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The only way to learn mathematics is to do mathematics.

– Paul Halmos





Preface

It is our nature to strive to improve things or rationally try to choose the best option available. For example,

when looking for the fastest way to get to our destination or when packing our bag properly so that we do not

need a second one. Unconsciously, we apply simple principles of Operations Research (OR). This discipline

deals with analytical methods to optimize a large variety of socio-technical problems. Even though OR is

quite an intuitive approach to problems, its rigorous models are challenging for students due to their high

level of abstraction, especially in fast-paced courses. Education-related literature highlights that a difficult

aspect of teaching OR is fostering enthusiasm for developing optimization models (Beliën et al., 2013). Such

lack of enthusiasm generally stems from an insufficient understanding of the basic theory and techniques,

starting a vicious circle that prevents students from conceptualizing the engineering problem at hand and

abstracting it to a mathematical formulation.

A promising approach in engineering education to ease the learning path is gamification, i.e., introducing

gaming elements in learning processes (Cochran, 2015) and serious games, which translate complex and

abstract problems into more understandable and engaging games. The primary goal of this book is to combine

gamification and serious games with more traditional educational tools, to offer a multi-faceted educational

approach to OR education, and to improve the understanding of the topic. This multi-faceted educational

tool comprises three pillars as follows:

▶ this book where several models and solution methods pertaining OR are presented;

▶ a repository where, for most of the models presented in the book, coded examples and visualizations

are provided;

▶ three board games, one in the form of an online game and two in the form of a print-and-play game,

that translate three OR models presented in the book and in the repository into playable versions to

enhance students’ engagement.

This educational offer is structured in such a way that readers have the freedom to choose the educational

tools they find more suitable for them. While there is a strong interlink between the topics treated in this

book, the codes in the repository, and the board games, this educational offer is designed in a way that all

three can be accessed independently. The variety of complexity in the board games can benefit both more

experienced readers and novices.

In terms of content, this book provides an overview of several OR models that have a strong relevance

for engineering problems and can be the basis for other extensions. Our selection of the models and

methodologies to solve them aligns with much of the teaching portfolio at Delft University of Technology. If

readers are interested in more generic and theoretical books, we refer them to Hillier and Lieberman (2015)

and Carter et al. (2018).

Open material. This educational project is part of the Open Education Stimulation Fund 2022 (https:

//www.tudelft.nl/en/open-science/articles-tu-delft/call-for-proposals-open-education-sti

mulation-fund-2022) promoted by Delft University of Technology as part of its Open Science Program

(https://www.tudelft.nl/en/open-science-opbouwportal/about). As such, the book and the board

games are fully open-source and can be freely downloaded here. The repository contains codes written in

Python that replicate some of the mathematical models shown in this book using the Python package pyomo
(https://www.pyomo.org/), which is a solver-agnostic package and allows models to be solved both with

open-source and commercial solvers. However, some of the provided codes rely on the Python package

gurobipy, which in turn relies on the commercial solver Gurobi (https://www.gurobi.com/). With an

academic email, a Gurobi license can be obtained that grants access to the full capabilities of the solver.

Because this book mostly targets undergraduate or graduate students, we believe the necessity to rely on a

license is not a major problem. This choice stems from the fact that all authors are familiar with such a solver

https://www.tudelft.nl/en/open-science/articles-tu-delft/call-for-proposals-open-education-stimulation-fund-2022
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and regularly use it for their research, which also implies a significant amount of code was already available

for this book. To fully comply with an open education paradigm, we aim to fully transition to an open-source

setting in future releases of the book.

Who is this book for? The book is mostly designed to support BSc and MSc students from OR introductory
courses to more advanced. Categorizing the level of OR courses is a challenging task per se, as such a course

can be mandatory or elective, a BSc or an MSc course depending on the specific institution and field of

study (e.g., Mechanical or Aerospace Engineering, Management Engineering, Computer Science, etc.). More

advanced techniques, such as column generation, branch-and-price, and decomposition methods, are not

part of this book.
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Book Overview

This book is designed to guide readers through a journey that starts with basic mathematical foundations,

continues to the modeling recipe to properly define mathematical models and how to solve them, and finishes

with a broad overview of models that reflect real-world operations.

The book is divided into six parts as follows. Part I introduces the concepts of OR and serious games and
gamification and justifies why such concepts were embedded into this education tool.

Part II provides readers with a recap on vector and matrix notation, which is key to the mathematical

modeling covered in this book, and with an overview of the ingredients of a mathematical model and of how

to set up one.

Part III builds on the previous one and covers the main solution methods that can be employed to solve a

mathematical model.

Part IV focuses on a first set of mathematical models, i.e., assignment problems, whose main goal is to

determine how to properly assign items to resources, while Part V focuses on network problems, where the

goal is to efficiently route resources in a pre-defined environment (the network).

All the models shown in Part IV and Part V are deterministic in nature, meaning that all parameters that

characterize them are (assumed to be) known with certainty. Because we acknowledge this is not generally

the case, we conclude the book with Part VI, where an example of a modeling framework that accounts for

uncertainty is presented.

The main text of the book adopts a 1.5-column format, utilizing ample white space for side-notes and margin

figures where appropriate. This white space also allows readers to add their own notes while navigating

through the material.

In the book, we use boxes of different colors to highlight different aspects of the topics covered. The first box

type is:

 First box type

Light red color and with the lightbulb symbol . It is used to provide additional information that we

specifically want to highlight, such as an algorithm or how a constraint can be modeled differently.

the second box type is:

� Second box type

Light blue color with the Github symbol �. It is used to highlight and provide hyperlinks to our open

repository pointing to coded versions of the examples shown in the text.

and the third box type is:

� Third box type

Light green color with the gamepad symbol �. It is used to highlight and provide hyperlinks to our

open repository pointing to playable serious game reinterpretations of some of the mathematical models

presented in the text.
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1: In some domains, e.g., Management

Engineering and Management Sciences,

the terms Operations Research and Man-

agement Science are used interchange-

ably. We will employ Operations Re-

search in the context of this book.

Introduction to Operations
Research (OR) 1

1.1 What is Operations Re-
search (OR) and some
historical insights . . . . . . 3

1.2 Preliminary insights into
mathematical modeling . . 4

The conclusions of most good operations

research studies are obvious.

Robert E. Machol

1.1 What is Operations Research (OR) and some
historical insights

OR
1

can be summarized as the development of (advanced) quantitative

methods, mostly mathematical models, to assist decision-makers in

understanding, analyzing, and improving the performance of a system

under scrutiny. The quantitative methods can vary significantly in the

mathematical approach, complexity, and scalability, among other features.

In this book, we will focus on specific types of mathematical models that

are linear (or that can be linearized).

Many systems can be modeled and analyzed using OR tools. In principle,

any system with causes/effects components can be translated into a ma-

thematical model that captures, in a simplified way, all the dynamics and

relationships of the original system. Such a model can then be analyzed

and (attempted to be) solved with a suitable solution technique. Solving

it entails improving in the best possible way a set of Key Performance

Indicator (KPI)s deployed to map the effect of some changes in the system

to the final performance. Examples of KPIs can be productivity, profit,

overall traveled distance, costs, number of dissatisfied customers, and

overall accrued delays, just to name a few.

A common trait of several mathematical models is their complexity and

sometimes the absence of non-trivial solutions. Such systems are usually

characterized by different, generally contrasting, requirements that make

it extremely hard to improve while satisfying all the requirements.

To anticipate some OR jargon that we will use extensively in the context

of this book we define:

1. objective function: a function that collects all KPIs that we use in

our decision-making process to assess the “quality" of a solution.

Given the list of KPIs provided above, it follows that each KPI of

interest has a specific direction to follow. For example, KPIs such

as productivity or profits should increase, whileKPIs such as costs

or overall accrued delays should decrease. For some systems, a mix

of KPIs could be employed so that some of them should increase

and others should decrease;

2. constraints: the set of different, and generally contrasting, require-

ments characterizing the problem at hand. Such constraints bound

the flexibility of the set of actions we can take to improve the system.

They can take the form of a monetary budget, a limited number of

workers to employ, a limited fleet of trucks to operate, a minimum
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wage workers should get, or a maximum quantity of tonnes of crop

that can be harvested, for example.

Among the several domains where OR can contribute, transportation

systems of any kind (road, rail, air networks) have been researched exten-

sively with OR techniques. Historically, similarly to other technological

advancements (e.g., drone technology), military interests boosted the rise

of OR, which became a recognized term and discipline during the advent

of World War II. In particular, the necessity to deploy materials, supplies,

weapons, and devices of any kind at an unprecedented scale forced the

military to recruit scientists in order to improve logistics performances

and outperform the enemy. During the 1930s, the term operational research
was coined by British scientists (with operations research being the United

States equivalent term, which we are using in the book).

After the end of World War II, the analytical methods developed during

the war were not forgotten, and they were redirected to other domains. In

addition, advancements in computer technology have made it possible to

scale up algorithms and address problems of larger size and complexity.

In the 1950s, OR became so widespread as a research topic that academics

that would label themselves as mathematicians, engineers, etc., would

redefine themselves operations researchers and would found the first

societies specifically devoted to OR. With a similar parallelism to the

different terms used in the United Kingdom and the United States,

similar societies were founded in the two countries: the Operational
Research Society in Britain, the Operations Research Society of America and

The Institute of Management Science in the United States.

In the latter case, the overlap between the two societies was so evident

that they eventually merged into the INstitute For Operations Research

and Management Science (INFORMS) (https://www.informs.org/Ab

out-INFORMS), which is nowadays the largest international association

for professionals in operations research, analytics, management science,

economics, behavioral science, statistics, Artificial Intelligence (AI), data

science, applied mathematics, and other relevant fields, with over 12,500

members worldwide. Given the list of topics covered by INFORMS

it should be noted that, especially in recent times, OR is not a stand-

alone technique, but encompasses several fields and that it can be used

in conjunction with related domains. Such synergy of techniques has

flourished in the last decades and extended OR techniques to new

domains, e.g., when combining classic OR tools with behavioral sciences

to better embed human behavior in an optimization framework, or has

made it possible to address larger scale problems, e.g., when combining

AI with OR.

