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1. INTRODUCTION	

This	 book	 is	 intended	 to	 both	 serve	 as	 a	 reference	 guide	 and	 a	 text	 for	 a	 course	 on	 Applied	
Mathematical	 Programming	 for	 upper	 undergraduate	 and	 Master	 level	 students	 in	 Economics,	
Applied	 Economics,	 Agricultural	 and	 Resource	 Economics,	 and	Management;	 primarily	 based	 on	
McCarl	and	Spreen	(2013)0F

1.	 The	material	presented	in	McCarl	and	Spreen	(2013)	concentrates	upon	
conceptual	issues,	problem	formulation,	computerized	problem	solution,	and	results	interpretation;	
it	 is	 designed	 for	 the	 advanced	 readers	who	are	 familiar	with	mathematical	 economics	 including	
linear	and	matrix	algebra	and	also	with	advanced	modeling	skills.	Upper	level	undergraduate	and/or	
Master	students	may	not	be	beneficial	from	the	book.	

This	booklet	is	intended	to	serve	as	an	introductory	guide	and	covers	very	basics	of	conceptual	issues	
in	mathematical	programming	and	explores	problem	 formulation	with	 applied	 issues	 in	decision	
making.	Advanced	topics	including	solution	algorithms	will	be	discussed	only	to	the	extent	necessary	
to	build	the	model	and	interpret	solutions.		

1.1. Mathematical	Programming	Approach	

Mathematical	 programming	 (MP)	 refers	 to	 a	 set	 of	 procedures	 dealing	 with	 the	 analysis	 of	
optimization	problems.	 Optimization	problems	are	generally	those	in	which	a	decision	maker	wishes	
to	optimize	 some	 measure(s)	 of	 satisfaction	 (for	 example,	 profit)	 by	 selecting	 values	 for	 a	 set	 of	
variables	 (for	 example,	 production).	We	will	discuss	 the	set	of	mathematical	programs	where	the	
variable	 values	 are	 constrained	 by	 conditions	 external	 to	 the	 problem	 at	 hand	 (for	 example,	
constraints	on	the	maximum	amount	of	resources	available	and/or	the	minimum	 amount	of	certain	
items	which	need	to	be	on	hand)	and	sign	restrictions	on	the	variables.		

The	general	 mathematical	programming	problem	we	will	use	is:	

(1-1)	

Optimize		z = f(x)	

subject	to	g(x) ∈ sl	

x ∈ sm 

Here	x	is	a	decision	variable.	 The	level	of	x	is	chosen	so	that	an	objective	is	optimized.	The	objective	
is	expressed	algebraically	as	z = f(x).	The	function	f(x)	is	commonly	called	the	objective	function	and	
tells	how	alternative	choices	of	x	effect	the	decision	maker	satisfaction	in	terms	of	the	objective.	This	
objective	function	will	be	maximized	or	minimized.	However,	in	setting	x,	a	set	of	constraints	must	
be	obeyed	requiring	that	the	x's	behave	in	some	manner.	These	constraints	are	reflected	in	the	above	
formulation	by	the	requirements	that:	a)	g(x)	must	belong	to	sl	and	b)	the	variable	must	fall	into	sm.	

                                                             
1	McCarl,	Bruce	.A.,	and	Spreen,	Thomas	.H.	(2013)	Applied	Mathematical	Programming	Using	Algebraic	System,	
Department	 of	 Agricultural	 Economics,	 Texas	 A&M	 University,	 College	 Station,	 TX;	 available	 at	
http://agecon2.tamu.edu/people/faculty/mccarl-bruce/books.htm		
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A	number	of	applications	have	been	cast	into	MP	terms.	Some	examples	of	practical	applications	are		

1. A	firm	wishes	to	minimize	the	cost	of	feeding	cattle	so	sets	up	an	LP	problem.	In	this	problem	
the	objective	is	to	minimize	the	cost	of	feeding	expressed	as	the	cost	per	lb	of	each	ingredient	
times	the	amount	of	feed	used	summed	over	all	feed	stuff	possibilities.	The	variables	are	the	
amount	of	each	feedstuff	used.	However,	in	choosing	the	quantity	of	feedstuffs	the	diet	must	
be	 structured	 so	 it	meets	 the	nutritional	 requirements	of	 the	 animals.	Thus,	 for	 example,	
constraints	 are	 needed	 insuring	 the	 calorie	 and	 protein	 content	 summed	 across	 all	 the	
feedstuffs	used	is	greater	than	or	equal	to	the	animal	requirement.	

2. A	firm	wishes	to	learn	how	to	manage	its	production	facilities	given	that	it	may	choose	to	
either	produce	a	good	or	buy	it	from	another	manufacturer	and	resell	it.	Specifically	suppose	
as	firm	is	in	the	business	of	electricity	sale	and	can	either	generate	it	or	buy	it	from	a	distant	
plant	 to	meet	customer	needs.	 In	such	a	case	 the	model	built	would	minimize	 the	cost	of	
generating	or	purchasing	plus	delivering	energy	given	constraints	on	productive	capacity,	
cost	volume	relationships,	transmission	capacity,	demand	and	other	factors.	The	variables	
would	be	quantity	generated	by	facility,	quantity	purchased	by	supplier	and	quantity	moved	
across	the	transmission	lines.	

3. A	firm	may	wish	to	determine	how	to	cut	up	a	set	of	incoming	logs	to	maximize	profits.	In	
such	case	the	firm	would	introduce	variables	for	the	way	to	process	the	logs	and	the	sale	of	
final	products.	Constraints	would	be	 imposed	on	 the	quantity	of	logs	by	type,	 log	handing	
facilities	and	product	demand.		

As	the	examples	above	illustrate,	the	MP	problem	encompasses	many	 different	types	of	problems	
some	of	which	will	be	discussed	in	this	book.	 In	particular,	if	f(x)	and	g(x)	are	linear	and	the	x	is	non-
negative,	then	the	problem	becomes	a	 linear	programming	 (LP)	 problem.	 If	 the	x ∈ sm 	restriction	
requires	x		to	take	on	integer	values,	then	this	is	an	integer	programming	problem.	 If	g(x)	is	linear,	
f(x)	quadratic,	and	the	sm	restrictions	are	simply	non-negativity	restrictions,	then	we	have	a	quadratic	
programming	problem.	 Finally,	 if	f(x)	and	g(x)	are	general	nonlinear	functions	with	sm 	being	non-
negativity	conditions,	the	problem	is	a	nonlinear	programming	(NLP)	problem.	 

1.2. Mathematical	Programming	in	Use	

Mathematical	programming	(MP)	is	most	often	thought	of	as	a	technique	which	decision	makers	can	
use	to	develop	optimal	values	of	the	decision	variables.	 However,	there	are	a	considerable	number	of	
other	potential	usages	of	MP.	Furthermore,	as	we	will	argue	below,	numerical	 usage	for	identification	
of	specific	decisions	is	probably	the	least	common	usage	in	terms	of	relative	 frequency.	

Three	 sets	 of	 usages	 of	MP	 that	we	 regard	 as	 common	 are:	 1)	problem	 insight	 construction;	2)	
numerical	usages	which	involve	finding	model	solutions;	and	3)	solution	algorithm	development	and	
investigation.	 We	will	discuss	each	of	these	in	turn.	
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1.2.1. Generating	Problem	Insight	
MP	forces	one	to	state	a	problem	carefully.	 One	must	define:	 a)	decision	 variables,	b)	constraints,	c)	
objective	 function,	 d)	 linkages	 between	 variables	 and	 constraints	 that	 reflects	 complementary,	
supplementary,	and	competitive	relationships	among	variables,	and	e)	consistent	data.	 The	decision	
maker	is	forced	to	understand	the	problem	interacting	with	the	situation	thoroughly,	 discovering	
relevant	decision	variables	and	constraining	factors.	 Frequently,	the	resultant	knowledge	 outweighs	
the	value	of	any	solutions	and	is	probably	the	number	one	benefit	of	most	mathematical	programming	
exercises.	

A	second	insight	generating	usage	of	MP	involves	analytical	investigation	of	problems.	While	it	is	not	
generally	 acknowledged	 that	 MP	 is	 used,	 it	 provides	 the	 underlying	 basis	 for	 a	 large	 body	 of	
microeconomic	theory.	 Often	one	sets	up,	for	example,	 a	utility	function	to	be	maximized	subject	to	a	
budget	 constraint,	 then	 uses	MP	 results	 for	 the	 characterization	 of	 optimal	 values.	 In	 turn,	 it	 is	
common	to	derive	theoretical	conclusions	 and	state	the	assumptions	under	which	those	conclusions	
are	valid.	 This	is	probably	the	second	most	common	usage	of	MP	and	again	is	a	non-numerical	use.	

1.2.2. Numerical	Mathematical	Programming	
Numerical	usages	fall	into	four	subclasses:	a)	prescription	of	solutions,	b)	prediction	of	consequences,	
c)	demonstration	of	sensitivity,	and	d)	solution	of	systems	of	equations.	

Prescription	of	solution:	The	most	commonly	thought	of	application	of	MP	involves	the	prescriptive	
or	 normative	 question:	 Exactly	what	 decision	 should	 be	made	 given	a	 particular	 specification	 of	
objectives,	variables,	and	constraints?	This	is	most	often	perceived	as	the	usage	of	MP,	but	is	probably	
the	 least	 common	usage	over	 the	universe	of	models.	 In	order	 to	understand	 this	 assertion,	 one	
simply	has	to	address	the	question:	“Do	you	think	that	many	decision	makers	yield	decision	making	
power	to	a	model?”	Very	few	circumstances	entail	this	kind	of	trust.	Most	often,	models	are	used	for	
decision	 guidance	or	 to	predict	 the	 consequences	 of	 actions.	One	 should	 adopt	 the	philosophical	
position	 that	 models	 are	 an	 abstraction	 of	 reality	 and	 that	 an	 abstraction	 will	 yield	 a	 solution	
suggesting	a	practical	solution,	not	always	one	that	should	be	implemented.	

Prediction:	The	second	numerical	MP	usage	involves	prediction.	Here	the	model	is	assumed	to	be	an	
adequate	depiction	of	the	entity	being	represented	and	is	used	to	predict	in	a	conditional	normative	
setting.	 Typically,	 this	 occurs	 in	 a	 business	 setting	 where	 the	 model	 is	 used	 to	 predict	 the	
consequences	 of	 environmental	 alterations	 (caused	 by	 investments,	 acquisition	 of	 resources,	
weather	changes,	market	price	conditions,	etc.).	Similarly,	models	are	commonly	used	in	government	
policy	settings	to	predict	the	consequences	of	policy	changes.	Models	have	been	used,	for	example,	
to	analyze	the	implications	for	social	benefits	of	a	change	in	ambient	air	quality.	Predictive	use	is	
probably	the	most	common	numerical	usage	of	MP.	

Demonstration	of	sensitivity:	The	third	and	next	most	common	numerical	usage	of	MP	is	sensitivity	
demonstration.	Many	research	inquiries	are	of	this	nature	where	no	one	ever	tries	to	implement	the	
solutions,	 and	 no	 one	 ever	 uses	 the	 solutions	 for	 predictions.	 Rather,	 the	 model	 is	 used	 to	
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demonstrate	what	might	happen	if	certain	factors	are	changed.	Here	the	model	is	usually	specified	
with	a	“realistic”	data	set,	then	is	used	to	demonstrate	the	implications	of	alternative	input	parameter	
and	constraint	specifications.	

Solution	of	systems	of	equations:	The	final	numerical	use	is	as	a	technical	device	in	empirical	problems.	
MP	can	be	used	to	develop	such	things	as	solutions	to	large	systems	of	equations,	equation	fitting	such	
that	 the	estimated	parameters	minimize	absolute	deviations,	or	exhibit	in	all	positive	or	all	negative	
error	 terms.	 In	this	case,	the	ability	of	modern	day	solvers,	i.e.,	computers,	to	treat	problems	with	
thousands	of	variables	and	 constraints	may	be	called	to	use.	 For	example,	a	large	USDA	econometric	
model	was	solved	for	a	time	using	a	MP	solver.	

1.2.3. Algorithmic	Development	
Much	 of	 the	mathematical	 programming	 related	 effort	 involves	 solution	 algorithm	 development.	
Formally,	this	is	not	a	usage,	but	an	enormous	amount	of	work	is	done	here	as	is	evidenced	by	the	
many	textbooks	treating	this	topic.	 In	such	a	setting	the	mathematical	programming	model	is	used	as	
a	vehicle	 for	solution	technique	development.	Work	is	also	done	on	new	formulation	techniques	and	
their	ability	to	 appropriately	capture	applied	problems. 

1.3. Book	Plan	

Mathematical	programming	in	application	consists,	to	a	large	degree,	of	applied	linear	programming.	
This	book	will	not	neglect	that.	Chapters	2,	3	and	4	will	cover	linear	solution	procedures,	modeling,	
and	 sensitivity	 analysis.	 Chapter	 5	 will	 discuss	 integer	 programming	 and	 chapter	 6	 will	 cover	
nonlinear	programming,	then	price	endogenous	programming	in	chapter	7	and	portfolio	theory	in	
chapter	8	are	followed.		

1.4. Summary	

• Mathematical	 programming	 (MP)	 refers	 to	 a	 set	 of	 procedures	 dealing	 with	 the	 analysis	 of	
optimization	 problems	 and	 it	 is	 thought	of	 as	 a	 technique	which	 decision	makers	 can	 use	 to	
develop	optimal	values	of	the	decision	variables.			

• Numerical	usages	of	MP	models	fall	into	four	subclasses:	a)	prescription	of	solutions,	b)	prediction	
of	consequences,	c)	demonstration	of	sensitivity,	and	d)	solution	of	systems	of	equations.	
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2. LINEAR	PROGRAMMING	

Key	points:	

Linear	programming	(LP):	decision	variables	are	chosen	so	that	a	linear	function	of	the	decision	
variables	is	optimized	and	a	simultaneous	set	of	linear	constraints	involving	the	decision	variables	
is	satisfied	in	the	LP.	

The	basic	LP	formulation:	

max	 z	 =  ncoxo

p

oql

   
 

s.t.	  
naroxo

p

oql

 ≤ br for	all	i = 1,⋯ ,m	

  xo ≥ 0 	

	
LP	assumptions	are	a)	objective	function	appropriateness,	b)	decision	variables	appropriateness,	
c)	constraint	appropriateness,	d)	proportionality,	e)	additivity,	f)	divisibility,	and	g)	certainty	

	

2.1. Introduction	

The	most	fundamental	optimization	problem	(treated	in	this	book)	is	the	linear	programming	(LP)	
problem.	LP	was	developed	as	a	discipline	 in	 the	1940’s,	motivated	 initially	by	 the	need	 to	solve	
complex	 planning	 problems,	 for	 example	 logistics,	 in	 wartime	 operations.	 Its	 development	
accelerated	 rapidly	 in	 the	 postwar	 period	 as	 many	 industries	 found	 valuable	 uses	 for	 LP.	 The	
founders	of	the	subject	are	generally	regarded	as	George	B.	Dantzig,	who	devised	the	simplex	method	
in	1947,	and	John	von	Neumann,	who	established	the	theory	of	duality	that	same	year.	The	Nobel	
Prize	in	Economics	was	awarded	in	1975	to	the	mathematician	Leonid	Kantorovich	(USSR)	and	the	
economist	Tjalling	Koopmans	 (USA)	 for	 their	 contributions	 to	 the	 theory	of	 optimal	 allocation	of	
resources,	in	which	LP	played	a	key	role.	Many	industries	use	LP	as	a	standard	tool,	e.g.	to	allocate	a	
finite	set	of	 resources	 in	an	optimal	way.	Examples	of	 important	application	areas	 include	airline	
crew	scheduling,	shipping	or	telecommunication	networks,	oil	refining	and	blending,	and	stock	and	
bond	 portfolio	 selection.	 For	 the	 story	 about	 how	 LP	 began,	 refer	 to	 Dantzig	 (2002)	 “Linear	
Programming.”	Operation	Research	50(1):	42-47.	

In	the	LP	problem,	decision	variables	are	chosen	so	that	a	linear	function	of	the	decision	variables	is	
optimized	and	a	simultaneous	set	of	linear	constraints	involving	the	decision	variables	is	satisfied.	

2.2. The	Basic	LP	Problem	

An	 LP	 problem	 contains	 several	 essential	 elements.	 First,	 there	 are	 decision	 variables,	xo ,	 which	
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denotes	 the	 amount	undertaken	of	 the	 respective	unknowns	of	which	 there	 are	n	(j = 1, 2,⋯ , n).	
Second	is	the	linear	objective	function	where	the	total	objective	value,	z,	equals	clxl + cmxm +⋯+
cpxp.	Here	co	is	the	contribution	(or	profit	margin)	of	each	unit	of	xo	to	the	objective	function.	The	
problem	 is	also	subject	 to	m	constraints.	An	algebraic	expression	 for	 the	 ith	constraint	 is	arlxl +
armxm +⋯+ arpxp ≤ br	(i = 1, 2,⋯ ,m),	where	br	denotes	the	upper	limit	or	right	hand	side	imposed	
by	the	constraint	and	aro	(technical	coefficient)	is	the	use	of	the	items	in	the	ith	constraint	by	one	unit	
of	xo.	The	co,	br,	and	aro	are	the	data	(exogenous	parameters)	of	the	LP	model.	

Given	these	definitions,	the	LP	problem	is	to	choose	xl,	xm,	⋯ , xp	so	as	to	

	(2-1)	

max	 z	 =		 clxl	 +	 cmxm	 +	 …	 +	 cpxp	 	 	

s.t.	 	 allxl	 +	 almxm	 +	 …	 +	 alpxp	 ≤	 bl	

	 	 amlxl	 +	 ammxm	 +	 …	 +	 ampxp	 ≤	 bm	

	 	 :	 	 :	 	 :	 	 :	 :	 :	

	 	 awlxl	 +	 awmxm	 +	 …	 +	 awpxp	 ≤	 bw	

	 	 xl	 ,	 xm	 ,	 …	 ,	 xp	 ≥	 0	

	
This	formulation	may	also	be	expressed	using	the	summation	operators:	

(2-2)	

max	 z	 =  ncoxo

p

oql

   
 

s.t.	  
naroxo

p

oql

 ≤ br for	all	i = 1,⋯ ,m	

  xo ≥ 0 	

	
Many	variants	have	been	posed	of	the	above	problem	and	applications	span	a	wide	variety	of	settings.	
For	example,	the	basic	problem	could	involve	setting	up	a)	a	livestock	diet	determining	how	much	of	
each	 feed	stuff	to	buy	so	 that	 total	diet	cost	 is	minimized	subject	to	constraints	on	minimum	and	
maximum	levels	of	nutrients	b)	a	production	plan	where	the	firm	chooses	the	profit	maximizing	level	
of	 production	 subject	 to	 resource	 (labor	 and	 raw	 materials)	 constraints	 or	 c)	 a	 minimum	 cost	
transportation	plan	determining	the	amount	of	goods	to	transport	across	each	available	route	subject	
to	constraints	on	supply	availability	and	demand.	

2.3. Basic	LP	Example	–	Joe’s	Van	

For	further	exposition	of	the	LP	problem	it	is	convenient	to	use	an	example.	Consider	the	decision	
problem	of	Joe's	van	conversion	shop.	Suppose	Joe	takes	plain	vans	and	converts	them	into	custom	
vans	and	can	produce	either	fine	or	fancy	vans.	The	decision	modeled	is	how	many	of	each	van	type	
to	convert	this	week.		The	number	converted	this	week	by	van	type	constitutes	the	decision	variables.	
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We	denote	these	variables	as	xxrpy	and	xxzp{|.	Both	types	require	a	$25,000	plain	van.	Fancy	vans	sell	
for	$37,000	and	Joe	uses	$10,000	in	parts	to	customize	them	yielding	a	profit	margin	of	$2,000.	Fine	
vans	use	$6,000	in	parts	and	sell	for	$32,700	yielding	profits	of	$1,700.	Joe	figures	the	shop	can	work	
on	no	more	than	12	vans	in	a	week.	Joe	hires	7	people	including	himself	and	operates	8	hours	per	day,	
5	days	a	week	and	thus	has	at	most	280	hours	of	labor	available	in	a	week.	Joe	also	estimates	that	a	
fancy	van	will	take	25	hours	of	labor,	while	a	fine	van	will	take	20	hours.	

In	 order	 to	 set	 up	 Joe's	 problem	 as	 an	 LP,	 we	 must	 mathematically	 express	 the	 objective	 and	
constraint	functions.	Since	the	estimated	profit	(or	profit	margin)	per	fancy	van	is	$2000	per	van,	
then	2000xxzp{|	is	the	profit	from	all	the	fancy	vans	produced.	Similarly,	1700xxrpy	is	the	profit	from	
all	the	fine	vans	produced.	The	total	profit	from	all	van	conversions	is	z = 2000xxzp{| + 1700xxrpy,	
where	z	is	the	total	profit.	This	equation	mathematically	describes	the	total	profit	consequences	of	
Joe's	choice	of	the	decision	variables.	Given	that	Joe	wishes	to	maximize	total	profit,	his	objective	is	
to	determine	the	levels	of	the	decision	variables	that	

(2-3)	 max	 z	 =		 2000xxzp{|	 +	 1700xxrpy	

	
This	is	the	objective	function	of	the	LP	model.	

Joe's	factory	has	limited	amounts	of	capacity	(size	of	the	workshop)	and	labor.	In	this	case,	capacity	
and	labor	are	resources	which	limit	the	allowable	(or	feasible)	values	of	the	decision	variables.	Since	
the	decision	variables	are	defined	in	terms	of	vans	converted	in	a	week,	the	total	number	of	vans	
converted	is	xxzp{| + xxrpy.	This	sum	must	be	less	than	or	equal	to	the	capacity	available,	12	units.	
Similarly,	total	labor	use	is	given	by	25xxzp{| + 20xxrpy	which	must	be	less	than	or	equal	to	the	labor	
available,	280	hours.	These	two	limits	are	called	constraints.		

Finally,	it	makes	no	sense	to	convert	a	negative	number	of	vans	of	either	type;	thus,	xxzp{|	and	xxrpy	
are	restricted	to	be	greater	than	or	equal	to	zero	(non-negativity).	Putting	it	all	together,	the	LP	model	
of	Joe's	problem	is	to	choose	the	values	of		xxzp{|	and	xxrpy	so	as	to:	

(2-4)	

max	 z	 =		 2000xxzp{|	 +	 1700xxrpy	 	 	 	
s.t.	 	 xxzp{|	 +	 xxrpy	 ≤	 12	 [capacity	constraint]	
	 	 25xxzp{|	 +	 20xxrpy	 ≤	 280	 [labor	constraint]	
	 	 xxzp{|	 ,	 xxrpy	 ≥	 0	 [non-negativity]	

	
This	is	a	formulation	of	Joe’s	LP	problem	depicting	the	decision	to	be	made	(i.e.	the	choice	of	xxzp{|	
and	xxrpy ).	 The	 formulation	 also	 identifies	 the	 rules,	 commonly	 called	 constraints,	 by	 which	 the	
decision	is	made	and	the	objective	which	is	pursued	in	setting	the	decision	variables.	
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2.4. Additional	LP	Examples	

2.4.1. Example	1	
Suppose	that	a	company	makes	two	products	(say,	P	and	Q)	using	two	machines	(say,	A	and	B).	Each	
unit	 of	 P	 that	 is	 produced	 requires	 50	 minutes	 processing	 time	 on	 machine	 A	 and	 30	 minutes	
processing	time	on	machine	B.	Each	unit	of	Q	requires	24	minutes	processing	time	on	machine	A	and	
33	minutes	processing	time	on	machine	B.		Machine	A	will	be	available	for	40	hours	(2,400	minutes)	
and	machine	B	is	available	for	35	hours	(2,100	minutes).	The	profit	margin	of	P	is	$25	and	the	profit	
margin	of	Q	is	$30.	Company	policy	is	to	determine	the	production	quantity	of	each	product	is	such	a	
way	to	maximize	the	total	profit	give	that	the	available	resources	should	not	be	exceeded.	

Step	1:	Defining	Decision	Variables	
We	often	start	with	identifying	decision	variables.	There	are	two	decision	variables,	x�,	the	number	
of	units	of	P	and	x�,	the	number	of	units	of	Q.	

Step	2:	Choosing	Objective	Function	
The	company	wants	to	maximize	the	profit.	The	profit	per	each	unit	of	product	P	is	$25	and	Q	is	$30.	
Therefore,	the	total	profit	is	z = 25x� + 30x�.	

Step	3:	Identifying	Constraints	
The	amount	of	time	that	machines	A	and	B	are	available	restrict	the	quantities	to	be	produced.	If	we	
produce	x�	units	and	x�	units,	machine	A	should	be	used	for	50x� + 24x�	minutes	since	each	unit	of	
P	 requires	 50	 minutes	 processing	 time	 on	 machine	 A	 and	 each	 unit	 of	 Q	 requires	 24	 minutes	
processing	 time	 on	machine	 A.	Machine	 A	 is	 available	 for	 40	 hours.	 This	 impose	 the	 constraint,	
50x� + 24x� ≤ 2400 .	 Similarly,	 the	 amount	 of	 time	 that	 machine	 B	 is	 available	 imposes	 the	
constraint,	30x� + 33x� ≤ 2100.	

Step	4:	LP	for	the	Example	
All	together	with	non-negativity,	

(2-5)	

max	 z	 =		 25x�	 +	 30x�	 	 	 	
s.t.	 	 50x�	 +	 24x�	 ≤	 2400	 [machine	A	time]	
	 	 30x�	 +	 33x�	 ≤	 2100	 [machine	B	time]	
	 	 x�	 ,	 x�	 ≥	 0	 [non-negativity]	

	

2.4.2. Example	2	(taken	from	McGuigan,	Moyer	and	Harris,	1999)	
Consider	the	White	Electronic	a	manufacturer	of	gas	and	electric	clothes	dryers.	The	problem	is	to	
determine	the	optimal	level	of	output,	x�z�	and	xy�y	where	x�z�	is	the	number	of	gas	clothes	dryers	
produced	and	xy�y	is	the	number	of	electric	clothes	dryers.	Information	about	the	production	of	these	
two	products	is	summarized	in	Table	2-1.			
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Table	2-1:	Resource	and	Profit	Data	for	White	Electronic	

	 Quantity	of	resources	 Quantity	of	resources	
	 required	per	output	 available		
	 Gas	dryer	 Electric	dryer	 	
Raw	material	(units)	 20	 40	 400	
Machine-processing	time	(hours)	 5	 2	 40	
Capacity	of	assembly	division	1	(units)	 1	 0	 6	
Capacity	of	assembly	division	2	(units)	 0	 1	 9	
Profit	margins	($/unit)	 100	 60	 	
	

Production	 consists	 of	 a	 machining	 process	 that	 takes	 raw	 materials	 and	 converts	 them	 into	
unassembled	parts.	These	are	then	sent	to	one	of	two	divisions	for	assembly	into	the	final	product,	
Division	1	for	gas	dryer	and	Division	2	for	electric	dryer.	As	listed	in	Table	2-1,	gas	dryer	requires	20	
units	of	raw	materials	and	5	hours	of	machine-processing	time,	whereas	electric	dryer	requires	40	
units	of	raw	material	and	2	hours	of	machine-processing	time.	During	the	period,	400	units	of	raw	
material	and	40	hours	of	machine-processing	time	are	available.	The	capacities	of	the	two	assembly	
divisions	during	the	period	are	6	and	9,	respectively.	

Profit	margins	per	unit	is	$100	per	unit	of	gas	dryer	and	$60	per	unit	of	electric	dryer.	The	profit	
margin	represents	the	difference	between	the	selling	price	and	the	variable	cost	per	unit.	

Step	1:	Defining	Decision	Variables	
There	are	two	decision	variables,	x�z� ,	the	number	of	units	of	gas	dryers	and	xy�y,	the	number	of	units	
of	electric	dryers.	

Step	2:	Choosing	Objective	Function	
The	company	wants	to	maximize	the	profit.	The	profit	margin	per	each	unit	of	gad	dryer	$100	and	
electric	dryer	is	$60.	Therefore,	the	total	profit	is	z = 100x�z� + 60xy�y .	

Step	3:	Identifying	Constraints	
Consider	 first	 the	 raw	material	 constraint.	 Production	 of	x�z� 	units	 of	 gas	 dryers	 requires	20x�z�	
units	of	raw	materials	and	production	of	xy�y	units	of	electric	dryers	requires	40xy�y	units	of	the	same	
raw	materials.	The	sum	of	these	two	quantities	of	raw	materials	must	be	less	than	or	equal	to	the	
quantity	available,	which	is	400	units;	20x�z� + 40xy�y ≤ 400.		

The	machine-processing	time	constraint	can	be	developed	in	a	like	manner.	Gas	dryer	requires	5x�z� 	
hours	 and	 electric	 dryer	 requires	2xy�y 	hours.	 With	 40	 hours	 of	 processing	 time	 available,	 the	
following	constraint	is	obtained;	5x�z� + 2xy�y ≤ 40.	

The	capacity	of	the	two	assembly	divisions	also	limit	output;	for	gas	dryer,	x�z� ≤ 6	and	for	electric	
dryer,	xy�y ≤ 9.	
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Step	4:	LP	for	the	Example	
All	together	with	non-negativity,	

(2-6)	

max	 z	 =		 100x�z�	 +	 60xy�y	 	 	 	
s.t.	 	 20x�z�	 +	 40xy�y	 ≤	 400	 [raw	material]	
	 	 5x�z�	 +	 2xy�y	 ≤	 40	 [machine-processing]	
	 	 x�z�	 	 	 ≤	 6	 [division	1]	
	 	 	 	 xy�y	 ≤	 9	 [division	2]	
	 	 x�z�	 ,	 xy�y	 ≥	 0	 [non-negativity]	

	

2.5. Other	Forms	of	the	LP	Problem	

Not	all	LP	problems	will	naturally	correspond	to	the	above	form.	Other	representations	of	LP	models	
are:	

• Objectives	 which	 involves	 minimize	 instead	 of	 maximize	 i.e.,	min 			z = clxl + cmxm + ⋯+
cpxp	

• Constraints	which	are	“greater	than	or	equal	to”	instead	of	“less	than	or	equal	to";	i.e.,	arlxl +
armxm +⋯+ arpxp ≥ br	

• Constraints	which	are	strict	equalities;	i.e.,	arlxl + armxm +⋯+ arpxp = br	
• Variables	without	non-negativity	restriction	i.e.,	xo	can	be	unrestricted	in	sign,	

• Variables	required	to	be	non-positive	i.e.,	xo ≤ 0.	

2.5.1. Cost	Minimization	(taken	from	McGuigan,	Moyer	and	Harris,	1999)	
Suppose	 that	 the	 Silverado	Mining	 Company	 owns	 two	 different	mines	 (say	mines	 A	 and	 B)	 for	
producing	uranium	ore.	The	two	mines	are	located	in	different	areas	and	produce	different	qualities	
of	uranium	ore.	After	the	ore	is	mined,	it	is	separated	into	three	grades	–	high-,	medium-,	and	low-
grade.	Information	concerning	the	operation	of	the	two	mines	is	shown	in	Table	2-2.	Mine	A	produces	
0.75	tons	of	high-grade	ore,	0.25	tons	of	medium-grade	ore,	and	0.50	tons	of	low-grade	ore	per	hour.	
Likewise,	Mine	B	produces	0.25,	0.25	and	1.50	tons	of	high-,	medium-,	and	low-grade	ore	per	hour,	
respectively.	The	firm	has	contracts	with	uranium-processing	plants	to	supply	a	minimum	of	36	tons	
of	high-grade	ore,	24	tons	of	medium-grade	ore,	and	72	tons	of	low-grade	ore	per	week.	Finally	as	
shown	in	the	bottom	row	of	Table	2-2,	it	costs	the	company	$50	per	hour	to	operate	Mine	A	and	$40	
per	hour	 to	operate	Mine	B.	The	 company	wishes	to	determine	 the	number	of	hours	per	week	 it	
should	operate	each	mine	to	minimize	the	total	cost	of	fulfilling	its	supply	contracts.	

