
Productivity in Common Operating
Systems

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Productivity in
Common Operating

Systems

Unix Essentials

LESTER HIRAKI

TORONTO METROPOLITAN UNIVERSITY
TORONTO

Productivity in Common Operating Systems Copyright © 2022 by Lester Hiraki
is licensed under a Creative Commons Attribution-NonCommercial 4.0
International License, except where otherwise noted.

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

Contents

Introduction
Lester Hiraki

1

Part I. Main Body

1. The Hierarchical File System

Hierarchical File System 3

3

2. Common Unix Commands 12

3. Input and Output: Redirection and Pipes

Filters 20

Redirection 21

Pipes 27

 Making your script executable 30

20

4. Shell Variables, Quotes, Command Substitu
tion

Shell Variables 31

read 37

Quotes 39

Command substitution 42

31

5. Control Structures - Part 1 - branching

test 44

Control Structures 46

44

6. Control Structures - Part 2 - Loops

Computer Science Loop Concepts 59

Loops in Unix 62

59

7. Quick Reference Guide

Common Notations 76

FAQs 78

76

Acknowledgements 79

Introduction
LESTER HIRAKI

Welcome to Productivity in Common Operating Systems!
The goal of this book is to provide the interested learner with

the essentials to work in a Unix environment.
The focus is on the user’s perspective to enable the user to be

productive in a Unix environment. Topics include understand
ing and navigating the file system, using common commands,
and automating tasks. Emphasizing the user’s perspective, the
scope of this book does not include topics such as system
administration, installation, or networking.

To gain the most out of this book, it is recommended that the
learner have access to a Unix or Unix-like system, specifically
with command line access, so as to be able to practice com
mands and programming.

This book is intended for adoption in the freshman or sopho
more year of a technical program (e.g. computer science, engi
neering, STEM, etc.). No prior knowledge or experience with
Unix is expected; however, familiarity with computer program
ming (coding and debugging) is strongly recommended.

UNIX is a registered trademark of The Open Group. The Open
Group is not affiliated with this resource. Linux® is the regis
tered trademark of Linus Torvalds in the U.S. and other coun
tries. In this book, Unix (mixed case) refers to Unix-like
operating systems such as Linux as well as UNIX.

Introduction | 1

2 | Introduction

1. The Hierarchical File
System

Pre-amble

Unix is primarily a command line oriented operating system.
 Most commands are an action which is performed on an
object, typically a file or directory. In order to be productive in
a Unix environment, one must be intimately familiar with the
concept of the hierarchical file system. Mastering this concept
is fundamental to successful work in a Unix environment and is
the key takeaway of this section.

Hierarchical File System

The Unix file system is that of an inverted tree. Imagine a tree
with leaves and branches but turned upside down with the
root or main trunk at the top. The main trunk branches off to
smaller branches and eventually leaves. By analogy, the root
directory typically contains several directories (folders) which in
turn contain other directories (subdirectories) and/or files. Just
as a tree branch can have smaller branches or leaves, a leaf
cannot have other branches or leaves. Similarly, the difference
between a directory and a file is that a directory can contain
other directories or files, but a file cannot contain other direc
tories or files — a file is a terminal node.

The figure below shows the typical layout of a Unix file sys
tem. While systems vary greatly in size, most will have at least

The Hierarchical File System | 3

Typical
hierarchical
file
structure of
a Unix
system

these directories. The convention in this diagram uses an
ellipse to depict a directory and a rectangle to depict a file.

Explanation of common subdirectories:

Directory Remarks

etc contains operation and administrative files

bin contains executable commands

dev
contains the devices connected to the system
(printers, terminals, etc…); these devices still appear
as files

users*

contains user files and directories. *The directory
name is not standard and varies between systems.
 Other common variations are things like “home”.
 Some larger systems will even have more than one
top-level user directories such as “faculty”, “staff”,
“classof31”, etc.

4 | The Hierarchical File System

How to Specify a File or Directory in Unix

As most Unix commands act on files or directories, it is neces
sary to be able to specify such an entity.

There are two methods to specify a file or directory, absolute
and relative:

Absolute

To specify a file or directory using the absolute method, start
with the root directory (/) and write each directory that is
encountered on the path to the directory or file being speci
fied. Separate each directory with a “/” forward slash character.

Examples

Specify the etc directory in the above system.

/etc

Specify the file named passwd in the above system.

/etc/passwd

The Hierarchical File System | 5

Specify the file named ls in the above system.

/bin/ls

Specify the file named mydata in the above system.

/users/raj/work/mydata

Key Takeaways

The absolute specification always starts with a “/” (for
ward slash).

Relative

When working on Unix, the user will always “be” at some logical
position within the hierarchy. This position is termed the “cur
rent working directory” or simply the “current directory”. The

6 | The Hierarchical File System

specification of a relative path is relative to this current direc
tory position. Note that it is possible to change one’s current
directory while working; this will be discussed in a later chapter.

To specify a file or directory using the relative method, start
with the current directory and write each directory that is
encountered on the path to the directory or file being speci
fied. Separate each directory with a “/” forward slash character.

Examples

Specify the file mydata with current directory:
/users/raj/

work/mydata

Specify the file mydata with current directory:
/users/raj/work/

mydata

The Hierarchical File System | 7

Specify the file report with current directory:
/users/raj/work

../report

As the file report is not contained in the cur
rent directory, it is necessary to go up one level
first (to raj) to be able to reach the file report.
 Here the double dots mean “parent directory”
or one level up.

Key Takeaways

The relative specification never starts with a “/” (for
ward slash).

When should one use absolute vs. relative specifications? In

many cases both are acceptable. One may notice that a rela
tive specification usually requires less typing. Who likes more
typing? An absolute path is preferred when the user or pro

8 | The Hierarchical File System

grammer values portability allowing the specification to be
used from any position on the system by any user.

Points to Consider

• Names for files and directories are case-sensitive. Thus
report, Report, and REPORT are all distinct.

• Names may include any letters, digits, and some special
characters (period, comma, underscore, etc.) but not /, <, >,
&, :, |.

• Names may be up to 255 characters in length.
• There is no requirement for file extensions (few characters

after a period). All of the following are valid names:

◦ report

◦ letter_to_bob.text

◦ forecast.July,Version1

◦ notes.doc

• Names must be unique within a directory (no duplicates
allowed). This is automatically enforced by the operating
system. In the raj directory, it would not be possible to cre
ate another file or directory called work. Consider the
analogy of human families: Two siblings would not share
the same name, but a cousin, uncle, or grandparent could
share the same name without conflict.

