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INTRODUCTION 

 
The concept of optimality, as well as the optimization process, is a 

central point not only in economics, engineering, management and 
business. It is also used in social, biological and many other sciences. 

The term "optimal" is most often interpreted as favorable, maximum 
(minimum), most effective, etc. Each person every day (not always 
realizing it) solves the problem of obtaining the greatest effect with limited 
resources. Solving an optimization problem means finding the best 
solution among possible options. 

If the optimization is related to the calculation of optimal parameter 
values for a given structure of the object, then it is called parametric. The 
task of choosing the optimal structure is structural optimization. 

The solution of each optimization problem is based on the 
construction of a mathematical model of the object under study and 
conducting a computational experiment (not with the object itself, but with 
the model), which allows you to investigate its properties in arbitrary 
situations. 

The theory of optimization is a set of fundamental mathematical 
results and numerical methods, which allows avoiding a complete search 
of all solutions. 

Optimization methods are methods of building algorithms for finding 
the optimal value of some function. 

The term "optimum" was introduced in the 18th century by Gottfried 
Wilhelm Leibniz. In the same century, there were a number of works by 
Daniel Bernoulli, Leonhard Euler and Joseph-Louis Lagrange, which were 
devoted to calculus of variations. Later, in the 19th century, Karl 
Weierstrass and Carl Jacobi were engaged in such tasks. 

The first extremum search problems studied in detail were linear 
programming problems. Back in 1820, Jean Baptiste Fourier, and then 
Leonid Kantorovych in 1939, George Danzig in 1947 formulated the 
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problem of linear programming and proposed a method for its solution. 
Later, Richard Bellman developed a dynamic programming method that 
allows solving problems for systems whose characteristics depend on time. 

Lev Pontryagin made a significant improvement to mathematical 
programming and optimal control by developing the calculus of variations 
section. 

Thus, by the 70s of the 20th century, the section of applied 
mathematics – theory and methods of optimization – was basically formed. 
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General formulation of the problem 

 
 

Modeling of many practical operations, in which it is appropriate to 
use the apparatus of functions of many variables, is carried out in two 
stages. 

1. The image of the pursued goal in the form of some dependence on 
the sought values (income from the sale of manufactured products, costs 
for the performance of certain work, etc.). The resulting expression is 
called the objective function. 

2. Formation of conditions for the sought quantities. They arise from 
available resources, from the need to satisfy certain needs, from the 
conditions of technology, and other economic and technical factors. As a 
rule, these conditions are equalities or inequalities. They form a system of 
restrictions. 

If the objective function expresses a positive factor, then it should be 
maximized, otherwise it should be minimized. 

In general, the problem can be written as follows: 

 1 2, ,..., nf x x x extr ;         (1) 

 

 
1 2 1

1 2 1

, ,..., , 1,..., , (2)
, ,..., , 1,..., , (3)

i n i

i n i

x x x b i m

x x x b i m m





  


  
 

where f  and i ,  1,...,i m , – are given functions, ib ,  1,...,i m , – are 
given numbers. 

Solving the problem (1)-(3) means finding values of, which would 
satisfy the system of constraints (2)-(3), at which the objective function 
from (1) would reach an extreme value. 
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The set D  of such values  1 2, ,..., nX x x x  for which (2)-(3) is 
fulfilled is called an admissible set, and the points Х of this set are 
admissible solutions of the problem. 

      1 2 1 1, ,..., | , 1,..., , , 1,...,n i i i iD X x x x X b i m X b i m m        . 

The point  1 2, ,..., nX x x x D     , at which the function f from (1) 

reaches an extreme value is called the optimal solution of problem (1)-(3), 

and the value of the function at this point  f X   is called an extreme 

value. 
To solve the problem (1)-(3) means to find an optimal solution X  , 

or to make sure that f is unbounded ( )f  , or to show that D  . 
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CHAPTER 1 

 

LINEAR PROGRAMMING 

 

 

§1. Examples of linear programming problems 

 
 
L.V. Kantorovych in 1939, engaged in planning the work of units of 

a plywood factory, solved several such problems: about the best loading of 
equipment, about cutting materials with the lowest costs, etc. With this, he 
formed a new class of conditionally extremal problems – linear 
programming problems. 

Most problems of operational long-term planning of an enterprise or 
industry, problems of optimal concentrations, transportation, and many 
others can be reduced to linear programming problems. 

 
 

Item 1.1. The task of optimal production planning 

 
 

Consider the activity of some production facility (factory, workshop, 
etc.). Let the facility have m types of resources 1 2, ,..., mS S S  at its disposal, 

from which the facility produces n types of products 1 2, ,..., nP P P . Let's 
assume that: 

1) ija , 1,...,i m , 1,...,j n  – is the number of units of resource iS , 

1,...,i m , which is required for the production of one unit of 
product jP , 1,...,j n . 
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2) ib , 1,...,i m  – is the number of units of the available iS , 1,...,i m  
resource. 

3) jc , 1,...,j n  – is the price of one unit of production jP , 1,...,j n . 

To build a mathematical model of the problem of determining such a 
production plan, which would maximize the total cost of manufactured 
products under the given conditions. 

◄ Let's make a mathematical model of the problem. Let jx , 

1,...,j n ,  be the number of production units jP  in the plan. It is obvious 

that 0jx  . With such a production plan, the cost f of products 

manufactured at the facility is equal to  

1 1 2 2
1

...
n

n n j j

j

f c x c x c x c x



     . 

The costs of raw material iS  for the production of products are equal 
to 

1

n

ij j

j

a x



 ,   1,...,i m . 

Taking into account the limited resources and the purpose of 
production, we will get the following task: 

1

max
n

j j

j

f c x



  ; 

1

n

ij j i

j

a x b



 ,   1,...,i m ; 

0jx  ,  1,...,j n . 

This is a linear programming problem. It contains n unknowns and m 
constraints.    ► 
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Item 1.2. Diet problem 

 
 

This is the task of planning the most economical diet that meets 
medical requirements. Such a problem arises, as a rule, when it is 
necessary to feed a large number of people (army, sanatorium, etc.). 

The food ration consists of n types of products 1 2, ,..., nP P P . It is 

known that a unit of product jP  contains ija  units of nutrient iR , 1,...,i m

, 1,...,j n . Let jc , 1,...,j n  be the price of one unit of product jP , 

1,...,j n , ib , 1,...,i m  be the minimum consumption rate of nutrient iR , 
1,...,i m  in the diet. With the specified restrictions, build a mathematical 

model of the problem of determining the minimum cost ration. 

◄ Let jx , 1,...,j n  be the number of units of product jP  in the diet. 

The cost f of such a ration is 
1

n

j j

j

f c x



 . The substance iR  in such a 

ration is 
1

n

ij j

j

a x



  units. Taking into account the goal and medical 

requirements, we get the following linear programming problem: 

1

min
n

j j

j

f c x



  ; 

1

n

ij j i

j

a x b



 ,   1,...,i m ; 

0jx  ,  1,...,j n .     ► 
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Item 1.3. Transport problem 

 
 

The process of production and consumption of homogeneous 
products is considered. There are m points 1 2, ,..., mP P P  that produce 

homogeneous products in quantities ia , 1,...,i m , respectively. The 

produced products are consumed in n points 1 2, ,..., nQ Q Q , respectively, in 
quantities jb , 1,...,j n . 

Let ijc , 1,...,i m , 1,...,j n  be the cost of transportation of a 

product unit from the point of production iP  to the point of consumption 

jQ . Build a model for finding such a product transportation plan that 

would satisfy consumer needs while minimizing transportation costs. 
 
◄ Let ijx  be the number of cargo units transported from the point of 

production iP  to the point of consumption jQ  1,...,i m , 1,...,j n .  At 

the same time, the total costs f for cargo transportation are equal to:  

1 1

m n

ij ij

i j

f c x

 

 . 

1

n

ij

j

x



  units of cargo will be exported from production point iP . 
1

m

ij

i

x



  

units of cargo will be delivered to the point of consumption jQ . It is clear 

that  

1 1

m n

i j

i j

a b

 

  . 

We received the following task: 
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1 1

min
m n

ij ij

i j

f c x

 

   ; 

1

1

, 1,..., ,

, 1,..., ;

n

ij i

j

m

ij j

i

x a i m

x b j n






 





 





 

0ijx  ,  1,...,i m , 1,...,j n . ► 
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§2. Different forms of recording linear 

programming problems, their equivalence 

 
 

In the most general case, a linear programming problem has the 
following form 

1

extr
n

j j

j

f c x



  ;     (4) 

1 1
1

1 2 2
1

2 3
1

, 1,..., , (5 )

, 1,..., , (5 )

, 1,..., , (5 )

n

ij j i

j

n

ij j i

j

n

ij j i

j

a x b i m

a x b i m m

a x b i m m








 





  


   








 

additional conditions on variables: 

1

1 2

0, 1,..., ,
0, 1,..., ,

j

j

x j n

x j n n

 

  
     (6) 

here jx  for 2 1,...,j n n    can be arbitrary. 

In this problem, the constraints have the form of equalities or 
inequalities, no additional conditions are imposed on all variables. 

To solve the problem (4)-(6) means to find such a plan 

 1 2, ,..., nX x x x     that satisfies the constraint (5) under the conditions (6) 

in which the objective function from (4) reaches its optimal value or to 
prove its non-existence, that is, that the system of constraints (5) is not 
compatible ( D  ) or that the objective function is unbounded 
( )f  . 
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If the linear programming problem is written in the form 

1

max
n

j j

j

f c x



  ;     (7) 

1

n

ij j i

j

a x b



 ,   1,...,i m ,    (8) 

0jx  ,  1,...,j n ,     (9) 

then it is said that it is written in a symmetrical form. 
 
At the same time, the number of constraints m and the number of 

unknowns n are not related in any way. 
 
If the linear programming problem has the form 

1

max
n

j j

j

f c x



  ;     (10) 

1

n

ij j i

j

a x b



 ,   1,...,i m ;     (11) 

0jx  ,  1,...,j n ,      (12) 

then they say that it is canonical (standard). 
 
In problem (10)-(12), the number of equations m is less than the 

number of unknowns n. In the future, without limiting the generality, we 
will assume that the rank of the matrix of coefficients of system (11) is 
equal to m. 

It is obvious that the symmetric problem (7)-(9) and the canonical 
problem (10)-(12) are partial cases of the general problem (4)-(6). 

Consider matrices 
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 1 2, ,..., nC c c c , 

1

2

...

n

x

x
X

x

 
 
 
 
 
 

,  

11 12 1

21 22 2

1 2

...

...
. . . .

...

n

n

m m mn

a a a

a a a
A

a a a

 
 
 
 
 
 

,  

1

2
0 ...

m

b

b
A

b

 
 
 
 
 
 

. 

The canonical problem in matrix form has the form 

0

max;
,

0.

f C X

AX A

X

  





    (13) 

In the future, we will assume that rangA rangA m n   . 
An arbitrary linear programming problem can be reduced to one of 

the above three forms using the following equivalent transformations:  

1) transition from minimization of the objective function f to 
maximization of the function –f; 

2) the transition from the inequality with the sign ≥ to the inequality 
with the sign ≤  is carried out by multiplying the first by –1 and vice 
versa: 

from   
1

n

rj j r

j

a x b



    to   
1

n

rj j r

j

a x b



   ; 

3) the transition from inequality with the sign ≥ to equality is carried 
out by subtracting the auxiliary variable 1 0nx   :  

from   
1

n

rj j r

j

a x b



    to   1
1

n

rj j n r

j

a x x b



  ; 

4) the transition from inequality with sign ≤ to equality is carried out by 
adding the auxiliary varible 1 0nx   :  
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from   
1

n

rj j r

j

a x b



    to   1
1

n

rj j n r

j

a x x b



  ; 

5) transition from the equality 
1

n

rj j r

j

a x b



  to the system of 

inequalities:  

1

1

,

;

n

rj j r

j

n

rj j r

j

a x b

a x b


















 

6) the transition from an additional restriction of the type 0jx   to a 

restriction of the type 0jx   is carried out by replacing j jx x   ; 

7) the transition from the variable jx , the sign of which is not subject to 

conditions, to the non-negative variables 0jx  , 0jx   is carried out 

by replacing j j jx x x   ; 

8) the transition from the variable j jx d  to 0jx   is carried out by 

replacing j j jx x d   . 

Remark. The problem in the canonical form can be reduced to a 

symmetric form by reducing the number of variables. 

 

Example 1. Reduce the problem to a symmetrical form 

1 2 427 3 2 maxf x x x     ; 

1 2 3 4

1 2 3 4

2 3 7,
3 2 5;

x x x x

x x x x

   


   
 

0jx  ,  1,...,4j  . 
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◄ The first way. Let's move from each equality to a pair of 
inequalities according to 5), and then, using 2), we will get the problem in 
a symmetrical form: 

1 2 427 3 2 maxf x x x     ; 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

2 3 7,
2 3 7,

3 2 5,
3 2 5;

x x x x

x x x x

x x x x

x x x x

   

     


   
     

 

0jx  ,  1,...,4j  , 

which contains four (more than the initial) constraints. 
 

The second way. The problem under consideration has a canonical 
form. Let's reduce it to symmetric by reducing the number of variables. 
Let's make the transformation 

 A1 A2 A3 A4 A0 
 2  1   1 –3 7 
 3 1 2 1 5 

x2 2 1 1 –3 7 
 1 0  1 4 –2 

x2 1 1 0 –7 9 
x3 1 0 1 4 –2 

We received the following task: 

1 2 427 3 2 maxf x x x     ; 

1 2 4

1 3 4

7 9,
4 2;

x x x

x x x

  


   
 

0jx  ,  1,...,4j  . 
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From the equations of the obtained system, we find 

2 1 4

3 1 4

9 7 ,
2 4 .

x x x

x x x

  


   
 

Then, given that 2 0x  , we have 1 49 7 0x x   . Hence 1 47 9x x  . 

Similarly, given that 3 0x  , we have 1 42 4 0x x     and 1 44 2x x   . 

In the constraints, 1x  and 4x  remained unknown. Express 2x  and 3x  in 

terms of 1x  and 4x  in the objective function f: 

 1 1 4 4 1 427 3 9 7 2 4 19f x x x x x x        . 

We received the following task: 

1 44 19 maxf x x   ; 

1 4

1 4

7 9,
4 2;

x x

x x

 


  
 

1 0x  ,   4 0x  . 

This problem has a symmetrical form and contains two unknowns. 
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§3. Properties of linear programming problems 

 

 

Item 3.1. Properties of the admissible set 

 
 

Let  1 2, ,...,i i i i n

nX x x x  , 1,...,i r ,  2r  . 

Definition. A set of points of the form 

1

r

i

i

i

X X


 , where 0i  , 

1,...,i r  and 

1

1
r

i

i




 , is called a convex linear envelope of points 

1 2, ,..., rX X X . 

A point of a convex linear envelope is called a convex linear 

combination of points 1 2, ,..., rX X X . 
At 2r  , the convex linear envelope is the segment connecting the 

points 1X  and 2X . Then the points of the segment 

 1 21X X X    ,  [0,1]  .    (14) 

Definition. A set is called convex if, together with its arbitrary two 

points 1X  and 2X , it contains all points of the form (14), that is, the entire 

line segment. 

We recall that the set of points nX   for which (51) or (52) are 
fulfilled is called a half-space in n , and in the case of fulfilling (53) – a 
hyperplane in n . 

It is easy to show that: 
1) the intersection of convex sets is a convex set; 
2) the half-space is a convex set; 
3) the hyperplane is a convex set. 
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Definition. The intersection of a finite number of half-spaces is 

called a polyhedral set. 

 
A bounded polyhedral set is called a polyhedron. 
It is clear that the admissible set D of the linear programming 

problem, if it is not empty, is a polyhedral set. 
Theorem 1 follows from the above.  

Theorem 1. The admissible set D of the linear programming problem 

is a convex polyhedral set. 

 

A point X   of a convex set Ω is called a corner (extreme) point if it 
cannot be represented in the form  

 1 21X X X     ,  (0,1) , 1X  , 2X  , 1 2X X . 

For geometric reasons, a point is an extreme point of a set if it cannot be 
located inside the segment whose endpoints belong to this set.  

The corner points of a convex polyhedral set are called its vertices. 
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Item 3.2. Properties of linear programming  

problem solutions 

 
 

Let us consider some theorems reflecting the fundamental properties 
of linear programming problems. For simplicity, consider the case when D 
is a polyhedron. 

Theorem 2. The objective function of the linear programming 

problem reaches an optimal value at the vertex of the solution polyhedron. 

If this value is reached at two or more points, then it reaches the same 

value at any point that is a convex linear combination of them. 

 
Therefore, the solutions of the linear programming problem should be 

sought among the vertices of its admissible set. However, in the general 
case, this is difficult to do due to the large number of vertices and the 
difficulty of finding them. 

Consider the canonical problem in the vector form  

 

1 1 0

, max;
... ;

0,
n n

f C X

A x A x A

X

 

  



 

where the matrices  1 2 ... nC c c c ,  1 2 ... T

nX x x x , 

 1 2 ...
T

j j j mjA a a a , 1,...,j n ,    0 1 2 ... T

mA b b b ,  

 ,C X  – is the scalar product of vectors C and X. 

Definition. A nonzero admissible solution X of a linear programming 

problem is called basic if the system of vectors jA  corresponding to the 

positive components jx  of this solution is linearly independent. We will 

always consider the zero admissible solution as the base solution. 
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Since the rank of the matrix of coefficients of the system of 
constraints is equal to the rank of the expanded matrix and is equal to m, 
m n , then the maximum number of positive components of the solution 
of the linear programming problem is equal to m. 

Definition. A basic solution is called nondegenerate if it contains 

exactly m positive components, and degenerate if the number of positive 

components is less than m. 

For example, for the system 

1 3 4

2 3 4

2 7,
3 2,

x x x

x x x

  


  
 

the solution  7; 2; 0; 0  is a nondegenerate basic solution. Appropriate 

vectors 1

1
0

A
 

  
 

, 2

0
1

A
 

  
 

 form the basis. Variables 1x , 2x  – are basic,  

3x , 4x  – are non-basic. 

Theorem 3. An admissible solution X of a linear programming 

problem is a vertex of its admissible set D if and only if X is a basic 

solution. 

This theorem makes it possible to formalize (and thereby simplify) 
the process of transition from one vertex to another. 
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§4. Geometric interpretation of 

linear programming problems 

 
 

Consider the problem of linear programming with two variables:  

1 1 2 2 extrf c x c x        (15) 

1 1 2 2i i ia x a x b  ,  1,...,i m ,    (16) 

1 0x  ,  2 0x  .       (17) 

This problem has a simple geometric interpretation. Each of the 
inequalities (16) in 2  defines a half-plane. The domain of admissible 
values given by (16) and (17) is a convex polygon called the solution 
polygon. The solution of problem (15)-(17), if it exists, is among the 
vertices of this polygon. 

Definition. The level line of a function is a set of points from its 

definition area in which the function reaches the same fixed value. 

For the linear function (15) of two variables, the level line is 
determined by the equality 

1 1 2 2c x c x h  ,  consth  .     (18) 

Level lines (18) are a family of parallel straight lines with normal vector 
 1 2,n c c . 
Recall that the gradient of the function f is the vector 

1 2

grad ,f f
f

x x

  
  

  
, which indicates the direction of the fastest growth of 

the function and is oriented perpendicular to the level line. Therefore, the 
value of h from (18) increases if these lines move in the direction of n . At 
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the same time, either a moment will come when the line will become a 
reference (area D is located on one side of it and has at least one point in 
common with D) or it will become clear that no line can be a reference. If 
the reference line exists, then the optimal solutions will be those points 
from D that lie on the reference line. 

Remark. When solving linear programming problems, the following 

cases are possible: 

1) One point X D  belongs to the reference line. This means that 
the problem has a unique solution (Fig. 1). 

Fig. 1. A situation when the range of permissible values is limited 
and the problem has only one maximum and minimum points 

 
If the function is examined for the maximum, then the line of the 

highest level is the reference straight line that passes through the point X  , 

then  maxf f X  . 

If the function is examined for a minimum, then the line of lowest 
level is the reference line that passes through the point X , then 

 minf f X  . 

 

 

D 
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2) The reference line includes an infinite set of points X D , which 
coincides with one of the sides of the set D (Fig. 2, Fig. 3). 

Fig. 2. The case of a limited range of admissible values, 
and the maximum is reached on the segment 

Fig. 3. The case of an unbounded domain, moreover 
the maximum value is reached on the beam 

 

 

D 

 

 

 

 

D 

 

 

 



 

25 

3) There is no reference line. In this case, the level line moving in the 
direction of n  (for the problem at the maximum) or in the direction 
opposite to n  (for the problem at the minimum) constantly crosses the 
polygon of solutions (Fig. 4). 

Fig. 4. The case of an unlimited range of admissible values, 
on which the function is unbounded from above 

 
In this case, the objective function is said to be unbounded from 

above (for a maximum problem) maxf   or unbounded from below 

(for a minimum problem) minf  . 
 

4) D  . Then the problem has no solutions. 
 

Example 2. Solve the problem of linear programming 

1 22 extrf x x   ; 

1 2

1 2

1 2

5 2 10,
2 6,

2 9 18;

x x

x x

x x

  


 
  

 

1 0x  ,  2 0x  . 

 

 

D 
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◄ The problem contains two variables. Therefore, let's break it down 
graphically (Fig. 5). 

1. In 2 , we construct a polygon of solutions (region D of admissible 
values). 

2. We build lines of level 1 22x x h  , consth  , normal line vector 

of level  1,2n  . We draw a reference line. The line of the lowest level is 

the reference line that passes through the segment 1 2,X X    . Let's find the 

coordinates of points 1X   and 2X  .  

1X   – the point of intersection of the line II with the axis Oy – 1 (0, 3)X  .  

2X   – is the point of intersection of lines II and III, its coordinates are the 
solution of the system of equations  

1 2

1 2

2 6,
2 9 18,
x x

x x

 


 
  whence  

1

2

18 ,
5
6 .
5

x

x

 


 


     

Therefore 2
18 6,
5 5

X   
  
 

. 

Fig. 5 

 

O 

  5 

  18
5    9 

 

 3 
 

n

 

 6 

 1 25 2 10x x    

 1 22 6x x   

 1 22 9 18x x   
 
 
 
 
 

1x  

  6
5  

2x  

 D 
 
 
 
 
 
 
 
x+

y=

0 

 1X   
 
 
 
 
 
x+y

=0 

 2X   
 
 
 
 
 
x+y

  I 

 II  III 
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The segment points can be written in the form  

1 2(1 )X X X  

    ,  [0,1]  , 

where 

18 60 (1 ) ; 3 (1 )
5 5

X   

 
     
 

, 

18 18 6 9;
5 5 5 5

X  

 
   
 

, [0,1]  . 

The value of the function    min 1 6f f X f X 

   . 

