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ВСТУП 

 

 

Посібник призначено для здобувачів вищої освіти, що навчаються у 

закладах вищої освіти України та вивчають диференціальні рівняння на 

педагогічних і технічних спеціальностях університетів. Він є продовженням 

навчального посібника «Вища математика», написаного авторами, і 

призначений для розширення навичок застосування диференціальних рівнянь 

для розв’язання задач практичного спрямування. 

Метою запропонованого навчального посібника є висвітлення і 

узагальнення основних теоретичних й методичних підходів щодо практичного 

розв’язання диференціальних рівнянь та задач, що сприяють до їх застосуванню 

під час  розв’язання складних задач геометрії та інженерії. У посібнику 

наведено велику кількість задач різної складності, розв’язування яких 

ґрунтовно пояснюється.  

Матеріал посібника викладено у п’яти розділах. У першому розділі 

вводяться визначення диференціальних рівнянь, загального і частинного 

розв’язку, загального і частинного інтеграла, інтегральних кривих. 

Сформульовано теорему існування і єдності розв’язку звичайних 

диференціальних рівнянь. Розглядаються диференціальні рівняння першого 

порядку, що розв’язуються відносно похідної (з відокремленими та 

відокремлюваними змінними, однорідні, лінійні, Бернуллі, у повних 

диференціалах), а також рівняння, що не розв’язуються відносно похідної 

(Лагранжа, Клеро). 

У другому розділі подано диференціальні рівняння вищих порядків, що 

розв’язуються у квадратурах, загальна теорія лінійних диференціальних рівнянь 

n -го порядку.  

У третьому розділі розглядаються крайові задачі, метод зведення 

крайових задач до задач Коші, побудова функції Гріна, інтегрування 

диференціальних рівнянь за допомогою степеневих рядів. 
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У четвертому розділі ґрунтовно розглядаються  лінійні системи 

диференціальних рівнянь та методи їх розв’язання.  

П’ятий розділ присвячено диференціальним рівнянням з частинними 

похідними першого порядку та задачам Коші для них. 

На початку кожного розділу конспективно наведено короткі теоретичні 

відомості, детально викладено стандартні методи, які слід застосовувати для 

інтегрування диференціальних рівнянь.  

Для закріплення основних теоретичних положень і навичок розв’язування 

диференціальних рівнянь у кінці кожного розділу наведено контрольні питання 

та задачі для самостійного розв’язання. Така структура посібника дозволяє 

студенту економити час на підготовку до практичних занять, активно 

самостійно отримувати практичні навички інтегрування диференціальних 

рівнянь. Для полегшення користування посібником у ньому розміщено 

предметний покажчик і список рекомендованої літератури. 
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РОЗДІЛ 1   ДИФЕРЕНЦІАЛЬНІ РІВНЯННЯ ПЕРШОГО 

ПОРЯДКУ 

 

1.1   Диференціальні рівняння, основні визначення 

Визначення. Звичайним диференціальним рівнянням називають будь-яке 

співвідношення, яке пов’язує незалежну змінну х, невідому функцію )(xfy   

та її похідні y , y  ,…, )(ny .  

0) ,..., , , , ( )(  nyyyyxF ,      або      0) ,..., , , , ( 
2

2


n

n

dx

yd

dx

yd

dx

dy
yxF .       (1.1) 

Визначення. Порядком диференціального рівняння називають найвищий 

порядок похідної, що входить до рівняння. 

Якщо невідома функція залежить лише від однієї змінної, то 

диференціальне рівняння називають звичайним; якщо невідома функція 

залежить від кількох змінних, тобто невідома функція входить до 

диференціального рівняння зі своїми частинними похідними, то його називають 

рівнянням у частинних похідних. 

Визначення. Загальним розв’язком диференціального рівняння 

називають функцію 

                             0),...,,,,( 21  nCCCyx ,                                       (1.2) 

яка за будь-яких значень довільних сталих nCCC ,...,, 21  є розв’язком цього 

рівняння. 

Визначення. Співвідношення 0),...,, , ,( 21  nCCCyx , що неявно задає 

загальний розв’язок, називають загальним інтегралом диференціального 

рівняння. 

Задача Коші для диференціального рівняння n-го порядку полягає у 

знаходженні розв’язку рівняння, який відповідає умовам 0yy  ,  0yy  ,  

0 yy  , …, 
)1(

0
)1(   nn yy  при  0xx  , де  0x , 0y , 0y  ,…,

)1(
0
ny – задані числа. 

Ці умови називають початковими умовами. 
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Визначення. Частинним розв’язком диференціального рівняння 

називають розв’язок, отриманий із загального розв’язку за певних значень 

довільних сталих nCCC ,...,, 21 . 

У загальному розв’язку рівняння (1.1) число довільних сталих дорівнює 

порядку рівняння. Диференціальне рівняння має нескінчену множину 

частинних розв’язків. 

Процес знаходження розв’язку диференціального рівняння називають 

інтегруванням рівняння. 

Контрольні питання та завдання 

1. Надайте визначення диференціального рівняння. 

2. Надайте визначення порядку диференціального рівняння. 

3. Надайте визначення загального розв’язку диференціального рівняння. 

4. Надайте визначення частинного розв’язку диференціального рівняння. 

5. Яку задачу називають задачею Коші? 

 

1.2 Диференціальні рівняння першого порядку 

Диференціальне рівняння першого порядку має вигляд: 0) , , ( yyxF .  

Якщо  рівняння розв’язане відносно y , то його можна записати у 

вигляді:  

                                           ),( yxfy  .                  (  1.3) 

Це рівняння називають рівнянням першого порядку в явній формі. 

Визначення. Загальним розв’язком диференціального рівняння першого 

порядку називають функцію ) ,( Cxy  , що залежить від однієї довільної 

сталої С та за будь-якого значення С є розв’язком цього рівняння. 

Співвідношення 0),,(  Cyx , що містить розв’язок у неявному вигляді, 

називають загальним інтегралом рівняння (1.3). Розв’язок, отриманий із 

загального розв’язку (загального інтеграла) за певного значення С, називають 

частинним розв’язком (частинним інтегралом). 
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Теорема Коші (існування і єдиності розв’язку). Нехай у рівнянні 

),( yxfy   функція ),( yxf  та її частинна похідна 
f

у




  неперервна в деякій 

області D на площині 0ху, яка містить точку DyxM ) ;( 0 0 0 , тоді існує єдиний 

розв’язок цього рівняння )( xy  , який відповідає умові 0 yy   при 0 xx  . 

Із огляду геометрії це означає, що існує і, до того ж, єдина функція 

)( xy  , графік якої проходить через точку ) ;( 000 yxM . 

Визначення. Умову 0
0  

 yy
xx




 або 00 )( yxy   при 0xx   називають 

початковою умовою, або умовою Коші.  

Визначення. Задача, у якій потрібно знайти частинний розв’язок 

диференціального рівняння  

),( yxfy   за умови 00 )( yxy  ,            (1.4) 

називають задачею Коші. 

Із огляду геометрії загальний розв’язок диференціального рівняння 

першого порядку є сімейством кривих на координатній площині, яке залежить 

від однієї довільної сталої С. Їх називають інтегральними кривими цього 

диференціального рівняння. Частинному розв’язку відповідає одна крива цього 

сімейства: функція )(xfy  , яка проходить через деяку задану точку ),( 000 yxM  

площини 0ху. 

Точки, у яких порушуються умови теореми Коші, називають особливими 

точками. Через такі точки або взагалі не проходить жодна інтегральна крива, 

або проходить кілька інтегральних кривих. 

Розв’язок, у кожній точці якого порушується єдність розв’язку задачі 

Коші, називають особливим. Особливий розв’язок не може бути отриманий із 

загального розв’язку за жодного значення довільної сталої С. Особливі 

розв’язки можуть виявитися серед розв’язків, загублених унаслідок 

перетворень заданого рівняння під час його інтегрування. 

Розв’язати або проінтегрувати диференціальне рівняння – означає знайти 

його загальний розв’язок. 
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Контрольні питання та завдання 

1. Яке рівняння називають диференціальним рівнянням першого 

порядку? 

2. Сформулюйте теорему існування і єдності розв’язку диференціального 

рівняння першого порядку. 

3. Надайте визначення загального і частинного розв’язків 

диференціального рівняння першого порядку. 

4. Надайте визначення загального інтегралу диференціального рівняння. 

5. Чи завжди загальний розв’язок диференціального рівняння першого 

порядку містить усі частинні розв’язки?  

6. Який розв’язок називають особливим? 

 

1.3 Диференціальні рівняння з відокремленими змінними 

Визначення. Диференціальне рівняння 

                             0 )( )(  dyyNdxxM                  (1.5) 

називають рівнянням з відокремленими змінними. У цьому рівнянні біля 

диференціала dx  знаходиться тільки функція від х, а біля dy  – тільки функція 

від  у. 

Для розв’язання рівняння (1.5) візьмемо інтеграл від обох його частин: 

    CdyyNdxxM    )( )( .           (1.6) 

Після обчислення інтегралів отримаємо розв’язок рівняння (1.5) у вигляді 

загального інтеграла. 

Приклад 1.1. Знайти загальний розв’язок рівняння dxxdyy  2 cos  . 

Розв’язання.  

Це рівняння виду (1.5), тому його розв’язок: 

  dxxdyy  2 cos             Cxy  2sin        )arcsin( 2 Cxy  . 

Контрольні питання та завдання 

1. Яке диференціальне рівняння називають рівнянням з відокремленими 

змінними? 
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2. Розв’язати рівняння: 

а) 3( 1) 2 0x dx ydy   ;        б) sin 0tgxdx ydy  . 

 

1.4  Диференціальні рівняння з відокремлюваними змінними 

Визначення. Диференціальне рівняння з відокремлюваними змінними має 

вигляд: 

0 )()( )()( 2211  dyyNxMdxyNxM .           (1.7) 

Воно може бути приведене до рівняння з відокремленими змінними (1.5) 

унаслідок ділення обох його частин на добуток 0)()( 21 xMyN : 

0 
)()(

)()(
 

)()(

)()(

21

22

21

11  dy
xMyN

yNxM
dx

xMyN

yNxM
. 

Одержали рівняння з відокремленими змінними:  

0 
)(

)(
 

)(

)(

1

2

2

1  dy
yN

yN
dx

xM

xM
. 

Почленно інтегруючи, отримаємо загальний інтеграл: 

Cdy
yN

yN
dx

xM

xM
   

)(

)(
 

)(

)(

1

2

2

1 .             (1.8) 

Унаслідок ділення рівняння на добуток )()( 21 xMyN  можна втратити 

деякі розв’язки, отримані з рівняння  0)()( 21 xMyN , або можна отримати 

сторонні. Тому необхідна перевірка.  

Приклад 1.2. Знайти загальний розв’язок рівняння 

0 )1( )1(  dyxydxyx . 

Розв’язання.  

Маємо рівняння з відокремлюваними змінними. Поділивши обидві 

частини рівняння на ху , отримаємо: 

0 
)1(

 
)1(







dy
y

y
dx

x

x
,   0 1

1
 1

1


















 dy

y
dx

x
          

Cdy
y

dx
x


















   1

1
 1

1
. 
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Інтегруючи, отримаємо: Cyyxx  ||ln||ln , або Cyxxy ||ln . 

Це і є загальний інтеграл цього рівняння. 

Відокремлюючи змінні, припускали, що 0x , 0y . Перевірка доводить, 

що ці значення є розв’язками рівняння. Загальний інтеграл не містить цих 

розв’язків. Їх ми втратили. Отже, 0x   і 0y   – частинні розв’язки рівняння. 

Приклад 1.3. Розв’язати задачу Коші 

0  32  dyxydxyx ,            1)0( y . 

Розв’язання.  

Розділяючи змінні, знаходимо: 0 2  dyydxx . Тепер виконаємо 

інтегрування: 

Cdyydxx     2
,        C

yx


32

32

. 

Одержали загальний інтеграл вихідного рівняння. Знайдемо загальний 

розв’язок. 

3 2

3 2

y x
C  ,     

2

3 3
2

x
у C

 
  

 
 

Знайдемо частинний розв’язок, який відповідає початковій умові 

1)0( y . Для цього до загального розв’язку підставляємо початкову умову і 

визначаємо сталу С. 

31 3С         
3

1
C . 

Потім, підставивши її значення до загального розв’язку, отримуємо: 

2
3

3
1

2
y x   – розв’язок задачі Коші. 

Контрольні питання та завдання 

1. Яке диференціальне рівняння називають рівнянням з 

відокремлюваними змінними? 

2. Розв’язати рівняння: 

а) 
3 5 2 42 0x y y x y   ;        б) 02)1( 22  xyyx ; 
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в)   23 1 yyyxxy  . 

3. Знайти частинний розв’язок диференціального рівняння: 

а)   0)0(   ,3412  yxyyx . 

   

1.5  Однорідні рівняння першого порядку 

Визначення. Функцію ),( yxf  називають однорідною функцією виміру m  

( m – будь-яке дійсне число), якщо за будь-якого t має місце тотожність: 

),() , ( yxftytxtf m .            (1.9) 

Приклад 1.4. 3 33),( yxyxf   – однорідна функція першого виміру, 

тому що ),(  ) () () , ( 3 333 33 yxftyxtytxtytxtf  . 

Приклад 1.5. 
2),( yxyyxf   – однорідна функція другого виміру, тому 

що ),( )( ) () )( () , ( 2222 yxftyxytytytxtytxtf  . 

Приклад 1.6. 
y

x
yxf ),(  – однорідна функція нульового виміру, тому що 

),( 
 

 
) , ( 00 yxft

y

x
t

yt

xt
ytxtf  . 

Визначення. Диференціальне рівняння 0 ) ,( ) ,(  dyyxNdxyxM  

називають однорідним, якщо функції, що розташовані при dx  і dy , є 

однорідними одного й того самого виміру. 

Однорідне рівняння завжди зводиться до вигляду 









x

y
y    і за 

допомогою заміни змінних 

z
x

y
 ,               (1.10) 

де  )(xzz  , zxzy  ,    або        zdxxdzdy               (1.11) 

зводиться до рівняння з відокремлюваними змінними. 

Приклад 1.7. Розв’язати задачу Коші 

0 )2(  yxyx ,            2)1( y . 
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Розв’язання.  

0  )2(  dyxdxyx  

Перевіримо функції yxyxM 2) ,(   і  xyxN ) ,(  щодо однорідності. 

) ,( )2(   2 )  , ( yxMtyxtytxtytxtM   

) ,( )(  )  , ( yxNtxtxtytxtN   

) ,(   ), ,( yxNyxM  –  однорідні функції першого виміру, отже, рівняння 

однорідне. 

021 







 y
x

y
 

Проводимо заміну змінних згідно з (1.10), (1.11):  

, z
x

y
  zxzyzxy         ,  

021  zxzz ,            01  xzz ,          01 
dx

dz
xz , 

xz
dzxdxz

)1(

1
  0  )1(


 , 

0
1
  



z

dz

x

dx
,         C

z

dz

x

dx



 

1
  ,       ||ln |1|ln||ln 1 Czx  , 

1 
1

C
z

x



,           

1 

1
C

x
z  ,          1

1 


C

x
z ,         1

1 


C

x

x

y
, 

x
C

x
y 

1 

2 

   –  загальний розв’язок. 

Знайдемо частинний розв’язок, який відповідає початковій умові 

2)1( y :        1
1

2
1 


C

,         
3

1
1 C . 

xxy  23    –  розв’язок задачі Коші. 

Контрольні питання та завдання 

1. Яке диференціальне рівняння називають однорідним? 

2. Яку функцію називають однорідною? 
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3. Укажіть метод знаходження загального розв’язку однорідного 

диференціального рівняння першого порядку. 

4. Розв’язати рівняння: 

а) 0)2( 22  dyxdxxyy ;        б) (2 ) 0хy x dу уdх   ; 

в) 3 3 22( ) 0y dx x ху dy   ;        г) ln
x

xу у
y

  ; 

д) 
x

y
xyxy sec . 

 

1.6  Рівняння, що зводяться до однорідних 

До однорідних рівнянь зводиться рівняння вигляду 















cbyax

cybxa
f

dx

dy 111        (1.12) 

за допомогою заміни змінних aux  ,  vy  за умови, що 

0  11
11

 abba
ba

ba
, де ) ,(   – точка перетину прямих 0111  cybxa  і 

0 cbyax . Якщо 011  abba , рівняння (1.12) зводиться до рівняння з 

відокремлюваними змінними заміною byaxz   або cbyaxz  .  

Приклад 1.8. Знайти загальний інтеграл рівняння 

0)12()12(  dyyxdxyx . 

Розв’язання.  

Задане рівняння можна переписати у вигляді 
12

12






yx

yx

dx

dy
. 

Обчислюємо 03 
21

12
   

11


ba

ba
. Уведемо нові змінні u  та v  такі, що 

aux  ,  vy . Числа   і   визначаємо із системи рівнянь 








,012

,012




 

тобто 1 , 1 . Отримаємо однорідне рівняння: 

0)2()2(  dvvuduvu . 
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Робимо заміну z
u

v
 ,  zuv  , udzzdudv  . У результаті цієї заміни 

одержуємо рівняння з відокремлюваними змінними: 

0))(2()2(  zduudzuzuduuzu , 

0)21()1(2 22  dzzuduzzu . 

Відокремлюючи змінні, отримаємо: 

0
1

212
2





 dz

zz

z
du

u
. 

Інтегруємо його: 

  ln 1 ln  ln2 2 Czzu  , 

або, після потенціювання та повернення до змінних, урахувавши, що 
u

v
z   і 

1 xu  та 1 yv , остаточно отримаємо: 

Czzu  )1( 22
,   C

u

v

u

v
u 














 1

2

2
2

, Cuvuv  22 , 

Cxxyy  22 )1()1)(1()1( , 

Cxyyxxy  122
. 

Приклад 1.9. Знайти загальний інтеграл рівняння 

0)122()2(  dyyxdxyx . 

Розв’язання.  

Рівняння можна записати у вигляді 
122

2






yx

yx

dx

dy
. Оскільки 

0 
22

11
   

11


ba

ba
, заміною zyx  , dxdzdy   рівняння перетворюється 

на рівняння з відокремлюваними змінними: 

0))(12()2(  dxdzzdxz , 

0)12()3(  dzzdxz . 
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Відокремлюючи змінні та інтегруючи, отримаємо 0
3

12





 dz

z

z
dx ,  

Cxzz   3 ln52 , або, після повернення до старих змінних: 

Cyxyx   3 ln52 . 

Контрольні питання та завдання 

1. Який вигляд мають диференціальні рівняння, що зводяться до 

однорідних? 

 

1.7  Лінійне рівняння першого порядку. Підстановка 

Бернуллі 

Визначення. Лінійним диференціальним рівнянням першого порядку 

називають рівняння, лінійне відносно невідомої функції у  та її похідної у : 

)( )( xQyxPy  ,           (1.13) 

де )(xP  і )(xQ  – задані неперервні функції від х. 

Якщо 0)( xQ , то рівняння (1.13)  називають лінійним однорідним, якщо 

0)( xQ , то лінійним неоднорідним. 

Лінійне однорідне рівняння є рівнянням з відокремлюваними змінними. 

Його розв’язок можна записати у вигляді: 

0 )(  yxPy  ,        )(xP
y

y



,      dxxP

y

dy
 )( , 

||ln )(||ln CdxxPy           
dxxP

Cey
 )(

.         (1.14) 

Існує кілька способів розв’язання цього рівняння.  

Метод Бернуллі. Шукаємо розв’язок рівняння (1.13) у вигляді добутку 

двох функцій від х: 

)( )( xvxuy  ,       (1.15) 

vuvuy    .       (1.16) 

Підставивши у і y  до (1.13), отримаємо: 

)(  )(  xQvuxPvuvu      
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)( ) )(( xQvuvxPvu  .             (1.17) 

Виберемо функцію v  такою, щоб вираз у дужках дорівнював нулю: 

0 )(  vxPv , тоді      (1.18) 

0 )(  vxP
dx

dv
,          0 )(  dxxP

v

dv
,           dxxPCv  )(||ln||ln ,  


dxxP

e
C

v  )(
,            

dxxP
eCv

 )(
 .                             (1.19) 

Оскільки достатньо будь-якого відмінного від нуля розв’язку рівняння 

(1.15), то як функцію )(xv  візьмемо  
dxxP

ev
 )(

  ( 1)C   . 

Підставляючи  знайдену функцію )(xv  до  (1.17), одержимо рівняння з 

відокремленими змінними для функції ( )u x : 

              
v(x)

Q(x)

dx

du
 ,       dx

v(x)

Q(x)
du  ,    Cdx

v(x)

Q(x)
u   . 

Підставляючи )(xu  й )(xv  до (1.14), одержуємо загальний розв’язок 

лінійного неоднорідного рівняння у вигляді: 

                              ][ )( Cdx
v(x)

Q(x)
xvy       

] )([  
 )( )(

CdxexQey
dxxPdxxP

 
 .          (1.20) 

Розв’язок задачі Коші для рівняння (1.20) має вигляд: 






















x

x

x

x

dttP
x

x

dttP

dtetQyey

0

0

)(

0
0

)(

)( .         (1.21) 

Приклад 1.10. Розв’язати рівняння 

3)1(
1

2



 xy

x
y . 

Розв’язання.  

Скориставшись (1.13), (1.14), отримаємо vuy   ,  vuvuy    , тому 

3)1(  
1

2
  


 xvu

x
vuvu ,       

3)1(   
1

2
 










 xvuv

x
vu . 
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Виберемо функцію v  такою, щоб     0  
1

2



 v
x

v , тоді 

0 
1

2




x

v

dx

dv
,      0 

1

2




x

dx

v

dv
,         ||ln |1|ln2||ln Cxv  ,     

||ln 
)1(

  ln
2

C
x

v



,      2)1(  xCv ,      2)1(  xv . 

32 )1()1(  xxu ,      1 xu ,      1 x
dx

du
,      dxxdu  )1(  , 

C
x

u 


  
2

)1( 2

.  

Підставляючи  u   й  v , одержуємо загальний розв’язок рівняння: 

2
4

)1( 
2

)1(



 xC

x
y . 

Контрольні питання та завдання 

1. Яке диференціальне рівняння першого порядку називають лінійним? 

2. Яке рівняння   називають лінійним однорідним диференціальним 

рівнянням першого порядку? 

3. Поясніть сутність методу Бернуллі інтегрування лінійного рівняння. 

4. Розв’язати рівняння: 

а) 
2

2 хy xy хе   ;                б) 
3y xy х   . 

 

1.8   Метод варіації довільної сталої (метод Лагранжа) 

Спочатку розв’язуємо відповідне лінійне однорідне рівняння 

0 )(  yxPy . Це рівняння з відокремленими змінними, його загальний 

розв’язок має вигляд:  


dxxP

Cey
 )(

. 

У цьому розв’язку сталу С розглядаємо як невідому функцію від х і 

добираємо її так, щоб функція 


dxxP

exCy
 )(

 )(             (1.22) 
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відповідала лінійному неоднорідному рівнянню (1.13). Диференціюючи і 

підставляючи (1.22) до (1.13), отримаємо:  

)( )( )(
 )( )(

xPexCexCy
dxxPdxxP   , 

)()( )()( )( )(
 )( )( )(

xQxPexCxPexCexC
dxxPdxxPdxxP

  , 

)( )(
 )(

xQexC
dxxP

  ,      dxxP
exQxC

 )(
)( )( , 

CdxexQxC
dxxP

 
  )(

)( )( , 

])([  
 )( )(

CdxexQey
dxxPdxxP

 
 .                    (1.23) 

Він збігається з розв’язком (1.20), знайденим методом Бернуллі. 

Приклад 1.11. Розв’язати методом Лагранжа рівняння 

3)1(
1

2



 xy

x
y . 

Розв’язання.  

Спочатку знайдемо загальний розв’язок  відповідного лінійного 

однорідного рівняння: 

0
1

2



 y
x

y         0
1

2




x

dx

y

dy
       ||ln |1|ln2||ln Cxy       

||ln 
)1(

  ln
2

C
x

y



            2)1(  xCy . 

Вважаючи в цьому розв’язку сталу С як невідому функцію змінної х, 

шукаємо розв’язок лінійного неоднорідного рівняння у вигляді: 

2)1( )(  xxCy ,       )1( )(2)1( )( 2  xxCxxCy . 

Підставимо у, y  до вихідного рівняння  і з отриманого диференціального 

рівняння знайдемо функцію )(xC : 

322 )1()1( )(
1

2
)1( )(2)1( )( 


 xxxC

x
xxCxxC , 

1 )(  xxC ,          
2( 1)

( ) ( 1)
2

x
C x x dx C


    . 
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Отже, 2
4

)1( 
2

)1(



 xC

x
y  є загальним розв’язком цього лінійного 

неоднорідного рівняння. 

Контрольні питання та завдання 

1. Поясніть сутність методу варіації довільної сталої інтегрування 

лінійного рівняння. 

2. Розв’язати рівняння: 

а) 
2

1у
y

х х
    ;            б) 

у
y х

х
   . 

3. Знайти частинний розв’язок диференціального рівняння: 

1

cos
y ytgx

x
   ,   (0) 1y  .           

 

1.9  Рівняння Бернуллі 

Визначення. Рівняння вигляду 

nyxQyxPy )( )(  ,             (1.24) 

де Rn , 0n , 1n , називають рівнянням Бернуллі.  

Розділимо обидві частини рівняння (1.24) на 
ny :  

)( )( 1 xQyxPyy nn  
  

Уведемо позначення zyn 1
, тоді yynz n  )1( . 

)()1()()1( xQnzxPnz  . 

Отримали лінійне неоднорідне рівняння відносно z . Розв’язавши це рівняння 

та повертаючись до старих змінних, знайдемо загальний інтеграл рівняння 

Бернуллі. 

Якщо 0n , то 0y  завжди є розв’язком рівняння Бернуллі. 

Однак зручніше розв’язок рівняння Бернуллі шукати у вигляді uvy   або 

застосовувати метод, аналогічний методу варіації довільної сталої, не зводячи 

його до лінійного рівняння. 
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Приклад 1.12. Знайти загальний розв’язок рівняння  
3 

3 2

x

y
y

x
y  . 

Розв’язання.  

Це рівняння Бернуллі ( 3n ). Розділимо обидві частини рівняння на 
3 y : 

3 

2 

3 

12

x
y

xy

y


 
. 

Зробимо заміну змінних 
2  yz , тоді yyz  3 2 . 

3 

12

2

1

x
z

xdx

dz
 ,          

3 

24

x
z

xdx

dz
 . 

Одержали лінійне неоднорідне рівняння. Розв’яжемо відповідне 

однорідне рівняння: 

        0
4

 z
xdx

dz
,    0

4


x

dx

z

dz
,   ||ln ||ln4||ln Cxz  , 

||ln   ln
4 

C
x

z
 ,      4  xCz  . 

Уважаючи в цьому розв’язку сталу С функцією від х, шукаємо розв’язок 

лінійного неоднорідного рівняння у вигляді: 

4  )( xxCz  ,       
3 4  )(4 )( xxCxxCz  . 

Підставимо в лінійне неоднорідне рівняння  z,  z  і з отриманого 

диференціального рівняння знайдемо функцію )(xC : 

3 

4 3 4 2
 )(

4
 )(4 )(

x
xxC

x
xxCxxC  , 

7 

2
 )(

x
xC  ,          C

x
C

x
xC 

6 6 3

1

6

2
 )( . 

4 

2 

4 

6 3

1
 

3

1
Cx

x
xC

x
z 








  – загальний розв’язок лінійного 

неоднорідного рівняння. 

4 

2 2 3

11
Cx

xy
 ,            

4 

2 

2 

3

1

1

Cx
x

y



 , 
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6 

2 

31

3

Cx

x
y


  – загальний розв’язок рівняння Бернуллі. 

Оскільки 03n , то 0y  – теж розв’язок цього рівняння. 

Приклад 1.13. Знайти частинний розв’язок рівняння  yxy
x

y 
4

, що 

відповідає початковій умові 4)1( y . 

Розв’язання.  

Це рівняння Бернуллі (
2

1
n ). Розділимо обидві частини рівняння на y : 

xy
xy

y


 4
. 

Зробимо заміну змінних yz  , тоді y
y

z 
2

1
. Отримаємо лінійне 

неоднорідне рівняння: 

x
x

z
z 

4
2 ,         

2

2 x

x

z
z  . 

Скористаємося методом Бернуллі, шукатимемо розв’язок у вигляді 

)()( xvxuz  , де )(xu  і )(xv  – неперервні функції від x . 

Підставимо тепер uvz   і vuvuz   у останнє рівняння: 

2

2 x

x

uv
vuvu  . 

Для визначення двох невідомих функцій )(xu  і )(xv  одного рівняння 

недостатньо. Оскільки одна із функцій, наприклад )(xv , може бути вибрана 

довільно, визначимо її так, щоб коефіцієнт при функції )(xu  у виразі 

2

2 x

x

v
vuvu 








  

перетворився на нуль, тобто, щоб  0
2


x

v
v . Це рівняння з відокремлюваними 

змінними, відокремивши які 
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xv

v 2



                     
x

dx

v

dv 2
   

і проінтегрувавши, одержимо: 

    
x

dx

v

dv 2
                ln 2ln lnv x С                  

2)( xxv  . 

Тут досить знайти який-небудь частинний розв’язок, тому ми прийняли сталу 

інтегрування 1C  . 

Тепер підставимо функцію 2xv   у рівняння 
2

2 x

x

v
vuvu 








 . Знову 

отримаємо рівняння з відокремлюваними змінними: 

2

2 x
xu                  

xdx

du

2

1
 , 

інтегруючи яке, визначимо: 

 
x

dx
du

2
                Cxxu  ln

2

1
)( . 

Отже, 2ln
2

1
)()( xCxxvxuz 








 . 

Виконуючи обернену заміну yz  , отримаємо: 

2ln
2

1
xCxy 







 ,    або     

4
2

ln
2

1
xCxy 








 . 

Визначимо довільну сталу C , скориставшись початковою умовою: 

4)1( y                

2

1ln
2

1
4 








 C                2C . 

Підставляючи це значення в загальний розв’язок, знайдемо шуканий 

частинний розв’язок: 

4
2

2ln
2

1
xxy 








 . 

Приклад 1.14. Знайти загальний розв’язок рівняння  

ydxdyyxx 2)sin( 3  . 

Розв’язання.  
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Якщо поділити обидві частини рівняння на ydy , то отримаємо рівняння 

Бернуллі відносно функції )(yx : 

xyyxx  2sin3
,         

y

yx

y

x
x

2

sin

2

3

 . 

Застосуємо метод Бернуллі безпосередньо до заданого рівняння, 

поклавши 

)()( yvyux                 
dy

dv
uv

dy

du

dy

dx
 . 

Тоді 

y

yvu

y

uv

dy

dv
uv

dy

du

2

sin

2

33

 ,      
y

yvu

y

v

dy

dv
uv

dy

du

2

sin

2

33









 . 

Покладемо 0
2


y

v

dy

dv
 і знайдемо функцію )(yv : 

y

v

dy

dv

2
             

y

dy

v

dv

2
           

1
ln ln ln

2
v y С              yv  . 

Потім підставимо функцію yv   в рівняння 

y

yvu

y

v

dy

dv
uv

dy

du

2

sin

2

33









  і відокремимо змінні: 

y

yyyu
y

dy

du

2

sin3

 ,            dy
y

u

du

2

sin
3

 . 