Step	1:	Defining	Decision	Variables	
There	are	two	decision	variables,	x�,	the	number	of	hours	per	week	that	Mine	A	is	operated	and	x�,	
the	number	of	hours	per	week	that	Mine	B	is	operated.	
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Table	2-2:	Resource	and	Profit	Data	for	Silverado	Mining	

	 Outputs	(tons	per	hour)	 Requirements	
	 Mine	 (tons	per	week)	
Type	of	ore	 A	 B	 	
High-grade	 0.75	 0.25	 36	
Medium-grade	 0.25	 0.25	 24	
Low-grade	 0.50	 1.50	 72	
Operating	cost	($/hour)	 50	 40	 	
	

Step	2:	Choosing	Objective	Function	
The	company	wants	to	minimize	the	total	cost	per	week	from	the	operation	of	the	two	mines	and	the	
total	cost	is	the	sum	of	the	operating	cost	per	hour	of	each	mine	times	the	number	hours	per	week	
that	each	mine	is	operated.	The	total	cost	is	z = 50x� + 40x�.	

Step	3:	Identifying	Constraints	
The	company’s	contracts	with	uranium-processing	plants	require	it	to	operate	the	two	mines	for	a	
sufficient	number	of	hours	to	produce	the	required	amount	of	each	grade	of	uranium	ore	such	that	
0.75x� + 0.25x� ≥ 36	(high),	0.75x� + 0.25x� ≥ 36	(medium),	and	0.75x� + 0.25x� ≥ 36	(low).	

Step	4:	LP	for	the	Example	
All	together	with	non-negativity,	

(2-7)	

min	 z	 =		 50x�	 +	 40x�	 	 	 	
s.t.	 	 0.75x�	 +	 0.25x�	 ≥	 36	 [high-grade	ore]	
	 	 0.25x�	 +	 0.25x�	 ≥	 24	 [medium-grade	ore]	
	 	 0.50x�	 +	 1.50x�	 ≥	 72	 [low-grade	ore]	
	 	 x�	 ,	 x�	 ≥	 0	 [non-negativity]	

	

2.6. Assumptions	of	LP	

LP	problems	embody	seven	important	assumptions	relative	to	the	problem	being	modeled.	The	first	
three	involve	the	appropriateness	of	the	formulation;	the	last	four	the	mathematical	relationships	
within	the	model.	

2.6.1. Objective	Function	Appropriateness	
This	assumption	means	that	the	objective	function	is	the	sole	criteria	for	choosing	among	the	feasible	
values	of	the	decision	variables.	Satisfaction	of	this	assumption	can	often	be	difficult	as,	for	example,	
Joe	might	base	his	van	conversion	plan	not	only	on	profit	but	also	on	risk	exposure,	availability	of	
vacation	time,	etc.	The	multi-objective	chapter	covers	the	relaxation	of	this	assumption.	



 
 
	
Kim,	McCarl,	and	Spreen	(2018)	Applied	Mathematical	Programming	

12	 
 

2.6.2. Decision	Variable	Appropriateness	
A	key	assumption	is	that	the	specification	of	the	decision	variables	is	appropriate.	This	assumption	
requires	that	

• The	decision	variables	are	all	fully	manipulatable	within	the	feasible	region	and	are	under	the	
control	of	the	decision	maker.	

• All	appropriate	decision	variables	have	been	included	in	the	model.	

2.6.3. Constraint	Appropriateness	
The	 third	 appropriateness	 assumption	 involves	 the	 constraints.	 Again,	 this	 is	 best	 expressed	 by	
identifying	sub-assumptions:	

• The	 constraints	 fully	 identify	 the	 bounds	 placed	 on	 the	 decision	 variables	 by	 resource	
availability,	 technology,	 the	 external	 environment,	 etc.	 Thus,	 any	 choice	 of	 the	 decision	
variables,	which	simultaneously	satisfies	all	the	constraints,	is	admissible.	

• The	resources	used	and/or	supplied	within	any	single	constraint	are	homogeneous	items	that	
can	be	used	or	supplied	by	any	decision	variable	appearing	in	that	constraint.	

• Constraints	 have	 not	 been	 imposed	which	 improperly	 eliminate	 admissible	 values	 of	 the	
decision	variables.		

• The	constraints	are	inviolate.	No	considerations	involving	model	variables	other	than	those	
included	in	the	model	can	lead	to	the	relaxation	of	the	constraints.	

Relaxations	and/or	the	implications	of	violating	these	assumptions	are	discussed	throughout	the	text.	

2.6.4. Proportionality	
Variables	 in	 LP	 models	 are	 assumed	 to	 exhibit	 proportionality.	 Proportionality	 deals	 with	 the	
contribution	per	unit	of	each	decision	variable	to	the	objective	function.	This	contribution	is	assumed	
constant	and	independent	of	the	variable	level.	Similarly,	the	use	of	each	resource	per	unit	of	each	
decision	variable	is	assumed	constant	and	independent	of	variable	level.	There	are	no	economies	of	
scale.	For	example,	in	the	general	LP	problem,	the	net	return	per	unit	of	xo	produced	is	co.	If	the	solution	
uses	one	unit	of	xo,	then	co	units	of	return	are	earned,	and	if	100	units	are	produced,	then	returns	are	
100co .	 Under	 this	 assumption,	 the	 total	 contribution	 of	 xo	 to	 the	 objective	 function	 is	 always	
proportional	to	its	level.	

This	assumption	also	applies	to	resource	usage	within	the	constraints.	Joe's	labor	requirement	for	fine	
vans	was	25	hours/van.	If	Joe	converts	one	fine	van	he	uses	25	hours	of	labor.	If	he	converts	10	fine	
vans	he	uses	250	hours	(25*10).	Total	labor	use	from	van	conversion	is	always	strictly	proportional	
to	the	level	of	vans	produced.	

Economists	encounter	several	types	of	problems	in	which	the	proportionality	assumption	is	grossly	
violated.	In	some	contexts,	product	price	depends	upon	the	level	of	production.	Thus,	the	contribution	
per	 unit	 of	 an	 activity	 varies	 with	 the	 level	 of	 the	 activity.	 Methods	 to	 relax	 the	 proportionality	
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assumption	 are	 discussed	 in	 the	 nonlinear	 approximations,	 price	 endogenous,	 and	 risk	 chapters.		
Another	case	occurs	when	fixed	costs	are	to	be	modeled.	Suppose	there	is	a	fixed	cost	associated	with	
a	 variable	 having	 any	non-zero	 value	 (i.e.,	 a	 construction	 cost).	 In	 this	 case,	 total	 cost	per	 unit	 of	
production	is	not	constant.	The	integer	programming	chapter	discusses	relaxation	of	this	assumption.	

2.6.5. Additivity	
Additivity	deals	with	the	relationships	among	the	decision	variables.	Simply	put	their	contributions	to	
an	 equation	 must	 be	 additive.	 The	 total	 value	 of	 the	 objective	 function	 equals	 the	 sum	 of	 the	
contributions	of	each	variable	to	the	objective	function.	Similarly,	total	resource	use	is	the	sum	of	the	
resource	 use	 of	 each	 variable.	 This	 requirement	 rules	 out	 the	 possibility	 that	 interaction	 or	
multiplicative	terms	appear	 in	the	objective	 function	or	the	constraints.	 	For	example,	 in	 Joe's	van	
problem,	the	value	of	the	objective	function	is	2,000	times	the	fancy	vans	converted	plus	1,700	times	
the	fine	vans	converted.	Converting	fancy	vans	does	not	alter	the	per	van	net	margin	of	fine	vans	and	
vice	versa.		Similarly,	total	labor	use	is	the	sum	of	the	hours	of	labor	required	to	convert	fancy	vans	
and	the	hours	of	labor	used	to	convert	 fine	vans.	Making	a	lot	of	one	van	does	not	alter	the	 labor	
requirement	for	making	the	other.	

In	the	general	LP	formulation,	when	considering	variables	xo	and	x�,	the	value	of	the	objective	function	
must	always	equal	co	times	xo	plus	c�	times	x�.	 	Using	xo	does	not	affect	the	per	unit	net	return	of	x�	
and	vice	versa.	Similarly,	total	resource	use	of	resource	i	is	the	sum	of	aroxo	and	ar�x�.	Using	xo	does	not	
alter	 the	 resource	 requirement	of	x� .	 The	nonlinear	programming	and	price	 endogenous	 chapters	
present	methods	of	relaxing	this	assumption.	

2.6.6. Divisibility	
The	 problem	 formulation	 assumes	 that	 all	 decision	 variables	 can	 take	 on	 any	non-negative	 value	
including	fractional	ones;	(i.e.,	the	decision	variables	are	continuous).	In	the	Joe's	van	shop	example,	
this	means	that	fractional	vans	can	be	converted;	e.g.,	Joe	could	convert	11.2	fancy	vans	and	0.8	fine	
vans.	This	assumption	is	violated	when	non-integer	values	of	certain	decision	variables	make	little	
sense.	A	decision	variable	may	correspond	to	the	purchase	of	a	tractor	or	the	construction	of	a	building	
where	it	 is	clear	that	the	variable	must	take	on	integer	values.	In	this	case,	 it	 is	appropriate	to	use	
integer	programming.	

2.6.7. Certainty	
The	 certainty	 assumption	 requires	 that	 the	 parameters	co ,	br ,	 and	aro 	be	 known	 constants.	 The	
optimum	solution	derived	is	predicated	on	perfect	knowledge	of	all	the	parameter	values.	Since	all	
exogenous	factors	are	assumed	to	be	known	and	fixed,	LP	models	are	sometimes	called	non-stochastic	
as	contrasted	with	models	explicitly	dealing	with	stochastic	factors.		This	assumption	gives	rise	to	the	
term	"deterministic"	analysis.	The	exogenous	parameters	of	a	LP	model	are	not	usually	known	with	
certainty.	 In	 fact,	 they	are	usually	 estimated	by	statistical	 techniques.	Thus,	after	developing	 a	LP	
model,	it	is	often	useful	to	conduct	sensitivity	analysis	by	varying	one	of	the	exogenous	parameters	
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and	observing	the	sensitivity	of	the	optimal	solution	to	that	variation.	For	example,	in	the	van	shop	
problem	the	net	return	per	fancy	van	is	$2,000,	but	this	value	depends	upon	the	van	cost,	the	cost	of	
materials	and	the	sale	price	all	of	which	could	be	random	variables.	

Considerable	research	has	been	directed	toward	incorporating	uncertainty	into	programming	models.		
We	devote	a	chapter	to	that	topic.		
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3. SOLUTION	OF	LP	PROBLEMS	

Key	points:	

The	simplex	method	is	a	general	procedure	for	solving	LP	problems.	

MS	Excel	Solver	has	the	capability	to	solve	LP	problems.	

The	shadow	price	on	a	particular	constraint	represents	the	change	in	the	value	of	the	objective	
function	per	unit	increase	in	the	RHS	value	of	the	corresponding.	Reduced	cost	is	the	shadow	price	
associated	with	the	non-negativity	constraint.	

The	duality	indicates	that	the	maximum	value	of	the	primal	profit	function	will	also	be	equal	to	the	
minimum	value	of	the	dual	imputed	value	function	(cost	of	resources	employed).	

	

3.1. Introduction	

Linear	programming	solution	has	been	the	subject	of	many	articles	and	books.	Complete	coverage	of	
LP	 solution	 approaches	 is	 beyond	 the	 scope	 of	 this	 book	 and	 is	 present	 in	 many	 other	 books.	
However,	an	understanding	of	 the	basic	LP	solution	approach	and	the	resulting	properties	are	of	
fundamental	 importance.	 Thus,	 we	 cover	 LP	 solution	 principles	 from	 a	 graphical	 perspective	
demonstrating	the	simplex	algorithm,	which	is	a	primary	way	to	solve	(large)	LP	problems.	

3.2. Simplex	Method	

The	simplex	method	is	a	general	procedure	for	solving	LP	problems	which	is	developed	by	G.	Dantzig	
in	1947.	The	simplex	method	constructs	corner-point	 feasible	solutions	(CPF	solutions)	and	 then	
investigates	 each	 CPF	 solution	 successively	 until	 optimum	 is	 reached.	 The	 simplex	 method	 has	
proved	 to	 be	 a	 remarkable	 efficient	 method	 to	 solve	 huge	 problems	 on	 computer.	 The	 simplex	
method	is	an	algebraic	procedure	but	its	underlying	concepts	are	geometric.	We	focus	on	a	geometric	
viewpoint	first.			

Recall	Joe’s	van	example	in	chapter	2:		

(3-1)	

max	 z	 =		 2000xxzp{|	 +	 1700xxrpy	 	 	 	
s.t.	 	 xxzp{|	 +	 xxrpy	 ≤	 12	 [capacity	constraint]	
	 	 25xxzp{|	 +	 20xxrpy	 ≤	 280	 [labor	constraint]	
	 	 xxzp{|	 ,	 xxrpy	 ≥	 0	 [non-negativity]	

3.2.1. Graphical	Representation	of	the	Decision	Space	
We	now	look	at	the	constraints	of	the	above	LP	problem.	Note	from	equation	(3-1)	that	each	of	the	
decision	variable	must	be	greater	than	or	equal	to	zero.	Therefore	we	need	only	graph	the	upper	
right-hand	 (first	 quadrant).	 Figure	 3.1	 illustrates	 the	 capacity	 constraint	 as	 given	 by	 the	 first	
constraint	in	equation	(3-1).		
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Figure	3-1.	Graphical	Representation	of	Capacity	Constraint	

	

The	maximum	quantity	of	capacity	that	may	be	used	occurs	when	the	inequality	is	satisfied	as	an	
equality;	in	other	words,	the	set	of	points	that	satisfy	the	equation;	xxzp{| + xxrpy = 12,	or	

(3-2)	 xxrpy = 12 − xxzp{|	

	
Because	it	is	possible	to	use	less	than	the	amount	of	capacity	available,	any	combination	of	outputs	
lying	on	or	below	(directed	by	arrows	in	Figure	3-1)	the	line	(shaded	area)	will	satisfy	the	capacity	
constraint.	 Similarly,	 the	 second	 constraint	 on	 the	 labor,	 25xxzp{| + 20xxrpy ≤ 280 ,	 yields	 the	

combinations	of	xxzp{|	and	xxrpy	that	lie	on	or	below	the	line,	xxrpy =
m��
m�
− m�

m�
xxzp{|,	shown	in	Figure	

3-2	(shaded	area).	

	

	
Figure	3-2.	Graphical	Representation	of	Labor	Constraint	
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Figure	3-3.	Graphical	Representation	of	the	Feasible	Region	

	

Combining	all	 the	 constraints	 yields	 the	 feasible	 solution	 space	 (feasible	 region)	 to	 the	problem,	
where	 all	 of	 the	 values	 of	 the	 decision	 variables,	 xxzp{| 	and	 xxrpy ,	 simultaneously	 satisfy	 the	
constraints.	It	can	be	represented	geometrically	by	the	shaded	area	given	in	Figure	3-3.	The	arrows	
associated	with	each	line	show	the	direction	indicated	by	the	inequality	sign	in	each	constraint.	Four	
dots,	(0,	0),	(11.2,	0),	(8,	4)	and	(0,	12),	are	corner-point	feasible	(CPF)	solutions.	Any	production	
alternative	(combination	of		xxzp{|	and	xxrpy)	not	within	the	feasible	region	must	violate	at	least	one	
of	the	constraints	of	the	problem.	Among	these	feasible	production	alternatives,	we	want	to	find	the	
values	 of	 the	 decision	 variables	 xxzp{| 	and	 xxrpy 	that	 maximize	 Joe’s	 profit,	 z = 2000xxzp{| +
1700xxrpy.	

3.2.2. Finding	an	Optimal	Solution	
To	find	an	optimal	solution,	we	first	note	that	any	point	in	the	interior	of	the	feasible	region	cannot	
be	an	optimal	solution	since	the	contribution	can	be	increased	by	increasing	either	xxzp{|	or	xxrpy		or	
both.	To	make	this	point	more	clearly,	let’s	rewrite	the	objective	function	in	terms	of	xxrpy	as	follows:	

(3-3)	 xxrpy =
z

1700
−
2000
1700

xxzp{|	

	
If	z	is	held	fixed	at	a	given	constant	value,	this	expression	represents	a	straight	line,	where	 �

l���
	is	the	

intercept	with	 the	xxrpy 	axis	 (i.e.,	 the	 value	 of	xxrpy 	when	xxzp{| = 0),	 and	−m���
l���

≈ −1.1765	 is	 the	
slope	(i.e.,	the	change	in	the	value	of	xxrpy	corresponding	to	a	unit	increase	in	the	value	of	xxzp{|).	Note	
that	the	slope	of	this	straight	line	is	constant,	independent	of	the	value	of	z.	As	the	value	of	z	increases,	
the	resulting	straight	lines	move	parallel	to	themselves	in	a	northeasterly	direction	away	from	the	
origin	(because	the	intercept	 �

l���
	increases	when	z	increases,	and	the	slope	is	constant	at	−m���

l���
).		
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Figure	3-4.	Joe’s	Van	Iso-profit	Lines	

	

Figure	3-4	shows	some	of	these	parallel	lines	for	specific	values	of	z,	for	example,	z	=	$10,200.	Each	
of	the	lines	shown	in	Figure	3-4	is	an	iso-profit	line,	meaning	that	each	combination	of	output	level,	
(xxzp{|, xxrpy)	lying	on	a	given	line	has	the	same	total	profit.	For	example,	z	=	$17,000	iso-profit	line	
includes	 such	 output	 combinations	 as	 points	 between	 (0,	 10)	 and	 (8.5,	 0).	 The	 goal	 of	 profit	
maximization	can	be	interpreted	graphically	to	find	an	output	combination	that	falls	on	as	high	as	
iso-profit	lines	as	possible.		

Combining	Figures	3-3	and	3-4	yields	the	output	combination	point	within	the	feasible	region	that	
lies	on	the	highest	possible	iso-profit	line.		At	the	point	labeled	E,	the	line	intercepts	the	farthest	point	
from	 the	 origin	within	 the	 feasible	 region,	 and	 the	 contribution	z	cannot	be	 increased	any	more.	
Therefore,	point	E	represents	the	optimal	solution	(Figure	3-5).		

	

	
Figure	3-5.	Optimal	Solution	
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Since	reading	 the	graph	may	be	difficult,	we	can	compute	 the	values	of	 the	decision	variables	by	
recognizing	that	point	E	is	determined	by	the	intersection	of	the	capacity	constraint	and	the	labor	
constraint.	Solving	these	constraints,	

(3-4)	
xxzp{|	 +	 xxrpy	 =	 12	 [capacity	constraint]	

25xxzp{|	 +	 20xxrpy	 =	 280	 [labor	constraint]	

	
yields	xxzp{| = 8,	xxrpy = 4	and	substituting	these	values	to	the	objective	function	yields	z = $22,800	
as	the	maximum	contribution	that	can	be	attained.	

Note	that	the	optimal	solution	is	at	a	corner	point,	or	vertex,	of	the	feasible	region.	This	turns	out	to	
be	a	general	property	of	LP:	if	a	problem	has	an	optimal	solution,	there	is	always	a	vertex,	one	of	CPF	
solution	that	is	optimal.	The	simplex	method	for	finding	an	optimal	solution	to	a	general	LP	models	
exploits	this	property	by	starting	at	a	vertex	and	moving	from	vertex	to	vertex,	improving	the	value	
of	the	objective	function	with	each	move.	In	Figure	3.5,	the	values	of	the	decision	variables	and	the	
associated	 value	 of	 the	 objective	 function	 are	 given	 for	 each	 vertex	 of	 the	 feasible	 region.	 Any	
procedure	that	starts	at	one	of	the	vertices	and	looks	for	an	improvement	among	adjacent	vertices	
would	also	result	in	the	solution	labeled	E.	An	optimal	solution	of	a	LP	in	its	simplest	form	gives	the	
value	of	the	criterion	function,	the	levels	of	the	decision	variables,	and	the	amount	of	slack	or	surplus	
in	the	constraints.	In	Joe’s	van	example,	the	criterion	was	maximum	profit,	which	turned	out	to	be	
z∗ = $22,800;	the	level	of	the	decision	variables	are	xxzp{|

∗ = 8	and	xxrpy
∗ = 4.	

3.2.3. Joe’s	Van	and	Simplex	
Each	constraint	boundary	is	a	line	that	forms	the	boundary	of	what	is	permitted	by	the	corresponding	
constraint.	As	said,	corner-point	feasible	solutions	(CPF	solutions)	are	corner-point	solutions	within	
feasible	region;	e.g.,	(0,	0),	(0,	12),	(8,	4),	and	(11.2,	0)	(Figure	3-5).	Again,	when	an	optimal	solution	
of	a	LP	exists,	it	occurs	one	of	CPF	solutions.	When	two	CPF	solutions	are	adjacent	to	each	other	when	
they	are	connected	by	a	line	segment,	for	example,	(0,	0)	is	adjacent	to	(0,	12)	and	(11.2,	0);	(8,	4)	is	
adjacent	to	(0,	12)	and	(11.2,	0)	as	well.		

Simplex	method	begins	with	any	CPF	solution,	usually	origin,	move	to	an	adjacent	CPF	solution	with	
a	better	objective	value,	and	continue	until	no	adjacent	CPF	solution	has	a	better	objective	value.	If	a	
CPF	solution	has	no	adjacent	CPF	solutions	that	are	better	(as	measured	by	z),	then	it	must	be	an	
optimal	solution.	

Solving	the	example:	

• Initialization:	Choose	(0,	0)	as	the	initial	CPF	solution	to	examine	(this	is	a	convenient	choice)	
and	measure	z,	z = 0	

o Optimality	test:	(0,	0)	is	not	optimal	because	adjacent	CPF	solutions	are	better;	(0,	12)	
gives	z	=	20,400	and	(11.2,	0)	has	z	=	22,400.	

• Iteration	1:	Move	to	a	better	adjacent	CPF	solution;	in	this	case,	move	to	(11.2,	0)	
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o Optimality	test:	 (11.2,	0)	 is	not	an	optimal	solution	because	adjacent	CPF	solution,	
(8,4)	is	better;	(8,	4)	gives	z	=	22,800	

• Iteration	2:	Move	to	a	better	adjacent	CPF	solution,	(8,	4)	
o Optimality	 test:	 (8,	 4)	 is	 an	 optimal	 solution	 because	 no	 adjacent	 CPF	 solution	 is	

better.	

3.2.4. Solution	for	White	Electronic	
Recall	the	additional	LP	example	in	equations	(2-6)	in	Chapter	2,	White	Electronic	dryer	example:		

(3-5)	

max	 z	 =		 100x�z�	 +	 60xy�y	 	 	 	
s.t.	 	 20x�z�	 +	 40xy�y	 ≤	 400	 [raw	material]	
	 	 5x�z�	 +	 2xy�y	 ≤	 40	 [machine-processing]	
	 	 x�z�	 	 	 ≤	 6	 [division	1]	
	 	 	 	 xy�y	 ≤	 9	 [division	2]	
	 	 x�z�	 ,	 xy�y	 ≥	 0	 [non-negativity]	

	
The	feasible	area	and	CPF	solutions	are	identified	following	the	discussion	above.	Figure	3-6	presents	
the	graphical	solution	of	the	White	Electronic	dryer	example	in	equation	(3-5).	The	optimal	solution	
is	x�z�∗ = 5,	xy�y

∗ = 7.5	and	z∗ = 950.		

	

	
Figure	3-6.	Finding	Optimal	Solution	

	

	



 
 
	
Kim,	McCarl,	and	Spreen	(2018)	Applied	Mathematical	Programming	

21	 
 

Simplex	method	solves	the	problem	as	follows:	

• Initialization:	Choose	(0,	0)	as	the	initial	CPF	solution	to	examine	and	measure	z,	z = 0	
o Optimality	test:	(0,	0)	is	not	optimal	because	adjacent	CPF	solutions	are	better;	(0,	9)	

gives	z	=	540	and	(6,	0)	has	z	=	600.	

• Iteration	1:	Move	to	a	better	adjacent	CPF	solution;	in	this	case,	move	to	(6,	0)	
o Optimality	test:	(6,	0)	is	not	an	optimal	solution	because	adjacent	CPF	solution,	(6,	5)	

is	better,	which	gives	z	=	900	

• Iteration	2:	Move	to	a	better	adjacent	CPF	solution,	(6,	5)	
o Optimality	test:	(6,	5)	is	not	an	optimal	solution	because	adjacent	CPF	solution,	(5,	

7.5)	is	better,	which	gives	z	=	950	

• Iteration	3:	Move	to	a	better	adjacent	CPF	solution,	(5,	7.5)	
o Optimality	test:	(5,	7.5)	is	an	optimal	solution	because	no	adjacent	CPF	solution,	for	

example	adjacent	CPF	(2,	9)	has	z	=	740.	
	

3.2.5. Solution	for	Silverado	Mining	
How	about	the	minimization?	Recall	the	minimization	example	in	equation	(2-7)	Chapter	2,	Silverado	
Mining	Company.	

(3-6)	

min	 z	 =		 50x�	 +	 40x�	 	 	 	
s.t.	 	 0.75x�	 +	 0.25x�	 ≥	 36	 [high-grade	ore]	
	 	 0.25x�	 +	 0.25x�	 ≥	 24	 [medium-grade	ore]	
	 	 0.50x�	 +	 1.50x�	 ≥	 72	 [low-grade	ore]	
	 	 x�	 ,	 x�	 ≥	 0	 [non-negativity]	

	
The	feasible	area	and	CPF	solutions	are	identified	(Figure	3-7).	Note	that	constraints	in	the	problem	
are	greater	than	equal	to	and	thus	the	feasible	region	is	the	above	the	constraints	lines.	The	optimal	
solution	occurs	one	of	CPF	solutions	and	thus	evaluate	(x�, x�)	=	(0,	144),	(24,	72),	(72,	24),	and	(144,	
0)	in	terms	of	the	objective	function	and	pick	the	minimum	one.		The	optimal	solution	is	(x�∗ , x�∗ ) =
(24, 72)	and	z∗ = 4080.	To	determine	the	optimal	solution	using	the	iso-cost	line,		

(3-7)	 x� =
z
40

−
50
40
x�	

	
If	z	is	held	 fixed	at	a	given	constant	value,	 this	expression	represents	a	red	dotted	straight	 line	 in	
Figure	3-7,	where	 �

��
	is	the	intercept	with	the	x�	axis	and	−

��
��
= −1.25	is	the	slope.	As	the	value	of	z	

decreases	(remember	it	is	minimization),	the	iso-cost	line	moves	toward	the	origin	and	it	touches	the	
pointe	labeled	E,	which	is	the	optimal	solution.		
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Figure	3-7.	Finding	Optimal	Solution	

	

The	 simplex	 method	 is	 not	 applicable	 for	 the	 minimization;	 equation	 (3-6)	 is	 converted	 to	 the	
maximization	problem	using	duality	and,	in	turn,	we	can	use	the	simplex	method.	For	the	duality,	see	
section	3.5.	

3.3. LP	on	Excel	

Microsoft	Excel	Solver	(Add-in)	has	the	capability	to	solve	LP	problems	and	it	can	be	used	to	solve	
problems	with	up	 to	200	decision	variables.	The	 Solver	Add-in	 is	 a	Microsoft	Office	Excel	 add-in	
program	 that	 is	 available	 when	 you	 install	Microsoft	 Office	 or	 Excel.	 	 To	 use	 the	 Solver	 Add-in,	
however,	you	first	need	to	load	it	in	Excel.		The	process	is	slightly	different	for	Mac	or	PC	users.	

3.3.1. Adding	Solver	Add-in	
Windows	PC:	load	Excel	with	a	new	Excel	workbook	and	click	“File”	tab.	Find	“Options”	Excel	Options	
widow	appears.	Click	Add-ins,	and	then	in	the	Manage	box,	select	Excel	Add-ins	and	click	Go.	In	the	
Add-ins	available	box,	select	the	Solver	Add-in	check	box,	and	then	click	OK.	After	you	load	Solver,	
the	Solver	command	is	available	in	the	“Data”	tab.	

File	>	Options	>	Add-ins	>	Manage:	Excel	Add-ins,	Go	>	Solver	Add-in	>	OK	

Mac	PC:	execute	Excel	with	a	new	Excel	workbook	and	click	“Tools”	menu	and	select	“Excel	Add-ins”	
Add-ins	available	box	appears	and	check	Solver	Add-in.	Click	OK.	After	you	load	Solver,	the	Solver	
command	is	available	in	the	“Data”	tab.	

Tools	>	Excel	Add-ins	>	Solver	Add-in	>	OK	
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3.3.2. Formulating	LP	on	Excel	Spreadsheet	
Recall	Joe’s	van	example	in	equation	(3-1).	To	begin,	we	enter	heading	for	each	decision	variable,	
xxzp{|	and	xxrpy	in	the	rage	B3:C3	(Panel	A	in	Figure	3-4).	In	the	rage	B4:C4,	we	input	trial	values	for	
the	number	of	vans	converted	(any	values	will	work).	

In	the	range	B5:C5,	we	enter	the	profit	margins	from	each	van	type	and	then	we	compute	the	profit	
of	the	van	conversion	in	the	cell	E5	with	the	formula		

(3-8)	 = B4 ∗ B5 + C4 ∗ C5	
	
But	it	is	usually	easier	to	enter	the	formula	using	the	SUMPRODUCT	function:	

(3-9)	 = SUMPRODUCT(B4: C4, B5: C5)	

	
The	 =SUMPRODUCT	 function	 requires	 two	 ranges	 as	 inputs.	 The	 first	 cell	 in	 the	 first	 range	 is	
multiplied	by	the	first	cell	in	the	second	range,	then	the	second	cell	in	the	first	range	is	multiplied	by	
the	second	cell	in	the	second	range,	and	so	on	(Panel	B	in	Figure	3.8).		

	

																																									Panel	A	 	 	 	 	 	 						Panel	B	 	

					 	
		 	 											Panel	C																																																																																		Panel	E	

			 	
Figure	3-8.	Formulating	LP	on	Excel	(1)	
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Figure	3-9.	Formulating	LP	on	Excel	(2)	

	
	

The	next	step	required	to	set	up	our	LP	in	Excel	is	to	set	up	our	constraints	for	capacity	and	labor.	To	
begin,	we	recreate	the	table	in	Excel	in	the	range	B7:C8	that	defines	capacity	and	labor	requirements	
to	convert	vans	(Panel	C	in	Figure	3-8).	In	the	range	E7:E8,	enter	the	formula	to	calculate	resource	
used	with	inequalities	in	column	E	(Panel	D	in	Figure	3-8).	Adding	the	capacity	and	labor	available	in	
the	column	G,	formulating	LP	on	excel	is	done.	Cells	in	the	range	B4:C4	are	“changing	variable	cells”	
which	will	be	determined	by	Excel	Solver.	The	cell	E5	contains	the	objective	function	(“target	cell”).	

Adding	proper	headings	and	some	colors	(green	=	changing	cells,	yellow	=	cells	with	formulas,	for	
example),	we	have	the	Excel	LP	model	for	Joe’s	Van	(Figure	3.9)	

3.3.3. Solving	LP	model	using	the	Solver	
The	Solver	Parameters	Dialog	Box	 (Figure	3.10)	 is	 used	 to	describe	 the	optimization	problem	 to	
Excel.	To	open	the	Dialog	Box,	select	Data	tab	and	Solver.	

The	way	we	set	up	the	problem	in	Excel	will	make	it	easy	for	us	to	fill	in	each	of	the	components	of	
this	Parameters	Dialog	Box	so	Solver	identify	the	optimal	solution.	Firs	we	fill	in	the	“Set	Objective”	
box	by	clicking	on	the	cell	in	the	spreadsheet	that	calculates	the	objective	function,	cell	E5.	Next	we	
use	the	radio	buttons	below	to	identify	the	type	of	problem	we	are	solving,	a	MAX	or	MIN.	Here	we	
want	to	maximize	the	profit	and	select	Max.	We	need	to	identify	the	decision	variables	(Changing	
Variable	Cells).		After	clicking	into	the	“By	Changing	Variable	Cells”	box,	we	can	select	the	decision	
variable	cells	in	the	LP,	B4:C4.	This	tells	Solver	that	it	can	change	the	number	of	fancy	vans	and	fine	
vans	(Figure	3-10).		
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Figure	3-10.	Solver	Parameters	Dialog	Box	

	

We	need	to	add	two	constraints	to	Solver	to	ensure	our	solution	does	not	violate	any	of	them.	On	the	
right-hand	side	of	the	window,	there	is	a	button	to	“Add”	a	constraint.		After	clicking	on	this,	a	box	
will	appear	that	allows	us	to	add	our	constraints	(Figure	3-11).	We	can	use	the	“Cell	Reference”	box	
to	input	the	range	of	cells	with	formulas	(range	E7:E8).	There	are	several	options	for	constraint	type:	
<=,	>=,	=,	int	(integer),	bin	(binary),	dif	(all	different).	After	adjusting	the	constraint	type	to	be	less	
than	or	equal	to	(<=)	we	can	click	on	the	cell	referencing	the	resources	available	(RHS,	range	G7:G8).	