1.2 Preliminary insights into mathematical
modeling

The core of OR is to build mathematical models that are an idealized
and simplified version of the real-life problem under scrutiny. A mathe-

matical model represents the bridge between a real-life problem and a

proper algorithm capable of “understanding” and solving such a model.

With such logic, an OR practitioner is basically translating something

https://www.informs.org/About-INFORMS
https://www.informs.org/About-INFORMS
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2: We refer readers to this Wikipedia

page for a more exhaustive description

of the concept.

non-numerical (the real-life problem) into something numerical (the

mathematical model) that a proper algorithm can solve. In OR, the term

optimality is key. Optimality means that an algorithm has solved a spe-

cific mathematical model in the best possible way. This expression means

that we found a specific set of actions to be taken such that our objective

cannot get any better without violating at least one of the constraints of

the mathematical model. We call this set of actions an optimal solution.

Notwithstanding, when we talk about optimization problems, we are

not necessarily interested in a solution that is optimal. In fact, for some

complex problems, it may not even be feasible to find the optimum

in a reasonable time frame. Some may require years of continuous

computation to be solved. Hence, it is up to the decision-maker to judge

the required level of solution quality and assess if a good enough and fast

solution is better or worse than an optimal one depending on many factors,

resolution time being the most important. A good understanding of the

original problem is of course key. We can argue that any solution that

improves current operations should be, at least, labeled as acceptable.

Partially related to solution quality is model complexity. It is up to the

decision-maker to decide how much complexity to add to the model

and what to simplify. In principle, a mathematical model that captures

more features of the real-world problem should provide a more realistic

solution, but it might also be harder to solve. We also would like to

stress that “more complicated” does not necessarily mean “closer to the

real-world problem”. There could be a very complicated mathematical

model that does not address some crucial features of the associated

real-world problem, while it contains some other irrelevant features.

Even in OR practice, the Occam’s razor rule
2

still applies. Namely, given a

real-world problem, we are looking for the simplest mathematical model

that enables us to capture all the required elements of the system.

An overly complex model might be impossible to solve or, if solved, its

solution might be very cumbersome to analyze and hence implement.

Conversely, a very simplistic model might yield an optimal solution very

quickly. Still, the lack of necessary detail would make such a solution of

little to no use in the context of the original problem. Deciding where to

draw the line is an acquired skill that OR researchers learn with time and

many trial-and-error feedback loops. In principle, the best model is the

one that strikes a balance between capturing enough of the complexity

of the original problem so that it yields meaningful results while being

interpretable and computationally tractable. We should never forget that

OR was born to assist decision-makers in making better decisions in

the context of real-life problems, and the most mathematically pristine

model is of little use if the only application is a computer simulation.

Related to the previous point, we also want to stress that a good OR

model can also help in achieving a better understanding, compatibly with

its assumptions, of the real-world problem and in exploring solutions and

scenarios that human intuition might struggle to see. Of course, we should

never forget that every mathematical model is a simplification, in some

form, of the original problem, and hence a solution to a mathematical

model might not be 100% transferable to the original problem.

To illustrate the preceding point, let us examine Figure 1.1. The left

segment depicts Milan’s (Italy) subway network, comprising five lines.

https://en.wikipedia.org/wiki/Occam%27s_razor
https://en.wikipedia.org/wiki/Occam%27s_razor
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The middle portion illustrates a graph (we will see more about graphs

in Chapter 11), a fundamental mathematical construct that underpins

a model representing the actual subway system. This mathematical

model could, for instance, optimize each line’s hourly frequency to meet

passenger demand effectively while keeping operational costs in check.

The output of the mathematical model is a solution that is well-suited for

the mathematical model itself. The efficacy of such a solution for the real-

world problem the mathematical model approximates depends on many

factors, primarily on how strong the assumptions and simplifications

introduced into the mathematical model are. This is visually represented

by the right portion of Figure 1.1. If the modeler realizes some of the

simplifications make the solution not applicable to the original problem,

then the mathematical model must be revised. In the end, mathematical

models are devised to solve real-world problems. Hence they should

be tractable mathematically while capturing enough complexity of the

real-world problem itself.

Figure 1.1: Example of transition from a

real-world problem, to a mathematical

model and solution, to model revision

due to the necessity to include some as-

pects that were initially omitted.

𝜕𝑥
𝜕𝑡 = 𝑓1(𝑥), 𝜕2𝑥

𝜕𝑡2
=

𝑓2(𝑥, 𝜕𝑥𝜕𝑡 )

G= (N, E) →min

∑
𝑒∈E𝐶𝑒𝑦𝑒

Real-life problem Model and solution
Assumptions, sim-
plifications, unfore-
seen circumstances

Revise model?
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It’s not whether you win or lose, it’s how

you play the game.

Grantland Rice

In this chapter, we explain more in detail the concepts of serious games

and gamification, respectively in Section 2.1 and Section 2.2, that were

introduced in the preface. Then, we provide some examples of serious

games, gamification, or a combination of the two applied to OR education

in Section 2.3. Finally, we introduce the setup and main learning objectives

of our own serious games that complement this book in Section 2.4.

2.1 Serious games

A serious game is a game developed with a purpose other than just

entertainment. The purpose of a serious game can be anything, from

education or exploration to persuasion or informing to assessment or data

collection. A serious game is often developed for a specific situation
or environment and, as such, requires a good understanding of the
addressed situation by the developer.

Children play; it is one of the main ways they learn (Essame, 2020). They

experiment, experience, and create new connections. When children

play, they can freely and safely do these things. There is a safe circle.

If they fail, fall, or find out their current approach does not yield the

expected outcome, they can start over without any consequences. What

is important is that playing offers the player control and the ability to

choose and try. An overarching goal of serious games is to provide that

very same sense of control (Undiyaundeye, 2013).

A key feature of serious games is to encourage users to adopt a “trial

and error" approach that is generally harder to implement with more

traditional learning mechanisms. In most games there is a “best" strategy

to win or achieve the final objective. Notwithstanding, the goal of a serious

game is to help learners understand the intricacies of the underlying

topic by playing, and possibly failing multiple times in doing so.

2.2 Gamification

Gamification is the application of game design elements and principles

in non-game contexts to enhance engagement, motivation, and behavior.

It involves incorporating game-like features such as points, levels,
badges, challenges, and leaderboards into activities that are typically
not considered games. The goal of gamification is to make tasks or pro-

cesses more enjoyable, interactive, and rewarding, thereby encouraging
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participation, learning, and achievement. While the concept of gamifi-

cation might, and in principle does, overlap with the concept of serious

games, the two concepts differ in terms of depth and goals. Gamification

does not necessarily entail the development of a full game to be played,

but rather introduces game-like elements in traditional teaching methods.

Serious games, as the name suggests, are full-blown games instead (ELB
learning 2024). While adding gamification elements to an activity does
not imply the design of a serious game, the design of a serious game
generally involves by definition gamification elements such as points
and levels. We will expand on this in Section 2.4.

A final consideration about gamification addresses its ability to engage

and motivate users. By tapping into the psychological mechanisms that

drive intrinsic motivation and enjoyment in games, gamification seeks

to motivate individuals to complete tasks, achieve goals, and adopt

desired behaviors. It is commonly used in various fields such as educa-

tion, marketing, health and wellness, employee training, and customer

engagement to promote desired outcomes and create more engaging

experiences. When focusing on education, gamification elements are

not necessarily designed to transfer knowledge or replace traditional

teaching methods. They are rather employed to engage students and

increase their curiosity so that the “more traditional" teaching methods

are more effective and knowledge retention is boosted.

2.3 An overview of serious games in OR
education

Serious games, when applied to OR, serve as powerful tools for both edu-

cation and decision-making. These games aim at simulating real-world

scenarios by adding simplifications so that the game remains under-

standable and playable, yet with enough complexity to well approximate

the original problem. They allow users to engage with complex OR

concepts in an interactive and immersive environment. By combining

entertainment with learning, serious games enhance comprehension and

retention of OR principles, making abstract concepts more tangible and

accessible. While serious game do not fully replace the theory behind,

they make it more tangible and interpretable when studied or reviewed

after playing the game. Board games inherently involve players adhering

to a set of rules that dictate how the game unfolds. Interestingly, these

rules can be translated into constraints within OR models. Successfully
navigating the game requires players to either satisfy these constraints
or adapt their strategy accordingly. This concept underscores a funda-

mental aspect of OR, where OR problems are framed within a structured

framework akin to the rules of a board game, emphasizing the importance

of strategic decision-making and problem-solving.

To this avail, serious games can simulate supply chain optimization,

inventory management, or production scheduling, providing users with

hands-on experience in solving OR problems. Furthermore, serious

games can be used as decision support systems, enabling stakeholders to

explore different strategies and scenarios, evaluate their consequences,

and make informed decisions. Overall, serious games offer a dynamic and
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1: The bullwhip effect happens in supply

chains when orders placed with suppli-

ers vary a lot more than actual sales to

customers. This causes a big increase in

demand variation as you go further back

in the supply chain. Essentially, it means

that small changes in what customers

want can cause big swings in inventory

levels the further you go up the chain.

For more information on the bullwhip

effect we refer interested readers to this

Wikipedia page.

engaging approach to learning and applying OR techniques, fostering

deeper understanding and effective problem-solving skills.

A few examples of OR-related serious games are:

▶ The beergame (The Beergame 2024): a role-play supply chain simu-

lation that immerses students in typical supply chain challenges.

Participants enact a four-stage supply chain where the objective

is to produce and deliver units of beer. Beginning at the factory,

participants navigate through three subsequent stages, each re-

sponsible for delivering beer units until they reach the customer at

the downstream end of the chain. A key feature of this game is to

introduce players to the concept of the bullwhip effect1
;

▶ You’ve got freight! (You’ve got Freight 2024): a cutting-edge serious

game on synchromodality designed for educational institutions

and companies aiming to enhance collaboration. Through the game,

participants gain insights into running a sustainable business, cut-

ting carbon dioxide emissions, ensuring reliable delivery, fostering

intentional collaboration, and cutting costs effectively for their

companies;

▶ The burrito optimization game (Burrito Optimization Game 2024):

a serious game designed to teach participants about supply chain

management and optimization. Participants take on the role of

managing a burrito restaurant chain. They are tasked with making

decisions related to inventory management, production schedu-

ling, and distribution logistics to meet customer demand while

minimizing costs and maximizing profits. Through this interac-

tive experience, participants learn about key concepts such as

demand forecasting, inventory control, production planning, and

transportation logistics in a fun and engaging way.