Інтегруючи, знаходимо функцію )(yu : 

Cy
u

 cos
2

1

2

1
2

              
Cy

u
2cos

1


 . 

Отже, загальний розв’язок рівняння  має вигляд: 

Cy

y
yvyuyx

2cos
)()()(


 . 

Контрольні питання та завдання 

1. Яке рівняння називають рівнянням Бернуллі? 

2. Якими методами можна розв’язати рівняння Бернуллі? 
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3. Розв’язати рівняння: 

а) 2у
y ху

х
    ;            б) 2 4у

y х у
х

   . 

 

1.10   Рівняння Ріккаті 

Визначення. Рівнянням Ріккаті називають рівняння, що має вигляд: 

)()( )( 2 xRyxQyxPy  ,     (1.25) 

де )(xP , )(xQ ,  )(xR  –  задані неперервні функції від х. 

У загальному  випадку це рівняння не зводиться до квадратур. Але, якщо 

вдається знайти частинний розв’язок )(1 xy  рівняння (1.25), то заміна zyy  1  

зводить його до рівняння Бернуллі, а заміна 
z

yy
1

1   – до лінійного рівняння. 

Приклад 1.15. Розв’язати рівняння  035222  xyyxyx . 

Розв’язання.  

Це рівняння є рівнянням Ріккаті. Його частинний розв’язок має вигляд 

x
xy

1
)(1  . Зробимо заміну змінних u

x
y 

1
,  u

x
y 

2

1
. Тоді 

03
1

5
211

2

22

2

2 



























x
ux

x

u

x
ux

x
ux , 

0355211 222  xuuxuxux ,     222 3 uxxuux  . 

Це рівняння Бернуллі. Для його інтегрування застосуємо спосіб, аналогічний 

методу варіації довільної сталої. Спочатку проінтегруємо рівняння 

032  xuux . Розділивши змінні, маємо: 

x

dx

u

du 3
 ,       Cxu lnln3ln  ,      

3x

C
u  . 

Далі шукаємо розв’язок рівняння Бернуллі у вигляді 
3

)(

x

xC
u  , звідки 

43

)(3)(

x

xC

x

xC
u 


 . Підставляючи у рівняння u  та u , отримаємо: 
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6

22

22

)()(3)(3)(

x

xCx

x

xC

x

xC

x

xC



,       

3

2 )(
)(

x

xC
xC  , 

32 )(

)(

x

dx

xC

xdC
 ,    122

1

)(

1
C

xxC
 ,       

2
1

2

21

2
)(

xC

x
xC


 . 

Отже,  
xCx

u
)1(

2
2

 . Це загальний розв’язок рівняння Бернуллі. Після 

заміни u
x

y 
1

 маємо: 
xCxx

y
)1(

21
2

 , або 
xCx

Cx
y






3

2 3
. 

Контрольні питання та завдання 

1. Яке рівняння називають рівнянням Ріккаті? 

 

1.11   Рівняння у повних диференціалах 

Визначення. Рівняння 

0 ),( ),(  dyyxNdxyxM ,          (1.26) 

у якому ліва частина є повним диференціалом деякої функції ),( yxu , називають 

рівнянням у повних диференціалах,  

Необхідною і достатньою умовою того, що рівняння (1.26) є рівнянням у 

повних диференціалах, слугує рівність частинних похідних: 

x

N

y

M









,             (1.27) 

 причому  
y

M




 і 

x

N




 неперервні функції у деякій області. 

Доведемо, що якщо ліва частина рівняння (1.26) є повним диференціалом, 

то виконується умова (1.27), і якщо виконується умова (1.27), ліва частина 

рівняння (1.26) є повним диференціалом деякої функції ),( yxu , тобто рівняння 

(1.26) має вигляд: 

    0),( yxdu , 

звідки, інтегруючи, маємо загальний інтеграл  Cyxu ),( . 
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Припустимо спочатку, що ліва частина рівняння (1.26) є повний 

диференціал деякої функції ),( yxu , тобто: 

;  ),( ),( dy
y

u
dx
x

u
dudyyxNdxyxM









  

тоді 

x

u
M




 ,    

y

u
N




 . 

Диференціюємо перше співвідношення по  у,  а друге – по  х, отримаємо: 

yx

u

y

M








 2 

 , 
xy

u

x

N








 2 

. 

Якщо функції ),( yxM  та ),( yxN  неперервні і мають неперервні  частинні 

похідні першого порядку, то на підставі теореми про рівність мішаних похідних 

отримаємо:   

xy

u

yx

u








 2 2 

          
x

N

y

M









, 

тобто рівність  (1.27) є необхідною умовою для того, щоб ліва частина рівняння 

(1.26) була повним диференціалом деякої функції ),( yxu .  

Покажемо, що ця умова є і достатньою для того, щоб рівняння (1.26) було 

в повних диференціалах. Дійсно, шукатимемо таку диференційовану функцію 

),( yxu , щоб 

),( yxM
x

u





,    ),( yxN

y

u





, 

причому умова 
x

N

y

M









 справджується.  

За співвідношенням ),( yxM
x

u





 знаходимо )(  ),(),(

0

ydxyxMyxu
x

x

  , 

де 0x  – абсциса будь-якої точки з області існування розв’язку. 

Інтегруючи по  х, уважаємо  у  сталим і тому довільна стала інтегрування 

може залежати від у. Доберемо функцію )( y  так, щоб виконувалося 
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співвідношення  ),( yxN
y

u





. Для цього продиференціюємо обидві частини 

останньої рівності по  у  і результат прирівняємо до ),( yxN : 

; ),()( 

0

yxNydx
y

M

y

u
x

x










   

але, за умовою 
x

N

y

M









 ),()( 

0

yxNydx
x

Nx

x





  , тобто 

),()( ),(
0

yxNyyxN
x

x
 , або 

 ),()( ),(),( 0 yxNyyxNyxN   . 

 Отже, ),()( 0 yxNy  . Це диференціальне рівняння відносно невідомої 

функції )(y . Розв’язавши його, знайдемо:  

 1 

0

0 ),()( CdyyxNy

y

y

  . 

Отже, функція ),( yxu  матиме вигляд: 

1 

0

0

0

),(),(),( CdyyxNdxyxMyxu

y

y

x

x

  . 

 Тут ) ;( 00 yxP  – довільна точка, в околі якої існує розв’язок 

диференціального рівняння (1.26). 

Прирівнюючи цей вираз до довільної сталої С, одержимо загальний 

інтеграл рівняння (1.26): 

CdyyxNdxyxM

y

y

x

x

 
0

0

0

),(),( . 

Приклад 1.16. Знайти загальний інтеграл рівняння 

0)cos()sin(    dyyxxedxyye yx
. 

Розв’язання.  

Переконаємося в тому, що задане рівняння є рівнянням у повних 

диференціалах. 
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Тут yyeyxM x sin),(   ,  yxxeyxN y cos),(   ,  y
y

M
cos1




, 

y
x

N
cos1




. Умова (1.27) виконується. Отже, ліва частина рівняння є повним 

диференціалом деякої функції ),( yxu , тобто: 

yye
x

u x sin 



,     yxxe

y

u y cos 



. 

Проінтегруємо  перше співвідношення за змінною х, вважаючи y  

фіксованою. Водночас стала інтегрування може залежати від y , тобто 

з’являється невідома функція від y : 

)(sin)()sin(   yCyxxyeyCdxyyeu xx   . 

Диференціюючи останній вираз за змінною  у і підставляючи у друге 

співвідношення yxxe
y

u y cos 



, знайдемо спочатку )( yC  , а потім і )(yC : 

               yeyxxyCyxx  cos)(cos         yeyC  )(       yeyC  )(  .  

Отже, шукана функція 
yx eyxxyeyxu   sin),(  , а загальний інтеграл 

рівняння має вигляд: 

Cyxu ),(        Ceyxxye yx    sin . 

Приклад 1.17. Знайти загальний інтеграл рівняння 

0)2sin2(cos2 22  dyyxyydxx . 

Розв’язання.  

Перевіряємо, чи не є це рівняння в повних диференціалах. 

Тут yxyxM 2cos2),(  ,  yxyyxN 2sin2),( 2 ,   

yxyyx
y

M
2sin2sincos4 




,      yx

x

N
2sin2




.  

x

N

y

M









. 
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Отже, умова повного диференціала виконана, тобто задане рівняння є 

рівнянням у повних диференціалах, а тому: 

  yx
x

u 2cos2



,     yxy

y

u
2sin2 2




. 

Проінтегруємо  
x

u




  за  х: 

 )(cos)(cos2 222 yCyxyCydxxu   . 

Знайдемо функцію )(yC , продиференціювавши останній вираз за  у: 

)(2sin)(sincos2 22 yCyxyCyyx
y

u





. 

 Отримаємо рівняння: 

yxyyCyx 2sin2)(2sin 22  , 

звідки знаходимо yyC 2)(  , тобто 
2)( yyC  . Отже, загальний інтеграл 

рівняння має вигляд: 

 Cyyx  222 cos . 

Контрольні питання та завдання 

1. Надайте визначення рівняння у повних диференціалах. 

2. Яка умова є необхідною та достатньою, щоб диференціальне рівняння 

першого порядку було рівнянням у повних диференціалах? 

3. Знайти загальний інтеграл рівняння: 

 а) 
2 2 3(3 6 ) (6 4 ) 0х ху dx х у y dy    ;        б) 

  ( 2 ) 0x ye dx хe y dy   ; 

в) 
  ( sin ) ( cos ) 0x xy e y dx x e y dy    ;     г) 

  ( ) 0x xуe dx у e dy   . 

 

1.12  Інтегрувальний множник 

У деяких випадках, коли рівняння (1.26) не є рівнянням у повних 

диференціалах, можливо знайти таку функцію ),( yx , множення на яку 

перетворить це рівняння на рівняння в повних диференціалах, тобто, рівняння: 

( , ) ( , ) 0M x y dx N x y dy    
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є рівнянням у повних диференціалах. 

Таку функцію ),( yx  називають інтегрувальним множником. Із 

визначення інтегрувального множника маємо: 

)()( N
x

M
y










 

або   






























x

N

y

M

y
M

x
N , 

звідки     
x

N

y

M

y
M

x
N


















  lnln
.          (1.28) 

Для знаходження інтегрувального множник отримано рівняння з 

частинними похідними. 

Існують деякі окремі випадки, коли можна порівняно легко знайти 

розв’язок рівняння (1.26), тобто знайти інтегрувальний множник. 

1. Якщо )(x  , то 0




y


  й рівняння (1.28) набуває вигляду: 

N

x

N

y

M

x













 ln
. 

Для існування інтегрувального множника, який не залежить від змінної 

y , необхідно й достатньо, щоб права частина рівняння була тільки функцією 

від x . У такому разі ln  знайдеться квадратурою. 

Приклад 1.18. Розв’язати рівняння   02)( 2  xydydxyx . 

Розв’язання.  

У такому випадку 
2),( yxyxM  ,  xyyxN 2),(  . Знайдемо відповідні 

частинні похідні: y
y

M
2




, y

x

N
2




. Ліва частина рівняння не є повним 

диференціалом. Маємо: 

xxy

yy

N

x

N

y

M

2

2

22
















. 
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Отже, інтегрувальний множник можна знайти за формулою: 

xx

2ln




 
     xln2ln       

2

1

x
 . 

Помножимо вихідне рівняння на 
2

1

x
  та  отримаємо рівняння у повних 

диференціалах:  02
22

2




dy
x

xy
dx

x

yx
. Його ліву частину можна подати у 

вигляді: 

0
2

2

2





x

dxyxydy

x

dx
,     звідки    0ln

2

















x

y
xd  

і загальний інтеграл цього рівняння  має вигляд:  x

y

Cex

2


 . 

2. Аналогічно, якщо 
My

M

x

N 1

















 є функція тільки y , то рівняння має 

інтегрувальний множник )(y  , що залежить тільки від y . 

Приклад 1.19. Розв’язати рівняння   0)1(ln2 222  dyyyxydxxy . 

Розв’язання.  

Тут yxyyxM ln2),(  ,  1),( 222  yyxyxN . Маємо: 

yyxy

yxx

M

y

M

x

N

1

ln2

)1(ln22














, 

отже, інтегрувальний множник можна знайти з рівняння: 

yy

1ln




 
,       

y

1
 . 

Рівняння   0
1ln2

222




 dy
y

yyx
dx

y

yxy
  є рівнянням у повних 

диференціалах. Його можна записати у вигляді: 

01)ln( 22  dyyyyxd ,     звідки    Cyyx  2

3

22 )1(
3

1
ln . 
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3. Якщо рівняння (1.26) має інтегрувальний множник вигляду 

)),((),( yxyx   , де ),( yx  – відома функція, то з рівності 

)()( N
x

M
y










 легко отримати рівняння: 

y
M

x
N

x

N

y

M






























1
. 

Приклад 1.20. Розв’язати рівняння 

    0)54()23( 22  dyyxyxdxyyx ,  

якщо його інтегрувальний множник має вигляд )( 2yx  . 

Розв’язання.  

Якщо 2yxz  , то )(z  , і, отже, 

dz

d

x

z

dz

d

x

 lnlnln










,    y

dz

d

y

z

dz

d

y
2

lnlnln 










. 

Рівняння для знаходження інтегрувального множника матиме вигляд: 

x

N

y

M

dz

d
MyN











ln
)2( ,   або    

MyN

x

N

y

M

dz

d

2

ln















. 

Оскільки 
223 yyxM  ,  

254 yxyxN  , то  
zyxMyN

x

N

y

M

11

2 2
















,   

і отримуємо   
zdz

d 1ln



, звідки z , тобто 

2yx  . Помножимо задане 

рівняння на 
2yx  , отримаємо рівняння у повних диференціалах: 

0)5464()2423( 432224322  dyyxyxyyxxdxyyxyxyx . 

Загальний інтеграл отриманого рівняння має вигляд: 
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,)5464(

)2423(

0

43
0

2
0

2
0

2
0

0

4322

Cdyyyxyxyxx

dxyyxyxyx

y

y

x

x









 

або   Cyxyxyyxyxx
~

22 5432223  , 

де    3
0

5
0

4
00

3
00

2
0

2
00

2
0 22

~
xyyxyxyxyxCC  . 

Після перетворень отримаємо: 

Cyxyx
~

))(( 22  . 

Контрольні питання та завдання 

1. Надайте визначення інтегрувального множника. 

2. У якому випадку диференціальне рівняння має інтегрувальний 

множник ( )x ? 

3. У якому випадку диференціальне рівняння має інтегрувальний 

множник ( )у ? 

4. Знайти загальний інтеграл рівняння: 
2 2 2( ) ( ) 0х у dx х у х dy    . 

 

1.13 Рівняння Лагранжа. Рівняння Клеро 

Визначення. Рівнянням Лагранжа називають диференціальне рівняння 

першого порядку, що має вигляд: 

)()( ygxyfy              (1.29) 

причому yyg )( . 

Тут )( yf   і )( yg   – функції від y . У диференціальному рівнянні 

Лагранжа y  є лінійною функцією x  з коефіцієнтами, що залежать від y . 

Диференціальне рівняння інтегрується за допомогою підстановки: 

p
dx

dy
y  , 

де p  –  параметр. Тоді, заміняючи в рівнянні (1.29) похідну y  на p , 

отримаємо: 
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)()( pgxpfy  . 

Величина p  розглядається як допоміжна змінна. 

dppgdxpfdppfxpdgdxpfpxdfdy )()()()()()(  , 

pdxdy  ,    dppgpfxdxpfpdx )]()([)(  , 

звідки    0)]()([)]([  dppgxpfdxpfp  й  )( pfp : 

)(

)(

)(

)(

pfp

pg
x

pfp

pf

dp

dx









 . 

Це лінійне диференціальне рівняння щодо невідомої функції x . 

Загальний розв’язок цього диференціального рівняння: 




















 











dpe
pfp

pg
Cex

pfp

dppf

pfp

dppf

)(

)(

)(

)(

)(

)(
. 

Вилучаємо  із загального розв’язку й диференціального рівняння p  та 

отримуємо загальний розв’язок цього диференціального рівняння. 

Якщо рівняння 0)(  xfp  має дійсні розв’язки ipp   ) ,1( ni  , то, 

підставляючи їх у диференціальне рівняння (1.29) і враховуючи, що ii ppf )(  , 

одержимо: 

)( ii pgxpy  . 

Ці прямі можуть виявитися особливими розв’язками диференціального 

рівняння. 

Приклад 1.21. Проінтегрувати диференціальне рівняння Лагранжа 

22 yyxy  . 

Розв’язання.  

Якщо py  , то задане рівняння можна записати у вигляді: 

22 pxpy  . 

Оскільки pdxydxdy  , то  

pdpxdppdxdy 2)(2  ,  або    dppxpdxpdx )22(2  . 

Звідси 
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0)22(  dppxpdx . 

Розділивши на pdp , одержуємо лінійне диференціальне рівняння: 

2
2

 x
pdp

dx
. 

Загальний розв’язок цього рівняння   p
p

C
x

3

2
2
 . 

Підставляючи знайдений загальний розв’язок у задане диференціальне 

рівняння, отримаємо:    

3

2

3

2
22

2
2

2

2 p

p

C
ppp

p

C
pxpy 










 . 

Підставляємо 0p  (значення знаменника, за якого перший дріб 

перетворюється в  ) у рівність 22 pxpy  , і отримуємо частинний розв’язок 

0y . 

Приклад 1.22. Проінтегрувати рівняння yyxy  ln2  

Розв’язання.  

Якщо py  , то pxpy ln2  . Диференціюючи, знаходимо: 

p

dp
xdppdxpdx  22 , 

звідки     
p

x
dp

dx
p

1
2  ,      або       

2

12

p
x

pdp

dx
 . 

Одержимо рівняння першого порядку, лінійне відносно x ; розв’язуємо 

його та знаходимо: 

pp

C
x

1
2
 . 

Підставляючи знайдене значення x  у вираз для y , одержимо остаточно: 

pp

C
x

1
2
 ,      2

2
ln 

p

C
py . 

Визначення. Рівнянням Клеро називають диференціальне рівняння 

першого порядку, що має вигляд: 
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)(ygyxy  .            (1.30) 

Це диференціальне рівняння є частинним випадком рівняння Лагранжа й 

відрізняється від останнього тим, що в ньому коефіцієнт при x  дорівнює y , а 

не функції від y . Нехай py  . Тоді рівняння набуде вигляду: 

)( pgxpy  .            (1.31) 

Виконуючи перетворення, маємо: 

)( pdgxdppdxdy  ,   dppgxdppdxpdx )( ,   0))((  dppgx . 

Рівняння розпадається на два рівняння: 

0dp     і       0)(  pgx . 

Із рівняння 0dp  отримуємо: Cp  . Підставляючи це значення в 

рівняння (1.31), одержуємо загальний розв’язок рівняння Клеро: 

)(CgxCy  . 

Особливий розв’язок – це такий розв’язок диференціального рівняння, 

який не утворюється із загального інтеграла (розв’язку) ні за якого певного 

значення довільної сталої C. 

 Рівняння  0)(  pgx   й рівняння (1.31) утворять систему: 









).(

,0)(

pgxpy

pgx
 

Вилучаючи із цієї системи p , знаходимо особливий розв’язок, який являє 

собою обвідну сім’ї прямих, що утворюють загальний розв’язок. 

Приклад 1.23. Проінтегрувати диференціальне рівняння Клеро 

2yyxy  . 

Розв’язання.  

Заміняючи в цьому рівнянні похідну y  на C , одержуємо загальний 

розв’язок  
2CxCy  . 

Обвідну знаходимо, використовуючи систему: 









Cx

CxCy

20

,2

             або            








.

,2

2Cy

Cx
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Із першого рівняння системи знаходимо  
2

x
C  . Підставляючи це 

значення в друге рівняння системи, отримуємо особливий розв’язок  
4

2x
y  , 

який графічно являє собою обвідну кривих 2CxCy  . 

Інтегральними кривими заданого диференціального рівняння є парабола 

4

2x
y   й можливі дотичні до неї. 

Приклад 1.24. Проінтегрувати рівняння  
y

a
yxy




2
   )( consta  . 

Розв’язання.  

Уважаючи py  , одержуємо  
p

a
xpy

2
 . 

Диференціюючи останнє рівняння й заміняючи dy  на pdx , знайдемо: 

          dp
p

a
xdppdxpdx

22
 ,    звідки    0

2 2













p

a
xdp . 

Прирівнюючи до нуля перший множник, одержуємо 0dp , звідки Cp   

й загальний розв’язок заданого рівняння 
C

a
Cxy

2
  є  однопараметричною 

сім’єю прямих. Прирівнюючи до нуля другий множник, отримаємо 
22 p

a
x  . 

Вилучаючи p  із цього рівняння  й з рівняння 
p

a
xpy

2
 , одержимо 

axy 22   – це теж розв’язок цього рівняння (особливий розв’язок). 

Із огляду геометрії крива axy 22   – це обвідна сім’ї прямих, заданих  

загальним розв’язком. 

Контрольні питання та завдання 

1. Яке диференціальне рівняння називають рівнянням Лагранжа? 

2. Яке диференціальне рівняння називають рівнянням Клеро? 
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РОЗДІЛ 2   ДИФЕРЕНЦІАЛЬНІ РІВНЯННЯ ВИЩИХ ПОРЯДКІВ 

 

2.1   Диференціальні рівняння вищих порядів, що 

допускають зниження порядку 

Рівняння     )()( xfy n       (2.1) 

Розв’язок цього рівняння знаходять послідовним n-кратним 

інтегруванням: 

)()( xfy n  ,  

111
)1( )()( CxfCdxxfy n  


, 

21211
)2( )(])([ CxCxfdxCxfy n  


, 

………………………………………………… 

nn
nn

n CxCx
n

C
x

n

C
xfy 





 


1

2211 ...
)!2()!1(

)( , 

де      
разn

n
n dxxfxf

  

 )()( . 

Урахувавши, що .... , 
)!2(

   , 
)!1(

21

 n

C

n

C
, є довільні сталі, загальний розв’язок (2.1) 

може бути записаний у вигляді: 

nn
nn

n CxCxCxCxfy  


1
2

2
1

1 ...)( . 

Приклад 2.1. Знайти розв’язок задачі Коші:  
xxey  , 1)0( y , 0)0( y . 

Розв’язання.  

Знайдемо загальний розв’язок послідовним інтегруванням цього 

рівняння: 

1Cexedxxey xxx  
 , 

211 2][ CxCexedxCexey xxxx  
 . 

21)2( CxCexy x  
. 

Скористаємося початковими умовами: 0)0(     ,1)0(  yy . 
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1)2( Cexey xx  
 

0)0( y :        1
0 0 20 Cee  ,          11 C .      

1)0( y :           2
0 21 Ce  ,                  12 C . 

Отже, шуканий частинний розв’язок має вигляд: 

1)2(   xexy x . 

Рівняння ) ,( yxFy   не містить шуканої функції y  

 Уводимо заміну змінних  zy  , 
dx

dz
y  . Така заміна дозволяє звести це 

рівняння до рівняння першого порядку ),( zxfz  . 

Приклад 2.2.  Розв’язати рівняння  xtgxyy 2sin  .  

Розв’язання.  

Це рівняння не містить змінної у. Уважаючи zy  , перетворимо рівняння 

до вигляду xtgxzz 2sin  . Ми отримали лінійне диференціальне рівняння 

першого порядку відносно функції z . Інтегруємо його. Уважаючи в рівнянні 

vuz   , vuvuz    , одержимо: 

xtgxvuvuvu 2sin     ,         xtgxvvuvu 2sin) (   . 

Визначаємо v , узявши 0  tgxvv , 0  tgxv
dx

dv
,   dx

x

x

v

dv
 

cos

sin
, 

звідки |cos|ln||ln xv  , або xv cos . 

Визначимо )(xu : 

xx
dx

du
x cossin2cos  ,  dxxdu  sin2        1cos2)( Cxxu  ; отже,  

xCxz coscos2 1
2  . 

Повертаючись до змінної у, отримаємо: 

xCx
dx

dy
coscos2 1

2  ,         21
2  cos cos2 CdxxCdxxy   , 

21 sin 
2

2cos1
2 CxCdx

x
y 


  ,       21sin

2

2sin
CxC

x
xy  . 
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Диференціальне рівняння 0) , ,  (  yyyF  не містить незалежної 

змінної 

Це рівняння допускає пониження порядку за допомогою заміни )(yzy  ,  

де )(yz  – нова шукана функція, y  – нова незалежна змінна. Тоді 
dy

dz
zy  , або 

zzy  .  Отримаємо 0),,(
~

),,(  zzyFyyyF . 

Приклад 2.3. Розв’язати рівняння  
2 12 yyy  . 

Розв’язання.  

Уважаючи zy  , zzy   , отримаємо рівняння I порядку відносно 

невідомих z  як функції від y : 

21  2 zzzy  . 

Розділимо змінні й проінтегруємо: 

0  
1

 2
2


 y

dy
dz

z

z
          ||ln||ln|1|ln 1

2 Cyz       

1

21
C

y

z



          1

21 yCz           11  yCz . 

Повертаючись до змінної x , отримаємо: 

11  yCy ,       dx
yC

dy





11

,       21
1

1
2

CxyC
C

 , 

)(12 211 CxCyC  ,       
2

2
2
11 )()1(4 CxCyC  , 

4)(4 2
2

2
11  CxCyC ,      

1

2
2

2
1

4

4)(

C

CxC
y


 . 

Задача Коші для рівняння другого порядку полягає в розв’язанні рівняння 

0),,,(  yyyxF , яке відповідає початковим умовам 00 )( yxy  , 00 )( yxy  . Із 

огляду геометрії ці умови означають, що з множини інтегральних кривих 

загального розв’язку рівняння потрібно виділити одну єдину криву, що 

проходить через точку ),( 000 yxM  і має в цій точці заданий кут нахилу 

дотичної 00 )( yxy   до додатного напрямку осі x0 . 
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Приклад 2.4. Знайти розв’язок задачі Коші:  

   
x

y
2cos

1
 ,     

2

2ln

4









y ,     1

4












y . 

Розв’язання.  

Спочатку знайдемо загальний розв’язок. 

C
x

dx
y   2cos

,     Ctgxy  , 

dxCxy )tg(           1cosln CCxxy  . 

Підставляємо до загального розв’язку початкові умови та знаходимо 1C  і 

C : 









Cxy

CCxxy

tg

cosln 1
         














C

CC

4
tg1

44
cosln

2

2ln
1





      0C . 

1
2

2
ln

2

2ln
C          01 C . 

Отже, частинний розв’язок задачі після підстановки до загального 

розв’язку значень 1C  і C  має вигляд: 

xy cosln . 

Рівняння виду  0) ,..., , , , ( )(  nyyyyxF , однорідне щодо 
)( ,..., , , nyyyy   

Рівняння зазначеного виду допускає пониження порядку на одиницю із 

заміною z
y

y



, де  z – нова невідома функція. 

Приклад 2.5. Розв’язати рівняння:  0)( 22  yxyyyx . 

Розв’язання.  

Перевіримо, чи є це рівняння однорідним щодо )( ,..., , , nyyyy  . 

22 )() , , , ( yxyyyxyyyxF  , 

 22222 )()() , , , ( yxyyyxkyxkkyykykxykykkyxF   

Поділимо обидві частини рівняння на  
2 y : 
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01

2

2 






 




y

y
x

y

y
x . 

Нехай  z
y

y



, звідки  z
y

y

y

y






2 

2 

,  або  2 zz
y

y



. У результаті 

отримаємо рівняння: 

   01)(
22 2  xzzzx ,  або  122  xzzx ,  тобто  

2 

12

xx

z
z  .  

Отримали лінійне неоднорідне рівняння. Розв’яжемо його методом 

Бернуллі, тобто знайдемо розв’язок рівняння у вигляді добутку двох функцій 

від х: )( )( xvxuz  . Тоді   vuvuz    . Рівняння набуває вигляду: 

2

1 
 2  

xx

vu
vuvu  ,       

2

1 
 2  

xx

v
vuvu 








 . 

Виберемо функцію v  такою, щоб дужка в лівій частині рівняння 

перетворилася на нуль. Унаслідок цього маємо систему двох рівнянь для 

функцій u  і v : 














2

1
 

,0
 

 2

x
vu

x

v
v

 

Перше рівняння системи є рівнянням з відокремлюваними змінними. 

Розв’яжемо його: 

0
 

 2 
x

v
v ,    0

 
 2 
x

v

dx

dv
,    ,    0

 
 2  dx
x

v
dv     02 

x

 dx
 

v

dv
, 

  dC
x

 dx
 

v

dv
02 ,   ||ln ||ln2||ln Cxv  ,    

2x

C
v  . 

Тут досить знайти який-небудь частинний розв’язок, тому беремо сталу 

інтегрування 1C , тобто 
2

1

x
v  . 

Тепер підставимо функцію 
2

1

x
v   у друге рівняння системи і знову 

отримаємо рівняння з відокремлюваними змінними. 
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22

11
 

xx
u  ,  1 u ,   1 

dx

du
,   dxdu  ,   1 Cxdxu   . 

Підставляючи  u   й  v , одержуємо загальний розв’язок рівняння: 

    
21

1
 

x
Cxuvz  ,    або     

2

11
 

x

C

xy

y



 

Інтегруючи останнє рівняння, отримаємо: 

  ||ln||ln||ln 2 
1 C

x

C
x y  , 

або    

   x

C

xeCy

1

2 



 . 

Контрольні питання та завдання 

1. Наведіть типи рівнянь, порядок яких можна понизити. 

2. У якому разі розв’язок диференціального рівняння вищого порядку 

знаходять безпосереднім інтегруванням? 

3. Як понизити порядок рівняння, що не містить шуканої функції y ? 

4. Як понизити порядок рівняння, що не містить незалежної змінної х ? 

5. Як понизити порядок рівняння однорідного відносно 
)( ,..., , , nyyyy  ? 

6. Розв’язати рівняння:   

а) sin3y x  ;                           б) 
2 0yy y   ; 

в) sin 2y y tgx x   ;                г) 2 0y xy   ; 

д) 
22 yyx  ;                           є) 

22 yyx  . 

 

2.2  Лінійні однорідні диференціальні рівняння другого 

порядку зі сталими коефіцієнтами 
 

Визначення. Рівняння виду  

0 cyybya ,                            (2.2) 

де a, b, c – сталі, називають лінійним однорідним диференціальним рівнянням 

другого порядку зі сталими коефіцієнтами. 
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Теорема. Якщо )(1 xy  і )(2 xy  – два лінійно незалежні частинні розв’язки 

рівняння 0 cyybya , const
xy

xy


)(

)(

2

1 , то загальний розв’язок цього 

рівняння: 

  )()( 2211 xyCxyCy  .                    (2.3) 

Для визначення частинних розв’язків )(1 xy  і )(2 xy  рівняння (2.2) 

складаємо характеристичне рівняння: 

02  cbkak ,              (2.4) 

де  k  – корінь, який визначають за формулою:    

a

Db
k

2


 ,     acbD 42  . 

Залежно від коренів характеристичного рівняння (2.4), загальний 

розв’язок рівняння (2.2) має вигляд: 

а) якщо корені рівняння дійсні й різні 21 kk  , то загальний розв’язок 

xkxk
eCeCy 2 

2
1 

1  ;                 (2.5) 

б) якщо корені рівняння дійсні й рівні, тобто kkk  21 , то загальний 

розв’язок рівняння (2.2) має вигляд: 

)( 21
  

2
 

1 xCCexeCeCy kxkxkx  ;             (2.6) 

в) якщо корені рівняння ik   2,1    – комплексно спряжені, то 

загальний розв’язок xeCxeCy xx  cos sin   
2

  
1    .           (2.7) 

Приклад 2.6. Знайти загальний розв’язок рівняння 067  yyy . 