An interactive H5P element has been excluded

from this version of the text. You can view it online

The Hierarchical File System | 9

here:

https://pressbooks.library.torontomu.ca/opsyshi

raki/?p=25#h5p-1

Home Directory

The home directory is a private area for the user files and direc
tories. Each user will have a directory name matching the login
name assigned by the system administrator.

While it is correct and possible to specify a home directory
using the absolute and relative methods aforementioned,
there exists an abbreviation consisting of a ~ (tilde) followed by
the user’s login name. Advantage: This avoids having to know
the name of the user file area which is non-standard: some
installations call it users, others call it home, still others have
their own conventions.

Examples

Eg. Raj’s home directory would be

~raj

Eg. A file in his directory would be

~raj/report

10 | The Hierarchical File System

https://pressbooks.library.torontomu.ca/opsyshiraki/?p=25#h5p-1
https://pressbooks.library.torontomu.ca/opsyshiraki/?p=25#h5p-1

The Hierarchical File System | 11

2. Common Unix
Commands

While there are hundreds of Unix commands, fortunately it is
not necessary to know all of them. In fact, one can achieve a
significant level of productivity knowing just a couple of dozen.
Here are some of the most common and useful commands.

All commands are case sensitive.

Spaces are a BIG DEAL in Unix

When issuing commands, in order for Unix to tell
when a command finishes and when parameters
and file names start and end, every item (or token)
on a command line must be separated by white
space (one or more space characters). One of the
most common causes of frustration is failure to put
whitepace between items on the command line, or
putting whitespace where it should not be.

Just as in English, there is a big difference in
meaning between “no table” and “notable”, so is the
case in Unix.

Right:

ls /etc

Wrong:

12 | Common Unix Commands

ls/etc

Unix commands are a single word requesting an action.

Sometimes the action is standalone, but most actions are
applied to some object like a file or directory. At the point in the
command where it expects the name of a file, say, this is where
you specify the file in the form of an absolute or relative refer
ence as described in the previous chapter.

Common Unix Commands | 13

Command What does it
do? Example usage

ls list directory
contents

List files (and directories) in
my current directory:
ls

List files in top level etc direc
tory:
ls /etc

List all files beginning with
g (wildcard *):
ls g*

List and give details about
files:
ls -l

List all files including hid
den:
ls -a

cat

concatenate
files and print
on the
standard
output

Show contents of file report:
cat report

Show contents of files chap
ter1 and chapter2:
cat chapter1 chapter2

head
output the
first part of
files

Show the first few lines of file
longfile:
head longfile

tail
output the
last part of
files

Show the last few lines of file
logfile:
tail logfile

cp copy files and
directories

Copy file report to report_v2
in the work directory:
cp report work/
report_v2

mv move
(rename) files

Rename file report to
presentation:
mv report presentation

Move file mydata to yourdata
one level up:
mv mydata ../yourdata

14 | Common Unix Commands

Command What does it
do? Example usage

rm remove files
(permanent)

Delete file report in current
directory:
rm report

Caution: There is no recy
cling bin in Unix. Consider all
deletions as permanent.
Exercise care when using
wildcards (e.g. *).

cd
change the
working
directory

Change directory to work
directory (one level down):
cd work

Change directory to /bin
directory:
cd /bin

Change directory to parent
(one level up):
cd ..

Change directory to home
directory of user ahmed:
cd ~ahmed

pwd
print name of
current/
working
directory

Are you lost?
pwd

mkdir make
directories

Create new directory called
unix_exercises:
mkdir unix_exercises

rmdir
remove
empty
directories

Remove (permanently
delete) the directory
unix_exercises:
rmdir unix_exercises

who show who is
logged on

Display who else is logged in
right now:
who

whoami print effective
userid

Display one’s own userid
(short login name):
whoami

Common Unix Commands | 15

Command What does it
do? Example usage

date
print the
system date
and time

date

man
an interface to
the on-line
reference
manuals

Display manual entry for ls
command:
man ls

Keyword search for com
mands related to “directory”:
man -k directory

Key Takeaways

• Spaces are a BIG DEAL in Unix: They are needed
between commands, parameters, and filenames.

• All commands are case-sensitive (usually all
lowercase)

More Key Takeaways

• Command options (e.g. -l, or -d, etc.) are specific
to the command. For example, while both the ls
and and cp command both have a “-l” option, the

16 | Common Unix Commands

option means different things in each command.
Command options are not mix and match.

• Command options may be listed separately or
combined. The following are equivalent:

◦ ls -ld

◦ ls -l -d

More Unix Commands

All the commands below require some sort of
input, typically a file, but the commands do not
modify the input file. The outputs will contain por
tions of the input files, but the input files are never
changed.

Common Unix Commands | 17

Command What does
it do? Example usage

cut

Print
selected
parts of
lines from
each FILE
to standard
output.

display columns 1-10 and 20-23 of myfile

cut -c1-10,20-23 myfile

display the 3rd and 5th fields of the /etc/
passwd file

cut -f3,5 -d: /etc/passwd

paste

merge lines
of files

If cat joins
vertically,
think of
paste as a
horizontal
version of
cat.

display file1, file2, and file3 side-by-side

paste file1 file2 file3

wc

print
newline,
word, and
byte counts
for each file

display the number of lines, words, and
characters for the file chapter3

wc chapter3

display only the number of lines

wc -l chapter3

grep
print lines
matching a
pattern

display lines matching the string Total in
the file sales

grep Total sales

sort sort lines of
text files

display a sorted version of the file
namelist

sort namelist

18 | Common Unix Commands

Common Unix Commands | 19

3. Input and Output:
Redirection and Pipes

By design most Unix commands are small and simple in their
functionality. To solve beyond the trivial requires the use of sev
eral steps or commands. How to sequence and combine com
mands in Unix requires an understanding of how input and
output is managed. The next sections will introduce these con
cepts and show how more complex problems may be solved.

Filters

One may think of a filter as a black box with an input and an
output. Most Unix commands can be thought of as a filter.
 The inputs and outputs have been given formal names. The
input is named standard input (STDIN); the output is named
standard output (STDOUT); and there is a secondary output
named standard error (STDERR) which will be discussed in
more detail later. These inputs and outputs are associated with
file descriptors or stream numbers 0, 1, and 2 respectively.