When moving the level line in the direction n , no line will be a 
reference in the problem to the maximum. That is, there will be no line of 
the highest level. This means that the objective function is unbounded 
from above, i.e. f  .      ► 

Example 3. Solve the linear programming problem from example 1: 

1 2 427 3 2 maxf x x x     ; 

1 2 3 4

1 2 3 4

2 3 7,
3 2 5,

x x x x

x x x x

   


   
 

0jx  ,  1,...,4j  . 

◄ Having a canonical problem with 4n  , 2m  , we reduce it to a 
problem with two variables, discarding the basic variables, 

1 44 19 maxf x x   ; 

1 4

1 4

7 9,
4 2,

x x

x x

 


  
 

1 0x  , 4 0x  . 



 

 

 

28 

Let's solve it graphically (Fig. 6). 

Fig. 6. 
 
The range of valid values is empty. Therefore, the problem with two 
variables has no solutions. And therefore, the original problem has no 
solutions.     ► 

 

 

  

 

1x  

2x  

O 

 1 47 9x x   
 
 
 
 
 
 
 

 1 44 2x x    

-2   9 

  1
2  

  9
7  

  n  
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§5. The simplex method for solving 

linear programming problems 

 
 

The search for solutions to linear programming problems, based on 
the properties of such problems, is reduced, at the principle level, to a 
sequential selection of extreme points of a set of admissible plans, or, what 
is the same, a selection of admissible basic plans. Such a selection for real 
multidimensional problems is only theoretically possible. 

The means of solving such problems have become applied 
optimization methods, which are based on a consistent purposeful search 
of the basic plans of the problems. 

The simplex method, developed in 1947 by the American 
mathematician George Danzig, became the classical method of solving the 
problem of linear programming. 
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Item 5.1. Basics of the simplex method 

 
Consider the canonical problem of linear programming 

1

max
n

j j

j

f c x



  ;     (19) 

1

n

i ij j i

j m

x a x b

 

  ,   1,...,i m ,    (20) 

0jx  ,  1,...,j n ,      (21) 

where 1 0b  , 2 0b  ,…, 0mb  . Here, the variables 1x , 2x ,…, mx  are 

basic, 1mx  ,…, nx  are non-basic. Let's write (20) in expanded form 

1 1 1 1 1 2 2 1 1 1

2 2 1 1 2 2 2 2 2 2

1 1 2 2

1 1 2 2

... ... ,
... ... ,

...
... ... ,

...
... ... .

m m m m s s n n

m m m m s s n n

r rm m rm m rs s rn n r

m mm m mm m ms s mn n m

x a x a x a x a x b

x a x a x a x a x b

x a x a x a x a x b

x a x a x a x a x b

   

   

   

   

      
       




      



      

   (20) 

Problem (19)-(21) has an admissible basic (reference) solution: 

 1 2, ,..., ,0,...,0mX b b b .       (22) 

Let's move from the basic solution (22) to the new one 

 1 2 1 1, ,..., ,0, ,..., ,0,...,0, ,0,...,0r r m sX b b b b b b 
       , { 1,..., }s m n  .     (23) 

To do this, we will perform the following transformations: divide the r-th 

equation by the coefficient 0rsa  , and subtract the r-th multiplied by is

rs

a

a
 

from the other i-th equations. Let's get it 
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1 1 1
1 1 1 1

1 1
1 1

2 1 2
2 2 1 1

2 2
2 2

... 0 ...

,

... 0 ...

,

. .

s rm s
r m m s

rs rs

rn s r s
n n

rs rs

s rm s
r m m s

rs rs

rn s r s
n n

rs rs

a a a
x x a x x

a a

a a b a
a x b

a a

a a a
x x a x x

a a

a a b a
a x b

a a


 


 

   
            
   

  
    
 

   
            
   

  
    
 

1
1

1
1 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 ... 1 ...

,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

... 0 ...

rm
r m s

rs rs

rn r
n

rs rs

ms rm ms
r m mm m s

rs rs

rn ms
mn

a
x x x

a a

a b
x

a a

a a a
x x a x x

a a

a a
a

a





 

 
      
 

 
  
 

   
            
   


  ,r ms

n m

rs rs

b a
x b

a




























   
   
  

 

or 

 

 

1,..., ,

1,..., ,

1 ,

,

1,..., , .

rj r
s r j

rs rs rsj m n
j s

rj isis r is
i r ij j i

rs rs rsj m n
j s

a b
x x x

a a a

a aa b a
x x a x b

a a a

i m i r

 


 


  
    

 



     
         
   




 




        (24) 
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In system (24), the basic variables are 1x , 2x ,…, 1rx  , 1rx  ,…, mx , sx . Let's 
introduce the following notation 

rj is

ij ij

rs

a a
a a

a


   ,  r is

i i

rs

b a
b b

a


     at  1,...,i m ,  i r ,  

r
r

rs

b
b

a
  ,  rj

rj

rs

a
a

a
    at i r ,    (25) 

1,...,j n . 

Note that 0rja   for all  1,..., 1, 1,...,j r r m    and 1rsa   for j s . 

Note that the transformation (25) is easily realized using the rectangle 
rule. 

The solution (23) will be basic when 

0r

rs

b

a
 ,  0r is

i

rs

b a
b

a


  ,  1,...,i m ,  i r . 

It is clear that the first inequality is satisfied if 0rsa  . If 0isa  , then the 

second inequality is always true. If 0isa  , then to satisfy the second 
inequality, the following inequality must hold: 

ir

rs is

bb

a a
 . 

Let us take r such that 

: 0
: min

is

ir
s

i a
rs is

bb

a a




 
   

 
.     (26) 

Then, according to (23) and (25), 

 1 1 2 2 1 1, ,..., , 0,s s s s r s r sX b a b a b a   
         

1 1 ,..., ,0,...,0, ,0,...,0r s r s m s ms sb a b a        . 
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Note that the coordinate with the number r in X   can be written as follows: 

r s rsb a   and this coordinate is zero. Using this, we find  

   
1

m

i i s is s s

i

f X c b a c 


        

1 1

( )
m m

i i s i is s s s

i i

c b c a c f X 
 

 
       

 
  , 

where  

1

:
m

s i is s

i

c a c



   . 

 Note that here 1,...,s m n  . 

Let us define a similar expression for the base variables (22), i.e., in 
the case of 1,...,s m , in the form 

1

m

s i is s s s

i

c a c c c



     . 

Therefore, we can consider 

1

:
m

j i ij j

i

c a c



   ,  1,...,j n .   (27) 

Expression (27) is called simplex differences. 

Since 0s  , the index of the variable to be included in the number of 

basis variables must be chosen so that 0s  , since    f X f X  . If 

0s  , then    f X f X   and this means that a degenerate basis 
solution is obtained. 
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Theorem 4. (Optimality criterion for the basic solution of a linear 

programming problem).  

If for some basic solution X* the inequalities 

0j  ,  1,...,j n  

are satisfied, then X* is an optimal solution of the linear programming 

problem. 

 

Theorem 5. (Criterion for the unboundedness of the objective 

function).  

If for some base solution X there exists at least one  1,...,j n  such 

that 0j   and 0ija  , 1,...,i m , then the objective function is 

unbounded on the admissible set. 
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Item 5.2. Algorithm of the simplex method 

 
 

Let us consider the linear programming problem (19)-(21), which has 
an initial basic (reference) plan (22). Let us formulate the algorithm of the 
simplex method: 

1. We calculate the simplex differences j , 1,...,j n , by formula 

(27). If 0j  , 1,...,j n , then the reference plan is optimal, otherwise, 

proceed to the next step. 

2. If there exists at least one index  1,...,j n  such that 0j   and 

0ija  , 1,...,i m , then the problem is unsolvable ( )f  . Otherwise, 

proceed to the next step. 

3. Find the indices s from the condition:  

 
: 0
min

j
s j

j  
         (28) 

and r by rule (26). 

4. Using the transformations (25), we move to the new reference plan 
(23) by introducing sx  instead of rx  into the basis. 

5. Go to step 1. 

Note that the element rsa  is called the leading element, the r-th row 
is called the leading row, and the s-th column is called the leading 
column. The sequence of actions 2.-4. is called an iteration. 

If you want to maximize the objective function in one iteration, then 
s should be chosen not according to (28), but according to the formula  

 
: 0
min

j
s s j j

j
 

 
   . 
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Lemma 1. If the objective function of a canonical linear 

programming problem excludes the base variables, then the coefficients of 

the non-base variables will be the corresponding simplex differences with 

the „−” sign, and the free term is equal to the value of the function at the 

base point. 

 
From the lemma, it follows that the simplex differences of variables 

in a canonical linear programming problem can be easily obtained if, at the 
initial iteration, we add the equation   0f X   to the original indirect 
constraints of the linear programming problem, from which the basis 
variables are excluded. In subsequent iterations, the simplex 
transformation is applied to this new equation as well.  

From the point of view of ensuring the rationality and visibility of 
calculations, it is convenient to draw up the implementation of the simplex 
method in the form of the following simplex tables: 

 

B – column of basis vectors, 
Сb – column of coefficients in the objective function at the basis variables, 
А0 – free terms,   m +1 – evaluation string. 
 

Remarks. 

1. The solution is unique if among the estimates of Δj, 1,...,j n , 
only those corresponding to the underlying variables are zero (and the rest 
are positive). 

i B Сb А0 
c1 … cm cm+1 … cn 
А1 … Аm Аm+1 … Аn 

1 А1 c1 b1 1  0 a1m+1  a1n 
2 А2 c2 b2 0  0 a2m+1  a2n 
⁞ ⁞ ⁞ ⁞ ⁞  ⁞ ⁞  ⁞ 
m Аm cm bm 0  1 amm+1  amn 

m +1 f0 Δ1=0 … Δm=0 Δm+1 … Δn 
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2. If among the estimates Δj, 1,...,j n  of the optimal solution, not 
only those corresponding to the basis variables are zero, then the solution is 
not unique. To find all solutions, we introduce variables into the basis that 
correspond to those indices  1,...,j n  for which 0j   and make a 

convex linear combination of them. 

3. In the minimum problem, the optimality criterion is  

0j  , 1,...,j n , 

and the leading column is the one that corresponds  
: 0
max

j

j
j  

 . 

Example 4: The shop produces 3 types of products: P1, P2, P3, while 
having four types of raw materials A, B, C, D in quantities of 18, 16, 8, 6 
units, respectively. The consumption rates of each type of raw material per 
unit of product P1 are 1, 2, 1, 0; P2 – 2, 1, 1, 1; P3 – 1, 1, 0, 1. The profit 
from the sale of a unit of product type P1 is 3 units, P2 – 4 units, P3 – 2 
units. Draw up a plan for the production of three types of products to 
maximize profit. 

◄ Let's build a mathematical model of the problem. Let jx  be the 

number of units of product Pj, 1,...,3j  , in the production plan. Then we 
have the following mathematical model of the problem: 

1 2 33 4 2 maxf x x x    ; 

1 2 3

1 2 3

1 2

2 3

2 18,
2 16,

8,
6;

x x x

x x x

x x

x x

  


  


 
  

 

1 0x  ,  2 0x  ,  3 0x  . 

Let's reduce the problem to its canonical form by introducing 
additional variables. We have 
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1 2 33 4 2 maxf x x x    ; 

1 2 3 4

1 2 3 5

1 2 6

2 3 7

2 18,
2 16,

8,
6;

x x x x

x x x x

x x x

x x x

   


   


  
   

 

0jx  ,  1,...,7j  . 

The canonical form contains a unit base (the variables 4 5 6 7, , ,x x x x  are the 
base variables) and nonnegative right-hand sides. Therefore, 

 0 0,0, 0,18,16,8,6X   is the reference plan. Fill in the first simplex table  

 0 0,0, 0,18,16,8,6X   – is not optimal, s is determined by the condition 

 min 3, 4, 2 4     , so 2s  ,  2
18 16 8 6min ; ; ; 6
2 1 1 1

   , then 4r  . 

We create a new simplex table 

i B Сb А0 
3 4 2 0 0 0 0 
А1 А2 А3 А4 А5 А6 А7 

1 А4 0 6 1 0 -1 1 0 0 -2 
2 А5 0 10 2 0 0 0 1 0 -1 
3 А6 0 2 1 0 -1 0 0 1 -1 
4 А2 4 6 0 1 1 0 0 0 1 

m +1 24 -3 0 2 0 0 0 4 

i B Cb А0 
3 4 2 0 0 0 0 
А1 А2 А3 А4 А5 А6 А7 

1 А4 0 18 1 2 1 1 0 0 0 
2 А5 0 16 2 1 1 0 1 0 0 
3 А6 0 8 1 1 0 0 0 1 0 
4 А7 0 6 0 1 1 0 0 0 1 

m +1 0 -3 -4 -2 0 0 0 0 
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 1 0,6, 0,6,10,2,0X   is not optimal, 1s  ,  1
6 10 2min ; ; 2
1 2 1

   , then 

3r  . We create a new simplex table 

i B Cb А0 
3 4 2 0 0 0 0 
А1 А2 А3 А4 А5 А6 А7 

1 А4 0 4 0 0 0 1 0 -1 -1 
2 А5 0 6 0 0 2 0 1 -2 1 
3 А1 3 2 1 0 -1 0 0 1 -1 
4 А2 4 6 0 1 1 0 0 0 1 

m +1 30 0 0 -1 0 0 3 1 

 2 2,6, 0,4,6,0,0X   is not optimal, 3s  ,  3
6 6min ; 3
2 1

   , then 2r  . 

We create a new simplex table  

The plan  3 5,3,3,4,0,0,0X   is optimal and unique. Therefore, 

 5,3,3X   , max 33f  .  

Note that raw materials B, C, and D are scarce, since the second, 
third, and fourth constraints are satisfied as equals. Raw material A is non-
scarce.   ► 
  

i B Cb А0 
3 4 2 0 0 0 0 
А1 А2 А3 А4 А5 А6 А7 

1 А4 0 4 0 0 0 1 0 -1 -1 

2 А3 2 3 0 0 1 0 1
2  -1 1

2  

3 А1 3 5 1 0 0 0 1
2  0 - 1

2  

4 А2 4 3 0 1 0 0 - 1
2  1 1

2  

m +1 33 0 0 0 0 1
2  2 3

2  
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Example 5. Solve a linear programming problem 

1 2 3 4 5 6 minf x x x x x x        

1 4 6

1 2 3 6

1 3 5 6

9,
3 4 2 2,

2 2 6,

x x x

x x x x

x x x x

  


   
    

   (*) 

0jx  ,  1,...,6j  . 

◄ The problem has a canonical form (minimizing the objective 
function f is suitable for the simplex method). There is a unit basis 
 4 2 5, ,x x x  and the right-hand sides of the constraints are nonnegative. 
Therefore, there is a reference plan and the problem can be solved by the 
simplex method. Fill in the first simplex table 

i B Cb А0 
1 -1 1 1 1 -1 
А1 А2 А3 А4 А5 А6 

1 А4 1 9 1 0 0 1 0 1 
2 А2 -1 2 3 1 -4 0 0 2 
3 А5 1 6 1 0 -2 0 1 2 

m +1 13 -2 0 1 0 0 2 

 0 0,2, 0,9,6,0X   is not optimal, s is determined from the condition 

 max 1,2 2 , so 6s  ,  6
9 62 2min ; ; 1
1 2 2 2

    , then 2r  . 

We create a new simplex table 

i B Cb А0 
1 -1 1 1 1 -1 
А1 А2 А3 А4 А5 А6 

1 А4 1 8 1
2  1

2  2 1 0 0 

2 А6 -1 1 3
2  1

2  -2 0 0 1 

3 А5 1 4 -2 -1 2 0 1 0 

m +1 11 -5 -1 5 0 0 0 



 

41 

The resulting plan  1 0,0, 0,8,4,1X   is not optimal, 3s  , 

 3
8 4 4min ; 2
2 2 2

    , then 3r  . Create a new simplex table 

i B Cb А0 
1 -1 1 1 1 -1 
А1 А2 А3 А4 А5 А6 

1 А4 1 4 3
2  1

2  0 1 -1 0 

2 А6 -1 5 1
2  1

2  0 0 1 1 

3 А3 1 2 -1 1
2  1 0 1

2  0 

m +1 1 0 3
2  0 0 5

2  0 

 2 0,0, 2,4,0,5X   is not optimal, 2s  ,  1r  . Create a new simplex table 

i B Cb А0 
1 -1 1 1 1 -1 
А1 А2 А3 А4 А5 А6 

1 А2 -1 8 3 1 0 2 -2 0 

2 А6 -1 9 1 0 0 1 0 1 

3 А3 1 6 1
2  0 1 1 1

2  0 

m +1 -11 9
2  0 0 -3 1

2  0 

3X  is not optimal, 5s   There are no positive elements in the resulting 
leading column. Therefore, the objective function is unbounded from 
below ( )f  .   ► 

The question of the number of iterations of the simplex method 
required to find an optimal solution to a linear programming problem is 
quite complex. It should be noted that practice shows that on average this 
number is approximately equal to the number of m indirect constraints of a 
canonical linear programming problem. It should be noted that artificial 
examples of linear programming problems have been constructed, in 
which the simplex algorithm "searches" all the vertices of the admissible 
domain. Thus, the simplex algorithm is an algorithm of exponential 
complexity.  
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§6. Duality in linear programming 

 

Item 6.1. Basic concepts 

 
 
Consider the canonical linear programming problem 

0

max;
;

0.

f C X

AX A

X

  





    (29) 

If the objective function f reaches a maximum value on D, then it is 
quite reasonable to construct an upper bound for it on D. 

Since 0 0A AX  , the equality  0 0Y A AX   holds for any vector 

 1 2... mY y y y  and therefore  

   0 0CX CX Y A AX C YA X YA      . 

Let's set the requirement that 0C YA  , or, equivalently, YA C . 
Then the last equality implies that for 0X    

0CX YA .     (30) 

It is also natural to hope that 0max min
YA CX D

CX YA


 . Seeking to obtain 

the best estimate of (30), we come to a new optimization problem called a 
dual problem. 

The dual problem to problem (29) is the following: 

0 min;
.

F YA

YA C

 


    (31) 

In this regard, we call the canonical linear programming problem 
(29) a direct (original) linear programming problem. The variables iy , 

1,...,i m  are called dual variables (Lagrange multipliers, simplex 
multipliers, shadow estimates, shadow prices). 
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The above definition of duality for the canonical problem (29) can be 
extended to the general case. 

The dual problem to the general linear programming problem 

1

max
n

j j

j

f c x



  ; 

1
1

1 2
1

2
1

, 1,..., ,

, 1,..., ,

, 1,..., ;

n

ij j i

j

n

ij j i

j

n

ij j i

j

a x b i m

a x b i m m

a x b i m m








 





  


   









 

1

1 2

0, 1,..., ,
0, 1,...,

j

j

x j n

x j n n

 

  
 

is the following problem 

1

min
m

i i

i

F b y



  ; 

1
1

1 2
1

2
1

, 1,..., ,

, 1,..., ,

, 1,..., ;

m

ij i j

i

m

ij i j

i

m

ij i j

i

a y c j n

a y c j n n

a y c j n n








 





  


   








 

10, 1,...,iy i m  , 

1 20, 1,...,iy i m m   , 

iy  – arbitrary,  2 1,...,i m m  . 
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The above definition implies an important property: the symmetry of 
the duality relation. That is, a dual to dual problem coincides with a direct 
problem. In this regard, it is more logical to talk not about a 
straightforward and a dual linear programming problem, but about a pair 
of dual linear programming problems. 

The following pair of dual linear programming problems is called 
symmetric dual linear programming problems: 

0

max;
;

0,

f C X

AX A

X

  





                     
0 min;
;

0.

F YA

YA C

Y

 





 

 

Example 6. Build a dual problem for the task 

1 2 3 42 5 minf x x x x     ; 

1 2 4

1 3

1 2 3 4

1 3

3 5,
2 7,
4 2 9 5;

0, 0.

x x x

x x

x x x x

x x

  


 
    

 

 

◄ The dual problem to this one is the following 

1 2 35 7 5 maxF y y y    ; 

1 2 3

1 3

2 3

1 3

2 4 2,
3 2 1,

9 1,
5;

y y y

y y

y y

y y

  

  


  

  

 

1 2 30, 0,y y y   – any value.  ► 
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Example 7. Build a dual problem for the task 

1 2 3 4 52 minf x x x x x      ; 

1 2 3 4 5

1 2 3 4 5

1 3 5

2 3 2 6,
2 3 2 4,

3 4 8;

x x x x x

x x x x x

x x x

    


    
   

 

1 3 50, 0, 0.x x x    

◄ The dual problem to this one is the following 

1 2 36 4 8 maxF y y y    ; 

1 2 3

1 2

1 2 3

1 2

1 2 3

2 1,
2 3 2,

2 3 1,
3 1,
2 4 1;

y y y

y y

y y y

y y

y y y

  

   



  
   

   

 

2 30, 0.y y   
► 
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Item 6.2. Duality theorems and their applications 

 
 

Since each problem can be reduced to a canonical form, problems 
(29) and (31) can be considered the main ones when studying the 
properties of a pair of mutual dual problems and their joint solution. 

 

Theorem 6. If X and Y are admissible plans of problems 

0

max;
,

0

f C X

AX A

X

  





    (29) 

and 

0 min;F YA

YA C

 


    (31) 

respectively, then 

( ) ( )f X F Y . 

 
Theorem 7. If for some admissible plans X   and Y   of the pair of 

dual problems (29) and (31) the equality ( ) ( )f X F Y   holds, then X   

and Y   are optimal solutions to problems (29) and (31), respectively. 

 

Theorem 8. (The first duality theorem). 

If one of the problems of a dual pair has a solution, then the other 

problem also has a solution. In this case, for optimal solutions X   and Y   

the equality 

( ) ( )f X F Y  . 

holds. 
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Theorem 9. If the objective function of the f-problem (29) is 

unbounded from above, then the dual problem (31) has no admissible 

plans, i.e. dD  . 

 
Theorem 10 (Second duality theorem). 

For the admissible solutions  1 2, ,..., nX x x x     and 

 1 2, ,..., mY y y y     of problems (29) and (31) to be optimal, respectively, 

it is necessary and sufficient that the equations 

1

1

0, 1,..., ,

0, 1,..., .

n

ij j i i

j

m

ij i j j

i

a x b y i m

a y c x j n

 



 



 
    
 
 

 
    

 





   (32) 

are true. 

Example 12: Solve the dual problem to the problem from Example 2. 

◄  І. Let's consider the problem 

1 22 minf x x   ; 

1 2

1 2

1 2

5 2 10,
2 6,

2 9 18;

x x

x x

x x

  


 
  

    (33) 

1 0x  ,  2 0x  . 