Розв’язання.  

Щоб знайти загальний розв’язок заданого лінійного однорідного 

диференціального рівняння другого порядку зі сталими коефіцієнтами, 

складемо характеристичне рівняння 0672  kk . Знаходимо його корені: 

61 k , 12 k . Оскільки корені дійсні й різні, то загальний розв’язок рівняння 

має вигляд: 

xx eCeCy  
2

6 
1  . 
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Приклад 2.7. Знайти розв’язок задачі Коші: 02  yyy , 4)0( y , 

2)0( y . 

Розв’язання.  

Характеристичне рівняння, що відповідає заданому однорідному 

рівнянню,  є 0122  kk ; його корені дійсні й рівні: 121  kk . Отже, 

загальний розв’язок цього рівняння має вигляд: 

xx xeCeCy  
2

 
1  . 

Підставимо початкові умови до загального розв’язку і його похідної, 

отримаємо систему рівнянь відносно 1C   і  2C : 

xxx xeCeCeCy  
2

 
2

 
1   









,2

       ,4

21

1

CC

C
             









.2

  ,4

2

1

C

C
 

Звідси розв’язок задачі Коші має вигляд: 

xx xeey   24  . 

Приклад 2.8. Знайти загальний розв’язок рівняння  2 5 0y y y    . 

Розв’язання.  

Складемо характеристичне рівняння  2 2 5 0k k   ; його корені 

комплексно спряжені: 
1,2 1 2k i   , а тому шуканий загальний розв’язок 

заданого рівняння є: 

    

1 2sin2 cos2 x xy C e x C e x   . 

Контрольні питання та завдання 

1. Яку структуру має загальний розв’язок лінійного  однорідного  

рівняння другого порядку зі сталими коефіцієнтами? 

2. Яке рівняння називають характеристичним? 

3. Як побудувати характеристичне рівняння лінійного однорідного 

рівняння другого порядку зі сталими коефіцієнтами? 
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4. Запишіть вигляд лінійно незалежних розв’язків лінійного однорідного 

рівняння зі сталими коефіцієнтами, які відповідають парі простих комплексно 

спряжених коренів i   характеристичного рівняння. 

5. Запишіть вигляд лінійно незалежних розв’язків лінійного однорідного 

рівняння зі сталими коефіцієнтами, які відповідають дійсному кореню 

кратності m. 

6. Знайти загальний розв’язок рівняння: 

а) 034  yyy ;                         б) 2 2 0y y y    ; 

в) 8 16 0y y y    ;                        г) 8 25 0y y y    . 

   

2.3  Лінійні неоднорідні диференціальні рівняння 

другого порядку зі сталими коефіцієнтами 

Лінійне неоднорідне диференціальне рівняння другого порядку зі 

сталими коефіцієнтами має вигляд: 

)(xfcyybya  ,            (2.8) 

constcba  , , , )(xf  – задана неперервна функція. 

Визначення. Якщо в (2.8) 0)( xf , то рівняння 0 cyybya  

називають відповідним однорідним рівнянням. 

Загальний розв’язок Y  рівняння (2.8) є сумою будь-якого частинного 

розв’язку y  неоднорідного рівняння і загального розв’язку у відповідного 

однорідного рівняння  0 cyybya , тобто:   

yyY  .            (2.9) 

Якщо 1 y  – частинний розв’язок рівняння  )(1 xfcyybya  , а 2y  – 

частинний розв’язок рівняння  )(2 xfcyybya  , то 21 yy   – частинний 

розв’язок рівняння  

)()( 21 xfxfcyybya  .           (2.10) 

Якщо функція )(xf  має спеціальний вигляд, то частинний розв’язок 

рівняння (2.8) можна знайти методом невизначених коефіцієнтів. 
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1. Нехай права частина лінійного диференціального рівняння зі сталими 

коефіцієнтами має вигляд    ( ) ( )xf x e P x , де )(xP  – многочлен n-го степеня й  

   не є коренем характеристичного рівняння, то існує частинний розв’язок 

вигляду )(  xMey x , де )(xM  – деякий многочлен n-го степеня: 

2

0 1 2( ) ... n

nM x A A x A x A x     . 

Коефіцієнти iA  визначають із системи алгебраїчних рівнянь методом 

невизначених коефіцієнтів. 

Якщо ж   є коренем характеристичного рівняння кратності k ( 1k  або 

2k ), то шукаємо частинний розв’язок неоднорідного рівняння у вигляді 

   ( )k xy x e M x . 

Зокрема, при  0   права частина – многочлен n-го степеня, та якщо 

0   не є коренем характеристичного рівняння, то частинний розв’язок ( )M x  

– є також многочлен того самого степеня. Якщо ж 0   – корінь 

характеристичного рівняння кратності k , то частинний розв’язок має вигляд:  

 ( )ky x M x . 

2. Нехай права частина лінійного диференціального рівняння зі сталими 

коефіцієнтами має  вигляд: 

  ( ) [ ( )sin  ( )cos  ]xf x e P x x Q x x    , 

де  ( )P x  і ( )Q x  – многочлени (n – найбільший з їх степенів)  і  iz      не є 

коренем характеристичного рівняння, тоді частинний розв’язок неоднорідного 

рівняння слід шукати у вигляді: 

  [ ( )sin  ( )cos  ]xy e M x x N x x    , 

де  
2

0 1 2( ) ... n

nM x A A x A x A x      і  
2

0 1 2( ) ... n

nN x B B x B x B x      –

многочлени степеня n. Якщо ж iz      є коренем характеристичного 

рівняння, то частинний розв’язок шукають у вигляді: 

  [ ( )sin  ( )cos  ]xy xe M x x N x x    . 
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Приклад 2.9. Знайти частинний розв’язок рівняння  

24 5 10 4 3y y y х x      , який відповідає початковим умовам (0) 0y  , 

(0) 0y  . 

Розв’язання.  

Розв’яжемо відповідне однорідне рівняння 4 5 0y y y    . Відповідне 

характеристичне рівняння  2 4 5 0k k   , а його корені комплексно спряжені: 

 1,2 2k і  ,  32 k . Загальний розв’язок є   2  2

 1  2sin cosx xy C e x C e x  .  

За виглядом правої частини заданого рівняння доберемо частинний 

розв’язок неоднорідного рівняння. Оскільки права частина неоднорідного 

рівняння має вигляд 2( ) 10 4 3f x х x    (тобто вигляд  0 ( ) xP x e ), то 

2( )М x Ах Вx С   , а 0   не є коренем характеристичного рівняння 

 2 4 5 0k k   , то частинний розв’язок будемо шукати у вигляді: 

2у Ах Вx С   . 

Підставимо цей вираз до заданого рівняння: 

2y Aх В   ,        2y А  . 

2 22 4(2 ) 5( ) 10 4 3A Ax B Ax Bх С x х        . 

Прирівнюючи коефіцієнти з однаковими степенями х зліва і справа, 

отримаємо систему для визначення коефіцієнтів А, В і С: 

2

1

 0

x

x

x

  

5 10,

  5 5 4,

2 4 5 3

A

A B

А В С



  
   

            

2,

4,

3.

A

B

С





 

 

Отже,  
22 4 3y х x   . Загальний розв’язок із (3.25) yyY   буде: 

 2  2 2

 1  2sin cos 2 4 3x xY C e x C e x х x     , 

 2  2  2  2

 1  1  2  22 sin cos 2 cos sin 4 4x x x xY C e x C e x C e x C e x x       . 

Підставляючи початкові умови до загального розв’язку і його похідної, 

одержимо систему рівнянь відносно  1C  і  2C : 
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2

2 1

0 3,
  

0 2 4;

C

C C

 


  
            

2

1

3,
  

2.

C

C

 



 

Звідси розв’язок, який відповідає поставленим початковим умовам, має 

вигляд: 

 2  2 22 sin 3 cos 2 4 3x xY e x e x х x     . 

Приклад 2.10. Знайти загальний розв’язок рівняння  

 35 6 (2 1) xy y y x e     . 

Розв’язання.  

Задано лінійне неоднорідне диференціальне рівняння другого порядку зі 

сталими коефіцієнтами і спеціальним видом правої частини. Відповідне 

однорідне рівняння: 5 6 0y y y    . Складемо характеристичне рівняння 

 2 5 6 0k k   ; його корені  1 2k  ,   2 3k  . Загальний розв’язок відповідного 

однорідного рівняння є  
 2  3

 1  2

x xy C e C e  .  

Права частина рівняння являє собою добуток показникової функції  3xe  на 

многочлен першого степеня ( ) 2 1Р х x  , тому ( )М х Аx В  ,  а коефіцієнт  3 

у показнику степеня ( 3)   збігається з одним з коренів характеристичного 

рівняння ( 1)m  . Тому частинний розв’язок шукаємо у вигляді: 

 3( ) xy x Ax B e  ,      
 2  3( ) xy Ax Bx e  , 

 3  2  3(2 ) 3( )x xy Ax B e Ax Bx e     , 

 3  3  3  2  32 3(2 ) 3(2 ) 9( )x x x xy Ae Ax B e Ax B e Ax Bx e        . 

Підставляючи  yyy     ,   ,   до заданого рівняння, отримаємо: 

 3  3  2  3  3

 2  3  2  3  3

2 6(2 ) 9( ) 5(2 )

15( ) 6( ) (2 1)

x x x x

x x x

Ae Ax B e Ax Bx e Ax B e

Ax Bx e Ax Bx e x e

      

     
 

 3  3  32 (2 ) (2 1)x x xAe Ax B e x e    . 

Прирівнюючи коефіцієнти за однакових степенів х, отримаємо: 

0 

1

x

x
          

2 2,

2 1,

A

A B




  
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звідки  1A ,  3B   . Отже,  частинним розв’язком є:  

 3 ( 3) xy x x e  , 

а загальним –  2  3  3

 1  2  ( 3) x x xY C e C e x x e    . 

Приклад 2.11. Знайти загальний розв’язок лінійного неоднорідного 

рівняння 2 5 2sin 2 25cos2y y y x x     . 

Розв’язання.  

Відповідне однорідне рівняння зводиться до характеристичного рівняння 

0522  kk , яке має комплексно спряжені корені  ik 211  ;  ik 212  . 

Тому загальний розв’язок відповідного однорідного рівняння є: 

      

 1  2  1  2sin2 cos2 ( sin2 cos2 )x x xy C e x C e x e C x C x      . 

Права частина неоднорідного рівняння являє собою алгебраїчну суму 

добутків многочленів нульового степеня ( ) 2P x   і ( ) 21Q x   на 

тригонометричні функції sin 2x  і cos2x . Тому ( )M x A , ( )N x B . Числа 

0 2і i     не є коренями характеристичного рівняння. Отже, частинний 

розв’язок неоднорідного рівняння шукаємо у вигляді: 

sin 2 cos2y A x B x  , 

де А  і  В – сталі коефіцієнти, які підлягають визначенню. 

Знайдемо 

2 cos2 2 sin 2y A x B x   ,   4 sin 2 4 cos2y A x B x    . 

Підставляючи y , y , y   до заданого рівняння, отримаємо: 

4 sin 2 4 cos2 2(2 cos2 2 sin 2 ) 5( sin 2 cos2 )

2sin 2 25cos2 ,

A x B x A x B x A x B x

x x

      

 
 

sin2 cos2 4 cos2 4 sin2 2sin2 25cos2 .A x B x A x B x x x      

Прирівнюючи коефіцієнти при sin 2x  і cos2x , одержимо систему двох 

рівнянь для визначення А  і  В: 

4 2,

4 25,

A B

B A

 


 
      

2 4 ,

4(2 4 ) 25,

A B

B B

 


  
    

6,

1.

A

B





 

Загальний розв’язок цього рівняння  yyY  , тобто 
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 1  2( sin2 cos2 ) 6sin2 cos2xY e C x C x x x    . 

Приклад 2.12. Розв’язати  рівняння  9 12cos3y y x   . 

Розв’язання.  

Характеристичне рівняння  2 9 0k    має корені   1 3k i ,  2 3k i  ; тому 

загальний розв’язок однорідного рівняння має вигляд: 

 1  2sin3 cos3y C x C x  . 

Права частина заданого неоднорідного рівняння – добуток многочленна 

нульового степеня ( ) 12Q x    на функцію cos3x . Тому ( )M x A , ( )N x B . 

Числа 0 3і i     є коренями характеристичного рівняння ( 1)m  . Частинний 

розв’язок неоднорідного рівняння шукаємо у формі: 

( sin3 cos3 )y x A x B x  . 

Тоді   sin3 cos3 (3 cos3 3 sin3 )y A x B x x A x B x     , 

3 cos3 3 sin3 3 cos3 3 sin3 ( 9 sin3 9 cos3 )y A x B x A x B x x A x B x        . 

Після підстановки цих виразів до цього рівняння, отримаємо рівність: 

6 cos3 6 sin3 ( 9 sin3 9 cos3 )

9 ( sin3 cos3 ) 12cos3 ,

A x B x x A x B x

x A x B x x

    

  
 

6 cos3 6 sin3 12cos3A x B x x  . 

Прирівняємо коефіцієнти при  cos3x   і  sin 4x  та  одержимо систему 

рівнянь для визначення  А  і  В: 

6 12 ,

0,

А

В



 

               
2 ,

0.

А

В





 

Отже, загальний інтеграл цього рівняння: 

 1  2sin3 cos3 2 sin3Y C x C x x x   . 

Приклад 2.13. Знайти розв’язок задачі Коші: xeyyy x cos80106  , 

4)0( y ,  10)0( y . 

Розв’язання.  

Характеристичне рівняння має корені  ik  31 ,  ik  32 ; тому 

загальний розв’язок однорідного рівняння має вигляд: 
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3

 1  2( sin cos )xy e C x C x  . 

Частинний розв’язок неоднорідного рівняння шукаємо у формі: 

( sin cos )xy e A x B x  . 

Тоді   ( sin cos ) ( cos sin )x xy e A x B x e A x B x     , 

(2 cos 2 sin )xy e A x B x   . 

Підставляючи ці вирази для похідних до цього рівняння, скорочуючи на 

множник xe  і прирівнюючи коефіцієнти при  xcos   і  xsin ,  одержуємо систему 

рівнянь для визначення  А  і  В: 

16 8 0,

8 16 80 ,

A B

A B

 


 
               

2,

4.

A

B





 

Отже, загальний інтеграл цього рівняння 

3

 1  2( sin cos ) (2sin 4cos )x xY e C x C x e x x    . 

Підставляючи початкові умови до загального розв’язку і його похідну, 

одержимо систему рівнянь відносно 1 C   і  2 C . 

3

 1  2 1 2( 3 sin 3 cos cos sin ) ( 2cos 6sin )x xY e C x C x C x C x e x x          

 2

2  1

4 4,         

3 6 10,

C

C C

 

   

              
2

1

0,  

4.

C

C





 

Звідси розв’язок, який відповідає поставленм початковим умовам, має 

вигляд: 

34 sin 2 (sin 2cos )x xY e x e x x   . 

Контрольні питання та завдання 

1. Яке рівняння називають лінійним  неоднорідним  диференціальним 

рівнянням другого порядку зі сталими коефіцієнтами? 

2. Яка структура загального розв’язку лінійного неоднорідного  

диференціального рівняння другого порядку зі сталими коефіцієнтами? 

3. Запишіть частинний розв’язок лінійного неоднорідного 

диференціального рівняння 2-го порядку для випадків, коли )()(   xPexf n
x . 
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4. Запишіть частинний розв’язок лінійного неоднорідного 

диференціального рівняння 2-го порядку для випадків, коли 

] sin)( cos)([)(   
  xxQxxPexf mn

x   . 

5. Знайти загальний розв’язок диференціального рівняння: 

а) 4 3 cosy y y x    ;         б) 25 6 6 2y y y x х     ; 

в) 12  xyy ;                 г) 
xeyyy 210178  ; 

д) 4 4 хy y y хе    ;           є) 4 5 cos2y y y x    . 

6. Знайти частинний розв’язок диференціального рівняння: 

а) 24 5 2 хy y y x е    ,   (0) 2,     (0) 2y y  ;          

б) 48 16 хy y y е    ,   (0) 0,     (0) 1y y  ; 

в) 0)0(  ,2)0(  ,2sin92cos122  yyxxyyy . 

 

2.4 Лінійні однорідні диференціальні рівняння n -го порядку 

зі сталими коефіцієнтами 

Визначення. Лінійне однорідне диференціальне рівняння n -го порядку зі 

сталими коефіцієнтами має вигляд: 

                   0...  1 
)2( 

2 
)1( 

1 
)( 

0  
 yayayayaya nn

nnn
,        (2.11) 

де ( )ny  – похідні, 0 a , 1 a , …, na   – дійсні числа. 

Частинні розв’язки  цього  рівняння шукають у вигляді:  

kxy e ,                                                                     (2.12) 

де k  – дійсне або комплексне число, що підлягає  визначенню. 

Запишемо похідні 

                                
kxy ke  ,  

2 kxy k e  , …,   
( )n n kxy k e  

та підставимо  їх у рівняння (2.11): 

           
1

0 1 1( ... ) 0n n kx
n na k a k a k a e
     .                                   (2.13) 

Звідки  k  повинно відповідати рівнянню алгебри: 

1
0 1 1... 0n n

n na k a k a k a
     ,                                      (2.14) 
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яке називають характеристичним рівнянням, а його корені – 

характеристичними числами. 

Загальний розв’язок  рівняння (2.11) залежить від виду коренів 

характеристичного рівняння.  

Випадок 1. Корені 1 2,  ,  ...,  nk k k  характеристичного рівняння дійсні й 

різні, тоді загальний розв’язок рівняння  (2.11) має вигляд: 

  
xk

n
xkxk neCeCeCy  ...21

21 .                                        (2.15) 

Випадок 2.  Корені  характеристичного рівняння  комплексно спряжені, 

тобто 1,2k i   .  Тоді в загальному розв’язку рівняння (2.11) їм 

відповідатимуть два лінійно незалежні розв’язки: 

1 sinxy e x  ,           2 cosxy e x  .                              (2.16) 

Якщо корені суто уявні  1,2k i  , то: 

               1 siny x ,          2 cosy x .                                          (2.17) 

Система розв’язків у загальному випадку складається з незалежних 

розв’язків, відповідних іншим зв’язаним парам комплексних коренів і всім 

дійсним кореням. 

У загальному розв’язку кореням 1,2k i    відповідає множина 

частинних розв’язків: 

1 2( sin cos )xe C x C x   ,                                                 (2.18) 

а кореням 1,2k i    –  

1 2sin cosC x C x  .                                         (2.19) 

Випадок 3.  Корінь характеристичного рівняння 1k  – дійсний, кратності 

m . Йому відповідає m  лінійно незалежних частинних розв’язків вигляду: 

1
1

k xy e ,    1
2

k xy x e ,   11 k xm
ky x e  .                            (2.20) 

У загальному розв’язку цьому кореню відповідає вираз:  

                    1 1
1 2( .. )k x m

me C xC C x    .                                       (2.21) 
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Випадок 4.  Якщо 1,2k i    – комплексно спряжені корені кратності 

m , тоді їм відповідають 2m  незалежних розв’язків: 

    

1

1

cos , cos , ... ,  cos

sin , sin , ... , sin

x x m x

x x m x

e x xe x x e x

e x xe x x e x

  

  

  

  









                         (2.22) 

У загальному розв’язку цьому кореню відповідає вираз:  

1 1
1 2 1 2[( .. )sin ( .. )cos ]x m m

m me C xC C x x C xC C x x          .      (2.23)       

Якщо 1,2k i   корені кратності m , то у загальному розв’язку  

отримаємо: 

1 1
1 2 1 2( .. )sin ( .. )cosm m

m mC xC C x x C xC C x x         .             (2.24) 

Таким чином, загальний розв’язок лінійного однорідного рівняння 

складається з лінійної комбінації перелічених вище частинних випадків. 

Приклад 2.14. Розв’язати рівняння 044  yyyy  

Розв’язання.  

Задано лінійне однорідне диференціальне рівняння третього порядку зі 

сталими коефіцієнтами. Складемо характеристичне рівняння:  

0442 3  kkk . Знайдемо його  корені.  

0)1(4)1(2  kkk ,       0)4)(1( 2  kk , 

01k     або    042 k ,       11 k ,     42 k ,   ik 23,2  . 

Всі корені характеристичного рівняння прості, а тому шуканий загальний 

розв’язок є: 

xCxCeCy x  2cos 2sin 3 21  . 

Приклад 2.15. Розв’язати рівняння 035  yyyy  

Розв’язання.  

Складемо характеристичне рівняння:  0352 3  kkk . Знайдемо його  

корені.  Якщо алгебраїчне рівняння має дійсні корені, то вони знаходяться 

серед дільників вільного члена, тобто це можуть бути числа 1 , 3 . 11 k  
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перетворює це рівняння на тотожність, а тому є його коренем. Поділивши 

чисельник на знаменник за правилом ділення многочленів, отримаємо 

   0)32)(1( 2  kkk , 

Корені квадратного рівняння 0322  kk  можна знайти за теоремою Вієта:     

     12 k ,       33 k  

Отже, корені характеристичного рівняння – дійсні числа, причому корені 

1k  і 2k  – кратні.  

Отже, шуканий загальний розв’язок є: 

xxx eCxeCeCy 3
3 21 

 , 

де 1 C , 2 C , 3 C  – довільні сталі. 

Приклад 2.16. Знайти загальний розв’язок рівняння  09  yy V
. 

Розв’язання. 

 Складаємо характеристичне рівняння  09 3 5  kk .  

0)9( 2 3 kk  

Його корені  0321  kkk , ik 34  ,  ik 35  .  

Загальний розв’язок має вигляд: 

  xCxCxCxCCy 3cos3sin 54 
2

3 2 1  , 

 де 1 C , 2 C , 3 C , 4 C , 5C  – довільні сталі. 

Приклад 2.17. Знайти загальний розв’язок рівняння  096  yyy IV . 

Розв’язання.  

Складаємо характеристичне рівняння  096 2 4  kk ; його корені 

дійсні й кратні: 31 k ,  32 k ,  33 k ,  34 k , тому загальний 

розв’язок має вигляд: 

xxxx xeCeCxeCeCy 3 
4 

3 
3 

3 
2 

3 
1 

  , 

 де 1 C , 2 C , 3 C , 4 C  – довільні сталі. 

Приклад 2.18. Знайти загальний розв’язок рівняння  0168  yyy IV . 
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Розв’язання.  

Складаємо характеристичне рівняння  0168 2 4  kk ; його корені  

ikk 22 1  ,  ikk 24 3  . Отже, загальний розв’язок диференціального 

рівняння має вигляд: 

 1  2  3  4sin 2 cos2 sin 2 cos2y C x C x C x x C x x    , 

 де 1 C , 2 C , 3 C , 4 C  – довільні сталі. 

Контрольні питання та завдання 

1. Яке рівняння називають лінійним диференціальним рівнянням n -го 

порядку? 

2. Як побудувати характеристичне рівняння лінійного однорідного 

рівняння n-го порядку зі сталими коефіцієнтами? 

3. У якому вигляді слід шукати частинні розв’язки лінійного однорідного 

диференціального рівняння? 

4. Сформулюйте алгоритм Розв’язання лінійного однорідного 

диференціального рівняння. 

5. Знайти загальний розв’язок диференціального рівняння: 

а) 4 4 0у y y y      ;      б) 6 9 0IVу y y   ; 

г) 0Vу y  ;                      д) 4 0у y   . 

6. Знайти розв’язок диференціального рівняння, що відповідає заданим 

початковим умовам: 

а) 0,    (0) 3,    (0) 1,    (0) 1у y y y y         ;       

б) 2 0,    (0) 1,    (0) 0,    (0) 1у y y y y y           . 

 

2.5 Лінійні неоднорідні рівняння n-го порядку зі сталими 

коефіцієнтами 

Лінійне неоднорідне рівняння n -го порядку зі сталими коефіцієнтами має 

вигляд: 

)(...  
)1( 

1 
)( 

0 xfyayaya n
nn  

,                                    (2.25) 
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де  0 a , 1 a ,…, na  – дійсні числа, )(xf  – неперервна функція від х ( ( ) 0)f x  . 

Загальний розв’язок такого рівняння складається із загального розв’язку 

відповідного однорідного рівняння і  якого-небудь частинного розв’язку 

неоднорідного рівняння: 

                                 yyY  ,                                                        (2.26) 

де у – розв’язок однорідного рівняння, y  –  частинний розв’язок неоднорідного 

рівняння. 

Для лінійних неоднорідних рівнянь (2.25), права частина ( )f x  яких має 

спеціальний вигляд, частинний розв’язок можна знайти методом невизначених 

коефіцієнтів за відомим виглядом функції ( )f x . 

Випадок 1. Вільний член 
2

0 1 2( ) ( ) n
nf x P x a a x a x a x       – 

многочлен степеня n . 

1.1. Якщо число 0k   не є коренем характеристичного рівняння 

відповідного однорідного рівняння, то частинний розв’язок неоднорідного 

рівняння записується у вигляді: 

                                                       ( )y M x ,  

де ( )M x  – повний многочлен степеня n  (тобто того самого степеня, що й 

заданий) з невизначеними коефіцієнтами. 

1.2. Якщо число  0k    – корінь характеристичного рівняння кратності m , 

то: 

                                       ( )my x M x .                                                      (2.27) 

Випадок 2. Вільний член  ( ) ( ) xf x P x e . 

2.1. Якщо   не є коренем характеристичного рівняння, то: 

                   y = ( ) xM x e .                                                         (2.28) 

2.2. Якщо   є коренем характеристичного рівняння кратності m , то:  

                      ( )m xy x M x e .                                                     (2.29) 
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Випадок 3. Вільний член ( ) [ ( )sin ( )cos ] xf x P x x Q x x e   , де   і   – 

числа, ( )P x , ( )Q x  – многочлени від x  ( n  – найбільший з їх степенів), зокрема, 

можуть бути сталими числами (один з них може бути нулем). 

3.1. Якщо числа i   – не є коренями характеристичного рівняння, то: 

[ ( )sin ( )cos ] xy M x x N x x e   ,                                (2.30) 

де  
1

0 1( ) ...n n
nM x A x A x A    ,  

1
0 1( ) ...n n

nN x B x B x B    , ii BA ,  ),1( ni   –  

коефіцієнти, що підлягають визначенню. 

3.2. Якщо числа i   є коренями характеристичного рівняння кратності 

m , то частинний розв’язок рівняння (2.25) має вигляд: 

              [ ( )sin ( )cos ]m xy x M x x N x x e   .                           (2.31) 

Випадок 4. 1 2 3( ) ( ) ( ) ( )f x f x f x f x   , де 1 2 3( ),   ( ),   ( )f x f x f x  – функції 

типів, що розглянуті вище. Тоді, якщо 1y , 2y , 3y  – частинні розв’язки, що  

відповідають функціям 1 2 3( ),   ( ),   ( )f x f x f x , то частинний розв’язок усього 

рівняння (2.25) матиме вигляд: 

                 1 2 3y y y y   .                                                   (2.32) 

Приклад 2.19. Знайти загальний розв’язок рівняння  xxyy IV  2 12 . 

Розв’язання.  

Це лінійне неоднорідне диференціальне рівняння четвертого порядку зі 

сталими коефіцієнтами. Знайдемо спочатку загальний розв’язок y  лінійного 

однорідного рівняння 0  yy IV
. Відповідне характеристичне рівняння  

024  kk  має корені  021  kk ,  ik 3 ,  ik 4 , тому загальний розв’язок 

однорідного рівняння має вигляд: 

xCxCxCCy cossin 4 3 2 1  , 

 де 1 C , 2 C , 3 C , 4 C  – довільні сталі.  

Тепер за виглядом правої частини цього неоднорідного рівняння 

доберемо його частинний розв’язок y . Права частина заданого рівняння має 
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вигляд xxxf  2 12)( , тобто, якщо порівняти з видом ( ) ( )f x P x , робимо 

висновок, що  2( )P x x x  , тому 2( )M x Ax Bx C   , а 0k   є коренем 

характеристичного рівняння кратності 2m , отже, частинний розв’язок 

неоднорідного рівняння слід шукати у вигляді: 

23422 )( CxBxAxCBxAxxy  . 

Підставимо цей розв’язок у вихідне рівняння, для чого попередньо 

обчислимо: 

  CxBxAxy 234 23  ,         CBxAxy 2612 2  ,  

  BAxy 624  ,                Ay IV 24 .  

Отримаємо: 

   xxCBxAxA  22 12261224 . 

Прирівнюючи коефіцієнти з однаковими степенями х в обох частинах 

останньої рівності, знайдемо невизначені коефіцієнти: 

:2x     1212 A ,     1A  

:x       16 B ,       
6

1
B  

:0x    0224  CA ,  12C  

Тоді частинний розв’язок неоднорідного рівняння набуває вигляду: 

   
234 12

6

1
xxxy  . 

 Отже, загальний розв’язок неоднорідного рівняння такий: 

     
234

4 3 2 1 12
6

1
cossin xxxxCxCxCCyyY  . 

Приклад 2.20. Знайти загальний розв’язок рівняння  
xeyyy 242  . 

Розв’язання.  

Це лінійне неоднорідне диференціальне рівняння третього порядку зі 

сталими коефіцієнтами. Знайдемо спочатку загальний розв’язок y  лінійного 

однорідного рівняння 02  yyy . Складемо відповідне характеристичне 
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рівняння  0223  kkk , знайдемо його корені  01 k ,  12 k ,  23 k , тому 

загальний розв’язок однорідного рівняння має вигляд: 

xx eCeCCy 2
3 2 1  , 

 де 1 C , 2 C , 3 C  – довільні сталі.  

Тепер за виглядом правої частини цього неоднорідного рівняння 

доберемо його частинний розв’язок y . Права частина заданого рівняння має 

вигляд 
xexf 24)(  , тобто, якщо порівняти з видом ( ) ( ) xf x P x e , робимо 

висновок, що ( ) 4P x  , тому ( )M x A , а 2   не є коренем характеристичного 

рівняння, отже, частинний розв’язок неоднорідного рівняння слід шукати у 

вигляді: 

xAey 2 . 

Підставимо цей розв’язок у вихідне рівняння, для чого попередньо 

обчислимо: 

  
xAey 22 ,         

xAey 24 ,   
xAey 28 . 

Отримаємо: 

   xxxx eAeAeAe 2222 4448  ,    xx eAe 22 48  ,     
2

1
A . 

Отже, частинний розв’язок неоднорідного рівняння 

   
xey 2

2

1
 . 

Загальний розв’язок неоднорідного рівняння матиме вигляд: 

     
xxx eeCeCCyyY 22

3 2 1 
2

1
 . 

Приклад 2.21. Знайти частинний розв’язок диференціального рівняння 

)2cos2(sin42 xxyyy  , який відповідає початковим умовам: 1)0( y , 

0)0( y , 1)0( y . 

Розв’язання.  
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Для розв’язання задачі Коші спочатку потрібно знайти загальний 

розв’язок заданого неоднорідного рівняння, а потім за допомогою початкових 

умов виділити з нього частинний розв’язок.  

Однорідне рівняння, що відповідає заданому неоднорідному рівнянню, 

має вигляд: 

02  yyy . 

