students head into the break, encourage them to open up the playground and experiment
a little. Encourage them to keep the tab open and try things out during the rest of the course.
This is particularly helpful for advanced students who want to know more about Rust's
optimizations or generated assembly.

30

Chapter 5

Types and Values

This segment should take about 40 minutes. It contains:

Slide Duration

Hello, World 5 minutes
Variables 5 minutes
Values 5 minutes
Arithmetic 3 minutes
Type Inference 3 minutes
Exercise: Fibonacci 15 minutes

5.1 Hello, World

Let us jump into the simplest possible Rust program, a classic Hello World program:

fn main() {
println!("Hello !");

}

What you see:

• Functions are introduced with fn.
• The main function is the entry point of the program.
• Blocks are delimited by curly braces like in C and C++.
• Statements end with ;.
• println is a macro, indicated by the ! in the invocation.
• Rust strings are UTF-8 encoded and can contain any Unicode character.

This slide should take about 5 minutes.

This slide tries to make the students comfortable with Rust code. They will see a ton of it over
the next four days so we start small with something familiar.

Key points:

• Rust is very much like other languages in the C/C++/Java tradition. It is imperative and
it doesn't try to reinvent things unless absolutely necessary.

31

• Rust is modern with full support for Unicode.

• Rust uses macros for situations where you want to have a variable number of arguments
(no function overloading).

• println! is a macro because it needs to handle an arbitrary number of arguments
based on the format string, which can't be done with a regular function. Otherwise it
can be treated like a regular function.

• Rust is multi-paradigm. For example, it has powerful object-oriented programming
features, and, while it is not a functional language, it includes a range of functional
concepts.

5.2 Variables

Rust provides type safety via static typing. Variable bindings are made with let:

fn main() {
let x: i32 = 10;
println!("x: {x}");
// x = 20;
// println!("x: {x}");

}

This slide should take about 5 minutes.

• Uncomment the x = 20 to demonstrate that variables are immutable by default. Add
the mut keyword to allow changes.

• Warnings are enabled for this slide, such as for unused variables or unnecessary mut.
These are omitted in most slides to avoid distracting warnings. Try removing the
mutation but leaving the mut keyword in place.

• The i32 here is the type of the variable. This must be known at compile time, but type
inference (covered later) allows the programmer to omit it in many cases.

5.3 Values

Here are some basic built-in types, and the syntax for literal values of each type.

Types Literals

Signed integers i8, i16, i32, i64, i128, isize -10, 0, 1_000, 123_i64
Unsigned integers u8, u16, u32, u64, u128, usize 0, 123, 10_u16
Floating point
numbers

f32, f64 3.14, -10.0e20, 2_f32

Unicode scalar
values

char 'a', 'α', '∞'

Booleans bool true, false

The types have widths as follows:

• iN, uN, and fN are N bits wide,

32

https://doc.rust-lang.org/book/ch17-00-oop.html
https://doc.rust-lang.org/book/ch17-00-oop.html
https://doc.rust-lang.org/book/ch13-00-functional-features.html
https://doc.rust-lang.org/book/ch13-00-functional-features.html

• isize and usize are the width of a pointer,
• char is 32 bits wide,
• bool is 8 bits wide.

This slide should take about 5 minutes.

There are a few syntaxes that are not shown above:

• All underscores in numbers can be left out, they are for legibility only. So 1_000 can be
written as 1000 (or 10_00), and 123_i64 can be written as 123i64.

5.4 Arithmetic

fn interproduct(a: i32, b: i32, c: i32) -> i32 {
return a * b + b * c + c * a;

}

fn main() {
println!("result: {}", interproduct(120, 100, 248));

}

This slide should take about 3 minutes.

This is the first time we've seen a function other than main, but the meaning should be clear:
it takes three integers, and returns an integer. Functions will be covered in more detail later.

Arithmetic is very similar to other languages, with similar precedence.

What about integer overflow? In C and C++ overflow of signed integers is actually undefined,
and might do unknown things at runtime. In Rust, it's defined.

Change the i32's to i16 to see an integer overflow, which panics (checked) in a debug build
and wraps in a release build. There are other options, such as overflowing, saturating,
and carrying. These are accessed with method syntax, e.g., (a * b).saturating_add(b *
c).saturating_add(c * a).

In fact, the compiler will detect overflow of constant expressions, which is why the example
requires a separate function.

5.5 Type Inference

Rust will look at how the variable is used to determine the type:

fn takes_u32(x: u32) {
println!("u32: {x}");

}

fn takes_i8(y: i8) {
println!("i8: {y}");

}

fn main() {
let x = 10;
let y = 20;

33

takes_u32(x);
takes_i8(y);
// takes_u32(y);

}

This slide should take about 3 minutes.

This slide demonstrates how the Rust compiler infers types based on constraints given by
variable declarations and usages.

It is very important to emphasize that variables declared like this are not of some sort of
dynamic ”any type” that can hold any data. The machine code generated by such declaration
is identical to the explicit declaration of a type. The compiler does the job for us and helps us
write more concise code.

When nothing constrains the type of an integer literal, Rust defaults to i32. This sometimes
appears as {integer} in error messages. Similarly, floating-point literals default to f64.

fn main() {
let x = 3.14;
let y = 20;
assert_eq!(x, y);
// ERROR: no implementation for `{float} == {integer}`

}

5.6 Exercise: Fibonacci

The Fibonacci sequence begins with [0, 1]. For n > 1, the next number is the sum of the
previous two.

Write a function fib(n) that calculates the nth Fibonacci number. When will this function
panic?

fn fib(n: u32) -> u32 {
if n < 2 {

// The base case.
return todo!("Implement this");

} else {
// The recursive case.
return todo!("Implement this");

}
}

fn main() {
let n = 20;
println!("fib({n}) = {}", fib(n));

}

This slide and its sub-slides should take about 15 minutes.

• This exercise is a classic introduction to recursion.
• Encourage students to think about the base cases and the recursive step.

34

• The question ”When will this function panic?” is a hint to think about integer overflow.
The Fibonacci sequence grows quickly!

• Students might come up with an iterative solution as well, which is a great opportunity to
discuss the trade-offs between recursion and iteration (e.g., performance, stack overflow
for deep recursion).

5.6.1 Solution

fn fib(n: u32) -> u32 {
if n < 2 {

return n;
} else {

return fib(n - 1) + fib(n - 2);
}

}

fn main() {
let n = 20;
println!("fib({n}) = {}", fib(n));

}

• Walk through the solution step-by-step.
• Explain the recursive calls and how they lead to the final result.
• Discuss the integer overflow issue. With u32, the function will panic for n around 47.

You can demonstrate this by changing the input to main.
• Show an iterative solution as an alternative and compare its performance and memory

usage with the recursive one. An iterative solution will be much more efficient.

More to Explore

For a more advanced discussion, you can introduce memoization or dynamic programming to
optimize the recursive Fibonacci calculation, although this is beyond the scope of the current
topic.

35

Chapter 6

Control Flow Basics

This segment should take about 45 minutes. It contains:

Slide Duration

Blocks and Scopes 5 minutes
if Expressions 4 minutes
match Expressions 5 minutes
Loops 5 minutes
break and continue 4 minutes
Functions 3 minutes
Macros 2 minutes
Exercise: Collatz Sequence 15 minutes

• We will now cover the many kinds of flow control found in Rust.

• Most of this will be very familiar to what you have seen in other programming languages.

6.1 Blocks and Scopes

• A block in Rust contains a sequence of expressions, enclosed by braces {}.
• The final expression of a block determines the value and type of the whole block.

fn main() {
let z = 13;
let x = {

let y = 10;
dbg!(y);
z - y

};
dbg!(x);
// dbg!(y);

}

If the last expression ends with ;, then the resulting value and type is ().

A variable's scope is limited to the enclosing block.

36

This slide should take about 5 minutes.

• You can explain that dbg! is a Rust macro that prints and returns the value of a given
expression for quick and dirty debugging.

• You can show how the value of the block changes by changing the last line in the block.
For instance, adding/removing a semicolon or using a return.

• Demonstrate that attempting to access y outside of its scope won't compile.

• Values are effectively ”deallocated” when they go out of their scope, even if their data
on the stack is still there.

6.2 if expressions

You use if expressions exactly like if statements in other languages:

fn main() {
let x = 10;
if x == 0 {

println!("zero!");
} else if x < 100 {

println!("biggish");
} else {

println!("huge");
}

}

In addition, you can use if as an expression. The last expression of each block becomes the
value of the if expression:

fn main() {
let x = 10;
let size = if x < 20 { "small" } else { "large" };
println!("number size: {}", size);

}

This slide should take about 4 minutes.

Because if is an expression and must have a particular type, both of its branch blocks must
have the same type. Show what happens if you add ; after "small" in the second example.

An if expression should be used in the same way as the other expressions. For example,
when it is used in a let statement, the statement must be terminated with a ; as well. Remove
the ; before println! to see the compiler error.

6.3 match Expressions

match can be used to check a value against one or more options:

fn main() {
let val = 1;
match val {

1 => println!("one"),

37

https://doc.rust-lang.org/reference/expressions/if-expr.html#if-expressions

10 => println!("ten"),
100 => println!("one hundred"),
_ => {

println!("something else");
}

}
}

Like if expressions, match can also return a value;

fn main() {
let flag = true;
let val = match flag {

true => 1,
false => 0,

};
println!("The value of {flag} is {val}");

}

This slide should take about 5 minutes.

• match arms are evaluated from top to bottom, and the first one that matches has its
corresponding body executed.

• There is no fall-through between cases the way that switch works in other languages.

• The body of a match arm can be a single expression or a block. Technically this is the
same thing, since blocks are also expressions, but students may not fully understand
that symmetry at this point.

• match expressions need to be exhaustive, meaning they either need to cover all possible
values or they need to have a default case such as _. Exhaustiveness is easiest to demon-
strate with enums, but enums haven't been introduced yet. Instead we demonstrate
matching on a bool, which is the simplest primitive type.

• This slide introduces match without talking about pattern matching, giving students
a chance to get familiar with the syntax without front-loading too much information.
We'll be talking about pattern matching in more detail tomorrow, so try not to go into
too much detail here.

More to Explore

• To further motivate the usage of match, you can compare the examples to their equiva-
lents written with if. In the second case, matching on a bool, an if {} else {} block
is pretty similar. But in the first example that checks multiple cases, a match expression
can be more concise than if {} else if {} else if {} else.

• match also supports match guards, which allow you to add an arbitrary logical condition
that will get evaluated to determine if the match arm should be taken. However talking
about match guards requires explaining about pattern matching, which we're trying to
avoid on this slide.

38

6.4 Loops

There are three looping keywords in Rust: while, loop, and for:

while

The while keyword works much like in other languages, executing the loop body as long as
the condition is true.

fn main() {
let mut x = 200;
while x >= 10 {

x = x / 2;
}
dbg!(x);

}

6.4.1 for

The for loop iterates over ranges of values or the items in a collection:

fn main() {
for x in 1..5 {

dbg!(x);
}

for elem in [2, 4, 8, 16, 32] {
dbg!(elem);

}
}

• Under the hood for loops use a concept called ”iterators” to handle iterating over
different kinds of ranges/collections. Iterators will be discussed in more detail later.

• Note that the first for loop only iterates to 4. Show the 1..=5 syntax for an inclusive
range.

6.4.2 loop

The loop statement just loops forever, until a break.

fn main() {
let mut i = 0;
loop {

i += 1;
dbg!(i);
if i > 100 {

break;
}

}
}

• The loop statement works like a while true loop. Use it for things like servers that
will serve connections forever.

39

https://doc.rust-lang.org/reference/expressions/loop-expr.html#predicate-loops
https://doc.rust-lang.org/std/keyword.for.html
https://doc.rust-lang.org/std/keyword.loop.html

6.5 break and continue

If you want to immediately start the next iteration use continue.

If you want to exit any kind of loop early, use break. With loop, this can take an optional
expression that becomes the value of the loop expression.

fn main() {
let mut i = 0;
loop {

i += 1;
if i > 5 {

break;
}
if i % 2 == 0 {

continue;
}
dbg!(i);

}
}

This slide and its sub-slides should take about 4 minutes.

Note that loop is the only looping construct that can return a non-trivial value. This is because
it's guaranteed to only return at a break statement (unlike while and for loops, which can
also return when the condition fails).

6.5.1 Labels

Both continue and break can optionally take a label argument that is used to break out of
nested loops:

fn main() {
let s = [[5, 6, 7], [8, 9, 10], [21, 15, 32]];
let mut elements_searched = 0;
let target_value = 10;
'outer: for i in 0..=2 {

for j in 0..=2 {
elements_searched += 1;
if s[i][j] == target_value {

break 'outer;
}

}
}
dbg!(elements_searched);

}

• Labeled break also works on arbitrary blocks, e.g.
'label: {

break 'label;
println!("This line gets skipped");

}

40

https://doc.rust-lang.org/reference/expressions/loop-expr.html#continue-expressions
https://doc.rust-lang.org/reference/expressions/loop-expr.html#break-expressions

6.6 Functions

fn gcd(a: u32, b: u32) -> u32 {
if b > 0 { gcd(b, a % b) } else { a }

}

fn main() {
dbg!(gcd(143, 52));

}

This slide should take about 3 minutes.

• Declaration parameters are followed by a type (the reverse of some programming
languages), then a return type.

• The last expression in a function body (or any block) becomes the return value. Simply
omit the ; at the end of the expression. The return keyword can be used for early
return, but the ”bare value” form is idiomatic at the end of a function (refactor gcd to
use a return).

• Some functions have no return value, and return the 'unit type', (). The compiler will
infer this if the return type is omitted.

• Overloading is not supported -- each function has a single implementation.
– Always takes a fixed number of parameters. Default arguments are not supported.

Macros can be used to support variadic functions.
– Always takes a single set of parameter types. These types can be generic, which

will be covered later.

6.7 Macros

Macros are expanded into Rust code during compilation, and can take a variable number of
arguments. They are distinguished by a ! at the end. The Rust standard library includes an
assortment of useful macros.

• println!(format, ..) prints a line to standard output, applying formatting de-
scribed in std::fmt.

• format!(format, ..) works just like println! but returns the result as a string.
• dbg!(expression) logs the value of the expression and returns it.
• todo!() marks a bit of code as not-yet-implemented. If executed, it will panic.

fn factorial(n: u32) -> u32 {
let mut product = 1;
for i in 1..=n {

product *= dbg!(i);
}
product

}

fn fizzbuzz(n: u32) -> u32 {
todo!()

}

fn main() {
let n = 4;

41

https://doc.rust-lang.org/std/fmt/index.html

println!("{n}! = {}", factorial(n));
}

This slide should take about 2 minutes.

The takeaway from this section is that these common conveniences exist, and how to use
them. Why they are defined as macros, and what they expand to, is not especially critical.

The course does not cover defining macros, but a later section will describe use of derive
macros.

More To Explore

There are a number of other useful macros provided by the standard library. Some other
examples you can share with students if they want to know more:

• assert! and related macros can be used to add assertions to your code. These are used
heavily in writing tests.

• unreachable! is used to mark a branch of control flow that should never be hit.
• eprintln! allows you to print to stderr.

6.8 Exercise: Collatz Sequence

The Collatz Sequence is defined as follows, for an arbitrary n1 greater than zero:

• If ni is 1, then the sequence terminates at ni.
• If ni is even, then ni+1 = ni / 2.
• If ni is odd, then ni+1 = 3 * ni + 1.

For example, beginning with n1 = 3:

• 3 is odd, so n2 = 3 * 3 + 1 = 10;
• 10 is even, so n3 = 10 / 2 = 5;
• 5 is odd, so n4 = 3 * 5 + 1 = 16;
• 16 is even, so n5 = 16 / 2 = 8;
• 8 is even, so n6 = 8 / 2 = 4;
• 4 is even, so n7 = 4 / 2 = 2;
• 2 is even, so n8 = 1; and
• the sequence terminates.

Write a function to calculate the length of the Collatz sequence for a given initial n.

/// Determine the length of the collatz sequence beginning at `n`.
fn collatz_length(mut n: i32) -> u32 {

todo!("Implement this")
}

fn main() {
println!("Length: {}", collatz_length(11)); // should be 15

}

42

https://doc.rust-lang.org/stable/std/macro.assert.html
https://doc.rust-lang.org/stable/std/macro.unreachable.html
https://doc.rust-lang.org/stable/std/macro.eprintln.html
https://en.wikipedia.org/wiki/Collatz_conjecture

6.8.1 Solution

/// Determine the length of the collatz sequence beginning at `n`.
fn collatz_length(mut n: i32) -> u32 {

let mut len = 1;
while n > 1 {

n = if n % 2 == 0 { n / 2 } else { 3 * n + 1 };
len += 1;

}
len

}

fn main() {
println!("Length: {}", collatz_length(11)); // should be 15

}

• Note that the argument n is marked as mut, allowing you to change the value of n in
the function. Like variables, function arguments are immutable by default and you
must add mut if you want to modify their value. This does not affect how the function is
called or how the argument is passed in.

43

Part II

Day 1: Afternoon

44

Chapter 7

Welcome Back

Including 10 minute breaks, this session should take about 2 hours and 45 minutes. It contains:

Segment Duration

Tuples and Arrays 35 minutes
References 55 minutes
User-Defined Types 1 hour

45

Chapter 8

Tuples and Arrays

This segment should take about 35 minutes. It contains:

Slide Duration

Arrays 5 minutes
Tuples 5 minutes
Array Iteration 3 minutes
Patterns and Destructuring 5 minutes
Exercise: Nested Arrays 15 minutes

• We have seen how primitive types work in Rust. Now it's time for you to start building
new composite types.

8.1 Arrays

fn main() {
let mut a: [i8; 5] = [5, 4, 3, 2, 1];
a[2] = 0;
println!("a: {a:?}");

}

This slide should take about 5 minutes.

• Arrays can also be initialized using the shorthand syntax, e.g. [0; 1024]. This can be
useful when you want to initialize all elements to the same value, or if you have a large
array that would be hard to initialize manually.

• A value of the array type [T; N] holds N (a compile-time constant) elements of the same
type T. Note that the length of the array is part of its type, which means that [u8; 3]
and [u8; 4] are considered two different types. Slices, which have a size determined
at runtime, are covered later.

• Try accessing an out-of-bounds array element. The compiler is able to determine that
the index is unsafe, and will not compile the code:

46

fn main() {
let mut a: [i8; 5] = [5, 4, 3, 2, 1];
a[6] = 0;
println!("a: {a:?}");

}

• Array accesses are checked at runtime. Rust can usually optimize these checks away;
meaning if the compiler can prove the access is safe, it removes the runtime check for
better performance. They can be avoided using unsafe Rust. The optimization is so
good that it's hard to give an example of runtime checks failing. The following code will
compile but panic at runtime:

fn get_index() -> usize {
6

}

fn main() {
let mut a: [i8; 5] = [5, 4, 3, 2, 1];
a[get_index()] = 0;
println!("a: {a:?}");

}

• We can use literals to assign values to arrays.

• Arrays are not heap-allocated. They are regular values with a fixed size known at
compile time, meaning they go on the stack. This can be different from what students
expect if they come from a garbage-collected language, where arrays may be heap
allocated by default.

• There is no way to remove elements from an array, nor add elements to an array. The
length of an array is fixed at compile-time, and so its length cannot change at runtime.

Debug Printing

• The println! macro asks for the debug implementation with the ? format parameter:
{} gives the default output, {:?} gives the debug output. Types such as integers and
strings implement the default output, but arrays only implement the debug output. This
means that we must use debug output here.

• Adding #, eg {a:#?}, invokes a ”pretty printing” format, which can be easier to read.

8.2 Tuples

fn main() {
let t: (i8, bool) = (7, true);
dbg!(t.0);
dbg!(t.1);

}

This slide should take about 5 minutes.

• Like arrays, tuples have a fixed length.

• Tuples group together values of different types into a compound type.

47

• Fields of a tuple can be accessed by the period and the index of the value, e.g. t.0, t.1.

• The empty tuple () is referred to as the ”unit type” and signifies absence of a return
value, akin to void in other languages.

• Unlike arrays, tuples cannot be used in a for loop. This is because a for loop requires
all the elements to have the same type, which may not be the case for a tuple.

• There is no way to add or remove elements from a tuple. The number of elements and
their types are fixed at compile time and cannot be changed at runtime.

8.3 Array Iteration

The for statement supports iterating over arrays (but not tuples).

fn main() {
let primes = [2, 3, 5, 7, 11, 13, 17, 19];
for prime in primes {

for i in 2..prime {
assert_ne!(prime % i, 0);

}
}

}

This slide should take about 3 minutes.

This functionality uses the IntoIterator trait, but we haven't covered that yet.

Theassert_ne! macro is new here. There are alsoassert_eq! andassert! macros. These
are always checked, while debug-only variants like debug_assert! compile to nothing in
release builds.

8.4 Patterns and Destructuring

Rust supports using pattern matching to destructure a larger value like a tuple into its
constituent parts:

fn check_order(tuple: (i32, i32, i32)) -> bool {
let (left, middle, right) = tuple;
left < middle && middle < right

}

fn main() {
let tuple = (1, 5, 3);
println!(

"{tuple:?}: {}",
if check_order(tuple) { "ordered" } else { "unordered" }

);
}

This slide should take about 5 minutes.

• The patterns used here are ”irrefutable”, meaning that the compiler can statically verify
that the value on the right of = has the same structure as the pattern.

48

• A variable name is an irrefutable pattern that always matches any value, hence why we
can also use let to declare a single variable.

• Rust also supports using patterns in conditionals, allowing for equality comparison
and destructuring to happen at the same time. This form of pattern matching will be
discussed in more detail later.

• Edit the examples above to show the compiler error when the pattern doesn't match
the value being matched on.

8.5 Exercise: Nested Arrays

Arrays can contain other arrays:

let array = [[1, 2, 3], [4, 5, 6], [7, 8, 9]];

What is the type of this variable?

Use an array such as the above to write a function transpose that transposes a matrix (turns
rows into columns):

⎛⎡1 2 3⎤⎞ ⎡1 4 7⎤
"transpose"⎜⎢4 5 6⎥⎟ "=="⎢2 5 8⎥

⎝⎣7 8 9⎦⎠ ⎣3 6 9⎦

Copy the code below to https://play.rust-lang.org/ and implement the function. This function
only operates on 3x3 matrices.

fn transpose(matrix: [[i32; 3]; 3]) -> [[i32; 3]; 3] {
todo!()

}

fn main() {
let matrix = [

[101, 102, 103], // <-- the comment makes rustfmt add a newline
[201, 202, 203],
[301, 302, 303],

];

println!("Original:");
for row in &matrix {

println!("{:?}", row);
}

let transposed = transpose(matrix);

println!("\nTransposed:");
for row in &transposed {

println!("{:?}", row);
}

}

49

https://play.rust-lang.org/

8.5.1 Solution

fn transpose(matrix: [[i32; 3]; 3]) -> [[i32; 3]; 3] {
let mut result = [[0; 3]; 3];
for i in 0..3 {

for j in 0..3 {
result[j][i] = matrix[i][j];

}
}
result

}

fn main() {
let matrix = [

[101, 102, 103], // <-- the comment makes rustfmt add a newline
[201, 202, 203],
[301, 302, 303],

];

println!("Original:");
for row in &matrix {

println!("{:?}", row);
}

let transposed = transpose(matrix);

println!("\nTransposed:");
for row in &transposed {

println!("{:?}", row);
}

}

50

Chapter 9

References

This segment should take about 55 minutes. It contains:

Slide Duration

Shared References 10 minutes
Exclusive References 5 minutes
Slices 10 minutes
Strings 10 minutes
Reference Validity 3 minutes
Exercise: Geometry 20 minutes

9.1 Shared References

A reference provides a way to access another value without taking ownership of the value,
and is also called ”borrowing”. Shared references are read-only, and the referenced data
cannot change.

fn main() {
let a = 'A';
let b = 'B';

let mut r: &char = &a;
dbg!(r);

r = &b;
dbg!(r);

}

A shared reference to a type T has type &T. A reference value is made with the & operator.
The * operator ”dereferences” a reference, yielding its value.

This slide should take about 7 minutes.

• References can never be null in Rust, so null checking is not necessary.

51

• A reference is said to ”borrow” the value it refers to, and this is a good model for students
not familiar with pointers: code can use the reference to access the value, but is still
”owned” by the original variable. The course will get into more detail on ownership in
day 3.

• References are implemented as pointers, and a key advantage is that they can be much
smaller than the thing they point to. Students familiar with C or C++ will recognize
references as pointers. Later parts of the course will cover how Rust prevents the
memory-safety bugs that come from using raw pointers.

• Explicit referencing with & is usually required. However, Rust performs automatic
referencing and dereferencing when invoking methods.

• Rust will auto-dereference in some cases, in particular when invoking methods (try
r.is_ascii()). There is no need for an -> operator like in C++.

• In this example, r is mutable so that it can be reassigned (r = &b). Note that this re-
binds r, so that it refers to something else. This is different from C++, where assignment
to a reference changes the referenced value.

• A shared reference does not allow modifying the value it refers to, even if that value
was mutable. Try *r = 'X'.

• Rust is tracking the lifetimes of all references to ensure they live long enough. Dangling
references cannot occur in safe Rust.

• We will talk more about borrowing and preventing dangling references when we get to
ownership.

9.2 Exclusive References

Exclusive references, also known as mutable references, allow changing the value they refer
to. They have type &mut T.

fn main() {
let mut point = (1, 2);
let x_coord = &mut point.0;
*x_coord = 20;
println!("point: {point:?}");

}

This slide should take about 5 minutes.

Key points:

• ”Exclusive” means that only this reference can be used to access the value. No other
references (shared or exclusive) can exist at the same time, and the referenced value
cannot be accessed while the exclusive reference exists. Try making an &point.0 or
changing point.0 while x_coord is alive.

• Be sure to note the difference between let mut x_coord: &i32 and let x_coord:
&mut i32. The first one is a shared reference that can be bound to different values,
while the second is an exclusive reference to a mutable value.

52

9.3 Slices

A slice gives you a view into a larger collection:

fn main() {
let a: [i32; 6] = [10, 20, 30, 40, 50, 60];
println!("a: {a:?}");

let s: &[i32] = &a[2..4];
println!("s: {s:?}");

}

• Slices borrow data from the sliced type.

This slide should take about 7 minutes.

• We create a slice by borrowing a and specifying the starting and ending indexes in
brackets.

• If the slice starts at index 0, Rust’s range syntax allows us to drop the starting index,
meaning that &a[0..a.len()] and &a[..a.len()] are identical.

• The same is true for the last index, so &a[2..a.len()] and &a[2..] are identical.

• To easily create a slice of the full array, we can therefore use &a[..].

• s is a reference to a slice of i32s. Notice that the type of s (&[i32]) no longer mentions
the array length. This allows us to perform computation on slices of different sizes.

• Slices always borrow from another object. In this example, a has to remain 'alive' (in
scope) for at least as long as our slice.

• You can't ”grow” a slice once it's created:

– You can't append elements of the slice, since it doesn't own the backing buffer.
– You can't grow a slice to point to a larger section of the backing buffer. A slice does

not have information about the length of the underlying buffer and so you can't
know how large the slice can be grown.

– To get a larger slice you have to back to the original buffer and create a larger slice
from there.

9.4 Strings

We can now understand the two string types in Rust:

• &str is a slice of UTF-8 encoded bytes, similar to &[u8].
• String is an owned buffer of UTF-8 encoded bytes, similar to Vec<T>.

fn main() {
let s1: &str = "World";
println!("s1: {s1}");

let mut s2: String = String::from("Hello ");
println!("s2: {s2}");

s2.push_str(s1);

53

println!("s2: {s2}");

let s3: &str = &s2[2..9];
println!("s3: {s3}");

}

This slide should take about 10 minutes.

• &str introduces a string slice, which is an immutable reference to UTF-8 encoded string
data stored in a block of memory. String literals ("Hello"), are stored in the program’s
binary.

• Rust's String type is a wrapper around a vector of bytes. As with a Vec<T>, it is owned.

• As with many other types String::from() creates a string from a string literal;
String::new() creates a new empty string, to which string data can be added using
the push() and push_str() methods.

• The format!() macro is a convenient way to generate an owned string from dynamic
values. It accepts the same format specification as println!().

• You can borrow &str slices from String via & and optionally range selection. If you
select a byte range that is not aligned to character boundaries, the expression will panic.
The chars iterator iterates over characters and is preferred over trying to get character
boundaries right.

• For C++ programmers: think of &str as std::string_view from C++, but the one
that always points to a valid string in memory. Rust String is a rough equivalent of
std::string from C++ (main difference: it can only contain UTF-8 encoded bytes and
will never use a small-string optimization).

• Byte strings literals allow you to create a &[u8] value directly:

fn main() {
println!("{:?}", b"abc");
println!("{:?}", &[97, 98, 99]);

}

• Raw strings allow you to create a &str value with escapes disabled: r"\n" == "\\n".
You can embed double-quotes by using an equal amount of # on either side of the quotes:

fn main() {
println!(r#"link"#);
println!("link");

}

9.5 Reference Validity

Rust enforces a number of rules for references that make them always safe to use. One rule is
that references can never be null, making them safe to use without null checks. The other
rule we'll look at for now is that references can't outlive the data they point to.

fn main() {
let x_ref = {

let x = 10;
&x

54

};
dbg!(x_ref);

}

This slide should take about 3 minutes.

• This slide gets students thinking about references as not simply being pointers, since
Rust has different rules for references than other languages.

• We'll look at the rest of Rust's borrowing rules on day 3 when we talk about Rust's
ownership system.

More to Explore

• Rust's equivalent of nullability is the Option type, which can be used to make any type
”nullable” (not just references/pointers). We haven't yet introduced enums or pattern
matching, though, so try not to go into too much detail about this here.

9.6 Exercise: Geometry

We will create a few utility functions for 3-dimensional geometry, representing a point as
[f64;3]. It is up to you to determine the function signatures.

// Calculate the magnitude of a vector by summing the squares of its coordinates
// and taking the square root. Use the `sqrt()` method to calculate the square
// root, like `v.sqrt()`.

fn magnitude(...) -> f64 {
todo!()

}

// Normalize a vector by calculating its magnitude and dividing all of its
// coordinates by that magnitude.

fn normalize(...) {
todo!()

}

// Use the following `main` to test your work.

fn main() {
println!("Magnitude of a unit vector: {}", magnitude(&[0.0, 1.0, 0.0]));

let mut v = [1.0, 2.0, 9.0];
println!("Magnitude of {v:?}: {}", magnitude(&v));
normalize(&mut v);
println!("Magnitude of {v:?} after normalization: {}", magnitude(&v));

}

55

9.6.1 Solution

/// Calculate the magnitude of the given vector.
fn magnitude(vector: &[f64; 3]) -> f64 {

let mut mag_squared = 0.0;
for coord in vector {

mag_squared += coord * coord;
}
mag_squared.sqrt()

}

/// Change the magnitude of the vector to 1.0 without changing its direction.
fn normalize(vector: &mut [f64; 3]) {

let mag = magnitude(vector);
for item in vector {

*item /= mag;
}

}

fn main() {
println!("Magnitude of a unit vector: {}", magnitude(&[0.0, 1.0, 0.0]));

let mut v = [1.0, 2.0, 9.0];
println!("Magnitude of {v:?}: {}", magnitude(&v));
normalize(&mut v);
println!("Magnitude of {v:?} after normalization: {}", magnitude(&v));

}

• Note that in normalize we were able to do *item /= mag to modify each element.
This is because we're iterating using a mutable reference to an array, which causes the
for loop to give mutable references to each element.

• It is also possible to take slice references here, e.g., fn magnitude(vector: &[f64])
-> f64. This makes the function more general, at the cost of a runtime length check.

56

Chapter 10

User-Defined Types

This segment should take about 1 hour. It contains:

Slide Duration

Named Structs 10 minutes
Tuple Structs 10 minutes
Enums 5 minutes
Type Aliases 2 minutes
Const 10 minutes
Static 5 minutes
Exercise: Elevator Events 15 minutes

10.1 Named Structs

Like C and C++, Rust has support for custom structs:

struct Person {
name: String,
age: u8,

}

fn describe(person: &Person) {
println!("{} is {} years old", person.name, person.age);

}

fn main() {
let mut peter = Person {

name: String::from("Peter"),
age: 27,

};
describe(&peter);

peter.age = 28;
describe(&peter);

57

let name = String::from("Avery");
let age = 39;
let avery = Person { name, age };
describe(&avery);

}

This slide should take about 10 minutes.

Key Points:

• Structs work like in C or C++.
– Like in C++, and unlike in C, no typedef is needed to define a type.
– Unlike in C++, there is no inheritance between structs.

• This may be a good time to let people know there are different types of structs.
– Zero-sized structs (e.g. struct Foo;) might be used when implementing a trait on

some type but don’t have any data that you want to store in the value itself.
– The next slide will introduce Tuple structs, used when the field names are not

important.
• If you already have variables with the right names, then you can create the struct using

a shorthand.
• Struct fields do not support default values. Default values are specified by implementing

the Default trait which we will cover later.

More to Explore

• You can also demonstrate the struct update syntax here:

let jackie = Person { name: String::from("Jackie"), ..avery };

• It allows us to copy the majority of the fields from the old struct without having to
explicitly type it all out. It must always be the last element.

• It is mainly used in combination with the Default trait. We will talk about struct update
syntax in more detail on the slide on the Default trait, so we don't need to talk about it
here unless students ask about it.

10.2 Tuple Structs

If the field names are unimportant, you can use a tuple struct:

struct Point(i32, i32);

fn main() {
let p = Point(17, 23);
println!("({}, {})", p.0, p.1);

}

This is often used for single-field wrappers (called newtypes):

struct PoundsOfForce(f64);
struct Newtons(f64);

fn compute_thruster_force() -> PoundsOfForce {

58

todo!("Ask a rocket scientist at NASA")
}

fn set_thruster_force(force: Newtons) {
// ...

}

fn main() {
let force = compute_thruster_force();
set_thruster_force(force);

}

This slide should take about 10 minutes.

• Newtypes are a great way to encode additional information about the value in a primitive
type, for example:
– The number is measured in some units: Newtons in the example above.
– The value passed some validation when it was created, so you no longer have to

validate it again at every use: PhoneNumber(String) or OddNumber(u32).
• The newtype pattern is covered extensively in the ”Idiomatic Rust” module.
• Demonstrate how to add a f64 value to a Newtons type by accessing the single field in

the newtype.
– Rust generally avoids implicit conversions, like automatic unwrapping or using

booleans as integers.

* Operator overloading is discussed on Day 2 (Standard Library Traits).
• When a tuple struct has zero fields, the () can be omitted. The result is a zero-sized type

(ZST), of which there is only one value (the name of the type).
– This is common for types that implement some behavior but have no data (imagine

a NullReader that implements some reader behavior by always returning EOF).
• The example is a subtle reference to the Mars Climate Orbiter failure.

10.3 Enums

The enum keyword allows the creation of a type which has a few different variants:

#[derive(Debug)]
enum Direction {

Left,
Right,

}

#[derive(Debug)]
enum PlayerMove {

Pass, // Simple variant
Run(Direction), // Tuple variant
Teleport { x: u32, y: u32 }, // Struct variant

}

fn main() {
let dir = Direction::Left;
let player_move: PlayerMove = PlayerMove::Run(dir);

59

https://en.wikipedia.org/wiki/Mars_Climate_Orbiter

println!("On this turn: {player_move:?}");
}

This slide should take about 5 minutes.

Key Points:

• Enumerations allow you to collect a set of values under one type.
• Direction is a type with variants. There are two values ofDirection: Direction::Left

and Direction::Right.
• PlayerMove is a type with three variants. In addition to the payloads, Rust will store a

discriminant so that it knows at runtime which variant is in a PlayerMove value.
• This might be a good time to compare structs and enums:

– In both, you can have a simple version without fields (unit struct) or one with
different types of fields (variant payloads).

– You could even implement the different variants of an enum with separate structs
but then they wouldn’t be the same type as they would if they were all defined in
an enum.

• Rust uses minimal space to store the discriminant.
– If necessary, it stores an integer of the smallest required size
– If the allowed variant values do not cover all bit patterns, it will use invalid bit

patterns to encode the discriminant (the ”niche optimization”). For example,
Option<&u8> stores either a pointer to an integer or NULL for the None variant.

– You can control the discriminant if needed (e.g., for compatibility with C):
#[repr(u32)]
enum Bar {

A, // 0
B = 10000,
C, // 10001

}

fn main() {
println!("A: {}", Bar::A as u32);
println!("B: {}", Bar::B as u32);
println!("C: {}", Bar::C as u32);

}
Without repr, the discriminant type takes 2 bytes, because 10001 fits 2 bytes.

More to Explore

Rust has several optimizations it can employ to make enums take up less space.

• Null pointer optimization: For some types, Rust guarantees thatsize_of::<T>() equals
size_of::<Option<T>>().

Example code if you want to show how the bitwise representation may look like in
practice. It's important to note that the compiler provides no guarantees regarding this
representation, therefore this is totally unsafe.

use std::mem::transmute;

macro_rules! dbg_bits {
($e:expr, $bit_type:ty) => {

println!("- {}: {:#x}", stringify!($e), transmute::<_, $bit_type>($e));

60

https://doc.rust-lang.org/std/option/#representation

};
}

fn main() {
unsafe {

println!("bool:");
dbg_bits!(false, u8);
dbg_bits!(true, u8);

println!("Option<bool>:");
dbg_bits!(None::<bool>, u8);
dbg_bits!(Some(false), u8);
dbg_bits!(Some(true), u8);

println!("Option<Option<bool>>:");
dbg_bits!(Some(Some(false)), u8);
dbg_bits!(Some(Some(true)), u8);
dbg_bits!(Some(None::<bool>), u8);
dbg_bits!(None::<Option<bool>>, u8);

println!("Option<&i32>:");
dbg_bits!(None::<&i32>, usize);
dbg_bits!(Some(&0i32), usize);

}
}

10.4 Type Aliases

A type alias creates a name for another type. The two types can be used interchangeably.

enum CarryableConcreteItem {
Left,
Right,

}

type Item = CarryableConcreteItem;

// Aliases are more useful with long, complex types:
use std::cell::RefCell;
use std::sync::{Arc, RwLock};
type PlayerInventory = RwLock<Vec<Arc<RefCell<Item>>>>;

This slide should take about 2 minutes.

• A newtype is often a better alternative since it creates a distinct type. Prefer struct
InventoryCount(usize) to type InventoryCount = usize.

• C programmers will recognize this as similar to a typedef.

61

10.5 const

Constants are evaluated at compile time and their values are inlined wherever they are used:

const DIGEST_SIZE: usize = 3;
const FILL_VALUE: u8 = calculate_fill_value();

const fn calculate_fill_value() -> u8 {
if DIGEST_SIZE < 10 { 42 } else { 13 }

}

fn compute_digest(text: &str) -> [u8; DIGEST_SIZE] {
let mut digest = [FILL_VALUE; DIGEST_SIZE];
for (idx, &b) in text.as_bytes().iter().enumerate() {

digest[idx % DIGEST_SIZE] = digest[idx % DIGEST_SIZE].wrapping_add(b);
}
digest

}

fn main() {
let digest = compute_digest("Hello");
println!("digest: {digest:?}");

}

Only functions marked const can be called at compile time to generate const values. const
functions can however be called at runtime.

This slide should take about 10 minutes.

• Mention that const behaves semantically similar to C++'s constexpr

10.6 static

Static variables will live during the whole execution of the program, and therefore will not
move:

static BANNER: &str = "Welcome to RustOS 3.14";

fn main() {
println!("{BANNER}");

}

As noted in the Rust RFC Book, these are not inlined upon use and have an actual associated
memory location. This is useful for unsafe and embedded code, and the variable lives through
the entirety of the program execution. When a globally-scoped value does not have a reason
to need object identity, const is generally preferred.

This slide should take about 5 minutes.

• static is similar to mutable global variables in C++.
• static provides object identity: an address in memory and state as required by types

with interior mutability such as Mutex<T>.

62

https://rust-lang.github.io/rfcs/0246-const-vs-static.html
https://rust-lang.github.io/rfcs/0246-const-vs-static.html

More to Explore

Because static variables are accessible from any thread, they must be Sync. Interior
mutability is possible through a Mutex, atomic or similar.

It is common to use OnceLock in a static as a way to support initialization on first use.
OnceCell is not Sync and thus cannot be used in this context.

Thread-local data can be created with the macro std::thread_local.

10.7 Exercise: Elevator Events

We will create a data structure to represent an event in an elevator control system. It is up to
you to define the types and functions to construct various events. Use #[derive(Debug)] to
allow the types to be formatted with {:?}.

This exercise only requires creating and populating data structures so that main runs without
errors. The next part of the course will cover getting data out of these structures.

#![allow(dead_code)]

#[derive(Debug)]
/// An event in the elevator system that the controller must react to.
enum Event {

// TODO: add required variants
}

/// A direction of travel.
#[derive(Debug)]
enum Direction {

Up,
Down,

}

/// The car has arrived on the given floor.
fn car_arrived(floor: i32) -> Event {

todo!()
}

/// The car doors have opened.
fn car_door_opened() -> Event {

todo!()
}

/// The car doors have closed.
fn car_door_closed() -> Event {

todo!()
}

/// A directional button was pressed in an elevator lobby on the given floor.
fn lobby_call_button_pressed(floor: i32, dir: Direction) -> Event {

todo!()

63

https://doc.rust-lang.org/std/sync/struct.Mutex.html

}

/// A floor button was pressed in the elevator car.
fn car_floor_button_pressed(floor: i32) -> Event {

todo!()
}

fn main() {
println!(

"A ground floor passenger has pressed the up button: {:?}",
lobby_call_button_pressed(0, Direction::Up)

);
println!("The car has arrived on the ground floor: {:?}", car_arrived(0));
println!("The car door opened: {:?}", car_door_opened());
println!(

"A passenger has pressed the 3rd floor button: {:?}",
car_floor_button_pressed(3)

);
println!("The car door closed: {:?}", car_door_closed());
println!("The car has arrived on the 3rd floor: {:?}", car_arrived(3));

}

This slide and its sub-slides should take about 15 minutes.

• If students ask about #![allow(dead_code)] at the top of the exercise, it's necessary
because the only thing we do with the Event type is print it out. Due to a nuance of how
the compiler checks for dead code this causes it to think the code is unused. They can
ignore it for the purpose of this exercise.

10.7.1 Solution

#![allow(dead_code)]

#[derive(Debug)]
/// An event in the elevator system that the controller must react to.
enum Event {

/// A button was pressed.
ButtonPressed(Button),

/// The car has arrived at the given floor.
CarArrived(Floor),

/// The car's doors have opened.
CarDoorOpened,

/// The car's doors have closed.
CarDoorClosed,

}

/// A floor is represented as an integer.
type Floor = i32;

64

/// A direction of travel.
#[derive(Debug)]
enum Direction {

Up,
Down,

}

/// A user-accessible button.
#[derive(Debug)]
enum Button {

/// A button in the elevator lobby on the given floor.
LobbyCall(Direction, Floor),

/// A floor button within the car.
CarFloor(Floor),

}

/// The car has arrived on the given floor.
fn car_arrived(floor: i32) -> Event {

Event::CarArrived(floor)
}

/// The car doors have opened.
fn car_door_opened() -> Event {

Event::CarDoorOpened
}

/// The car doors have closed.
fn car_door_closed() -> Event {

Event::CarDoorClosed
}

/// A directional button was pressed in an elevator lobby on the given floor.
fn lobby_call_button_pressed(floor: i32, dir: Direction) -> Event {

Event::ButtonPressed(Button::LobbyCall(dir, floor))
}

/// A floor button was pressed in the elevator car.
fn car_floor_button_pressed(floor: i32) -> Event {

Event::ButtonPressed(Button::CarFloor(floor))
}

fn main() {
println!(

"A ground floor passenger has pressed the up button: {:?}",
lobby_call_button_pressed(0, Direction::Up)

);
println!("The car has arrived on the ground floor: {:?}", car_arrived(0));
println!("The car door opened: {:?}", car_door_opened());
println!(

"A passenger has pressed the 3rd floor button: {:?}",

65

car_floor_button_pressed(3)
);
println!("The car door closed: {:?}", car_door_closed());
println!("The car has arrived on the 3rd floor: {:?}", car_arrived(3));

}

66

Part III

Day 2: Morning

67

Chapter 11

Welcome to Day 2

Now that we have seen a fair amount of Rust, today will focus on Rust's type system:

• Pattern matching: extracting data from structures.
• Methods: associating functions with types.
• Traits: behaviors shared by multiple types.
• Generics: parameterizing types on other types.
• Standard library types and traits: a tour of Rust's rich standard library.
• Closures: function pointers with data.

Schedule

Including 10 minute breaks, this session should take about 2 hours and 50 minutes. It contains:

Segment Duration

Welcome 3 minutes
Pattern Matching 50 minutes
Methods and Traits 45 minutes
Generics 50 minutes

68

Chapter 12

Pattern Matching

This segment should take about 50 minutes. It contains:

Slide Duration

Irrefutable Patterns 5 minutes
Matching Values 10 minutes
Destructuring Structs 4 minutes
Destructuring Enums 4 minutes
Let Control Flow 10 minutes
Exercise: Expression Evaluation 15 minutes

12.1 Irrefutable Patterns

In day 1 we briefly saw how patterns can be used to destructure compound values. Let's
review that and talk about a few other things patterns can express:

fn takes_tuple(tuple: (char, i32, bool)) {
let a = tuple.0;
let b = tuple.1;
let c = tuple.2;

// This does the same thing as above.
let (a, b, c) = tuple;

// Ignore the first element, only bind the second and third.
let (_, b, c) = tuple;

// Ignore everything but the last element.
let (.., c) = tuple;

}

fn main() {
takes_tuple(('a', 777, true));

}

69

This slide should take about 5 minutes.

• All of the demonstrated patterns are irrefutable, meaning that they will always match
the value on the right hand side.

• Patterns are type-specific, including irrefutable patterns. Try adding or removing an
element to the tuple and look at the resulting compiler errors.

• Variable names are patterns that always match and bind the matched value into a new
variable with that name.

• _ is a pattern that always matches any value, discarding the matched value.

• .. allows you to ignore multiple values at once.

More to Explore

• You can also demonstrate more advanced usages of .., such as ignoring the middle
elements of a tuple.

fn takes_tuple(tuple: (char, i32, bool, u8)) {
let (first, .., last) = tuple;

}

• All of these patterns work with arrays as well:

fn takes_array(array: [u8; 5]) {
let [first, .., last] = array;

}

12.2 Matching Values

The match keyword lets you match a value against one or more patterns. The patterns can be
simple values, similarly to switch in C and C++, but they can also be used to express more
complex conditions:

#[rustfmt::skip]
fn main() {

let input = 'x';
match input {

'q' => println!("Quitting"),
'a' | 's' | 'w' | 'd' => println!("Moving around"),
'0'..='9' => println!("Number input"),
key if key.is_lowercase() => println!("Lowercase: {key}"),
_ => println!("Something else"),

}
}

A variable in the pattern (key in this example) will create a binding that can be used within
the match arm. We will learn more about this on the next slide.

A match guard causes the arm to match only if the condition is true. If the condition is false
the match will continue checking later cases.

This slide should take about 10 minutes.

70

Key Points:

• You might point out how some specific characters are being used when in a pattern

– | as an or
– .. matches any number of items
– 1..=5 represents an inclusive range
– _ is a wild card

• Match guards as a separate syntax feature are important and necessary when we wish
to concisely express more complex ideas than patterns alone would allow.

• Match guards are different from if expressions after the =>. An if expression is
evaluated after the match arm is selected. Failing the if condition inside of that block
won't result in other arms of the original match expression being considered. In the
following example, the wildcard pattern _ => is never even attempted.

#[rustfmt::skip]
fn main() {

let input = 'a';
match input {

key if key.is_uppercase() => println!("Uppercase"),
key => if input == 'q' { println!("Quitting") },
_ => println!("Bug: this is never printed"),

}
}

• The condition defined in the guard applies to every expression in a pattern with an |.
• Note that you can't use an existing variable as the condition in a match arm, as it will

instead be interpreted as a variable name pattern, which creates a new variable that
will shadow the existing one. For example:
let expected = 5;
match 123 {

expected => println!("Expected value is 5, actual is {expected}"),
_ => println!("Value was something else"),

}
Here we're trying to match on the number 123, where we want the first case to check
if the value is 5. The naive expectation is that the first case won't match because the
value isn't 5, but instead this is interpreted as a variable pattern which always matches,
meaning the first branch will always be taken. If a constant is used instead this will
then work as expected.

More To Explore

• Another piece of pattern syntax you can show students is the @ syntax which binds a
part of a pattern to a variable. For example:

let opt = Some(123);
match opt {

outer @ Some(inner) => {
println!("outer: {outer:?}, inner: {inner}");

}

71

None => {}
}

In this example inner has the value 123 which it pulled from the Option via de-
structuring, outer captures the entire Some(inner) expression, so it contains the full
Option::Some(123). This is rarely used but can be useful in more complex patterns.

12.3 Structs

Like tuples, structs can also be destructured by matching:

struct Foo {
x: (u32, u32),
y: u32,

}

#[rustfmt::skip]
fn main() {

let foo = Foo { x: (1, 2), y: 3 };
match foo {

Foo { y: 2, x: i } => println!("y = 2, x = {i:?}"),
Foo { x: (1, b), y } => println!("x.0 = 1, b = {b}, y = {y}"),
Foo { y, .. } => println!("y = {y}, other fields were ignored"),

}
}

This slide should take about 4 minutes.

• Change the literal values in foo to match with the other patterns.
• Add a new field to Foo and make changes to the pattern as needed.

More to Explore

• Try match &foo and check the type of captures. The pattern syntax remains the same,
but the captures become shared references. This is match ergonomics and is often
useful with match self when implementing methods on an enum.
– The same effect occurs with match &mut foo: the captures become exclusive

references.
• The distinction between a capture and a constant expression can be hard to spot. Try

changing the 2 in the first arm to a variable, and see that it subtly doesn't work. Change
it to a const and see it working again.

12.4 Enums

Like tuples, enums can also be destructured by matching:

Patterns can also be used to bind variables to parts of your values. This is how you inspect
the structure of your types. Let us start with a simple enum type:

enum Result {
Ok(i32),

72

https://rust-lang.github.io/rfcs/2005-match-ergonomics.html

Err(String),
}

fn divide_in_two(n: i32) -> Result {
if n % 2 == 0 {

Result::Ok(n / 2)
} else {

Result::Err(format!("cannot divide {n} into two equal parts"))
}

}

fn main() {
let n = 100;
match divide_in_two(n) {

Result::Ok(half) => println!("{n} divided in two is {half}"),
Result::Err(msg) => println!("sorry, an error happened: {msg}"),

}
}

Here we have used the arms to destructure the Result value. In the first arm, half is bound
to the value inside the Ok variant. In the second arm, msg is bound to the error message.

This slide should take about 4 minutes.

• The if/else expression is returning an enum that is later unpacked with a match.
• You can try adding a third variant to the enum definition and displaying the errors

when running the code. Point out the places where your code is now inexhaustive and
how the compiler tries to give you hints.

• The values in the enum variants can only be accessed after being pattern matched.
• Demonstrate what happens when the search is inexhaustive. Note the advantage the

Rust compiler provides by confirming when all cases are handled.
• Demonstrate the syntax for a struct-style variant by adding one to the enum definition

and the match. Point out how this is syntactically similar to matching on a struct.

12.5 Let Control Flow

Rust has a few control flow constructs that differ from other languages. They are used for
pattern matching:

• if let expressions
• while let expressions
• let else expressions

12.5.1 if let Expressions

The if let expression lets you execute different code depending on whether a value matches
a pattern:

use std::time::Duration;

fn sleep_for(secs: f32) {
let result = Duration::try_from_secs_f32(secs);

73

https://doc.rust-lang.org/reference/expressions/if-expr.html#if-let-expressions

if let Ok(duration) = result {
std::thread::sleep(duration);
println!("slept for {duration:?}");

}
}

fn main() {
sleep_for(-10.0);
sleep_for(0.8);

}

• Unlike match, if let does not have to cover all branches. This can make it more concise
than match.

• A common usage is handling Some values when working with Option.
• Unlike match, if let does not support guard clauses for pattern matching.
• With an else clause, this can be used as an expression.

12.5.2 while let Statements

Like with if let, there is a while let variant that repeatedly tests a value against a pattern:

fn main() {
let mut name = String::from("Comprehensive Rust ");
while let Some(c) = name.pop() {

dbg!(c);
}
// (There are more efficient ways to reverse a string!)

}

Here String::pop returns Some(c) until the string is empty, after which it will return None.
The while let lets us keep iterating through all items.

• Point out that the while let loop will keep going as long as the value matches the
pattern.

• You could rewrite the while let loop as an infinite loop with an if statement that
breaks when there is no value to unwrap for name.pop(). The while let provides
syntactic sugar for the above scenario.

• This form cannot be used as an expression, because it may have no value if the condition
is false.

12.5.3 let else Statements

For the common case of matching a pattern and returning from the function, use let else.
The ”else” case must diverge (return, break, or panic - anything but falling off the end of
the block).

fn hex_or_die_trying(maybe_string: Option<String>) -> Result<u32, String> {
let s = if let Some(s) = maybe_string {

s
} else {

return Err(String::from("got None"));
};

74

https://doc.rust-lang.org/reference/expressions/loop-expr.html#predicate-pattern-loops
https://doc.rust-lang.org/stable/std/string/struct.String.html#method.pop
https://doc.rust-lang.org/rust-by-example/flow_control/let_else.html

let first_byte_char = if let Some(first) = s.chars().next() {
first

} else {
return Err(String::from("got empty string"));

};

let digit = if let Some(digit) = first_byte_char.to_digit(16) {
digit

} else {
return Err(String::from("not a hex digit"));

};

Ok(digit)
}

fn main() {
println!("result: {:?}", hex_or_die_trying(Some(String::from("foo"))));

}

The rewritten version is:

fn hex_or_die_trying(maybe_string: Option<String>) -> Result<u32, String> {
let Some(s) = maybe_string else {

return Err(String::from("got None"));
};

let Some(first_byte_char) = s.chars().next() else {
return Err(String::from("got empty string"));

};

let Some(digit) = first_byte_char.to_digit(16) else {
return Err(String::from("not a hex digit"));

};

Ok(digit)
}

More to Explore

• This early return-based control flow is common in Rust error handling code, where you
try to get a value out of a Result, returning an error if the Result was Err.

• If students ask, you can also demonstrate how real error handling code would be written
with ?.

12.6 Exercise: Expression Evaluation

Let's write a simple recursive evaluator for arithmetic expressions.

An example of a small arithmetic expression could be 10 + 20, which evaluates to 30. We
can represent the expression as a tree:

75

.-------.
.------ | + | ------.
| '-------' |
v v

.--------. .--------.
| 10 | | 20 |
'--------' '--------'

A bigger and more complex expression would be (10 * 9) + ((3 - 4) * 5), which eval-
uates to 85. We represent this as a much bigger tree:

.-----.
.---------------- | + | ----------------.
| '-----' |
v v

.-----. .-----.
.---- | * | ----. .---- | * | ----.
| '-----' | | '-----' |
v v v v

.------. .-----. .-----. .-----.
| 10 | | 9 | .---- | "-"| ----. | 5 |
'------' '-----' | '-----' | '-----'

v v
.-----. .-----.
| 3 | | 4 |
'-----' '-----'

In code, we will represent the tree with two types:

/// An operation to perform on two subexpressions.
#[derive(Debug)]
enum Operation {

Add,
Sub,
Mul,
Div,

}

/// An expression, in tree form.
#[derive(Debug)]
enum Expression {

/// An operation on two subexpressions.
Op { op: Operation, left: Box<Expression>, right: Box<Expression> },

/// A literal value
Value(i64),

}

The Box type here is a smart pointer, and will be covered in detail later in the course. An
expression can be ”boxed” with Box::new as seen in the tests. To evaluate a boxed expression,
use the deref operator (*) to ”unbox” it: eval(*boxed_expr).

Copy and paste the code into the Rust playground, and begin implementing eval. The final
product should pass the tests. It may be helpful to use todo!() and get the tests to pass

76

one-by-one. You can also skip a test temporarily with #[ignore]:

#[test]
#[ignore]
fn test_value() { .. }

/// An operation to perform on two subexpressions.
#[derive(Debug)]
enum Operation {

Add,
Sub,
Mul,
Div,

}

/// An expression, in tree form.
#[derive(Debug)]
enum Expression {

/// An operation on two subexpressions.
Op { op: Operation, left: Box<Expression>, right: Box<Expression> },

/// A literal value
Value(i64),

}

fn eval(e: Expression) -> i64 {
todo!()

}

#[test]
fn test_value() {

assert_eq!(eval(Expression::Value(19)), 19);
}

#[test]
fn test_sum() {

assert_eq!(
eval(Expression::Op {

op: Operation::Add,
left: Box::new(Expression::Value(10)),
right: Box::new(Expression::Value(20)),

}),
30

);
}

#[test]
fn test_recursion() {

let term1 = Expression::Op {
op: Operation::Mul,
left: Box::new(Expression::Value(10)),
right: Box::new(Expression::Value(9)),

77

};
let term2 = Expression::Op {

op: Operation::Mul,
left: Box::new(Expression::Op {

op: Operation::Sub,
left: Box::new(Expression::Value(3)),
right: Box::new(Expression::Value(4)),

}),
right: Box::new(Expression::Value(5)),

};
assert_eq!(

eval(Expression::Op {
op: Operation::Add,
left: Box::new(term1),
right: Box::new(term2),

}),
85

);
}

#[test]
fn test_zeros() {

assert_eq!(
eval(Expression::Op {

op: Operation::Add,
left: Box::new(Expression::Value(0)),
right: Box::new(Expression::Value(0))

}),
0

);
assert_eq!(

eval(Expression::Op {
op: Operation::Mul,
left: Box::new(Expression::Value(0)),
right: Box::new(Expression::Value(0))

}),
0

);
assert_eq!(

eval(Expression::Op {
op: Operation::Sub,
left: Box::new(Expression::Value(0)),
right: Box::new(Expression::Value(0))

}),
0

);
}

#[test]
fn test_div() {

assert_eq!(

78

eval(Expression::Op {
op: Operation::Div,
left: Box::new(Expression::Value(10)),
right: Box::new(Expression::Value(2)),

}),
5

)
}

12.6.1 Solution

/// An operation to perform on two subexpressions.
#[derive(Debug)]
enum Operation {

Add,
Sub,
Mul,
Div,

}

/// An expression, in tree form.
#[derive(Debug)]
enum Expression {

/// An operation on two subexpressions.
Op { op: Operation, left: Box<Expression>, right: Box<Expression> },

/// A literal value
Value(i64),

}

fn eval(e: Expression) -> i64 {
match e {

Expression::Op { op, left, right } => {
let left = eval(*left);
let right = eval(*right);
match op {

Operation::Add => left + right,
Operation::Sub => left - right,
Operation::Mul => left * right,
Operation::Div => left / right,

}
}
Expression::Value(v) => v,

}
}

#[test]
fn test_value() {

assert_eq!(eval(Expression::Value(19)), 19);
}

79

#[test]
fn test_sum() {

assert_eq!(
eval(Expression::Op {

op: Operation::Add,
left: Box::new(Expression::Value(10)),
right: Box::new(Expression::Value(20)),

}),
30

);
}

#[test]
fn test_recursion() {

let term1 = Expression::Op {
op: Operation::Mul,
left: Box::new(Expression::Value(10)),
right: Box::new(Expression::Value(9)),

};
let term2 = Expression::Op {

op: Operation::Mul,
left: Box::new(Expression::Op {

op: Operation::Sub,
left: Box::new(Expression::Value(3)),
right: Box::new(Expression::Value(4)),

}),
right: Box::new(Expression::Value(5)),

};
assert_eq!(

eval(Expression::Op {
op: Operation::Add,
left: Box::new(term1),
right: Box::new(term2),

}),
85

);
}

#[test]
fn test_zeros() {

assert_eq!(
eval(Expression::Op {

op: Operation::Add,
left: Box::new(Expression::Value(0)),
right: Box::new(Expression::Value(0))

}),
0

);
assert_eq!(

eval(Expression::Op {
op: Operation::Mul,

80

left: Box::new(Expression::Value(0)),
right: Box::new(Expression::Value(0))

}),
0

);
assert_eq!(

eval(Expression::Op {
op: Operation::Sub,
left: Box::new(Expression::Value(0)),
right: Box::new(Expression::Value(0))

}),
0

);
}

#[test]
fn test_div() {

assert_eq!(
eval(Expression::Op {

op: Operation::Div,
left: Box::new(Expression::Value(10)),
right: Box::new(Expression::Value(2)),

}),
5

)
}

81

Chapter 13

Methods and Traits

This segment should take about 45 minutes. It contains:

Slide Duration

Methods 10 minutes
Traits 15 minutes
Deriving 3 minutes
Exercise: Generic Logger 15 minutes

13.1 Methods

Rust allows you to associate functions with your new types. You do this with an impl block:

#[derive(Debug)]
struct CarRace {

name: String,
laps: Vec<i32>,

}

impl CarRace {
// No receiver, a static method
fn new(name: &str) -> Self {

Self { name: String::from(name), laps: Vec::new() }
}

// Exclusive borrowed read-write access to self
fn add_lap(&mut self, lap: i32) {

self.laps.push(lap);
}

// Shared and read-only borrowed access to self
fn print_laps(&self) {

println!("Recorded {} laps for {}:", self.laps.len(), self.name);
for (idx, lap) in self.laps.iter().enumerate() {

82

println!("Lap {idx}: {lap} sec");
}

}

// Exclusive ownership of self (covered later)
fn finish(self) {

let total: i32 = self.laps.iter().sum();
println!("Race {} is finished, total lap time: {}", self.name, total);

}
}

fn main() {
let mut race = CarRace::new("Monaco Grand Prix");
race.add_lap(70);
race.add_lap(68);
race.print_laps();
race.add_lap(71);
race.print_laps();
race.finish();
// race.add_lap(42);

}

The self arguments specify the ”receiver” - the object the method acts on. There are several
common receivers for a method:

• &self: borrows the object from the caller using a shared and immutable reference. The
object can be used again afterwards.

• &mut self: borrows the object from the caller using a unique and mutable reference.
The object can be used again afterwards.

• self: takes ownership of the object and moves it away from the caller. The method
becomes the owner of the object. The object will be dropped (deallocated) when the
method returns, unless its ownership is explicitly transmitted. Complete ownership
does not automatically mean mutability.

• mut self: same as above, but the method can mutate the object.
• No receiver: this becomes a static method on the struct. Typically used to create con-

structors that are called new by convention.

This slide should take about 8 minutes.

Key Points:

• It can be helpful to introduce methods by comparing them to functions.
– Methods are called on an instance of a type (such as a struct or enum), the first

parameter represents the instance as self.
– Developers may choose to use methods to take advantage of method receiver

syntax and to help keep them more organized. By using methods we can keep all
the implementation code in one predictable place.

– Note that methods can also be called like associated functions by explicitly passing
the receiver in, e.g. CarRace::add_lap(&mut race, 20).

• Point out the use of the keyword self, a method receiver.
– Show that it is an abbreviated term for self: Self and perhaps show how the

struct name could also be used.
– Explain that Self is a type alias for the type the impl block is in and can be used

83

elsewhere in the block.
– Note how self is used like other structs and dot notation can be used to refer to

individual fields.
– This might be a good time to demonstrate how the &self differs from self by

trying to run finish twice.
– Beyond variants onself, there are also special wrapper types allowed to be receiver

types, such as Box<Self>.

13.2 Traits

Rust lets you abstract over types with traits. They're similar to interfaces:

trait Pet {
/// Return a sentence from this pet.
fn talk(&self) -> String;

/// Print a string to the terminal greeting this pet.
fn greet(&self);

}

This slide and its sub-slides should take about 15 minutes.

• A trait defines a number of methods that types must have in order to implement the
trait.

• In the ”Generics” segment, next, we will see how to build functionality that is generic
over all types implementing a trait.

13.2.1 Implementing Traits

trait Pet {
fn talk(&self) -> String;

fn greet(&self) {
println!("Oh you're a cutie! What's your name? {}", self.talk());

}
}

struct Dog {
name: String,
age: i8,

}

impl Pet for Dog {
fn talk(&self) -> String {

format!("Woof, my name is {}!", self.name)
}

}

fn main() {
let fido = Dog { name: String::from("Fido"), age: 5 };
dbg!(fido.talk());

84

https://doc.rust-lang.org/reference/special-types-and-traits.html

fido.greet();
}

• To implement Trait for Type, you use an impl Trait for Type { .. } block.

• Unlike Go interfaces, just having matching methods is not enough: a Cat type with a
talk() method would not automatically satisfy Pet unless it is in an impl Pet block.

• Traits may provide default implementations of some methods. Default implementations
can rely on all the methods of the trait. In this case, greet is provided, and relies on
talk.

• Multiple impl blocks are allowed for a given type. This includes both inherent impl
blocks and trait impl blocks. Likewise multiple traits can be implemented for a given
type (and often types implement many traits!). impl blocks can even be spread across
multiple modules/files.

13.2.2 Supertraits

A trait can require that types implementing it also implement other traits, called supertraits.
Here, any type implementing Pet must implement Animal.

trait Animal {
fn leg_count(&self) -> u32;

}

trait Pet: Animal {
fn name(&self) -> String;

}

struct Dog(String);

impl Animal for Dog {
fn leg_count(&self) -> u32 {

4
}

}

impl Pet for Dog {
fn name(&self) -> String {

self.0.clone()
}

}

fn main() {
let puppy = Dog(String::from("Rex"));
println!("{} has {} legs", puppy.name(), puppy.leg_count());

}

This is sometimes called ”trait inheritance” but students should not expect this to behave like
OO inheritance. It just specifies an additional requirement on implementations of a trait.

85

13.2.3 Associated Types

Associated types are placeholder types that are supplied by the trait implementation.

#[derive(Debug)]
struct Meters(i32);
#[derive(Debug)]
struct MetersSquared(i32);

trait Multiply {
type Output;
fn multiply(&self, other: &Self) -> Self::Output;

}

impl Multiply for Meters {
type Output = MetersSquared;
fn multiply(&self, other: &Self) -> Self::Output {

MetersSquared(self.0 * other.0)
}

}

fn main() {
println!("{:?}", Meters(10).multiply(&Meters(20)));

}

• Associated types are sometimes also called ”output types”. The key observation is that
the implementer, not the caller, chooses this type.

• Many standard library traits have associated types, including arithmetic operators and
Iterator.

13.3 Deriving

Supported traits can be automatically implemented for your custom types, as follows:

#[derive(Debug, Clone, Default)]
struct Player {

name: String,
strength: u8,
hit_points: u8,

}

fn main() {
let p1 = Player::default(); // Default trait adds `default` constructor.
let mut p2 = p1.clone(); // Clone trait adds `clone` method.
p2.name = String::from("EldurScrollz");
// Debug trait adds support for printing with `{:?}`.
println!("{p1:?} vs. {p2:?}");

}

This slide should take about 3 minutes.

• Derivation is implemented with macros, and many crates provide useful derive macros

86

to add useful functionality. For example, serde can derive serialization support for a
struct using #[derive(Serialize)].

• Derivation is usually provided for traits that have a common boilerplate implementation
that is correct for most cases. For example, demonstrate how a manual Clone impl can
be repetitive compared to deriving the trait:

impl Clone for Player {
fn clone(&self) -> Self {

Player {
name: self.name.clone(),
strength: self.strength.clone(),
hit_points: self.hit_points.clone(),

}
}

}

Not all of the .clone()s in the above are necessary in this case, but this demonstrates
the generally boilerplate-y pattern that manual impls would follow, which should help
make the use of derive clear to students.

13.4 Exercise: Logger Trait

Let's design a simple logging utility, using a trait Logger with a log method. Code that might
log its progress can then take an &impl Logger. In testing, this might put messages in the
test logfile, while in a production build it would send messages to a log server.

However, the StderrLogger given below logs all messages, regardless of verbosity. Your task
is to write a VerbosityFilter type that will ignore messages above a maximum verbosity.

This is a common pattern: a struct wrapping a trait implementation and implementing that
same trait, adding behavior in the process. In the ”Generics” segment, we will see how to
make the wrapper generic over the wrapped type.

trait Logger {
/// Log a message at the given verbosity level.
fn log(&self, verbosity: u8, message: &str);

}

struct StderrLogger;

impl Logger for StderrLogger {
fn log(&self, verbosity: u8, message: &str) {

eprintln!("verbosity={verbosity}: {message}");
}

}

/// Only log messages up to the given verbosity level.
struct VerbosityFilter {

max_verbosity: u8,
inner: StderrLogger,

}

87

// TODO: Implement the `Logger` trait for `VerbosityFilter`.

fn main() {
let logger = VerbosityFilter { max_verbosity: 3, inner: StderrLogger };
logger.log(5, "FYI");
logger.log(2, "Uhoh");

}

13.4.1 Solution

trait Logger {
/// Log a message at the given verbosity level.
fn log(&self, verbosity: u8, message: &str);

}

struct StderrLogger;

impl Logger for StderrLogger {
fn log(&self, verbosity: u8, message: &str) {

eprintln!("verbosity={verbosity}: {message}");
}

}

/// Only log messages up to the given verbosity level.
struct VerbosityFilter {

max_verbosity: u8,
inner: StderrLogger,

}

impl Logger for VerbosityFilter {
fn log(&self, verbosity: u8, message: &str) {

if verbosity <= self.max_verbosity {
self.inner.log(verbosity, message);

}
}

}

fn main() {
let logger = VerbosityFilter { max_verbosity: 3, inner: StderrLogger };
logger.log(5, "FYI");
logger.log(2, "Uhoh");

}

88

Chapter 14

Generics

This segment should take about 50 minutes. It contains:

Slide Duration

Generic Functions 5 minutes
Trait Bounds 10 minutes
Generic Data Types 10 minutes
Generic Traits 5 minutes
impl Trait 5 minutes
dyn Trait 5 minutes
Exercise: Generic min 10 minutes

14.1 Generic Functions

Rust supports generics, which lets you abstract algorithms or data structures (such as sorting
or a binary tree) over the types used or stored.

fn pick<T>(cond: bool, left: T, right: T) -> T {
if cond { left } else { right }

}

fn main() {
println!("picked a number: {:?}", pick(true, 222, 333));
println!("picked a string: {:?}", pick(false, 'L', 'R'));

}

This slide should take about 5 minutes.

• It can be helpful to show the monomorphized versions of pick, either before talking
about the generic pick in order to show how generics can reduce code duplication, or
after talking about generics to show how monomorphization works.

fn pick_i32(cond: bool, left: i32, right: i32) -> i32 {
if cond { left } else { right }

}

89

fn pick_char(cond: bool, left: char, right: char) -> char {
if cond { left } else { right }

}

• Rust infers a type for T based on the types of the arguments and return value.

• In this example we only use the primitive types i32 and char for T, but we can use any
type here, including user-defined types:

struct Foo {
val: u8,

}

pick(false, Foo { val: 7 }, Foo { val: 99 });

• This is similar to C++ templates, but Rust partially compiles the generic function im-
mediately, so that function must be valid for all types matching the constraints. For
example, try modifying pick to return left + right if cond is false. Even if only the
pick instantiation with integers is used, Rust still considers it invalid. C++ would let
you do this.

• Generic code is turned into non-generic code based on the call sites. This is a zero-cost
abstraction: you get exactly the same result as if you had hand-coded the data structures
without the abstraction.

14.2 Trait Bounds

When working with generics, you often want to require the types to implement some trait, so
that you can call this trait's methods.

You can do this with T: Trait:

fn duplicate<T: Clone>(a: T) -> (T, T) {
(a.clone(), a.clone())

}

struct NotCloneable;

fn main() {
let foo = String::from("foo");
let pair = duplicate(foo);
println!("{pair:?}");

}

This slide should take about 8 minutes.

• Try making a NotCloneable and passing it to duplicate.

• When multiple traits are necessary, use + to join them.

• Show a where clause, students will encounter it when reading code.

fn duplicate<T>(a: T) -> (T, T)
where

T: Clone,

90

{
(a.clone(), a.clone())

}

– It declutters the function signature if you have many parameters.
– It has additional features making it more powerful.

* If someone asks, the extra feature is that the type on the left of ”:” can be
arbitrary, like Option<T>.

• Note that Rust does not (yet) support specialization. For example, given the original
duplicate, it is invalid to add a specialized duplicate(a: u32).

14.3 Generic Data Types

You can use generics to abstract over the concrete field type. Returning to the exercise for the
previous segment:

pub trait Logger {
/// Log a message at the given verbosity level.
fn log(&self, verbosity: u8, message: &str);

}

struct StderrLogger;

impl Logger for StderrLogger {
fn log(&self, verbosity: u8, message: &str) {

eprintln!("verbosity={verbosity}: {message}");
}

}

/// Only log messages up to the given verbosity level.
struct VerbosityFilter<L> {

max_verbosity: u8,
inner: L,

}

impl<L: Logger> Logger for VerbosityFilter<L> {
fn log(&self, verbosity: u8, message: &str) {

if verbosity <= self.max_verbosity {
self.inner.log(verbosity, message);

}
}

}

fn main() {
let logger = VerbosityFilter { max_verbosity: 3, inner: StderrLogger };
logger.log(5, "FYI");
logger.log(2, "Uhoh");

}

This slide should take about 10 minutes.