The solution to this problem was found using the graphical method in 
example 2 

18 18 6 9;
5 5 5 5

X    
   
 

, [0,1]  , min 6f  . 
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The dual problem to (*) is the problem  

1 2 310 6 18 maxF y y y    ; 

1 2 3

1 2 3

5 2 1,
2 2 9 2;

y y y

y y y

   


  
    (34) 

1 0y  ,  2 0y  ,   3 0y  . 

According to the first duality theorem max min 6F f  .  

Let us find  1 2 3, ,Y y y y    . 

1) Write out the conditions (32) of the second duality theorem for 
problem (33), which has already been solved. We have 

 

 

 

1 2 1

1 2 2

1 2 3

5 2 10 0,

2 6 0,

2 9 18 0.

x x y

x x y

x x y

  

  

  

    



  


  

 

1 0y  , since  1 25 2 10 0x x     .  1 22 6 0x x     for [0,1]  . 

Therefore, 2y  must be found.  1 22 9 18 0x x     for 0   and 

 1 22 9 18 0x x     for (0,1] , so 3 0y  . 

2) Write out the conditions of the second duality theorem for the 
problem we are solving: 

 

 

1 2 3 1

1 2 3 2

5 2 1 0,

2 2 9 2 0.

y y y x

y y y x

   

   

     


   

 

Since 1 0x   for 1   and 1 0x   for [0,1) , we have 

1 2 3

1 2 3

5 2 1,

2 2 9 2.

y y y

y y y

  

  

   


  
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So, 2 1y  . 1 0x   for 1   і 1 0x   for [0,1) , we have 

1 2 3

1 2 3

5 2 1,

2 2 9 2.

y y y

y y y

  

  

   


  

 

So, 2 1y  . 
 
ІІ. Let's consider the problem 

1 22 maxf x x   ; 

1 2

1 2

1 2

5 2 10,
2 6,

2 9 18;

x x

x x

x x

  


 
  

    (35) 

1 0x  ,  2 0x  . 

For this problem, maxf   . 
The dual problem to problem (35) is the problem 

1 2 310 6 18 minF y y y    ; 

1 2 3

1 2 3

5 2 1,
2 2 9 2;

y y y

y y y

   


  
    (36) 

1 0y  ,  2 0y  ,   3 0y  . 

According to Theorem 9, the dual problem has no solution dD  . ► 

Formula  

1
basY C B         (37) 

defines the optimal solution to the dual problem. 
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Example 13: Solve the dual problem to the problem from Example 4. 

1 2 33 4 2 maxf x x x    ; 

1 2 3

1 2 3

1 2

2 3

2 18,
2 16,

8,
6;

x x x

x x x

x x

x x

  


  


 
  

    (38) 

0jx  ,  1,...,3j  . 

◄ This problem in Example 4 was solved by the simplex method 
and the following solution was found:  5,3, 3X   ,  max 33f  . 

The solution to the dual problem can be found in the (m+1) row of 
the last simplex table of the direct problem. The reference plan is 
determined by the base variables 4 3 1 2, , ,A A A A . In the original problem, 
they form the matrix 

1 1 1 2
0 1 2 1
0 0 1 1
0 1 0 1

B

 
 
 
 
 
 

. 

The inverse of the matrix 1B  is the columns of the last table that were the 
basis in the first table 

1 1
2 21

1 1
2 2

1 1
2 2

1 0 1 1
0 1
0 0
0 1

B

  
 


 
 
 

 

. 

Since 1
basY C B    , this vector has actually already been calculated in the  

(m+1) row of the last simplex table: 

31
2 2(0 0; 0; 2 0; 0)Y       .  ►  
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§7. The dual simplex method for solving 

of linear programming problems 

 

 

Consider the canonical linear programming problem 

1

max
n

j j

j

f c x



  ;    (19) 

1

n

i ij j i

j m

x a x b

 

  ,   1,...,i m ,   (20) 

0jx  ,  1,...,j n .    (21) 

Let this problem have a unit basis, but among the components 1,..., mb b  
there are one or more negative ones. 

Such a problem is called a problem in dual basis form. A variant of 
the method for solving such a problem is called the dual simplex method. 
A solution  1,..., , 0,..., 0ps mX b b  is called a pseudo-solution of problem 

(19)-(21) if the simplex differences  

1

0
m

j i ij j

i

c a c



    ,  1,...,j n , 

 but its components 1,..., mb b  have one or more negative ones.  

Theorem 11. If a pseudo-solution of problem (19)-(21) has at least 

one component 0ib   for which 0ija  , 1,...,j n , then problem (19)-(21) 

have no solution ( )D  . 
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Theorem 12. Suppose that in problem (19)-(21), 0j   for all 

 1,...,j n , and the pseudo-solution psX  is such that for all  1,...,i m , 

for which 0ib  , at least one  1,...,j n  for which 0ija  . Let r be such a 

number that 0rb   and 

: 0
min{ }

i
r i

i b
b b


 ,    (39) 

and let s be such that 0rsa   and  

: 0,
0

max
rj

j

js

j a
rs rja a

 

   
  

  

.    (40) 

Then the Jordaan transformation with leading element rsa  leads to a new 

plan in which: 

1) all 0j  , 1,...,j n ; 

2) the value of the objective function does not increase. 

Here is the algorithm of the dual simplex method. 

1. If all 0j  , 1,...,j n  and 0ib  , 1,...,i m , then the optimal 

solution is found –  1,..., , 0,..., 0mX b b  . If there is a pseudo-plan, 
then proceed to step 2. 

2. If the pseudo-plan has at least one component 0ib   for which 0ija  , 

1,...,j n , then the problem has no solution ( )D  . Otherwise, go to 
step 3. 

3. Find r from condition (39). The vector rA  is derived from the basis. 

4. Find s from condition (40). The vector sA  is introduced into the basis. 

5. Perform the Jordan transform with the leading element rsa . 

6. Go to step 1. 
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In the case of a minimum problem: 

1) the leading line is selected in the same way as in the maximum 
problem; 

2) if there is a pseudo-plan ( 0j  ), the leading element is selected using 

the formula  

: 0,
0

min
rj

j

js

j a
rs rja a

 

   
  

  

. 

Example 14. Solve the dual problem to the problem from Example 4 
using the dual simplex method. 

◄  The dual problem is the following: 

1 2 3 418 16 8 6 minF y y y y     ; 

1 2 3

1 2 3 4

1 2 4

2 3,
2 4,

2;

y y y

y y y y

y y y

  


   
   

    (41) 

0iy  ,  1,...,4i  . 

To solve this problem, let's reduce it to its canonical form: 
 

1 2 3 418 16 8 6 minF y y y y     ; 

1 2 3 5

1 2 3 4 6

1 2 4 7

2 3,
2 4,

2;

y y y y

y y y y y

y y y y

   


    
    

 

0iy  ,  1,...,7i  . 

To obtain the unit basis, we multiply each of the equations of the 
constraint system by (-1). Then we get the canonical form with a unit basis 
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1 2 3 418 16 8 6 minF y y y y     ; 

1 2 3 5

1 2 3 4 6

1 2 4 7

2 3,
2 4,

2,

y y y y

y y y y y

y y y y

     

      
      

 

0iy  ,  1,...,7i  . 

However, the right-hand sides are negative. We solve this problem using 
the dual simplex method. 

i B Cb А0 
18 16 8 6 0 0 0 

А1 А2 А3 А4 А5 А6 А7 

1 А5 0 -3 -1 -2 -1 0 1 0 0 
2 А6 0 -4 -2 -1 -1 -1 0 1 0 
3 А7 0 -2 -1 -1 0 -1 0 0 1 

m +1 0 -18 -16 -8 -6 0 0 0 

The first table contains a pseudo-plan. By (39), we define r: 
min{ 3; 4; 2}   , 2r  . We define s from the condition: 

 18 16 8 6min , , , 6
2 1 1 1

    
  

, 4s  . 

i B Cb А0 
18 16 8 6 0 0 0 

А1 А2 А3 А4 А5 А6 А7 
1 А5 0 -3 -1 -2 -1 0 1 0 0 
2 А4 6 4 2 1 1 1 0 -1 0 
3 А7 0 2 1 0 1 0 0 -1 1 

m +1 24 -6 -10 -2 0 0 -6 0 

The second table contains a pseudo-plan. Define r: min{ 3} 3   , 1r  . 

Define s from the condition:  6 10 2min , , 2
1 2 1

   
  

, 3s  . 
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i B Cb А0 
18 16 8 6 0 0 0 

А1 А2 А3 А4 А5 А6 А7 
1 А3 8 3 1 2 1 0 -1 0 0 
2 А4 6 1 1 -1 0 1 1 -1 0 
3 А7 0 -1 0 -2 0 0 1 -1 1 

m +1 30 -4 -6 0 0 -2 -6 0 

The third table has a pseudo-plan. Define r: min{ 1} 1   , 3r  . Define s 

from the condition:  6 6min , 3
2 1
  
 

, 2s  . 

i B Cb А0 
18 16 8 6 0 0 0 

А1 А2 А3 А4 А5 А6 А7 

1 А3 8 2 1 0 1 0 0 -1 1 

2 А4 6 3
2  1 0 0 1 1

2  - 1
2  - 1

2  

3 А2 16 1
2  0 1 0 0 - 1

2  1
2  - 1

2  

m +1 33 -4 0 0 0 -5 -3 -3 

The plan obtained in the fourth table is the optimal plan 
31

2 2(0; ; 2; )Y   , min 33F  . 

Find the solution of the dual problem to problem (41), i.e. problem 
(38). В is the matrix that gives the optimal solution Y  , i.e., it is a matrix 
consisting of columns 3 4 2, ,A A A : 

1 0 2
1 1 1
0 1 1

B

 
 


 
 
 

. 

And then  

1 1 1 1 1
2 2 2

1 1 1
2 2 2

0 1 1
(8 6 16) (8 6 16)basX C B B   

 
 

      
 
  

,  

 ( ( 5 0); ( 3 0); ( 3 0)) 5,3, 3X             .    ►  
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CHAPTER 2 

 

SPECIAL PROBLEMS OF LINEAR 

PROGRAMMING 

 

 

§1. The transportation problem 

 

 

Item 1.1. Properties of the problem 
 
 

A substantive statement of the problem is made in Chapter 1.  

The process of production and consumption of homogeneous 
products is considered. There are m points 1 2, ,..., mA A A , which produce 
homogeneous products in quantities 

ia , 1,...,i m , respectively. The 
produced goods are consumed in n points 1 2, ,..., nB B B  in quantities jb , 

1,...,j n , respectively. 

Let ijc , 1,...,i m , 1,...,j n  be the cost of transportation of a unit of 

product from the point of production 
iA  to the point of consumption jB  . If 

we denote by ijx  the number of units of cargo transported from point of 

production 
iA  to point of consumption jB , 1,...,i m , 1,...,j n , then the 

mathematical model for finding a transportation plan that would satisfy the 
needs of consumers while minimizing transportation costs is as follows: 
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1 1

min
m n

ij ij

i j

f c x

 

  ; 

1

1

, 1,..., ,

, 1,..., ;

n

ij i

j

m

ij j

i

x a i m

x b j n






 





 





 

0ijx  ,  1,...,i m , 1,...,j n . 

Let us consider the ideal case where the sum of possible supplies 
equals the sum of needs: 

1 1

m n

i j

i j

a b

 

  .     (1) 

In this case, the constraints of the problem are inequalities. 

Condition (1) is called the balance condition, and the problem is 
called a balanced (closed) problem. In the following, a balanced problem 
will be called a T-problem. 

 

Theorem 1. (Criterion for the existence of admissible solutions of 

the T-problem). 

The balance condition (1) is a necessary and sufficient condition for 

the existence of feasible solutions to the T-problem. 
 

Theorem 2. The rank of the matrix of the constraint system of the T-

problem is 1m n  . 

 
Theorem 3. A balanced transportation problem always has an 

optimal solution. 
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Item 1.2. Reference plans of the T-problem 

and their properties 

 

The data of the linear programming transportation problem 
and the results of the calculations associated with its solution are 
entered into the transportation table. 

Points of 
shipments 

Destinations 
Inventory 

B1 … Bj … Bn 

A1 
c11 

x11 … 
c1j 

x1j … 
c1n 

x1n a1 

… … … … … … … 

Ai 
ci1 

xi1 … 
cij 

xij … 
cin 

xin ai 

… … … … … … … 

Am 
cm1 

x m1 
… 

cmj 

xmj 
… 

cmn 

xmn 
am 

Needs b1 … bj … bn  

In this case, the transportation cost ijc  is recorded in the upper right 

corner of the corresponding cell of the transportation table. As a rule, the 
components ijx  of the transportation matrix are entered into the 

transportation table only when 0ijx  . In this case, the corresponding cell 

of the transportation table is called filled, otherwise it is called free. 
For a linear programming transportation problem, the concept of a 

basic solution plays an important role. According to Theorem 2, a 
nondegenerate basis solution of a linear programming transportation 
problem contains the ( 1m n  ) positive component, and a degenerate 
basis solution contains a smaller number of positive components. 
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In a linear programming transportation problem, the concept of a 
basic solution can be given a clear geometric interpretation. To do this, we 
will introduce a number of definitions and formulate some statements. 

 
Definition 1. The route connecting points A and B is called a 

communication sequence  

1 1i jA B , 
2 1i jA B , 

2 2i jA B ,…, 
1s si jA B


, 
s si jA B . 

We denote this route by M. 

Definition 2. A route M to which communication AB is added is 

called a closed route or cycle. 

Denoting the cycle by C, we have 
1 si jC M A B  . 

If we replace the communications in the route and cycle definitions 
with the corresponding cells of the transport table of the T-task, we get the 
route and cycle definitions of the transport table. 

Theorem 4. The system of condition vectors  ijR P , 1,...,i m , 

1,...,j n  of a linear programming transportation problem is linearly 

independent if and only if it is impossible to form a cycle from the 

communications corresponding to these vectors. 

Definition 3. A communication 
i jA B  is called basic for a solution 

X if 0ijx  . 

Definition 4. A plan of a T-problem is called a basic plan if its basic 

communications cannot be used to form a cycle. 

2j
B  

1sj
B


 

sj
B  

1j
B  

2i
A  

si
A  

1i
A  
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Let us state a simple corollary of Theorem 4. 

Theorem 5. An admissible solution to a linear programming 

transportation problem is a basic solution if and only if its main 

communications cannot form a cycle. 

The above theorems can be transformed to apply to the transportation 
table. In particular, if it is impossible to form a cycle from the filled cells  
( 0ijx  ) of some admissible solution to a linear programming 

transportation problem, then this solution is a basic solution, otherwise it is 
not. 

Definition 5. The cells of the transport table that correspond to the 

basic variables are called basic, the rest are called non-basic. 
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Item 1.3. Methods for finding the initial 

reference plans for a T-problem 

 
 
For a standard linear programming problem, finding an initial basis 

solution requires the use of an artificial basis method, or M-method. For a 
transportation linear programming problem, the search for an initial basis 
solution is much simpler due to its specifics. Let's consider some of the 
most popular methods. 

 

 

1. Northwest corner method 
 

The cell (1, 1) of the transportation table (its northwest corner) is 
selected and loaded with the maximum possible transportation. There are 
three possible cases: 

 1) 11 1 1 1min( , )x a b a  , 
 2) 11 1 1 1min( , )x a b b  , 
 3) 11 1 1 1 1min( , )x a b a b   . 
In the first case, the first row of the transport table is excluded from 

further consideration, we set 1 1 11b b x   , in the second case, the first 
column is excluded, we set 1 1 11a a x   , in the third case, both the first 
column and the first row are excluded from further consideration. In the 
transport table thus reduced, its upper left cell (northwest corner) is 
located, loaded as much as possible, etc. 

It is clear that the transportation plan constructed in this way is a 
valid solution to the linear programming transportation problem. In 
addition, this plan is a basic one. 

Note that when constructing the initial base solution using the 
northwest corner method, transportation costs ijc  are not taken into account 

at all. Therefore, as a rule, this plan is far from optimal. 
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Example 1. Find a reference plan for a problem 
Points of 
shipments 

Destinations 
Inventory 

B1 B2 B3 B4 

A1 
2 

x11 
2 

x12 
3 

x13 
5 

x14 
110 

A2 
9 

x21 
6 

x22 
3 

x23 
5 

x24 
150 

A3 
8 

x31 
12 

x32 
11 

x33 
6 

x34 
250 

Needs 100 180 140 90 510 

The problem is balanced because the total demand 
1

510
n

j

j

b



  is equal to 

the total supply 
1

510
m

i

i

a



 . 

Let's find a feasible solution to the transportation problem using the 
northwest corner method. Consistently fill in the cells, starting from the 
upper left (northwest corner), exhausting the reserves and satisfying the 
needs: 

Points of 
shipments 

Destinations 
Inventory 

B1 B2 B3 B4 

A1 
2 

100 
2 

10 
3 

 
5 

 110 

A2 
9 

 
6 

150 
3 

 
5 

 150 

A3 
8 

 
12 

20 
11 

140 
6 

90 250 

Needs 100 180 140 90 510 

We get the following valid solution 

M1

100 10 0 0
0 150 0 0
0 20 140 90

X

 
 


 
 
 

, 

M1 2 100 2 10 6 150 12 20 11 140 6 90 3440f              . 



 

63 

 

2. Minimum element method 

 

The idea of this method is to maximize the transportation load of 
communications with the minimum transportation cost. In fact, this 
method differs from the Northwest corner method only in that at each step 
of building the initial basic solution, the cell with the minimum value of ijc  

is selected for loading. 
The minimum element method also results in a valid basic solution to 

the linear programming transportation problem. 
 
Example 2. Find a feasible solution to the transportation problem 

from Example 1 using the minimum element method. 
Fill in the cells of the table in ascending order of transportation costs, 

exhausting stocks and satisfying needs: 
 

Points of 
shipments 

Destinations 
Inventory 

B1 B2 B3 B4 

A1 
2 

 
2 

110 
3 

 
5 

 110 

A2 
9 

 
6 

 
3 

140 
5 

10 150 

A3 
8 

100 
12 

70 
11 

 
6 

80 250 

Needs 100 180 140 90 510 

We get the following feasible solution 

M2

0 110 0 0
0 0 140 10

100 70 0 80
X

 
 


 
 
 

, 

M2 2 110 3 140 5 10 8 100 12 70 6 80 2810f              . 
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§2. The method of potentials for solving 

a transportation problem 
 

 

Item 2.1. Duality in the transportation problem 
 
 

Let's write the T-problem in expanded form 

1 1

min
m n

ij ij

i j

f c x

 

  ;  

11 12 1 1

21 22 2 2

1 2

11 21 1 1

12 22 2 2

1 2

... ,
... ,

..................
... ,

... ,
... ,

...................
... ,

n

n

m m mn m

m

m

n n mn n

x x x a

x x x a

x x x a

x x x b

x x x b

x x x b

   


   




   


   
    


    

  (2) 

0ijx  ,  1,...,i m , 1,...,j n . 

 
Let us construct a binary problem to the T-problem (2) by matching 

the first m constraints with the binary variables 1,..., mu u , and the next n 

constraints with the binary variables 1,..., nv v . If  1 1,..., , ,...,m nY u u v v , 
then the binary problem to problem (2) is as follows: 
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1 1

max

1,..., 1,.., . .,

, 

m n

i i j j

i j

i j ij

F a u b v

u v c

i m j n

 

  

 

 

 

   (3) 

Definition 6. The variable 
iu  is called the potential of the 

production point 
iA , and the variable jv  is called the potential of the 

consumption point jB , 1,...,j n . 

Since there are no restrictions on the sign of the binary variables, the 
vector of potentials can be chosen in the form  1 1,..., , ,...,m nY u u v v   . 
Then we get the following dual problem to (2): 

1 1

max

1,...

, 

, ., 1,...,

m n

i i j j

i j

j i ij

F a u b v

v u c

i m j n

 

   

 

 

 

   (3ʹ) 
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Item 2.2. The method of potentials 
 
 
 

The method of potentials essentially uses a dual optimality criterion 
for a linear programming transportation problem. Let 

iu , 1,...,i m ,  

jv , 1,...,j n  be the potentials of points 
iA  and jB , respectively. The value 

 ij i j ijc u v     is called the simplex difference (relative value) of the 

variable ijx . 

Theorem 6. (Dual optimality criterion for the linear programming 

transportation problem). 

A basic solution X is optimal if and only if there exist potentials  

iu , 1,...,i m , jv , 1,...,j n , such that 

0ij     for basic cells,    (4) 

0ij     for non-basic cells.   (5) 

 

The algorithm of the method of potentials consists of several steps. 

1. Find the initial nondegenerate solution X of the linear programming 
transportation problem using one of the known methods. 

2. Calculate the potentials 
iu , 1,...,i m , jv , 1,...,j n , so that in each 

basis cell the relation 0ij   is fulfilled, or, equivalently,  

i j iju v c  ,  (i, j) – basic cells.     (6) 

Note that system (6) contains 1m n   equations with m n  
unknowns. Therefore, one of the unknowns ( 1u , for example) is 
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assumed to be equal to an arbitrary constant, which is usually zero. The 
remaining unknowns are found from system (6). 

3. Find ij  for the non-basic cells. If all of them are nonnegative, that is, if 

the inequalities i j iju v c   are satisfied for all nonbasic cells, then the 

basic solution X is optimal. Otherwise, it can be improved by including 
one of the cells where 0ij  , i.e., a cell for which i j iju v c  . As a 

rule, the cell  0 0,i j  for which 
0 0 ,

mini j ij
i j

    is included in the number 

of base cells. 

4. Redistribute the transportation: include cell  0 0,i j  (i.e., variable 
0 0i jx ) 

in the number of base cells, exclude cell  ,k l  for  

, :( , )
minkl ij

i j i j C
x x


   

(i.e., variable 
klx ) from the number of base cells. Go to step 2 of the 

algorithm. 
 