Характеристичне рівняння 02 23  kkk  має дійсні корені 01 k , 

12 k , 13 k , тому загальний розв’язок відповідного однорідного рівняння 

матиме вигляд: 

xx xeCeCCy    
3 

 
2 1 . 

Права частина неоднорідного рівняння є )2cos2(sin4)( xxxf  , де 

( ) 4P x  , ( ) 4Q x   – многочлени нульового степеня та числа 2i i     не є 

коренями характеристичного рівняння, тому частинний розв’язок 

неоднорідного рівняння шукатимемо у вигляді: 

xBxAy 2cos2sin  .               

Знайдемо похідні від передбачуваного частинного розв’язку  y : 

xBxAy 2sin22cos2  ,    xBxAy 2cos42sin4  ,  xBxAy 2sin82cos8   

і підставимо їх у задане рівняння: 

),2cos2(sin42sin2

2cos22cos82sin82sin82cos8

xxxB

xAxBxAxBxA




 

xxxBxAxBxA 2cos42sin42cos82sin82sin62cos6   

Прирівняємо коефіцієнти при x2sin  і x2cos : 

:2sin x      486  AB ,   243  AB ,          
25

2
B  

:2cos x     486  BA ,   243  BA ,      
25

16
A  

Отже, 
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   xxy 2cos
25

2
2sin

25

16
 . 

 Загальний розв’язок неоднорідного рівняння: 

 xxxeCeCCyyY xx 2cos
25

2
2sin

25

16 
3 

 
2 1  

. 

Щоб відповідати обом початковим умовам, слід знайти першу та другу 

похідну від загального розв’язку: 

xxxeCeCeCY xxx 2sin
25

4
2cos

25

32 
3 

 
3 

 
2  

, 

  xxxeCeCeCY xxx 2cos
25

8
sin

25

64
2  

3 
 

3 
 

2  
. 

Підставляючи початкові умови в загальний розв’язок і його похідні, 

отримаємо систему рівнянь щодо 1 C , 2 C  і 3 C . 




















;1
25

8
2

    ,0
25

32

    ,0
25

2

3 2 

3 2 

2 1 

CC

CC

CC

             




















 ;
25

33
2

 ,
25

23

 ,
25

2

3 2 

3 2 

1 2 

CC

CC

CC

         




















   .
75

1

 ,
75

97

   ,
75

103

3 

2 

1 

C

C

C

 

Отже, отримуємо розв’язок задачі Коші: 

 xxxeeY xx 2cos
25

2
2sin

25

16

75

1

75

97

75

103    
.  

Приклад 2.22. Знайти загальний розв’язок рівняння  

xyyy IV sin162  . 

Розв’язання.  

Задано лінійне неоднорідне рівняння четвертого порядку. Однорідне 

рівняння, що відповідає заданому неоднорідному рівнянню, має вигляд: 

  02  yyy IV
. 

Характеристичне рівняння 012 24  kk  має кратні комплексно-

спряжені корені ik 2,1 , ik 4,3 , тому загальний розв’язок відповідного 

однорідного рівняння матиме вигляд: 
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 xxCxxCxCxCy cossincossin 43 2 1  . 

Права частина неоднорідного рівняння – xxf sin3)(  . Порівняємо її зі 

спеціальним видом ( ) [ ( )cos ( )sin ] xf x P x x Q x x e   . Маємо ( ) 3P x  , 

( ) 0Q x   – многочлени нульового степеня, тому ( )M x A , ( )N x B , числа 

i i    є коренями характеристичного рівняння кратності 2m , тому 

частинний розв’язок неоднорідного рівняння шукатимемо у вигляді: 

 )cossin(2 xBxAxy  .               

Знайдемо похідні від передбачуваного частинного розв’язку  y : 

 )sincos()cossin(2 2 xBxAxxBxAxy  ,     

 

),cossin(

)sincos(4)cossin(2)cossin(

)sincos(2)sincos(2)cossin(2

2

2

xBxAx

xBxAxxBxAxBxAx

xBxAxxBxAxxBxAy







 

 

),sincos()cossin(6

sin6cos6)sincos()cossin(2

)cossin(4sin4cos4sin2cos2

2

2

xBxAxxBxAx

xBxAxBxAxxBxAx

xBxAxxBxAxBxAy







 

 2

2

6 sin 6 cos 6 sin 6 cos 6 ( cos sin )

2 ( cos sin ) ( sin cos ) 12 sin 12 cos

8 ( cos sin ) ( sin cos )

iVy A x B x A x B x x A x B x

x A x B x x A x B x A x B x

x A x B x x A x B x

        

        

    

 

і підставимо їх у задане рівняння: 

,sin16)cossin(

)cossin(2)sincos(8)cossin(4

)cossin()sincos(8cos12sin12

2

2

2

xxBxAx

xBxAxxBxAxxBxA

xBxAxxBxAxxBxA







 

  xxBxA sin162sin82cos8  . 

Прирівняємо коефіцієнти при xsin  і xcos : 

:sin x       168  B ,           2B  

:cosx       08  A ,            0A  

Отже, 
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   xxy cos2 2 . 

 Загальний розв’язок неоднорідного рівняння: 

 xxxxCxxCxCxCyyY cos2cossincossin 2
43 2 1  . 

Контрольні питання та завдання 

1. Яке рівняння називають лінійним неоднорідним диференціальним 

рівнянням n -го порядку? 

2. Сформулюйте сутність методу варіації довільних сталих відшукання 

лінійного неоднорідного рівняння n-го порядку. 

3. Знайти загальний розв’язок диференціального рівняння: 

а) 22 2 ху y y е      ;      б) 2IVу y х х   . 

6. Знайти розв’язок диференціального рівняння, що відповідає заданим 

початковим умовам: 

а) 2 4(sin cos ),    (0) 1,    (0) 0,    (0) 1у y y x x y y y            . 

 

2.6 Метод варіації довільних сталих 

Цей метод застосовують для знаходження частинного розв’язку лінійного 

неоднорідного рівняння n-го порядку як зі змінними, так і зі сталими 

коефіцієнтами, якщо відомий загальний розв’язок відповідного однорідного 

рівняння. 

Нехай маємо неоднорідне рівняння  (2.25): 

1 2
0 1 2 1... ( )n n n

n na y a y a y a y a y f x 
       . 

Нехай відомий загальний розв’язок відповідного однорідного рівняння: 

nn yCyCyCy   2 2 1 1 ... , 

де  ny – лінійно незалежні розв’язки однорідного рівняння. 

Метод Лагранжа полягає в тому, що загальний розв’язок лінійного 

неоднорідного рівняння (2.25) має такий самий вигляд, що і загальний 

розв’язок відповідного однорідного рівняння, із тією лише різницею, що 
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довільні сталі nC   є деякими, поки невідомими функціями від x , які слід 

добрати так, щоб функція: 

1 1 2 2( ) ( ) ... ( )n nY C x y C x y C x y                                        (2.33) 

відповідала неоднорідному рівнянню (2.25). 

Шукані функції )(  ...,  ),(   ),(  2 1 xCxCxC n  повинні відповідати тільки 

співвідношенню, що отримане в результаті підстановки функції (2.33) у 

рівняння (2.25). Тоді для знаходження функцій ( )iC x  їх можна підпорядкувати 

1n   будь-яким довільним умовам. 

Щоб отримати найпростішу систему для визначення шуканих функцій 

( )iC x , обчислимо похідні  
 1

, ...
n

y y y


   функції  (2.33), та підпорядкуємо 

їх додатковим умовам: уважатимемо рівними нулю сукупність тих членів, що 

містять ( )iC x . 

Розглянемо метод для випадку рівняння третього порядку:  

             1 2 3 ( )y a y a y a y f x      .                                     (2.34) 

Нехай відповідне однорідне рівняння має наступні три лінійно незалежні 

розв’язки 1 2 3, ,y y y , тоді загальний розв’язок відповідного однорідного 

рівняння матиме вигляд: 

1 1 2 2 3 3y C y C y C y   . 

Розглянемо 1 2 3,  ,  C C C  як функції від x  і  спробуємо їх визначити. 

1 1 2 2 3 3( ) ( ) ( )Y C x y C x y C x y                                       (2.35) 

 1 1 1 1 2 2 2 2 3 3 3 3( ) ( ) ( ) ( ) ( ) ( )Y C x y C x y C x y C x y C x y C x y                  (2.36) 

Накладаємо  першу умову: 

             1 1 2 2 3 3( ) ( ) ( ) 0C x y C x y C x y     .                                (2.37) 

Знайдемо другу  похідну: 

1 1 1 1 2 2 2 2 3 3 3 3( ) ( ) ( ) ( ) ( ) ( )Y C x y C x y C x y C x y C x y C x y                    (2.38) 

Накладаємо другу умову: 

                  1 1 2 2 3 3( ) ( ) ( ) 0C x y C x y C x y       .                              (2.39) 
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Обчислюємо третю   похідну: 

1 1 1 1 2 2 2 2 3 3 3 3( ) ( ) ( ) ( ) ( ) ( )Y C x y C x y C x y C x y C x y C x y                (2.40) 

Підставляємо (2.35), (2.36), (2.38), (2.40) в (2.34), ураховуючи умови 

(2.37), (2.39): 

1 1 1 1 2 1 3 1 2 2 1 2 2 2 3 2( )[ ] ( )[ ]C x y a y a y a y C x y a y a y a y              

3 3 1 3 2 3 3 3 1 1 2 2 3 3( )[ ] ( ) ( ) ( ) ( )C x y a y a y a y C x y C x y C x y f x                               

  

1 1 2 2 3 3

1 1 2 2 3 3

1 1 2 2 3 3

( ) ( ) ( ) 0,

( ) ( ) ( ) 0,

( ) ( ) ( ) ( ).

C x y C x y C x y

C x y C x y C x y

C x y C x y C x y f x

     

       


      

                       (2.41) 

Розв’язавши систему, знаходимо: 

2 3 2 3
1

1 2 3

( ) ( )
( )

( , , )

y y y y f x
C x

W y y y

    ,               1 3 1 3
2

1 2 3

( ) ( )
( )

( , , )

y y y y f x
C x

W y y y

   , 

1 2 1 2
3

1 2 3

( ) ( )
( )

( , , )

y y y y f x
C x

W y y y

         

 2 3 2 3
1 1

1 2 3

( ) ( )
( )

( , , )

y y y y f x dx
C x C

W y y y

 
   ,  1 3 1 3

2 2
1 2 3

( ) ( )
( )

( , , )

y y y y f x dx
C x C

W y y y

 
   , 

1 2 1 2
3 3

1 2 3

( ) ( )
( )

( , , )

y y y y f x dx
C x C

W y y y

 
   , 

де 

1 2 3

1 2 3 1 2 3

1 2 3

( , , )

y y y

W y y y y y y

y y y

  

  

 – визначник Вронського. 

Для диференціального рівняння n -го порядку функції 

)(  ...,  ),(   ),(  2 1 xCxCxC n   визначають із системи рівнянь: 


























),()(...)()(

    ,0)(...)()(

         ..............................................................................

                  ,0)(...)()(

                  ,0)(...)()(

)1( 
  

)1( 
2 2 

)1( 
1 1 

)2( 
  

)2( 
2 2 

)2( 
1 1 

  2 2 1 1 

  2 2 1 1 

xfyxCyxCyxC

yxCyxCyxC

yxCyxCyxC

yxCyxCyxC

n
nn

nn

n
nn

nn

nn

nn
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де  )(xf  – права частина цього рівняння. 

Для рівняння другого порядку  )()()( 2 1 xfyxayxay   відповідна 

система має вигляд: 









).()()(

     ,0)()(

2 2 1 1 

2 2 1 1 

xfyxCyxC

yxCyxC
 

Розв’язуючи систему, знайдемо )(),( 2 1 xCxC   як визначені функції від х: 

)()(   ),()( 2 2 1 1 xxCxxC   . 

Інтегруючи, отримаємо: 

22 2 11 1  )()(               , )()( CdxxxCCdxxxC    , 

 де 21   , CC  – сталі інтегрування. 

Підставляючи отримані вирази )(1 xC  й )(2 xC  у рівність 

2 2 1 1 )()( yxCyxCY  , знайдемо інтеграл, який залежить від двох довільних 

сталих  1C   і  2C  , тобто загальний розв’язок неоднорідного рівняння. 

Приклад 2.23. Знайти загальний розв’язок рівняння   

xe
yyy

21

1
65


 . 

Розв’язання.  

Задано лінійне неоднорідне диференціальне рівняння другого порядку, 

права частина якого не має спеціального вигляду. Застосуємо метод варіації 

довільних сталих. 

Знайдемо спочатку розв’язок відповідного лінійного однорідного 

рівняння:  

   065  yyy . 

Характеристичне рівняння 0652  kk  має корені 21 k ,  32 k .  Отже, 

загальний розв’язок однорідного рівняння є: 

xx eCeCy 3
2 

2
1 

  , 

 де 1 C , 2 C  – довільні сталі.  

Будемо шукати загальний розв’язок неоднорідного рівняння у вигляді: 
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xx exCexCy 3

2 
2

1 )()(    

Функції )(1 xC  і )(2 xC   потрібно знайти із системи: 

                


















.
1

1
)(3)(2

,0)()(

2

3
2 

2
1 

3
2 

2
1 

x

xx

xx

e
exCexC

exCexC

 

 Розв’язуємо цю систему. Із першого рівняння виразимо )(1 xC  і, 

підставивши його у друге рівняння, отримаємо: 

xexCxC  )()( 2 1 ,           
x

xxx

e
exCeexC

2

3
2 

2
2 

1

1
)(3)(2


  , 

x

x

e
exC

2

3
2 

1

1
)(


  ,     

x

x

e

e
xC

2

3

2 
1

)(


 ,    
x

x

e

e
xC

2

2

1 
1

)(


  

У результаті інтегрування отримаємо: 

 ,1ln
2

1

1
)( 1

2

2

2

1 Cedx
e

e
xC x

x

x




           

.
1

1
1

1

11

1  

 

1
)(

22
2

2

2

2

2

2

3

2 

CarctgeeCarctgttdx
t

dx
t

t
dx

t

t

dxedt

et
dx

e

e
xC

xx

x

x

x

x
































,   

Отже, загальний розв’язок заданого неоднорідного рівняння: 

         
xxxxx eCarctgeeeCey 3

2
2

1
2 )()1ln

2

1
(   , 

 або   

  
xx

x
xx ee

e
eCeCy 22

2
3

2
2

1 1ln
2




  ,  

де 1C ,   і  2C  – довільні сталі. 

Приклад 2.24. Розв’язати  рівняння:  
2

sin

cos

x
y y

x
    

Розв’язання.  
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За виглядом правої частини рівняння робимо висновок, що метод 

невизначених коефіцієнтів непридатний. Виписуємо відповідне однорідне 

рівняння та складаємо для нього характеристичне рівняння: 

0y y   , 

3 0k k  , 

2( 1) 0k k   , 

1 2 30, ,k k i k i    . 

Отже, загальний розв’язок однорідного рівняння 

1 2 3cos siny C C x C x   . 

Загальний розв’язок неоднорідного рівняння шукаємо у вигляді: 

                      1 2 3( ) ( )cos ( )siny C x C x x C x x   .               (2.42)                        

Складаємо систему для визначення функцій 1 2 3( ),  ( ),  ( )C x C x C x : 

1 2 3

1 2 3

1 2 3 2

( ) 1 ( )cos ( )sin 0,

( ) 0 ( )sin ( )cos 0,

sin
( ) 0 ( )cos ( )sin .

cos

C x C x x C x x

C x C x x C x x

x
C x C x x C x x

x


     


     


      



 

Обчислюємо визначник системи та визначники невідомих:  

2 2

1 cos sin

0 sin cos sin cos 1

0 cos sin

x x

x x x x

x x

     

 

, 

1 2

2

0 cos sin
sin

0 sin cos
cos

sin
cos sin

cos

x x
x

C x x
x

x
x x

x

   

 

, 
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2

2

1 0 sin
sin

0 0 cos
cos

sin
0 sin

cos

x
x

C x
x

x
x

x

   



, 

2

3 2

2

1 cos 0
sin

0 sin 0
cos

sin
0 cos

cos

x
x

C x
x

x
x

x

    



. 

Звідки 

1 2 2

sin sin

cos cos

x dC x
C

dxx x


            1 1

1
( )

cos
C x C

x
  . 

2 2

sin
( ) ln cos

cos

x
C x dx x C

x
     

2
2

3 32 2

1 cos
( ) tg tg

cos cos

x dx
C x xdx dx x x C

x x


               

Підставляючи  отримані значення у формулу (1.73), отримаємо: 

1 2 3

1
cos cosln cos sin ( tg )sin

cos
Y C C x x C x x x x

x
        

1 2 3

'
'

1
cos sin cosln cos ( tg )sin

cos

частинний розв язок неоднорідного рівняння
загальний роз язок однорідного рівняння

Y C C x C x x x x x
x

        

 

Контрольні питання та завдання 

1. Сформулюйте сутність методу варіації довільних сталих відшукання 

лінійного неоднорідного рівняння n-го порядку. 

2. Знайти загальний розв’язок диференціального рівняння: 

а) 
1

cos2
y у

x
   ; б) 4 2y y ctg x   . 
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РОЗДІЛ 3 КРАЙОВІ ЗАДАЧІ. ІНТЕГРУВАННЯ 

ДИФЕРЕНЦІАЛЬНИХ РІВНЯНЬ ЗА ДОПОМОГОЮ РЯДІВ 

 

3.1 Постановка крайових задач 

Поряд із задачею Коші для диференціальних рівнянь вищих порядків 

великий інтерес становлять крайові задачі, у яких умови, що накладаються на 

шуканий розв’язок, задаються не в одній точці, а на кінцях деякого відрізка 

 ba  ;  і шукається розв’язок, визначений всередині цього відрізка. Ці умови 

називають крайовими умовами і полягають у тому, що на обох кінцях відрізка 

 ba  ;  задаються значення шуканого розв’язку або значення похідних від 

шуканого розв’язку, або (у загальному випадку) лінійна комбінація ординат і 

похідних розв’язку. 

Визначення. Задачу знаходження розв’язання диференціального 

рівняння, що відповідає крайовим умовам, називають крайовою задачею.  

Крайові задачі можливі для диференціальних рівнянь другого і вищих 

порядків. Розглянемо диференціальне рівняння n -го порядку ( 2n  ): 

0) ,..., , , , ( )(  nyyyyxF .                (3.1) 

Крайова задача формулюється так: знайти розв’язок )(xyy   

диференціального рівняння (3.1), для якого значення його похідних 

)()()(
s

ss
i xyy  ) ..., ,2 ,1 ,0( is   у заданій системі точок ixx  )2  ; ..., ,2 ,1(  kki  

відповідають n  незалежним між собою крайовим умовам (у загальному 

випадку нелінійним): 

0),..., , ,,...,,..., , ,(
)()1(

1111  


k
kkkk yyyyyyyyR ,  )..., ,2 ,1( n .         (3.2) 

Крайова задача (3.1)–(3.2) для диференціального рівняння другого 

порядку формулюється так: знайти функцію )(xyy  , що увідповідає 

диференціальному рівнянню другого порядку ) , ,( yyxfy  , яка приймає при 

ax   і bx  )( ba   задані значення ayay )( , byby )( .  
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Із огляду геометрії це означає, що треба знайти інтегральну криву цього 

диференціального рівняння, яка 

проходить через задані точки  ) ;( ayaM  

і ) ;( bybN . 

Загальна крайова задача (3.1)–

(3.2) може: 

а) мати єдиний розв’язок; 

б) мати декілька або нескінченну 

множину розв’язків; 

в) не мати розв’язків. 

Приклад 3.1. Знайти розв’язок диференціального рівняння 0 yy , що 

відповідає крайовим умовам: 1)0( y , 0)2( y . 

Розв’язання.  

Знайдемо загальний розв’язок цього рівняння. Складемо характеристичне 

рівняння: 2 1 0k   ; його корені 
1,2k і  . Корені характеристичного рівняння 

комплексно-спряжені, а тому загальний розв’язок має вигляд: 

xCxCy sincos 21  . 

Підставляючи почергово крайові умови в загальний розв’язок, 

знаходимо: 

1 2

1 2

cos0 sin 0 1,

cos( 2) sin( 2) 0,

C C

C C 

 


 
               

1

2

1,

0.

C

C





 

Шуканий загальний розв’язок: 

xy cos )20(  x . 

Приклад 3.2. Знайти інтегральну криву диференціального рівняння 

1 yy , що проходить через точки )0 ;0(  і )1 ;2(  . 

Розв’язання.  

Задано лінійне неоднорідне диференціальне рівняння другого порядку зі 

сталими коефіцієнтами і спеціальним видом правої частини. Відповідне 

однорідне рівняння 0y y    має загальний розв’язок 1 2sin cosy C x C x  . 

)(xyy   

M 

N 

a b x 

y 

0 

ayay )(  byby )(  
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Частинний розв’язок шукаємо у вигляді: y А , 0y  , 0y  . Підставляючи y , 

y , y  до заданого рівняння, отримаємо: 

0 1А  , тобто 1А , 1y  . 

Загальний розв’язок неоднорідного диференціального рівняння: 

1 2sin cos 1Y y y C x C x     . 

Ураховуючи крайову умову 0)0( y , приходимо до рівняння 01 2 C , і, 

ураховуючи крайову умову 1)2( y  – до рівняння 11 1  C . 

Розв’язуючи отриману систему двох алгебраїчних рівнянь, отримаємо: 

21 C  і 12 C . Розв’язок цієї крайової задачі має вигляд: 

xxy cossin21  . 

Приклад 3.3. Показати, що диференціальне рівняння 04  yy , яке 

відповідає крайовим умовам (0) 1y   і ( ) 1y    , має нескінченну множину 

розв’язків. 

Розв’язання. 

Дійсно, оскільки загальний розв’язок диференціального рівняння має 

вигляд: 

1 2sin cosy C x C x  , 

то, оскільки крайові умови повинні відповідати загальному розв’язку, 

отримаємо систему:  

1 2

1 2

sin 0 cos0 1,

sin cos 1,

C C

C C 

 


  
               або  

2

2

1,

1.

C

C





 

Тут друге рівняння системи є наслідком першого. Тобто 1С  залишається 

невизначеною величиною, а 2 1C  . Отже, задача має нескінченну множину 

розв’язків вигляду: 

1 sin cos .y C x x   

Не за будь-яких крайових умов існує розв’язок диференціального 

рівняння, який відповідає цим умовам. 
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Приклад 3.4. Показати, що диференціальне рівняння 0y y    не має 

розв’язку, який відповідає крайовим умовам: (0) 0y  , (2 ) 9y   . 

Розв’язання.  

Дійсно, оскільки загальний розв’язок цього диференціального рівняння: 

xCxCy sincos 21  , 

то для того, щоб відповідати заданим крайовим умовам, необхідне одночасне 

виконання системи рівностей: 

1 2

1 2

(0) cos0 sin 0 0,

(2 ) cos( 2) sin( 2) 9.

y C C

y C C  

  


  
 

Проте, ця система суперечлива, тому що з першого рівняння маємо 1 1C  , 

а з другого – 1 9C  . Отже, немає розв’язку, який відповідає цим крайовим 

умовам. 

 

3.2 Лінійна крайова задача 

Визначення. Крайову задачу називають лінійною, якщо диференціальне 

рівняння і крайові умови лінійні. Скорочено лінійне диференціальне рівняння 

n-го порядку записують:  

 ),()( xfyL   

де   

,)(...)()()( )1(
1

)(
0 yxayxayxayL n

nn  
 

причому )(xai ) ..., ,2 ,1 ,0( ni   і )(xf  – відомі неперервні функції на цьому 

відрізку ] ,[ ba . Для простоти припустимо, що в крайові умови входять дві 

кінцеві абсциси ax 1  і bx 2 . Такі крайові умови називають двоточковими. 

Якщо 0)( xf , то диференціальні рівняння однорідні, якщо 0)( xf  – 

неоднорідні. 

Визначення. Крайові умови називають лінійними, якщо вони мають 

вигляд: 

 )(yR   ) ..., ,2 ,1( n , 
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де 





1

0

)()(
)]()([)(

n

k

k
k

k
k byayyR


   і 

   , ,
)()(

kk  – задані сталі, причому 

 





1

0

)()(
0   

n

k
kk
  . 

Визначення. Якщо 0 , то відповідну крайову умову називають 

однорідною, якщо 0  – неоднорідною. 

Визначення. Лінійну крайову задачу називають однорідною, якщо 

диференціальне рівняння і крайові умови однорідні. У іншому випадку лінійну 

крайову задачу називають неоднорідною. 

 

3.3 Однорідна крайова задача 

Розглянемо однорідну лінійну крайову задачу: 

0)()()( 210  yxayxayxa , )( bxa   

з крайовими умовами: 









.0)()(

,0)()(

22

11

byby

ayay




 

Тут 0)(0 xa  і )( ),( ),( 210 xaxaxa  – неперервні функції на відрізку ] ,[ ba  

зміни аргументу x . 

Припустимо, що числа 1 10,  0   , 2 20,  0   . Очевидно, що 

крайова задача припускає завжди нульовий розв’язок 0)( xy . Знайдемо умову 

існування ненульових розв’язків однорідної крайової задачі. Ураховуючи, що 

)(1 xy  і )(2 xy  лінійно незалежні розв’язки диференціального рівняння, 

загальний розв’язок має вигляд: 

)()( 2211 xyCxyCy  . 

Для виконання крайових умов необхідно, щоб 









.0)()(

,0)()(

22

11

byby

ayay




 









.0)]()([)]()([

,0)]()([)]()([

2211222112

2211122111

byCbyCbyCbyC

ayCayCayCayC




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Групуючи коефіцієнти при 1C  і 2C , отримаємо: 









.0)]()([)]()([

,0)]()([)]()([

2222212121

2121211111

bybyCbybyC

ayayCayayC




 

Уведемо такі скорочення: 









),()()(

),()()(

22

11

bubuuC

auauuC

b

a




 

де )(xuu   – будь-яка функція x . Очевидно, що тоді система 









0)()(

,0)()(

2211

2211

yCCyCC

yCCyCC

bb

aa
 

має ненульові розв’язки щодо 1C  і 2C , якщо визначник 

0 
)()(

)()(
 

21

21


yCyC

yCyC
D

bb

aa
. 

Приклад 3.5. Розв’язати однорідну крайову задачу 04  yy  при 

0)1()0(  yy . 

Розв’язання.  

Задано лінійне неоднорідне диференціальне рівняння другого порядку зі 

сталими коефіцієнтами. Складемо характеристичне рівняння: 2 4 0k   ; його 

крені  1 2k  , 2 2k   . Загальний розв’язок диференціального рівняння має 

вигляд: 

xx eCeCy 2
2

2
1

 . 

Підставляючи крайові умови, отримаємо систему: 









 .0

,0

2
2

2
1

21

eCeC

CC
 

Оскільки визначник 

0
11

 
11

 
2

4
2

2

22
22 


 


e

e
e

e
ee

ee
, 

тоді існує тільки нульовий розв’язок 0y , за яким 021 CC . 
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Приклад 3.6. Розв’язати однорідну крайову задачу 4 0y y    при 

(0) ( ) 0y y   . 

Розв’язання.  

Складемо характеристичне рівняння: 2 4 0k   ; його крені  1,2 2k i  . А 

тому загальний розв’язок диференціального рівняння має вигляд: 

1 sin 2 cos2 .y C x x  . 

Підставляючи крайові умови, отримаємо: 

1 2

1 2

0 1 0,

0 1 0,

C C

C C

   


   
          

2

2

0,

0,

C

C





 

1C  – будь-яке число. 

Тому 1 sin 2y C x  є розв’язком однорідної крайової задачі для чисел 1C . 

 

3.4 Неоднорідна крайова задача 

Знайти розв’язок диференціального рівняння 

)()()()( 210 xfyxayxayxa   

за крайовими умовами 









.)()(

,)()(

222

111





byby

ayay
 

Загальний розв’язок диференціального рівняння має вигляд: 

)()()( 22110 xyCxyCxyy  , 

де )(0 xy  – частинний розв’язок цього неоднорідного диференціального 

рівняння, )(1 xy  і )(2 xy  – розв’язок відповідного однорідного диференціального 

рівняння. 

Підставляючи загальний розв’язок в ці крайові умови, маємо систему 

неоднорідних алгебраїчних рівнянь щодо 1C  і 2C : 









)].()([)]()([)]()([

)],()([)]()([)]()([

020222222212121

010112121211111

bybybybyCbybyC

ayayayayCayayC




 

Складаємо визначник системи: 
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)()()()(

)()()()(
 

22221212

21211111

bybybyby

ayayayay
D









. 

Розв’язки 1C  і 2C  неоднорідної системи рівнянь існують, якщо 0D . 

Приклад 3.7. Розв’язати неоднорідну крайову задачу siny y x    при 

(0) (1) 0y y  . 

Розв’язання.  

Розв’яжемо відповідне однорідне рівняння: 0y y   . Відповідне 

характеристичне рівняння: 2 1 0k   , а його корені комплексно-спряжені: 

1,2k i  . Загальний розв’язок відповідного однорідного диференціального 

рівняння має вигляд: xCxCy sincos 21  . 

Частинний розв’язок неоднорідного рівняння шукаємо у формі: 

( cos sin )y x A x B x  .  

Тоді ( sin cos ) ( cos sin ),y x A x B x A x B x      

( cos sin ) 2( sin cos ).y x A x B x A x B x       

Після підстановки цих виразів до рівняння, маємо рівність: 

( cos sin ) 2( sin cos ) ( cos sin ) sin ,x A x B x A x B x x A x B x x         

2 sin 2 cos sin ,A x B x x    

Прирівнюючи коефіцієнти при cos x  і sin x , одержуємо систему рівнянь 

для визначення A  і B : 

0,

2 1,

B

А



 

          

0,

       1
.

2

B

А




 
 

 

Отже, загальний розв’язок цього рівняння: 

1 2cos sin cos .
2

x
y C x C x x    

Відповідно до заданих крайових умов: 

1 2

1 2

1 0 0,

1
cos1 sin1 cos1.

2

C C

C C

   



 

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Визначник системи 

1 0
sin1 0.

cos1 sin1
D     

Шукані розв’язки системи: 

1 2

1
0,         1.

2
C C ctg   

Тому крайова задача має єдиний розв’язок: 

1
1sin cos .

2 2

x
y ctg x x   

Приклад 3.8. Розв’язати неоднорідну крайову задачу 02  yy   при 

1)1(    ,1)0(  yy . 

Розв’язання.  

Загальний розв’язок диференціального рівняння має вигляд: 

xCxCy  cossin 21  . 

Ураховуючи першу крайову умову, отримаємо: 

10cos0sin)0( 21  CCy , тобто  12 C . 

Підставляючи в загальний розв’язок другу крайову умову, отримаємо:  

1cossin)1( 21   CCy , тобто 12 C . 

Отже, обидві умови ідентичні й задовольняються при 12 C , причому 1C  

вибирається довільно. 

Тому шуканий розв’язок крайової задачі має вигляд: 

xxCy  cossin1  . 

 

 

 

3.5 Задача про власні значення 

Однорідна крайова задача 0)( yL ,  )(yR  ) ..., ,2 ,1( n  має завжди 

нульовий розв’язок 0)( xy . Розглянемо ненульові розв’язки однорідної 

крайової задачі, які існують не завжди. Тому в диференціальне рівняння або в 
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крайові умови вводять параметр  , варіюючи яким можна домогтися, щоб за 

деяких його значень відповідна крайова задача мала ненульові розв’язки. 