2.4 Serious games in this book: setup and
learning objectives

Our aim with the games you can play throughout this book is to help stu-

dents in their education. The games are designed to aid in understanding

various theories and allow students to explore these theories in practice.

Some people learn best while reading, others while listening or looking

at pictures, and some learn through experimentation. By including the

games, we offer you an opportunity to experiment with optimization

theories. We aimed to take the abstract concept of optimization and the

steps it involves and put it into “practice."

Each serious game we provide entails different levels of increasing

complexity, hence embedding a powerful gamification element. In fact,

the first level is generally quite easy and solvable “by hand" without the

help of an OR setting, let alone a code. The more challenging levels pose

additional challenges because of an increase in the size of the problem

and of the spectrum of decisions that can be taken. The goal is not to

have students haplessly struggle to find a solution, but rather to witness

first-hand how scalability in OR problems is an issue and why algorithms

are paramount. Notwithstanding, playing these complicated levels is still

crucial, as players must anyway understand the rules and the setting,

https://en.wikipedia.org/wiki/Bullwhip_effect
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2: A tabletop RPG, also known as a pen-

and-paper RPG, involves participants

describing their characters’ actions ver-

bally or through gestures. Character ac-

tions are determined by their traits, and

outcomes are determined by a set sys-

tem of rules, often involving dice rolling.

Players have the freedom to improvise

within the framework of the rules, in-

fluencing the game’s direction and out-

come. One of the most famous tabletop

RPGs of all times is Dungeons & Drag-
ons (Figure 2.1): we refer readers to this

Wikipedia page for more info.

Figure 2.1: A typical setting from Dun-

geons & Dragons.

which entails understanding the underlying principles of the associated

OR model. Ultimately, the effectiveness of a code in modeling and
solving an OR problem hinges on the modeler’s comprehension of the
problem and their accurate translation of it into code.

If you do not feel like playing or trying the serious games as you believe

they do not work for you, that is okay. The games are offered as an

additional fun tool with a pedagogical effect and they support the

book and the coded examples, but they are not designed as mandatory

tools. All of them are designed to be played either singularly or as a

group. In the latter scenario, they facilitate collaborative decision-making,

team-building, and the sharing of knowledge and contrasting ideas to

collectively arrive at the optimal solution-an inherent principle of OR.

In this book, serious games are presented within a fantasy setting, cho-

sen deliberately to illustrate fundamental theory elements in a distinct

context. By concentrating on these core elements, we demonstrate their

applicability across various scenarios. While the games are intercon-

nected within the same fantasy setting, each one functions independently,

allowing readers to select and engage with them individually. The games

are accompanied by an optional story. Players have the choice to engage

with the story or not, as the rules are presented independently. Sci-fi fans

or tabletop Role-Playing Game (RPG) lovers
2

might feel compelled to go

through the full story, accompanying each game, but otherwise players

can directly read the rules and play the game.

After playing the game, take some time to answer the included questions

either individually or with your peers. These questions are designed

to help you reflect on your gameplay experience and relate it back to

theoretical concepts and real-world applications. Following the debrief,

you will find information on the game’s design and its connection to the

underlying theory.

While the game environment allows for experimentation and failure,
it is important to approach it with seriousness. Despite its fantasy
setting, the problem-solving techniques you employ mirror those used
in real-world scenarios. Therefore, treat the task of finding solutions
seriously. Do not settle for just any solution; strive to uncover the
optimal one, using each attempt as a learning opportunity to refine
your approach.

In essence, serious games provide a risk-free space for exploration and

experimentation. Your performance in these games will not affect your

grades or have real-world consequences. They are designed to offer a

unique perspective on understanding theoretical optimization concepts.

Each game is self-contained, but they all contribute to a unified fantasy

setting. While the accompanying story is optional, it adds context to the

gameplay. However, the debrief session is essential. It prompts reflection

on your experience and learning, helping you solidify your understanding

of the material.

https://en.wikipedia.org/wiki/Dungeons_%26_Dragons
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1: As a matter of fact, many program-

ming languages such as Python, con-

sider vectors as one-dimensional entities,

generally called one-dimensional arrays.
Along this single dimension, they can

contain any number 𝑛 of elements. We

refer readers to this Wikipedia page for

more info.
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Dear algebra, please stop asking us to find

your X: she’s never coming back and don’t

ask Y.

Anonymous

Linear algebra is one of the foundations of mathematical modeling, as

many mathematical models (at least, most of the ones treated in this book)

are entirely or substantially linear in nature. In this chapter, we provide a

brief overview of vectors in Section 3.1 and matrices in Section 3.2, i.e., the

two main ingredients of linear algebra. Their combination in the context of

linear systems is described in Section 3.3. We also partially contextualize

vectors and matrices in relationship to mathematical modeling, so that

this chapter serves as a prerequisite to Chapter 4.

3.1 Vectors

Let us start by defining vectors. An 𝑛-dimensional vector comprises a

sequence of 𝑛 numbers or scalars. In practice, such a sequence of elements

could be vertically or horizontally stacked. In the rest of this book, we

assume that vectors are (𝑛, 1) vertical operators, i.e., columns. The 𝑛

represents the number of elements (or rows of the vector), and the 1,

albeit redundant, represents that a vector can be considered a single

column. Hence, when defining a vector as 𝑛-dimensional, we refer
to the number of elements it contains. Conversely, every vector is a
one-dimensional structure, meaning that the 𝑛 elements it contains
are arranged along a single direction (a column, in our convention).
Hence, defining a vector an 𝑛- or one-dimensional entity are, while
sounding confusing, both correct interpretations depending on the
intended meaning.

1
Vectors can represent various entities, such as

items or properties. There are two fundamental natures of vectors. First,

they can be filled with known information, constituting a collection of

parameters or coefficients. Alternatively, vectors can consist of unknown

terms, termed variables.

Consider a collection of 5 items. Each item has a certain known quality,

that we call “weight” (a parameter). We can decide to give an identification

letter to this measure, say𝑊 . In order to identify the weight for each item,

we need a so-called index. It is customary to choose an identification

letter for indexes. Common letters are 𝑖, 𝑗, or 𝑘. However, there is no

fixed rule, as we can choose any name for anything. A rule for giving

the name to vectors is to select a letter that represents to some extent the

quantity of interest (for example, its initial). We will discuss more about

this in Chapter 4.

In our case, we choose 𝑖 as the index because it is a customary choice and,

in addition, it is also the initial letter for “item". The expression𝑊𝑖 then

https://numpy.org/devdocs/user/absolute_beginners.html
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2: For programming languages that

start their enumeration from 0, such as

Python, accessing the 𝑛-th element of a

vector requires specifying index 𝑛 − 1.

For example, the second element of array

−→
𝑊 is

−→
𝑊(1)

3: The cardinality of a set of elements is

the number of elements part of the set.

represents the weight of a generic item 𝑖. If the weights are unknown, we

can write:

−→
𝑊 =

©­­­­­«
𝑊1

𝑊2

𝑊3

𝑊4

𝑊5

ª®®®®®¬
(3.1)

where the expression

−→
𝑊 highlights that we are dealing with a vector.

Knowing the weights, we could replace each𝑊𝑖 with its actual value as

shown in (3.2).

−→
𝑊 =

©­­­­­«
3

7

2

0.1

4.5

ª®®®®®¬
(3.2)

If a (1, 𝑛) row vector is required, then it is sufficient to use the transposi-
tion operator

−→
𝑊𝑇

which translates a column vector into a row one (and

vice versa). Several operations are possible with vectors:

▶ accessing a specific element
2
. If we are interested in the weight of

item 2, we can access

−→
𝑊(2) = 7 ;

▶ summation of all elements. It can be expressed in several ways, such

as

∑
5

𝑖=1
𝑊𝑖 = 16.6 or

∑|−→𝑊 |
𝑖=1

𝑊𝑖 = 16.6. In the first case, we explicitly

specify the maximum number of elements (i.e., 5), while the second

case is more generic (and mathematically more pristine) because

it defines as the final index of the summation the cardinality
3

of

vector

−→
𝑊 , i.e., |−→𝑊 |;

▶ scalar multiplication. Given a vector

−→
𝑊 and a scalar 𝛼, we can

generate a new vector

−→
𝑉 = 𝛼

−→
𝑊 where each element 𝑉𝑗 is given

by 𝑉𝑗 = 𝛼𝑊𝑗 . In our example, if 𝛼 = 1

𝜌 (with 𝜌 being the density)

−→
𝑉 = 1

𝜌

−→
𝑊 would return the volume of each item;

▶ vector addition. Given two vectors

−→
𝑋 = (𝑥1 , 𝑥2 , · · · , 𝑥𝑛)𝑇 and

−→
𝑌 =

(𝑦1 , 𝑦2 , · · · , 𝑦𝑛)𝑇 (both 𝑛-dimensional), we define their element-by-

element summation as

−→
𝑍 =
−→
𝑋 +−→𝑌 = (𝑧1 , 𝑧2 , · · · , 𝑧𝑛)𝑇 , where each

element is expressed as 𝑍𝑖 = 𝑋𝑖 + 𝑌𝑖 . Note: element-by-element
vector addition is only possible if the two vectors contain the
same number of elements, i.e., if |−→𝑋 | = |−→𝑌 |;

▶ scalar product, also known as dot product. Given two vectors

−→
𝑋 and

−→
𝑌 , their dot product is a scalar value obtained by summing all the

element-by-element products 𝑋𝑖𝑌𝑖 . We can express the dot product

as

∑|−→𝑋 |
𝑖=1

𝑋𝑖𝑌𝑖 or, equivalently,
−→
𝑋 𝑇 · −→𝑌 where · is the symbol of the

dot product. Note that, assuming vectors are defined as column

vectors, we need the first vector to be a row vector to obtain a scalar.
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4: This further corroborates the fact that

vectors are one-dimensional structures.