Remarks. If the vector of binary variables is chosen as 

 1 1,..., , ,...,m nY u u v v   , then the simplex differences ij  are set equal to 

ij j i ijv u c    . Then, in step 2 of the algorithm, condition (6) is written 

as follows: 

j i ijv u c  ,  (i, j)  – are the basic cells, 

and in step 3 of the algorithm, the optimality condition is as follows: 

j i ijv u c  , that is 0ij   for non-basic cells. 
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Example 3. Find the optimal transportation plan for the previous 
examples. Let's present the problem data in the form of a table 
 

Points of 
shipments 

Destinations 
Inventory 

B1 B2 B3 B4 

A1 
2 

x11 
2 

x12 
3 

x13 
5 

x14 
110 

A2 
9 

x21 
6 

x22 
3 

x23 
5 

x24 
150 

A3 
8 

x31 
12 

x32 
11 

x33 
6 

x34 
250 

Needs 100 180 140 90 510 
 

◄  Let's use the feasible solution to the transportation problem found 
by the northwest angle method: 

Points of 
shipments 

Destinations 
Inventory 

B1 B2 B3 B4 

A1 
2 

100 
2 

10 
3 

 
5 

 110 

A2 
9 

 
6 

150 
3 

 
5 

 150 

A3 
8 

 
12 

20 
11 

140 
6 

90 250 

Потреби 100 180 140 90 510 

We got the following valid solution 

1

100 10 0 0
0 150 0 0
0 20 140 90

X

 
 


 
 
 

, 

1( ) 2 100 2 10 6 150 12 20 11 140 6 90 3440f X              . 
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Let us check this solution for optimality using the method of 
potentials. Let's assign the potentials ui to the points of shipment Аi and the 
potentials vj to the points of destination Вj. Let's construct the system of 
equations i j iju v c   for all the base cells: 

1 1

1 2

2 2

3 2

3 3

3 4

2,
2,
6,
12,
11,
6.

u v

u v

u v

u v

u v

u v

 


 

  


 
  


 

 

Points of 
shipments 

Destinations 
Inventory ui B1 B2 B3 B4 

A1 
2 

100 
2 

10 
3 

 
5 

 110 0 

A2 
9 

 
6 

150 
3 

 
5 

 150 4 

A3 
8 

 
12 

20 
11 

140 
6 

90 250 10 

Needs 100 180 140 90 510  
vj 2 2 1 -4   

Setting 1 0u  , we find the potentials ,i ju v j by solving the system of 

equations. In order for an admissible plan to be optimal, it is necessary and 
sufficient that the relative estimates 

 ij ij i jc u v    , 

calculated for the free cells are nonnegative. We have 

13 3 0 1 2 0      , 

14 5 0 ( 4) 1 0       , 

21 9 2 4 3 0      , 
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23 3 4 2 3 0       , 

24 5 4 ( 4) 5 0       , 

31 8 10 2 4 0       . 

The optimality criterion is not met for cells (2, 3) and (3, 1). 

ia          jb  100 180 140 90 iu  

110 
2 

–  100 
2 

+   10 
3 

 
5 

 0 

150 
9 

 
6 

150 
3 

 
5 

 4 

250 
8 

+ 
12 

–   20 
11 

140 
6 

90 10 

jv  2 2 1 -4  

Therefore, we enter the cell (3, 1) into the base and recalculate the table by 
setting 20  . We get the following table: 

ia          jb  100 180 140 90 iu  

110 
–         2 

80 
+     2 

30 
3 

 
5 

 0 

150 
9 

 
–          6 

150 
+        3 

 
5 

 4 

250 
+       8 

20 
12 

 
–      11 

140 
6 

90 6 

jv  2 2 5 0  

A new transportation plan 

2

80 30 0 0
0 150 0 0
20 0 140 90

X

 
 


 
 
 

, 
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the cost of transportation for which is 

2( ) 2 80 2 30 6 150 8 20 11 140 6 90 3360f X              . 

Let's check this solution for optimality using the method of 
potentials. The optimality criterion is not met for cells (1, 3) and (2, 3). We 
enter cell (2, 3) into the basis and recalculate the table by setting 80  . 
We get the following table: 

ia          jb  100 180 140 90 iu  

110 2 
 

2 

110 
3 

 
5 

 0 

150 9 
 

–        6 

70 
+  3 

80 
5 

 4 

250 
8 

100 
+      12 

 

–   11 

60 
6 

90 12 

jv  -4 2 -1 -6  

The transportation plan 

3

0 110 0 0
0 70 80 0

100 0 60 90
X

 
 


 
 
 

,  

has a transportation cost 

3( ) 2 110 6 70 3 80 8 100 11 60 6 90 2880f X              . 

Let's check this solution for optimality using the method of 
potentials. The optimality criterion is not met for cell (3, 2). Recalculate 
the table by setting 60  . We get the following table: 
  



 

 

 

72 

 

ia          jb  100 180 140 90 iu  

110 2 
 

2 

110 
3 

 
5 

 0 

150 9 
 

6 

10 
3 

140 
5 

 4 

250 
8 

100 
12 

60 
11 

 
6 

90 12 

jv  -4 2 -1 -6  
 
Since all relative scores calculated for the free cells are nonnegative, 

the resulting solution is optimal.  
Thus, the optimal transportation plan 

*

0 110 0 0
0 10 140 0

100 60 0 90
X

 
 


 
 
 

, 

and the minimum cost of transportation on this plan is min 2760f   units.  
► 
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§3. Unbalanced transportation problems 

 
 

Above, we have considered a balanced model of a linear 
programming transportation problem characterized by the fulfillment of 
the condition 

1 1

m n

i j

i j

a b
 

  .    (1) 

If condition (1) is violated, then we speak of an unbalanced (open) 
model of the linear programming transportation problem. The following 
cases are possible: 

1 1

m n

i j

i j

a b
 

    or  
1 1

m n

i j

i j

a b
 

  . 

The mathematical formulation of the problem also changes. In the first 
case, the linear programming transportation problem takes the following 
form 

1 1

min
m n

ij ij

i j

f c x
 

    

1

n

ij i

j

x a


 , 1,...,i m ,  

1

m

ij j

i

x b


 , 1,...,j n , 

0ijx  , 1,...,i m , 1,...,j n . 

The mathematical model of the linear programming transportation 
problem for the second case is written in a similar way. 
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It is clear that in the first case, not all consumption points jB , 

 1,...,j n , will satisfy the demand for products. The total amount of 
unmet demand is 

1 1

n m

j i

j i

b a
 

  . 

In the second case, at some points of production 
iA ,  1,...,i m , 

there are still unsold products of the total volume  

1 1

m n

i j

i j

a b
 

  . 

However, in each of these cases, a transportation plan that meets the 
minimum transportation costs can be constructed. To do this, in the first 
case, a fictitious production point 1mA 

 is introduced with a production 
volume of 

1
1 1

n m

m j i

j i

a b a

 

    

units, and transportation costs from this point are zero, i.e., 1, 0m jc   , 

1,...,j n . In the second case, a fictitious consumer 1nB 
 is added with a 

demand volume 

1
1 1

m n

n i j

i j

b a b

 

    

units, and transportation costs to which are zero, i.e., , 1 0i nc   , 1,...,i m . 

It is easy to see that the proposed extensions of the original 
unbalanced problems are balanced linear programming transportation 
problems that can be solved, for example, by the method of potentials. Let 
X   be their optimal solution. Then the optimal solution X   of the original 
problem in the first case is obtained by discarding the last line of the 
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solution X  , which corresponds to a fictitious production point whose 
positive elements determine the amount of shortages to the corresponding 
consumers. Similarly, for the second case, the optimal solution X   is 
obtained by discarding the last column of the solution X  , whose positive 
elements determine the amount of unsold products from the respective 
producers. 

Remarks. When finding the initial basic solution of an extended 
linear programming transportation problem using the minimum element 
method (or another method that takes into account transportation costs), 
you should first select the cells for loading from among real producers or 
consumers, and the cells of the dummy column (row) last. This will allow 
you to get a plan closer to the optimal one. The same result can be 
achieved by setting 

1, ,
maxm j ij

i j
c c  ,   , 1 ,

maxi n ij
i j

c c  , 

respectively. 
 

Example 4. Solve a linear programming transportation problem: 
(30,40,70,60)a  , (35,80,25,70)b  , 

1 9 7 2
3 1 5 5
6 8 3 4
2 3 1 3

C

 
 
 
 
 
 

 

◄ Since 1 2 3 4 200a a a a    , 1 2 3 4 210b b b b    , we introduce 
a fictitious manufacturer 5A  with production volume 5 10a   and 
transportation costs 51 52 53 54 0c c c c    . We obtain a balanced 
transportation problem, whose initial reference plan is found by the 
minimum element method and its optimality is checked by the method of 
potentials. 
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 35 80 25 70 iu  

30 
1 

30 
9 
 

7 
 

2 
 0 

40 3 
 

1 

40 
5 
 

5 
 -1 

70 6 
 

8 
 

3 
 

4 

70 2 

60 
2 

5 
3 

30 
1 

25 
3 

0 
1 

10 0 
 

0 

10 
0 
 

0 
 -2 

jv  1 2 0 2  
 

Hence, we have an optimal solution to the original linear 
programming transportation problem: 

30 0 0 0
0 40 0 0
0 0 0 70
5 30 25 0

X 

 
 
 
 
 
 

, 

  475f X   . 

At the same time, 10 units of products are short delivered to consumer 2B . 
► 

Example 5. Solve a linear programming transportation problem: 
(30,70,50)a  , (10,40,20,60)b  , 

2 7 3 6
9 4 5 7
5 7 6 2

C

 
 


 
 
 

. 
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◄  Since 1 2 3 150a a a   , 1 2 3 4 130b b b b    , we introduce a 
fictitious consumer 5B  with demand 5 20b   and transportation costs 

15 25 35 0c c c   . In the resulting balanced transportation problem, the 
initial reference plan is found by the minimum element method and its 
optimality is checked by the method of potentials. 

 

ia          jb  10 40 20 60 0 iu  

30 
2 

10 
7 
 

3 
20 

6 
 

0 
 

0 

70 
9 
 

4 
40 

5 
0 

7 
10 

0 
20 

2 

50 
5 
 

7 
 

6 
 

2 
50 

0 
 

-3 

jv  2 2 3 5 -2  

The optimal solution to the original linear programming 
transportation problem is: 

10 0 20 0
0 40 0 10
0 0 50 0

X 

 
 


 
 
 

, 

  410f X   . 

At the same time, the manufacturer 2A  has 20 units of unsold products.  ► 
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CHAPTER 3 

 

ELEMENTS OF MATRIX GAME THEORY 

 

 

Game theory originated in the early twentieth century. Only in 1944, 
after the publication of the work of John von Neumann and Oskar 
Morgenstern "Theory of Games and Economic Behavior", it became a 
separate science. 

 
 

§1. Basic concepts 

 
 
A matrix game is defined by the following rules. There are two 

players A and B. The first player chooses one of his possible strategies 
iA , 

1,...,i m , and the second player chooses one of his strategies jB , 

1,...,j n . The players make their choices simultaneously and 
independently of each other. 

Let 1( , )i jA B  be the payoff of player A if he chooses strategy 
iA  and 

player B chooses strategy jB , and let 2 ( , )i jA B  be the payoff of player B 

if he chooses strategy jB  and player A chooses strategy 
iA . We consider 

zero-sum games: 

1 2( , ) ( , ) 0i j i jA B A B   ,  that is  1 2( , ) ( , )i j i jA B A B   . 

If 1 0  , then 1  is the payoff of player A and it is equal to the loss 

of player B. If 1 0  , then the payoff of player B is 2  and it is equal to 
the loss of player A. 
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Let 1( , )i j ijA B c  , then the matrix 1,
1,( ) j n

ij i m
C c 


  is called the payoff 

matrix or the payoff matrix of player A. Player A is also called a row 

player, and player B is called a column player. 

So, to define a game, you need to specify the sets of strategies of 
both players and the payment matrix. To solve a game means to specify 
the best choice (best strategy) for each player.  

Example 1 (coin guessing). Each of the two players independently 
chooses a certain side of the coin, naming their choice at the same time. If 
different sides of the coin are chosen, the second player pays the first one 
currency unit, otherwise the first player pays the second one currency unit.  

The payoff matrix of this game is as follows  

1 1
1 1

C
 

  
 

. 

Consider the game from the point of view of player A. By choosing 
strategy iA , 1,...,i m , he receives at least 

1,
min ij i
j n

c 


  from the other 

player. Since player A seeks to maximize his payoff and can choose any 
row of the matrix C, he chooses the one that maximizes i . In this case, 

the guaranteed payoff of player A is equal to 
1,1,

max min ij
j ni m

c


 , which is 

called the lower price of the game. 

Similarly, for player B. Realizing that the elements of matrix C are 
payments to player A, he determines for each of his strategies jB  the 

1,
maxj ij
i m

c


  – the value that he cannot lose more than this, and then 

chooses the strategy (column of matrix C) that corresponds to the 
minimum value of j . The value of 

1, 1,
min max ij
j n i m

c
 

  is called the upper 

price of the game. 



 

 

 

80 

So, player A can guarantee himself a win of at least  , and player B 
can prevent him from getting more than  . If v    , i.e. 

1, 1,1, 1,
max min min maxij ij

j n j ni m i m
v c c

  
  ,    (1) 

then player A must realize that he can get v, and his opponent will prevent 
him from getting more than v. Therefore, the numbers i*, j* such that in 
relation (1) * *i jc v , it is natural to call the optimal pure strategies of 

players A and B, respectively. In this case, the matrix game is said to be 
solvable in pure strategies, and the value of v is called the price of the 

game. 
 

Example 2. 

 
2 1 1 3 5 5

4 2 5 6 2 6 maxmin 3
5 3 4 5 4 3
7 3 5 1 6 3

max 7 3 5 5 6
min 3

C 



    
         
  
     



 

For the game given by the payment matrix C, we obtained 3   . 
The game is solved in pure strategies. The optimal strategy of the row 
player is 3A , the optimal strategy of the column player is 2B . The price of 
the game is 3v  . The row player can always act in such a way that he 
gains at least 3, and the column player loses at most 3. Obviously, if one 
player deviates from his optimal net strategy and the other follows it, the 
situation of the player deviating from the optimal choice can only get 
worse.  

It turns out that the relation (1) does not hold for every game defined 
by the payment matrix C. Thus, not every game has a solution in pure 
strategies. 
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Example 3. For the game „guess the coin” we have 

1 1 1 maxmin 1
1 1 1

max 1 1
min 1

C 



   
    

   



 

This game has no solution in pure strategies. 
 
Let us establish the general conditions under which the relation (1) 

holds. Consider a real function ( , )f x y  of two real variables x X , y Y . 

Definition 1. A point ( *, *)x y  is called a saddle point of a function 

( , )f x y  if for any x X , y Y  the inequalities 

( *, ) ( *, *) ( , *)f x y f x y f x y       (2) 

holds. 

As a special case, we have: a saddle point of a matrix 1,
1,( ) j n

ij i m
C c 


   is 

a pair ( *, *)i j  such that * * * *i j i j ijc c c   for all 1,...,i m  and 1,...,j n .  

A matrix game is said to have a saddle point if its payment matrix 
has a saddle point. 

Lemma 1.  Let there exist min ( , )
y Y

f x y


 and max ( , )
x X

f x y


 for a real 

function ( , )f x y , x X , y Y . Then the inequality  

   max min ( , ) min max ( , )
y Y y Yx X x X

f x y f x y
  

  

holds. 

For a matrix game with a payoff matrix C, the last inequality is 
  . 
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Lemma 2. Let the conditions of Lemma 1 be satisfied. For the 

relation 

max min ( , ) min max ( , )
y Y y Yx X x X

f x y f x y
  

  

to hold, it is necessary and sufficient that the function ( , )f x y  has a saddle 

point. At the same time, equality 

( *, *) max min ( , ) min max ( , )
y Y y Yx X x X

f x y f x y f x y
  

   

holds for the saddle point ( *, *)x y . 

For a matrix game, Lemma 2 is formulated as follows: 

Theorem 1. A matrix game has a solution in pure strategies if and 

only if its payoff matrix has a saddle point. In this case, if ( *, *)i j  is the 

saddle point of the matrix C, then the game price is * *i jv c . 

If v   , then the game is said to be solvable in pure strategies. 
Then there exist such *i , *j , that * *i jc v . 
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§2. Optimal mixed strategies 

 

 

In the previous section, it was shown that for matrix games with a 
saddle point, the notion of optimal pure strategies of the players can be 
defined in a reasonable way. At the same time, it is obvious that in the 
absence of a saddle point in the game's payoff matrix, none of the players 
should use the same pure strategy all the time.  

In this regard, it is quite natural to try to define the concept of 
optimal strategy for matrix games without a saddle point in the class of so-
called mixed strategies.  

 

Definition 2. The mixed strategy of player A is the vector 

1( ,..., )mu u u ,  0iu  ,  1,...,i m ,  
1

1
m

i

i

u



 , 

and the mixed strategy of player B is the vector 

1( ,..., )nw w w ,  0jw  ,  1,...,j n ,  
1

1
n

j

j

w



 . 

The values iu , 1,...,i m  and jw , 1,...,j n   are interpreted as the 

probabilities with which players A and B choose their strategies iA  and jB , 

respectively (i-th row and j-th column of matrix C).  
It is clear that i-th pure strategy of player A can be viewed as a special 

case of his mixed strategy 1( ,..., )mu u u  at 1iu  . The same applies to the  
j-th pure strategy of player B. 

We denote by U and W, respectively, the sets of mixed strategies of 
the first and second players, i.e  
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1
1

( ,..., ) : 0, 1,..., , 1
m

m i i

i

U u u u u i m u



  
     
  

 , 

1
1

( ,..., ) : 0, 1,..., , 1
n

n j j

j

W w w w w j n w



  
     
  

 . 

If player A uses his mixed strategy u U  and player B uses w W , 
then the mathematical expectation of player B's payoff to player A (player 
A's average payoff) is calculated as follows  

1 1

( , )
m n

ij i j

i j

M u w c u w

 

 . 

Reasoning similarly to the case of pure strategies, we conclude that 
player B can ensure an average loss of no more than 

min max ( , )
w W u U

M u w
 

, 

and player A can secure an average win of at least 

max min ( , )
w Wu U

M u w


. 

The minimax and maximin problems are the problems of finding 
guaranteed mixed strategies by column and row players, respectively.  

If, for some mixed strategies *u U , *w W  the inequalities 

( *, ) ( *, *) ( , *)M u w M u w M u w   

hold for all u U , w W , i.e., if ( *, *)u w  is a saddle point of function 
( , )M u w , then  

( *, *) maxmin ( , ) minmax ( , )
w W w Wu U u U

M u w M u w M u w
  

  . 
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The components *u  and *w  of the saddle point ( *, *)u w  of the 
function ( , )M u w  are called the optimal mixed strategies of players A and 
B, respectively, and ( *, *)v M u w  is the price of the game. It is said that 
the matrix game has a solution in mixed strategies. 

That is, the optimal mixed strategy of a row player is such a strategy 
u* that by abandoning it, he will reduce his average payoff. On the other 
hand, if the row player follows the optimal strategy, he guarantees himself 
an average payoff regardless of the actions of the column player, which 
can be increased by the careless actions of the column player. 

A strategy w* is optimal for a column player if, under any actions of 
the other player, he guarantees himself a loss that can be reduced if the 
row player abandons his optimal strategy. 

Theorem 2. Any matrix game has a solution in mixed strategies. 

 
 
Properties of mixed strategies. 

 

10. If player B uses his optimal mixed strategy, then player A's 
average payoff will be highest when A uses his optimal mixed strategy. 

20. If player A uses an optimal mixed strategy, then player B's 
average loss will be the smallest if B uses his optimal mixed strategy. 

30. If player A uses the optimal mixed strategy 1* ( ,..., )mu u u , and 
player B uses any of his pure strategies, then player A's payoff is at least 
the price of the game: 

1

m

ij i

i

c u v



 ,  1,...,j n ,       (3) 

0iu  , 1,...,i m , 
1

1
m

i

i

u



 .  
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40. If player B uses the optimal mixed strategy 1* ( ,..., )nw w w , and 
player A uses any of his pure strategies, then player B's loss will not 
exceed the price of the game: 

1

n

ij j

j

c w v



 ,  1,...,i m ,       (4) 

0jw  ,  1,...,j n ,  
1

1
n

j

j

w



 . 

50. If the average payoff of player A (when he uses the optimal mixed 
strategy and player B uses the pure strategy 1B ) is greater than the game 

price, i.e. 1
1

m

i i

i

c u v



 , then this pure strategy 1B  is used with zero 

probability, i.e. 1 0w  . 
Similarly for other pure strategies and for another player. 

60. If each element of the game matrix is increased (decreased) by the 
same number, the optimal mixed strategies will not change. 

A similar property is true when multiplying each element of the 
matrix C by some positive number. 

These properties also apply to games with a saddle point. 
 
Solving a matrix game can be reduced to solving a pair of dual linear 

programming problems. Consider a game with a price 0v  . Let's 
introduce the notation  

i
i

u
x

v
 , 1,...,i m . 

Dividing (3) by v, we get  

1

1
m

ij i

i

c x



 , 1,...,j n . 
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It is obvious that 0ix  , 1,...,i m . Let's find 1 ... mF x x   . 

1 1... muu
F

v v v
    . 

Since the player A seeks to maximize the game price v, the inverse of 1
v

 

will be minimized. 
Thus, finding the optimal mixed strategy of player A is reduced to 

solving the following linear programming problem: 

1 2 ... minmF x x x      

1

1
m

ij i

i

c x



 , 1,...,j n ,     (5) 

0ix  , 1,...,i m . 

Similarly, to determine the optimal strategy of player B: by dividing 
(4) by v and introducing the notation  

j

j

w
y

v
 , 1,...,j n  

we take into account that player B seeks to minimize the loss. Therefore 
we get the problem 

1 2 ... maxnf y y y      

1

1
n

ij j

j

c y



 ,  1,...,i m ,     (6) 

0jy  , 1,...,j n . 

Problems (5), (6) form a pair of dual linear programming problems.  



 

 

 

88 

Thus, to solve a matrix game of size m n , you need to: 

1. Reduce the dimensionality of the game's payment matrix by 
eliminating disadvantageous strategies in advance. 

2. Determine the upper and lower prices of the game, check the game 
matrix for a saddle point. If there is a saddle point, then the corresponding 
strategies will be optimal, the game price will coincide with the upper and 
lower prices of the game. 

3. In the absence of a saddle point, the solution must be sought 
among mixed strategies by reducing the matrix game to a pair of dual 
linear programming problems. 

4. Solve one of the pair of dual problems by the simplex method. 

5. Write the solution of the matrix game in mixed strategies. 
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§3. Games of the order 2 n  and 2m . Dominance 

 

 

Item 3.1. Games of order 2×2 

 
 

Consider a game with a 2×2 payment matrix  

11 12

21 22

c c
C

c c

 
  
 

 

that has no saddle point. Assume that 11 12c c . The optimal mixed 
strategies u and w must satisfy the following inequalities 

 

11 1 12 2

21 1 22 2

1 2

1

2

,
,

1,
0,
0,

c w c w v

c w c w v

w w

w

w

 
  


 
 




     (7) 

 

11 1 21 2

12 1 22 2

1 2

1

2

,
,

1,
0,
0.

c u c u v

c u c u v

u u

u

u

 
  


 
 




     (8) 

 
It can be shown that the signs of inequalities in (7) and (8) cannot be strict. 
That is, (7) and (8) are written as follows: 
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11 1 12 2

21 1 22 2

1 2

1

2

,
,

1,
0,
0,

c w c w v

c w c w v

w w

w

w

 
  


 
 




    (9) 

 

11 1 21 2

12 1 22 2

1 2

1

2

,
,

1,
0,
0.

c u c u v

c u c u v

u u

u

u

 
  


 
 




    (10) 

 
In system (10), let's subtract the first equation from the second: 

1 12 11 2 22 21( ) ( ) 0u c c u c c     

Hence, at 11 12c c  we have 

1 22 21

2 11 12

u c c

u c c





. 