91

• Q: Why is L specified twice in impl<L: Logger> .. VerbosityFilter<L>? Isn't that
redundant?
– This is because it is a generic implementation section for generic type. They are

independently generic.
– It means these methods are defined for any L.
– It is possible to write impl VerbosityFilter<StderrLogger> { .. }.

* VerbosityFilter is still generic and you can use VerbosityFilter<f64>,
but methods in this block will only be available forVerbosityFilter<StderrLogger>.

• Note that we don't put a trait bound on the VerbosityFilter type itself. You can put
bounds there as well, but generally in Rust we only put the trait bounds on the impl
blocks.

14.4 Generic Traits

Traits can also be generic, just like types and functions. A trait's parameters get concrete
types when it is used. For example the From<T> trait is used to define type conversions:

pub trait From<T>: Sized {
fn from(value: T) -> Self;

}

#[derive(Debug)]
struct Foo(String);

impl From<u32> for Foo {
fn from(from: u32) -> Foo {

Foo(format!("Converted from integer: {from}"))
}

}

impl From<bool> for Foo {
fn from(from: bool) -> Foo {

Foo(format!("Converted from bool: {from}"))
}

}

fn main() {
let from_int = Foo::from(123);
let from_bool = Foo::from(true);
dbg!(from_int);
dbg!(from_bool);

}

This slide should take about 5 minutes.

• The From trait will be covered later in the course, but its definition in the std docs is
simple, and copied here for reference.

• Implementations of the trait do not need to cover all possible type parameters. Here,
Foo::from("hello") would not compile because there is no From<&str> implemen-
tation for Foo.

92

https://doc.rust-lang.org/std/convert/trait.From.html
https://doc.rust-lang.org/std/convert/trait.From.html

• Generic traits take types as ”input”, while associated types are a kind of ”output” type. A
trait can have multiple implementations for different input types.

• In fact, Rust requires that at most one implementation of a trait match for any type
T. Unlike some other languages, Rust has no heuristic for choosing the ”most specific”
match. There is work on adding this support, called specialization.

14.5 impl Trait

Similar to trait bounds, an impl Trait syntax can be used in function arguments and return
values:

// Syntactic sugar for:
// fn add_42_millions<T: Into<i32>>(x: T) -> i32 {
fn add_42_millions(x: impl Into<i32>) -> i32 {

x.into() + 42_000_000
}

fn pair_of(x: u32) -> impl std::fmt::Debug {
(x + 1, x - 1)

}

fn main() {
let many = add_42_millions(42_i8);
dbg!(many);
let many_more = add_42_millions(10_000_000);
dbg!(many_more);
let debuggable = pair_of(27);
dbg!(debuggable);

}

This slide should take about 5 minutes.

impl Trait allows you to work with types that you cannot name. The meaning of impl
Trait is a bit different in the different positions.

• For a parameter, impl Trait is like an anonymous generic parameter with a trait
bound.

• For a return type, it means that the return type is some concrete type that implements
the trait, without naming the type. This can be useful when you don't want to expose
the concrete type in a public API.

Inference is hard in return position. A function returning impl Foo picks the concrete
type it returns, without writing it out in the source. A function returning a generic
type like collect() -> B can return any type satisfying B, and the caller may need
to choose one, such as with let x: Vec<_> = foo.collect() or with the turbofish,
foo.collect::<Vec<_>>().

What is the type of debuggable? Try let debuggable: () = .. to see what the error
message shows.

93

https://rust-lang.github.io/rfcs/1210-impl-specialization.html

14.6 dyn Trait

In addition to using traits for static dispatch via generics, Rust also supports using them for
type-erased, dynamic dispatch via trait objects:

struct Dog {
name: String,
age: i8,

}
struct Cat {

lives: i8,
}

trait Pet {
fn talk(&self) -> String;

}

impl Pet for Dog {
fn talk(&self) -> String {

format!("Woof, my name is {}!", self.name)
}

}

impl Pet for Cat {
fn talk(&self) -> String {

String::from("Miau!")
}

}

// Uses generics and static dispatch.
fn generic(pet: &impl Pet) {

println!("Hello, who are you? {}", pet.talk());
}

// Uses type-erasure and dynamic dispatch.
fn dynamic(pet: &dyn Pet) {

println!("Hello, who are you? {}", pet.talk());
}

fn main() {
let cat = Cat { lives: 9 };
let dog = Dog { name: String::from("Fido"), age: 5 };

generic(&cat);
generic(&dog);

dynamic(&cat);
dynamic(&dog);

}

This slide should take about 5 minutes.

94

• Generics, including impl Trait, use monomorphization to create a specialized instance
of the function for each different type that the generic is instantiated with. This means
that calling a trait method from within a generic function still uses static dispatch, as
the compiler has full type information and can resolve that type's trait implementation
to use.

• When using dyn Trait, it instead uses dynamic dispatch through a virtual method table
(vtable). This means that there's a single version of fn dynamic that is used regardless
of what type of Pet is passed in.

• When using dyn Trait, the trait object needs to be behind some kind of indirection. In
this case it's a reference, though smart pointer types like Box can also be used (this will
be demonstrated on day 3).

• At runtime, a &dyn Pet is represented as a ”fat pointer”, i.e. a pair of two pointers:
One pointer points to the concrete object that implements Pet, and the other points to
the vtable for the trait implementation for that type. When calling the talk method
on &dyn Pet the compiler looks up the function pointer for talk in the vtable and
then invokes the function, passing the pointer to the Dog or Cat into that function. The
compiler doesn't need to know the concrete type of the Pet in order to do this.

• A dyn Trait is considered to be ”type-erased”, because we no longer have compile-time
knowledge of what the concrete type is.

14.7 Exercise: Generic min

In this short exercise, you will implement a generic min function that determines the mini-
mum of two values, using the Ord trait.

use std::cmp::Ordering;

// TODO: implement the `min` function used in the tests.

#[test]
fn integers() {

assert_eq!(min(0, 10), 0);
assert_eq!(min(500, 123), 123);

}

#[test]
fn chars() {

assert_eq!(min('a', 'z'), 'a');
assert_eq!(min('7', '1'), '1');

}

#[test]
fn strings() {

assert_eq!(min("hello", "goodbye"), "goodbye");
assert_eq!(min("bat", "armadillo"), "armadillo");

}

This slide and its sub-slides should take about 10 minutes.

95

https://en.wikipedia.org/wiki/Virtual_method_table
https://doc.rust-lang.org/stable/std/cmp/trait.Ord.html

• Show students the Ord trait and Ordering enum.

14.7.1 Solution

use std::cmp::Ordering;

fn min<T: Ord>(l: T, r: T) -> T {
match l.cmp(&r) {

Ordering::Less | Ordering::Equal => l,
Ordering::Greater => r,

}
}

#[test]
fn integers() {

assert_eq!(min(0, 10), 0);
assert_eq!(min(500, 123), 123);

}

#[test]
fn chars() {

assert_eq!(min('a', 'z'), 'a');
assert_eq!(min('7', '1'), '1');

}

#[test]
fn strings() {

assert_eq!(min("hello", "goodbye"), "goodbye");
assert_eq!(min("bat", "armadillo"), "armadillo");

}

96

https://doc.rust-lang.org/stable/std/cmp/trait.Ord.html
https://doc.rust-lang.org/stable/std/cmp/enum.Ordering.html

Part IV

Day 2: Afternoon

97

Chapter 15

Welcome Back

Including 10 minute breaks, this session should take about 2 hours and 50 minutes. It contains:

Segment Duration

Closures 30 minutes
Standard Library Types 1 hour
Standard Library Traits 1 hour

98

Chapter 16

Closures

This segment should take about 30 minutes. It contains:

Slide Duration

Closure Syntax 3 minutes
Capturing 5 minutes
Closure Traits 10 minutes
Exercise: Log Filter 10 minutes

16.1 Closure Syntax

Closures are created with vertical bars: |..| ...

fn main() {
// Argument and return type can be inferred for lightweight syntax:
let double_it = |n| n * 2;
dbg!(double_it(50));

// Or we can specify types and bracket the body to be fully explicit:
let add_1f32 = |x: f32| -> f32 { x + 1.0 };
dbg!(add_1f32(50.));

}

This slide should take about 3 minutes.

• The arguments go between the |..|. The body can be surrounded by { .. }, but if it
is a single expression these can be omitted.

• Argument types are optional, and are inferred if not given. The return type is also
optional, but can only be written if using { .. } around the body.

• The examples can both be written as mere nested functions instead -- they do not capture
any variables from their lexical environment. We will see captures next.

99

More to Explore

• The ability to store functions in variables doesn't just apply to closures, regular functions
can be put in variables and then invoked the same way that closures can: Example in
the playground.

– The linked example also demonstrates that closures that don't capture anything
can also coerce to a regular function pointer.

16.2 Capturing

A closure can capture variables from the environment where it was defined.

fn main() {
let max_value = 5;
let clamp = |v| {

if v > max_value { max_value } else { v }
};

dbg!(clamp(1));
dbg!(clamp(3));
dbg!(clamp(5));
dbg!(clamp(7));
dbg!(clamp(10));

}

This slide should take about 5 minutes.

• By default, a closure captures values by reference. Here max_value is captured by
clamp, but still available to main for printing. Try making max_valuemutable, changing
it, and printing the clamped values again. Why doesn't this work?

• If a closure mutates values, it will capture them by mutable reference. Try adding
max_value += 1 to clamp.

• You can force a closure to move values instead of referencing them with the move
keyword. This can help with lifetimes, for example if the closure must outlive the
captured values (more on lifetimes later).

This looks like move |v| ... Try adding this keyword and see if main can still access
max_value after defining clamp.

• By default, closures will capture each variable from an outer scope by the least demand-
ing form of access they can (by shared reference if possible, then exclusive reference,
then by move). The move keyword forces capture by value.

16.3 Closure traits

Closures or lambda expressions have types that cannot be named. However, they implement
special Fn, FnMut, and FnOnce traits:

The special types fn(..) -> T refer to function pointers - either the address of a function,
or a closure that captures nothing.

100

https://play.rust-lang.org/?version=stable&mode=debug&edition=2024&gist=817cbeeefc49f3d0d180a3d6d54c8bda
https://play.rust-lang.org/?version=stable&mode=debug&edition=2024&gist=817cbeeefc49f3d0d180a3d6d54c8bda
https://doc.rust-lang.org/std/ops/trait.Fn.html
https://doc.rust-lang.org/std/ops/trait.FnMut.html
https://doc.rust-lang.org/std/ops/trait.FnOnce.html

fn apply_and_log(
func: impl FnOnce(&'static str) -> String,
func_name: &'static str,
input: &'static str,

) {
println!("Calling {func_name}({input}): {}", func(input))

}

fn main() {
let suffix = "-itis";
let add_suffix = |x| format!("{x}{suffix}");
apply_and_log(&add_suffix, "add_suffix", "senior");
apply_and_log(&add_suffix, "add_suffix", "appendix");

let mut v = Vec::new();
let mut accumulate = |x| {

v.push(x);
v.join("/")

};
apply_and_log(&mut accumulate, "accumulate", "red");
apply_and_log(&mut accumulate, "accumulate", "green");
apply_and_log(&mut accumulate, "accumulate", "blue");

let take_and_reverse = |prefix| {
let mut acc = String::from(prefix);
acc.push_str(&v.into_iter().rev().collect::<Vec<_>>().join("/"));
acc

};
apply_and_log(take_and_reverse, "take_and_reverse", "reversed: ");

}

This slide should take about 10 minutes.

An Fn (e.g. add_suffix) neither consumes nor mutates captured values. It can be called
needing only a shared reference to the closure, which means the closure can be executed
repeatedly and even concurrently.

An FnMut (e.g. accumulate) might mutate captured values. The closure object is accessed
via exclusive reference, so it can be called repeatedly but not concurrently.

If you have an FnOnce (e.g. take_and_reverse), you may only call it once. Doing so con-
sumes the closure and any values captured by move.

FnMut is a subtype of FnOnce. Fn is a subtype of FnMut and FnOnce. I.e. you can use an FnMut
wherever an FnOnce is called for, and you can use an Fn wherever an FnMut or FnOnce is
called for.

When you define a function that takes a closure, you should take FnOnce if you can (i.e. you
call it once), or FnMut else, and last Fn. This allows the most flexibility for the caller.

In contrast, when you have a closure, the most flexible you can have is Fn (which can be
passed to a consumer of any of the three closure traits), then FnMut, and lastly FnOnce.

The compiler also infers Copy (e.g. for add_suffix) and Clone (e.g. take_and_reverse),
depending on what the closure captures. Function pointers (references tofn items) implement

101

Copy and Fn.

16.4 Exercise: Log Filter

Building on the generic logger from this morning, implement a Filter that uses a closure to
filter log messages, sending those that pass the filtering predicate to an inner logger.

pub trait Logger {
/// Log a message at the given verbosity level.
fn log(&self, verbosity: u8, message: &str);

}

struct StderrLogger;

impl Logger for StderrLogger {
fn log(&self, verbosity: u8, message: &str) {

eprintln!("verbosity={verbosity}: {message}");
}

}

// TODO: Define and implement `Filter`.

fn main() {
let logger = Filter::new(StderrLogger, |_verbosity, msg| msg.contains("yikes"));
logger.log(5, "FYI");
logger.log(1, "yikes, something went wrong");
logger.log(2, "uhoh");

}

16.4.1 Solution

pub trait Logger {
/// Log a message at the given verbosity level.
fn log(&self, verbosity: u8, message: &str);

}

struct StderrLogger;

impl Logger for StderrLogger {
fn log(&self, verbosity: u8, message: &str) {

eprintln!("verbosity={verbosity}: {message}");
}

}

/// Only log messages matching a filtering predicate.
struct Filter<L, P> {

inner: L,
predicate: P,

}

102

impl<L, P> Filter<L, P>
where

L: Logger,
P: Fn(u8, &str) -> bool,

{
fn new(inner: L, predicate: P) -> Self {

Self { inner, predicate }
}

}
impl<L, P> Logger for Filter<L, P>
where

L: Logger,
P: Fn(u8, &str) -> bool,

{
fn log(&self, verbosity: u8, message: &str) {

if (self.predicate)(verbosity, message) {
self.inner.log(verbosity, message);

}
}

}

fn main() {
let logger = Filter::new(StderrLogger, |_verbosity, msg| msg.contains("yikes"));
logger.log(5, "FYI");
logger.log(1, "yikes, something went wrong");
logger.log(2, "uhoh");

}

• Note that the P: Fn(u8, &str) -> bool bound on the first Filter impl block isn't
strictly necessary, but it helps with type inference when calling new. Demonstrate
removing it and showing how the compiler now needs type annotations for the closure
passed to new.

103

Chapter 17

Standard Library Types

This segment should take about 1 hour. It contains:

Slide Duration

Standard Library 3 minutes
Documentation 5 minutes
Option 10 minutes
Result 5 minutes
String 5 minutes
Vec 5 minutes
HashMap 5 minutes
Exercise: Counter 20 minutes

For each of the slides in this section, spend some time reviewing the documentation pages,
highlighting some of the more common methods.

17.1 Standard Library

Rust comes with a standard library that helps establish a set of common types used by Rust
libraries and programs. This way, two libraries can work together smoothly because they
both use the same String type.

In fact, Rust contains several layers of the Standard Library: core, alloc and std.

• core includes the most basic types and functions that don't depend on libc, allocator
or even the presence of an operating system.

• alloc includes types that require a global heap allocator, such as Vec, Box and Arc.
• Embedded Rust applications often only use core, and sometimes alloc.

17.2 Documentation

Rust comes with extensive documentation. For example:

104

• All of the details about loops.
• Primitive types like u8.
• Standard library types like Option or BinaryHeap.

Use rustup doc --std or https://std.rs to view the documentation.

In fact, you can document your own code:

/// Determine whether the first argument is divisible by the second argument.
///
/// If the second argument is zero, the result is false.
fn is_divisible_by(lhs: u32, rhs: u32) -> bool {

if rhs == 0 {
return false;

}
lhs % rhs == 0

}

The contents are treated as Markdown. All published Rust library crates are automatically
documented at docs.rs using the rustdoc tool. It is idiomatic to document all public items in
an API using this pattern.

To document an item from inside the item (such as inside a module), use //! or /*! .. */,
called ”inner doc comments”:

//! This module contains functionality relating to divisibility of integers.

This slide should take about 5 minutes.

• Show students the generated docs for the rand crate at https://docs.rs/rand.

17.3 Option

We have already seen some use of Option<T>. It stores either a value of type T or nothing.
For example, String::find returns an Option<usize>.

fn main() {
let name = "Löwe 老虎 Léopard Gepardi";
let mut position: Option<usize> = name.find('é');
dbg!(position);
assert_eq!(position.unwrap(), 14);
position = name.find('Z');
dbg!(position);
assert_eq!(position.expect("Character not found"), 0);

}

This slide should take about 10 minutes.

• Option is widely used, not just in the standard library.

• unwrap will return the value in an Option, or panic. expect is similar but takes an
error message.

– You can panic on None, but you can't ”accidentally” forget to check for None.
– It's common to unwrap/expect all over the place when hacking something together,

but production code typically handles None in a nicer fashion.

105

https://doc.rust-lang.org/stable/reference/expressions/loop-expr.html
https://doc.rust-lang.org/stable/std/primitive.u8.html
https://doc.rust-lang.org/stable/std/option/enum.Option.html
https://doc.rust-lang.org/stable/std/collections/struct.BinaryHeap.html
https://std.rs
https://docs.rs
https://doc.rust-lang.org/rustdoc/what-is-rustdoc.html
https://docs.rs/rand
https://doc.rust-lang.org/stable/std/string/struct.String.html#method.find

• The ”niche optimization” means that Option<T> often has the same size in memory as
T, if there is some representation that is not a valid value of T. For example, a reference
cannot be NULL, so Option<&T> automatically uses NULL to represent the None variant,
and thus can be stored in the same memory as &T.

17.4 Result

Result is similar to Option, but indicates the success or failure of an operation, each with a
different enum variant. It is generic: Result<T, E> where T is used in the Ok variant and E
appears in the Err variant.

use std::fs::File;
use std::io::Read;

fn main() {
let file: Result<File, std::io::Error> = File::open("diary.txt");
match file {

Ok(mut file) => {
let mut contents = String::new();
if let Ok(bytes) = file.read_to_string(&mut contents) {

println!("Dear diary: {contents} ({bytes} bytes)");
} else {

println!("Could not read file content");
}

}
Err(err) => {

println!("The diary could not be opened: {err}");
}

}
}

This slide should take about 5 minutes.

• As with Option, the successful value sits inside of Result, forcing the developer to
explicitly extract it. This encourages error checking. In the case where an error should
never happen, unwrap() or expect() can be called, and this is a signal of the developer
intent too.

• Result documentation is a recommended read. Not during the course, but it is worth
mentioning. It contains a lot of convenience methods and functions that help functional-
style programming.

• Result is the standard type to implement error handling as we will see on Day 4.

17.5 String

String is a growable UTF-8 encoded string:

fn main() {
let mut s1 = String::new();
s1.push_str("Hello");
println!("s1: len = {}, capacity = {}", s1.len(), s1.capacity());

106

https://doc.rust-lang.org/std/string/struct.String.html

let mut s2 = String::with_capacity(s1.len() + 1);
s2.push_str(&s1);
s2.push('!');
println!("s2: len = {}, capacity = {}", s2.len(), s2.capacity());

let s3 = String::from(" ");
println!("s3: len = {}, number of chars = {}", s3.len(), s3.chars().count());

}

String implements Deref<Target = str>, which means that you can call all str methods
on a String.

This slide should take about 5 minutes.

• String::new returns a new empty string, use String::with_capacity when you
know how much data you want to push to the string.

• String::len returns the size of the String in bytes (which can be different from its
length in characters).

• String::chars returns an iterator over the actual characters. Note that a char can be
different from what a human will consider a ”character” due to grapheme clusters.

• When people refer to strings they could either be talking about &str or String.
• When a type implements Deref<Target = T>, the compiler will let you transparently

call methods from T.
– We haven't discussed the Deref trait yet, so at this point this mostly explains the

structure of the sidebar in the documentation.
– String implements Deref<Target = str> which transparently gives it access to
str's methods.

– Write and compare let s3 = s1.deref(); and let s3 = &*s1;.
• String is implemented as a wrapper around a vector of bytes, many of the opera-

tions you see supported on vectors are also supported on String, but with some extra
guarantees.

• Compare the different ways to index a String:
– To a character by using s3.chars().nth(i).unwrap() where i is in-bound, out-

of-bounds.
– To a substring by using s3[0..4], where that slice is on character boundaries or

not.
• Many types can be converted to a string with the to_string method. This trait is

automatically implemented for all types that implement Display, so anything that can
be formatted can also be converted to a string.

17.6 Vec

Vec is the standard resizable heap-allocated buffer:

fn main() {
let mut v1 = Vec::new();
v1.push(42);
println!("v1: len = {}, capacity = {}", v1.len(), v1.capacity());

let mut v2 = Vec::with_capacity(v1.len() + 1);
v2.extend(v1.iter());
v2.push(9999);

107

https://doc.rust-lang.org/std/string/struct.String.html#deref-methods-str
https://docs.rs/unicode-segmentation/latest/unicode_segmentation/struct.Graphemes.html
https://doc.rust-lang.org/std/string/trait.ToString.html#tymethod.to_string
https://doc.rust-lang.org/std/vec/struct.Vec.html

println!("v2: len = {}, capacity = {}", v2.len(), v2.capacity());

// Canonical macro to initialize a vector with elements.
let mut v3 = vec![0, 0, 1, 2, 3, 4];

// Retain only the even elements.
v3.retain(|x| x % 2 == 0);
println!("{v3:?}");

// Remove consecutive duplicates.
v3.dedup();
println!("{v3:?}");

}

Vec implements Deref<Target = [T]>, which means that you can call slice methods on a
Vec.

This slide should take about 5 minutes.

• Vec is a type of collection, along with String and HashMap. The data it contains is
stored on the heap. This means the amount of data doesn't need to be known at compile
time. It can grow or shrink at runtime.

• Notice how Vec<T> is a generic type too, but you don't have to specify T explicitly. As
always with Rust type inference, the T was established during the first push call.

• vec![...] is a canonical macro to use instead of Vec::new() and it supports adding
initial elements to the vector.

• To index the vector you use [], but they will panic if out of bounds. Alternatively, using
get will return an Option. The pop function will remove the last element.

17.7 HashMap

Standard hash map with protection against HashDoS attacks:

use std::collections::HashMap;

fn main() {
let mut page_counts = HashMap::new();
page_counts.insert("Adventures of Huckleberry Finn", 207);
page_counts.insert("Grimms' Fairy Tales", 751);
page_counts.insert("Pride and Prejudice", 303);

if !page_counts.contains_key("Les Misérables") {
println!(

"We know about {} books, but not Les Misérables.",
page_counts.len()

);
}

for book in ["Pride and Prejudice", "Alice's Adventure in Wonderland"] {
match page_counts.get(book) {

Some(count) => println!("{book}: {count} pages"),
None => println!("{book} is unknown."),

108

https://doc.rust-lang.org/std/vec/struct.Vec.html#deref-methods-%5BT%5D

}
}

// Use the .entry() method to insert a value if nothing is found.
for book in ["Pride and Prejudice", "Alice's Adventure in Wonderland"] {

let page_count: &mut i32 = page_counts.entry(book).or_insert(0);
*page_count += 1;

}

dbg!(page_counts);
}

This slide should take about 5 minutes.

• HashMap is not defined in the prelude and needs to be brought into scope.

• Try the following lines of code. The first line will see if a book is in the hashmap and if
not return an alternative value. The second line will insert the alternative value in the
hashmap if the book is not found.

let pc1 = page_counts
.get("Harry Potter and the Sorcerer's Stone")
.unwrap_or(&336);

let pc2 = page_counts
.entry("The Hunger Games")
.or_insert(374);

• Unlike vec!, there is unfortunately no standard hashmap! macro.

– Although, since Rust 1.56, HashMap implements From<[(K, V); N]>, which al-
lows us to easily initialize a hash map from a literal array:

let page_counts = HashMap::from([
("Harry Potter and the Sorcerer's Stone".to_string(), 336),
("The Hunger Games".to_string(), 374),

]);

• Alternatively HashMap can be built from any Iterator that yields key-value tuples.

• This type has several ”method-specific” return types, such asstd::collections::hash_map::Keys.
These types often appear in searches of the Rust docs. Show students the docs for this
type, and the helpful link back to the keys method.

17.8 Exercise: Counter

In this exercise you will take a very simple data structure and make it generic. It uses a
std::collections::HashMap to keep track of what values have been seen and how many
times each one has appeared.

The initial version of Counter is hardcoded to only work for u32 values. Make the struct and
its methods generic over the type of value being tracked, that way Counter can track any
type of value.

If you finish early, try using the entry method to halve the number of hash lookups required
to implement the count method.

109

https://doc.rust-lang.org/std/collections/hash_map/struct.HashMap.html#impl-From%3C%5B(K,+V);+N%5D%3E-for-HashMap%3CK,+V,+RandomState%3E
https://doc.rust-lang.org/stable/std/collections/struct.HashMap.html
https://doc.rust-lang.org/stable/std/collections/struct.HashMap.html#method.entry

use std::collections::HashMap;

/// Counter counts the number of times each value of type T has been seen.
struct Counter {

values: HashMap<u32, u64>,
}

impl Counter {
/// Create a new Counter.
fn new() -> Self {

Counter {
values: HashMap::new(),

}
}

/// Count an occurrence of the given value.
fn count(&mut self, value: u32) {

if self.values.contains_key(&value) {
*self.values.get_mut(&value).unwrap() += 1;

} else {
self.values.insert(value, 1);

}
}

/// Return the number of times the given value has been seen.
fn times_seen(&self, value: u32) -> u64 {

self.values.get(&value).copied().unwrap_or_default()
}

}

fn main() {
let mut ctr = Counter::new();
ctr.count(13);
ctr.count(14);
ctr.count(16);
ctr.count(14);
ctr.count(14);
ctr.count(11);

for i in 10..20 {
println!("saw {} values equal to {}", ctr.times_seen(i), i);

}

let mut strctr = Counter::new();
strctr.count("apple");
strctr.count("orange");
strctr.count("apple");
println!("got {} apples", strctr.times_seen("apple"));

}

110

17.8.1 Solution

use std::collections::HashMap;
use std::hash::Hash;

/// Counter counts the number of times each value of type T has been seen.
struct Counter<T> {

values: HashMap<T, u64>,
}

impl<T: Eq + Hash> Counter<T> {
/// Create a new Counter.
fn new() -> Self {

Counter { values: HashMap::new() }
}

/// Count an occurrence of the given value.
fn count(&mut self, value: T) {

*self.values.entry(value).or_default() += 1;
}

/// Return the number of times the given value has been seen.
fn times_seen(&self, value: T) -> u64 {

self.values.get(&value).copied().unwrap_or_default()
}

}

fn main() {
let mut ctr = Counter::new();
ctr.count(13);
ctr.count(14);
ctr.count(16);
ctr.count(14);
ctr.count(14);
ctr.count(11);

for i in 10..20 {
println!("saw {} values equal to {}", ctr.times_seen(i), i);

}

let mut strctr = Counter::new();
strctr.count("apple");
strctr.count("orange");
strctr.count("apple");
println!("got {} apples", strctr.times_seen("apple"));

}

111

Chapter 18

Standard Library Traits

This segment should take about 1 hour. It contains:

Slide Duration

Comparisons 5 minutes
Operators 5 minutes
From and Into 5 minutes
Casting 5 minutes
Read and Write 5 minutes
Default, struct update syntax 5 minutes
Exercise: ROT13 30 minutes

As with the standard library types, spend time reviewing the documentation for each trait.

This section is long. Take a break midway through.

18.1 Comparisons

These traits support comparisons between values. All traits can be derived for types contain-
ing fields that implement these traits.

PartialEq and Eq

PartialEq is a partial equivalence relation, with required method eq and provided method
ne. The == and != operators will call these methods.

struct Key {
id: u32,
metadata: Option<String>,

}
impl PartialEq for Key {

fn eq(&self, other: &Self) -> bool {
self.id == other.id

112

}
}

Eq is a full equivalence relation (reflexive, symmetric, and transitive) and implies PartialEq.
Functions that require full equivalence will use Eq as a trait bound.

PartialOrd and Ord

PartialOrd defines a partial ordering, with a partial_cmp method. It is used to implement
the <, <=, >=, and > operators.

use std::cmp::Ordering;
#[derive(Eq, PartialEq)]
struct Citation {

author: String,
year: u32,

}
impl PartialOrd for Citation {

fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
match self.author.partial_cmp(&other.author) {

Some(Ordering::Equal) => self.year.partial_cmp(&other.year),
author_ord => author_ord,

}
}

}

Ord is a total ordering, with cmp returning Ordering.

This slide should take about 5 minutes.

• PartialEq can be implemented between different types, but Eq cannot, because it is
reflexive:

struct Key {
id: u32,
metadata: Option<String>,

}
impl PartialEq<u32> for Key {

fn eq(&self, other: &u32) -> bool {
self.id == *other

}
}

• In practice, it's common to derive these traits, but uncommon to implement them.

• When comparing references in Rust, it will compare the value of the things pointed
to, it will NOT compare the references themselves. That means that references to two
different things can compare as equal if the values pointed to are the same:

fn main() {
let a = "Hello";
let b = String::from("Hello");
assert_eq!(a, b);

}

113

18.2 Operators

Operator overloading is implemented via traits in std::ops:

#[derive(Debug, Copy, Clone)]
struct Point {

x: i32,
y: i32,

}

impl std::ops::Add for Point {
type Output = Self;

fn add(self, other: Self) -> Self {
Self { x: self.x + other.x, y: self.y + other.y }

}
}

fn main() {
let p1 = Point { x: 10, y: 20 };
let p2 = Point { x: 100, y: 200 };
println!("{p1:?} + {p2:?} = {:?}", p1 + p2);

}

This slide should take about 5 minutes.

Discussion points:

• You could implement Add for &Point. In which situations is that useful?
– Answer: Add:add consumes self. If type T for which you are overloading the

operator is not Copy, you should consider overloading the operator for &T as well.
This avoids unnecessary cloning on the call site.

• Why is Output an associated type? Could it be made a type parameter of the method?
– Short answer: Function type parameters are controlled by the caller, but associated

types (like Output) are controlled by the implementer of a trait.
• You could implement Add for two different types, e.g. impl Add<(i32, i32)> for
Point would add a tuple to a Point.

The Not trait (! operator) is notable because it does not convert the argument to bool like the
same operator in C-family languages; instead, for integer types it flips each bit of the number,
which, arithmetically, is equivalent to subtracting the argument from -1: !5 == -6.

18.3 From and Into

Types implement From and Into to facilitate type conversions. Unlike as, these traits corre-
spond to lossless, infallible conversions.

fn main() {
let s = String::from("hello");
let addr = std::net::Ipv4Addr::from([127, 0, 0, 1]);
let one = i16::from(true);
let bigger = i32::from(123_i16);

114

https://doc.rust-lang.org/std/ops/index.html
https://doc.rust-lang.org/std/convert/trait.From.html
https://doc.rust-lang.org/std/convert/trait.Into.html

println!("{s}, {addr}, {one}, {bigger}");
}

Into is automatically implemented when From is implemented:

fn main() {
let s: String = "hello".into();
let addr: std::net::Ipv4Addr = [127, 0, 0, 1].into();
let one: i16 = true.into();
let bigger: i32 = 123_i16.into();
println!("{s}, {addr}, {one}, {bigger}");

}

This slide should take about 5 minutes.

• That's why it is common to only implement From, as your type will get Into implemen-
tation too.

• When declaring a function argument input type like ”anything that can be converted
into a String”, the rule is opposite, you should use Into. Your function will accept
types that implement From and those that only implement Into.

18.4 Casting

Rust has no implicit type conversions, but does support explicit casts with as. These generally
follow C semantics where those are defined.

fn main() {
let value: i64 = 1000;
println!("as u16: {}", value as u16);
println!("as i16: {}", value as i16);
println!("as u8: {}", value as u8);

}

The results of as are always defined in Rust and consistent across platforms. This might not
match your intuition for changing sign or casting to a smaller type -- check the docs, and
comment for clarity.

Casting with as is a relatively sharp tool that is easy to use incorrectly, and can be a source
of subtle bugs as future maintenance work changes the types that are used or the ranges
of values in types. Casts are best used only when the intent is to indicate unconditional
truncation (e.g. selecting the bottom 32 bits of a u64 with as u32, regardless of what was in
the high bits).

For infallible casts (e.g. u32 to u64), prefer using From or Into over as to confirm that the
cast is in fact infallible. For fallible casts, TryFrom and TryInto are available when you want
to handle casts that fit differently from those that don't.

This slide should take about 5 minutes.

Consider taking a break after this slide.

as is similar to a C++ static cast. Use of as in cases where data might be lost is generally
discouraged, or at least deserves an explanatory comment.

This is common in casting integers to usize for use as an index.

115

https://doc.rust-lang.org/std/convert/trait.Into.html
https://doc.rust-lang.org/std/convert/trait.From.html

18.5 Read and Write

Using Read and BufRead, you can abstract over u8 sources:

use std::io::{BufRead, BufReader, Read, Result};

fn count_lines<R: Read>(reader: R) -> usize {
let buf_reader = BufReader::new(reader);
buf_reader.lines().count()

}

fn main() -> Result<()> {
let slice: &[u8] = b"foo\nbar\nbaz\n";
println!("lines in slice: {}", count_lines(slice));

let file = std::fs::File::open(std::env::current_exe()?)?;
println!("lines in file: {}", count_lines(file));
Ok(())

}

Similarly, Write lets you abstract over u8 sinks:

use std::io::{Result, Write};

fn log<W: Write>(writer: &mut W, msg: &str) -> Result<()> {
writer.write_all(msg.as_bytes())?;
writer.write_all("\n".as_bytes())

}

fn main() -> Result<()> {
let mut buffer = Vec::new();
log(&mut buffer, "Hello")?;
log(&mut buffer, "World")?;
println!("Logged: {buffer:?}");
Ok(())

}

18.6 The Default Trait

The Default trait produces a default value for a type.

#[derive(Debug, Default)]
struct Derived {

x: u32,
y: String,
z: Implemented,

}

#[derive(Debug)]
struct Implemented(String);

impl Default for Implemented {

116

https://doc.rust-lang.org/std/io/trait.Read.html
https://doc.rust-lang.org/std/io/trait.BufRead.html
https://doc.rust-lang.org/std/io/trait.Write.html
https://doc.rust-lang.org/std/default/trait.Default.html

fn default() -> Self {
Self("John Smith".into())

}
}

fn main() {
let default_struct = Derived::default();
dbg!(default_struct);

let almost_default_struct =
Derived { y: "Y is set!".into(), ..Derived::default() };

dbg!(almost_default_struct);

let nothing: Option<Derived> = None;
dbg!(nothing.unwrap_or_default());

}

This slide should take about 5 minutes.

• It can be implemented directly or it can be derived via #[derive(Default)].
• A derived implementation will produce a value where all fields are set to their default

values.
– This means all types in the struct must implement Default too.

• Standard Rust types often implement Default with reasonable values (e.g. 0, "", etc).
• The partial struct initialization works nicely with default.
• The Rust standard library is aware that types can implement Default and provides

convenience methods that use it.
• The .. syntax is called struct update syntax.

18.7 Exercise: ROT13

In this example, you will implement the classic ”ROT13” cipher. Copy this code to the play-
ground, and implement the missing bits. Only rotate ASCII alphabetic characters, to ensure
the result is still valid UTF-8.

use std::io::Read;

struct RotDecoder<R: Read> {
input: R,
rot: u8,

}

// Implement the `Read` trait for `RotDecoder`.

#[cfg(test)]
mod test {

use super::*;

#[test]
fn joke() {

let mut rot =

117

https://doc.rust-lang.org/book/ch05-01-defining-structs.html#creating-instances-from-other-instances-with-struct-update-syntax
https://en.wikipedia.org/wiki/ROT13

RotDecoder { input: "Gb trg gb gur bgure fvqr!".as_bytes(), rot: 13 };
let mut result = String::new();
rot.read_to_string(&mut result).unwrap();
assert_eq!(&result, "To get to the other side!");

}

#[test]
fn binary() {

let input: Vec<u8> = (0..=255u8).collect();
let mut rot = RotDecoder::<&[u8]> { input: input.as_slice(), rot: 13 };
let mut buf = [0u8; 256];
assert_eq!(rot.read(&mut buf).unwrap(), 256);
for i in 0..=255 {

if input[i] != buf[i] {
assert!(input[i].is_ascii_alphabetic());
assert!(buf[i].is_ascii_alphabetic());

}
}

}
}

What happens if you chain two RotDecoder instances together, each rotating by 13 charac-
ters?

18.7.1 Solution

use std::io::Read;

struct RotDecoder<R: Read> {
input: R,
rot: u8,

}

impl<R: Read> Read for RotDecoder<R> {
fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {

let size = self.input.read(buf)?;
for b in &mut buf[..size] {

if b.is_ascii_alphabetic() {
let base = if b.is_ascii_uppercase() { 'A' } else { 'a' } as u8;
*b = (*b - base + self.rot) % 26 + base;

}
}
Ok(size)

}
}

#[cfg(test)]
mod test {

use super::*;

#[test]

118

fn joke() {
let mut rot =

RotDecoder { input: "Gb trg gb gur bgure fvqr!".as_bytes(), rot: 13 };
let mut result = String::new();
rot.read_to_string(&mut result).unwrap();
assert_eq!(&result, "To get to the other side!");

}

#[test]
fn binary() {

let input: Vec<u8> = (0..=255u8).collect();
let mut rot = RotDecoder::<&[u8]> { input: input.as_slice(), rot: 13 };
let mut buf = [0u8; 256];
assert_eq!(rot.read(&mut buf).unwrap(), 256);
for i in 0..=255 {

if input[i] != buf[i] {
assert!(input[i].is_ascii_alphabetic());
assert!(buf[i].is_ascii_alphabetic());

}
}

}
}

119

Part V

Day 3: Morning

120

Chapter 19

Welcome to Day 3

Today, we will cover:

• Memory management, lifetimes, and the borrow checker: how Rust ensures memory
safety.

• Smart pointers: standard library pointer types.

Schedule

Including 10 minute breaks, this session should take about 2 hours and 20 minutes. It contains:

Segment Duration

Welcome 3 minutes
Memory Management 1 hour
Smart Pointers 55 minutes

121

Chapter 20

Memory Management

This segment should take about 1 hour. It contains:

Slide Duration

Review of Program Memory 5 minutes
Approaches to Memory Management 10 minutes
Ownership 5 minutes
Move Semantics 5 minutes
Clone 2 minutes
Copy Types 5 minutes
Drop 10 minutes
Exercise: Builder Type 20 minutes

20.1 Review of Program Memory

Programs allocate memory in two ways:

• Stack: Continuous area of memory for local variables.

– Values have fixed sizes known at compile time.
– Extremely fast: just move a stack pointer.
– Easy to manage: follows function calls.
– Great memory locality.

• Heap: Storage of values outside of function calls.

– Values have dynamic sizes determined at runtime.
– Slightly slower than the stack: some bookkeeping needed.
– No guarantee of memory locality.

Example

Creating a String puts fixed-sized metadata on the stack and dynamically sized data, the
actual string, on the heap:

122

fn main() {
let s1 = String::from("Hello");

}

Stack
.- - - - - - - - - - - - - -. Heap
: : .- - - - - - - - - - - - - - - -.
: s1 : : :
: +-----------+-------+ : : :
: | capacity | 5 | : : +----+----+----+----+----+ :
: | ptr | o-+---+-----+-->| H | e | l | l | o | :
: | len | 5 | : : +----+----+----+----+----+ :
: +-----------+-------+ : : :
: : : :
`- - - - - - - - - - - - - -' `- - - - - - - - - - - - - - - -'

This slide should take about 5 minutes.

• Mention that a String is backed by a Vec, so it has a capacity and length and can grow
if mutable via reallocation on the heap.

• If students ask about it, you can mention that the underlying memory is heap allocated
using the System Allocator and custom allocators can be implemented using the Allocator
API

More to Explore

We can inspect the memory layout with unsafe Rust. However, you should point out that
this is rightfully unsafe!

fn main() {
let mut s1 = String::from("Hello");
s1.push(' ');
s1.push_str("world");
// DON'T DO THIS AT HOME! For educational purposes only.
// String provides no guarantees about its layout, so this could lead to
// undefined behavior.
unsafe {

let (capacity, ptr, len): (usize, usize, usize) = std::mem::transmute(s1);
println!("capacity = {capacity}, ptr = {ptr:#x}, len = {len}");

}
}

20.2 Approaches to Memory Management

Traditionally, languages have fallen into two broad categories:

• Full control via manual memory management: C, C++, Pascal, ...
– Programmer decides when to allocate or free heap memory.
– Programmer must determine whether a pointer still points to valid memory.
– Studies show, programmers make mistakes.

• Full safety via automatic memory management at runtime: Java, Python, Go, Haskell, ...

123

https://doc.rust-lang.org/std/alloc/struct.System.html
https://doc.rust-lang.org/std/alloc/index.html
https://doc.rust-lang.org/std/alloc/index.html

– A runtime system ensures that memory is not freed until it can no longer be refer-
enced.

– Typically implemented with reference counting or garbage collection.

Rust offers a new mix:

Full control and safety via compile time enforcement of correct memory manage-
ment.

It does this with an explicit ownership concept.

This slide should take about 10 minutes.

This slide is intended to help students coming from other languages to put Rust in context.

• C must manage heap manually with malloc and free. Common errors include for-
getting to call free, calling it multiple times for the same pointer, or dereferencing a
pointer after the memory it points to has been freed.

• C++ has tools like smart pointers (unique_ptr, shared_ptr) that take advantage of lan-
guage guarantees about calling destructors to ensure memory is freed when a function
returns. It is still quite easy to misuse these tools and create similar bugs to C.

• Java, Go, and Python rely on the garbage collector to identify memory that is no longer
reachable and discard it. This guarantees that any pointer can be dereferenced, elimi-
nating use-after-free and other classes of bugs. But, GC has a runtime cost and is difficult
to tune properly.

Rust's ownership and borrowing model can, in many cases, get the performance of C, with
alloc and free operations precisely where they are required -- zero-cost. It also provides tools
similar to C++'s smart pointers. When required, other options such as reference counting
are available, and there are even crates available to support runtime garbage collection (not
covered in this class).

20.3 Ownership

All variable bindings have a scope where they are valid and it is an error to use a variable
outside its scope:

struct Point(i32, i32);

fn main() {
{

let p = Point(3, 4);
dbg!(p.0);

}
dbg!(p.1);

}

We say that the variable owns the value. Every Rust value has precisely one owner at all
times.

At the end of the scope, the variable is dropped and the data is freed. A destructor can run
here to free up resources.

This slide should take about 5 minutes.

124

Students familiar with garbage collection implementations will know that a garbage collector
starts with a set of ”roots” to find all reachable memory. Rust's ”single owner” principle is a
similar idea.

20.4 Move Semantics

An assignment will transfer ownership between variables:

fn main() {
let s1 = String::from("Hello!");
let s2 = s1;
dbg!(s2);
// dbg!(s1);

}

• The assignment of s1 to s2 transfers ownership.
• When s1 goes out of scope, nothing happens: it does not own anything.
• When s2 goes out of scope, the string data is freed.

Before move to s2:

Stack Heap
.- - - - - - - - - - - - - -. .- - - - - - - - - - - - - - - - - - -.
: : : :
: s1 : : :
: +-----------+-------+ : : +----+----+----+----+----+----+ :
: | ptr | o---+---+-----+-->| H | e | l | l | o | ! | :
: | len | 6 | : : +----+----+----+----+----+----+ :
: | capacity | 6 | : : :
: +-----------+-------+ : : :
: : `- - - - - - - - - - - - - - - - - - -'
: :
`- - - - - - - - - - - - - -'

After move to s2:

Stack Heap
.- - - - - - - - - - - - - -. .- - - - - - - - - - - - - - - - - - -.
: : : :
: s1 "(inaccessible)" : : :
: +-----------+-------+ : : +----+----+----+----+----+----+ :
: | ptr | o---+---+--+--+-->| H | e | l | l | o | ! | :
: | len | 6 | : | : +----+----+----+----+----+----+ :
: | capacity | 6 | : | : :
: +-----------+-------+ : | : :
: : | `- - - - - - - - - - - - - - - - - - -'
: s2 : |
: +-----------+-------+ : |
: | ptr | o---+---+--'
: | len | 6 | :
: | capacity | 6 | :
: +-----------+-------+ :

125

: :
`- - - - - - - - - - - - - -'

When you pass a value to a function, the value is assigned to the function parameter. This
transfers ownership:

fn say_hello(name: String) {
println!("Hello {name}")

}

fn main() {
let name = String::from("Alice");
say_hello(name);
// say_hello(name);

}

This slide should take about 5 minutes.

• Mention that this is the opposite of the defaults in C++, which copies by value unless
you use std::move (and the move constructor is defined!).

• It is only the ownership that moves. Whether any machine code is generated to ma-
nipulate the data itself is a matter of optimization, and such copies are aggressively
optimized away.

• Simple values (such as integers) can be marked Copy (see later slides).

• In Rust, clones are explicit (by using clone).

In the say_hello example:

• With the first call to say_hello, main gives up ownership of name. Afterwards, name
cannot be used anymore within main.

• The heap memory allocated for name will be freed at the end of the say_hello function.
• main can retain ownership if it passes name as a reference (&name) and if say_hello

accepts a reference as a parameter.
• Alternatively, main can pass a clone of name in the first call (name.clone()).
• Rust makes it harder than C++ to inadvertently create copies by making move semantics

the default, and by forcing programmers to make clones explicit.

More to Explore

Defensive Copies in Modern C++

Modern C++ solves this differently:

std::string s1 = "Cpp";
std::string s2 = s1; // Duplicate the data in s1.

• The heap data from s1 is duplicated and s2 gets its own independent copy.
• When s1 and s2 go out of scope, they each free their own memory.

Before copy-assignment:

Stack Heap
.- - - - - - - - - - - - - -. .- - - - - - - - - - - -.

126

: : : :
: s1 : : :
: +-----------+-------+ : : +----+----+----+ :
: | ptr | o---+---+--+--+-->| C | p | p | :
: | len | 3 | : : +----+----+----+ :
: | capacity | 3 | : : :
: +-----------+-------+ : : :
: : `- - - - - - - - - - - -'
`- - - - - - - - - - - - - -'

After copy-assignment:

Stack Heap
.- - - - - - - - - - - - - -. .- - - - - - - - - - - -.
: : : :
: s1 : : :
: +-----------+-------+ : : +----+----+----+ :
: | ptr | o---+---+--+--+-->| C | p | p | :
: | len | 3 | : : +----+----+----+ :
: | capacity | 3 | : : :
: +-----------+-------+ : : :
: : : :
: s2 : : :
: +-----------+-------+ : : +----+----+----+ :
: | ptr | o---+---+-----+-->| C | p | p | :
: | len | 3 | : : +----+----+----+ :
: | capacity | 3 | : : :
: +-----------+-------+ : : :
: : `- - - - - - - - - - - -'
`- - - - - - - - - - - - - -'

Key points:

• C++ has made a slightly different choice than Rust. Because = copies data, the string
data has to be cloned. Otherwise we would get a double-free when either string goes
out of scope.

• C++ also has std::move, which is used to indicate when a value may be moved from. If
the example had been s2 = std::move(s1), no heap allocation would take place. After
the move, s1 would be in a valid but unspecified state. Unlike Rust, the programmer is
allowed to keep using s1.

• Unlike Rust, = in C++ can run arbitrary code as determined by the type that is being
copied or moved.

20.5 Clone

Sometimes you want to make a copy of a value. The Clone trait accomplishes this.

fn say_hello(name: String) {
println!("Hello {name}")

}

127

https://en.cppreference.com/w/cpp/utility/move

fn main() {
let name = String::from("Alice");
say_hello(name.clone());
say_hello(name);

}

This slide should take about 2 minutes.

• The idea of Clone is to make it easy to spot where heap allocations are occurring. Look
for .clone() and a few others like vec! or Box::new.

• It's common to ”clone your way out” of problems with the borrow checker, and return
later to try to optimize those clones away.

• clone generally performs a deep copy of the value, meaning that if you e.g. clone an
array, all of the elements of the array are cloned as well.

• The behavior for clone is user-defined, so it can perform custom cloning logic if needed.

20.6 Copy Types

While move semantics are the default, certain types are copied by default:

fn main() {
let x = 42;
let y = x;
dbg!(x); // would not be accessible if not Copy
dbg!(y);

}

These types implement the Copy trait.

You can opt-in your own types to use copy semantics:

#[derive(Copy, Clone, Debug)]
struct Point(i32, i32);

fn main() {
let p1 = Point(3, 4);
let p2 = p1;
println!("p1: {p1:?}");
println!("p2: {p2:?}");

}

• After the assignment, both p1 and p2 own their own data.
• We can also use p1.clone() to explicitly copy the data.

This slide should take about 5 minutes.

Copying and cloning are not the same thing:

• Copying refers to bitwise copies of memory regions and does not work on arbitrary
objects.

• Copying does not allow for custom logic (unlike copy constructors in C++).
• Cloning is a more general operation and also allows for custom behavior by implement-

ing the Clone trait.

128

• Copying does not work on types that implement the Drop trait.

In the above example, try the following:

• Add a String field to struct Point. It will not compile because String is not a Copy
type.

• Remove Copy from the derive attribute. The compiler error is now in the println!
for p1.

• Show that it works if you clone p1 instead.

More to Explore

• Shared references are Copy/Clone, mutable references are not. This is because Rust
requires that mutable references be exclusive, so while it's valid to make a copy of a
shared reference, creating a copy of a mutable reference would violate Rust's borrowing
rules.

20.7 The Drop Trait

Values which implement Drop can specify code to run when they go out of scope:

struct Droppable {
name: &'static str,

}

impl Drop for Droppable {
fn drop(&mut self) {

println!("Dropping {}", self.name);
}

}

fn main() {
let a = Droppable { name: "a" };
{

let b = Droppable { name: "b" };
{

let c = Droppable { name: "c" };
let d = Droppable { name: "d" };
println!("Exiting innermost block");

}
println!("Exiting next block");

}
drop(a);
println!("Exiting main");

}

This slide should take about 8 minutes.

• Note that std::mem::drop is not the same as std::ops::Drop::drop.
• Values are automatically dropped when they go out of scope.

129

https://doc.rust-lang.org/std/ops/trait.Drop.html

• When a value is dropped, if it implements std::ops::Drop then its Drop::drop im-
plementation will be called.

• All its fields will then be dropped too, whether or not it implements Drop.
• std::mem::drop is just an empty function that takes any value. The significance is that

it takes ownership of the value, so at the end of its scope it gets dropped. This makes it a
convenient way to explicitly drop values earlier than they would otherwise go out of
scope.
– This can be useful for objects that do some work on drop: releasing locks, closing

files, etc.

Discussion points:

• Why doesn't Drop::drop take self?
– Short-answer: If it did, std::mem::drop would be called at the end of the block,

resulting in another call to Drop::drop, and a stack overflow!
• Try replacing drop(a) with a.drop().

20.8 Exercise: Builder Type

In this example, we will implement a complex data type that owns all of its data. We will
use the ”builder pattern” to support building a new value piece-by-piece, using convenience
functions.

Fill in the missing pieces.

#[derive(Debug)]
enum Language {

Rust,
Java,
Perl,

}

#[derive(Clone, Debug)]
struct Dependency {

name: String,
version_expression: String,

}

/// A representation of a software package.
#[derive(Debug)]
struct Package {

name: String,
version: String,
authors: Vec<String>,
dependencies: Vec<Dependency>,
language: Option<Language>,

}

impl Package {
/// Return a representation of this package as a dependency, for use in
/// building other packages.
fn as_dependency(&self) -> Dependency {

130

todo!("1")
}

}

/// A builder for a Package. Use `build()` to create the `Package` itself.
struct PackageBuilder(Package);

impl PackageBuilder {
fn new(name: impl Into<String>) -> Self {

todo!("2")
}

/// Set the package version.
fn version(mut self, version: impl Into<String>) -> Self {

self.0.version = version.into();
self

}

/// Set the package authors.
fn authors(mut self, authors: Vec<String>) -> Self {

todo!("3")
}

/// Add an additional dependency.
fn dependency(mut self, dependency: Dependency) -> Self {

todo!("4")
}

/// Set the language. If not set, language defaults to None.
fn language(mut self, language: Language) -> Self {

todo!("5")
}

fn build(self) -> Package {
self.0

}
}

fn main() {
let base64 = PackageBuilder::new("base64").version("0.13").build();
dbg!(&base64);
let log =

PackageBuilder::new("log").version("0.4").language(Language::Rust).build();
dbg!(&log);
let serde = PackageBuilder::new("serde")

.authors(vec!["djmitche".into()])

.version(String::from("4.0"))

.dependency(base64.as_dependency())

.dependency(log.as_dependency())

.build();
dbg!(serde);

131

}

20.8.1 Solution

#[derive(Debug)]
enum Language {

Rust,
Java,
Perl,

}

#[derive(Clone, Debug)]
struct Dependency {

name: String,
version_expression: String,

}

/// A representation of a software package.
#[derive(Debug)]
struct Package {

name: String,
version: String,
authors: Vec<String>,
dependencies: Vec<Dependency>,
language: Option<Language>,

}

impl Package {
/// Return a representation of this package as a dependency, for use in
/// building other packages.
fn as_dependency(&self) -> Dependency {

Dependency {
name: self.name.clone(),
version_expression: self.version.clone(),

}
}

}

/// A builder for a Package. Use `build()` to create the `Package` itself.
struct PackageBuilder(Package);

impl PackageBuilder {
fn new(name: impl Into<String>) -> Self {

Self(Package {
name: name.into(),
version: "0.1".into(),
authors: Vec::new(),
dependencies: Vec::new(),
language: None,

})
}

132

/// Set the package version.
fn version(mut self, version: impl Into<String>) -> Self {

self.0.version = version.into();
self

}

/// Set the package authors.
fn authors(mut self, authors: Vec<String>) -> Self {

self.0.authors = authors;
self

}

/// Add an additional dependency.
fn dependency(mut self, dependency: Dependency) -> Self {

self.0.dependencies.push(dependency);
self

}

/// Set the language. If not set, language defaults to None.
fn language(mut self, language: Language) -> Self {

self.0.language = Some(language);
self

}

fn build(self) -> Package {
self.0

}
}

fn main() {
let base64 = PackageBuilder::new("base64").version("0.13").build();
dbg!(&base64);
let log =

PackageBuilder::new("log").version("0.4").language(Language::Rust).build();
dbg!(&log);
let serde = PackageBuilder::new("serde")

.authors(vec!["djmitche".into()])

.version(String::from("4.0"))

.dependency(base64.as_dependency())

.dependency(log.as_dependency())

.build();
dbg!(serde);

}

133

Chapter 21

Smart Pointers

This segment should take about 55 minutes. It contains:

Slide Duration

Box 10 minutes
Rc 5 minutes
Owned Trait Objects 10 minutes
Exercise: Binary Tree 30 minutes

21.1 Box<T>

Box is an owned pointer to data on the heap:

fn main() {
let five = Box::new(5);
println!("five: {}", *five);

}

Stack Heap
.- - - - - - -. .- - - - - - -.
: : : :
: five : : :
: +-----+ : : +-----+ :
: | o---|---+-----+-->| 5 | :
: +-----+ : : +-----+ :
: : : :
: : : :
`- - - - - - -' `- - - - - - -'

Box<T> implements Deref<Target = T>, which means that you can call methods from T
directly on a Box<T>.

Recursive data types or data types with dynamic sizes cannot be stored inline without a
pointer indirection. Box accomplishes that indirection:

134

https://doc.rust-lang.org/std/boxed/struct.Box.html
https://doc.rust-lang.org/std/ops/trait.Deref.html#more-on-deref-coercion
https://doc.rust-lang.org/std/ops/trait.Deref.html#more-on-deref-coercion

#[derive(Debug)]
enum List<T> {

/// A non-empty list: first element and the rest of the list.
Element(T, Box<List<T>>),
/// An empty list.
Nil,

}

fn main() {
let list: List<i32> =

List::Element(1, Box::new(List::Element(2, Box::new(List::Nil))));
println!("{list:?}");

}

Stack Heap
.- - - - - - - - - - - - - - . .- -.
: : : :
: list : : :
: +---------+----+----+ : : +---------+----+----+ +------+----+----+ :
: | Element | 1 | o--+----+-----+--->| Element | 2 | o--+--->| Nil | // | // | :
: +---------+----+----+ : : +---------+----+----+ +------+----+----+ :
: : : :
: : : :
'- - - - - - - - - - - - - - ' '- -'

This slide should take about 8 minutes.

• Box is like std::unique_ptr in C++, except that it's guaranteed to be not null.

• A Box can be useful when you:

– have a type whose size can't be known at compile time, but the Rust compiler wants
to know an exact size.

– want to transfer ownership of a large amount of data. To avoid copying large
amounts of data on the stack, instead store the data on the heap in a Box so only
the pointer is moved.

• If Box was not used and we attempted to embed a List directly into the List, the
compiler would not be able to compute a fixed size for the struct in memory (the List
would be of infinite size).

• Box solves this problem as it has the same size as a regular pointer and just points at
the next element of the List in the heap.

• Remove the Box in the List definition and show the compiler error. We get the message
”recursive without indirection”, because for data recursion, we have to use indirection,
a Box or reference of some kind, instead of storing the value directly.

• Though Box looks like std::unique_ptr in C++, it cannot be empty/null. This makes
Box one of the types that allow the compiler to optimize storage of some enums (the
”niche optimization”).

135

21.2 Rc

Rc is a reference-counted shared pointer. Use this when you need to refer to the same data
from multiple places:

use std::rc::Rc;

fn main() {
let a = Rc::new(10);
let b = Rc::clone(&a);

dbg!(a);
dbg!(b);

}

Each Rc points to the same shared data structure, containing strong and weak pointers and
the value:

Stack Heap
.- - - - - - - -. .- - - - - - - - - - - - - - - - -.
: : : :
: +-----+ : : +-----------+-------------+ :
: a: | o---|---:--+--:-->| count: 2 | value: 10 | :
: +-----+ : | : +-----------+-------------+ :
: b: | o---|---:--+ : :
: +-----+ : `- - - - - - - - - - - - - - - - -'
: :
`- - - - - - - -'

• See Arc and Mutex if you are in a multi-threaded context.
• You can downgrade a shared pointer into a Weak pointer to create cycles that will get

dropped.

This slide should take about 5 minutes.

• Rc's count ensures that its contained value is valid for as long as there are references.
• Rc in Rust is like std::shared_ptr in C++.
• Rc::clone is cheap: it creates a pointer to the same allocation and increases the refer-

ence count. Does not make a deep clone and can generally be ignored when looking for
performance issues in code.

• make_mut actually clones the inner value if necessary (”clone-on-write”) and returns a
mutable reference.

• Use Rc::strong_count to check the reference count.
• Rc::downgrade gives you a weakly reference-counted object to create cycles that will

be dropped properly (likely in combination with RefCell).

21.3 Owned Trait Objects

We previously saw how trait objects can be used with references, e.g &dyn Pet. However,
we can also use trait objects with smart pointers like Box to create an owned trait object:
Box<dyn Pet>.

136

https://doc.rust-lang.org/std/rc/struct.Rc.html
https://doc.rust-lang.org/std/sync/struct.Mutex.html
https://doc.rust-lang.org/std/rc/struct.Weak.html

struct Dog {
name: String,
age: i8,

}
struct Cat {

lives: i8,
}

trait Pet {
fn talk(&self) -> String;

}

impl Pet for Dog {
fn talk(&self) -> String {

format!("Woof, my name is {}!", self.name)
}

}

impl Pet for Cat {
fn talk(&self) -> String {

String::from("Miau!")
}

}

fn main() {
let pets: Vec<Box<dyn Pet>> = vec![

Box::new(Cat { lives: 9 }),
Box::new(Dog { name: String::from("Fido"), age: 5 }),

];
for pet in pets {

println!("Hello, who are you? {}", pet.talk());
}

}

Memory layout after allocating pets:

Stack Heap
.- - - - - - - - - - - - - - - -. .- -.
: : : :
: "pets: Vec<Box<dyn Pet>>" : : "data: Cat" +----+----+----+----+ :
: +-----------+-------+ : : +-------+-------+ | F | i | d | o | :
: | ptr | o---+-------+--. : | lives | 9 | +----+----+----+----+ :
: | len | 2 | : | : +-------+-------+ ^ :
: | capacity | 2 | : | : ^ | :
: +-----------+-------+ : | : | '-------. :
: : | : | data:"Dog"| :
: : | : | +-------+--|-------+ :
`- - - - - - - - - - - - - - - -' | : +---|-+-----+ | name | o, 4, 4 | :

`--+-->| o o | o o-|----->| age | 5 | :
: +-|---+-|---+ +-------+----------+ :
: | | :
`- - -| - - |- - - - - - - - - - - - - - - - -'

137

| |
| | "Program text"

.- - -| - - |- - - - - - - - - - - - - - - - -.
: | | vtable :
: | | +----------------------+ :
: | `----->| "<Dog as Pet>::talk" | :
: | +----------------------+ :
: | vtable :
: | +----------------------+ :
: '----------->| "<Cat as Pet>::talk" | :
: +----------------------+ :
: :
'- -'

This slide should take about 10 minutes.

• Types that implement a given trait may be of different sizes. This makes it impossible to
have things like Vec<dyn Pet> in the example above.

• dyn Pet is a way to tell the compiler about a dynamically sized type that implements
Pet.

• In the example, pets is allocated on the stack and the vector data is on the heap. The
two vector elements are fat pointers:
– A fat pointer is a double-width pointer. It has two components: a pointer to the

actual object and a pointer to the virtual method table (vtable) for the Pet imple-
mentation of that particular object.

– The data for the Dog named Fido is the name and age fields. The Cat has a lives
field.

• Compare these outputs in the above example:
println!("{} {}", std::mem::size_of::<Dog>(), std::mem::size_of::<Cat>());
println!("{} {}", std::mem::size_of::<&Dog>(), std::mem::size_of::<&Cat>());
println!("{}", std::mem::size_of::<&dyn Pet>());
println!("{}", std::mem::size_of::<Box<dyn Pet>>());

21.4 Exercise: Binary Tree

A binary tree is a tree-type data structure where every node has two children (left and right).
We will create a tree where each node stores a value. For a given node N, all nodes in a N's left
subtree contain smaller values, and all nodes in N's right subtree will contain larger values.
A given value should only be stored in the tree once, i.e. no duplicate nodes.

Implement the following types, so that the given tests pass.

/// A node in the binary tree.
#[derive(Debug)]
struct Node<T: Ord> {

value: T,
left: Subtree<T>,
right: Subtree<T>,

}

/// A possibly-empty subtree.
#[derive(Debug)]

138

https://en.wikipedia.org/wiki/Virtual_method_table

struct Subtree<T: Ord>(Option<Box<Node<T>>>);

/// A container storing a set of values, using a binary tree.
///
/// If the same value is added multiple times, it is only stored once.
#[derive(Debug)]
pub struct BinaryTree<T: Ord> {

root: Subtree<T>,
}

impl<T: Ord> BinaryTree<T> {
fn new() -> Self {

Self { root: Subtree::new() }
}

fn insert(&mut self, value: T) {
self.root.insert(value);

}

fn has(&self, value: &T) -> bool {
self.root.has(value)

}

fn len(&self) -> usize {
self.root.len()

}
}

// Implement `new`, `insert`, `len`, and `has` for `Subtree`.

#[cfg(test)]
mod tests {

use super::*;

#[test]
fn len() {

let mut tree = BinaryTree::new();
assert_eq!(tree.len(), 0);
tree.insert(2);
assert_eq!(tree.len(), 1);
tree.insert(1);
assert_eq!(tree.len(), 2);
tree.insert(2); // not a unique item
assert_eq!(tree.len(), 2);
tree.insert(3);
assert_eq!(tree.len(), 3);

}

#[test]
fn has() {

let mut tree = BinaryTree::new();

139

fn check_has(tree: &BinaryTree<i32>, exp: &[bool]) {
let got: Vec<bool> =

(0..exp.len()).map(|i| tree.has(&(i as i32))).collect();
assert_eq!(&got, exp);

}

check_has(&tree, &[false, false, false, false, false]);
tree.insert(0);
check_has(&tree, &[true, false, false, false, false]);
tree.insert(4);
check_has(&tree, &[true, false, false, false, true]);
tree.insert(4);
check_has(&tree, &[true, false, false, false, true]);
tree.insert(3);
check_has(&tree, &[true, false, false, true, true]);

}

#[test]
fn unbalanced() {

let mut tree = BinaryTree::new();
for i in 0..100 {

tree.insert(i);
}
assert_eq!(tree.len(), 100);
assert!(tree.has(&50));

}
}

21.4.1 Solution

use std::cmp::Ordering;

/// A node in the binary tree.
#[derive(Debug)]
struct Node<T: Ord> {

value: T,
left: Subtree<T>,
right: Subtree<T>,

}

/// A possibly-empty subtree.
#[derive(Debug)]
struct Subtree<T: Ord>(Option<Box<Node<T>>>);

/// A container storing a set of values, using a binary tree.
///
/// If the same value is added multiple times, it is only stored once.
#[derive(Debug)]
pub struct BinaryTree<T: Ord> {

root: Subtree<T>,
}

140

impl<T: Ord> BinaryTree<T> {
fn new() -> Self {

Self { root: Subtree::new() }
}

fn insert(&mut self, value: T) {
self.root.insert(value);

}

fn has(&self, value: &T) -> bool {
self.root.has(value)

}

fn len(&self) -> usize {
self.root.len()

}
}

impl<T: Ord> Subtree<T> {
fn new() -> Self {

Self(None)
}

fn insert(&mut self, value: T) {
match &mut self.0 {

None => self.0 = Some(Box::new(Node::new(value))),
Some(n) => match value.cmp(&n.value) {

Ordering::Less => n.left.insert(value),
Ordering::Equal => {}
Ordering::Greater => n.right.insert(value),

},
}

}

fn has(&self, value: &T) -> bool {
match &self.0 {

None => false,
Some(n) => match value.cmp(&n.value) {

Ordering::Less => n.left.has(value),
Ordering::Equal => true,
Ordering::Greater => n.right.has(value),

},
}

}

fn len(&self) -> usize {
match &self.0 {

None => 0,
Some(n) => 1 + n.left.len() + n.right.len(),

}

141

}
}

impl<T: Ord> Node<T> {
fn new(value: T) -> Self {

Self { value, left: Subtree::new(), right: Subtree::new() }
}

}

#[cfg(test)]
mod tests {

use super::*;

#[test]
fn len() {

let mut tree = BinaryTree::new();
assert_eq!(tree.len(), 0);
tree.insert(2);
assert_eq!(tree.len(), 1);
tree.insert(1);
assert_eq!(tree.len(), 2);
tree.insert(2); // not a unique item
assert_eq!(tree.len(), 2);
tree.insert(3);
assert_eq!(tree.len(), 3);

}

#[test]
fn has() {

let mut tree = BinaryTree::new();
fn check_has(tree: &BinaryTree<i32>, exp: &[bool]) {

let got: Vec<bool> =
(0..exp.len()).map(|i| tree.has(&(i as i32))).collect();

assert_eq!(&got, exp);
}

check_has(&tree, &[false, false, false, false, false]);
tree.insert(0);
check_has(&tree, &[true, false, false, false, false]);
tree.insert(4);
check_has(&tree, &[true, false, false, false, true]);
tree.insert(4);
check_has(&tree, &[true, false, false, false, true]);
tree.insert(3);
check_has(&tree, &[true, false, false, true, true]);

}

#[test]
fn unbalanced() {

let mut tree = BinaryTree::new();
for i in 0..100 {

142

tree.insert(i);
}
assert_eq!(tree.len(), 100);
assert!(tree.has(&50));

}
}

143

Part VI

Day 3: Afternoon

144

Chapter 22

Welcome Back

Including 10 minute breaks, this session should take about 2 hours and 10 minutes. It contains:

Segment Duration

Borrowing 55 minutes
Lifetimes 1 hour and 5 minutes

145

Chapter 23

Borrowing

This segment should take about 55 minutes. It contains:

Slide Duration

Borrowing a Value 10 minutes
Borrow Checking 10 minutes
Borrow Errors 3 minutes
Interior Mutability 10 minutes
Exercise: Health Statistics 20 minutes

23.1 Borrowing a Value

As we saw before, instead of transferring ownership when calling a function, you can let a
function borrow the value:

#[derive(Debug)]
struct Point(i32, i32);

fn add(p1: &Point, p2: &Point) -> Point {
Point(p1.0 + p2.0, p1.1 + p2.1)

}

fn main() {
let p1 = Point(3, 4);
let p2 = Point(10, 20);
let p3 = add(&p1, &p2);
println!("{p1:?} + {p2:?} = {p3:?}");

}

• The add function borrows two points and returns a new point.
• The caller retains ownership of the inputs.

This slide should take about 10 minutes.

146

This slide is a review of the material on references from day 1, expanding slightly to include
function arguments and return values.

More to Explore

Notes on stack returns and inlining:

• Demonstrate that the return from add is cheap because the compiler can eliminate the
copy operation, by inlining the call to add into main. Change the above code to print
stack addresses and run it on the Playground or look at the assembly in Godbolt. In
the ”DEBUG” optimization level, the addresses should change, while they stay the same
when changing to the ”RELEASE” setting:

#[derive(Debug)]
struct Point(i32, i32);

fn add(p1: &Point, p2: &Point) -> Point {
let p = Point(p1.0 + p2.0, p1.1 + p2.1);
println!("&p.0: {:p}", &p.0);
p

}

pub fn main() {
let p1 = Point(3, 4);
let p2 = Point(10, 20);
let p3 = add(&p1, &p2);
println!("&p3.0: {:p}", &p3.0);
println!("{p1:?} + {p2:?} = {p3:?}");

}

• The Rust compiler can do automatic inlining, that can be disabled on a function level
with #[inline(never)].

• Once disabled, the printed address will change on all optimization levels. Looking at
Godbolt or Playground, one can see that in this case, the return of the value depends
on the ABI, e.g. on amd64 the two i32 that is making up the point will be returned in 2
registers (eax and edx).

23.2 Borrow Checking

Rust's borrow checker puts constraints on the ways you can borrow values. We've already
seen that a reference cannot outlive the value it borrows:

fn main() {
let x_ref = {

let x = 10;
&x

};
dbg!(x_ref);

}

147

https://play.rust-lang.org/?version=stable&mode=release&edition=2024&gist=0cb13be1c05d7e3446686ad9947c4671
https://rust.godbolt.org/

There's also a second main rule that the borrow checker enforces: The aliasing rule. For a
given value, at any time:

• You can have one or more shared references to the value, or
• You can have exactly one exclusive reference to the value.

fn main() {
let mut a = 10;
let b = &a;

{
let c = &mut a;
*c = 20;

}

dbg!(a);
dbg!(b);

}

This slide should take about 10 minutes.

• The ”outlives” rule was demonstrated previously when we first looked at references.
We review it here to show students that the borrow checking is following a few different
rules to validate borrowing.

• The above code does not compile because a is borrowed as mutable (through c) and as
immutable (through b) at the same time.
– Note that the requirement is that conflicting references not exist at the same point.

It does not matter where the reference is dereferenced. Try commenting out *c =
20 and show that the compiler error still occurs even if we never use c.

– Note that the intermediate reference c isn't necessary to trigger a borrow conflict.
Replace c with a direct mutation of a and demonstrate that this produces a similar
error. This is because direct mutation of a value effectively creates a temporary
mutable reference.

• Move the dbg! statement for b before the scope that introduces c to make the code
compile.
– After that change, the compiler realizes that b is only ever used before the new

mutable borrow of a through c. This is a feature of the borrow checker called
”non-lexical lifetimes”.

More to Explore

• Technically, multiple mutable references to a piece of data can exist at the same time
via re-borrowing. This is what allows you to pass a mutable reference into a function
without invalidating the original reference. This playground example demonstrates
that behavior.

• Rust uses the exclusive reference constraint to ensure that data races do not occur in
multi-threaded code, since only one thread can have mutable access to a piece of data
at a time.

• Rust also uses this constraint to optimize code. For example, a value behind a shared
reference can be safely cached in a register for the lifetime of that reference.