5: For programming languages starting

the enumeration from 0, as stated in a

previous sidenote, 𝐴(2, ) retrieves the

third row of the two-dimensional array

𝐴.

In fact (1, 𝑛)×(𝑛, 1) = (1, 1), where the final dimension (1, 1) implies

a scalar value. Let us consider a course where the final grade is the

weighted average of 3 partial exams. The 3 grades we obtained are

stored in

−→
𝐺 = (8, 8.5, 8)𝑇 and the 3 weights are

−→
𝑊 = (0.2, 0.3, 0.5)𝑇 .

We can compute our final grade using the dot product operator as

−→
𝑊𝑇 ·−→𝐺 = (0.2, 0.3, 0.5)·(8, 8.5, 8)𝑇 = 0.2×8+0.3×8.5+0.5×8 = 8.15.

3.2 Matrices

Let us extend the definition of a vector, by adding an extra dimension

to it. For vectors, as seen in Section 3.1, one dimension can change (the

length 𝑛 of the vector, i.e., the number of elements it contains) while the

other is fixed to 1
4
. If we allow both dimensions of a vector to be greater

than 1, then we obtain a two-dimensional array of numbers, called a

matrix. For example, matrix

𝐴 =

©­­­­«
𝑎1,1 𝑎1,2 · · · 𝑎1,𝑚

𝑎2,1 𝑎2,2 · · · 𝑎2,𝑚

...
...

. . .
...

𝑎𝑛,1 𝑎𝑛,2 · · · 𝑎𝑛,𝑚

ª®®®®¬
(3.3)

is an (𝑛, 𝑚)matrix. 𝐴 is defined as a square matrix if its dimensions are

equal (𝑚 = 𝑛). The individual elements of 𝐴 are denoted as 𝑎𝑖 𝑗 and are

referred to as its elements. Any matrix can be used to extract vectors by
“slicing” specific rows or columns, as ultimately, a matrix is essentially
a collection of vectors. For example, 𝐴(2, ) represents a horizontal slice

where we retrieve all the elements of the second row of the 𝐴 matrix
5
.

Hence, it is a row vector. 𝐴(, 2) represents the column vector obtained by

isolating the second column of 𝐴 instead.

Similar to vectors, several important mathematical operations for matrices

include:

▶ scalar multiplication. Scalar multiplication of a matrix 𝐴 and a

real number 𝛼 yields a new matrix 𝐵 = 𝛼𝐴 that has the same

dimensions as the original matrix 𝐴. Its elements 𝑏𝑖 𝑗 are given by

𝑏𝑖 𝑗 = 𝛼𝑎𝑖 𝑗 ;
▶ addition of two matrices. Element-by-element addition of two

matrices 𝐴 and 𝐵 yields a new matrix 𝐶 = 𝐴 + 𝐵, whose elements

𝑐𝑖 𝑗 are given by 𝑐𝑖 𝑗 = 𝑎𝑖 𝑗 + 𝑏𝑖 𝑗 . Note: only matrices with the same
dimensions can be added element-by-element to create a new
matrix;

▶ multiplication of matrices, 𝐴𝐵. It is possible only if matrix 𝐴 has

the same amount of columns as the rows of 𝐵. This is necessary as

element (𝑖 , 𝑗) of the new matrix is determined by the dot product

𝐴(𝑖 , ) · 𝐵(, 𝑗). It also follows that the resulting matrix 𝐶 = 𝐴𝐵, if

𝐴 = (𝑛, 𝑘) and 𝐵 = (𝑘, 𝑚), will be of size (𝑛, 𝑚). We can define

each element 𝐶𝑖 𝑗 as 𝐶𝑖 𝑗 =
∑𝑘
𝑝=1

𝑎𝑖𝑝𝑏𝑝 𝑗 . For example:
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6: We refer readers to this Wikipedia

page for some guidelines on how to per-

form matrix inversion.

7: An identity matrix is a square matrix

with all 1s along the main diagonal and

0s everywhere else.

8: Note that if matrix 𝐴 is non-invertible,

it suggests that the equations compri-

sing the linear system are not linearly

independent, implying that the system

typically has no solution.

©­«
1 2

0 −3

3 1

ª®¬︸   ︷︷   ︸
(3,2)

(
2 6 −3

1 4 0

)
︸        ︷︷        ︸

2,3

=
©­«

4 14 −3

−3 −12 0

7 22 −9

ª®¬︸              ︷︷              ︸
(3,3)

(3.4)

is the product of a (3, 2) and a (2, 3)matrices, and hence yields a

(3, 3)matrix;

▶ transposition of a matrix 𝐴, i.e., 𝐴𝑇 , entails swapping the rows

with the columns of 𝐴. Thin means that the transpose of an (𝑛, 𝑚)
matrix is an (𝑚, 𝑛)matrix. For example:(

2 4 −1

−3 0 4

)𝑇
︸            ︷︷            ︸

(2,3)

=
©­«

2 −3

4 0

−1 4

ª®¬︸     ︷︷     ︸
(3,2)

(3.5)

where the transpose operator transforms a (2, 3)matrix into a (3, 2)
matrix in (3.5);

▶ inversion of a matrix 𝐴. A square (𝑛, 𝑛) matrix (if invertible)

is associated with its inverse matrix 𝐴−1
such that the following

relationship
6

holds:𝐴−1𝐴 = 𝕀𝑛 , where with 𝕀𝑛 we mean the identity
matrix7

of size (𝑛, 𝑛).

3.3 Linear systems

A linear system is, in its most general form, a combination of two vectors

and a matrix as:

𝐴−→𝑥 =
−→
𝑏 (3.6)

where
−→𝑥 is the column vector containing some unknown variables, 𝐴

is the coefficient matrix, and

−→
𝑏 the right-hand side vector containing

some constants. To isolate and solve vector
−→𝑥 , 𝐴 must be square and

invertible. If these two conditions are met (we assume 𝐴 is an (𝑛, 𝑛)
invertible matrix), we can modify (3.6) as:

𝐴−1𝐴−→𝑥 = 𝐴−1
−→
𝑏 → 𝕀𝑛

−→𝑥 = 𝐴−1
−→
𝑏 → −→𝑥 = 𝐴−1

−→
𝑏 (3.7)

where the unknown vector
−→𝑥 is now expressed as a product of a known

matrix and vector. Hence, we can use the inversion operator introduced

in Section 3.2 to solve a linear system pending that matrix 𝐴 is invertible
8
.

We elaborate on this in Example 3.1.

Example 3.1 Let us consider the following linear system of 3 equations

in 3 unknowns 𝑥1, 𝑥2, and 𝑥3:

https://en.wikipedia.org/wiki/Invertible_matrix#Methods_of_matrix_inversion
https://en.wikipedia.org/wiki/Invertible_matrix#Methods_of_matrix_inversion
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𝑥1 + 2𝑥2 = 5 (3.8)

2𝑥1 + 3𝑥3 = 12 (3.9)

𝑥2 + 4𝑥3 = 9 (3.10)

which can be translated into a matrix and vector form as:

©­«
1 2 0

2 0 3

0 1 4

ª®¬ ©­«
𝑥1

𝑥2

𝑥3

ª®¬ = ©­«
5

12

9

ª®¬ (3.11)

After computing the inverse of the coefficient matrix:

©­«
1 2 0

2 0 3

0 1 4

ª®¬
−1

=
1

19

©­«
3 8 −6

8 −4 3

−2 1 4

ª®¬ (3.12)

we can determine our unknowns as:

©­«
𝑥1

𝑥2

𝑥3

ª®¬ = 1

19

©­«
3 8 −6

8 −4 3

−2 1 4

ª®¬ ©­«
5

12

9

ª®¬ = ©­«
3

1

2

ª®¬ (3.13)

Matrix inversion is not the sole method for solving a linear system. In a

linear system, like the one shown above, the solution does not change if

we replace an equation with a linear combination of some of the original

equations. If we manage to “isolate” an unknown (e.g., 𝑥1) in one
equation through a series of row operations, we can directly determine
its value and then substitute it into the other equations to deduce the
values of the remaining unknowns.

For example, we could replace (3.8) with a linear combination of itself

minus twice times (3.10), as shown in Table 3.1.

𝑥1 2𝑥2 = 5 -

2𝑥2 8𝑥3 = 18 =

𝑥1 -8𝑥3 = -13

Table 3.1: First row operation to update

an equation of Example 3.1.

By eliminating 𝑥2, we added 𝑥3 to the updated version of (3.8). Hence,

we could replace it with a linear combination of itself plus
8

3
times (3.9)

as shown in Table 3.2.

𝑥1 -8𝑥3 = -13 +

16

3
𝑥1 8𝑥3 = 32 =

19

3
𝑥1 = 19

Table 3.2: Second row operation to up-

date an equation of Example 3.1.

Hence, we managed to successfully isolate 𝑥1 in the revised equation so

that
19

3
𝑥1 = 19→ 𝑥1 = 3 as already highlighted by the previous solution

obtained with matrix inversion. The revised linear system is:
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19

3

𝑥1 = 19 (3.14)

2𝑥1 + 3𝑥3 = 12 (3.15)

𝑥2 + 4𝑥3 = 9 (3.16)

We can now substitute 𝑥1 = 3 (as obtained from (3.14)) in (3.15) to get

𝑥3 = 2, which is in turn substituted in (3.16) to obtain 𝑥2 = 1.

Note that we obtained the same solution that was already available to
us, but using linear combinations of the original equations instead of
matrix inversion. This key concept of row operations will be one of
the cornerstones of Chapter 6.
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In general, analytical and numerical methods are used for quantitative

problems that do not entail a high level of complexity or that have

particular properties, easy to describe with formulas. Such problems may

allow for several assumptions. In many cases, calculations and graphical

representations are required.