Since 1 0u  , 2 0u  , then  

1 22 21

2 11 12

| |
| |

u c c

u c c





. 

Hence 

1 22 21

1 11 12

| |
1 | |

u c c

u c c




 
. 

Then 

22 21
1

11 12 22 21

| |
| | | |

c c
u

c c c c




  
   (11) 
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and also 

11 12
2

11 12 22 21

| |
| | | |

c c
u

c c c c




  
.   (12) 

Similar formulas are obtained for 1w  and 2w : 

22 12
1

11 21 22 12

| |
| | | |

c c
w

c c c c




  
, 11 21

2
11 21 22 12

| |
| | | |

c c
w

c c c c




  
. (13) 

We will show that if a row player applies his optimal mixed strategy, 
the mathematical expectation of winning is equal to the game price 
regardless of the actions of the column player, i.e. in this case, player B 
cannot play better or worse – any of his actions leads to the same result. 

Let player A choose the optimal mixed strategy *u  and player B 
choose any mixed strategy w. Then the mathematical expectation of player 
A's payoff is 

1 11 1 21 2 2 12 1 22 2 1 2( *, ) ( * *) ( * *)M u w w c u c u w c u c u wv w v v       . 

Similarly, it can be shown that if player B applies his optimal mixed 
strategy, then the mathematical expectation of player B's loss is equal to 
the game price regardless of player A's actions. 

Remark. For games of a larger order than 2×2, such conclusions 

are generally incorrect. 
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Item 3.2. Games of order 2 n  and 2m  

 
 

Consider an m n  game with a payment matrix 1,
1,( ) j n

ij i m
C c 


 . If 

ij kjc c , 1,...,j n , then strategy 
iA  is said to dominate strategy 

kA . 

Similarly, if 
il isc c , 1,...,i m , strategy 

lB  is said to dominate strategy 
sB . 

Let *u  be one of the optimal mixed strategies of player A. If 0iu  , 
then strategy 

iA  is called a useful (active) strategy. It can be shown that 
an m n  game has at most min( , )m n  useful strategies, so the 2 n  and 

2m  games have at most two useful strategies for each player. Other 
strategies should not be used in the optimal mixed strategy. It is not always 
possible to identify their dominance. 

Let's consider a graphical method for solving matrix games. 

Example 4. Solve the game with a payoff matrix 

2 3
7 1

C
 

  
 

. 

◄  There is no saddle point in this game. For mixed strategies, we 
write systems (9), (10): 

1 1

1 1

1

2 3(1 ) ,
7 (1 ) ,
0 1,

w w v

w w v

w

  


  
  

       
1 1

1 1

1

2 7(1 ) ,
3 (1 ) ,
0 1.

u u v

u u v

u

  


  
  

 

Hence 

1

1

1

5 7,
2 1,
0 1.

u v

u v

u

 


  
  
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In the 1u Ov  coordinate system, we draw the corresponding lines (Fig. 1). 

Their intersection point determines the coordinates 1u  and *v .  

Fig. 1. 
 

We get 1
6
7

u  . Then 2
1
7

u   and 19*
7

v  . 

Applying formulas (11)-(13) from the previous paragraph, we obtain 
a similar result: 

1
|1 7 | 6

| 2 3 | |1 7 | 7
u 

 
  

; 2
| 2 3 | 1

| 2 3 | |1 7 | 7
u 

 
  

; 

1
|1 3 | 2

| 2 7 | |1 3 | 7
w 

 
  

; 2
| 2 7 | 5

| 2 7 | |1 3 | 7
w 

 
  

 

and the price of the game 5 192* 2 3
7 7 7

v      .   ► 

 

  

1u  

v  

1 

1 O  

3 
*v  

7 

1u
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Example 5. Solve a game with a payoff matrix 

6 1
7 2
1 6
4 3
3 2

C

  
 


 
 
 
 
  

. 

◄ 
6 1 6
7 2 2

maxmin 31 6 1
4 3 3
3 2 2

max 7 6
min 6

C 



    
  

 
  
    
  
  
     



 

This game has no saddle point since   , and therefore has no 
solution in pure strategies. We can solve the problem by reducing it to a 
pair of linear programming problems. Let's write out one of them: 

1 1

1 1

1 1

1 1

1 1

6 (1 ) ,
7 2(1 ) ,

6(1 ) ,
4 3(1 ) ,
3 2(1 ) ,

w w v

w w v

w w v

w w v

w w v

   
   


  
   


  

 

1

1

1

1

1

5 1,
9 2,
5 6,

3,
5 2,

w v

w v

w v

w v

w v

  
  


 
   


 

 

10 1w  .  
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Fig. 2. 
 
Let's draw the corresponding lines in the 1wOv  coordinate system (Fig. 2). 

The point of intersection of the third and fourth lines defines 1w  and *v . 

1

1

5 6,
3.

w v

w v

 


  
 

Hence  16 3w   , 1
1
2

w  , 2
1
2

w  , 7*
2

v  . 

The active strategies of player A are the third and fourth (this can 
also be seen using dominance). Therefore, we have a matrix  

3

4

1 6
4 3

A

A

 
 
 

 

for 3u  and 4u . Applying formulas (11)-(13) from the previous paragraph, 
we obtain 

 

 

 

3 

7 

 

6 

-2 

1 

1 

(1) 

(3) 

(5) 

(4) 

(2) 
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3
| 3 4 | 1

|1 6 | | 3 4 | 6
u 

 
  

; 4
|1 6 | 5

|1 6 | | 3 4 | 6
u 

 
  

; 

1
| 3 6 | 3 1

|1 4 | | 3 6 | 6 2
w 

  
  

; 2
1
2

w  . 

Then 

5 1* 0; 0; ; ; 0; 0
6 6

u    
 

, 1 1* ;
2 2

w    
 

 

and the price of the game 71 1* 1 6
2 2 2

v      .   ► 

 

Example 6. Solve a game with a payoff matrix 

3 4 2 1 3 5 1
1 2 1 3 4 0 3

C
   

  
  

. 

◄ Strategy 3B  dominates strategy 1B , so 1 0w  . In addition, strategy 

2B  dominates strategy 4B , so 4 0w  . Then the linear programming 
problem has the form 

1 1

1 1

1 1

1

1 1

1

4 2(1 ) ,
2 (1 ) ,

3 4(1 ) ,
5 ,

3(1 ) ,
0 1,

u u v

u u v

u u v

u v

u u v

u

   
   

   



   


 
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1

1

1

1

1

6 2,
3 1,
7 4,
5 0,
4 3.

u v

u v

u v

u v

u v

 


 


 
  


 

 

In the 1u Ov  coordinate system, let's draw the corresponding lines 

(Fig. 3). The intersection of the lines corresponding to strategies 2B  and 7B  

is determined by 1u  and *v . 

 Fig. 3. 
 

Player B's active strategies are the second and seventh (this can also 
be seen using dominance). Therefore, for 2w  and 7w  we have the matrix  

1u  

v  

O  

2 

5 

1u
 

4 

-3 

-1 
1 

(6) 

(3) 

(5) 

(7) 

(2) 
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2 7

4 1
2 3

B B

 
 

 

. 

Applying formulas (11)-(13) from the previous paragraph, we obtain 

1
| 3 2 | 5 1

| 4 1| | 3 2 | 10 2
u  

  
    

;  2
1
2

u  ; 

2
| 3 1| 4 2

| 4 2 | | 3 1| 10 5
w  

  
    

; 7
| 4 2 | 3

| 4 2 | | 3 1| 5
w  

 
    

. 

Then 

1 1* ;
2 2

u    
 

, 32* 0; ;0; 0; 0; 0;
5 5

w
 

  
 

 

and the price of the game 1* 2 6 1
2

v      .   ► 
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CHAPTER 4 

 

NONLINEAR PROGRAMMING 

 
 

§1. Problem statements 

 
In Chapter 1, the mathematical programming problem was written as 

follows: 

 f x extr ,      (1) 

( ) 0if x  ,  1,...,i m ,  nx     (2) 

If at least one of the functions ( )f x , ( )if x , 1,...,i m , is nonlinear, then 
the problem (1)-(2) is called a nonlinear programming problem. 

The function ( )f x  is called the objective function, and the functions 
( )if x , 1,...,i m  are called the functions of the conditions of the 

nonlinear programming problem. The set 

 | ( ) ,0  1,...,n

iD i mx f x     

is called the admissible set, and the points x D  are called admissible 

solutions of the nonlinear programming problem.  

An admissible solution x D , where the function ( )f x  reaches an 
extreme (minimum or maximum) value, is called an optimal solution to 
problem (1)-(2): 

argmin ( )
x D

x f x



   (or argmax ( )
x D

x f x



 ).  
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Since the problem of maximizing the function ( )f x  is equivalent to 
the problem of minimizing the function ( )f x , the constraint ( ) 0if x   is 
equivalent to the constraint ( ) 0if x  , the equality ( ) 0if x   is equivalent 

to the system of two inequalities ( ) 0if x   and ( ) 0if x  , when 
formulating the nonlinear programming problem (1)-(2), we restricted 
ourselves to the case of minimizing the function ( )f x  under the conditions 

( ) 0if x  , 1,...,i m , nx . This problem will be written in the form  

 min ( ) : , ( ) 0, 1,...,n

if mx ix f x      (3) 

In many nonlinear programming problems, an additional condition is 
imposed in the form of 

x X , where nX  , 

for example,  

 : 0, 1,...,n

jX x x j n    .   (4) 

Then the nonlinear programming problem is written in the form: 

 min ( ) : , ( ) , 1,..., ,0n

i if x x f m Xx x    .   (5) 

Nonlinear programming problems are divided into classes depending 
on the properties of the functions and types of constraints used in the 
problem formulation. 
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1. Classical optimization problems 

 
Classical optimization problems are also called conditional 

extremum problems. They are characterized by the fact that the constraints 
are written in the form of inequalities. Therefore, they are formulated as 
follows: 

 f x extr , 

( ) 0if x  , nx , 1,...,i m , m n . 

When 0m  , we obtain the classical problem of unconditional 
extremum of the function ( )f x , nx . 

In classical optimization problems, the condition of existence and 
continuity of the partial derivatives of functions ( )f x  and ( )if x  at least 
up to and including the 2nd order. 

Problems of this class can be solved by classical methods using the 
apparatus of differential calculus. However, the computational difficulties 
that arise in this case are quite significant, and therefore, to solve practical 
problems, other methods have to be used. 

 

 

2. Problems with nonlinear objective function and linear constraints 
 

Problems of this class are written as follows: 

( ) minf x   

1

( ) 0
n

i ij j i

j

f x a x b



   ,  1,...,i m , 

0jx  ,  1,...,j n . 

An important property of these problems is that their admissible set 
is a polyhedral set. 
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3. Problems of quadratic programming 

 
In this class of problems, the objective function is quadratic and the 

constraints are linear. They can be written as follows: 

1 1 1

( ) min
n n n

j j ij i j

j i j

f x c x d x x

  

     

1

( ) 0
n

i ij j i

j

f x a x b



   ,  1,...,i m , 

0jx  ,  1,...,j n , 

with the objective function ( )f x  being convex downward. 
Quadratic programming problems can be attributed to both – the 

previous class and the class of convex programming problems. However, 
they are allocated to a separate class due to the specifics of the objective 
function. 

 

 

4. Problems of convex programming 

 
The class of convex programming problems includes nonlinear 

programming problems written in the form (3) or (5), in which the 
objective function ( )f x  is convex downward and the admissible set is 
convex. Methods for solving these problems are the most developed in 
nonlinear programming, and their generalization to other problems of 
optimization methods. 
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5. Problems of separable programming 

 
In separable programming problems, a characteristic feature is that 

both the objective function ( )f x  and the condition functions, denoted by 
( )ig x , are additive functions. They can be written as follows: 

1

( ) ( )
n

j j

j

f x f x



 , 

1

g ( ) ( )
n

i ij j

j

x g x



 ,   1,...,i m . 

The specifics of these problems define a special class of methods for 
solving them, which are applicable and effective only for such problems. 

 
 
Most numerical methods for solving nonlinear programming 

problems allow you to find only approximate solutions or require an 
infinite number of steps to achieve an exact solution. These are, for 
example, the group of gradient methods or penalty function methods. In 
addition, the solutions obtained are only local extrema (methods for 
finding global extrema constitute a separate important class of 
optimization methods). This is the fundamental difference between 
nonlinear programming methods and methods for solving linear 
programming problems, which can determine whether a solution to a 
linear programming problem exists in a finite number of steps and find it 
in case of existence. 
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§2. Geometric interpretation of nonlinear 

programming problems 
 
 

Let us consider the geometric interpretation of nonlinear 
programming problems and analyze the differences from linear 
programming problems. 

Example 1 : Solve a linear programming problem 

1 20,5 2 maxf x x   , 

1 2

1 2

1 2

6,
1,

2 8,

x x

x x

x x

 


 
   

 

1 0x  , 2 0x  .  

◄  Using the graphical method (see Fig. 1), we get 

(4 3, 14 3)x  ,  10f   .   ► 

Fig. 1 

1 2 1x x 

1 2 1x x 

 

1x  

f=10 

x  

1 2 6x x   

2x  

1 22 8x x  
1 2 1x x 

 

D  

4 / 3 

1 

1 

14 / 3  
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As we can see, the admissible set of a linear programming problem is 
a convex polyhedral set with a finite number of vertices. The lines of the 
objective function of a linear programming problem are straight lines. 
Those lines that correspond to different values of the level constant are 
parallel to each other. The obtained local maximum in a linear 
programming problem is both global and local and is achieved at the 
vertex of the admissible set. 

Let's consider examples of nonlinear programming problems in 
which these properties do not apply. 

Example 2 : Solve a nonlinear programming problem 

2 2
1 210( 3,5) 20( 4) minf x x      

on the admissible set of Example 1. 

◄ The objective function in the problem is quadratic, and the 
constraints are linear, so the problem is a quadratic programming problem. 
To solve it, we will use the geometric interpretation (Fig. 2) of the prob-
lem. As we can see, the optimal solution x  is the point of contact between  

Fig. 2 

1 2 1x x 

1 2 1x x 

 

1x  

f=15 

1 2 6x x   

2x  

1 22 8x x  
1 2 1x x 

 

D  

2,5  

1 

1 

3,5  
x  
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the line of the objective function level (ellipse) and the line 1 2 6x x  . To 

determine the coordinates of the point  x , we have the equation  

1 2 6x x   .     (6) 

The second equation is obtained by taking into account that the 
angular coefficient of the tangent line to the level line at the point x  is 
equal to the angular coefficient of the line 1 2 6x x  , i.e., 1 . Considering 

2x  to be an implicit function of 1x , defined by the relation  

2 2
1 2 1 2( , ) 10( 3,5) 20( 4) 0F x x x x f      , 

where f is the parameter that defines the level constant, we obtain, 
according to the rule of differentiation of the implicit function 

1 2

2

1

0x x

dx
F F

dx
   , 

the second equation for finding the coordinates of the point x . We have 

1

2

2 1 1

1 2 2

20( 3,5) 3,5
40( 4) 2( 4)

x

x

Fdx x x

dx F x x

   
    

  
. 

On the other hand, 2

1

1dx

dx
  , as the angular coefficient of the line 

2 1 6x x   . Therefore, at the point x  equality 

1

2

3,5 1
2( 4)
x

x


  


      (7) 

is fulfilled. By solving the system of equations (6)-(7), we get 
(2,5; 3,5)x  , and then we find   15f   .   ►  

Note that, unlike a linear programming problem, the optimal solution 
of a nonlinear programming problem is not the vertex of its admissible set, 
although it is achieved on its boundary. 
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Example 3. Solve the nonlinear programming problem 

2 2
1 210( 2) 20( 3) minf x x      

1 2

1 2

1 2

6,
1,

2 8,

x x

x x

x x

 


 
   

 

1 0x  , 2 0x  . 

on the admissible set of Example 1. 

◄  The function f is a convex quadratic function that takes on only non-
negative values. Therefore, it takes its smallest value f  , which is zero, at 

the point (2; 3)x  , which lies inside the domain D (see Fig. 3).  

Fig. 3 
► 

Thus, the optimal value of the objective function can be achieved at 
an internal point of the admissible domain of the nonlinear programming 
problem. 

1x  

f=const 
x  

2x  

D  

2  

1 

1 

3  
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Example 4. Solve a nonlinear programming problem 
2 2

1 225( 2) ( 2) maxf x x      

1 2

1 2

1 2

1 2

2,
2,

6,
3 2,

x x

x x

x x

x x

 


  


 
  

 

1 0x  , 2 0x  . 

◄ From the geometric interpretation, it follows that the feasible set 
of this problem is the quadrilateral 1 2 3 4VV V V  (see Fig. 4), and the level lines 
are ellipses. The function f has four maxima on the admissible set, which 
are achieved at all vertices of the quadrilateral 1 2 3 4VV V V . The maxima at the 

points 1V  ( 4f   ), 2V  ( 100f   ), 3V  ( 4f   ) are local. The maximum at 

4V  ( 226f   ) is global.    ► 

Fig. 4 

Thus, a nonlinear programming problem can have several optima, 
and not necessarily only one of them will determine its optimal solution, 
unlike a linear programming problem. 

1 23 2x x 

1 2 1x x 

 

1x  

f=226 

1 2 6x x   

2x  

1 2 2x x  
1 2 1x x 

 

D  1 

2V  

1 

1V  

4V  

3V  

1 2 2x x   

f=100 

f=4 
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In the examples above, the feasible sets were convex because they 
were determined by systems of linear inequalities. In general, when the 
constraints of a nonlinear programming problem include nonlinear ones, 
its feasible set may be neither convex nor connected. 

Example 5. Analyze the feasible set of a nonlinear programming 
problem given the following system of constraints: 

1 2

1 2

( 1) 1,
4,

x x

x x

 


 
 

1 0x  ,  2 0x  . 

◄  Let us graphically represent the given system of constraints (see 
Fig. 5). The admissible set D is formed by the points of the plane bounded 

by the hyperbola branch 2
1

1
1

x
x




, the line 1 2 4x x  , and the 

coordinate axes. As can be seen from the geometric interpretation, the 
admissible set is not only not convex, but not even a connected set. This is 
in contrast to linear programming problems, where the admissible set is a 
convex polyhedral set.   ► 

Fig. 5  

1x  

2x  

1 

1 
4 

D  

D  

4 
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§3. One-dimensional optimization problems 

 

 
Item 3.1. Statement of the problem 

 
 

In general, a one-dimensional optimization problem is formulated as 
follows: find the extremum (maximum or minimum) of a function of one 
variable ( )y f x  1( )x  on the interval [a, b]. 

Such problems are important in themselves, but they also have to be 
solved when optimizing functions of many variables. 

The classical methods of differential calculus, which consist in 
finding the roots of the equation ( ) 0f x  , cannot always be applied in 
practical problems when solving one-dimensional optimization problems. 
This is due to the fact that the function ( )y f x  is not always 
differentiable, and the problem of solving the equation ( ) 0f x   is not 
computationally simpler than the original problem. Therefore, there is a 
need to study methods for solving one-dimensional optimization problems 
that do not use derivatives. 

Let's consider several methods for one-dimensional optimization of 
unimodal functions.  

Definition 1. The function ( )y f x  defined on the interval [a,b] is 

called unimodal if it has a unique minimum point [ , ]x a b  on this 

interval and satisfies the condition 

for any 1 2,x x  such that 1 2a x x x   , the inequality    1 2f x f x  holds; 

for any 1 2,x x  such that 1 2x x x b    , the inequality    1 2f x f x  holds. 
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x  a b l r 

y  

( )f l  

( )f r  

x  

This definition is formulated for the case of a minimization problem. 
It is naturally reformulated for the case of a maximization problem. 

The definition does not impose the condition of continuity or 
convexity on the function ( )y f x . Therefore, a unimodal function may 
not be continuous and may not be convex. 

Numerical methods for minimizing (or maximizing) a unimodal 
function are based on its main property, which directly follows from its 
definition (see Fig. 6). 

Suppose that the function ( )y f x , which is unimodal on the 

interval [a,b], has a minimum at the point x  and points l and r of this 
interval such that a l r b   . Then: 

if ( ) ( )f l f r , then [ , ]x l b , 

if ( ) ( )f l f r , then [ , ]x a r , 

if ( ) ( )f l f r , then [ , ]x l r . 

Fig. 6. 

 
The main property of unimodal functions allows you to build 

sequential algorithms that reduce the minimum search interval at each 
step. 

Let's consider some of these methods.  
 

x  a b l r 

x  

y  

( )f r  

( )f l  

x  a b l r 

y  

( )f r  

x  

( )f l  
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Item 3.2. Methods of one-dimensional optimization 

 

 
1. Method of dichotomy or dividing segments in half 

 

 

Let x  be the minimum point of the function ( )y f x  on the 
interval [a,b]. The initial search interval is [a,b]. Set 

0a a ,  0b b . 

Suppose that after k steps of the algorithm, the segment [ , ]k ka b  

containing x  is constructed. Consider the k+1 step. 

Let's divide the segment [ , ]k ka b  in half and for some sufficiently 
small number 0   plot the points  

( ) / 2k k kl a b     and ( ) / 2k k kr a b    . 

According to the basic property of the unimodal function, let us put:  

1k ka l  , 1k kb b  , if ( ) ( )k kf l f r , 

1k ka a  , 1k kb r  , if ( ) ( )k kf l f r , 

1k ka l  , 1k kb r  , if ( ) ( )k kf l f r . 

We get the segment  1 1[ , ]k ka b   containing the point x .  

After performing n steps of the method, the segment [ , ]n na b  will be 

constructed, containing the minimum point x  and the length of the 
segment is 

( ) / 2 (1 2 )n n n nb a b a      . 
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We take the middle of the last segment ( ) / 2n nx b a    as the 
approximate value of the minimum point, with the error in the calculation 
of x  not exceeding the number ( ) / 2n nb a   . We take the number 

 ( ) / 2n n ny f b a   to be the minimum value of the function ( )y f x  on 

the interval [a, b].  
At each step of the described method of dividing segments in half, 

you need to calculate the value of the function at two points. 
More efficient from a computational point of view are the golden 

ratio and Fibonacci methods.  
 

 
2. The golden ratio method 

 
 
The golden ratio of a line segment is the ratio of its length to the 

length of the larger part of the segment, as the length of the larger part is to 
the length of the smaller part. There are two points on the segment that 
make up its golden ratio. Let us have a line segment [a, b]. Let us denote 
by r the point of its golden ratio for which the condition r a b r    is 
satisfied. That is, the segment [a,r] is greater than the segment [r,b]. Let x 
denote the length of the segment [a,r], then the length of the segment [r,b] 
is b a x  . The length of the segment [a,r] is found from the equation  

b a x

x b a x

 
 

. 