Ці значення параметра i   називають власними або 

характеристичними числами задачі, а відповідні їм ненульові розв’язки )(xyi  – 

власними (характеристичними) функціями задачі. У результаті приходимо до 

задачі нового типу – задачі про власні значення. Багато лінійних однорідних 

крайових задач, які зустрічаються у фізичних додатках, включають параметр і 

мають вигляд: 















,0)()(

,0)()(

),(    0)()()(

22

11

210

byby

ayay

bxayyxayxayxa







 

де   – незалежний від x  параметр; )(  ),(  ),( 210 xaxaxa  – неперервні функції x  

на відрізку    ; ba , причому ba  . 

Нульові розв’язки 0)( xy  існують для будь-яких значень параметра  . 

Приклад 3.9. Дослідити крайову задачу  









.0)1(    ,0)0(

,02

yy

yy 
 

Розв’язання.  

Загальний розв’язок диференціального рівняння має вигляд: 

xCxCy  sincos 21  . 

Оскільки крайові умови повинні задовольняти цьому рівнянню, то 









.sincos0

,0sin0cos0

21

21

 CC

CC
 

Отже, 0sin   ,0 21  CC . 

Отже, відмінний від нуля розв’язок крайової задачі існує тоді і тільки 

тоді, коли 0sin  , тобто при ... ,3 ,2 ,    Отже, ці значення 

параметра є власними значеннями цієї крайової задачі. Зауважимо, що числа 

222 k   ...) ,3 ,2 ,1(   



82 

 

також є власними значеннями задачі і їм відповідають власні розв’язки 

xCy sin2   ...) ,2 ,1(  . 

Приклад 3.10. Визначити значення параметра  , за яких крайова задача 

0 yy  , 0)( ay  і 0)( ay  має один, більше ніж один або взагалі не має 

розв’язків. 

Розв’язання. При 0  загальний розв’язок диференціального рівняння 

0 yy   має вигляд: 

xCxCxy   shch)( 21 . 

Крайові умови 0)()(  ayay  приводять до системи алгебраїчних 

рівнянь для визначення довільних сталих: 











.0)(sh)(ch

,0shch

21

21





aCaC

aCaC
 

Ця система має єдиний (нульовий) розв’язок 021 CC , якщо визначник 

системи 

      aaaaaD   sh)(ch sh)(sh ch)(  

відмінний від нуля. Тому при 0  ця крайова задача має єдиний розв’язок 

0)( xy . 

При 0  загальний розв’язок диференціального рівняння має вигляд: 

xCCxy 21)(  . 

Крайові умови 0)()(  ayay  приводять у цьому випадку до системи 

алгебраїчних рівнянь: 









,0)(

,0

21

21

aCC

aCC
 

звідси 021 CC . Тому при 0  дана крайова задача так само має розв’язок: 

0)( xy . 

При 0  загальний розв’язок диференціального рівняння має вигляд: 

xCxCxy  sincos)( 21  . 
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Крайові умови 0)()(  ayay  приводять до системи алгебраїчних 

рівнянь: 











.0)(sin)(cos

,0sincos

21

21





aCaC

aCaC
 

Визначник цієї системи 

 sin)(cos sin)(sin cos)(  aaaaD . 

Визначник 0)( D , якщо   не є цілим числом. У цьому випадку 

задане диференціальне рівняння має єдиний розв’язок 0)( xy . 

Якщо   є цілим числом, тобто   є одним із чисел 1, 4, 9, 16, 25, 

наприклад, 
2kk   , то тоді )(sin  a  і )(cos  a  відрізняються від 

asin  і acos  тільки на множник 
k)1(  і друге рівняння системи аналогічно 

першому рівнянню системи. Тому в цьому випадку є тільки одне рівняння для 

визначення довільних  сталих: 

0sincos 21  kaCkaC . 

Якщо kaAC sin1  , то kaAC cos2   і загальний розв’язок 

диференціального рівняння  

kaCkaCxy sincos)( 21   

приводиться до вигляду 

)(sin)( axkAxy  , 

де А – довільна стала. 

Отже, ця крайова задача має єдиний розв’язок тоді і тільки тоді, коли   

не є одним із цілих чисел 1, 4, 9, 16, … Це розв’язок 0)( xy . 

Якщо ж 
2kk    ...) ,3 ,2 ,1( k , то задача має нескінченну множину 

розв’язків: 

)(sin)( axkAxy  , 

де А – довільна стала. 
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Приклади показують, як розв’язуються крайові задачі у випадку, якщо 

загальний розв’язок диференціального рівняння може бути знайдений 

безпосередньо. Проте це не завжди можливо виконати. 

 

3.6 Задача Штурма – Ліувілля 

Приклад 3.11. Знайти такі значення параметра  , за яких існують 

ненульові розв’язки диференціального рівняння 0 yy  , які відповідають 

крайовим умовам  0)(  ,0)0(  lyy . 

Розв’язання.  

Складемо характеристичне рівняння: 02  k . Його корені 2,1k . 

Отже, загальний розв’язок: 

xCxCy  sincos 21  . 

Ураховуючи крайові умови 0)(  ,0)0(  lyy , отримаємо: 









,0sincos

,001

21

21

lClC

CC


   









.0sin

,0

2

1

lC

C


 

Уважаємо 02 C , в іншому випадку 0)( xy . Тому 0sin l , звідки  

 kl  , Zk . 

l

k
  , Zk . 

Отже, ненульові розв’язки задачі можливі при  

2











l

k
k


 ,  nk  ..., ,3 ,2 ,1 . 

Цим ненульовим значенням відповідають ненульові розв’язки задачі 

Штурма – Ліувілля: 

l

k
xyk


sin)(  . 
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Приклад 3.12. Знайти такі значення параметра  , за яких існують 

ненульові розв’язки диференціального рівняння 0 yy  , які відповідають 

крайовим умовам  (0) 0,   ( ) 0y y l  . 

Розв’язання.  

Складемо характеристичне рівняння: 02  k . Його корені 2,1k . 

Отже, загальний розв’язок: 

xCxCy  sincos 21  . 

Ураховуючи крайові умови (0) 0,   ( ) 0y y l  , отримаємо: 

1 2

1 2

1 0 0,

sin cos 0,

C C

C l C l   

   

  

   
1

2

0,

cos 0.

C

C l 





 

Уважаємо 02 C , у іншому випадку 0)( xy . Тому cos 0l  , звідки  

2
l k


   , Zk . 

2 k

l

 



 , Zk . 

Отже, ненульові розв’язки задачі можливі при  

2
2

k

k

l

 


 
  
 

,  nk  ..., ,3 ,2 ,1 . 

Цим ненульовим значенням відповідають ненульові розв’язки задачі 

Штурма – Ліувілля: 

2

2
( ) sink

k
y x C x

l

  
  

 
. 

 

3.7 Метод зведення крайових задач до задач Коші 

Для розв’язання лінійних крайових задач часто буває корисний такий 

прийом. Якщо дано лінійне диференціальне рівняння ( ) ( )L y f x  із двома 

крайовими умовами, накладеними на ( )y x
 
і її похідні в двох точках x a  і 

x b , то розв’язок крайової задачі є: 
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0( ) ( ) ( ),y y x u x v x           (3.3) 

де функції 0( ),y x  ( ),u x  ( )v x  знаходяться відповідно з трьох задач Коші: 

( ) ( ),     ( ) ( ) 0;

( ) 0,     ( ) 1,    ( ) 0;

( ) 0,     ( ) 0,    ( ) 1.

L y f x y a y a

L y y a y a

L y y a y a

  

  

  

     (3.4) 

Підставляючи задані крайові умови в (3.3), одержуємо систему двох 

рівнянь для визначення коефіцієнтів   і  .  

Приклад 3.13. Розв’язати крайову задачу 
2

3
xy y

x
   , (1) (1)y y , 

3 (2) 2 (2) 3y y  .  

Розв’язання.  

На прикладі цієї крайової задачі проілюструємо метод зведення крайових 

задач до задач Коші. Шукаємо розв’язок зазначеної крайової задачі у вигляді: 

0( ) ( ) ( ),y y x u x v x     де функції 0( ),y x  ( ),u x  ( )v x  відповідно розв’язки 

таких задач Коші: 

2

3
,       (1) (1) 0;

0,         (1) 1, (1) 0;

0,         (1) 0, (1) 1.

xy y y y
x

xy y y y

xy y y y

     

     

     

 

Розв’яжемо першу задачу Коші: 
2

3
,       (1) (1) 0.xy y y y

x
       

Маємо диференціальне рівняння другого порядку, що не містить шуканої 

функції у . Порядок такого рівняння можна понизити, якщо позначити у z  , 

у z  . Отримаємо: 

2 3

3 1 3
,            .

z
xz z z

x x x x
       

Маємо лінійне диференціальне рівняння. Застосуємо метод Бернуллі, 

тобто будемо шукати розв’язок рівняння у вигляді добутку двох функцій від x . 

Тоді .z u v uv     Рівняння набуває вигляду: 
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3 3

3 3
,    .

uv v
u v uv u v u v

x x x x

 
         

 
 

Доберемо функцію v  такою, щоб дужка в лівій частині рівняння 

перетворилася на нуль. Це приводить до системи двох рівнянь для функцій u  і 

v : 

3

0,

3
.

v
v

x

u v
x


  


  


 

Перше рівняння системи є рівнянням з відокремлюваними змінними. 

Розв’яжемо його. 

0,      0,     0,    0 ,

                   ln ln ln ,     .

v dv v dv dx dv dx
v dC

x dx x v x v x

v x C v Cx

        

  

    

Тут досить знайти який-небудь частинний розв’язок, тому беремо сталу 

інтегрування 1С  , тобто v х . 

Тепер підставимо функцію v х  у друге рівняння системи і знову 

отримаємо рівняння з відокремлюваними змінними. 

13 4 4 3

3 3 3 1
,    ,    .u x u u dx C

x x x x
        

Підставляючи u  і v , одержуємо: 
13

1
.z C x

x

 
   
 

 

Оскільки у z  , то 
1 13 2

1 1
y C x C x

x x

 
       

 
, звідки отримаємо 

загальний розв’язок першої задачі Коші: 

2

1 1 22

1 1
.

2

x
y C x dx C C

x x

 
      

 
  

Знайдемо частинний розв’язок, який відповідає початковим умовам 

(1) (1) 0 :y y   

1 2 2

1 1

1 3
0 1 , ,

     2 2

0 1 ; 1.

C C C

C C

 
     

 
     
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Отже, 
2

0

1 3
( ) .

2 2

x
y х

x
    

Знайдемо розв’язок другої задачі Коші: 0,     (1) 1,    (1) 0.xy y y y       

Знайдемо загальний розв’язок рівняння 0.xy y    Якщо у z  , у z  , 

отримаємо: 

1

0,     0,     0,    0 ,

                   ln ln ln ,     .

dz dz dx dz dx
xz z x z dC

dx x x x x

z x C z C x

        

  

    

Оскільки у z  ,  то 
2

1 1 1 2,     .  
2

x
у С х у С хdx С С      

Знайдемо частинний розв’язок, який задовольняє початковим умовам 

(1) 1,    (1) 0.y y   

21 2

1
1

1
1,1 ,

       2
0. 

0 1;  

СС С

С
С


  

 
  

 

А тому ( ) 1.u x   

Знайдемо розв’язок третьої задачі Коші: 0,         (1) 0, (1) 1.xy y y y       

2

1 2   
2

x
у С С  – загальний розв’язок рівняння. Підставимо початкові 

умови: 

1 2 2

1 1

1 1
0 , ,

       2 2

1 1; 1. 

С С С

С С

 
    

 
    

 

А тому 
2 1

( ) .
2 2

x
v x    

Доберемо у виразі 

2 21 1
( 3) ( 1),

2 2
y x x

x


       

коефіцієнти   і   так, щоб цей вираз відповідав крайовим умовам (1) (1)y y , 

3 (2) 2 (2) 3y y  . 
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2

1
.y x x

x
     

2

1 1 1
(1 3) (1 1) 1 ,

2 1 2 1

3 3 3 1
(4 3) 3 (4 1) 4 4 3;

2 2 2 2


 


 


       


         


 

, ,
1,

           3 3 9 7 7 7
1.3 4 3; ;

2 2 2 2 2 2

   


 
 

  
 

  
         

 

Отже, шуканий розв’язок має вигляд: 

2 2 21 1 1 1
( 3) 1 ( 1) 1.

2 2
y x x x

x x
          

 

3.8 Функція Гріна 

Визначення. Функцією Гріна крайової задачі: 

0 1 2

1 1 2 2

( ) ( ) ( ) ( )    ( ),                           (3.5)

( ) ( ) 0,      ( ) ( ) 0                               (3.6)

a x y a x y a x y f x a x b

y a y a y b y b   

     


    
 

називають функцію ),( sxG , яка визначена при ] ,[ bax , ) ,( bas  і при 

кожному фіксованому ) ,( bas  відповідає властивостям: 

1) при sx   функція ),( sxG  відповідає рівнянню 

0)()()( 210  yxayxayxa ;    (3.7) 

2) при ax   і bx   функція ),( sxG  неперервна по x , а її похідна по x  має 

розрив першого роду зі стрибком, що дорівнює 
)(

1

0 xa
, тобто 

),0(),0( ssGssG  ,  
)(

1
),0(),0(

0 xa
ssGssG xx  .  (3.8) 

Щоб знайти функцію Гріна крайової задачі (3.5)–(3.6), потрібно знайти 

два розв’язки )(1 xy  і )(2 xy  (відмінні від 0)( xy ) рівняння (3.7), які 

відповідають відповідно першій і другій з крайових умов (3.6). 
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Якщо )(1 xy  не відповідає одночасно обом крайовим умовам, то функція 

Гріна ),( sxG  існує і її можна шукати у вигляді: 










,  при    )()(

,  при    )()(
),(

2

1

bxsxys

sxaxys
sxG




    (3.9) 

де функції )(s  і )(s  добираються так, щоб функція відповідала умовам (3.8), 

тобто щоб 

)()()()( 12 xysxys   ,   
)(

1
)()()()(

0
12

sa
syssys   .  (3.10) 

Якщо знайдена функція Гріна ),( sxG , то розв’язок крайової задачі (3.5)–

(3.6) виражають рівнянням: 


b

a

dssfsxGxy )(),()( .     (3.11) 

Приклад 3.14. Побудувати функцію Гріна для крайової задачі ( )y f x  , 

(0) (1) 0y y  . 

Розв’язання.  

Знайдемо загальний розв’язок рівняння 0y  : 

1y С  ,    
1 1 2y С dx С x С   . 

Знайдемо розв’язок, що відповідає умові (0) 0y  : 

1 2 20 0 ,       0.С С С     

Можна взяти, наприклад, розв’язок 1( )y x x , а за другої крайової умови 

(1) 0y   отримуємо: 

1 2 2 10 1 ,       ,С С С С      

а тому,  як 2( )y x  можна взяти 2( ) 1 .y x х   

Функцію Гріна для вказаної крайової задачі шукаємо у вигляді: 

( )             при  0 ,
( , )

( )(1 )    при  1,

s x x s
G x s

s x s x





 
 

    

де функції )(s  і )(s  визначають з умов ( )(1 ) ( )s s s s   , ( ) ( ) 1s s    . 

Звідси  
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( ) 1 ( ),   ( 1 ( ))(1 ) ( ) ,   1 ( )(1 ) ( ) ,s s s s s s s s s s s                 

( )(1 ) ( ) 1,   ( ) 1,   ( ) 1 1 .s s s s s s s s s s                

Отже, шукана функція Гріна має вигляд: 

( 1)             при  0 ,
( , )

(1 )         при  1.

s x x s
G x s

s x s x

  
 

   
 

Побудувавши функцію Гріна ( , )G x s , запишемо розв’язок крайової задачі: 

1 1

0 0

( ) ( , ) ( ) ( 1) ( ) (1 ) ( ) .

x

x

y x G x s f s ds x s f s ds x s f s ds        

Приклад 3.15. Побудувати функцію Гріна для крайової задачі 

)(xfyy  , )(xy  обмежений, якщо ) ;( x . 

Розв’язання.  

Задано лінійне неоднорідне диференціальне рівняння другого порядку зі 

сталими коефіцієнтами. Знайдемо загальний розв’язок відповідного 

однорідного рівняння 0 yy . Складемо характеристичне рівняння: 

2 1 0k   ; його корені 1 1k  , 2 1k   . А тому загальний розв’язок рівняння має 

вигляд: 

xx eCeCy 21   . 

Розв’язок xexy )(1  обмежений, якщо x , а xexy )(2  обмежений, 

якщо x , тому функцію Гріна вказаної крайової задачі шукаємо у вигляді: 








 ,)(

 ,)(
),(

x

x

es

es
sxG




 

якщо sx ,  

якщо  xs .  

де функції )(s  і )(s  визначаємо з умов: 

ss eses )()(   ,  1)()(   ss eses  . 

Звідси ses 
2

1
)( , ses

2

1
)(  . Отже, шукана функція Гріна цієї 

крайової задачі: 



















,
2

1

 ,
2

1

),(
xs

xs

ee

ee

sxG  

якщо sx ,  
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якщо  xs .  

Приклад 3.16. Побудувати функцію Гріна для крайової задачі ( )y f x  , 

( 1) (1) 0,  1 1.y y х       

Розв’язання.  

Загальний розв’язок рівняння 0y   є 1 2y С С х  . Знайдемо розв’язок, 

що відповідає умові ( 1) 0y   : 

1 2 1 20 ( 1),    .С С С С     

Можна взяти, наприклад, розв’язок 1( ) 1y х х  , а за другої крайової 

умови (1) 0y   отримуємо:  

1 2 2 10 1,    ,С С С С      

а тому, як 2( )y х  можна взяти 2 ( ) 1y х х  .  

Функцію Гріна для вказаної крайової задачі шукаємо у вигляді: 

( )(1 )         при  1 ,
( , )

( )(1 )        при  1,

s x x s
G x s

s x s x





   
 

    

де функції )(s  і )(s  визначаються з умов:  

( )(1 ) ( )(1 )s s s s    ,     ( ) ( ) 0.s s     

1 1 1
( ) ( ) ,    ( ) ( ) 1,    ( ) 1 1,

1 1 1

2 1 1
                ( ) 1,      ( ) ,      ( ) .

1 2 2

s s s
s s s s s

s s s

s s
s s s

s

    

  

   
       

   

 
     



 

Отже, шукана функція Гріна має вигляд: 

1
(1 )(1 )         при  1 ,

2
( , )

1
(1 )(1 )        при  1.

2

s x x s

G x s

s x s x


     

 
    


 

Побудувавши функцію Гріна ( , )G x s , запишемо розв’язок  крайової 

задачі:  

1 1

1 1

1 1
( ) ( , ) ( ) (1 ) ( ) (1 ) ( ) .

2 2

x

x

x x
y s G x s f s ds s f s ds s f s ds

 

 
       
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Контрольні питання та завдання 

1. Що таке крайовi умови, крайова задача для звичайного 

диференцiального рiвняння? Який вигляд мають крайовi умови для лiнiйного 

диференцiального рiвняння другого порядку?  

2. Чим вiдрiзняються неоднорiднi крайовi умови вiд однорiдних? Чому, 

розглядаючи крайову задачу, можна обмежитись однорiдними крайовими 

умовами?  

3. Яку функцiю називають розв’язком крайової задачi для лiнiйного 

диференцiального рiвняння другого порядку?  

4. Коли розв’язок крайової задачi для лiнiйного диференцiального 

рiвняння другого порядку iснує та єдиний, не iснує, iснує, але не єдиний?  

5. Що таке функцiя Грiна крайової задачi? Яке її значення у побудовi 

розв’язку неоднорiдної крайової задачi? Коли iснує єдина функцiя Грiна 

крайової задачi? Як можна побудувати функцiю Грiна?  

6. Що називають крайовою задачею? Що таке власнi значення, власнi 

функцiї такої задачi? Як формулюється задача Штурма – Лiувiлля? 

7. Знайти інтегральну криву диференціального рівняння 1 yy , що 

проходить через точки )0 ;0(  і )1 ;2(  . 

8. Визначити значення параметра  , за яких крайова задача 0 yy  , 

0)( ay  і 0)( ay  має один, більше, ніж один, або взагалі не має розв’язків. 

9. Розв’язати однорідну крайову задачу 04  yy  за умови 

0)()0(  yy . 

10. Розв’язати однорідну крайову задачу 02  yy   за умови 

1)1(    ,1)0(  yy . 

 

3.9 Інтегрування диференціальних рівнянь за допомогою 

степеневих та узагальнених степеневих рядів 
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Розв’язання лінійного диференціального рівняння вище першого порядку 

зі змінними коефіцієнтами не завжди виражається через елементарні функції, і 

інтегрування такого рівняння рідко приводиться до квадратур.  

Найпоширенішим прийомом інтегрування зазначених рівнянь є надання 

шуканого розв’язку у вигляді степеневого ряду. Розглянемо рівняння другого 

порядку: 

  0)()(  yxqyxpy .            (3.12) 

Припустимо, що коефіцієнти )(xp  і )(xq  рівняння (3.12) є аналітичними 

функціями на інтервалі axx  0 , тобто розкладаються у степеневі ряди: 







0

0)()(
n

n
n xxpxp ,        






0

0)()(
n

n
n xxqxq , 

які збігаються, якщо axx  0 . 

Теорема. Якщо функції )(xp  й )(xq  – аналітичні за умови axx  0 , то 

всякий розв’язок )(xyy   рівняння (3.12) є аналітичним за умови axx  0 , 

тобто розкладається у степеневий ряд: 

  





0

0)()(
n

n
n xxCxy ,     (3.13) 

збіжний за умови axx  0 . 

Невизначені коефіцієнти nC  ( ... ,2 ,1 ,0n  ) знаходять підстановкою ряду 

у рівняння та прирівнюванням коефіцієнтів біля однакових степенів різниці 

)( 0xx   в обох частинах отриманої рівності. Якщо вдається знайти всі 

коефіцієнти, то отриманий ряд визначає розв’язок у всій області збіжності. 

У тих випадках, коли для рівняння ),( yxfy   потрібно розв’язати задачу 

Коші з початковою умовою 00 )( yxy  , то розв’язок можна шукати за 

допомогою ряду Тейлора: 







0

0
0

)(

)(
!

)(

n

n
n

xx
n

xy
y , 
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де 00 )( yxy  , ),()( 000 yxfxy  , а надалі похідні )( 0
)( xy n  знаходять 

послідовним диференціюванням заданого рівняння й підстановкою в результат 

диференціювання замість ... , , , yyx   значень 000  , , yyx    всіх інших знайдених 

наступних похідних. Аналогічно за допомогою ряду Тейлора можна 

інтегрувати й рівняння вищих порядків. 

Приклад 3.17. Проінтегрувати рівняння 02  yxy . 

Розв’язання.  

Будемо шукати розв’язок цього рівняння у вигляді ряду: 

......2
210  n

n xCxCxCCy  

Підставляючи y  й y   у шукане рівняння, знаходимо: 

  ...])1)(2(...342312[ 2
2

432
n

n xCnnxCxCC  

0...]...[ 2
210

2  n
n xCxCxCCx . 

Згрупуємо члени з однаковими степенями x : 

0])3)(4[(2312
0

2
432  








n

n
nn xCCnnxCC . 

Прирівнюючи до нуля всі коефіцієнти отриманої рівності, знаходимо: 

032 CC ;  
)3)(4(

4



nn

C
C n

n    ( ... ,2 ,1 ,0n  ) 

Останнє співвідношення дозволяє знайти послідовно всі коефіцієнти 

шуканого розкладання ( 0C  і 1C  залишаються довільними й виконують функцію 

довільних сталих інтегрування): 

kk

C
C k

4)14(...8743

0
4


 ;           

)14(4...9854

1
14




kk

C
C k ; 

03424   kk CC    ( ... ,2 ,1 k  ) 

Отже,  








 





1

14

1
1

4

010
)14(4...98544)14(...8743 k

k

k

k

kk

x
C

kk

x
CxCCy . 
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Отримані ряди збігаються на всій числовій осі й визначають два лінійно 

незалежні частинні розв’язки заданого рівняння. 

Приклад 3.18. Розв’язати рівняння 0 xyy . 

Розв’язання.  

Шукаємо розв’язок рівняння у вигляді ряду: 

   





0n

n
n xCy .

 

Двічі продиференціювавши цей ряд і підставивши в задане рівняння, 

маємо: 

  0)1(
02

2  










n

n
n

n

n
n xCxxCnn . 

Прирівнюючи до нуля коефіцієнти біля однакових степенів x , отримаємо 

систему рівнянь для визначення nC : 

012 2  C ,     023 03  CC ,   034 14  CC , …,    0)1( 3  nn CCnn ... 

)1(

3


 

nn

C
C n

n   . 

Із цих рівнянь знаходимо: 

 02 C ,     
)3)(2(

3



nn

C
C n

n ,  ... ,2 ,1 ,0n  

Якщо 10 C , 01 C , тоді відмінними від нуля  будуть тільки коефіцієнти 

mC3 . Маємо: 

 
)33)(23(

3
13




mm

C
C m

m ,    ... ,2 ,1 ,0m , 

звідки 

 
mm

C
m

m
3)13(...6532

)1(
3




 ,    ... ,2 ,1m  

Побудовано один розв’язок рівняння: 

 


 




1

3

1
3)13(...6532

)1(
1)(

m

mm

mm

x
xy . 
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Другий розв’язок, лінійно незалежний зі знайденим, отримаємо, узявши 

00 C , 11 C . Тоді відмінними від нуля будуть тільки коефіцієнти 13 mC : 

 
)43)(33(

13
43


 


mm

C
C m

m ,    ... ,2 ,1 ,0m  

Звідси 

 11 C ,     
)13(3...7643

)1(
13






mm
C

m

m ,  ... ,2 ,1 m , 

отже,  













1

13

2
)13(3...7643

)1(
)(

m

mm

mm

x
xxy . 

Ряди, що представляють )(1 xy  і )(2 xy , збігаються за будь-яких значень x  

та є аналітичними функціями. Усі розв’язки виражаються 

рівнянням )()( 2211 xyCxyCy  , де 1C , 2C  – довільні сталі: 

.
)13(3...7643

)1(

3)13(...6532

)1(
1

1

13

2
1

3

1 



































 







 m

mm

m

mm

mm

x
xC

mm

x
Cy

 

Приклад 3.19. За допомогою ряду Тейлора знайти наближений розв’язок 

задачі Коші: 
22 yxy   , 1)0( y , узявши перших шість членів розкладання, 

відмінних від нуля. 

Розв’язання.  

Із початкових умов знаходимо: 110)0( 22 y . Диференціюючи це 

рівняння, послідовно отримаємо: 

yyxy  22 ,  yyyy  222 2
, yyyyy IV  26 ,  

  
IVV yyyyyy 286 2  . 

Узявши 0x  та використовуючи значення 1)0( y , 1)0( y , послідовно 

знаходимо 2)0( y , 8)0( y , 28)0( IVy , 144)0( Vy . Шуканий розв’язок має 

вигляд: 

 ...
!5

144

!4

28

!3

8

!2

2

!1
1

5432


xxxxx

y  
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Приклад 3.20. Знайти чотири перші (відмінні від нуля) члени 

розкладання задачі Коші: 2yxy  , 0)0( y , 1)0( y . 

Розв’язання.  

Диференціюючи рівняння 2yxy  , отримаємо: 

yyy  21 ,  222 yyyy IV  ,   yyyyyV  62 , 

2682 yyyyyy IVVI  . 

Якщо 0x , отримаємо:  0)0( y ,  1)0( y ,  0)0( y ,  1)0( y ,  

2)0( IVy ,  0)0( Vy ,  16)0( VIy . 

Розв’язок має вигляд: 

  ...
45126

...
!6

16

!4

2

!3!1

643643


xxx

x
xxxx

y  

 

3.10 Рівняння Бесселя 

Визначення. Лінійне диференціальне рівняння зі змінними 

коефіцієнтами, що має вигляд: 

0)( 222  yxyxyx       ( ),const                          (3.14) 

називають рівнянням Бесселя (до цього ж виду зводиться рівняння 

0)( 222  ymxyxyx   заміною mx ). 

Розв’язок рівняння (3.14) будемо шукати у вигляді узагальненого 

степеневого ряду, тобто добутку деякого степеня x  на степеневий ряд: 







0

2
210 ...)(

k

kr
k

r xaxaxaaxy    (3.15) 







0

1)(
k

kr
k xakry , 







0

2)1)((
k

kr
k xakrkry . 
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Підставляючи узагальнений степеневий ряд у рівняння (3.15) і 

прирівнюючи до нуля коефіцієнти біля кожної степені x  у лівій частині 

рівняння, отримаємо систему: 

rx :   0)( 0
22  ar  , 

1rx :   0])1[( 1
22  ar  , 

2rx :   0])2[( 02
22  aar  , 

…………………………………… 

krx  :   0])[( 2
22  kk aakr  ... 

Уважаючи, що 00 a , із цієї системи знаходимо 2,1r . Нехай 1r . 

Тоді з другого рівняння системи знаходимо 01 a , а з рівняння 

2
22 ])[(  kk aakr  , надаючи k  значення 3, 5, 7, …,  робимо висновок, що 

0... 12753  kaaaa . Для коефіцієнтів з парними номерами отримаємо 

вирази: 

2)22(

0
2








a
a ,  

4

02
4

221)2)(1(4)42( 









aa
a ,…, 








 

)22)...(42)(22(2...642
)1(

2)22(

0122
2

k

a

k

a
a

k

kk
k


 

1 0

2
( 1) .

2 !( 1)( 2)...( )

k

k

a

k k  

 
  

 

Підставляючи всі знайдені коефіцієнти в ряд (3.15), отримаємо розв’язок: 













0

2

01
))...(2)(1(!4

)1(
  )(

k
k

kk

kk

x
axy





, 

де коефіцієнт 0a  залишається довільним. 

При 2r  всі коефіцієнти ka  аналогічно визначаються тільки у 

випадку, коли   не дорівнює цілому числу. Тоді розв’язок можна отримати, 

замінюючи в попередньому розв’язку )(1 xy  величину   на  : 













0

2

02
))...(2)(1(!4

)1(
  )(

k
k

kk

kk

x
axy





. 
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Отримані степеневі ряди збігаються для всіх значень x , що легко 

встановлюється за ознакою Даламбера. Розв’язки )(1 xy  і )(2 xy  лінійно 

незалежні, оскільки їх частка не є сталою. 

Визначення. Розв’язок )(1 xy , помножений на сталу 
)1(2

1
0




 Г
a , 

називають функцією Бесселя (або циліндричною функцією) порядку   першого 

роду і позначають символом )(xJ . Розв’язок )(2 xy  позначають )(xJ  . 

Отже, загальний розв’язок рівняння (3.15) при  , що не дорівнює цілому 

числу, має вигляд: 

)()()( 21 xJCxJCxy   , 

де 1C  і 2C  – довільні сталі величини. 

Гамма-функцію визначають невласним інтегралом: 





0

1)( dxxeГ x   )0(  . 

Якщо   дорівнює половині непарного числа, функцію Бесселя виражають 

через елементарні функції, оскільки в цьому випадку гамма-функція, що 

входить у визначення функції Бесселя: 

,
2

 
)1(!