Typically, any quantitative problem is defined by three major elements:

sets, parameters, and variables. Parameters and variables are then inter-

twined in a two-fold manner: they are combined to define the specific

objective of the problem at hand and a set of constraints that bound the

problem. It is the first task of the modeler to spot in the description of a

problem all these elements, especially before dealing with complex tech-

niques, such as mathematical modeling. We define some rules regarding

our notation in the  Notation: sets, parameters, and decision variables
box.

 Notation: sets, parameters, and decision variables

In the rest of the book, unless differently specified, we will use a

calligraphic style for sets (e.g., S), upper-case letters for parameters

(e.g., 𝑆), and lower-case letters for decision variables (e.g., 𝑠).

We describe sets, parameters, and decision variables in Section 4.1, Sec-

tion 4.2, and Section 4.3 respectively. Then, in Section 4.4 and Section 4.5

we discuss how these elements can be combined to form an objective

function and constraints. We combine all these elements in Section 4.6,

where we describe the general form of a mathematical model and how it

changes if the model under scrutiny is linear. In Section 4.7 we combine

all the information provided and describe some examples of seminal

models. In Section 4.8 we explain some special types of constraints, while

in Section 4.9 we provide some final recommendations.

4.1 Sets

In a mathematical model, sets are, generally speaking, sequences of

distinct elements (usually defined by a unique index) that play a role

in the model itself. For example, if we are considering a problem where

some trucks shall start/end their journey from/to some depots while

servicing some customers during their trip, we will have to consider three

sets, namely the set of trucks, the set of depots, and the set of customers.

It is advised, although not mandatory, to use meaningful letters when

defining sets. Using the aforementioned example, a good choice is to rely

on the initials of the elements of each set and use T for the set of trucks,

D for the set of depots, and C for the set of customers. In case more than

one set starts with the same letter, a different choice has, of course, to be

made.
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Elements in a set are generally ordered. Another good policy is to use

for the generic index the equivalent lower-case letter that was used to

define the set. Using an enumeration that starts with 1, and assuming

that our fleet of trucks encompasses 4 trucks, we can express our set of

trucks as T= {1, 2, 3, 4}. We can refer to a specific truck in the set using

index 𝑡. For example, the expression ∀𝑡 ∈ T implies we are considering

every truck 𝑡 in our set T. Let us complete our example defining 2

depots as part of set D and 9 customers as part of set C. Since both
depots and customers define geographical locations that trucks can
visit, we can combine them in a new set N, indexed by 𝑖 or 𝑗 (we will

anticipate in the  Note: set indexing practices box why two distinct

letters are needed in this case. We will extensively rely on the same

notation in Chapter 13), representing the nodes of our problem. To avoid

duplicate indices, we could define indices so that depot indices precede

customer indices. Namely, D = {1, 2} and C = {3, · · · , 11}, so that

N= {1, 2, · · · , 10, 11}.

Figure 4.1: Example of definition of sets

and subsets related to the example pro-

vided in Section 4.1.

1

2

3

4

5

6

7

8

9

10

11
2

1

3

4

= truck

= depot

= customer

T
1
= {1, 2}

T
2
= {3, 4}

Furthermore, we can use a combination of calligraphic letters and lower-

case letters to define subsets. For example, we could define T𝑑 as the

subset of trucks that start/end their trip in depot 𝑑. If we assume that

trucks 1 and 2 are linked to depot 1, while trucks 3 and 4 are linked to

depot 2, we can define T1 = {1, 2} and T2 = {3, 4}. Similarly, we can

assume that each customer can only be served by a subset of trucks

and define T𝑐 as the subset of trucks that can visit customer 𝑐. For

example, defining T3 = {1, 2} we imply that customer 3 can only be

visited by either truck 1 or truck 2. For the sake of completeness, let us

define the remaining subsets as T4 = {3, 4}, T5 = {1, 2, 3, 4}, T6 = {3, 4},
T7 = {1}, T8 = {4}, T9 = {1, 2, 3, 4}, T10 = {1, 2, 3, 4}, T11 = {1, 2, 4}.
Our definition implies that customers 7 and 8 are very picky, as they

require to be serviced by a specific truck, while customers 5, 9, and 10

are very flexible as they can be serviced by any truck 𝑡 ∈ T. In Figure 4.1

we provide a visual representation of the example with trucks, depots,
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and customers that we described above. To limit the text in the figure, we

provide a more visual representation of subsets T𝑐 by connecting each

truck with the customers that can be serviced by it via a colored arc. As

such, the origins of arcs pointing to customer 𝑐 represent the trucks that

can visit such node, i.e., T𝑐 .

Additionally, we provide some recommendations on indexing practices

in the  Note: set indexing practices box. Let us conclude this section by

addressing the earlier point made in the box addressing the notation of

customer set C, where we could not designate a “first" customer since the

customer with the smallest index was labeled customer 3. However, if a

modeler prefers to assign increasing indices starting from 1 to customers,

our notation can still be utilized within the model. Then, during the

post-processing phase, the solution can be adjusted by subtracting 2 from

every customer index, transforming 3→ 1, 4→ 2, and so forth, up to

11 → 9. Therefore, if our solution indicates that truck 1 should serve

customer 3, it implies that this truck should attend to the first customer

in our adjusted list.
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 Note: set indexing practices

Note that, when it comes to notation or other OR practices, we provide

some guidelines in this book, not hard constraints. For example, con-

sidering the example of Figure 4.1, one could still define the indexing

of the depots as D = {1, 2} and the indexing of the customers as

C= {1, · · · , 9}. This approach works well for visualization purposes

and provides a more direct mapping between a customer and the

node associated with it (with our notation customer 3 is the first one,

etc.) but it comes with at least two caveats:

▶ first, one could still differentiate between subsets T𝑑 and T𝑐
if written in this form. On the other hand, a term such as T1

(where we replaced the generic letter with an actual index)

would create ambiguity, as that would represent both the trucks

stationed in depot 1 (T1 if 𝑑 = 1) and the trucks that can visit

customer 1 (T1 if 𝑐 = 1). A way to circumvent this is to define
the subsets as T𝐷

𝑑
and T𝐶

𝑐 . The capital letters 𝐷 and 𝐶 are not
indices but letters that explicitly define that the first subset
refers to depots and the second to customers;

▶ second, as we shall see later in this book, a decision variable in

these problems can be generally written as 𝑥𝑡
𝑖 𝑗

. This decision

variable is unitary if truck 𝑡 moves from node 𝑖 to node 𝑗 in the

network and 0 otherwise. With the original notation that we

propose in the text, we have that 𝑖 ≠ 𝑗 for every pair of nodes in

the network, hence every 𝑥𝑡
𝑖 𝑗

properly defines a movement from

a node to a different one. With the notation suggested above,

we would define the decision variable between depot 1 and

customer 1 (two distinct nodes) as 𝑥𝑡
1,1

. This looks like a decision

variable from a node to itself, which might be cumbersome and

does not reflect the nature of the decision variable. Note that
decision variables can still feature the same value for indices
related to different sets. For example, 𝑥1

1,3
defines, if unitary,

that truck 1 travels from depot 1 to customer 3. Because of
the way 𝑥𝑡

𝑖 𝑗
is defined (indices of nodes as subscripts and of

trucks as superscripts), there is no ambiguity.

When approaching mathematical modeling as beginners, familiar-
izing with good notation practices entails quite a steep learning
curve!
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1: We will discuss and motivate the con-

cept of optimality (already introduced

in Chapter 1) in detail in Chapter 6 and

Chapter 7. For now, we can picture the

optimal solution as the set of actions and

decisions that ensure our problem is ad-

dressed in the best way possible.

4.2 Parameters

In a mathematical model, parameters are known values defining specific
characteristics of the problem at hand. They can represent a distance,

a cost, a revenue, a weight, a maximum capacity, among other things.

Referring back to the example with trucks and customers, we could define

𝐷𝑖 𝑗 as the distance between nodes 𝑖 , 𝑗 ∈ N. Related to distance, 𝑅𝑡 could

represent the maximum range that truck 𝑡 ∈ Tcan cover before having to

return to the depot. Additionally,𝐷𝑐 could be the demand for goods (e.g.,

the overall weight) required by customer 𝑐 ∈ C. Note that we have two

parameters that look quite similar:𝐷𝑖 𝑗 and𝐷𝑐 . It should be noted that the

first one depends on two indices, being a distance, while the second one

depends on one index as it is a customer-specific parameter. Hence, the

chances of confusion should be slight. If readers are still not comfortable

with the choice, then we could change the letter for the customer demand

and use 𝑄𝑐 , or use 𝐷𝐸𝑀𝑐 to make an even more explicit reference to the

parameter being represented. As previously hinted at, there are good

practices and standards when it comes to notation, but no golden rules.

A crucial recommendation is that when constructing a mathematical
model, the notation should streamline the task for the modeler while
remaining comprehensible to other users.

4.3 Decision variables

In a mathematical model, decision variables are unknown elements
defining the problem under scrutiny. The ultimate goal of the modeler
is to determine the optimal values for each decision variable and hence
obtain the optimal solution1

.

We can identify two main types of decision variables:

▶ continuous decision variables. They represent quantities that can

take any (even fractional) value within the range where they are

defined. For instance, determining the optimal arrival time at

the airport to ensure reaching the gate on time while minimizing

unnecessary waiting periods. Our solution could be 2.7 hours before

the intended departure, hence a real number. Note that allowing

decision variables to take fractional values does not mean they are

allowed to take any value. We would all agree that arriving at the

airport -1.5 hours before departure does not sound efficient, but

arriving 20 hours before departure does not sound efficient either.

Hence, continuous decision variables generally have a smallest

allowed value (lower bound) and a maximum one (upper bound);

▶ integer decision variables. Sometimes, the decision we must take

cannot be fractional. This is, for example, the case when an airline

needs to decide how many aircraft of a specific type to order. The

choice is bounded to be an integer number {0, 1, 2, · · · }. A special

type of integer decision variables are binary decision variables. As

the name suggests, they only offer two options. Unless differently

specified, the two options are 0 or 1. Binary decision variables are

usually associated with a decision that takes the form of a choice:

shall I purchase this product or not, shall I go from A to B or not?
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2: Models with negative decision vari-

ables can be created and solved. We refer

interested readers to Hillier and Lieber-

man, 2015

Across all decision variables discussed in this book, a consistent character-

istic is their non-negativity2
. This aligns with the majority of real-world

decisions, which typically involve positive values.