We get a quadratic equation 2 2( ) ( ) 0x b a x b a      with solutions

1,2
5 1( )
2

x b a
 

  , of which only the positive root 5 1( )
2

x b a


   is 

suitable. So, 5 1( )
2

r a b a


   . 
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The second point of the golden ratio of the segment [a,b] is denoted 

by l. It is located at a distance x from point b, i.e.  5 1( )
2

l b b a


   .  

It can be shown that point l is the golden ratio of the segment [a,r], 
and point r, in turn, is the golden ratio of the segment [l,b]. 

Let us describe the algorithm of the golden section method. 

Let x  be the minimum point of the function ( )y f x  on the interval 

[a,b]. At the beginning of the calculation, let's set 0a a , 0b b .  

At the k-th step, we define the values 

( )k k k kl b b a   , 

( )k k k kr a b a   , 

where constant 5 1 0,61803 89
2

39 
  . Let's put  

1k ka l  , 1k kb b  , if ( ) ( )k kf l f r , 

1k ka a  , 1k kb r  , if ( ) ( )k kf l f r . 

The method is iterated until the condition 

n nb a   , 

is met, where 0   is a given number that determines the permissible 
error of the problem solution. 

Unlike the dichotomy method, the golden section method calculates 
the value of the function ( )f x  at each step at only one point, since one of 
the points of the golden section at the previous step is the golden section of 
the segment at the next step. 
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We take the middle of the last segment ( ) / 2n nx b a    as the 

approximate value of the minimum point. We take the number ( )y f x   
to be the minimum value of the function ( )y f x  on the interval [a,b]. 

When solving the problem of maximizing the function ( )f x , you 
need to move on to the problem of minimizing the function ( )f x .  

Example 6. Find the minimum of the function ( ) 2cosxf x e x   on 
the interval [0,1] with an accuracy of 0,05   using the golden ratio 
method. 

◄ The results are shown in the following table. 

 

k ka  kb  kl  kr  ( )kf l  ( )kf r  sign ε 

0 0,000 1,000 0,382 0,618 –1,1773 –1,0911 < 0,309 
1 0,000 0,618 0,236 0,382 –1,1548 –1,1733 > 0,191 
2 0,236 0,618 0,382 0,472 –1,1733 –1,1576 < 0,118 
3 0,236 0,472 0,326 0,382 –1,1729 –1,1733 > 0,073 
4 0,326 0,472 0,382 0,416 –1,1733 –1,1697 < 0,045 

The required accuracy is achieved on the fourth iteration, so we take 
(0,326 0,416) / 2 0,371x     as the minimum point and the minimum 

value of the function ( ) (0,371) 1,1739f x f    .   ► 
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§4. Classical optimization methods 

 

 
Item 4.1. The problem of unconditional minimization 

 
 
 
The problem of minimizing the function ( )y f x  without any 

restrictions on the arguments of the function is called the problem of 
unconditional optimization and is written  

( ) minf x  , 1( ,..., ) n

nx x x  .    (8) 

The gradient of the function ( )y f x  is denoted by  f x , i.e., 

 
1 2

( ) ( ) ( ), ,...,
n

f x f x f x
f x

x x x

   
   

   
, 

and the matrix of second partial derivatives of the function ( )y f x , also 
called the Hessian matrix (or Hessian of the function), is denoted by

 fH x , i.e., 

 

2 2 2

1 1 1 2 1

2 2 2

2 1 2 2 2

2 2 2

1 2 1

( ) ( ) ( )...

( ) ( ) ( )...

... ... ... ...
( ) ( ) ( )...

n

nf

n n n

f x f x f x

x x x x x x

f x f x f x

x x x x x xH x

f x f x f x

x x x x x x

   
 
     

 
   
 
       

 
 
   

       

. 
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Theorem 1. (Necessary conditions for minimum). Suppose the 

function ( )y f x  has a minimum (local or global) at the point 
0x . Then:  

1) if 
1( )f x C , then at point

0x    0 0f x  ;  

2) if 
2( )f x C , then at point 

0x    0 0f x   and the Hessian 

 0
fH x  is a nonnegatively definite matrix, i.e. for any 

ny   

 0 0T

fy H x y  .  

Definition 2. The point 
0x , that satisfies the condition  0 0f x   is 

called the stationary point of a differentiable function ( )y f x .  

It can be shown that 0x  is a stationary point of the differentiable 
function ( )y f x , if for any 0y   the equality  0 0T f x y   holds. 

Remark. The necessary conditions for the maximum of the function 
2( )f x C  at point 

0x
 

are the condition of stationarity of the point 
0x , 

i.e.,  0 0f x   and the nonnegative definiteness of its Hessian at this 

point, i.e., for any 
ny    

 0 0T

fy H x y  . 

Theorem 2 (Sufficient condition for local minimum). If the 

conditions 

1) 
2( )f x C ,  for nx ,  

2) at the point 0 nx   the condition of stationarity  0 0f x   is 

fulfilled or for any 
ny  the condition  0 0T f x y   is 

satisfied,  

3) the Hessian  0
fH x  is a positive definite matrix  

are fulfilled, then 
0x

 

is the point of strict local minimum of the function 

( )y f x .  
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Remark. Sufficient conditions for a strict local maximum of the 

function 
2( )f x C  at point 

0x  are the condition of stationarity of the 

point 
0x , i.e.,  0 0f x   and the negative definiteness of its Hessian at 

this point, i.e., for any 
ny    

 0 0T

fy H x y  . 

To check the positive definiteness or negative definiteness of the 
Hessian  fH x  we use the Sylvester criterion. Let 1( ),..., ( )nx x   – 

denote consecutive principal minors of the matrix  fH x . 

Sylvester's criterion. For the matrix  fH x  to be positively definite, 

it is necessary and sufficient that for any nx  the conditions 

1( ) 0,..., ( ) 0nx x     

are satisfied.  
For the matrix  fH x  to be negatively definite, it is necessary and 

sufficient that for any nx  the conditions 

1 2( ) 0, ( ) 0,..., ( 1) ( ) 0n

nx x x        

are satisfied. 
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Item 4.2. Conditional minimization problem 
 

 
We write the classical optimization problem in the following form:  

0 ( ) minf x  ,     (9)  

( ) 0if x  , 1,...,i m ,   (10)  

where nx ,  1( )if x C , 1,...,i m .  

Problems (9)-(10) are called conditional minimization problems. A 
general approach to the study of the problem of finding a conditional 
extremum of a differential function is provided by the Lagrange method. 
This method consists in replacing the problem of conditional extremum 
(9)-(10) with the problem of unconditional extremum for the Lagrange 
function of problem (9)-(10). 

Let us introduce the Lagrange function of problem (9)-(10)  

0

1

( , ) ( ) ( )
m

i

i

i

L x f x f x 


     (11) 

of variables 1 2 1 2( , ,..., , , ,..., ) ( , ) n m

n mx x x x      .  

The following theorem holds.  

Theorem 3 (necessary conditions for conditional extremum). If x  

is a point of local minimum or maximum of the function 
0 ( )f x  under the 

condition ( ) 0if x  , 1,...,i m , then there must exist variables 

1 2( , ,..., ) 0m        , called Lagrange multipliers, such that 

0

1

( , ) ( ) ( ) 0
m i

i

j j ji

L x f x f x

x x x




   




  
  

   , 1,...,j n  (12) 

or  
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0

1

( ) ( ) 0
m

i

i

i

f x f x  



    , 

i.e., the vectors 
0 ( )f x , 

1( )f x ,…, ( )mf x  are linearly dependent. 

Thus, only those points x , for which there are exist multipliers 

1( ,..., ) 0m    , such that the point ( , ) n mx    satisfies the system of 
m+n equations 

0

1

( ) ( ) 0, 1,..., ,

( ) 0, 1,..., ,

m i

i

j ji

i

f x f x
j n

x x

f x i m




 
  

 


 

   (13) 

can be suspicious for a conditional extremum. 
Conditions (13) define a system of n+m equations with n+m 

unknowns 1 2 1 2( , ) ( , ,..., , , ,..., )n mx x x x    . By solving it, we will find 
the points x , suspected of being conditional extremes and the 
corresponding Lagrange multipliers 1( ,..., ) 0m    . 

To find out whether the points x  will actually have a minimum or a 
maximum, we need to apply sufficient conditions for minimum 

(maximum) to the Lagrange function in the variable x , which can be 
formulated as follows: 

Theorem 4. Let: 

1) ( , )x   satisfies the system (13);  

2) the function ( , )L x   in the vicinity of the point x  is twice 

differentiable in x  and has continuous all second-order partial 

derivatives at the point x  itself;  

3) the Hessian ( , )LH x   on the variable x  of the Lagrange function 

( , )L x   at the point ( , )x   is a positively (negatively) defined matrix. 

Then the point x  is the point of local minimum (maximum) of the 

function 
0 ( )f x  under conditions (10).  
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Example 7. Suppose you need to find the points of extremum of the 
function 0 2 2

1 2( )f x x x   on the set  2
1 2 1 2( , ) | 2 6 0X x x x x     .  

◄ We have a problem of finding the conditional extremum of a 
function with constraints such as equality. 

Let's apply the method of Lagrange multipliers. We construct the 
Lagrange function of the problem  

2 2
1 2 1 2 1 2( , , ) (2 6)L x x x x x x       

and write down the necessary conditions for the extremum and find the 
stationary points of the Lagrange function 

1
1

2
2

1 2

2 2 ,

2 ,

2 6,

L x
x

L x
x

L x x







   


    


   

     

1

2

0,

0,

0,

L

x

L

x

L



  


  


 

     
1

2

1 2

2 2 0,
2 0,

2 6 0,

x

x

x x





 

  
   

     
1

2

4,
2,
4,

x

x







  

 

We check the fulfillment of the sufficient condition (4;2)X    for 
4   . Find the second partial derivatives 

2

2
1

2

2
2
2

1 2

2,

2,

0,

L

x

L

x

L

x x

 


   


  
 

 

Then we have 1( ) 2 0x   , 2( ) 4 0x     and according to 
Sylvester's criterion, the Hessian matrix is negative definite, and therefore 

(4;2)X    is the maximum point of the function 0 ( )f x  and 
0

max 16 4 12f    .   ► 
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§5. Methods for solving optimization problems 
 

 

Item 5.1. Gradient methods 

 

 
Consider the problem of unconditional minimization 

( ) minf x  ,      (8) 

nx , the function 
1

( )f x С  is differentiable. 
In principle, this problem can be solved by classical methods. These 

methods are called indirect methods because they use the necessary 
conditions for the extremum of ( ) 0f x  . However, it should be noted 
that for real problems, solving this system is no less difficult than solving 
the original problem. Indirect methods are used mainly when the solution 
to an extreme problem needs to be found in an analytical form. For solving 
complex practical problems, direct methods are usually used, which 
involve the direct comparison of a function at two or more points. 

Let us have a point s nx  . Let's figure out how to move to a new 
point 1sx   when solving problem (8) so that the inequality 1( ) ( )s sf x f x   

is satisfied. Let's write 1sx   in the form 
1s sx x d   , 

where the vector 1( ,..., )T

nd d d  determines the direction of displacement, 

and the number 0   is the step of displacement from point sx  to point 
1sx  . 

Definition 3. The direction d is said to be suitable (for the 

minimization problem) if there exists 0   such that  

( ) ( )s sf x d f x  . 
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When moving from point sx  to point 1s sx x d   , 0  , the 
direction d is suitable if the derivative along the d-direction of the function 

( )f x  at point sx  is negative: 

( ) ( ) ( ( ), ) 0s T s s

dD f x f x d f x d     , 

i.e., if the condition 

( ) 0T sf x d   

is met. 

The geometric interpretation of the approaching direction (see Fig. 1) 
is that the vector d, with origin at point sx , can be taken as any vector that 
forms an acute angle with an antigradient ( )sf x . 

Fig. 1. 

If an antigradient is used as the direction d that is suitable for 
minimizing the function ( )f x  (a gradient is used for maximizing it), then 
the corresponding method is called a gradient method. The starting point 

0x  in the gradient method is chosen arbitrarily, and all other successive 
approximations to the minimum point are calculated using the formula 

1 ( )s s s

sx x f x    , 0,1,2,...s     (14) 

1x  

2x  
1 2h h

1 2 1x x 

 

d  
sx  

1( )f x h
1 2 1x x 

 ( )sf x
1 2 1x x 

 

2( )f x h
1 2 1x x 

 

( )sf x
1 2 1x x 

 

O  
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Different methods have been developed to adjust the step s  at any 
iteration of the gradient method. Let's consider two of them – with step 
fractionation and the fastest descent. 

In the gradient method with step fractionation, a sufficiently small 
step 0 0   is fixed and, starting from the point 0x , the procedure (14) is 
implemented a number of times. At each iteration, the value of the 
function ( )sf x  is calculated. Procedure (14) is continued until ( )f x  

decreases. In this case (see Fig. 2), the point sx  usually tends to be in the 
neighborhood of a local minimum whose size is of the same order as 0 . 

Fig. 2. 

If the achieved accuracy is insufficient, the step is reduced, i.e., 

1 00     is chosen, and the iterations continue with a new step 

according to rule (14) until the point sx  falls in the neighborhood of the 
local minimum, the size of which is not greater than the specified error. 

In the fastest descent method, the value of the step s  in procedure 
(14) is chosen by the rule 

0
arg min ( ( ))s s

s sf x f x


 


   . 

Remark. The problem of finding the step at each iteration of the 

fastest descent method is a one-dimensional optimization problem and can 

be solved by one of the one-dimensional optimization methods discussed 

earlier. 

1x  

2x  

1 2 ... sh h h  
1 2 1x x 

 

1x  

2x  

1sx   

sh
1 2 1x x 

 sx  

2h
1 2 1x x 

 

1h
1 2 1x x 

 

O
1 2 1x x 
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With a fixed step  , there must be a stop at the point 1sx   at each 

iteration, despite the fact that the direction ( )sf x  still leads to a 
decrease in the objective function (see Fig. 3). 

In the fastest descent method, moving after the point 1sx   in the 
direction of the antigradient ( )sf x  no longer leads to smaller values of 
the objective function. Therefore, the method of fastest descent belongs to 
the so-called full-step methods. 

Fig. 3. 

For both variants of the gradient method, convergence theorems have 
been proved. 

Since the convergence of the fastest descent method will not be finite 
in general, the criteria for terminating iterations are determined: 

1) 
1,

max
i n

i

f

x








,  ( 0  given) 

or 

2) 
2

2

1

( )
n

ii

f
f x

x




 
   

 
 ,  ( 0  given) 

or 

3) 1| ( ) ( ) |s sf x f x    ,  ( 0  given). 

1x  

2x  

( )sf x  

1sx   

sx  O
1 2 1x x 

 1x  

2x  

( )sf x  

1sx   

sx  O
1 2 1x x 
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Disadvantages of gradient methods. 

The main disadvantage of the gradient method is that it at best 
ensures that the sequence { }sx  converges only to the point of local 
minimum of the function ( )f x . 

In general, the sequence { }sx  converges to a stationary point x  of 
the function ( )f x , where ( ) 0f x  . A complete guarantee of the 

convergence of { }sx  to the global minimum point of ( )f x  can be given, 
for example, by the requirement of convexity of ( )f x . 

One of the significant drawbacks of the fastest descent method is that 
for some types of functions, its convergence may be slow. 

Another disadvantage of gradient methods is that they cannot be 
directly applied to the optimization of nondifferentiable functions or 
conditional optimization of differentiable functions. 

Example 8. Find the minimum of the function 

2 2
1 2 1 2( ) 4 2f x x x x x      

using the gradient method, starting the iteration process from the point 
0 (4;5)x  . 

◄ Finding partial derivatives  

1
1

4 2f
x

x


  


;     2

2

2 2f
x

x


  


. 

First iteration. Calculate the gradient of the function ( )f x  at the 
point 0x : 

0( ) (4;8)f x  . 

It is different from zero, so we plot the ray 1( )x  , coming from the 

point 0x  in the direction of the antigradient 
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1 0 0( ) ( ) (4;5) (4;8) (4 4 ;5 8 )x x f x            , 0  . 

Find the minimum of the function 1( ( ))f x   with respect to  : 

1 2 2( ( )) 4(4 4 ) 2(5 8 ) (4 4 ) (5 8 )f x              , 

1( ( )) 16 16 2(4 4 ) ( 4) 2(5 8 ) ( 8) 160 80f x                , 

0f  : 160 80  , from here 0,5  . 

Since 160 0f   , then 0,5   is the minimum point of the 

function 1( ( ))f x  . Then  

1 0 0
0 ( ) (4;5) 0,5(4;8) (2;1)x x f x      . 

The second iteration. Calculate the gradient of the function ( )f x  at 
point 1x : 

1( ) ( 4 2 2; 2 2 1) (0;0)f x         . 

Since it is zero, the point 1x  s a stationary point of the function ( )f x . 
In addition, ( )f x  is convex downward, so 1x  is the point of global 
minimum of ( )f x .   ► 
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Item 5.2. Zontendijk's method of feasible directions 

 

 
Let us consider the nonlinear programming problem 

 0 , min ( ) : ( ) 1,..., ,0 n

if x ix xmf     (15) 

provided that the functions ( )if x  are differentiable: 1( )f x C , 1,...,i m . 
Note that nonlinear programming problems with nonnegativity conditions 

0jx  , 1,...,j n  can be easily reduced to the form (15). To do this, it is 

enough to include in the general system of constraints the conditions 
0jx  , 1,...,j n . 

Let the point sx X , where  

 , : ( 1,...0 ,) ,n n

i iX x f xmx    . 

The constraint ( ) 0if x   is called active at point sx , if ( ) 0s

if x  . We 

denote by { : ( ) 0}s

s iI i f x   the set of indices of active constraints at 

point sx . It is obvious that only these constraints determine the direction of 
movement from a valid point sx  to another valid point 1sx  . 

We represent the point 1s nx    as 

1s s sx x r   , 

where sr  – is an arbitrary vector of displacement direction from point sx , 
and 0   – is the offset step. 

The direction sr  is called feasible if there exists 0   such that the 

point 1sx   satisfies the condition 

1sx X   or 1( ) 0s

if x   , 1,...,i m .   (16) 
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Since sx  is an admissible point, conditions (16) are equivalent to 
conditions  

1( ) ( )s s

i if x f x  , 1,...,i m .     (17) 

Further, since only the constraints active at point sx  affect the choice 
of a feasible direction, in conditions (17) we should assume that si I . 

We require sr  to be a feasible direction, then it must be determined 
by conditions 

1( ) ( )s s

i if x f x  , si I     (18) 

and a suitable direction, then it must satisfy inequality 

1
0 0( ) ( )s sf x f x       (19) 

for sufficiently small 0  . And (as written above) the direction sr  is 
suitable if the derivative along the direction sr  of the function 0 ( )f x  at the 

point sx  is negative: 

0 0( ) ( ( ), ) 0s

s s s

r
D f x f x r   .   (20) 

Similarly, we conclude that conditions (18) will be satisfied at 
sufficiently small 0   only for those directions sr  for which the 

derivatives ( )s

s

ir
D f x , si I  are not positive: 

( ) ( ( ), ) 0s

s s s

i ir
D f x f x r   ,  si I .   (21) 

To limit the lengths of the vectors sr , a normalization condition is 
usually added to the system of conditions (20)-(21), which defines all 
feasible and suitable directions, such as the following: 

1 1s

jr   , 1,...,j n .    (22) 
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Finally, to obtain a feasible and suitable direction sr , we obtain the 
following linear programming problem: 

0 0( ) ( ( ), ) mins

s s s

r
D f x f x r    

( ) ( ( ), ) 0s

s s s

i ir
D f x f x r   ,  si I ,  (23) 

1 1s

jr   , 1,...,j n . 

If the optimal value of the problem (23) is nonnegative, then sx  is a 
stationary point of the function 0 ( )f x  under the conditions ( ) 0if x  , 

1,...,i m , nx ; otherwise, the vector sr  determines a feasible and 
suitable direction. Then, in the found direction sr  we construct a ray

( ) s sx x r    ( 0  ) and, substituting ( )x   into all inactive constraints, 
find the number   that bounds the step   from above: 0    . We 
define the specific value of s  as 

0(0; ]
arg min ( )s

s sf x r
 

 


   

using some one-dimensional optimization procedure. 
Note that, as with gradient methods, the method of feasible directions 

does not guarantee anything more than the convergence of sx  to a 
stationary point of the function 0 ( )f x . You can take any valid point x X  

as an initial approximation 0x . If the constraints of problem (15) are linear, 
then 0x  can be taken as an arbitrary basic solution of the constraint system 
of problem (15). 

The proofs of the theorems formulated in this section, the 
justification of the convergence of the described numerical methods, and 
examples of their application can be found in many textbooks on 
optimisation methods, including those listed in the references. 
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CHAPTER 5 

 

MULTICRITERIA OPTIMIZATION 

 
 

 

Multicriteria optimization is an essential branch of mathematical 
modeling that is used for analyzing and decision-making in complex 
systems characterized by multiple interrelated criteria. Unlike single-
criteria optimization, which aims to maximize or minimize a single 
objective function, multicriteria optimization involves considering a set of 
criteria that may conflict with one another. This makes finding a definitive 
solution more challenging, as improving one criterion often leads to the 
deterioration of another. 

One of the key concepts in multi-criteria optimization is Pareto 
optimality, introduced by the Italian mathematician and economist 
Vilfredo Pareto. Pareto studied resource allocation and the influence of 
interdependent factors on economic systems. In his approach, optimal 
solutions are defined as those for which it is impossible to improve one 
criterion without worsening another. This idea became the foundation for 
formulating multi-criteria optimization problems across various fields of 
science and engineering. 

This section explores the fundamental principles and approaches to 
multi-criteria optimization, as well as methods for identifying effective and 
weakly effective solutions. Special attention is given to the analysis of the 
set of Pareto-optimal solutions, their properties, and the algorithms for 
constructing them. 
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§ 1. Efficient and weakly efficient 

estimates and solutions 

 
 

In multicriteria problems, vector scores, i.e., the value of the vector 
criterion 1 2( , ,..., )mf f f f , are compared by preference. Naturally, it is 
easiest to compare by preference those vector estimates that differ from 
each other by only one component. Therefore, information about the 
preference for changing the value of one partial criterion at fixed values of 
all other criteria is the most accessible and reliable, and it is this 
information that should be obtained first and used to analyze the problem. 

In general, the values of the criterion lf  may have different 
preference correlations depending on the values of all other criteria. In 
other words, for numbers s and t from lY  it may turn out, for example, that 

the estimate 1 1 1( ,..., , , ,..., )l l my y s y y   is preferred over the estimate 

1 1 1( ,..., , , ,..., ),l l my y t y y   but the estimate 1 1 1( ,..., , , ,..., )l l my y s y y 
     is less 

preferred than the estimate 1 1 1( ,..., , , ,..., ).l l my y t y y 
      

In this case, it is impossible to say which of the values s or t of the 
criterion lf  is preferable without specifying the values of the other criteria. 