By default, Unix commands read from standard input and
print to standard output. Any error messages are sent to stan
dard error.

20 | Input and Output: Redirection and Pipes

Examples of Unix commands as filters

Command Description

cut reads from standard input and passes selected
portions (columns, fields) to standard output

grep reads from standard input and prints matching
lines to standard output

head & tail reads from standard input and prints the first
(last) few lines to standard output

cat a transparent filter: reads from standard input and
prints the same to standard output

wc reads from standard input and prints summary
information to standard output

... not an exhaustive list

Redirection

When working interactively in a Unix session, the default setup
is to have standard input draw from the keyboard, and stan
dard output (as well as standard error) directed at the screen.
 In other words, a command reading from standard input will
wait for keystrokes. A command printing to standard output
will have its output appear on the terminal screen.

Input and Output: Redirection and Pipes | 21

Default
association
of keyboard
and screen
to filter.

Redirection
of Standard
Output

While this arrangement works well, there will come situations
where the user will want to save the output of a command to a
file, or substitute a file for keyboard input. This is accomplished
through the concept of redirection where one of the inputs or
outputs is associated with a file.

Redirection of standard output (>
operator)

 The user can save the standard output of any Unix command
by redirecting standard output to a file using the > operator.
 Graphically, the concept is illustrated as follows.

22 | Input and Output: Redirection and Pipes

Redirection
of Standard
Error

Operator syntax Examples and explanation

cmd > some_file

e.g.

cat chapter1 > book

• if the file already exists it will overwrite
it

cmd >> some_file

e.g.

cat chapter3 >> book

• the >> operator appends an existing file

Redirecting standard error (2> operator)

The user can save the standard error of any Unix command
by redirecting standard error to a file using the 2> operator.
Graphically, the concept is illustrated as follows.

Input and Output: Redirection and Pipes | 23

Operator syntax Examples and explanation

cmd 2> some_file

e.g.
cat chapter1 chapter4 2> errors

• saves error messages in file errors but
standard output is displayed on the
screen

cmd > some_file 2> another_file

e.g.
cat chapter1 > book 2> errors

• saves standard output to file book, an
saves standard error messages in file
errors

Merging two streams (>& operator)

 The user can save both standard output and standard error of
any Unix command. This is accomplished by first redirecting
standard error to a file, and then merging standard error with
standard output. The syntax of the merge operator is m>&n
where stream m is merged with wherever stream n is already
going. Graphically, the concept is illustrated as follows. Here
stream 2 (standard error) is merged with stream 1 (standard
output).

24 | Input and Output: Redirection and Pipes

Standard Output and Standard Error are merged (combined)
and re-directed to a file

Operator syntax Examples and explanation

cmd > out_file 2>&1

e.g.
cat text1 junk text3 > both 2>&1

• saves standard output and standard error to
file both

• Explanation: Unix parses left to right. First
standard output is redirected to file “both”.
 Then the merge operator (>&) merges
(blends) standard error (stream 2) with where
standard output (stream 1) is already going (to
file “both”).

• Caution: How about

cat text1 junk text3 > both 2> both

• This is an incorrect method of trying to merge
two streams. This causes a race condition (two
streams competing for the same file) and
correct results are not guaranteed.

Input and Output: Redirection and Pipes | 25

Redirection
of Standard
Input from
a file

Redirecting standard input (< operator)

The user can redirect standard input from a file instead of the
keyboard to any Unix command using the < operator. Graphi
cally, the concept is illustrated as follows.

26 | Input and Output: Redirection and Pipes

Operator syntax Examples and explanation

cmd < some_file

cat < appendix

While it may appear that the “<” in the above comman
anything (works the same without the “<“), the reason is that th
smart and knows to look for input on the command lin
specifically designed to inspect the command line for input ar
essary to use the “<” for redirection of standard input.

Consider a more basic example of a simple script requestin
keyboard. To substitute a file, it would be necessary to issue th
mand, where the file “keystrokes” contains what the user w

myscript < keystrokes

Here “myscript” represents a user-written Unix script (pr
mand.

Pipes

It is often the case that a problem in Unix is solved with mul
tiple commands. Typically the output of the first command is
saved in a file which is then used as input to a subsequent
command. The use of a pipe is considered a refinement of this
approach potentially simplifying the solution.

Input and Output: Redirection and Pipes | 27

Problem: To determine the number of
entries in a directory

Method 1

Graphical
view code explanation

ls ->
file_list
-> wc

ls /etc > file_list
wc -l file_list
rm file_list

• save output of ls
command in file_list

• run wc command to
count lines

• delete temporary file
file_list

Method 2

Graphical
view code explanation

ls ->

 -> wc

ls /etc | wc -l
• save output of ls command

is sent directly to input of
wc command

• no temporary file needed

28 | Input and Output: Redirection and Pipes

Definition:

A pipe connects STDOUT of previous command to
STDIN of next command

You can use a pipe multiple times creating a pipeline.

e.g.
cmd1 | cmd2 | cmd3 | cmd4

Building a pipeline should be an iterative process. Condense
stepwise as you know the solutions work, otherwise there
might be errors that might be difficult to detect from a single
pipeline

Start out like this:

cmd1 > out1
cmd2 < out1 > out2
cmd3 < out2

…

Key Takeaways

Input and Output: Redirection and Pipes | 29

1. Redirection: Use between a command and a
file

2. Pipe: Use between commands

 Making your script executable

1. create file containing unix commands
2. Once per file, type either:

◦ chmod u+x myscript
◦ chmod 700 myscript

3. To run, type . /myscript

30 | Input and Output: Redirection and Pipes

4. Shell Variables,
Quotes, Command
Substitution

Shell Variables

Unix is an operating system but also the name given to its
scripting (programming) language. In order to be useful, a
computer language needs to be able to store data. Unix sup
ports this capability with shell variables.

There are three kinds of shell variables:

1. special
2. environment
3. program

Special variables

Special variables are unlike what you may have seen in other
programming languages. Rather special variables are created
and set by the operating system automatically. Consider the
following examples:

Positional parameters ($1, $2, …)

Recall that the cat program allows the user to specify inputs

Shell Variables, Quotes, Command Substitution | 31

as command-line arguments: (In the following examples, the
leading dollar sign represents the command prompt; do not
type the leading dollar sign.)

$ cat ch1 ch2 ch3

Imagine that you would like to write your own script allowing
the user to specify inputs as command-line arguments as in.