)1(
 

))...(2)(1(!4

)1(
   

)1(2

1
)(

2

0

0

2

k

k

k

k
k

kk

x

kГk

kk

x

Г
xJ














































 

(добуток  )1())...(2)(1(   Гk  замінений, відповідно до властивості 

гамма-функції, на )1(  kГ  ), набуває таких значень: 




















2
22

2

1

0

2

0

21 dtedxxeГ tx ; 


2

1

2

1

2

1

2

1
1

2

3



























ГГГ ; 


2

1

2

3

2

3

2

3

2

3
1

2

5



























ГГГ ; 



101 

 


2

1

2

3

2

5

2

5
1

2

7


















ГГ ,… 

Функцію Бесселя J , якщо n  (натуральному), можна записати так: 

nk

k

knk

k

k x

knk

x

knГk
xJ


































 

2

0

2

0 2
 

)!(!

)1(
 

2
 

)1(!

)1(
 )( . 

Для від’ємного і цілого   частинні розв’язки не виражаються функцією 

Бесселя першого роду і їх варто шукати у формі: 







0

ln)()(
k

k
k

n
nn xbxxxJxK . 

Підставляючи цей вираз у рівняння (3.14), визначимо коефіцієнти kb .  

Визначення. Функцію )(xKn , помножену на деяку сталу, називають 

функцією Бесселя n -го порядку другого роду. 

Приклад 3.21. Знайти функцію Бесселя, якщо 0 . 

Розв’язання.  

Скориставшись рівністю: 

,
2

 
)1(!

)1(
 )(

2

0






















 

k

k

k x

kГk
xJ  

якщо 0 , отримаємо: 



















 











 0
2

2

0

22

0
0

)!(4

)1(
  

!!4

)1(
 

2
 

)1(!

)1(
 )(

k
k

kk

k
k

kkk

k

k

k

x

kk

xx

kГk
xJ  

...
)321(4)21(44

1
23

6

22

42








xxx

 

Приклад 3.22.  Розв’язати рівняння 0
4

122 







 yxyxyx . 

Розв’язання.  

Оскільки 
2

1
 , то загальний розв’язок рівняння має вигляд:  

)()( 212211 xJCxJCy  , 

де  
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
















 ...

753642534232
1

)23(2

1 642
21

2121

xxx
x

Г
J  

.
sin2

...
!7!5!3

1

2

2 753

x

xxxx
x

x 









  

 Аналогічно одержимо: .
cos2

21
x

x
J


   Отже, загальний розв’язок: 

)cossin(
 

2
21 xCxC

x
y 


. 

Приклад 3.23.  Розв’язати рівняння 0
9

1
1

2












 y

xx

y
y . 

Розв’язання.  

Запишемо рівняння у вигляді:   

0
9

122 







 yxyxyx . 

Це рівняння є рівнянням Бесселя ( 31 ), тому його загальним 

розв’язком є: 

)()( 312311 xJCxJCy  . 

Приклад 3.24.  Розв’язати рівняння 0
4

1
4 22 








 yxyxyx . 

Розв’язання.  

Нехай tx 2 . Тоді  
dt

dy

dx

dy
2 ,  

2

2

2

2

4
dt

yd

dx

yd
  і рівняння перетвориться на 

рівняння Бесселя: 

0
4

12

2

2
2 








 yt

dt

dy
t

dt

yd
t . 

Звідси: 

                   
)()( 212211 tJCtJCy  , 

                   
)2()2( 212211 xJCxJCy  . 

Приклад  3.25.  Розв’язати  рівняння 0)2(4 42  yxyxyx . 
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Розв’язання.  

Якщо tx 2 , то   

dt

dy
x

dx

dy
2 ,      

dt

dy

dt

yd
t

dt

dy
x

dt

yd

dx

yd
2424

2

2
2

2

2

2

2

   .  

Підставивши ці вирази в задане рівняння, отримаємо: 

0)2(4224 2

2

2
2  yt

dt

dy
t

dt

dy
t

dt

yd
t , 

або     

0)2( 2

2

2
2  yt

dt

dy
t

dt

yd
t . 

Це рівняння Бесселя з параметром 2 . Його розв’язок 

)()(
2221 tJCtJCy


 . Отже, розв’язком заданого рівняння є: 

)()( 2

22
2

21 xJCxJCy


 . 

Контрольні питання та завдання 

1. Як знайти загальний розв’язок лiнiйного однорiдного рiвняння другого 

порядку за допомогою степеневих рядiв?  

2. У якому випадку розв’язок лiнiйного однорiдного рiвняння потрiбно 

шукати у виглядi узагальненого степеневого ряду? 

3. Який загальний вигляд має рiвняння Бесселя?  

4. Коли рiвняння Бесселя можна звести до рiвняння зi сталими 

коефiцiєнтами? За допомогою якої замiни це можна зробити? 

5. За допомогою степеневих рядів проінтегрувати рівняння 0 xyy . 

6. Знайти загальний розв’язок рівняння 02  xyyyx . 

7. Знайти п’ять перших членів розкладання у степеневий ряд розв’язків 

диференціальних рівнянь, що відповідають заданим початковим умовам: 

а) 
2cos2 xyxy  ,  1)0( y ;     б) 

22 yxy  , 1)0( y ; 

в) xyy 2 , 1)0()0(  yy ;          г) xxyy  cos , 1)0( y , 0)0( y .  

8. Розв’язати рівняння Бесселя: 
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а) 0)(
4

122  yxyxyx ;                  б) 0)(
4

922  yxyxyx ; 

в) 0)(
9

422  yxyxyx ;                  г) 0
9

11
 yy

x
y ; 

д) 04
1

 yy
x

y ;                               є) 0
4

1

2

1
 yyyx . 
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РОЗДІЛ 4 СИСТЕМИ ЗВИЧАЙНИХ ДИФЕРЕНЦІАЛЬНИХ 

РІВНЯНЬ 

 

4.1Основні поняття систем диференціальних рівнянь 

Визначення. Систему k диференціальних рівнянь, яка зв’язує незалежну 

змінну x і k функцій 1 2( ),  ( ),  ...,  ( ),ky x y x y x  розв’язану відносно старших 

похідних цих функцій ),( ..., ),( ),(
)()

2
(

2
)

1
(

1 xухуху kр
k

рр
 називають канонічною 

системою диференціальних рівнянь порядку n, ....21 kpppn   Така 

система має вигляд:  

























).,...,,...,,...,,()(

...........................................................................

),,...,,...,,...,,()(

),,...,,...,,...,,()(

)1()11
(

11
)(

1

)1()11
(

112
)

2
(

1

)1()11
(

111
)

1
(

1

k
p

kk
p

k
k

p

k
p

kk
pp

k
p

kk
pp

yyyyxfxy

yyyyxfxy

yyyyxfxy

                         (4.1) 

Нехай nk    і  1...21  nppp , тобто система рівнянь складається з n  

диференціальних рівнянь першого порядку. 

Визначення. Систему вигляду: 

                      



















),...,,()(

.....................................

),,...,,()(

),,...,,()(

1

122

111

nnn

n

n

yyxfxy

yyxfxy

yyxfxy

                                      (4.2) 

називають нормальною системою. Число n називають її порядком. 

Визначення. Розв’язком системи (4.2) на інтервалі  a<x<b  називають 

сукупність функцій   

                    ),()( 11 xxy    ),()( 22 xxy  …,  ),()( xxy nn   

неперервно диференційованих на (a,b) і таких, що перетворюють рівняння 

системи  (4.2) на тотожності. 

Задача Коші для нормальної системи  (4.2) полягає в тому, щоб знайти 

розв’язок системи (4.2), який відповідає початковим умовам:   
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)0(

0
)0(

202
)0(

101 )(     ...,   ,)(      ,)( nn yxyyxyyxy  ,                      (4.3) 

 де  )0()0(
2

)0(
10   ...,  ,  ,  , nyyyx  –  задані числа. 

Із огляду геометрії задача Коші для системи диференціальних рівнянь 

(4.2) з початковими умовами (4.3) означає знаходження серед усіх інтегральних 

кривих системи такої, що задовольняє початковим значенням 

)  ...,  ,  ,  ,( )0()0(
2

)0(
10 nyyyx . 

Теорема Пікара (існування й єдиності розв’язку задачі Коші для системи 

(4.2)). Нехай дана нормальна система (4.2) і задані початкові умови (4.3). 

Припустимо, що функції у правих частинах системи (4.2) визначені в деякій 

замкнутій обмеженій області D : 

axx    0 ,    byy k    
)0(

k     ) ..., ,2 ,1( nk   

із початковими умовами )  ...,  ,  ,  ,( )0()0(
2

)0(
10 nyyyx  усередині області і 

відповідають у цій області таким умовам: 

1) функції ) ..., , , ,( 21 nk yyyxf  неперервні по усіх своїх аргументах і, 

отже, обмежені, тобто: 

Myyyxf nk  ) ..., , , ,( 21     ) ..., ,2 ,1( nk  ,        

де M  –  стале додатне число. 

2) функції ) ..., , , ,( 21 nk yyyxf  мають обмежені частинні похідні по 

аргументах nyyy  ..., , , 21 , тобто: 

K
y

yyyxf

l

nk 



 

) ..., , , ,(
 21       ) ..., ,2 ,1 ,( nlk  ,    

де K –  стале додатне число. 

За цих передумов система диференціальних рівнянь (4.2) має єдиний 

розв’язок: 

)(     ...,   ),(      ),( 2211 xyyxyyxyy nn  ,  

Що відповідає початковим умовам (4.3). 
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Теорема Пікара встановлює достатні умови проходження через задану 

точку ) , ,( 0000 zyxM  однієї і тільки однієї гладкої інтегральної кривої системи 

(4.2). 

Визначення. Загальним розв’язком системи (4.2) називають сукупність п 

функцій  

                       ), ..., , ,( 1 nii CCxyy   ni  ,1 ,                                          (4.4) 

які залежать від незалежної змінної х   і  п довільних сталих та за будь-яких 

припустимих значень nCC  ..., ,1  перетворюють рівняння системи (4.2) на 

тотожності i для будь-яких початкових умов (4.3) існують такі числа 
0
ii CC  , 

що функції ),...,,( 00
1 nii CCxyy  , ( ni  ,1 )  задовольняють ці умови. 

Визначення. Розв’язки, які отримують з загального розв’язку за 

конкретних значень  , ..., ,1 nCC  називають частинними розв’язками. 

Якщо внаслідок інтегрування системи (4.2) утворюється сімейство 

інтегральних кривих, визначених у вигляді, не розв’язаному щодо довільних 

сталих або шуканих функцій, то таке сімейство також називають загальним 

інтегралом системи. 

Диференціальне рівняння п-го порядку 

),...,,,( )1()(  nn yyyxfy                                           (4.5) 

можна звести до нормальної системи (4.2). І навпаки, система (4.2) в багатьох 

випадках зводиться до одного диференціального рівняння п-го порядку. 

На цьому грунтується метод виключення для розв’язання нормальної 

системи диференціальних рівнянь (4.2), згідно з яким ця система зводиться до 

одного диференціального рівняння п-го порядку вигляду (4.5), яке 

розв’язується загальними методами. 

Контрольні питання та завдання 

1. Надайте визначення канонічної системи звичайних диференціальних 

рівнянь. 

2. Надайте визначення нормальної системи звичайних диференціальних 

рівнянь. 
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3. Що називають порядком нормальної системи? 

4. Надайте визначення розв’язку нормальної системи диференціальних 

рівнянь. 

5. Сформулюйте теорему Пікара. 

6. Що називають загальним розв’язком нормальної системи? 

7. Що називають частинним розв’язком нормальної системи? 

8. Сформулюйте задачу Коші для нормальної системи диференціальних 

рівнянь. 

 

4.2 Симетрична форма системи диференціальних рівнянь 

Визначення. Систему 

) ..., , ,(
...

) ..., , ,() ..., , ,( 21212

2

211

1

nn

n

nn xxxdF

dx

xxxdF

dx

xxxdF

dx
     (4.6) 

називають системою диференціальних рівнянь у симетричній формі. 

Якщо в точці )  ...,  ,  ,( )0()0(
2

)0(
1 nxxx  хоча б один зі знаменників  1F , 2F , …, 

nF   не дорівнює нулю, то в околі цієї точки систему (4.6) заміняють 

нормальною системою 1n  диференціальних рівнянь. Дійсно, якщо, 

наприклад, 0) ..., , ,( 21 nn xxxF , то система (4.6) еквівалентна системі 

диференціальних рівнянь 























 .

.................

,

,

11

22

11

n

n

n

n

nn

nn

F

F

dx

dx

F

F

dx

dx

F

F

dx

dx

       (4.7) 

Нормальну систему диференціальних рівнянь (4.2) можна записати також 

у симетричній формі: 

1
...

2

2

1

1 dx

f

dy

f

dy

f

dy

n

n  .     (4.8) 
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Фізичний зміст нормальної системи. Нехай незалежна змінна t  –  це час, 

а система, наприклад, двох диференціальних рівнянь має вигляд:  

                         














),,(

),,,(

2

1

yxtf
dt

dy

yxtf
dt

dx

                                           (4.9) 

Розв’язком   ),(tx    )(ty     цієї системи є деяка інтегральна крива в 

площині хОу з фіксованою декартовою прямокутною системою координат. 

Площину хОу називають фазовою площиною, а криву ),(tx   )(ty   –  

фазовою траєкторією системи (4.9). Саму систему (4.9) називають динамічною 

системою. Якщо в пpaвій частини рівнянь системи (4.9) час t не входить явно, 

то таку динамічну систему називають автономною (стаціонарною). 

Динамічна система визначає поле швидкостей точки, яка рухається, у 

будь-який момент часу t. Розв’язок  ),(txx    )(tyy   динамічної системи – це 

рівняння руху точки, які визначають положення точки, яка рухається, у будь-

який момент часу t. 

Початкові умови задають положення точки в початковий момент: 

00 )( xtx  ,      00 )( yty  . 

Рівняння руху визначають також i траєкторію руху, будучи рівняннями цієї 

кривої в параметричній формі. 

Контрольні питання та завдання 

1. Запишіть нормальну систему диференціальних рівнянь у симетричній 

формі. 

2. У чому полягає фізичний зміст нормальної системи? 

 

4.3 Послідовне інтегрування 

Інтегрування системи n  диференціальних рівнянь першого порядку, що 

містять тільки одну невідому функцію виду: 
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1
1 1

2
2 2

( ,  ),

( ,   ),

...........................

( ,  )n
n n

dy
f x y

dx

dy
f x y

dx

dy
f x y

dx





 



 


         (4.10) 

зводиться до інтегрування кожного диференціального рівняння окремо. 

Інтегрування системи диференціальних рівнянь виду: 

                   

1
1 1

2
2 1 2

1 2

( ,  ),

( ,  ,  ),

................................

( ,  ,  ,  ...,  )n
n n

dy
f x y

dx

dy
f x y y

dx

dy
f x y y y

dx





 



 


          (4.11) 

виконується послідовно, тобто інтегрується перше диференціальне рівняння, 

знайдений загальний розв’язок підставляється в друге диференціальне 

рівняння, потім інтегрується друге диференціальне рівняння і знайдений 

загальний розв’язок підставляється в третє диференціальне рівняння і т. д. 

Приклад 4.1. Знайти розв’язок системи диференціальних рівнянь 

                         

,

.

dx
x

dt

dy
x у

dt





  


 

Розв’язання.  

Проінтегруємо перше диференціальне рівняння системи: 

1 1,      ,    ,      ln ln ,      .tdx dx dx
x dt dt x t C x C e

dt x x
        

Отриманий розв’язок підставимо у друге рівняння системи: 

1

tdy
С е у

dt
  ,    1

tdy
y С е

dt
  . 
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Маємо лінійне диференціальне рівняння. Застосуємо метод Бернуллі, 

тобто будемо шукати розв’язок рівняння у вигляді добутку двох функцій від х: 

)( )( xvxuy  . Тоді   vuvuy    . Рівняння набуває вигляду: 

1    tu v u v u v С е    ,       1  (  ) tu v u v v С е    . 

Виберемо функцію v  такою, щоб     0v v   . Це приводить до системи 

двох рівнянь для функцій u  і v : 

1

 0,

 .t

v v

u v С е

  

 

 

Перше рівняння системи є рівнянням з відокремлюваними змінними. 

Розв’яжемо його. 

 0  
dv dt

v
dt v

  ,      0
dv

dt
v
  ,     0

dv
dt dC

v
    ,     

ln | |  ln | |v t C  ,          tv C e .       

Тут досить знайти який-небудь частинний розв’язок, тому приймаємо 

сталу інтегрування 1C , тобто  tv e . 

Тепер підставимо функцію  tv e  у друге рівняння системи і знову 

отримаємо рівняння з відокремлюваними змінними. 

1 t tu е С е  ,       1u С  ,        1 2u C t C  .  

Підставляючи  u   й  v , одержуємо загальний розв’язок рівняння: 

1 2( ) ty C t C e  . 

Отже, розв’язок системи:  

1 2

1

( ) ,

.

t

t

y C t C e

x C e

  




 

Контрольні питання та завдання 

1. У чому суть методу послідовного інтегрування? 
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4.4 Метод вилучення 

Нормальні системи диференціальних рівнянь можна проінтегрувати, 

якщо попередньо звести цю систему n -го порядку до одного диференціального 

рівняння n -го порядку з однією невідомою функцією або до декількох таких 

рівнянь, причому сума їхніх порядків дорівнює  n . 

Таке зведення досягається послідовним диференціюванням одного з 

рівнянь системи і вилученням усіх невідомих функцій, крім однієї. Тому такий 

прийом інтегрування називають методом вилучення. 

Приклад 4.2. Розв’язати задачу Коші для системи 

,

4 4

dx
x y

dt

dy
x y

dt


 


   


    

за умови, що (0) 1x  ,  (0) 11y  . 

Розв’язання.  

Для того, щоб знайти частинний розв’язок системи диференціальних 

рівнянь, необхідно спочатку знайти її загальний розв’язок, а потім домагатися, 

щоб він відповідав початковим умовам.  

Із першого рівняння системи виразимо у: 

y x x   . 

Підставимо це значення у в друге рівняння системи. 

y x x      

4 4 4x x x x x        ,     5 0x x   . 

Одержали лінійне однорідне рівняння другого порядку зі сталими 

коефіцієнтами відносно функції )(tx . Відповідне характеристичне рівняння 

2 5 0k k   має корені 1 20,   5k k  . Отже, загальний розв’язок для  )(tx   

запишеться у вигляді: 

5

1 2

tx C C e  . 

Загальний розв’язок для  )(ty   знаходимо з першого рівняння системи: 
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5

25 tx C e  , 

5 5 5

2 1 2 1 25 4t t ty C e C C e C C e      . 

Сукупність двох знайдених функцій є загальним розв’язком заданої 

системи: 

5

1 2

5

1 2

,

4 .

t

t

x C C e

y C C e

  


 

 

Тепер скористаємося початковими умовами для знаходження довільних 

сталих: 

1 2 1

1 2 2

1, 3,
       

4 11, 2.

C C C

C C C

   
 

    
 

Підставляючи знайдені значення 1C  і 2C  у загальний розв’язок системи, 

матимемо її частинний розв’язок: 

5

2

5

2

3 2 ,

3 8 .

t

t

x C e

y C e

  


 

 

Приклад 4.3. Проінтегрувати методом вилучення систему 

диференціальних рівнянь 














.

,2

zy
dx

dz

zy
dx

dy

 

Розв’язання.  

З другого рівняння цієї системи виразимо у : 

dz
y z

dx
  . 

Диференціюючи цю рівність по х  і підставляючи результат у перше 

рівняння системи, одержимо диференціальне рівняння другого порядку зі 

сталими коефіцієнтами відносно функції ( )z x : 

2

2
2

d z dz dz
z z

dx dx dx
    ,   

2

2
0

d z
z

dx
  . 
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Складаємо відповідне характеристичне рівняння:   2 1 0k   . Його корені 

комплексні: 1k i , 2k i  . Отже, загальний розв’язок запишеться у вигляді: 

1 2sin cos  z C x C x  . 

Знаходимо загальний розв’язок для  ( )y x : 

1 2cos sin ,  
dz

C x C x
dx

   

1 2 1 2

1 2 1 2

cos sin sin cos

( )sin ( )cos .

dz
y z C x C x C x C x

dx

C C x C C x

      

   

 

Сукупність двох знайдених функцій є загальним розв’язком заданої 

системи: 

1 2 1 2

1 2

( )sin ( )cos ,

sin cos .

y C C x C C x

z C x C x

   


 
 

Приклад 4.4. Розв’язати задачу Коші для системи 

yx
dt

dx
 4 ,   yx

dt

dy
2 ,   0)0( x ,  1)0( y . 

Розв’язання.  

Для того, щоб знайти частинний розв’язок системи диференціальних 

рівнянь, необхідно спочатку знайти її загальний розв’язок, а потім домагатися, 

щоб він відповідав початковим умовам.  

Із першого рівняння системи виразимо у: 

xxy 4 . 

Підставимо це значення у в друге рівняння системи. 

xxy  4  

xxxxx 824  ,     096  xxx . 

Одержали лінійне однорідне рівняння другого порядку зі сталими 

коефіцієнтами відносно функції )(tx . Відповідне характеристичне рівняння 

0962  kk  має корені 321  kk . Отже, загальний розв’язок для  )(tx   

запишеться у вигляді: 
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tt teCeCx 3
2

3
1  . 

Загальний розв’язок для  )(ty  знаходимо з першого рівняння: 

ttt teCeCeCx 3
2

3
2

3
1 33  , 

ttttt teCeCteCeCeCy 3
2

3
1

3
2

3
2

3
1 4433  , 

ttt teCeCeCy 3
2

3
2

3
1  . 

Знайдені функції )(tx  і )(ty  слугують загальним розв’язком заданої 

системи: 











.

,

3
2

3
2

3
1

3
2

3
1

ttt

tt

teCeCeCy

teCeCx
 

Скористаємося початковими умовами для визначення довільних сталих: 









.1

,0

21

1

CC

C
           









.1

,0

2

1

C

C
 

Отже, частинним розв’язком диференціального рівняння, який 

відповідаєє початковим умовам, є 











.

,

33

3

tt

t

teey

tex
 

Приклад 4.5. Розв’язати систему ,     ,      .
dx dy dz

z y z z x
dt dt dt

      

Розв’язання.  

Продиференціювавши перше з рівнянь системи, отримаємо: 

2

2

d x dz dy
z x z x

dt dt dt
       . 

Отримали диференціальне рівняння другого порядку зі сталими 

коефіцієнтами. Його характеристичне рівняння 2 1 0k    має два комплексно 

спряжені корені 
1,2k і  , тому загальний розв’язок буде: 1 2sin cosx C t C t  . Із 

третього рівняння системи 1 2sin cos
dz

z C t C t
dt

    . Отримали лінійне 
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неоднорідне рівняння першого порядку. Розв’яжемо його методом Лагранжа. 

Знайдемо розв’язок відповідного однорідного рівняння 0
dz

z
dt

  .  

0
dz

dt
z
  ,   

3

dz
dt С

z
   ,   3ln z t С  ,  3

tz С e . 

Загальний розв’язок неоднорідного рівняння будемо шукати у вигляді 

3( ) tz С t e ,  3 3( ) ( )t tz С t e С t e   . Після підстановки до рівняння, отримаємо: 

 3 1 2( ) sin costС t e C t C t    , 

3 1 2( ) sin cost tС t C e t C e t     , 

1 2 1 2
3 1 2( ) sin cos sin cos

2 2

t t C C C C
С t C e tdt C e tdt t t   

      . 

Отже, 1 2 1 2
3 sin cos

2 2

t C C C C
z С e t t

 
   . 

Із першого рівняння системи: 

 1 2 1 2
3 1 2sin cos cos sin

2 2

tdx C C C C
у z С e t t C t C t

dt

 
       , 

або 1 2 2 1
3 sin cos

2 2

tdx C C C C
у z С e t t

dt

 
     . 

Отже, сукупність трьох знайдених функцій є загальним розв’язком 

заданої системи: 

1 2

1 2 2 1
3

1 2 1 2
3

sin cos ,

sin cos ,
2 2

sin cos .
2 2

t

t

x C t C t

dx C C C C
у z С e t t

dt

C C C C
z С e t t


  


 
    


 

  

 

Контрольні питання та завдання 

1. У чому полягає метод вилучення під час розв’язання систем 

диференціальних рівнянь? 

2. Розв’язати задані лінійні однорідні системи диференціальних рівнянь 

зі сталими коефіцієнтами, використовуючи метод вилучення: 
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а)      













;64

,2

yx
dt

dy

yx
dt

dx

        б) 

,

2 3 .

dx
y

dt

dy
x y

dt





   


 

 

4.5 Знаходження комбінацій, що інтегруються  

Цей метод інтегрування системи диференціальних рівнянь 

) ..., , , ,( 21 nk
k xxxtf
dt

dx
 ,   nk  ..., ,2 ,1 ,    (4.11) 

полягає у тому, що за допомогою арифметичних операцій (додавання, 

віднімання, добутку, частки) із рівнянь системи (4.11) утворюють так звані 

комбінації, що достатньо просто інтегруються, тобто рівняння виду: 

0 ,,  








dt

du
utF , 

де u  – деяка функція від шуканих функцій )(1 tx , )(2 tx ,…, )(txn . Кожна 

комбінація, що інтегрується, дає один перший інтеграл. Якщо знайдено n  

незалежних перших інтегралів системи (4.11), то її інтегрування закінчено; 

якщо ж знайдено m  незалежних перших інтегралів, де nm  , то система (4.11) 

зводиться до системи з меншою кількістю невідомих функцій. 

Приклад 4.6. Проінтегрувати систему диференціальних рівнянь 














.

,

x
dt

dy

y
dt

dx

 

Розв’язання.  

Складаючи почленно рівняння системи, знаходимо першу комбінацію, 

що інтегрується: 

xy
dt

dy

dt

dx
 , 

звідки 
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yx
dt

yxd


 )(
,  або  dt

yx

yxd




 )(
. 

У результаті інтегрування отриманого диференціального рівняння 

отримаємо: 

Ctyx  )ln( . 

Потенціюючи, отримаємо: 

ttCtC eCeeeyx 1 
, 

звідки 

1C
e

yx
t




.        (4.12) 

Почленно віднімаючи з першого рівняння системи друге, знаходимо другу 

комбінацію, що інтегрується: 

)( yxxy
dt

dy

dt

dx
 , 

звідки 

)(
)(

yx
dt

yxd



,  або  dt

yx

yxd




 )(
. 

Інтегруючи, знаходимо: 

Ctyx  )ln( , 

або, після потенціювання: 

ttCtC eCeeeyx   2 , 

звідки 

2C
e

yx
t





.         (4.13) 

З співвідношень (4.12) і (4.13) визначаємо розв’язок цієї системи: 

              


















).(
2

1

),(
2

1

21

21

tt

tt

eCeCy

eCeCx

 

Приклад 4.7. Проінтегрувати систему диференціальних рівнянь 
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












.

,

x
dt

dy

y
dt

dx

 

Розв’язання.  

Помножимо почленно рівняння цієї системи відповідно на x  і y . Тоді 














.

,

xy
dt

dy
y

xy
dt

dx
x

 

Складаючи отримані рівняння, знаходимо комбінацію, що інтегрується: 

0
dt

dy
y

dt

dx
x , 

звідки 

0 ydyxdx . 

Після інтегрування отримаємо: 

Cyx 222  . 

Замінюючи 
2
12 CC  , отримаємо перший інтеграл: 

2
1

22 Cyx  .                  (4.14) 

Розв’язуючи цю рівність щодо y  й обмежуючись його додатними 

значеннями, отримаємо: 

22
1 xCy  . 

Отримане значення y  підставляємо в перше рівняння цієї системи, тоді: 

22
1 xC

dt

dx
 . 

Відокремлюючи змінні, отримаємо:  

dt
xC

dx


 22
1

, 

і в результаті інтегрування отримаємо: 
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2
1

arcsin Ct
C

x
 , 

або перший інтеграл системи: 

2
22

arcsin Ct
yx

x



.     (4.15) 

Перші інтеграли (4.14) і (4.15) незалежні і їхня сукупність утворить 

загальний інтеграл цієї системи. 

Приклад 4.8. Проінтегрувати систему диференціальних рівнянь, 

записану в симетричній формі 

22 xy

dz

x

dy

y

dx


 . 

Розв’язання.  

Оскільки    
x

dy

y

dx
 , то   ydyxdx    і комбінація, що інтегрується: 

0 ydyxdx . 

Інтегруючи отримане диференціальне рівняння, знаходимо перший 

інтеграл: 

1
22 Cyx  . 

Із другого рівняння    
22 xy

dz

y

dx


 ,   маємо: 

ydzdxxy  )( 22
,   або       022  ydzdxxdxy . 

Скорочуючи на y , отримаємо: 

0
2

 dzdx
y

x
ydx .     (4.16) 

Ураховуючи те, що    
x

dy

y

dx
 ,   отримаємо: 

dydx
y

x
 .      (4.17) 

Підставимо співвідношення (4.17) у рівність (4.16): 
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0 dzxdyydx ; 

друга комбінація, що інтегрується, набуває вигляду: 

0)(  dzxyd , або 0)(  zxyd , 

звідки 

2Czxy  . 

Контрольні питання та завдання 

1. Сформулюйте суть методу інтегрованих комбінацій розв’язання 

нормальної системи. 

2. Розв’язати систему диференціальних рівнянь 
dx dy dz

y z x z x y
 

  
, 

використовуючи метод знаходження інтегрованих комбінацій. 

  

 4.6 Метод Даламбера 

Лінійні системи диференціальних рівнянь зі сталими коефіцієнтами 

зручно розв’язувати методом комбінацій, що інтегруються. Для побудови 

комбінацій, що інтегруються, існує метод Даламбера, який засновується на 

безпосередньому інтегруванні. 

1. Випадок системи двох рівнянь. Нехай дана система 














).(

),(

222

111

tFybxa
dt

dy

tFybxa
dt

dx

       (4.18) 

Позначимо через   множник, на який потрібно помножити друге 

рівняння, щоб одержати комбінацію, що інтегрується: 

)()()()(
)(

212121 tFtFybbxaa
dt

yxd






.  (4.19) 

Ціль буде досягнута, якщо: 

)()( 2121 aabb   , 

або 

0)( 121
2

2  bbaa  .     (4.20) 
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Тоді маємо таку комбінацію, що інтегрується )( yxU  : 

dt
tFtFUaa

dU


 )()()( 2121 
.    (4.21) 

Рівняння (4.21) є лінійним диференціальним рівнянням першого порядку. 

Нехай загальний інтеграл рівняння (4.21): 

) , ,( CtyxU   .      (4.22) 

Можливі такі варіанти: а) корені квадратного рівняння (4.20) дійсні й 

різні. Тоді маємо два інтеграли системи (4.18): 









). , ,(

), , ,(

22

11

Ctyx

Ctyx




    (4.23) 

б) корені квадратного рівняння (4.20) комплексні ) ( i  . 

Прирівнюючи дійсні й уявні складові обох частин рівняння 

) ,  ,() ( BiAityix   ,   (4.24)  

також одержимо два інтеграли. Тут A  і B  – довільні сталі. 

в) корені квадратного рівняння (4.20) кратні )( 21   . У цьому випадку 

одержуємо тільки один інтеграл, що дозволяє звести задану систему до 

інтегрування одного лінійного рівняння з однією невідомою функцією. 