• Fields of a struct can be borrowed independently of each other, but calling a method on
a struct will borrow the whole struct, potentially invalidating references to individual
fields. See this playground snippet for an example of this.

148

https://play.rust-lang.org/?version=stable&mode=debug&edition=2024&gist=8f5896878611566845fe3b0f4dc5af68
https://play.rust-lang.org/?version=stable&mode=debug&edition=2024&gist=f293a31f2d4d0d31770486247c2e8437

23.3 Borrow Errors

As a concrete example of how these borrowing rules prevent memory errors, consider the
case of modifying a collection while there are references to its elements:

fn main() {
let mut vec = vec![1, 2, 3, 4, 5];
let elem = &vec[2];
vec.push(6);
dbg!(elem);

}

Similarly, consider the case of iterator invalidation:

fn main() {
let mut vec = vec![1, 2, 3, 4, 5];
for elem in &vec {

vec.push(elem * 2);
}

}

This slide should take about 3 minutes.

• In both of these cases, modifying the collection by pushing new elements into it can
potentially invalidate existing references to the collection's elements if the collection
has to reallocate.

23.4 Interior Mutability

In some situations, it's necessary to modify data behind a shared (read-only) reference. For
example, a shared data structure might have an internal cache, and wish to update that cache
from read-only methods.

The ”interior mutability” pattern allows exclusive (mutable) access behind a shared reference.
The standard library provides several ways to do this, all while still ensuring safety, typically
by performing a runtime check.

This slide and its sub-slides should take about 10 minutes.

The main thing to take away from this slide is that Rust provides safe ways to modify data
behind a shared reference. There are a variety of ways to ensure that safety, and the next
sub-slides present a few of them.

23.4.1 Cell

Cell wraps a value and allows getting or setting the value using only a shared reference to
the Cell. However, it does not allow any references to the inner value. Since there are no
references, borrowing rules cannot be broken.

use std::cell::Cell;

fn main() {
// Note that `cell` is NOT declared as mutable.
let cell = Cell::new(5);

149

cell.set(123);
dbg!(cell.get());

}

• Cell is a simple means to ensure safety: it has a set method that takes &self. This
needs no runtime check, but requires moving values, which can have its own cost.

23.4.2 RefCell

RefCell allows accessing and mutating a wrapped value by providing alternative types Ref
and RefMut that emulate &T/&mut T without actually being Rust references.

These types perform dynamic checks using a counter in the RefCell to prevent existence of
a RefMut alongside another Ref/RefMut.

By implementing Deref (and DerefMut for RefMut), these types allow calling methods on
the inner value without allowing references to escape.

use std::cell::RefCell;

fn main() {
// Note that `cell` is NOT declared as mutable.
let cell = RefCell::new(5);

{
let mut cell_ref = cell.borrow_mut();
*cell_ref = 123;

// This triggers an error at runtime.
// let other = cell.borrow();
// println!("{}", other);

}

println!("{cell:?}");
}

• RefCell enforces Rust's usual borrowing rules (either multiple shared references or
a single exclusive reference) with a runtime check. In this case, all borrows are very
short and never overlap, so the checks always succeed.

• The extra block in the example is to end the borrow created by the call to borrow_mut
before we print the cell. Trying to print a borrowed RefCell just shows the message
"{borrowed}".

More to Explore

There are also OnceCell and OnceLock, which allow initialization on first use. Making these
useful requires some more knowledge than students have at this time.

150

23.5 Exercise: Health Statistics

You're working on implementing a health-monitoring system. As part of that, you need to
keep track of users' health statistics.

You'll start with a stubbed function in an impl block as well as a User struct definition. Your
goal is to implement the stubbed out method on the User struct defined in the impl block.

Copy the code below to https://play.rust-lang.org/ and fill in the missing method:

#![allow(dead_code)]
pub struct User {

name: String,
age: u32,
height: f32,
visit_count: u32,
last_blood_pressure: Option<(u32, u32)>,

}

pub struct Measurements {
height: f32,
blood_pressure: (u32, u32),

}

pub struct HealthReport<'a> {
patient_name: &'a str,
visit_count: u32,
height_change: f32,
blood_pressure_change: Option<(i32, i32)>,

}

impl User {
pub fn new(name: String, age: u32, height: f32) -> Self {

Self { name, age, height, visit_count: 0, last_blood_pressure: None }
}

pub fn visit_doctor(&mut self, measurements: Measurements) -> HealthReport<'_> {
todo!("Update a user's statistics based on measurements from a visit to the doctor")

}
}

#[test]
fn test_visit() {

let mut bob = User::new(String::from("Bob"), 32, 155.2);
assert_eq!(bob.visit_count, 0);
let report =

bob.visit_doctor(Measurements { height: 156.1, blood_pressure: (120, 80) });
assert_eq!(report.patient_name, "Bob");
assert_eq!(report.visit_count, 1);
assert_eq!(report.blood_pressure_change, None);
assert!((report.height_change - 0.9).abs() < 0.00001);

151

https://play.rust-lang.org/

let report =
bob.visit_doctor(Measurements { height: 156.1, blood_pressure: (115, 76) });

assert_eq!(report.visit_count, 2);
assert_eq!(report.blood_pressure_change, Some((-5, -4)));
assert_eq!(report.height_change, 0.0);

}

23.5.1 Solution

#![allow(dead_code)]
pub struct User {

name: String,
age: u32,
height: f32,
visit_count: u32,
last_blood_pressure: Option<(u32, u32)>,

}

pub struct Measurements {
height: f32,
blood_pressure: (u32, u32),

}

pub struct HealthReport<'a> {
patient_name: &'a str,
visit_count: u32,
height_change: f32,
blood_pressure_change: Option<(i32, i32)>,

}

impl User {
pub fn new(name: String, age: u32, height: f32) -> Self {

Self { name, age, height, visit_count: 0, last_blood_pressure: None }
}

pub fn visit_doctor(&mut self, measurements: Measurements) -> HealthReport<'_> {
self.visit_count += 1;
let bp = measurements.blood_pressure;
let report = HealthReport {

patient_name: &self.name,
visit_count: self.visit_count,
height_change: measurements.height - self.height,
blood_pressure_change: self

.last_blood_pressure

.map(|lbp| (bp.0 as i32 - lbp.0 as i32, bp.1 as i32 - lbp.1 as i32)),
};
self.height = measurements.height;
self.last_blood_pressure = Some(bp);

152

report
}

}

#[test]
fn test_visit() {

let mut bob = User::new(String::from("Bob"), 32, 155.2);
assert_eq!(bob.visit_count, 0);
let report =

bob.visit_doctor(Measurements { height: 156.1, blood_pressure: (120, 80) });
assert_eq!(report.patient_name, "Bob");
assert_eq!(report.visit_count, 1);
assert_eq!(report.blood_pressure_change, None);
assert!((report.height_change - 0.9).abs() < 0.00001);

let report =
bob.visit_doctor(Measurements { height: 156.1, blood_pressure: (115, 76) });

assert_eq!(report.visit_count, 2);
assert_eq!(report.blood_pressure_change, Some((-5, -4)));
assert_eq!(report.height_change, 0.0);

}

153

Chapter 24

Lifetimes

This segment should take about 1 hour and 5 minutes. It contains:

Slide Duration

Borrowing and Functions 3 minutes
Returning Borrows 5 minutes
Multiple Borrows 5 minutes
Borrow Both 5 minutes
Borrow One 5 minutes
Lifetime Elision 5 minutes
Lifetimes in Data Structures 5 minutes
Exercise: Protobuf Parsing 30 minutes

24.1 Borrowing with Functions

As part of borrow checking, the compiler needs to reason about how borrows flow into and
out of functions. In the simplest case borrows last for the duration of the function call:

fn borrows(x: &i32) {
dbg!(x);

}

fn main() {
let mut val = 123;

// Borrow `val` for the function call.
borrows(&val);

// Borrow has ended and we're free to mutate.
val += 5;

}

This slide should take about 3 minutes.

154

• In this example we borrow val for the call to borrows. This would limit our ability to
mutate val, but once the function call returns the borrow has ended and we're free to
mutate again.

24.2 Returning Borrows

But we can also have our function return a reference! This means that a borrow flows back
out of a function:

fn identity(x: &i32) -> &i32 {
x

}

fn main() {
let mut x = 123;

let out = identity(&x);

// x = 5; // `x` is still borrowed!

dbg!(out);
}

This slide should take about 5 minutes.

• Rust functions can return references, meaning that a borrow can flow back out of a
function.

• If a function returns a reference (or another kind of borrow), it was likely derived from
one of its arguments. This means that the return value of the function will extend the
borrow for one or more argument borrows.

• This case is still fairly simple, in that only one borrow is passed into the function, so the
returned borrow has to be the same one.

24.3 Multiple Borrows

But what about when there are multiple borrows passed into a function and one being
returned?

fn multiple(a: &i32, b: &i32) -> &i32 {
todo!("Return either `a` or `b`")

}

fn main() {
let mut a = 5;
let mut b = 10;

let r = multiple(&a, &b);

// Which one is still borrowed?
// Should either mutation be allowed?

155

a += 7;
b += 7;

dbg!(r);
}

This slide should take about 5 minutes.

• This code does not compile right now because it is missing lifetime annotations. Before
we get it to compile, use this opportunity to have students to think about which of our
argument borrows should be extended by the return value.

• We pass two borrows into multiple and one is going to come back out, which means
we will need to extend the borrow of one of the argument lifetimes. Which one should
be extended? Do we need to see the body of multiple to figure this out?

• When borrow checking, the compiler doesn't look at the body of multiple to reason
about the borrows flowing out, instead it looks only at the signature of the function for
borrow analysis.

• In this case there is not enough information to determine if a or b will be borrowed by
the returned reference. Show students the compiler errors and introduce the lifetime
syntax:

fn multiple<'a>(a: &'a i32, b: &'a i32) -> &'a i32 { ... }

24.4 Borrow Both

In this case, we have a function where either a or b may be returned. In this case we use the
lifetime annotations to tell the compiler that both borrows may flow into the return value.

fn pick<'a>(c: bool, a: &'a i32, b: &'a i32) -> &'a i32 {
if c { a } else { b }

}

fn main() {
let mut a = 5;
let mut b = 10;

let r = pick(true, &a, &b);

// Which one is still borrowed?
// Should either mutation be allowed?
// a += 7;
// b += 7;

dbg!(r);
}

This slide should take about 5 minutes.

• The pick function will return either a or b depending on the value of c, which means
we can't know at compile time which one will be returned.

156

• To express this to the compiler, we use the same lifetime for both a and b, along with
the return type. This means that the returned reference will borrow BOTH a and b!

• Uncomment both of the commented lines and show that r is borrowing both a and b,
even though at runtime it will only point to one of them.

• Change the first argument to pick to show that the result is the same regardless of if a
or b is returned.

24.5 Borrow One

In this example find_nearest takes in multiple borrows but returns only one of them.
The lifetime annotations explicitly tie the returned borrow to the corresponding argument
borrow.

#[derive(Debug)]
struct Point(i32, i32);

/// Searches `points` for the point closest to `query`.
/// Assumes there's at least one point in `points`.
fn find_nearest<'a>(points: &'a [Point], query: &Point) -> &'a Point {

fn cab_distance(p1: &Point, p2: &Point) -> i32 {
(p1.0 - p2.0).abs() + (p1.1 - p2.1).abs()

}

let mut nearest = None;
for p in points {

if let Some((_, nearest_dist)) = nearest {
let dist = cab_distance(p, query);
if dist < nearest_dist {

nearest = Some((p, dist));
}

} else {
nearest = Some((p, cab_distance(p, query)));

};
}

nearest.map(|(p, _)| p).unwrap()
// query // What happens if we do this instead?

}

fn main() {
let points = &[Point(1, 0), Point(1, 0), Point(-1, 0), Point(0, -1)];
let query = Point(0, 2);
let nearest = find_nearest(points, &query);

// `query` isn't borrowed at this point.
drop(query);

dbg!(nearest);
}

157

This slide should take about 5 minutes.

• It may be helpful to collapse the definition of find_nearest to put more focus on the
signature of the function. The actual logic in the function is somewhat complex and
isn't important for the purpose of borrow analysis.

• When we call find_nearest the returned reference doesn't borrow query, and so we
are free to drop it while nearest is still active.

• But what happens if we return the wrong borrow? Change the last line of find_nearest
to return query instead. Show the compiler error to the students.

• The first thing we have to do is add a lifetime annotation to query. Show students that
we can add a second lifetime 'b to find_nearest.

• Show the new error to the students. The borrow checker verifies that the logic in the
function body actually returns a reference with the correct lifetime, enforcing that the
function adheres to the contract set by the function's signature.

More to Explore

• The ”help” message in the error notes that we can add a lifetime bound 'b: 'a to say
that 'b will live at least as long as 'a, which would then allow us to return query. This
is an example of lifetime subtyping, which allows us to return a longer lifetime where a
shorter one is expected.

• We can do something similar by returning a 'static lifetime, e.g., a reference to a
static variable. The 'static lifetime is guaranteed to be longer than any other
lifetime, so it's always safe to return in place of a shorter lifetime.

24.6 Lifetime Elision

Lifetimes for function arguments and return values must be fully specified, but Rust allows
lifetimes to be elided in most cases with a few simple rules. This is not inference -- it is just a
syntactic shorthand.

• Each argument which does not have a lifetime annotation is given one.
• If there is only one argument lifetime, it is given to all un-annotated return values.
• If there are multiple argument lifetimes, but the first one is for self, that lifetime is

given to all un-annotated return values.

fn only_args(a: &i32, b: &i32) {
todo!();

}

fn identity(a: &i32) -> &i32 {
a

}

struct Foo(i32);
impl Foo {

fn get(&self, other: &i32) -> &i32 {
&self.0

158

https://doc.rust-lang.org/nomicon/lifetime-elision.html

}
}

This slide should take about 5 minutes.

• Walk through applying the lifetime elision rules to each of the example functions.
only_args is completed by the first rule, identity is completed by the second, and
Foo::get is completed by the third.

• If all lifetimes have not been filled in by applying the three elision rules then you will
get a compiler error telling you to add annotations manually.

24.7 Lifetimes in Data Structures

If a data type stores borrowed data, it must be annotated with a lifetime:

#[derive(Debug)]
enum HighlightColor {

Pink,
Yellow,

}

#[derive(Debug)]
struct Highlight<'document> {

slice: &'document str,
color: HighlightColor,

}

fn main() {
let doc = String::from("The quick brown fox jumps over the lazy dog.");
let noun = Highlight { slice: &doc[16..19], color: HighlightColor::Yellow };
let verb = Highlight { slice: &doc[20..25], color: HighlightColor::Pink };
// drop(doc);
dbg!(noun);
dbg!(verb);

}

This slide should take about 5 minutes.

• In the above example, the annotation on Highlight enforces that the data underlying
the contained &str lives at least as long as any instance of Highlight that uses that
data. A struct cannot live longer than the data it references.

• If doc is dropped before the end of the lifetime of noun or verb, the borrow checker
throws an error.

• Types with borrowed data force users to hold on to the original data. This can be useful
for creating lightweight views, but it generally makes them somewhat harder to use.

• When possible, make data structures own their data directly.
• Some structs with multiple references inside can have more than one lifetime annotation.

This can be necessary if there is a need to describe lifetime relationships between the
references themselves, in addition to the lifetime of the struct itself. Those are very
advanced use cases.

159

24.8 Exercise: Protobuf Parsing

In this exercise, you will build a parser for the protobuf binary encoding. Don't worry, it's
simpler than it seems! This illustrates a common parsing pattern, passing slices of data. The
underlying data itself is never copied.

Fully parsing a protobuf message requires knowing the types of the fields, indexed by their
field numbers. That is typically provided in a proto file. In this exercise, we'll encode that
information into match statements in functions that get called for each field.

We'll use the following proto:

message PhoneNumber {
optional string number = 1;
optional string type = 2;

}

message Person {
optional string name = 1;
optional int32 id = 2;
repeated PhoneNumber phones = 3;

}

Messages

A proto message is encoded as a series of fields, one after the next. Each is implemented as
a ”tag” followed by the value. The tag contains a field number (e.g., 2 for the id field of a
Person message) and a wire type defining how the payload should be determined from the
byte stream. These are combined into a single integer, as decoded in unpack_tag below.

Varint

Integers, including the tag, are represented with a variable-length encoding called VARINT.
Luckily, parse_varint is defined for you below.

Wire Types

Proto defines several wire types, only two of which are used in this exercise.

The Varint wire type contains a single varint, and is used to encode proto values of type
int32 such as Person.id.

The Len wire type contains a length expressed as a varint, followed by a payload of that
number of bytes. This is used to encode proto values of type string such as Person.name. It
is also used to encode proto values containing sub-messages such as Person.phones, where
the payload contains an encoding of the sub-message.

Exercise

The given code also defines callbacks to handle Person and PhoneNumber fields, and to parse
a message into a series of calls to those callbacks.

160

https://protobuf.dev/programming-guides/encoding/

What remains for you is to implement the parse_field function and the ProtoMessage
trait for Person and PhoneNumber.

/// A wire type as seen on the wire.
enum WireType {

/// The Varint WireType indicates the value is a single VARINT.
Varint,
// The I64 WireType indicates that the value is precisely 8 bytes in
// little-endian order containing a 64-bit signed integer or double type.
//I64, -- not needed for this exercise
/// The Len WireType indicates that the value is a length represented as a
/// VARINT followed by exactly that number of bytes.
Len,
// The I32 WireType indicates that the value is precisely 4 bytes in
// little-endian order containing a 32-bit signed integer or float type.
//I32, -- not needed for this exercise

}

#[derive(Debug)]
/// A field's value, typed based on the wire type.
enum FieldValue<'a> {

Varint(u64),
//I64(i64), -- not needed for this exercise
Len(&'a [u8]),
//I32(i32), -- not needed for this exercise

}

#[derive(Debug)]
/// A field, containing the field number and its value.
struct Field<'a> {

field_num: u64,
value: FieldValue<'a>,

}

trait ProtoMessage<'a>: Default {
fn add_field(&mut self, field: Field<'a>);

}

impl From<u64> for WireType {
fn from(value: u64) -> Self {

match value {
0 => WireType::Varint,
//1 => WireType::I64, -- not needed for this exercise
2 => WireType::Len,
//5 => WireType::I32, -- not needed for this exercise
_ => panic!("Invalid wire type: {value}"),

}
}

}

impl<'a> FieldValue<'a> {

161

fn as_str(&self) -> &'a str {
let FieldValue::Len(data) = self else {

panic!("Expected string to be a `Len` field");
};
std::str::from_utf8(data).expect("Invalid string")

}

fn as_bytes(&self) -> &'a [u8] {
let FieldValue::Len(data) = self else {

panic!("Expected bytes to be a `Len` field");
};
data

}

fn as_u64(&self) -> u64 {
let FieldValue::Varint(value) = self else {

panic!("Expected `u64` to be a `Varint` field");
};
*value

}
}

/// Parse a VARINT, returning the parsed value and the remaining bytes.
fn parse_varint(data: &[u8]) -> (u64, &[u8]) {

for i in 0..7 {
let Some(b) = data.get(i) else {

panic!("Not enough bytes for varint");
};
if b & 0x80 == 0 {

// This is the last byte of the VARINT, so convert it to
// a u64 and return it.
let mut value = 0u64;
for b in data[..=i].iter().rev() {

value = (value << 7) | (b & 0x7f) as u64;
}
return (value, &data[i + 1..]);

}
}

// More than 7 bytes is invalid.
panic!("Too many bytes for varint");

}

/// Convert a tag into a field number and a WireType.
fn unpack_tag(tag: u64) -> (u64, WireType) {

let field_num = tag >> 3;
let wire_type = WireType::from(tag & 0x7);
(field_num, wire_type)

}

162

/// Parse a field, returning the remaining bytes
fn parse_field(data: &[u8]) -> (Field<'_>, &[u8]) {

let (tag, remainder) = parse_varint(data);
let (field_num, wire_type) = unpack_tag(tag);
let (fieldvalue, remainder) = match wire_type {

_ => todo!("Based on the wire type, build a Field, consuming as many bytes as necessary.")
};
todo!("Return the field, and any un-consumed bytes.")

}

/// Parse a message in the given data, calling `T::add_field` for each field in
/// the message.
///
/// The entire input is consumed.
fn parse_message<'a, T: ProtoMessage<'a>>(mut data: &'a [u8]) -> T {

let mut result = T::default();
while !data.is_empty() {

let parsed = parse_field(data);
result.add_field(parsed.0);
data = parsed.1;

}
result

}

#[derive(Debug, Default)]
struct PhoneNumber<'a> {

number: &'a str,
type_: &'a str,

}

#[derive(Debug, Default)]
struct Person<'a> {

name: &'a str,
id: u64,
phone: Vec<PhoneNumber<'a>>,

}

// TODO: Implement ProtoMessage for Person and PhoneNumber.

#[test]
fn test_id() {

let person_id: Person = parse_message(&[0x10, 0x2a]);
assert_eq!(person_id, Person { name: "", id: 42, phone: vec![] });

}

#[test]
fn test_name() {

let person_name: Person = parse_message(&[
0x0a, 0x0e, 0x62, 0x65, 0x61, 0x75, 0x74, 0x69, 0x66, 0x75, 0x6c, 0x20,
0x6e, 0x61, 0x6d, 0x65,

]);

163

assert_eq!(person_name, Person { name: "beautiful name", id: 0, phone: vec![] });
}

#[test]
fn test_just_person() {

let person_name_id: Person =
parse_message(&[0x0a, 0x04, 0x45, 0x76, 0x61, 0x6e, 0x10, 0x16]);

assert_eq!(person_name_id, Person { name: "Evan", id: 22, phone: vec![] });
}

#[test]
fn test_phone() {

let phone: Person = parse_message(&[
0x0a, 0x00, 0x10, 0x00, 0x1a, 0x16, 0x0a, 0x0e, 0x2b, 0x31, 0x32, 0x33,
0x34, 0x2d, 0x37, 0x37, 0x37, 0x2d, 0x39, 0x30, 0x39, 0x30, 0x12, 0x04,
0x68, 0x6f, 0x6d, 0x65,

]);
assert_eq!(

phone,
Person {

name: "",
id: 0,
phone: vec![PhoneNumber { number: "+1234-777-9090", type_: "home" },],

}
);

}

// Put that all together into a single parse.
#[test]
fn test_full_person() {

let person: Person = parse_message(&[
0x0a, 0x07, 0x6d, 0x61, 0x78, 0x77, 0x65, 0x6c, 0x6c, 0x10, 0x2a, 0x1a,
0x16, 0x0a, 0x0e, 0x2b, 0x31, 0x32, 0x30, 0x32, 0x2d, 0x35, 0x35, 0x35,
0x2d, 0x31, 0x32, 0x31, 0x32, 0x12, 0x04, 0x68, 0x6f, 0x6d, 0x65, 0x1a,
0x18, 0x0a, 0x0e, 0x2b, 0x31, 0x38, 0x30, 0x30, 0x2d, 0x38, 0x36, 0x37,
0x2d, 0x35, 0x33, 0x30, 0x38, 0x12, 0x06, 0x6d, 0x6f, 0x62, 0x69, 0x6c,
0x65,

]);
assert_eq!(

person,
Person {

name: "maxwell",
id: 42,
phone: vec![

PhoneNumber { number: "+1202-555-1212", type_: "home" },
PhoneNumber { number: "+1800-867-5308", type_: "mobile" },

]
}

);
}

164

This slide and its sub-slides should take about 30 minutes.

• In this exercise there are various cases where protobuf parsing might fail, e.g. if you
try to parse an i32 when there are fewer than 4 bytes left in the data buffer. In normal
Rust code we'd handle this with the Result enum, but for simplicity in this exercise
we panic if any errors are encountered. On day 4 we'll cover error handling in Rust in
more detail.

24.8.1 Solution

/// A wire type as seen on the wire.
enum WireType {

/// The Varint WireType indicates the value is a single VARINT.
Varint,
// The I64 WireType indicates that the value is precisely 8 bytes in
// little-endian order containing a 64-bit signed integer or double type.
//I64, -- not needed for this exercise
/// The Len WireType indicates that the value is a length represented as a
/// VARINT followed by exactly that number of bytes.
Len,
// The I32 WireType indicates that the value is precisely 4 bytes in
// little-endian order containing a 32-bit signed integer or float type.
//I32, -- not needed for this exercise

}

#[derive(Debug)]
/// A field's value, typed based on the wire type.
enum FieldValue<'a> {

Varint(u64),
//I64(i64), -- not needed for this exercise
Len(&'a [u8]),
//I32(i32), -- not needed for this exercise

}

#[derive(Debug)]
/// A field, containing the field number and its value.
struct Field<'a> {

field_num: u64,
value: FieldValue<'a>,

}

trait ProtoMessage<'a>: Default {
fn add_field(&mut self, field: Field<'a>);

}

impl From<u64> for WireType {
fn from(value: u64) -> Self {

match value {
0 => WireType::Varint,
//1 => WireType::I64, -- not needed for this exercise
2 => WireType::Len,

165

//5 => WireType::I32, -- not needed for this exercise
_ => panic!("Invalid wire type: {value}"),

}
}

}

impl<'a> FieldValue<'a> {
fn as_str(&self) -> &'a str {

let FieldValue::Len(data) = self else {
panic!("Expected string to be a `Len` field");

};
std::str::from_utf8(data).expect("Invalid string")

}

fn as_bytes(&self) -> &'a [u8] {
let FieldValue::Len(data) = self else {

panic!("Expected bytes to be a `Len` field");
};
data

}

fn as_u64(&self) -> u64 {
let FieldValue::Varint(value) = self else {

panic!("Expected `u64` to be a `Varint` field");
};
*value

}
}

/// Parse a VARINT, returning the parsed value and the remaining bytes.
fn parse_varint(data: &[u8]) -> (u64, &[u8]) {

for i in 0..7 {
let Some(b) = data.get(i) else {

panic!("Not enough bytes for varint");
};
if b & 0x80 == 0 {

// This is the last byte of the VARINT, so convert it to
// a u64 and return it.
let mut value = 0u64;
for b in data[..=i].iter().rev() {

value = (value << 7) | (b & 0x7f) as u64;
}
return (value, &data[i + 1..]);

}
}

// More than 7 bytes is invalid.
panic!("Too many bytes for varint");

}

/// Convert a tag into a field number and a WireType.

166

fn unpack_tag(tag: u64) -> (u64, WireType) {
let field_num = tag >> 3;
let wire_type = WireType::from(tag & 0x7);
(field_num, wire_type)

}

/// Parse a field, returning the remaining bytes
fn parse_field(data: &[u8]) -> (Field<'_>, &[u8]) {

let (tag, remainder) = parse_varint(data);
let (field_num, wire_type) = unpack_tag(tag);
let (fieldvalue, remainder) = match wire_type {

WireType::Varint => {
let (value, remainder) = parse_varint(remainder);
(FieldValue::Varint(value), remainder)

}
WireType::Len => {

let (len, remainder) = parse_varint(remainder);
let len = len as usize; // cast for simplicity
let (value, remainder) = remainder.split_at(len);
(FieldValue::Len(value), remainder)

}
};
(Field { field_num, value: fieldvalue }, remainder)

}

/// Parse a message in the given data, calling `T::add_field` for each field in
/// the message.
///
/// The entire input is consumed.
fn parse_message<'a, T: ProtoMessage<'a>>(mut data: &'a [u8]) -> T {

let mut result = T::default();
while !data.is_empty() {

let parsed = parse_field(data);
result.add_field(parsed.0);
data = parsed.1;

}
result

}

#[derive(PartialEq)]
#[derive(Debug, Default)]
struct PhoneNumber<'a> {

number: &'a str,
type_: &'a str,

}

#[derive(PartialEq)]
#[derive(Debug, Default)]
struct Person<'a> {

name: &'a str,
id: u64,

167

phone: Vec<PhoneNumber<'a>>,
}

impl<'a> ProtoMessage<'a> for Person<'a> {
fn add_field(&mut self, field: Field<'a>) {

match field.field_num {
1 => self.name = field.value.as_str(),
2 => self.id = field.value.as_u64(),
3 => self.phone.push(parse_message(field.value.as_bytes())),
_ => {} // skip everything else

}
}

}

impl<'a> ProtoMessage<'a> for PhoneNumber<'a> {
fn add_field(&mut self, field: Field<'a>) {

match field.field_num {
1 => self.number = field.value.as_str(),
2 => self.type_ = field.value.as_str(),
_ => {} // skip everything else

}
}

}

#[test]
fn test_id() {

let person_id: Person = parse_message(&[0x10, 0x2a]);
assert_eq!(person_id, Person { name: "", id: 42, phone: vec![] });

}

#[test]
fn test_name() {

let person_name: Person = parse_message(&[
0x0a, 0x0e, 0x62, 0x65, 0x61, 0x75, 0x74, 0x69, 0x66, 0x75, 0x6c, 0x20,
0x6e, 0x61, 0x6d, 0x65,

]);
assert_eq!(person_name, Person { name: "beautiful name", id: 0, phone: vec![] });

}

#[test]
fn test_just_person() {

let person_name_id: Person =
parse_message(&[0x0a, 0x04, 0x45, 0x76, 0x61, 0x6e, 0x10, 0x16]);

assert_eq!(person_name_id, Person { name: "Evan", id: 22, phone: vec![] });
}

#[test]
fn test_phone() {

let phone: Person = parse_message(&[
0x0a, 0x00, 0x10, 0x00, 0x1a, 0x16, 0x0a, 0x0e, 0x2b, 0x31, 0x32, 0x33,
0x34, 0x2d, 0x37, 0x37, 0x37, 0x2d, 0x39, 0x30, 0x39, 0x30, 0x12, 0x04,

168

0x68, 0x6f, 0x6d, 0x65,
]);
assert_eq!(

phone,
Person {

name: "",
id: 0,
phone: vec![PhoneNumber { number: "+1234-777-9090", type_: "home" },],

}
);

}

// Put that all together into a single parse.
#[test]
fn test_full_person() {

let person: Person = parse_message(&[
0x0a, 0x07, 0x6d, 0x61, 0x78, 0x77, 0x65, 0x6c, 0x6c, 0x10, 0x2a, 0x1a,
0x16, 0x0a, 0x0e, 0x2b, 0x31, 0x32, 0x30, 0x32, 0x2d, 0x35, 0x35, 0x35,
0x2d, 0x31, 0x32, 0x31, 0x32, 0x12, 0x04, 0x68, 0x6f, 0x6d, 0x65, 0x1a,
0x18, 0x0a, 0x0e, 0x2b, 0x31, 0x38, 0x30, 0x30, 0x2d, 0x38, 0x36, 0x37,
0x2d, 0x35, 0x33, 0x30, 0x38, 0x12, 0x06, 0x6d, 0x6f, 0x62, 0x69, 0x6c,
0x65,

]);
assert_eq!(

person,
Person {

name: "maxwell",
id: 42,
phone: vec![

PhoneNumber { number: "+1202-555-1212", type_: "home" },
PhoneNumber { number: "+1800-867-5308", type_: "mobile" },

]
}

);
}

169

Part VII

Day 4: Morning

170

Chapter 25

Welcome to Day 4

Today we will cover topics relating to building large-scale software in Rust:

• Iterators: a deep dive on the Iterator trait.
• Modules and visibility.
• Testing.
• Error handling: panics, Result, and the try operator ?.
• Unsafe Rust: the escape hatch when you can't express yourself in safe Rust.

Schedule

Including 10 minute breaks, this session should take about 2 hours and 50 minutes. It contains:

Segment Duration

Welcome 3 minutes
Iterators 55 minutes
Modules 45 minutes
Testing 45 minutes

171

Chapter 26

Iterators

This segment should take about 55 minutes. It contains:

Slide Duration

Motivation 3 minutes
Iterator Trait 5 minutes
Iterator Helper Methods 5 minutes
collect 5 minutes
IntoIterator 5 minutes
Exercise: Iterator Method Chaining 30 minutes

26.1 Motivating Iterators

If you want to iterate over the contents of an array, you'll need to define:

• Some state to keep track of where you are in the iteration process, e.g. an index.
• A condition to determine when iteration is done.
• Logic for updating the state of iteration each loop.
• Logic for fetching each element using that iteration state.

In a C-style for loop you declare these things directly:

for (int i = 0; i < array_len; i += 1) {
int elem = array[i];

}

In Rust we bundle this state and logic together into an object known as an ”iterator”.

This slide should take about 3 minutes.

• This slide provides context for what Rust iterators do under the hood. We use the
(hopefully) familiar construct of a C-style for loop to show how iteration requires some
state and some logic, that way on the next slide we can show how an iterator bundles
these together.

• Rust doesn't have a C-style for loop, but we can express the same thing with while:

172

let array = [2, 4, 6, 8];
let mut i = 0;
while i < array.len() {

let elem = array[i];
i += 1;

}

More to Explore

There's another way to express array iteration using for in C and C++: You can use a pointer to
the front and a pointer to the end of the array and then compare those pointers to determine
when the loop should end.

for (int *ptr = array; ptr < array + len; ptr += 1) {
int elem = *ptr;

}

If students ask, you can point out that this is how Rust's slice and array iterators work under
the hood (though implemented as a Rust iterator).

26.2 Iterator Trait

The Iterator trait defines how an object can be used to produce a sequence of values. For
example, if we wanted to create an iterator that can produce the elements of a slice it might
look something like this:

struct SliceIter<'s> {
slice: &'s [i32],
i: usize,

}

impl<'s> Iterator for SliceIter<'s> {
type Item = &'s i32;

fn next(&mut self) -> Option<Self::Item> {
if self.i == self.slice.len() {

None
} else {

let next = &self.slice[self.i];
self.i += 1;
Some(next)

}
}

}

fn main() {
let slice = &[2, 4, 6, 8];
let iter = SliceIter { slice, i: 0 };
for elem in iter {

dbg!(elem);

173

https://doc.rust-lang.org/std/iter/trait.Iterator.html

}
}

This slide should take about 5 minutes.

• The SliceIter example implements the same logic as the C-style for loop demonstrated
on the last slide.

• Point out to the students that iterators are lazy: Creating the iterator just initializes the
struct but does not otherwise do any work. No work happens until the next method is
called.

• Iterators don't need to be finite! It's entirely valid to have an iterator that will produce
values forever. For example, a half open range like 0.. will keep going until integer
overflow occurs.

More to Explore

• The ”real” version of SliceIter is the slice::Iter type in the standard library, how-
ever the real version uses pointers under the hood instead of an index in order to
eliminate bounds checks.

• The SliceIter example is a good example of a struct that contains a reference and
therefore uses lifetime annotations.

• You can also demonstrate adding a generic parameter to SliceIter to allow it to work
with any kind of slice (not just &[i32]).

26.3 Iterator Helper Methods

In addition to the next method that defines how an iterator behaves, the Iterator trait
provides 70+ helper methods that can be used to build customized iterators.

fn main() {
let result: i32 = (1..=10) // Create a range from 1 to 10

.filter(|x| x % 2 == 0) // Keep only even numbers

.map(|x| x * x) // Square each number

.sum(); // Sum up all the squared numbers

println!("The sum of squares of even numbers from 1 to 10 is: {}", result);
}

This slide should take about 5 minutes.

• The Iterator trait implements many common functional programming operations
over collections (e.g. map, filter, reduce, etc). This is the trait where you can find all
the documentation about them.

• Many of these helper methods take the original iterator and produce a new iterator
with different behavior. These are know as ”iterator adapter methods”.

• Some methods, like sum and count, consume the iterator and pull all of the elements
out of it.

• These methods are designed to be chained together so that it's easy to build a custom
iterator that does exactly what you need.

174

https://doc.rust-lang.org/stable/std/slice/struct.Iter.html

More to Explore

• Rust's iterators are extremely efficient and highly optimizable. Even complex itera-
tors made by combining many adapter methods will still result in code as efficient as
equivalent imperative implementations.

26.4 collect

The collect method lets you build a collection from an Iterator.

fn main() {
let primes = vec![2, 3, 5, 7];
let prime_squares = primes.into_iter().map(|p| p * p).collect::<Vec<_>>();
println!("prime_squares: {prime_squares:?}");

}

This slide should take about 5 minutes.

• Any iterator can be collected in to a Vec, VecDeque, or HashSet. Iterators that pro-
duce key-value pairs (i.e. a two-element tuple) can also be collected into HashMap and
BTreeMap.

Show the students the definition for collect in the standard library docs. There are two
ways to specify the generic type B for this method:

• With the ”turbofish”: some_iterator.collect::<COLLECTION_TYPE>(), as shown.
The _ shorthand used here lets Rust infer the type of the Vec elements.

• With type inference: let prime_squares: Vec<_> = some_iterator.collect().
Rewrite the example to use this form.

More to Explore

• If students are curious about how this works, you can bring up the FromIterator trait,
which defines how each type of collection gets built from an iterator.

• In addition to the basic implementations of FromIterator for Vec, HashMap, etc., there
are also more specialized implementations which let you do cool things like convert an
Iterator<Item = Result<V, E>> into a Result<Vec<V>, E>.

• The reason type annotations are often needed with collect is because it's generic over
its return type. This makes it harder for the compiler to infer the correct type in a lot of
cases.

26.5 IntoIterator

The Iterator trait tells you how to iterate once you have created an iterator. The related
trait IntoIterator defines how to create an iterator for a type. It is used automatically by
the for loop.

struct Grid {
x_coords: Vec<u32>,
y_coords: Vec<u32>,

}

175

https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.collect
https://doc.rust-lang.org/std/iter/trait.Iterator.html
https://doc.rust-lang.org/std/iter/trait.FromIterator.html
https://doc.rust-lang.org/std/iter/trait.IntoIterator.html

impl IntoIterator for Grid {
type Item = (u32, u32);
type IntoIter = GridIter;
fn into_iter(self) -> GridIter {

GridIter { grid: self, i: 0, j: 0 }
}

}

struct GridIter {
grid: Grid,
i: usize,
j: usize,

}

impl Iterator for GridIter {
type Item = (u32, u32);

fn next(&mut self) -> Option<(u32, u32)> {
if self.i >= self.grid.x_coords.len() {

self.i = 0;
self.j += 1;
if self.j >= self.grid.y_coords.len() {

return None;
}

}
let res = Some((self.grid.x_coords[self.i], self.grid.y_coords[self.j]));
self.i += 1;
res

}
}

fn main() {
let grid = Grid { x_coords: vec![3, 5, 7, 9], y_coords: vec![10, 20, 30, 40] };
for (x, y) in grid {

println!("point = {x}, {y}");
}

}

This slide should take about 5 minutes.

• IntoIterator is the trait that makes for loops work. It is implemented by collection
types such as Vec<T> and references to them such as &Vec<T> and &[T]. Ranges also
implement it. This is why you can iterate over a vector with for i in some_vec {
.. } but some_vec.next() doesn't exist.

Click through to the docs for IntoIterator. Every implementation of IntoIterator must
declare two types:

• Item: the type to iterate over, such as i8,
• IntoIter: the Iterator type returned by the into_iter method.

Note that IntoIter and Item are linked: the iterator must have the same Item type, which
means that it returns Option<Item>

176

The example iterates over all combinations of x and y coordinates.

Try iterating over the grid twice inmain. Why does this fail? Note thatIntoIterator::into_iter
takes ownership of self.

Fix this issue by implementing IntoIterator for &Grid and creating a GridRefIter that
iterates by reference. A version with both GridIter and GridRefIter is available in this
playground.

The same problem can occur for standard library types: for e in some_vector will take
ownership of some_vector and iterate over owned elements from that vector. Use for e
in &some_vector instead, to iterate over references to elements of some_vector.

26.6 Exercise: Iterator Method Chaining

In this exercise, you will need to find and use some of the provided methods in the Iterator
trait to implement a complex calculation.

Copy the following code to https://play.rust-lang.org/ and make the tests pass. Use an iterator
expression and collect the result to construct the return value.

/// Calculate the differences between elements of `values` offset by `offset`,
/// wrapping around from the end of `values` to the beginning.
///
/// Element `n` of the result is `values[(n+offset)%len] - values[n]`.
fn offset_differences(offset: usize, values: Vec<i32>) -> Vec<i32> {

todo!()
}

#[test]
fn test_offset_one() {

assert_eq!(offset_differences(1, vec![1, 3, 5, 7]), vec![2, 2, 2, -6]);
assert_eq!(offset_differences(1, vec![1, 3, 5]), vec![2, 2, -4]);
assert_eq!(offset_differences(1, vec![1, 3]), vec![2, -2]);

}

#[test]
fn test_larger_offsets() {

assert_eq!(offset_differences(2, vec![1, 3, 5, 7]), vec![4, 4, -4, -4]);
assert_eq!(offset_differences(3, vec![1, 3, 5, 7]), vec![6, -2, -2, -2]);
assert_eq!(offset_differences(4, vec![1, 3, 5, 7]), vec![0, 0, 0, 0]);
assert_eq!(offset_differences(5, vec![1, 3, 5, 7]), vec![2, 2, 2, -6]);

}

#[test]
fn test_degenerate_cases() {

assert_eq!(offset_differences(1, vec![0]), vec![0]);
assert_eq!(offset_differences(1, vec![1]), vec![0]);
let empty: Vec<i32> = vec![];
assert_eq!(offset_differences(1, empty), vec![]);

}

177

https://play.rust-lang.org/?version=stable&mode=debug&edition=2024&gist=947e371c7295af758504f01f149023a1
https://play.rust-lang.org/?version=stable&mode=debug&edition=2024&gist=947e371c7295af758504f01f149023a1
https://doc.rust-lang.org/std/iter/trait.Iterator.html
https://play.rust-lang.org/

26.6.1 Solution

/// Calculate the differences between elements of `values` offset by `offset`,
/// wrapping around from the end of `values` to the beginning.
///
/// Element `n` of the result is `values[(n+offset)%len] - values[n]`.
fn offset_differences(offset: usize, values: Vec<i32>) -> Vec<i32> {

let a = values.iter();
let b = values.iter().cycle().skip(offset);
a.zip(b).map(|(a, b)| *b - *a).collect()

}

#[test]
fn test_offset_one() {

assert_eq!(offset_differences(1, vec![1, 3, 5, 7]), vec![2, 2, 2, -6]);
assert_eq!(offset_differences(1, vec![1, 3, 5]), vec![2, 2, -4]);
assert_eq!(offset_differences(1, vec![1, 3]), vec![2, -2]);

}

#[test]
fn test_larger_offsets() {

assert_eq!(offset_differences(2, vec![1, 3, 5, 7]), vec![4, 4, -4, -4]);
assert_eq!(offset_differences(3, vec![1, 3, 5, 7]), vec![6, -2, -2, -2]);
assert_eq!(offset_differences(4, vec![1, 3, 5, 7]), vec![0, 0, 0, 0]);
assert_eq!(offset_differences(5, vec![1, 3, 5, 7]), vec![2, 2, 2, -6]);

}

#[test]
fn test_degenerate_cases() {

assert_eq!(offset_differences(1, vec![0]), vec![0]);
assert_eq!(offset_differences(1, vec![1]), vec![0]);
let empty: Vec<i32> = vec![];
assert_eq!(offset_differences(1, empty), vec![]);

}

178

Chapter 27

Modules

This segment should take about 45 minutes. It contains:

Slide Duration

Modules 3 minutes
Filesystem Hierarchy 5 minutes
Visibility 5 minutes
Encapsulation 5 minutes
use, super, self 10 minutes
Exercise: Modules for a GUI Library 15 minutes

27.1 Modules

We have seen how impl blocks let us namespace functions to a type.

Similarly, mod lets us namespace types and functions:

mod foo {
pub fn do_something() {

println!("In the foo module");
}

}

mod bar {
pub fn do_something() {

println!("In the bar module");
}

}

fn main() {
foo::do_something();
bar::do_something();

}

This slide should take about 3 minutes.

179

• Packages provide functionality and include a Cargo.toml file that describes how to
build a bundle of 1+ crates.

• Crates are a tree of modules, where a binary crate creates an executable and a library
crate compiles to a library.

• Modules define organization, scope, and are the focus of this section.

27.2 Filesystem Hierarchy

Omitting the module content will tell Rust to look for it in another file:

mod garden;

This tells Rust that the garden module content is found at src/garden.rs. Similarly, a
garden::vegetables module can be found at src/garden/vegetables.rs.

The crate root is in:

• src/lib.rs (for a library crate)
• src/main.rs (for a binary crate)

Modules defined in files can be documented, too, using ”inner doc comments”. These docu-
ment the item that contains them -- in this case, a module.

//! This module implements the garden, including a highly performant germination
//! implementation.

// Re-export types from this module.
pub use garden::Garden;
pub use seeds::SeedPacket;

/// Sow the given seed packets.
pub fn sow(seeds: Vec<SeedPacket>) {

todo!()
}

/// Harvest the produce in the garden that is ready.
pub fn harvest(garden: &mut Garden) {

todo!()
}

This slide should take about 5 minutes.

• Before Rust 2018, modules needed to be located at module/mod.rs instead of
module.rs, and this is still a working alternative for editions after 2018.

• The main reason to introduce filename.rs as alternative to filename/mod.rs was
because many files named mod.rs can be hard to distinguish in IDEs.

• Deeper nesting can use folders, even if the main module is a file:

src/
├── main.rs

├── top_module.rs

└── top_module/

└── sub_module.rs

180

• The place rust will look for modules can be changed with a compiler directive:

#[path = "some/path.rs"]
mod some_module;

This is useful, for example, if you would like to place tests for a module in a file named
some_module_test.rs, similar to the convention in Go.

27.3 Visibility

Modules are a privacy boundary:

• Module items are private by default (hides implementation details).
• Parent and sibling items are always visible.
• In other words, if an item is visible in module foo, it's visible in all the descendants of
foo.

mod outer {
fn private() {

println!("outer::private");
}

pub fn public() {
println!("outer::public");

}

mod inner {
fn private() {

println!("outer::inner::private");
}

pub fn public() {
println!("outer::inner::public");
super::private();

}
}

}

fn main() {
outer::public();

}

This slide should take about 5 minutes.

• Use the pub keyword to make modules public.

Additionally, there are advanced pub(...) specifiers to restrict the scope of public visibility.

• See the Rust Reference.
• Configuring pub(crate) visibility is a common pattern.
• Less commonly, you can give visibility to a specific path.
• In any case, visibility must be granted to an ancestor module (and all of its descendants).

181

https://doc.rust-lang.org/reference/visibility-and-privacy.html#pubin-path-pubcrate-pubsuper-and-pubself

27.4 Visibility and Encapsulation

Like with items in a module, struct fields are also private by default. Private fields are likewise
visible within the rest of the module (including child modules). This allows us to encapsulate
implementation details of struct, controlling what data and functionality is visible externally.

use outer::Foo;

mod outer {
pub struct Foo {

pub val: i32,
is_big: bool,

}

impl Foo {
pub fn new(val: i32) -> Self {

Self { val, is_big: val > 100 }
}

}

pub mod inner {
use super::Foo;

pub fn print_foo(foo: &Foo) {
println!("Is {} big? {}", foo.val, foo.is_big);

}
}

}

fn main() {
let foo = Foo::new(42);
println!("foo.val = {}", foo.val);
// let foo = Foo { val: 42, is_big: true };

outer::inner::print_foo(&foo);
// println!("Is {} big? {}", foo.val, foo.is_big);

}

This slide should take about 5 minutes.

• This slide demonstrates how privacy in structs is module-based. Students coming from
object-oriented languages may be used to types being the encapsulation boundary, so
this demonstrates how Rust behaves differently while showing how we can still achieve
encapsulation.

• Note how the is_big field is fully controlled by Foo, allowing Foo to control how it's
initialized and enforce any invariants it needs to (e.g. that is_big is only true if val
> 100).

• Point out how helper functions can be defined in the same module (including child
modules) in order to get access to the type's private fields/methods.

• The first commented out line demonstrates that you cannot initialize a struct with
private fields. The second one demonstrates that you also can't directly access private

182

fields.

• Enums do not support privacy: Variants and data within those variants is always public.

More to Explore

• If students want more information about privacy (or lack thereof) in enums, you can
bring up #[doc_hidden] and #[non_exhaustive] and show how they're used to limit
what can be done with an enum.

• Module privacy still applies when there are impl blocks in other modules (example in
the playground).

27.5 use, super, self

A module can bring symbols from another module into scope with use. You will typically see
something like this at the top of each module:

use std::collections::HashSet;
use std::process::abort;

Paths

Paths are resolved as follows:

1. As a relative path:

• foo or self::foo refers to foo in the current module,
• super::foo refers to foo in the parent module.

2. As an absolute path:

• crate::foo refers to foo in the root of the current crate,
• bar::foo refers to foo in the bar crate.

This slide should take about 8 minutes.

• It is common to ”re-export” symbols at a shorter path. For example, the top-level lib.rs
in a crate might have

mod storage;

pub use storage::disk::DiskStorage;
pub use storage::network::NetworkStorage;

making DiskStorage and NetworkStorage available to other crates with a convenient,
short path.

• For the most part, only items that appear in a module need to be use'd. However, a trait
must be in scope to call any methods on that trait, even if a type implementing that
trait is already in scope. For example, to use the read_to_string method on a type
implementing the Read trait, you need to use std::io::Read.

• The use statement can have a wildcard: use std::io::*. This is discouraged because
it is not clear which items are imported, and those might change over time.

183

https://play.rust-lang.org/?version=stable&mode=debug&edition=2024&gist=3e61f43c88de12bcdf69c1d6df9ab3da
https://play.rust-lang.org/?version=stable&mode=debug&edition=2024&gist=3e61f43c88de12bcdf69c1d6df9ab3da

27.6 Exercise: Modules for a GUI Library

In this exercise, you will reorganize a small GUI Library implementation. This library defines
a Widget trait and a few implementations of that trait, as well as a main function.

It is typical to put each type or set of closely-related types into its own module, so each widget
type should get its own module.

Cargo Setup

The Rust playground only supports one file, so you will need to make a Cargo project on your
local filesystem:

cargo init gui-modules
cd gui-modules
cargo run

Edit the resulting src/main.rs to add mod statements, and add additional files in the src
directory.

Source

Here's the single-module implementation of the GUI library:

pub trait Widget {
/// Natural width of `self`.
fn width(&self) -> usize;

/// Draw the widget into a buffer.
fn draw_into(&self, buffer: &mut dyn std::fmt::Write);

/// Draw the widget on standard output.
fn draw(&self) {

let mut buffer = String::new();
self.draw_into(&mut buffer);
println!("{buffer}");

}
}

pub struct Label {
label: String,

}

impl Label {
fn new(label: &str) -> Label {

Label { label: label.to_owned() }
}

}

pub struct Button {
label: Label,

}

184

impl Button {
fn new(label: &str) -> Button {

Button { label: Label::new(label) }
}

}

pub struct Window {
title: String,
widgets: Vec<Box<dyn Widget>>,

}

impl Window {
fn new(title: &str) -> Window {

Window { title: title.to_owned(), widgets: Vec::new() }
}

fn add_widget(&mut self, widget: Box<dyn Widget>) {
self.widgets.push(widget);

}

fn inner_width(&self) -> usize {
std::cmp::max(

self.title.chars().count(),
self.widgets.iter().map(|w| w.width()).max().unwrap_or(0),

)
}

}

impl Widget for Window {
fn width(&self) -> usize {

// Add 4 paddings for borders
self.inner_width() + 4

}

fn draw_into(&self, buffer: &mut dyn std::fmt::Write) {
let mut inner = String::new();
for widget in &self.widgets {

widget.draw_into(&mut inner);
}

let inner_width = self.inner_width();

// TODO: Change draw_into to return Result<(), std::fmt::Error>. Then use the
// ?-operator here instead of .unwrap().
writeln!(buffer, "+-{:-<inner_width$}-+", "").unwrap();
writeln!(buffer, "| {:^inner_width$} |", &self.title).unwrap();
writeln!(buffer, "+={:=<inner_width$}=+", "").unwrap();
for line in inner.lines() {

writeln!(buffer, "| {:inner_width$} |", line).unwrap();
}

185

writeln!(buffer, "+-{:-<inner_width$}-+", "").unwrap();
}

}

impl Widget for Button {
fn width(&self) -> usize {

self.label.width() + 8 // add a bit of padding
}

fn draw_into(&self, buffer: &mut dyn std::fmt::Write) {
let width = self.width();
let mut label = String::new();
self.label.draw_into(&mut label);

writeln!(buffer, "+{:-<width$}+", "").unwrap();
for line in label.lines() {

writeln!(buffer, "|{:^width$}|", &line).unwrap();
}
writeln!(buffer, "+{:-<width$}+", "").unwrap();

}
}

impl Widget for Label {
fn width(&self) -> usize {

self.label.lines().map(|line| line.chars().count()).max().unwrap_or(0)
}

fn draw_into(&self, buffer: &mut dyn std::fmt::Write) {
writeln!(buffer, "{}", &self.label).unwrap();

}
}

fn main() {
let mut window = Window::new("Rust GUI Demo 1.23");
window.add_widget(Box::new(Label::new("This is a small text GUI demo.")));
window.add_widget(Box::new(Button::new("Click me!")));
window.draw();

}

This slide and its sub-slides should take about 15 minutes.

Encourage students to divide the code in a way that feels natural for them, and get accustomed
to the required mod, use, and pub declarations. Afterward, discuss what organizations are
most idiomatic.

27.6.1 Solution

src
├── main.rs

├── widgets

│ ├── button.rs

186

│ ├── label.rs

│ └── window.rs

└── widgets.rs

// ---- src/widgets.rs ----
pub use button::Button;
pub use label::Label;
pub use window::Window;

mod button;
mod label;
mod window;

pub trait Widget {
/// Natural width of `self`.
fn width(&self) -> usize;

/// Draw the widget into a buffer.
fn draw_into(&self, buffer: &mut dyn std::fmt::Write);

/// Draw the widget on standard output.
fn draw(&self) {

let mut buffer = String::new();
self.draw_into(&mut buffer);
println!("{buffer}");

}
}

// ---- src/widgets/label.rs ----
use super::Widget;

pub struct Label {
label: String,

}

impl Label {
pub fn new(label: &str) -> Label {

Label { label: label.to_owned() }
}

}

impl Widget for Label {
fn width(&self) -> usize {

// ANCHOR_END: Label-width
self.label.lines().map(|line| line.chars().count()).max().unwrap_or(0)

}

// ANCHOR: Label-draw_into
fn draw_into(&self, buffer: &mut dyn std::fmt::Write) {

// ANCHOR_END: Label-draw_into
writeln!(buffer, "{}", &self.label).unwrap();

}

187

}

// ---- src/widgets/button.rs ----
use super::{Label, Widget};

pub struct Button {
label: Label,

}

impl Button {
pub fn new(label: &str) -> Button {

Button { label: Label::new(label) }
}

}

impl Widget for Button {
fn width(&self) -> usize {

// ANCHOR_END: Button-width
self.label.width() + 8 // add a bit of padding

}

// ANCHOR: Button-draw_into
fn draw_into(&self, buffer: &mut dyn std::fmt::Write) {

// ANCHOR_END: Button-draw_into
let width = self.width();
let mut label = String::new();
self.label.draw_into(&mut label);

writeln!(buffer, "+{:-<width$}+", "").unwrap();
for line in label.lines() {

writeln!(buffer, "|{:^width$}|", &line).unwrap();
}
writeln!(buffer, "+{:-<width$}+", "").unwrap();

}
}

// ---- src/widgets/window.rs ----
use super::Widget;

pub struct Window {
title: String,
widgets: Vec<Box<dyn Widget>>,

}

impl Window {
pub fn new(title: &str) -> Window {

Window { title: title.to_owned(), widgets: Vec::new() }
}

pub fn add_widget(&mut self, widget: Box<dyn Widget>) {
self.widgets.push(widget);

}

188

fn inner_width(&self) -> usize {
std::cmp::max(

self.title.chars().count(),
self.widgets.iter().map(|w| w.width()).max().unwrap_or(0),

)
}

}

impl Widget for Window {
fn width(&self) -> usize {

// ANCHOR_END: Window-width
// Add 4 paddings for borders
self.inner_width() + 4

}

// ANCHOR: Window-draw_into
fn draw_into(&self, buffer: &mut dyn std::fmt::Write) {

// ANCHOR_END: Window-draw_into
let mut inner = String::new();
for widget in &self.widgets {

widget.draw_into(&mut inner);
}

let inner_width = self.inner_width();

// TODO: after learning about error handling, you can change
// draw_into to return Result<(), std::fmt::Error>. Then use
// the ?-operator here instead of .unwrap().
writeln!(buffer, "+-{:-<inner_width$}-+", "").unwrap();
writeln!(buffer, "| {:^inner_width$} |", &self.title).unwrap();
writeln!(buffer, "+={:=<inner_width$}=+", "").unwrap();
for line in inner.lines() {

writeln!(buffer, "| {:inner_width$} |", line).unwrap();
}
writeln!(buffer, "+-{:-<inner_width$}-+", "").unwrap();

}
}

// ---- src/main.rs ----
mod widgets;

use widgets::{Button, Label, Widget, Window};

fn main() {
let mut window = Window::new("Rust GUI Demo 1.23");
window.add_widget(Box::new(Label::new("This is a small text GUI demo.")));
window.add_widget(Box::new(Button::new("Click me!")));
window.draw();

}

189

Chapter 28

Testing

This segment should take about 45 minutes. It contains:

Slide Duration

Unit Tests 5 minutes
Other Types of Tests 5 minutes
Compiler Lints and Clippy 3 minutes
Exercise: Luhn Algorithm 30 minutes

28.1 Unit Tests

Rust and Cargo come with a simple unit test framework. Tests are marked with #[test]. Unit
tests are often put in a nested tests module, using #[cfg(test)] to conditionally compile
them only when building tests.

fn first_word(text: &str) -> &str {
match text.find(' ') {

Some(idx) => &text[..idx],
None => &text,

}
}

#[cfg(test)]
mod tests {

use super::*;

#[test]
fn test_empty() {

assert_eq!(first_word(""), "");
}

#[test]
fn test_single_word() {

assert_eq!(first_word("Hello"), "Hello");

190

}

#[test]
fn test_multiple_words() {

assert_eq!(first_word("Hello World"), "Hello");
}

}

• This lets you unit test private helpers.
• The #[cfg(test)] attribute is only active when you run cargo test.

28.2 Other Types of Tests

Integration Tests

If you want to test your library as a client, use an integration test.

Create a .rs file under tests/:

// tests/my_library.rs
use my_library::init;

#[test]
fn test_init() {

assert!(init().is_ok());
}

These tests only have access to the public API of your crate.

Documentation Tests

Rust has built-in support for documentation tests:

/// Shortens a string to the given length.
///
/// ```
/// # use playground::shorten_string;
/// assert_eq!(shorten_string("Hello World", 5), "Hello");
/// assert_eq!(shorten_string("Hello World", 20), "Hello World");
/// ```
pub fn shorten_string(s: &str, length: usize) -> &str {

&s[..std::cmp::min(length, s.len())]
}

• Code blocks in /// comments are automatically seen as Rust code.
• The code will be compiled and executed as part of cargo test.
• Adding # in the code will hide it from the docs, but will still compile/run it.
• Test the above code on the Rust Playground.

191

https://play.rust-lang.org/?version=stable&mode=debug&edition=2024&gist=3ce2ad13ea1302f6572cb15cd96becf0

28.3 Compiler Lints and Clippy

The Rust compiler produces fantastic error messages, as well as helpful built-in lints. Clippy
provides even more lints, organized into groups that can be enabled per-project.

#[deny(clippy::cast_possible_truncation)]
fn main() {

let mut x = 3;
while (x < 70000) {

x *= 2;
}
println!("X probably fits in a u16, right? {}", x as u16);

}

This slide should take about 3 minutes.

There are compiler lints visible here, but not clippy lints. Run clippy on the playground site
to show clippy warnings. Clippy has extensive documentation of its lints, and adds new lints
(including default-deny lints) all the time.

Note that errors or warnings with help: ... can be fixed with cargo fix or via your editor.

28.4 Exercise: Luhn Algorithm

The Luhn algorithm is used to validate credit card numbers. The algorithm takes a string as
input and does the following to validate the credit card number:

• Ignore all spaces. Reject numbers with fewer than two digits. Reject letters and other
non-digit characters.

• Moving from right to left, double every second digit: for the number 1234, we double
3 and 1. For the number 98765, we double 6 and 8.

• After doubling a digit, sum the digits if the result is greater than 9. So doubling 7 becomes
14 which becomes 1 + 4 = 5.

• Sum all the undoubled and doubled digits.

• The credit card number is valid if the sum ends with 0.

The provided code provides a buggy implementation of the luhn algorithm, along with two
basic unit tests that confirm that most of the algorithm is implemented correctly.

Copy the code below to https://play.rust-lang.org/ and write additional tests to uncover bugs
in the provided implementation, fixing any bugs you find.

pub fn luhn(cc_number: &str) -> bool {
let mut sum = 0;
let mut double = false;

for c in cc_number.chars().rev() {
if let Some(digit) = c.to_digit(10) {

if double {
let double_digit = digit * 2;
sum +=

if double_digit > 9 { double_digit - 9 } else { double_digit };

192

https://doc.rust-lang.org/clippy/
https://en.wikipedia.org/wiki/Luhn_algorithm
https://play.rust-lang.org/

} else {
sum += digit;

}
double = !double;

} else {
continue;

}
}

sum % 10 == 0
}

#[cfg(test)]
mod test {

use super::*;

#[test]
fn test_valid_cc_number() {

assert!(luhn("4263 9826 4026 9299"));
assert!(luhn("4539 3195 0343 6467"));
assert!(luhn("7992 7398 713"));

}

#[test]
fn test_invalid_cc_number() {

assert!(!luhn("4223 9826 4026 9299"));
assert!(!luhn("4539 3195 0343 6476"));
assert!(!luhn("8273 1232 7352 0569"));

}
}

28.4.1 Solution

pub fn luhn(cc_number: &str) -> bool {
let mut sum = 0;
let mut double = false;
let mut digits = 0;

for c in cc_number.chars().rev() {
if let Some(digit) = c.to_digit(10) {

digits += 1;
if double {

let double_digit = digit * 2;
sum +=

if double_digit > 9 { double_digit - 9 } else { double_digit };
} else {

sum += digit;
}
double = !double;

} else if c.is_whitespace() {
// New: accept whitespace.

193

continue;
} else {

// New: reject all other characters.
return false;

}
}

// New: check that we have at least two digits
digits >= 2 && sum % 10 == 0

}

#[cfg(test)]
mod test {

use super::*;

#[test]
fn test_valid_cc_number() {

assert!(luhn("4263 9826 4026 9299"));
assert!(luhn("4539 3195 0343 6467"));
assert!(luhn("7992 7398 713"));

}

#[test]
fn test_invalid_cc_number() {

assert!(!luhn("4223 9826 4026 9299"));
assert!(!luhn("4539 3195 0343 6476"));
assert!(!luhn("8273 1232 7352 0569"));

}

#[test]
fn test_non_digit_cc_number() {

assert!(!luhn("foo"));
assert!(!luhn("foo 0 0"));

}

#[test]
fn test_empty_cc_number() {

assert!(!luhn(""));
assert!(!luhn(" "));
assert!(!luhn(" "));
assert!(!luhn(" "));

}

#[test]
fn test_single_digit_cc_number() {

assert!(!luhn("0"));
}

#[test]
fn test_two_digit_cc_number() {

assert!(luhn(" 0 0 "));

194

}
}

195

Part VIII

Day 4: Afternoon

196

Chapter 29

Welcome Back

Including 10 minute breaks, this session should take about 2 hours and 20 minutes. It contains:

Segment Duration

Error Handling 55 minutes
Unsafe Rust 1 hour and 15 minutes

197

Chapter 30

Error Handling

This segment should take about 55 minutes. It contains:

Slide Duration

Panics 3 minutes
Result 5 minutes
Try Operator 5 minutes
Try Conversions 5 minutes
Error Trait 5 minutes
thiserror 5 minutes
anyhow 5 minutes
Exercise: Rewriting with Result 20 minutes

30.1 Panics

In case of a fatal runtime error, Rust triggers a ”panic”:

fn main() {
let v = vec![10, 20, 30];
dbg!(v[100]);

}

• Panics are for unrecoverable and unexpected errors.
– Panics are symptoms of bugs in the program.
– Runtime failures like failed bounds checks can panic.
– Assertions (such as assert!) panic on failure.
– Purpose-specific panics can use the panic! macro.

• A panic will ”unwind” the stack, dropping values just as if the functions had returned.
• Use non-panicking APIs (such as Vec::get) if crashing is not acceptable.

This slide should take about 3 minutes.

By default, a panic will cause the stack to unwind. The unwinding can be caught:

use std::panic;

198

fn main() {
let result = panic::catch_unwind(|| "No problem here!");
dbg!(result);

let result = panic::catch_unwind(|| {
panic!("oh no!");

});
dbg!(result);

}

• Catching is unusual; do not attempt to implement exceptions with catch_unwind!
• This can be useful in servers which should keep running even if a single request crashes.
• This does not work if panic = 'abort' is set in your Cargo.toml.

30.2 Result

Our primary mechanism for error handling in Rust is the Result enum, which we briefly
saw when discussing standard library types.

use std::fs::File;
use std::io::Read;

fn main() {
let file: Result<File, std::io::Error> = File::open("diary.txt");
match file {

Ok(mut file) => {
let mut contents = String::new();
if let Ok(bytes) = file.read_to_string(&mut contents) {

println!("Dear diary: {contents} ({bytes} bytes)");
} else {

println!("Could not read file content");
}

}
Err(err) => {

println!("The diary could not be opened: {err}");
}

}
}

This slide should take about 5 minutes.

• Result has two variants: Ok which contains the success value, and Err which contains
an error value of some kind.

• Whether or not a function can produce an error is encoded in the function's type
signature by having the function return a Result value.

• Like with Option, there is no way to forget to handle an error: You cannot access either
the success value or the error value without first pattern matching on the Result to
check which variant you have. Methods like unwrap make it easier to write quick-and-
dirty code that doesn't do robust error handling, but means that you can always see in
your source code where proper error handling is being skipped.

199

https://doc.rust-lang.org/stable/std/result/enum.Result.html

More to Explore

It may be helpful to compare error handling in Rust to error handling conventions that
students may be familiar with from other programming languages.

Exceptions

• Many languages use exceptions, e.g. C++, Java, Python.

• In most languages with exceptions, whether or not a function can throw an exception is
not visible as part of its type signature. This generally means that you can't tell when
calling a function if it may throw an exception or not.

• Exceptions generally unwind the call stack, propagating upward until a try block is
reached. An error originating deep in the call stack may impact an unrelated function
further up.

Error Numbers

• Some languages have functions return an error number (or some other error value)
separately from the successful return value of the function. Examples include C and Go.

• Depending on the language it may be possible to forget to check the error value, in
which case you may be accessing an uninitialized or otherwise invalid success value.

30.3 Try Operator

Runtime errors like connection-refused or file-not-found are handled with the Result type,
but matching this type on every call can be cumbersome. The try-operator ? is used to return
errors to the caller. It lets you turn the common

match some_expression {
Ok(value) => value,
Err(err) => return Err(err),

}

into the much simpler

some_expression?

We can use this to simplify our error handling code:

use std::io::Read;
use std::{fs, io};

fn read_username(path: &str) -> Result<String, io::Error> {
let username_file_result = fs::File::open(path);
let mut username_file = match username_file_result {

Ok(file) => file,
Err(err) => return Err(err),

};

let mut username = String::new();

200

match username_file.read_to_string(&mut username) {
Ok(_) => Ok(username),
Err(err) => Err(err),

}
}

fn main() {
//fs::write("config.dat", "alice").unwrap();
let username = read_username("config.dat");
println!("username or error: {username:?}");

}

This slide should take about 5 minutes.

Simplify the read_username function to use ?.

Key points:

• The username variable can be either Ok(string) or Err(error).
• Use the fs::write call to test out the different scenarios: no file, empty file, file with

username.
• Note thatmain can return aResult<(), E> as long as it implementsstd::process::Termination.

In practice, this means that E implements Debug. The executable will print the Err
variant and return a nonzero exit status on error.

30.4 Try Conversions

The effective expansion of ? is a little more complicated than previously indicated:

expression?

works the same as

match expression {
Ok(value) => value,
Err(err) => return Err(From::from(err)),

}

The From::from call here means we attempt to convert the error type to the type returned
by the function. This makes it easy to encapsulate errors into higher-level errors.

Example

use std::error::Error;
use std::io::Read;
use std::{fmt, fs, io};

#[derive(Debug)]
enum ReadUsernameError {

IoError(io::Error),
EmptyUsername(String),

}

impl Error for ReadUsernameError {}

201

impl fmt::Display for ReadUsernameError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {

match self {
Self::IoError(e) => write!(f, "I/O error: {e}"),
Self::EmptyUsername(path) => write!(f, "Found no username in {path}"),

}
}

}

impl From<io::Error> for ReadUsernameError {
fn from(err: io::Error) -> Self {

Self::IoError(err)
}

}

fn read_username(path: &str) -> Result<String, ReadUsernameError> {
let mut username = String::with_capacity(100);
fs::File::open(path)?.read_to_string(&mut username)?;
if username.is_empty() {

return Err(ReadUsernameError::EmptyUsername(String::from(path)));
}
Ok(username)

}

fn main() {
//std::fs::write("config.dat", "").unwrap();
let username = read_username("config.dat");
println!("username or error: {username:?}");

}

This slide should take about 5 minutes.

The ? operator must return a value compatible with the return type of the func-
tion. For Result, it means that the error types have to be compatible. A function
that returns Result<T, ErrorOuter> can only use ? on a value of type Result<U,
ErrorInner> if ErrorOuter and ErrorInner are the same type or if ErrorOuter
implements From<ErrorInner>.

A common alternative to a From implementation is Result::map_err, especially when the
conversion only happens in one place.

There is no compatibility requirement for Option. A function returning Option<T> can use
the ? operator on Option<U> for arbitrary T and U types.

A function that returns Result cannot use ? on Option and vice versa. However,
Option::ok_or converts Option to Result whereas Result::ok turns Result into
Option.

202

30.5 Dynamic Error Types

Sometimes we want to allow any type of error to be returned without writing our own enum
covering all the different possibilities. The std::error::Error trait makes it easy to create
a trait object that can contain any error.

use std::error::Error;
use std::fs;
use std::io::Read;

fn read_count(path: &str) -> Result<i32, Box<dyn Error>> {
let mut count_str = String::new();
fs::File::open(path)?.read_to_string(&mut count_str)?;
let count: i32 = count_str.parse()?;
Ok(count)

}

fn main() {
fs::write("count.dat", "1i3").unwrap();
match read_count("count.dat") {

Ok(count) => println!("Count: {count}"),
Err(err) => println!("Error: {err}"),

}
}

This slide should take about 5 minutes.

The read_count function can return std::io::Error (from file operations) or
std::num::ParseIntError (from String::parse).

Boxing errors saves on code, but gives up the ability to cleanly handle different error cases
differently in the program. As such it's generally not a good idea to use Box<dyn Error> in
the public API of a library, but it can be a good option in a program where you just want to
display the error message somewhere.

Make sure to implement the std::error::Error trait when defining a custom error type
so it can be boxed.

30.6 thiserror

The thiserror crate provides macros to help avoid boilerplate when defining error types. It
provides derive macros that assist in implementing From<T>, Display, and the Error trait.

use std::io::Read;
use std::{fs, io};
use thiserror::Error;

#[derive(Debug, Error)]
enum ReadUsernameError {

#[error("I/O error: {0}")]
IoError(#[from] io::Error),
#[error("Found no username in {0}")]
EmptyUsername(String),

203

https://docs.rs/thiserror/

}

fn read_username(path: &str) -> Result<String, ReadUsernameError> {
let mut username = String::with_capacity(100);
fs::File::open(path)?.read_to_string(&mut username)?;
if username.is_empty() {

return Err(ReadUsernameError::EmptyUsername(String::from(path)));
}
Ok(username)

}

fn main() {
//fs::write("config.dat", "").unwrap();
match read_username("config.dat") {

Ok(username) => println!("Username: {username}"),
Err(err) => println!("Error: {err:?}"),

}
}

This slide should take about 5 minutes.

• The Error derive macro is provided by thiserror, and has lots of useful attributes to
help define error types in a compact way.

• The message from #[error] is used to derive the Display trait.
• Note that the (thiserror::)Error derive macro, while it has the effect of implementing

the (std::error::)Error trait, is not the same this; traits and macros do not share a
namespace.

30.7 anyhow

The anyhow crate provides a rich error type with support for carrying additional contextual
information, which can be used to provide a semantic trace of what the program was doing
leading up to the error.

This can be combined with the convenience macros from thiserror to avoid writing out
trait impls explicitly for custom error types.

use anyhow::{Context, Result, bail};
use std::fs;
use std::io::Read;
use thiserror::Error;

#[derive(Clone, Debug, Eq, Error, PartialEq)]
#[error("Found no username in {0}")]
struct EmptyUsernameError(String);

fn read_username(path: &str) -> Result<String> {
let mut username = String::with_capacity(100);
fs::File::open(path)

.with_context(|| format!("Failed to open {path}"))?