$ myscript apple cherry

Example

$ cat arg_demo
#!/bin/bash
echo The 1st argument is $1
echo The 2nd argument is $2
$
$./arg_demo apple cherry
The 1st argument is apple
The 2nd argument is cherry

number of command line arguments ($#)

The special variable $# holds the number of command-line
arguments specified when your script was run.

32 | Shell Variables, Quotes, Command Substitution

Examples

$ cat numeg
#!/bin/bash
echo The number of command line arguments is $#
$
$./numeg apple cherry
The number of command line arguments is 2
$

return code of previous command ($?)

Every Unix command generates a return code typically indicat
ing success or failure. The value of this return code is stored
in the special variable $?. Thus each time a Unix command is
run the $? variable is updated automatically to hold the return
code of the most recently executed Unix command. The use of
the return code is important and will become apparent in the
chapter on control structures.

Environment variables

Environment variables hold information about the users’s cur
rent settings and configuration. By convention, they are typi
cally all UPPERCASE. To display them, type ‘env’

Shell Variables, Quotes, Command Substitution | 33

Example

lhiraki@metis:~$ env
SHELL=/bin/bash
PATH=/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games:/snap/bin:/usr/courses/bin/x86_64
JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64
EDITOR=vi
LANGUAGE=en_CA:en
LPDEST=eng206c
lhiraki@metis:~$

Here is an abridged list of environment variables.
Some of the typical environment variables include
SHELL (current shell), PATH (list of directories the oper
ating system will search in order to find a command),
EDITOR (preferred editor), LANGUAGE (preferred dis
play language), LPDEST (preferred printer destination).

Program variables

Program variables are the type of variable that typically come
to mind when one thinks of variables in a computer program
ming language. Program variables are variables which you as
the programmer create and set. As Unix is a prototyping lan
guage, it is common to dispense with many of the formalities
required for variable declarations, etc.

34 | Shell Variables, Quotes, Command Substitution

Program variables hold a string, i.e. text, and can be used any
where text could appear in a program such as a filename, part
of the file name, or even a Unix command itself. A variable can
hold only one value at a time.

The naming convention for program variables is to use low

ercase. Specifically uppercase program variable names should
be avoided so as to prevent confusion with environment vari
ables and accidentally overwriting an environment variable.

Eg. 1 An easy way to create and set a program variable is
using an assignment statement.

temp_name=/usr/temp
cp myfile $temp_name

Assignment statements copy the value to the right of the

equal sign to the variable on the left. Important: Assignment
statements must not contain spaces, especially around the
equal sign.

Eg. 2

Shell Variables, Quotes, Command Substitution | 35

month=september
echo the current month is $month

When to use $ with variables

When writing to a variable, i.e. setting or changing its contents,
do not use the dollar sign. When reading a variable, i.e. access
ing its contents, you must use the dollar sign.

Key Takeaway – When to use $ with variables:

Writing to a variable: no dollar sign

Reading from a variable: use dollar sign

Editorial Remark:

One of the key factors affected software mainte
nance costs is code readability. Most of the time
(cost) of maintaining software is spent in having
designers read and understand existing code. One

36 | Shell Variables, Quotes, Command Substitution

way to control and reduce costs (business competi
tiveness) is to ease readability. By choosing variables
which reflect their contents, it makes it easier to
understand the code.

Choose self-describing variable names:

Good variable
names: Bad variable names:

• sum
• total
• x_value
• length
• count

• a,b,c….
• var1, var2, var3….

read

The read command collects characters from standard input
(STDIN) and stores them in a variable. The read command is
typically used in an interactive script to collect user input after
an appropriate prompt message. As the read command draws
from standard input, and standard input can be redirected
from a file, it is possible to prepare inputs (answers) in a file and
run the script in a non-interactive fashion.

Shell Variables, Quotes, Command Substitution | 37

Example using read command

$ cat readeg
echo -n 'What is your name? '
read name
echo Hello $name, pleased to meet you!
$
$./readeg
What is your name? Mohammed
Hello Mohammed, pleased to meet you!
$

What does the option “-n” do in the echo com
mand above?

Hint: type “man echo”. To exit the manual, press
“q”.

Key Takeaways

read vs. command line arguments

38 | Shell Variables, Quotes, Command Substitution

• Both are ways the user can supply input to a
program. Command line arguments are placed
on the command line before pressing <ENTER> to
run the program. The values are accessed within
one’s program using $1, $2, etc.

• The “read” command causes the program to
wait for keyboard input (if STDIN has not been
redirected from a file). The input is stored in and
later accessed from a program variable.

Which method should you use? Refer first to any
program requirements. (Does it say, “Prompt the user
to enter …” or “specify as a command line argument”?)

Quotes

Single quotes:

Problem:

$ grep Al Shaji employee_list
grep: can’t open Shaji

Solution:

$ grep 'Al Shaji' employee_list

Single quotes causes Unix to take everything within the single

Shell Variables, Quotes, Command Substitution | 39

quotes literally. This is how you would prevent interpretation
of characters which would normally have special meaning, for
example the space character separating command line argu
ments.

Double quotes

• Recognize $, \ , ` (backtick or backquote)

Exercise 1: Try this out and see the difference double quotes
makes

heading=' Name Addr Phone'
echo $heading
echo "$heading"

Exercise 2: Try this out and see the difference double quotes
makes

read operator # enter asterisk *

40 | Shell Variables, Quotes, Command Substitution

echo $operator
echo "$operator"

The double quotes are similar to single quotes in that Unix
takes what is within the quotes literally. However, double
quotes are “smarter” in that variables and selected meta-char
acters are interpreted and expanded in spite of the usual literal
nature of quotes.

Home directory potential tricky issue (tilde
is protected i.e. not expanded within
quotes).

Instead of:

datafile="~jasmin/rawdata"
cat $datafile # produces "No such file or directory" error

Say (solution 1):

datafile=~jasmin/rawdata
cat $datafile

Say (solution 2):

datafile="~jasmin/rawdata"
eval cat $datafile

Shell Variables, Quotes, Command Substitution | 41

Command substitution

Sometimes a programmer wishes to run a command and use
its output at some point within a program. While it is possible
to redirect output to a temporary file, load the contents of the
file, and then promptly delete it, for small tasks, it is more con
venient and efficient to use the technique of command substi
tution and avoid extra disc access.