Notation-wise, it is quite custom to choose 𝑥 to designate a single set of

decision variables for problems where only one set of decision variables

exists, regardless of the actual type of decision. Routing problems feature

binary decisions related to the possibility of going from a certain location

𝑖 to another location 𝑗 or not. In such problems, it is quite standard to use

binary decision variable 𝑥𝑖 𝑗 ∈ {0, 1} to represent such an option. When

a model features several distinct sets of decisions, it is good practice to

choose meaningful letters. For example, a decision variable related to

when to arrive at a location 𝑖 can be defined 𝑡𝑖 to capture that it is a

decision about time.

4.4 Objective function

The objective function is the main KPI of a mathematical model. It is a

function of the decision variables (not necessarily all of them) and of the

parameters, which we can define in general terms as

𝑍 = 𝑓 (−→𝑃 ,−→𝑥 ) (4.1)

where

−→
𝑃 represents the vector containing all parameters and

−→𝑥 the

vector containing all decision variables. 𝑓 (·) represents a generic function,

as the objective function could combine decision variables in different

ways. In this book, we deal with models that are linear or linearizable
because they can be efficiently solved with specific solution algorithms

that will be described in Chapter 6, Chapter 7, and Chapter 8.

Because of this restriction, an objective function such as 𝑍 = 3𝑥1 + 4𝑥2𝑥3,

displaying the product of two decision variables, will not be treated in

this book. If we restrict our domain to linear objectives, then we can

rewrite (4.1) as

𝑍 =
−→
𝐶 𝑇 · −→𝑥 =

|−→𝑥 |∑
𝑖=1

𝐶𝑖𝑥𝑖 (4.2)

where the generic function 𝑓 (·) has been replaced by a summation (linear

operator). We provide two equivalent forms for the linear version of the

objective function. The first one is based on the dot product we discussed

in Chapter 3, while the second explicitly displays the summation. In
addition, note that we replaced vector

−→
𝑃 with vector

−→
𝐶 in (4.2). Because

of the linear nature of the objective, now every decision variable can
appear there multiplied by its specific coefficient. Hence, for every

𝑥𝑖 there exists a specific 𝐶𝑖 . Conversely, in the non-linear example we

showed, in term 4𝑥2𝑥3 the coefficient 4 is associated with neither 𝑥2 nor

𝑥3, but with their product.

It is worth noting that (4.2) does not necessitate the inclusion of every

decision variable in the objective. Depending on the specific model, some

decision variables may be absent from the objective function altogether.
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In scenarios where only a subset of decision variables is present in the

objective, one might wonder about the role of the remaining variables.

In such cases, it is anticipated that these variables will appear in the
constraints that define the model.

Finally, we should remember that the objective function represents our

main KPI and, as such, our goal is to steer such an objective towards

the right direction. For objectives mapping “favorable" KPIs, it is in

our interest the see them grow as much as possible. Some examples

are profit, users’ satisfaction, etc. For objectives mapping “unfavorable"

KPIs, it is in our interest the see them reduce as much as possible. Some

examples are costs, make-span, discomfort, etc. In the former case we

deal with maximization problems while in the latter case we deal with

minimization problems. In a mathematical model, we explicitly commit

to one of the two cases by adding in front of the objective function the

keywords max or min, respectively. For a maximization problem, we will

then write

max 𝑍 =

|−→𝑥 |∑
𝑖=1

𝐶𝑖𝑥𝑖 (4.3)

while a minimization problem would feature the following objective

min 𝑍 =

|−→𝑥 |∑
𝑖=1

𝐶𝑖𝑥𝑖 (4.4)

In the rest of the book, when dealing with the general setting of a

mathematical model, we will assume a maximization problem for the

sake of simplicity. Some additional notes are:

▶ each mathematical model features an objective that, for practi-

cal purposes, can be unambiguously labeled as a maximization

or minimization objective. Mathematically speaking, we can al-
ways convert a max into a min problem (or vice versa) without
hindering the final solution as follows:

max 𝑍 =

|−→𝑥 |∑
𝑖=1

𝐶𝑖𝑥𝑖 → min −𝑍 = −
|−→𝑥 |∑
𝑖=1

𝐶𝑖𝑥𝑖 (4.5)

where (4.5) delineates how maximizing a certain objective function

is equivalent to minimizing the opposite of such an objective (we

will take more about this in Section 6.4, and more specifically

in Example 6.7);

▶ in general, the letter𝑍 is dropped from the definition of the objective

function (albeit we shall see it can be useful in the context of the sim-

plex method in Chapter 6). Hence, a general maximization problem

is characterized by an objective expressed as max

∑|−→𝑥 |
𝑖=1

𝐶𝑖𝑥𝑖
▶ while (4.3) generally captures the essence of the objective function,

it is advisable to decompose the objective into its constituent terms

tailored to the specific problem at hand. This can be achieved by
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3: While so far we talked about “generic"

mathematical models, the models we

address in this book are optimization

models because it is our goal to look

for the combination of decision variables

that maximize or minimize our objec-

tive while satisfying all the constraints.

We will formalize this concept in Chap-

ter 6. In practice, we are looking for the

best (optimal) solution given the inputs

shaping the model.

4: Note that we use the ≤ form for the

sake of simplicity, but we intend that

both inequality constraints in the ≤ and

≥ form are captured.

leveraging the sets, parameters, and decision variables outlined

in Section 4.1, Section 4.2, and Section 4.3. For instance, if the ob-
jective function represents profit, it typically consists of multiple
terms, including a “positive" term representing revenue and a
“negative" term accounting for costs, each possibly comprising
further sub-terms.

4.5 Constraints

Properly defining an objective function is of paramount importance for

the correct implementation and solution of a mathematical model
3
, but

it is one side of the story. The other side is represented by the correct

understanding and implementation of the constraints characterizing our

problem.

Consider budget constraints that prevent unrealistic profit expectations

by restricting investments beyond available funds. Similarly, time con-

straints mandate accounting for travel duration between points A and B,

precluding instantaneous teleportation.

Moreover, constraints may encompass detailed specifications of the

problem. For instance, a logistics firm may mandate single-truck visits

per customer, while another company allows multiple trucks to serve the

same customer by splitting orders for efficiency. The two different needs

will be captured by different expressions for some constraints despite,

for example, the objective of both companies being to maximize profit.

Another important constraint set addressed the need to ensure that each

decision variable satisfies its own nature, as described in Section 4.3.

When dealing with continuous variables, we assume that every value

they take within the bounds we provided is feasible. When dealing

with integer variables, we need to ensure the solution we come up with

satisfies all integrality requirements. We will tackle this last issue in

Chapter 7.

In analogy to what we did for the objective function in Section 4.4, we

can start with two general definitions for the constraints characterizing a

mathematical model as follows:

𝑔(−→𝑃 ,−→𝑥 ) ≤ −→𝑏𝑖𝑛 (4.6)

ℎ(−→𝑃 ,−→𝑥 ) = −→𝑏𝑒𝑞 (4.7)

where (4.6)
4

and (4.7) highlight, respectively, a set of inequality and

equality constraints. 𝑔(·) and ℎ(·) represent generic functions, so that

constraints such as 2𝑥1 + 3𝑥2𝑥3 ≥ 6 or 𝑥2 + 𝑥4𝑥5 = 6 are allowed.

In the context of linear problems, we can replace (4.6) and (4.7) with their

linear counterparts
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5: In some other references, readers

might stumble upon a single expression

in the form 𝐴−→𝑥 ≤ −→𝑏 representing the

whole set of constraints. Because this is

a general form, of course, some details

of the actual model are lost anyway. We

preferred to keep separate the two blocks

describing inequality and equality con-

straints instead.

6: Note that, given the general setting,

we still do not fully leverage the notion of

sets and the suggested notation defined

earlier in the chapter. We will fully adopt

the suggested notation when presenting

specific problems where sets, parameters,

and decision variables will be explicitly

presented.

7: With s.t. we mean subject to.

𝐴𝑖𝑛
−→𝑥 ≤ −→𝑏𝑖𝑛 (4.8)

𝐴𝑒𝑞
−→𝑥 =

−→
𝑏𝑒𝑞 (4.9)

where 𝐴𝑖𝑛 and 𝐴𝑒𝑞 are matrices
5

with as many columns as the number

of decision variables and as many rows as how many inequality (resp.

equality) constraints are needed.

Finally, let us split our vector of decision variables
−→𝑥 into 3 mutually

exclusive subsets, namely
−→𝑥𝑐 , −→𝑥𝑖 , and

−→𝑥𝑏 (representing respectively con-

tinuous, integer, and binary decision variables). In our model, we will

have to ensure that

−→𝑥𝑐 ∈ ℝ0 (4.10)

−→𝑥𝑖 ∈ ℕ0 (4.11)

−→𝑥𝑏 ∈ {0, 1} (4.12)

where ℝ0 and ℕ0 represent the set of non-negative real and integer

numbers respectively.

4.6 General form of a mathematical model

We can now condense the knowledge acquired in Section 4.4 and Sec-

tion 4.5
6

to fully define a mathematical model as follows:

max 𝑍 =

|−→𝑥 |∑
𝑖=1

𝐶𝑖𝑥𝑖 (4.13)

s.t.:
7

𝐴𝑖𝑛
−→𝑥 ≤ −→𝑏𝑖𝑛 (4.14)

𝐴𝑒𝑞
−→𝑥 =

−→
𝑏𝑒𝑞 (4.15)

−→𝑥𝑐 ∈ ℝ0 (4.16)

−→𝑥𝑖 ∈ ℕ0 (4.17)

−→𝑥𝑏 ∈ {0, 1} (4.18)

where (4.13) defines the objective, (4.14) and (4.15) the inequality and

equality constraints, respectively. Finally, (4.16)-(4.18) ensure that decision

variables are of the proper type. Note that this formulation is very
generic. Hence, some models might only feature continuous or integer
or binary decision variables, making some of (4.16)-(4.18) redundant.
Additionally, some models might only feature inequality or equality
constraints.
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8: Otherwise, we might formulate a cor-

rect mathematical model, which however

does not represent the original practical

problem. On a similar note, albeit this

requires more experience, it is also impor-

tant to assess which simplifications are

allowed and which are not when trans-

lating a practical problem into a model

(the latter is anyway a simplification of

reality).