2. Випадок системи трьох рівнянь. Нехай дана система 





















).(

),(

),(

3333

2222

1111

tFzcybxa
dt

dz

tFzcybxa
dt

dy

tFzcybxa
dt

dx

      (4.25) 

Помножимо друге рівняння на  , третє на   і,  додаючи отримані 

результати, отримаємо: 

).()()(                              

)()()(
) (

321

321321321

tFtFtF

zcccybbbxaaa
dt

zyxd











 

Доберемо   і   так, щоб отримати рівності: 
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







.)(

, )(

321321

321321





aaaccc

aaabbb
     (4.26) 

Уводимо підстановку zyxU     й  одержуємо лінійне 

диференціальне рівняння першого порядку: 

dt
tFtFtFUaaa

dU


 )()()( )( 321321 
.   (4.27) 

Нехай загальний розв’язок цього рівняння має вигляд: 

) , , ,( CtU  .      (4.28) 

Визначаємо   і  . Для цього запишемо систему (4.26) у вигляді: 

s
cccbbbaaa
















 321321321

1
. 

Звідси 















.)(

,)(

,

132

132

132

cscc

bbsb

asaa







     (4.29) 

Запишемо умову спільності системи (4.29): 

0  

132

132

132









cscc

bbsb

saaa

.    (4.30) 

Це кубічне рівняння щодо s . 

Розрізняють три випадки: 

а) серед коренів рівняння (4.30) немає рівних  )( 321 sss  . Визначимо 

для кожного кореня системи (4.29) відповідно значення для   і   (тобто 11, ; 

22 , ;  33 , ), а потім з рівняння (4.28) знайдемо всі три інтеграли; 

б) серед коренів є два рівних. У цьому випадку шукаємо лише два 

інтеграли системи. Для одержання остаточного результату варто 

проінтегрувати ще одне рівняння; 

в) три рівні корені. Тоді шукається лише один інтеграл; тому 

інтегрування буде зводитися до системи двох  рівнянь. 
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Приклад 4.9. Проінтегрувати методом Даламбера систему лінійних 

диференціальних рівнянь 














.23

,6

yx
dt

dy

yx
dt

dx

 

Розв’язання.  

Помножимо друге рівняння системи на   і складемо з першим. Тоді 

yx
dt

dy

dt

dx
)21()36(   , 

або 

yx
dt

yxd
)12()36(

)(






.  

Комбінація, що інтегрується, буде отримана, якщо: 

)36(12   , 

або 

0143 2   . 

Розв’язуючи це квадратне рівняння, отримаємо 
3

1
1  , 12  . У 

першому випадку комбінація, що інтегрується, набуває вигляду: 

yxU
3

1
1        і       dt

yx

yxd







)
3

1
)(36(

)
3

1
(



, 

звідки 

dt

yx

yxd







)
3

1
(5

)
3

1
(

. 

Інтегруючи це диференціальне рівняння, отримаємо: 

Ctyx  )
3

1
ln(

5

1
,       або     )(5)

3

1
ln( Ctyx  . 

Тоді маємо 
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tCCt eeeyx 5555

3

1
  ,        

tCeeyx 5533  , 

1
5)3( Ceyx t   . 

При 12   комбінація, що інтегрується, має вигляд: 

yxU 2         і        dt
yx

yxd






)))(1(36(

)(
, 

звідки 

dt
yx

yxd






)(3

)(
. 

Інтегруючи це диференціальне рівняння, отримаємо: 

Ctyx  )ln(
3

1
,   або    )(3)ln( Ctyx  , 

tCCt eeeyx 3333  
,  

2
3)( Ceyx t  

. 

Отже, загальний інтеграл системи має вигляд: 















.)(

,)3(

2
3

1
5

Ceyx

Ceyx

t

t

 

Приклад 4.10. Розв’язати методом Даламбера систему лінійних 

диференціальних рівнянь 














.154

,45

yx
dt

dy

eyx
dt

dx t

 

Розв’язання.  

  teyx
dt

dy

dt

dx
)54()45( , 





 teyx
dt

yxd
)54()45(

)(
.  

Комбінація, що інтегрується, буде отримана, якщо )45(54   , 

звідки 11  , 12  . 
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Для 11   отримаємо: 

yxU 1          і         dt
eyx

yxd
t






1)(9

)(
, 

9

1

8

19
1  tt eeCyx . 

Для 12   аналогічно отримаємо: 

12  tt teeCyx . 

Отже, маємо два перші незалежні інтеграли системи: 

 























. 1

, 
9

1

8

1

2

1
9

Ceteyx

Ceeyx

tt

tt

 

Контрольні питання та завдання 

1. Сформулюйте суть методу Даламбера розв’язання нормальної 

системи. 

 

4.7 Метод Ейлера 

Побудова фундаментальної системи розв’язків однорідної лінійної 

системи диференціальних рівнянь  





n

i
iki

k ya
dx

dy

1

       (4.31) 

виконується методом Ейлера. 

Систему лінійних однорідних диференціальних рівнянь зі сталими 

коефіцієнтами можна записати у матричному вигляді: 

y Ay  , 

де 

1

n

у

y

у

 
 


 
 
 

  – n-вимірний вектор, А  – квадратна матриця розміру n n . 

Розв’язок системи (4.31) шукаємо у вигляді: 

xey 11  ,    
xey 22  , …,  

x
nn ey  ,    (4.32) 
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де   , ..., , , 21 n  – сталі числа, які підлягають визначенню, причому хоча б 

одне з них має бути відмінним від нуля. 

Знаходимо похідні розв’язків (4.32): 

xe
dx

dy 1
1  ,    xe

dx

dy 2
2  , …,  x

n
n e
dx

dy  ...   (4.33) 

Підставляючи значення (4.32) і (4.33) у систему (4.31), отримаємо: 

              



















....

........................................................................

,...

,...

2211

22222121

11212111

x
n

x
nnn

x
n

x
n

xx
nn

xx

xx
nn

xx

eeaeaea

eeaeaea

eeaeaea













 



















.0)(...

.........................................................

,0...)(

,0...)(

2211

2222121

1212111

nnnnn

nn

nn

aaa

aaa

aaa







    (4.34) 

Для того, щоб отримана однорідна лінійна система алгебраїчних рівнянь 

мала відмінні від нуля розв’язки щодо i , необхідно і достатньо зажадати 

рівності нулю її визначника, тобто щоб   було коренем рівняння: 

0 

...

.............

...

...

 )(

21

22221

11211



















nnnn

n

n

aaa

aaa

aaa

.   (4.35) 

Рівняння (4.35) є рівняння n -го степеня щодо   і називається 

характеристичним рівнянням, а його корені –  характеристичними (власними) 

числами системи. 

 Випадок 1. Усі n  коренів n  ...,  , , 21  характеристичного рівняння дійсні 

й різні числа. Уважаючи в системі (4.34) i   ) ..., ,2 ,1( ni  , отримаємо 

систему: 
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

















.0)(...

.........................................................

,0...)(

,0...)(

2211

2222121

1212111

ninnnn

nni

nni

aaa

aaa

aaa







    (4.36) 

Ненульові розв’язки знайденої системи є 11 i  , 22 i  ,…, inn   ... 

Підставляючи ці значення та i   у співвідношення (4.32), одержуємо 

розв’язок однорідної системи (4.31), що відповідає кореню i : 

xi
ii ey

 11  ,    
xi

ii ey
 22  , …,  

xi
inin ey

 ... 

Будуємо розв’язки, що відповідають усім кореням n  ..., , , 21 . У цьому 

випадку фундаментальна система розв’язків: 













. ..., , ,

..............................................

, ..., , ,

, ..., , ,

21

2
2

2
22

2
21

1
1

1
12

1
11

xn
nn

xn
n

xn
n

x
n

xx

x
n

xx

eee

eee

eee













 

Загальний розв’язок системи (4.31) має вигляд: 





n

i

xi
ikik eCy

1

 . 

Випадок 2. Корені n  ..., , , 21  характеристичного рівняння різні, 

причому серед них є комплексні. Нехай iba   – комплексні корені 

характеристичного рівняння. Будуємо розв’язок виду (4.32), що відповідає 

кореню bia  : 

 
xbiaeiy )()2(

1
)1(

11 )(   ,    
xbiaeiy )()2(

2
)1(

22 )(   , …,          

 
xbia

nnn eiy )()2()1( )(   ...                 (4.37) 

Відокремлюючи дійсні й уявні частини, одержуємо два дійсні лінійно 

незалежні частинні розв’язки однорідної системи: 

 

).sincos(

..., ),sincos(

),sincos(

)2()1(
1

)2(
2

)1(
212

)2(
1

)1(
111

bxbxey

bxbxey

bxbxey

nn
ax

n

ax

ax













    (4.38) 
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Дійсні розв’язки, що відповідають спряженому кореню bia  , будуть 

лінійно залежні з розв’язками (4.38). Отже, парі спряжених комплексних 

коренів bia   відповідають два дійсні лінійно незалежні частинних розв’язки 

вигляду (4.38). 

Будуємо частинні розв’язки для всіх пар комплексних спряжених коренів 

і всіх дійсних коренів. Загальний розв’язок однорідної системи надається 

лінійною комбінацією побудованих лінійно незалежних частинних з 

довільними сталими коефіцієнтами. 

Випадок 3. Серед коренів n  ..., , , 21  є кратні. Кореню 1  кратності k  

відповідає розв’язок виду 

x
exQy 1

11 )(


 ,   x
exQy 1

22 )(


 , … ,    x
nn exQy 1)(


 , 

де )(  ...,  ),(  ),( 21 xQxQxQ n  – многочлени x  степеня не вище k . Ці многочлени, 

в окремому випадку, можуть вироджуватися у сталі числа. Серед коефіцієнтів 

цих многочленів k  будуть довільними, інші ж виражаються через них. Одному 

з довільних коефіцієнтів надаємо по черзі значення, що дорівнює одиниці, а 

іншим –  що дорівнює нулю. Унаслідок цього будуємо k  лінійно незалежних 

частинних розв’язків. Якщо 1  – дійсне число, то частинні розв’язки теж дійсні. 

Якщо 1  – комплексний корінь, що дорівнює bia  , то спряжений йому корінь 

bia   є також коренем характеристичного рівняння кратності k . Знаходимо k  

лінійно незалежних комплексних частинних розв’язків, які відповідають 

кореню bia  . Відокремлюючи в них дійсні й уявні частини, одержуємо k2  

лінійно незалежних дійсних частинних розв’язків. Розв’язки для кореня bia   

лінійно залежні з розв’язками для кореня bia  . 

Приклад 4.11. Знайти методом Ейлера частинний розв’язок лінійної 

системи диференціальних рівнянь: 

6 ,

5 2 .

dx
x y

dt

dy
x y

dt


 


  


 

Розв’язання.  
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Розв’язок заданої системи шукаємо методом Ейлера у вигляді: 

1

tx e ,    
2

ty e . 

Складаємо відповідне характеристичне рівняння: 

6 1
   0

5 2









, 

або (6 )(2 ) 5 0     ,   звідки 2 8 7 0    .  

Корені характеристичного рівняння дійсні й різні: 1 7  , 2 1  . 

Для знаходження чисел 1  та 2  отримаємо таку систему: 

1 2

1 2

(6 ) 0,

5 (2 ) 0.

  

  

  


  
 

Побудуємо частинний розв’язок, що відповідає кореню 1 7  .  

1 2

1 2

(6 7) 0,

5 (2 7) 0.

 

 

  


  
       або             

1 2

1 2

0,

5 5 0.

 

 

  


 
 

Система складається з лінійно залежних рівнянь, тому зводиться до 

рівняння: 021   . Отже, одне із шуканих чисел 1  або 2  можна вибрати 

довільно. Нехай 11  , тоді 12  . 

Отже, характеристичному числу 1 7   відповідає частинний розв’язок: 

7 7

1 1 t tx e e   ,    
7 7

1 1 t ty e e   . 

Знайдемо частинний розв’язок, що відповідає характеристичному числу 

2 1  . Числа 1  і 2  знаходимо із системи: 

1 2

1 2

(6 1) 0,

5 (2 1) 0.

 

 

  


  
       або             

1 2

1 2

5 0,

5 0.

 

 

 


 
 

Ця система  зводиться до одного рівняння: 1 25 0   . Нехай 11  , тоді 

2 5   . 

Отже, характеристичному числу 2 1   відповідає частинний розв’язок: 

2 1 t tx e e   ,    2 5 ty e  . 

Загальний розв’язок системи має вигляд: 
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7

1 1 2 2 1 2

t tx C x C x C e C e    , 

7

1 1 2 2 1 25t ty C y C y C e C e    . 

Приклад 4.12. Знайти методом Ейлера загальний розв’язок лінійної 

системи диференціальних рівнянь: 

2 5 ,

5 6 .

dy
y z

dx

dz
x y

dx


 


  


 

Розв’язання.  

Відповідне характеристичне рівняння: 

2 5
   0

5 6





 


 
, 

(2 )( 6 ) 25 0      ,       2 4 13 0    .  

Корені характеристичного рівняння комплексні: 1 2 3i    , 2 2 3i    . 

Частинний розв’язок, що відповідає характеристичному числу 

1 2 3i    , шукаємо у вигляді: 

( 2 3 )

1

i xy e   ,    
( 2 3 )

2

i xz e   . 

Числа 1  і 2  визначаємо із системи: 

1 2

1 2

(2 2 3 ) 5 0,

5 ( 6 2 3 ) 0,

i

i

 

 

   


    
       або             

1 2

1 2

(4 3 ) 5 0,

5 ( 4 3 ) 0.

i

i

 

 

  


   
 

Якщо друге рівняння системи помножити на 4 3i , то система набуває 

вигляду: 

1 2

1 2

(4 3 ) 5 0,

5(4 3 ) 25 0.

i

i

 

 

  


  
 

тобто зводиться до одного рівняння 1 2(4 3 ) 5 0i     . 

Нехай 1 1  , тоді 2

4 3

5 5
i   . Частинний розв’язок має вигляд: 

( 2 3 ) 2 (cos3 sin3 )i x xy e e x i x     , 
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( 2 3 ) 2 3 2

2

2

4 3 4 3 4 3
(cos3 sin3 )

5 5 5 5 5 5

4 4 3 3
cos3 sin3 cos3 sin3

5 5 5 5

4 3 4 3
cos3 sin3 sin3 cos3 .

5 5 5 5

i x x xi x

x

x

z i e e i e e i x i x

e x i x i x x

e x x i x x

   





     
            
     

 
     

 

  
     

  

 

Відокремлюючи дійсні й уявні частини, одержуємо два дійсні лінійно 

незалежні частинні розв’язки: 

2 2

1 1

2 2

2 2

4 3
cos3 ,           cos3 sin3 ,

5 5

4 3
sin3 ,           sin3 cos3 .

5 5

x x

x x

y e x z e x x

y e x z e x x

 

 

  
   

  


       

 

Загальний розв’язок системи є лінійною комбінацією побудованих 

лінійно незалежних розв’язків: 

2

1 2

2

1 2

( cos3 sin3 ),   

4 3 4 3
cos3 sin3 sin3 cos3 .

5 5 5 5

x

x

y e C x C x

z e C x x C x x





  

     

       
    

 

Приклад 4.13. Знайти методом Ейлера розв’язок лінійної системи 

диференціальних рівнянь: 





















.9310

,12512

,45

zyx
dt

dz

zyx
dt

dy

zyx
dt

dx

 

Розв’язання.  

Складаємо відповідне характеристичне рівняння: 

0 

9310

12512

415

  













, 

або  0123   .  
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Корені характеристичного рівняння дійсні й кратні: 11  , 132   . 

Частинний розв’язок, що відповідає простому характеристичному числу 

11  , шукаємо у вигляді: 

tex  1 ,       
tey  2 ,      

tez  3 . 

Числа 1 ,  2 ,  3  знаходимо із системи: 

        








,012)15(12

,04)15(

321

321




      або     









,012612

,046

321

321




 









.022

,046

321

321




 

Нехай 11  . Тоді система набуде вигляду: 

2 3

2 3

4 6,

2 2,

 

 

 


 
 

звідки 23  ,   22  .  

Шуканий частинний розв’язок: 

tex  ,       
tey  2 ,      tez  2 . 

Побудуємо два лінійно незалежні частинні розв’язки, що відповідають 

кратному характеристичному числу 132   . Відповідно до (8.8), маємо: 

teAtAx )( 21  ,      
teBtBy )( 21  ,      

teCtCz )( 21  . 

Коефіцієнти 1A , 2A , 1B , 2B , 1C  і 2C  знаходимо, підставляючи цей 

розв’язок у задану систему диференціальних рівнянь. Тоді, після групування і 

скорочення на te , отримаємо: 















.938)938(

,66)66(

,524)524(

222111211

222111211

222111211

CBAtCBACCtC

CBAtCBABBtB

CBAtCBAAAtA

 

Прирівнюючи коефіцієнти біля незалежної змінної t  і вільні члени, 

отримаємо: 
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


























.838

,626

,525

0838

,0626

,0525

1222

1222

1222

111

111

111

CCBA

BCBA

ACBA

CBA

CBA

CBA

 

Розв’язуючи систему, знаходимо: 

11 CA  ,    212 CCA  ,     01 B ,   12 3CB  , 

де  1C , 2C  – довільні сталі. Шуканий розв’язок має вигляд: 

teCCtCx )( 322  ,   
teCy 23 ,   

teCtCz )( 32  . 

Лінійно незалежні частинні розв’язки можуть бути записані у вигляді: 











.           ,0               ,

,       ,3      ,)1(

333

222

tt

ttt

ezyex

tezeyetx
 

Загальний розв’язок системи є лінійною комбінацією незалежних 

частинних розв’язків: 






















.)(2

  ,32

,)(

321

21

3221

tt

tt

tt

eCtCeCz

eCeCy

eCCtCeCx

 

Приклад 4.14. Знайти загальний розв’язок лінійної неоднорідної системи 

диференціальних рівнянь: 














.4

,72

zy
dx

dz

zy
dx

dy

 

Розв’язання.  

Попередньо проінтегруємо методом Ейлера відповідну однорідну 

систему: 
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












.

,2

zy
dx

dz

zy
dx

dy

 

Складаємо і розв’яжемо відповідне характеристичне рівняння: 

0 
11

21
  








, 

або  012  .  

Корені характеристичного рівняння комплексні: i1 , i2 . 

Частинний розв’язок, що відповідає кореню i1 , шукаємо у вигляді: 

ixey 1 ,    
ixez 2 . 

Числа 1  і 2  визначаємо із системи: 









.0)1(

,02)1(

211

211




 

Підставляючи значення  i1 , отримаємо: 









.0)1(

,02)1(

21

21





i

i
 

Помноживши друге рівняння цієї системи на )1( i , отримаємо: 









.02)1(

,02)1(

21

21





i

i
 

Нехай 21  , тоді i12 . Частинний розв’язок матиме вигляд: 

ixey 2 ,            .)1( ixeiz   

Застосовуючи формулу Ейлера  sincos iei  , надамо частинний 

розв’язок у вигляді: 

xixiey i sin2cos2)sin(cos22  
, 

 )sin(cossincos)1( xixixixeiz ix
 

)cos(sinsincos xxixx  . 
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Відокремлюючи дійсні й уявні частини, одержуємо два дійсні лінійно 

незалежні частинні розв’язки: 









.cossin          ,sin2

,sincos          ,cos2

22

11

xxzxy

xxzxy
 

Загальний розв’язок однорідної системи є лінійною комбінацією лінійно 

незалежних частинних розв’язків: 









.sin)(cos)(

  ,sin2cos2

2121

21

xCCxCCz

xCxCy
 

Частинний розв’язок заданої системи шукаємо у вигляді: 

Ay 1 ,    Bz 1 . 

Диференціюючи частинний розв’язок за змінною x , отримаємо: 

01 y ,    01 z . 

Підставляючи частинний розв’язок і його похідну в задану систему, 

отримаємо: 









,40

,720

BA

BA
         або             









.4

,72

AB

AB
 

Розв’язуючи систему, знаходимо 1A ,  3B . Частинний розв’язок має 

вигляд: 

11 y ,     31 z . 

Загальний розв’язок заданої неоднорідної лінійної системи: 









.3sin)(cos)(

  ,1)sincos(2

2121

21

xCCxCCz

xCxCy
 

Контрольні питання та завдання 

1. Запишіть у матричному вигляді однорідну систему диференціальних 

рівнянь зі сталими коефіцієнтами. 

2. У якому вигляді шукають розв’язок однорідної лінійної системи 

диференціальних рівнянь зі сталими коефіцієнтами згідно з методом Ейлера? 
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3. Запишіть вигляд загального розв’язку лінійної однорідної системи 

диференціальних рівнянь зі сталими коефіцієнтами, якщо характеристичні 

числа є дійсні та різні. 

4. Запишіть вигляд розв’язку лінійної системи диференціальних рівнянь зі 

сталими коефіцієнтами, який відповідає характеристичному числу кратності m. 

5. Як знайти лінійно незалежні дійсні розв’язки лінійної однорідної 

системи диференціальних рівнянь зі сталими коефіцієнтами у разі, якщо власне 

число є комплексним? 

6. Розв’язати методом Ейлера системи диференціальних рівнянь: 

а) 














;

,8

21
2

12
1

xx
dt

dx

xx
dt

dx

             б)  

3 ,

4 .

dx
x y

dt

dy
x y

dt


 


   


 

 

4.8 Метод Лагранжа 

Загальний розв’язок неоднорідної системи диференціальних рівнянь 

можна побудувати методом варіації довільних сталих (методом Лагранжа), за 

фундаментальною системою розв’язків відповідної однорідної системи. Метод 

полягає в побудові розв’язку у вигляді: 





n

i
ikik zxCy

1

)( ,     (4.39) 

де )(xCi  – деякі неперервно диференційовані функції x . Ці функції визначають 

із системи: 

)()(
1

xfzxC k

n

i
iki 



. 

Розв’язуємо цю систему як алгебраїчну щодо  )(xCi : 

)()( xxC ii        ) ..., ,2 ,1( ni  , 

звідки: 

)(
)(

x
dx

xdC
i

i  . 
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Інтегруючи ці диференціальні рівняння, знаходимо усі шукані функції: 

iii CdxxxC   )()(  . 

Підставляючи знайдені функції в рівняння (4.39), одержуємо загальний 

розв’язок системи: 

 



n

i
iki

n

i
iikk zCdxxzy

11

)( . 

Приклад 4.15. Знайти загальний розв’язок лінійної неоднорідної системи 

диференціальних рівнянь: 

2

1,

(1 ) cos .

dy
xy z

dx

dz
x y xz x

dx


   


    


 

Розв’язання.  

Ця система є лінійною неоднорідною. Для розв’язання скористаємося 

методом варіації довільних сталих. 

Запишемо відповідну однорідну систему: 

2

,

(1 ) .

dy
xy z

dx

dz
x y xz

dx


  


   


 

Зводимо цю систему до одного рівняння другого порядку: 

2

2

d y dy dz
y x

dx dx dx
    ,              

2
2

2
(1 )

d y dy
y x x y xz

dx dx
      . 

Із першого рівняння системи 
dy

z xy
dx

  , а тому 

2
2 2

2
(1 )

d y dy dy
y x x y x x y

dx dx dx
       . 

Остаточно 
2

2
0

d y

dx
 . Інтегруючи це рівняння, отримаємо: 1 2y C x C  .  

Знаходимо 1 1 2( )z C x C x C   , або 
2

1 2(1 )z C x C х   . 

Загальний   розв’язок   неоднорідної  системи  шукаємо  методом  варіації  
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довільних сталих у вигляді: 

1 2

2

1 2

( ) ( ),

( )(1 ) ( ) .

y C х x C х

z C х x C х х

 


  
 

Потім знаходимо: 

          
1 1 2

2

1 1 2 2

( ) ( ) ( ),

( )(1 ) 2 ( ) ( ) ( ).

y C х x C х C х

z C х x хC х C х х C х

    

      

 

Отримані функції  ,   ,   ,   zy z y   підставимо в задану систему. Після 

елементарних перетворень перше рівняння системи зводиться до 

1 2( ) ( ) 1C х x C х   , друге рівняння системи – 2

1 2( )(1 ) ( ) cosC х x C х х x    . Отже, 

для визначення функцій )(  ),( 21 xСxС   отримали систему: 

    
1 2

2

1 2

( ) ( ) 1,

( )(1 ) ( ) cos .

C х x C х

C х x C х х x

  


   
 

Розв’язуємо її відносно 1( )С x  та 2 ( )С x , отримуємо: 

1

2

2

( ) cos 1,

( ) 1 cos .

C x x

C x x x x

  


   
 

Після інтегрування, отримаємо: 

2 3

1 1 2 2( ) sin ,       ( ) sin cos .
2 3

x x
C x x C C x x x x x C                 

Отже, загальний розв’язок заданої неоднорідної системи: 

3

1 2

2 4
2

1 2

cos ,
6

sin cos (1 ) .
2 6

x
y x C x x C

x x
z x x x C x C х


    


       


 

Контрольні питання та завдання 

1. Поясніть суть методу Лагранжа. 

2. Знайти загальний розв’язок лінійної неоднорідної системи 

диференціальних рівнянь методом Лагранжа  

4 5 4 1,

2 .

dx
x y t

dt

dy
x y t

dt


   


   

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РОЗДІЛ 5 ДИФЕРЕНЦІАЛЬНІ РІВНЯННЯ З 

ЧАСТИННИМИ ПОХІДНИМИ ПЕРШОГО ПОРЯДКУ 

 

5.1 Основні поняття 

Визначення. Співвідношення між незалежними змінними 

1 2( ,  ,  ...,  )nx x x x   невідомою функцією 1 2( ,  ,  ...,  )nu u x x x   та її 

частинними похідними довільного порядку ,
n

m k

i j

u
m k n

x x


 

 
 називають 

диференціальним рівнянням з частинними похідними. 

Визначення. Рівняння, що має вигляд 

                                     1 2

1

( ,  ,  ...,  ,  ,  ...,  ) 0n

n

u u
F x x x

x x

 


 
,                          (5.1) 

де 1 2( ,  ,  ...,  )nu u x x x   – невідома функція, називають диференціальним 

рівнянням з частинними похідними 1-го поряду.  

У загальному випадку це нелінійне рівняння. 

Визначення. Диференційовану функцію 1 2( ,  ,  ...,  )nu u x x x  називають 

розв’язком рівняння (5.1), якщо внаслідок підстановки вона перетворює його на 

тотожність.  

Визначення. Якщо 1 2( ,  ,  ...,  )nu u x x x  – розв’язок рівняння (5.1), то 

поверхню 1 2( ,  ,  ...,  )nu u x x x C   у просторі змінних  ,ix u   називають 

інтегральною поверхнею рівняння (5.1).  

Визначення. Якщо рівняння (5.1) лінійне відносно частинних похідних, 

але нелінійне відносно невідомої функції 1 2( ),   ( ,  ,  ...,  )nu x x x x x , то таке 

рівняння називають квазілінійним: 

                          1 2 1 2

1

( ,  ,  ...,  ,  ) ( ,  ,  ...,  ,  )
n

i n n

i i

u
a x x x u b x x x u

x





 .                  (5.2) 

Визначення.  Якщо у рівнянні (5.2) коефіцієнти 1 2( ,  ,  ...,  )i na x x x  не 

залежать від шуканої функції, то таке рівняння називають напівлінійним: 
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1 2 1 2

1

( ,  ,  ...,  ) ( ,  ,  ...,  ,  )
n

i n n

i i

u
a x x x b x x x u

x





 . 

Якщо у рівнянні (5.2) функції 1 2( ,  ,  ...,  ,  )i na x x x u  розглядати як 

компоненти вектора  1 2 1 2( ,  ,  ...,  ,  ) ( ,  ,  ...,  ,  )n i na x x x u a x x x u , а частинні похідні 

як компоненти вектора 
i

u
gradu u

x

 
   

 
, то його можна записати у вигляді 

скалярного добутку  ,a u b   , або    

 ,
a b

u
a a

 
  
 
 

.                                                (5.3) 

Вираз, що стоїть у лівій частині формули (5.3) – це похідна функції  iu x  

за напрямом вектора  1 2 1 2( ,  ,  ...,  ,  ) ( ,  ,  ...,  ,  ) ,n i na x x x u a x x x u
1

cos
n

i

i i

u u

a x




 


 
 . 

Тому розв’язками рівняння (5.2) будуть функції 1 2( ,  ,  ...,  )nu u x x x , похідна 

яких у кожній точці 
0 0 0

0 1 2( ,  ,  ...,  )nM u x x x  має вигляд та напрям:  

( , ( ))b x u x

a
. 

Визначення. Якщо у рівнянні (5.2) права частина дорівнює нулю, то таке 

рівняння називають квазілінійним однорідним: 

                                      1 2

1

( ,  ,  ...,  ,  ) 0
n

i n

i i

u
a x x x u

x





 ,                                (5.4) 

а якщо у ньому функції ia  не залежать від u  – лінійним однорідним рівнянням 

першого порядку: 

                                         1 2

1

( ,  ,  ...,  ) 0
n

i n

i i

u
a x x x

x





 .                                 (5.5) 

 

5.2  Метод характеристик. Характеристики та їх 

геометричний зміст 
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Розглянемо напівлінійне рівняння з двома невідомими: 

                                            ( ,  ) ( ,  ) ( ,  ,  )
u u

a x y b x y c x y u
x y

 
 

 
,                            (5.6) 

де 1,  ,  a b c C  – неперервні функції своїх аргументів у деякій області  , що 

віджповідають у ній умові 2 2 0a b  . Воно лінійне відносно частинних 

похідних, але нелінійне відносно невідомої функції 1 2( ,  ,  ...,  )nu u x x x . 

Рівняння (5.6) можна розглядати як похідну за напрямком 

cos cos
u u u

c х y
 

  
 

  
 деякого змінного вектора. Функції 

( ,  ,  ),   ( ,  ,  ),   ( ,  ,  )a x y u b x y u c x y u   визначають поле напрямків у просторі 

( ,  ,  )x y u  . У кожній фіксованій точці цього простору ми маємо напряма, для 

якого напрямні косинуси пропорційні функціям 

( ,  ,  ),   ( ,  ,  ),  ( ,  ,  )a x y u b x y u c x y u . Це поле напрямків визначає сім’ю кривих, для 

яких будь-яка лінія має у кожній своїй точці дотичну, що збігається з 

напрямком поля у цій точці. Це означає, що розв’язок рівняння (5.6) визначає 

інтегральну поверхню  ( ,  )u u x y , яка у кожній своїй точці ( ,  ,  )Р x y u  має 

дотичну площину, напрямні коcинуси якої 
u

p
x





  і  

u
q

y





 пов’язані лінійним 

рівнянням:  

                                          ap bq c                                                                   (5.7) 

та пропорційні функціям ( ,  ,  ),   ( ,  ,  ),  ( ,  ,  )a x y u b x y u c x y u . 

Згідно з рівнянням (5.7), дотичні площини усіх інтегральних поверхонь, 

що проходять через точку 0 0 0 0( ,  ,  )Р x y u  належать одному і тому самому пучку 

площин, вісь яких у довільній точці Р визначається співвідношеннями: 

                    : : : :dx dy du a b c   
( ,  ,  ) ( ,  ,  ) ( ,  ,  )

dx dy du

a x y u b x y u c x y u
   .            (5.8) 

Такі пучки та їх осі називають пучками і осями  Монжа. Напрямний 

вектор, що проходить через точку P  та належить осі Монжа, називають 

характеристичним лінійним елементом. Напрямки осей Монжа утворює у 
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просторі   поле напрямків, які визначають інтегральні криві, що є розв’язком 

системи звичайних диференціальних рівнянь (5.8). Їх називають 

характеристичними кривими диференціального рівняння (5.6).  