.read_to_string(&mut username)

.context("Failed to read")?;

204

https://docs.rs/anyhow/
https://docs.rs/thiserror/

if username.is_empty() {
bail!(EmptyUsernameError(path.to_string()));

}
Ok(username)

}

fn main() {
//fs::write("config.dat", "").unwrap();
match read_username("config.dat") {

Ok(username) => println!("Username: {username}"),
Err(err) => println!("Error: {err:?}"),

}
}

This slide should take about 5 minutes.

• anyhow::Error is essentially a wrapper around Box<dyn Error>. As such it's again
generally not a good choice for the public API of a library, but is widely used in applica-
tions.

• anyhow::Result<V> is a type alias for Result<V, anyhow::Error>.
• Functionality provided by anyhow::Error may be familiar to Go developers, as it

provides similar behavior to the Go error type and Result<T, anyhow::Error> is
much like a Go (T, error) (with the convention that only one element of the pair is
meaningful).

• anyhow::Context is a trait implemented for the standard Result and Option types.
use anyhow::Context is necessary to enable .context() and .with_context() on
those types.

More to Explore

• anyhow::Error has support for downcasting, much like std::any::Any; the
specific error type stored inside can be extracted for examination if desired with
Error::downcast.

30.8 Exercise: Rewriting with Result

In this exercise we're revisiting the expression evaluator exercise that we did in day 2. Our
initial solution ignores a possible error case: Dividing by zero! Rewrite eval to instead use
idiomatic error handling to handle this error case and return an error when it occurs. We
provide a simple DivideByZeroError type to use as the error type for eval.

/// An operation to perform on two subexpressions.
#[derive(Debug)]
enum Operation {

Add,
Sub,
Mul,
Div,

}

205

https://docs.rs/anyhow/latest/anyhow/struct.Error.html#method.downcast

/// An expression, in tree form.
#[derive(Debug)]
enum Expression {

/// An operation on two subexpressions.
Op { op: Operation, left: Box<Expression>, right: Box<Expression> },

/// A literal value
Value(i64),

}

#[derive(PartialEq, Eq, Debug)]
struct DivideByZeroError;

// The original implementation of the expression evaluator. Update this to
// return a `Result` and produce an error when dividing by 0.
fn eval(e: Expression) -> i64 {

match e {
Expression::Op { op, left, right } => {

let left = eval(*left);
let right = eval(*right);
match op {

Operation::Add => left + right,
Operation::Sub => left - right,
Operation::Mul => left * right,
Operation::Div => if right != 0 {

left / right
} else {

panic!("Cannot divide by zero!");
},

}
}
Expression::Value(v) => v,

}
}

#[cfg(test)]
mod test {

use super::*;

#[test]
fn test_error() {

assert_eq!(
eval(Expression::Op {

op: Operation::Div,
left: Box::new(Expression::Value(99)),
right: Box::new(Expression::Value(0)),

}),
Err(DivideByZeroError)

);
}

206

#[test]
fn test_ok() {

let expr = Expression::Op {
op: Operation::Sub,
left: Box::new(Expression::Value(20)),
right: Box::new(Expression::Value(10)),

};
assert_eq!(eval(expr), Ok(10));

}
}

This slide and its sub-slides should take about 20 minutes.

• The starting code here isn't exactly the same as the previous exercise's solution: We've
added in an explicit panic to show students where the error case is. Point this out if
students get confused.

30.8.1 Solution

/// An operation to perform on two subexpressions.
#[derive(Debug)]
enum Operation {

Add,
Sub,
Mul,
Div,

}

/// An expression, in tree form.
#[derive(Debug)]
enum Expression {

/// An operation on two subexpressions.
Op { op: Operation, left: Box<Expression>, right: Box<Expression> },

/// A literal value
Value(i64),

}

#[derive(PartialEq, Eq, Debug)]
struct DivideByZeroError;

fn eval(e: Expression) -> Result<i64, DivideByZeroError> {
match e {

Expression::Op { op, left, right } => {
let left = eval(*left)?;
let right = eval(*right)?;
Ok(match op {

Operation::Add => left + right,
Operation::Sub => left - right,
Operation::Mul => left * right,
Operation::Div => {

if right == 0 {

207

return Err(DivideByZeroError);
} else {

left / right
}

}
})

}
Expression::Value(v) => Ok(v),

}
}

#[cfg(test)]
mod test {

use super::*;

#[test]
fn test_error() {

assert_eq!(
eval(Expression::Op {

op: Operation::Div,
left: Box::new(Expression::Value(99)),
right: Box::new(Expression::Value(0)),

}),
Err(DivideByZeroError)

);
}

#[test]
fn test_ok() {

let expr = Expression::Op {
op: Operation::Sub,
left: Box::new(Expression::Value(20)),
right: Box::new(Expression::Value(10)),

};
assert_eq!(eval(expr), Ok(10));

}
}

208

Chapter 31

Unsafe Rust

This segment should take about 1 hour and 15 minutes. It contains:

Slide Duration

Unsafe 5 minutes
Dereferencing Raw Pointers 10 minutes
Mutable Static Variables 5 minutes
Unions 5 minutes
Unsafe Functions 15 minutes
Unsafe Traits 5 minutes
Exercise: FFI Wrapper 30 minutes

31.1 Unsafe Rust

The Rust language has two parts:

• Safe Rust: memory safe, no undefined behavior possible.
• Unsafe Rust: can trigger undefined behavior if preconditions are violated.

We saw mostly safe Rust in this course, but it's important to know what Unsafe Rust is.

Unsafe code is usually small and isolated, and its correctness should be carefully documented.
It is usually wrapped in a safe abstraction layer.

Unsafe Rust gives you access to five new capabilities:

• Dereference raw pointers.
• Access or modify mutable static variables.
• Access union fields.
• Call unsafe functions, including extern functions.
• Implement unsafe traits.

We will briefly cover unsafe capabilities next. For full details, please see Chapter 19.1 in the
Rust Book and the Rustonomicon.

This slide should take about 5 minutes.

209

https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html
https://doc.rust-lang.org/nomicon/

Unsafe Rust does not mean the code is incorrect. It means that developers have turned off
some compiler safety features and have to write correct code by themselves. It means the
compiler no longer enforces Rust's memory-safety rules.

31.2 Dereferencing Raw Pointers

Creating pointers is safe, but dereferencing them requires unsafe:

fn main() {
let mut x = 10;

let p1: *mut i32 = &raw mut x;
let p2 = p1 as *const i32;

// SAFETY: p1 and p2 were created by taking raw pointers to a local, so they
// are guaranteed to be non-null, aligned, and point into a single (stack-)
// allocated object.
//
// The object underlying the raw pointers lives for the entire function, so
// it is not deallocated while the raw pointers still exist. It is not
// accessed through references while the raw pointers exist, nor is it
// accessed from other threads concurrently.
unsafe {

dbg!(*p1);
*p1 = 6;
// Mutation may soundly be observed through a raw pointer, like in C.
dbg!(*p2);

}

// UNSOUND. DO NOT DO THIS.
/*
let r: &i32 = unsafe { &*p1 };
dbg!(r);
x = 50;
dbg!(r); // Object underlying the reference has been mutated. This is UB.
*/

}

This slide should take about 10 minutes.

It is good practice (and required by the Android Rust style guide) to write a comment for
each unsafe block explaining how the code inside it satisfies the safety requirements of the
unsafe operations it is doing.

In the case of pointer dereferences, this means that the pointers must be valid, i.e.:

• The pointer must be non-null.
• The pointer must be dereferenceable (within the bounds of a single allocated object).
• The object must not have been deallocated.
• There must not be concurrent accesses to the same location.
• If the pointer was obtained by casting a reference, the underlying object must be live

and no reference may be used to access the memory.

210

https://doc.rust-lang.org/std/ptr/index.html#safety

In most cases the pointer must also be properly aligned.

The ”UNSOUND” section gives an example of a common kind of UB bug: naïvely taking a
reference to the dereference of a raw pointer sidesteps the compiler's knowledge of what
object the reference is actually pointing to. As such, the borrow checker does not freeze x
and so we are able to modify it despite the existence of a reference to it. Creating a reference
from a pointer requires great care.

31.3 Mutable Static Variables

It is safe to read an immutable static variable:

static HELLO_WORLD: &str = "Hello, world!";

fn main() {
println!("HELLO_WORLD: {HELLO_WORLD}");

}

However, mutable static variables are unsafe to read and write because multiple threads
could do so concurrently without synchronization, constituting a data race.

Using mutable statics soundly requires reasoning about concurrency without the compiler's
help:

static mut COUNTER: u32 = 0;

fn add_to_counter(inc: u32) {
// SAFETY: There are no other threads which could be accessing `COUNTER`.
unsafe {

COUNTER += inc;
}

}

fn main() {
add_to_counter(42);

// SAFETY: There are no other threads which could be accessing `COUNTER`.
unsafe {

dbg!(COUNTER);
}

}

This slide should take about 5 minutes.

• The program here is sound because it is single-threaded. However, the Rust compiler
reasons about functions individually so can't assume that. Try removing the unsafe
and see how the compiler explains that it is undefined behavior to access a mutable
static from multiple threads.

• The 2024 Rust edition goes further and makes accessing a mutable static by reference
an error by default.

• Using a mutable static is almost always a bad idea, you should use interior mutability
instead.

211

• There are some cases where it might be necessary in low-level no_std code, such as
implementing a heap allocator or working with some C APIs. In this case you should
use pointers rather than references.

31.4 Unions

Unions are like enums, but you need to track the active field yourself:

#[repr(C)]
union MyUnion {

i: u8,
b: bool,

}

fn main() {
let u = MyUnion { i: 42 };
println!("int: {}", unsafe { u.i });
println!("bool: {}", unsafe { u.b }); // Undefined behavior!

}

This slide should take about 5 minutes.

Unions are very rarely needed in Rust as you can usually use an enum. They are occasionally
needed for interacting with C library APIs.

If you just want to reinterpret bytes as a different type, you probably wantstd::mem::transmute
or a safe wrapper such as the zerocopy crate.

31.5 Unsafe Functions

A function or method can be marked unsafe if it has extra preconditions you must uphold to
avoid undefined behaviour.

Unsafe functions may come from two places:

• Rust functions declared unsafe.
• Unsafe foreign functions in extern "C" blocks.

This slide and its sub-slides should take about 15 minutes.

We will look at the two kinds of unsafe functions next.

31.5.1 Unsafe Rust Functions

You can mark your own functions as unsafe if they require particular preconditions to avoid
undefined behaviour.

/// Swaps the values pointed to by the given pointers.
///
/// # Safety
///
/// The pointers must be valid, properly aligned, and not otherwise accessed for
/// the duration of the function call.

212

https://doc.rust-lang.org/stable/std/mem/fn.transmute.html
https://crates.io/crates/zerocopy

unsafe fn swap(a: *mut u8, b: *mut u8) {
// SAFETY: Our caller promised that the pointers are valid, properly aligned
// and have no other access.
unsafe {

let temp = *a;
*a = *b;
*b = temp;

}
}

fn main() {
let mut a = 42;
let mut b = 66;

// SAFETY: The pointers must be valid, aligned and unique because they came
// from references.
unsafe {

swap(&mut a, &mut b);
}

println!("a = {}, b = {}", a, b);
}

We wouldn't actually use pointers for a swap function --- it can be done safely with references.

Note that Rust 2021 and earlier allow unsafe code within an unsafe function without an
unsafe block. This changed in the 2024 edition. We can prohibit it in older editions with
#[deny(unsafe_op_in_unsafe_fn)]. Try adding it and see what happens.

31.5.2 Unsafe External Functions

You can declare foreign functions for access from Rust with unsafe extern. This is unsafe
because the compiler has to way to reason about their behavior. Functions declared in
an extern block must be marked as safe or unsafe, depending on whether they have
preconditions for safe use:

use std::ffi::c_char;

unsafe extern "C" {
// `abs` doesn't deal with pointers and doesn't have any safety requirements.
safe fn abs(input: i32) -> i32;

/// # Safety
///
/// `s` must be a pointer to a NUL-terminated C string which is valid and
/// not modified for the duration of this function call.
unsafe fn strlen(s: *const c_char) -> usize;

}

fn main() {
println!("Absolute value of -3 according to C: {}", abs(-3));

213

unsafe {
// SAFETY: We pass a pointer to a C string literal which is valid for
// the duration of the program.
println!("String length: {}", strlen(c"String".as_ptr()));

}
}

• Rust used to consider all extern functions unsafe, but this changed in Rust 1.82 with
unsafe extern blocks.

• abs must be explicitly marked as safe because it is an external function (FFI). Calling
external functions is usually only a problem when those functions do things with point-
ers which might violate Rust's memory model, but in general any C function might have
undefined behaviour under any arbitrary circumstances.

• The "C" in this example is the ABI; other ABIs are available too.
• Note that there is no verification that the Rust function signature matches that of the

function definition -- that's up to you!

31.5.3 Calling Unsafe Functions

Failing to uphold the safety requirements breaks memory safety!

#[derive(Debug)]
#[repr(C)]
struct KeyPair {

pk: [u16; 4], // 8 bytes
sk: [u16; 4], // 8 bytes

}

const PK_BYTE_LEN: usize = 8;

fn log_public_key(pk_ptr: *const u16) {
let pk: &[u16] = unsafe { std::slice::from_raw_parts(pk_ptr, PK_BYTE_LEN) };
println!("{pk:?}");

}

fn main() {
let key_pair = KeyPair { pk: [1, 2, 3, 4], sk: [0, 0, 42, 0] };
log_public_key(key_pair.pk.as_ptr());

}

Always include a safety comment for each unsafe block. It must explain why the code is
actually safe. This example is missing a safety comment and is unsound.

Key points:

• The second argument to slice::from_raw_parts is the number of elements, not bytes!
This example demonstrates unexpected behavior by reading past the end of one array
and into another.

• This is undefined behavior because we're reading past the end of the array that the
pointer was derived from.

• log_public_key should be unsafe, because pk_ptr must meet certain prerequisites
to avoid undefined behaviour. A safe function which can cause undefined behaviour is
said to be unsound. What should its safety documentation say?

214

https://doc.rust-lang.org/reference/items/external-blocks.html

• The standard library contains many low-level unsafe functions. Prefer the safe alterna-
tives when possible!

• If you use an unsafe function as an optimization, make sure to add a benchmark to
demonstrate the gain.

31.6 Implementing Unsafe Traits

Like with functions, you can mark a trait as unsafe if the implementation must guarantee
particular conditions to avoid undefined behaviour.

For example, the zerocopy crate has an unsafe trait that looks something like this:

use std::{mem, slice};

/// ...
/// # Safety
/// The type must have a defined representation and no padding.
pub unsafe trait IntoBytes {

fn as_bytes(&self) -> &[u8] {
let len = mem::size_of_val(self);
let slf: *const Self = self;
unsafe { slice::from_raw_parts(slf.cast::<u8>(), len) }

}
}

// SAFETY: `u32` has a defined representation and no padding.
unsafe impl IntoBytes for u32 {}

This slide should take about 5 minutes.

There should be a # Safety section on the Rustdoc for the trait explaining the requirements
for the trait to be safely implemented.

The actual safety section for IntoBytes is rather longer and more complicated.

The built-in Send and Sync traits are unsafe.

31.7 Safe FFI Wrapper

Rust has great support for calling functions through a foreign function interface (FFI). We will
use this to build a safe wrapper for the libc functions you would use from C to read the
names of files in a directory.

You will want to consult the manual pages:

• opendir(3)
• readdir(3)
• closedir(3)

You will also want to browse the std::ffi module. There you find a number of string types
which you need for the exercise:

215

https://docs.rs/zerocopy/latest/zerocopy/trait.IntoBytes.html
https://man7.org/linux/man-pages/man3/opendir.3.html
https://man7.org/linux/man-pages/man3/readdir.3.html
https://man7.org/linux/man-pages/man3/closedir.3.html
https://doc.rust-lang.org/std/ffi/

Types Encoding Use

str and String UTF-8 Text processing in Rust
CStr and CString NUL-terminated Communicating with C functions
OsStr and OsString OS-specific Communicating with the OS

You will convert between all these types:

• &str to CString: you need to allocate space for a trailing \0 character,
• CString to *const i8: you need a pointer to call C functions,
• *const i8 to &CStr: you need something which can find the trailing \0 character,
• &CStr to &[u8]: a slice of bytes is the universal interface for ”some unknown data”,
• &[u8] to &OsStr: &OsStr is a step towards OsString, use OsStrExt to create it,
• &OsStr to OsString: you need to clone the data in &OsStr to be able to return it and

call readdir again.

The Nomicon also has a very useful chapter about FFI.

Copy the code below to https://play.rust-lang.org/ and fill in the missing functions and methods:

// TODO: remove this when you're done with your implementation.
#![allow(unused_imports, unused_variables, dead_code)]

mod ffi {
use std::os::raw::{c_char, c_int};
#[cfg(not(target_os = "macos"))]
use std::os::raw::{c_long, c_uchar, c_ulong, c_ushort};

// Opaque type. See https://doc.rust-lang.org/nomicon/ffi.html.
#[repr(C)]
pub struct DIR {

_data: [u8; 0],
_marker: core::marker::PhantomData<(*mut u8, core::marker::PhantomPinned)>,

}

// Layout according to the Linux man page for readdir(3), where ino_t and
// off_t are resolved according to the definitions in
// /usr/include/x86_64-linux-gnu/{sys/types.h, bits/typesizes.h}.
#[cfg(not(target_os = "macos"))]
#[repr(C)]
pub struct dirent {

pub d_ino: c_ulong,
pub d_off: c_long,
pub d_reclen: c_ushort,
pub d_type: c_uchar,
pub d_name: [c_char; 256],

}

// Layout according to the macOS man page for dir(5).
#[cfg(target_os = "macos")]
#[repr(C)]
pub struct dirent {

216

https://doc.rust-lang.org/std/primitive.str.html
https://doc.rust-lang.org/std/string/struct.String.html
https://doc.rust-lang.org/std/ffi/struct.CStr.html
https://doc.rust-lang.org/std/ffi/struct.CString.html
https://doc.rust-lang.org/std/ffi/struct.OsStr.html
https://doc.rust-lang.org/std/ffi/struct.OsString.html
https://doc.rust-lang.org/std/os/unix/ffi/trait.OsStrExt.html
https://doc.rust-lang.org/nomicon/ffi.html
https://play.rust-lang.org/

pub d_fileno: u64,
pub d_seekoff: u64,
pub d_reclen: u16,
pub d_namlen: u16,
pub d_type: u8,
pub d_name: [c_char; 1024],

}

unsafe extern "C" {
pub unsafe fn opendir(s: *const c_char) -> *mut DIR;

#[cfg(not(all(target_os = "macos", target_arch = "x86_64")))]
pub unsafe fn readdir(s: *mut DIR) -> *const dirent;

// See https://github.com/rust-lang/libc/issues/414 and the section on
// _DARWIN_FEATURE_64_BIT_INODE in the macOS man page for stat(2).
//
// "Platforms that existed before these updates were available" refers
// to macOS (as opposed to iOS / wearOS / etc.) on Intel and PowerPC.
#[cfg(all(target_os = "macos", target_arch = "x86_64"))]
#[link_name = "readdir$INODE64"]
pub unsafe fn readdir(s: *mut DIR) -> *const dirent;

pub unsafe fn closedir(s: *mut DIR) -> c_int;
}

}

use std::ffi::{CStr, CString, OsStr, OsString};
use std::os::unix::ffi::OsStrExt;

#[derive(Debug)]
struct DirectoryIterator {

path: CString,
dir: *mut ffi::DIR,

}

impl DirectoryIterator {
fn new(path: &str) -> Result<DirectoryIterator, String> {

// Call opendir and return a Ok value if that worked,
// otherwise return Err with a message.
todo!()

}
}

impl Iterator for DirectoryIterator {
type Item = OsString;
fn next(&mut self) -> Option<OsString> {

// Keep calling readdir until we get a NULL pointer back.
todo!()

}
}

217

impl Drop for DirectoryIterator {
fn drop(&mut self) {

// Call closedir as needed.
todo!()

}
}

fn main() -> Result<(), String> {
let iter = DirectoryIterator::new(".")?;
println!("files: {:#?}", iter.collect::<Vec<_>>());
Ok(())

}

This slide and its sub-slides should take about 30 minutes.

FFI binding code is typically generated by tools like bindgen, rather than being written
manually as we are doing here. However, bindgen can't run in an online playground.

31.7.1 Solution

mod ffi {
use std::os::raw::{c_char, c_int};
#[cfg(not(target_os = "macos"))]
use std::os::raw::{c_long, c_uchar, c_ulong, c_ushort};

// Opaque type. See https://doc.rust-lang.org/nomicon/ffi.html.
#[repr(C)]
pub struct DIR {

_data: [u8; 0],
_marker: core::marker::PhantomData<(*mut u8, core::marker::PhantomPinned)>,

}

// Layout according to the Linux man page for readdir(3), where ino_t and
// off_t are resolved according to the definitions in
// /usr/include/x86_64-linux-gnu/{sys/types.h, bits/typesizes.h}.
#[cfg(not(target_os = "macos"))]
#[repr(C)]
pub struct dirent {

pub d_ino: c_ulong,
pub d_off: c_long,
pub d_reclen: c_ushort,
pub d_type: c_uchar,
pub d_name: [c_char; 256],

}

// Layout according to the macOS man page for dir(5).
#[cfg(target_os = "macos")]
#[repr(C)]
pub struct dirent {

pub d_fileno: u64,
pub d_seekoff: u64,

218

https://github.com/rust-lang/rust-bindgen

pub d_reclen: u16,
pub d_namlen: u16,
pub d_type: u8,
pub d_name: [c_char; 1024],

}

unsafe extern "C" {
pub unsafe fn opendir(s: *const c_char) -> *mut DIR;

#[cfg(not(all(target_os = "macos", target_arch = "x86_64")))]
pub unsafe fn readdir(s: *mut DIR) -> *const dirent;

// See https://github.com/rust-lang/libc/issues/414 and the section on
// _DARWIN_FEATURE_64_BIT_INODE in the macOS man page for stat(2).
//
// "Platforms that existed before these updates were available" refers
// to macOS (as opposed to iOS / wearOS / etc.) on Intel and PowerPC.
#[cfg(all(target_os = "macos", target_arch = "x86_64"))]
#[link_name = "readdir$INODE64"]
pub unsafe fn readdir(s: *mut DIR) -> *const dirent;

pub unsafe fn closedir(s: *mut DIR) -> c_int;
}

}

use std::ffi::{CStr, CString, OsStr, OsString};
use std::os::unix::ffi::OsStrExt;

#[derive(Debug)]
struct DirectoryIterator {

path: CString,
dir: *mut ffi::DIR,

}

impl DirectoryIterator {
fn new(path: &str) -> Result<DirectoryIterator, String> {

// Call opendir and return a Ok value if that worked,
// otherwise return Err with a message.
let path =

CString::new(path).map_err(|err| format!("Invalid path: {err}"))?;
// SAFETY: path.as_ptr() cannot be NULL.
let dir = unsafe { ffi::opendir(path.as_ptr()) };
if dir.is_null() {

Err(format!("Could not open {path:?}"))
} else {

Ok(DirectoryIterator { path, dir })
}

}
}

impl Iterator for DirectoryIterator {

219

type Item = OsString;
fn next(&mut self) -> Option<OsString> {

// Keep calling readdir until we get a NULL pointer back.
// SAFETY: self.dir is never NULL.
let dirent = unsafe { ffi::readdir(self.dir) };
if dirent.is_null() {

// We have reached the end of the directory.
return None;

}
// SAFETY: dirent is not NULL and dirent.d_name is NUL
// terminated.
let d_name = unsafe { CStr::from_ptr((*dirent).d_name.as_ptr()) };
let os_str = OsStr::from_bytes(d_name.to_bytes());
Some(os_str.to_owned())

}
}

impl Drop for DirectoryIterator {
fn drop(&mut self) {

// Call closedir as needed.
// SAFETY: self.dir is never NULL.
if unsafe { ffi::closedir(self.dir) } != 0 {

panic!("Could not close {:?}", self.path);
}

}
}

fn main() -> Result<(), String> {
let iter = DirectoryIterator::new(".")?;
println!("files: {:#?}", iter.collect::<Vec<_>>());
Ok(())

}

#[cfg(test)]
mod tests {

use super::*;
use std::error::Error;

#[test]
fn test_nonexisting_directory() {

let iter = DirectoryIterator::new("no-such-directory");
assert!(iter.is_err());

}

#[test]
fn test_empty_directory() -> Result<(), Box<dyn Error>> {

let tmp = tempfile::TempDir::new()?;
let iter = DirectoryIterator::new(

tmp.path().to_str().ok_or("Non UTF-8 character in path")?,
)?;
let mut entries = iter.collect::<Vec<_>>();

220

entries.sort();
assert_eq!(entries, &[".", ".."]);
Ok(())

}

#[test]
fn test_nonempty_directory() -> Result<(), Box<dyn Error>> {

let tmp = tempfile::TempDir::new()?;
std::fs::write(tmp.path().join("foo.txt"), "The Foo Diaries\n")?;
std::fs::write(tmp.path().join("bar.png"), "<PNG>\n")?;
std::fs::write(tmp.path().join("crab.rs"), "//! Crab\n")?;
let iter = DirectoryIterator::new(

tmp.path().to_str().ok_or("Non UTF-8 character in path")?,
)?;
let mut entries = iter.collect::<Vec<_>>();
entries.sort();
assert_eq!(entries, &[".", "..", "bar.png", "crab.rs", "foo.txt"]);
Ok(())

}
}

221

Part IX

Android

222

Chapter 32

Welcome to Rust in Android

Rust is supported for system software on Android. This means that you can write new services,
libraries, drivers or even firmware in Rust (or improve existing code as needed).

The speaker may mention any of the following given the increased use of Rust in Android:

• Service example: DNS over HTTP.

• Libraries: Rutabaga Virtual Graphics Interface.

• Kernel Drivers: Binder.

• Firmware: pKVM firmware.

223

https://security.googleblog.com/2022/07/dns-over-http3-in-android.html
https://crosvm.dev/book/appendix/rutabaga_gfx.html
https://lore.kernel.org/rust-for-linux/20231101-rust-binder-v1-0-08ba9197f637@google.com/
https://security.googleblog.com/2023/10/bare-metal-rust-in-android.html

Chapter 33

Setup

We will be using a Cuttlefish Android Virtual Device to test our code. Make sure you have
access to one or create a new one with:

source build/envsetup.sh
lunch aosp_cf_x86_64_phone-trunk_staging-userdebug
acloud create

Please see the Android Developer Codelab for details.

The code on the following pages can be found in the src/android/ directory of the course
material. Please git clone the repository to follow along.

Key points:

• Cuttlefish is a reference Android device designed to work on generic Linux desktops.
MacOS support is also planned.

• The Cuttlefish system image maintains high fidelity to real devices, and is the ideal
emulator to run many Rust use cases.

224

https://source.android.com/docs/setup/start
https://github.com/google/comprehensive-rust/tree/main/src/android

Chapter 34

Build Rules

The Android build system (Soong) supports Rust through several modules:

Module Type Description

rust_binary Produces a Rust binary.
rust_library Produces a Rust library, and provides both rlib and dylib variants.
rust_ffi Produces a Rust C library usable by cc modules, and provides both static and

shared variants.
rust_proc_macroProduces a proc-macro Rust library. These are analogous to compiler

plugins.
rust_test Produces a Rust test binary that uses the standard Rust test harness.
rust_fuzz Produces a Rust fuzz binary leveraging libfuzzer.
rust_protobufGenerates source and produces a Rust library that provides an interface for a

particular protobuf.
rust_bindgen Generates source and produces a Rust library containing Rust bindings to C

libraries.

We will look at rust_binary and rust_library next.

Additional items the speaker may mention:

• Cargo is not optimized for multi-language repositories, and also downloads packages
from the internet.

• For compliance and performance, Android must have crates in-tree. It must also inter-
operate with C/C++/Java code. Soong fills that gap.

• Soong has many similarities to Bazel, which is the open-source variant of Blaze (used in
google3).

• Fun fact: Data from Star Trek is a Soong-type Android.

34.1 Rust Binaries

Let's start with a simple application. At the root of an AOSP checkout, create the following
files:

225

https://bazel.build/

hello_rust/Android.bp:

rust_binary {
name: "hello_rust",
crate_name: "hello_rust",
srcs: ["src/main.rs"],

}

hello_rust/src/main.rs:

//! Rust demo.

/// Prints a greeting to standard output.
fn main() {

println!("Hello from Rust!");
}

You can now build, push, and run the binary:

m hello_rust
adb push "$ANDROID_PRODUCT_OUT/system/bin/hello_rust" /data/local/tmp
adb shell /data/local/tmp/hello_rust

Hello from Rust!

• Go through the build steps and demonstrate them running in your emulator.

• Notice the extensive documentation comments? The Android build rules enforce that
all modules have documentation. Try removing it and see what error you get.

• Stress that the Rust build rules look like the other Soong rules. This is by design, to make
using Rust as easy as C++ or Java.

34.2 Rust Libraries

You use rust_library to create a new Rust library for Android.

Here we declare a dependency on two libraries:

• libgreeting, which we define below,
• libtextwrap, which is a crate already vendored in external/rust/android-
crates-io/crates/.

hello_rust/Android.bp:

rust_binary {
name: "hello_rust_with_dep",
crate_name: "hello_rust_with_dep",
srcs: ["src/main.rs"],
rustlibs: [

"libgreetings",
"libtextwrap",

],
prefer_rlib: true, // Need this to avoid dynamic link error.

}

226

https://cs.android.com/android/platform/superproject/main/+/main:external/rust/android-crates-io/crates/
https://cs.android.com/android/platform/superproject/main/+/main:external/rust/android-crates-io/crates/

rust_library {
name: "libgreetings",
crate_name: "greetings",
srcs: ["src/lib.rs"],

}

hello_rust/src/main.rs:

//! Rust demo.

use greetings::greeting;
use textwrap::fill;

/// Prints a greeting to standard output.
fn main() {

println!("{}", fill(&greeting("Bob"), 24));
}

hello_rust/src/lib.rs:

//! Greeting library.

/// Greet `name`.
pub fn greeting(name: &str) -> String {

format!("Hello {name}, it is very nice to meet you!")
}

You build, push, and run the binary like before:

m hello_rust_with_dep
adb push "$ANDROID_PRODUCT_OUT/system/bin/hello_rust_with_dep" /data/local/tmp
adb shell /data/local/tmp/hello_rust_with_dep

Hello Bob, it is very
nice to meet you!

• Go through the build steps and demonstrate them running in your emulator.

• A Rust crate named greetings must be built by a rule called libgreetings. Note how
the Rust code uses the crate name, as is normal in Rust.

• Again, the build rules enforce that we add documentation comments to all public items.

227

Chapter 35

AIDL

Rust supports the Android Interface Definition Language (AIDL):

• Rust code can call existing AIDL servers.
• You can create new AIDL servers in Rust.

• AIDL enables Android apps to interact with each other.

• Since Rust is a first-class citizen in this ecosystem, other processes on the device can call
Rust services.

35.1 Birthday Service Tutorial

To illustrate using Rust with Binder, we will create a Binder interface. Then, we'll implement
the service and write a client that talks to it.

35.1.1 AIDL Interfaces

You declare the API of your service using an AIDL interface:

birthday_service/aidl/com/example/birthdayservice/IBirthdayService.aidl:

package com.example.birthdayservice;

/** Birthday service interface. */
interface IBirthdayService {

/** Generate a Happy Birthday message. */
String wishHappyBirthday(String name, int years);

}

birthday_service/aidl/Android.bp:

aidl_interface {
name: "com.example.birthdayservice",
srcs: ["com/example/birthdayservice/*.aidl"],
unstable: true,
backend: {

rust: { // Rust is not enabled by default

228

https://developer.android.com/guide/components/aidl

enabled: true,
},

},
}

• Note that the directory structure under the aidl/ directory needs to match the package
name used in the AIDL file, i.e. the package is com.example.birthdayservice and
the file is at aidl/com/example/IBirthdayService.aidl.

35.1.2 Generated Service API

Binder generates a trait for each interface definition.

birthday_service/aidl/com/example/birthdayservice/IBirthdayService.aidl:

/** Birthday service interface. */
interface IBirthdayService {

/** Generate a Happy Birthday message. */
String wishHappyBirthday(String name, int years);

}

out/soong/.intermediates/.../com_example_birthdayservice.rs:

trait IBirthdayService {
fn wishHappyBirthday(&self, name: &str, years: i32) -> binder::Result<String>;

}

Your service will need to implement this trait, and your client will use this trait to talk to the
service.

• Point out how the generated function signature, specifically the argument and return
types, correspond to the interface definition.
– String for an argument results in a different Rust type than String as a return

type.

35.1.3 Service Implementation

We can now implement the AIDL service:

birthday_service/src/lib.rs:

//! Implementation of the `IBirthdayService` AIDL interface.
use com_example_birthdayservice::aidl::com::example::birthdayservice::IBirthdayService::IBirthdayService;
use com_example_birthdayservice::binder;

/// The `IBirthdayService` implementation.
pub struct BirthdayService;

impl binder::Interface for BirthdayService {}

impl IBirthdayService for BirthdayService {
fn wishHappyBirthday(&self, name: &str, years: i32) -> binder::Result<String> {

Ok(format!("Happy Birthday {name}, congratulations with the {years} years!"))
}

}

229

birthday_service/Android.bp:

rust_library {
name: "libbirthdayservice",
crate_name: "birthdayservice",
srcs: ["src/lib.rs"],
rustlibs: [

"com.example.birthdayservice-rust",
],

}

• Point out the path to the generated IBirthdayService trait, and explain why each of
the segments is necessary.

• Note that wishHappyBirthday and other AIDL IPC methods take &self (instead of
&mut self).
– This is necessary because Binder responds to incoming requests on a thread pool,

allowing for multiple requests to be processed in parallel. This requires that the
service methods only get a shared reference to self.

– Any state that needs to be modified by the service will have to be put in something
like a Mutex to allow for safe mutation.

– The correct approach for managing service state depends heavily on the details of
your service.

• TODO: What does the binder::Interface trait do? Are there methods to override?
Where is the source?

35.1.4 AIDL Server

Finally, we can create a server which exposes the service:

birthday_service/src/server.rs:

//! Birthday service.
use birthdayservice::BirthdayService;
use com_example_birthdayservice::aidl::com::example::birthdayservice::IBirthdayService::BnBirthdayService;
use com_example_birthdayservice::binder;

const SERVICE_IDENTIFIER: &str = "birthdayservice";

/// Entry point for birthday service.
fn main() {

let birthday_service = BirthdayService;
let birthday_service_binder = BnBirthdayService::new_binder(

birthday_service,
binder::BinderFeatures::default(),

);
binder::add_service(SERVICE_IDENTIFIER, birthday_service_binder.as_binder())

.expect("Failed to register service");
binder::ProcessState::join_thread_pool();

}

birthday_service/Android.bp:

rust_binary {
name: "birthday_server",

230

crate_name: "birthday_server",
srcs: ["src/server.rs"],
rustlibs: [

"com.example.birthdayservice-rust",
"libbirthdayservice",

],
prefer_rlib: true, // To avoid dynamic link error.

}

The process for taking a user-defined service implementation (in this case, the
BirthdayService type, which implements the IBirthdayService) and starting it
as a Binder service has multiple steps. This may appear more complicated than students are
used to if they've used Binder from C++ or another language. Explain to students why each
step is necessary.

1. Create an instance of your service type (BirthdayService).
2. Wrap the service object in the corresponding Bn* type (BnBirthdayService in this

case). This type is generated by Binder and provides common Binder functionality,
similar to the BnBinder base class in C++. Since Rust doesn't have inheritance, we use
composition, putting our BirthdayService within the generated BnBinderService.

3. Call add_service, giving it a service identifier and your service object (the
BnBirthdayService object in the example).

4. Call join_thread_pool to add the current thread to Binder's thread pool and start
listening for connections.

35.1.5 Deploy

We can now build, push, and start the service:

m birthday_server
adb push "$ANDROID_PRODUCT_OUT/system/bin/birthday_server" /data/local/tmp
adb root
adb shell /data/local/tmp/birthday_server

In another terminal, check that the service runs:

adb shell service check birthdayservice

Service birthdayservice: found

You can also call the service with service call:

adb shell service call birthdayservice 1 s16 Bob i32 24

Result: Parcel(
0x00000000: 00000000 00000036 00610048 00700070 '....6...H.a.p.p.'
0x00000010: 00200079 00690042 00740072 00640068 'y. .B.i.r.t.h.d.'
0x00000020: 00790061 00420020 0062006f 0020002c 'a.y. .B.o.b.,. .'
0x00000030: 006f0063 0067006e 00610072 00750074 'c.o.n.g.r.a.t.u.'
0x00000040: 0061006c 00690074 006e006f 00200073 'l.a.t.i.o.n.s. .'
0x00000050: 00690077 00680074 00740020 00650068 'w.i.t.h. .t.h.e.'
0x00000060: 00320020 00200034 00650079 00720061 ' .2.4. .y.e.a.r.'
0x00000070: 00210073 00000000 's.!..... ')

231

35.1.6 AIDL Client

Finally, we can create a Rust client for our new service.

birthday_service/src/client.rs:

use com_example_birthdayservice::aidl::com::example::birthdayservice::IBirthdayService::IBirthdayService;
use com_example_birthdayservice::binder;

const SERVICE_IDENTIFIER: &str = "birthdayservice";

/// Call the birthday service.
fn main() -> Result<(), Box<dyn Error>> {

let name = std::env::args().nth(1).unwrap_or_else(|| String::from("Bob"));
let years = std::env::args()

.nth(2)

.and_then(|arg| arg.parse::<i32>().ok())

.unwrap_or(42);

binder::ProcessState::start_thread_pool();
let service = binder::get_interface::<dyn IBirthdayService>(SERVICE_IDENTIFIER)

.map_err(|_| "Failed to connect to BirthdayService")?;

// Call the service.
let msg = service.wishHappyBirthday(&name, years)?;
println!("{msg}");

}

birthday_service/Android.bp:

rust_binary {
name: "birthday_client",
crate_name: "birthday_client",
srcs: ["src/client.rs"],
rustlibs: [

"com.example.birthdayservice-rust",
],
prefer_rlib: true, // To avoid dynamic link error.

}

Notice that the client does not depend on libbirthdayservice.

Build, push, and run the client on your device:

m birthday_client
adb push "$ANDROID_PRODUCT_OUT/system/bin/birthday_client" /data/local/tmp
adb shell /data/local/tmp/birthday_client Charlie 60

Happy Birthday Charlie, congratulations with the 60 years!

• Strong<dyn IBirthdayService> is the trait object representing the service that the
client has connected to.
– Strong is a custom smart pointer type for Binder. It handles both an in-process ref

count for the service trait object, and the global Binder ref count that tracks how
many processes have a reference to the object.

232

– Note that the trait object that the client uses to talk to the service uses the exact
same trait that the server implements. For a given Binder interface, there is a single
Rust trait generated that both client and server use.

• Use the same service identifier used when registering the service. This should ideally
be defined in a common crate that both the client and server can depend on.

35.1.7 Changing API

Let's extend the API: we'll let clients specify a list of lines for the birthday card:

package com.example.birthdayservice;

/** Birthday service interface. */
interface IBirthdayService {

/** Generate a Happy Birthday message. */
String wishHappyBirthday(String name, int years, in String[] text);

}

This results in an updated trait definition for IBirthdayService:

trait IBirthdayService {
fn wishHappyBirthday(

&self,
name: &str,
years: i32,
text: &[String],

) -> binder::Result<String>;
}

• Note how the String[] in the AIDL definition is translated as a &[String] in Rust, i.e.
that idiomatic Rust types are used in the generated bindings wherever possible:
– in array arguments are translated to slices.
– out and inout args are translated to &mut Vec<T>.
– Return values are translated to returning a Vec<T>.

35.1.8 Updating Client and Service

Update the client and server code to account for the new API.

birthday_service/src/lib.rs:

impl IBirthdayService for BirthdayService {
fn wishHappyBirthday(

&self,
name: &str,
years: i32,
text: &[String],

) -> binder::Result<String> {
let mut msg = format!(

"Happy Birthday {name}, congratulations with the {years} years!",
);

for line in text {

233

msg.push('\n');
msg.push_str(line);

}

Ok(msg)
}

}

birthday_service/src/client.rs:

let msg = service.wishHappyBirthday(
&name,
years,
&[

String::from("Habby birfday to yuuuuu"),
String::from("And also: many more"),

],
)?;

• TODO: Move code snippets into project files where they'll actually be built?

35.2 Working With AIDL Types

AIDL types translate into the appropriate idiomatic Rust type:

• Primitive types map (mostly) to idiomatic Rust types.
• Collection types like slices, Vecs and string types are supported.
• References to AIDL objects and file handles can be sent between clients and services.
• File handles and parcelables are fully supported.

35.2.1 Primitive Types

Primitive types map (mostly) idiomatically:

AIDL Type Rust Type Note

boolean bool
byte i8 Note that bytes are signed.
char u16 Note the usage of u16, NOT u32.
int i32
long i64
float f32
double f64
String String

35.2.2 Array Types

The array types (T[], byte[], and List<T>) are translated to the appropriate Rust array type
depending on how they are used in the function signature:

234

Position Rust Type

in argument &[T]
out/inout argument &mut Vec<T>
Return Vec<T>

• In Android 13 or higher, fixed-size arrays are supported, i.e. T[N] becomes [T; N].
Fixed-size arrays can have multiple dimensions (e.g. int[3][4]). In the Java backend,
fixed-size arrays are represented as array types.

• Arrays in parcelable fields always get translated to Vec<T>.

35.2.3 Sending Objects

AIDL objects can be sent either as a concrete AIDL type or as the type-erased IBinder
interface:

birthday_service/aidl/com/example/birthdayservice/IBirthdayInfoProvider.aidl:

package com.example.birthdayservice;

interface IBirthdayInfoProvider {
String name();
int years();

}

birthday_service/aidl/com/example/birthdayservice/IBirthdayService.aidl:

import com.example.birthdayservice.IBirthdayInfoProvider;

interface IBirthdayService {
/** The same thing, but using a binder object. */
String wishWithProvider(IBirthdayInfoProvider provider);

/** The same thing, but using `IBinder`. */
String wishWithErasedProvider(IBinder provider);

}

birthday_service/src/client.rs:

/// Rust struct implementing the `IBirthdayInfoProvider` interface.
struct InfoProvider {

name: String,
age: u8,

}

impl binder::Interface for InfoProvider {}

impl IBirthdayInfoProvider for InfoProvider {
fn name(&self) -> binder::Result<String> {

Ok(self.name.clone())
}

fn years(&self) -> binder::Result<i32> {

235

Ok(self.age as i32)
}

}

fn main() {
binder::ProcessState::start_thread_pool();
let service = connect().expect("Failed to connect to BirthdayService");

// Create a binder object for the `IBirthdayInfoProvider` interface.
let provider = BnBirthdayInfoProvider::new_binder(

InfoProvider { name: name.clone(), age: years as u8 },
BinderFeatures::default(),

);

// Send the binder object to the service.
service.wishWithProvider(&provider)?;

// Perform the same operation but passing the provider as an `SpIBinder`.
service.wishWithErasedProvider(&provider.as_binder())?;

}

• Note the usage of BnBirthdayInfoProvider. This serves the same purpose as
BnBirthdayService that we saw previously.

35.2.4 Parcelables

Binder for Rust supports sending parcelables directly:

birthday_service/aidl/com/example/birthdayservice/BirthdayInfo.aidl:

package com.example.birthdayservice;

parcelable BirthdayInfo {
String name;
int years;

}

birthday_service/aidl/com/example/birthdayservice/IBirthdayService.aidl:

import com.example.birthdayservice.BirthdayInfo;

interface IBirthdayService {
/** The same thing, but with a parcelable. */
String wishWithInfo(in BirthdayInfo info);

}

birthday_service/src/client.rs:

fn main() {
binder::ProcessState::start_thread_pool();
let service = connect().expect("Failed to connect to BirthdayService");

let info = BirthdayInfo { name: "Alice".into(), years: 123 };

236

service.wishWithInfo(&info)?;
}

35.2.5 Sending Files

Files can be sent between Binder clients/servers using the ParcelFileDescriptor type:

birthday_service/aidl/com/example/birthdayservice/IBirthdayService.aidl:

interface IBirthdayService {
/** The same thing, but loads info from a file. */
String wishFromFile(in ParcelFileDescriptor infoFile);

}

birthday_service/src/client.rs:

fn main() {
binder::ProcessState::start_thread_pool();
let service = connect().expect("Failed to connect to BirthdayService");

// Open a file and put the birthday info in it.
let mut file = File::create("/data/local/tmp/birthday.info").unwrap();
writeln!(file, "{name}")?;
writeln!(file, "{years}")?;

// Create a `ParcelFileDescriptor` from the file and send it.
let file = ParcelFileDescriptor::new(file);
service.wishFromFile(&file)?;

}

birthday_service/src/lib.rs:

impl IBirthdayService for BirthdayService {
fn wishFromFile(

&self,
info_file: &ParcelFileDescriptor,

) -> binder::Result<String> {
// Convert the file descriptor to a `File`. `ParcelFileDescriptor` wraps
// an `OwnedFd`, which can be cloned and then used to create a `File`
// object.
let mut info_file = info_file

.as_ref()

.try_clone()

.map(File::from)

.expect("Invalid file handle");

let mut contents = String::new();
info_file.read_to_string(&mut contents).unwrap();

let mut lines = contents.lines();
let name = lines.next().unwrap();
let years: i32 = lines.next().unwrap().parse().unwrap();

Ok(format!("Happy Birthday {name}, congratulations with the {years} years!"))

237

}
}

• ParcelFileDescriptor wraps an OwnedFd, and so can be created from a File (or any
other type that wraps an OwnedFd), and can be used to create a new File handle on
the other side.

• Other types of file descriptors can be wrapped and sent, e.g. TCP, UDP, and UNIX sockets.

238

Chapter 36

Testing in Android

Building on Testing, we will now look at how unit tests work in AOSP. Use the rust_test
module for your unit tests:

testing/Android.bp:

rust_library {
name: "libleftpad",
crate_name: "leftpad",
srcs: ["src/lib.rs"],

}

rust_test {
name: "libleftpad_test",
crate_name: "leftpad_test",
srcs: ["src/lib.rs"],
host_supported: true,
test_suites: ["general-tests"],

}

rust_test {
name: "libgoogletest_example",
crate_name: "googletest_example",
srcs: ["googletest.rs"],
rustlibs: ["libgoogletest_rust"],
host_supported: true,

}

rust_test {
name: "libmockall_example",
crate_name: "mockall_example",
srcs: ["mockall.rs"],
rustlibs: ["libmockall"],
host_supported: true,

}

testing/src/lib.rs:

239

//! Left-padding library.

/// Left-pad `s` to `width`.
pub fn leftpad(s: &str, width: usize) -> String {

format!("{s:>width$}")
}

#[cfg(test)]
mod tests {

use super::*;

#[test]
fn short_string() {

assert_eq!(leftpad("foo", 5), " foo");
}

#[test]
fn long_string() {

assert_eq!(leftpad("foobar", 6), "foobar");
}

}

You can now run the test with

atest --host libleftpad_test

The output looks like this:

INFO: Elapsed time: 2.666s, Critical Path: 2.40s
INFO: 3 processes: 2 internal, 1 linux-sandbox.
INFO: Build completed successfully, 3 total actions
//comprehensive-rust-android/testing:libleftpad_test_host PASSED in 2.3s

PASSED libleftpad_test.tests::long_string (0.0s)
PASSED libleftpad_test.tests::short_string (0.0s)

Test cases: finished with 2 passing and 0 failing out of 2 test cases

Notice how you only mention the root of the library crate. Tests are found recursively in
nested modules.

36.1 GoogleTest

The GoogleTest crate allows for flexible test assertions using matchers:

use googletest::prelude::*;

#[googletest::test]
fn test_elements_are() {

let value = vec!["foo", "bar", "baz"];
expect_that!(value, elements_are!(eq(&"foo"), lt(&"xyz"), starts_with("b")));

}

If we change the last element to "!", the test fails with a structured error message pin-pointing
the error:

240

https://docs.rs/googletest/

---- test_elements_are stdout ----
Value of: value
Expected: has elements:

0. is equal to "foo"
1. is less than "xyz"
2. starts with prefix "!"

Actual: ["foo", "bar", "baz"],
where element #2 is "baz", which does not start with "!"
at src/testing/googletest.rs:6:5

Error: See failure output above

This slide should take about 5 minutes.

• GoogleTest is not part of the Rust Playground, so you need to run this example in a
local environment. Use cargo add googletest to quickly add it to an existing Cargo
project.

• The use googletest::prelude::*; line imports a number of commonly used macros
and types.

• This just scratches the surface, there are many builtin matchers. Consider going through
the first chapter of ”Advanced testing for Rust applications”, a self-guided Rust course: it
provides a guided introduction to the library, with exercises to help you get comfortable
with googletest macros, its matchers and its overall philosophy.

• A particularly nice feature is that mismatches in multi-line strings are shown as a diff:

#[test]
fn test_multiline_string_diff() {

let haiku = "Memory safety found,\n\
Rust's strong typing guides the way,\n\
Secure code you'll write.";

assert_that!(
haiku,
eq("Memory safety found,\n\

Rust's silly humor guides the way,\n\
Secure code you'll write.")

);
}

shows a color-coded diff (colors not shown here):

Value of: haiku
Expected: is equal to "Memory safety found,\nRust's silly humor guides the way,\nSecure code you'll write."
Actual: "Memory safety found,\nRust's strong typing guides the way,\nSecure code you'll write.",

which isn't equal to "Memory safety found,\nRust's silly humor guides the way,\nSecure code you'll write."
Difference(-actual / +expected):
Memory safety found,

-Rust's strong typing guides the way,
+Rust's silly humor guides the way,
Secure code you'll write.
at src/testing/googletest.rs:17:5

• The crate is a Rust port of GoogleTest for C++.

241

https://docs.rs/googletest/latest/googletest/prelude/index.html
https://docs.rs/googletest/latest/googletest/prelude/index.html
https://rust-exercises.com/advanced-testing/
https://google.github.io/googletest/

36.2 Mocking

For mocking, Mockall is a widely used library. You need to refactor your code to use traits,
which you can then quickly mock:

use std::time::Duration;

#[mockall::automock]
pub trait Pet {

fn is_hungry(&self, since_last_meal: Duration) -> bool;
}

#[test]
fn test_robot_dog() {

let mut mock_dog = MockPet::new();
mock_dog.expect_is_hungry().return_const(true);
assert!(mock_dog.is_hungry(Duration::from_secs(10)));

}

This slide should take about 5 minutes.

• Mockall is the recommended mocking library in Android (AOSP). There are other mock-
ing libraries available on crates.io, in particular in the area of mocking HTTP services.
The other mocking libraries work in a similar fashion as Mockall, meaning that they
make it easy to get a mock implementation of a given trait.

• Note that mocking is somewhat controversial: mocks allow you to completely isolate a
test from its dependencies. The immediate result is faster and more stable test execution.
On the other hand, the mocks can be configured wrongly and return output different
from what the real dependencies would do.

If at all possible, it is recommended that you use the real dependencies. As an example,
many databases allow you to configure an in-memory backend. This means that you
get the correct behavior in your tests, plus they are fast and will automatically clean up
after themselves.

Similarly, many web frameworks allow you to start an in-process server which binds to
a random port on localhost. Always prefer this over mocking away the framework
since it helps you test your code in the real environment.

• Mockall is not part of the Rust Playground, so you need to run this example in a local
environment. Use cargo add mockall to quickly add Mockall to an existing Cargo
project.

• Mockall has a lot more functionality. In particular, you can set up expectations which
depend on the arguments passed. Here we use this to mock a cat which becomes hungry
3 hours after the last time it was fed:

#[test]
fn test_robot_cat() {

let mut mock_cat = MockPet::new();
mock_cat

.expect_is_hungry()

.with(mockall::predicate::gt(Duration::from_secs(3 * 3600)))

.return_const(true);

242

https://docs.rs/mockall/
https://crates.io/keywords/mock
https://crates.io/keywords/mock

mock_cat.expect_is_hungry().return_const(false);
assert!(mock_cat.is_hungry(Duration::from_secs(5 * 3600)));
assert!(!mock_cat.is_hungry(Duration::from_secs(5)));

}

• You can use .times(n) to limit the number of times a mock method can be called to n
--- the mock will automatically panic when dropped if this isn't satisfied.

243

Chapter 37

Logging

You should use the log crate to automatically log to logcat (on-device) or stdout (on-host):

hello_rust_logs/Android.bp:

rust_binary {
name: "hello_rust_logs",
crate_name: "hello_rust_logs",
srcs: ["src/main.rs"],
rustlibs: [

"liblog_rust",
"liblogger",

],
host_supported: true,

}

hello_rust_logs/src/main.rs:

//! Rust logging demo.

use log::{debug, error, info};

/// Logs a greeting.
fn main() {

logger::init(
logger::Config::default()

.with_tag_on_device("rust")

.with_max_level(log::LevelFilter::Trace),
);
debug!("Starting program.");
info!("Things are going fine.");
error!("Something went wrong!");

}

Build, push, and run the binary on your device:

m hello_rust_logs
adb push "$ANDROID_PRODUCT_OUT/system/bin/hello_rust_logs" /data/local/tmp

244

adb shell /data/local/tmp/hello_rust_logs

The logs show up in adb logcat:

adb logcat -s rust

09-08 08:38:32.454 2420 2420 D rust: hello_rust_logs: Starting program.
09-08 08:38:32.454 2420 2420 I rust: hello_rust_logs: Things are going fine.
09-08 08:38:32.454 2420 2420 E rust: hello_rust_logs: Something went wrong!

• The logger implementation in liblogger is only needed in the final binary, if you're
logging from a library you only need the log facade crate.

245

Chapter 38

Interoperability

Rust has excellent support for interoperability with other languages. This means that you
can:

• Call Rust functions from other languages.
• Call functions written in other languages from Rust.

When you call functions in a foreign language, you're using a foreign function interface, also
known as FFI.

• This is a key ability of Rust: compiled code becomes indistinguishable from compiled C
or C++ code.

• Technically, we say that Rust can be compiled to the same ABI (application binary
interface) as C code.

38.1 Interoperability with C

Rust has full support for linking object files with a C calling convention. Similarly, you can
export Rust functions and call them from C.

You can do it by hand if you want:

unsafe extern "C" {
safe fn abs(x: i32) -> i32;

}

fn main() {
let x = -42;
let abs_x = abs(x);
println!("{x}, {abs_x}");

}

We already saw this in the Safe FFI Wrapper exercise.

This assumes full knowledge of the target platform. Not recommended for produc-
tion.

We will look at better options next.

246

https://en.wikipedia.org/wiki/Application_binary_interface

• The "C" part of the extern block tells Rust that abs can be called using the C ABI
(application binary interface).

• The safe fn abs part tells Rust that abs is a safe function. By default, extern functions
are unsafe, but since abs(x) can't trigger undefined behavior with any x, we can declare
it safe.

38.1.1 A Simple C Library

Let's first create a small C library:

interoperability/bindgen/libbirthday.h:

typedef struct card {
const char* name;
int years;

} card;

void print_card(const card* card);

interoperability/bindgen/libbirthday.c:

#include <stdio.h>
#include "libbirthday.h"

void print_card(const card* card) {
printf("+--------------\n");
printf("| Happy Birthday %s!\n", card->name);
printf("| Congratulations with the %i years!\n", card->years);
printf("+--------------\n");

}

Add this to your Android.bp file:

interoperability/bindgen/Android.bp:

cc_library {
name: "libbirthday",
srcs: ["libbirthday.c"],

}

38.1.2 Using Bindgen

The bindgen tool can auto-generate bindings from a C header file.

Create a wrapper header file for the library (not strictly needed in this example):

interoperability/bindgen/libbirthday_wrapper.h:

#include "libbirthday.h"

interoperability/bindgen/Android.bp:

rust_bindgen {
name: "libbirthday_bindgen",
crate_name: "birthday_bindgen",
wrapper_src: "libbirthday_wrapper.h",

247

https://doc.rust-lang.org/reference/items/external-blocks.html#abi
https://en.wikipedia.org/wiki/Application_binary_interface
https://rust-lang.github.io/rust-bindgen/introduction.html

source_stem: "bindings",
static_libs: ["libbirthday"],

}

Finally, we can use the bindings in our Rust program:

interoperability/bindgen/Android.bp:

rust_binary {
name: "print_birthday_card",
srcs: ["main.rs"],
rustlibs: ["libbirthday_bindgen"],
static_libs: ["libbirthday"],

}

interoperability/bindgen/main.rs:

//! Bindgen demo.

use birthday_bindgen::{card, print_card};

fn main() {
let name = std::ffi::CString::new("Peter").unwrap();
let card = card { name: name.as_ptr(), years: 42 };
// SAFETY: The pointer we pass is valid because it came from a Rust
// reference, and the `name` it contains refers to `name` above which also
// remains valid. `print_card` doesn't store either pointer to use later
// after it returns.
unsafe {

print_card(&card);
}

}

• The Android build rules will automatically call bindgen for you behind the scenes.

• Notice that the Rust code in main is still hard to write. It is good practice to encapsulate
the output of bindgen in a Rust library which exposes a safe interface to caller.

38.1.3 Running Our Binary

Build, push, and run the binary on your device:

m print_birthday_card
adb push "$ANDROID_PRODUCT_OUT/system/bin/print_birthday_card" /data/local/tmp
adb shell /data/local/tmp/print_birthday_card

Finally, we can run auto-generated tests to ensure the bindings work:

interoperability/bindgen/Android.bp:

rust_test {
name: "libbirthday_bindgen_test",
srcs: [":libbirthday_bindgen"],
crate_name: "libbirthday_bindgen_test",
test_suites: ["general-tests"],
auto_gen_config: true,

248

clippy_lints: "none", // Generated file, skip linting
lints: "none",

}

atest libbirthday_bindgen_test

38.1.4 A Simple Rust Library

Exporting Rust functions and types to C is easy. Here's a simple Rust library:

interoperability/rust/libanalyze/analyze.rs

//! Rust FFI demo.
#![deny(improper_ctypes_definitions)]

use std::os::raw::c_int;

/// Analyze the numbers.
// SAFETY: There is no other global function of this name.
#[unsafe(no_mangle)]
pub extern "C" fn analyze_numbers(x: c_int, y: c_int) {

if x < y {
println!("x ({x}) is smallest!");

} else {
println!("y ({y}) is probably larger than x ({x})");

}
}

interoperability/rust/libanalyze/Android.bp

rust_ffi {
name: "libanalyze_ffi",
crate_name: "analyze_ffi",
srcs: ["analyze.rs"],
include_dirs: ["."],

}

#[unsafe(no_mangle)] disables Rust's usual name mangling, so the exported symbol
will just be the name of the function. You can also use #[unsafe(export_name =
"some_name")] to specify whatever name you want.

38.1.5 Calling Rust

We can now call this from a C binary:

interoperability/rust/libanalyze/analyze.h

#ifndef ANALYZE_H
#define ANALYZE_H

void analyze_numbers(int x, int y);

#endif

interoperability/rust/analyze/main.c

249

#include "analyze.h"

int main() {
analyze_numbers(10, 20);
analyze_numbers(123, 123);
return 0;

}

interoperability/rust/analyze/Android.bp

cc_binary {
name: "analyze_numbers",
srcs: ["main.c"],
static_libs: ["libanalyze_ffi"],

}

Build, push, and run the binary on your device:

m analyze_numbers
adb push "$ANDROID_PRODUCT_OUT/system/bin/analyze_numbers" /data/local/tmp
adb shell /data/local/tmp/analyze_numbers

38.2 With C++

The CXX crate enables safe interoperability between Rust and C++.

The overall approach looks like this:

38.2.1 The Bridge Module

CXX relies on a description of the function signatures that will be exposed from each language
to the other. You provide this description using extern blocks in a Rust module annotated
with the #[cxx::bridge] attribute macro.

#[allow(unsafe_op_in_unsafe_fn)]
#[cxx::bridge(namespace = "org::blobstore")]
mod ffi {

// Shared structs with fields visible to both languages.
struct BlobMetadata {

size: usize,
tags: Vec<String>,

}

250

https://cxx.rs/

// Rust types and signatures exposed to C++.
extern "Rust" {

type MultiBuf;

fn next_chunk(buf: &mut MultiBuf) -> &[u8];
}

// C++ types and signatures exposed to Rust.
unsafe extern "C++" {

include!("include/blobstore.h");

type BlobstoreClient;

fn new_blobstore_client() -> UniquePtr<BlobstoreClient>;
fn put(self: Pin<&mut BlobstoreClient>, parts: &mut MultiBuf) -> u64;
fn tag(self: Pin<&mut BlobstoreClient>, blobid: u64, tag: &str);
fn metadata(&self, blobid: u64) -> BlobMetadata;

}
}

• The bridge is generally declared in an ffi module within your crate.
• From the declarations made in the bridge module, CXX will generate matching Rust and

C++ type/function definitions in order to expose those items to both languages.
• To view the generated Rust code, use cargo-expand to view the expanded proc macro.

For most of the examples you would use cargo expand ::ffi to expand just the ffi
module (though this doesn't apply for Android projects).

• To view the generated C++ code, look in target/cxxbridge.

38.2.2 Rust Bridge Declarations

#[cxx::bridge]
mod ffi {

extern "Rust" {
type MyType; // Opaque type
fn foo(&self); // Method on `MyType`
fn bar() -> Box<MyType>; // Free function

}
}

struct MyType(i32);

impl MyType {
fn foo(&self) {

println!("{}", self.0);
}

}

fn bar() -> Box<MyType> {
Box::new(MyType(123))

}

251

https://github.com/dtolnay/cargo-expand

• Items declared in the extern "Rust" reference items that are in scope in the parent
module.

• The CXX code generator uses your extern "Rust" section(s) to produce a C++ header
file containing the corresponding C++ declarations. The generated header has the same
path as the Rust source file containing the bridge, except with a .rs.h file extension.

38.2.3 Generated C++

#[cxx::bridge]
mod ffi {

// Rust types and signatures exposed to C++.
extern "Rust" {

type MultiBuf;

fn next_chunk(buf: &mut MultiBuf) -> &[u8];
}

}

Results in (roughly) the following C++:

struct MultiBuf final : public ::rust::Opaque {
~MultiBuf() = delete;

private:
friend ::rust::layout;
struct layout {

static ::std::size_t size() noexcept;
static ::std::size_t align() noexcept;

};
};

::rust::Slice<::std::uint8_t const> next_chunk(::org::blobstore::MultiBuf &buf) noexcept;

38.2.4 C++ Bridge Declarations

#[cxx::bridge]
mod ffi {

// C++ types and signatures exposed to Rust.
unsafe extern "C++" {

include!("include/blobstore.h");

type BlobstoreClient;

fn new_blobstore_client() -> UniquePtr<BlobstoreClient>;
fn put(self: Pin<&mut BlobstoreClient>, parts: &mut MultiBuf) -> u64;
fn tag(self: Pin<&mut BlobstoreClient>, blobid: u64, tag: &str);
fn metadata(&self, blobid: u64) -> BlobMetadata;

}
}

Results in (roughly) the following Rust:

252

#[repr(C)]
pub struct BlobstoreClient {

_private: ::cxx::private::Opaque,
}

pub fn new_blobstore_client() -> ::cxx::UniquePtr<BlobstoreClient> {
extern "C" {

#[link_name = "org$blobstore$cxxbridge1$new_blobstore_client"]
fn __new_blobstore_client() -> *mut BlobstoreClient;

}
unsafe { ::cxx::UniquePtr::from_raw(__new_blobstore_client()) }

}

impl BlobstoreClient {
pub fn put(&self, parts: &mut MultiBuf) -> u64 {

extern "C" {
#[link_name = "org$blobstore$cxxbridge1$BlobstoreClient$put"]
fn __put(

_: &BlobstoreClient,
parts: *mut ::cxx::core::ffi::c_void,

) -> u64;
}
unsafe {

__put(self, parts as *mut MultiBuf as *mut ::cxx::core::ffi::c_void)
}

}
}

// ...

• The programmer does not need to promise that the signatures they have typed in are
accurate. CXX performs static assertions that the signatures exactly correspond with
what is declared in C++.

• unsafe extern blocks allow you to declare C++ functions that are safe to call from
Rust.

38.2.5 Shared Types

#[cxx::bridge]
mod ffi {

#[derive(Clone, Debug, Hash)]
struct PlayingCard {

suit: Suit,
value: u8, // A=1, J=11, Q=12, K=13

}

enum Suit {
Clubs,
Diamonds,
Hearts,
Spades,

253

}
}

• Only C-like (unit) enums are supported.
• A limited number of traits are supported for #[derive()] on shared types. Correspond-

ing functionality is also generated for the C++ code, e.g. if you derive Hash also generates
an implementation of std::hash for the corresponding C++ type.

38.2.6 Shared Enums

#[cxx::bridge]
mod ffi {

enum Suit {
Clubs,
Diamonds,
Hearts,
Spades,

}
}

Generated Rust:

#[derive(Copy, Clone, PartialEq, Eq)]
#[repr(transparent)]
pub struct Suit {

pub repr: u8,
}

#[allow(non_upper_case_globals)]
impl Suit {

pub const Clubs: Self = Suit { repr: 0 };
pub const Diamonds: Self = Suit { repr: 1 };
pub const Hearts: Self = Suit { repr: 2 };
pub const Spades: Self = Suit { repr: 3 };

}

Generated C++:

enum class Suit : uint8_t {
Clubs = 0,
Diamonds = 1,
Hearts = 2,
Spades = 3,

};

• On the Rust side, the code generated for shared enums is actually a struct wrapping
a numeric value. This is because it is not UB in C++ for an enum class to hold a value
different from all of the listed variants, and our Rust representation needs to have the
same behavior.

254

38.2.7 Rust Error Handling

#[cxx::bridge]
mod ffi {

extern "Rust" {
fn fallible(depth: usize) -> Result<String>;

}
}

fn fallible(depth: usize) -> anyhow::Result<String> {
if depth == 0 {

return Err(anyhow::Error::msg("fallible1 requires depth > 0"));
}

Ok("Success!".into())
}

• Rust functions that return Result are translated to exceptions on the C++ side.
• The exception thrown will always be of type rust::Error, which primarily exposes a

way to get the error message string. The error message will come from the error type's
Display impl.

• A panic unwinding from Rust to C++ will always cause the process to immediately
terminate.

38.2.8 C++ Error Handling

#[cxx::bridge]
mod ffi {

unsafe extern "C++" {
include!("example/include/example.h");
fn fallible(depth: usize) -> Result<String>;

}
}

fn main() {
if let Err(err) = ffi::fallible(99) {

eprintln!("Error: {}", err);
process::exit(1);

}
}

• C++ functions declared to return a Result will catch any thrown exception on the C++
side and return it as an Err value to the calling Rust function.

• If an exception is thrown from an extern ”C++” function that is not declared by the CXX
bridge to return Result, the program calls C++'s std::terminate. The behavior is
equivalent to the same exception being thrown through a noexcept C++ function.

38.2.9 Additional Types

255

Rust Type C++ Type

String rust::String
&str rust::Str
CxxString std::string
&[T]/&mut [T] rust::Slice
Box<T> rust::Box<T>
UniquePtr<T> std::unique_ptr<T>
Vec<T> rust::Vec<T>
CxxVector<T> std::vector<T>

• These types can be used in the fields of shared structs and the arguments and returns of
extern functions.

• Note that Rust's String does not map directly to std::string. There are a few reasons
for this:
– std::string does not uphold the UTF-8 invariant that String requires.
– The two types have different layouts in memory and so can't be passed directly

between languages.
– std::string requires move constructors that don't match Rust's move semantics,

so a std::string can't be passed by value to Rust.

38.2.10 Building in Android

Create two genrules: One to generate the CXX header, and one to generate the CXX source file.
These are then used as inputs to the cc_library_static.

// Generate a C++ header containing the C++ bindings
// to the Rust exported functions in lib.rs.
genrule {

name: "libcxx_test_bridge_header",
tools: ["cxxbridge"],
cmd: "$(location cxxbridge) $(in) --header > $(out)",
srcs: ["lib.rs"],
out: ["lib.rs.h"],

}

// Generate the C++ code that Rust calls into.
genrule {

name: "libcxx_test_bridge_code",
tools: ["cxxbridge"],
cmd: "$(location cxxbridge) $(in) > $(out)",
srcs: ["lib.rs"],
out: ["lib.rs.cc"],

}

• The cxxbridge tool is a standalone tool that generates the C++ side of the bridge module.
It is included in Android and available as a Soong tool.

• By convention, if your Rust source file is lib.rs your header file will be named
lib.rs.h and your source file will be named lib.rs.cc. This naming convention
isn't enforced, though.

256

38.2.11 Building in Android

Create a cc_library_static to build the C++ library, including the CXX generated header
and source file.

cc_library_static {
name: "libcxx_test_cpp",
srcs: ["cxx_test.cpp"],
generated_headers: [

"cxx-bridge-header",
"libcxx_test_bridge_header"

],
generated_sources: ["libcxx_test_bridge_code"],

}

• Point out that libcxx_test_bridge_header and libcxx_test_bridge_code are the
dependencies for the CXX-generated C++ bindings. We'll show how these are setup on
the next slide.

• Note that you also need to depend on the cxx-bridge-header library in order to pull
in common CXX definitions.

• Full docs for using CXX in Android can be found in the Android docs. You may want to
share that link with the class so that students know where they can find these instructions
again in the future.

38.2.12 Building in Android

Create a rust_binary that depends on libcxx and your cc_library_static.

rust_binary {
name: "cxx_test",
srcs: ["lib.rs"],
rustlibs: ["libcxx"],
static_libs: ["libcxx_test_cpp"],

}

38.3 Interoperability with Java

Java can load shared objects via Java Native Interface (JNI). The jni crate allows you to create
a compatible library.

First, we create a Rust function to export to Java:

interoperability/java/src/lib.rs:

//! Rust <-> Java FFI demo.

use jni::JNIEnv;
use jni::objects::{JClass, JString};
use jni::sys::jstring;

/// HelloWorld::hello method implementation.
// SAFETY: There is no other global function of this name.
#[unsafe(no_mangle)]

257

https://source.android.com/docs/setup/build/rust/building-rust-modules/android-rust-patterns#rust-cpp-interop-using-cxx
https://en.wikipedia.org/wiki/Java_Native_Interface
https://docs.rs/jni/

pub extern "system" fn Java_HelloWorld_hello(
mut env: JNIEnv,
_class: JClass,
name: JString,

) -> jstring {
let input: String = env.get_string(&name).unwrap().into();
let greeting = format!("Hello, {input}!");
let output = env.new_string(greeting).unwrap();
output.into_raw()

}

interoperability/java/Android.bp:

rust_ffi_shared {
name: "libhello_jni",
crate_name: "hello_jni",
srcs: ["src/lib.rs"],
rustlibs: ["libjni"],

}

We then call this function from Java:

interoperability/java/HelloWorld.java:

class HelloWorld {
private static native String hello(String name);

static {
System.loadLibrary("hello_jni");

}

public static void main(String[] args) {
String output = HelloWorld.hello("Alice");
System.out.println(output);

}
}

interoperability/java/Android.bp:

java_binary {
name: "helloworld_jni",
srcs: ["HelloWorld.java"],
main_class: "HelloWorld",
jni_libs: ["libhello_jni"],

}

Finally, you can build, sync, and run the binary:

m helloworld_jni
adb sync # requires adb root && adb remount
adb shell /system/bin/helloworld_jni

• The unsafe(no_mangle) attribute instructs Rust to emit the Java_HelloWorld_hello
symbol exactly as written. This is important so that Java can recognize the symbol as a
hello method on the HelloWorld class.

258

– By default, Rust will mangle (rename) symbols so that a binary can link in two
versions of the same Rust crate.

259

Part X

Chromium

260

Chapter 39

Welcome to Rust in Chromium

Rust is supported for third-party libraries in Chromium, with first-party glue code to connect
between Rust and existing Chromium C++ code.

Today, we'll call into Rust to do something silly with strings. If you've got a corner
of the code where you're displaying a UTF-8 string to the user, feel free to follow
this recipe in your part of the codebase instead of the exact part we talk about.

261

Chapter 40

Setup

Make sure you can build and run Chromium. Any platform and set of build flags is OK, so
long as your code is relatively recent (commit position 1223636 onwards, corresponding to
November 2023):

gn gen out/Debug
autoninja -C out/Debug chrome
out/Debug/chrome # or on Mac, out/Debug/Chromium.app/Contents/MacOS/Chromium

(A component, debug build is recommended for quickest iteration time. This is the default!)

See How to build Chromium if you aren't already at that point. Be warned: setting up to build
Chromium takes time.

It's also recommended that you have Visual Studio code installed.