The criterion lf , for which this situation occurs is called dependent 
on the other criteria. 

However, it is much more common to find criteria for which all their 
values can be ordered by preference without considering the values of the 
other criteria. Such criteria are called independent of the other criteria. 
More precisely, the criterion lf  is independent in preference from the other 

1m   criteria if, for any four estimates of the form 

1 1 1 1 1 1

1 1 1 1 1 1

( ,..., , , ,..., ), ( ,..., , , ,..., ),

( ,..., , , ,..., ), ( ,..., , , ,..., )

l l m l l m

l l m l l m

y y s y y y y t y y

y y s y y y y t y y

   

   



       
 

the relation 

1 1 1 1 1 1( ,..., , , ,..., ) ( ,..., , , ,..., )l l m l l my y s y y R y y t y y     
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always implies 

1 1 1 1 1 1( ,..., , , ,..., ) ( ,..., , , ,..., ).l l m l l my y s y y R y y t y y   
         

Definition 1. Problems in which all criteria are independent in 

preference, i.e., each criterion is independent in preference from the set of 

all others, and the non-strict preference relation on the set of values of 

each criterion is the relation   (“not less than”) are called multicriteria 

maximization problems.  
In such problems, it is desirable to have the highest possible value for 

each criterion, or, as they say, it is desirable to maximize each criterion. If 
it is desirable to minimize each criterion in the problem, then it is called a 
multicriteria minimization problem.  

In the following, we will denote the multicriteria maximization 

problem by  
max ( )

x X
f x


,      *  

where { | ( ) 0}nX x g x   , n  is an n -dimensional Euclidean space, 

( ), ( )f x g x  are continuously differentiable vector functions on n  that 
perform the mapping: 

: n mf  , : n rg  . 

And the multicriteria minimization problem is similar: 

min ( )
x X

f x


.      **  

For multicriteria maximization problems on the set Y , a non-strict 
preference relation ( ) , two strict preference relations ( ),( )   and an 

indifference relation ( )  are introduced:  

 the relation of non-strict preference   of vector estimates ,y y  takes 

place if the relations  

, 1,2,...,i iy y i m     

are satisfied;  
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 strict preference ,  if the relations  

, 1, ,i iy y i m y y       

are satisfied;  
 strict preference ,  if the relations  

, 1,i iy y i m    

are satisfied;  
 indifference = if the equalities  

, 1,i iy y i m    

are satisfied. 
According to the general definition, an estimate y Y  is said to be 

the best estimate under the   relation in Y if for any estimate of y Y , 

y y  . Since the   relation is a (partial) order, there can be only one such 

point y  (see Fig. 1). If in a practical multi-criteria problem there exists the 
largest achievable value of y  with respect to the   relation, then it should 

be considered optimal. Unfortunately, this case is extremely rare: as a rule, 
the value y  does not exist. This is because the   order is not complete. 

 
Fig. 1. 

For example, if i jy y , then y  and y  are not comparable by the   

relation. Therefore, depending on the nature of the problem, you have to 
use the estimates that maximize the relation   or  . 
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Definition 2. An estimate 
0y Y  is called maximal with respect to 

the preference relation   relative to the set Y  if there does not exist an 

estimate y Y  such that 
0y у .  

This estimate is also referred to as efficient, Pareto optimal, Pareto-

efficient, or a Pareto optimum. 
The set of such estimates from Y , which we will denote by ( )P Y , is 

called the efficient or Pareto set. 

Definition 3. An estimate 0у Y  is called maximal with respect to 

the preference relation   relative to the set Y , if there does not exist an 

estimate у Y  such that 0у у .  

This estimate is also referred to as weakly efficient, weakly Pareto 

optimal, a weak Pareto optimum, or Slater optimal. 
The set of all such estimates from Y  will be denoted by ( )S Y  and 

will be called the weakly efficient set. 
Since the relation у у  implies у у , every efficient vector 

estimate with respect to Y  is also weakly efficient, so ( ) ( )P Y S Y . 
Indeed, if 0у  is not weakly efficient, then for some у Y  it will be true 
that 0у у , and therefore 0у у , so 0у  cannot be efficient.  

Let's give more strict definitions of optimal Pareto and Slater 
estimates. 

Definition 2. For problem (*), the set 

 1
| min 0 ,i i

i m
y Y y y y Y 

 
        

is called the set of Pareto optimal estimates. 

Definition 3.  For problem (*) the set 

 1
| min 0 ,i i

i m
y Y y y y Y 

 
        

is called the set of optimal Slater estimates. 
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For 2m  , we can give a simple and clear geometric interpretation of 
the sets ( )P Y  and ( )S Y . The set ( )P Y  represents, figuratively speaking, 
the northeastern boundary of the set Y  (without those parts of it that are 
parallel to one of the coordinate axes or lie in rather steep and deep dips), 
and ( )S Y  may additionally include vertical and horizontal sections of the 
boundary adjacent to ( )P Y . 

Fig. 2. 
 
In the figure (Fig. 2), the set ( )P Y  (the effective boundary of Y ) is formed 
by the curves ,bc de  (without points d and e) and hp , and ( )S Y  consists of 
two parts – abcde  (including e) and hpq . This can be easily verified by 

noting that the points better than y , in the sense of the   relation, fill a 
right angle whose sides are parallel to the coordinate axes, and the vertex 
is y  ( y  itself is excluded); and the points better than y , in the sense of 
the   relation, make up the interior of this angle. 
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The relations  ,  , and   defined on the estimate set give rise to 

similar relations 
f , 

f
, and f  in the solution set. For example, 

( ) ( )fx x f x f x    

The solution that maximizes the relation 
f
 (in terms of f  ) 

corresponds to the maximum estimate in Y that maximizes the relation   
(in terms of ). These solutions are usually given names similar to those 
of the corresponding estimates. In the following, we will use the terms 
“efficient” and “weakly efficient”, as well as “Pareto optimal” and 
“weakly Pareto optimal solution”. 

Definition 4.  A solution 0x X  is efficient if there is no solution 

x X  such that 0
fx x , i.e., for which 0( ) ( )f x f x .  

This solution is also called a Pareto efficient solution, a Pareto 

optimal solution. The set of efficient solutions is denoted by ( )fP X . 

Definition 5. A solution 0x X  is called weakly efficient if there is 

no solution x X  such that 0
fx x , i.e., 0( ) ( )f x f x .  

This solution is also called a Slater optimal solution. 

The set of weakly Pareto optimal solutions is denoted by ( )fS X . It is 

obvious that ( ) ( )f fP X S X . 

Let's give more strict definitions of optimal solutions. 

Definition 4. For the problem (*), the set of points in the space 
n
 

defined as follows  

 0 0

1
| min ( ) ( ) 0 ,i i

i m
x X f x f x x X

 
        

 is called the set of Pareto optimal solutions. 



 

 

 

138 

Definition 5. For the problem (*), the set of points in the space 
n
 

defined as follows  

 0 0

1
| min ( ) ( ) 0 ,i i

i m
x X f x f x x X

 
        

is called the set of weakly Pareto optimal (Slater optimal) solutions.   

Let us now define the concepts of optimal estimation and optimal 
solution for problem (**). 

Definition 6. For problem (**), the set 

 1
| max 0 ,i i

i m
y F y y y F 

 
        

is called the set of Pareto optimal estimates. 

Definition 7. For the problem (**), the set 

 1
| max 0 ,i i

i m
F y F y y y F 


 

         

is called the set of weakly Pareto optimal estimates, Slater optimal 

estimates. 

Definition 8. For problem (**), the set of Pareto optimal solutions is 

defined as  

 * *| max ( ) ( ) 0i

i ix X f x f x x X       . 

Definition 9. The solution of problem (**) is the set of weakly Pareto 

optimal (Slater optimal) points in the space 
n
, defined as follows: 

 *
* 1

| max ( ) ( ) 0 ,i i
i m

X x X f x f x x X

 
        . 

Definition: 9. The set of optimal points of problem (**) 

corresponding to *F  is called the the following set 

1
* *( )X f F X . 
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Geometric interpretation of the Pareto optimal and Slater optimal 
estimates of the problem (**) in Fig. 3. 

Fig. 3. 
 

The Pareto set includes the plots bc , de  (without points d  and e ), 
hp . The Slater set is formed from the sections abc , dehpq . If there are no 
points y Y  inside the right angle with vertex *y , then *y  belongs to the 
set of Slater optimal estimates (points from Y  can be on the sides of the 
angle). If there are no points from Y  on the sides of the angle, then *y  
belongs to the set of Pareto optimal estimates. 

Definition 10. A set of efficient estimates  P Y  is called externally 

stable if for any  \y Y P Y  there exists an estimate  0y P Y , such that 

0y y . 

Definition 11. A set of weakly efficient estimators  S Y  is called 

externally stable if for any  \y Y S Y  there exists an estimate  0y S Y  

such that 0y y . 
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Naturally, we can speak of an externally stable set of efficient 
(weakly efficient) solutions as the set of solutions that corresponds to an 
externally stable set of efficient (weakly efficient) estimates. It is more 
convenient to use a slightly different definition of the externally stable set 
of efficient (weakly efficient) estimates. 

Definition 12. A set  P Y  is externally stable if for any y Y  there 

exists  0y P Y  such that 0y y . 

These definitions are equivalent. 

For example. Let the set Y  be a unit square from which the upper 
right vertex is cut out (Fig. 4). For this set, the set  P Y  is obviously 

empty, and the set  S Y  is formed by the top and right sides of the square 

(without the point (1, 1)). The set  S Y  is externally stable: for every 

point y Y  with 1 2, 1y y  , there is a corresponding point 

  0
1 1 / 2 , 1y y  , with 0y y . 

Fig. 4. 
 
In this regard, it is interesting to ask when the external stability of the 

set  P Y  is equivalent to the same property of the set  S Y ? 

Statement. If the set  P Y  is externally stable, then the set  S Y  is 

also externally stable. 

 

 

 

Y 

0 1 

1 

y 
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The following statement can also be proved: if the set 
   |R y y Y y y     is closed and bounded at any  y S Y , then the 

external stability of  S Y  implies the external stability of  P Y .  

The definition of a (weakly) efficient solution is “static” in the sense 
that it is based on a pairwise comparison of solutions and is not related to 
the question of whether it is possible to smoothly move from one solution 
to another, better one, infinitesimally (“at a positive rate”) increasing each 
criterion. The possibility of such a transition in some models is of great 
interest. An example is the model of pure exchange, in which each 
consumer participates in the exchange, trying to compile a set of goods of 
the highest utility, i.e., formally maximizing his or her objective function. 
This type of model was considered in the XIX century by F. Edgeworth 
and V. Pareto. An efficient state in the exchange model is a state 
(distribution of goods among consumers) that cannot be improved by 
redistributing goods to any of the participants without affecting the 
interests of some other participants. Thus, Pareto optimality reflects the 
idea of economic equilibrium: if the state is not efficient, then trade will 
take place, which will lead to an efficient state. 

If the exchange process is viewed as a sequence of small transactions 
that are beneficial to all participants, then it can be formally described by a 
smooth curve, along which all criteria increase infinitesimally. Then we 
can distinguish states from which no smooth curve of this type emerges. 

Such states were called Pareto critical points by S. Smale. It is clear 
that the set of such points (the critical Pareto set) contains the entire set of 
weakly efficient points, but in general it is wider than the latter (due to the 
local nature of the definition of a critical Pareto point). Thus, in the  
figure 2, the critical Pareto set, in addition to all weakly efficient ones, will 
include solutions whose values lie on the boundary ew .  

The definition of the Pareto critical point is a generalization of the 
stationary (critical) point of a smooth function (i.e., the point at which its 
gradient becomes zero). 
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§ 2.  Properly and truly efficient estimates and solutions 

 

 

Studies show that among the efficient ones, there may be estimates 
(solutions) that are in some sense anomalous. 

Example 1. Let the set Y  be given as follows: 

  22
1 2|Y y y y     

(Fig. 5). The efficient estimates here are part of the parabola 2
1 2( )y y  , 

which lies in the second quarter. The efficient estimates include the 
estimate 0 (0,0)y  . The differences in the coordinates of the efficient 
estimates y  and 0y  are equal to 

0
2 2 2 2 0y y y y            and      0 2

1 1 1 2( ) 0y y y y       . 

Fig. 5. 

Therefore, if you move from point 0y  to an efficient point y  that is 
close enough to it, you will get a first-order smallness gain in the second 
criterion at the expense of a second-order smallness loss in the first 
criterion. 

  
 

 

y 
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If we do not consider the criterion 1f  to be incomparably more 
important than 2f , then it is natural to agree to a certain increase in 2f , 

losing an order of magnitude less in 1f . Thus, the estimate 0y  is 
anomalous: it is not stable in the above sense, and therefore the solution 
corresponding to it cannot, generally speaking, claim to be optimal.  

This example shows that sometimes it makes sense to specifically 
identify efficient estimates (and solutions) that are free of such undesirable 
properties. The first definition of this kind of efficient solutions, called 
proper efficient, was given by H. Kuhn and A. Tucker. However, it was 
formulated for the differentiable case and was associated with special 
optimality conditions. For the general case, the definition of proper 
efficiency was proposed by A. Geoffrion. 

Definition 13. An efficient estimate 0y  is called proper efficient or 

optimal in the sense of Geoffrion if there exists a positive number   such 

that for any i M , y Y , satisfying the inequality 

0
i iy y       (1) 

and for some j M , it holds that 

0
j jy y ,      (2) 

the following inequality is satisfied: 

0

0
i i

j j

y y

y y






.      (3) 

Note that since 0y  is efficient, if there exists an estimate y  for which 
inequality (1) holds for some i , then there will necessarily be a number j  
for which inequality (2) holds. Therefore, the meaning of the definition is 
to require the existence of a number   for which (3) holds under the 
specified conditions. 

Solutions that correspond to property efficient estimates are also 
called property efficient or Geoffrion optimal. The set of such solutions 
and estimates is denoted by ( )fG X  and ( )G Y . 
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Example 1. The set ( )G y  is the upper branch of the parabola 
2

1 2( )y y   (without the vertex 0y (0,0)). 

Example 2. The best estimate 0y Y  with respect to the   relation 

is property efficient, since 0y y  for all y Y  and inequality (1) does not 

hold. Thus, a solution that maximizes each of the criteria 1 2, ,..., mf f f  
simultaneously is property efficient. In particular, in single-criteria 
problems, any optimal solution is property efficient. 

Example 3. If the set Y  is finite, then any efficient estimate is also 
property efficient estimate. Indeed, if Y  is finite, then  P Y  is externally 

stable. Thus, if there is only one efficient estimate 0y , then it is the best 
estimate by the   relation and therefore property efficient (Example 2). If 

 P Y  contains more than one estimate, then the desired positive number   
can be specified using the equality 

0
0 0

0max , , , , , .i i
i i j j

j j

y y
y Y i j M i j y y y y

y y


  
      

  

 

Therefore, if Y  is finite (and the finiteness of the set X  is sufficient 
for this), then the concepts of efficiency and property efficiency are 
equivalent.  

Definition 14. An efficient estimate that is not property efficient is 

called non-property efficient. 

Similar terminology is introduced for solutions.  
According to the definition 14, if 0y  is non-property efficient, this 

means the following: for any large 0  , there exist ,i M y Y   
satisfying (1) such that for any j  for which (2) holds, the inequality 

0

0
i i

j j

y y

y y






. 

holds. 
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Thus, the transition from non-property efficient solution to some 
other solution provides an increase in at least one partial criterion at the 
expense of losses of a higher order of smallness for all those criteria whose 
values decrease. That is, non-property efficient solutions in this sense are 
anomalous (unstable). 

 
One way to define preference relations in multi-criteria problems is 

as follows: a certain cone   (cone of dominance) is selected in the m  
space, and it is considered that 

yR y  ,  if y y . 

It is clear that when m


  , the ratio   is obtained, and when 

m

  , the ratio   is obtained. Thus, the multi-criteria maximization 
problem is a special case of the cone optimization problem. 

Consider the case when the cone   is polyhedral: 

 ( )| 0m

ly By    , 

where B  is a numerical matrix of size l m . For such a cone, the inclusion 
of y y  is equivalent to the fact that ( )( ) 0 lB y y   , i.e. By By  . 

Thus, the original problem with a vector criterion f , in which preferences 
are set using a polyhedral cone, after the introduction of a new vector 
criterion 1 2( , ,..., )B B B B

lf f f f Bf   turns out to be an “ordinary” 
multicriteria maximization problem. 

The notion of property efficiency (in the sense of Geoffrion) 
essentially uses the “coordinate nature” of the   relation and therefore 

does not directly transfer to the more general case of optimization with 
respect to a cone. In this regard, J. Borwein proposed a definition of 
property efficiency, which in the case of multicriteria optimization 
problems is as follows. 
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First, let's introduce the concept of a tangent cone. 

The tangent cone 0( , )T A y  to the set mA  at point 0y A  is the 

set of all vectors from m  that are boundary points of the form 
0lim ( )r

r
r

t y y


  , where  rt  is a sequence of nonnegative numbers, and 

 ry  is a sequence of points from A  that converge to 0y . 

Fig. 6. 
 
Figure 6 shows the tangent cones to the set 2A  at its three 

boundary points. Note that for the interior points of A , the tangent cones 
are the entire space m .  

The tangent cone 0( , )T A y  is one of the approximations of the set A  
at the point 0y . It is easy to verify that the tangent cone is indeed a cone 
with a vertex at the origin, and it is closed. 

Now for Borwein's definition of propety efficiency. 

A 
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Definition 15. An estimate 0y Y  is called truly efficient or optimal 

in the sense of Borwein if it is efficient and satisfies the condition  

0
( )( , ) {0 }m

mT Y y 
 , 

where 

 | , ,m m mY Y w w y e y Y e   
        . 

Solutions whose estimates are truly efficient are also called truly 

efficient. The corresponding sets are denoted as follows: 
( )B Y  – the set of truly efficient estimates. 
( )fB Y  – a set of truly efficient solutions. 

The definition 15 implies that  

( ) ( )B Y P Y , ( ) ( )f fB X P X . 

Example 4. In example 1 

 2
1 2| 0, 0Y Y y y y
     . 

Here, every efficient estimate except 0y  is truly efficient (so that 
( ) ( )B Y P Y ). 

Statement. A property efficient estimate is a truly efficient. 

This statement shows that ( ) ( )G Y B Y  and ( ) ( )f fG X B X . In 

Example 1, the non-property efficient estimate 0y  is not a truly efficient 
estimate, so ( ) ( )G Y B Y . But it is also possible to strictly include 

( ) ( )G Y B Y . 
Example 5. Let the set Y be given as follows 

2
2 1

1

1 , 0 .Y y y y
y

  
    
  

 

Here, each estimate is efficient and obviously truly efficient (so that 
( ) ( )Y P Y B Y  ), but not proprety efficient ( ( )G Y ). Indeed, for y  

and 1,ty t
t

 
  
 

, where 1t y  we get 1 1

2 2

lim
t

tt

y y

y y


 


. 
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Note that moving from an arbitrary point y  to a sufficiently close 
point y y   results in decreasing and increasing criteria of the same order 
of smallness. 

This example leads to the conclusion that the notion of property 
efficiency is too “rigid”: it also rejects such efficient solutions that may 
well “claim” to be optimal. Therefore, Borwein's definition is of 
independent interest to multicriteria optimization problems. 

 
The relationship between the concepts of efficiency of different types 

can be schematically represented as follows: 
 

↓ 

↓ 

↓ 

 
That is, the following inclusions are correct: 

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ).f f f f

G Y B Y P Y S Y

G X B X P X S X

   

  
   (4) 

As can be seen from the examples, the inclusions of (4) are generally 
strict. 

Proper efficiency 
(Geoffrion optimality) 

Truly efficiency 
(Borwein optimality) 

Efficiency 
(Pareto optimality) 

Weakly efficiency 
(Slater optimality) 
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§ 3.  Conditions for optimality 

 
In this paragraph, depending on the properties of the criteria and the 

structure of the set of admissible solutions, various necessary and 
sufficient conditions are formulated to ensure that a given solution or a 
given estimate is in some sense optimal (efficient) for the problem (*). As 
in ordinary extreme problems, knowledge of the optimality conditions 
allows us to develop methods for finding efficient solutions and ways to 
check the efficiency of the selected solution. In addition, these conditions 
allow for a deeper understanding of the nature and relationship of different 
types of efficient solutions, as well as to study the structure and properties 
of sets of efficient solutions and estimates. 

The conclusions and theorems presented in this section are widely 
covered in numerous textbooks, articles, and monographs dedicated to 
multicriteria optimization. They form an essential part of the theoretical 
foundation of this field and serve as a basis for further research and 
practical applications. These results reflect the core principles and 
methodologies used in multicriteria decision-making processes. 

The theoretical foundations of multicriteria optimization are most 
fully covered in the textbooks listed in the reference list. These books and 
resources provide a comprehensive approach: from mathematical 
foundations to algorithms and applications. 
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Item 3.1. General conditions for optimality 

 
Let us formulate the optimality conditions for the problem (*) 

without any significant assumptions about the structure of the set of 
admissible solutions X  and the properties of the vector function 

1 2( , ,..., )mf f f f . 

Theorem 1. (Hermeyer). Suppose that 0y Y  and all 
0 0iy  . The 

estimate 0y  is weakly efficient if and only if there exists a vector   

such that 
0min max mini i i i

i M i My Y
y y 

 
       

For a weakly efficient estimate 0y Y , we can take 0  , where 

0   is a vector with components 

0
0

0 , 1,2,..., ;i

i

i m
y

      0

0
1

1
1

m

kk
y








    (5) 

and then 
0 0max min .i i

i My Y
y 


  

In the formulation of the theorem,  is a set of vectors from m  
with positive components equal to one in total: 

1

| 1
m

m

i

i

 



  
   
  

 ,  1,2, ,M m . 

Geometrically, it is quite obvious that 0 ( )y S y  if and only if no 

point of the set Y falls inside the orthant m

  shifted to the point 0y . Since 
the hypersurface min i i

i m
y 


  for 0   and positive i  is the boundary of 

this orthant, the formulated geometric fact is expressed in terms of 
min i i
i M

y


. 
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A useful generalization of theorem 1 is the following theorem. 

Theorem 2. Let 0 ,у Y  and  , 1,2,...,i i m   be increasing functions 

of one variable such that 

     0 0 0
1 1 2 2 ... m my y y     . 

An estimate 0y  is weakly efficient if and only if 

 0
1 1 max min ( )i i

i My Y
y y 


 .      (6) 

By choosing the functions i , we can obtain specificizations of 

equality (6). For example, if 0 my  , then setting 0( )i i i iy y  , where 0
i  

is defined by formula (5), we arrive at theorem 1. If we assume 
0( )i i i iy y y   , we get the following consequence. 