Нехай ( ,  )u u x y  – розв’язок рівняння (5.6) – поверхня у деякій області 

 , а ( ),  ( )x s y s  – криві на цій поверхні, s  – параметр. Тоді їх диференціальні 

рівняння для визначення поверхні мають такий вигляд:  

                   ( ,  ,  )
dx

a x y u
ds

 ,  ( ,  ,  )
dy

b x y u
ds

 ,   ( ,  ,  )
du

c x y u
ds

                        (5.9) 

Визначення. Систему (5.9) називають характеристичною системою 

рівняння (5.8), а лінії, що нею визначаються, називають характеристичними 

або характеристиками рівняння (5.8). 

Проєкції характеристичних кривих на площину 0x y  іноді називають 

характеристичними проєкціями. 

Зауваження. Параметр s  на характеристиці рівняння (5.6) визначають з 

точністю до довільної сталої.  

Із огляду геометрії інтегрування диференціального рівняння з 

частинними похідними (5.6) означає знаходження такої поверхні, дотичні 

площини до якої у кожній звичайній точці належить пучку Монжа, або у 

кожній своїй звичайній точці мають напрямок осі Монжа своїм дотичним 

напрямком. Отже, будь-яка поверхня ( ,  )u u x y , утворена сім’єю 

характеристичних кривих, що залежать від одного параметра, є інтегральною 

поверхнею диференціального рівняння з частинними похідними. Метод 

розв’язання рівняння з частинними похідними, що полягає у зведенні рівняння 

(5.2), (5.6) до систем (5.8), (5.9), називають методом характеристик. 

 Оскільки розв’язок системи (5.8) однозначно визначається початковими 

значеннями ,  ,  x y u  при 0s  , то застосовують такі теореми. 

Теорема 5.1. Якщо ( ,  )u u x y C   є інтеграл системи (5.8), то функція 

( ,  )u u x y  відповідає рівнянню (5.6).  

Справедлива   обернена теорема. 
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Теорема 5.2. Якщо ( ,  )u u x y  є розв’язок рівняння (5.6), то 

( ,  )u u x y C   є інтеграл або загальний розв’язок системи (5.8). 

Висновок. Теореми стверджують, що будь-яка інтегральна поверхня 

рівняння (5.2), (5.6) утворена сім’єю характеристик.  

Алгоритм знаходження загального розв’язку напівлінійного рівняння 

(5.6). 

1. Скласти та розв’язати систему звичайних диференціальних рівнянь 

(5.8) або (5.9). Якщо немає особливої потреби, параметр s  можемо не вводити.  

2. Виписати загальний розв’язок рівняння (5.6). Ним буде функція 

1 2( ,  )F   , або  1 2,  C C , де 1 2,     – два лінійно незалежні інтеграли 

системи (5.8) або (5.9).  

 

5.3 Загальний розв’язок однорідного диференціального 

рівняння з частинними похідними 

Розглянемо однорідне рівняння (5.5). Його інтегрування полягає у 

розв’язанні системи звичайних диференціальних рівнянь 

1 2

1 2( ) ( ) ( )

n

n

dx dx dx

a x a x a x
   ,                            (5.10) 

де    1 2,  ,i ia x a x x . 

Визначивши всі інтеграли системи (5.10), отримаємо 1n   розв’язок, що 

містить 1n   довільну сталу ,   1iC i n  . Знайшовши з цих розв’язків значення 

,   1iC i n  , отримаємо 1n   лінійно незалежну функцію:  

 1 1 2 2 1 1( ) ,   ( ) ,  ...,   ( )n nu x C u x C u x C    .   (5.11) 

До цього розв’язку можна додати ще один природний розв’язок n nu C . 

Теорема 5.3. Будь-який розв’язок системи (5.10) є розв’язком 

однорідного рівняння (5.5), і навпаки: всякий розв’язок однорідного рівняння 

(5.5) є розв’язком системи (5.10). 
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Теорема 5.4. Однорідне рівняння (5.5) та рівняння (5.10) мають 1n   

лінійно незалежних розв’язків, а всі інші розв’язки можна записати у вигляді  

1 2 1( ,  ,  ...,  )nu u u u       (5.12) 

Висновок. Розв’язок 1 2 1( ,  ,  ...,  )nu u u u  , де   – довільна функція є 

загальним розв’язком або інтегралом однорідної системи.  

Звідси алгоритм інтегрування однорідного рівняння. 

1. Скласти систему звичайних диференціальних рівнянь (5.10) та 

знайти її розв’язок. 

2. Отримані розв’язки системи (5.10) записати у вигляді (5.12) 

1 2( ,  ,  ...,  )nu u u u , або у вигляді 1 2( ,  ,  ...,  )nu F C C C . 

Зауваження 1. Загальний розв’язок звичайного диференціального 

рівняння містить довільні сталі, а розв’язок рівняння з частинними похідними – 

довільні функції. 

Зауваження 2. Це правило зберігається і коли однорідне рівняння 

містить шукану функцію u . Тоді до розв’язків (5.11) додається ще один – 

nu C . 

Для однорідного рівняння з частинними похідними з двома невідомими 

( ,  ) ( ,  ) 0
u u

a x y b x y
x y

 
 

 
     (5.13) 

маємо відповідне звичайне диференціальне рівняння: 

( ,  ) ( ,  )

dx dy

a x y b x y
 . 

Якщо це рівняння має аналітичний розв’язок, то його можна записати у 

вигляді 1 1( ,  )u x y C , а загальний інтеграл у вигляді: 

1( )u u       (5.14) 

Приєднавши до (5.14) очевидний розв’язок 2u C , визначимо сім’ю 

інтегральних поверхонь рівняння (5.13) у вигляді 1 2( ,  )u F C C . 

Приклад 5.1. Знайти загальний інтеграл 0
z z

y x
x y

 
 

 
. 
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Розв’язання.  

Згідно алгоритму, складаємо рівняння: 

dx dy

y x
      0xdx ydy      

2 2

1   
2 2

x y
C   , або 2 2

1x y C  . 

Приєднуємо 2u C . Тоді загальний інтеграл записуємо у вигляді 1 2( ,  )z F C C  

або 2 2

1 2( ,  )z x y C C   , або 2 2( )z x y  , якщо покласти 1 2 0C C  . 

Приклад 5.2. Знайти загальний розв’язок рівняння 

                              21 0
x

y a yz b yu
y x y z u

   
      

   
. 

Розв’язання.  

Складаємо систему звичайних диференціальних рівнянь, відповідну 

заданому рівнянню: 

     2 2
    

1 1

dx dy dz du dx dy dz du

x y a yz b yu x y a yz y b yuy y

y

       
    

 

 

   

   

2

2

2

,
1

,
1

.
1

dx dy

x y y

dy dz

y a yzy y

dy du

y b yuy y












 



 

Шукаємо розв’язок кожного рівняння отриманої системи окремо. 

5.2.1.   
    12 2

    ln
1 1

dx dy dx dy
C

x xy y y y
   

 
   

 
 

2 2

2

1 12

1 1
  ln ln     ln ln ln 1 ln   

21

y y dy
x C x y y C

y y

 
        




2

1

1
  

x y
C

y


  . 

5.2.2.  
   21

dy dz

y a yzy y



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Уважаючи, що 0y  , отримаємо: 

     2 21 1 0
dz

a yz dy y dz y yz a
dy

        . 

Це лінійне диференціальне рівняння першого порядку. Розв’яжемо його, 

застосувавши підстановку Бернуллі. 

Нахай    z t y v y      z t v v t      

     2  1 0y t v v t ytv a         

        2 2  1 1 0y t v t y v yv a        
 

. 

Знайдемо функцію v  за умови  2 21 0     1y v yv v y      . 

Підставляємо значення для v  в рівняння:  

 
   

3/2
2

3/2 3/2
2 2

1 0          
1 1

dt a ady
y t a dt

dy y y
       

 
 

 
23/2

2
  

1

dy
t a C

y
  


  

 
3/2 32

sin cos
arcsin

cos cos1

y wdy wdw
tgw tg y

dy wdw wy


   


  . 

Отже, маємо:   2

2arcsin 1z atg y C y   . 

Скориставшись співвідношенням між оберненими тригонометричними 

функціями 
2

arcsin
1

y
y arctg

y



 та  

2 21 1

y y
tgarctg

y y


 
, отримаємо:  

 
2

2 2 2
1       

1

z ay
z ay C y C

y


    


. 

5.2.3. 
   21

dy du

y b yuy y



. 

Візьмемо 0y   та помножимо обидві частини рівняння на y : 

 2

2
      1 0

1

dy du du
y yu b

y b yu dy
     

 
. 
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Це лінійне диференціальне рівняння першого порядку. Розв’язуючи його, 

як і попереднє, отримаємо розв’язок у вигляді: 

3 2
;

1

u by
C

y





     

2

3 1u by C y   . 

Отже, загальний розв’язок рівняння можна записати у вигляді: 

  2

1 2 3 2 2
,  ,  1 ,  ,  

1 1

x z ay u by
F C C C F y

y y y

  
    

   

. 

Приклад 5.3. Знайти загальний розв’язок рівняння 

cos cos cos cos
z z

y x x y
x y

 
 

 
.  

Розв’язання.  

Складемо систему рівнянь: 
cos cos cos cos

dx dy dz

y x x y
  .     

       cos cos
cos cos

  

,    cos 0,   cos 0
cos cos cos

dx dy
xdx ydy

y x

dx dz
x y

y x y


  




   


        
1

2

sin sin ,

sin .

x y C

x z C

 

 
          

Отже,              
1

2

sin sin ,

sin .

C x y

C z x

 

 
          

Звідси загальний розв’язок системи  можна записати у вигляді: 

1 2( ,  ) (sin sin ,  sin )F C C F x y z x   , або sin (sin sin )z x F x y   . 

 

5.4 Задача Коші 

Як і звичайне, диференціальне рівняння, рівняння з частинними 

похідними має нескінченну множину розв’язків. Задача визначення розв’язку 

для рівнянь (5.2), (5.6) з додаванням початкових умов дозволяє знайти єдиний 

розв’язок. На відміну від початкової умови для звичайного диференціального 

рівняння, де задається значення функції в точці, для рівняння з частинними 

похідними необхідно знайти інтегральну поверхню рівняння (5.2), (5.6) яка 

проходить через задану криву l  у просторі ( ,  ,  )x y u : 
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( ,  ) ( ,  )lu x y f x y . 

Задача Коші для рівняння (5.2), (5.6) зазвичай розуміється як задача 

визначення інтегральної поверхні, що проходить через задану лінію l . 

 Нехай рівняння лінії l  задано параметрично 0 0 0 0( ), ( ),x x t y y t   

0 0 0 1( ),   ( )u u t t t t   . Прийнявши координати точок кривої l  як початкові 

умови для 0s   отримаємо розв’язок системи (5.9) у вигляді: 

0 0 0( ,  ,  ,  ),x x s x y u 0 0 0( ,  ,  ,  ),y y s x y u 0 0 0( ,  ,  ,  )u u s x y u , або для 0s   

                                                ( ,  ),x x s t ( ,  ),y y s t ( ,  )u u s t .                        (5.15) 

Із огляду геометрії  розв’язання задачі Коші означає, що через кожну 

точку кривої l  проходить характеристична або інтегральна крива системи (5.9). 

Унаслідок  цього утворюється сім’я характеристичних кривих, які залежать ще 

й від  параметра t      ,  ,   ,  ,   ,  x s t y s t u s t .  Якщо з перших двох функцій 

можна визначити s і t через x і y, то ці криві утворять  поверхню  ,  u x y . 

Достатньою умовою для цього є така умова:  

                                          0
x y x y

s t t s

   
 

   
.                                         (5.16) 

Із огляду геометрії умова (5.16) означає, що тангенціальні та характеристичні 

напрямки у кожній точці кривої повинні мати різні проєкції на площині x, y. 

Якщо уздовж кривої l   ∆= 0
x y x y

s t t s

   
 

   
, то для того, щоб задача Коші мала 

розв’язки, крива l  повинна сама бути характеристикою. Якщо крива  

характеристика, то через неї, як через початкову криву, проходить  не одна, а 

нескінченна множина  інтегральних  поверхонь, які перетинаються  по кривій l . 

Теорема 5.5.  Якщо праві частини системи звичайних диференціальних 

рівнянь 

                                      1 2( ,  ,  ,  ...,  )    ( 1,..., )k
k n

dy
f x y y y k n

dx
                            (5.17) 
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є неперервні функції своїх аргументів в області  ,   k kx a A y b B      і, 

якщо крім того, в області   існують неперервні частинні похідні k

k

f

y




, то існує  

єдиний розв’язок системи (5.9), (5.10), визначений початковими умовами 

0 1( ,  ,  ...,  )k ny x y y , які знаходяться всередині області  . 

Теорема 5.6. Якщо на початковій  кривій l  всюди 0  , то задача Коші 

має один і тільки один розв’язок. Якщо ж уздовж кривої l   0   усюди, то для 

того, щоб задача Коші мала розв’язок,  крива l   повинна бути 

характеристичною кривою.  

У цьому випадку задача Коші має нескінченну множину розв’язків. 

Для рівняння з двома незалежними змінними ставиться одна початкова 

умова, а якщо змінних більше, то 1n  . 

Приклад 5.4. Знайти розв’язок задачі Коші 

                                   
2

u u u
x u

x y y

 
  

 
        ( 0)y                                           (5.18) 

                                        
1

( ,  )
x y

u x y y
 

 .                                                      (5.19) 

Розв’язання.  

Вибравши на кривій y t  у якості параметра, отримаємо наступну задачу 

у просторі змінних ,  ,  x y u :  

                                       1 ,    ,    x t y t u t                                            (5.20) 

Характеристична система, що відповідає рівнянню (5.18), має вигляд: 

,  ,  
2

dx dy u du
x u

ds ds y ds
      1 1  ln ln   ,sdx

ds x C s x C e
x

          

2      ,sdu
u u C e

ds
    

2

3 2 3    2         .
2

sdy u
ydy uds y us C y C e C

ds y
          

Отже, розв’язок характеристичної системи має вигляд: 

1 2 3 2,   ,   .s s sx C e y C e C u C e                       (5.21) 
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Інтегральна поверхня, що дає розв’язок задачі Коші (5.18),(5.19), утворена 

кусками характеристик для 0s  , що проходять через криву (5.21). Узявши у 

рівняннях (5.21) 0s   та використавши (5.20), отримаємо: 

2
  1 2 3 2 31 ,   ,     1C t C C t C t C t        .  

Підставляючи отримані значення   1 2 3,  ,C C C  в (5.21), отримаємо розв’язок 

задачі Коші (5.18), (5.19) у параметричній формі: 

2(1 ) ,   ,   .s s sx t e y te t t u te              (5.22) 

Вилучивши з (5.22) параметри s  та t , отримаємо інтегральну поверхню у 

просторі: 

2
2(1 )     

      .
1s

ux t t t t ux
y

y u ux uu
xe

t

      


    




 

Перевірка. 

2 2 2 2

2 2 2 2

2 2 (1 )
    .

(1 ) 1 (1 ) 2(1 ) (1 )

u y u y xy y y x
u

x x y x x x x

   
     

      
 

Приклад 5.5. Знайти загальний розв’язок рівняння та функцію  ,u x y  

таку, щоб вона пройшла через прямі 2;x y z       

                                              2 2 0
u u u

xz yz x y
x y z

  
   

  
.                 (5.23)                                     

Розв’язання.  

Як і у попередньому прикладі, складаємо систему звичайних 

диференціальних рівнянь: 

2 2

2 2

,

      
( )

.
( )

dx dy

xz yzdx dy dz

dx dzxz yz x y

xz x y





   

   
  

 

Із першого рівняння системи 1 1 1ln ln ln        .
y

y x C C y C x
x

       

Підставляємо отримане значення для y  у друге рівняння системи: 
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2 2

1

2 2 2

1

( 1)
        

( )

dx dz x C dx
zdz

xz C x x x


    
 

 

2 2
2

1 1 2( 1)       ( 1) .
2 2

x z
C xdx zdz C C         

Скориставшись розв’язком першого рівняння системи, отримаємо: 

2 2 2 2 2 2 2 2 2 2

2 1 2 1 2( 1)             .C C x z C C x x z C x y z            

Знайдено два лінійно незалежні інтеграли рівняння (5.23): 

                                               1y C x   та   2 2 2

2C y x z   .                          (5.24) 

Перший з них визначає сім’ю площин, що проходять через вісь 0z , а 

другий – сім’ю сфер із центром у початку координат. Отже, інтегральними 

лініями рівняння (5.23) є сім’я кіл, що утворилася після перетинання площин і 

сфер. Загальний розв’язок рівняння можна записати у вигляді: 

  2 2 2

1 2,  ,  ,
y

u F C C F x y z
x

 
    

 
  

де F  – довільна функція своїх аргументів. 

Знайдемо функцію F  так, щоб вона пройшла через прямі 2;  x y z  .    

Для цього вилучимо ,  ,  x y z  з рівнянь, скориставшись першим співвідношенням 

з (5.24). Із першого рівняння  маємо: 1 12,   2 ,   2 .x y C z C    Підставивши 

отримані значення у друге рівняння співвідношення (5.24), отримаємо: 

 2 2 2 2 2 2

2 1 1 2 1 2 1 2    4 4 2     ,  4 6x y z C C C C F C C C C           . 

Підставляючи в останній вираз замість 1C  та 2C  значення (5.24), 

отримаємо частинний розв’язок у вигляді: 

 
2

2 2 2

2
4 6 .

y
u x y z

x
      

Перевірка. Знаходимо частинні похідні функції 

 
2

2 2 2

2
4 6

y
u x y z

x
     : 



153 

 

2

3 2
12 2 ,      12 2 ,     2 .

u y u y u
x y z

x x y x z

  
      

  
 

    Підставивши отримані вирази у рівняння (5.23),  отримаємо тотожність: 

 
2

2 2

3 2
12 2 12 2 2 0.

y y
xy x yz y z x y

x x

   
         

  
 

У додатках часто зустрічаються задачі Коші для квазілінійного рівняння  

                                               
1

,  ,  ,  ,  
n

i i i

i i

u u
a x u b x u

x
 

 

 
 

 
 ,                       (5.25) 

                                                                00,  iu x u ,                                                              (5.26) 

де   розглядається як час, а умова (5.26) – початкова функція на гіперплощині 

змінних  ,  ,  ix u . Рівнянню (5.25) відповідає характеристична система: 

                                 1,   ,  ,  ,   ,  ,  i
i i i

d dx du
a x u b x u

ds ds ds


    .                     (5.27) 

Її необхідно розв’язувати з початковими умовами:   

                 00 0,    0 ,    0 .i i ix s u u s                                  (5.28) 

Із першого рівняння системи (5.27) та початкової умови  0 0   

знаходимо s   та розв’язуємо інші рівняння системи. 

 

 5.5 Задача Коші  для нелінійних рівнянь 

Розглянемо задачу Коші для нелінійного рівняння (5.1) 

                      1

1

( ,  ...,  ,  ,  ,  ...,  ) 0n

n

u u
F x x u

x x

 


 
,                                 (5.29)             

де 1 1( ,  ...,  ,  ,  ,  ...,  ),    n n i

i

u
F x x u p p p

x





 функція класу 2C , визначена на деякій 

відкритій множині у просторі змінних 1 1,  ...,  ,  ,  ,  ...,  n nx x u p p  з початковою 

умовою:   

                         1 1 0 1 1( ( ,  ...,  )) ( ,  ...,  )n nu u      .                                       (5.30) 
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Тут 1 1( ,  ...,  )nx      – деяка 1n   мірна неперервна поверхня 2C  без 

самоперетину, а  2

0 1 1( ,  ...,  )nu C     – неперервна двічі диференційована 

функція, визначена на поверхні S . 

Визначення. Поверхню S  називають регулярною класу 1C , якщо функції 

i

i

u
p

x





  у будь-якій точці цієї поверхні. 

Нехай функція  1 2,  ,  ,  nu u x x x  класу 2C  є розв’язком задачі Коші 

(5.29), (5.30). Підставивши її в (5.29), отримаємо тотожність. 

Продиференціюємо її за змінними ix : 

                          
1

0      ( 1,  ...,  )
n

j

i

ji j i

pF F F
p i n

x u p x

  
   

   
 .                   (5.31) 

Оскільки 
2

j i

i i j j

p u p

x x x x

  
 

   
, рівність (5.31 ) можна записати у вигляді:  

1

0      ( 1,  ...,  )
n

i
i

ji j j

F F F p
p i n

x u p x

   
   

   
 .     

Із цих рівнянь видно, що функції ip  відповідають системам квазілінійних 

рівнянь з «однаковою головною частиною»: 

                            
1

      ( 1,  ...,  )
n

i
i

j j j i

F p F F
p i n

p x x u

   
   

   
 .                      (5.32) 

Розглянемо розв’язок  1 2,  ,  ,  nu u x x x  уздовж траєкторій системи 

диференціальних рівнянь    

                                                ( 1,  ...,  )
j

j

dp F
j n

d p


 


.                                     (5.33) 

Рівняння (5.32) у цьому випадку можна записати у вигляді:  

                                          ( 1,  ...,  )i
i

i

dp F F
p i n

d x u

 
   

 
.     (5.34) 

Скориставшись співвідношенням (5.33), обчислимо: 
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1 1

n n
k

k

k kk k

du u dx F
p

d x d p  

 
 

 
  .                                   (5.35) 

Отже, якщо  1 2,  ,  ,  nu u x x x  – розв’язок задачі Коші (5.29), (5.30), то 

уздовж будь-якої траєкторії системи рівнянь (5.33) функції  1 2,  ,  ,  nu u x x x  

та    ( 1,  ...,  )i

i

u
p i n

x


 


  відповідатимуть умовам (5.34) та (5.36). 

Визначення. Систему з 2 1n    звичайних диференціальних рівнянь 

(5.33), (5.34)  та  (5.35) називають характеристичною системою рівняння 

(5.29), а її траєкторії у просторі змінних  ,  ,  i ix u p  – характеристиками цього 

рівняння. 

Розглянемо спосіб знаходження розв’язку задачі Коші (5.29), (5.30)  

Уважаючи, що  1 2,  ,  ,  nu u x x x  – розв’язок цієї задачі Коші, і 

диференціюючи (5.30) по   ( 1,  ...,  1)k k n   , отримаємо:  

                                                  0

1

n
i

i

k k k

u
p



 

 


 
                                               (5.36) 

Оскільки функція  1 2,  ,  ,  nu u x x x – розв’язок задачі Коші (5.29) 

(5.30), то  1 2,  ,  ,  nu u x x x   і ip  повинні відповідати рівнянню:   

                                1 1 0 1 1 1( ( ,  ...,  ),  ( ,  ...,  ),  ,  ...,  ) 0n n nF u p p               (5.37) 

Припустимо, що 

     1 1( ,  ...,  )i i np          ( 1, 2,  ,  i n )                     (5.38) 

неперервний розв’язок системи рівнянь (5.36), (5.37), для якого на поверхні S  

визначник   відмінний від нуля: 
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 

1

1

1

1

1 1

.......................

n

n

n

n

n n

F F

p p

 

 

 

  

 

 

 

 

 

 

0                                                  (5.39) 

Якщо 0  , то розв’язуємо задачу Коші для характеристичної системи 

(5.33) – (5.35) з такими початковими умовами:  

 1 10
, ,     ( 1,  2,  ...,  )i i nx i n


   

  ,     0 1 10
, ,  nu u


  

 , 

 1 10
, ,     ( 1,  2,  ...,  )j j np j n


   

  . 

           Розв’язок цієї задачі існує, єдиний та має вигляд:  

 1 1, ,     ( 1,  2,  ...,  )i i nx x i n    , 

 1 1, ,  nu u    ,            (5.40) 

 1 1, ,     ( 1,  2,  ...,  )j j np p j n    . 

Перші дві групи рівнянь з (5.40) визначають розв’язок задачі Коші (5.29), 

(5.30) (заданий параметрично) у деякому околі на поверхні S , і цей 

розв’язок єдиний, якщо вибрані функції  1 1, ,  i n    . 

Зауваження.  

1. Система рівнянь (5.35), (5.36) розв’язується неоднозначно відносно 

i

i

u
p

x





, тому і задача Коші (5.29), (5.30) може мати більше, ніж один 

розв’язок. 

2. У додатках часто зустрічається задача Коші для нелінійного рівняння 

вигляду ,  ,  ,  0
u u

t x u
t x


  

  
  

  з початковою умовою  0(0,  ) ( )u x u x . 

У цьому випадку рівняння (5.36), (5.37) мають вигляд: 
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  0(0, ) ( )
u u

x x
x x

 


 
, 

0(0, ) (0, , ( ), (0, )) 0
u u

x x u x x
t x


 

 
 

. 

Очевидно, що ці рівняння розв’язуються однозначно відносно (0,  )
u

x
t




  

та (0,  )
u

x
x




, і тому розв’язок цієї задачі Коші єдиний. Якщо функція   не 

залежить від u , то розв’язок нелінійного рівняння ,  ,  ,  0
u u

t x u
t x


  

  
  

 

зведеться до розв’язку деякого квазілінійного рівняння. Насправді, функція 

u
v

x





 відповідає квазілінійному рівнянню:  

'' ( , , ) ' ( , , ) 0
xu x

v v u
t x v t x

t x x
 

  
  

  
. 

Приклад 5.6. Розв’язати  задачу Коші для рівняння   

                                                

2
1

1 0
2

u u

t x

  
   

  
,                                        (5.41) 

                                             21
(0,  ) ,    ( 0).

2
u x x                                    (5.42) 

Розв’язання.  

Нехай t  . Позначаючи 
u

p
t





, 

u
q

x





, отримаємо характеристичну 

систему, що відповідає рівнянню (5.41) (маємо п’ять невідомих, об’єднаних у 

п’ять рівнянь): 

dt
p

d
 ,  

dx
q

d
 ,  0

dp

d
 ,  0

dq

d
 ,  

2du
p q

d
  .                  (5.43) 

Поверхня S  у такому випадку – це площина  0t  . Її рівняння можна 

записати у вигляді 10,   t x   , де 1  – параметр. 

Початкові умови для  p   і  q  мають такий вигляд (див. (5.36), (5.37)): 
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1 10
1

(0,  ) ,
u

q


 



 


 

2 2

10

1
1 ( ) .

2
p


 

   

Отже, для системи рівнянь (5.43) потрібно розв’язувати задачу Коші з 

початковими умовами: 

2
2 2 1

1 1 10 0 0 0 0

1 ( )
0,    ,    1 ( ) ,    ,    .

2 2
t x p q u
    

 
   

    
         (5.44) 

Інтегруючи цю систему, отримуємо: 

 2

1 4 2 3 4 3 4 5,     ,     ,    ,        ( ) ,t C x C C p C q C u C C C            

звідки, внаслідок (5.44):  

 
2

2 2 1
1 2 1 3 1 4 1 5

1 ( )
0,     ,     1 ( ) ,    ,        .

2 2
C C C C C

 
            

Розв’язок задачі Коші (5.41), (5.42)  можна записати у вигляді: 

 1

2 2 2

1 1

,

( 1),

1
1 ( ) ( ) .

2 2

t

x

u



 


   



 

 
   
 

     (5.45) 

Вилучаючи з рівнянь (5.45) параметри    і 1 , отримаємо:  

2

.
2 1

x
u t

t




 


       (5.46) 

Унаслідок безпосередньої підстановки легко переконатися, що (5.46) –  це 

розв’язок задачі Коші (5.41), (5.42).  

Зазначимо, що цей розв’язок визначений у напівплощині 
1

  ( 0)t 


   . 

При 
1

t


   маємо також розв’язок рівняння (5.41), але він не віжповідає 

початковій умові (5.42), оскільки область визначення цього рівняння не містить 

пряму 0t  . 

Контрольні питання 
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1. Який вигляд має однорідне диференціальне рівняння першого порядку 

з частинними похідними? 

2. Який вигляд має характеристичне рівняння для рівняння першого 

порядку з частинними похідними? 

3. Що таке  загальний та частинний розв’язок рівняння першого порядку 

з частинними похідними? 

4. Як знайти розв’язок задачі Коші для рівняння першого порядку з 

частинними похідними? 

5. У чому полягає задача інтегрування рівняння з частинними 

похідними? 

6. Чим відрізняється загальний розв’язок звичайного диференціального 

рівняння від загального розв’язку диференціального рівняння з частинними 

похідними? 

7. У чому полягає задача Коші для диференціального рівняння  з 

частинними похідними першого порядку? 

8. Як формулюються умови для знаходження єдиного розв’язку задачі 

Коші для диференціального рівняння з частинними похідними першого 

порядку? 

9. Знайти загальний розв’язок рівняння першого порядку з частинними 

похідними: 

9.1    2 2z z
x y z x y

x y

 
   

 
;                        

9.2    4 4 2 2z z
xz yz x y

x y

 
 

 
; 

9.3   2 2 2z z
z x y a x y z

x y

 
    

 
;        

9.4  2 2 2 2 2 0
z z

y z x xy xz
x y

 
    

 
; 

9.5      3 4 4 3 3 32 2 9
z z

xy x y x y z x y
x y

 
    

 
; 



160 

 

9.6   3 2 3 23 2 2 0
z z

x xy y y z
x y

 
   

 
;       

9.7   2 2 z z
x y xy xyz

x y

 
  

 
; 

9.8     
z z

y x y x z
x y

 
   

 
;                 

9.9    1 0
z z z

x y z
x y x

   
     

   
; 

9.10    
z z

z y x z x y x y z
x y

 
       

 
. 

10. Як знайти частинний розв’язок рівняння першого порядку з 

частинними похідними? 

11. Знайти поверхню, яка відповідає рівнянню 0
z z

xz yz xy
x y

 
  

 
 і 

проходить через криву  
2,   z h xy C  . 

12. Знайти поверхню, яка відповідає рівнянню 2z z
xy y x

x y

 
 

 
 і 

проходить через криву 
2 2

,   
2

a
x a yz

a


  . 

13. Знайти поверхню, яка відповідає рівнянню  2 2 2
z z

x y xy xz
x y

 
  

 
  

і проходить через криву 
2 2 2,   x a y z a   .  

14. Знайти поверхню, яка відповідає рівнянню 
z z y x

x y z

  
 

 
  і 

проходить через криву 
21,   x z y  . 

15. Знайти поверхню, яка відповідає рівнянню 

2 2 22 2
z z

xz yz z x y
x y

 
   

 
  і проходить через криву 

2 2 2 20,   x y z x y z R      . 
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16. Знайти поверхню, яка відповідає рівнянню 

 2 2 22 0
z z z

x x y y x y z
x x y

   
     

   
 і проходить через криву 

2 2 2,   z C x y R   . 

17. Знайти  рівняння поверхонь, які мають властивість: дотична 

площина у довільній точці  M  перетинає вісь 0z  у точці N , такій, що 

відношення 
ON

OM
 стале та дорівнює K . Знайти поверхню, яка проходить через 

гвинтову лінію на круговому прямому циліндрі з віссю 0z . 

18. Знайти поверхні, для яких дотична площина у довільній точці M  

перетинає вісь 0z  у точці N , рівновіддаленій від початку координат O  і точки 

M . 

19. Знайти поверхні, на яких слід нормалі у точці M  на площині 0x y  

рівновіддалений від початку координат O  і точки M . 
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