262

https://www.chromium.org/developers/how-tos/get-the-code/

About the exercises

This part of the course has a series of exercises that build on each other. We'll be doing them
spread throughout the course instead of just at the end. If you don't have time to complete a
certain part, don't worry: you can catch up in the next slot.

263

Chapter 41

Comparing Chromium and Cargo
Ecosystems

The Rust community typically uses cargo and libraries from crates.io. Chromium is built
using gn and ninja and a curated set of dependencies.

When writing code in Rust, your choices are:

• Use gn and ninja with the help of the templates from //build/rust/*.gni (e.g.
rust_static_library that we'll meet later). This uses Chromium's audited toolchain
and crates.

• Use cargo, but restrict yourself to Chromium's audited toolchain and crates
• Use cargo, trusting a toolchain and/or crates downloaded from the internet

From here on we'll be focusing on gn and ninja, because this is how Rust code can be
built into the Chromium browser. At the same time, Cargo is an important part of the Rust
ecosystem and you should keep it in your toolbox.

Mini exercise

Split into small groups and:

• Brainstorm scenarios where cargo may offer an advantage and assess the risk profile
of these scenarios.

• Discuss which tools, libraries, and groups of people need to be trusted when using gn
and ninja, offline cargo, etc.

Ask students to avoid peeking at the speaker notes before completing the exercise. Assuming
folks taking the course are physically together, ask them to discuss in small groups of 3-4
people.

Notes/hints related to the first part of the exercise (”scenarios where Cargo may offer an
advantage”):

• It's fantastic that when writing a tool, or prototyping a part of Chromium, one has
access to the rich ecosystem of crates.io libraries. There is a crate for almost anything
and they are usually quite pleasant to use. (clap for command-line parsing, serde for

264

https://crates.io/
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/rust.md#Using-cargo
https://rustup.rs/
https://crates.io/

serializing/deserializing to/from various formats, itertools for working with iterators,
etc.).

– cargo makes it easy to try a library (just add a single line to Cargo.toml and start
writing code)

– It may be worth comparing how CPAN helped make perl a popular choice. Or
comparing with python + pip.

• Development experience is made really nice not only by core Rust tools (e.g. using
rustup to switch to a different rustc version when testing a crate that needs to work
on nightly, current stable, and older stable) but also by an ecosystem of third-party
tools (e.g. Mozilla provides cargo vet for streamlining and sharing security audits;
criterion crate gives a streamlined way to run benchmarks).

– cargo makes it easy to add a tool via cargo install --locked cargo-vet.
– It may be worth comparing with Chrome Extensions or VScode extensions.

• Broad, generic examples of projects where cargo may be the right choice:

– Perhaps surprisingly, Rust is becoming increasingly popular in the industry for
writing command line tools. The breadth and ergonomics of libraries is comparable
to Python, while being more robust (thanks to the rich type system) and running
faster (as a compiled, rather than interpreted language).

– Participating in the Rust ecosystem requires using standard Rust tools like Cargo.
Libraries that want to get external contributions, and want to be used outside of
Chromium (e.g. in Bazel or Android/Soong build environments) should probably
use Cargo.

• Examples of Chromium-related projects that are cargo-based:

– serde_json_lenient (experimented with in other parts of Google which resulted
in PRs with performance improvements)

– Fontations libraries like font-types
– gnrt tool (we will meet it later in the course) which depends on clap for command-

line parsing and on toml for configuration files.

* Disclaimer: a unique reason for using cargo was unavailability of gn when
building and bootstrapping Rust standard library when building Rust toolchain.

* run_gnrt.py uses Chromium's copy of cargo and rustc. gnrt depends on
third-party libraries downloaded from the internet, but run_gnrt.py asks
cargo that only --locked content is allowed via Cargo.lock.)

Students may identify the following items as being implicitly or explicitly trusted:

• rustc (the Rust compiler) which in turn depends on the LLVM libraries, the Clang
compiler, the rustc sources (fetched from GitHub, reviewed by Rust compiler team),
binary Rust compiler downloaded for bootstrapping

• rustup (it may be worth pointing out that rustup is developed under the umbrella of
the https://github.com/rust-lang/ organization - same as rustc)

• cargo, rustfmt, etc.
• Various internal infrastructure (bots that build rustc, system for distributing the pre-

built toolchain to Chromium engineers, etc.)
• Cargo tools like cargo audit, cargo vet, etc.
• Rust libraries vendored into//third_party/rust (audited by security@chromium.org)
• Other Rust libraries (some niche, some quite popular and commonly used)

265

Chapter 42

Chromium Rust policy

Chromium's Rust policy can be found here. Rust can be used for both first-party and third-
party code.

Using Rust for pure first-party code looks like this:

"C++" Rust
.- - - - - - - - - -. .- - - - - - - - - - -.
: : : :
: Existing Chromium : : Chromium Rust :
: "C++" : : code :
: +---------------+ : : +----------------+ :
: | | : : | | :
: | o-----+-+-----------+-+-> | :
: | | : Language : | | :
: +---------------+ : boundary : +----------------+ :
: : : :
`- - - - - - - - - -' `- - - - - - - - - - -'

The third-party case is also common. It's likely that you'll also need a small amount of
first-party glue code, because very few Rust libraries directly expose a C/C++ API.

"C++" Rust
.- - - - - - - - - -. .- -.
: : : :
: Existing Chromium : : Chromium Rust Existing Rust :
: "C++" : : "wrapper" crate :
: +---------------+ : : +----------------+ +-------------+ :
: | | : : | | | | :
: | o-----+-+-----------+-+-> o-+----------+--> | :
: | | : Language : | | Crate | | :
: +---------------+ : boundary : +----------------+ API +-------------+ :
: : : :
`- - - - - - - - - -' `- -'

The scenario of using a third-party crate is the more complex one, so today's course will focus
on:

266

https://source.chromium.org/chromium/chromium/src/+/main:docs/rust.md;l=22

• Bringing in third-party Rust libraries (”crates”)
• Writing glue code to be able to use those crates from Chromium C++. (The same tech-

niques are used when working with first-party Rust code).

267

Chapter 43

Build rules

Rust code is usually built using cargo. Chromium builds with gn and ninja for efficiency ---
its static rules allow maximum parallelism. Rust is no exception.

Adding Rust code to Chromium

In some existing Chromium BUILD.gn file, declare a rust_static_library:

import("//build/rust/rust_static_library.gni")

rust_static_library("my_rust_lib") {
crate_root = "lib.rs"
sources = ["lib.rs"]

}

You can also add deps on other Rust targets. Later we'll use this to depend upon third party
code.

You must specify both the crate root, and a full list of sources. The crate_root is the file given
to the Rust compiler representing the root file of the compilation unit --- typically lib.rs.
sources is a complete list of all source files which ninja needs in order to determine when
rebuilds are necessary.

(There's no such thing as a Rust source_set, because in Rust, an entire crate is a compilation
unit. A static_library is the smallest unit.)

Students might be wondering why we need a gn template, rather than using gn's built-in
support for Rust static libraries. The answer is that this template provides support for CXX
interop, Rust features, and unit tests, some of which we'll use later.

43.1 Including unsafe Rust Code

Unsafe Rust code is forbidden in rust_static_library by default --- it won't compile. If
you need unsafe Rust code, add allow_unsafe = true to the gn target. (Later in the course
we'll see circumstances where this is necessary.)

268

https://gn.googlesource.com/gn/+/main/docs/reference.md#func_static_library
https://gn.googlesource.com/gn/+/main/docs/reference.md#func_static_library

import("//build/rust/rust_static_library.gni")

rust_static_library("my_rust_lib") {
crate_root = "lib.rs"
sources = [

"lib.rs",
"hippopotamus.rs"

]
allow_unsafe = true

}

43.2 Depending on Rust Code from Chromium C++

Simply add the above target to the deps of some Chromium C++ target.

import("//build/rust/rust_static_library.gni")

rust_static_library("my_rust_lib") {
crate_root = "lib.rs"
sources = ["lib.rs"]

}

or source_set, static_library etc.
component("preexisting_cpp") {

deps = [":my_rust_lib"]
}

We'll see that this relationship only works if the Rust code exposes plain C APIs which can be
called from C++, or if we use a C++/Rust interop tool.

43.3 Visual Studio Code

Types are elided in Rust code, which makes a good IDE even more useful than for C++. Visual
Studio code works well for Rust in Chromium. To use it,

• Ensure your VSCode has therust-analyzer extension, not earlier forms of Rust support
• gn gen out/Debug --export-rust-project (or equivalent for your output direc-

tory)
• ln -s out/Debug/rust-project.json rust-project.json

269

A demo of some of the code annotation and exploration features of rust-analyzer might be
beneficial if the audience are naturally skeptical of IDEs.

The following steps may help with the demo (but feel free to instead use a piece of Chromium-
related Rust that you are most familiar with):

• Open components/qr_code_generator/qr_code_generator_ffi_glue.rs
• Place the cursor over the QrCode::new call (around line 26) in ‘qr_code_genera-

tor_ffi_glue.rs
• Demo show documentation (typical bindings: vscode = ctrl k i; vim/CoC = K).
• Demo go to definition (typical bindings: vscode = F12; vim/CoC = g d). (This will take

you to //third_party/rust/.../qr_code-.../src/lib.rs.)
• Demo outline and navigate to the QrCode::with_bits method (around line 164; the

outline is in the file explorer pane in vscode; typical vim/CoC bindings = space o)
• Demo type annotations (there are quite a few nice examples in theQrCode::with_bits

method)

It may be worth pointing out that gn gen ... --export-rust-project will need to be
rerun after editing BUILD.gn files (which we will do a few times throughout the exercises in
this session).

43.4 Build rules exercise

In your Chromium build, add a new Rust target to //ui/base/BUILD.gn containing:

// SAFETY: There is no other global function of this name.
#[unsafe(no_mangle)]
pub extern "C" fn hello_from_rust() {

println!("Hello from Rust!")
}

Important: note that no_mangle here is considered a type of unsafety by the Rust compiler,
so you'll need to allow unsafe code in your gn target.

270

Add this new Rust target as a dependency of //ui/base:base. Declare this function at the
top of ui/base/resource/resource_bundle.cc (later, we'll see how this can be automated
by bindings generation tools):

extern "C" void hello_from_rust();

Call this function from somewhere in ui/base/resource/resource_bundle.cc - we
suggest the top of ResourceBundle::MaybeMangleLocalizedString. Build and run
Chromium, and ensure that ”Hello from Rust!” is printed lots of times.

If you use VSCode, now set up Rust to work well in VSCode. It will be useful in subsequent ex-
ercises. If you've succeeded, you will be able to use right-click ”Go to definition” on println!.

Where to find help

• The options available to the rust_static_library gn template
• Information about #[unsafe(no_mangle)]
• Information about extern "C"
• Information about gn's --export-rust-project switch
• How to install rust-analyzer in VSCode

It's really important that students get this running, because future exercises will build on it.

This example is unusual because it boils down to the lowest-common-denominator interop
language, C. Both C++ and Rust can natively declare and call C ABI functions. Later in the
course, we'll connect C++ directly to Rust.

allow_unsafe = true is required here because #[unsafe(no_mangle)] might allow Rust
to generate two functions with the same name, and Rust can no longer guarantee that the
right one is called.

If you need a pure Rust executable, you can also do that using the rust_executable gn
template.

271

https://source.chromium.org/chromium/chromium/src/+/main:build/rust/rust_static_library.gni;l=16
https://doc.rust-lang.org/beta/reference/abi.html#the-no_mangle-attribute
https://doc.rust-lang.org/std/keyword.extern.html
https://gn.googlesource.com/gn/+/main/docs/reference.md#compilation-database
https://code.visualstudio.com/docs/languages/rust

Chapter 44

Testing

Rust community typically authors unit tests in a module placed in the same source file as the
code being tested. This was covered earlier in the course and looks like this:

#[cfg(test)]
mod tests {

#[test]
fn my_test() {

todo!()
}

}

In Chromium we place unit tests in a separate source file and we continue to follow this
practice for Rust --- this makes tests consistently discoverable and helps to avoid rebuilding
.rs files a second time (in the test configuration).

This results in the following options for testing Rust code in Chromium:

• Native Rust tests (i.e. #[test]). Discouraged outside of //third_party/rust.
• gtest tests authored in C++ and exercising Rust via FFI calls. Sufficient when Rust code

is just a thin FFI layer and the existing unit tests provide sufficient coverage for the
feature.

• gtest tests authored in Rust and using the crate under test through its public API (using
pub mod for_testing { ... } if needed). This is the subject of the next few slides.

Mention that native Rust tests of third-party crates should eventually be exercised by
Chromium bots. (Such testing is needed rarely --- only after adding or updating third-party
crates.)

Some examples may help illustrate when C++ gtest vs Rust gtest should be used:

• QR has very little functionality in the first-party Rust layer (it's just a thin FFI glue)
and therefore uses the existing C++ unit tests for testing both the C++ and the Rust
implementation (parameterizing the tests so they enable or disable Rust using a
ScopedFeatureList).

• Hypothetical/WIP PNG integration may need memory-safe implementations of pixel
transformations that are provided by libpng but missing in the png crate - e.g. RGBA

272

=> BGRA, or gamma correction. Such functionality may benefit from separate tests
authored in Rust.

44.1 rust_gtest_interop Library

The rust_gtest_interop library provides a way to:

• Use a Rust function as a gtest testcase (using the #[gtest(...)] attribute)
• Use expect_eq! and similar macros (similar to assert_eq! but not panicking and not

terminating the test when the assertion fails).

Example:

use rust_gtest_interop::prelude::*;

#[gtest(MyRustTestSuite, MyAdditionTest)]
fn test_addition() {

expect_eq!(2 + 2, 4);
}

44.2 GN Rules for Rust Tests

The simplest way to build Rust gtest tests is to add them to an existing test binary that
already contains tests authored in C++. For example:

test("ui_base_unittests") {
...
sources += ["my_rust_lib_unittest.rs"]
deps += [":my_rust_lib"]

}

Authoring Rust tests in a separate static_library also works, but requires manually declar-
ing the dependency on the support libraries:

rust_static_library("my_rust_lib_unittests") {
testonly = true
is_gtest_unittests = true
crate_root = "my_rust_lib_unittest.rs"
sources = ["my_rust_lib_unittest.rs"]
deps = [

":my_rust_lib",
"//testing/rust_gtest_interop",

]
}

test("ui_base_unittests") {
...
deps += [":my_rust_lib_unittests"]

}

273

https://chromium.googlesource.com/chromium/src/+/main/testing/rust_gtest_interop/README.md

44.3 chromium::import! Macro

After adding :my_rust_lib to GN deps, we still need to learn how to import and
use my_rust_lib from my_rust_lib_unittest.rs. We haven't provided an explicit
crate_name for my_rust_lib so its crate name is computed based on the full target path
and name. Fortunately we can avoid working with such an unwieldy name by using the
chromium::import! macro from the automatically-imported chromium crate:

chromium::import! {
"//ui/base:my_rust_lib";

}

use my_rust_lib::my_function_under_test;

Under the covers the macro expands to something similar to:

extern crate ui_sbase_cmy_urust_ulib as my_rust_lib;

use my_rust_lib::my_function_under_test;

More information can be found in the doc comment of the chromium::import macro.

rust_static_library supports specifying an explicit name via crate_name property, but
doing this is discouraged. And it is discouraged because the crate name has to be globally
unique. crates.io guarantees uniqueness of its crate names so cargo_crate GN targets
(generated by the gnrt tool covered in a later section) use short crate names.

44.4 Testing exercise

Time for another exercise!

In your Chromium build:

• Add a testable function next to hello_from_rust. Some suggestions: adding two
integers received as arguments, computing the nth Fibonacci number, summing integers
in a slice, etc.

• Add a separate ..._unittest.rs file with a test for the new function.
• Add the new tests to BUILD.gn.
• Build the tests, run them, and verify that the new test works.

274

https://source.chromium.org/chromium/chromium/src/+/main:build/rust/chromium_prelude/chromium_prelude.rs?q=f:chromium_prelude.rs%20pub.use.*%5Cbimport%5Cb;%20-f:third_party&ss=chromium%2Fchromium%2Fsrc

Chapter 45

Interoperability with C++

The Rust community offers multiple options for C++/Rust interop, with new tools being
developed all the time. At the moment, Chromium uses a tool called CXX.

You describe your whole language boundary in an interface definition language (which looks
a lot like Rust) and then CXX tools generate declarations for functions and types in both Rust
and C++.

See the CXX tutorial for a full example of using this.

Talk through the diagram. Explain that behind the scenes, this is doing just the same as you
previously did. Point out that automating the process has the following benefits:

• The tool guarantees that the C++ and Rust sides match (e.g. you get compile errors if the
#[cxx::bridge] doesn't match the actual C++ or Rust definitions, but with out-of-sync
manual bindings you'd get Undefined Behavior)

• The tool automates generation of FFI thunks (small, C-ABI-compatible, free functions)
for non-C features (e.g. enabling FFI calls into Rust or C++ methods; manual bindings
would require authoring such top-level, free functions manually)

• The tool and the library can handle a set of core types - for example:
– &[T] can be passed across the FFI boundary, even though it doesn't guarantee any

particular ABI or memory layout. With manual bindings std::span<T> / &[T]
have to be manually destructured and rebuilt out of a pointer and length - this is
error-prone given that each language represents empty slices slightly differently)

– Smart pointers like std::unique_ptr<T>, std::shared_ptr<T>, and/or Box
are natively supported. With manual bindings, one would have to pass C-ABI-
compatible raw pointers, which would increase lifetime and memory-safety

275

https://cxx.rs/tutorial.html

risks.
– rust::String and CxxString types understand and maintain differences in

string representation across the languages (e.g. rust::String::lossy can build a
Rust string from non-UTF-8 input and rust::String::c_str can NUL-terminate
a string).

45.1 Example Bindings

CXX requires that the whole C++/Rust boundary is declared in cxx::bridge modules inside
.rs source code.

#[cxx::bridge]
mod ffi {

extern "Rust" {
type MultiBuf;

fn next_chunk(buf: &mut MultiBuf) -> &[u8];
}

unsafe extern "C++" {
include!("example/include/blobstore.h");

type BlobstoreClient;

fn new_blobstore_client() -> UniquePtr<BlobstoreClient>;
fn put(self: &BlobstoreClient, buf: &mut MultiBuf) -> Result<u64>;

}
}

// Definitions of Rust types and functions go here

Point out:

• Although this looks like a regular Rust mod, the #[cxx::bridge] procedural macro
does complex things to it. The generated code is quite a bit more sophisticated - though
this does still result in a mod called ffi in your code.

• Native support for C++'s std::unique_ptr in Rust
• Native support for Rust slices in C++
• Calls from C++ to Rust, and Rust types (in the top part)
• Calls from Rust to C++, and C++ types (in the bottom part)

Common misconception: It looks like a C++ header is being parsed by Rust, but this is
misleading. This header is never interpreted by Rust, but simply #included in the generated
C++ code for the benefit of C++ compilers.

45.2 Limitations of CXX

By far the most useful page when using CXX is the type reference.

CXX fundamentally suits cases where:

• Your Rust-C++ interface is sufficiently simple that you can declare all of it.

276

https://cxx.rs/bindings.html

• You're using only the types natively supported by CXX already, for example
std::unique_ptr, std::string, &[u8] etc.

It has many limitations --- for example lack of support for Rust's Option type.

These limitations constrain us to using Rust in Chromium only for well isolated ”leaf nodes”
rather than for arbitrary Rust-C++ interop. When considering a use-case for Rust in Chromium,
a good starting point is to draft the CXX bindings for the language boundary to see if it appears
simple enough.

In addition, right now, Rust code in one component cannot depend on Rust code in another,
due to linking details in our component build. That's another reason to restrict Rust to use in
leaf nodes.

You should also discuss some of the other sticky points with CXX, for example:

• Its error handling is based around C++ exceptions (given on the next slide)
• Function pointers are awkward to use.

45.3 CXX Error Handling

CXX's support for Result<T,E> relies on C++ exceptions, so we can't use that in Chromium.
Alternatives:

• The T part of Result<T, E> can be:

– Returned via out parameters (e.g. via &mut T). This requires that T can be passed
across the FFI boundary - for example T has to be:

* A primitive type (like u32 or usize)

* A type natively supported by cxx (like UniquePtr<T>) that has a suitable de-
fault value to use in a failure case (unlike Box<T>).

– Retained on the Rust side, and exposed via reference. This may be needed when
T is a Rust type, which cannot be passed across the FFI boundary, and cannot be
stored in UniquePtr<T>.

• The E part of Result<T, E> can be:

– Returned as a boolean (e.g. true representing success, and false representing
failure)

– Preserving error details is in theory possible, but so far hasn't been needed in
practice.

45.3.1 CXX Error Handling: QR Example

The QR code generator is an example where a boolean is used to communicate success vs
failure, and where the successful result can be passed across the FFI boundary:

#[cxx::bridge(namespace = "qr_code_generator")]
mod ffi {

extern "Rust" {
fn generate_qr_code_using_rust(

data: &[u8],
min_version: i16,
out_pixels: Pin<&mut CxxVector<u8>>,
out_qr_size: &mut usize,

277

https://cxx.rs/binding/result.html
https://source.chromium.org/chromium/chromium/src/+/main:components/qr_code_generator/qr_code_generator_ffi_glue.rs;l=13-18;drc=7bf1b75b910ca430501b9c6a74c1d18a0223ecca

) -> bool;
}

}

Students may be curious about the semantics of the out_qr_size output. This is not the size
of the vector, but the size of the QR code (and admittedly it is a bit redundant - this is the
square root of the size of the vector).

It may be worth pointing out the importance of initializing out_qr_size before calling into
the Rust function. Creation of a Rust reference that points to uninitialized memory results in
Undefined Behavior (unlike in C++, when only the act of dereferencing such memory results
in UB).

If students ask about Pin, then explain why CXX needs it for mutable references to C++ data:
the answer is that C++ data can’t be moved around like Rust data, because it may contain
self-referential pointers.

45.3.2 CXX Error Handling: PNG Example

A prototype of a PNG decoder illustrates what can be done when the successful result cannot
be passed across the FFI boundary:

#[cxx::bridge(namespace = "gfx::rust_bindings")]
mod ffi {

extern "Rust" {
/// This returns an FFI-friendly equivalent of `Result<PngReader<'a>,
/// ()>`.
fn new_png_reader<'a>(input: &'a [u8]) -> Box<ResultOfPngReader<'a>>;

/// C++ bindings for the `crate::png::ResultOfPngReader` type.
type ResultOfPngReader<'a>;
fn is_err(self: &ResultOfPngReader) -> bool;
fn unwrap_as_mut<'a, 'b>(

self: &'b mut ResultOfPngReader<'a>,
) -> &'b mut PngReader<'a>;

/// C++ bindings for the `crate::png::PngReader` type.
type PngReader<'a>;
fn height(self: &PngReader) -> u32;
fn width(self: &PngReader) -> u32;
fn read_rgba8(self: &mut PngReader, output: &mut [u8]) -> bool;

}
}

PngReader and ResultOfPngReader are Rust types --- objects of these types cannot cross
the FFI boundary without indirection of a Box<T>. We can't have an out_parameter: &mut
PngReader, because CXX doesn't allow C++ to store Rust objects by value.

This example illustrates that even though CXX doesn't support arbitrary generics nor tem-
plates, we can still pass them across the FFI boundary by manually specializing / monomor-
phizing them into a non-generic type. In the example ResultOfPngReader is a non-generic
type that forwards into appropriate methods of Result<T, E> (e.g. into is_err, unwrap,
and/or as_mut).

278

45.4 Using cxx in Chromium

In Chromium, we define an independent #[cxx::bridge] mod for each leaf-node where
we want to use Rust. You'd typically have one for each rust_static_library. Just add

cxx_bindings = ["my_rust_file.rs"]
list of files containing #[cxx::bridge], not all source files

allow_unsafe = true

to your existing rust_static_library target alongside crate_root and sources.

C++ headers will be generated at a sensible location, so you can just

#include "ui/base/my_rust_file.rs.h"

You will find some utility functions in //base to convert to/from Chromium C++ types to CXX
Rust types --- for example SpanToRustSlice.

Students may ask --- why do we still need allow_unsafe = true?

The broad answer is that no C/C++ code is ”safe” by the normal Rust standards. Calling back
and forth to C/C++ from Rust may do arbitrary things to memory, and compromise the safety
of Rust's own data layouts. Presence of too many unsafe keywords in C/C++ interop can harm
the signal-to-noise ratio of such a keyword, and is controversial, but strictly, bringing any
foreign code into a Rust binary can cause unexpected behavior from Rust's perspective.

The narrow answer lies in the diagram at the top of this page --- behind the scenes, CXX
generates Rust unsafe and extern "C" functions just like we did manually in the previous
section.

45.5 Exercise: Interoperability with C++

Part one

• In the Rust file you previously created, add a #[cxx::bridge] which specifies a single
function, to be called from C++, called hello_from_rust, taking no parameters and
returning no value.

• Modify your previous hello_from_rust function to remove extern "C" and
#[unsafe(no_mangle)]. This is now just a standard Rust function.

• Modify your gn target to build these bindings.
• In your C++ code, remove the forward-declaration of hello_from_rust. Instead, in-

clude the generated header file.
• Build and run!

Part two

It's a good idea to play with CXX a little. It helps you think about how flexible Rust in Chromium
actually is.

Some things to try:

• Call back into C++ from Rust. You will need:
– An additional header file which you can include! from your cxx::bridge. You'll

need to declare your C++ function in that new header file.

279

https://source.chromium.org/chromium/chromium/src/+/main:base/containers/span_rust.h;l=21
https://steveklabnik.com/writing/the-cxx-debate

– Anunsafeblock to call such a function, or alternatively specify theunsafe keyword
in your #[cxx::bridge] as described here.

– You may also need to#include "third_party/rust/cxx/v1/crate/include/cxx.h"
• Pass a C++ string from C++ into Rust.
• Pass a reference to a C++ object into Rust.
• Intentionally get the Rust function signatures mismatched from the #[cxx::bridge],

and get used to the errors you see.
• Intentionally get the C++ function signatures mismatched from the #[cxx::bridge],

and get used to the errors you see.
• Pass a std::unique_ptr of some type from C++ into Rust, so that Rust can own some

C++ object.
• Create a Rust object and pass it into C++, so that C++ owns it. (Hint: you need a Box).
• Declare some methods on a C++ type. Call them from Rust.
• Declare some methods on a Rust type. Call them from C++.

Part three

Now you understand the strengths and limitations of CXX interop, think of a couple of use-
cases for Rust in Chromium where the interface would be sufficiently simple. Sketch how
you might define that interface.

Where to find help

• The cxx binding reference
• The rust_static_library gn template

As students explore Part Two, they're bound to have lots of questions about how to achieve
these things, and also how CXX works behind the scenes.

Some of the questions you may encounter:

• I'm seeing a problem initializing a variable of type X with type Y, where X and Y are both
function types. This is because your C++ function doesn't quite match the declaration in
your cxx::bridge.

• I seem to be able to freely convert C++ references into Rust references. Doesn't that risk
UB? For CXX's opaque types, no, because they are zero-sized. For CXX trivial types yes,
it's possible to cause UB, although CXX's design makes it quite difficult to craft such an
example.

280

https://cxx.rs/extern-c++.html#functions-and-member-functions
https://cxx.rs/bindings.html
https://source.chromium.org/chromium/chromium/src/+/main:build/rust/rust_static_library.gni;l=16

Chapter 46

Adding Third Party Crates

Rust libraries are called ”crates” and are found at crates.io. It's very easy for Rust crates to
depend upon one another. So they do!

Property C++ library Rust crate

Build system Lots Consistent: Cargo.toml
Typical library size Large-ish Small
Transitive dependencies Few Lots

For a Chromium engineer, this has pros and cons:

• All crates use a common build system so we can automate their inclusion into
Chromium...

• ... but, crates typically have transitive dependencies, so you will likely have to bring in
multiple libraries.

We'll discuss:

• How to put a crate in the Chromium source code tree
• How to make gn build rules for it
• How to audit its source code for sufficient safety.

All of the things in the table on this slide are generalizations, and counter-examples can be
found. But in general it's important for students to understand that most Rust code depends
on other Rust libraries, because it's easy to do so, and that this has both benefits and costs.

46.1 Configuring the Cargo.toml file to add crates

Chromium has a single set of centrally-managed direct crate dependencies. These are man-
aged through a single Cargo.toml:

[dependencies]
bitflags = "1"
cfg-if = "1"
cxx = "1"
lots more...

281

https://crates.io
https://source.chromium.org/chromium/chromium/src/+/main:third_party/rust/chromium_crates_io/Cargo.toml

As with any other Cargo.toml, you can specify more details about the dependencies --- most
commonly, you'll want to specify the features that you wish to enable in the crate.

When adding a crate to Chromium, you'll often need to provide some extra information in an
additional file, gnrt_config.toml, which we'll meet next.

46.2 Configuring gnrt_config.toml

Alongside Cargo.toml is gnrt_config.toml. This contains Chromium-specific extensions
to crate handling.

If you add a new crate, you should specify at least the group. This is one of:

'safe': The library satisfies the rule-of-2 and can be used in any process.
'sandbox': The library does not satisfy the rule-of-2 and must be used in
a sandboxed process such as the renderer or a utility process.
'test': The library is only used in tests.

For instance,

[crate.my-new-crate]
group = 'test' # only used in test code

Depending on the crate source code layout, you may also need to use this file to specify where
its LICENSE file(s) can be found.

Later, we'll see some other things you will need to configure in this file to resolve problems.

46.3 Downloading Crates

A tool called gnrt knows how to download crates and how to generate BUILD.gn rules.

To start, download the crate you want like this:

cd chromium/src
vpython3 tools/crates/run_gnrt.py -- vendor

Although the gnrt tool is part of the Chromium source code, by running this
command you will be downloading and running its dependencies from crates.io.
See the earlier section discussing this security decision.

This vendor command may download:

• Your crate
• Direct and transitive dependencies
• New versions of other crates, as required by cargo to resolve the complete set of crates

required by Chromium.

Chromium maintains patches for some crates, kept in//third_party/rust/chromium_crates_io/patches.
These will be reapplied automatically, but if patching fails you may need to take manual
action.

282

https://doc.rust-lang.org/cargo/reference/specifying-dependencies.html
https://source.chromium.org/chromium/chromium/src/+/main:third_party/rust/chromium_crates_io/gnrt_config.toml

46.4 Generating gn Build Rules

Once you've downloaded the crate, generate the BUILD.gn files like this:

vpython3 tools/crates/run_gnrt.py -- gen

Now run git status. You should find:

• At least one new crate source code inthird_party/rust/chromium_crates_io/vendor
• At least one new BUILD.gn in third_party/rust/<crate name>/v<major semver
version>

• An appropriate README.chromium

The ”major semver version” is a Rust ”semver” version number.

Take a close look, especially at the things generated in third_party/rust.

Talk a little about semver --- and specifically the way that in Chromium it's to allow multiple
incompatible versions of a crate, which is discouraged but sometimes necessary in the Cargo
ecosystem.

46.5 Resolving Problems

If your build fails, it may be because of a build.rs: programs which do arbitrary things at
build time. This is fundamentally at odds with the design of gn and ninja which aim for
static, deterministic, build rules to maximize parallelism and repeatability of builds.

Some build.rs actions are automatically supported; others require action:

build script effect
Supported by our gn
templates Work required by you

Checking rustc version to configure
features on and off

Yes None

Checking platform or CPU to configure
features on and off

Yes None

Generating code Yes Yes - specify in
gnrt_config.toml

Building C/C++ No Patch around it
Arbitrary other actions No Patch around it

Fortunately, most crates don't contain a build script, and fortunately, most build scripts only
do the top two actions.

46.5.1 Build Scripts Which Generate Code

If ninja complains about missing files, check the build.rs to see if it writes source code
files.

If so, modify gnrt_config.toml to add build-script-outputs to the crate. If this is a
transitive dependency, that is, one on which Chromium code should not directly depend, also
add allow-first-party-usage=false. There are several examples already in that file:

283

https://doc.rust-lang.org/cargo/reference/semver.html

[crate.unicode-linebreak]
allow-first-party-usage = false
build-script-outputs = ["tables.rs"]

Now rerun gnrt.py -- gen to regenerate BUILD.gn files to inform ninja that this particular
output file is input to subsequent build steps.

46.5.2 Build Scripts Which Build C++ or Take Arbitrary Actions

Some crates use the cc crate to build and link C/C++ libraries. Other crates parse C/C++ using
bindgen within their build scripts. These actions can't be supported in a Chromium context
--- our gn, ninja and LLVM build system is very specific in expressing relationships between
build actions.

So, your options are:

• Avoid these crates
• Apply a patch to the crate.

Patches should be kept in third_party/rust/chromium_crates_io/patches/<crate> -
see for example the patches against the cxx crate - and will be applied automatically by gnrt
each time it upgrades the crate.

46.6 Depending on a Crate

Once you've added a third-party crate and generated build rules, depending on a crate is
simple. Find your rust_static_library target, and add a dep on the :lib target within
your crate.

Specifically,

+------------+ +----------------------+
"//third_party/rust" | crate name | "/v" | major semver version | ":lib"

+------------+ +----------------------+

For instance,

rust_static_library("my_rust_lib") {
crate_root = "lib.rs"
sources = ["lib.rs"]
deps = ["//third_party/rust/example_rust_crate/v1:lib"]

}

46.7 Auditing Third Party Crates

Adding new libraries is subject to Chromium's standard policies, but of course also subject
to security review. As you may be bringing in not just a single crate but also transitive
dependencies, there may be a lot of code to review. On the other hand, safe Rust code can
have limited negative side effects. How should you review it?

Over time Chromium aims to move to a process based around cargo vet.

Meanwhile, for each new crate addition, we are checking for the following:

284

https://crates.io/crates/cc
https://crates.io/crates/bindgen
https://source.chromium.org/chromium/chromium/src/+/main:third_party/rust/chromium_crates_io/patches/cxx/
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/rust.md#Third_party-review
https://mozilla.github.io/cargo-vet/

• Understand why each crate is used. What's the relationship between crates? If the build
system for each crate contains a build.rs or procedural macros, work out what they're
for. Are they compatible with the way Chromium is normally built?

• Check each crate seems to be reasonably well maintained
• Use cd third-party/rust/chromium_crates_io; cargo audit to check for

known vulnerabilities (first you'll need to cargo install cargo-audit, which
ironically involves downloading lots of dependencies from the internet2)

• Ensure any unsafe code is good enough for the Rule of Two
• Check for any use of fs or net APIs
• Read all the code at a sufficient level to look for anything out of place that might have

been maliciously inserted. (You can't realistically aim for 100% perfection here: there's
often just too much code.)

These are just guidelines --- work with reviewers from security@chromium.org to work
out the right way to become confident of the crate.

46.8 Checking Crates into Chromium Source Code

git status should reveal:

• Crate code in //third_party/rust/chromium_crates_io
• Metadata (BUILD.gn andREADME.chromium) in//third_party/rust/<crate>/<version>

Please also add an OWNERS file in the latter location.

You should land all this, along with your Cargo.toml and gnrt_config.toml changes, into
the Chromium repo.

Important: you need to use git add -f because otherwise .gitignore files may result in
some files being skipped.

As you do so, you might find presubmit checks fail because of non-inclusive language. This is
because Rust crate data tends to include names of git branches, and many projects still use
non-inclusive terminology there. So you may need to run:

infra/update_inclusive_language_presubmit_exempt_dirs.sh > infra/inclusive_language_presubmit_exempt_dirs.txt
git add -p infra/inclusive_language_presubmit_exempt_dirs.txt # add whatever changes are yours

46.9 Keeping Crates Up to Date

As the OWNER of any third party Chromium dependency, you are expected to keep it up to
date with any security fixes. It is hoped that we will soon automate this for Rust crates, but
for now, it's still your responsibility just as it is for any other third party dependency.

46.10 Exercise

Add uwuify to Chromium, turning off the crate's default features. Assume that the crate will
be used in shipping Chromium, but won't be used to handle untrustworthy input.

(In the next exercise we'll use uwuify from Chromium, but feel free to skip ahead and do that
now if you like. Or, you could create a new rust_executable target which uses uwuify).

285

https://chromium.googlesource.com/chromium/src/+/main/docs/security/rule-of-2.md#unsafe-code-in-safe-languages
https://chromium.googlesource.com/chromium/src/+/main/docs/adding_to_third_party.md#add-owners
https://chromium.googlesource.com/chromium/src/+/main/docs/adding_to_third_party.md#add-owners
https://crates.io/crates/uwuify
https://doc.rust-lang.org/cargo/reference/features.html#the-default-feature
https://source.chromium.org/chromium/chromium/src/+/main:build/rust/rust_executable.gni

Students will need to download lots of transitive dependencies.

The total crates needed are:

• instant,
• lock_api,
• parking_lot,
• parking_lot_core,
• redox_syscall,
• scopeguard,
• smallvec, and
• uwuify.

If students are downloading even more than that, they probably forgot to turn off the default
features.

Thanks to Daniel Liu for this crate!

286

https://github.com/Daniel-Liu-c0deb0t

Chapter 47

Bringing It Together --- Exercise

In this exercise, you're going to add a whole new Chromium feature, bringing together
everything you already learned.

The Brief from Product Management

A community of pixies has been discovered living in a remote rainforest. It's important that
we get Chromium for Pixies delivered to them as soon as possible.

The requirement is to translate all Chromium's UI strings into Pixie language.

There's not time to wait for proper translations, but fortunately pixie language is very close
to English, and it turns out there's a Rust crate which does the translation.

In fact, you already imported that crate in the previous exercise.

(Obviously, real translations of Chrome require incredible care and diligence. Don't ship this!)

Steps

Modify ResourceBundle::MaybeMangleLocalizedString so that it uwuifies all strings
before display. In this special build of Chromium, it should always do this irrespective of the
setting of mangle_localized_strings_.

If you've done everything right across all these exercises, congratulations, you should have
created Chrome for pixies!

287

https://crates.io/crates/uwuify

Students will likely need some hints here. Hints include:

• UTF-16 vs UTF-8. Students should be aware that Rust strings are always UTF-8,
and will probably decide that it's better to do the conversion on the C++ side using
base::UTF16ToUTF8 and back again.

• If students decide to do the conversion on the Rust side, they'll need to consider
String::from_utf16, consider error handling, and consider which CXX supported
types can transfer a lot of u16s.

• Students may design the C++/Rust boundary in several different ways, e.g. taking and
returning strings by value, or taking a mutable reference to a string. If a mutable
reference is used, CXX will likely tell the student that they need to use Pin. You may
need to explain what Pin does, and then explain why CXX needs it for mutable references
to C++ data: the answer is that C++ data can't be moved around like Rust data, because
it may contain self-referential pointers.

• The C++ target containing ResourceBundle::MaybeMangleLocalizedString will
need to depend on a rust_static_library target. The student probably already did
this.

• Therust_static_library target will need to depend on//third_party/rust/uwuify/v0_2:lib.

288

https://doc.rust-lang.org/std/string/struct.String.html#method.from_utf16
https://cxx.rs/binding/slice.html
https://cxx.rs/binding/slice.html
https://doc.rust-lang.org/std/pin/

Chapter 48

Exercise Solutions

Solutions to the Chromium exercises can be found in this series of CLs.

Or, if you'd prefer ”standalone” solutions that don't require applying patchsets or integra-
tion with core Chromium code, you can find them in the //chromium/src/codelabs/rust
subdirectory in Chromium.

289

https://chromium-review.googlesource.com/c/chromium/src/+/5096560
https://source.chromium.org/chromium/chromium/src/+/main:codelabs/rust/
https://source.chromium.org/chromium/chromium/src/+/main:codelabs/rust/

Part XI

Bare Metal: Morning

290

Chapter 49

Welcome to Bare Metal Rust

This is a standalone one-day course about bare-metal Rust, aimed at people who are familiar
with the basics of Rust (perhaps from completing the Comprehensive Rust course), and ideally
also have some experience with bare-metal programming in some other language such as C.

Today we will talk about 'bare-metal' Rust: running Rust code without an OS underneath us.
This will be divided into several parts:

• What is no_std Rust?
• Writing firmware for microcontrollers.
• Writing bootloader / kernel code for application processors.
• Some useful crates for bare-metal Rust development.

For the microcontroller part of the course we will use the BBC micro:bit v2 as an example.
It's a development board based on the Nordic nRF52833 microcontroller with some LEDs and
buttons, an I2C-connected accelerometer and compass, and an on-board SWD debugger.

To get started, install some tools we'll need later. On gLinux or Debian:

sudo apt install gdb-multiarch libudev-dev picocom pkg-config qemu-system-arm build-essential
rustup update
rustup target add aarch64-unknown-none thumbv7em-none-eabihf
rustup component add llvm-tools-preview
cargo install cargo-binutils
curl --proto '=https' --tlsv1.2 -LsSf https://github.com/probe-rs/probe-rs/releases/latest/download/probe-rs-tools-installer.sh | sh

And give users in the plugdev group access to the micro:bit programmer:

echo 'SUBSYSTEM=="hidraw", ATTRS{idVendor}=="0d28", MODE="0660", GROUP="logindev", TAG+="uaccess"' |\
sudo tee /etc/udev/rules.d/50-microbit.rules

sudo udevadm control --reload-rules

You should see ”NXP ARM mbed” in the output of lsusb if the device is available. If you are
using a Linux environment on a Chromebook, you will need to share the USB device with
Linux, via chrome://os-settings/crostini/sharedUsbDevices.

On MacOS:

xcode-select --install
brew install gdb picocom qemu
rustup update

291

https://microbit.org/
https://tech.microbit.org/hardware/

rustup target add aarch64-unknown-none thumbv7em-none-eabihf
rustup component add llvm-tools-preview
cargo install cargo-binutils
curl --proto '=https' --tlsv1.2 -LsSf https://github.com/probe-rs/probe-rs/releases/latest/download/probe-rs-tools-installer.sh | sh

292

Chapter 50

no_std

core

alloc

std

• Slices, &str, CStr
• NonZeroU8...
• Option, Result
• Display, Debug, write!...
• Iterator
• Error
• panic!, assert_eq!...
• NonNull and all the usual pointer-related functions
• Future and async/await
• fence, AtomicBool, AtomicPtr, AtomicU32...
• Duration

• Box, Cow, Arc, Rc
• Vec, BinaryHeap, BtreeMap, LinkedList, VecDeque
• String, CString, format!

• HashMap
• Mutex, Condvar, Barrier, Once, RwLock, mpsc
• File and the rest of fs
• println!, Read, Write, Stdin, Stdout and the rest of io
• Path, OsString
• net
• Command, Child, ExitCode
• spawn, sleep and the rest of thread
• SystemTime, Instant

• HashMap depends on RNG.
• std re-exports the contents of both core and alloc.

293

50.1 A minimal no_std program

#![no_main]
#![no_std]

use core::panic::PanicInfo;

#[panic_handler]
fn panic(_panic: &PanicInfo) -> ! {

loop {}
}

• This will compile to an empty binary.
• std provides a panic handler; without it we must provide our own.
• It can also be provided by another crate, such as panic-halt.
• Depending on the target, you may need to compile with panic = "abort" to avoid an

error about eh_personality.
• Note that there is no main or any other entry point; it's up to you to define your own

entry point. This will typically involve a linker script and some assembly code to set
things up ready for Rust code to run.

50.2 alloc

To use alloc you must implement a global (heap) allocator.

#![no_main]
#![no_std]

extern crate alloc;
extern crate panic_halt as _;

use alloc::string::ToString;
use alloc::vec::Vec;
use buddy_system_allocator::LockedHeap;

#[global_allocator]
static HEAP_ALLOCATOR: LockedHeap<32> = LockedHeap::<32>::new();

const HEAP_SIZE: usize = 65536;
static mut HEAP: [u8; HEAP_SIZE] = [0; HEAP_SIZE];

pub fn entry() {
// SAFETY: `HEAP` is only used here and `entry` is only called once.
unsafe {

// Give the allocator some memory to allocate.
HEAP_ALLOCATOR.lock().init(&raw mut HEAP as usize, HEAP_SIZE);

}

// Now we can do things that require heap allocation.
let mut v = Vec::new();
v.push("A string".to_string());

294

https://doc.rust-lang.org/stable/std/alloc/trait.GlobalAlloc.html

}

• buddy_system_allocator is a crate implementing a basic buddy system allocator.
Other crates are available, or you can write your own or hook into your existing allocator.

• The const parameter of LockedHeap is the max order of the allocator; i.e. in this case it
can allocate regions of up to 2**32 bytes.

• If any crate in your dependency tree depends on alloc then you must have exactly one
global allocator defined in your binary. Usually this is done in the top-level binary crate.

• extern crate panic_halt as _ is necessary to ensure that the panic_halt crate
is linked in so we get its panic handler.

• This example will build but not run, as it doesn't have an entry point.

295

Chapter 51

Microcontrollers

The cortex_m_rt crate provides (among other things) a reset handler for Cortex M micro-
controllers.

#![no_main]
#![no_std]

extern crate panic_halt as _;

mod interrupts;

use cortex_m_rt::entry;

#[entry]
fn main() -> ! {

loop {}
}

Next we'll look at how to access peripherals, with increasing levels of abstraction.

• The cortex_m_rt::entry macro requires that the function have type fn() -> !,
because returning to the reset handler doesn't make sense.

• Run the example with cargo embed --bin minimal

51.1 Raw MMIO

Most microcontrollers access peripherals via memory-mapped IO. Let's try turning on an
LED on our micro:bit:

#![no_main]
#![no_std]

extern crate panic_halt as _;

mod interrupts;

use core::mem::size_of;

296

use cortex_m_rt::entry;

/// GPIO port 0 peripheral address
const GPIO_P0: usize = 0x5000_0000;

// GPIO peripheral offsets
const PIN_CNF: usize = 0x700;
const OUTSET: usize = 0x508;
const OUTCLR: usize = 0x50c;

// PIN_CNF fields
const DIR_OUTPUT: u32 = 0x1;
const INPUT_DISCONNECT: u32 = 0x1 << 1;
const PULL_DISABLED: u32 = 0x0 << 2;
const DRIVE_S0S1: u32 = 0x0 << 8;
const SENSE_DISABLED: u32 = 0x0 << 16;

#[entry]
fn main() -> ! {

// Configure GPIO 0 pins 21 and 28 as push-pull outputs.
let pin_cnf_21 = (GPIO_P0 + PIN_CNF + 21 * size_of::<u32>()) as *mut u32;
let pin_cnf_28 = (GPIO_P0 + PIN_CNF + 28 * size_of::<u32>()) as *mut u32;
// SAFETY: The pointers are to valid peripheral control registers, and no
// aliases exist.
unsafe {

pin_cnf_21.write_volatile(
DIR_OUTPUT

| INPUT_DISCONNECT
| PULL_DISABLED
| DRIVE_S0S1
| SENSE_DISABLED,

);
pin_cnf_28.write_volatile(

DIR_OUTPUT
| INPUT_DISCONNECT
| PULL_DISABLED
| DRIVE_S0S1
| SENSE_DISABLED,

);
}

// Set pin 28 low and pin 21 high to turn the LED on.
let gpio0_outset = (GPIO_P0 + OUTSET) as *mut u32;
let gpio0_outclr = (GPIO_P0 + OUTCLR) as *mut u32;
// SAFETY: The pointers are to valid peripheral control registers, and no
// aliases exist.
unsafe {

gpio0_outclr.write_volatile(1 << 28);
gpio0_outset.write_volatile(1 << 21);

}

297

loop {}
}

• GPIO 0 pin 21 is connected to the first column of the LED matrix, and pin 28 to the first
row.

Run the example with:

cargo embed --bin mmio

51.2 Peripheral Access Crates

svd2rust generates mostly-safe Rust wrappers for memory-mapped peripherals from CMSIS-
SVD files.

#![no_main]
#![no_std]

extern crate panic_halt as _;

use cortex_m_rt::entry;
use nrf52833_pac::Peripherals;

#[entry]
fn main() -> ! {

let p = Peripherals::take().unwrap();
let gpio0 = p.P0;

// Configure GPIO 0 pins 21 and 28 as push-pull outputs.
gpio0.pin_cnf[21].write(|w| {

w.dir().output();
w.input().disconnect();
w.pull().disabled();
w.drive().s0s1();
w.sense().disabled();
w

});
gpio0.pin_cnf[28].write(|w| {

w.dir().output();
w.input().disconnect();
w.pull().disabled();
w.drive().s0s1();
w.sense().disabled();
w

});

// Set pin 28 low and pin 21 high to turn the LED on.
gpio0.outclr.write(|w| w.pin28().clear());
gpio0.outset.write(|w| w.pin21().set());

loop {}
}

298

https://crates.io/crates/svd2rust
https://www.keil.com/pack/doc/CMSIS/SVD/html/index.html
https://www.keil.com/pack/doc/CMSIS/SVD/html/index.html

• SVD (System View Description) files are XML files typically provided by silicon vendors
that describe the memory map of the device.
– They are organized by peripheral, register, field and value, with names, descriptions,

addresses and so on.
– SVD files are often buggy and incomplete, so there are various projects that patch

the mistakes, add missing details, and publish the generated crates.
• cortex-m-rt provides the vector table, among other things.
• If you cargo install cargo-binutils then you can run cargo objdump --bin
pac -- -d --no-show-raw-insn to see the resulting binary.

Run the example with:

cargo embed --bin pac

51.3 HAL crates

HAL crates for many microcontrollers provide wrappers around various peripherals. These
generally implement traits from embedded-hal.

#![no_main]
#![no_std]

extern crate panic_halt as _;

use cortex_m_rt::entry;
use embedded_hal::digital::OutputPin;
use nrf52833_hal::gpio::{Level, p0};
use nrf52833_hal::pac::Peripherals;

#[entry]
fn main() -> ! {

let p = Peripherals::take().unwrap();

// Create HAL wrapper for GPIO port 0.
let gpio0 = p0::Parts::new(p.P0);

// Configure GPIO 0 pins 21 and 28 as push-pull outputs.
let mut col1 = gpio0.p0_28.into_push_pull_output(Level::High);
let mut row1 = gpio0.p0_21.into_push_pull_output(Level::Low);

// Set pin 28 low and pin 21 high to turn the LED on.
col1.set_low().unwrap();
row1.set_high().unwrap();

loop {}
}

• set_low and set_high are methods on the embedded_hal OutputPin trait.
• HAL crates exist for many Cortex-M and RISC-V devices, including various STM32, GD32,

nRF, NXP, MSP430, AVR and PIC microcontrollers.

Run the example with:

299

https://github.com/rust-embedded/awesome-embedded-rust#hal-implementation-crates
https://crates.io/crates/embedded-hal

cargo embed --bin hal

51.4 Board support crates

Board support crates provide a further level of wrapping for a specific board for convenience.

#![no_main]
#![no_std]

extern crate panic_halt as _;

use cortex_m_rt::entry;
use embedded_hal::digital::OutputPin;
use microbit::Board;

#[entry]
fn main() -> ! {

let mut board = Board::take().unwrap();

board.display_pins.col1.set_low().unwrap();
board.display_pins.row1.set_high().unwrap();

loop {}
}

• In this case the board support crate is just providing more useful names, and a bit of
initialization.

• The crate may also include drivers for some on-board devices outside of the microcon-
troller itself.
– microbit-v2 includes a simple driver for the LED matrix.

Run the example with:

cargo embed --bin board_support

51.5 The type state pattern

#[entry]
fn main() -> ! {

let p = Peripherals::take().unwrap();
let gpio0 = p0::Parts::new(p.P0);

let pin: P0_01<Disconnected> = gpio0.p0_01;

// let gpio0_01_again = gpio0.p0_01; // Error, moved.
let mut pin_input: P0_01<Input<Floating>> = pin.into_floating_input();
if pin_input.is_high().unwrap() {

// ...
}
let mut pin_output: P0_01<Output<OpenDrain>> = pin_input

.into_open_drain_output(OpenDrainConfig::Disconnect0Standard1, Level::Low);

300

pin_output.set_high().unwrap();
// pin_input.is_high(); // Error, moved.

let _pin2: P0_02<Output<OpenDrain>> = gpio0
.p0_02
.into_open_drain_output(OpenDrainConfig::Disconnect0Standard1, Level::Low);

let _pin3: P0_03<Output<PushPull>> =
gpio0.p0_03.into_push_pull_output(Level::Low);

loop {}
}

• Pins don't implement Copy or Clone, so only one instance of each can exist. Once a pin
is moved out of the port struct, nobody else can take it.

• Changing the configuration of a pin consumes the old pin instance, so you can't use the
old instance afterwards.

• The type of a value indicates the state it is in: e.g., in this case, the configuration state of
a GPIO pin. This encodes the state machine into the type system and ensures that you
don't try to use a pin in a certain way without properly configuring it first. Illegal state
transitions are caught at compile time.

• You can call is_high on an input pin and set_high on an output pin, but not vice-versa.
• Many HAL crates follow this pattern.

51.6 embedded-hal

The embedded-hal crate provides a number of traits covering common microcontroller
peripherals:

• GPIO
• PWM
• Delay timers
• I2C and SPI buses and devices

Similar traits for byte streams (e.g. UARTs), CAN buses and RNGs are broken out into
embedded-io, embedded-can and rand_core respectively.

Other crates then implement drivers in terms of these traits, e.g. an accelerometer driver
might need an I2C or SPI device instance.

• The traits cover using the peripherals but not initializing or configuring them, as initial-
ization and configuration is usually highly platform-specific.

• There are implementations for many microcontrollers, as well as other platforms such
as Linux on Raspberry Pi.

• embedded-hal-async provides async versions of the traits.
• embedded-hal-nb provides another approach to non-blocking I/O, based on the nb

crate.

51.7 probe-rs and cargo-embed

probe-rs is a handy toolset for embedded debugging, like OpenOCD but better integrated.

• SWD (Serial Wire Debug) and JTAG via CMSIS-DAP, ST-Link and J-Link probes

301

https://crates.io/crates/embedded-hal
https://crates.io/crates/embedded-io
https://crates.io/crates/embedded-can
https://crates.io/crates/rand_core
https://github.com/rust-embedded/awesome-embedded-rust#driver-crates
https://crates.io/crates/embedded-hal-async
https://crates.io/crates/embedded-hal-nb
https://crates.io/crates/nb
https://probe.rs/

• GDB stub and Microsoft DAP (Debug Adapter Protocol) server
• Cargo integration

cargo-embed is a cargo subcommand to build and flash binaries, log RTT (Real Time Trans-
fers) output and connect GDB. It's configured by an Embed.toml file in your project directory.

• CMSIS-DAP is an Arm standard protocol over USB for an in-circuit debugger to access the
CoreSight Debug Access Port of various Arm Cortex processors. It's what the on-board
debugger on the BBC micro:bit uses.

• ST-Link is a range of in-circuit debuggers from ST Microelectronics, J-Link is a range
from SEGGER.

• The Debug Access Port is usually either a 5-pin JTAG interface or 2-pin Serial Wire Debug.
• probe-rs is a library that you can integrate into your own tools if you want to.
• The Microsoft Debug Adapter Protocol lets VSCode and other IDEs debug code running

on any supported microcontroller.
• cargo-embed is a binary built using the probe-rs library.
• RTT (Real Time Transfers) is a mechanism to transfer data between the debug host and

the target through a number of ring buffers.

51.7.1 Debugging

Embed.toml:

[default.general]
chip = "nrf52833_xxAA"

[debug.gdb]
enabled = true

In one terminal under src/bare-metal/microcontrollers/examples/:

cargo embed --bin board_support debug

In another terminal in the same directory:

On gLinux or Debian:

gdb-multiarch target/thumbv7em-none-eabihf/debug/board_support --eval-command="target remote :1338"

On MacOS:

arm-none-eabi-gdb target/thumbv7em-none-eabihf/debug/board_support --eval-command="target remote :1338"

In GDB, try running:

b src/bin/board_support.rs:29
b src/bin/board_support.rs:30
b src/bin/board_support.rs:32
c
c
c

51.8 Other projects

• RTIC
– ”Real-Time Interrupt-driven Concurrency”.

302

https://arm-software.github.io/CMSIS_5/DAP/html/index.html
https://microsoft.github.io/debug-adapter-protocol/
https://rtic.rs/

– Shared resource management, message passing, task scheduling, timer queue.
• Embassy

– async executors with priorities, timers, networking, USB.
• TockOS

– Security-focused RTOS with preemptive scheduling and Memory Protection Unit
support.

• Hubris
– Microkernel RTOS from Oxide Computer Company with memory protection, un-

privileged drivers, IPC.
• Bindings for FreeRTOS.

Some platforms have std implementations, e.g. esp-idf.

• RTIC can be considered either an RTOS or a concurrency framework.
– It doesn't include any HALs.
– It uses the Cortex-M NVIC (Nested Virtual Interrupt Controller) for scheduling rather

than a proper kernel.
– Cortex-M only.

• Google uses TockOS on the Haven microcontroller for Titan security keys.
• FreeRTOS is mostly written in C, but there are Rust bindings for writing applications.

303

https://embassy.dev/
https://www.tockos.org/documentation/getting-started
https://hubris.oxide.computer/
https://github.com/lobaro/FreeRTOS-rust
https://esp-rs.github.io/book/overview/using-the-standard-library.html

Chapter 52

Exercises

We will read the direction from an I2C compass, and log the readings to a serial port.

After looking at the exercises, you can look at the solutions provided.

52.1 Compass

We will read the direction from an I2C compass, and log the readings to a serial port. If you
have time, try displaying it on the LEDs somehow too, or use the buttons somehow.

Hints:

• Check the documentation for the lsm303agr and microbit-v2 crates, as well as the
micro:bit hardware.

• The LSM303AGR Inertial Measurement Unit is connected to the internal I2C bus.
• TWI is another name for I2C, so the I2C master peripheral is called TWIM.
• The LSM303AGR driver needs something implementing the embedded_hal::i2c::I2c

trait. The microbit::hal::Twim struct implements this.
• You have a microbit::Board struct with fields for the various pins and peripherals.
• You can also look at the nRF52833 datasheet if you want, but it shouldn't be necessary

for this exercise.

Download the exercise template and look in the compass directory for the following files.

src/main.rs:

#![no_main]
#![no_std]

extern crate panic_halt as _;

use core::fmt::Write;
use cortex_m_rt::entry;
use microbit::{hal::{Delay, uarte::{Baudrate, Parity, Uarte}}, Board};

#[entry]
fn main() -> ! {

let mut board = Board::take().unwrap();

304

https://docs.rs/lsm303agr/latest/lsm303agr/
https://docs.rs/microbit-v2/latest/microbit/
https://tech.microbit.org/hardware/
https://docs.rs/microbit-v2/latest/microbit/hal/struct.Twim.html
https://docs.rs/microbit-v2/latest/microbit/struct.Board.html
https://infocenter.nordicsemi.com/pdf/nRF52833_PS_v1.5.pdf
https://google.github.io/comprehensive-rust/exercises/bare-metal/../../comprehensive-rust-exercises.zip

// Configure serial port.
let mut serial = Uarte::new(

board.UARTE0,
board.uart.into(),
Parity::EXCLUDED,
Baudrate::BAUD115200,

);

// Use the system timer as a delay provider.
let mut delay = Delay::new(board.SYST);

// Set up the I2C controller and Inertial Measurement Unit.
// TODO

writeln!(serial, "Ready.").unwrap();

loop {
// Read compass data and log it to the serial port.
// TODO

}
}

Cargo.toml (you shouldn't need to change this):

[workspace]

[package]
name = "compass"
version = "0.1.0"
edition = "2024"
publish = false

[dependencies]
cortex-m-rt = "0.7.5"
embedded-hal = "1.0.0"
lsm303agr = "1.1.0"
microbit-v2 = "0.16.0"
panic-halt = "1.0.0"

Embed.toml (you shouldn't need to change this):

[default.general]
chip = "nrf52833_xxAA"

[debug.gdb]
enabled = true

[debug.reset]
halt_afterwards = true

.cargo/config.toml (you shouldn't need to change this):

[build]

305

target = "thumbv7em-none-eabihf" # Cortex-M4F

[target.'cfg(all(target_arch = "arm", target_os = "none"))']
rustflags = ["-C", "link-arg=-Tlink.x"]

See the serial output on Linux with:

picocom --baud 115200 --imap lfcrlf /dev/ttyACM0

Or on Mac OS something like (the device name may be slightly different):

picocom --baud 115200 --imap lfcrlf /dev/tty.usbmodem14502

Use Ctrl+A Ctrl+Q to quit picocom.

52.2 Bare Metal Rust Morning Exercise

Compass

(back to exercise)

#![no_main]
#![no_std]

extern crate panic_halt as _;

use core::fmt::Write;
use cortex_m_rt::entry;
use embedded_hal::digital::InputPin;
use lsm303agr::{

AccelMode, AccelOutputDataRate, Lsm303agr, MagMode, MagOutputDataRate,
};
use microbit::Board;
use microbit::display::blocking::Display;
use microbit::hal::twim::Twim;
use microbit::hal::uarte::{Baudrate, Parity, Uarte};
use microbit::hal::{Delay, Timer};
use microbit::pac::twim0::frequency::FREQUENCY_A;

const COMPASS_SCALE: i32 = 30000;
const ACCELEROMETER_SCALE: i32 = 700;

#[entry]
fn main() -> ! {

let mut board = Board::take().unwrap();

// Configure serial port.
let mut serial = Uarte::new(

board.UARTE0,
board.uart.into(),
Parity::EXCLUDED,
Baudrate::BAUD115200,

);

306

// Use the system timer as a delay provider.
let mut delay = Delay::new(board.SYST);

// Set up the I2C controller and Inertial Measurement Unit.
writeln!(serial, "Setting up IMU...").unwrap();
let i2c = Twim::new(board.TWIM0, board.i2c_internal.into(), FREQUENCY_A::K100);
let mut imu = Lsm303agr::new_with_i2c(i2c);
imu.init().unwrap();
imu.set_mag_mode_and_odr(

&mut delay,
MagMode::HighResolution,
MagOutputDataRate::Hz50,

)
.unwrap();
imu.set_accel_mode_and_odr(

&mut delay,
AccelMode::Normal,
AccelOutputDataRate::Hz50,

)
.unwrap();
let mut imu = imu.into_mag_continuous().ok().unwrap();

// Set up display and timer.
let mut timer = Timer::new(board.TIMER0);
let mut display = Display::new(board.display_pins);

let mut mode = Mode::Compass;
let mut button_pressed = false;

writeln!(serial, "Ready.").unwrap();

loop {
// Read compass data and log it to the serial port.
while !(imu.mag_status().unwrap().xyz_new_data()

&& imu.accel_status().unwrap().xyz_new_data())
{}
let compass_reading = imu.magnetic_field().unwrap();
let accelerometer_reading = imu.acceleration().unwrap();
writeln!(

serial,
"{},{},{}\t{},{},{}",
compass_reading.x_nt(),
compass_reading.y_nt(),
compass_reading.z_nt(),
accelerometer_reading.x_mg(),
accelerometer_reading.y_mg(),
accelerometer_reading.z_mg(),

)
.unwrap();

307

let mut image = [[0; 5]; 5];
let (x, y) = match mode {

Mode::Compass => (
scale(-compass_reading.x_nt(), -COMPASS_SCALE, COMPASS_SCALE, 0, 4)

as usize,
scale(compass_reading.y_nt(), -COMPASS_SCALE, COMPASS_SCALE, 0, 4)

as usize,
),
Mode::Accelerometer => (

scale(
accelerometer_reading.x_mg(),
-ACCELEROMETER_SCALE,
ACCELEROMETER_SCALE,
0,
4,

) as usize,
scale(

-accelerometer_reading.y_mg(),
-ACCELEROMETER_SCALE,
ACCELEROMETER_SCALE,
0,
4,

) as usize,
),

};
image[y][x] = 255;
display.show(&mut timer, image, 100);

// If button A is pressed, switch to the next mode and briefly blink all LEDs
// on.
if board.buttons.button_a.is_low().unwrap() {

if !button_pressed {
mode = mode.next();
display.show(&mut timer, [[255; 5]; 5], 200);

}
button_pressed = true;

} else {
button_pressed = false;

}
}

}

#[derive(Copy, Clone, Debug, Eq, PartialEq)]
enum Mode {

Compass,
Accelerometer,

}

impl Mode {
fn next(self) -> Self {

match self {

308

Self::Compass => Self::Accelerometer,
Self::Accelerometer => Self::Compass,

}
}

}

fn scale(value: i32, min_in: i32, max_in: i32, min_out: i32, max_out: i32) -> i32 {
let range_in = max_in - min_in;
let range_out = max_out - min_out;
let scaled = min_out + range_out * (value - min_in) / range_in;
scaled.clamp(min_out, max_out)

}

309

Part XII

Bare Metal: Afternoon

310

Chapter 53

Application processors

So far we've talked about microcontrollers, such as the Arm Cortex-M series. These are
typically small systems with very limited resources.

Larger systems with more resources are typically called application processors, built around
processors such as the ARM Cortex-A or Intel Atom.

For simplicity we'll just work with QEMU's aarch64 'virt' board.

• Broadly speaking, microcontrollers don't have an MMU or multiple levels of privilege
(exception levels on Arm CPUs, rings on x86).

• Application processors have more resources, and often run an operating system, instead
of directly executing the target application on startup.

• QEMU supports emulating various different machines or board models for each ar-
chitecture. The 'virt' board doesn't correspond to any particular real hardware, but is
designed purely for virtual machines.

• We will still address this board as bare-metal, as if we were writing an operating system.

53.1 Getting Ready to Rust

Before we can start running Rust code, we need to do some initialization.

/**
* This is a generic entry point for an image. It carries out the
* operations required to prepare the loaded image to be run.
* Specifically, it
*
* - sets up the MMU with an identity map of virtual to physical
* addresses, and enables caching
* - enables floating point
* - zeroes the bss section using registers x25 and above
* - prepares the stack, pointing to a section within the image
* - sets up the exception vector
* - branches to the Rust `main` function
*
* It preserves x0-x3 for the Rust entry point, as these may contain

311

https://qemu-project.gitlab.io/qemu/system/arm/virt.html

* boot parameters.
*/

.section .init.entry, "ax"

.global entry
entry:

/*
* Load and apply the memory management configuration, ready to
* enable MMU and caches.
*/

adrp x30, idmap
msr ttbr0_el1, x30

mov_i x30, .Lmairval
msr mair_el1, x30

mov_i x30, .Ltcrval
/* Copy the supported PA range into TCR_EL1.IPS. */
mrs x29, id_aa64mmfr0_el1
bfi x30, x29, #32, #4

msr tcr_el1, x30

mov_i x30, .Lsctlrval

/*
* Ensure everything before this point has completed, then
* invalidate any potentially stale local TLB entries before they
* start being used.
*/

isb
tlbi vmalle1
ic iallu
dsb nsh
isb

/*
* Configure sctlr_el1 to enable MMU and cache and don't proceed
* until this has completed.
*/

msr sctlr_el1, x30
isb

/* Disable trapping floating point access in EL1. */
mrs x30, cpacr_el1
orr x30, x30, #(0x3 << 20)
msr cpacr_el1, x30
isb

/* Zero out the bss section. */
adr_l x29, bss_begin
adr_l x30, bss_end

312

0: cmp x29, x30
b.hs 1f
stp xzr, xzr, [x29], #16
b 0b

1: /* Prepare the stack. */
adr_l x30, boot_stack_end
mov sp, x30

/* Set up exception vector. */
adr x30, vector_table_el1
msr vbar_el1, x30

/* Call into Rust code. */
bl main

/* Loop forever waiting for interrupts. */
2: wfi

b 2b

This code is in src/bare-metal/aps/examples/src/entry.S. It's not necessary to under-
stand this in detail -- the takeaway is that typically some low-level setup is needed to meet
Rust's expectations of the system.

• This is the same as it would be for C: initializing the processor state, zeroing the BSS,
and setting up the stack pointer.
– The BSS (block starting symbol, for historical reasons) is the part of the object file

that contains statically allocated variables that are initialized to zero. They are
omitted from the image, to avoid wasting space on zeroes. The compiler assumes
that the loader will take care of zeroing them.

• The BSS may already be zeroed, depending on how memory is initialized and the image
is loaded, but we zero it to be sure.

• We need to enable the MMU and cache before reading or writing any memory. If we
don't:
– Unaligned accesses will fault. We build the Rust code for the aarch64-unknown-
none target that sets +strict-align to prevent the compiler from generating
unaligned accesses, so it should be fine in this case, but this is not necessarily the
case in general.

– If it were running in a VM, this can lead to cache coherency issues. The problem is
that the VM is accessing memory directly with the cache disabled, while the host
has cacheable aliases to the same memory. Even if the host doesn't explicitly access
the memory, speculative accesses can lead to cache fills, and then changes from
one or the other will get lost when the cache is cleaned or the VM enables the cache.
(Cache is keyed by physical address, not VA or IPA.)

• For simplicity, we just use a hardcoded pagetable (see idmap.S) that identity maps the
first 1 GiB of address space for devices, the next 1 GiB for DRAM, and another 1 GiB
higher up for more devices. This matches the memory layout that QEMU uses.

• We also set up the exception vector (vbar_el1), which we'll see more about later.
• All examples this afternoon assume we will be running at exception level 1 (EL1). If you

need to run at a different exception level, you'll need to modify entry.S accordingly.

313

53.2 Inline assembly

Sometimes we need to use assembly to do things that aren't possible with Rust code. For
example, to make an HVC (hypervisor call) to tell the firmware to power off the system:

#![no_main]
#![no_std]

use core::arch::asm;
use core::panic::PanicInfo;

mod asm;
mod exceptions;

const PSCI_SYSTEM_OFF: u32 = 0x84000008;

// SAFETY: There is no other global function of this name.
#[unsafe(no_mangle)]
extern "C" fn main(_x0: u64, _x1: u64, _x2: u64, _x3: u64) {

// SAFETY: this only uses the declared registers and doesn't do anything
// with memory.
unsafe {

asm!("hvc #0",
inout("w0") PSCI_SYSTEM_OFF => _,
inout("w1") 0 => _,
inout("w2") 0 => _,
inout("w3") 0 => _,
inout("w4") 0 => _,
inout("w5") 0 => _,
inout("w6") 0 => _,
inout("w7") 0 => _,
options(nomem, nostack)

);
}

loop {}
}

(If you actually want to do this, use the smccc crate which has wrappers for all these functions.)

• PSCI is the Arm Power State Coordination Interface, a standard set of functions to
manage system and CPU power states, among other things. It is implemented by EL3
firmware and hypervisors on many systems.

• The 0 => _ syntax means initialize the register to 0 before running the inline assembly
code, and ignore its contents afterwards. We need to use inout rather than in because
the call could potentially clobber the contents of the registers.

• This main function needs to be #[unsafe(no_mangle)] and extern "C" because it is
called from our entry point in entry.S.
– Just #[no_mangle] would be sufficient but RFC3325 uses this notation to draw

reviewer attention to attributes that might cause undefined behavior if used incor-
rectly.

• _x0–_x3 are the values of registers x0–x3, which are conventionally used by the boot-

314

https://crates.io/crates/smccc
https://rust-lang.github.io/rfcs/3325-unsafe-attributes.html

loader to pass things like a pointer to the device tree. According to the standard aarch64
calling convention (which is what extern "C" specifies to use), registers x0–x7 are used
for the first 8 arguments passed to a function, so entry.S doesn't need to do anything
special except make sure it doesn't change these registers.

• Run the example in QEMU withmake qemu_psciundersrc/bare-metal/aps/examples.

53.3 Volatile memory access for MMIO

• Use pointer::read_volatile and pointer::write_volatile.
• Never hold a reference to a location being accessed with these methods. Rust may read

from (or write to, for &mut) a reference at any time.
• Use &raw to get fields of structs without creating an intermediate reference.

const SOME_DEVICE_REGISTER: *mut u64 = 0x800_0000 as _;
// SAFETY: Some device is mapped at this address.
unsafe {

SOME_DEVICE_REGISTER.write_volatile(0xff);
SOME_DEVICE_REGISTER.write_volatile(0x80);
assert_eq!(SOME_DEVICE_REGISTER.read_volatile(), 0xaa);

}

• Volatile access: read or write operations may have side-effects, so prevent the compiler
or hardware from reordering, duplicating or eliding them.
– Usually if you write and then read, e.g. via a mutable reference, the compiler may

assume that the value read is the same as the value just written, and not bother
actually reading memory.

• Some existing crates for volatile access to hardware do hold references, but this is
unsound. Whenever a reference exists, the compiler may choose to dereference it.

• Use &raw to get struct field pointers from a pointer to the struct.
• For compatibility with old versions of Rust you can use the addr_of! macro instead.