The	“Change”	button	in	the	Solver	Parameter	Dialog	box	allows	you	to	modify	a	constraint	already	
entered	and	“Delete”	allows	you	to	delete	a	previously	entered	constraint.	If	you	need	to	add	more	
constraints,	choose	“Add.”	After	adding	all	constraints,	the	SOLVER	Parameters	Dialog	Box	looks	like	
Figures	3-12.	

	

														 	
Figure	3-11.	Add	Constraint	Dialog	Box	
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Figure	3-12.	Final	Solver	Parameters	Dialog	Box	

	

Note	the	checked	box	titled	“Make	Unconstrained	Variables	Non-Negative”	that	allows	us	to	capture	
non-negativity	constraints.	Additionally,	you	should	change	the	“Select	a	Solving	Method”	to	Simplex	
LP	 when	 you	 are	 solving	 a	 linear	 program.	 The	 other	 options	 allow	 for	 solutions	 for	 nonlinear	
programs	(will	be	discussed	in	later	chapters).	

Finally,	click	“Solve”	button	for	the	solution	(Figure	3-12).	After	you	solve,	the	Parameters	Dialog	Box	
will	close	and	the	decision	variables	will	change	to	the	optimal	solution.	Because	we	referenced	these	
cells	in	all	our	calculations,	the	objective	function	and	constraints	will	also	change.	When	Excel	finds	
an	optimal	solution,	Solve	Results	box	will	appear	in	Figure	3-13.	Solver	Results	will	 indicate	that	
Solver	 found	 a	 solution	 and	 all	 constraints	 and	 optimality	 conditions	 are	 satisfied.	 “Keep	 Solver	
Solution”	is	checked	by	default.	Click	OK	for	now.	We	will	re-visit	the	Solver	Results	box	later.	

	

	
Figure	3-13.	Solver	Results	Box	
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Figure	3-14.	Optimal	Solution	

	

Final	Excel	spreadsheet	contains	the	optimal	solution,	value	of	the	objective	function,	and	resource	
used	as	in	Figure	3-14.	

It	is	desirable	to	add	some	more	texts	with	colors	and	boxes	as	in	Figure	3-15	for	report	writing	after	
solving	the	model.	We	will	explore	these	in	detail	in	Chapter	4.	Note	that	cells	with	green	color	are	
changing	 cells	 where	 Excel	 Solver	 displays	 the	 optimal	 solution	 and	 yellow	 cells	 contain	 all	 the	
formulas	in	the	model	and	updated	based	on	values	in	green	cells	(of	course,	coloring	and	adding	
texts	are	your	choice).		

	

	

Figure	3-15.	Optimal	Solution	and	Explanatory	Texts	

	

3.4. Solutions,	Interpretation	and	Sensitivity	Analysis	

LP	 solutions	 are	 composed	of	 a	number	of	 elements.	 In	 this	 chapter	we	discuss	 general	 solution	
interpretation,	common	solver	solution	format	and	contents,	special	solution	cases	and	sensitivity	
analysis.	
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3.4.1. General	Solution	Interpretation	
Recall	the	Joe’s	van	example	(Figure	3-15).	Excel	Solver	provides	optimal	solution	which	maximizes	
Joe’s	profit:	xxzp{|

∗ = 8,	xxrpy
∗ = 4,	and	z∗ = $22800.	At	this	level	of	production,	Joe	uses	12	units	of	

capacity	(capacity	constraint	is	binding)	and	280	units	of	labor	(labor	constraint	is	binding	as	well).		

When	Excel	finds	an	optimal	solution,	Solve	Results	box	will	appear	(Figure	3-13).	There	are	three	
options	in	Reports	box:	Answer,	Sensitivity,	and	Limits.	An	Answer	Report	will	be	generated	after	
selecting	Answer	option	in	the	Report	box	and	clicking	OK	button.		Figure	3-16	shows	the	Answer	
Report.	It	provides	the	basic	information	for	the	optimal	solution	in	three	output	sections:	

• Objective	Cell	 (Max)	section:	the	optimal	value	of	 the	objective	 function,	z,	determined	by	
Solver,	22800	in	Final	Value.	Cell	address,	$E$5,	is	printed	where	the	objective	function	is	
located.	Note	that	Answer	Report	prints	“Profit	z”	in	Name	column,	which	are	located	in	Joe’s	
van	model,	D5	and	E4	(red	texts	in	Figure	3-15).		

• Variable	Cells	section:	the	optimal	values	of	the	two	decision	variables	with	cell	addresses	
and	names,	Fancy	=	8	and	Fine	=	4.	“Contin”	in	integer	column	indicates	that	both	variables	
are	continuous.	Excel	picks	up	names	from	cell	A4	and	B3:C3	in	the	model	(red	texts	in	Figure	
3-15).	

• Constraints	 section:	 information	 relating	 to	 the	 constraints	 and	 the	 amount	 of	 resource	
consumed	by	the	optimal	solution.	The	information	relating	to	constraints	comes	in	the	form	
of	a	constraint	designation	found	in	the	Status	column,	as	either	Not	Binding	or	Binding.	When	
a	constraint	is	binding	Slack	is	zero.	When	a	constraint	is	not	binding	slack	is	positive	number.	

In	addition,	upper	left	corner	of	the	Answer	Report	also	presents	version	of	Excel,	name	of	worksheet,	
date	of	report	created,	information	about	result,	solver	option	(not	shown	in	Figure	3-16).	

	

	

Figure	3-16.	Answer	Report	
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3.4.2. Sensitivity	Analysis	
Ranging	analysis	is	the	widely	utilized	tool	for	analyzing	how	much	a	LP	model	and	its	solution	can	
be	altered	without	changing	the	interpretation	of	the	solution.	Ranging	analysis	deals	with	the	“what	
if”	question	and	provides	valuable	insights	of	the	model.	Ranging	analysis	of	right-hand-side	(br)	and	
objective	function	coefficients	(co)	are	common;	Excel	Solver	has	options	to	conduct	ranging	analyses,	
which	is	the	option	Sensitivity	in	Reports	box	in	Solver	Results	Box	(Figure	3-9).	

3.4.2.1. Shadow	Price	and	Reduced	Cost	

Now	consider	 the	question	of	making	one-at-a-time	 changes	 in	 the	 right-hand-side	 values	of	 the	
constraints.	Suppose	that	Joe	has	one	more	unit	of	capacity	limit,	13	units	instead	of	12	units	(one	
unit	upward	change).	It	is	illustrated	in	Figure	3-17.		In	Figure	3-17,	new	capacity	constraint,	xxzp{| +
xxrpy ≤ 13	is	 added	which	 expand	 the	 feasible	 region.	 The	 original	 optimal	 solution	 (8,	 4)	 is	 not	
optimal	simply	because	it	is	on	the	constraint,	not	the	corner	point	feasible	(CPF)	solution.	As	shown	
in	Figure	3-17,	the	new	optimal	solution	is	xxzp{| = 4	and	xxrpy = 9	and	the	new	maximized	objective	
function	value	is	zl∗ = 23300.	The	difference,	∆z = zl∗ − z�∗ = 23300 − 22800 = 500.	In	other	words,	
when	capacity	limit	is	increased	upward	from	12	to	13,	z	would	increase	by	$500	with	4	less	fancy	
vans	and	5	more	fine	vans.	

The	 shadow	 price	 on	 a	particular	 constraint	 represents	 the	 change	 in	 the	 value	 of	 the	 objective	
function	per	unit	increase	in	the	RHS	value	of	that	constraint.	In	case	of	Joe’s	van	example,	the	shadow	
price	of	capacity	limit	is	$500.	We	can	perform	a	similar	calculation	to	find	the	shadow	price	$60	
associated	with	the	labor	constraint,	implying	that	an	addition	of	one	unit	of	labor	is	worth	$60.	

	

	
Figure	3-17.	One	More	Units	of	Capacity	Constraint	and	New	Optimal	Solution	
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Figure	3-18.	Sensitivity	Report	

	

We	may	consider	the	shadow	prices	associated	with	the	non-negativity	constraints.	These	shadow	
prices	often	are	called	the	reduced	costs	and	usually	are	reported	separately	from	the	shadow	prices	
on	the	other	constraints;	however,	they	have	the	identical	interpretation.	For	Joe’s	van	example,	the	
reduced	costs	are	zero,	because	both	fancy	and	fine	vans	are	already	non-negative	and	increasing	
either	of	the	non-negativity	constraints	separately	will	not	affect	the	optimal	solution.	

Excel	Solver	provides	ranging	RHS	analysis.	It	comes	in	the	form	of	the	second	Report	options	in	the	
Solver	Results	Box	(Figure	3-13)	–	Sensitivity.	Figure	3-18	shows	the	Sensitivity	Report	for	Joe’s	van	
example.	Let	us	focus	on	the	Constraints	section	of	the	report,	and	particularly	the	column	entitled	
Shadow	Price.	The	shadow	price	on	the	capacity	limit	500	represents	the	change	in	the	value	of	the	
objective	function	per	unit	increase	in	the	RHS	value	of	the	capacity	(12	to	13).	Similarly,	Joe	would	
expect	$60	more	in	z	when	Joe	has	one	more	unit	of	labor.	The	Variable	Cells	section	reports	Reduced	
Cost	of	the	decision	variables,	which	are	zero.	

3.4.2.2. Objective	Coefficients	Ranges		

The	data	for	a	LP	may	not	be	known	with	certainty	or	may	be	subject	to	change.	When	solving	LP,	
then,	it	 is	natural	to	ask	about	the	sensitivity	of	the	optimal	solution	to	variations	in	the	data.	For	
example,	over	what	range	can	a	particular	objective-function	coefficient	vary	without	changing	the	
optimal	solution?	It	is	clear	from	Figure	3.5	(Joe’s	van	optimal	solution)	that	some	variation	of	the	
contribution	coefficients	is	possible	without	a	change	in	the	optimal	levels	of	the	decision	variables.	
We	will	consider	first	the	question	of	making	one-at-a-time	changes	in	the	coefficients	of	the	objective	
function.	 Figure	 3-18,	 Sensitivity	 Reports	 provides	 the	 answer	 with	 Allowable	 Increase	 and	
Allowable	Decrease	columns	in	Variable	Cells	section.		

The	 objective	 coefficient,	 profit	 margin,	 for	 fancy	 van	 is	 $2000	 (Objective	 Coefficient	 column	 in	
Variable	Cells	section	in	Figure	3-18).	The	optimal	solutions,	xxzp{|

∗ = 8,	xxrpy
∗ = 4,	would	not	change	

any	profit	margin	for	fancy	van	between	$2125	(=	$2000	+	125)	and	$1700	(=	$2000	–	300).	Note	
that	z∗	would	change	accordingly	because	the	profit	margin	changes.	Suppose	that	the	profit	margin	
for	 fancy	 van	 is	now	$2100.	The	optimal	 solution	(without	 solving	 the	model)	would	not	 change	



 
 
	
Kim,	McCarl,	and	Spreen	(2018)	Applied	Mathematical	Programming	

31	 
 

because	it	is	under	the	allowable	increase.	Thus,	xxzp{|
∗ = 8,	xxrpy

∗ = 4,	and	zpy�∗ = 23600.		

We	can	determine	the	range	(allowable	increase	and	decrease)	on	the	objective	coefficients	for	fancy	
van	assuming	the	remaining	coefficients	and	values	in	the	problem	remain	unchanged:	

(3-10)	 Capacity	limit	slope > Objective	slope > Labor	limit	sope	

Since	z = cxzp{|xxzp{| + 1700xxrpy	can	be	written	as	xxrpy =
�

l���
− �

{�����
l���

� xxzp{|		(see	equation	3-2),	
then	

(3-11)	 −1 > −
cxzp{|
1700

> −
25
20
		or	1 <

cxzp{|
1700

< 1.25		 → 	1700 < cxzp{| < 2125	

	
where	 the	 current	 value	 of	 cxzp{| = 2000 	and	 allowable	 increase	 is	 125	 (=	 2125	 –	 2000)	 and	
allowable	decrease	is	300	(=	2000	–	1700).		

Similarly,	by	holding	cxzp{| = 2000,	we	can	determine	the	range	of	cxrpy	as	well,	which	 is	given	by		
1600 < cxrpy < 2000.	The	objective	ranges	are	therefore	the	range	over	which	a	particular	objective	
coefficient	can	be	varied,	all	other	coefficients	and	values	in	the	problem	remaining	unchanged,	and	
have	 the	 optimal	 solution	 (i.e.,	 levels	 of	 the	 decision	 variables)	 remain	 unchanged.	 Note	 that	 an	
optimal	solution	to	a	LP	is	not	always	unique.	If	the	objective	function	is	parallel	to	one	of	the	binding	
constraints,	then	there	is	an	entire	set	of	optimal	solutions.	Suppose	that	Joe’s	objective	function	were	
z = 1700xxzp{| + 1700xxrpy,	 i.e.,	slope	=	–1,	 it	would	be	parallel	to	the	capacity	limit	constraint	as	
shown	 in	 Figure	 3-19.	 All	 levels	 of	 the	 decision	 variables	 lying	 on	 the	 line	 segment	 joining	 CPF	
solution	(0,	12)	and	(8,	4)	in	Figure	3-19	would	be	optimal	solution.	

	

	
Figure	3-19.	Objective	Function	Coincides	with	a	Constraint	
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3.4.2.3. RHS	Ranges	

Now	consider	the	question	of	making	one-at-a-time	changes	 in	 the	RHS	values	of	 the	constraints.	
Suppose	 that	 Joe	wants	 to	 find	 the	 range	on	 the	 capacity	 limit.	 	 Based	on	Figure	3-18	Sensitivity	
Report,	allowable	increase	and	decrease	column	in	Constraints	section,	we	know	that	the	capacity	
limit	can	be	changed	up	by	2	or	down	by	0.8.	Let’s	increase	the	current	capacity	limit,	12	to	14	(2	
units	more)	and	rerun	the	model.	The	optimal	solution	is	xxzp{| = 0,	xxrpy = 14,	and	z = 23800,	and	
the	shadow	price	of	the	constraint	is	500.	The	optimal	solution	changes	but	not	shadow	price.	What	
if	capacity	limit	becomes	15	(beyond	allowable	increase)?	Now	the	shadow	price	of	the	capacity	limit	
becomes	zero.		

3.5. Duality	

Associated	with	 every	 LP	 problem	 is	 a	 related	dual	 LP	 problem.	 The	 originally	 formulated	 LP	 is	
known	as	the	primal	LP	problem.		If	the	objective	in	the	primal	LP	is	maximization	of	a	function,	then	
the	objective	in	the	dual	problem	is	minimization	of	related	(but	different)	function.	Conversely,	a	
primal	minimization	problem	has	a	related	dual	maximization	problem.	The	dual	variables	represent	
the	variables	contained	in	the	dual	problem.	

3.5.1. Basic	Duality	
The	study	of	duality	is	very	important	in	LP.	Knowledge	of	duality	allows	one	to	develop	increased	
insight	 into	 LP	 solution	 interpretation.	 Also,	 when	 solving	 the	 dual	 of	 any	 problem,	 one	
simultaneously	 solves	 the	 primal.	 Thus,	 duality	 is	 an	 alternative	 way	 of	 solving	 LP	 problems.	
However,	 given	 today's	 computer	 capabilities,	 this	 is	 an	 infrequently	 used	 aspect	 of	 duality.	
Therefore,	we	concentrate	on	the	study	of	duality	as	a	means	of	gaining	insight	into	the	LP	solution.	

The	(very	simple)	primal	LP	is	(White	Electronic	example,	1	=	gas,	2	=	ele):	

(3-12)	

max	 z	 =		 100xl	 +	 60xm	 	 	 	
s.t.	 	 20xl	 +	 40xm	 ≤	 400	 [raw	material]	
	 	 5xl	 +	 2xm	 ≤	 40	 [machine-processing]	
	 	 xl	 	 	 ≤	 6	 [division	1	assembly]	
	 	 	 	 xm	 ≤	 9	 [division	2	assembly]	
	 	 xl	 ,	 xm	 ≥	 0	 Non-negativity	

	
Note	that	associated	with	each	constraint	of	the	primal	in	equation	(3-12)	is	a	dual	variable.	Because	
the	primal	has	four	constraints	(except	non-negativity),	the	dual	problem	has	four	variables,	say	ul,	
um ,	u� ,	and	u� .		The	objective	of	the	dual	is		

(3-13)	 min w = 400ul + 40um + 6u� + 9u�	
	
Similarly,	the	constraints	of	the	dual	problem	are	associated	with	xl	and	xm	such	that	

(3-14)	 20ul + 5um + u� ≥ 100	
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40ul + 2um + u� ≥ 60	
	
with	non-negative	ur.	Thus,	the	dual	of	(3-12)	is	

(3-15)	

min	 w	 =		 400ul	 +	 40um	 +	 6u�	 +	 9u�	 	 	 	
s.t.	 	 20ul	 +	 5um	 +	 u�	 	 	 ≥	 100	 (1)	
	 	 40ul	 +	 2um	 	 	 +	 u�	 ≥	 60	 (2)	
	 	 ul	 ,	 um	 	 u�	 	 u�	 ≥	 0	 (3)	

	
In	general,	if	the	primal	problem	has	n	variables	and	m	resource	constraints,	the	dual	problem	will	
have	 m	 variables	 and	 n	 constraints.	 There	 is	 a	 one-to-one	 correspondence	 between	 the	 primal	
constraints	and	the	dual	variables;	i.e.,	ul	is	associated	with	the	first	primal	constraint,	um	with	the	
second	primal	constraint,	etc.	As	we	demonstrate	later,	dual	variables	(ur)	can	be	interpreted	as	the	
marginal	 value	 (imputed	 values	 or	 shadow	 prices)	 of	 each	 constraint’s	 resources.	 These	 dual	
variables	are	usually	called	shadow	prices	and	indicate	the	imputed	value	of	each	resource.	A	one-to-
one	 correspondence	 also	 exists	 between	 the	 primal	 variables	 and	 the	 dual	 constraints;	 xl 	is	
associated	with	the	first	dual	constraint	and	xm	is	associated	with	the	second	dual	constraint,	etc.	

3.5.2. Economic	Interpretation	
The	dual	problem	economic	interpretation	is	important.	The	variable	ul	gives	the	marginal	value	of	
the	 first	 resource	 (raw	material);	um 	gives	 the	marginal	 value	 of	 the	 second	 resource	 (machine-
processing).	The	first	dual	constraint	restricts	the	value	of	the	resources	used	in	producing	a	unit	of	
xl	(gas	dryer)	to	be	greater	than	or	equal	to	the	marginal	revenue	contribution	of	xl.	In	the	primal	
problem,	xl	uses	20	units	of	raw	materials,	5	units	of	machine-processing	and	1	unit	of	division	1	
assembly,	returning	$100,	while	the	dual	problem	requires	raw	material	use	times	its	marginal	value	
(20ul)	plus	machine-processing	 times	its	marginal	value	(5um)	plus	division	1	assembly	 times	 its	
marginal	value	(u�)	to	be	greater	than	or	equal	to	the	profit	earned	when	one	unit	of	xl	is	produced	
(100).	 	Similarly,	 the	second	dual	constraint	requires	 the	marginal	value	of	resource	use	(40ul +
2um + u�)	to	be	greater	than	or	equal	to	$60,	which	is	the	amount	of	profit	earned	by	producing	xm.	
Thus,	the	dual	variable	values	are	constrained	such	that	the	marginal	value	of	the	resources	used	by	
each	primal	variable	is	no	less	than	the	marginal	profit	contribution	of	that	variable.	

Now	suppose	we	examine	the	objective	function.	This	function	minimizes	the	total	marginal	value	of	
the	 resources	 (or	minimize	 the	 total	 value	of	 the	 resource	 employed	 in	 the	process,	 equivalently	
minimize	 the	 total	 cost).	 In	 the	 example,	 this	 amounts	 to	 the	 raw	 material	 available	 times	 the	
marginal	value	of	raw	material	(400ul)	plus	the	machine-processing	endowment	times	the	marginal	
value	of	the	machine-processing	(40um)	plus	the	division	1	and	2	assembly	capacity	available	times	
their	marginal	values	(6u� + 9u�).	

Thus,	 the	 dual	 variables	 arise	 from	 a	 problem	 minimizing	 the	 marginal	 value	 of	 the	 resource	
endowment	 subject	 to	 constraints	 requiring	 that	 the	 marginal	 value	 of	 the	 resources	 used	 in	
producing	each	product	must	be	at	least	as	great	as	the	marginal	value	of	the	product.	This	can	be	
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viewed	 as	 the	 problem	 of	 a	 resource	 purchaser	 in	 a	 perfectly	 competitive	 market.	 Under	 such	
circumstances,	the	purchaser	would	have	to	pay	at	least	as	much	for	the	resources	as	the	value	of	the	
goods	produced	using	those	resources.	However,	the	purchaser	would	try	to	minimize	the	total	cost	
of	the	resources	acquired.	The	resultant	dual	variable	values	are	measures	of	the	marginal	value	of	
the	resources.	The	objective	function	is	the	minimum	value	of	the	resource	endowment.		

In	short,	an	important	LP	theorem,	known	as	the	duality,	indicates	that	the	maximum	value	of	the	
primal	profit	function	will	also	be	equal	to	the	minimum	value	of	the	dual	imputed	value	function.	

3.5.3. Comparison	of	Solutions	
Table	3-1	presents	the	optimal	solutions	of	equation	(3-12)	and	(3-15)	for	comparison.	As	explained,	
each	dual	variable	(ur)	indicates	the	rate	of	change	in	total	profits	for	an	incremental	change	in	the	
amount	of	each	of	the	various	resources.		

For	example,	um∗ = 17.5	indicates	that	profits	could	be	increased	by	as	much	as	$17.50	if	an	additional	
unit	 (hour)	of	machine	 capacity	 could	be	made	available	 to	 the	production	process.	This	 type	of	
information	 is	 potentially	 useful	 in	 marking	 decisions	 about	 purchasing	 or	 renting	 additional	
machine	capacity	or	using	existing	machine	capacity	more	fully	thorough	the	use	of	overtime	and	
multiple	shifts.	A	dual	variable	equal	to	zero,	such	 as	u�∗ = u�∗ = 0,	 indicates	that	profit	would	not	
increase	if	additional	resources	of	these	types	were	made	available;	in	fact,	excess	capacity	in	these	
resource	exists.	

	

Table	3-1:	Solution	of	Primal	and	Dual	

Primal	 Dual	
Max	obj.	fn.	z*	 950	 Min	obj.	fn.	w*	 950	

xl∗ 	 5.0	dryers	 ul∗ 	 $0.625	
xm∗ 	 7.5	dryers	 um∗ 	 $17.5	
	 	 u�∗ 	 $0	
	 	 u�∗ 	 $0	

Shadow	price	1	 $0.625	 Shadow	price	1	 5.0	dryers	
Shadow	price	2	 $17.5	 Shadow	price	2	 7.5	dryers	
Shadow	price	3	 $0	 	 	
Shadow	price	4	 $0	 	 	
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4. LINEAR	PROGRAMMING	MODELS	

Key	points:	

Standard	LP	problems	are	introduced,	1)	resource	allocation,	2)	transportation,	3)	diet,	feeding	or	
blending,	4)	joint	production,	5)	assembly,	and	6)	disassembly.		

	

4.1. Introduction	

LP	formulations	are	typically	composed	of	a	number	of	standard	problem	types.	We	review	six	basic	
problems	in	this	chapter.	

• Resource	allocation	problem	
• Transportation	problem	
• Diet/feeding/blending	problem	
• Joint	products	problem	
• Assembly	problem	
• Disassembly	problem	

We	 will	 examine	 i)	 basic	 structure,	 ii)	 formulation,	 iii)	 example	 application,	 and	 iv)	 solution	
interpretation.	

4.2. Resource	Allocation	Problem	

The	classic	LP	problem	involves	the	allocation	of	an	endowment	of	scarce	resources	among	a	number	
of	competing	products	so	as	to	maximize	profit,	for	example,	Joe’s	van	and	White	Electronic	dryer	
examples	in	Chapter	3	are	typical	resource	allocation	problems.	The	key	elements	of	the	problem	are	

• Objective:	Maximize	profit	(or	return,	sales,	revenue)	
• Major	decision	variable	xo	is	the	number	of	units	of	the	jth	product	made	
• Non	negative	production	(xo > 0)	
• Resource	 usage	 across	 all	 production	 possibilities	 is	 less	 than	 or	 equal	 to	 the	 resource	

endowment	

	
Algebraic	formulation	is	given	by	

(4-1)	

max	 z	 =		 ncoxo

p

oql

	 	 	
	

s.t.	 	
naroxo

p

oql

	 ≤	 br	 for	all	i = 1,⋯ ,m	

	 	 xo	 ≥	 0	 	
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where	co	is	a	profit	margin	per	unit	of	the	jth	product,	aro	is	the	number	of	units	of	the	ith	resource	
used	when	producing	one	unit	of	the	jth	product	(technical	coefficients),	and	br	is	the	endowment	of	
the	ith	resource	(RHS).	

4.2.1. E-Z	Chair	Makers	
Suppose	that	E-Z	Chair	Makers	are	trying	to	determine	how	many	of	each	of	two	types	of	chairs	to	
produce.	Further,	suppose	that	E-Z	Chair	Makers	has	four	categories	of	resources	which	constrain	
production.		These	involve	the	availability	of	three	types	of	machines:	1)	large	lathe,	2)	small	lathe,	
and	3)	chair	bottom	carver;	as	well	as	labor	availability.	Two	types	of	chairs	are	produced:	functional	
and	fancy.	A	functional	chair	costs	$15	in	basic	materials	and	a	fancy	chair	$25.	A	finished	functional	
chair	sells	for	$82	and	a	fancy	chair	for	$105.	The	resource	requirements	with	the	regular	method	for	
each	product	are	shown	in	Table	4.1.	

	

Table	4-1:	Resource	Requirements	for	the	E-Z	Chair	Makers	for	Regular	Method	

	 Hours	of	use	per	chair		
	 Functional	

Chair	
Fancy	
Chair	

Small	lathe	 0.8	 1.2	
Large	lathe	 0.5	 0.7	
Chair	bottom	carver	 0.4	 1.0	
Labor	 1.0	 0.8	

	

Note	that	the	profit	margin	for	functional	chair	is	$67	(=	$82	–	$15)	and	the	profit	margin	for	fancy	
chair	is	$80	(=	$105	–	$25).	Assume	the	availability	of	time	is	140	hours	for	the	small	lathe,	90	hours	
for	the	large	lathe,	120	hours	for	the	chair	bottom	carver,	and	125	hours	of	labor.	

Let	xl=	 number	 of	 functional	 chair	 produced	 and	xm 	=	 number	 of	 fancy	 chair	 produced,	 then	 a	
formulation	is	given	by	equation	(4-2):	

(4-2)	

max	 z	 =		 67xl	 +	 80xm	 	 	 	
s.t.	 	 0.8xl	 +	 1.2xm	 ≤	 140	 [Small	lathe]	
	 	 0.5xl	 +	 0.7xm	 ≤	 90	 [Large	lathe]	
	 	 0.4xl	 +	 1.0xm	 ≤	 120	 [Bottom	carver]	
	 	 1.0xl	 +	 0.8xm	 ≤	 125	 [Labor]	
	 	 xl	 ,	 xm	 ≥	 0	 [non-negativity]	

	
There	is	no	difference	between	equation	(4-2)	and	Joe’s	van	example	in	equation	(3-1).	We	can	solve	
the	model	using	Excel	Solver	as	we	did	for	Joe’s	van	model.	The	optimal	solution	is	xl∗ = 67.86,	xm∗ =
71.43,	and	z∗ = 10260.71.	Note	that	we	assume	that	xl	and	xm	are	continuous	(continuity)	and	thus	
we	have	fractional	chairs.			
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Suppose	now	that	the	E-Z	Chair	Makers	has	flexibility	in	the	usage	of	equipment.	The	chairs	may	have	
part	of	their	work	substituted	between	lathes.	Labor	and	material	costs	are	also	affected.	Data	on	the	
substitution	possibilities	are	given	in	Table	4-2.	Assume	the	availability	of	time	is	140	hours	for	the	
small	 lathe,	90	hours	for	the	large	lathe,	120	hours	for	the	chair	bottom	carver,	and	125	hours	of	
labor.	Six	different	chair/production	method	possibilities	can	be	delineated.	Let	xro	is	the	number	of	
chair	 type	 i 	( i = functional	 (1),	 fancy	 (2))	 using	 j 	production	 method	 ( j = 	regular	 method	 (1),	
maximum	use	of	small	lathe	(2),	maximum	use	of	large	lathe	(3))	

	 xll =	number	of	functional	chair	made	with	the	regular	method	
	 xlm =	number	of	functional	chair	made	with	the	maximum	use	of	the	small	lathe	
	 xl� =	number	of	functional	chair	made	with	the	maximum	use	of	the	large	lathe	
	 xml =	number	of	fancy	chair	made	with	the	regular	method	

xmm =	number	of	fancy	chair	made	with	the	maximum	use	of	the	small	lathe	
	 xm� =	number	of	fancy	chair	made	with	the	maximum	use	of	the	large	lathe	

The	 objective	 function	 coefficients	 require	 calculation.	 The	 basic	 formula	 is	 that	 profits	 for	 the	
production	of	xro	(cro)	equal	the	revenue	to	the	particular	type	of	chair	less	the	relevant	base	material	
costs,	less	any	relevant	cost	increase	due	to	lathe	shifts.	Thus,	cll	for	xll	is	calculated	by	subtracting	
$15	from	$82	(=	price	of	functional	chair),	yielding	the	entered	$67,	and	clm	for	xlm	is	 less	$1	than	
$67.	Thus,	

• Profit	for	functional	chair	made	with	regular	method	cll = $87 − $15 = $67	

• Profit	for	functional	chair	made	with	max	use	of	small	lathe	clm = $87 − $15 − $1 = $66	

• Profit	for	functional	chair	made	with	max	use	of	large	lathe	cl� = $87 − $15 − $0.7 = $66.3	

• Profit	for	fancy	chair	made	with	regular	method	cml = $105 − $25 = $80	

• Profit	for	fancy	chair	made	with	max	use	of	small	lathe	cmm = $105 − $25 − $1.5 = $78.5	

• Profit	for	fancy	chair	made	with	max	use	of	large	lathe	cm� = $105 − $25 − $1.6 = $78.4	

	

Table	4-2:	Resource	Requirements	and	Increases	Costs	for	Alternative	Methods	to	Produce	Chairs	
for	the	E-Z	Chair	Makers	

	 Maximum	use	of	small	lathe	 Maximum	use	of	large	lathe	
	 Functional	 Fancy	 Functional	 Fancy	
Small	lathe	 1.30	 1.70	 0.20	 0.50	
Large	lathe	 0.20	 0.30	 1.30	 1.50	
Chair	bottom	carver	 0.40	 1.00	 0.40	 1.00	
Labor	 1.05	 0.82	 1.10	 0.84	
Cost	increase	 $1.00	 $1.50	 $0.70	 $1.60	
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The	constraints	on	the	problem	impose	the	availability	of	each	of	the	four	resources.	The	technical	
coefficients	are	those	appearing	in	Tables	4.1	and	4.2.	The	resultant	LP	model	is:		

(4-3)	

max	 z	=		 67x11	 +	 66x12	 +	 66.3x13	 +	 80x21	 +	 78.5x22	 +	 78.4x23	 	 	

s.t.	 	 0.8x11	 +	 1.3x12	 +	 0.2x13	 +	 1.2x21	 +	 1.7x22	 +	 0.5x23	 ≤	 140	
	 	 0.5x11	 +	 0.2x12	 +	 1.3x13	 +	 0.7x21	 +	 0.3x22	 +	 1.5x23	 ≤	 90	
	 	 0.4x11	 +	 0.4x12	 +	 0.4x13	 +	 x21	 +	 x22	 +	 x23	 ≤	 120	
	 	 x11	 +	 1.05x12	 +	 1.1x13	 +	 0.8x21	 +	 0.82x22	 +	 0.84x23	 ≤	 125	
	 	 x11	 ,	 x12	 ,	 x13	 ,	 x21	 ,	 x22	 ,	 x23	 ³	 0	

	

4.2.2. Model	Solution	
Figure	4-1	presents	the	Excel	model	for	the	E-Z	Chair	Makers	with	optimal	solution.	The	E-Z	Chair	
Makers	produces	62	functional	chairs	using	the	regular	method,	73	fancy	chairs	using	the	regular	
method	and	5	fancy	chairs	using	the	maximum	use	of	large	lathe	to	earn	profit	of	$10,417.	Figure	4-
2	presents	the	sensitivity	report.	As	shown	in	Figure	4-2,	this	production	plan	exhausts	small	and	
large	 lathe	 resources	 as	 well	 as	 labor	 (positive	 shadow	 prices	 imply	 that	 these	 constraints	 are	
binding)	but	chair	bottom	carver	(shadow	price	is	zero	meaning	that	it	is	not	binding).	The	shadow	
prices	indicate	that	one	more	hour	of	the	small	lathe	is	worth	$33.33,	one	more	hour	of	the	large	lathe	
$25.79,	and	one	more	hour	of	labor	$27.44	(imputed	value	of	resources).	The	reduced	cost	valuation	
information	also	shows,	for	example,	that	functional	chair	production	with	maximum	use	of	a	small	
lathe	would	cost	$11.30	a	chair	or	reduces	profit	by	$11.30/chair.	Finally,	there	is	excess	capacity	of	
16.91	hours	of	chair	bottom	carving	(120	hours	(RHS)	–	103.09	hours).	