Eg. 1 Newbie’s first guess

today=date
echo $today

Eg. 2 This is the way to do it.

today=$(date) (old version today=`date`)
echo $today

42 | Shell Variables, Quotes, Command Substitution

Syntax:

$(unix_command)

The mechanics of command substitution works as follows:

1. Unix will run the command within the parentheses as if it
were typed at the keyboard. The command may include
options, command line arguments, or even be a script.

2. Instead of being displayed on the screen, the standard
output (STDOUT) of the command is substituted at the
exact position of the call ($(unix_command)).

The command substitution may be made anywhere in a pro

gram; however, it is often used on the right-hand side of an
assignment statement (to save the output in a variable), or
within an echo statement.

An interactive H5P element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.torontomu.ca/opsyshi

raki/?p=35#h5p-10

Shell Variables, Quotes, Command Substitution | 43

https://pressbooks.library.torontomu.ca/opsyshiraki/?p=35#h5p-10
https://pressbooks.library.torontomu.ca/opsyshiraki/?p=35#h5p-10

5. Control Structures -
Part 1 - branching

In order to support control structures (branching, looping, etc.),
all computer languages need some method of evaluating a
condition. In Unix, the command to evaluate a condition is the
test command. The test command is often at the heart of most
control structures in Unix.

test

What does the test command do? It evaluates a condition and
sets the special shell variable $?, the return code. Much to the
confusion of new users, the test command is silent in that it
does not print anything to standard output. Thus when run
ning the test command, it appears as if to do nothing. To check
the return code, one may simply print its value with an echo
statement.

Example 1: Check if a file is readable.

$ test -r myfile
$ echo $?
0

44 | Control Structures - Part 1 - branching

How does one interpret the return code?
Unix convention:

0 (zero) means TRUE

not 0 (not zero) means FALSE

Example 2: Compare if two strings are equal.

$ test "this" = "that"
$ echo $?
1

Synonym to the test command: [

For reasons of readability, many programmers with use the
synonym or abbreviation for the test command which is the
left square bracket: [. In all examples above, replace the word
test with the left square bracket. Note that a matching right
square bracket needs to be added for syntactic reasons. As
with all Unix commands, spaces are a big deal and a space
is required after the left square bracket and before the right
square bracket.

Control Structures - Part 1 - branching | 45

Example 3: Synonym to the test command [

$ [-r myfile] # note the space after the left bracket
$ echo $?
0

Control Structures

if

The if statement in Unix is the basic two-way branch.

Syntax

if unix_statements
then
 actions_true
else # optional

46 | Control Structures - Part 1 - branching

 actions_false
fi

How does the if statement work? Here is the sequence of oper
ations. The if statement will:

1. Run all the unix_statements.
2. Check the return code ($?) of the last statement in the list

(just prior to the keyword “then”.
3. If the return code is true. the “then” clause is executed (

actions_true). If the return code is false, the “else” clause is
executed (actions_false). The else clause is optional (can
be left out if not needed).

Example of if

#!/bin/bash
comfort=20
temperature=18
if echo The current temperature is $temperature
 echo Temperature for comparison is $comfort
 [$temperature -lt $comfort]
then
 echo It is cold.
else
 echo It is warm.

Control Structures - Part 1 - branching | 47

fi

An interactive H5P element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.torontomu.ca/opsyshi

raki/?p=37#h5p-5

Nested conditions are supported in Unix. Any statement in the
“then” or “else” clause can itself be another if statement.

elif

Although the if statement is primarily a two-way branch (e.g.
true or false), a multi-way branch (e.g. red, yellow, green) can be
coded using a set of nested if statements. Some computer lan
guages support an “else-if”-type clause; Unix is one of them.

There is an “else-if” clause called “elif” which requires a state
ment just like the if clause.

Example: elif

48 | Control Structures - Part 1 - branching

https://pressbooks.library.torontomu.ca/opsyshiraki/?p=37#h5p-5
https://pressbooks.library.torontomu.ca/opsyshiraki/?p=37#h5p-5

if [$temperature -lt $comfort]
then
 echo It is cold.
elif [$temperature -eq $comfort]
then
 echo It is perfect.
else
 echo It is warm.
fi

Note that the “elif” clause is actually a clause of the
main “if” and not a nested if statement. Thus, there is
only one “fi” (end if) required for each opening “if”
regardless of how many “elif” clauses there are.

An interactive H5P element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.torontomu.ca/opsyshi

raki/?p=37#h5p-6

An interactive H5P element has been excluded

from this version of the text. You can view it online

here:

Control Structures - Part 1 - branching | 49

https://pressbooks.library.torontomu.ca/opsyshiraki/?p=37#h5p-6
https://pressbooks.library.torontomu.ca/opsyshiraki/?p=37#h5p-6

https://pressbooks.library.torontomu.ca/opsyshi

raki/?p=37#h5p-7

case

Many computer languages support a multi-way branch. Unix is
included as one of them.

Simplified syntax:

case $variable
in
 val1) action1;;
 val2) action2;;
 *) default action;;
esac

The keywords are case, in, and esac. The double
semi-colon is a syntactic requirement to separate
the inner clauses of the case statement.

50 | Control Structures - Part 1 - branching

https://pressbooks.library.torontomu.ca/opsyshiraki/?p=37#h5p-7
https://pressbooks.library.torontomu.ca/opsyshiraki/?p=37#h5p-7

Example: Flexible command line processing.

Allow your user to run your script in various ways.
Accommodate all of the following invocations.

$./myscript # user omits filename; give second chance
$./myscript chapter3 # preferred syntax; just proceed
$./myscript chapter3 chapter5 # multiple arguments not supported;
inform user

Place this code snippet at the beginning of your script like this:
$ cat myscript
case $# in
 0) echo Enter file name:
 read arg1;;
 1) arg1=$1;;
 *) echo invalid number of arguments
 echo "Syntax: $0 filename"
 exit 1;;
esac
rest of program continues after esac
$

General syntax:

Control Structures - Part 1 - branching | 51

case match_string_expr in
 match_pattern) action1;;
 match_pattern) action2;;
 ...

esac

Example: Demonstrate pattern matching use in case state
ment. Print a message about the length of the current
month.

lhiraki@metis:~/test$ cat case_month
case $(date '+%m') in
01|03|05|07|08|10|12)
 echo This is a long month;;
04|06|09|11)
 echo This is a short month;;
02)
 echo This is the shortest month;;
*)
 echo Something wrong with date command;;
esac

Example run in September

52 | Control Structures - Part 1 - branching

Flow of
case
statement:
one entry
point, only
one action
chosen.

lhiraki@metis:~/test$./case_month
This is a short month
lhiraki@metis:~/test$

The date command is called with an option to return
the numerical value of the month (e.g. Jan=01, Feb=02,
etc.). Depending on the month, a message is printed
regarding the length of the month. Months with the
same number of days are grouped together using a
pattern with the OR (vertical bar) syntax.