53.4 Let's write a UART driver

The QEMU 'virt' machine has a PL011 UART, so let's write a driver for that.

const FLAG_REGISTER_OFFSET: usize = 0x18;
const FR_BUSY: u8 = 1 << 3;
const FR_TXFF: u8 = 1 << 5;

/// Minimal driver for a PL011 UART.
#[derive(Debug)]
pub struct Uart {

base_address: *mut u8,
}

impl Uart {
/// Constructs a new instance of the UART driver for a PL011 device at the
/// given base address.
///
/// # Safety

315

https://doc.rust-lang.org/stable/core/primitive.pointer.html#method.read_volatile
https://doc.rust-lang.org/stable/core/primitive.pointer.html#method.write_volatile
https://doc.rust-lang.org/stable/core/ptr/macro.addr_of.html
https://developer.arm.com/documentation/ddi0183/g

///
/// The given base address must point to the 8 MMIO control registers of a
/// PL011 device, which must be mapped into the address space of the process
/// as device memory and not have any other aliases.
pub unsafe fn new(base_address: *mut u8) -> Self {

Self { base_address }
}

/// Writes a single byte to the UART.
pub fn write_byte(&self, byte: u8) {

// Wait until there is room in the TX buffer.
while self.read_flag_register() & FR_TXFF != 0 {}

// SAFETY: We know that the base address points to the control
// registers of a PL011 device which is appropriately mapped.
unsafe {

// Write to the TX buffer.
self.base_address.write_volatile(byte);

}

// Wait until the UART is no longer busy.
while self.read_flag_register() & FR_BUSY != 0 {}

}

fn read_flag_register(&self) -> u8 {
// SAFETY: We know that the base address points to the control
// registers of a PL011 device which is appropriately mapped.
unsafe { self.base_address.add(FLAG_REGISTER_OFFSET).read_volatile() }

}
}

• Note that Uart::new is unsafe while the other methods are safe. This is because as
long as the caller of Uart::new guarantees that its safety requirements are met (i.e.
that there is only ever one instance of the driver for a given UART, and nothing else
aliasing its address space), then it is always safe to call write_byte later because we
can assume the necessary preconditions.

• We could have done it the other way around (making new safe but write_byte unsafe),
but that would be much less convenient to use as every place that calls write_byte
would need to reason about the safety

• This is a common pattern for writing safe wrappers of unsafe code: moving the burden
of proof for soundness from a large number of places to a smaller number of places.

53.4.1 More traits

We derived the Debug trait. It would be useful to implement a few more traits too.

use core::fmt::{self, Write};

impl Write for Uart {
fn write_str(&mut self, s: &str) -> fmt::Result {

for c in s.as_bytes() {
self.write_byte(*c);

316

}
Ok(())

}
}

// SAFETY: `Uart` just contains a pointer to device memory, which can be
// accessed from any context.
unsafe impl Send for Uart {}

• Implementing Write lets us use the write! and writeln! macros with our Uart type.

• Send is an auto-trait, but not implemented automatically because it is not implemented
for pointers.

53.4.2 Using it

Let's write a small program using our driver to write to the serial console.

#![no_main]
#![no_std]

mod asm;
mod exceptions;
mod pl011_minimal;

use crate::pl011_minimal::Uart;
use core::fmt::Write;
use core::panic::PanicInfo;
use log::error;
use smccc::Hvc;
use smccc::psci::system_off;

/// Base address of the primary PL011 UART.
const PL011_BASE_ADDRESS: *mut u8 = 0x900_0000 as _;

// SAFETY: There is no other global function of this name.
#[unsafe(no_mangle)]
extern "C" fn main(x0: u64, x1: u64, x2: u64, x3: u64) {

// SAFETY: `PL011_BASE_ADDRESS` is the base address of a PL011 device, and
// nothing else accesses that address range.
let mut uart = unsafe { Uart::new(PL011_BASE_ADDRESS) };

writeln!(uart, "main({x0:#x}, {x1:#x}, {x2:#x}, {x3:#x})").unwrap();

system_off::<Hvc>().unwrap();
}

• As in the inline assembly example, this main function is called from our entry point
code in entry.S. See the speaker notes there for details.

• Run the example in QEMU withmake qemu_minimalundersrc/bare-metal/aps/examples.

317

53.5 A better UART driver

The PL011 actually has more registers, and adding offsets to construct pointers to access them
is error-prone and hard to read. Additionally, some of them are bit fields, which would be
nice to access in a structured way.

Offset Register name Width

0x00 DR 12
0x04 RSR 4
0x18 FR 9
0x20 ILPR 8
0x24 IBRD 16
0x28 FBRD 6
0x2c LCR_H 8
0x30 CR 16
0x34 IFLS 6
0x38 IMSC 11
0x3c RIS 11
0x40 MIS 11
0x44 ICR 11
0x48 DMACR 3

• There are also some ID registers that have been omitted for brevity.

53.5.1 Bitflags

The bitflags crate is useful for working with bitflags.

use bitflags::bitflags;

bitflags! {
/// Flags from the UART flag register.
#[repr(transparent)]
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
struct Flags: u16 {

/// Clear to send.
const CTS = 1 << 0;
/// Data set ready.
const DSR = 1 << 1;
/// Data carrier detect.
const DCD = 1 << 2;
/// UART busy transmitting data.
const BUSY = 1 << 3;
/// Receive FIFO is empty.
const RXFE = 1 << 4;
/// Transmit FIFO is full.
const TXFF = 1 << 5;
/// Receive FIFO is full.
const RXFF = 1 << 6;
/// Transmit FIFO is empty.

318

https://developer.arm.com/documentation/ddi0183/g/programmers-model/summary-of-registers
https://crates.io/crates/bitflags

const TXFE = 1 << 7;
/// Ring indicator.
const RI = 1 << 8;

}
}

• The bitflags! macro creates a newtype something like struct Flags(u16), along
with a bunch of method implementations to get and set flags.

53.5.2 Multiple registers

We can use a struct to represent the memory layout of the UART's registers.

#[repr(C, align(4))]
pub struct Registers {

dr: u16,
_reserved0: [u8; 2],
rsr: ReceiveStatus,
_reserved1: [u8; 19],
fr: Flags,
_reserved2: [u8; 6],
ilpr: u8,
_reserved3: [u8; 3],
ibrd: u16,
_reserved4: [u8; 2],
fbrd: u8,
_reserved5: [u8; 3],
lcr_h: u8,
_reserved6: [u8; 3],
cr: u16,
_reserved7: [u8; 3],
ifls: u8,
_reserved8: [u8; 3],
imsc: u16,
_reserved9: [u8; 2],
ris: u16,
_reserved10: [u8; 2],
mis: u16,
_reserved11: [u8; 2],
icr: u16,
_reserved12: [u8; 2],
dmacr: u8,
_reserved13: [u8; 3],

}

• #[repr(C)] tells the compiler to lay the struct fields out in order, following the same
rules as C. This is necessary for our struct to have a predictable layout, as default Rust
representation allows the compiler to (among other things) reorder fields however it
sees fit.

319

https://doc.rust-lang.org/reference/type-layout.html#the-c-representation

53.5.3 Driver

Now let's use the new Registers struct in our driver.

/// Driver for a PL011 UART.
#[derive(Debug)]
pub struct Uart {

registers: *mut Registers,
}

impl Uart {
/// Constructs a new instance of the UART driver for a PL011 device with the
/// given set of registers.
///
/// # Safety
///
/// The given pointer must point to the 8 MMIO control registers of a PL011
/// device, which must be mapped into the address space of the process as
/// device memory and not have any other aliases.
pub unsafe fn new(registers: *mut Registers) -> Self {

Self { registers }
}

/// Writes a single byte to the UART.
pub fn write_byte(&mut self, byte: u8) {

// Wait until there is room in the TX buffer.
while self.read_flag_register().contains(Flags::TXFF) {}

// SAFETY: We know that self.registers points to the control registers
// of a PL011 device which is appropriately mapped.
unsafe {

// Write to the TX buffer.
(&raw mut (*self.registers).dr).write_volatile(byte.into());

}

// Wait until the UART is no longer busy.
while self.read_flag_register().contains(Flags::BUSY) {}

}

/// Reads and returns a pending byte, or `None` if nothing has been
/// received.
pub fn read_byte(&mut self) -> Option<u8> {

if self.read_flag_register().contains(Flags::RXFE) {
None

} else {
// SAFETY: We know that self.registers points to the control
// registers of a PL011 device which is appropriately mapped.
let data = unsafe { (&raw const (*self.registers).dr).read_volatile() };
// TODO: Check for error conditions in bits 8-11.
Some(data as u8)

}
}

320

fn read_flag_register(&self) -> Flags {
// SAFETY: We know that self.registers points to the control registers
// of a PL011 device which is appropriately mapped.
unsafe { (&raw const (*self.registers).fr).read_volatile() }

}
}

• Note the use of &raw const / &raw mut to get pointers to individual fields without
creating an intermediate reference, which would be unsound.

• The example isn't included in the slides because it is very similar to the safe-mmio
example which comes next. You can run it in QEMU with make qemu under src/bare-
metal/aps/examples if you need to.

53.6 safe-mmio

The safe-mmio crate provides types to wrap registers that can be read or written safely.

Can't read
Read has no
side-effects Read has side-effects

Can't write ReadPure ReadOnly
Can write WriteOnly ReadPureWrite ReadWrite

use safe_mmio::fields::{ReadPure, ReadPureWrite, ReadWrite, WriteOnly};

#[repr(C, align(4))]
pub struct Registers {

dr: ReadWrite<u16>,
_reserved0: [u8; 2],
rsr: ReadPure<ReceiveStatus>,
_reserved1: [u8; 19],
fr: ReadPure<Flags>,
_reserved2: [u8; 6],
ilpr: ReadPureWrite<u8>,
_reserved3: [u8; 3],
ibrd: ReadPureWrite<u16>,
_reserved4: [u8; 2],
fbrd: ReadPureWrite<u8>,
_reserved5: [u8; 3],
lcr_h: ReadPureWrite<u8>,
_reserved6: [u8; 3],
cr: ReadPureWrite<u16>,
_reserved7: [u8; 3],
ifls: ReadPureWrite<u8>,
_reserved8: [u8; 3],
imsc: ReadPureWrite<u16>,
_reserved9: [u8; 2],
ris: ReadPure<u16>,
_reserved10: [u8; 2],

321

https://crates.io/crates/safe-mmio
https://docs.rs/safe-mmio/latest/safe_mmio/fields/struct.ReadPure.html
https://docs.rs/safe-mmio/latest/safe_mmio/fields/struct.ReadOnly.html
https://docs.rs/safe-mmio/latest/safe_mmio/fields/struct.WriteOnly.html
https://docs.rs/safe-mmio/latest/safe_mmio/fields/struct.ReadPureWrite.html
https://docs.rs/safe-mmio/latest/safe_mmio/fields/struct.ReadWrite.html

mis: ReadPure<u16>,
_reserved11: [u8; 2],
icr: WriteOnly<u16>,
_reserved12: [u8; 2],
dmacr: ReadPureWrite<u8>,
_reserved13: [u8; 3],

}

• Reading dr has a side effect: it pops a byte from the receive FIFO.
• Reading rsr (and other registers) has no side-effects. It is a 'pure' read.

• There are a number of different crates providing safe abstractions around MMIO opera-
tions; we recommend the safe-mmio crate.

• The difference between ReadPure or ReadOnly (and likewise between ReadPureWrite
and ReadWrite) is whether reading a register can have side-effects that change the
state of the device, e.g., reading the data register pops a byte from the receive FIFO.
ReadPure means that reads have no side-effects, they are purely reading data.

53.6.1 Driver

Now let's use the new Registers struct in our driver.

use safe_mmio::{UniqueMmioPointer, field, field_shared};

/// Driver for a PL011 UART.
#[derive(Debug)]
pub struct Uart<'a> {

registers: UniqueMmioPointer<'a, Registers>,
}

impl<'a> Uart<'a> {
/// Constructs a new instance of the UART driver for a PL011 device with the
/// given set of registers.
pub fn new(registers: UniqueMmioPointer<'a, Registers>) -> Self {

Self { registers }
}

/// Writes a single byte to the UART.
pub fn write_byte(&mut self, byte: u8) {

// Wait until there is room in the TX buffer.
while self.read_flag_register().contains(Flags::TXFF) {}

// Write to the TX buffer.
field!(self.registers, dr).write(byte.into());

// Wait until the UART is no longer busy.
while self.read_flag_register().contains(Flags::BUSY) {}

}

/// Reads and returns a pending byte, or `None` if nothing has been
/// received.
pub fn read_byte(&mut self) -> Option<u8> {

322

if self.read_flag_register().contains(Flags::RXFE) {
None

} else {
let data = field!(self.registers, dr).read();
// TODO: Check for error conditions in bits 8-11.
Some(data as u8)

}
}

fn read_flag_register(&self) -> Flags {
field_shared!(self.registers, fr).read()

}
}

• The driver no longer needs any unsafe code!
• UniqueMmioPointer is a wrapper around a raw pointer to an MMIO device or register.

The caller of UniqueMmioPointer::new promises that it is valid and unique for the
given lifetime, so it can provide safe methods to read and write fields.

• Note that Uart::new is now safe; UniqueMmioPointer::new is unsafe instead.
• These MMIO accesses are generally a wrapper around read_volatile and
write_volatile, though on aarch64 they are instead implemented in assem-
bly to work around a bug where the compiler can emit instructions that prevent MMIO
virtualization.

• The field! and field_shared! macros internally use &raw mut and &raw const
to get pointers to individual fields without creating an intermediate reference, which
would be unsound.

• field! needs a mutable reference to a UniqueMmioPointer, and returns a
UniqueMmioPointer that allows reads with side effects and writes.

• field_shared! works with a shared reference to either a UniqueMmioPointer or a
SharedMmioPointer. It returns a SharedMmioPointer that only allows pure reads.

53.6.2 Using It

Let's write a small program using our driver to write to the serial console, and echo incoming
bytes.

#![no_main]
#![no_std]

mod asm;
mod exceptions;
mod pl011;

use crate::pl011::Uart;
use core::fmt::Write;
use core::panic::PanicInfo;
use core::ptr::NonNull;
use log::error;
use safe_mmio::UniqueMmioPointer;
use smccc::Hvc;
use smccc::psci::system_off;

323

/// Base address of the primary PL011 UART.
const PL011_BASE_ADDRESS: NonNull<pl011::Registers> =

NonNull::new(0x900_0000 as _).unwrap();

// SAFETY: There is no other global function of this name.
#[unsafe(no_mangle)]
extern "C" fn main(x0: u64, x1: u64, x2: u64, x3: u64) {

// SAFETY: `PL011_BASE_ADDRESS` is the base address of a PL011 device, and
// nothing else accesses that address range.
let mut uart = Uart::new(unsafe { UniqueMmioPointer::new(PL011_BASE_ADDRESS) });

writeln!(uart, "main({x0:#x}, {x1:#x}, {x2:#x}, {x3:#x})").unwrap();

loop {
if let Some(byte) = uart.read_byte() {

uart.write_byte(byte);
match byte {

b'\r' => uart.write_byte(b'\n'),
b'q' => break,
_ => continue,

}
}

}

writeln!(uart, "\n\nBye!").unwrap();
system_off::<Hvc>().unwrap();

}

• Run the example in QEMU withmake qemu_safemmioundersrc/bare-metal/aps/examples.

53.7 Logging

It would be nice to be able to use the logging macros from the log crate. We can do this by
implementing the Log trait.

use crate::pl011::Uart;
use core::fmt::Write;
use log::{LevelFilter, Log, Metadata, Record, SetLoggerError};
use spin::mutex::SpinMutex;

static LOGGER: Logger = Logger { uart: SpinMutex::new(None) };

struct Logger {
uart: SpinMutex<Option<Uart<'static>>>,

}

impl Log for Logger {
fn enabled(&self, _metadata: &Metadata) -> bool {

true
}

324

https://crates.io/crates/log

fn log(&self, record: &Record) {
writeln!(

self.uart.lock().as_mut().unwrap(),
"[{}] {}",
record.level(),
record.args()

)
.unwrap();

}

fn flush(&self) {}
}

/// Initialises UART logger.
pub fn init(

uart: Uart<'static>,
max_level: LevelFilter,

) -> Result<(), SetLoggerError> {
LOGGER.uart.lock().replace(uart);

log::set_logger(&LOGGER)?;
log::set_max_level(max_level);
Ok(())

}

• The first unwrap in log will succeed because we initialize LOGGER before calling
set_logger. The second will succeed because Uart::write_str always returns Ok.

53.7.1 Using it

We need to initialise the logger before we use it.

#![no_main]
#![no_std]

mod asm;
mod exceptions;
mod logger;
mod pl011;

use crate::pl011::Uart;
use core::panic::PanicInfo;
use core::ptr::NonNull;
use log::{LevelFilter, error, info};
use safe_mmio::UniqueMmioPointer;
use smccc::Hvc;
use smccc::psci::system_off;

/// Base address of the primary PL011 UART.
const PL011_BASE_ADDRESS: NonNull<pl011::Registers> =

NonNull::new(0x900_0000 as _).unwrap();

325

// SAFETY: There is no other global function of this name.
#[unsafe(no_mangle)]
extern "C" fn main(x0: u64, x1: u64, x2: u64, x3: u64) {

// SAFETY: `PL011_BASE_ADDRESS` is the base address of a PL011 device, and
// nothing else accesses that address range.
let uart = unsafe { Uart::new(UniqueMmioPointer::new(PL011_BASE_ADDRESS)) };
logger::init(uart, LevelFilter::Trace).unwrap();

info!("main({x0:#x}, {x1:#x}, {x2:#x}, {x3:#x})");

assert_eq!(x1, 42);

system_off::<Hvc>().unwrap();
}

#[panic_handler]
fn panic(info: &PanicInfo) -> ! {

error!("{info}");
system_off::<Hvc>().unwrap();
loop {}

}

• Note that our panic handler can now log details of panics.
• Run the example in QEMU withmake qemu_loggerundersrc/bare-metal/aps/examples.

53.8 Exceptions

AArch64 defines an exception vector table with 16 entries, for 4 types of exceptions (syn-
chronous, IRQ, FIQ, SError) from 4 states (current EL with SP0, current EL with SPx, lower
EL using AArch64, lower EL using AArch32). We implement this in assembly to save volatile
registers to the stack before calling into Rust code:

use log::error;
use smccc::Hvc;
use smccc::psci::system_off;

// SAFETY: There is no other global function of this name.
#[unsafe(no_mangle)]
extern "C" fn sync_exception_current(_elr: u64, _spsr: u64) {

error!("sync_exception_current");
system_off::<Hvc>().unwrap();

}

// SAFETY: There is no other global function of this name.
#[unsafe(no_mangle)]
extern "C" fn irq_current(_elr: u64, _spsr: u64) {

error!("irq_current");
system_off::<Hvc>().unwrap();

}

// SAFETY: There is no other global function of this name.

326

#[unsafe(no_mangle)]
extern "C" fn fiq_current(_elr: u64, _spsr: u64) {

error!("fiq_current");
system_off::<Hvc>().unwrap();

}

// SAFETY: There is no other global function of this name.
#[unsafe(no_mangle)]
extern "C" fn serr_current(_elr: u64, _spsr: u64) {

error!("serr_current");
system_off::<Hvc>().unwrap();

}

// SAFETY: There is no other global function of this name.
#[unsafe(no_mangle)]
extern "C" fn sync_lower(_elr: u64, _spsr: u64) {

error!("sync_lower");
system_off::<Hvc>().unwrap();

}

// SAFETY: There is no other global function of this name.
#[unsafe(no_mangle)]
extern "C" fn irq_lower(_elr: u64, _spsr: u64) {

error!("irq_lower");
system_off::<Hvc>().unwrap();

}

// SAFETY: There is no other global function of this name.
#[unsafe(no_mangle)]
extern "C" fn fiq_lower(_elr: u64, _spsr: u64) {

error!("fiq_lower");
system_off::<Hvc>().unwrap();

}

// SAFETY: There is no other global function of this name.
#[unsafe(no_mangle)]
extern "C" fn serr_lower(_elr: u64, _spsr: u64) {

error!("serr_lower");
system_off::<Hvc>().unwrap();

}

• EL is exception level; all our examples this afternoon run in EL1.
• For simplicity we aren't distinguishing between SP0 and SPx for the current EL excep-

tions, or between AArch32 and AArch64 for the lower EL exceptions.
• For this example we just log the exception and power down, as we don't expect any of

them to actually happen.
• We can think of exception handlers and our main execution context more or less like

different threads. Send and Sync will control what we can share between them, just like
with threads. For example, if we want to share some value between exception handlers
and the rest of the program, and it's Send but not Sync, then we'll need to wrap it in
something like a Mutex and put it in a static.

327

53.9 aarch64-rt

The aarch64-rt crate provides the assembly entry point and exception vector that we
implemented before. We just need to mark our main function with the entry! macro.

It also provides the initial_pagetable! macro to let us define an initial static pagetable
in Rust, rather than in assembly code like we did before.

We can also use the UART driver from the arm-pl011-uart crate rather than writing our
own.

#![no_main]
#![no_std]

mod exceptions;

use aarch64_paging::paging::Attributes;
use aarch64_rt::{InitialPagetable, entry, initial_pagetable};
use arm_pl011_uart::{PL011Registers, Uart, UniqueMmioPointer};
use core::fmt::Write;
use core::panic::PanicInfo;
use core::ptr::NonNull;
use smccc::Hvc;
use smccc::psci::system_off;

/// Base address of the primary PL011 UART.
const PL011_BASE_ADDRESS: NonNull<PL011Registers> =

NonNull::new(0x900_0000 as _).unwrap();

/// Attributes to use for device memory in the initial identity map.
const DEVICE_ATTRIBUTES: Attributes = Attributes::VALID

.union(Attributes::ATTRIBUTE_INDEX_0)

.union(Attributes::ACCESSED)

.union(Attributes::UXN);

/// Attributes to use for normal memory in the initial identity map.
const MEMORY_ATTRIBUTES: Attributes = Attributes::VALID

.union(Attributes::ATTRIBUTE_INDEX_1)

.union(Attributes::INNER_SHAREABLE)

.union(Attributes::ACCESSED)

.union(Attributes::NON_GLOBAL);

initial_pagetable!({
let mut idmap = [0; 512];
// 1 GiB of device memory.
idmap[0] = DEVICE_ATTRIBUTES.bits();
// 1 GiB of normal memory.
idmap[1] = MEMORY_ATTRIBUTES.bits() | 0x40000000;
// Another 1 GiB of device memory starting at 256 GiB.
idmap[256] = DEVICE_ATTRIBUTES.bits() | 0x4000000000;
InitialPagetable(idmap)

});

328

entry!(main);
fn main(x0: u64, x1: u64, x2: u64, x3: u64) -> ! {

// SAFETY: `PL011_BASE_ADDRESS` is the base address of a PL011 device, and
// nothing else accesses that address range.
let mut uart = unsafe { Uart::new(UniqueMmioPointer::new(PL011_BASE_ADDRESS)) };

writeln!(uart, "main({x0:#x}, {x1:#x}, {x2:#x}, {x3:#x})").unwrap();

system_off::<Hvc>().unwrap();
panic!("system_off returned");

}

#[panic_handler]
fn panic(_info: &PanicInfo) -> ! {

system_off::<Hvc>().unwrap();
loop {}

}

• Run the example in QEMU withmake qemu_rtundersrc/bare-metal/aps/examples.

53.10 Other projects

• oreboot
– ”coreboot without the C”.
– Supports x86, aarch64 and RISC-V.
– Relies on LinuxBoot rather than having many drivers itself.

• Rust RaspberryPi OS tutorial
– Initialization, UART driver, simple bootloader, JTAG, exception levels, exception

handling, page tables.
– Some caveats around cache maintenance and initialization in Rust, not necessarily

a good example to copy for production code.
• cargo-call-stack

– Static analysis to determine maximum stack usage.

• The RaspberryPi OS tutorial runs Rust code before the MMU and caches are enabled. This
will read and write memory (e.g. the stack). However, this has the problems mentioned
at the beginning of this session regarding unaligned access and cache coherency.

329

https://github.com/oreboot/oreboot
https://github.com/rust-embedded/rust-raspberrypi-OS-tutorials
https://crates.io/crates/cargo-call-stack

Chapter 54

Useful crates

We'll look at a few crates that solve some common problems in bare-metal programming.

54.1 zerocopy

The zerocopy crate (from Fuchsia) provides traits and macros for safely converting between
byte sequences and other types.

use zerocopy::{Immutable, IntoBytes};

#[repr(u32)]
#[derive(Debug, Default, Immutable, IntoBytes)]
enum RequestType {

#[default]
In = 0,
Out = 1,
Flush = 4,

}

#[repr(C)]
#[derive(Debug, Default, Immutable, IntoBytes)]
struct VirtioBlockRequest {

request_type: RequestType,
reserved: u32,
sector: u64,

}

fn main() {
let request = VirtioBlockRequest {

request_type: RequestType::Flush,
sector: 42,
..Default::default()

};

assert_eq!(

330

https://docs.rs/zerocopy/

request.as_bytes(),
&[4, 0, 0, 0, 0, 0, 0, 0, 42, 0, 0, 0, 0, 0, 0, 0]

);
}

This is not suitable for MMIO (as it doesn't use volatile reads and writes), but can be useful
for working with structures shared with hardware e.g. by DMA, or sent over some external
interface.

• FromBytes can be implemented for types for which any byte pattern is valid, and so
can safely be converted from an untrusted sequence of bytes.

• Attempting to derive FromBytes for these types would fail, because RequestType
doesn't use all possible u32 values as discriminants, so not all byte patterns are valid.

• zerocopy::byteorder has types for byte-order aware numeric primitives.
• Run the example withcargo runundersrc/bare-metal/useful-crates/zerocopy-
example/. (It won't run in the Playground because of the crate dependency.)

54.2 aarch64-paging

The aarch64-paging crate lets you create page tables according to the AArch64 Virtual
Memory System Architecture.

use aarch64_paging::{
idmap::IdMap,
paging::{Attributes, MemoryRegion},

};

const ASID: usize = 1;
const ROOT_LEVEL: usize = 1;

// Create a new page table with identity mapping.
let mut idmap = IdMap::new(ASID, ROOT_LEVEL);
// Map a 2 MiB region of memory as read-only.
idmap.map_range(

&MemoryRegion::new(0x80200000, 0x80400000),
Attributes::NORMAL | Attributes::NON_GLOBAL | Attributes::READ_ONLY,

).unwrap();
// Set `TTBR0_EL1` to activate the page table.
idmap.activate();

• This is used in Android for the Protected VM Firmware.
• There's no easy way to run this example by itself, as it needs to run on real hardware or

under QEMU.

54.3 buddy_system_allocator

buddy_system_allocator is a crate that implements a basic buddy system allocator. It can
be used both to implement GlobalAlloc (using LockedHeap) so you can use the standard
alloc crate (as we saw before), or for allocating other address space (using FrameAllocator)
. For example, we might want to allocate MMIO space for PCI BARs:

331

https://crates.io/crates/aarch64-paging
https://cs.android.com/android/platform/superproject/main/+/main:packages/modules/Virtualization/guest/pvmfw/
https://crates.io/crates/buddy_system_allocator
https://doc.rust-lang.org/core/alloc/trait.GlobalAlloc.html
https://docs.rs/buddy_system_allocator/0.9.0/buddy_system_allocator/struct.LockedHeap.html
https://docs.rs/buddy_system_allocator/0.9.0/buddy_system_allocator/struct.FrameAllocator.html

use buddy_system_allocator::FrameAllocator;
use core::alloc::Layout;

fn main() {
let mut allocator = FrameAllocator::<32>::new();
allocator.add_frame(0x200_0000, 0x400_0000);

let layout = Layout::from_size_align(0x100, 0x100).unwrap();
let bar = allocator

.alloc_aligned(layout)

.expect("Failed to allocate 0x100 byte MMIO region");
println!("Allocated 0x100 byte MMIO region at {:#x}", bar);

}

• PCI BARs always have alignment equal to their size.
• Run the example withcargo runundersrc/bare-metal/useful-crates/allocator-
example/. (It won't run in the Playground because of the crate dependency.)

54.4 tinyvec

Sometimes you want something that can be resized like a Vec, but without heap allocation.
tinyvec provides this: a vector backed by an array or slice, which could be statically allocated
or on the stack, that keeps track of how many elements are used and panics if you try to use
more than are allocated.

use tinyvec::{ArrayVec, array_vec};

fn main() {
let mut numbers: ArrayVec<[u32; 5]> = array_vec!(42, 66);
println!("{numbers:?}");
numbers.push(7);
println!("{numbers:?}");
numbers.remove(1);
println!("{numbers:?}");

}

• tinyvec requires that the element type implement Default for initialization.
• The Rust Playground includes tinyvec, so this example will run fine inline.

54.5 spin

std::sync::Mutex and the other synchronisation primitives from std::sync are not avail-
able in core or alloc. How can we manage synchronisation or interior mutability, such as
for sharing state between different CPUs?

The spin crate provides spinlock-based equivalents of many of these primitives.

use spin::mutex::SpinMutex;

static COUNTER: SpinMutex<u32> = SpinMutex::new(0);

332

https://crates.io/crates/tinyvec
https://crates.io/crates/spin

fn main() {
dbg!(COUNTER.lock());
*COUNTER.lock() += 2;
dbg!(COUNTER.lock());

}

• Be careful to avoid deadlock if you take locks in interrupt handlers.
• spin also has a ticket lock mutex implementation; equivalents of RwLock, Barrier and
Once from std::sync; and Lazy for lazy initialization.

• The once_cell crate also has some useful types for late initialization with a slightly
different approach to spin::once::Once.

• The Rust Playground includes spin, so this example will run fine inline.

333

https://crates.io/crates/once_cell

Chapter 55

Bare-Metal on Android

To build a bare-metal Rust binary in AOSP, you need to use a rust_ffi_static Soong rule
to build your Rust code, then a cc_binary with a linker script to produce the binary itself,
and then a raw_binary to convert the ELF to a raw binary ready to be run.

rust_ffi_static {
name: "libvmbase_example",
defaults: ["vmbase_ffi_defaults"],
crate_name: "vmbase_example",
srcs: ["src/main.rs"],
rustlibs: [

"libvmbase",
],

}

cc_binary {
name: "vmbase_example",
defaults: ["vmbase_elf_defaults"],
srcs: [

"idmap.S",
],
static_libs: [

"libvmbase_example",
],
linker_scripts: [

"image.ld",
":vmbase_sections",

],
}

raw_binary {
name: "vmbase_example_bin",
stem: "vmbase_example.bin",
src: ":vmbase_example",
enabled: false,
target: {

334

android_arm64: {
enabled: true,

},
},

}

55.1 vmbase

For VMs running under crosvm on aarch64, the vmbase library provides a linker script and
useful defaults for the build rules, along with an entry point, UART console logging and more.

#![no_main]
#![no_std]

use vmbase::{main, println};

main!(main);

pub fn main(arg0: u64, arg1: u64, arg2: u64, arg3: u64) {
println!("Hello world");

}

• The main! macro marks your main function, to be called from the vmbase entry point.
• The vmbase entry point handles console initialisation, and issues a PSCI_SYSTEM_OFF

to shutdown the VM if your main function returns.

335

https://android.googlesource.com/platform/packages/modules/Virtualization/+/refs/heads/main/libs/libvmbase/

Chapter 56

Exercises

We will write a driver for the PL031 real-time clock device.

After looking at the exercises, you can look at the solutions provided.

56.1 RTC driver

The QEMU aarch64 virt machine has a PL031 real-time clock at 0x9010000. For this exercise,
you should write a driver for it.

1. Use it to print the current time to the serial console. You can use the chrono crate for
date/time formatting.

2. Use the match register and raw interrupt status to busy-wait until a given time, e.g. 3
seconds in the future. (Call core::hint::spin_loop inside the loop.)

3. Extension if you have time: Enable and handle the interrupt generated by the RTC match.
You can use the driver provided in the arm-gic crate to configure the Arm Generic
Interrupt Controller.

• Use the RTC interrupt, which is wired to the GIC as IntId::spi(2).
• Once the interrupt is enabled, you can put the core to sleep via arm_gic::wfi(),

which will cause the core to sleep until it receives an interrupt.

Download the exercise template and look in the rtc directory for the following files.

src/main.rs:

#![no_main]
#![no_std]

mod exceptions;
mod logger;

use aarch64_paging::paging::Attributes;
use aarch64_rt::{InitialPagetable, entry, initial_pagetable};
use arm_gic::gicv3::registers::{Gicd, GicrSgi};
use arm_gic::gicv3::{GicCpuInterface, GicV3};
use arm_pl011_uart::{PL011Registers, Uart, UniqueMmioPointer};
use core::panic::PanicInfo;

336

https://developer.arm.com/documentation/ddi0224/c
https://crates.io/crates/chrono
https://doc.rust-lang.org/core/hint/fn.spin_loop.html
https://docs.rs/arm-gic/
https://google.github.io/comprehensive-rust/exercises/bare-metal/../../comprehensive-rust-exercises.zip

use core::ptr::NonNull;
use log::{LevelFilter, error, info, trace};
use smccc::Hvc;
use smccc::psci::system_off;

/// Base addresses of the GICv3.
const GICD_BASE_ADDRESS: NonNull<Gicd> = NonNull::new(0x800_0000 as _).unwrap();
const GICR_BASE_ADDRESS: NonNull<GicrSgi> = NonNull::new(0x80A_0000 as _).unwrap();

/// Base address of the primary PL011 UART.
const PL011_BASE_ADDRESS: NonNull<PL011Registers> =

NonNull::new(0x900_0000 as _).unwrap();

/// Attributes to use for device memory in the initial identity map.
const DEVICE_ATTRIBUTES: Attributes = Attributes::VALID

.union(Attributes::ATTRIBUTE_INDEX_0)

.union(Attributes::ACCESSED)

.union(Attributes::UXN);

/// Attributes to use for normal memory in the initial identity map.
const MEMORY_ATTRIBUTES: Attributes = Attributes::VALID

.union(Attributes::ATTRIBUTE_INDEX_1)

.union(Attributes::INNER_SHAREABLE)

.union(Attributes::ACCESSED)

.union(Attributes::NON_GLOBAL);

initial_pagetable!({
let mut idmap = [0; 512];
// 1 GiB of device memory.
idmap[0] = DEVICE_ATTRIBUTES.bits();
// 1 GiB of normal memory.
idmap[1] = MEMORY_ATTRIBUTES.bits() | 0x40000000;
// Another 1 GiB of device memory starting at 256 GiB.
idmap[256] = DEVICE_ATTRIBUTES.bits() | 0x4000000000;
InitialPagetable(idmap)

});

entry!(main);
fn main(x0: u64, x1: u64, x2: u64, x3: u64) -> ! {

// SAFETY: `PL011_BASE_ADDRESS` is the base address of a PL011 device, and
// nothing else accesses that address range.
let uart = unsafe { Uart::new(UniqueMmioPointer::new(PL011_BASE_ADDRESS)) };
logger::init(uart, LevelFilter::Trace).unwrap();

info!("main({:#x}, {:#x}, {:#x}, {:#x})", x0, x1, x2, x3);

// SAFETY: `GICD_BASE_ADDRESS` and `GICR_BASE_ADDRESS` are the base
// addresses of a GICv3 distributor and redistributor respectively, and
// nothing else accesses those address ranges.
let mut gic = unsafe {

GicV3::new(

337

UniqueMmioPointer::new(GICD_BASE_ADDRESS),
GICR_BASE_ADDRESS,
1,
false,

)
};
gic.setup(0);

// TODO: Create instance of RTC driver and print current time.

// TODO: Wait for 3 seconds.

system_off::<Hvc>().unwrap();
panic!("system_off returned");

}

#[panic_handler]
fn panic(info: &PanicInfo) -> ! {

error!("{info}");
system_off::<Hvc>().unwrap();
loop {}

}

src/exceptions.rs (you should only need to change this for the 3rd part of the exercise):

// Copyright 2023 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use arm_gic::gicv3::{GicCpuInterface, InterruptGroup};
use log::{error, info, trace};
use smccc::Hvc;
use smccc::psci::system_off;

// SAFETY: There is no other global function of this name.
#[unsafe(no_mangle)]
extern "C" fn sync_exception_current(_elr: u64, _spsr: u64) {

error!("sync_exception_current");
system_off::<Hvc>().unwrap();

}

// SAFETY: There is no other global function of this name.

338

#[unsafe(no_mangle)]
extern "C" fn irq_current(_elr: u64, _spsr: u64) {

trace!("irq_current");
let intid =

GicCpuInterface::get_and_acknowledge_interrupt(InterruptGroup::Group1)
.expect("No pending interrupt");

info!("IRQ {intid:?}");
}

// SAFETY: There is no other global function of this name.
#[unsafe(no_mangle)]
extern "C" fn fiq_current(_elr: u64, _spsr: u64) {

error!("fiq_current");
system_off::<Hvc>().unwrap();

}

// SAFETY: There is no other global function of this name.
#[unsafe(no_mangle)]
extern "C" fn serr_current(_elr: u64, _spsr: u64) {

error!("serr_current");
system_off::<Hvc>().unwrap();

}

// SAFETY: There is no other global function of this name.
#[unsafe(no_mangle)]
extern "C" fn sync_lower(_elr: u64, _spsr: u64) {

error!("sync_lower");
system_off::<Hvc>().unwrap();

}

// SAFETY: There is no other global function of this name.
#[unsafe(no_mangle)]
extern "C" fn irq_lower(_elr: u64, _spsr: u64) {

error!("irq_lower");
system_off::<Hvc>().unwrap();

}

// SAFETY: There is no other global function of this name.
#[unsafe(no_mangle)]
extern "C" fn fiq_lower(_elr: u64, _spsr: u64) {

error!("fiq_lower");
system_off::<Hvc>().unwrap();

}

// SAFETY: There is no other global function of this name.
#[unsafe(no_mangle)]
extern "C" fn serr_lower(_elr: u64, _spsr: u64) {

error!("serr_lower");
system_off::<Hvc>().unwrap();

}

339

src/logger.rs (you shouldn't need to change this):

// Copyright 2023 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use arm_pl011_uart::Uart;
use core::fmt::Write;
use log::{LevelFilter, Log, Metadata, Record, SetLoggerError};
use spin::mutex::SpinMutex;

static LOGGER: Logger = Logger { uart: SpinMutex::new(None) };

struct Logger {
uart: SpinMutex<Option<Uart<'static>>>,

}

impl Log for Logger {
fn enabled(&self, _metadata: &Metadata) -> bool {

true
}

fn log(&self, record: &Record) {
writeln!(

self.uart.lock().as_mut().unwrap(),
"[{}] {}",
record.level(),
record.args()

)
.unwrap();

}

fn flush(&self) {}
}

/// Initialises UART logger.
pub fn init(

uart: Uart<'static>,
max_level: LevelFilter,

) -> Result<(), SetLoggerError> {
LOGGER.uart.lock().replace(uart);

340

log::set_logger(&LOGGER)?;
log::set_max_level(max_level);
Ok(())

}

Cargo.toml (you shouldn't need to change this):

[workspace]

[package]
name = "rtc"
version = "0.1.0"
edition = "2024"
publish = false

[dependencies]
aarch64-paging = { version = "0.10.0", default-features = false }
aarch64-rt = "0.2.2"
arm-gic = "0.7.1"
arm-pl011-uart = "0.4.0"
bitflags = "2.10.0"
chrono = { version = "0.4.42", default-features = false }
log = "0.4.28"
safe-mmio = "0.2.5"
smccc = "0.2.2"
spin = "0.10.0"
zerocopy = "0.8.27"

build.rs (you shouldn't need to change this):

// Copyright 2025 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

fn main() {
println!("cargo:rustc-link-arg=-Timage.ld");
println!("cargo:rustc-link-arg=-Tmemory.ld");
println!("cargo:rerun-if-changed=memory.ld");

}

memory.ld (you shouldn't need to change this):

/*

341

* Copyright 2023 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

MEMORY
{

image : ORIGIN = 0x40080000, LENGTH = 2M
}

Makefile (you shouldn't need to change this):

Copyright 2023 Google LLC
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

.PHONY: build qemu_minimal qemu qemu_logger

all: rtc.bin

build:
cargo build

rtc.bin: build
cargo objcopy -- -O binary $@

qemu: rtc.bin
qemu-system-aarch64 -machine virt,gic-version=3 -cpu max -serial mon:stdio -display none -kernel $< -s

clean:
cargo clean
rm -f *.bin

342

.cargo/config.toml (you shouldn't need to change this):

[build]
target = "aarch64-unknown-none"

Run the code in QEMU with make qemu.

56.2 Bare Metal Rust Afternoon

RTC driver

(back to exercise)

main.rs:

#![no_main]
#![no_std]

mod exceptions;
mod logger;
mod pl031;

use crate::pl031::Rtc;
use arm_gic::{IntId, Trigger, irq_enable, wfi};
use chrono::{TimeZone, Utc};
use core::hint::spin_loop;
use aarch64_paging::paging::Attributes;
use aarch64_rt::{InitialPagetable, entry, initial_pagetable};
use arm_gic::gicv3::registers::{Gicd, GicrSgi};
use arm_gic::gicv3::{GicCpuInterface, GicV3};
use arm_pl011_uart::{PL011Registers, Uart, UniqueMmioPointer};
use core::panic::PanicInfo;
use core::ptr::NonNull;
use log::{LevelFilter, error, info, trace};
use smccc::Hvc;
use smccc::psci::system_off;

/// Base addresses of the GICv3.
const GICD_BASE_ADDRESS: NonNull<Gicd> = NonNull::new(0x800_0000 as _).unwrap();
const GICR_BASE_ADDRESS: NonNull<GicrSgi> = NonNull::new(0x80A_0000 as _).unwrap();

/// Base address of the primary PL011 UART.
const PL011_BASE_ADDRESS: NonNull<PL011Registers> =

NonNull::new(0x900_0000 as _).unwrap();

/// Attributes to use for device memory in the initial identity map.
const DEVICE_ATTRIBUTES: Attributes = Attributes::VALID

.union(Attributes::ATTRIBUTE_INDEX_0)

.union(Attributes::ACCESSED)

.union(Attributes::UXN);

/// Attributes to use for normal memory in the initial identity map.

343

const MEMORY_ATTRIBUTES: Attributes = Attributes::VALID
.union(Attributes::ATTRIBUTE_INDEX_1)
.union(Attributes::INNER_SHAREABLE)
.union(Attributes::ACCESSED)
.union(Attributes::NON_GLOBAL);

initial_pagetable!({
let mut idmap = [0; 512];
// 1 GiB of device memory.
idmap[0] = DEVICE_ATTRIBUTES.bits();
// 1 GiB of normal memory.
idmap[1] = MEMORY_ATTRIBUTES.bits() | 0x40000000;
// Another 1 GiB of device memory starting at 256 GiB.
idmap[256] = DEVICE_ATTRIBUTES.bits() | 0x4000000000;
InitialPagetable(idmap)

});

/// Base address of the PL031 RTC.
const PL031_BASE_ADDRESS: NonNull<pl031::Registers> =

NonNull::new(0x901_0000 as _).unwrap();
/// The IRQ used by the PL031 RTC.
const PL031_IRQ: IntId = IntId::spi(2);

entry!(main);
fn main(x0: u64, x1: u64, x2: u64, x3: u64) -> ! {

// SAFETY: `PL011_BASE_ADDRESS` is the base address of a PL011 device, and
// nothing else accesses that address range.
let uart = unsafe { Uart::new(UniqueMmioPointer::new(PL011_BASE_ADDRESS)) };
logger::init(uart, LevelFilter::Trace).unwrap();

info!("main({:#x}, {:#x}, {:#x}, {:#x})", x0, x1, x2, x3);

// SAFETY: `GICD_BASE_ADDRESS` and `GICR_BASE_ADDRESS` are the base
// addresses of a GICv3 distributor and redistributor respectively, and
// nothing else accesses those address ranges.
let mut gic = unsafe {

GicV3::new(
UniqueMmioPointer::new(GICD_BASE_ADDRESS),
GICR_BASE_ADDRESS,
1,
false,

)
};
gic.setup(0);

// SAFETY: `PL031_BASE_ADDRESS` is the base address of a PL031 device, and
// nothing else accesses that address range.
let mut rtc = unsafe { Rtc::new(UniqueMmioPointer::new(PL031_BASE_ADDRESS)) };
let timestamp = rtc.read();
let time = Utc.timestamp_opt(timestamp.into(), 0).unwrap();
info!("RTC: {time}");

344

GicCpuInterface::set_priority_mask(0xff);
gic.set_interrupt_priority(PL031_IRQ, None, 0x80).unwrap();
gic.set_trigger(PL031_IRQ, None, Trigger::Level).unwrap();
irq_enable();
gic.enable_interrupt(PL031_IRQ, None, true).unwrap();

// Wait for 3 seconds, without interrupts.
let target = timestamp + 3;
rtc.set_match(target);
info!("Waiting for {}", Utc.timestamp_opt(target.into(), 0).unwrap());
trace!(

"matched={}, interrupt_pending={}",
rtc.matched(),
rtc.interrupt_pending()

);
while !rtc.matched() {

spin_loop();
}
trace!(

"matched={}, interrupt_pending={}",
rtc.matched(),
rtc.interrupt_pending()

);
info!("Finished waiting");

// Wait another 3 seconds for an interrupt.
let target = timestamp + 6;
info!("Waiting for {}", Utc.timestamp_opt(target.into(), 0).unwrap());
rtc.set_match(target);
rtc.clear_interrupt();
rtc.enable_interrupt(true);
trace!(

"matched={}, interrupt_pending={}",
rtc.matched(),
rtc.interrupt_pending()

);
while !rtc.interrupt_pending() {

wfi();
}
trace!(

"matched={}, interrupt_pending={}",
rtc.matched(),
rtc.interrupt_pending()

);
info!("Finished waiting");

system_off::<Hvc>().unwrap();
panic!("system_off returned");

}

345

#[panic_handler]
fn panic(info: &PanicInfo) -> ! {

error!("{info}");
system_off::<Hvc>().unwrap();
loop {}

}

pl031.rs:

#[repr(C, align(4))]
pub struct Registers {

/// Data register
dr: ReadPure<u32>,
/// Match register
mr: ReadPureWrite<u32>,
/// Load register
lr: ReadPureWrite<u32>,
/// Control register
cr: ReadPureWrite<u8>,
_reserved0: [u8; 3],
/// Interrupt Mask Set or Clear register
imsc: ReadPureWrite<u8>,
_reserved1: [u8; 3],
/// Raw Interrupt Status
ris: ReadPure<u8>,
_reserved2: [u8; 3],
/// Masked Interrupt Status
mis: ReadPure<u8>,
_reserved3: [u8; 3],
/// Interrupt Clear Register
icr: WriteOnly<u8>,
_reserved4: [u8; 3],

}

/// Driver for a PL031 real-time clock.
#[derive(Debug)]
pub struct Rtc<'a> {

registers: UniqueMmioPointer<'a, Registers>,
}

impl<'a> Rtc<'a> {
/// Constructs a new instance of the RTC driver for a PL031 device with the
/// given set of registers.
pub fn new(registers: UniqueMmioPointer<'a, Registers>) -> Self {

Self { registers }
}

/// Reads the current RTC value.
pub fn read(&self) -> u32 {

field_shared!(self.registers, dr).read()
}

346

/// Writes a match value. When the RTC value matches this then an interrupt
/// will be generated (if it is enabled).
pub fn set_match(&mut self, value: u32) {

field!(self.registers, mr).write(value);
}

/// Returns whether the match register matches the RTC value, whether or not
/// the interrupt is enabled.
pub fn matched(&self) -> bool {

let ris = field_shared!(self.registers, ris).read();
(ris & 0x01) != 0

}

/// Returns whether there is currently an interrupt pending.
///
/// This should be true if and only if `matched` returns true and the
/// interrupt is masked.
pub fn interrupt_pending(&self) -> bool {

let mis = field_shared!(self.registers, mis).read();
(mis & 0x01) != 0

}

/// Sets or clears the interrupt mask.
///
/// When the mask is true the interrupt is enabled; when it is false the
/// interrupt is disabled.
pub fn enable_interrupt(&mut self, mask: bool) {

let imsc = if mask { 0x01 } else { 0x00 };
field!(self.registers, imsc).write(imsc);

}

/// Clears a pending interrupt, if any.
pub fn clear_interrupt(&mut self) {

field!(self.registers, icr).write(0x01);
}

}

347

Part XIII

Concurrency: Morning

348

Chapter 57

Welcome to Concurrency in Rust

Rust has full support for concurrency using OS threads with mutexes and channels.

The Rust type system plays an important role in making many concurrency bugs compile
time bugs. This is often referred to as fearless concurrency since you can rely on the compiler
to ensure correctness at runtime.

Schedule

Including 10 minute breaks, this session should take about 3 hours and 20 minutes. It contains:

Segment Duration

Threads 30 minutes
Channels 20 minutes
Send and Sync 15 minutes
Shared State 30 minutes
Exercises 1 hour and 10 minutes

• Rust lets us access OS concurrency toolkit: threads, sync. primitives, etc.
• The type system gives us safety for concurrency without any special features.
• The same tools that help with ”concurrent” access in a single thread (e.g., a called

function that might mutate an argument or save references to it to read later) save us
from multi-threading issues.

349

Chapter 58

Threads

This segment should take about 30 minutes. It contains:

Slide Duration

Plain Threads 15 minutes
Scoped Threads 15 minutes

58.1 Plain Threads

Rust threads work similarly to threads in other languages:

use std::thread;
use std::time::Duration;

fn main() {
thread::spawn(|| {

for i in 0..10 {
println!("Count in thread: {i}!");
thread::sleep(Duration::from_millis(5));

}
});

for i in 0..5 {
println!("Main thread: {i}");
thread::sleep(Duration::from_millis(5));

}
}

• Spawning new threads does not automatically delay program termination at the end of
main.

• Thread panics are independent of each other.
– Panics can carry a payload, which can be unpacked with Any::downcast_ref.

This slide should take about 15 minutes.

350

https://doc.rust-lang.org/std/any/trait.Any.html#method.downcast_ref

• Run the example.

– 5ms timing is loose enough that main and spawned threads stay mostly in lockstep.
– Notice that the program ends before the spawned thread reaches 10!
– This is because main ends the program and spawned threads do not make it persist.

* Compare to pthreads/C++ std::thread/boost::thread if desired.

• How do we wait around for the spawned thread to complete?

• thread::spawn returns a JoinHandle. Look at the docs.

– JoinHandle has a .join() method that blocks.

• Use let handle = thread::spawn(...) and later handle.join() to wait for the
thread to finish and have the program count all the way to 10.

• Now what if we want to return a value?

• Look at docs again:

– thread::spawn's closure returns T
– JoinHandle .join() returns thread::Result<T>

• Use the Result return value from handle.join() to get access to the returned value.

• Ok, what about the other case?

– Trigger a panic in the thread. Note that this doesn't panic main.
– Access the panic payload. This is a good time to talk about Any.

• Now we can return values from threads! What about taking inputs?

– Capture something by reference in the thread closure.
– An error message indicates we must move it.
– Move it in, see we can compute and then return a derived value.

• If we want to borrow?

– Main kills child threads when it returns, but another function would just return
and leave them running.

– That would be stack use-after-return, which violates memory safety!
– How do we avoid this? See next slide.

58.2 Scoped Threads

Normal threads cannot borrow from their environment:

use std::thread;

fn foo() {
let s = String::from("Hello");
thread::spawn(|| {

dbg!(s.len());
});

}

fn main() {

351

https://doc.rust-lang.org/std/thread/fn.spawn.html
https://doc.rust-lang.org/std/thread/struct.JoinHandle.html#method.join
https://doc.rust-lang.org/std/thread/fn.spawn.html
https://doc.rust-lang.org/std/thread/struct.JoinHandle.html#method.join
https://doc.rust-lang.org/std/any/index.html

foo();
}

However, you can use a scoped thread for this:

use std::thread;

fn foo() {
let s = String::from("Hello");
thread::scope(|scope| {

scope.spawn(|| {
dbg!(s.len());

});
});

}

fn main() {
foo();

}

This slide should take about 13 minutes.

• The reason for that is that when the thread::scope function completes, all the threads
are guaranteed to be joined, so they can return borrowed data.

• Normal Rust borrowing rules apply: you can either borrow mutably by one thread, or
immutably by any number of threads.

352

https://doc.rust-lang.org/std/thread/fn.scope.html

Chapter 59

Channels

This segment should take about 20 minutes. It contains:

Slide Duration

Senders and Receivers 10 minutes
Unbounded Channels 2 minutes
Bounded Channels 10 minutes

59.1 Senders and Receivers

Rust channels have two parts: a Sender<T> and a Receiver<T>. The two parts are connected
via the channel, but you only see the end-points.

use std::sync::mpsc;

fn main() {
let (tx, rx) = mpsc::channel();

tx.send(10).unwrap();
tx.send(20).unwrap();

println!("Received: {:?}", rx.recv());
println!("Received: {:?}", rx.recv());

let tx2 = tx.clone();
tx2.send(30).unwrap();
println!("Received: {:?}", rx.recv());

}

This slide should take about 9 minutes.

• mpsc stands for Multi-Producer, Single-Consumer. Sender and SyncSender implement
Clone (so you can make multiple producers) but Receiver does not.

• send() and recv() return Result. If they return Err, it means the counterpart Sender
or Receiver is dropped and the channel is closed.

353

https://doc.rust-lang.org/std/sync/mpsc/struct.Sender.html
https://doc.rust-lang.org/std/sync/mpsc/struct.Receiver.html
https://doc.rust-lang.org/std/sync/mpsc/index.html
https://doc.rust-lang.org/std/sync/mpsc/struct.Sender.html#method.send
https://doc.rust-lang.org/std/sync/mpsc/struct.Receiver.html#method.recv

59.2 Unbounded Channels

You get an unbounded and asynchronous channel with mpsc::channel():

use std::sync::mpsc;
use std::thread;
use std::time::Duration;

fn main() {
let (tx, rx) = mpsc::channel();

thread::spawn(move || {
let thread_id = thread::current().id();
for i in 0..10 {

tx.send(format!("Message {i}")).unwrap();
println!("{thread_id:?}: sent Message {i}");

}
println!("{thread_id:?}: done");

});
thread::sleep(Duration::from_millis(100));

for msg in rx.iter() {
println!("Main: got {msg}");

}
}

This slide should take about 2 minutes.

• An unbounded channel will allocate as much space as is necessary to store pending
messages. The send() method will not block the calling thread.

• A call to send() will abort with an error (that is why it returns Result) if the channel
is closed. A channel is closed when the receiver is dropped.

59.3 Bounded Channels

With bounded (synchronous) channels, send() can block the current thread:

use std::sync::mpsc;
use std::thread;
use std::time::Duration;

fn main() {
let (tx, rx) = mpsc::sync_channel(3);

thread::spawn(move || {
let thread_id = thread::current().id();
for i in 0..10 {

tx.send(format!("Message {i}")).unwrap();
println!("{thread_id:?}: sent Message {i}");

}
println!("{thread_id:?}: done");

});

354

https://doc.rust-lang.org/std/sync/mpsc/fn.channel.html
https://doc.rust-lang.org/std/sync/mpsc/struct.SyncSender.html#method.send

thread::sleep(Duration::from_millis(100));

for msg in rx.iter() {
println!("Main: got {msg}");

}
}

This slide should take about 8 minutes.

• Calling send() will block the current thread until there is space in the channel for the
new message. The thread can be blocked indefinitely if there is nobody who reads from
the channel.

• Like unbounded channels, a call to send() will abort with an error if the channel is
closed.

• A bounded channel with a size of zero is called a ”rendezvous channel”. Every send will
block the current thread until another thread calls recv().

355

https://doc.rust-lang.org/std/sync/mpsc/struct.Receiver.html#method.recv

Chapter 60

Send and Sync

This segment should take about 15 minutes. It contains:

Slide Duration

Marker Traits 2 minutes
Send 2 minutes
Sync 2 minutes
Examples 10 minutes

60.1 Marker Traits

How does Rust know to forbid shared access across threads? The answer is in two traits:

• Send: a type T is Send if it is safe to move a T across a thread boundary.
• Sync: a type T is Sync if it is safe to move a &T across a thread boundary.

Send and Sync are unsafe traits. The compiler will automatically derive them for your types
as long as they only contain Send and Sync types. You can also implement them manually
when you know it is valid.

This slide should take about 2 minutes.

• One can think of these traits as markers that the type has certain thread-safety properties.
• They can be used in the generic constraints as normal traits.

60.2 Send

A type T is Send if it is safe to move a T value to another thread.

The effect of moving ownership to another thread is that destructors will run in that thread.
So the question is when you can allocate a value in one thread and deallocate it in another.

This slide should take about 2 minutes.

As an example, a connection to the SQLite library must only be accessed from a single thread.

356

https://doc.rust-lang.org/std/marker/trait.Send.html
https://doc.rust-lang.org/std/marker/trait.Sync.html
https://doc.rust-lang.org/std/marker/trait.Send.html

60.3 Sync

A type T is Sync if it is safe to access a T value from multiple threads at the same
time.

More precisely, the definition is:

T is Sync if and only if &T is Send

This slide should take about 2 minutes.

This statement is essentially a shorthand way of saying that if a type is thread-safe for shared
use, it is also thread-safe to pass references of it across threads.

This is because if a type is Sync it means that it can be shared across multiple threads without
the risk of data races or other synchronization issues, so it is safe to move it to another thread.
A reference to the type is also safe to move to another thread, because the data it references
can be accessed from any thread safely.

60.4 Examples

Send + Sync

Most types you come across are Send + Sync:

• i8, f32, bool, char, &str, ...
• (T1, T2), [T; N], &[T], struct { x: T }, ...
• String, Option<T>, Vec<T>, Box<T>, ...
• Arc<T>: Explicitly thread-safe via atomic reference count.
• Mutex<T>: Explicitly thread-safe via internal locking.
• mpsc::Sender<T>: As of 1.72.0.
• AtomicBool, AtomicU8, ...: Uses special atomic instructions.

The generic types are typically Send + Sync when the type parameters are Send + Sync.

Send + !Sync

These types can be moved to other threads, but they're not thread-safe. Typically because of
interior mutability:

• mpsc::Receiver<T>
• Cell<T>
• RefCell<T>

!Send + Sync

These types are safe to access (via shared references) from multiple threads, but they cannot
be moved to another thread:

• MutexGuard<T: Sync>: Uses OS level primitives which must be deallocated on the
thread which created them. However, an already-locked mutex can have its guarded
variable read by any thread with which the guard is shared.

357

https://doc.rust-lang.org/std/marker/trait.Sync.html

!Send + !Sync

These types are not thread-safe and cannot be moved to other threads:

• Rc<T>: each Rc<T> has a reference to an RcBox<T>, which contains a non-atomic
reference count.

• *const T, *mut T: Rust assumes raw pointers may have special concurrency consider-
ations.

358

Chapter 61

Shared State

This segment should take about 30 minutes. It contains:

Slide Duration

Arc 5 minutes
Mutex 15 minutes
Example 10 minutes

61.1 Arc

Arc<T> allows shared, read-only ownership via Arc::clone:

use std::sync::Arc;
use std::thread;

/// A struct that prints which thread drops it.
#[derive(Debug)]
struct WhereDropped(Vec<i32>);

impl Drop for WhereDropped {
fn drop(&mut self) {

println!("Dropped by {:?}", thread::current().id())
}

}

fn main() {
let v = Arc::new(WhereDropped(vec![10, 20, 30]));
let mut handles = Vec::new();
for i in 0..5 {

let v = Arc::clone(&v);
handles.push(thread::spawn(move || {

// Sleep for 0-500ms.
std::thread::sleep(std::time::Duration::from_millis(500 - i * 100));
let thread_id = thread::current().id();

359

https://doc.rust-lang.org/std/sync/struct.Arc.html

println!("{thread_id:?}: {v:?}");
}));

}

// Now only the spawned threads will hold clones of `v`.
drop(v);

// When the last spawned thread finishes, it will drop `v`'s contents.
handles.into_iter().for_each(|h| h.join().unwrap());

}

This slide should take about 5 minutes.

• Arc stands for ”Atomic Reference Counted”, a thread safe version of Rc that uses atomic
operations.

• Arc<T> implements Clone whether or not T does. It implements Send and Sync if and
only if T implements them both.

• Arc::clone() has the cost of atomic operations that get executed, but after that the
use of the T is free.

• Beware of reference cycles, Arc does not use a garbage collector to detect them.
– std::sync::Weak can help.

61.2 Mutex

Mutex<T> ensures mutual exclusion and allows mutable access to T behind a read-only
interface (another form of interior mutability):

use std::sync::Mutex;

fn main() {
let v = Mutex::new(vec![10, 20, 30]);
println!("v: {:?}", v.lock().unwrap());

{
let mut guard = v.lock().unwrap();
guard.push(40);

}

println!("v: {:?}", v.lock().unwrap());
}

Notice how we have a impl<T: Send> Sync for Mutex<T> blanket implementation.

This slide should take about 14 minutes.

• Mutex in Rust looks like a collection with just one element --- the protected data.
– It is not possible to forget to acquire the mutex before accessing the protected data.

• You can get an &mut T from an &Mutex<T> by taking the lock. The MutexGuard ensures
that the &mut T doesn't outlive the lock being held.

• Mutex<T> implements both Send and Sync if and only if T implements Send.
• A read-write lock counterpart: RwLock.
• Why does lock() return a Result?

360

https://doc.rust-lang.org/std/sync/struct.Mutex.html
https://doc.rust-lang.org/std/sync/struct.Mutex.html#impl-Sync-for-Mutex%3CT%3E

– If the thread that held the Mutex panicked, the Mutex becomes ”poisoned” to signal
that the data it protected might be in an inconsistent state. Calling lock() on a
poisoned mutex fails with a PoisonError. You can call into_inner() on the error
to recover the data regardless.

61.3 Example

Let us see Arc and Mutex in action:

use std::thread;
// use std::sync::{Arc, Mutex};

fn main() {
let v = vec![10, 20, 30];
let mut handles = Vec::new();
for i in 0..5 {

handles.push(thread::spawn(|| {
v.push(10 * i);
println!("v: {v:?}");

}));
}

handles.into_iter().for_each(|h| h.join().unwrap());
}

This slide should take about 8 minutes.

Possible solution:

use std::sync::{Arc, Mutex};
use std::thread;

fn main() {
let v = Arc::new(Mutex::new(vec![10, 20, 30]));
let mut handles = Vec::new();
for i in 0..5 {

let v = Arc::clone(&v);
handles.push(thread::spawn(move || {

let mut v = v.lock().unwrap();
v.push(10 * i);
println!("v: {v:?}");

}));
}

handles.into_iter().for_each(|h| h.join().unwrap());
}

Notable parts:

• v is wrapped in both Arc and Mutex, because their concerns are orthogonal.
– Wrapping a Mutex in an Arc is a common pattern to share mutable state between

threads.

361

https://doc.rust-lang.org/std/sync/struct.PoisonError.html

• v: Arc<_> needs to be cloned to make a new reference for each new spawned thread.
Note move was added to the lambda signature.

• Blocks are introduced to narrow the scope of the LockGuard as much as possible.

362

Chapter 62

Exercises

This segment should take about 1 hour and 10 minutes. It contains:

Slide Duration

Dining Philosophers 20 minutes
Multi-threaded Link Checker 20 minutes
Solutions 30 minutes

62.1 Dining Philosophers

The dining philosophers problem is a classic problem in concurrency:

Five philosophers dine together at the same table. Each philosopher has their
own place at the table. There is a chopstick between each plate. The dish served
is spaghetti which requires two chopsticks to eat. Each philosopher can only
alternately think and eat. Moreover, a philosopher can only eat their spaghetti
when they have both a left and right chopstick. Thus two chopsticks will only
be available when their two nearest neighbors are thinking, not eating. After an
individual philosopher finishes eating, they will put down both chopsticks.

You will need a local Cargo installation for this exercise. Copy the code below to a file called
src/main.rs, fill out the blanks, and test that cargo run does not deadlock:

use std::sync::{Arc, Mutex, mpsc};
use std::thread;
use std::time::Duration;

struct Chopstick;

struct Philosopher {
name: String,
// left_chopstick: ...
// right_chopstick: ...
// thoughts: ...

}

363

impl Philosopher {
fn think(&self) {

self.thoughts
.send(format!("Eureka! {} has a new idea!", &self.name))
.unwrap();

}

fn eat(&self) {
// Pick up chopsticks...
println!("{} is eating...", &self.name);
thread::sleep(Duration::from_millis(10));

}
}

static PHILOSOPHERS: &[&str] =
&["Socrates", "Hypatia", "Plato", "Aristotle", "Pythagoras"];

fn main() {
// Create chopsticks

// Create philosophers

// Make each of them think and eat 100 times

// Output their thoughts
}

You can use the following Cargo.toml:

[package]
name = "dining-philosophers"
version = "0.1.0"
edition = "2024"

This slide should take about 20 minutes.

• Encourage students to focus first on implementing a solution that ”mostly” works.
• The deadlock in the simplest solution is a general concurrency problem and highlights

that Rust does not automatically prevent this sort of bug.

62.2 Multi-threaded Link Checker

Let us use our new knowledge to create a multi-threaded link checker. It should start at a
webpage and check that links on the page are valid. It should recursively check other pages
on the same domain and keep doing this until all pages have been validated.

For this, you will need an HTTP client such as reqwest. You will also need a way to find links,
we can use scraper. Finally, we'll need some way of handling errors, we will use thiserror.

Create a new Cargo project and reqwest it as a dependency with:

cargo new link-checker

364

https://docs.rs/reqwest/
https://docs.rs/scraper/
https://docs.rs/thiserror/

cd link-checker
cargo add --features blocking,rustls-tls reqwest
cargo add scraper
cargo add thiserror

If cargo add fails with error: no such subcommand, then please edit the
Cargo.toml file by hand. Add the dependencies listed below.

The cargo add calls will update the Cargo.toml file to look like this:

[package]
name = "link-checker"
version = "0.1.0"
edition = "2024"
publish = false

[dependencies]
reqwest = { version = "0.11.12", features = ["blocking", "rustls-tls"] }
scraper = "0.13.0"
thiserror = "1.0.37"

You can now download the start page. Try with a small site such ashttps://www.google.org/.

Your src/main.rs file should look something like this:

use reqwest::Url;
use reqwest::blocking::Client;
use scraper::{Html, Selector};
use thiserror::Error;

#[derive(Error, Debug)]
enum Error {

#[error("request error: {0}")]
ReqwestError(#[from] reqwest::Error),
#[error("bad http response: {0}")]
BadResponse(String),

}

#[derive(Debug)]
struct CrawlCommand {

url: Url,
extract_links: bool,

}

fn visit_page(client: &Client, command: &CrawlCommand) -> Result<Vec<Url>, Error> {
println!("Checking {:#}", command.url);
let response = client.get(command.url.clone()).send()?;
if !response.status().is_success() {

return Err(Error::BadResponse(response.status().to_string()));
}

let mut link_urls = Vec::new();
if !command.extract_links {

return Ok(link_urls);

365

}

let base_url = response.url().to_owned();
let body_text = response.text()?;
let document = Html::parse_document(&body_text);

let selector = Selector::parse("a").unwrap();
let href_values = document

.select(&selector)

.filter_map(|element| element.value().attr("href"));
for href in href_values {

match base_url.join(href) {
Ok(link_url) => {

link_urls.push(link_url);
}
Err(err) => {

println!("On {base_url:#}: ignored unparsable {href:?}: {err}");
}

}
}
Ok(link_urls)

}

fn main() {
let client = Client::new();
let start_url = Url::parse("https://www.google.org").unwrap();
let crawl_command = CrawlCommand{ url: start_url, extract_links: true };
match visit_page(&client, &crawl_command) {

Ok(links) => println!("Links: {links:#?}"),
Err(err) => println!("Could not extract links: {err:#}"),

}
}

Run the code in src/main.rs with

cargo run

Tasks

• Use threads to check the links in parallel: send the URLs to be checked to a channel and
let a few threads check the URLs in parallel.

• Extend this to recursively extract links from all pages on the www.google.org domain.
Put an upper limit of 100 pages or so so that you don't end up being blocked by the site.

This slide should take about 20 minutes.

• This is a complex exercise and intended to give students an opportunity to work on a
larger project than others. A success condition for this exercise is to get stuck on some
”real” issue and work through it with the support of other students or the instructor.

366

62.3 Solutions

Dining Philosophers

use std::sync::{Arc, Mutex, mpsc};
use std::thread;
use std::time::Duration;

struct Chopstick;

struct Philosopher {
name: String,
left_chopstick: Arc<Mutex<Chopstick>>,
right_chopstick: Arc<Mutex<Chopstick>>,
thoughts: mpsc::SyncSender<String>,

}

impl Philosopher {
fn think(&self) {

self.thoughts
.send(format!("Eureka! {} has a new idea!", &self.name))
.unwrap();

}

fn eat(&self) {
println!("{} is trying to eat", &self.name);
let _left = self.left_chopstick.lock().unwrap();
let _right = self.right_chopstick.lock().unwrap();

println!("{} is eating...", &self.name);
thread::sleep(Duration::from_millis(10));

}
}

static PHILOSOPHERS: &[&str] =
&["Socrates", "Hypatia", "Plato", "Aristotle", "Pythagoras"];

fn main() {
let (tx, rx) = mpsc::sync_channel(10);

let chopsticks = PHILOSOPHERS
.iter()
.map(|_| Arc::new(Mutex::new(Chopstick)))
.collect::<Vec<_>>();

for i in 0..chopsticks.len() {
let tx = tx.clone();
let mut left_chopstick = Arc::clone(&chopsticks[i]);
let mut right_chopstick =

Arc::clone(&chopsticks[(i + 1) % chopsticks.len()]);

367

// To avoid a deadlock, we have to break the symmetry
// somewhere. This will swap the chopsticks without deinitializing
// either of them.
if i == chopsticks.len() - 1 {

std::mem::swap(&mut left_chopstick, &mut right_chopstick);
}

let philosopher = Philosopher {
name: PHILOSOPHERS[i].to_string(),
thoughts: tx,
left_chopstick,
right_chopstick,

};

thread::spawn(move || {
for _ in 0..100 {

philosopher.eat();
philosopher.think();

}
});

}

drop(tx);
for thought in rx {

println!("{thought}");
}

}

Link Checker

use std::sync::{Arc, Mutex, mpsc};
use std::thread;

use reqwest::Url;
use reqwest::blocking::Client;
use scraper::{Html, Selector};
use thiserror::Error;

#[derive(Error, Debug)]
enum Error {

#[error("request error: {0}")]
ReqwestError(#[from] reqwest::Error),
#[error("bad http response: {0}")]
BadResponse(String),

}

#[derive(Debug)]
struct CrawlCommand {

url: Url,
extract_links: bool,

}

368

fn visit_page(client: &Client, command: &CrawlCommand) -> Result<Vec<Url>, Error> {
println!("Checking {:#}", command.url);
let response = client.get(command.url.clone()).send()?;
if !response.status().is_success() {

return Err(Error::BadResponse(response.status().to_string()));
}

let mut link_urls = Vec::new();
if !command.extract_links {

return Ok(link_urls);
}

let base_url = response.url().to_owned();
let body_text = response.text()?;
let document = Html::parse_document(&body_text);

let selector = Selector::parse("a").unwrap();
let href_values = document

.select(&selector)

.filter_map(|element| element.value().attr("href"));
for href in href_values {

match base_url.join(href) {
Ok(link_url) => {

link_urls.push(link_url);
}
Err(err) => {

println!("On {base_url:#}: ignored unparsable {href:?}: {err}");
}

}
}
Ok(link_urls)

}

struct CrawlState {
domain: String,
visited_pages: std::collections::HashSet<String>,

}

impl CrawlState {
fn new(start_url: &Url) -> CrawlState {

let mut visited_pages = std::collections::HashSet::new();
visited_pages.insert(start_url.as_str().to_string());
CrawlState { domain: start_url.domain().unwrap().to_string(), visited_pages }

}

/// Determine whether links within the given page should be extracted.
fn should_extract_links(&self, url: &Url) -> bool {

let Some(url_domain) = url.domain() else {
return false;

};

369

url_domain == self.domain
}

/// Mark the given page as visited, returning false if it had already
/// been visited.
fn mark_visited(&mut self, url: &Url) -> bool {

self.visited_pages.insert(url.as_str().to_string())
}

}

type CrawlResult = Result<Vec<Url>, (Url, Error)>;
fn spawn_crawler_threads(

command_receiver: mpsc::Receiver<CrawlCommand>,
result_sender: mpsc::Sender<CrawlResult>,
thread_count: u32,

) {
// To multiplex the non-cloneable Receiver, wrap it in Arc<Mutex<_>>.
let command_receiver = Arc::new(Mutex::new(command_receiver));

for _ in 0..thread_count {
let result_sender = result_sender.clone();
let command_receiver = Arc::clone(&command_receiver);
thread::spawn(move || {

let client = Client::new();
loop {

let command_result = {
let receiver_guard = command_receiver.lock().unwrap();
receiver_guard.recv()

};
let Ok(crawl_command) = command_result else {

// The sender got dropped. No more commands coming in.
break;

};
let crawl_result = match visit_page(&client, &crawl_command) {

Ok(link_urls) => Ok(link_urls),
Err(error) => Err((crawl_command.url, error)),

};
result_sender.send(crawl_result).unwrap();

}
});

}
}

fn control_crawl(
start_url: Url,
command_sender: mpsc::Sender<CrawlCommand>,
result_receiver: mpsc::Receiver<CrawlResult>,

) -> Vec<Url> {
let mut crawl_state = CrawlState::new(&start_url);
let start_command = CrawlCommand { url: start_url, extract_links: true };
command_sender.send(start_command).unwrap();

370

let mut pending_urls = 1;

let mut bad_urls = Vec::new();
while pending_urls > 0 {

let crawl_result = result_receiver.recv().unwrap();
pending_urls -= 1;

match crawl_result {
Ok(link_urls) => {

for url in link_urls {
if crawl_state.mark_visited(&url) {

let extract_links = crawl_state.should_extract_links(&url);
let crawl_command = CrawlCommand { url, extract_links };
command_sender.send(crawl_command).unwrap();
pending_urls += 1;

}
}

}
Err((url, error)) => {

bad_urls.push(url);
println!("Got crawling error: {:#}", error);
continue;

}
}

}
bad_urls

}

fn check_links(start_url: Url) -> Vec<Url> {
let (result_sender, result_receiver) = mpsc::channel::<CrawlResult>();
let (command_sender, command_receiver) = mpsc::channel::<CrawlCommand>();
spawn_crawler_threads(command_receiver, result_sender, 16);
control_crawl(start_url, command_sender, result_receiver)

}

fn main() {
let start_url = reqwest::Url::parse("https://www.google.org").unwrap();
let bad_urls = check_links(start_url);
println!("Bad URLs: {:#?}", bad_urls);

}

371

Part XIV

Concurrency: Afternoon

372

Chapter 63

Welcome

”Async” is a concurrency model where multiple tasks are executed concurrently by executing
each task until it would block, then switching to another task that is ready to make progress.
The model allows running a larger number of tasks on a limited number of threads. This is
because the per-task overhead is typically very low and operating systems provide primitives
for efficiently identifying I/O that is able to proceed.