	

	

Figure	4-1:	EZ	Chair	Makers	LP	Model	and	Optimal	Solution	
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Figure	4-2:	EZ	Chair	Makers	LP	Model	and	Optimal	Solution	

	

4.3. Transportation	Model	

The	second	problem	covered	is	the	transportation	problem.	This	problem	involves	the	shipment	of	a	
homogeneous	product	from	a	number	of	supply	locations	to	a	number	of	demand	locations.	Setting	
this	problem	up	algebraically	requires	definition	of	indices	for:	a)	the	supply	points	which	we	will	
designate	as	i,	and	b)	the	demand	locations	which	we	will	designate	as	j.	In	turn,	the	variables	indicate	
the	 quantity	 shipped	 from	 each	 supply	 location	 to	 each	 demand	 location.	We	 define	 this	 set	 of	
variables	as	xro	(the	quantity	shipped	from	i	to	j).		

There	are	three	general	types	of	constraints,	one	allowing	only	nonnegative	shipments,	one	limiting	
shipments	 from	each	supply	point	to	existing	supply	and	the	 third	 imposing	a	minimum	demand	
requirement	at	each	demand	location.	Definition	of	the	supply	constraint	requires	specification	of	
the	parameter	sr	which	gives	the	supply	available	at	point	i,	as	well	as	the	formation	of	an	expression	
requiring	the	sum	of	outgoing	shipments	from	the	ith	supply	point	to	all	possible	destinations,	j,	to	
not	exceed	sr.	Algebraically	this	expression	is	

(4-4)	 nxro ≤ sr
o

			for	all	i	

	
Definition	 of	 the	demand	 constraint	 requires	 specification	 of	 the	 demand	 quantity	do	required	 at	
demand	point	j,	as	well	as	the	formation	of	an	expression	summing	incoming	shipments	to	the	jth	
demand	point	from	all	possible	supply	points,	i.	Algebraically	this	yields	

(4-5)	 nxro ≥ do
r

				for	all	j	

	
Finally,	the	objective	function	depicts	minimization	of	total	cost	across	all	possible	shipment	routes.	
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This	involves	definition	of	a	parameter	cro	which	depicts	the	cost	of	shipping	one	unit	from	supply	
point	i	to	 demand	 point	j.	 In	 turn,	 the	 algebraic	 formulation	 of	 the	 objective	 function	 is	 the	 first	
equation	in	the	composite	formulation	below.	

(4-6)	

min	 z	 =		
nncroxro

or

	 	 	
	

s.t.	 	 nxro
o

	 ≤	 sr	 for	all	i	

	 	 nxro
r

	 ≥	 do	 for	all	j	

  xro ≥ 0 for	all	i, j	
	
This	particular	problem	is	a	cost	minimization	problem	rather	than	a	profit	maximization	problem.	
The	 transportation	 variables,	xro ,	 belong	 to	 the	 general	 class	 of	 transformation	 variables.	 Such	
variables	transform	the	characteristics	of	a	good	in	terms	of	form,	time,	and/or	place	characteristics.	
In	 this	 case,	 the	 transportation	 variables	 transform	 the	 place	 characteristics	 of	 the	 good	 by	
transporting	it	from	one	location	to	another.	The	supply	constraints	are	classical	resource	availability	
constraints.	However	the	demand	constraint	imposes	a	minimum	level	and	constitutes	a	minimum	
requirement	constraint.	

4.3.1. ABC	Company	
ABC	Company	has	three	plants	which	serve	four	demand	markets.	The	plants	(supply	points	i)	are	in	
New	York,	Chicago,	and	Los	Angeles.	The	demand	markets	(demand	points	j)	are	in	Miami,	Houston,	
Minneapolis	and	Portland.	The	quantity	available	at	each	supply	point	and	the	quantity	required	at	
each	demand	market	are	in	Table	4-3.	

The	assumed	distances	between	cities	are	presented	in	Table	4-4	in	000	miles	(1	mile	=	1.609	km).	
Also	assume	that	the	firm	has	discovered	that	the	cost	of	moving	goods	is	related	to	distance	(D)	by	
the	formula;	cro = 5 + 5Dro,	where	Dro	is	the	distance	(in	miles)	between	supply	point	i	and	demand	
point	j.	Given	these	distances,	the	transportation	costs	are	calculated	in	Table	4-5.	

	

Table	4-3:	Quantity	Available	at	Supply	Point	and	Required	at	Demand	Point	

Supply	available	 Demand	required	
New	York	 100	 Miami	 30	
Chicago	 75	 Houston	 75	
Los	Angeles	 90	 Minneapolis	 90	

	 	 Portland	 50	
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Table	4-4:	Distances	(000	miles)	and	Transportation	Costs	between	Cities	(000	dollars)	

Distance	 To	 	 	 	
From	 Miami	 Houston	 Minneapolis	 Portland	
New	York	 1.29	 1.63	 1.20	 2.89	
Chicago	 1.38	 1.08	 0.43	 2.12	
Los	Angeles	 2.73	 1.55	 1.93	 0.96	
Cost	 To	 	 	 	
From	 Miami	 Houston	 Minneapolis	 Portland	
New	York	 11.45	 13.15	 11.00	 19.45	
Chicago	 11.90	 10.40	 7.15	 15.60	
Los	Angeles	 18.65	 12.75	 14.65	 9.80	

	

The	above	data	allow	formulation	of	an	LP	transportation	problem.	Let	i	denote	the	supply	points	
where	 i = 1 	denotes	New	York,	 i = 2 	Chicago,	 and	i = 3	Los	 Angeles.	 Let	j	represent	 the	 demand	
points	where	j = 1	denotes	Miami,	j = 2	Houston,	j = 3	Minneapolis,	and	j = 4	Portland.	Next	define	
xro	as	the	quantity	shipped	from	city	i	to	city	j;	e.g.,	xm�	stands	for	the	quantity	shipped	from	Chicago	
to	Minneapolis.	A	formulation	of	this	problem	is	given	in	Figure	4-3	in	Excel	with	optimal	solution.	

	

	
Figure	4-3.	ABC	Company	LP	Model	and	Optimal	Solution	

	

4.3.2. Model	Solution	
The	optimal	value	of	the	objective	function	value	is	2,505	(000	dollars)	or	2.5	million	dollars.	The	
optimal	shipping	pattern	is	shown	in	Figure	4.3	and	Figure	4-4.	The	solution	shows	twenty	units	are	
left	 in	 New	 York's	 potential	 supply	 (since	 constraint	 1	 is	 in	 slack).	 All	 units	 from	 Chicago	 are	
exhausted	and	the	marginal	value	of	additional	units	in	Chicago	equals	$3.85	(negative	shadow	price,	
which	is	the	savings	realized	if	more	supply	were	available	at	Chicago	which	allowed	an	increase	in	
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the	 volume	 of	 Chicago	 shipments	 to	 Minneapolis	 and	 thereby	 reducing	 New	 York-Minneapolis	
shipments).	

The	 solution	 also	 shows	 what	 happens	 if	 unused	 shipping	 routes	 are	 used.	 For	 example,	 the	
anticipated	increase	in	cost	that	would	be	necessary	if	one	were	to	use	the	route	from	New	York	to	
Portland	(xl�)	is	$9.25	(reduced	cost),	which	would	indicate	a	reshuffling	of	supply.	For	example,	Los	
Angeles	would	reduce	its	shipping	to	Portland	and	increase	shipping	to	somewhere	else	(probably	
Houston).	

	

	

Figure	4-4.	ABC	Company	LP	Model	and	Optimal	Solution	

	

4.3.3. Comments	
The	transportation	problem	is	a	basic	component	of	many	LP	problems.	It	has	been	extended	in	many	
ways	and	has	been	widely	used	in	applied	work.	A	number	of	assumptions	are	contained	in	the	above	
model.	 First,	 transportation	 costs	are	 assumed	 to	be	known	and	 independent	of	 volume.	 Second,	
supply	and	demand	are	assumed	to	be	known	and	independent	of	the	price	charged	for	the	product.	
Third,	 there	 is	 unlimited	 capacity	 to	 ship	 across	 any	 particular	 transportation	 route.	 Fourth,	 the	
problem	deals	with	a	single	commodity	or	an	unchanging	mix	of	multiple	commodities.	
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These	 assumptions	 have	 spawned	 many	 extensions,	 including,	 for	 example,	 the	 transshipment	
problem,	wherein	transshipment	through	intermediate	cities	is	permitted.	Another	extension	allows	
the	quantity	supplied	and	demanded	to	depend	on	price.	This	problem	is	called	a	spatial	equilibrium	
model	and	is	covered	in	the	price	endogenous	modeling	chapter.	Multi-commodity	transportation	
problems	 have	 also	 been	 formulated.	 Cost/volume	 relationships	 have	 been	 included	 as	 in	 the	
warehouse	location	model	in	the	integer	programming	chapter.	Finally,	the	objective	function	may	
be	defined	as	containing	more	than	just	transportation	costs.	Ordinarily	one	thinks	of	the	problem	
wherein	the	cro	is	the	cost	of	transporting	goods	from	supply	point	i	to	demand	point	j.	However,	the	
supply	cost	may	be	 included	so	 the	overall	objective	 function	 then	 involves	minimizing	delivered	
cost.	Also	the	transport	cost	may	be	defined	as	the	demand	price	minus	the	transport	cost	minus	the	
supply	price,	thereby	converting	the	problem	into	a	profit	maximization	problem.		

4.4. Diet/Feed	Mix/Blending	Problem	

Another	classic	problem	concerns	blending	or	mixing	ingredients	to	obtain	a	product	with	certain	
characteristics	or	properties.	To	understand	the	basic	components	of	the	model	let’s	think	about	the	
following	simple	feed	mix	problem.	Feed	mix	refers	to	the	process	of	producing	(animal)	feed	from	
agricultural	and/or	raw	products.		To	make	the	question	simple,	say	we	need	to	determine	optimum	
amounts	of	three	ingredients	to	include	in	an	animal	feed	mix.	The	final	product	must	satisfy	several	
nutrient	restrictions.	The	possible	ingredients,	their	nutritive	contents	(in	kilograms	of	nutrient	per	
kilograms	of	ingredient)	and	the	unit	cost	are	shown	in	the	following	Table	4-6.	The	mixture	of	three	
ingredients	in	Table	4-6	must	meet	the	following	requirements.	Note	that	one	kilogram	of	the	feed	is	
to	be	mixed.	

• Calcium:	at	least	0.8%	but	not	more	than	1.2%	
• Protein:	at	least	22%	and	no	upper	limit	
• Fiber:	no	lower	limit	and	at	most	5%	

Let	xo	(j =	limestone	(lim),	corn	(crn),	soybean	(soy))	is	the	amount	of	ingredient	mixed	to	produce	
one	kilogram	of	the	feed.		Total	cost	is	

(4-7)	 z = 10.0x�rw + 30.5x{¡p + 90.0x�¢|	

	
The	constraints	of	the	problem	include	the	normal	nonnegativity	restrictions	plus	three	additional	
constraint	types:	one	for	the	minimum	requirements	by	nutrient,	one	for	the	maximum	requirements	
by	nutrient	and	one	for	the	total	volume	of	the	diet.	For	example,	the	calcium	restriction	is	

(4-8)	
0.380x�rw + 0.001x{¡p + 0.002x�¢| ≤ 0.012		[maximum	calcium]	

0.380x�rw + 0.001x{¡p + 0.002x�¢| ≥ 0.008		[minimum	calcium]	
	

	



 
 
	
Kim,	McCarl,	and	Spreen	(2018)	Applied	Mathematical	Programming	

44	 
 

Table	4-5:	Ingredient	Costs	and	Nutritive	Contents	

Ingredient	j	 Calcium		
(kg/kg)	

Protein	
(kg.kg)	

Fiber	
(kg/kg)	

Unit	cost	
(cents/kg)	

Limestone	 0.380	 -	 -	 10.0	

Corn	 0.001	 0.09	 0.02	 30.5	

Soybeans	 0.002	 0.50	 0.08	 90.0	
	

	
All	together,	the	LP	formulation	is	given	by	equation	(4-9).	

(4-9)	

min	 z	=		 10.000xlim	 +	 30.500xcrn	 +	 90.000xsoy	 	 	 [mix	cost]	
s.t.	 	 0.380xlim	 +	 0.001xcrn	 +	 0.002xsoy	 ≤	 0.012	 [max	calcium]	
	 	 	 +	 0.020xcrn	 +	 0.080xsoy	 ≤	 0.050	 [max	fiber]	
	 	 0.380xlim	 +	 0.001xcrn	 +	 0.002xsoy	 ³	 0.008	 [min	calcium]	
	 	 	 +	 0.090xcrn	 +	 0.500xsoy	 ³	 0.022	 [min	protein]	
	 	 xlim	 +	 xcrn	 +	 xsoy	 =	 1	 [1	kg	of	feed]	
	 	 xlim	 ,	 xcrn	 ,	 xsoy	 ³	 0	 	

	
The	optimal	solution	is	x�rw = 0.028	kg,	x{¡p = 0.649	kg,	and	x�¢| = 0.323	kg;	the	minimum	cost	of	
mixing	feed	is	$49.16.	

The	above	example	involves	composing	a	minimum	cost	diet	from	a	set	of	available	ingredients	while	
maintaining	nutritional	characteristics	within	certain	bounds.	A	total	dietary	volume	constraint	is	
also	present.	Define	index,	i,	representing	the	nutritional	characteristics,	calcium,	protein,	fiber,	etc.,	
which	 must	 fall	 within	 certain	 limits.	 Define	 index,	 j ,	 which	 represents	 the	 types	 of	 feedstuffs,	
limestone,	corn,	soybean,	etc.,	available	from	which	the	diet	can	be	composed.	Then	define	a	variable,	
xo,	which	represents	how	much	of	each	feedstuff	is	used	in	the	diet.		

The	constraints	of	the	problem	as	in	equation	(4-9)	include	three	additional	constraint	types:	one	for	
the	minimum	requirements	by	nutrient,	one	for	the	maximum	requirements	by	nutrient	and	one	for	
the	total	volume	of	the	diet.	In	setting	up	the	nutrient	based	constraints	parameters	are	needed	which	
tell	 how	much	 of	 each	 nutrient	 is	 present	 in	 each	 feedstuff	 as	well	 as	 the	dietary	minimum	 and	
maximum	requirements	for	that	nutrient.	Thus,	let	aro	be	the	amount	of	the	ith	nutrient	present	in	
one	unit	of	the	jth	feed	ingredient;	and	let	ULr	and	LLr	be	the	maximum	(upper	limit)	and	minimum	
(lower	 limit)	amount	of	 the	 ith	nutrient	 in	 the	 feed.	Then	the	nutrient	constraints	are	 formed	by	
summing	the	nutrients	generated	from	each	feedstuff	(aroxo)	and	requiring	these	to	exceed	the	dietary	
minimum	and/or	be	less	than	the	maximum.	

The	resultant	constraints	are	
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(4-10)	

naroxo
o

≤ ULr					[upper	limit	of	ith	nutrient]	

naroxo
o

≥ LLr					[lower	limit	of	ith	nutrient]	

	
A	constraint	is	also	needed	that	requires	the	ingredients	in	the	diet	equal	the	required	weight	of	the	
diet.	 Assuming	 that	 the	 weight	 of	 the	 formulated	 diet	 and	 the	 feedstuffs	 are	 the	 same,	 this	
requirement	can	be	written	as		

(4-11)	
nxo
o

≤ 1	

	
Finally	an	objective	function	must	be	defined.	This	involves	definition	of	a	parameter	for	feedstuff	
cost,	co,	and	an	equation	which	sums	the	total	diet	cost	across	all	the	feedstuffs,	i.e.,		z = ∑ coxoo .	The	
resulting	LP	formulation	is	

(4-12)	

min	 z	=		 ncoxo
o

	 	 	 	 [mix	cost]	

s.t.	
	 naroxo

o

	 ≤	 ULr	 for	all	i	 [upper	limit	of	ith	nutrient]	

	
	 naroxo

o

	 ≥	 LLr	 for	all	i	 [lower	limit	of	ith	nutrient]	

	
	 nxo

o

	 =	 1	 	 	

	 	 xo	 ≥	 0	 for	all	j	 [non-negativity]	
	
This	formulation	depicts	a	cost	minimization	problem.	

4.4.1. Cattle	Feed	Example	
Suppose	 that	cattle	 feeding	 involves	 lower	and	upper	 limits	on	net	energy,	digestible	protein,	 fat,	
vitamin	A,	calcium,	salt	and	phosphorus.	Further,	suppose	the	feed	ingredients	available	are	corn,	
hay,	soybeans,	urea,	dical	phosphate,	salt	and	concentrated	vitamin	A.	One	kilogram	of	the	feed	is	to	
be	 mixed.	 The	 costs	 of	 the	 ingredients	 per	 kilogram	 are	 shown	 in	 Table	 4.7.	 The	 nutrient	
requirements	are	given	in	Table	4.8.	The	nutrient	requirements	give	the	minimum	and	maximum	
amounts	of	each	nutrient	in	one	kilogram	of	feed.	Thus,	there	must	be	between	0.071	and	0.130	kg	of	
digestible	protein	in	one	kg	of	feed.	The	volume	of	feed	mixed	must	equal	one	kilogram.	The	nutrient	
compositions	of	one	kg	of	each	potential	feed	are	shown	in	Table	4.9.	Figure	4-5	presents	the	Excel	
formulation	with	the	optimal	solution.	
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Table	4-6:	Ingredient	Costs	($/kg)	

Ingredient	 Cost	 Ingredient	 Cost	
Corn	 $0.500	 Soybean	 $0.300	
Dical	phosphate	 $0.498	 Concentrated	Vitamin	A	 $0.286	
Alfalfa	hay	 $0.077	 Urea	 $0.332	
Salt	 $0.110	 	 	

	
Table	4-7:	Required	Nutrient	Characteristics	per	Kilogram	of	Mixed	Feed	

Nutrient	 Unit	 Minimum	 Maximum	
Net	energy	 Mega	calories	 1.34351	 	
Digestible	protein	 kg	 0.071	 0.130	
Fat	 kg	 	 0.050	
Vitamin	A	 International	units	 2200	 	
Salt	 kg	 0.015	 0.020	
Calcium	 kg	 0.0025	 0.010	
Phosphorus	 kg	 0.0035	 0.012	
Weight	 kg	 1	 1	

	
Table	4-8:	Nutrient	Content	per	Kilogram	of	Ingredients	(kg/kg)	

Nutrient	 Corn	 Hay	 Soybean	 Urea	 Dical		
phosphate	 Salt	 Vitamin	A	

Concentrate	
Net	energy	 1.48	 0.49	 1.29	 	 	 	 	
Digestible	protein	 0.075	 0.127	 0.438	 2.62	 	 	 	
Fat	 0.0357	 0.022	 0.013	 	 	 	 	
Vitamin	A	 600	 50880	 80	 	 	 	 2204600	
Salt	 	 	 	 	 	 1	 	
Calcium	 0.0002	 0.0125	 0.0036	 	 0.2313	 	 	
Phosphorus	 0.0035	 0.0023	 0.0075	 0.68	 0.1865	 	 	

	

4.4.2. Model	Solution	
As	shown	in	Figure	4-5,	we	will	use	0.755	kg	of	corn	and	0.083	kg	of	hay,	0.144	kg	of	soybean,	0.0035	
kg	 of	 dical	 phosphate,	 and	0.015	 kg	 of	 salt	 to	 produce	 1	 kg	 of	 cattle	 feed.	 The	minimum	 cost	 of	
producing	1	kg	of	feed	is	$0.43.	
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Figure	4-5.	Cattle	Feed	LP	Model	and	Optimal	Solution	

	

4.4.3. Comments	
There	are	three	assumptions	within	the	feed	formulation	problem.	First,	the	nutrient	requirements	
are	assumed	constant	and	independent	of	the	final	product	(e.g.,	livestock)	price.	Second,	the	quality	
of	 each	 feed	 ingredient	 is	 known.	 Third,	 the	 diet	 is	 assumed	 to	 depend	 on	 only	 feed	 price	 and	
nutrients.	The	feed	problem	is	widely	used,	especially	in	formulating	feed	rations.	Animal	scientists	
use	the	term	"ration-balancing",	and	several	software	programs	have	been	specifically	developed	to	
determine	least	cost	rations.	

4.5. Joint	Products	

Many	applied	LP	models	 involve	production	of	 joint	products.	An	example	would	be	a	petroleum	
cracking	 operation	 where	 production	 yields	 multiple	 products	 such	 as	 oil	 and	 naphtha.	 Other	
examples	 include	 dairy	 production	 where	 production	 yields	 both	 milk	 and	 calves,	 or	 forestry	
processing	 where	 trees	 yield	 sawdust	 and	 multiple	 types	 of	 sawn	 lumber.	 Here,	 we	 present	 a	
formulation	explicitly	dealing	with	joint	products.		Key	variables	in	model	are	i)	the	amount	of	each	
product	produced	for	sale,	ii)		 the	production	process	chosen	to	produce	the	products,	and	iii)	the	
amount	of	market	inputs	to	purchase.		

Let’s	begin	with	a	very	simple	oil	refinery	problem	to	understand	the	basic	components	of	the	model.	
Say	the	oil	refinery	buys	crude	old	(raw	or	unprocessed	input)	and	produces	gasoline,	kerosene,	and	
diesel	(multiple	products).	It	has	two	processes,	1	and	2,	and	the	breakouts	(proportional	yield)	are	
given	in	Table	4-9.		

	



 
 
	
Kim,	McCarl,	and	Spreen	(2018)	Applied	Mathematical	Programming	

48	 
 

Table	4-9:	Proportional	Yield	of	Refinery	Processes	

Product	 Process	1	 Process	2	 Sales	price	
Gasoline	(G)	 0.40	 0.30	 $3.0/unit	
Kerosene	(K)	 0.20	 0.25	 $2.2/unit	
Diesel	(D)	 0.40	 0.45	 $2.8/unit	
Maximum	processing	 500	units	 500	units	 	

	

The	cost	of	refining	per	unit	is	$0.80	for	process	1	and	$0.75	for	process2	and	suppose	that	the	price	
of	crude	oil	is	$1.8/unit.	The	objective	function	is	maximizing	profit,	π,	from	the	sale	of	each	product	
such	that	

(4-13)	 max π = 3.0x¥ + 2.2x¦ + 2.8x§ − 0.80yl − 0.75ym − 1.8z¨	

	
where	 x© 	(p = G, K, D)	 defines	 the	 total	 quantity	 of	 the	pth	 product,	 yo 	( j = 1, 2)	 identifies	 the	
quantity	of	jth	production	possibility	(process	1	or	2)	with	corresponding	processing	cost	and	z¨	
indicates	the	amount	of	crude	oil	purchased.	

Other	than	nonnegativity,	three	types	of	constraints	are	needed.	The	first	relates	the	quantity	sold	of	
each	product	to	the	quantity	yielded	by	production	(supply-demand	balance),	that	is,	the	quantity	of	
gasoline	from	processes	1	and	2	is	

(4-14)	 x¥ ≤ 0.40yl + 0.30ym 			→ 			 x¥ − 0.40yl − 0.30ym ≤ 0	

	
Here,	demand,	production	of	gasoline,	x¥,	is	required	to	be	less	than	or	equal	to	supply	which	is	the	
amount	generated	across	the	production	alternatives,	𝑦l	and	𝑦m.	Further,	since	production	and	sales	
are	endogenous,	this	is	written	as	sales	minus	production	and	is	less	than	or	equal	to	zero.	We	have	
two	more	supply-demand	balance	equations	for	outputs,	Kerosene	and	Diesel	such	that		

(4-15)	
x¦ ≤ 0.20yl + 025ym 			→ 			 x¦ − 0.20yl − 0.25ym ≤ 0	

x§ ≤ 0.40yl + 0.45ym 		→ 			 x§ − 0.40yl − 0.45ym ≤ 0	

	
The	second	type	of	constraint	relates	the	quantity	purchased	crude	oil	(raw	input)	to	the	quantity	
utilized	by	the	production	activities.		In	this	example	it	is	given	by	

(4-16)	 yl + ym ≤ z¨ 			→ 			 yl + ym − z¨ ≤ 0	

	
It	is	a	supply-demand	balance	for	input.		The	Excel	formulation	with	the	optimal	solution	is	presented	
in	Figure	4-6.	
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Figure	4-6.	Oil	Refinery	LP	Model	and	Optimal	Solution	

	

Formulation	of	this	model	requires	indices	which	depict	the	products	which	could	be	produced,	p,	
the	 production	 possibilities,	 j ,	 the	 fixed	 price	 inputs	 purchased,	k ,	 and	 the	 resources	 which	 are	
available	in	fixed	quantity,	m.		

Three	types	of	variables	need	to	be	defined.	The	first,	x©,	defines	the	total	quantity	of	the	pth	product	
sold;	the	second,	yo,	identifies	the	quantity	of	jth	production	alternatives	utilized;	and	the	third,	z�,	is	
the	amount	of	the	kth	input	purchased.	As	discussed	in	the	above	example,	other	than	nonnegativity,	
three	 types	 of	 constraints	 are	 needed.	 The	 first	 relates	 the	 quantity	 sold	 of	 each	product	 to	 the	
quantity	yielded	by	production.	Algebraic	specification	requires	definition	of	a	parameter,	q©o,	which	
gives	the	yield	of	each	product,	p,	by	each	production	possibility.	The	expression	

(4-17)	 x© −nq©oyo
o

≤ 0	

	
is	a	supply	demand	balance.	Here	demand,	in	the	form	of	sales	of	pth	product,	is	required	to	be	less	
than	or	equal	to	supply	which	is	the	amount	generated	across	the	production	alternatives.	Further,	
since	production	and	sales	are	endogenous,	this	is	written	as	sales	minus	production	and	is	less	than	
or	equal	to	zero.	

The	second	type	of	constraint	relates	the	quantity	purchased	of	each	fixed	price	input	to	the	quantity	
utilized	by	the	production	activities.	Let	the	parameter	r�o	gives	the	use	of	the	kth	input	by	the	jth	
production	possibility.	In	turn,	the	constraint	sums	up	total	fixed	price	input	usage	and	equates	it	to	
purchases	as	follows:	

(4-18)	 nr�oyo
o

− z� ≤ 0	

	
This	constraint	is	another	example	of	a	supply	demand	balance	where	the	endogenous	demand	in	
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this	case,	use	of	the	kth	input,	is	required	to	be	less	than	or	equal	to	the	endogenous	supply	which	is	
the	amount	purchased.	

The	 third	 type	 of	 constraint	 is	 a	 classical	 resource	 availability	 constraint	which	 insures	 that	 the	
quantity	used	of	each	fixed	quantity	input	does	not	exceed	the	resource	endowment.	Specification	
requires	 definition	 of	 parameters	 for	 the	 resource	 endowment	 (bw)	 and	 resource	 use	when	 the	
production	 possibility	 is	 utilized.	 The	 constraint	 which	 restricts	 total	 resource	 usage	 across	 all	
possibilities	is	

(4-19)	 nswoyo
o

≤ bw	

	
where	swo	is	the	use	of	the	mth	resource	(technical	coefficients)	by	yo.	

For	the	objective	function,	an	expression	is	needed	for	total	profits.	To	algebraically	expressed	the	
profits	 require	 parameters	 for	 the	 sales	 price	 (c©),	 the	 input	 purchase	 cost	 (e�),	 and	 any	 other	
production	costs	associated	with	production	(do).	Then	the	objective	function	can	be	written	as		

(4-20)	 nc©x©
©

−ndoyo
o

−nc�z�
�

	

	
The	individual	terms	do	not	reflect	the	profit	contribution	of	each	variable	in	an	accounting	sense,	
rather	this	occurs	across	the	total	model.	Thus,	the	production	variable	term	(𝑑¬)	does	not	include	
either	the	price	of	the	products	sold	or	the	cost	of	all	the	inputs	purchased,	but	these	components	are	
included	by	terms	on	the	sales	and	purchase	variables.	The	resultant	composite	joint	products	model	
is	

(4-21)	

max	 z	=		 nc©x©
©

	 −	 ndoyo
o

	 −	 nc�z�
�

	 	 	
	

s.t.	
	

x©	 −	 nq©oyo
o

	 	 	 ≤	 0	 for	all	p	

	
	
	 	 nr�oyo

o

	 −	 z�	 ≤	 0	 for	all	k	

	
	
	 	 nswoyo

o

	 	 	 ≤	 bw	 for	all	m	

	 	 x©	 ,	 yo	 ,	 z�	 ≥	 0	 For	all	p, j, k	
	
Several	 features	 of	 this	 formulation	 are	 worth	 mention.	 First,	 note	 the	 explicit	 joint	 product	
relationships.	When	activity	yo	is	produced,	a	mix	of	joint	outputs	(q©o, p = 1,2,⋯ )	is	produced	while	
simultaneously	consuming	the	variable	inputs	both	directly	priced	in	the	objective	function	(dj)	and	
explicitly	included	in	constraints	(r�o),	along	with	the	fixed	inputs	(swo).	Thus,	we	have	a	multi-factor,	
multi-product	production	relationship.	
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Another	feature	of	this	problem	involves	the	types	of	variables	and	constraints	which	are	used.	The	
variables	x©	are	sales	variables	which	sell	the	available	quantities	of	the	outputs.	The	variables	z�	are	
purchase	variables	which	supply	the	inputs	utilized	in	the	production	process.	The	variables	yo	are	
production	variables.	In	this	case,	the	production	variables	show	production	explicitly	in	the	matrix,	
and	 the	 product	 is	 sold	 through	 another	 activity.	 The	 first	 two	 constraints	 are	 supply-demand	
balances.	The	last	constraint	is	a	resource	endowment.	

4.5.1. Wheat	and	Straw	Production	
Consider	a	farm	which	produces	both	wheat	and	wheat	straw	using	seven	production	processes.	The	
basic	data	for	these	production	processes	are	given	in	Table	4.11.	The	production	process	involves	
the	joint	production	of	wheat	and	straw	using	land,	seed	and	fertilizer.	

The	relevant	prices	are	wheat,	$4.00	per	bushel,	wheat	straw,	$0.50	per	bale,	seed	(cost),	$.020/lb.,	
and	fertilizer	(cost),	$2.00	per	kilogram.	Also	there	is	a	$5	per	acre	production	cost	for	each	of	the	
processes	and	the	farm	has	500	acres.		

Note	that	p = wheat	(wht), straw(stw),	j = 1,⋯ ,7,	and	k = fertilizer	(fert), seed.	Objective	function	
is	maximizing	profit	from	the	sale	of	each	product:	

(4-22)	 max z = 4x�­® + 0.5x�®� − 5yl − 5ym − 5y� − 5y� − 5y� − 5y¯ − 5y� − 2zxy¡® − 0.2z�yy°	

	
The	supply-demand	balance	for	outputs	(wheat	and	straw)	is	given	by	

(4-23)	
x�­® − 30yl − 50ym − 65y� − 75y� − 80y� − 80y¯ − 75y� ≤ 0				[wheat	balance]	
x�®� − 10yl − 17ym − 22y� − 26y� − 29y� − 31y¯ − 32y� ≤ 0					[straw	balance]	

	

	

	Table	4-10:	Data	for	the	Wheat	and	Straw	Example	Problem	

	 	 Processes	 	 Price	or	cost	
Product	 	 1	 2	 3	 4	 5	 6	 7	 	 	
Wheat		 Yield	in	bushel	 30	 50	 65	 75	 80	 80	 75	 	 $4.0/unit	
Wheat	straw	 Yield	in	bales	 10	 17	 22	 26	 29	 31	 32	 	 $0.5/unit	
Fertilizer	usage	 in	Kg	 0	 5	 10	 15	 20	 25	 30	 	 $2.0/unit	
Seed	 	 10	 10	 10	 10	 10	 10	 10	 	 $0.2/unit	
Land	 	 1	 1	 1	 1	 1	 1	 1	 	 $5.0/unit	
	 	 	 	 	 	 	 	 	 	 500	acres	
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In	addition	there	is	the	supply-demand	balance	for	inputs	(fertilizer	and	seed):	

(4-24)	
0yl + 5ym + 10y� + 15y� + 20y� + 25y¯ + 30y� − zxy¡® ≤ 0										[fertilizer	balance]	
10yl + 10ym + 10y� + 10y� + 10y� + 10y¯ + 10y� − z�yy° ≤ 0				[seed	balance]	

	
Land	constraint	is	also	constructed:	

(4-25)	 yl + ym + y� + y� + y� + y¯ + y� ≤ 500				[land]	

	
The	Excel	formulation	with	the	optimal	solution	and	sensitive	reports	are	presented	in	Figure	4-7.	