Defensive programming

Well the previous example is rather trivial and the date com
mand has been well tested over the years, it is considered good
practice to always have a default clause even if you think you
have covered all possible conditions.

Summary

Control Structures - Part 1 - branching | 53

 The match_string_expr is matched against each match_pat

tern in the order coded. At the first match, the corresponding
action is taken. After one action is completed, the case state
ment terminates and execution continues after the esac (end
case). There is no “fall-through”. The case statement will not
execute multiple actions.

An interactive H5P element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.torontomu.ca/opsyshi

raki/?p=37#h5p-8

shift

When processing multiple command-line arguments, it may
be necessary to manipulate them to facilitate processing.

The shift command moves all command-line arguments one
position to the left. For example the second command line
argument is moved into the first position; the third command
line argument is moved into the second position, and so forth.

Example of shift command

54 | Control Structures - Part 1 - branching

https://pressbooks.library.torontomu.ca/opsyshiraki/?p=37#h5p-8
https://pressbooks.library.torontomu.ca/opsyshiraki/?p=37#h5p-8

lhiraki@thebe:~/test$ cat shifter

#!/bin/bash
echo The 1st arg is $1
echo The 2nd arg is $2
shift
echo The 2nd arg is $1
shift
echo The 3rd arg is $1

Execution results in:

lhiraki@thebe:~/test$./shifter apple pear grape
The 1st arg is apple
The 2nd arg is pear
The 2nd arg is pear
The 3rd arg is grape
lhiraki@thebe:~/test$

The exit command

The exit command does two things:

1. It terminates the current shell (or script), returning control
to the calling shell, if any.

2. It sets the return code ($?) for your script.

Control Structures - Part 1 - branching | 55

Example – exit command usage

The trivial but illustrative script exit_example shows
the exit command setting return code for the script to
3 and then terminating the script. Control returns to
the calling program, in this case just back to the oper
ating system prompt.

$ cat exit_example
#!/bin/bash
exit 3
echo This line never executed.

$./exit_example
$ echo $?
3
$

Note that one must inspect the return code ($?)
immediately after running exit_example. The return
code is updated (overwritten) by each Unix command
executed.

The exit command is typically used to terminate a script mid
way through often due to an errror condition. The other pri
mary use of the exit command is for a sub-script to
communicate information back to the calling script.

56 | Control Structures - Part 1 - branching

Example – parent/child script relation

parent child

./child
ret_val=$?
case $ret_val

...
 exit 2
...
exit 0

Note: parent-child relationship can be used for team
project where multiple people can work on the same
file at the same time.

Shebang line

To specify which interpreter Unix should use when executing
your script, as the first line of the file place the path to the inter
preter after “#!”. While the number sign character (#) normally
introduces a comment, when used with the exclamation mark
at the beginning of a file, Unix will load the interpreter speci
fied in the path to run the rest of the script file.

This is especially important to make your script portable in
Unix environments. If you write your script in bash, and you
give your script for someone else to use who works in a c-shell
or Korn shell environment, your script may not work properly.

Control Structures - Part 1 - branching | 57

 To ensure that the script is run under bash, you must specify
the shebang line.

Careful: The shebang line must be the first line of the file,
not just the first line of text, or the first line of code. A common
mistake is to have a blank line as the first line, or some com
ments above the shebang line. Unix does not look beyond the
first line of the file in order to identify the expected interpreter.

Right Wrong Wrong

1:#!/bin/bash
2:#comments
3:#comments
4:code begins here

1:#comments
2:#comments
3:#!/bin/bash
4:code begins here

1:
2:#!/bin/bash
3:
4:code begins here

An interactive H5P element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.torontomu.ca/opsyshi

raki/?p=37#h5p-9

58 | Control Structures - Part 1 - branching

https://pressbooks.library.torontomu.ca/opsyshiraki/?p=37#h5p-9
https://pressbooks.library.torontomu.ca/opsyshiraki/?p=37#h5p-9

6. Control Structures -
Part 2 - Loops

Eventually you will need to repeat actions. A practical way to
repeat actions without repeating code is achieved with the
construct of a loop.

Computer Science Loop
Concepts

The construct of a loop allows for the repetition of
actions without repeating code.

General Loop (Concept)

The most general flow of control is illustrated in
the flowchart below (General). Observe that there
can be a set of actions (Block 1) which is performed
regardless on entry into the loop. Then a condi
tional check is made to determine continuation of
the loop. If satisfied, further actions within the loop
(Block 2) will be performed.

Not all computer languages support the General

Control Structures - Part 2 - Loops | 59

loop construct (Unix
does support a General loop). If a computer lan
guage does not support the General loop construct,
it will usually support one or more of the specific
cases of the General loop. For example, C Language
supports both a While and a Do-While construct
but not the General loop construct.

While Loop (Concept)

The While Loop, as a concept, is a special case of a
General Loop which has no actions for Block 1. In
this case, the condition is checked as a first action
on entry into the loop construct. See flowchart
below (While).

Do-While Loop (Concept)

The Do-While Loop, as a concept, is a special case
of a General Loop which has no actions for Block 2.
 In this case, the Block 1 code is executed on entry
into the loop construct, and the condition is
checked at the end of the loop construct. See flow
chart below (Do-While).

60 | Control Structures - Part 2 - Loops

General While Do-While

An interactive H5P element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.torontomu.ca/opsyshi

raki/?p=41#h5p-3

Control Structures - Part 2 - Loops | 61

https://pressbooks.library.torontomu.ca/opsyshiraki/?p=41#h5p-3
https://pressbooks.library.torontomu.ca/opsyshiraki/?p=41#h5p-3

An interactive H5P element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.torontomu.ca/opsyshi

raki/?p=41#h5p-4

Loops in Unix

There are three commands in Unix to support loops.