Rust's asynchronous operation is based on ”futures”, which represent work that may be
completed in the future. Futures are ”polled” until they signal that they are complete.

Futures are polled by an async runtime, and several different runtimes are available.

Comparisons

• Python has a similar model in its asyncio. However, its Future type is callback-based,
and not polled. Async Python programs require a ”loop”, similar to a runtime in Rust.

• JavaScript's Promise is similar, but again callback-based. The language runtime imple-
ments the event loop, so many of the details of Promise resolution are hidden.

Schedule

Including 10 minute breaks, this session should take about 3 hours and 30 minutes. It contains:

Segment Duration

Async Basics 40 minutes
Channels and Control Flow 20 minutes
Pitfalls 55 minutes
Exercises 1 hour and 10 minutes

373

Chapter 64

Async Basics

This segment should take about 40 minutes. It contains:

Slide Duration

async/await 10 minutes
Futures 4 minutes
State Machine 10 minutes
Runtimes 10 minutes
Tasks 10 minutes

64.1 async/await

At a high level, async Rust code looks very much like ”normal” sequential code:

use futures::executor::block_on;

async fn count_to(count: i32) {
for i in 0..count {

println!("Count is: {i}!");
}

}

async fn async_main(count: i32) {
count_to(count).await;

}

fn main() {
block_on(async_main(10));

}

This slide should take about 6 minutes.

Key points:

374

• Note that this is a simplified example to show the syntax. There is no long running
operation or any real concurrency in it!

• The ”async” keyword is syntactic sugar. The compiler replaces the return type with a
future.

• You cannot make main async, without additional instructions to the compiler on how to
use the returned future.

• You need an executor to run async code. block_on blocks the current thread until the
provided future has run to completion.

• .await asynchronously waits for the completion of another operation. Unlike
block_on, .await doesn't block the current thread.

• .await can only be used inside an async function (or block; these are introduced later).

64.2 Futures

Future is a trait, implemented by objects that represent an operation that may not be complete
yet. A future can be polled, and poll returns a Poll.

use std::pin::Pin;
use std::task::Context;

pub trait Future {
type Output;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output>;

}

pub enum Poll<T> {
Ready(T),
Pending,

}

An async function returns an impl Future. It's also possible (but uncommon) to implement
Future for your own types. For example, the JoinHandle returned from tokio::spawn
implements Future to allow joining to it.

The .await keyword, applied to a Future, causes the current async function to pause until
that Future is ready, and then evaluates to its output.

This slide should take about 4 minutes.

• The Future and Poll types are implemented exactly as shown; click the links to show
the implementations in the docs.

• Context allows a Future to schedule itself to be polled again when an event such as a
timeout occurs.

• Pin ensures that the Future isn't moved in memory, so that pointers into that future
remain valid. This is required to allow references to remain valid after an .await. We
will address Pin in the ”Pitfalls” segment.

375

https://doc.rust-lang.org/std/future/trait.Future.html
https://doc.rust-lang.org/std/task/enum.Poll.html

64.3 State Machine

Rust transforms an async function or block to a hidden type that implements Future, using
a state machine to track the function's progress. The details of this transform are complex,
but it helps to have a schematic understanding of what is happening. The following function

/// Sum two D10 rolls plus a modifier.
async fn two_d10(modifier: u32) -> u32 {

let first_roll = roll_d10().await;
let second_roll = roll_d10().await;
first_roll + second_roll + modifier

}

is transformed to something like

use std::future::Future;
use std::pin::Pin;
use std::task::{Context, Poll};

/// Sum two D10 rolls plus a modifier.
fn two_d10(modifier: u32) -> TwoD10 {

TwoD10::Init { modifier }
}

enum TwoD10 {
// Function has not begun yet.
Init { modifier: u32 },
// Waiting for first `.await` to complete.
FirstRoll { modifier: u32, fut: RollD10Future },
// Waiting for second `.await` to complete.
SecondRoll { modifier: u32, first_roll: u32, fut: RollD10Future },

}

impl Future for TwoD10 {
type Output = u32;
fn poll(mut self: Pin<&mut Self>, ctx: &mut Context) -> Poll<Self::Output> {

loop {
match *self {

TwoD10::Init { modifier } => {
// Create future for first dice roll.
let fut = roll_d10();
*self = TwoD10::FirstRoll { modifier, fut };

}
TwoD10::FirstRoll { modifier, ref mut fut } => {

// Poll sub-future for first dice roll.
if let Poll::Ready(first_roll) = fut.poll(ctx) {

// Create future for second roll.
let fut = roll_d10();
*self = TwoD10::SecondRoll { modifier, first_roll, fut };

} else {
return Poll::Pending;

}

376

}
TwoD10::SecondRoll { modifier, first_roll, ref mut fut } => {

// Poll sub-future for second dice roll.
if let Poll::Ready(second_roll) = fut.poll(ctx) {

return Poll::Ready(first_roll + second_roll + modifier);
} else {

return Poll::Pending;
}

}
}

}
}

}

This slide should take about 10 minutes.

This example is illustrative, and isn't an accurate representation of the Rust compiler's
transformation. The important things to notice here are:

• Calling an async function does nothing but construct and return a future.
• All local variables are stored in the function's future, using an enum to identify where

execution is currently suspended.
• An .await in the async function is translated into an a new state containing all live

variables and the awaited future. The loop then handles that updated state, polling the
future until it returns Poll::Ready.

• Execution continues eagerly until a Poll::Pending occurs. In this simple example,
every future is ready immediately.

• main contains a naïve executor, which just busy-loops until the future is ready. We will
discuss real executors shortly.

More to Explore

Imagine the Future data structure for a deeply nested stack of async functions. Each
function's Future contains the Future structures for the functions it calls. This can result in
unexpectedly large compiler-generated Future types.

This also means that recursive async functions are challenging. Compare to the common
error of building recursive type, such as

enum LinkedList<T> {
Node { value: T, next: LinkedList<T> },
Nil,

}

The fix for a recursive type is to add a layer of indrection, such as with Box. Similarly, a
recursive async function must box the recursive future:

async fn count_to(n: u32) {
if n > 0 {

Box::pin(count_to(n - 1)).await;
println!("{n}");

}
}

377

64.4 Runtimes

A runtime provides support for performing operations asynchronously (a reactor) and is
responsible for executing futures (an executor). Rust does not have a ”built-in” runtime, but
several options are available:

• Tokio: performant, with a well-developed ecosystem of functionality like Hyper for
HTTP or Tonic for gRPC.

• smol: simple and lightweight

Several larger applications have their own runtimes. For example, Fuchsia already has one.

This slide and its sub-slides should take about 10 minutes.

• Note that of the listed runtimes, only Tokio is supported in the Rust playground. The
playground also does not permit any I/O, so most interesting async things can't run in
the playground.

• Futures are ”inert” in that they do not do anything (not even start an I/O operation)
unless there is an executor polling them. This differs from JS Promises, for example,
which will run to completion even if they are never used.

64.4.1 Tokio

Tokio provides:

• A multi-threaded runtime for executing asynchronous code.
• An asynchronous version of the standard library.
• A large ecosystem of libraries.

use tokio::time;

async fn count_to(count: i32) {
for i in 0..count {

println!("Count in task: {i}!");
time::sleep(time::Duration::from_millis(5)).await;

}
}

#[tokio::main]
async fn main() {

tokio::spawn(count_to(10));

for i in 0..5 {
println!("Main task: {i}");
time::sleep(time::Duration::from_millis(5)).await;

}
}

• With the tokio::main macro we can now make main async.

• The spawn function creates a new, concurrent ”task”.

• Note: spawn takes a Future, you don't call .await on count_to.

Further exploration:

378

https://tokio.rs/
https://hyper.rs/
https://github.com/hyperium/tonic
https://docs.rs/smol/latest/smol/
https://fuchsia.googlesource.com/fuchsia/+/refs/heads/main/src/lib/fuchsia-async/src/lib.rs

• Why does count_to not (usually) get to 10? This is an example of async cancellation.
tokio::spawn returns a handle which can be awaited to wait until it finishes.

• Try count_to(10).await instead of spawning.

• Try awaiting the task returned from tokio::spawn.

64.5 Tasks

Rust has a task system, which is a form of lightweight threading.

A task has a single top-level future which the executor polls to make progress. That future
may have one or more nested futures that its poll method polls, corresponding loosely to a
call stack. Concurrency within a task is possible by polling multiple child futures, such as
racing a timer and an I/O operation.

use tokio::io::{self, AsyncReadExt, AsyncWriteExt};
use tokio::net::TcpListener;

#[tokio::main]
async fn main() -> io::Result<()> {

let listener = TcpListener::bind("127.0.0.1:0").await?;
println!("listening on port {}", listener.local_addr()?.port());

loop {
let (mut socket, addr) = listener.accept().await?;

println!("connection from {addr:?}");

tokio::spawn(async move {
socket.write_all(b"Who are you?\n").await.expect("socket error");

let mut buf = vec![0; 1024];
let name_size = socket.read(&mut buf).await.expect("socket error");
let name = std::str::from_utf8(&buf[..name_size]).unwrap().trim();
let reply = format!("Thanks for dialing in, {name}!\n");
socket.write_all(reply.as_bytes()).await.expect("socket error");

});
}

}

This slide should take about 6 minutes.

Copy this example into your prepared src/main.rs and run it from there.

Try connecting to it with a TCP connection tool like nc or telnet.

• Ask students to visualize what the state of the example server would be with a few
connected clients. What tasks exist? What are their Futures?

• This is the first time we've seen an async block. This is similar to a closure, but does
not take any arguments. Its return value is a Future, similar to an async fn.

• Refactor the async block into a function, and improve the error handling using ?.

379

https://www.unix.com/man-page/linux/1/nc/
https://www.unix.com/man-page/linux/1/telnet/

Chapter 65

Channels and Control Flow

This segment should take about 20 minutes. It contains:

Slide Duration

Async Channels 10 minutes
Join 4 minutes
Select 5 minutes

65.1 Async Channels

Several crates have support for asynchronous channels. For instance tokio:

use tokio::sync::mpsc;

async fn ping_handler(mut input: mpsc::Receiver<()>) {
let mut count: usize = 0;

while let Some(_) = input.recv().await {
count += 1;
println!("Received {count} pings so far.");

}

println!("ping_handler complete");
}

#[tokio::main]
async fn main() {

let (sender, receiver) = mpsc::channel(32);
let ping_handler_task = tokio::spawn(ping_handler(receiver));
for i in 0..10 {

sender.send(()).await.expect("Failed to send ping.");
println!("Sent {} pings so far.", i + 1);

}

380

drop(sender);
ping_handler_task.await.expect("Something went wrong in ping handler task.");

}

This slide should take about 8 minutes.

• Change the channel size to 3 and see how it affects the execution.

• Overall, the interface is similar to the sync channels as seen in the morning class.

• Try removing the std::mem::drop call. What happens? Why?

• The Flume crate has channels that implement both sync and async send and recv.
This can be convenient for complex applications with both IO and heavy CPU processing
tasks.

• What makes working with async channels preferable is the ability to combine them
with other futures to combine them and create complex control flow.

65.2 Join

A join operation waits until all of a set of futures are ready, and returns a collection of their
results. This is similar to Promise.all in JavaScript or asyncio.gather in Python.

use anyhow::Result;
use futures::future;
use reqwest;
use std::collections::HashMap;

async fn size_of_page(url: &str) -> Result<usize> {
let resp = reqwest::get(url).await?;
Ok(resp.text().await?.len())

}

#[tokio::main]
async fn main() {

let urls: [&str; 4] = [
"https://google.com",
"https://httpbin.org/ip",
"https://play.rust-lang.org/",
"BAD_URL",

];
let futures_iter = urls.into_iter().map(size_of_page);
let results = future::join_all(futures_iter).await;
let page_sizes_dict: HashMap<&str, Result<usize>> =

urls.into_iter().zip(results.into_iter()).collect();
println!("{page_sizes_dict:?}");

}

This slide should take about 4 minutes.

Copy this example into your prepared src/main.rs and run it from there.

• For multiple futures of disjoint types, you can use std::future::join! but you must
know how many futures you will have at compile time. This is currently in the futures

381

https://docs.rs/flume/latest/flume/

crate, soon to be stabilised in std::future.

• The risk of join is that one of the futures may never resolve, this would cause your
program to stall.

• You can also combine join_all with join! for instance to join all requests to an http
service as well as a database query. Try adding a tokio::time::sleep to the future,
using futures::join!. This is not a timeout (that requires select!, explained in the
next chapter), but demonstrates join!.

65.3 Select

A select operation waits until any of a set of futures is ready, and responds to that
future's result. In JavaScript, this is similar to Promise.race. In Python, it compares to
asyncio.wait(task_set, return_when=asyncio.FIRST_COMPLETED).

Similar to a match statement, the body of select! has a number of arms, each of the
form pattern = future => statement. When a future is ready, its return value is de-
structured by the pattern. The statement is then run with the resulting variables. The
statement result becomes the result of the select! macro.

use tokio::sync::mpsc;
use tokio::time::{Duration, sleep};

#[tokio::main]
async fn main() {

let (tx, mut rx) = mpsc::channel(32);
let listener = tokio::spawn(async move {

tokio::select! {
Some(msg) = rx.recv() => println!("got: {msg}"),
_ = sleep(Duration::from_millis(50)) => println!("timeout"),

};
});
sleep(Duration::from_millis(10)).await;
tx.send(String::from("Hello!")).await.expect("Failed to send greeting");

listener.await.expect("Listener failed");
}

This slide should take about 5 minutes.

• The listener async block here is a common form: wait for some async event, or for a
timeout. Change the sleep to sleep longer to see it fail. Why does the send also fail in
this situation?

• select! is also often used in a loop in ”actor” architectures, where a task reacts to
events in a loop. That has some pitfalls, which will be discussed in the next segment.

382

Chapter 66

Pitfalls

Async / await provides convenient and efficient abstraction for concurrent asynchronous
programming. However, the async/await model in Rust also comes with its share of pitfalls
and footguns. We illustrate some of them in this chapter.

This segment should take about 55 minutes. It contains:

Slide Duration

Blocking the Executor 10 minutes
Pin 20 minutes
Async Traits 5 minutes
Cancellation 20 minutes

66.1 Blocking the executor

Most async runtimes only allow IO tasks to run concurrently. This means that CPU block-
ing tasks will block the executor and prevent other tasks from being executed. An easy
workaround is to use async equivalent methods where possible.

use futures::future::join_all;
use std::time::Instant;

async fn sleep_ms(start: &Instant, id: u64, duration_ms: u64) {
std::thread::sleep(std::time::Duration::from_millis(duration_ms));
println!(

"future {id} slept for {duration_ms}ms, finished after {}ms",
start.elapsed().as_millis()

);
}

#[tokio::main(flavor = "current_thread")]
async fn main() {

let start = Instant::now();
let sleep_futures = (1..=10).map(|t| sleep_ms(&start, t, t * 10));

383

join_all(sleep_futures).await;
}

This slide should take about 10 minutes.

• Run the code and see that the sleeps happen consecutively rather than concurrently.

• The "current_thread" flavor puts all tasks on a single thread. This makes the effect
more obvious, but the bug is still present in the multi-threaded flavor.

• Switch the std::thread::sleep to tokio::time::sleep and await its result.

• Another fix would be to tokio::task::spawn_blocking which spawns an actual
thread and transforms its handle into a future without blocking the executor.

• You should not think of tasks as OS threads. They do not map 1 to 1 and most
executors will allow many tasks to run on a single OS thread. This is particularly
problematic when interacting with other libraries via FFI, where that library might
depend on thread-local storage or map to specific OS threads (e.g., CUDA). Prefer
tokio::task::spawn_blocking in such situations.

• Use sync mutexes with care. Holding a mutex over an .await may cause another task
to block, and that task may be running on the same thread.

66.2 Pin

Recall an async function or block creates a type implementing Future and containing all
of the local variables. Some of those variables can hold references (pointers) to other local
variables. To ensure those remain valid, the future can never be moved to a different memory
location.

To prevent moving the future type in memory, it can only be polled through a pinned pointer.
Pin is a wrapper around a reference that disallows all operations that would move the
instance it points to into a different memory location.

use tokio::sync::{mpsc, oneshot};
use tokio::task::spawn;
use tokio::time::{Duration, sleep};

// A work item. In this case, just sleep for the given time and respond
// with a message on the `respond_on` channel.
#[derive(Debug)]
struct Work {

input: u32,
respond_on: oneshot::Sender<u32>,

}

// A worker which listens for work on a queue and performs it.
async fn worker(mut work_queue: mpsc::Receiver<Work>) {

let mut iterations = 0;
loop {

tokio::select! {
Some(work) = work_queue.recv() => {

sleep(Duration::from_millis(10)).await; // Pretend to work.

384

work.respond_on
.send(work.input * 1000)
.expect("failed to send response");

iterations += 1;
}
// TODO: report number of iterations every 100ms

}
}

}

// A requester which requests work and waits for it to complete.
async fn do_work(work_queue: &mpsc::Sender<Work>, input: u32) -> u32 {

let (tx, rx) = oneshot::channel();
work_queue

.send(Work { input, respond_on: tx })

.await

.expect("failed to send on work queue");
rx.await.expect("failed waiting for response")

}

#[tokio::main]
async fn main() {

let (tx, rx) = mpsc::channel(10);
spawn(worker(rx));
for i in 0..100 {

let resp = do_work(&tx, i).await;
println!("work result for iteration {i}: {resp}");

}
}

This slide should take about 20 minutes.

• You may recognize this as an example of the actor pattern. Actors typically call select!
in a loop.

• This serves as a summation of a few of the previous lessons, so take your time with it.

– Naively add a_ = sleep(Duration::from_millis(100)) => { println!(..)
} to the select!. This will never execute. Why?

– Instead, add a timeout_fut containing that future outside of the loop:

let timeout_fut = sleep(Duration::from_millis(100));
loop {

select! {
..,
_ = timeout_fut => { println!(..); },

}
}

– This still doesn't work. Follow the compiler errors, adding &mut to the timeout_fut
in the select! to work around the move, then using Box::pin:

let mut timeout_fut = Box::pin(sleep(Duration::from_millis(100)));
loop {

385

select! {
..,
_ = &mut timeout_fut => { println!(..); },

}
}

– This compiles, but once the timeout expires it is Poll::Ready on every iteration
(a fused future would help with this). Update to reset timeout_fut every time it
expires:

let mut timeout_fut = Box::pin(sleep(Duration::from_millis(100)));
loop {

select! {
_ = &mut timeout_fut => {

println!(..);
timeout_fut = Box::pin(sleep(Duration::from_millis(100)));

},
}

}

• Box allocates on the heap. In some cases, std::pin::pin! (only recently stabilized,
with older code often using tokio::pin!) is also an option, but that is difficult to use
for a future that is reassigned.

• Another alternative is to not use pin at all but spawn another task that will send to a
oneshot channel every 100ms.

• Data that contains pointers to itself is called self-referential. Normally, the Rust borrow
checker would prevent self-referential data from being moved, as the references cannot
outlive the data they point to. However, the code transformation for async blocks and
functions is not verified by the borrow checker.

• Pin is a wrapper around a reference. An object cannot be moved from its place using a
pinned pointer. However, it can still be moved through an unpinned pointer.

• The poll method of the Future trait uses Pin<&mut Self> instead of &mut Self to
refer to the instance. That's why it can only be called on a pinned pointer.

66.3 Async Traits

Async methods in traits were stabilized in the 1.75 release. This required support for using
return-position impl Trait in traits, as the desugaring for async fn includes -> impl
Future<Output = ...>.

However, even with the native support, there are some pitfalls around async fn:

• Return-position impl Trait captures all in-scope lifetimes (so some patterns of bor-
rowing cannot be expressed).

• Async traits cannot be used with trait objects (dyn Trait support).

The async_trait crate provides a workaround for dyn support through a macro, with some
caveats:

use async_trait::async_trait;
use std::time::Instant;

386

https://docs.rs/async-trait/

use tokio::time::{Duration, sleep};

#[async_trait]
trait Sleeper {

async fn sleep(&self);
}

struct FixedSleeper {
sleep_ms: u64,

}

#[async_trait]
impl Sleeper for FixedSleeper {

async fn sleep(&self) {
sleep(Duration::from_millis(self.sleep_ms)).await;

}
}

async fn run_all_sleepers_multiple_times(
sleepers: Vec<Box<dyn Sleeper>>,
n_times: usize,

) {
for _ in 0..n_times {

println!("Running all sleepers...");
for sleeper in &sleepers {

let start = Instant::now();
sleeper.sleep().await;
println!("Slept for {} ms", start.elapsed().as_millis());

}
}

}

#[tokio::main]
async fn main() {

let sleepers: Vec<Box<dyn Sleeper>> = vec![
Box::new(FixedSleeper { sleep_ms: 50 }),
Box::new(FixedSleeper { sleep_ms: 100 }),

];
run_all_sleepers_multiple_times(sleepers, 5).await;

}

This slide should take about 5 minutes.

• async_trait is easy to use, but note that it's using heap allocations to achieve this. This
heap allocation has performance overhead.

• The challenges in language support for async trait are too deep to describe in-depth
in this class. See this blog post by Niko Matsakis if you are interested in digging deeper.
See also these keywords:

– RPIT: short for return-position impl Trait.
– RPITIT: short for return-position impl Trait in trait (RPIT in trait).

387

https://smallcultfollowing.com/babysteps/blog/2019/10/26/async-fn-in-traits-are-hard/
https://doc.rust-lang.org/reference/types/impl-trait.html#abstract-return-types
https://blog.rust-lang.org/2023/12/21/async-fn-rpit-in-traits.html

• Try creating a new sleeper struct that will sleep for a random amount of time and adding
it to the Vec.

66.4 Cancellation

Dropping a future implies it can never be polled again. This is called cancellation and it can
occur at any await point. Care is needed to ensure the system works correctly even when
futures are cancelled. For example, it shouldn't deadlock or lose data.

use std::io;
use std::time::Duration;
use tokio::io::{AsyncReadExt, AsyncWriteExt, DuplexStream};

struct LinesReader {
stream: DuplexStream,

}

impl LinesReader {
fn new(stream: DuplexStream) -> Self {

Self { stream }
}

async fn next(&mut self) -> io::Result<Option<String>> {
let mut bytes = Vec::new();
let mut buf = [0];
while self.stream.read(&mut buf[..]).await? != 0 {

bytes.push(buf[0]);
if buf[0] == b'\n' {

break;
}

}
if bytes.is_empty() {

return Ok(None);
}
let s = String::from_utf8(bytes)

.map_err(|_| io::Error::new(io::ErrorKind::InvalidData, "not UTF-8"))?;
Ok(Some(s))

}
}

async fn slow_copy(source: String, mut dest: DuplexStream) -> io::Result<()> {
for b in source.bytes() {

dest.write_u8(b).await?;
tokio::time::sleep(Duration::from_millis(10)).await

}
Ok(())

}

#[tokio::main]
async fn main() -> io::Result<()> {

388

let (client, server) = tokio::io::duplex(5);
let handle = tokio::spawn(slow_copy("hi\nthere\n".to_owned(), client));

let mut lines = LinesReader::new(server);
let mut interval = tokio::time::interval(Duration::from_millis(60));
loop {

tokio::select! {
_ = interval.tick() => println!("tick!"),
line = lines.next() => if let Some(l) = line? {

print!("{}", l)
} else {

break
},

}
}
handle.await.unwrap()?;
Ok(())

}

This slide should take about 18 minutes.

• The compiler doesn't help with cancellation-safety. You need to read API documentation
and consider what state your async fn holds.

• Unlike panic and ?, cancellation is part of normal control flow (vs error-handling).

• The example loses parts of the string.

– Whenever the tick() branch finishes first, next() and its buf are dropped.

– LinesReader can be made cancellation-safe by making buf part of the struct:

struct LinesReader {
stream: DuplexStream,
bytes: Vec<u8>,
buf: [u8; 1],

}

impl LinesReader {
fn new(stream: DuplexStream) -> Self {

Self { stream, bytes: Vec::new(), buf: [0] }
}
async fn next(&mut self) -> io::Result<Option<String>> {

// prefix buf and bytes with self.
// ...
let raw = std::mem::take(&mut self.bytes);
let s = String::from_utf8(raw)

.map_err(|_| io::Error::new(io::ErrorKind::InvalidData, "not UTF-8"))?;
// ...

}
}

• Interval::tick is cancellation-safe because it keeps track of whether a tick has been
'delivered'.

389

https://docs.rs/tokio/latest/tokio/time/struct.Interval.html#method.tick

• AsyncReadExt::read is cancellation-safe because it either returns or doesn't read data.

• AsyncBufReadExt::read_line is similar to the example and isn't cancellation-safe.
See its documentation for details and alternatives.

390

https://docs.rs/tokio/latest/tokio/io/trait.AsyncReadExt.html#method.read
https://docs.rs/tokio/latest/tokio/io/trait.AsyncBufReadExt.html#method.read_line

Chapter 67

Exercises

This segment should take about 1 hour and 10 minutes. It contains:

Slide Duration

Dining Philosophers 20 minutes
Broadcast Chat Application 30 minutes
Solutions 20 minutes

67.1 Dining Philosophers --- Async

See dining philosophers for a description of the problem.

As before, you will need a local Cargo installation for this exercise. Copy the code below to a
file called src/main.rs, fill out the blanks, and test that cargo run does not deadlock:

use std::sync::Arc;
use tokio::sync::{Mutex, mpsc};
use tokio::time;

struct Chopstick;

struct Philosopher {
name: String,
// left_chopstick: ...
// right_chopstick: ...
// thoughts: ...

}

impl Philosopher {
async fn think(&self) {

self.thoughts
.send(format!("Eureka! {} has a new idea!", &self.name))
.await
.unwrap();

391

}

async fn eat(&self) {
// Keep trying until we have both chopsticks
println!("{} is eating...", &self.name);
time::sleep(time::Duration::from_millis(5)).await;

}
}

// tokio scheduler doesn't deadlock with 5 philosophers, so have 2.
static PHILOSOPHERS: &[&str] = &["Socrates", "Hypatia"];

#[tokio::main]
async fn main() {

// Create chopsticks

// Create philosophers

// Make them think and eat

// Output their thoughts
}

Since this time you are using Async Rust, you'll need a tokio dependency. You can use the
following Cargo.toml:

[package]
name = "dining-philosophers-async-dine"
version = "0.1.0"
edition = "2024"

[dependencies]
tokio = { version = "1.26.0", features = ["sync", "time", "macros", "rt-multi-thread"] }

Also note that this time you have to use the Mutex and the mpsc module from the tokio crate.

This slide should take about 20 minutes.

• Can you make your implementation single-threaded?

67.2 Broadcast Chat Application

In this exercise, we want to use our new knowledge to implement a broadcast chat application.
We have a chat server that the clients connect to and publish their messages. The client reads
user messages from the standard input, and sends them to the server. The chat server
broadcasts each message that it receives to all the clients.

For this, we use a broadcast channel on the server, and tokio_websockets for the commu-
nication between the client and the server.

Create a new Cargo project and add the following dependencies:

Cargo.toml:

392

https://docs.rs/tokio/latest/tokio/sync/broadcast/fn.channel.html
https://docs.rs/tokio-websockets/

[package]
name = "chat-async"
version = "0.1.0"
edition = "2024"

[dependencies]
futures-util = { version = "0.3.31", features = ["sink"] }
http = "1.3.1"
tokio = { version = "1.48.0", features = ["full"] }
tokio-websockets = { version = "0.13.0", features = ["client", "fastrand", "server", "sha1_smol"] }

The required APIs

You are going to need the following functions from tokio and tokio_websockets. Spend a
few minutes to familiarize yourself with the API.

• StreamExt::next() implemented by WebSocketStream: for asynchronously reading
messages from a Websocket Stream.

• SinkExt::send() implemented by WebSocketStream: for asynchronously sending mes-
sages on a Websocket Stream.

• Lines::next_line(): for asynchronously reading user messages from the standard input.
• Sender::subscribe(): for subscribing to a broadcast channel.

Two binaries

Normally in a Cargo project, you can have only one binary, and one src/main.rs file. In this
project, we need two binaries. One for the client, and one for the server. You could potentially
make them two separate Cargo projects, but we are going to put them in a single Cargo project
with two binaries. For this to work, the client and the server code should go under src/bin
(see the documentation).

Copy the following server and client code intosrc/bin/server.rs andsrc/bin/client.rs,
respectively. Your task is to complete these files as described below.

src/bin/server.rs:

use futures_util::sink::SinkExt;
use futures_util::stream::StreamExt;
use std::error::Error;
use std::net::SocketAddr;
use tokio::net::{TcpListener, TcpStream};
use tokio::sync::broadcast::{Sender, channel};
use tokio_websockets::{Message, ServerBuilder, WebSocketStream};

async fn handle_connection(
addr: SocketAddr,
mut ws_stream: WebSocketStream<TcpStream>,
bcast_tx: Sender<String>,

) -> Result<(), Box<dyn Error + Send + Sync>> {

// TODO: For a hint, see the description of the task below.

393

https://docs.rs/tokio-websockets/
https://docs.rs/futures-util/0.3.28/futures_util/stream/trait.StreamExt.html#method.next
https://docs.rs/futures-util/0.3.28/futures_util/sink/trait.SinkExt.html#method.send
https://docs.rs/tokio/latest/tokio/io/struct.Lines.html#method.next_line
https://docs.rs/tokio/latest/tokio/sync/broadcast/struct.Sender.html#method.subscribe
https://doc.rust-lang.org/cargo/reference/cargo-targets.html#binaries

}

#[tokio::main]
async fn main() -> Result<(), Box<dyn Error + Send + Sync>> {

let (bcast_tx, _) = channel(16);

let listener = TcpListener::bind("127.0.0.1:2000").await?;
println!("listening on port 2000");

loop {
let (socket, addr) = listener.accept().await?;
println!("New connection from {addr:?}");
let bcast_tx = bcast_tx.clone();
tokio::spawn(async move {

// Wrap the raw TCP stream into a websocket.
let (_req, ws_stream) = ServerBuilder::new().accept(socket).await?;

handle_connection(addr, ws_stream, bcast_tx).await
});

}
}

src/bin/client.rs:

use futures_util::SinkExt;
use futures_util::stream::StreamExt;
use http::Uri;
use tokio::io::{AsyncBufReadExt, BufReader};
use tokio_websockets::{ClientBuilder, Message};

#[tokio::main]
async fn main() -> Result<(), tokio_websockets::Error> {

let (mut ws_stream, _) =
ClientBuilder::from_uri(Uri::from_static("ws://127.0.0.1:2000"))

.connect()

.await?;

let stdin = tokio::io::stdin();
let mut stdin = BufReader::new(stdin).lines();

// TODO: For a hint, see the description of the task below.

}

Running the binaries

Run the server with:

cargo run --bin server

and the client with:

394

cargo run --bin client

Tasks

• Implement the handle_connection function in src/bin/server.rs.
– Hint: Use tokio::select! for concurrently performing two tasks in a continuous

loop. One task receives messages from the client and broadcasts them. The other
sends messages received by the server to the client.

• Complete the main function in src/bin/client.rs.
– Hint: As before, use tokio::select! in a continuous loop for concurrently per-

forming two tasks: (1) reading user messages from standard input and sending
them to the server, and (2) receiving messages from the server, and displaying them
for the user.

• Optional: Once you are done, change the code to broadcast messages to all clients, but
the sender of the message.

67.3 Solutions

Dining Philosophers --- Async

use std::sync::Arc;
use tokio::sync::{Mutex, mpsc};
use tokio::time;

struct Chopstick;

struct Philosopher {
name: String,
left_chopstick: Arc<Mutex<Chopstick>>,
right_chopstick: Arc<Mutex<Chopstick>>,
thoughts: mpsc::Sender<String>,

}

impl Philosopher {
async fn think(&self) {

self.thoughts
.send(format!("Eureka! {} has a new idea!", &self.name))
.await
.unwrap();

}

async fn eat(&self) {
// Keep trying until we have both chopsticks
// Pick up chopsticks...
let _left_chopstick = self.left_chopstick.lock().await;
let _right_chopstick = self.right_chopstick.lock().await;

println!("{} is eating...", &self.name);
time::sleep(time::Duration::from_millis(5)).await;

395

// The locks are dropped here
}

}

// tokio scheduler doesn't deadlock with 5 philosophers, so have 2.
static PHILOSOPHERS: &[&str] = &["Socrates", "Hypatia"];

#[tokio::main]
async fn main() {

// Create chopsticks
let mut chopsticks = vec![];
PHILOSOPHERS

.iter()

.for_each(|_| chopsticks.push(Arc::new(Mutex::new(Chopstick))));

// Create philosophers
let (philosophers, mut rx) = {

let mut philosophers = vec![];
let (tx, rx) = mpsc::channel(10);
for (i, name) in PHILOSOPHERS.iter().enumerate() {

let mut left_chopstick = Arc::clone(&chopsticks[i]);
let mut right_chopstick =

Arc::clone(&chopsticks[(i + 1) % PHILOSOPHERS.len()]);
if i == PHILOSOPHERS.len() - 1 {

std::mem::swap(&mut left_chopstick, &mut right_chopstick);
}
philosophers.push(Philosopher {

name: name.to_string(),
left_chopstick,
right_chopstick,
thoughts: tx.clone(),

});
}
(philosophers, rx)
// tx is dropped here, so we don't need to explicitly drop it later

};

// Make them think and eat
for phil in philosophers {

tokio::spawn(async move {
for _ in 0..100 {

phil.think().await;
phil.eat().await;

}
});

}

// Output their thoughts
while let Some(thought) = rx.recv().await {

println!("Here is a thought: {thought}");
}

396

}

Broadcast Chat Application

src/bin/server.rs:

use futures_util::sink::SinkExt;
use futures_util::stream::StreamExt;
use std::error::Error;
use std::net::SocketAddr;
use tokio::net::{TcpListener, TcpStream};
use tokio::sync::broadcast::{Sender, channel};
use tokio_websockets::{Message, ServerBuilder, WebSocketStream};

async fn handle_connection(
addr: SocketAddr,
mut ws_stream: WebSocketStream<TcpStream>,
bcast_tx: Sender<String>,

) -> Result<(), Box<dyn Error + Send + Sync>> {

ws_stream
.send(Message::text("Welcome to chat! Type a message".to_string()))
.await?;

let mut bcast_rx = bcast_tx.subscribe();

// A continuous loop for concurrently performing two tasks: (1) receiving
// messages from `ws_stream` and broadcasting them, and (2) receiving
// messages on `bcast_rx` and sending them to the client.
loop {

tokio::select! {
incoming = ws_stream.next() => {

match incoming {
Some(Ok(msg)) => {

if let Some(text) = msg.as_text() {
println!("From client {addr:?} {text:?}");
bcast_tx.send(text.into())?;

}
}
Some(Err(err)) => return Err(err.into()),
None => return Ok(()),

}
}
msg = bcast_rx.recv() => {

ws_stream.send(Message::text(msg?)).await?;
}

}
}

}

#[tokio::main]
async fn main() -> Result<(), Box<dyn Error + Send + Sync>> {

397

let (bcast_tx, _) = channel(16);

let listener = TcpListener::bind("127.0.0.1:2000").await?;
println!("listening on port 2000");

loop {
let (socket, addr) = listener.accept().await?;
println!("New connection from {addr:?}");
let bcast_tx = bcast_tx.clone();
tokio::spawn(async move {

// Wrap the raw TCP stream into a websocket.
let (_req, ws_stream) = ServerBuilder::new().accept(socket).await?;

handle_connection(addr, ws_stream, bcast_tx).await
});

}
}

src/bin/client.rs:

use futures_util::SinkExt;
use futures_util::stream::StreamExt;
use http::Uri;
use tokio::io::{AsyncBufReadExt, BufReader};
use tokio_websockets::{ClientBuilder, Message};

#[tokio::main]
async fn main() -> Result<(), tokio_websockets::Error> {

let (mut ws_stream, _) =
ClientBuilder::from_uri(Uri::from_static("ws://127.0.0.1:2000"))

.connect()

.await?;

let stdin = tokio::io::stdin();
let mut stdin = BufReader::new(stdin).lines();

// Continuous loop for concurrently sending and receiving messages.
loop {

tokio::select! {
incoming = ws_stream.next() => {

match incoming {
Some(Ok(msg)) => {

if let Some(text) = msg.as_text() {
println!("From server: {}", text);

}
},
Some(Err(err)) => return Err(err),
None => return Ok(()),

}
}
res = stdin.next_line() => {

match res {

398

Ok(None) => return Ok(()),
Ok(Some(line)) => ws_stream.send(Message::text(line.to_string())).await?,
Err(err) => return Err(err.into()),

}
}

}
}

}

399

Part XV

Idiomatic Rust

400

Chapter 68

Welcome to Idiomatic Rust

Rust Fundamentals introduced Rust syntax and core concepts. We now want to go one step
further: how do you use Rust effectively in your projects? What does idiomatic Rust look like?

This course is opinionated: we will nudge you towards some patterns, and away from others.
Nonetheless, we do recognize that some projects may have different needs. We always
provide the necessary information to help you make informed decisions within the context
and constraints of your own projects.

 This course is under active development.

The material may change frequently and there might be errors that have not yet
been spotted. Nonetheless, we encourage you to browse through and provide early
feedback!

Schedule

Including 10 minute breaks, this session should take about 5 hours and 5 minutes. It contains:

Segment Duration

Leveraging the Type System 5 hours and 5 minutes

The course will cover the topics listed below. Each topic may be covered in one or more slides,
depending on its complexity and relevance.

Foundations of API design

• Golden rule: prioritize clarity and readability at the callsite. People will spend much
more time reading the call sites than declarations of the functions being called.

• Make your API predictable
– Follow naming conventions (case conventions, prefer vocabulary precedented

in the standard library - e.g., methods should be called ”push” not ”push_back”,
”is_empty” not ”empty” etc.)

401

– Know the vocabulary types and traits in the standard library, and use them in your
APIs. If something feels like a basic type/algorithm, check in the standard library
first.

– Use well-established API design patterns that we will discuss later in this class (e.g.,
newtype, owned/view type pairs, error handling)

• Write meaningful and effective doc comments (e.g., don't merely repeat the method
name with spaces instead of underscores, don't repeat the same information just to fill
out every markdown tag, provide usage examples)

Leveraging the type system

• Short recap on enums, structs and type aliases
• Newtype pattern and encapsulation: parse, don't validate
• Extension traits: avoid the newtype pattern when you want to provide additional

behaviour
• RAII, scope guards and drop bombs: using Drop to clean up resources, trigger actions

or enforce invariants
• ”Token” types: force users to prove they've performed a specific action
• The typestate pattern: enforce correct state transitions at compile-time
• Using the borrow checker to enforce invariants that have nothing to do with memory

ownership
– OwnedFd/BorrowedFd in the standard library
– Branded types

Don't fight the borrow checker

• ”Owned” types and ”view” types: &str and String, Path and PathBuf, etc.
• Don't hide ownership requirements: avoid hidden .clone(), learn to love Cow
• Split types along ownership boundaries
• Structure your ownership hierarchy like a tree
• Strategies to manage circular dependencies: reference counting, using indexes instead

of references
• Interior mutability (Cell, RefCell)
• Working with lifetime parameters on user-defined data types

Polymorphism in Rust

• A quick refresher on traits and generic functions
• Rust has no inheritance: what are the implications?

– Using enums for polymorphism
– Using traits for polymorphism
– Using composition
– How do I pick the most appropriate pattern?

• Working with generics
– Generic type parameter in a function or trait object as an argument?
– Trait bounds don't have to refer to the generic parameter
– Type parameters in traits: should it be a generic parameter or an associated type?

• Macros: a valuable tool to DRY up code when traits are not enough (or too complex)

402

https://plv.mpi-sws.org/rustbelt/ghostcell/paper.pdf

Error Handling

• What is the purpose of errors? Recovery vs. reporting.
• Result vs. Option
• Designing good errors:

– Determine the error scope.
– Capture additional context as the error flows upwards, crossing scope boundaries.
– Leverage the Error trait to keep track of the full error chain.
– Leverage thiserror to reduce boilerplate when defining error types.
– anyhow

• Distinguish fatal errors from recoverable errors using Result<Result<T,
RecoverableError>, FatalError>.

403

Chapter 69

Leveraging the Type System

Rust's type system is expressive: you can use types and traits to build abstractions that make
your code harder to misuse.

In some cases, you can go as far as enforcing correctness at compile-time, with no runtime
overhead.

Types and traits can model concepts and constraints from your business domain. With careful
design, you can improve the clarity and maintainability of the entire codebase.

This slide should take about 5 minutes.

Additional items speaker may mention:

• Rust's type system borrows a lot of ideas from functional programming languages.

For example, Rust's enums are known as ”algebraic data types” in languages like Haskell
and OCaml. You can take inspiration from learning material geared towards functional
languages when looking for guidance on how to design with types. ”Domain Modeling
Made Functional” is a great resource on the topic, with examples written in F#.

• Despite Rust's functional roots, not all functional design patterns can be easily translated
to Rust.

For example, you must have a solid grasp on a broad selection of advanced topics to
design APIs that leverage higher-order functions and higher-kinded types in Rust.

Evaluate, on a case-by-case basis, whether a more imperative approach may be easier
to implement. Consider using in-place mutation, relying on Rust's borrow-checker and
type system to control what can be mutated, and where.

• The same caution should be applied to object-oriented design patterns. Rust doesn't
support inheritance, and object decomposition should take into account the constraints
introduced by the borrow checker.

• Mention that type-level programming can be often used to create ”zero-cost abstractions”,
although the label can be misleading: the impact on compile times and code complexity
may be significant.

This segment should take about 5 hours and 5 minutes. It contains:

404

https://pragprog.com/titles/swdddf/domain-modeling-made-functional/
https://pragprog.com/titles/swdddf/domain-modeling-made-functional/

Slide Duration

Leveraging the Type System 5 minutes
Newtype Pattern 20 minutes
Extension Traits 1 hour and 5 minutes
Typestate Pattern 30 minutes
Borrow checking invariants 1 hour and 30 minutes
Token Types 1 hour and 35 minutes

69.1 Newtype Pattern

A newtype is a wrapper around an existing type, often a primitive:

/// A unique user identifier, implemented as a newtype around `u64`.
pub struct UserId(u64);

Unlike type aliases, newtypes aren't interchangeable with the wrapped type:

fn double(n: u64) -> u64 {
n * 2

}

double(UserId(1)); //

The Rust compiler won't let you use methods or operators defined on the underlying type
either:

assert_ne!(UserId(1), UserId(2)); //

This slide and its sub-slides should take about 20 minutes.

• Students should have encountered the newtype pattern in the ”Fundamentals” course,
when they learned about tuple structs.

• Run the example to show students the error message from the compiler.

• Modify the example to use a typealias instead of a newtype, such as type MessageId =
u64. The modified example should compile, thus highlighting the differences between
the two approaches.

• Stress that newtypes, out of the box, have no behaviour attached to them. You need to
be intentional about which methods and operators you are willing to forward from the
underlying type. In our UserId example, it is reasonable to allow comparisons between
UserIds, but it wouldn't make sense to allow arithmetic operations like addition or
subtraction.

69.1.1 Semantic Confusion

When a function takes multiple arguments of the same type, call sites are unclear:

pub fn login(username: &str, password: &str) -> Result<(), LoginError> {
// [...]

}

// In another part of the codebase, we swap arguments by mistake.

405

// Bug (best case), security vulnerability (worst case)
login(password, username);

The newtype pattern can prevent this class of errors at compile time:

pub struct Username(String);
pub struct Password(String);

pub fn login(username: &Username, password: &Password) -> Result<(), LoginError> {
// [...]

}

login(password, username); //

• Run both examples to show students the successful compilation for the original example,
and the compiler error returned by the modified example.

• Stress the semantic angle. The newtype pattern should be leveraged to use distinct types
for distinct concepts, thus ruling out this class of errors entirely.

• Nonetheless, note that there are legitimate scenarios where a function may take mul-
tiple arguments of the same type. In those scenarios, if correctness is of paramount
importance, consider using a struct with named fields as input:

pub struct LoginArguments<'a> {
pub username: &'a str,
pub password: &'a str,

}

// No need to check the definition of the `login` function to spot the issue.
login(LoginArguments {

username: password,
password: username,

})

Users are forced, at the callsite, to assign values to each field, thus increasing the likeli-
hood of spotting bugs.

69.1.2 Parse, Don't Validate

The newtype pattern can be leveraged to enforce invariants.

pub struct Username(String);

impl Username {
pub fn new(username: String) -> Result<Self, InvalidUsername> {

if username.is_empty() {
return Err(InvalidUsername::CannotBeEmpty)

}
if username.len() > 32 {

return Err(InvalidUsername::TooLong { len: username.len() })
}
// Other validation checks...
Ok(Self(username))

}

406

pub fn as_str(&self) -> &str {
&self.0

}
}

• The newtype pattern, combined with Rust's module and visibility system, can be used
to guarantee that instances of a given type satisfy a set of invariants.

In the example above, the raw String stored inside the Username struct can't be ac-
cessed directly from other modules or crates, since it's not marked as pub or pub(in
...). Consumers of the Username type are forced to use the new method to create in-
stances. In turn, new performs validation, thus ensuring that all instances of Username
satisfy those checks.

• The as_str method allows consumers to access the raw string representation (e.g., to
store it in a database). However, consumers can't modify the underlying value since
&str, the returned type, restricts them to read-only access.

• Type-level invariants have second-order benefits.

The input is validated once, at the boundary, and the rest of the program can rely on the
invariants being upheld. We can avoid redundant validation and ”defensive program-
ming” checks throughout the program, reducing noise and improving performance.

69.1.3 Is It Truly Encapsulated?

You must evaluate the entire API surface exposed by a newtype to determine if invariants
are indeed bullet-proof. It is crucial to consider all possible interactions, including trait
implementations, that may allow users to bypass validation checks.

pub struct Username(String);

impl Username {
pub fn new(username: String) -> Result<Self, InvalidUsername> {

// Validation checks...
Ok(Self(username))

}
}

impl std::ops::DerefMut for Username { // ‼
fn deref_mut(&mut self) -> &mut Self::Target {

&mut self.0
}

}

• DerefMut allows users to get a mutable reference to the wrapped value.

The mutable reference can be used to modify the underlying data in ways that may
violate the invariants enforced by Username::new!

• When auditing the API surface of a newtype, you can narrow down the review scope to
methods and traits that provide mutable access to the underlying data.

• Remind students of privacy boundaries.

407

In particular, functions and methods defined in the same module of the newtype can
access its underlying data directly. If possible, move the newtype definition to its own
separate module to reduce the scope of the audit.

69.2 Extension Traits

It may desirable to extend foreign types with new inherent methods. For example, allow your
code to check if a string is a palindrome using method-calling syntax: s.is_palindrome().

It might feel natural to reach out for an impl block:

//
impl &'_ str {

pub fn is_palindrome(&self) -> bool {
self.chars().eq(self.chars().rev())

}
}

The Rust compiler won't allow it, though. But you can use the extension trait pattern to
work around this limitation.

This slide and its sub-slides should take about 65 minutes.

• A Rust item (be it a trait or a type) is referred to as:

– foreign, if it isn't defined in the current crate
– local, if it is defined in the current crate

The distinction has significant implications for coherence and orphan rules, as we'll get
a chance to explore in this section of the course.

• Compile the example to show the compiler error that's emitted.

Highlight how the compiler error message nudges you towards the extension trait
pattern.

• Explain how many type-system restrictions in Rust aim to prevent ambiguity.

What would happen if you were allowed to define new inherent methods on foreign
types? Different crates in your dependency tree might end up defining different methods
on the same foreign type with the same name.

As soon as there is room for ambiguity, there must be a way to disambiguate. If disam-
biguation happens implicitly, it can lead to surprising or otherwise unexpected behavior.
If disambiguation happens explicitly, it can increase the cognitive load on developers
who are reading your code.

Furthermore, every time a crate defines a new inherent method on a foreign type, it
may cause compilation errors in your code, as you may be forced to introduce explicit
disambiguation.

Rust has decided to avoid the issue altogether by forbidding the definition of new
inherent methods on foreign types.

• Other languages (e.g, Kotlin, C#, Swift) allow adding methods to existing types, often
called ”extension methods.” This leads to different trade-offs in terms of potential ambi-
guities and the need for global reasoning.

408

https://doc.rust-lang.org/stable/reference/items/implementations.html#r-items.impl.trait.orphan-rule

69.2.1 Extending Foreign Types

An extension trait is a local trait definition whose primary purpose is to attach new methods
to foreign types.

mod ext {
pub trait StrExt {

fn is_palindrome(&self) -> bool;
}

impl StrExt for &str {
fn is_palindrome(&self) -> bool {

self.chars().eq(self.chars().rev())
}

}
}

// Bring the extension trait into scope...
pub use ext::StrExt as _;
// ...then invoke its methods as if they were inherent methods
assert!("dad".is_palindrome());
assert!(!"grandma".is_palindrome());

• The Ext suffix is conventionally attached to the name of extension traits.

It communicates that the trait is primarily used for extension purposes, and it is therefore
not intended to be implemented outside the crate that defines it.

Refer to the ”Extension Trait” RFC as the authoritative source for naming conventions.

• The extension trait implementation for a foreign type must be in the same crate as the
trait itself, otherwise you'll be blocked by Rust's orphan rule.

• The extension trait must be in scope when its methods are invoked.

Comment out the use statement in the example to show the compiler error that's emitted
if you try to invoke an extension method without having the corresponding extension
trait in scope.

• The example above uses an underscore import (use ext::StringExt as _) to mini-
mize the likelihood of a naming conflict with other imported traits.

With an underscore import, the trait is considered to be in scope and you're allowed to
invoke its methods on types that implement the trait. Its symbol, instead, is not directly
accessible. This prevents you, for example, from using that trait in a where clause.

Since extension traits aren't meant to be used in where clauses, they are conventionally
imported via an underscore import.

69.2.2 Method Resolution Conflicts

What happens when you have a name conflict between an inherent method and an extension
method?

mod ext {
pub trait CountOnesExt {

409

https://rust-lang.github.io/rfcs/0445-extension-trait-conventions.html
https://github.com/rust-lang/rfcs/blob/master/text/2451-re-rebalancing-coherence.md#what-is-coherence-and-why-do-we-care
https://doc.rust-lang.org/stable/reference/items/use-declarations.html#r-items.use.as-underscore

fn count_ones(&self) -> u32;
}

impl CountOnesExt for i32 {
fn count_ones(&self) -> u32 {

let value = *self;
(0..32).filter(|i| ((value >> i) & 1i32) == 1).count() as u32

}
}

}
fn main() {

pub use ext::CountOnesExt;
// Which `count_ones` method is invoked?
// The one from `CountOnesExt`? Or the inherent one from `i32`?
assert_eq!((-1i32).count_ones(), 32);

}

• A foreign type may, in a newer version, add a new inherent method with the same name
as our extension method.

Ask: What will happen in the example above? Will there be a compiler error? Will one
of the two methods be given higher priority? Which one?

Add a panic!("Extension trait"); in the body of CountOnesExt::count_ones to
clarify which method is being invoked.

• To prevent users of the Rust language from having to manually specify which method to
use in all cases, there is a priority ordering system for how methods get ”picked” first:

– Immutable (&self) first

* Inherent (method defined in the type's impl block) before Trait (method added
by a trait impl).

– Mutable (&mut self) Second

* Inherent before Trait.

If every method with the same name has different mutability and was either defined in
as an inherent method or trait method, with no overlap, this makes the job easy for the
compiler.

This does introduce some ambiguity for the user, who may be confused as to why a
method they're relying on is not producing expected behavior. Avoid name conflicts
instead of relying on this mechanism if you can.

Demonstrate: Change the signature and implementation ofCountOnesExt::count_ones
to fn count_ones(&mut self) -> u32 and modify the invocation accordingly:

assert_eq!((&mut -1i32).count_ones(), 32);

CountOnesExt::count_ones is invoked, rather than the inherent method, since &mut
self has a higher priority than &self, the one used by the inherent method.

If an immutable inherent method and a mutable trait method exist for the same type,
we can specify which one to use at the call site by using (&<value>).count_ones() to
get the immutable (higher priority) method or (&mut <value>).count_ones()

Point the students to the Rust reference for more information on method resolution.

410

https://doc.rust-lang.org/stable/reference/expressions/method-call-expr.html

• Avoid naming conflicts between extension trait methods and inherent methods. Rust's
method resolution algorithm is complex and may surprise users of your code.

More to explore

• The interaction between the priority search used by Rust's method resolution algorithm
and automatic Derefing can be used to emulate specialization on the stable toolchain,
primarily in the context of macro-generated code. Check out ”Autoref Specialization”
for the specific details.

69.2.3 Trait Method Conflicts

What happens when you have a name conflict between two different trait methods imple-
mented for the same type?

mod ext {
pub trait Ext1 {

fn is_palindrome(&self) -> bool;
}

pub trait Ext2 {
fn is_palindrome(&self) -> bool;

}

impl Ext1 for &str {
fn is_palindrome(&self) -> bool {

self.chars().eq(self.chars().rev())
}

}

impl Ext2 for &str {
fn is_palindrome(&self) -> bool {

self.chars().eq(self.chars().rev())
}

}
}

pub use ext::{Ext1, Ext2};

// Which method is invoked?
// The one from `Ext1`? Or the one from `Ext2`?
fn main() {

assert!("dad".is_palindrome());
}

• The trait you are extending may, in a newer version, add a new trait method with the
same name as your extension method. Or another extension trait for the same type may
define a method with a name that conflicts with your own extension method.

Ask: what will happen in the example above? Will there be a compiler error? Will one
of the two methods be given higher priority? Which one?

411

https://github.com/rust-lang/rust/issues/31844
https://github.com/dtolnay/case-studies/blob/master/autoref-specialization/README.md

• The compiler rejects the code because it cannot determine which method to invoke.
Neither Ext1 nor Ext2 has a higher priority than the other.

To resolve this conflict, you must specify which trait you want to use.

Demonstrate: callExt1::is_palindrome(&"dad") orExt2::is_palindrome(&"dad")
instead of "dad".is_palindrome().

For methods with more complex signatures, you may need to use a more explicit fully-
qualified syntax.

• Demonstrate: replace"dad".is_palindrome()with<&str as Ext1>::is_palindrome(&"dad")
or <&str as Ext2>::is_palindrome(&"dad").

69.2.4 Extending Other Traits

As with types, it may be desirable to extend foreign traits. In particular, to attach new
methods to all implementors of a given trait.

mod ext {
use std::fmt::Display;

pub trait DisplayExt {
fn quoted(&self) -> String;

}

impl<T: Display> DisplayExt for T {
fn quoted(&self) -> String {

format!("'{}'", self)
}

}
}

pub use ext::DisplayExt as _;

assert_eq!("dad".quoted(), "'dad'");
assert_eq!(4.quoted(), "'4'");
assert_eq!(true.quoted(), "'true'");

• Highlight how we added new behavior to multiple types at once. .quoted() can be
called on string slices, numbers, and booleans since they all implement the Display
trait.

This flavor of the extension trait pattern uses blanket implementations.

A blanket implementation implements a trait for all types T that satisfy the trait bounds
specified in the impl block. In this case, the only requirement is that T implements the
Display trait.

• Draw the students' attention to the implementation of DisplayExt::quoted: we can't
make any assumptions about T other than that it implements Display. All our logic
must either use methods from Display or functions/macros that don't require other
traits.

For example, we can call format! with T, but can't call .to_uppercase() because it is
not necessarily a String.

412

https://doc.rust-lang.org/reference/expressions/call-expr.html#disambiguating-function-calls
https://doc.rust-lang.org/reference/expressions/call-expr.html#disambiguating-function-calls
https://doc.rust-lang.org/stable/reference/glossary.html#blanket-implementation

We could introduce additional trait bounds on T, but it would restrict the set of types
that can leverage the extension trait.

• Conventionally, the extension trait is named after the trait it extends, followed by the
Ext suffix. In the example above, DisplayExt.

• There are entire crates that extend standard library traits with new functionality.

– itertools crate provides the Itertools trait that extends Iterator. It adds
many iterator adapters, such as interleave and unique. It provides new algorith-
mic building blocks for iterator pipelines built with method chaining.

– futures crate provides the FutureExt trait, which extends the Future trait with
new combinators and helper methods.

More To Explore

• Extension traits can be used by libraries to distinguish between stable and experimental
methods.

Stable methods are part of the trait definition.

Experimental methods are provided via an extension trait defined in a different library,
with a less restrictive stability policy. Some utility methods are then ”promoted” to
the core trait definition once they have been proven useful and their design has been
refined.

• Extension traits can be used to split a dyn-incompatible trait in two:

– A dyn-compatible core, restricted to the methods that satisfy dyn-compatibility
requirements.

– An extension trait, containing the remaining methods that are not dyn-compatible
(e.g., methods with a generic parameter).

• Concrete types that implement the core trait will be able to invoke all methods, thanks
to the blanket impl for the extension trait. Trait objects (dyn CoreTrait) will be able
to invoke all methods on the core trait as well as those on the extension trait that don't
require Self: Sized.

69.2.5 Should I Define An Extension Trait?

In what scenarios should you prefer an extension trait over a free function?

pub trait StrExt {
fn is_palindrome(&self) -> bool;

}

impl StrExt for &str {
fn is_palindrome(&self) -> bool {

self.chars().eq(self.chars().rev())
}

}

// vs

fn is_palindrome(s: &str) -> bool {

413

https://doc.rust-lang.org/reference/items/traits.html#r-items.traits.dyn-compatible

s.chars().eq(s.chars().rev())
}

The main advantage of extension traits is ease of discovery.

• Extension methods can be easier to discover than free functions. Language servers (e.g.,
rust-analyzer) will suggest them if you type . after an instance of the foreign type.

• However, a bespoke extension trait might be overkill for a single method. Both ap-
proaches require an additional import, and the familiar method syntax may not justify
the boilerplate of a full trait definition.

• Discoverability: Extension methods are easier to discover than free functions. Lan-
guage servers (e.g., rust-analyzer) will suggest them if you type . after an instance
of the foreign type.

• Method Chaining: A major ergonomic win for extension traits is method chain-
ing. This is the foundation of the Iterator trait, allowing for fluent calls like
data.iter().filter(...).map(...). Achieving this with free functions would be
far more cumbersome (map(filter(iter(data), ...), ...)).

• API Cohesion: Extension traits help create a cohesive API. If you have several re-
lated functions for a foreign type (e.g., is_palindrome, word_count, to_kebab_case),
grouping them in a single StrExt trait is often cleaner than having multiple free func-
tions for a user to import.

• Trade-offs: Despite these advantages, a bespoke extension trait might be overkill for a
single, simple function. Both approaches require an additional import, and the familiar
method syntax may not justify the boilerplate of a full trait definition.

69.3 Typestate Pattern: Problem

How can we ensure that only valid operations are allowed on a value based on its current
state?

use std::fmt::Write as _;

#[derive(Default)]
struct Serializer {

output: String,
}

impl Serializer {
fn serialize_struct_start(&mut self, name: &str) {

let _ = writeln!(&mut self.output, "{name} {{");
}

fn serialize_struct_field(&mut self, key: &str, value: &str) {
let _ = writeln!(&mut self.output, " {key}={value};");

}

fn serialize_struct_end(&mut self) {
self.output.push_str("}\n");

}

414

fn finish(self) -> String {
self.output

}
}

fn main() {
let mut serializer = Serializer::default();
serializer.serialize_struct_start("User");
serializer.serialize_struct_field("id", "42");
serializer.serialize_struct_field("name", "Alice");

// serializer.serialize_struct_end(); // ← Oops! Forgotten

println!("{}", serializer.finish());
}

This slide and its sub-slides should take about 30 minutes.

• This Serializer is meant to write a structured value.

• However, in this example we forgot to call serialize_struct_end() before finish().
As a result, the serialized output is incomplete or syntactically incorrect.

• One approach to fix this would be to track internal state manually, and return a Result
from methods like serialize_struct_field() or finish() if the current state is
invalid.

• But this has downsides:

– It is easy to get wrong as an implementer. Rust’s type system cannot help enforce
the correctness of our state transitions.

– It also adds unnecessary burden on the user, who must handle Result values for
operations that are misused in source code rather than at runtime.

• A better solution is to model the valid state transitions directly in the type system.

In the next slide, we will apply the typestate pattern to enforce correct usage at compile
time and make it impossible to call incompatible methods or forget to do a required
action.

69.3.1 Typestate Pattern: Example

The typestate pattern encodes part of a value’s runtime state into its type. This allows us to
prevent invalid or inapplicable operations at compile time.

use std::fmt::Write as _;

#[derive(Default)]
struct Serializer {

output: String,
}

struct SerializeStruct {
serializer: Serializer,

415

}

impl Serializer {
fn serialize_struct(mut self, name: &str) -> SerializeStruct {

writeln!(&mut self.output, "{name} {{").unwrap();
SerializeStruct { serializer: self }

}

fn finish(self) -> String {
self.output

}
}

impl SerializeStruct {
fn serialize_field(mut self, key: &str, value: &str) -> Self {

writeln!(&mut self.serializer.output, " {key}={value};").unwrap();
self

}

fn finish_struct(mut self) -> Serializer {
self.serializer.output.push_str("}\n");
self.serializer

}
}

fn main() {
let serializer = Serializer::default()

.serialize_struct("User")

.serialize_field("id", "42")

.serialize_field("name", "Alice")

.finish_struct();

println!("{}", serializer.finish());
}

Serializer usage flowchart:

+------------+ serialize struct +-----------------+
| Serializer | ------------------> | SerializeStruct | <------+
+------------+ +-----------------+ |

|
| ^ | | |
| | finish struct | | serialize field |
| +-----------------------------+ +------------------+
|
+---> finish

• This example is inspired by Serde’s Serializer trait. Serde uses typestates internally
to ensure serialization follows a valid structure. For more, see: https://serde.rs/impl-
serializer.html

• The key idea behind typestate is that state transitions happen by consuming a value and
producing a new one. At each step, only operations valid for that state are available.

416

https://docs.rs/serde/latest/serde/ser/trait.Serializer.html
https://serde.rs/impl-serializer.html
https://serde.rs/impl-serializer.html

• In this example:

– We begin with a Serializer, which only allows us to start serializing a struct.

– Once we call.serialize_struct(...), ownership moves into aSerializeStruct
value. From that point on, we can only call methods related to serializing struct
fields.

– The original Serializer is no longer accessible — preventing us from mixing
modes (such as starting another struct mid-struct) or calling finish() too early.

– Only after calling .finish_struct() do we receive the Serializer back. At that
point, the output can be finalized or reused.

• If we forget to call finish_struct() and drop the SerializeStruct early, the
Serializer is also dropped. This ensures incomplete output cannot leak into the
system.

• By contrast, if we had implemented everything on Serializer directly — as seen on the
previous slide, nothing would stop someone from skipping important steps or mixing
serialization flows.

69.3.2 Beyond Simple Typestate

How do we manage increasingly complex configuration flows with many possible states and
transitions, while still preventing incompatible operations?

struct Serializer {/* [...] */}
struct SerializeStruct {/* [...] */}
struct SerializeStructProperty {/* [...] */}
struct SerializeList {/* [...] */}

impl Serializer {
// TODO, implement:
//
// fn serialize_struct(self, name: &str) -> SerializeStruct
// fn finish(self) -> String

}

impl SerializeStruct {
// TODO, implement:
//
// fn serialize_property(mut self, name: &str) -> SerializeStructProperty

// TODO,
// How should we finish this struct? This depends on where it appears:
// - At the root level: return `Serializer`
// - As a property inside another struct: return `SerializeStruct`
// - As a value inside a list: return `SerializeList`
//
// fn finish(self) -> ???

}

impl SerializeStructProperty {

417

// TODO, implement:
//
// fn serialize_string(self, value: &str) -> SerializeStruct
// fn serialize_struct(self, name: &str) -> SerializeStruct
// fn serialize_list(self) -> SerializeList
// fn finish(self) -> SerializeStruct

}

impl SerializeList {
// TODO, implement:
//
// fn serialize_string(mut self, value: &str) -> Self
// fn serialize_struct(mut self, value: &str) -> SerializeStruct
// fn serialize_list(mut self) -> SerializeList

// TODO:
// Like `SerializeStruct::finish`, the return type depends on nesting.
//
// fn finish(mut self) -> ???

}

Diagram of valid transitions:

+-----------+ +---------+------------+-----+
| | | | | |
V | V | V |

+ |
serializer --> structure --> property --> list +-+

| | ^ | ^
V | | | |

| +-----------+ |
String | |

+--------------------------+

• Building on our previous serializer, we now want to support nested structures and
lists.

• However, this introduces both duplication and structural complexity.

• Even more critically, we now hit a type system limitation: we cannot cleanly express
what finish() should return without duplicating variants for every nesting context
(e.g. root, struct, list).

• From the diagram of valid transitions, we can observe:

– The transitions are recursive
– The return types depend on where a substructure or list appears
– Each context requires a return path to its parent

• With only concrete types, this becomes unmanageable. Our current approach leads to
an explosion of types and manual wiring.

• In the next chapter, we’ll see how generics let us model recursive flows with less
boilerplate, while still enforcing valid operations at compile time.

418

69.3.3 Typestate Pattern with Generics

By combining typestate modeling with generics, we can express a wider range of valid states
and transitions without duplicating logic. This approach is especially useful when the number
of states grows or when multiple states share behavior but differ in structure.

struct Serializer<S> {
// [...]
indent: usize,
buffer: String,
state: S,

}

struct Root;
struct Struct<S>(S);
struct Property<S>(S);
struct List<S>(S);

We now have all the tools needed to implement the methods for the Serializer and its state
type definitions. This ensures that our API only permits valid transitions, as illustrated in the
following diagram:

Diagram of valid transitions:

+-----------+ +---------+------------+-----+
| | | | | |
V | V | V |

+ |
serializer --> structure --> property --> list +-+

| | ^ | ^
V | | | |

| +-----------+ |
String | |

+--------------------------+

• By leveraging generics to track the parent context, we can construct arbitrarily nested
serializers that enforce valid transitions between struct, list, and property states.

• This enables us to build a recursive structure while maintaining strict control over
which methods are accessible in each state.

• Methods common to all states can be defined for any S in Serializer<S>.

• Marker types (e.g., List<S>) introduce no memory or runtime overhead, as they contain
no data other than a possible Zero-Sized Type. Their only role is to enforce correct API
usage through the type system.

69.3.3.1 Serializer: implement Root

struct Serializer<S> {
// [...]
indent: usize,
buffer: String,
state: S,

419

}

struct Root;
struct Struct<S>(S);

impl Serializer<Root> {
fn new() -> Self {

// [...]
Self { indent: 0, buffer: String::new(), state: Root }

}

fn serialize_struct(mut self, name: &str) -> Serializer<Struct<Root>> {
// [...]
writeln!(self.buffer, "{name} {{").unwrap();
Serializer {

indent: self.indent + 1,
buffer: self.buffer,
state: Struct(self.state),

}
}

fn finish(self) -> String {
// [...]
self.buffer

}
}

Referring back to our original diagram of valid transitions, we can visualize the beginning of
our implementation as follows:

serialize
struct

+---------------------+ --------------> +--------------------------------+
| Serializer [Root] | | Serializer [Struct [Root]] |
+---------------------+ <-------------- +--------------------------------+

finish struct
|
|
|

finish |
V

+--------+
| String |
+--------+

• At the ”root” of our Serializer, the only construct allowed is a Struct.

• The Serializer can only be finalized into a String from this root level.

420

69.3.3.2 Serializer: implement Struct

struct Serializer<S> {
// [...]
indent: usize,
buffer: String,
state: S,

}

struct Struct<S>(S);
struct Property<S>(S);

impl<S> Serializer<Struct<S>> {
fn serialize_property(mut self, name: &str) -> Serializer<Property<Struct<S>>> {

// [...]
write!(self.buffer, "{}{name}: ", " ".repeat(self.indent * 2)).unwrap();
Serializer {

indent: self.indent,
buffer: self.buffer,
state: Property(self.state),

}
}

fn finish_struct(mut self) -> Serializer<S> {
// [...]
self.indent -= 1;
writeln!(self.buffer, "{}}}", " ".repeat(self.indent * 2)).unwrap();
Serializer { indent: self.indent, buffer: self.buffer, state: self.state.0 }

}
}

The diagram can now be expanded as follows:

+------+
finish | |

serialize struct V |
struct

+---------------------+ --------------> +-----------------------------+
| Serializer [Root] | | Serializer [Struct [S]] |
+---------------------+ <-------------- +-----------------------------+

finish struct
| serialize |
| property V
|

finish | +--+
V | Serializer [Property [Struct [S]]] |

+--+
+--------+
| String |
+--------+

• A Struct can only contain a Property;

421

• Finishing a Struct returns control back to its parent, which in our previous slide was
assumed the Root, but in reality however it can be also something else such as Struct
in case of nested ”structs”.

69.3.3.3 Serializer: implement Property

struct Serializer<S> {
// [...]
indent: usize,
buffer: String,
state: S,

}

struct Struct<S>(S);
struct Property<S>(S);
struct List<S>(S);

impl<S> Serializer<Property<Struct<S>>> {
fn serialize_struct(mut self, name: &str) -> Serializer<Struct<Struct<S>>> {

// [...]
writeln!(self.buffer, "{name} {{").unwrap();
Serializer {

indent: self.indent + 1,
buffer: self.buffer,
state: Struct(self.state.0),

}
}

fn serialize_list(mut self) -> Serializer<List<Struct<S>>> {
// [...]
writeln!(self.buffer, "[").unwrap();
Serializer {

indent: self.indent + 1,
buffer: self.buffer,
state: List(self.state.0),

}
}

fn serialize_string(mut self, value: &str) -> Serializer<Struct<S>> {
// [...]
writeln!(self.buffer, "{value},").unwrap();
Serializer { indent: self.indent, buffer: self.buffer, state: self.state.0 }

}
}

With the addition of the Property state methods, our diagram is now nearly complete:

+------+
finish | |

serialize struct V |
struct

+---------------------+ --------------> +-----------------------------+

422

| Serializer [Root] | | Serializer [Struct [S]] |
+---------------------+ <-------------- +-----------------------------+ <-----------+

finish struct |
| serialize | |
| property V serialize |
| string or |

finish | +-------------------------------+ struct |
V | Serializer [Property [S]] | ------------+

+-------------------------------+
+--------+
| String | serialize |
+--------+ list V

+---------------------------+
| Serializer [List [S]] |
+---------------------------+

• A property can be defined as a String, Struct<S>, or List<S>, enabling the represen-
tation of nested structures.

• This concludes the step-by-step implementation. The full implementation, including
support for List<S>, is shown in the next slide.