	

	

	
Figure	4-7.	Wheat	and	Straw	Joint	Production	Formulation,	Optimal	Solution,	and	Sensitive	Report	
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4.5.2. Model	Solution	
As	shown	in	Figure	4.7,	40,000	bushels	of	wheat	and	14,500	bales	of	straw	are	produced	by	500	acres	
of	the	fifth	production	possibility	(𝑦�)	using	10,000	kilograms	of	fertilizer	and	5,000	lbs.	of	seed.	The	
reduced	 cost	 information	 shows	a	 $169.50	 cost	 for	 the	 first	production	possibility	 if	 undertaken.	
Under	this	production	pattern,	the	marginal	value	of	land	is	$287.50.	The	shadow	prices	on	the	first	
four	rows	are	the	sale	and	purchase	prices	of	the	various	outputs	and	inputs	depicted	in	those	rows.	

4.5.3. Comments	
The	joint	products	problem	illustrates:	1)	the	proper	handling	of	joint	products	and	2)	production	
variables	 where	 the	 returns	 from	 production	 are	 not	 collapsed	 into	 the	 objective	 function	 but	
explicitly	appear	in	the	constraints.	

The	 formulation	 also	 illustrates	 the	 possible	 complexity	 of	 LP.	 In	 this	 case	 product	 balance	
constraints	are	incorporated	in	a	model	along	with	resource	constraints.	Also	note	that	x�­®	and	x�®�,	
give	the	sum	of	total	output,	and	that	zxy¡®	and	z�yy° 	give	the	sum	of	total	input	usage	on	the	farm	
which	may	be	convenient	for	model	interpretation.		

Joint	product	formulations	have	a	relatively	long	history.	It	is	difficult	to	cite	many	exact	applications;	
rather	such	a	structure	is	common	and	implicit	in	many	models	throughout	the	literature.	

4.6. Assembly	Problem	

An	important	LP	formulation	involves	the	assembly	(assembling	final	products)	or	blending	problem.	
This	problem	deals	with	maximizing	profit	when	assembling	final	products	from	component	parts.	
The	problem	resembles	the	feed	formulation	problem	where	mixed	feeds	are	assembled	from	raw	
commodities;	 however,	 the	 assumption	of	 known	component	mixtures	 is	made.	As	we	did	 in	 the	
above	sections,	let’s	discuss	a	simple	LP	problem	to	understand	the	basic	components	of	the	model.	

Say	Joe’s	Diner	makes	two	kinds	of	burger,	a	cheeseburger	and	double	cheeseburger	for	sale	(final	
products	are	cheeseburger	and	double	cheeseburger).	Components	required	to	make	a	burger	are	
presented	in	Table	4-11.	

Let	xl=	cheeseburger	and	xm	=	double	cheeseburger	(outputs)	and	ql	=	bun,	qm	=	cheese,	q�	=	ground	
beef;	the	LP	formulation	is	given	by	equation	4-26:	

	

Table	4-11:	Component	Required	to	Make	a	Burger	

	 Cheese	burger	 Double	burger	 Cost	
Bun	 1	 1	 $0.5/bun	
Cheese	(slice)	 1	 2	 $0.5/slice	
Ground	beef	(lb.)	 0.25	 0.50	 $2.0/lb.	
Labor	(hours)	 0.25	 0.25	 Joe	has	40	hours/day	
Sales	price	 $5	 $7	 	
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(4-26)	

max	 z	=		 5xl	 +	 7xm	 −	 0.5ql	 −	 0.5qm	 −	 2q�		 	 	
s.t.	 	 xl	 +	 xm	 −	 ql	 	 	 	 	 ≤	 0	
	 	 xl	 +	 2xm	 	 	 −	 qm	 	 	 ≤	 0	
	 	 0.25xl	 +	 0.50xm	 	 	 	 	 −	 q�	 ≤	 0	
	 	 0.25xl	 +	 0.25xm	 	 	 	 	 	 	 ≤	 40	
	 	 xl	 ,	 xm	 ,	 ql	 ,	 qm	 ,	 q�		 ≥	 0	

	
where	the	first	constraint,	xl + xm − ql ≤ 0,	is	the	bun	supply-balance	balance;	the	second	constraint	
xl + 2xm − qm ≤ 0 ,	 is	 the	 cheese	 supply-demand	 balance;	 the	 third	 constraint	0.25xl + 0.50xm −
q� ≤ 0,	is	the	beef	supply-demand	balance.	Excel	formulation	with	the	optimal	solution	is	presented	
in	Figure	4-8.	

	

	

Figure	4-8.	Joe’s	Diner	–	Assembly	and	Optimal	Solution	

	

The	problem	formulation	involves	k	component	parts	(q�),	i.e.,	bun,	cheese,	and	beef,	which	can	be	
purchased	at	a	fixed	price.	The	decision	maker	is	assumed	to	maximize	the	value	of	the	final	products	
(xo),	i.e.,	burgers,	assembled.	Each	of	the	final	products	uses	component	parts	via	a	known	formula.	
Also,	fixed	resources	constrain	the	production	of	final	products	and	the	purchase	of	component	parts.	
The	formulation	is	

(4-27)	

max	 z	=		 ncoxo
o

	 −	 nd�q�
�

	 	 	 	

s.t.	
	 na�oxo

o

	 −	 w�q�	 ≤	 h�	 for	all	k	

	
	 neroxo

o

	 +	 nfr�q�
�

	 ≤	 br	 for	all	i	

	 	 xo	 ,	 q�	 ≥	 0	 [non-negative]	
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where	j	is	the	final	product	index;	co	is	the	return	(or	price)	per	unit	of	final	product	j	assembled;	xo		
is	the	number	of	units	of	final	product	j	assembled;	k	is	the	component	part	index;	d�	is	the	cost	per	
unit	of	component	part	k;	q� 	is	 the	quantity	of	component	part	k	purchased;	a�o 	is	 the	quantity	of	
component	 part	k 	used	 in	 assembling	 one	 unit	 of	 product	 j ;	w� 	is	 the	 number	 of	 units	 of	 the	
component	part	received	when	q�	is	purchased;	i	is	the	index	on	resource	limits	(such	as	labor);	ero	
is	 the	use	of	 limited	resource	i	in	assembling	one	unit	of	product	j;	fr�	is	 the	use	of	 the	ith	 limited	
resource	when	acquiring	one	unit	of	q�;	br	is	the	amount	of	limited	resource	i	available;	and	h�	is	the	
firm's	inventory	of	ingredient	k	if	any	(otherwise	0).	

In	this	formulation	the	objective	function	maximizes	the	return	summed	over	all	the	final	products	
produced	less	the	cost	of	the	component	parts	purchased.	The	first	constraint	equation	is	a	supply-
demand	balance	and	constrains	the	usage	of	the	component	parts	to	be	less	than	or	equal	to	inventory	
plus	purchases.	The	second	constraint	limits	the	resources	used	in	manufacturing	final	products	and	
purchasing	component	parts	to	the	exogenous	resource	endowment.	All	of	the	variables	are	assumed	
to	be	nonnegative.	

4.6.1. Express	Computer	
Express	Computer	 assembles	 six	different	 laptop	 computer	 types:	R	 series	14R,	15R,	 and	17R;	Z	
series	14Z,	15Z	and	17Z.	Each	different	type	of	computer	requires	a	specific	set	of	component	parts	
as	shown	in	Table	4-12.	Table	4-13	contains	component	parts’	prices,	inventory,	and	resource	(labor	
and	shelf	space)	requirements.	 	Final	products	assembly	and	sales	 information	are	in	Table	4-15.	
Note	that	profit	margin	is	the	difference	between	sales	price	and	assembly	cost,	for	example,	profit	
margin	 for	 14R	 is	 given	 by	 $630	 =	 $689	 –	 $59.	 	 Excel	 formulation	with	 the	 optimal	 solution	 is	
presented	in	Figure	4-9.	

	

Table	4-12:	Component	Required	to	Assemble	a	Laptop	

	 R	series	 	 Z	series	
	 14R	 15R	 17R	 	 14Z	 15Z	 17Z	
DVD+RW	 1	 1	 	 	 1	 	 	
Blu-Ray	Disc	 	 	 1	 	 	 1	 1	
Processor	2.5	GHz	 1	 1	 	 	 1	 	 	
Processor	3.1	GHz	 	 	 1	 	 	 1	 1	
500	GB	HD	 1	 1	 1	 	 	 	 	
750	GB	HD	 	 	 	 	 1	 1	 1	
Plain	Case	 1	 1	 1	 	 	 	 	
Fancy	Case	 	 	 	 	 1	 1	 1	
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Table	4-13:	Component	Part	Acquisition	Information	

	 Cost	in	$	 Inventory	 Labor	 Shelf	space	
DVD+RW	 35	 20	 0.01	 0.01	
Blu-Ray	Disc	 49	 29	 0.01	 0.01	
Processor	2.5	GHz	 52	 32	 0.01	 0.01	
Processor	3.1	GHz	 245	 45	 0.03	 0.03	
500	GB	HD	 102	 15	 0.07	 1.50	
750	GB	HD	 302	 45	 0.10	 2.00	
Plain	Case	 41	 11	 0.15	 1.70	
Fancy	Case	 80	 12	 0.12	 1.70	
Limit	 	 	 550	 590	

	

Table	4-14:	Final	Products	Assembly	and	Sales	Information	

	 Sales	price	 Min	Sales	 Assembly	cost	 Labor	 Laptop	space	
14R	 689	 1	 59	 2.00	 1	
15R	 992	 3	 102	 2.05	 1	
17R	 1200	 2	 100	 2.21	 1	
14Z	 1400	 4	 300	 2.24	 1	
15Z	 1500	 2	 300	 2.18	 1	
17Z	 1800	 2	 400	 2.12	 1	
Limit	 	 	 	 550	 240	

	

	

	
Figure	4-9.	Express	Computer	-	Assembly	
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4.6.2. Comments	
The	assembly	problem	is	related	to	the	feed	formulation	problem.	Namely,	the	assembly	problem	
assumes	 that	 known	 least	 cost	 mixes	 have	 been	 established,	 and	 that	 one	 wishes	 to	 obtain	 a	
maximum	profit	combination	of	these	mixes.	There	are	numerous	assumptions	in	this	problem.	For	
example	we	assume	all	prices	are	constant	and	the	quantity	of	fixed	resources	is	constant.	One	could	
extend	the	model	to	relax	such	assumptions.	

4.7. Disassembly	Problems	

Another	 common	LP	 formulation	 involves	 raw	product	disassembly.	This	problem	 is	 common	 in	
agricultural	 processing	 where	 animals	 are	 purchased,	 slaughtered	 and	 cut	 into	 parts	 (steak,	
hamburger,	etc.)	which	are	sold.	The	problem	is	also	common	in	the	forest	products	and	petroleum	
industries,	where	 the	 trim,	 cutting	 stock	 and	 cracking	 problems	 have	 arisen.	 In	 the	 disassembly	
problem,	a	maximum	profit	scheme	for	cutting	up	raw	products	is	devised.	The	primal	formulation	
involves	 the	maximization	of	 the	 component	parts	 revenue	 less	 the	 raw	product	purchase	 costs,	
subject	 to	restrictions	 that	relate	 the	amount	of	component	parts	 to	 the	amount	of	raw	products	
disassembled.		

Let’s	consider	a	simple	example	to	understand	the	general	formulation.	Say	a	firm	buys	a	car,	for	
example	a	salvage	car,	disassembles	it	into	parts	and	sell	the	parts.		The	parts	for	sale	are	metal,	seats	
and	others.	The	car	can	be	purchased	at	$1000,	which	weighs	2300	pounds.	The	cost	of	disassembling	
the	car	is	$100	and	the	firm	may	purchase	10	cars.	To	disassemble	a	car,	1	unit	of	shop	capacity	(the	
firm	has	10	units)	and	10	hours	or	labor	(the	firm	has	200	hours)	required.		Proportion	breakdown	
of	car	into	parts	and	sales	prices	are	presented	in	Table	4-15.	

Let	xo	=	car	(raw	material)	and	q�	=	parts	(output),	k=	metal	(m),	seat	(s)	and	others	(o).	The	total	
cost	is	the	sum	of	purchasing	a	car	and	disassembling	cost,	that	is,	$1100	=	$1000	+	$100.		Thus	the	
objective	function	is	

(4-28)	 max z = −(1000 + 100)xl + qw + 0.9q� + 0.2q¢	

	
Metal	supply-demand	balance	is	given	by	proportion	breakdown	×	car	weight	or	1380	=	0.6	×	2300,	

(4-29)	 −(0.6 ∙ 2300)xl + qw ≤ 0					[metal	balance]	

	
We	have	seats	and	others	supply-demand	balance	equations	as	well.	

(4-30)	
−(0.2 ∙ 2300)xl + q� ≤ 0					[seat	balance]	

−(0.2 ∙ 2300)xl + q¢ ≤ 0					[others	balance]	
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Table	4-15:	Proportion	Breakdown	of	Cars	into	Parts	and	Sales	Prices	

Parts	 	 Part	price	(sales)	 Labor		
Metal		 0.6	 $1.0/pound	 0.5	
Seats	 0.2	 $0.9/pound	 0.6	
Others	 0.2	 $0.2/pound	 0.4	

	

Resource	constraints	are	

(4-31)	
xl ≤ 10																																																																		[capacity]	
10xl + 0.5qw + 0.6q� + 0.4q¢ ≤ 100									[labor]	

	
All	told,	

(4-32)	

max	 z	=		 −1100xl	 +	 qw	 +	 0.9q�	 +	 0.2q¢	 	 	 	

s.t.	 	 −1380xl	 +	 qw	 	 	 	 	 ≤	 0	 [metals	balance]	

	 	 −460xl	 	 	 +	 q�	 	 	 ≤	 0	 [seats	balance]	

	 	 −460xl	 	 	 	 	 +	 q¢	 ≤	 0	 [others	balance]	

	 	 xl	 	 	 	 	 	 	 ≤	 10	 [capacity]	

	 	 10xl	 +	 0.5qw	 +	 0.6q�	 +	 0.4q¢	 ≤	 200	 [labor]	

	 	 xl	 	 	 	 	 	 	 ≤	 10	 [upper	limit]	

	 	 xl	 ,	 qw	 ,	 q�	 ,	 q¢	 ≥	 0	 [non-negative]	
	
Based	on	the	example	we	may	have	the	basic	disassembly	formulation	as	follows	

(4-33)	

max	 z	=		 −ncoxo
o

	 +	 nd�q�
�

	 	 	 	

s.t.	
	 −na�oxo

o

	 −	 q�	 ≤	 h�	 for	all	k	

	
	 neroxo

o

	 +	 nfr�q�
�

	 ≤	 br	 for	all	i	

	 	 xo	 ,	 q�	 ≥	 0	 [non-negative]	
	
where	j	indexes	the	raw	materials,	i.e.,	cars,	disassembled;	k	indexes	the	component	parts	sold,	i.e.,	
metals,	seats	and	others;	i	indexes	resource	availability	limits,	i.e.,	capacity	and	labor;	co	is	the	cost	of	
purchasing	and	disassembling	one	unit	of	raw	product	j;	xo	is	the	number	of	units	of	raw	material	j	
purchased;	d�	is	the	selling	price	of	component	part	k;	q�	is	the	quantity	of	component	part	k		sold;	
a�o 	is	 the	 yield	of	 component	part	k	from	 raw	product	j	(proportion	breakdown);	ero 	is	 the	use	of	
resource	limit	i		when	disassembling	raw	product	j;	fr�		is	the	amount	of	resource	limit	i	used	by	the	
sale	of	one	unit	of	component	part	k;	br	is	the	maximum	amount	of	raw	product	limit	i	available.	We	
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may	have	upper	and/or	lower	limits,	if	any.		

The	objective	function	maximizes	operating	profit,	which	the	sum	over	all	final	products	sold	(q�)	of	
the	 total	 revenue	 earned	 by	 sales	 less	 the	 costs	 of	 all	 purchased	 inputs.	 The	 first	 constraint	 is	 a	
product	balance	limiting	the	quantity	sold	to	be	no	greater	than	the	quantity	supplied	when	the	raw	
product	 is	 disassembled.	 The	 next	 constraint	 is	 a	 resource	 limitation	 constraint	 on	 raw	product	
disassembly	and	product	sale.		

The	xo	are	production	variables	indicating	the	amount	of	the	jth	raw	product	which	is	disassembled	
into	the	component	parts	(the	items	produced)	while	using	the	inputs	ero.	The	q�	are	sales	variables	
indicating	the	quantity	of	the	kth	product	which	is	sold.	

4.7.1. Jerimiah’s	Junk	Yard	
The	disassembly	problem	example	involves	operations	at	Jerimiah's	Junk	Yard.	The	firm	is	assumed	
to	disassemble	up	to	four	different	types	of	cars:	Escorts,	626s,	T-birds,	and	Caddy's.	Each	different	
type	of	car	yields	a	unique	mix	of	component	parts.	The	parts	considered	are	metal,	seats,	chrome,	
doors	and	junk.	The	component	part	yields	from	each	type	of	car	are	given	in	Table	4-16	as	are	data	
on	car	purchase	price,	weight,	disassembly	cost,	availability,	junk	yard	capacity,	labor	requirements,	
component	part	minimum	and	maximum	sales	possibilities,	 parts	 space	use,	 labor	use,	 and	 sales	
price.	

The	resource	endowment	for	labor	is	700	hours	while	there	is	42	units	of	 junk	yard	capacity	and	
5000	units	of	parts	space.	We	also	extend	the	basic	problem	by	requiring	parts	to	be	transformed	to	
other	usages	if	their	maximum	sales	possibilities	have	been	exceeded.	Under	such	a	case,	chrome	is	
transformed	to	metal	on	a	pound	per	pound	basis,	while	seats	become	junk	on	a	pound	per	pound	
basis,	and	doors	become	70%	metal	and	30%	junk.	The	problem	formulation	 in	Excel	 is	given	 in	
Figure	4-10	with	the	solution.	

	

Table	4-16:	Operation	Data	for	Jerimiah’s	Junk	Yard	

Raw	materials	
	 Escort	 626S	 TBIRD	 Caddies	
Purchase	price	 85	 90	 115	 140	
Weight	(lb)	 2300	 2200	 3200	 3900	
Disassembly	cost	 100	 120	 150	 170	
Availability	 13	 12	 20	 10	

	
Resource	use	

	 Escort	 626S	 TBIRD	 Caddies	
Capacity	 1	 1	 1.2	 1.4	
Labor	 10	 12	 15	 20	
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Table	4-16,	continued	
	
Proportion	breakdown	of	cars	into	parts	and	price	

Parts	 Escort	 626S	 TBIRD	 Caddies	
Metal		 0.60	 0.55	 0.60	 0.62	
Seats	 0.10	 0.10	 0.06	 0.04	
Chrome	 0.05	 0.05	 0.09	 0.14	
Doors	 0.08	 0.10	 0.10	 0.07	
Junk	 0.17	 0.20	 0.15	 0.13	

	
Part	sales	data	

Parts	 Min.	sales	 Max.	sales	 Part	price	 Part	space	 Labor	
Metal		 0	 	 0.15	 0.062	 0.0010	
Seats	 4000	 6000	 0.90	 0.004	 0.0015	
Chrome	 70	 10000	 0.70	 0.014	 0.0020	
Doors	 2	 5000	 1.00	 0.007	 0.0025	
Junk	 	 	 -0.05	 0.013	 0.0001	

 
	

	
Figure	4-10.	Jeremiah’s	Junk	Yard	-	Disassembly	
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4.7.2. Comments	
It	is	difficult	to	find	exact	examples	of	the	disassembly	problem	in	literature.	This	formulation	is	a	
rather	obvious	application	of	LP	which,	while	having	been	studied	a	number	of	times,	is	not	formally	
recognized.	
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5. APPLIED	INTEGER	PROGRAMMING	

Key	points:	

LP	continuity	assumption	is	relaxed;	Integer	problems	arise	frequently	because	some	or	all	of	the	
decision	variables	must	be	restricted	to	integer	values.	

Yes-or-no	decision	 and	 logical	 conditions	are	 formulated	using	0-1	 indicator	 (binary)	 variable,	
which	is	widely	used	in	applied	works.		

	

5.1. Introduction	

LP	assumes	continuity	of	the	solution	region.	LP	decision	variables	can	equal	whole	numbers	or	any	
other	real	number	(3	or	4	as	well	as	3.49).	However,	fractional	solutions	are	not	always	acceptable.	
Particular	items	may	only	make	sense	when	purchased	in	whole	units	(e.g.,	tractors	or	airplanes).	
Integer	 programming	 (IP)	 requires	 a	 subset	 of	 the	 decision	 variables	 to	 take	 on	 integer	 values.	
Usually	IP	problems	involves	optimization	of	a	linear	objective	function	subject	to	linear	constraints,	
non-negativity	 conditions	 and	 integer	 value	 conditions.	 IP	 also	 permits	modeling	 of	 fixed	 costs,	
logical	conditions,	and	discrete	levels	of	resources.	

The	integer	valued	variables	are	called	integer	variables.	Problems	containing	integer	variables	fall	
into	 several	 classes.	A	problem	 in	which	 all	 variables	 are	 integer	 is	a	pure	 integer	 IP	problem.	A	
problem	with	some	integer	and	some	continuous	variables,	is	a	mixed-integer	IP	problem	(MIP).	A	
problem	in	which	the	integer	variables	are	restricted	to	equal	either	zero	or	one	is	called	a	zero-one	
IP	problem.	There	are	pure	zero-one	IP	problems	where	all	variables	are	zero-one	and	mixed	zero-
one	IP	problems	containing	both	zero-one	and	continuous	variables.	

Let’s	recall	Joe’s	Van	example	in	Chapter	3	(equation	3-1).	

(5-1)	

max	 z	 =		 2000xxzp{|	 +	 1700xxrpy	 	 	 	
s.t.	 	 xxzp{|	 +	 xxrpy	 ≤	 12	 [capacity	constraint]	
	 	 25xxzp{|	 +	 20xxrpy	 ≤	 280	 [labor	constraint]	
	 	 xxzp{|	 ,	 xxrpy	 ≥	 0	 [non-negativity]	

	
Both	xxzp{|	and	xxrpy	are	assumed	to	be	a	real	number	(continuous	number).	However,	for	example,	
11.2	 of	xxrpy 	is	 not	 actually	 acceptable.	 Joe	 cannot	 produce	 11.2	 fine	 vans.	 We	 may	 add	 integer	
constraints	to	the	question,	and,	in	turn,	equation	(5-1)	becomes	

(5-2)	

max	 z	 =		 2000xxzp{|	 +	 1700xxrpy	 	 	 	
s.t.	 	 xxzp{|	 +	 xxrpy	 ≤	 12	 [capacity	constraint]	
	 	 25xxzp{|	 +	 20xxrpy	 ≤	 280	 [labor	constraint]	
	 	 xxzp{|	 ,	 xxrpy	 ≥	 0	 [non-negativity]	

	 	 	 xxzp{|	 ,	 xxrpy	 	 integer	 [integer	restriction]	
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Figure	5-1.	Imposing	Integer	Constraints	

	

In	Excel,	we	impose	the	integer	constraints	in	Solver	Window.	Click	Add	button	in	Constraints	box	
and	select	changing	cells	as	in	Figure	5-1.	Then	select	“int”	in	the	Add	Constraint	window	to	declare	
these	are	integers	(Add	Constraint	box	in	Figure	5-1).	The	final	Solver	Parameters	box	is	presented	
in	Figure	5-1	as	well.	

The	optimal	solution	won’t	change	because	they	are	integer	already,	³xxzp{|
∗ , xxrpy

∗ ´ = (8, 4)	but	the	
LP	has	now	integer	constraints	(Figure	5-1).		

5.2. Feasible	Region	Characteristic	and	Solution	

Let’s	consider	the	following	LP	problem.	

(5-3) 

max	 z	 =		 5xl	 +	 xm	 	 	
s.t.	 	 −xl	 +	 2xm	 ≤	 4	
	 	 xl	 −	 xm	 ≤	 1	
	 	 4xl	 +	 xm	 ≤	 12	
	 	 xl	 ,	 xm	 ≥	 0	
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The	optimal	solution	is	(xl∗, xm∗) = (2.6, 1.6),	and	z∗ = 14.6	assuming	xl	and	xm	are	continuous	(Panel	
A	in	Figure	5-3).	Note	that	the	feasible	region	is	a	grey	area	surrounded	by	three	constraints	and	non-
negativity;	there	are	five	corner	point	feasible	(CPF)	solutions,	(0,0),	(1,0),	(2.6,1.6),	(2.2µ ,	3. 1µ),	and	
(0,	2).	As	discussed,	the	optimal	solution	occurs	one	of	CPF	solutions,	in	this	case	it	is	(2.6,	1.6)	(Panel	
A,	Figure	5-3).		

When	xl	 	and	xm 	are	 integer,	 however,	 the	 feasible	 region	 is	 not	 an	 area,	 instead,	 we	 have	 dots	
(combinations	of	integer	xl	and	xm	as	shown	in	Panel	B,	Figure	5-3).	As	shown	in	Panel	B,	the	optimal	
solution	 now	 is	(xl∗, xm∗) = (2, 3) ,	 and	z∗ = 13 .	 Rounding	 the	 solution	 of	 continuous	 x’s,	(xl∗, xm∗) =
(2.6, 1.6),	 to	the	nearest	integer	(up	or	down)	is	not	the	optimal	solution.	 	As	shown	in	Panel	B	in	
Figure	5-2,	the	optimal	solution	is	not	on	the	constraint	boundaries	(one	of	CPF	solutions)	and	it	is	
much	less.	Because	the	optimal	solution	is	not	one	of	CPF	solutions,	the	Simplex	algorithm	doesn’t	
work	 for	 IP	problem.	Actually	 the	 IP	problems	are	notoriously	difficult	to	solve	because	 it	has	an	
unknown	number	of	possible	solutions	and	no	general	statement	can	be	made	about	the	location	of	
the	solution.		

	

	

Figure	5-2.	Graphical	Solution	for	LP	in	Equation	(5-3)	
Dots	in	Panel	A	are	corner	point	feasible	(CPF)	solutions;	when	an	optimal	solution	of	a	LP	exists,	it	occurs	
one	of	CPF	solutions,	which	is	(2.6,	1.6).	
	

5.3. Yes-or-No	Decisions	

Integer	programming	may	involve	a	number	of	interrelated	“yes-or-no	decisions.”		In	such	decisions,	
the	only	two	possible	choices	are	yes	and	no	or	on	and	off.		Binary	choice	permits	modeling	of	fixed	
costs	(investment)	and	logical	conditions.		With	just	two	choices,	a	decision	variable	takes	just	two	
values,	say	0	and	1	(binary	variables).	Consequently,	IP	problems	that	contain	only	binary	variables	
are	called	binary	integer	programming	(BIP)	model.	

The	capital	budgeting	also	known	as	the	knapsack	problem	or	cargo	loading	problem,	is	a	famous	BIP	
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formulation.	The	knapsack	context	refers	to	a	hiker	selecting	the	most	valuable	items	to	carry,	subject	
to	a	weight	or	capacity	limit.	Partial	 items	are	not	allowed,	thus	choices	are	depicted	by	zero-one	
variables.	The	capital	budgeting	context	involves	selection	of	the	most	valuable	investments	from	a	
set	of	available,	but	indivisible,	investments	subject	to	limited	capital	availability.	The	cargo	loading	
context	involves	maximization	of	cargo	value	subject	to	hold	capacity	and	indivisibility	restrictions.		

The	general	formulation	(assuming	only	one	of	each	item	is	available)	is	

(5-4)	

max	 z	 =		 nvoxo
o

	 	 	 	

s.t.	 	 ndoxo
o

	 ≤	 w	 	

	 	 xo	 =	 0	or	1	 for	all	j	
	
The	decision	variables	indicate	whether	the	jth	alternative	item	is	chosen	(xo = 1)	or	not	(xo = 0).	
Each	item	is	worth	vo	or	return	from	the	investment	is	vo.	The	objective	function	gives	the	total	value	
of	all	 items	chosen.	The	capacity	used	by	each	xo	is	do	or	investment	costs.	The	constraint	requires	
total	capacity	use	to	be	less	than	or	equal	to	the	capacity	limit	(w).	

5.3.1. Thief	(Knapsack	Problem)	
A	thief	breaks	into	a	house.	Around	the	thief	are	various	objects:	a	diamond	ring,	a	silver	candelabra,	
a	Bose	Wave	Radio,	a	large	portrait	of	Elvis	Presley	painted	on	a	black	velvet	background,	and	a	large	
tiffany	crystal	vase.	The	thief	has	a	knapsack	that	can	only	hold	a	certain	capacity;	it	can	hold	a	total	
size	of	8.	Each	of	the	items	has	a	value	and	a	size	(Table	5-1),	and	cannot	hold	all	of	the	items	in	the	
knapsack.		

	

Table	5-1:	Items	to	be	taken	

Variable	 Items	
Volume	 Value	
(Size)	 (dollars)	

xl	 Ring	 1	 1500	
xm	 Candelabra	 5	 1000	
x�	 Bose	Radio	 3	 900	
x�	 Elvis	portrait	 4	 500	
x�	 Cristal	vase	 4	 400	
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The	resultant	BIP	formulation	is	

(5-5)	

max	 z		=		 1500x1	 +	 1000x2	 +	 900x3	 +	 500x4	 +	 400x5	 	 	
s.t.	 	 x1	 +	 5x2	 +	 3x2	 +	 4x4	 +	 4x5	 £	 8	
	 	 	 	 xj	 =	 0	 	 or	 	 1	 	 	

	

In	Excel,	we	can	impose	the	binary	choice	Solver	Window.	Click	Add	button	in	Constraints	box	and	
select	changing	cells	as	in	Figure	5-1.	Then	select	“bin”	in	the	Add	Constraint	window	to	declare	these	
are	binary	variables.	The	Excel	formulation	with	the	optimal	solution	is	presented	in	Figure	5-4,	and	
take	ring,	radio	and	Elvis	portrait.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	5-3.	Graphical	Solution	for	LP	in	Equation	(5-3)	
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5.3.2. Capital	Budgeting		
Let’s	have	one	more	example.	A	real	estate	firm	is	considering	five	possible	development	projects.	
The	estimated	long-run	profit	(net	present	value)	that	each	project	would	generate	and	the	amount	
of	investment	required	to	undertake	the	project	are,	in	units	of	millions	of	dollars,	presented	in	Table	
5-2.	 	 The	 company	has	 raised	$20	million	of	 investment	 capital	 for	 these	projects.	The	 resultant	
formulation	is	

(5-6)	

max	 z	=	 x1	 +	 1.8x2	 +	 1.6x3	 +	 0.8x4	 +	 1.4x5	 	 	
s.t.	 	 6x1	 +	 12x2	 +	 10x3	 +	 4x4	 +	 8x5	 £	 20	
	 	 x1	 ,	 x2	 ,	 x3	 ,	 x4	 ,	 x5	 =	 0	or	1	

	
Excel	formulation	is	presented	in	Figure	5-4.		