• while
• until
• for

while command

The while command in Unix implements the General Loop
construct discussed earlier.

general syntax relation to flow chart

while list1
do
 list2
done

while block1
 check
do
 block 2
done

62 | Control Structures - Part 2 - Loops

https://pressbooks.library.torontomu.ca/opsyshiraki/?p=41#h5p-4
https://pressbooks.library.torontomu.ca/opsyshiraki/?p=41#h5p-4

Unix runs the list1 and looks at the return code ($?) of the last
command in list. (If there’s only one command in the list1, then
that’s the last command.) If the return code of this last com
mand is TRUE, then list2 (loop body) is run. Once the keyword
“done” is reached, control returns to re-run list1 and the return
code of the last command in list1 is checked. If the return code
of this last command is FALSE, then the while loop terminates,
and control continues after the keyword “done”.

E.g. 1: Count from 1 to 12

month=1
while echo Checking limit against month ${month}
 [${month} -le 12] # The test is the last command in list1
do
 echo Performing action for month ${month}
 month=$((${month} + 1))
done
echo Value of month outside loop is ${month}

Notes and observations

1. The last command of list1 is a test command
using the left bracket synonym.

2. The -le is a test command option for the
numeric comparison less than or equal to.

3. As Unix program variables hold strings, to per
form arithmetic operations, one must use the $((..

Control Structures - Part 2 - Loops | 63

)) syntax with dollar sign and double parentheses.
4. The formal spelling of Unix variables requires

enclosure in set braces { }. Where there is no
ambiguity, it is common practice in Unix to omit
the set braces.

5. Try running this code and see that the value of
month never exceeds 12 in the line “echo Per
forming action …”.

Preamble: Redirecting input from a file

$ cat novel
It was a
dark and
stormy
$ read oneline < novel
$ echo $oneline
It was a
$ read oneline < novel
$ echo $oneline
It was a
$

Be reminded that redirection operators in Unix (<, >, etc.)

apply only to the current command. Once the command is
over, redirection is restored to the default configuration (STDIN
from keyboard, STDOUT to screen, etc.). Thus, observe that

64 | Control Structures - Part 2 - Loops

each time the read command is run, redirection is applied
anew, and the first line of the file is read in.

Eg 2a: How to read every line of a file (a non-functional exam
ple)

The objective is to read a file one line at a time. Here
is a newbie’s first attempt.

$ cat badwhile
while read wholeline < novel
do
 something $wholeline #e.g. echo $wholeline
done
$./badwhile
It was a
It was a
It was a
It was a
...

What happened? The redirection operator applies to
the read command. Each time the read command is
run, redirection is applied anew and only the first line of
the file is ever read.

Control Structures - Part 2 - Loops | 65

How can one fix this problem?

Eg 2b: How to read every line of a file? (a functional example)

To have redirection apply to the entire duration of the
while loop and not just the read command, it is neces
sary to establish redirection and associate it with the
while loop.

Here is a template which you can use to read lines
from a file one-at-a-time.

while read wholeline
do
 something $wholeline #e.g. echo $wholeline
done < inputfile

To make this work, one must position the redirection
operator after the command to which it should be
applied. The correct position is after the while com
mand, in particular the keyword done. Unix is smart
enough to look ahead for redirection when it starts exe
cuting the while command. Any commands within the
while command which draw from STDIN (e.g. read) will
draw from the redirected file. (If you are having diffi
culty understanding redirection, refer to the chapter on
Redirection and Pipes.)

66 | Control Structures - Part 2 - Loops

Eg 3: How to process multiple command line arguments
(Method 1)

Recall that the cat command will accept any number
of command line arguments like this:

cat ch1 ch2 ch3 ...

Let’s say that you want to write your own Unix script
that will accept any number of command line argu
ments:

mycmd parm1 parm2 ...

The key requirement here is that you will not know
beforehand how many command-line arguments the
user will supply when the user runs your program.
 Your program must be flexible enough to handle zero
or more command line arguments.

Here is a template of code to solve this problem:

while [$1]
do
 someprocess $1
 shift
done

Explanatory notes:

1. The last command in the while list is a test
command (using the left square bracket syn
onym).

Control Structures - Part 2 - Loops | 67

2. With no specific test operator (e.g. -r, etc.), the
default behaviour of the test command is to
check if the string is null. The return code ($?) is
TRUE for a non-null string (something is there),
and FALSE for a null string.

3. The shift command slides all command line
parameters to the left, in this case moving the
next unprocessed command line argument into
the $1 position. (The shift command also has the
side-effect of decrementing the $# variable.)

4. Once there are no more command line argu
ments, the loop terminates. Note that if there
were no command line arguments to begin with
($1 is NULL), the loop immediately terminates
without entry into the body.

Exercise: Password entry loop

Write a bash script which will continually prompt a
user to enter a password matching the control flow in
the example below. If the user enters the correct pass
word, grant access. If the user enters the wrong pass
word, give the user another try (unlimited). Avoid code
duplication.

Sample dialog:

68 | Control Structures - Part 2 - Loops

$./whilecmdlist
What is the password? happy
--- Sorry, that is not the right password.
What is the password? access
--- Sorry, that is not the right password.
What is the password? Strawberry
Welcome to the system.
$

until command

The until command in Unix implements the General Loop con
struct discussed earlier.

The syntax is identical to the while command with the only
difference that the logic of the conditional test is reversed. If
the last command in list1 is TRUE, the loop terminates.

Here’s the same explanation for the until command:
Unix runs the list1 and looks at the return code ($?) of the last

command in list. (If there’s only one command in the list1, then
that’s the last command.) If the return code of this last com
mand is FALSE, then list2 (loop body) is run. Once the keyword
“done” is reached, control returns to re-run list1 and the return
code of the last command in list1 is checked. If the return code
of this last command is TRUE, then the until loop terminates,
and control continues after the keyword “done”.

for command

The for command in Unix operates quite differently than what

Control Structures - Part 2 - Loops | 69

is common in other computer languages like BASIC or Pascal.
 In particular, it is not a counted loop, rather one should think
“iterative substitution”.

Syntax:

for name in word ...
do
 list
done

The list of words is expanded to create a list of
items. Each of these items is substituted into the
variable name one-at-a-time and the list is run.

E.g. 1: Multiple file rename problem

Consider the problem of adding a suffix to several
files.