Consequence 1. Estimation 0y Y  is weakly efficient if and only if  

0max min( ) 0i i
i My Y

y y


  . 

Definition 16. A numerical function   defined on a set A  is said to 

be increasing (not decreasing) in the preference relation P  if ( ) ( )a b   

(respectively, ( ) ( )a b  ) follows from aPb for any ,a b A . 

Now we can formulate the following theorem. 

Theorem 3. If a function ( )y  is increasing by (preference relation) 

> on a set Y , then any of its maximum points on Y  is weakly efficient. 

Examples of functions increasing by preference relation > in m  are 
min ( )i i
i M

y


 and max ( )i i
i M

y


, where all i  are functions increasing in  (for 

example, those mentioned above 0
i i iy y   ; i i iy   when 0i  ). 

The function ( ) jy y  , where j is an arbitrary fixed number from M, 

is also increasing in m  by preference relation >. By theorem 3, all 
maximum points on Y  of these functions are weakly efficient. Note that 
the functions min ( )i i i

i M
y y 


  and max ( )i i i

i M
y y 


 , where my , 0i   
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are decreasing in m  by preference relation >, and therefore their 
minimum points on Y  are weakly efficient. 

Definition 17. A subset B A  is called closed from above with 

respect to the preference relation > with respect to A if for any a A  and 

b B , it follows from the condition a b  that a B .  

Using the results already formulated and constructing subsets of  
closed from above with respect to the preference relation > with respect to 

, we can obtain new conditions of weakly efficiency. 
Theorem 4. Suppose that the function 0  – is increasing in 

preference relation > and the functions j , 1,2,...,j p , are non-

decreasing in preference relation > on Y . If the estimate 0у U , where 

 ( ) , 1,2,...,j jU y Y y t j p    , 

and jt  are arbitrary fixed numbers, satisfies condition  

0
0 0( ) max ( )

y U
y y 


 , 

then it is weakly efficient. 

Example 6. Let j M , N M  and the point 0y Y  satisfy the 

inequalities 0
i iy t ,  i N . If 0 max ,j j

y U
y y


  where  

 for al  , l i iU y Y y t i N     , 

then by theorem 4, 0 ( )y S Y . Note that for N   we have U Y . 

Statement. If the function ( )y  is increasing by preference relation 

> on the set  

 0
0 orU y Y y y y y    , 

then the estimate 0y Y  is weakly efficient if and only  

 0( ) max
y U

y y 


 .  

Y

Y
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Item 3.2.  Properties of efficient estimates 

 

Theorem 5. (Podinovsky). 

An estimate 0y Y  is efficient if and only if for every i M  

0 max
ii i

y Y
y y


 ,     (7) 

where 

 0| ; 1,2,..., ;i

j jY y Y y y j m j i    .    

If 
0y Y  is efficient, then it is the only point in Y that satisfies (7) for 

every i M . 

For 0y Y , let us introduce the set  

   0 , 1,2,..., ,i

j jY y Y y y j m j i     . 

Since  i iY Y , the following consequence follows from theorem 5. 

Consequence 2. If 
0y  is efficient, then 

 

0 max
ii i

y Y

y y


  for every i M . 

Theorem 6. The estimate 
0y Y  is efficient if and only if  

 ,
1

max 0
m

i
y

i







 ,         

where 

  0, mT y Y y y      . 

Theorem 7. Let the function  y  be non-decreasing in the 

preference relation   on Y  and let 
0y  be its maximum point on Y . For 

0y  

to be efficient, one of the following conditions must be met: 

  is increasing in preference   on Y ; 

0y  is the unique maximum point of   on Y . 
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Examples of specific types of functions whose maximization (or 
minimization) leads to effective points. 

Example 7. The function  
1

m

i i

i

y y 


 , where 0i   is 

increasing for each variable  on the real line and therefore increases by 

the relation   on m . Therefore, any of its maximum points on Y  is 
efficient. 

Example 8. The function  

1

1

m s
s

i i

i

y y 


 
  
  
 , where 0s   and 

0i   is increasing for each variable 
iy  on the set of nonnegative integers, 

and therefore increases by the relation   on m


. So, if 0y  is the maximum 

point of the function  y  on mY 
 , then  0y P Y . The same 

function  y  at 0, 0,is i M    is increasing for each variable 
iy  on 

the set of positive numbers, and therefore increases by the relation   on 
m

 . So, if 0y  is the maximum point of the function   on the set mY  , 
then it is efficient. 

Example 9. Let supi i
y

y y



  for all i M , and let the function  y  

increase with preference relation   on m


. Then, as is easy to see, the 

function  y y    decreases by the preference relation   on Y . By 

theorem 7, any of its minimum points on Y  is efficient. 

The function  y y   , according to example 8, can be the function 

 

1

1

m s
s

i i i

i

y y 



 
 

  
 , when 0, 0,is i M   . If sup ,i iy y i M   , 

then this function may also have 0s  . 

iy
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The function  *max i i i
i

y y


 , where iy  are arbitrary fixed numbers 

and 0i  , is nonincreasing in preference relation   on m . If its 

minimum point on Y  is unique, it is efficient. 

The analog of theorem 4 for efficient estimates is the following 
theorem. 

Theorem 8. Let  , 0,1,..., 1j j p p    be non-decreasing by a 

preference relation   functions on Y . If the point 
0y U , where  

  , 1,2,...,i jU y Y y t j p    ,   

and jt  are arbitrary fixed numbers, satisfies condition  

   0
0 0max

y U
y y 


 ,     

then one of the following conditions is sufficient for its efficients: 

0  increases by a preference relation   on U ; 

0y  is a unique maximum point of 0  on U . 

Example 10. If in example 6 0y  is the unique point that satisfies all 
the conditions specified there, then it is efficient. 

Consequence 3. Let  0 0 0, |y Y U y Y y y    , and let the 

function   increase by the preference relation   on 
0U . The estimate 

0y  

is efficient if and only if    
0

0 max
y U

y y 


 . 

Example 11. Let 0,i i M   . The estimate 0y Y  is efficient if 
and only if  

0

0

1 1

max
m m

i i i i
y U

i i

y y 


 

  . 
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§ 4.  Methods of solving multicriteria problems 

 
 
From the mathematical point of view, multicriteria optimization 

problems are a natural generalization of conventional optimization 
problems. 

Methods for solving multicriteria problems allow us to significantly 
expand the applicability of already available methods of nonlinear 
programming, unconditional minimization, and globally-balanced 
optimization. This is an important quality, since the apparatus for solving 
ordinary optimization problems has been developed quite well, many 
methods have been created, and proven programming software is 
available. Therefore, it is reasonable to apply the available resources to the 
solution of multicriteria problems relying on some or other methods of 
transforming such problems into ordinary optimization problems. 

Let n  be a n-dimensional Euclidean space, ( )f x  and ( )g x  are 
continuous-differentiable vector-functions on n , realizing the mappings: 

: n mf   and : n rg  . 

The multicriteria minimization problem will be denoted by 

min ( )
x X

f x


, { | ( ) 0}nX x g x        (8) 

By the solution of problem (8) we mean the set of weakly Pareto-
optimal (Slater-optimal) points in the space n  defined as follows: 

 *
* 1

| max ( ) ( ) 0 ,i i
i m

X x X f x f x x X

 
        . 

It corresponds to the set of weakly Pareto optimal (Slater optimal) 
estimates * *( )F f X . Here the symbol ( )f B  denotes the image of the set 

nB  under the reflection f . 
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Most of the known approaches to solving a multicriteria optimisation 
problem are based on its reduction to a nonlinear programming problem. 
One of the main and the first methods to be applied is the convolution 

method. It uses as an auxiliary function 

1

( ) ( )
r

i i

i

R x f x


 , where 0i  ,  
1

1
r

i

i




  

and the minimisation problem is solved 

min ( )
x X

R x


      (9) 

If some conditions are fulfilled, the points that deliver the minimum 
in problem (9) belong to the set *X . To obtain different points from the set 

*X , one should solve problem (9) each time with different sets of weight 
coefficients 

i . 
Multiplicative convolutions are also used 

1

( ) ( )
r

i i

i

R x f x


 , 

as well as convolutions of normalised criteria of the form 

1

( ) ( )( )
( )

pr

i i

ii

f x f x
R x

f x





 
  

 
 . 

Another approach, in which an auxiliary problem has to be solved 
repeatedly to obtain different points from *X , is methods that use 
constraints on the criteria. For example, the constraint method is based 
on selecting a main criterion, e.g. ( )kf x . The other criteria are used as 
constraints: ( )i if x b ,  1 i r  , i k . The problem of minimising ( )kf x  
in the presence of these constraints is then solved. 

Assuming there is an ordering of the criteria in terms of importance 
we can use the concession method. First, the ‘most important’ criterion is 
minimised, e.g. 1( )f x , i.e. 1

1min ( )
x X

F f x


  is found. Next, the possible 
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concession   according to this criterion is indicated and the constraint 
1

1( )f x F    is added to the system of constraints x X . On the 
resulting set, the second most important criterion is minimised and so on. 
Under fairly general conditions, this method finds a point from *X . 

The next approach to solving problem (8) consists of goal 

programming methods. They assume the existence of a target point 
{ , 1, 2,..., }iY y i r     . Using the target values iy  and weights 

i , for each 
criterion 1, 2,...,i r   , problem (8) is transformed into a goal programming 
problem, which can be represented as minimising the distance between the 
set of achievable evaluations F  and the target point Y : 

1

1

min ( , ) ( )
r p

p

i i i
x X

i

d F Y f x y




 
   

  
 . 

Another direction of solving multicriteria optimisation problems 
includes methods based on finding a compromise solution. These methods, 
use the principle of guaranteed result. The methods based on human-
machine decision-making procedures have been widely developed. They 
use a dialogue mode between a human being, who understands the 
physical essence of the problem to be solved, and a computer processing 
information about the criteria preferences. This information serves to set 
up a new optimisation problem and obtain the next intermediate solution. 
This results in an interactive procedure for selecting the optimal solution 
(interactive programming).  

Recently, there have appeared works that develop methods on a 
somewhat different basis. These methods do not make a preliminary 
transition to the problem of nonlinear programming in explicit form. In 
fact, all of them are generalisations of known local and global methods of 
nonlinear programming for problems with several criteria. 

Thus, the method of searching on an uneven grid, which is 
designed for global optimisation, is used to solve multicriteria problems. 
This is a constructive method for finding the  -optimal solution to the 
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multicriteria problem (8). For this purpose, it is necessary to cover the set 
X  with balls whose union contains the entire admissible set. These 
constructions are carried out using the technique of uneven coverings, as is 
done in global optimization methods. It is guaranteed that the set of 
feasible points obtained is an  -optimal solution to the multicriteria 
problem (8). The effectiveness of search methods on an uneven grid 
largely depends on how close the current record value is to the optimal 
one. Therefore, it is advisable to use local methods, such as the modified 
Lagrange function method, as auxiliary procedures, which can 
significantly speed up the process of finding good record estimates. 

The work of B. Pshenichnyj and A. Sosnovskyi is devoted to the 
modification of the well-known linearisation algorithm for solving a 
multicriteria problem. Here we consider as an auxiliary problem of 
quadratic programming of the form  





2

,
min || || 2 | ( ), , 1, 2,..., ,

( ), ( ) 0, 1, 2,..., .

i
p

j j

p f x p i r

g x p g x j m


 



       

       

 

The proposed method allows us to identify weakly Pareto-efficient 
solutions when the Cottle regularity condition is fulfilled. It is also shown 
that, if the generalised regularity condition is additionally satisfied, we can 
also obtain proper efficient solutions of problem (8). For the convex case 
of problem (8) the above conditions are sufficient. 

To collapse all partial criteria into a single criterion, it was proposed 
to use penalty functions, which are commonly used in nonlinear 
programming to collapse constraints. Then problem (8) is reduced to a 
parametric problem of nonlinear programming, where some threshold 
levels in the space of criteria ry  act as parameters. 

This approach made it possible to use penalty function methods to 
solve problem (8), which reduces to the problem of unconditional 
minimisation min ( , , )H x y t   . Different rules for choosing penalty 



 

 

 

160 

functions ( , , )H x y t  , levels y and penalty coefficients t lead to both the 
method of external penalty functions and the method of internal penalty 
functions. 

Different classes of convolution functions ( ( , ))Q h x y  can be used. 
They lead to three classes of methods corresponding to inner centre 

methods, outer centre methods and joint inner and outer centre 

methods. In both the penalty function methods and the centre methods, the 
choice of different levels leads to different points from *X . 

On the basis of the Lagrange function 

( , , , ) , ( , ) , ( )L x u v y u h x y v g x       ,   (10) 

a method for solving the multicriteria optimisation problem (8) is 
constructed, which is a generalisation of the method of modified 

Lagrange function known in nonlinear programming. The proposed 
modification of function (10) improves the behaviour of the Lagrangian 
function in the vicinity of solutions. The method of modified Lagrangian 
functions for solving multicriteria optimisation problems retains all the 
good properties that are inherent in the method for solving nonlinear 
programming problems, namely: linear convergence rate on dual variables 
and existence of exact local minima of the auxiliary function in the vicinity 
of solutions of the problem. 

Extremely rich information about the properties of the Pareto set is 
provided by the results of works obtained in nonlinear programming on the 
theory of sensitivity functions.  

Let us consider a generalisation of a number of iterative methods for 
solving nonlinear programming problems to the case of solving problem 
(8). In these methods, the main leading process is the process in the space 
of initial variables. Simultaneously with it, estimates of optimal values of 
criteria are calculated. 

First, let us consider a generalisation of the method of feasible 

directions. This method, proposed by G. Zoutendijk in 1959, was one of 
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the first to be used for solving convex programming problems. Later it was 
shown that it can be used also for solving nonlinear programming 
problems. Different versions of the method of E. Polak, D. Topkis and A. 
Veinott, G. Meyer, D. Mayne, etc. differ among themselves both in the 
type of auxiliary problem, type of normalising constraints, choice of 
descent step, and different ways of dealing with the ‘zigzag’ motion. By 
combining the methods of possible directions with the methods of internal 
and external penalty functions, hybrid type algorithms suitable for solving 
problems with nonlinear constraints of the equality type are obtained. 
Possible direction methods of the second order and combined ‘two-phase’ 
methods are developed. 

Another approach is also possible, when the method is interpreted as 
a method of minimisation of some auxiliary function, which depends not 
only on the initial direct variables, but also on the estimation from above 
of the optimal value of the target function. This interpretation allows us to 
construct a generalisation of the method to the case of solving a multi-
criteria optimisation problem. 

Let us describe two variants of the method, which are joint ‘two-
phase’ in the sense that the initial point can be chosen arbitrarily.  

Consider the multicriteria optimisation problem (8), in which the 
vector functions ( )f x  and ( )g x  defining it are assumed to be convex. The 
constraints in problem (8) are assumed to satisfy Slater's condition, i.e., the 
set  

0 { | ( ) 0}nX x g x    

is not empty. Take the vector ny , denote l r m   and consider an  
l -dimensional vector function: 

 1 1 1( , ) ( ) ,..., ( ) , ( ),..., ( )r r mh x y f x y f x y g x g x        . 

Let us compose the auxiliary function 

1
( , ) max ( , )i

i l
H x y h x y

 
   . 
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The special points of the function ( , )H x y  are those * nx   and 
* ny  , for which the conditions 

* *( , ) 0H x y  ,     (11) 

* * *Argmin ( , )
nx

x H x y
 

        (12) 

are fulfilled. 

Lemma 1. For vector 
* nx   to be a solution of problem (8) (i.e., 

*x X  ), it is necessary and sufficient that there exists a vector 
* ny   

such that conditions (11), (12) are satisfied.  

In fact, lemma 1 reduces the solution of the original problem (8) to 
finding special points of the function ( , )H x y . 

For this purpose, we consider the linear programming problem 

,
max

s 



     (13а) 

 ( , ) , 0i x
h x y s    ,   ( , )i I x y     (13b) 

1js  ,    ,    (13c) 

where  
 ( , ) 1 | ( , ) ( , )iI x y i l h x y H x y           

is the set of indices of the  -active components of the function ( , )h x y . 
The solution of this problem sets the direction of decreasing of the 
function ( , )H x y . 

Since the function ( , )H x y  is non-smooth, the numerical method 
uses the  -algorithm to find special points of the function ( , )H x y . The 

initial values 0 nx  , 0y F , direction re  , 0   are set. The next 
iteration point is constructed by the rule 

1 ( , , )k k k ky y x y e e      ,   (14a) 

1 1( , )k k k k

kx x s x y     ,   (14b) 

1, 2,...,j n  
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where 
1

( )( , , ) min i i

i r
i

y f x
x y e

e


 


   , and the parameter   varies according to 

the standard, for the method of feasible directions, scheme. The set of limit 
points of the sequence { }kx  worked out by the iterative process (14) is 
contained in the set X

. 
Let us consider a generalisation of another version of the method of 

feasible directions, namely the Topkis-Weynott version. The difference 
between this version of the method and the version considered above is 
that the linear programming problem here is of the form: 

,
max

s 



       (15a) 

 ( , ) , ( , ) ( , ) 0i ix
h x y s h x y H x y      ,   1, 2,...,i l   ,  (15b) 

1js  ,    1, 2,...,j n   ,    (15c) 

If in the problem (13) there are only  -active components of the 
vector function ( , )h x y , then the constraints (15b) include all components. 
In the numerical method, iterations are carried out according to scheme 
(14) with the solution at each step of the auxiliary problem (15). It should 
be noted that in the proposed variants of the method, the parameter y  plays 
the role of estimating the values of the vector function ( )f x . Here, the 

values of ky  obtained at each iteration belong to a single ray originating 
from the point 0y  and penetrating the criterion space in a given direction e. 
The methods result in a one weakly Pareto-optimal estimate. To obtain 
different points from the Pareto set, one should either change the initial 
vector 0y  and move in the same direction e , or vice versa, fixing the initial 

vector 0y  to vary the direction e. If 0 max ( )i i
x X

y f x


  for all 1, 2,...,i r   , then 

by varying the direction e  within the positive orthant r

 , we can obtain 
any point from X

. 
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Now let us consider the linearisation method, which was proposed 
by B. Pshenichnyj for solving the general problem of nonlinear 
programming. At each step in this method, the functions defining the 
original problem are linearised and an auxiliary quadratic programming 
problem is solved. Numerous versions of the linearisation method of  
R. Wilson, U. Garcia Palomares and 0. Mangasarian, S. Han differ from 
each other by the rules of constructing the auxiliary problem and 
determining the step of descent. Further studies by B. Pshenichnyj,  
Y. Danilin, V. Zhadan and other authors are devoted to various 
modifications of the method, as well as to questions of its convergence. 
The linearisation method is also applied to the problem of finding the 
minimax. B. Pshenichnyj and A. Sosnovskyi generalised it to the case of 
solving multicriteria optimization problems. 

Let us consider a slightly different generalisation of this method, 
which differs by the fact that the auxiliary problem is a linear 
programming problem. And the estimates in it, as well as in the method of 
possible directions, belong to some ray. This makes it possible to precisely 
determine the optimal point of the Pareto set in the criteria space, which 
corresponds to the intersection of the ray with the boundary of the set of 
achievable values of the criteria in this space. 

For problem (8) we introduce an auxiliary function 

( , , ) ( , ) ( )eM x y t x y t x     ,           (16) 

where the functions ( , )e x y  and ( )x , for the chosen direction int re  , 
are defined as follows  

1

( )( , ) max i i
e

i r
i

f x y
x y

e


 


  ,  

1
( ) max ( )j

j m
x g x

 
 . 

Let set  [ , ] | ( , ) 0n r

eW x y x y   , and let W
 be the set of 

points * * *[ , ]w x y W   where the necessary first-order conditions are 
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satisfied. We will call the point 1[ , , ] n rx y t    a special point of function 
(16) if  

[ , ]x y W ,  ( ) 0x    and  
|| || 1

( , , )inf 0x

s

M x y t

s

  



. 

Lemma 2. If * *[ , ]x y W  then * *[ , , ]x y t  is a special point of the 

function ( , , )M x y t   and vice versa: if * *[ , , ]x y t  is a special point of the 

function ( , , )M x y t   then * *[ , ]x y W . 

Thus, solving problem (8) is equivalent to finding special points of 
the function ( , , )M x y t  . The numerical method of finding them involves 
solving at each iteration some auxiliary linear programming problem: find  

 
, ,

min ( , )
s

P x y
 

 


           (17a) 

 ( ) , ( )i i i ix
f x s f x y e    ,   ( , )i I x y  ,       (17b) 

 ( ) , ( ) 0i ix
g x s g x   ,   ( )i J x ,        (17c) 

1js   ,   1, 2,...,j n   ,   0  ,        (17d) 

where ns , 0  , ( , )P x y  is an arbitrary continuous function on 
n r  such that  

 
( , )

( , ) 1 max ( )i ixi I x y
P x y n f x e


   . 

The index sets are defined as follows 

 ( , ) 1 | ( , ) ( , )e

i eI x y i r h x y x y          , 

 ( ) 1 | ( ) ( )jJ x j m g x x       , 

here 

 ( , ) ( )e

i i i ih x y f x y e     for all  1 i r  . 



 

 

 

166 

If the admissible set in problem (17) is not empty, then its solution 
exists and is finite. If the point [ , ]x y W , then the direction ( , )s x y , found 
from the solution of problem (17), is the direction of decreasing of the 
function ( , , )M x y t   in x  for sufficiently large t. In addition, the existence 
of a special point of the function ( , , )M x y t   is equivalent to the presence 
of a zero solution among the solutions of problem (17). 

In the numerical method of finding the special points of the function 
( , , )M x y t  , the iterative process is carried out according to the following 

formulas: let 0 nx  , 0 ny  , the step 0   and the parameter 0 1   
are chosen, then  

1 ( , , )k k k ky y x y e e               (18a) 

1 1( , )k k k k

kx x s x y             (18b) 

where 

1

( )( , , ) max i i

i r
i

f x y
x y e

e


 


   , 

1( , )k ks x y   is the solution of problem (17) at the point 1[ , ]k kx y  . 

The iterative process (18) is constructed in such a way that all points 
1[ , ]k kx y   belong to the set W , so that at each step, except for the descent 

in the variable x , a correction is made by fulfilling the equality 
1( , ) 0k k

e x y   . If the point 1[ , ]k kx y W

  , then the step down from this 
point is always strictly positive and can be obtained by dividing the initial 
step   in half by a finite number of times. 

Under fairly general and natural conditions, the set of boundary 
points of the sequence { }kx  formed by the process (18) is contained in the 
set X. 

The method also results in one weakly optimal estimate. To obtain 
different estimates, either 0y  or the direction e  should be varied. 
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