	

Table	5-2:	NPV	for	the	Projects	and	Capital	Required	

Project	
Estimated	profit	 Capital	required	
(million	dollars)	 (million	dollars)	

xl	 1.0	 6	
xm	 1.8	 12	
x�	 1.6	 10	
x�	 0.8	 4	
x�	 1.4	 8	

	

	

	

Figure	5-4.	Excel	Formulation	for	Real	Estate	Project	
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5.4. Logical	Conditions	

IP	allows	one	to	depict	logical	conditions.	Some	examples	are:	

• Conditional	use:	A	warehouse	can	only	be	used	if	constructed	

• Complementary	products:	If	any	of	product	A	is	produced,	then	a	minimum	quantity	of	B	
must	be	produced	

• Complementary	 equipment:	 If	 a	 particular	 class	 of	 equipment	 is	 purchased	 then	only	
complementary	equipment	can	be	acquired	

• Sequencing:	Operation	A	must	be	entirely	finished	before	operation	B	can	begin	
	
is	made,	the	variable	takes	the	value	1.		If	not,	the	variable	takes	the	value	0.	If	the	indicator	variable	
takes	the	value	0,	then	other	activities	must	also	be	zero.		If	the	value	is	1,	then	these	variables	can	be	
non-zero	and	will	be	limited	by	other	constraints	in	the	model.		An	indicator	variable	is	imposed	using	
a	constraint	as	following	(large	M	technique)		

(5-7)	 nxr
r

	 −	 My	 ≤	 0	

	
where	M	is	a	large	positive	number,	xr	is	a	group	of	continuous	variables	in	the	model,	and	y	is	an	
indicator	variable	(0	or	1).	The	indicator	variable	y	indicates	whether	or	not	any	of	x’s	are	non-zero	
with	y	=	1,	zero	otherwise.		Note	that	M	must	be	as	large	as	any	reasonable	value	for	the	sum	of	the	
x’s.		To	understand	equation	(5-7)	say	we	have	only	two	decision	variables	xl	and	xm;	thus	equation	
(5-7)	is	xl + xm − 10000y ≤ 0.	When	xl	and/or	xm	are	nonzero,	the	only	way	to	satisfy	the	constraint	
is	that	y = 1.		When	both	xl	and	xm	are	zero,	y	may	take	a	value	of	0.		

Indicator	variables,	y,	may	be	used	in	many	ways.	For	example,	consider	a	problem	involving	two	
mutually	exclusive	products,	xl	and	xm.	Such	a	problem	may	be	formulated	using	the	constraints	

(5-8)	

xl	 	 	 −	 Myl	 	 	 ≤	 0	
	 	 xm	 	 	 −	 Mym	 ≤	 0	
	 	 	 	 yl	 +	 ym	 ≤	 1	

xl	 ,	 xm	 	 	 	 	 ≥	 0	
	 	 	 	 yl	 ,	 ym	 =	 0	or	1	

	
Here,	yl	indicates	whether	or	not	xl	is	produced,	while	ym	indicates	whether	or	not	xm	is	produced.	
The	third	constraint,	yl + ym ≤ 1,	in	conjunction	with	the	zero-one	restriction	on	yl	and	ym,	imposes	
mutual	exclusivity.	Thus,	when	yl = 1	then	xlcan	be	produced	but	xm	cannot.	Similarly,	when	ym =
1	then	xl 	must	be	 zero	while	0 ≤ xm ≤ M.	 Consequently,	 either	xl 	or	xm 	can	be	produced,	 but	not	
both.	Note	 that	both	xl	and	xm	can	be	zero	meaning	that	yl = 0	and	ym = 0.	 	 If	 the	third	constraint	
becomes	yl + ym = 1,	then	one	of	xl	and	xm	must	be	produced.	
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Equation	(5-8)	may	be	extended	to	pair	of	constraints	which	is	allowed	to	be	active	(either-or-active	
constraints).	Say	there	are	two	decision	variables,	then		

(5-9)	

allxl	 +	 almxm	 	 	 	 −	 Myl	 	 	 ≤	 bl	
	 	 	 amlxl	 +	 ammxm	 	 	 −	 Mym	 ≤	 bm	
	 	 	 	 	 	 	 yl	 +	 ym	 =	 1	
	 	 	 	 	 	 	 yl	 ,	 ym	 =	 0	or	1	

	
If	yl = 0, ym = 1 ,	 the	 first	 constraint,	allxl + almxm ≤ bl ,	 is	 active.	 If	yl = 1, ym = 0 ,	 the	 second	
constraint	amlxl + ammxm ≤ bm ,	is	active.		

5.4.1. AAA	Company	
The	R&D	division	of	the	AAA	company	has	developed	three	possible	new	products.	 	Each	of	these	
products	 can	 be	 produced	 in	either	 of	 two	 plants,	 Plant	 A	 or	 Plant	 B.	 However,	 to	 avoid	 undue	
diversification	of	the	company’s	product	line,	management	has	imposed	the	following	restrictions	

	 (1)	From	the	three	possible	new	products,	at	most	two	should	be	chosen	to	be	produced	
	 (2)	Just	one	of	the	two	plants	should	be	chosen	to	be	the	sole	producer	of	the	new	products	

Data	for	AAA	company	to	construct	a	LP	model	is	given	in	Table	5-3.		Here	are	steps	to	build	the	LP	
model.	Note	that	sales	potential	is	an	upper	limit	of	each	decision	variable.	

	

Table	5-3:	Data	for	AAA	Company	

	 Labor	used	 Labor	
Product	1	 Product	2	 Product	3	 Available	

Plant	A	 3	 4	 2	 30	hours	
Plant	B	 4	 6	 2	 40	hours	

Unit	profit	 5	 7	 3	 in	dollars	
Sales	potential	 7	 5	 9	 units	

	

Step	1:	this	is	a	standard	product	mix	problem:	The	objective	is	to	choose	the	products,	x1,	x2,	and	x3,	
the	plant	and	production	rates	of	the	chosen	products	so	as	to	maximize	total	profit	

(5-10)	

max	 z=	 5x1	 +	 7x2	 +	 3x3	 	 	 	
s.t.	 	 3x1	 +	 4x2	 +	 2x3	 £	 30	 Labor	at	plant	1	
	 	 4x1	 +	 6x2	 +	 2x3	 £	 40	 Labor	at	plant	2	
	 	 x1	 	 	 	 	 £	 7	 Sales	potential	upper	limits	
	 	 	 	 x2	 	 	 £	 5	 	
	 	 	 	 	 	 x3	 £	 9	 	
	 	 x1	 ,	 x2	 ,	 x3	 ³	 0	 Non-negativity	
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Step	2:	restriction	1:	at	most	two	should	be	chosen	to	be	produced:	The	number	of	strictly	positive	
decision	variables	must	be	≤	2.	If	the	decision	variables	were	binary	variables,	then	constraint	would	
be	xl + xm + x� ≤ 2 .	 However,	 here,	 decision	 variables	 are	 continuous.	 We	 need	 to	 introduce	 of	
auxiliary	 binary	 variables.	 Introduce	 three	 auxiliary	 binary	 variables	 (yl ,	ym 	and	y� )	 with	 the	
interpretation;	yo = 1	if	xo > 0	(produce	 product	j)	 or	yo = 0	if	xo = 0	(not	 produce	 product	 j).	 To	
enforce	 this	 interpretation	 in	 the	model	with	the	help	of	M	(a	 large	positive	number),	we	add	the	
following	constraints	

(5-11)	

x1	 	 	 -	 My1	 	 	 	 	 £	 0	
	 x2	 	 	 	 -	 My2	 	 	 £	 0	
	 	 x3	 	 	 	 	 -	 My3	 £	 0	
	 	 	 	 y1	 +	 y2	 +	 y3	 £	 2	
	 	 	 	 y1	 ,	 y2	 ,	 y3	 =	 0	or	1,	binary	

	

Step	3:	restriction	2:	just	one	of	the	two	plants	produces:	It	is	the	either-or	constraint,	that	is,	either	
3xl + 4xm + 2x� ≤ 30	or	4xl + 6xm + 2x� ≤ 40.	 To	 deal	with	 this,	we	 introduce	 another	 auxiliary	
binary	variable	y4	with	the	interpretation;	y� = 1	if	the	firm	chooses	plant	B	or	4xl + 6xm + 2x� ≤ 40	
must	 hold	 or	 y� = 0 	if	 the	 firm	 chooses	 plant	 A	 or	 3xl + 4xm + 2x� ≤ 30 	must	 hold.	 This	
interpretation	is	enforced	by	adding	the	following	constraints,	

(5-12)	

3x1	 +	 4x2	 +	 2x3	 -	 My4	 	 	 £	 30		
4x1	 +	 6x2	 +	 2x3	 	 	 -	 M(1	–	y4)	 £	 40			

	 	 	 	 	 	 y4	 	 	 =	 binary	
	
Consequently,	combining	equations	(5-10),	(5-11),	and	(5-12)	generates	the	complete	model	(MIP	
problem)	which	is	

(5-13)	

max	 z=	 5x1	 +	 7x2	 +	 3x3	 	 	 	 	 	 	 	 	 	 	
s.t.	 	 x1	 	 	 	 	 	 	 	 	 	 	 	 	 £	 7	
	 	 	 	 x2	 	 	 	 	 	 	 	 	 	 	 £	 5	
	 	 	 	 	 	 x3	 	 	 	 	 	 	 	 	 £	 9	
	 	 x1	 	 	 	 	 -	 My1	 	 	 	 	 	 	 £	 0	
	 	 	 	 x2	 	 	 	 	 -	 My2	 	 	 	 	 £	 0	
	 	 	 	 	 	 x3	 	 	 	 	 -	 My3	 	 	 £	 0	
	 	 	 	 	 	 	 	 y1	 +	 y2	 +	 y3	 	 	 £	 2	
	 	 3x1	 +	 4x2	 +	 2x3	 	 	 	 	 	 	 -	 My4	 £	 30	
	 	 4x1	 +	 6x2	 +	 2x3	 	 	 	 	 	 	 +	 M(1-y4)	 £	 40	
	 	 x1	 ,	 x2	 ,	 x3	 	 	 	 	 	 	 	 	 ³	 0	
	 	 	 	 	 	 	 	 y1	 ,	 y2	 ,	 y3	 ,	 y4	 =	 Binary	
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Optimal	solution	is	found	using	the	Excel	Solver,	that	is,	x1	=	5.5,	x2	=	0	and	x3	=	9;	y1	=	1,	y2	=	0,	y3	=	1	
and	y4	=	1.		

5.4.2. BBB	Manufacturing	(Contingent	Decision)	
The	BBB	Manufacturing	is	considering	expansion	by	building	a	new	factory	in	either	city	A	or	city	B,	
or	perhaps	in	both	cities.	It	also	is	considering	building	at	most	one	new	ware	house,	but	the	choice	
of	 location	 is	 restricted	 to	 a	 city	where	 a	new	 factory	 is	 being	built.	 Economists	 in	 the	 company	
estimated	the	expected	return	(net	present	value)	of	each	of	these	alternatives	and	capital	required	
for	the	respective	investments,	where	the	total	capital	available	is	$10	million.	The	objective	is	to	find	
the	feasible	combination	of	alternatives	that	maximizes	the	total	net	present	value.	

Let	FA	is	a	binary	variable	for	the	question	“build	factory	in	city	A”	and	FB	in	City	B.	Similarly,	WA	is	a	
binary	variable	for	the	question	“build	warehouse	in	city	A”	and	WB	in	City	B.	

Because	the	last	two	decisions	represent	mutually	exclusive	alternatives	(the	company	wants	at	most	
one	new	warehouse),	we	need	the	constraint	WA	+	WB	£	1.		The	choice	of	warehouse	locations	(WA	
and	WB)	is	contingent	decisions;	contingent	on	decisions	FA	and	FB,	respectively.	Thus,	WA	=	0	if	FA	=	
0,	or	WA	=	0	or	1	if	FA	=	1.	This	restriction	is	imposed	by	adding	the	constraint	WA	£	FA		or	−F� +
W� ≤ 0.		Excel	formulation	is	presented	in	Figure	5-5.	

	

						Table	5-4:	Data	for	BBB	Company	

Yes-or-no	question	 Decision	variable	 Expected	Return	 Capital	Required	
Build	factory	in	city	A?	 FA	 $9	million	 $6	million	
Build	factory	in	city	B?	 FB	 $5	million	 $3	million	
Build	warehouse	in	city	A?	 WA	 $6	million	 $5	million	
Build	warehouse	in	city	B?	 WB	 $4	million	 $2	million	

	

LP	formulation	is	given	by	equation	(5-14):	 	

(5-14) 

max	 z	=		 9FA	 +	 5FB	 +	 6WA	 +	 4WB	 	 	 	
s.t.	 	 6FA	 +	 3FB	 +	 5WA	 +	 2WB	 £	 10	 Total	capital	available	
	 	 	 	 	 	 WA	 +	 WB	 £	 1	 Mutually	exclusive	
	 	 -FA	 	 	 	 WA	 	 	 £	 0	 Contingent	decision	
	 	 	 -	 FB	 	 	 +	 WB	 £	 0	 Contingent	decision	
	 	 FA	 ,	 FB	 ,	 WA	 ,	 4WB	 	 Binary	 	
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Figure	5-5.	Excel	Formulation	for	BBB	Company	
	
	

5.5. Sensitivity	Analysis	and	Integer	Programming	

Given	the	concentration	of	the	book	on	problem	formulation	and	solution	interpretation,	we	do	not	
consider	sensitivity	analysis	for	the	integer	programming	(IP)	models.	It	is	because	duality	is	not	a	
well-defined	in	IP	models.	Most	LP	(and	nonlinear	programming	model	in	the	next	chapter)	duality	
relationships	and	interpretations	are	derived	from	the	calculus;	however	calculus	cannot	be	applied	
to	the	discontinuous	integer	programming	feasible	solution	region.	In	general,	dual	variables	are	not	
defined	for	IP	problems.		When	the	IP	model	is	solved	using	the	Excel	Solver,	Solver	Results	window	
doesn’t	provide	Sensitivity	Analysis,	just	Answer	option	in	Reports	box	in	Solver	Results	window	as	
shown	in	Figure	5-6.	

	

	
Figure	5-6.	Excel	Solver	Results	for	Integer	Programming	Model	
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5.6. Solution	Approach	to	Integer	Programming	

IP	problems	are	notoriously	difficult	to	solve.	They	can	be	solved	by	several	very	different	algorithms.	
We	will	briefly	discuss	algorithms,	attempting	to	expose	readers	to	their	characteristics.	

5.6.1. Rounding		
Rounding	is	the	most	naive	approach	to	IP	problem	solution.	The	rounding	approach	involves	the	
solution	of	the	problem	as	a	LP	problem	followed	by	an	attempt	to	round	the	solution	to	an	integer	
one	by:	a)	dropping	all	the	fractional	parts;	or	b)	searching	out	satisfactory	solutions	wherein	the	
variable	values	are	adjusted	to	nearby	larger	or	smaller	integer	values.	In	general,	rounding	is	often	
practical,	but	it	should	be	used	with	care	because	it	may	not	provide	the	correct	solution	as	shown	in	
Section	5.2.	

5.6.2. Branch	and	Bound	
The	second	solution	approach	developed	was	the	branch	and	bound	algorithm.	The	algorithm	starts	
with	a	LP	solution	(without	integer	constraint)	and	then	impose	constraints	to	force	the	LP	solution	
to	become	an	integer	solution.	Let’s	consider	the	following	very	simple	LP	problem:	

(5-15)	
max	 z	=	 3x1	 +	 2x2	 	 	 	
s.t.	 	 2x1	 +	 2x2	 £	 9	 (1)	
	 	 x1	 ,	 x2	 ³	 0	 Non-negativity	

	
Given	the	non-integer	optimal	solution	for	(5-15)	is	(xl, xm)	=	(4.5,	0.0)	and	z	=	13.50,	the	branch	and	
bound	algorithm	would	impose	constraints	requiring	xl	to	be	at	or	below	the	adjacent	integer	values	
around	4.5,	that	is,	xl ≤ 4	and	xl ≥ 5.	This	leads	to	two	disjoint	problems	such	that,	

(5-16)	

max	 z	=	 3x1	 +	 2x2	 	 	 	
s.t.	 	 2x1	 +	 2x2	 £	 9	 (1)	
	 	 x1	 	 	 £	 4	 (2)	
	 	 x1	 ,	 x2	 ³	 0	 Non-negativity	

	
And	

(5-17)	

max	 z	=	 3x1	 +	 2x2	 	 	 	
s.t.	 	 2x1	 +	 2x2	 £	 9	 (1)	
	 	 x1	 	 	 ≥	 5	 (2)	
	 	 x1	 ,	 x2	 ³	 0	 Non-negativity	

	
The	branch	and	bound	solution	procedure	generates	two	problems	(branches)	after	each	LP	solution	
as	in	equation	(5-16)	and	(5-17).	Each	problem	excludes	the	unwanted	non-integer	solution,	forming	
an	increasingly	more	tightly	constrained	LP	problems.	The	optimal	solution	to	the	model	in	(5-16)	is	
(xl, xm)	=	(4,	0.5)	and	z	=	13.00,	while	the	model	in	(5-17)	is	infeasible	(no	solution).	Because	𝑥m	is	not	
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integer,	the	branch	and	bound	imposes	constraints	(again)	requiring	xm	to	be	at	or	below	the	adjacent	
integer	 values	 around	 0.5,	 that	 is,	xm ≤ 0 	and	xm ≥ 1 .	 This	 leads	 to	 another	 set	 of	 two	 disjoint	
problems.	

In	doing	this,	when	one	solves	a	particular	problem,	one	may	find	an	integer	solution.	However,	one	
cannot	be	 sure	 it	 is	 optimal	until	 all	 problems	have	been	examined.	Maximization	problems	will	
exhibit	declining	objective	function	values	whenever	additional	constraints	are	added.	Consequently,	
given	a	feasible	 integer	solution	has	been	 found,	 then	any	solution,	 integer	or	not,	with	a	smaller	
objective	function	value	cannot	be	optimal,	nor	can	further	branching	on	any	problem	below	it	yield	
a	better	solution	than	 the	 incumbent	since	 the	objective	 function	will	only	decline.	Thus,	 the	best	
integer	 solution	 found	 at	 any	 stage	 of	 the	 algorithm	 provides	 a	 bound	 limiting	 the	 problems	
(branches)	to	be	searched.	The	bound	is	continually	updated	as	better	integer	solutions	are	found.	
The	branch	and	bound	ends	if	the	last	branch	is	infeasible	or	integer	solution.	

For	the	example	in	equation	(5-15),	there	are	21	sub-LP	problems	to	solve	and	the	optimal	solution	
is	(xl∗, xm∗) = (4, 0)	and	z∗ = 12.	
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6. NONLINEAR	PROGRAMMING	

Key	points:	

LP	linear	function	assumption	is	relaxed;	objective	function	and/or	constraints	could	be	nonlinear.	
In	this	case,	optimal	solution	doesn’t	occur	on	the	corner	point	feasible	(CPF)	solution	and	thus	
different	solution	search	algorithm	is	needed	for	example	Newton-Raphson	method.	

In	Excel	Solver,	select	“GRG	Nonlinear”	in	Select	a	Solving	Method	window	after	entering	nonlinear	
formulas	in	the	corresponding	cells.	

	

6.1. Introduction	

A	key	assumption	of	linear	programming	is	that	all	its	functions	(objective	function	and	constraints)	
are	linear.		Although	this	assumption	essentially	holds	for	numerous	practical	problems,	it	frequently	
does	not	hold.		Many	economists	have	found	that	some	degree	of	nonlinearity	is	the	rule	and	not	the	
exception	 in	 economic	 problem.	 We	 now	 turn	 our	 attention	 to	 continuous,	 certain,	 nonlinear	
optimization	problems.		

Nonlinearity	can	arise	in	various	ways.	In	the	production	problem	in	LP,	the	per-unit	profit	of	each	
product	was	assumed	to	be	constant.	But	it	can	be	a	decreasing	function	of	the	output	level,	either	
because	a	larger	output	tends	to	depress	the	market	price	or	because	increased	production	tends	to	
raise	the	(average)	variable	cost	of	the	product.	If	so,	the	LP	objective	function	z = clxl + ⋯+ cpxp	
must	be	replaced	by	a	nonlinear	version,	such	as	z = cl(xl)xl + ⋯+ cp(xp)xp,	where	co(xo)	denotes	
a	decreasing	function	of	the	variable	xo.	

Let’s	consider	a	simple	example:	

(6-1)	

max	 z	=	 126x1	 -	 9x12	 +	 182x2	 -	 13x22	 	 	

s.t.	 	 x1	 	 	 	 	 	 	 £	 4	

	 	 	 	 9x12	 	 	 +	 5x22	 £	 216	
	 	 x1	 	 	 	 x2	 	 	 ³	 0	

	

There	 are	 two	 decision	 variables	 xl 	and	 xm 	with	 nonlinear	 objective	 function	 and	 constraint.		
Graphical	illustration	of	this	NLP	is	presented	in	Figure	6-1	and	Excel	formulation	in	Figure	6-2.	Note	
that	optimal	solution	doesn’t	occur	on	the	corner	point	feasible	(CPF)	solution.	
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 x2	

  x1	
Figure	6-1.	Graphical	Solution	of	Nonlinear	Programming	

	
	

	

	

	

	

	

	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Figure	6-2.	Excel	Formulation	for	Nonlinear	Programming	
	

z*	=	895.14	
x1	=	3.284	and	x2	=	4.878	
	
Note	that	optimal	solution	doesn’t	occur	
on	the	corner	point	feasible	(CPF)	
solution	
	
	

Feasible	
Region	
	

z	



 
 
	
Kim,	McCarl,	and	Spreen	(2018)	Applied	Mathematical	Programming	

77	 
 

6.2. Solving	Nonlinear	Programming	Model	

Because	the	optimal	solution	doesn’t	occurs	on	the	CPF	solution,	the	Simplex	doesn’t	work.		Instead,	
searching	(optimal	solution)	procedure	is	used.	Basic	idea	is	

1) test	current	trial	solution	if	derivative	is	negative	or	positive,		

2) compute	next	trial	solution	(iteration),	

3) test	again,		

4) compute	next	trial	solution,		

5) test	again	and	stop	if	stopping	rule	is	satisfied	(convergence	criteria)	

	
Popular	methods	are	1)	gradient	method,	2)	Newton’s	method,	and	3)	Frank-Wolfe	algorithm.	

In	Excel,	just	select	GRG	Nonlinear	in	Select	a	Solving	Method	window	as	shown	in	Figure	6-2	and	
run	the	model.	

6.3. Quadratic	Programming		

Quadratic	 programming	 problems	 have	 linear	 constraints	 but	 the	 objective	 function	 must	 be	
quadratic,	meaning	that	it	has	the	square	of	a	variable,	xom,	or	the	product	of	two	variables,	xrxo	(i ≠ j)	
terms.	For	example,		

(6-2)	
max	 z =	 15xl	 +	 30xm	 +	 4xlxm		 −	 2xlm	 −	 4xmm	 	 	
s.t.	 	 xl	 +	 xm	 	 	 	 	 	 	 ≤	 30	

	 	 xl	 ,	 xm	 	 	 	 	 	 	 ≥	 0	
	
We	will	have	the	quadratic	programming	models	in	the	next	chapter,	Price	Endogenous	Modeling.	
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7. PRICE	ENDOGENOUS	MODELING	

Key	points:	

A	common	economic	application	of	nonlinear	programming	 involves	price	endogenous	models	
where	prices	are	endogenously	determined	in	the	model;	thus	it	involves	modeling	an	industry	or	
sector.	

In	Excel	Solver,	select	“GRG	Nonlinear”	to	solve	the	price	endogenous	model.		

	

7.1. Introduction	

A	common	economic	application	of	nonlinear	programming	involves	price	endogenous	models.	In	
the	standard	LP	model,	input	and	output	prices	or	quantities	are	assumed	fixed	and	exogenous.	Price	
endogenous	 models	 are	 used	 in	 situations	 where	 this	 assumption	 is	 felt	 to	 be	 untenable.	 Such	
problems	can	involve	modeling	an	industry	or	sector	such	that	the	level	of	output	or	purchases	of	
inputs	is	expected	to	influence	equilibrium	prices.	

Let	an	inverse	demand	equation	be	defined	as	P° = a° − b°Q°,	where	P°	is	price	of	the	product,	a° >
0 	is	 the	 (demand)	 intercept,	b° > 0 	is	 the	 (demand)	 slope,	 and	Q° 	is	 the	 quantity	 demanded.	
Similarly,	suppose	we	have	an	inverse	supply	equation,	P� = a� + b�Q� ,	where	the	terms	are	defined	
analogously.		An	equilibrium	solution	would	have	price	and	quantity	equated	and	would	occur	at	the	
simultaneous	solution	of	the	equations	

(7-1)	
P° = P�		or		a° − b°Q° = a� + b�Q�		&	Q° = Q� = Q∗	

→ Q∗ =
a° − a�
b° + b�

		and		P∗ = a° − b°Q∗ = a� + b�Q∗			

	
The	equilibrium	price	and	quantity	is	P∗	and	Q∗	as	in	Figure	7-1.		

Consumer	surplus	(CS)	is	defined	as	the	difference	between	the	maximum	price	a	consumer	is	willing	
to	pay	and	the	actual	price	 they	do	pay,	P∗.	 If	a	consumer	would	be	willing	 to	pay	more	 than	 the	
current	 asking	 price,	 then	 they	 are	 getting	more	 benefit	 from	 the	 purchased	 product	 than	 they	
initially	paid.	Graphically	it	is	the	area	under	the	demand	and	above	the	equilibrium	price.		Producer	
surplus	 (PS)	 is	 a	 measure	 of	 producer	 welfare.	 It	 is	 measured	 as	 the	 difference	 between	 what	
producers	are	willing	and	able	to	supply	a	good	for	and	the	price	they	actually	receive.	Graphically	it	
is	the	area	above	the	supply	curve	and	below	the	market	price.	The	sum	of	CS	and	PS	is	considered	
as	the	social	welfare	(Figure	7-2).	Mathematically,	

(7-2)	 SW = º P°
�∗

�
dQ −º P�

�∗

�
dQ	
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Figure	7-1.	Market	Equilibrium;	Consumer	and	Producer	Surplus	
	

	
Assuming	linear	demand	and	supply,	equation	(7-2)	becomes	

(7-3)	
SW = º (a° − b°Q°)

�∗

�
dQ −º (a� + b�Q�)

�∗

�
dQ	

	
= ³a°Q° − 0.5b°Q°

m´ − (a�Q� + 0.5b�Q�m)	

	
And,	in	turn,	we	set	up	the	model	to	maximize	SW	with	a	demand-supply	balance	constraint	such	that	

(7-4)	
max	 SW =	 a°Q°	 -	 0.5b°Q°

m 	 -	 a�Q�	 -	 0.5b�Q�m	 	 	 	
s.t.	 	 Q°	 	 	 -	 Q�	 	 	 ≤	 0	 Demand-supply	balance	

	 	 Q°	 ,	 	 	 Q�	 	 	 ≥	 0	 	
	
This	is	a	nonlinear	model	(quadratic	programming	model).	Note	that	P∗	is	the	shadow	price	of	the	
first	constraint.			

Suppose	we	have	

(7-5)	 P° = 60 − 3Q°		and		P� = 10 + 2Q�	

	
The	above	example	is	a	simple	case	where	we	have	a	single	supply	and	single	demand	curve.	Clearly,	
no	one	would	solve	this	problem	using	nonlinear	programming,	as	it	could	be	easily	solved	by	hand.	
Let	 P° = P� 	or	 60 − 3Q° = 10 + 2Q� 	and	Q° = Q� = Q∗ .	 	 So,	 Q∗ = 10 	and	 P∗ = 30 .	 	 The	 price	
endogenous	model	is		
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(7-6)	

max	 SW =	 60Q°	 -	 1.5Q°
m 	 -	 10Q�	 -	 Q�m	 	 	

s.t.	 	 Q°	 	 	 -	 Q�	 	 	 ≤	 0	

	 	 Q°	 ,	 	 	 Q�	 	 	 ≥	 0	
	
Figure	(7-3)	presents	the	Excel	formulation	and	the	corresponding	sensitivity	report	where	we	can	
find	 the	 equilibrium	 price	 (shadow	 price,	 “Lagrange	 multiplier”,	 of	 the	 demand-supply	 balance	
constraint).	The	SW	is	250.	

	

	
	
	
	
	
	
	
	
	
	
	

Figure	7-2.	Price	Endogenous	Model	and	Sensitivity	Report		
	
	

Note	that	the	formulation	was	originally	motivated	by	Enke	(1951)1F

2	and	Samuelson	(1952)	 2F

3.	Later	
it	was	fully	developed	by	Takayama	and	Judge	(1971)3F

4.		

                                                             
2	Enke,	S.	(1951)	“Equilibrium	among	Spatially	Separated	Markets:	Solution	by	Electric	Analogue.”	
Econometrica	19:	40-47.	
3	Samuelson,	P.A.	(1952)	“Spatial	Price	Equilibrium	and	Linear	Programming.”	American	Economic	Review	
42:	283-303.	
4	Takayama,	T.	and	Judge,	G.	(1971)	Spatial	and	Temporal	Price	and	Allocation	Models.	Amsterdam,	North	
Holland.	
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7.2. Spatial	Equilibrium	

A	 common	 price	 endogenous	 model	 application	 involves	 the	 spatial	 equilibrium	 problem.	 This	
problem	is	an	extension	of	the	transportation	problem	relaxing	the	assumption	of	fixed	supply	and	
demand;	that	is,	supply	constraints,	sr,	and	demand	requirements,	do,	in	equation	(4-6)	in	Chapter	4	
are	now	endogenous.	The	problem	is	motivated	as	follows.	Production	and/or	consumption	usually	
occurs	in	spatially	separated	regions,	each	of	which	have	supply	and	demand	relations.	In	a	solution,	
if	the	regional	prices	differ	by	more	than	the	interregional	cost	of	transporting	goods,	then	trade	will	
occur	and	the	price	difference	will	be	driven	down	to	the	transport	cost.	Modeling	of	this	situation	
addresses	the	questions	of	who	will	produce	and	consume	what	quantities	and	what	level	of	trade	
will	occur.	Takayama	and	Judge	(1971)	developed	the	spatial	equilibrium	model	to	deal	with	such	
situations.		

Suppose	 that	 inverse	 corn	supply	 function	 in	 the	US	 is	P�,½¾ = 25 + Q�,½¾ 	and	no	supply	 in	 Japan.	
Inverse	 corn	 demand	 functions	 are	 P°,½¾ = 150 − Q°,½¾ 	for	 the	 US	 and	 P°,¿� = 160 − Q°,¿� ,	
respectively.		If	there	is	no	trade,	the	US	market	is	cleared	where	P�,½¾ = P°,½¾;	P½¾∗ = 87.5	and	Q½¾∗ =
62.5	(Figure	7-3).		Suppose	that	transport	between	the	US	and	Japan	costs	4.	US	producers	will	export	
corn	to	Japan	when	the	(international)	price	is	higher	than	91.5	=	87.5	+	4.	Thus	the	inverse	corn	
supply	in	international	market	(from	the	U.S.)	is	P° = 91.5 + 0.5Q�	and	the	international	market	will	
be	 cleared	 when	91.5 + 0.5Q∗ = 160 − Q∗ 	or	P∗ = 114.3 	and	Q∗ = 45.7 	(international	 market	 in	
Figure	7-4).	 	Note	that	 the	supply	slope	 in	the	 international	market	 is	0.5	because	producers	will	
supply	half	of	corn	to	the	U.S.	and	half	of	corn	to	the	international	market.	Market	price	in	Japan	is	
114.3	and	market	price	in	the	US	is	110.3	(4	less);	US	producers	produce	85.3	units	of	corn	and	export	
45.7	units.	