In the rest of the book, for the sake of simplicity, we will drop the
vector symbol

−→
(·) from above the decision variable vector −→𝑥 which

will become just 𝑥. Similarly, with 𝐶 we mean the coefficient vector
−→
𝐶 . Because we are dropping the vector symbol, we will also drop the
dot product symbol · and represent a generic objective function of an
LP as 𝐶𝑇𝑥 if needed. Furthermore, for continuous variables we will
be using interchangeably the expressions ∈ ℝ0 and ≥ 0 as they both
represent the set of non-negative real numbers.

4.7 Construction of a mathematical model

In this section, we experiment with the knowledge acquired and trans-

late a few practical problems into mathematical models. Typically, the

following steps should be undertaken:

1. understand the practical problem
8
;

2. identify sets, parameters, and decision variables;

3. build the objective function;

4. build the constraints;

5. assemble the full mathematical model.

We showcase this systematic approach in Example 4.1-Example 4.3.

Example 4.1 A company produces 2 types of fertilizer: L-fert and H-fert. Both
fertilizers need 3 raw materials to be produced: A, B, and C. For the coming
month, the company has got 1,500 tons of A, 1,200 tons of B, and 500 tons of C.
To produce 1 ton of L-fert, 2 tons of A, 1 ton of B, and 1 ton of C are needed. To
produce 1 ton of H-fert, 1 ton of A, 1 ton of B, and no raw material C are needed.
For each ton sold of L-fert the company earns 50e whereas for each ton of H-fert
sold 15e. Build a mathematical model for this problem with profit maximization
as the objective.

Let us focus on the sets first. We have fertilizers and raw materials. We

define Fas the set of fertilizers (which will be indexed by 𝑓 ) and M as

the set of materials (which will be indexed by 𝑚). Because working with

numbers is easier, we write F= {1, 2} and M= {1, 2, 3} implying that

L-fert→ 1 and H-fert→ 2 in Fand A→ 1, B→ 2, and C→ 3 in M.

In terms of parameters, we have three main types of parameters. First,

we have a maximum supply per material, which we define 𝑆𝑚 . Hence,

𝑆1 = 1, 500, 𝑆2 = 1, 200, and 𝑆3 = 500. Second, we have a specific quantity

of each material 𝑚 needed for the production of 1 ton of fertilizer 𝑓 . We

can define this parameter 𝑄𝑚 𝑓 . Note that it features two indices 𝑚 and
𝑓 because it is a parameter associated with a specific material-fertilizer
combination. In our case, we can write 𝑄1,1 = 2, 𝑄2,1 = 2, 𝑄3,1 = 1,

𝑄1,2 = 1, 𝑄2,2 = 1, and 𝑄3,2 = 0. Finally, we have the revenue associated

with 1 ton sold of a specific fertilizer, which we label 𝑅 𝑓 . In our case,

𝑅1 = 50 and 𝑅2 = 15.

We now proceed with the definition of the decision variables. We need

to decide how many tonnes to produce for both fertilizers, hence we

can define 𝑥1 and 𝑥2 as, respectively, the tonnes produced for fertilizer 1

(L-fert) and 2 (H-fert). The general form of this set of decision variables is

𝑥 𝑓 ∀ 𝑓 ∈ F. Because we are not given any constraint regarding how much
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to produce, we assume that fractional values are allowed and hence will

treat 𝑥1 and 𝑥2 as continuous decision variables.

The exercise states that the objective is to maximize the profit. Hence an

adequate objective function is

max

∑
𝑓 ∈F

𝑅 𝑓 𝑥 𝑓 (4.19)

where we leverage the conciseness of the introduced mathematical

notation. With

∑
𝑓 ∈F we imply that the objective is the summation of all

the terms𝑅 𝑓 𝑥 𝑓 part of our model. Note that the expression is unchanged
if we deal with 2 fertilizers like in this case (|F| = 2), or 2,000. This
compact representation offers inherent advantages. Each term in our

objective maps revenue generated from the sale of fertilizer 𝑓 . Notably,

we exclude any incurred costs from consideration. Thus, in this context,

profit equates to revenue.

Lastly, constraints must be addressed. We are constrained by the limited

supply of each of the 3 materials, meaning we cannot indefinitely produce

both fertilizers. Therefore, our production of L-fert and H-fert can vary,

provided the combination complies with the available supply of materials.

As a consequence, it feels right to write one constraint per material𝑚. The

left-hand side will map how much of that material is used to produce both

fertilizers and should be less or equal to the right-hand side containing

the available supply 𝑆𝑚 . In compact form, we can write

∑
𝑓 ∈F

𝑄𝑚 𝑓 𝑥 𝑓 ≤ 𝑆𝑚 ∀𝑚 ∈M (4.20)

where the term ∀𝑚 ∈Mdefines that we need to write such a constraint

for every material. Given a specific material𝑚 ∈M,

∑
𝑓 ∈F𝑄𝑚 𝑓 𝑥 𝑓 defines

the overall amount (in tonnes) of the material that we need to produce all

the fertilizers and such amount should be less or equal to the available

supply 𝑆𝑚 . For material A, for example, we would write 2𝑥1+ 𝑥2 ≤ 1, 500.

This means that 750 tonnes of fertilizer 𝑓 = 1, 1,500 tonnes of fertilizer

𝑓 = 2, or any other combination that does not exceed the available 1,500

tonnes of material 𝑚 = 1 can be produced.

We can now assemble all the pieces of the puzzle to obtain our full model

max

∑
𝑓 ∈F

𝑅 𝑓 𝑥 𝑓 (4.21)

s.t.:

∑
𝑓 ∈F

𝑄𝑚 𝑓 𝑥 𝑓 ≤ 𝑆𝑚 ∀𝑚 ∈M (4.22)

𝑥 𝑓 ∈ ℝ0 ∀ 𝑓 ∈ F (4.23)
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Figure 4.2: The iconic lighthouse of Texel.

Because of the limited number of decision variables and constraints, for

the sake of completeness, we also provide the extended mathematical

formulation

max 50𝑥1 + 15𝑥2 (4.24)

s.t.:

2𝑥1 + 𝑥2 ≤ 1, 500 (4.25)

𝑥1 + 𝑥2 ≤ 1, 200 (4.26)

𝑥1 ≤ 500 (4.27)

𝑥1 , 𝑥2 ∈ ℝ0 (4.28)

Example 4.2 A traveler is preparing for a weekend getaway to the picturesque
island of Texel in the Netherlands (see Figure 4.2). Alongside a larger backpack
filled with essentials like clothes and toiletries, they have a smaller backpack with
a strict weight limit of 3 kg. As an avid reader, they face the dilemma of selecting
which of the following six books to pack: “The Hitchhiker’s Guide to the Galaxy"
by Douglas Adams, “Ten Little Indians" by Agatha Christie, “Nineteen Eighty-
Four" by George Orwell, “Too Many Cooks" by Rex Stout, “Neuromancer"
by William Gibson, and “The Name of the Rose" by Umberto Eco. These books
weigh 1.1, 0.8, 0.6, 0.9, 1.0, and 1.2 kg, respectively. Additionally, the traveler
has assigned each book a sentimental value based on their enjoyment, rating
them as 4.8, 4.6, 4.9, 4.2, 4.7, and 4.8, respectively. However, they have come to
the realization that they cannot carry all six books in their small backpack. Thus,
our task is to assist them by formulating a mathematical model to maximize the
total value of the books they carry.

We have a set of books B = {1, 2, 3, 4, 5, 6} indexed by 𝑏 where the

ordering follows the same order in which books were listed (hence, “The
Hitchhiker’s Guide to the Galaxy" is book 1, etc.). The larger backpack is

irrelevant to our model, so we only need to consider the smaller backpack.

While we could define a set solely for the backpack in question, it is not

essential. It is worth noting that our objective is to determine which
books to pack in the backpack, not in which backpack to place them.

Each book 𝑏 comes with two parameters, namely its weight and value. We

could label them, respectively,𝑊𝑏 and 𝑉𝑏 . In addition, the backpack has

a maximum weight capacity of 𝐶. Because there is only one backpack,
we do not need to assign any index to this parameter.

Finally, our only decision variable regards whether to pack book 𝑏 in the

backpack or not. Given it is a choice, a binary decision variable seems

the appropriate decision variable type: 𝑥𝑏 ∈ {0, 1} ∀𝑏 ∈ B will take a

unitary value if book 𝑏 travels with the traveler in the backpack to Texel

and a zero value otherwise.

We now combine parameters and decision variables to determine the

objective value and the constraints. To maximize the carried value, we

can write max

∑
𝑏∈B𝑉𝑏𝑥𝑏 which correctly adds the value 𝑉𝑏 of book 𝑏

if such a book is packed (𝑥𝑏 = 1). Having one backpack, we need a single
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9: See this Wikipedia page for a proper

definition and different types of plot

twists in books and movies.

constraint in the form

∑
𝑏∈B𝑊𝑏𝑥𝑏 ≤ 𝐶. We can now assemble the full

model as:

max

∑
𝑏∈B

𝑉𝑏𝑥𝑏 (4.29)

s.t.:

∑
𝑏∈B

𝑊𝑏𝑥𝑏 ≤ 𝐶 (4.30)

𝑥𝑏 ∈ {0, 1} ∀𝑏 ∈ B (4.31)

Note that a good policy is to ensure the objective function and the

constraints are consistent unit-wise. For example, let us consider (4.30),

the left-hand side is a summation of weights in kilograms (each 𝑥𝑏 is

adimensional), which is consistent with the right-hand side. For the sake

of completeness, we expand this model as well:

max 4.8𝑥1 + 4, 6𝑥2 + 4.9𝑥3 + 4.2𝑥4 + 4.7𝑥5 + 4.8𝑥6 (4.32)

s.t.:

1.1𝑥1 + 0.8𝑥2 + 0.6𝑥3 + 0.9𝑥4 + 1.0𝑥5 + 1.2𝑥6 ≤ 3 (4.33)

𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5 , 𝑥6 ∈ {0, 1} (4.34)

Because Example 4.2 focused on books, Example 4.3 will feature a plot

twist
9
.