Those familiar with a DOS or Windows Power Shell
environment could use a command like this:

ren assig* assig*.bak

Unfortunately a similar command does not work in
Unix:

70 | Control Structures - Part 2 - Loops

mv assig* assig*.backup

Nevertheless, this problem can be solved with the
simple use of a for command:

for filevar in assig*
do
 mv ${filevar} ${filevar}.backup
done

Explanatory notes

1. The word list is the wildcard file specification
assig*. On expansion, for the purposes of this
example, assume that the result is three match
ing files: assig1, assig2, assig3.

2. Each of these words is substituted one-at-a-
time in the loop variable filevar, and the body of
the loop is run (code between do and done).

3. When the body of the loop is run with the vari
able substitutions, the effective commands gen
erated are:

• mv assig1 assig1.backup

• mv assig2 assig2.backup

• mv assig3 assig3.backup

Additional Notes

1. There is no specific string concatenation opera
tor in Unix. Simply placing text adjacently
achieves the desired result. Here the string
“.backup” is appended to the “assig1”, etc.

Control Structures - Part 2 - Loops | 71

2. As stated earlier, while the use of set braces { } is
often omitted when spelling variables, here it
helps to clarify the distinction between the vari
able name and surrounding text.

E.g. 2: Count the number of entries in a directory

Print the number of entries in the /etc directory.

count=0
for files in $(ls /etc)
do
 count=$(($count +1))
done
echo The number of entries is $count

Explanatory notes

1. The word list consists of a command substitu
tion call of the ls command on the /etc directory.

2. Expansion of this word list is the names of the
entries in the /etc directory.

3. Each name is substituted into the loop variable
files.

4. The body of the loop consists of incrementing a
counter which will eventually hold the number of

72 | Control Structures - Part 2 - Loops

entries.
5. Outside the loop, the total number of entries is

printed in an appropriate message.

Eg 3: How to process multiple command line arguments
(Method 2)

Let’s say that you want to write your own Unix script
that will accept any number of command line argu
ments:

mycmd parm1 parm2 …

Here is another method, this one using the for com
mand

for cmdarg in $*
do
 myprocess $cmdarg
done

Explanatory notes

1. The special variable $* expands to all command
line arguments present starting with $1.

Control Structures - Part 2 - Loops | 73

2. Each of these words is substituted into the loop
variable cmdarg.

3. The body of the loop is run against each com
mand line argument (myprocess is a fictitious
Unix command or script).

4. Unlike the while command example, there is no
need for the shift command.

5. The value of $# is intact after the completion of
the for loop.

break

The break statement causes control to exit the current for,
while, or until loop. One must be judicious in its use to avoid
“spaghetti” code. Except in rare circumstances, adherence to
structure programming principles leads to clearer and less
error-prone code. In many cases the use of break should be
avoided.

74 | Control Structures - Part 2 - Loops

Poor (and rampant) use
of break Better code

i=0
while true
do
 if [$i -eq 5]
 then
 echo Reached 5
 break
 fi
 i=$(($i + 1))
done

i=0
while [$i -ne 5]
do
 i=$(($i + 1))
done
echo Reached 5

Observations

The use of an infinite loop (while
true) is generally unnecessary
(except perhaps in server
processes) and should be
avoided because it requires
unstructured exit points leading
to “spaghetti” code. Here, the
break statement is used to jump
out midway through the loop
contributing to poor program
structure.

Observations

The purpose and limit of the
loop is coded clearly in the while
condition. Termination of the
loop naturally follows coded
instructions. There is no jump
ing out from the middle of the
loop. The code is clearer,
shorter, and better structured
with a single entry and exit
point for the loop.

Control Structures - Part 2 - Loops | 75

7. Quick Reference
Guide

Common Notations

Here are some commonly used but easy-to-forget notations
and syntax.

76 | Quick Reference Guide

Notation Typical usage with
mini-example

Where to
get more
info

single quotes (‘)

Creates literal string protecting
special characters.

grep 'Al Shaji' namelist
Shell Variables

double quotes
(“)

Like single quotes but
interprets $, \ for variables.

echo "Price: $value"

$(cmd)

Command substitution. Runs
cmd and substitutes output of
cmd at position of call.

today=$(date)

man bash

set braces { }

Formal variable specification;
substrings.

echo ${alpha:3:5}

3 is offset (zero-based) and 5 is
length

double
parentheses ((
))

Arithmetic expression.

a=$(($a + 1)) man bash

left square
bracket [

Synonym for test command.

if [$op = MR]

Closing right bracket is needed.

man test

Quick Reference Guide | 77

https://pressbooks.library.ryerson.ca/opsyshiraki/chapter/shellvariables/

Notation Typical usage with
mini-example

Where to
get more
info

[[string =~
regex]]

Checks to see if regular
expression (regex) is contained
in string

Example
[[importing =~ port]] will

return TRUE
Can be used with variables,

too.
Example
[[$title =~ $word]] returns

TRUE if $word is contained
within $title

man bash

Character
classes in
regular
expressions

[abc]

Square brackets represent a
single character pattern. Thus,

r[aou]n matches ran, ron, or run.
[Pp]olish matches Polish or

polish

man regex.7

FAQs

Q1a: How do make my script executable?
Q1b: I’m getting an error message, “-bash: . /myscript: Permis

sion denied”
A1: You need to issue the chmod command, either:

• chmod 700 myscript

• chmod u+x myscript

78 | Quick Reference Guide

Acknowledgements

I would first like to thank my wife, Sylvie, for her holistic sup
port.

There are many people in the Toronto Metropolitan Univer
sity (formerly Ryerson University) community who supported
me academically, technically and editorially. While it is not pos
sible to mention everyone who influenced the development of
this book, I wish to acknowledge the following individuals:

Anne-Marie Brinsmead, Maryam Davoudpour, Alex Fer
worn, Greg Gay, Shannon Koumphol, Ann Ludbrook, Allen
Pader, Mehrdad Tirandazian, Muhammad Waqas, Sally Wilson,
and Leonora Zefi.

Without their support and endorsement, this book would
not have been created.

Acknowledgements | 79

	Contents
	Introduction
	The Hierarchical File System
	Hierarchical File System

	Common Unix Commands
	Input and Output: Redirection and Pipes
	Filters
	Redirection
	Pipes
	 Making your script executable

	Shell Variables, Quotes, Command Substitution
	Shell Variables
	read
	Quotes
	Command substitution

	Control Structures - Part 1 - branching
	test
	Control Structures

	Control Structures - Part 2 - Loops
	Computer Science Loop Concepts
	Loops in Unix

	Quick Reference Guide
	Common Notations
	FAQs

	Acknowledgements