	

	 	 	 	 	 		International	market	

	
Figure	7-3.	Spatial	Equilibrium	Graphical	Solution		
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Social	welfare	 (SW)	 is	 this	 example	 is	 the	 sum	 of	 consumer	 surpluses	 in	 the	 US	 and	 Japan	 and	
producer	surpluses	in	the	US	and	Japan	(note	that	producer	surplus	in	Japan	is	zero	because	there	is	
no	supply).		The	net	welfare	(NW)	is	the	difference	of	SW	and	the	transportation	cost,	or	

(7-7)	
NW = Àº P°,½¾

�ÁÂ
∗

�
dQ½¾ − º P�,½¾

�ÁÂ
∗

�
dQ½¾ + º P°,¿�

�ÃÄ
∗

�
dQ¿� − º P�,¿�

�ÃÄ
∗

�
dQ¿�Å	

														−c½¾,½¾T½¾,½¾ − c½¾,¿�T½¾,¿� − c¿�,½¾T¿�,½¾ − c¿�,¿�T¿�,¿�	

	
where	c½¾,¿�	is	the	unit	transport	cost	(which	is	4)	and	T½¾,¿�	is	the	amount	of	transported	to	Japan	
from	the	US	(export).	In	turn,	as	we	did	in	the	previous	section,	we	may	form	an	optimization	problem	
with	the	NW	expression	as	the	objective	function	plus	the	constraints	from	the	transportation	model.	
Let	Tro 	(i, j = US, JP)	 is	 the	 shipment	 form	 i	 to	 j,	 and	 thus	Trr 	is	 the	domestic	 or	 internal	 shipment	
(domestic	 supply	 assuming	 zero	 cost).	 The	 constraints	 involve	 a	 demand	 balance	 requiring	 that	
incoming	shipments	to	a	region	be	greater	than	or	equal	to	regional	demand,	that	is,	Q°,r ≤ Tr,r + Tr,o	
(or,	Q°,r − Tr,r − Tr,o ≤ 0)	 ,	 and	a	 supply	balance	 requiring	 that	 outgoing	 shipments	do	not	 exceed	
regional	supply,	Q�,r ≥ Tr,r + Tr,o	(or	−Q�,r + Tr,r + Tr,o ≤ 0).	The	resultant	problem	becomes	

(7-8)	

max	 NW =	 150Q°,½¾	 -	 0.5Q°,½¾m 	 -	 25Q�,½¾	 -	 0.5Q�,½¾m 	 	 	 	 	 US	SW	

	 +	 160Q°,¿�	 -	 0.5Q°,¿�m 	 -	 0Q�,¿�	 -	 0Q�,½¾m 	 	 	 	 	 JP	SW	

	 	 	 -	 0T½¾,½¾		 -	 4T½¾,¿�	 -	 4T¿�,½¾	 -	 0T¿�,¿�	
	 	 transportation	

s.t.	 	 Q°,½¾	 -	 T½¾,½¾	 	 	 -	 T¿�,½¾	 	 	 ≤	 0	 US	DMD	

	 	 Q°,¿�	 	 	 -	 T½¾,¿�	 	 	 -	 T¿�,¿�	 ≤	 0	 JP	DMD	

	 	 −	Q�,½¾	 +	 T½¾,½¾	 +	 T¿�,½¾	 	 	 	 	 ≤	 0	 US	SPL	

	 	 −	Q�,¿�	 	 	 	 	 +	 T¿�,½¾	 +	 T¿�,¿�	 ≤	 0	 US	SPL	

	 	 Q°,r	 ,	 Q�,r	 ,	 Tr,o	 	 	 	 	 ³	 0	 	

	
Based	on	 the	discussion	above,	we	derive	 the	 general	spatial	 equilibrium	model.	 Suppose	 that	 in	
region	i	the	demand	for	the	good	of	interest	is	given	by	P°r = fr(Q°r)	where	P°r	is	the	demand	price	
in	region	i	while	Q°r	is	the	quantity	demanded.	Similarly	in	region	i	the	supply	for	the	good	is	given	
by	P�r = gr(Q�r)	where	P�r 	is	 the	 supply	price	 in	 region	 i	 and	Q�r 	is	 the	quantity	 supplied.	A	 social	
welfare	(SW)	function	for	each	region	can	be	defined	as	the	area	between	the	supply	and	demand	
curves	(sum	of	CS	and	PS):	

(7-9)	 SWr(Q∗) = º P°,r
�Æ
∗

�
dQr − º P�,r

�Æ
∗

�
dQr	
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The	net	welfare	(NW)	function	across	all	regions	is	the	sum	of	the	welfare	functions	in	each	region	
less	total	transport	costs.	Suppose	Tro	represents	the	amount	of	good	shipped	from	i	to	j	at	cost	cro.	
Then	the	NW	is	

(7-10)	 NW(Q∗) =nÀº P°,r
�Æ
∗

�
dQr − º P�,r

�Æ
∗

�
dQrÅ

Ç

r

−nncroTro

Ç

o

Ç

r

	

	
A	demand	balance	requiring	that	incoming	shipments	to	a	region	be	greater	than	or	equal	to	regional	
demand:	

(7-11)	
Q°r ≤nTor

o

		for	all	i	

	
and	a	supply	balance	requiring	that	outgoing	shipments	do	not	exceed	regional	supply:	

(7-12)	
Q�r ≥nTro

o

		for	all	i	

	
All	together,	the	resultant	problem	becomes	

(7-13)	

max	 NW =	 nÀº P°,r
�Æ
∗

�
dQr − º P�,r

�Æ
∗

�
dQrÅ

Ç

r

−nncroTro

Ç

o

Ç

r

	 	
	 	

s.t.	 	 Q°r −nTor
o

	 ≤	 0	 For	all	i	

	 	 −Q�r +nTro
o

	 ≤	 0	 For	all	i	

	 	 Q°r,						Q�r,						Tro		 ≥	 0	 	

	
Note	 that	 a	 shadow	price	 (Lagrange	multiplier	 from	Excel	 Solver	 Sensitivity	Report)	 for	 the	 first	
constraint	equals	the	demand	price	and	a	shadow	price	for	the	second	constraint	equals	the	supply	
price.	Transportation	that	the	demand	price	in	a	region	must	be	less	than	the	supply	prices	in	all	
other	 regions	 plus	 transport	 cost.	 Also,	Trr 		 represents	 the	 quantity	 produced	 in	 region	 i	 and	
consumed	in	region	i;	If	region	i	fills	some	of	its	own	demand,	that	is,	Trr > 0,	then	supply	and	demand	
prices	in	region	i	are	equal.	If	region	i	exports	to	region	j,	that	is,	Tro > 0,	then	the	demand	price	in	
region	j	equals	the	supply	price	in	region	i	plus	transport	cost	(See	Figure	7-3,	where	P°,¿ = P�,½ +
c½,¿ → 114.3 = 110.3 + 4).	If	region	i	doesn’t	export	to	region	j,	that	is,	Tro = 0,	then	generally	P°o <
P�r + cro;	trade	is	not	desirable	since	the	price	difference	won’t	support	the	transport	cost.	
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Example:	

Suppose	 we	 have	 three	 entities	 (US	 (U),	 Europe	 (E),	 Japan	 (J))	 trading	 a	 single	 homogeneous	
commodity.	Supply	curves	are		

(7-14)	

P�,½ = 25 + Q�,½	

P�,È = 35 + Q�,È	

P�,¿ = 100 + Q�,¿	

	
while	the	demand	curves	are	

(7-15)	

P°,½ = 150 − Q°,½	

P°,È = 155 − Q°,È	

P°,¿ = 160 − Q°,¿	

	
and	internal	transport	is	zero,	i.e.,	crr = 0.	Also	suppose	transport	between	the	US	and	Europe	costs	
3	in	either	direction,	while	it	costs	4	between	the	US	and	Japan	and	5	between	Europe	and	Japan.	The	
formulation	of	this	problem	based	on	equation	(7-13)	is	

(7-16)	

max	 NW =	 	 150Q°,½	 -	 0.5Q°,½
m 	 -	 25Q�,½	 -	 0.5Q�,½m 	 	 	 US	SW	

	 	 +	 155Q°,È	 -	 0.5Q°,È
m 	 -	 35Q�,È	 -	 0.5Q�,Èm 	 	 	 EU	SW	

	 	 +	 160Q°,¿	 -	 0.5Q°,¿
m 	 -	 100Q�,¿	 -	 0.5Q�,¿m 	 	 	 JP	SW	

	 	 -	 0T½,½	 -	 3T½,È	 -	 4T½,¿	 	 	 	 	 Trnsprt	from	US	

	 	 -	 3TÈ,½	 -	 0TÈ,È	 -	 5TÈ,¿	 	 	 	 	 Trnsprt	from	EU	

	 	 -	 4T¿,½	 -	 5T¿,È	 -	 0T¿,¿	 	 	 	 	 Trnsprt	from	JP	

s.t.	 	 	 Q°,½	 -	 T½,½	 -	 TÈ,½	 -	 T¿,½	 ≤	 0	 US	DMD	
	 	 	 Q°,È	 -	 T½,È	 -	 TÈ,È	 -	 T¿,È	 ≤	 0	 EU	DMD	
	 	 	 Q°,¿	 -	 T½,¿	 -	 TÈ,¿	 -	 T¿,¿	 ≤	 0	 JP	DMD	
	 	 	 −Q�,½	 +	 T½,½	 +	 T½,È	 +	 T½,¿	 ≤	 0	 US	SPL	
	 	 	 −Q�,È	 +	 TÈ,½	 +	 TÈ,È	 +	 TÈ,¿	 ≤	 0	 EU	SPL	
	 	 	 −Q�,¿	 +	 T¿,½	 +	 T¿,È	 +	 T¿,¿	 ≤	 0	 JP	SPL	
	 	 	 Q°,r	 ,	 Q�,r	 ,	 Tr,o	 	 	 ³	 0	 	
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Figure	7-4.	Spatial	Equilibrium	Excel	Formulation	

	

Figure	 7-4	 is	 the	 Excel	 formulation	 with	 the	 solution	 to	 the	 problem.	 This	 solution	 indicates	
consumption	of	47	units	in	the	U.S.,	and	53	units	in	both	Europe	and	Japan,	while	78	units	are	supplied	
(produced)	in	the	US,	67	in	Europe,	and	7	units	in	Japan.	The	U.S.	and	Europe	both	get	all	of	their	
consumption	 quantities	 from	 domestic	 production	 while	 the	 U.S.	 exports	 31	 units	 to	 Japan	 and	
Europe	 exports	 14	 units.	 The	 equilibrium	 prices	 appear	 in	 the	 row	 40	 using	 the	 parameters	 in	
demand	 equations;	 the	 price	 in	 the	 U.S.	 is	 103.17	 while	 the	 European	 price	 is	 102.17.	 Note	 the	
Japanese	price	is	107.17	which	is	higher	than	the	price	in	the	other	two	regions	by	the	transport	cost.	

The	utility	of	this	model	may	be	demonstrated	by	performing	some	slight	extensions.	Suppose	we	
use	the	model	to	examine	the	costs	and	effects	of	trade	barriers	and	their	cost.	Specifically	consider	
first	model	solution	without	any	trade	(no	trade	case)	adding	additional	constraints	such	that	T½,È +
T½,¿ = 0	(US	 export	 is	zero),	TÈ,½ + TÈ,¿ = 0	(EU	export	 is	 zero)	 and	T¿,½ + T¿,È = 0	(Japan	export	 is	
zero)	as	in	Figure	7-5.	
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Figure	7-5.	Spatial	Equilibrium	Excel	Formulation	-	No	Trade		

	

Note	 that	 the	 expected	 results	 occur.	Without	 trade,	 domestic	 consumers	 in	 the	U.S.	 and	Europe	
receive	cheaper	prices	and	consume	more,	but	Japanese	consumers	should	pay	much	higher	price.		
Simultaneously	U.S.	and	European	producers	supply	less	and	receive	lower	prices.	Clearly	we	can	see	
the	benefit	of	the	(free)	trade	in	terms	of	social	welfare	(compare	objective	function	values,	i.e.,	9224	
vs.	8406	or	values	of	SW	in	each	region)	but	there	might	be	distributional	issue.	Under	the	free	trade	
(Figure	7-4)	the	U.S.	and	Europe	producers	are	better-off	but	not	consumers	even	if	 it	has	higher	
social	welfare.	All	in	all,	this	example	illustrates	the	potential	usefulness	of	the	spatial	equilibrium,	
price	endogenous	structure.	

	

	

	

	



 
 
	
Kim,	McCarl,	and	Spreen	(2018)	Applied	Mathematical	Programming	

87	 
 

8. PORTFOLIO	ANALYSIS	

Key	points:	

Portfolio	theory	deals	with	the	problem	of	constructing	for	a	given	collection	of	financial	assets	an	
investment	with	desirable	features.	

Mean-variance	portfolio	involves	development	of	an	optimal	investment	strategy	

	

8.1. Introduction	

Portfolio	theory	deals	with	the	problem	of	constructing	for	a	given	collection	of	financial	assets	an	
investment	with	desirable	features.	A	financial	asset	is	a	non-physical	asset	whose	value	is	derived	
from	 a	 contractual	 claim	 such	 as	 bank	 deposit,	 bonds	 and	 stocks.	 A	 variety	 of	 different	 asset	
characteristics	can	be	 taken	into	consideration,	such	as	the	amount	of	value,	on	average,	an	asset	
returns	on	over	a	period	of	time	and	the	riskiness	of	reaping	returns	comparable	to	the	average.	The	
financial	objectives	of	the	investor	and	tolerance	of	risk	determine	what	types	of	portfolios	are	to	be	
considered	 desirable.	 In	 this	 chapter	 we	 will	 discuss	 a	 quantitative	 approach	 to	 constructing	
portfolios.		

8.2. Rates	of	Return	of	Assets	

There	are	two	basic	features	of	an	asset.	The	first	is	the	average	return	of	an	asset	over	a	period	of	
time.	The	second	characteristic	is	how	risky	it	is	to	obtain	similar	returns	comparable	to	the	average	
over	the	investment	period.	For	an	asset	with	value	S(0)	at	time	0	and	value	S(T)	at	time	T,	the	rate	
of	return,	r,	is	defined	by	

(8-1)	 rÉ =
S(T) − S(0)

S(0)
		⇔ 		S(T) = (1 + rÉ)S(0)	

	
For	example,	if	S(0) = $4	and	after	one	month	S(1) = $5,	the	rate	of	return	of	the	asset	is	25%.	The	
rate	of	return	of	an	asset	is	sometimes	referred	to	as	the	yield	of	the	asset.	

Since	the	outcome	of	an	investment	in	an	asset	has	some	level	of	uncertainty,	the	value	SË	is	unknown	
(to	the	decision	maker)	exactly	at	time	0.	To	model	the	uncertainty	we	shall	consider	the	value	of	the	
asset	at	time	T	as	a	random	variable.	Correspondingly,	the	rate	of	return	defined	by	equation	(8-1)	
is	also	a	random	variable.	This	is	why	there	is	tilde	on	r	in	equation	(8-1)	to	indicate	that	rate	or	
return	is	random.	To	characterize	the	asset	we	shall	consider	the	average	rate	of	return	defined	by	

(8-2)	 r̅ = E(rÉ)	
	
where	E(	)	denotes	the	expectation	of	a	random	variable	and	r̅	is	the	expected	rate	of	return.	While	
the	expected	rate	of	return	is	a	useful	way	to	characterize	an	asset	and	gives	us	some	indication	of	
how	large	the	returns	may	be,	it	does	not	capture	the	uncertainty	in	obtaining	a	comparable	return	
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rate	to	the	average.	To	quantify	how	much	the	rate	of	return	deviates	from	the	expected	return	and	
in	order	to	capture	the	riskiness	of	the	asset,	we	shall	use	the	variance	defined	by:	

(8-3)	 σm = Var(rÉ) = E[(rÉ − r̅)m]	
	
For	a	given	collection	of	n	assets	{Sl, Sm,⋯ , Sp},	for	the	ith	asset	we	denote	the	rate	of	return	by	rr	and	
the	variance	by	σrm.		The	covariance	for	the	returns	between	asset	i	and	j	is	

(8-4)	 σro = EÐ(rÉr − r̅r)³rÉo − r̅o´Ñ	
	
Note	that	σro = σor	and	σrr = σrm.		

To	describe	the	coupling	of	all	n	assets	we	define	the	covariance	matrix	by:	

(8-5)	 𝚺 =

⎣
⎢
⎢
⎡ σl

m σlm ⋯ σlp
σml σmm ⋯ σmp
⋮
σpl

⋮
σpm

⋱
⋯

⋮
σpm ⎦
⎥
⎥
⎤
	

	
Note	that	𝚺	is	a	symmetric	matrix.	See	Appendix	of	the	chapter	for	more	information.	

8.3. Portfolio	with	Two	Assets	

8.3.1. Mean,	Variance	and	Covariance	
Let’s	 begin	 with	 a	 simple	 portfolio	 of	 two	 assets,	Sl	and	Sm 	(investment	 in	 stocks,	 for	 example).	
Suppose	 that	 returns	 from	 each	 asset	 at	 the	month	t 	is	rÉl,® 	and	rÉm,® ,	 where	 tilde	 on	 the	 variable	
indicates	it	is	random	meaning	that	a	decision	maker	doesn’t	know	the	return	when	s/he	makes	a	
portfolio.	Both	assets	are	characterized	by	their	mean	or	expected	value	(r̅r, i = 1, 2),	variance	(σrm)	
and	covariance	(σlm).		

Suppose	 that	means	 are	E(rÉl) = r̅l = 1.49% 	and	E(rÉm) = r̅m = 1.00% ,	 respectively;	 variances	 are	
σlm = 77.7%	(σl = 8.81% ,	 standard	 deviation) 	and	σmm = 35.87%	(σm = 5.99%) ;	 the	 covariance	 is	
σlm = 20.95%.	Note	that	the	sign	of	the	covariance	shows	the	tendency	in	the	relationship	between	
the	assets.	The	magnitude	of	the	covariance	is	not	easy	to	interpret	because	it	is	not	normalized	and	
depends	 on	 the	 magnitudes	 of	 the	 variables.	 The	 normalized	 version	 of	 the	 covariance,	 the	
correlation	coefficient,	ρro,	however,	shows	by	its	magnitude	the	strength	of	the	linear	relation;	

(8-6)	 ρlm =
σlm
σl ∙ σm

=
20.95

√77.70 ∙ √35.87
= 0.397	

	
The	 correlation	 coefficient	 has	 a	 value	 between	 +1	 and	 -1,	 where	 +1	 is	 perfect	 positive	 linear	
correlation,	0	is	no	linear	correlation,	and	-1	is	perfect	negative	linear	correlation.	

The	covariance	matrix,	𝚺,	is:	
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(8-7)	 𝚺 = Ý var(rÉl) cov(rÉl, rÉm)
cov(rÉl, rÉm) var(rÉm)

Þ = À σl
m σlm

σlm σmm
Å = ß77.70 20.95

20.95 35.87à	

	
A	portfolio	of	these	two	assets	is	characterized	by	the	value	invested	in	each	asset;	let	vl	and	vm	be	
the	dollar	amount	invested	in	asset	1	and	2,	respectively.	The	total	value	of	the	portfolio	is	v = vl +
vm;	consider	a	portfolio	in	which	

(8-8)	 wl =
vl
v
		and	wm =

vm
v
	

	
where	wl	is	the	weight	on	asset	1	and	wm	is	the	weight	on	asset	2;	hence,	by	construction,	wl +wm =
1.	For	example,	a	decision	maker	(DM)	has	$1,000	to	invest	in	assets	1	and	2.	If	the	DM	invests	$500	
in	asset	1	and	$500	 in	asset	2,	 then	wl = wm =

$���
$l���

= 0.5	(equally	weighted	portfolio	of	 the	 two	

stocks).		

The	portfolio	return,	rÉ©,	with	two	assets	is	a	weighted	average	of	the	individual	returns,	that	is,		

(8-9)	 rÉ© = wlrÉl + wmrÉm	
	
For	example,	suppose	the	DM	invests	$600	in	asset	1	(wl = 0.6)	and	$400	in	asset	2	(wm = 0.4)	for	a	
month.	If	the	“realized”	return	is	2%	on	asset	1	and	1%	on	asset	over	the	month,	then	the	return	on	
the	portfolio	is	rÉ© = 0.6 ∙ 2% + 0.4 ∙ 1% = 1.6%.		

Expected	return	on	a	portfolio	with	two	assets4F

5	is	

(8-10)	 E³rÉ©´ = r̅© = E(wlrÉl + wmrÉm) = wlr̅l + wmr̅m =nwrr̅r

m

rql

	

	
And	hence,	unexpected	portfolio	return	is	

(8-11)	 rÉ© − r̅© = (wlrÉl + wmrÉm) − (wlr̅l + wmr̅m) = wl(rÉl − r̅l) + wm(rÉm − r̅m)	
	
And	thus,	the	variance	of	the	portfolio5F

6		is:	

(8-12)	 var³rÉ©´ = σ©m = E ß³rÉ© − r̅©´
m
à = wl

mσlm + 2wlwmσlm + wm
mσmm =nnwrwoσro

m

oql

m

rql

		

	
For	example,	suppose	the	DM	invests	$600	in	asset	1	(wl = 0.6)	and	$400	in	asset	2	(wm = 0.4)	for	a	
month.	 The	mean	 (expected	 value)	 of	 portfolio	 return	 is	r̅© = 0.6(1.49%) + 0.4(1.00%) = 1.29%	

                                                             
5	Using	matrices	(vectors)	equation	(8-10)	can	be	written	as	𝐰Ë�̅� = [wl		wm] Ý

r̅l
r̅m
Þ.	

6	Using	matrices	(vectors)	equation	(8-12)	can	be	written	as	𝐰Ë𝚺𝐰 = [wl		wm] Ý
σlm σlm
σlm σmm

Þ ß
wl
wm
à.	
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and	 the	 variance	 of	 the	 portfolio	 is	σ©m = 0.6m(77.70%) + 2(0.6)(0.4)(20.95%) + 0.4m(35.87%) =
43.776%	or	σ© = 6.62%	(standard	deviation).	

Using	equations	(8-10)	and	(8-12)	we	calculate	mean	return	(r̅©)	and	standard	deviation	(σ©)	of	the	
portfolio	as	in	Table	8-1	with	various	values	of	wl	and	wm.		For	example,	when	wl = 0,	then	wm = 1	
due	to	the	fact	that	wl +wm = 1.	 In	this	case,	mean	return	is	r̅© = 0(1.49%) + 1(1.00%) = 1.00%	
and	 the	 variance	 is	σ©m = 0m(77.70%) + 2(0)(1)(20.95%) + 1m(35.87%) = 35.87% 	or	σ© = 5.99%	
(which	is	the	same	as	the	asset	2)(Table	8-1).	Similarly,		

• wl = 0.1	and	wm = 0.9:	r̅© = 0.1(1.49%) + 0.9(1.00%) = 1.05%, σ©m = 0.1m(77.70%) +
2(0.1)(0.9)(20.95%) + 0.9m(35.87%) = 33.60%	or	σ© = 5.80%.	

• wl = 0.5	and	wm = 0.5:	r̅© = 0.5(1.49%) + 0.5(1.00%) = 1.25%, σ©m = 0.5m(77.70%) +
2(0.5)(0.5)(20.95%) + 0.5m(35.87%) = 38.87%	or	σ© = 6.23%.	

	
Figure	8-1	presents	the	plot	of	mean	and	standard	deviation	of	the	portfolio	in	Table	8-1.	Note	that	
given	an	expected	return,	the	portfolio	that	minimizes	risk	(measured	by	standard	deviation)	is	a	
mean-standard	deviation	frontier	portfolio.	The	locus	of	all	frontier	portfolio	in	the	mean-standard	
deviation	plane	is	called	portfolio	frontier	(Figure	8-1).	In	Figure	8-1,	a	dot	denotes	the	minimum	
variance	portfolio	and	the	upper-right	part	of	the	portfolio	frontier	gives	efficient	frontier	portfolios.	

	

Table	8-1:	Portfolio	of	Asset	1	and	Asset	2	

Weight	in	asset	1	(%)	 0	 10	 20	 30	 40	 50	 60	 70	 80	 90	 100	

Mean	return	(%)	 1.00	 1.05	 1.10	 1.15	 1.20	 1.25	 1.30	 1.34	 1.39	 1.44	 1.49	
Std.	Dev	(%)	 5.99	 5.80	 5.72	 5.78	 5.95	 6.23	 6.62	 7.08	 7.61	 8.19	 8.81	
	

	
Figure	8-1.	Portfolio	Frontiers		
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8.3.1.1. Optimal	Portfolio	Selection	

How	 to	 choose	 a	 portfolio?	What	 constitutes	 a	desirable	 portfolio?	 The	 primary	 factors	we	 shall	
consider	are	the	financial	objectives	of	the	investor	and	his	or	her	tolerance	for	risk	in	achieving	these	
objectives.	We	may	want	to	minimize	the	risk	measured	in	variance	of	the	portfolio,	σ©m 	for	a	given	
expected	 return	 (Markowitz	 problem).	 Formally,	 we	 need	 to	 solve	 the	 following	 problem	 for	
minimizing	risk	for	a	given	expected	return:		

(8-13)	

min	 σ©m 	=		 wl
mσlm + 2wlwmσlm + wm

mσmm	 	
s.t.	 	 wl + wm = 1	 (1)	
	 	 wlr̅l + wmr̅m = r̅©	 (2)	
	 	 wl,			wm ≥ 0	 	

	
Or,	

(8-14)	

min	 σ©m 	=		 77.70wl
m + 2 ∙ 20.95wlwm + 35.87wm

m	 	
s.t.	 	 wl + wm = 1	 (1)	
	 	 1.49wl + 1.00wm = r̅©	 (2)	
	 	 wl,			wm ≥ 0	 	

	
Solving	 equation	 (8-14)	 generates	 the	 portfolio	 frontier	 in	 Figure	 8-1	 as	 well.	 Note	 that	 it	 is	 a	
quadratic	programming	model	and	the	Excel	Solver	with	GRG	Nonlinear	option	should	be	used.	

8.3.2. Portfolio	of	Multiple	Assets	
We	 now	 consider	 the	 general	 case	 of	n 	assets.	 The	 returns	 on	 the	 n	 assets,	 {rÉl, rÉm,⋯ , rÉp} ,	 are	
characterized	 by	 their	 mean,	 variance	 and	 covariances.	 Consider	 the	 portfolio	with	wr 	being	 the	
proportion	of	the	value	invested	in	asset	i.	Then	

(8-15)	 nwr

p

rql

= 1	

	
The	return	on	the	portfolio,	rÉ©,	is	a	weighted	average	of	the	individual	returns,	that	is,		

(8-16)	 rÉ© =nwrrÉr

p

rql

	

	
The	expected	return	on	the	portfolio	is	

(8-17)	 E³rÉ©´ = r̅© =nwrr̅r

p

rql
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The	variance	of	the	portfolio	is:	

(8-18)	 var³rÉ©´ = σ©m =nnwrwoσro

p

oql

p

rql

,			where	σrr = σrm		

	
Minimizing	risk	for	a	given	expected	return	is	now	

(8-19)	

min	 σ©m 	=		 nnwrwoσro

p

oql

p

rql

	 	

s.t.	 	
nwr

p

rql

= 1	 (1)	

	 	
nwrr̅r

p

rql

= r̅©	 (2)	

	 	 wr ≥ 0	 	
	
Or,	using	matrices	where	𝟏 = [1		1	⋯1].	

(8-20)	

min	 σ©m 	=		 𝐰Ë𝚺𝐰	 	
s.t.	 	 𝐰Ë𝟏 = 1	 (1)	
	 	 𝐰Ë�̅� = r̅©	 (2)	
	 	 wr ≥ 0	 	

	
Equation	(8-19)	or	(8-20)	is	a	portfolio	which	has	the	least	variance	σ©m 	for	a	given	expected	return	
r̅©.		Finding	such	a	portfolio	is	referred	to	as	the	Markowitz	problem	and	can	be	stated	mathematically	
as	the	nonlinear	constrained	optimization	problem.	We	use	Excel	Solver	with	GRG	Nonlinear	to	solve	
the	question	numerically.	

8.3.2.1. Example	with	Three	Assets	

Let’s	say	we	have	three	assets,	rÉl,	rÉm	and	rÉ�	and	suppose	that	the	covariance	matrix	is	

(8-21)	 𝚺 = ä
77.70 20.95 11.89
20.95 35.87 2.29
11.89 2.29 97.90

	å	

	
And	mean	returns	are	{r̅l, r̅m, r̅�} = {1.49, 1.00, 3.00}.		The	variance	of	the	portfolio	is		

(8-22)	 σ©m =nnwrwoσro

p

oql

p

rql

= [wl wm w�] ä
77.70 20.95 11.89
20.95 35.87 2.29
11.89 2.29 97.90

	å ä
wl
wm
w�

å		

	
Thus,	equation	(8-19)	becomes	
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(8-23)	

min	 σ©m 	=		 	77.70wl
m + 35.87wm

m + 97.90w�
m + 2 ∙ 20.95wlwm + 2 ∙ 11.89wlw� + 2 ∙ 2.29wmw�	

s.t.	 	 wl + wm + w� = 1	

	 	 1.49wl + 1.00wm + 3.00w� = r̅©	

	 	 wl,			wm,			w� ≥ 0	

	
Figure	8-2	presents	the	portfolio	frontier	with	three	assets.	Note	that	when	more	assets	are	included,	
the	portfolio	frontier	improves,	i.e.,	moves	toward	upper-left	(brown	line	in	Figure	8-2):	higher	mean	
returns	and	lower	risk.	

	

	
Figure	8-2.	Portfolio	Frontiers	

	

8.3.2.2. Excel	Formulation	

Figure	 8-3	 presents	 the	 portfolio	 Excel	 formulation	 for	 three	 assets.	 Data	 part	 includes	 all	 the	
information	we	need	to	run	the	model,	mean	returns	and	variance-covariance	matrix.	Note	that	the	
set	objective	in	Solver	Parameters	window	is	$C$15	where	the	cell	includes	MMULT(array1,	array2)	
and	TRANS(array)	functions.	MMULT	function	returns	the	matrix	product	of	two	arrays;	the	number	
of	columns	in	array1	(C12:E12,	3	columns,	1	rows,	3×1	vector)	must	be	the	same	as	the	number	of	
rows	in	array2	(G5:I7,	3	rows,	3	columns,	3×3	matrix).		TRANS	function	returns	a	transposed	range	
of	the	cells.	Thus	the	formula	in	the	cell	C15,	=	MMULT(MMULT(C12:E12,	G5:I7),	TRANS(C12:E12))	
is		equivalent	to	σ©m = 𝐰Ë𝚺𝐰	in	equation	(8-15)	and	it	is	the	target	cell.	Constraints	are	constructed	
very	similar	to	previous	Excel	models.	

To	generate	the	portfolio	frontier,	change	the	mean	return	in	the	cell	I20,	currently	it	is	set	to	be	2%	
in	 Figure	 8-3,	 and	 rerun	 the	model.	 Note	 that	 the	 solving	method	 is	 GRG	Nonlinear	 because	 the	
objective	function	(variance	of	the	portfolio)	is	nonlinear.	
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Figure	8-3.	Portfolio	Excel	Formulation	

	

8.3.3. Mean-Variance	Analysis	
The	portfolio	approach	in	section	8.2	requires	a	given	mean	return	of	the	portfolio,	that	is,	it	is	not	
determined	from	the	model.	Mean-variance	(or	E-V)	portfolio	involves	development	of	an	optimal	
investment	strategy	including	the	mean	of	the	return.		The	E-V	model	is	given	in	equation	(8-13)	in	
case	of	two	assets:	

(8-24)	
max	 z	 =		 wlr̅l + wmr̅m − ϕ(wl

mσlm + 2wlwmσlm + wm
mσmm)	

s.t.	 	 wl + wm = 1	
	 	 wl,			wm ≥ 0	

	
Here	the	objective	function	maximizes	mean	return	less	a	risk	aversion	coefficient	(RAC),	ϕ,	times	
the	variance	of	the	portfolio.	The	E-V	model	assumes	that	a	decision	maker	trades	the	mean	return	
with	reduced	variance.	In	this	context	the	equation	(8-24)	provides	the	E-V	efficient	frontier	which	
is	the	locus	of	points	exhibiting	minimum	variance	for	a	given	expected	income,	and/or	maximum	
expected	income	for	a	given	variance	of	portfolio.	Such	points	are	efficient	for	a	decision	maker	with	
positive	preference	for	income,	negative	preference	for	variance	and	indifference	to	other	factors.	
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For	the	E-V	model	one	needs	to	specify	RAC,	ϕ.	Basically,	RAC	is	a	quantitative	measure	of	how	averse	
to	risk	a	person	is	(attitude	to	risk).	The	simplest	measure	of	RAC	is	Pratt’s	measure6F

7	which	is	defined	
as		

(8-25)	 ϕ�ç�¨ = −
Uè(M)
Ué(M)

		
	
where	M	 is	 individual	(current)	wealth	and	U	is	utility	 function.	The	value	ϕ	in	equation	(8-20)	 is	
called	as	absolute	risk	aversion	coefficient	(ARAC).	Note	that	ARAC	is	decreasing	with	increases	in	M	
since	 people	 can	 better	 afford	 to	 take	 risks	 as	 they	 get	 richer.	 Also	 ARAC	may	 depends	 on	 the	
monetary	units	of	M,	thus	ARAC	in	different	currency	units	are	not	comparable.	Relative	risk	aversion	
coefficient	(RRAC)	to	overcome	these	problems,	which	is	defined	by	

(8-26)	 ϕçç�¨ = −M
Uè(M)
Ué(M)

= M ∙ ϕ�ç�¨	

	
For	the	empirical	analysis	we	may	use	rough	and	ready	classification	of	degree	of	risk	aversion:	

• ϕçç�¨ = 0	 Risk	neutral	
• ϕçç�¨ = 1	 Somewhat	risk	averse	(normal)	
• ϕçç�¨ = 2	 Rather	risk	averse	
• ϕçç�¨ = 3	 Very	risk	averse	
• ϕçç�¨ = 4	 Extremely	risk	averse	

If	ϕ�ç�¨	is	required,	it	may	be	derived	using	the	formula,	ϕ�ç�¨ = ϕçç�¨ M⁄ .	Note	that,	in	the	E-V	
model,	we	use	ϕ�ç�¨.	