69.3.3.4 Serializer: complete implementation

Looking back at our original desired flow:

+-----------+ +---------+------------+-----+
| | | | | |
V | V | V |

+ |
serializer --> structure --> property --> list +-+

| | ^ | ^
V | | | |

| +-----------+ |
String | |

+--------------------------+

We can now see this reflected directly in the types of our serializer:

+------+
finish | |

serialize struct V |
struct

+---------------------+ --------------> +-----------------------------+ <---------------+
| Serializer [Root] | | Serializer [Struct [S]] | |
+---------------------+ <-------------- +-----------------------------+ <-----------+ |

finish struct | |
	serialize		
+----------+ property V serialize			
	string or		

finish | | +-------------------------------+ struct | |

423

V | | Serializer [Property [S]] | ------------+ |
finish | +-------------------------------+ |

+--------+ struct | |
| String | | serialize | |
+--------+ | list V |

| finish |
| +---------------------------+ list |
+------> | Serializer [List [S]] | ----------------+

+---------------------------+
serialize
list or string ^

| or finish list |
+-------------------+

The code for the full implementation of the Serializer and all its states can be found in this
Rust playground.

• This pattern isn't a silver bullet. It still allows issues like:

– Empty or invalid property names (which can be fixed using the newtype pattern)
– Duplicate property names (which could be tracked in Struct<S> and handled via
Result)

• If validation failures occur, we can also change method signatures to return a Result,
allowing recovery:

struct PropertySerializeError<S> {
kind: PropertyError,
serializer: Serializer<Struct<S>>,

}

impl<S> Serializer<Struct<S>> {
fn serialize_property(

self,
name: &str,

) -> Result<Serializer<Property<Struct<S>>>, PropertySerializeError<S>> {
/* ... */

}
}

• While this API is powerful, it’s not always ergonomic. Production serializers typically
favor simpler APIs and reserve the typestate pattern for enforcing critical invariants.

• One excellent real-world example is rustls::ClientConfig, which uses typestate
with generics to guide the user through safe and correct configuration steps.

69.4 Using the Borrow checker to enforce Invariants

The borrow checker, while added to enforce memory ownership, can model other problems
and prevent API misuse.

/// Doors can be open or closed, and you need the right key to lock or unlock
/// one. Modelled with a Shared key and Owned door.
pub struct DoorKey {

424

https://play.rust-lang.org/?version=stable&mode=debug&edition=2024&gist=c9cbb831cd05fe9db4ce42713c83ca16
https://play.rust-lang.org/?version=stable&mode=debug&edition=2024&gist=c9cbb831cd05fe9db4ce42713c83ca16
https://docs.rs/rustls/latest/rustls/client/struct.ClientConfig.html#method.builder

pub key_shape: u32,
}
pub struct LockedDoor {

lock_shape: u32,
}
pub struct OpenDoor {

lock_shape: u32,
}

fn open_door(key: &DoorKey, door: LockedDoor) -> Result<OpenDoor, LockedDoor> {
if door.lock_shape == key.key_shape {

Ok(OpenDoor { lock_shape: door.lock_shape })
} else {

Err(door)
}

}

fn close_door(key: &DoorKey, door: OpenDoor) -> Result<LockedDoor, OpenDoor> {
if door.lock_shape == key.key_shape {

Ok(LockedDoor { lock_shape: door.lock_shape })
} else {

Err(door)
}

}

fn main() {
let key = DoorKey { key_shape: 7 };
let closed_door = LockedDoor { lock_shape: 7 };
let opened_door = open_door(&key, closed_door);
if let Ok(opened_door) = opened_door {

println!("Opened the door with key shape '{}'", key.key_shape);
} else {

eprintln!(
"Door wasn't opened! Your key only opens locks with shape '{}'",
key.key_shape

);
}

}

This slide and its sub-slides should take about 90 minutes.

• We've seen the borrow checker prevent memory safety bugs (use-after-free, data races).

• We've also used types to shape and restrict APIs already using the Typestate pattern.

• Language features are often introduced for a specific purpose.

Over time, users may develop ways of using a feature in ways that were not predicted
when they were introduced.

Java 5 introduced Generics in 2004 with the main stated purpose of enabling type-safe
collections.

Adoption was slow at first, but some new projects began designing their APIs around

425

https://jcp.org/en/jsr/detail?id=14
https://jcp.org/en/jsr/detail?id=14

generics from the beginning.

Since then, users and developers of the language expanded the use of generics to other
areas of type-safe API design:

– Class information can be held onto via Java's Class<T> or Guava's TypeToken<T>.
– The Builder pattern can be implemented using Recursive Generics.

We aim to do something similar here: Even though the borrow checker was introduced
to prevent use-after-free and data races, we treat it as just another API design tool.

It can be used to model program properties that have nothing to do with preventing
memory safety bugs.

• To use the borrow checker as a problem solving tool, we will need to ”forget” that
the original purpose of it is to prevent mutable aliasing in the context of preventing
use-after-frees and data races.

We should imagine working within situations where the rules are the same but the
meaning is slightly different.

• This example uses ownership and borrowing are used to model the state of a physical
door.

open_door consumes a LockedDoor and returns a new OpenDoor. The old
LockedDoor value is no longer available.

If the wrong key is used, the door is left locked. It is returned as an Err case of the
Result.

It is a compile-time error to try and use a door that has already been opened.

• Similarly, lock_door consumes an OpenDoor, preventing closing the door twice at
compile time.

• The rules of the borrow checker exist to prevent memory safety bugs, but the underlying
logical system does not ”know” what memory is.

All the borrow checker does is enforce a specific set of rules of how users can order
operations.

This is just one case of piggy-backing onto the rules of the borrow checker to design
APIs to be harder or impossible to misuse.

69.4.1 Lifetimes and Borrows: the Abstract Rules

// An internal data type to have something to hold onto.
pub struct Internal;
// The "outer" data.
pub struct Data(Internal);

fn shared_use(value: &Data) -> &Internal {
&value.0

}
fn exclusive_use(value: &mut Data) -> &mut Internal {

&mut value.0
}
fn deny_future_use(value: Data) {}

426

fn demo_exclusive() {
let mut value = Data(Internal);
let shared = shared_use(&value);
// let exclusive = exclusive_use(&mut value); //
let shared_again = &shared;

}

fn demo_denied() {
let value = Data(Internal);
deny_future_use(value);
// let shared = shared_use(&value); //

}

• This example re-frames the borrow checker rules away from references and towards
semantic meaning in non-memory-safety settings.

Nothing is being mutated, nothing is being sent across threads.

• In rust's borrow checker we have access to three different ways of ”taking” a value:

– Owned value T. Value is dropped when the scope ends, unless it is not returned to
another scope.

– Shared Reference &T. Allows aliasing but prevents mutable access while shared
references are in use.

– Mutable Reference &mut T. Only one of these is allowed to exist for a value at any
one point, but can be used to create shared references.

• Ask: The two commented-out lines in the demo functions would cause compilation
errors, Why?

demo_exclusive: Because the shared value is still aliased after the exclusive refer-
ence is taken.

demo_denied: Because value is consumed the line before the shared_again_again
reference is taken from &value.

• Remember that every &T and &mut T has a lifetime, just one the user doesn't have to
annotate or think about most of the time.

We rarely specify lifetimes because the Rust compiler allows us to elide them in most
cases. See: Lifetime Elision

69.4.2 Single-use values

Sometimes we want values that can only be used once. One critical example of this is in
cryptography: A ”Nonce.”

pub struct Key(/* specifics omitted */);
/// A single-use number suitable for cryptographic purposes.
pub struct Nonce(u32);
/// A cryptographically sound random generator function.
pub fn new_nonce() -> Nonce {

Nonce(4) // chosen by a fair dice roll, https://xkcd.com/221/

427

}
/// Consume a nonce, but not the key or the data.
pub fn encrypt(nonce: Nonce, key: &Key, data: &[u8]) {}

fn main() {
let nonce = new_nonce();
let data_1: [u8; 4] = [1, 2, 3, 4];
let data_2: [u8; 4] = [4, 3, 2, 1];
let key = Key(/* specifics omitted */);

// The key and data can be re-used, copied, etc. but the nonce cannot.
encrypt(nonce, &key, &data_1);
// encrypt(nonce, &key, &data_2); //

}

• Problem: How can we guarantee a value is used only once?

• Motivation: A nonce is a piece of random, unique data used in cryptographic protocols
to prevent replay attacks.

Background: In practice people have ended up accidentally re-using nonces. Most
commonly, this causes the cryptographic protocol to completely break down and stop
fulfilling its function.

Depending on the specifics of nonce reuse and cryptography at hand, private keys can
also become computable by attackers.

• Rust has an obvious tool for achieving the invariant ”Once you use this, you can't use it
again”: passing a value as an owned argument.

• Highlight: the encrypt function takes nonce by value (an owned argument), but key
and data by reference.

• The technique for single-use values is as follows:

– Keep constructors private, so a user can't construct values with the same inner
value twice.

– Don't implement Clone/Copy traits or equivalent methods, so a user can't duplicate
data we want to keep unique.

– Make the interior type opaque (like with the newtype pattern), so the user cannot
modify an existing value on their own.

• Ask: What are we missing from the newtype pattern in the slide's code?

Expect: Module boundary.

Demonstrate: Without a module boundary a user can construct a nonce on their own.

Fix: Put Key, Nonce, and new_nonce behind a module.

More to Explore

• Cryptography Nuance: A nonce might still be used twice if it was created through
pseudo-random process with no actual randomness. That can't be prevented through
this method. This API design prevents one nonce duplication, but not all logic bugs.

428

69.4.3 Mutually Exclusive References / ”Aliasing XOR Mutability”

We can use the mutual exclusion of &T and &mut T references to prevent data from being
used before it is ready.

pub struct QueryResult;
pub struct DatabaseConnection {/* fields omitted */}

impl DatabaseConnection {
pub fn new() -> Self {

Self {}
}
pub fn results(&self) -> &[QueryResult] {

&[] // fake results
}

}

pub struct Transaction<'a> {
connection: &'a mut DatabaseConnection,

}

impl<'a> Transaction<'a> {
pub fn new(connection: &'a mut DatabaseConnection) -> Self {

Self { connection }
}
pub fn query(&mut self, _query: &str) {

// Send the query over, but don't wait for results.
}
pub fn commit(self) {

// Finish executing the transaction and retrieve the results.
}

}

fn main() {
let mut db = DatabaseConnection::new();

// The transaction `tx` mutably borrows `db`.
let mut tx = Transaction::new(&mut db);
tx.query("SELECT * FROM users");

// This won't compile because `db` is already mutably borrowed by `tx`.
// let results = db.results(); //

// The borrow of `db` ends when `tx` is consumed by `commit()`.
tx.commit();

// Now it is possible to borrow `db` again.
let results = db.results();

}

• Motivation: In this database API queries are kicked off for asynchronous execution and
the results are only available once the whole transaction is finished.

429

A user might think that queries are executed immediately, and try to read results before
they are made available. This API misuse could make the app read incomplete or
incorrect data.

While an obvious misunderstanding, situations such as this can happen in practice.

Ask: Has anyone misunderstood an API by not reading the docs for proper use?

Expect: Examples of early-career or in-university mistakes and misunderstandings.

As an API grows in size and user base, a smaller percentage of users has deep knowledge
of the system the API represents.

• This example shows how we can use Aliasing XOR Mutability to prevent this kind of
misuse.

• The code might read results before they are ready if the programmer assumes that the
queries execute immediately rather than kicked off for asynchronous execution.

• The constructor for the Transaction type takes a mutable reference to the database
connection, and stores it in the returned Transaction value.

The explicit lifetime here doesn't have to be intimidating, it just means ”Transaction
is outlived by the DatabaseConnection that was passed to it” in this case.

The reference is mutable to completely lock out the DatabaseConnection from other
usage, such as starting further transactions or reading the results.

• While a Transaction exists, we can't touch the DatabaseConnection variable that
was created from it.

Demonstrate: uncomment the db.results() line. Doing so will result in a compile
error, as db is already mutably borrowed.

• Note: The query results not being public and placed behind a getter function lets
us enforce the invariant ”users can only look at query results if there is no active
transactions.”

If the query results were placed in a public struct field, this invariant could be violated.

69.4.4 PhantomData 1/4: De-duplicating Same Data & Semantics

The newtype pattern can sometimes come up against the DRY principle, how do we solve
this?

pub struct UserId(u64);
impl ChatUser for UserId { /* ... */ }

pub struct PatronId(u64);
impl ChatUser for PatronId { /* ... */ }

pub struct ModeratorId(u64);
impl ChatUser for ModeratorId { /* ... */ }
impl ChatModerator for ModeratorId { /* ... */ }

pub struct AdminId(u64);
impl ChatUser for AdminId { /* ... */ }
impl ChatModerator for AdminId { /* ... */ }

430

impl ChatAdmin for AdminId { /* ... */ }

// And so on ...
fn main() {}

• Problem: We want to use the newtype pattern to differentiate permissions, but we're
having to implement the same traits over and over again for the same data.

• Ask: Assume the details of each implementation here are the same between types, what
are ways we can avoid repeating ourselves?

Expect:

– Make this an enum, not distinct data types.
– Bundle the user ID with permission tokens likestruct Admin(u64, UserPermission,
ModeratorPermission, AdminPermission);

– Adding a type parameter which encodes permissions.
– Mentioning PhantomData ahead of schedule (it's in the title).

69.4.5 PhantomData 2/4: Type-level tagging

Let's solve the problem from the previous slide by adding a type parameter.

// use std::marker::PhantomData;

pub struct ChatId<T> { id: u64, tag: T }

pub struct UserTag;
pub struct AdminTag;

pub trait ChatUser {/* ... */}
pub trait ChatAdmin {/* ... */}

impl ChatUser for UserTag {/* ... */}
impl ChatUser for AdminTag {/* ... */} // Admins are users
impl ChatAdmin for AdminTag {/* ... */}

// impl <T> Debug for UserTag<T> {/* ... */}
// impl <T> PartialEq for UserTag<T> {/* ... */}
// impl <T> Eq for UserTag<T> {/* ... */}
// And so on ...

impl <T: ChatUser> ChatId<T> {/* All functionality for users and above */}
impl <T: ChatAdmin> ChatId<T> {/* All functionality for only admins */}

fn main() {}

• Here we're using a type parameter and gating permissions behind ”tag” types that
implement different permission traits.

Tag types, or marker types, are zero-sized types that have some semantic meaning to
users and API designers.

• Ask: What issues does having it be an actual instance of that type pose?

431

Answer: If it's not a zero-sized type (like () or struct MyTag;), then we're allocating
more memory than we need to when all we care for is type information that is only
relevant at compile-time.

• Demonstrate: remove the tag value entirely, then compile!

This won't compile, as there's an unused (phantom) type parameter.

This is where PhantomData comes in!

• Demonstrate: Uncomment the PhantomData import, and make ChatId<T> the follow-
ing:

pub struct ChatId<T> {
id: u64,
tag: PhantomData<T>,

}

• PhantomData<T> is a zero-sized type with a type parameter. We can construct values
of it like other ZSTs with let phantom: PhantomData<UserTag> = PhantomData;
or with the PhantomData::default() implementation.

Demonstrate: implement From<u64> for ChatId<T>, emphasizing the construction of
PhantomData

impl<T> From<u64> for ChatId<T> {
fn from(value: u64) -> Self {

ChatId {
id: value,
// Or `PhantomData::default()`
tag: PhantomData,

}
}

}

• PhantomData can be used as part of the Typestate pattern to have data with the same
structure but different methods, e.g., have TaggedData<Start> implement methods or
trait implementations that TaggedData<End> doesn't.

69.4.6 PhantomData 3/4: Lifetimes for External Resources

The invariants of external resources often match what we can do with lifetime rules.

// use std::marker::PhantomData;

/// Direct FFI to a database library in C.
/// We got this API as is, we have no influence over it.
mod ffi {

pub type DatabaseHandle = u8; // maximum 255 databases open at the same time

fn database_open(name: *const std::os::raw::c_char) -> DatabaseHandle {
unimplemented!()

}
// ... etc.

}

432

struct DatabaseConnection(ffi::DatabaseHandle);
struct Transaction<'a>(&'a mut DatabaseConnection);

impl DatabaseConnection {
fn new_transaction(&mut self) -> Transaction<'_> {

Transaction(self)
}

}

fn main() {}

• Remember the transaction API from the Aliasing XOR Mutability example.

We held onto a mutable reference to the database connection within the transaction
type to lock out the database while a transaction is active.

In this example, we want to implement a Transaction API on top of an external, non-
Rust API.

We start by defining a Transaction type that holds onto &mut DatabaseConnection.

• Ask: What are the limits of this implementation? Assume the u8 is accurate
implementation-wise and enough information for us to use the external API.

Expect:

– Indirection takes up 7 bytes more than we need to on a 64-bit platform, as well as
costing a pointer dereference at runtime.

• Problem: We want the transaction to borrow the database connection that created it,
but we don't want the Transaction object to store a real reference.

• Ask: What happens when we remove the mutable reference in Transaction while
keeping the lifetime parameter?

Expect: Unused lifetime parameter!

• Like with the type tagging from the previous slides, we can bring in PhantomData to
capture this unused lifetime parameter for us.

The difference is that we will need to use the lifetime alongside another type, but that
other type does not matter too much.

• Demonstrate: change Transaction to the following:

pub struct Transaction<'a> {
connection: DatabaseConnection,
_phantom: PhantomData<&mut 'a ()>,

}

Update the DatabaseConnection::new_transaction() method:

fn new_transaction<'a>(&'a mut self) -> Transaction<'a> {
Transaction { connection: DatabaseConnection(self.0), _phantom: PhantomData }

}

This gives an owned database connection that is tied to the DatabaseConnection that
created it, but with less runtime memory footprint that the store-a-reference version
did.

433

Because PhantomData is a zero-sized type (like () or struct MyZeroSizedType;), the
size of Transaction is now the same as u8.

The implementation that held onto a reference instead was as large as a usize.

More to Explore

• This way of encoding relationships between types and values is very powerful when
combined with unsafe, as the ways one can manipulate lifetimes becomes almost arbi-
trary. This is also dangerous, but when combined with tools like external, mechanically-
verified proofs we can safely encode cyclic/self-referential types while encoding lifetime
& safety expectations in the relevant data types.

• The GhostCell (2021) paper and its relevant implementation show this kind of work off.
While the borrow checker is restrictive, there are still ways to use escape hatches and
then show that the ways you used those escape hatches are consistent and safe.

69.4.7 PhantomData 4/4: OwnedFd & BorrowedFd

BorrowedFd is a prime example of PhantomData in action.

use std::marker::PhantomData;
use std::os::raw::c_int;

mod libc_ffi {
use std::os::raw::{c_char, c_int};
pub unsafe fn open(path: *const c_char, oflag: c_int) -> c_int {

3
}
pub unsafe fn close(fd: c_int) {}

}

struct OwnedFd {
fd: c_int,

}

impl OwnedFd {
fn try_from_fd(fd: c_int) -> Option<Self> {

if fd < 0 {
return None;

}
Some(OwnedFd { fd })

}

fn as_fd<'a>(&'a self) -> BorrowedFd<'a> {
BorrowedFd { fd: self.fd, _phantom: PhantomData }

}
}

impl Drop for OwnedFd {
fn drop(&mut self) {

unsafe { libc_ffi::close(self.fd) };

434

https://plv.mpi-sws.org/rustbelt/ghostcell/
https://gitlab.mpi-sws.org/FP/ghostcell

}
}

struct BorrowedFd<'a> {
fd: c_int,
_phantom: PhantomData<&'a ()>,

}

fn main() {
// Create a file with a raw syscall with write-only and create permissions.
let fd = unsafe { libc_ffi::open(c"c_str.txt".as_ptr(), 065) };
// Pass the ownership of an integer file descriptor to an `OwnedFd`.
// `OwnedFd::drop()` closes the file descriptor.
let owned_fd =

OwnedFd::try_from_fd(fd).expect("Could not open file with syscall!");

// Create a `BorrowedFd` from an `OwnedFd`.
// `BorrowedFd::drop()` does not close the file because it doesn't own it!
let borrowed_fd: BorrowedFd<'_> = owned_fd.as_fd();
// std::mem::drop(owned_fd); //
std::mem::drop(borrowed_fd);
let second_borrowed = owned_fd.as_fd();
// owned_fd will be dropped here, and the file will be closed.

}

• A file descriptor represents a specific process's access to a file.

Reminder: Device and OS-specific features are exposed as if they were files on unix-style
systems.

• OwnedFd is an owned wrapper type for a file descriptor. It owns the file descriptor, and
closes it when dropped.

Note: We have our own implementation of it here, draw attention to the explicit Drop
implementation.

BorrowedFd is its borrowed counterpart, it does not need to close the file when it is
dropped.

Note: We have not explicitly implemented Drop for BorrowedFd.

• BorrowedFd uses a lifetime captured with a PhantomData to enforce the invariant
”if this file descriptor exists, the OS file descriptor is still open even though it is not
responsible for closing that file descriptor.”

The lifetime parameter of BorrowedFd demands that there exists another value in your
program that lasts as long as that specific BorrowedFd or outlives it (in this case an
OwnedFd).

Demonstrate: Uncomment the std::mem::drop(owned_fd) line and try to compile to
show that borrowed_fd relies on the lifetime of owned_fd.

This has been encoded by the API designers to mean that other value is what keeps the
access to the file open.

Because Rust's borrow checker enforces this relationship where one value must last

435

https://rust-lang.github.io/rfcs/3128-io-safety.html#ownedfd-and-borrowedfdfd

at least as long as another, users of this API do not need to worry about handling this
correct file descriptor aliasing and closing logic themselves.

69.5 Token Types

Types with private constructors can be used to act as proof of invariants.

pub mod token {
// A public type with private fields behind a module boundary.
pub struct Token { proof: () }

pub fn get_token() -> Option<Token> {
Some(Token { proof: () })

}
}

pub fn protected_work(token: token::Token) {
println!("We have a token, so we can make assumptions.")

}

fn main() {
if let Some(token) = token::get_token() {

// We have a token, so we can do this work.
protected_work(token);

} else {
// We could not get a token, so we can't call `protected_work`.

}
}

This slide and its sub-slides should take about 95 minutes.

• Motivation: We want to be able to restrict user's access to functionality until they've
performed a specific task.

We can do this by defining a type the API consumer cannot construct on their own,
through the privacy rules of structs and modules.

Newtypes use the privacy rules in a similar way, to restrict construction unless a value
is guaranteed to hold up an invariant at runtime.

• Ask: What is the purpose of the proof: () field here?

Without proof: (), Token would have no private fields and users would be able to
construct values of Token arbitrarily.

Demonstrate: Try to construct the token manually in main and show the compilation
error. Demonstrate: Remove the proof field from Token to show how users would be
able to construct Token if it had no private fields.

• By putting the Token type behind a module boundary (token), users outside that module
can't construct the value on their own as they don't have permission to access the proof
field.

The API developer gets to define methods and functions that produce these tokens. The
user does not.

436

The token becomes a proof that one has met the API developer's conditions of access for
those tokens.

• Ask: How might an API developer accidentally introduce ways to circumvent this?

Expect answers like ”serialization implementations”, other parser/”from string” imple-
mentations, or an implementation of Default.

69.5.1 Permission Tokens

Token types work well as a proof of checked permission.

mod admin {
pub struct AdminToken(());

pub fn get_admin(password: &str) -> Option<AdminToken> {
if password == "Password123" { Some(AdminToken(())) } else { None }

}
}

// We don't have to check that we have permissions, because
// the AdminToken argument is equivalent to such a check.
pub fn add_moderator(_: &admin::AdminToken, user: &str) {}

fn main() {
if let Some(token) = admin::get_admin("Password123") {

add_moderator(&token, "CoolUser");
} else {

eprintln!("Incorrect password! Could not prove privileges.")
}

}

• This example shows modelling gaining administrator privileges for a chat client with
a password and giving a user a moderator rank once those privileges are gained. The
AdminToken type acts as ”proof of correct user privileges.”

The user asked for a password in-code and if we get the password correct, we get a
AdminToken to perform administrator actions within a specific environment (here, a
chat client).

Once the permissions are gained, we can call the add_moderator function.

We can't call that function without the token type, so by being able to call it at all all we
can assume we have permissions.

• Demonstrate: Try to construct the AdminToken in main again to reiterate that the
foundation of useful tokens is preventing their arbitrary construction.

69.5.2 Token Types with Data: Mutex Guards

Sometimes, a token type needs additional data. A mutex guard is an example of a token that
represents permission + data.

use std::sync::{Arc, Mutex, MutexGuard};

437

fn main() {
let mutex = Arc::new(Mutex::new(42));
let try_mutex_guard: Result<MutexGuard<'_, _>, _> = mutex.lock();
if let Ok(mut guarded) = try_mutex_guard {

// The acquired MutexGuard is proof of exclusive access.
*guarded = 451;

}
}

• Mutexes enforce mutual exclusion of read/write access to a value. We've covered
Mutexes earlier in this course already (See: RAII/Mutex), but here we're looking at
MutexGuard specifically.

• MutexGuard is a value generated by a Mutex that proves you have read/write access at
that point in time.

MutexGuard also holds onto a reference to the Mutex that generated it, with Deref and
DerefMut implementations that give access to the data of Mutex while the underlying
Mutex keeps that data private from the user.

• If mutex.lock() does not return a MutexGuard, you don't have permission to change
the value within the mutex.

Not only do you have no permission, but you have no means to access the mutex data
unless you gain a MutexGuard.

This contrasts with C++, where mutexes and lock guards do not control access to the
data itself, acting only as a flag that a user must remember to check every time they
read or manipulate data.

• Demonstrate: make the mutex variable mutable then try to dereference it to change its
value. Show how there's no deref implementation for it, and no other way to get to the
data held by it other than getting a mutex guard.

69.5.3 Variable-Specific Tokens (Branding 1/4)

What if we want to tie a token to a specific variable?

struct Bytes {
bytes: Vec<u8>,

}
struct ProvenIndex(usize);

impl Bytes {
fn get_index(&self, ix: usize) -> Option<ProvenIndex> {

if ix < self.bytes.len() { Some(ProvenIndex(ix)) } else { None }
}
fn get_proven(&self, token: &ProvenIndex) -> u8 {

unsafe { *self.bytes.get_unchecked(token.0) }
}

}

fn main() {
let data_1 = Bytes { bytes: vec![0, 1, 2] };
if let Some(token_1) = data_1.get_index(2) {

438

data_1.get_proven(&token_1); // Works fine!

// let data_2 = Bytes { bytes: vec![0, 1] };
// data_2.get_proven(&token_1); // Panics! Can we prevent this?

}
}

• What if we want to tie a token to a specific variable in our code? Can we do this in Rust's
type system?

• Motivation: We want to have a Token Type that represents a known, valid index into a
byte array.

Once we have these proven indexes we would be able to avoid bounds checks entirely,
as the tokens would act as the proof of an existing index.

Since the index is known to be valid, get_proven() can skip the bounds check.

In this example there's nothing stopping the proven index of one array being used on a
different array. If an index is out of bounds in this case, it is undefined behavior.

• Demonstrate: Uncomment the data_2.get_proven(&token_1); line.

The code here panics! We want to prevent this ”crossover” of token types for indexes at
compile time.

• Ask: How might we try to do this?

Expect students to not reach a good implementation from this, but be willing to experi-
ment and follow through on suggestions.

• Ask: What are the alternatives, why are they not good enough?

Expect runtime checking of index bounds, especially as both Vec::get and
Bytes::get_index already uses runtime checking.

Runtime bounds checking does not prevent the erroneous crossover in the first place, it
only guarantees a panic.

• The kind of token-association we will be doing here is called Branding. This is an
advanced technique that expands applicability of token types to more API designs.

• GhostCell is a prominent user of this, later slides will touch on it.

69.5.4 PhantomData and Lifetime Subtyping (Branding 2/4)

Idea:

• Use a lifetime as a unique brand for each token.
• Make lifetimes sufficiently distinct so that they don't implicitly convert into each other.

use std::marker::PhantomData;

#[derive(Default)]
struct InvariantLifetime<'id>(PhantomData<&'id ()>); // The main focus

struct Wrapper<'a> { value: u8, invariant: InvariantLifetime<'a> }

fn lifetime_separator<T>(value: u8, f: impl for<'a> FnOnce(Wrapper<'a>) -> T) -> T {

439

https://plv.mpi-sws.org/rustbelt/ghostcell/paper.pdf

f(Wrapper { value, invariant: InvariantLifetime::default() })
}

fn try_coerce_lifetimes<'a>(left: Wrapper<'a>, right: Wrapper<'a>) {}

fn main() {
lifetime_separator(1, |wrapped_1| {

lifetime_separator(2, |wrapped_2| {
// We want this to NOT compile
try_coerce_lifetimes(wrapped_1, wrapped_2);

});
});

}

• In Rust, lifetimes can have subtyping relations between one another.

This kind of relation allows the compiler to determine if one lifetime outlives another.

Determining if a lifetime outlives another also allows us to say the shortest common
lifetime is the one that ends first.

This is useful in many cases, as it means two different lifetimes can be treated as if they
were the same in the regions they do overlap.

This is usually what we want. But here we want to use lifetimes as a way to distinguish
values so we say that a token only applies to a single variable without having to create a
newtype for every single variable we declare.

• Goal: We want two lifetimes that the rust compiler cannot determine if one outlives the
other.

We are using try_coerce_lifetimes as a compile-time check to see if the lifetimes
have a common shorter lifetime (AKA being subtyped).

• Note: This slide compiles, by the end of this slide it should only compile when
subtyped_lifetimes is commented out.

• There are two important parts of this code:

– The impl for<'a> bound on the closure passed to lifetime_separator.
– The way lifetimes are used in the parameter for PhantomData.

for<'a> bound on a Closure

• We are using for<'a> as a way of introducing a lifetime generic parameter to a function
type and asking that the body of the function to work for all possible lifetimes.

What this also does is remove some ability of the compiler to make assumptions about
that specific lifetime for the function argument, as it must meet rust's borrow checking
rules regardless of the ”real” lifetime its arguments are going to have. The caller is
substituting in actual lifetime, the function itself cannot.

This is analogous to a forall (Ɐ) quantifier in mathematics, or the way we introduce <T>
as type variables, but only for lifetimes in trait bounds.

When we write a function generic over a type T, we can't determine that type from within
the function itself. Even if we call a function fn foo<T, U>(first: T, second: U)

440

with two arguments of the same type, the body of this function cannot determine if T
and U are the same type.

This also prevents the API consumer from defining a lifetime themselves, which would
allow them to circumvent the restrictions we want to impose.

PhantomData and Lifetime Variance

• We already know PhantomData, which can introduce a formal no-op usage of an other-
wise unused type or a lifetime parameter.

• Ask: What can we do with PhantomData?

Expect mentions of the Typestate pattern, tying together the lifetimes of owned values.

• Ask: In other languages, what is subtyping?

Expect mentions of inheritance, being able to use a value of type B when a asked for a
value of type A because B is a ”subtype” of A.

• Rust does have Subtyping! But only for lifetimes.

Ask: If one lifetime is a subtype of another lifetime, what might that mean?

A lifetime is a ”subtype” of another lifetime when it outlives that other lifetime.

• The way that lifetimes used by PhantomData behave depends not only on where the
lifetime ”comes from” but on how the reference is defined too.

The reason this compiles is that theVariance of the lifetime inside ofInvariantLifetime
is too lenient.

Note: Do not expect to get students to understand variance entirely here, just treat it
as a kind of ladder of restrictiveness on the ability of lifetimes to establish subtyping
relations.

• Ask: How can we make it more restrictive? How do we make a reference type more
restrictive in rust?

Expect or demonstrate: Making it &'id mut () instead. This will not be enough!

We need to use a Variance on lifetimes where subtyping cannot be inferred except on
identical lifetimes. That is, the only subtype of 'a the compiler can know is 'a itself.

Note: Again, do not try to get the whole class to understand variance. Treat it as a ladder
of restrictiveness for now.

Demonstrate: Move from &'id () (covariant in lifetime and type), &'id mut () (co-
variant in lifetime, invariant in type), *mut &'id mut () (invariant in lifetime and
type), and finally *mut &'id () (invariant in lifetime but not type).

Those last two should not compile, which means we've finally found candidates for
how to bind lifetimes to PhantomData so they can't be compared to one another in this
context.

Reason: *mut means mutable raw pointer. Rust has mutable pointers! But you cannot
reason about them in safe rust. Making this a mutable raw pointer to a reference that
has a lifetime complicates the compiler's ability subtype because it cannot reason about
mutable raw pointers within the borrow checker.

441

https://doc.rust-lang.org/stable/reference/subtyping.html#r-subtyping.variance
https://doc.rust-lang.org/stable/reference/subtyping.html#r-subtyping.variance
https://doc.rust-lang.org/reference/types/pointer.html#r-type.pointer.raw

• Wrap up: We've introduced ways to stop the compiler from deciding that lifetimes are
”similar enough” by choosing a Variance for a lifetime in PhantomData that is restrictive
enough to prevent this slide from compiling.

That is, we can now create variables that can exist in the same scope as each other, but
whose types are automatically made different from one another per-variable without
much boilerplate.

More to Explore

• The for<'a> quantifier is not just for function types. It is a Higher-ranked trait bound.

69.5.5 Implementing Branded Types (Branding 3/4)

Constructing branded types is different to how we construct non-branded types.

struct ProvenIndex<'id>(usize, InvariantLifetime<'id>);

struct Bytes<'id>(Vec<u8>, InvariantLifetime<'id>);

impl<'id> Bytes<'id> {
fn new<T>(

// The data we want to modify in this context.
bytes: Vec<u8>,
// The function that uniquely brands the lifetime of a `Bytes`
f: impl for<'a> FnOnce(Bytes<'a>) -> T,

) -> T {
f(Bytes(bytes, InvariantLifetime::default()),)

}

fn get_index(&self, ix: usize) -> Option<ProvenIndex<'id>> {
if ix < self.0.len() { Some(ProvenIndex(ix, InvariantLifetime::default())) }
else { None }

}

fn get_proven(&self, ix: &ProvenIndex<'id>) -> u8 {
debug_assert!(ix.0 < self.0.len());
unsafe { *self.0.get_unchecked(ix.0) }

}
}

• Motivation: We want to have ”proven indexes” for a type, and we don't want those
indexes to be usable by different variables of the same type. We also don't want those
indexes to escape a scope.

Our Branded Type will be Bytes: a byte array.

Our Branded Token will be ProvenIndex: an index known to be in range.

• There are several notable parts to this implementation:

– new does not return a Bytes, instead asking for ”starting data” and a use-once
Closure that is passed a Bytes when it is called.

– That new function has a for<'a> on its trait bound.

442

https://doc.rust-lang.org/reference/subtyping.html?search=Hiher#r-subtype.higher-ranked

– We have both a getter for an index and a getter for a values with a proven index.

• Ask: Why does new not return a Bytes?

Answer: Because we need Bytes to have a unique lifetime controlled by the API.

• Ask: So what if new() returned Bytes, what is the specific harm that it would cause?

Answer: Think about the signature of that hypothetical new() method:

fn new<'a>() -> Bytes<'a> { ... }

This would allow the API user to choose what the lifetime 'a is, removing our ability
to guarantee that the lifetimes between different instances of Bytes are unique and
unable to be subtyped to one another.

• Ask: Why do we need both a get_index and a get_proven?

Expect ”Because we can't know if an index is occupied at compile time”

Ask: Then what's the point of the proven indexes?

Answer: Avoiding bounds checking while keeping knowledge of what indexes are
occupied specific to individual variables, unable to erroneously be used on the wrong
one.

Note: The focus is not on only on avoiding overuse of bounds checks, but also on
preventing that ”cross over” of indexes.

69.5.6 Branded Types in Action (Branding 4/4)

use std::marker::PhantomData;

#[derive(Default)]
struct InvariantLifetime<'id>(PhantomData<*mut &'id ()>);
struct ProvenIndex<'id>(usize, InvariantLifetime<'id>);

struct Bytes<'id>(Vec<u8>, InvariantLifetime<'id>);

impl<'id> Bytes<'id> {
fn new<T>(

// The data we want to modify in this context.
bytes: Vec<u8>,
// The function that uniquely brands the lifetime of a `Bytes`
f: impl for<'a> FnOnce(Bytes<'a>) -> T,

) -> T {
f(Bytes(bytes, InvariantLifetime::default()))

}

fn get_index(&self, ix: usize) -> Option<ProvenIndex<'id>> {
if ix < self.0.len() {

Some(ProvenIndex(ix, InvariantLifetime::default()))
} else {

None
}

}

443

fn get_proven(&self, ix: &ProvenIndex<'id>) -> u8 {
self.0[ix.0]

}
}

fn main() {
let result = Bytes::new(vec![4, 5, 1], move |mut bytes_1| {

Bytes::new(vec![4, 2], move |mut bytes_2| {
let index_1 = bytes_1.get_index(2).unwrap();
let index_2 = bytes_2.get_index(1).unwrap();
bytes_1.get_proven(&index_1);
bytes_2.get_proven(&index_2);
// bytes_2.get_proven(&index_1); //
"Computations done!"

})
});
println!("{result}");

}

• We now have the implementation ready, we can now write a program where token
types that are proofs of existing indexes cannot be shared between variables.

• Demonstration: Uncomment the bytes_2.get_proven(&index_1); line and show
that it does not compile when we use indexes from different variables.

• Ask: What operations can we perform that we can guarantee would produce a proven
index?

Expect a ”push” implementation, suggested demo:

fn push(&mut self, value: u8) -> ProvenIndex<'id> {
self.0.push(value);
ProvenIndex(self.0.len() - 1, InvariantLifetime::default())

}

• Ask: Can we make this not just about a byte array, but as a general wrapper on Vec<T>?

Trivial: Yes!

Maybe demonstrate: Generalising Bytes<'id> into BrandedVec<'id, T>

• Ask: What other areas could we use something like this?

• The resulting token API is highly restrictive, but the things that it makes possible to
prove as safe within the Rust type system are meaningful.

More to Explore

• GhostCell, a structure that allows for safe cyclic data structures in Rust (among other
previously difficult to represent data structures), uses this kind of token type to make
sure cells can't ”escape” a context where we know where operations similar to those
shown in these examples are safe.

This ”Branded Types” sequence of slides is based off their BrandedVec implementation
in the paper, which covers many of the implementation details of this use case in more

444

https://plv.mpi-sws.org/rustbelt/ghostcell/paper.pdf

depth as a gentle introduction to how GhostCell itself is implemented and used in
practice.

GhostCell also uses formal checks outside of Rust's type system to prove that the things
it allows within this kind of context (lifetime branding) are safe.

445

Part XVI

Unsafe

446

Chapter 70

Welcome to Unsafe Rust

IMPORTANT: THIS MODULE IS IN AN EARLY STAGE OF DEVELOPMENT

Please do not consider this module of Comprehensive Rust to be complete. With
that in mind, your feedback, comments, and especially your concerns, are very
welcome.

To comment on this module's development, please use the GitHub issue tracker.

The unsafe keyword is easy to type, but hard to master. When used appropriately, it forms a
useful and indeed essential part of the Rust programming language.

By the end of this deep dive, you'll know how to work with unsafe code, review others'
changes that include the unsafe keyword, and produce your own.

What you'll learn:

• What the terms undefined behavior, soundness, and safety mean
• Why the unsafe keyword exists in the Rust language
• How to write your own code using unsafe safely
• How to review unsafe code

Links to other sections of the course

The unsafe keyword has treatment in:

• Rust Fundamentals, the main module of Comprehensive Rust, includes a session on
Unsafe Rust in its last day.

• Rust in Chromium discusses how to interoperate with C++. Consult that material if you
are looking into FFI.

• Bare Metal Rust uses unsafe heavily to interact with the underlying host, among other
things.

447

https://github.com/google/comprehensive-rust/issues

Chapter 71

Setting Up

Local Rust installation

You should have a Rust compiler installed that supports the 2024 edition of the language,
which is any version of rustc higher than 1.84.

$ rustc --version
rustc 1.87

(Optional) Create a local instance of the course

$ git clone --depth=1 https://github.com/google/comprehensive-rust.git
Cloning into 'comprehensive-rust'...
...
$ cd comprehensive-rust
$ cargo install-tools
...
$ cargo serve # then open http://127.0.0.1:3000/ in a browser

This slide should take about 2 minutes.

Ask everyone to confirm that everyone is able to execute rustc with a version older that
1.87.

For those people who do not, tell them that we'll resolve that in the break.

448

Chapter 72

Motivations

We know that writing code without the guarantees that Rust provides ...

“Use-after-free (UAF), integer overflows, and out of bounds (OOB) reads/writes
comprise 90% of vulnerabilities with OOB being the most common.”

--— Jeff Vander Stoep and Chong Zang, Google. ”Queue the Hardening Enhance-
ments”

... so why is unsafe part of the language?

This segment should take about 20 minutes. It contains:

Slide Duration

Motivations 1 minute
Interoperability 5 minutes
Data Structures 5 minutes
Performance 5 minutes

This slide should take about 1 minute.

The unsafe keyword exists because there is no compiler technology available today that
makes it obsolete. Compilers cannot verify everything.

TODO: Refactor this content into multiple slides as this slide is intended as an
introduction to the motivations only, rather than to be an elaborate discussion of
the whole problem.

72.1 Interoperability

Language interoperability allows you to:

• Call functions written in other languages from Rust
• Write functions in Rust that are callable from other languages

However, this requires unsafe.

449

https://security.googleblog.com/2019/05/queue-hardening-enhancements.html
https://security.googleblog.com/2019/05/queue-hardening-enhancements.html

unsafe extern "C" {
safe fn random() -> libc::c_long;

}

fn main() {
let a = random() as i64;
println!("{a:?}");

}

This slide should take about 5 minutes.

The Rust compiler can't enforce any safety guarantees for programs that it hasn't compiled,
so it delegates that responsibility to you through the unsafe keyword.

The code example we're seeing shows how to call the random function provided by libc
within Rust. libc is available to scripts in the Rust Playground.

This uses Rust's foreign function interface.

This isn't the only style of interoperability, however it is the method that's needed if you
want to work between Rust and some other language in a zero cost way. Another important
strategy is message passing.

Message passing avoids unsafe, but serialization, allocation, data transfer and parsing all
take energy and time.

Answers to questions

• Where does ”random” come from?
libc is dynamically linked to Rust programs by default, allowing our code to rely on its
symbols, including random, being available to our program.

• What is the ”safe” keyword?
It allows callers to call the function without needing to wrap that call in unsafe. The
safe function qualifier was introduced in the 2024 edition of Rust and can only be used
within extern blocks. It was introduced because unsafe became a mandatory qualifier
for extern blocks in that edition.

• What is the std::ffi::c_long type?
According to the C standard, an integer that's at least 32 bits wide. On today's systems,
It's an i32 on Windows and an i64 on Linux.

Consideration: type safety

Modify the code example to remove the need for type casting later. Discuss the potential UB -
long's width is defined by the target.

unsafe extern "C" {
safe fn random() -> i64;

}

fn main() {
let a = random();
println!("{a:?}");

}

450

https://doc.rust-lang.org/stable/edition-guide/rust-2024/unsafe-extern.html
https://doc.rust-lang.org/std/ffi/type.c_long.html

Changes from the original:

unsafe extern "C" {
- safe fn random() -> libc::c_long;
+ safe fn random() -> i64;
}

fn main() {
- let a = random() as i64;
+ let a = random();

println!("{a:?}");
}

It's also possible to completely ignore the intended type and create undefined behavior in
multiple ways. The code below produces output most of the time, but generally results in a
stack overflow. It may also produce illegal char values. Although char is represented in 4
bytes (32 bits), not all bit patterns are permitted as a char.

Stress that the Rust compiler will trust that the wrapper is telling the truth.

unsafe extern "C" {
safe fn random() -> [char; 2];

}

fn main() {
let a = random();
println!("{a:?}");

}

Changes from the original:

unsafe extern "C" {
- safe fn random() -> libc::c_long;
+ safe fn random() -> [char; 2];
}

fn main() {
- let a = random() as i64;
- println!("{a}");
+ let a = random();
+ println!("{a:?}");
}

Attempting to print a [char; 2] from randomly generated input will often pro-
duce strange output, including:

thread 'main' panicked at library/std/src/io/stdio.rs:1165:9:
failed printing to stdout: Bad address (os error 14)

thread 'main' has overflowed its stack
fatal runtime error: stack overflow, aborting

Mention that type safety is generally not a large concern in practice. Tools that produce
wrappers automatically, i.e. bindgen, are excellent at reading header files and producing
values of the correct type.

451

https://doc.rust-lang.org/std/primitive.char.html#validity-and-layout

Consideration: Ownership and lifetime management

While libc's random function doesn't use pointers, many do. This creates many more possibil-
ities for unsoundness.

• both sides might attempt to free the memory (double free)
• both sides can attempt to write to the data

For example, some C libraries expose functions that write to static buffers that are re-used
between calls.

use std::ffi::{CStr, c_char};
use std::time::{SystemTime, UNIX_EPOCH};

unsafe extern "C" {
/// Create a formatted time based on time `t`, including trailing newline.
/// Read `man 3 ctime` details.
fn ctime(t: *const libc::time_t) -> *const c_char;

}

unsafe fn format_timestamp<'a>(t: u64) -> &'a str {
let t = t as libc::time_t;

unsafe {
let fmt_ptr = ctime(&t);
CStr::from_ptr(fmt_ptr).to_str().unwrap()

}
}

fn main() {
let now = SystemTime::now().duration_since(UNIX_EPOCH).unwrap();

let now = now.as_secs();
let now_fmt = unsafe { format_timestamp(now) };
print!("now (1): {}", now_fmt);

let future = now + 60;
let future_fmt = unsafe { format_timestamp(future) };
print!("future: {}", future_fmt);

print!("now (2): {}", now_fmt);
}

Aside: Lifetimes in the format_timestamp() function

Neither 'a, nor 'static, correctly describe the lifetime of the string that's re-
turned. Rust treats it as an immutable reference, but subsequent calls to ctime
will overwrite the static buffer that the string occupies.

Consideration: Representation mismatch

Different programming languages have made different design decisions and this can create
impedance mismatches between different domains.

452

Consider string handling. C++ defines std::string, which has an incompatible memory
layout with Rust's String type. String also requires text to be encoded as UTF-8, whereas
std::string does not. In C, text is represented by a null-terminated sequence of bytes
(char*).

fn main() {
let c_repr = b"Hello, C\0";
let rust_repr = (b"Hello, Rust", 11);

let c: &str = unsafe {
let ptr = c_repr.as_ptr() as *const i8;
std::ffi::CStr::from_ptr(ptr).to_str().unwrap()

};
println!("{c}");

let rust: &str = unsafe {
let ptr = rust_repr.0.as_ptr();
let bytes = std::slice::from_raw_parts(ptr, rust_repr.1);
std::str::from_utf8_unchecked(bytes)

};
println!("{rust}");

}

72.2 Data Structures

Some families of data structures are impossible to create in safe Rust.

• graphs
• bit twiddling
• self-referential types
• intrusive data structures

This slide should take about 5 minutes.

Graphs: General-purpose graphs cannot be created as they may need to represent cycles.
Cycles are impossible for the type system to reason about.

Bit twiddling: Overloading bits with multiple meanings. Examples include using the NaN bits
in f64 for some other purpose or the higher-order bits of pointers on x86_64 platforms. This
is somewhat common when writing language interpreters to keep representations within the
word size the target platform.

Self-referential types are too hard for the borrow checker to verify.

Intrusive data structures: store structural metadata (like pointers to other elements) inside
the elements themselves, which requires careful handling of aliasing.

72.3 Performance

TODO: Stub for now

It's easy to think of performance as the main reason for unsafe, but high performance code
makes up the minority of unsafe blocks.

453

Chapter 73

Foundations

Some fundamental concepts and terms.

This segment should take about 25 minutes. It contains:

Slide Duration

What is unsafe? 10 minutes
When is unsafe used? 2 minutes
Data structures are safe 2 minutes
Actions might not be 2 minutes
Less powerful than it seems 10 minutes

73.1 What is “unsafety”?

Unsafe Rust is a superset of Safe Rust.

Let's create a list of things that are enabled by the unsafe keyword.

This slide should take about 6 minutes.

Definitions from authoritative docs:

From the unsafe keyword's documentation:

Code or interfaces whose memory safety cannot be verified by the type system.

...

Here are the abilities Unsafe Rust has in addition to Safe Rust:

• Dereference raw pointers
• Implement unsafe traits
• Call unsafe functions
• Mutate statics (including external ones)
• Access fields of unions

From the reference

454

https://doc.rust-lang.org/reference/unsafety.html

The following language level features cannot be used in the safe subset of Rust:

• Dereferencing a raw pointer.
• Reading or writing a mutable or external static variable.
• Accessing a field of a union, other than to assign to it.
• Calling an unsafe function (including an intrinsic or foreign function).
• Calling a safe function marked with a target_feature from a function that

does not have a target_feature attribute enabling the same features (see at-
tributes.codegen.target_feature.safety-restrictions).

• Implementing an unsafe trait.
• Declaring an extern block.
• Applying an unsafe attribute to an item.

Group exercise

You may have a group of learners who are not familiar with each other yet. This is a
way for you to gather some data about their confidence levels and the psychological
safety that they're feeling.

Part 1: Informal definition

Use this to gauge the confidence level of the group. If they are uncertain, then
tailor the next section to be more directed.

Ask the class: By raising your hand, indicate if you would feel comfortable defining
unsafe?

If anyone's feeling confident, allow them to try to explain.

Part 2: Evidence gathering

Ask the class to spend 3-5 minutes.

• Find a use of the unsafe keyword. What contract/invariant/pre-condition is being
established or satisfied?

• Write down terms that need to be defined (unsafe, memory safety, soundness, undefined
behavior)

Part 3: Write a working definition

Part 4: Remarks

Mention that we'll be reviewing our definition at the end of the day.

Note: Avoid detailed discussion about precise semantics ofmemory safety

It's possible that the group will slide into a discussion about the precise semantics of what
memory safety actually is and how define pointer validity. This isn't a productive line of
discussion. It can undermine confidence in less experienced learners.

Perhaps refer people who wish to discuss this to the discussion within the official documenta-
tion for pointer types (excerpt below) as a place for further research.

455

https://doc.rust-lang.org/std/ptr/index.html#safety
https://doc.rust-lang.org/std/ptr/index.html#safety

Many functions in this module take raw pointers as arguments and read from or
write to them. For this to be safe, these pointers must be valid for the given access.

...

The precise rules for validity are not determined yet.

73.2 When is unsafe used?

The unsafe keyword indicates that the programmer is responsible for upholding Rust's safety
guarantees.

The keyword has two roles:

• define pre-conditions that must be satisfied
• assert to the compiler (= promise) that those defined pre-conditions are satisfied

Further references

• The unsafe keyword chapter of the Rust Reference

This slide should take about 2 minutes.

Places where pre-conditions can be defined (Role 1)

• unsafe functions (unsafe fn foo() { ... }). Example: get_unchecked method on
slices, which requires callers to verify that the index is in-bounds.

• unsafe traits (unsafe trait). Examples: Send and Sync marker traits in the standard
library.

Places where pre-conditions must be satisfied (Role 2)

• unsafe blocks (unafe { ... })
• implementing unsafe traits (unsafe impl)
• access external items (unsafe extern)
• adding unsafe attributes o an item. Examples: export_name, link_section and
no_mangle. Usage: #[unsafe(no_mangle)]

73.3 Data structures are safe ...

Data structures are inert. They cannot do any harm by themselves.

Safe Rust code can create raw pointers:

fn main() {
let n: i64 = 12345;
let safe = &raw const n;
println!("{safe:p}");

}

This slide should take about 2 minutes.

Consider a raw pointer to an integer, i.e., the value safe is the raw pointer type *const i64.
Raw pointers can be out-of-bounds, misaligned, or be null. But the unsafe keyword is not
required when creating them.

456

https://doc.rust-lang.org/std/ptr/index.html
https://doc.rust-lang.org/reference/unsafe-keyword.html
https://doc.rust-lang.org/reference/unsafe-keyword.html#unsafe-functions-unsafe-fn
https://doc.rust-lang.org/std/marker/trait.Send.html
https://doc.rust-lang.org/std/marker/trait.Sync.html
https://doc.rust-lang.org/reference/attributes.html
https://doc.rust-lang.org/reference/abi.html#the-export_name-attribute
https://doc.rust-lang.org/reference/abi.html#the-link_section-attribute
https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute

73.4 ... but actions on themmight not be

fn main() {
let n: i64 = 12345;
let safe = &n as *const _;
println!("{safe:p}");

}

This slide should take about 2 minutes.

Modify the example to de-reference safe without an unsafe block.

73.5 Less powerful than it seems

The unsafe keyword does not allow you to break Rust.

use std::mem::transmute;

let orig = b"RUST";
let n: i32 = unsafe { transmute(orig) };

println!("{n}")

This slide should take about 10 minutes.

Suggested outline

• Request that someone explains what std::mem::transmute does
• Discuss why it doesn't compile
• Fix the code

Expected compiler output

Compiling playground v0.0.1 (/playground)
error[E0512]: cannot transmute between types of different sizes, or dependently-sized types
--> src/main.rs:5:27
|

5 | let n: i32 = unsafe { transmute(orig) };
| ^^^^^^^^^
|
= note: source type: `&[u8; 4]` (64 bits)
= note: target type: `i32` (32 bits)

Suggested change

- let n: i32 = unsafe { transmute(orig) };
+ let n: i64 = unsafe { transmute(orig) };

457

Notes on less familiar Rust

• the b prefix on a string literal marks it as byte slice (&[u8]) rather than a string slice
(&str)

458

Part XVII

Final Words

459

Chapter 74

Thanks!

Thank you for taking Comprehensive Rust ! We hope you enjoyed it and that it was useful.

We've had a lot of fun putting the course together. The course is not perfect, so if you spotted
any mistakes or have ideas for improvements, please get in contact with us on GitHub. We
would love to hear from you.

• Thank you for reading the speaker notes! We hope they have been useful. If you find
pages without notes, please send us a PR and link it to issue #1083. We are also very
grateful for fixes and improvements to the existing notes.

460

https://github.com/google/comprehensive-rust/discussions
https://github.com/google/comprehensive-rust/issues/1083

Chapter 75

Glossary

The following is a glossary which aims to give a short definition of many Rust terms. For
translations, this also serves to connect the term back to the English original.

h1#glossary ~ ul { list-style: none; padding-inline-start: 0; }

h1#glossary ~ ul > li { /* Simplify with ”text-indent: 2em hanging” when supported: https://ca-
niuse.com/mdn-css_properties_text-indent_hanging */ padding-left: 2em; text-indent: -2em;
}

h1#glossary ~ ul > li:first-line { font-weight: bold; }

• allocate:
Dynamic memory allocation on the heap.

• array:
A fixed-size collection of elements of the same type, stored contiguously in memory. See
Arrays.

• associated type:
A type associated with a specific trait. Useful for defining the relationship between
types.

• Bare-metal Rust:
Low-level Rust development, often deployed to a system without an operating system.
See Bare-metal Rust.

• block:
See Blocks and scope.

• borrow:
See Borrowing.

• borrow checker:
The part of the Rust compiler which checks that all borrows are valid.

• brace:
{ and }. Also called curly brace, they delimit blocks.

• channel:
Used to safely pass messages between threads.

• concurrency:
The execution of multiple tasks or processes at the same time. See Welcome to Concur-
rency in Rust.

• constant:

461

A value that does not change during the execution of a program. See const.
• control flow:

The order in which the individual statements or instructions are executed in a program.
See Control Flow Basics.

• crash:
An unexpected and unhandled failure or termination of a program. See panic.

• enumeration:
A data type that holds one of several named constants, possibly with an associated tuple
or struct. See enum.

• error:
An unexpected condition or result that deviates from the expected behavior. See Error
Handling.

• error handling:
The process of managing and responding to errors that occur during program execution.

• function:
A reusable block of code that performs a specific task. See Functions.

• garbage collector:
A mechanism that automatically frees up memory occupied by objects that are no longer
in use. See Approaches to Memory Management.

• generics:
A feature that allows writing code with placeholders for types, enabling code reuse with
different data types. See Generics.

• immutable:
Unable to be changed after creation. See Variables.

• integration test:
A type of test that verifies the interactions between different parts or components of a
system. See Other Types of Tests.

• library:
A collection of precompiled routines or code that can be used by programs. See Modules.

• macro:
Rust macros can be recognized by a ! in the name. Macros are used when normal
functions are not enough. A typical example is format!, which takes a variable number
of arguments, which isn't supported by Rust functions.

• main function:
Rust programs start executing with the main function.

• match:
A control flow construct in Rust that allows for pattern matching on the value of an
expression.

• memory leak:
A situation where a program fails to release memory that is no longer needed, leading
to a gradual increase in memory usage. See Approaches to Memory Management.

• method:
A function associated with an object or a type in Rust. See Methods.

• module:
A namespace that contains definitions, such as functions, types, or traits, to organize
code in Rust. See Modules.

• move:
The transfer of ownership of a value from one variable to another in Rust. See Move
Semantics.

• mutable:
A property in Rust that allows variables to be modified after they have been declared.

462

• ownership:
The concept in Rust that defines which part of the code is responsible for managing the
memory associated with a value. See Ownership.

• panic:
An unrecoverable error condition in Rust that results in the termination of the program.
See Panics.

• pattern:
A combination of values, literals, or structures that can be matched against an expression
in Rust. See Pattern Matching.

• payload:
The data or information carried by a message, event, or data structure.

• receiver:
The first parameter in a Rust method that represents the instance on which the method
is called.

• reference:
A non-owning pointer to a value that borrows it without transferring ownership. Refer-
ences can be shared (immutable) or exclusive (mutable).

• reference counting:
A memory management technique in which the number of references to an object is
tracked, and the object is deallocated when the count reaches zero. See Rc.

• Rust:
A systems programming language that focuses on safety, performance, and concurrency.
See What is Rust?.

• safe:
Refers to code that adheres to Rust's ownership and borrowing rules, preventing
memory-related errors. See Unsafe Rust.

• slice:
A dynamically-sized view into a contiguous sequence, such as an array or vector. Unlike
arrays, slices have a size determined at runtime. See Slices.

• scope:
The region of a program where a variable is valid and can be used. See Blocks and
Scopes.

• standard library:
A collection of modules providing essential functionality in Rust. See Standard Library.

• static:
A keyword in Rust used to define static variables or items with a 'static lifetime. See
static.

• string:
A data type storing textual data. See Strings.

• struct:
A composite data type in Rust that groups together variables of different types under a
single name. See Structs.

• test:
A function that tests the correctness of other code. Rust has a built-in test runner. See
Testing.

• thread:
A separate sequence of execution in a program, allowing concurrent execution. See
Threads.

• thread safety:
The property of a program that ensures correct behavior in a multithreaded environ-
ment. See Send and Sync.

463

• trait:
A collection of methods defined for an unknown type, providing a way to achieve
polymorphism in Rust. See Traits.

• trait bound:
An abstraction where you can require types to implement some traits of your interest.
See Trait Bounds.

• tuple:
A composite data type that contains variables of different types. Tuple fields have no
names, and are accessed by their ordinal numbers. See Tuples.

• type:
A classification that specifies which operations can be performed on values of a particu-
lar kind in Rust. See Types and Values.

• type inference:
The ability of the Rust compiler to deduce the type of a variable or expression. See Type
Inference.

• undefined behavior:
Actions or conditions in Rust that have no specified result, often leading to unpredictable
program behavior. See Unsafe Rust.

• union:
A data type that can hold values of different types but only one at a time. See Unions.

• unit test:
Rust comes with built-in support for running small unit tests and larger integration
tests. See Unit Tests.

• unit type:
Type that holds no data, written as a tuple with no members. See speaker notes on
Functions.

• unsafe:
The subset of Rust which allows you to trigger undefined behavior. See Unsafe Rust.

• variable:
A memory location storing data. Variables are valid in a scope. See Variables.

464

Chapter 76

Other Rust Resources

The Rust community has created a wealth of high-quality and free resources online.

Official Documentation

The Rust project hosts many resources. These cover Rust in general:

• The Rust Programming Language: the canonical free book about Rust. Covers the
language in detail and includes a few projects for people to build.

• Rust By Example: covers the Rust syntax via a series of examples which showcase
different constructs. Sometimes includes small exercises where you are asked to expand
on the code in the examples.

• Rust Standard Library: full documentation of the standard library for Rust.
• The Rust Reference: an incomplete book which describes the Rust grammar and memory

model.
• Rust API Guidelines: recommendations on how to design APIs.

More specialized guides hosted on the official Rust site:

• The Rustonomicon: covers unsafe Rust, including working with raw pointers and inter-
facing with other languages (FFI).

• Asynchronous Programming in Rust: covers the new asynchronous programming model
which was introduced after the Rust Book was written.

• The Embedded Rust Book: an introduction to using Rust on embedded devices without
an operating system.

Unofficial Learning Material

A small selection of other guides and tutorial for Rust:

• Learn Rust the Dangerous Way: covers Rust from the perspective of low-level C pro-
grammers.

• Rust for Embedded C Programmers: covers Rust from the perspective of developers
who write firmware in C.

• Rust for professionals: covers the syntax of Rust using side-by-side comparisons with
other languages such as C, C++, Java, JavaScript, and Python.

465

https://doc.rust-lang.org/book/
https://doc.rust-lang.org/rust-by-example/
https://doc.rust-lang.org/std/
https://doc.rust-lang.org/reference/
https://rust-lang.github.io/api-guidelines/
https://doc.rust-lang.org/nomicon/
https://rust-lang.github.io/async-book/
https://doc.rust-lang.org/stable/embedded-book/
http://cliffle.com/p/dangerust/
https://opentitan.org/book/doc/rust_for_c_devs.html
https://overexact.com/rust-for-professionals/

• Rust on Exercism: 100+ exercises to help you learn Rust.
• Ferrous Teaching Material: a series of small presentations covering both basic and

advanced part of the Rust language. Other topics such as WebAssembly, and async/await
are also covered.

• Advanced testing for Rust applications: a self-paced workshop that goes beyond Rust's
built-in testing framework. It covers googletest, snapshot testing, mocking as well as
how to write your own custom test harness.

• Beginner's Series to Rust and Take your first steps with Rust: two Rust guides aimed
at new developers. The first is a set of 35 videos and the second is a set of 11 modules
which covers Rust syntax and basic constructs.

• Learn Rust With Entirely Too Many Linked Lists: in-depth exploration of Rust's memory
management rules, through implementing a few different types of list structures.

• The Little Book of Rust Macros: covers many details on Rust macros with practical
examples.

Please see the Little Book of Rust Books for even more Rust books.

466

https://exercism.org/tracks/rust
https://ferrous-systems.github.io/teaching-material/index.html
https://rust-exercises.com/advanced-testing/
https://docs.microsoft.com/en-us/shows/beginners-series-to-rust/
https://docs.microsoft.com/en-us/learn/paths/rust-first-steps/
https://rust-unofficial.github.io/too-many-lists/
https://danielkeep.github.io/tlborm/
https://lborb.github.io/book/

Chapter 77

Credits

The material here builds on top of the many great sources of Rust documentation. See the
page on other resources for a full list of useful resources.

The material of Comprehensive Rust is licensed under the terms of the Apache 2.0 license,
please see LICENSE for details.

Rust by Example

Some examples and exercises have been copied and adapted from Rust by Example. Please
see the third_party/rust-by-example/ directory for details, including the license terms.

Rust on Exercism

Some exercises have been copied and adapted from Rust on Exercism. Please see the
third_party/rust-on-exercism/ directory for details, including the license terms.

CXX

The Interoperability with C++ section uses an image from CXX. Please see thethird_party/cxx/
directory for details, including the license terms.

467

https://github.com/google/comprehensive-rust/blob/main/LICENSE
https://doc.rust-lang.org/rust-by-example/
https://exercism.org/tracks/rust
https://cxx.rs/

	Welcome to Comprehensive Rust 🦀
	Running the Course
	Course Structure
	Keyboard Shortcuts
	Translations

	Using Cargo
	The Rust Ecosystem
	Code Samples in This Training
	Running Code Locally with Cargo

	I Day 1: Morning
	Welcome to Day 1
	Hello, World
	What is Rust?
	Benefits of Rust
	Playground

	Types and Values
	Hello, World
	Variables
	Values
	Arithmetic
	Type Inference
	Exercise: Fibonacci
	Solution

	Control Flow Basics
	Blocks and Scopes
	if expressions
	match Expressions
	Loops
	for
	loop

	break and continue
	Labels

	Functions
	Macros
	Exercise: Collatz Sequence
	Solution

	II Day 1: Afternoon
	Welcome Back
	Tuples and Arrays
	Arrays
	Tuples
	Array Iteration
	Patterns and Destructuring
	Exercise: Nested Arrays
	Solution

	References
	Shared References
	Exclusive References
	Slices
	Strings
	Reference Validity
	Exercise: Geometry
	Solution

	User-Defined Types
	Named Structs
	Tuple Structs
	Enums
	Type Aliases
	const
	static
	Exercise: Elevator Events
	Solution

	III Day 2: Morning
	Welcome to Day 2
	Pattern Matching
	Irrefutable Patterns
	Matching Values
	Structs
	Enums
	Let Control Flow
	if let Expressions
	while let Statements
	let else Statements

	Exercise: Expression Evaluation
	Solution

	Methods and Traits
	Methods
	Traits
	Implementing Traits
	Supertraits
	Associated Types

	Deriving
	Exercise: Logger Trait
	Solution

	Generics
	Generic Functions
	Trait Bounds
	Generic Data Types
	Generic Traits
	impl Trait
	dyn Trait
	Exercise: Generic min
	Solution

	IV Day 2: Afternoon
	Welcome Back
	Closures
	Closure Syntax
	Capturing
	Closure traits
	Exercise: Log Filter
	Solution

	Standard Library Types
	Standard Library
	Documentation
	Option
	Result
	String
	Vec
	HashMap
	Exercise: Counter
	Solution

	Standard Library Traits
	Comparisons
	Operators
	From and Into
	Casting
	Read and Write
	The Default Trait
	Exercise: ROT13
	Solution

	V Day 3: Morning
	Welcome to Day 3
	Memory Management
	Review of Program Memory
	Approaches to Memory Management
	Ownership
	Move Semantics
	Clone
	Copy Types
	The Drop Trait
	Exercise: Builder Type
	Solution

	Smart Pointers
	Box<T>
	Rc
	Owned Trait Objects
	Exercise: Binary Tree
	Solution

	VI Day 3: Afternoon
	Welcome Back
	Borrowing
	Borrowing a Value
	Borrow Checking
	Borrow Errors
	Interior Mutability
	Cell
	RefCell

	Exercise: Health Statistics
	Solution

	Lifetimes
	Borrowing with Functions
	Returning Borrows
	Multiple Borrows
	Borrow Both
	Borrow One
	Lifetime Elision
	Lifetimes in Data Structures
	Exercise: Protobuf Parsing
	Solution

	VII Day 4: Morning
	Welcome to Day 4
	Iterators
	Motivating Iterators
	Iterator Trait
	Iterator Helper Methods
	collect
	IntoIterator
	Exercise: Iterator Method Chaining
	Solution

	Modules
	Modules
	Filesystem Hierarchy
	Visibility
	Visibility and Encapsulation
	use, super, self
	Exercise: Modules for a GUI Library
	Solution

	Testing
	Unit Tests
	Other Types of Tests
	Compiler Lints and Clippy
	Exercise: Luhn Algorithm
	Solution

	VIII Day 4: Afternoon
	Welcome Back
	Error Handling
	Panics
	Result
	Try Operator
	Try Conversions
	Dynamic Error Types
	thiserror
	anyhow
	Exercise: Rewriting with Result
	Solution

	Unsafe Rust
	Unsafe Rust
	Dereferencing Raw Pointers
	Mutable Static Variables
	Unions
	Unsafe Functions
	Unsafe Rust Functions
	Unsafe External Functions
	Calling Unsafe Functions

	Implementing Unsafe Traits
	Safe FFI Wrapper
	Solution

	IX Android
	Welcome to Rust in Android
	Setup
	Build Rules
	Rust Binaries
	Rust Libraries

	AIDL
	Birthday Service Tutorial
	AIDL Interfaces
	Generated Service API
	Service Implementation
	AIDL Server
	Deploy
	AIDL Client
	Changing API
	Updating Client and Service

	Working With AIDL Types
	Primitive Types
	Array Types
	Sending Objects
	Parcelables
	Sending Files

	Testing in Android
	GoogleTest
	Mocking

	Logging
	Interoperability
	Interoperability with C
	A Simple C Library
	Using Bindgen
	Running Our Binary
	A Simple Rust Library
	Calling Rust

	With C++
	The Bridge Module
	Rust Bridge Declarations
	Generated C++
	C++ Bridge Declarations
	Shared Types
	Shared Enums
	Rust Error Handling
	C++ Error Handling
	Additional Types
	Building in Android
	Building in Android
	Building in Android

	Interoperability with Java

	X Chromium
	Welcome to Rust in Chromium
	Setup
	Comparing Chromium and Cargo Ecosystems
	Chromium Rust policy
	Build rules
	Including unsafe Rust Code
	Depending on Rust Code from Chromium C++
	Visual Studio Code
	Build rules exercise

	Testing
	rust_gtest_interop Library
	GN Rules for Rust Tests
	chromium::import! Macro
	Testing exercise

	Interoperability with C++
	Example Bindings
	Limitations of CXX
	CXX Error Handling
	CXX Error Handling: QR Example
	CXX Error Handling: PNG Example

	Using cxx in Chromium
	Exercise: Interoperability with C++

	Adding Third Party Crates
	Configuring the Cargo.toml file to add crates
	Configuring gnrt_config.toml
	Downloading Crates
	Generating gn Build Rules
	Resolving Problems
	Build Scripts Which Generate Code
	Build Scripts Which Build C++ or Take Arbitrary Actions

	Depending on a Crate
	Auditing Third Party Crates
	Checking Crates into Chromium Source Code
	Keeping Crates Up to Date
	Exercise

	Bringing It Together --- Exercise
	Exercise Solutions

	XI Bare Metal: Morning
	Welcome to Bare Metal Rust
	no_std
	A minimal no_std program
	alloc

	Microcontrollers
	Raw MMIO
	Peripheral Access Crates
	HAL crates
	Board support crates
	The type state pattern
	embedded-hal
	probe-rs and cargo-embed
	Debugging

	Other projects

	Exercises
	Compass
	Bare Metal Rust Morning Exercise

	XII Bare Metal: Afternoon
	Application processors
	Getting Ready to Rust
	Inline assembly
	Volatile memory access for MMIO
	Let's write a UART driver
	More traits
	Using it

	A better UART driver
	Bitflags
	Multiple registers
	Driver

	safe-mmio
	Driver
	Using It

	Logging
	Using it

	Exceptions
	aarch64-rt
	Other projects

	Useful crates
	zerocopy
	aarch64-paging
	buddy_system_allocator
	tinyvec
	spin

	Bare-Metal on Android
	vmbase

	Exercises
	RTC driver
	Bare Metal Rust Afternoon

	XIII Concurrency: Morning
	Welcome to Concurrency in Rust
	Threads
	Plain Threads
	Scoped Threads

	Channels
	Senders and Receivers
	Unbounded Channels
	Bounded Channels

	Send and Sync
	Marker Traits
	Send
	Sync
	Examples

	Shared State
	Arc
	Mutex
	Example

	Exercises
	Dining Philosophers
	Multi-threaded Link Checker
	Solutions

	XIV Concurrency: Afternoon
	Welcome
	Async Basics
	async/await
	Futures
	State Machine
	Runtimes
	Tokio

	Tasks

	Channels and Control Flow
	Async Channels
	Join
	Select

	Pitfalls
	Blocking the executor
	Pin
	Async Traits
	Cancellation

	Exercises
	Dining Philosophers --- Async
	Broadcast Chat Application
	Solutions

	XV Idiomatic Rust
	Welcome to Idiomatic Rust
	Leveraging the Type System
	Newtype Pattern
	Semantic Confusion
	Parse, Don't Validate
	Is It Truly Encapsulated?

	Extension Traits
	Extending Foreign Types
	Method Resolution Conflicts
	Trait Method Conflicts
	Extending Other Traits
	Should I Define An Extension Trait?

	Typestate Pattern: Problem
	Typestate Pattern: Example
	Beyond Simple Typestate
	Typestate Pattern with Generics

	Using the Borrow checker to enforce Invariants
	Lifetimes and Borrows: the Abstract Rules
	Single-use values
	Mutually Exclusive References / "Aliasing XOR Mutability"
	PhantomData 1/4: De-duplicating Same Data & Semantics
	PhantomData 2/4: Type-level tagging
	PhantomData 3/4: Lifetimes for External Resources
	PhantomData 4/4: OwnedFd & BorrowedFd

	Token Types
	Permission Tokens
	Token Types with Data: Mutex Guards
	Variable-Specific Tokens (Branding 1/4)
	PhantomData and Lifetime Subtyping (Branding 2/4)
	Implementing Branded Types (Branding 3/4)
	Branded Types in Action (Branding 4/4)

	XVI Unsafe
	Welcome to Unsafe Rust
	Setting Up
	Motivations
	Interoperability
	Data Structures
	Performance

	Foundations
	What is “unsafety”?
	When is unsafe used?
	Data structures are safe ...
	... but actions on them might not be
	Less powerful than it seems

	XVII Final Words
	Thanks!
	Glossary
	Other Rust Resources
	Credits