The	E-V	formulation	of	two	assets	example	above	is	given	by,	

(8-27)	
max	 z	 =		 1.49wl + 1.00wm − ϕ�ç�¨(77.70wl

m + 2 ∙ 20.95wlwm + 35.87wm
m)	

s.t.	 	 wl + wm = 1	
	 	 wl,			wm ≥ 0	

	
In	general,	with	n	assets,	the	E-V	model	is	

(8-28)	

max	 z	 =		 nwrr̅r

p

rql

− ϕ�ç�¨nnwrwoσro

p

oql

p

rql

	

s.t.	 	
nwr

p

rql

= 1	

	 	 wr ≥ 0	

                                                             
7	Pratt,	J.W.	(1964)	“Risk	Aversion	in	the	Small	and	in	the	Large.”	Econometrica	32:122-136.	



 
 
	
Kim,	McCarl,	and	Spreen	(2018)	Applied	Mathematical	Programming	

96	 
 

Or,	equivalently	

(8-29)	
max	 z	 =		 𝐰Ë�̅� − ϕ�ç�¨𝐰Ë𝚺𝐰	
s.t.	 	 𝐰Ë𝟏 = 1	
	 	 wr ≥ 0	

	
E-V	Example:	Assume	an	investor	wishes	to	develop	a	stock	portfolio	given	the	stock	annual	returns	
information	shown	in	Table	8.2;	500	dollars	to	invest	and	prices	of	stock	one	$22,	stock	two	$30,	
stock	three	$28	and	stock	four	$26,	respectively.	The	first	stage	in	model	application	is	to	compute	
average	returns	and	the	variance-covariance	matrix	of	total	net	returns.	The	mean	returns	are		

(8-30)	 �̅� = ë

r̅l
r̅m
r̅�
r̅�

ì = í
4.7
7.6
8.3
5.8

î	

	
And,	the	covariance	matrix	is	

(8-31)	 𝚺 =

⎣
⎢
⎢
⎢
⎡ σl

m σlm σl� σl�
σml σmm σm� σm�
σ�l
σ�l

σ�m
σ�m

σ�m
σ��

σ��
σ�m ⎦
⎥
⎥
⎥
⎤
= ë

3.21 −3.52 6.99 0.04
−3.52 5.84 −13.68 0.12
6.99
0.04

−13.68
0.13

61.81
−1.64

−1.64
0.36

ì	

	

	

Table	8-2:	Data	for	E-V	Example	–	Monthly	Returns	by	Stock	(dollars/stock)	

Month	 Stock	1	 Stock	2	 Stock	3	 Stock	4	
1	 7	 6	 8	 5	
2	 8	 4	 16	 6	
3	 4	 8	 14	 6	
4	 5	 9	 -2	 7	
5	 6	 7	 13	 6	
6	 3	 10	 11	 5	
7	 2	 12	 -2	 6	
8	 5	 4	 18	 6	
9	 4	 7	 15	 5	
10	 3	 9	 -5	 6	

Price	of	stock	 22	 30	 28	 26	
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Let	the	decision	variables	are	the	amount	of	stock	to	buy,	vr,	or,	

(8-32)	 𝐯 = í

vl
vm
v�
v�

î	

	
And,	in	turn,	the	objective	function	is	z = 𝐯Ë�̅� − ϕ�ç�¨𝐯Ë𝚺𝐯	or,	

(8-33)	 z = [vl	vm	v�	v�] í
4.7
7.6
8.3
5.8

î − ϕ�ç�¨[vl	vm	v�	v�] ë
3.21 −3.52 6.78 0.04
−3.52 5.84 −13.86 0.12
6.78
0.04

−13.86
0.12

61.84
−1.88

−1.88
0.36

ì í

vl
vm
v�
v�

î	

	
This	objective	function	is	maximized	subject	to	a	constraint	on	investable	funds:	

(8-34)	 22vl + 30vm + 28v� + 26v� ≤ 500	
	
and	non-negativity	conditions	on	the	variables.	

Excel	formulation	is	given	by	Figure	8-4.	

	

	
Figure	8-4.	E-V	Model:	Portfolio	Optimization	
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The	model	yields	the	z	(difference	of	mean	and	RAC	×	variance)	maximizing	solution	(vl = vm = v� =
0	and	v� = 17.86)	 for	 the	 risk	neutral	 decision	maker	(ϕ = 0)	with	expected	 return	of	 $144	and	
standard	 deviation	 of	 $154	 (point	 with	 ARAC=0	 in	 Figure	 8-4).	 As	 the	 risk	 aversion	 parameter	
increases,	 then	vm 	comes	 into	 the	 solution.	 The	 simultaneous	 use	 of	vm 	and	v� 	coupled	with	 their	
negative	covariance	reduces	the	variance	of	total	returns.	This	pattern	continues	as	ϕ	increases.	For	
example,	when	ϕ = 1,	expected	return	has	fallen	to	$118	with	a	low	standard	deviation	of	$6.77	and	
the	solution	 is	vl = 3.78;	vm = 4.95, v� = 0.99,		and	v� = 9.27	(point	with	ARAC=1	 in	Figure	8-5).		
Figure	8-5	plots	the	efficiency	frontier	which	is	a	line	created	from	the	risk-reward	graph,	comprised	
of	optimal	portfolios.	

	

	

	

Figure	8-5.	Efficiency	Frontier	

	

A	portfolio	above	the	curve	is	impossible	and	a	portfolio	below	the	curve	is	not	efficient,	because	for	
the	same	risk	(same	standard	deviation)	one	could	achieve	a	greater	return.	The	optimal	portfolio	
should	line	on	the	curve	(so	as	it	is	the	efficient	frontier).	

Three	aspects	of	the	results	are	worth	noting.	First,	the	shadow	price	on	investable	capital	(from	the	
Sensitivity	Report)	continually	decreases	as	the	risk	aversion	parameter,	ϕ,	increases.	This	reflects	
an	 increasing	 risk	 discount	 as	 risk	 aversion	 increases.	 Second,	 solutions	 are	 reported	 only	 for	
selected	values	of	ϕ.	However,	any	change	in	ϕ	leads	to	a	different	solution	and	an	infinite	number	of	
alternative	ϕ's	 are	possible;	 e.g.,	 all	 solutions	between	ϕ	values	of,	 for	 example,	 0.5	 and	0.75	 are	
convex	combinations	of	 those	 two	solutions.	Third,	when	ϕ	becomes	sufficiently	 large,	 the	model	
does	not	use	all	its	resources.	In	this	particular	case,	when	ϕ	exceeds	2.5,	not	all	funds	are	invested.	
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9. RISK	MODELING	AND	STOCHASTIC	PROGRAMMING	

Key	points:	

Risk	 modeling	 or	 stochastic	 programming	 is	 techniques	 which	 are	 designed	 to	 give	 a	 robust	
solution	which	yields	satisfactory	results	across	the	full	distribution	of	parameter	values.		

Two	types	of	risk	modeling:	without	recourse	and	with	recourse		

Models	without	recourse	deal	with	uncertainties	in	
• Objective	coefficients:	mean-variance	(E-V	model)	
• RHS:	chance-constrained	programming		
• Technical	coefficients:	Merrill’s	approach	

Model	with	recourse	(stochastic	programming	with	recourse	(SPR))	allows	to	deal	with	sequential	
risk	and	adaptive	decision	making.		

	

9.1. Introduction	

So	far	we	assume	that	each	coefficient	of	the	objective	function	and	constraints	is	known	for	sure	(not	
random)	but	sometimes	this	is	not	true.		Some	outcomes,	such	as	crop	yields	or	prices,	are	not	known	
with	 certainty	 in	 the	 planting	 season.	 These	 imperfect	 knowledge	 is	 uncertainty.	 Because	 of	
uncertainty,	we	are	now	exposed	to	risk	which	is	defined	as	uncertain	consequences,	particularly	
unfavorable	consequences.	Mathematical	programming	is	very	flexible	to	incorporate	risk.	Note	that	
the	portfolio	analysis	in	Chapter	8	is	the	one	way	to	deal	with	it.		

Risk	must	be	quantified	 to	 evaluate	 alternative	decisions.	The	measuring	of	 uncertainty	 involves	
estimating	the	probabilities	of	(future)	outcomes.	To	estimate	such	probabilities	we	generally	start	
by	observing	historical	outcomes	and	separating	random	variability	from	systematic	variability.	This	
is	 summarized	 into	 coefficient	 of	 variation	 and/or	 probability	 density	 distribution	 (continuous	
variable)	or	probability	mass	function	(discrete	variable).	

Risk	modeling	or	stochastic	programming	is	techniques	which	are	designed	to	give	a	robust	solution	
which	yields	satisfactory	results	across	the	full	distribution	of	parameter	values.	The	risk	modeling	
techniques	discussed	below	are	designed	to	yield	such	a	plan.	The	optimal	plan	for	a	stochastic	model	
generally	does	not	place	the	decision	maker	in	the	best	possible	position	for	all	(or	maybe	even	any)	
possible	parameter	combinations(commonly	called	states	of	nature	or	events),	but	rather	establishes	
a	robust	position	across	the	set	of	possible	events.	

9.2. Decision	Making	and	Recourse	

Many	 different	 stochastic	 programming	 formulations	 have	 been	 posed	 for	 risk	 problems.	 An	
important	 assumption	 involves	 the	 potential	 decision	 maker	 reaction	 to	 information.	 The	 most	
fundamental	distinction	is	between	cases	where:	
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• All	decisions	must	be	made	now	with	the	uncertain	outcomes	resolved	later,	after	all	random	
draws	from	the	distribution	have	been	taken,	and	

• Some	decisions	are	made	now,	then	later	some	uncertainties	are	resolved	followed	by	other	
decisions	later.	

These	two	settings	are	illustrated	as	follows.	In	the	first	case,	all	decisions	are	made	then	events	occur	
and	outcomes	are	realized.	This	is	akin	to	a	situation	where	one	invests	now	and	then	discovers	the	
returns	to	the	investment	at	years	end	without	any	intermediate	buying	or	selling	decisions	(recall	
the	portfolio	examples	in	Chapter	8).		In	the	second	case,	one	makes	some	decisions	now,	gets	some	
information	and	makes	subsequent	decisions.	Thus,	one	might	invest	at	the	beginning	of	the	year	
based	on	a	year-long	consideration	of	returns,	but	could	sell	and	buy	during	the	year	depending	on	
changes	in	stock	prices.		

The	main	distinction	is	that	under	the	first	situation	decisions	are	made	before	any	uncertainty	is	
resolved	and	no	decisions	are	made	after	any	of	the	uncertainty	is	resolved.	In	the	second	situation,	
decisions	are	made	sequentially	with	some	decisions	made	conditional	upon	outcomes	 that	were	
subject	to	a	probability	distribution	at	the	beginning	of	the	time	period.	

These	two	frameworks	lead	to	two	very	different	types	of	risk	programming	models.	The	first	type	
of	model	is	most	common	and	is	generally	called	a	stochastic	programming	model	without	recourse.	
The	second	type	of	model	falls	into	the	class	of	stochastic	programming	with	recourse	models.	These	
approaches	are	discussed	separately,	although	many	of	 the	“without	recourse”	 techniques	can	be	
used	when	dealing	with	the	“with	recourse”	problems.	

9.3. Stochastic	Programming	without	Recourse	

Risk	 may	 arise	 in	 the	 objective	 function	 coefficients,	 technical	 coefficients,	 or	 right	 hand	 sides	
separately	or	collectively.	Different	modeling	approaches	have	arisen	with	respect	to	each	of	these	
possibilities	and	we	will	cover	each	separately.	

9.3.1. Objective	Function	Coefficient	Risk	
Given	 a	 linear	 objective	 function	 with	 two	 decision	 variables	 z = clxl + cmxm 	where	 xl ,	 xm 	are	
decision	variables	and	cl,	cm	are	uncertain	parameters	(profit	margins,	for	example)	with	means	cµl	
and	cµm	as	well	as	variances	σlm,	σmm	and	covariance	σlm;	then	z	is	distributed	with	mean		

(9-1)	 zµ = cµlxl + cµmxm =ncµoxo
o

= [cµl			cµm] ß
xl
xmà = �̅�Ë𝐱	

and	variance	

(9-2)	 σ�m = σlmxlm + 2σlmxlxm + σmmxmm =nnσo�xox�
�o

= [xl			xm] À
σlm σlm
σml σmm

Å ß
xl
xmà = 𝐱Ë𝐒𝐱	
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Similar	to	the	portfolio	analysis	in	Chapter	8,	we	formulate	Mean-Variance	model:	

(9-3)	

max	 z	 =		 ncµoxo

p

oql

− ϕ�ç�¨nnσroxox�

p

�ql

p

oql

	

s.t.	 	
naroxo

w

rql

																																																		 ≤ br				for	all	i	

	 	 											xo 																																																			 ≥ 0				for	all	j	
	
where	ϕ�ç�¨	is	a	risk	aversion	coefficient	(RAC).	The	objective	function	maximizes	expected	income	
less	RAC	times	the	variance	of	total	income	(risk);	the	model	assumes	that	decision	makers	will	trade	
the	expected	income	for	the	reduced	variance.	See	Section	8.3.3	and	example	for	more	discussion	
regarding	E-V	formulation.	

	
EV	Model	Example:	A	farmer	has	three	crops	to	plant	(in	the	planting	season)	and	net	return	(profit	
margins)	over	five	years	are	given	in	Table	9-1.		Other	information	is	given	as	following	

• The	farm	has	12	acres	of	cropland,	
• No	more	than	6	acres	can	be	sown	in	total	of	crop	1	and	crop	3	due	to	crop	rotation,	
• There	is	$400	of	working	capital	available	and	crop	1	takes	$30/acre,	crop	2	takes	$20/acre	

and	crop	3	takes	$40/acre,	
• There	are	80	hours	of	labor	in	the	planting	season;	crop	1	needs	5	hours/acre,	crop	2	requires	

5	hours/acre	and	crop	3	needs	8	hours/acre.	

Finding	means	(cµo):		

cµo =
∑ co®
N

			use = AVERAGE(range)		in	Excel	

cµl =
99 + 133 + 143 + 154 + 114

5
= 128.6	

cµm =
118 + 130 + 133 + 127 + 95

5
= 120.6	

cµ� =
65 + 61 + 55 + 58 + 69

5
= 61.6	

Variances	and	covariance	

σom =
∑³co® − cµo´

m

N
			and			σro =

∑(cr® − cµr)(co® − cµo)
N

			use = COVAR(range	i, range	j)	in	Excel	

σlm =
(99 − 128.6)m + (133 − 128.6)m +⋯+ (114 − 128.6)m

5
= 392.24			
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Table	9-1:	Data	for	E-V	Example	–	Net	Return	

Year	 Net	return	($/acre)	
Crop	1	 Crop	2	 Crop	3	

1	 99	 118	 65	
2	 133	 130	 61	
3	 143	 133	 55	
4	 154	 127	 58	
5	 114	 95	 69	

Mean	 128.6	 120.6	 61.6	
	

	

σmm =
(118 − 120.6)m + (130 − 120.6)m + ⋯+ (95 − 120.6)m

5
= 189.04	

σmm =
(65 − 61.6)m + (61 − 61.6)m + ⋯+ (69 − 61.6)m

5
= 189.04	

σlm =
(99 − 128.6)(118 − 120.6) +⋯+ (114 − 128.6)(95 − 120.6)

5
= 166.64 = σml	

σl� =
(99 − 128.6)(65 − 61.6) +⋯+ (114 − 128.6)(69 − 61.6)

5
= −79.56 = σ�l	

σm� =
(118 − 120.6)(65 − 61.6) + ⋯+ (95 − 120.6)(69 − 61.6)

5
= −61.76 = σ�m	

	

Thus,	the	EV	formulation	is	

(9-4)	

max z =	 [128.6		120.6		61.6] ä
xl
xm
x�
å − ϕ[xl		xm		x�] ä

392.24 166.64 −79.56
166.64 189.04 −61.76
−79.56 −61.76 24.64

å ä
xl
xm
x�
å	

s.t.	 xl + xm + x� ≤ 12								 [Land]	
	 30xl + 20xm + 40x� ≤ 400	 [Capital]	
	 5xl + 5xm + 8x� ≤ 80	 [Labor]	
	 xl + x� ≤ 6	 [Rotation]	

	

And	Excel	formulation	is	presented	in	Figure	9-1.		As	we	did	in	Chapter	8,	this	problem	is	solved	for	
various	ϕ	values	and	the	efficiency	frontier	is	constructed.	An	efficiency	frontier	is	a	line	created	from	
the	risk-reward	graph,	comprised	of	optimal	portfolios.	Refer	to	the	discussion	is	Section	8.3.3	for	
the	specification	of	ϕ.		
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Figure	9-1.	E-V	Formulation	

	

9.3.2. Right	Hand	Side	Risk	
Risk	may	also	occur	within	the	right	hand	side	(RHS)	parameters;	the	most	often	used	approach	to	
RHS	risk	in	a	non-recourse	setting	is	chance-constrained	programming	(CCP).	In	this	formulation,	ith	
constraint	with	stochastic	RHS	is	given	by	(assuming	we	have	two	decision	variables)	

(9-5)	 arlxl + armxm ≤ bµr − zóσr	

	
where	bµr	is	the	mean	of	(historical)	resource	i	availability,	σr	is	the	standard	deviation	of	resource	i	
availability,	and	α	is	the	predetermined	(desired)	value	of	probability	such	that	Pr(arlxl + armxm +
ar�x� ≤ br) ≥ α,	that	is,	resource	use	must	be	less	than	or	equal	to	average	resource	availability	less	
the	standard	deviation	times	a	critical	value	which	arises	from	the	probability	level.	Values	of		zó	may	
be	determined	in	two	ways		

• By	making	normality	assumption	about	 the	 form	of	 the	probability	distribution	of	 bi,	 use	
values	for	the	lower	tail	from	a	standard	normal	probability	table,	for	example,	use	zõ�% =
1.28	(meaning	that	Pr(z ≥ −1.28) = 10%),	zõ�% = 1.64	or		zõõ% = 2.33,	respectively.	
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• By	relying	on	the	conservative	estimates	generated	by	using	Chebyshev’s	inequality	such	that	
za	=	(1	–	a)–0.5.		For	example,	𝑧õ�% = (1 − 0.9)÷�.� ≈ 3.16.	Note	that	Chebyshev	bound	is	often	
too	large.	

When	the	RHS	values	vary	about	the	mean	values,	i.e.,	it	is	random,	the	solution	is	feasible	only	about	
certain	percent	of	 the	 time.	The	 idea	of	CCP	 is	 that	 one	way	 to	 find	 a	 solution	 that	has	 a	 greater	
feasibility	probability	is	to	make	the	RHS	vector	smaller.		
	

Example	–	RHS	Risk	

Let’s	recall	Joe’s	van	example	and	say	labor	availability	is	uncertain	(for	some	reasons),	and	labor	
availability	 for	 the	 past	 6	 weeks	 are	 280,	 283,	 294,	 274,	 260,	 and	 289	 hours.	 Average	 of	 the	
observations,	 bµ�zø¢¡ ,	 is	 280	 and	 standard	 deviation,	 σ�zø¢¡ ,	 is	 12.02.	 The	 chance-constrained	
programming	model	is	

(9-6)	

max	 z	 =		 2000xxzp{|	 +	 1700xxrpy	 	 	 	
s.t.	 	 xxzp{|	 +	 xxrpy	 ≤	 12	 [capacity	constraint]	
	 	 25xxzp{|	 +	 20xxrpy	 ≤	 280 − zó ∙ 12.02	 [labor	constraint]	
	 	 xxzp{|	 ,	 xxrpy	 ≥	 0	 [non-negativity]	

	

Table	9-2	presents	the	results	assuming	normality,	that	is,	the	distribution	of	the	labor	availability	is	
normal.	Note	that,	without	labor	risk,	zó = 0.	Notice	as	the	zó	value	is	increased,	then	the	value	of	the	
uncertain	right	hand	side	decreases.	In	turn,	composition	of	production	changes	(produce	more	fine	
van	which	 requires	 less	 labor)	 and	 profit	 decreases	 (Table	 9-2).	 The	 chance	 constrained	model	
discounts	the	resources	available,	so	one	is	more	certain	that	the	constraint	will	be	met.	

The	major	advantage	of	CCP	is	its	simplicity;	it	leads	to	an	equivalent	programming	problem	of	about	
the	same	size	and	the	only	additional	data	requirements	are	the	standard	errors	of	the	RHS.	Despite	
the	 fact	 that	 CCP	 is	 a	 well-known	 technique	 and	 has	 been	 applied	 its	 use	 has	 been	 limited	 and	
controversial.	 A	 fundamental	 problem	 with	 CCP	 is	 that	 it	 does	 not	 indicate	 what	 to	 do	 if	 the	
recommended	solution	is	not	feasible.	

	

Table	9-2:	Joe’s	Van	with	RHS	(Labor)	Risk	

	 	 Labor	
available	 Fancy	van	 Fine	van	 Profit	

zó = 0	 No	risk	 280	 8.00	 4.00	 $22,800	
zó = 1.28	 90%	confidence	level	 264.62	 4.92	 7.08	 $21,877	
zó = 1.64	 95%	confidence	level	 260.29	 4.06	 7.94	 $21,618	
zó = 1.96	 99%	confidence	level	 256.45	 3.29	 8.71	 $21,387	
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9.3.3. Technical	Coefficient	Risk	
Risk	can	also	appear	within	the	technical	coefficients.	Resolution	of	technical	coefficient	uncertainty	
in	a	non-recourse	setting	has	been	investigated	through	an	E-V	like	procedure	(Merrill’s	approach).	

Let’s	recall	Joe’s	van	example	and	say	the	labor	requirements,	25	hours	for	fancy	van	and	20	hours	
for	fine	van,	are	uncertain	for	some	reasons,	e.g.,	different	quality	of	materials	which	may	need	more	
time	to	work,	etc.		The	labor	requirements	for	past	five	weeks	are	given	in	Table	9-3	with	mean	and	
variance-covariance	matrix.	
	

Table	9-3:	Joe’s	Van	Labor	Requirements	

Week	 Fancy	van	
(hours/van)	

Fine	van	
(hours/van)	 	 Variance-

covariance	
1	 24	 20	 	 Fancy	 Fine	
2	 27	 19	 	 1.60	 0.20	
3	 24	 21	 	 0.20	 2.00	
4	 26	 22	 	 	 	
5	 24	 18	 	 	 	

Mean	 25	 20	 	 	 	
	

In	 Merrill’s	 approach,	 we	 include	 the	 mean	 and	 variance	 of	 the	 technical	 coefficients	 into	 the	
constraint	(like	E-V	model)	such	that	∑ aµroxo + zó³∑∑σro�xox�´ ≤ br,	where	aµro	is	the	mean	value	of	
the	 (past)	aro ’s	 and	σro� 	is	 the	 covariance	 of	 the	 aro 	and	ar� ,	 and	zó 	is	 the	 desired	 value	 of	 the	
distribution	 (upper	 tail	 for	 the	 less	 than	 equal	 to	 constraint).	 Note	 that	σrr = σr	m .	 The	 Joe’s	 van	
formulation	becomes	
	

(9-7)	

max	 z	 =		 2000xxzp{|	 +	 1700xxrpy	 	 	 	 	
s.t.	 	 xxzp{|	 +	 xxrpy	 	 	 ≤	 12	

	 	 25xxzp{|	 +	 20xxrpy	 +	 zó(1.60xxzp{|m + 0.4xxzp{|xxrpy + 2.00xxrpym )	 ≤	 280	

	 	 xxzp{|	 ,	 xxrpy	 	 	 ≥	 0	
	
Table	9-3	presents	the	results	assuming	normality	of	labor	requirements	(technical	coefficients).	The	
idea	of	Merrill’s	approach	that	one	way	to	find	a	solution	that	has	a	greater	labor	requirements	by	
adding	variance	term.	

	

Table	9-4:	Joe’s	Van	with	RHS	(Labor)	Risk	

	 	 Fancy	van	 Fine	van	 Profit	
zó = 0	 No	tech	coefficient	risk	 8.00	 4.00	 $22,800	

zó = 1.28	 90%	confidence	level	 4.94	 3.41	 $15,674	
zó = 1.64	 95%	confidence	level	 4.67	 3.17	 $14,727	
zó = 1.96	 99%	confidence	level	 4.46	 3.01	 $14,033	
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9.4. Stochastic	Programming	with	Recourse:	Sequential	Risk	

Sequential	risk	arises	as	part	of	the	risk	as	time	goes	on	and	adaptive	decisions	are	made.	Consider	
the	way	that	weather	and	field	working	time	risks	are	resolved	in	crop	farming.	Early	on,	planting	
and	harvesting	weather	are	uncertain.	After	the	planting	season,	the	planting	decisions	have	been	
made	and	the	planting	weather	has	become	known,	but	harvesting	weather	is	still	uncertain.	Under	
such	circumstances	a	decision	maker	would	adjust	to	conform	to	the	planting	pattern	but	would	still	
need	 to	make	 harvesting	 decisions	 in	 the	 face	 of	 harvest	 time	 uncertainty.	 Thus	 sequential	 risk	
models	must	depict	adaptive	decisions	along	with	fixity	of	earlier	decisions	(a	decision	maker	cannot	
always	 undo	 earlier	 decisions	 such	 as	 planted	 acreage).	 Nonsequential	 risk,	 on	 the	 other	 hand,	
implies	that	a	decision	maker	chooses	a	decision	now	and	finds	out	about	all	sources	of	risk	later.	All	
the	 models	 above	 are	 nonsequential	 risk	 models.	 Stochastic	 programming	 with	 recourse	 (SPR)	
models	are	used	to	depict	sequential	risk.	We	will	discuss	two-stage	LP	formulation.	

9.4.1. Two	Stage	SPR	
Let	us	consider	a	simple	farm	planning	problem.	Suppose	we	can	raise	corn	and	wheat	on	a	100	acre	
farm.	Suppose	per	acre	planting	cost	for	corn	is	$100	while	wheat	costs	$60.	However,	suppose	crop	
yields,	 harvest	 time	 requirements	per	 unit	 of	 yield,	 harvest	 time	availability	 and	 crop	 prices	 are	
uncertain.	To	make	the	problem	simple,	suppose	that	there	will	be	two	state	of	nature	(SON)	1	and	2	
as	indicated	in	Table	9-5.	

	

Table	9-5:	Data	on	Uncertain	Parameters	in	SPR	Example	

Parameter	 State	of	nature	1	(SON1)	
(e.g.,	dry	harvesting	season)	

State	of	nature	2	(SON2)	
(e.g.,	wet	harvesting	season)	

Probability	 0.6	 0.4	
Planting	cost	per	acre	($)	 100	 60	
Corn	yield	(bushel)	 100	 105	
Wheat	yield	(bushel)	 40	 38	
Corn	harvest	rate	hours/bushel	 0.010	 0.015	
Wheat	harvest	rate	hours/bushel	 0.030	 0.034	
Corn	price	 3.25	 2.00	
Wheat	price	 5.00	 6.00	
Harvest	time	hours	 122	 143	
	
Let	x©,{	be	the	acre	of	planting	corn,	x©,�	the	acre	of	planting	wheat,	x­,{	the	corn	production	and	x­,�	
the	wheat	production,	and	y	the	income.	The	deterministic	problem	assuming	Pr(SON1)	=	1	is	given	
in	equation	(9-8)	and	the	optimal	solution	is	to	produce	corn	only	where	y	=	22500,	x©,{ = 100	acres,	
x­,{¡p = 10000	bu.,	and	x©,� = x­,� = 0.	100	hours	of	harvest	time	is	used.	What	if	Pr(SON2)	=	1?	
Equation	(9-9)	presents	the	model	and	the	solution	is	to	produce	wheat	only	where	y	=	16800,	x©,{ =
x­,{ = 0,	x©,� = 100,	x­,� = 3800	bu.;	129.2	hours	of	harvest	time	is	used.	The	solution	is	not	robust.	
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(9-8)	

max	 y	 	 	 	 	 	 	 	 	 	 	 	
s.t.	 −y	 -	 100x©,{	 -	 60x©,�	 +	 3.25x­,{		 +	 5.00x­,�	 =	 0	 [Income]	
	 	 -	 100x©,{	 	 	 +	 x­,{	 	 	 =	 0	 [corn	yield	balance]	
	 	 	 	 -	 40x©,�	 	 	 +	 x­,�	 =	 0	 [wheat	yield	balance]	
	 	 	 	 	 	 	 0.01x­,{	 +	 0.03x­,�	 £	 122	 [Harvest	time]	
	 	 	 x©,{	 +	 x©,�	 	 	 	 	 £	 100	 [Land]	
	 	 	 x©,{	 ,	 x©,�	 ,	 x­,{	 ,	 x­,�	 ³	 0	 [Non-negativity]	

	

(9-9)	

max	 y	 	 	 	 	 	 	 	 	 	 	 	
s.t.	 −y	 -	 100x©,{	 -	 60x©,�	 +	 2.00x­,{		 +	 6.00x­,�	 =	 0	 [Income]	
	 	 -	 105x©,{	 	 	 +	 x­,{	 	 	 =	 0	 [corn	yield	balance]	
	 	 	 	 -	 38x©,�	 	 	 +	 x­,�	 =	 0	 [wheat	yield	balance]	
	 	 	 	 	 	 	 0.015x­,{		 +	 0.034x­,�	 £	 122	 [Harvest	time]	
	 	 	 x©,{	 +	 x©,�	 	 	 	 	 £	 100	 [Land]	
	 	 	 x©,{	 ,	 x©,�	 ,	 x­,{	 ,	 x­,�	 ³	 0	 [Non-negativity]	

	

The	SPR	formulation	of	this	example	is	given	in	equation	(9-10)	and	Excel	formulation	in	Figure	9-2,	
which	 maximizes	 expected	 income	 across	 the	 SON	 (yµ = 0.6yl + 0.4ym ,	 assuming	 the	 DM	 is	 risk	
neural,	ignoring	risk)	but	the	harvesting	variable	levels	depend	on	SON.	This	equation	contains	one	
set	of	first	stage	variables	(i.e.,	one	set	of	corn	growing	and	wheat	growing	activities)	coupled	with	
two	sets	of	second	stage	variables	after	the	uncertainty	is	resolved	(i.e.,	there	are	income,	harvest	
corn,	 and	 harvest	 wheat	 variables	 for	 both	 states	 of	 nature).	 Further,	 there	 is	 a	 single	 unifying	
objective	function	and	land	constraint,	but	two	sets	of	constraints	for	the	states	of	nature	(i.e.,	two	
sets	of	corn	and	wheat	yield	balances,	harvesting	hour	constraints	and	income	constraints).	Notice	
underneath	the	first	stage	corn	and	wheat	production	variables,	that	there	are	coefficients	in	both	
the	state	of	nature	dependent	constraints	reflecting	the	different	uncertain	yields	from	the	first	stage	
(i.e.,	corn	yields	100	bushels	under	the	first	state	of	nature	and	105	under	the	second;	while	wheat	
yields	40	under	the	first	and	38	under	the	second).	However,	in	the	second	stage	resource	usage	for	
harvesting	is	independent.	Thus,	the	122	hours	available	under	the	first	state	of	nature	cannot	be	
utilized	by	any	of	 the	 activities	under	 the	 second	state	of	 nature.	Also,	 the	 crop	prices	under	 the	
harvest	activities	vary	by	state	of	nature	as	do	the	harvest	time	resource	usages.	

The	example	model	then	reflects,	for	example,	if	one	acre	of	corn	is	grown	that	100	bushels	will	be	
available	for	harvesting	under	state	of	nature	one,	while	105	will	be	available	under	state	of	nature	
two.	In	the	optimal	solution	there	are	two	harvesting	solutions,	but	one	production	solution.	Thus,	
we	model	irreversibility	(i.e.,	the	corn	and	wheat	growing	variable	levels	maximize	expected	income	
across	the	states	of	nature,	but	the	harvesting	variable	levels	depend	on	state	of	nature).
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