Example 4.3 Just before leaving for Texel, our traveler has acquired two
additional small backpacks with capacities of 2.2 and 2.3 kg, respectively. They
have opted to discard the original 3 kg backpack in favor of using these two. Given
their preference for categorizing books, they have decided not to mix science
fiction books (“The Hitchhiker’s Guide to the Galaxy", “Nineteen Eighty-Four",
and “Neuromancer") and mystery books (“Ten Little Indians", “Too Many
Cooks", and “The Name of the Rose") in the same backpack. Our revised task
is to adjust the model from Example 4.2 to accommodate these new conditions
while maintaining the same objective.

We first need to make some adjustments to our sets. We could split

set B into the two subsets B𝑠 and B𝑚 containing, respectively, science

fiction and mystery books. Inheriting the indexing from Example 4.2,

we write B𝑠 = {1, 3, 5} and B𝑚 = {2, 4, 6}. Note that the two subsets

are mutually exclusive: B𝑠 ∩ B𝑚 = ∅. Because a new requirement

mandates that no books of different genres should be placed in the same

backpack, we could define a set with all the incompatible pairs: B𝑖𝑛𝑐 =

{(1, 2), (1, 4), (1, 6), (3, 2), (3, 4), (3, 6), (5, 2), (5, 4), (5, 6)}. We assembled

B𝑖𝑛𝑐 by constructing book pairs (𝑏1 , 𝑏2)with 𝑏1 ∈ B𝑠 and 𝑏2 ∈ B𝑚 . We
do not need to write the reciprocal pairs, because saying that books

https://en.wikipedia.org/wiki/Plot_twist


32 4 Introduction to mathematical modeling

1 and 2 are incompatible is equivalent to saying that books 2 and 1
are incompatible. Because now we have two backpacks, we define set

K= {1, 2} (we chose K instead of the more natural B that would have

reflected the initial letter of backpack as set Bwas already defined).

We must also update our capacity parameter, now denoted as 𝐶𝑘 , to

accommodate the presence of two backpacks with different weight

capacities. Furthermore, our decision variables require adjustment to

reflect the increased complexity. We must now decide not only which

books to carry but also in which backpack to place them. We define

𝑥𝑏𝑘 ∈ {0, 1} ∀𝑏 ∈ B, 𝑘 ∈ K a binary decision variable that is unitary

if the place book 𝑏 in backpack 𝑘 and zero otherwise. Note that now

we have 12 decision variables (|B| × |K| = 6 × 2 = 12) instead of the

6 from Example 4.2 because the choice of which backpack to select

increases the number of options.

We directly provide the mathematical formulation and then discuss the

variations with respect to Example 4.2. The model is as follows:

max

∑
𝑏∈B

∑
𝑘∈K

𝑉𝑏𝑥𝑏𝑘 (4.35)

s.t.:

∑
𝑘∈K

𝑥𝑏𝑘 ≤ 1 ∀𝑏 ∈ B (4.36)∑
𝑏∈B

𝑊𝑏𝑥𝑏 ≤ 𝐶𝑘 ∀𝑘 ∈ K (4.37)

𝑥𝑏1𝑘 + 𝑥𝑏2𝑘 ≤ 1 ∀(𝑏1 , 𝑏2) ∈ B𝑖𝑛𝑐 , 𝑘 ∈ K (4.38)

𝑥𝑏𝑘 ∈ {0, 1} ∀𝑏 ∈ B, 𝑘 ∈ K (4.39)

(4.35) features a double summation instead of the single summation

of (4.29). This is correct because now we must consider that books must

be assigned to a specific backpack. Moreover, considering the decision

variable 𝑥𝑏𝑘 , if we were to solely consider the summation

∑
𝑏∈B, we

would encounter difficulties in determining the appropriate value for 𝑘.

This should prompt a cautionary note.

Constraint set (4.36) presents a new constraint essential for ensuring that

each book is allocated to at most one backpack. Although in practice,
we would never breach this constraint due to the impossibility of
duplicating a book, it is crucial to explicitly inform the model of this
restriction to prevent inadvertent assignment of the same book to
multiple backpacks. Constraint (4.37) replicates the constraint in (4.30),

but now it is formulated for each backpack individually to ensure their

respective capacities are not exceeded.

Additionally, (4.38) introduces a novel constraint to prevent incompatible

books from coexisting in the same backpack. For every pair of incompa-

tible books (∀(𝑏1 , 𝑏2) ∈ B𝑖𝑛𝑐) and backpack, the constraint ensures that

at most one book from the pair is assigned to that backpack. The use

of the ≤ inequality allows for none of the books to be assigned to the

backpack if it is beneficial for the solution. In general, constraint (4.38)
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10: The term big-𝑀 denotes that this con-

stant should be large enough to ensure

the model achieves its goal. Notwith-

standing, big-𝑀 should not be exces-

sively large for algorithmic reasons re-

lated to the solution methods explained

in Chapter 6. While choosing a larger-

than-necessary big-𝑀 still serves its ma-

thematical purposes, it generally makes

the algorithm slower.

is a very important constraint in many models and is a variant of the
either-or (see Section 4.8.2) constraint, as it forces a maximum of one
choice between two incompatible options. Finally, (4.39) defines the

binary nature of the decision variables and states that they are defined

for every book and backpack combination.

In this instance, we opt not to present the extended formulation due

to its extensive nature, encompassing nearly twenty constraints. The

succinct representation of the mathematical model, although requiring

some familiarity, demonstrates its brevity and effectiveness in delineating

all the pertinent sets, subsets, and parameters, a task that the extended

formulation would struggle to achieve.

4.8 Special types of constraints

4.8.1 Big-𝑀 notation

When constructing a mathematical model, there are instances where we

need to enable a certain decision variable to be greater than zero only

if another variable is activated, or activate only one constraint among a

set of two. To accomplish this, we utilize an auxiliary decision variable

that serves as a trigger for the decision-making process. This decision

variable, typically binary, is coupled with a “sufficiently large" constant
10

generally denoted as 𝑀 symbolically.

Example 4.4 Consider a scenario where we must choose between en-

forcing the constraint 𝑥1 ≤ 4 and 𝑥1 ≥ 7. This situation might arise in a

production process where, depending on certain investments governed

by other decision variables, we can produce a maximum of either 4

or a minimum of 7 items (with 𝑥1 representing this decision variable).

However, directly adding both constraints would lead to infeasibility, as

the two constraints are in conflict with each other. To address this, we

employ the big-𝑀 formulation, albeit at the expense of introducing an

additional decision variable.

Let us showcase the formulation first and then analyze what it achieves.

The formulation is:

𝑥1 ≤ 4 +𝑀(1 − 𝑦) (4.40)

𝑥1 ≥ 7 −𝑀𝑦 (4.41)

𝑥1 ∈ ℝ0 (4.42)

𝑦 ∈ {0, 1} (4.43)

where 𝑦 ∈ {0, 1} is the additional decision variable. Because the model

must assign a value to 𝑦, we can explore the two scenarios. If 𝑦 = 0 we

obtain:
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11: In other references, the active con-

straint might be defined as the binding
constraint, with the de-activated one de-

fined as the non-binding constraint or re-
dundant constraint.

12: In the literature, either-or constraints

might be referred to as bi-linear formu-

lations.

𝑥1 ≤ 4 +𝑀 ≃ ∞ (4.44)

𝑥1 ≥ 7 (4.45)

𝑥1 ∈ ℝ0 (4.46)

(4.47)

whereas if 𝑦 = 1:

𝑥1 ≤ 4 (4.48)

𝑥1 ≥ 7 −𝑀 ≃ −∞ (4.49)

𝑥1 ∈ ℝ0 (4.50)

(4.51)

Hence, in the first case, we leverage 𝑀 and the choice 𝑦 = 0 to de-

activate (4.44) and use (4.45) as the active constraint
11

. Note that choosing

the right value for 𝑀 is key. 𝑀 ≃ ∞ would do the job as it imposes

𝑥1 ≤ ∞, but we mentioned it is wise to choose, if possible, the smallest

value that achieves the intended goal. In the second case, we leverage

𝑀 and the choice 𝑦 = 1 to de-activate (4.49) and use (4.48) as the active

constraint. Note that in (4.41) we used −𝑀𝑦 so that, if 𝑦 = 1, (4.49) yields

𝑥1 ≥ −∞ which is always verified (for us, a constraint that is “always
verified" is equivalent to de-activting such a constraint).

We shed some light on the sign of big-𝑀s according to the specific

constraint in the  A note on the sign of big-𝑀 in inequality constraints
box.

 A note on the sign of big-𝑀 in inequality constraints

Generally speaking, 𝑀 is used with a plus sign in ≤ inequality

constraints and with a minus sign in ≥ constraints. With such a choice,

we set the right-hand side of an ≤ constraint to∞ so that the constraint

is always satisfied, while we set the right-hand side of an ≥ constraint

to −∞ so that the constraint is always satisfied as well. Again, in
practical terms, we do not need∞ or −∞, but the smallest 𝑀 that
achieves the intended goal.

Example 4.4 was mainly focused on the introduction of the concept

of the big-𝑀 formulation and its main role in activating/de-activating

constraints. In the rest of this section and of the book, we will appreciate

even more its widespread use, starting with the either-or constraint type

presented in Section 4.8.2 (which was also the type of constraint we used

for our introductory example above).

4.8.2 Either-or constraints

An either-or constraint
12

, as hinted at with Example 4.4 in Section 4.8.1,

is a constraint type where one alternative out of two options available,

as the name suggests, must be picked. Alternative can mean a single
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constraint, as in Example 4.4, or a set of constraints that should be active

altogether, with the other set being de-activated. The activation and

de-activation are carried out by the additional binary variable 𝑦 we

discussed above. We consider now an example characterized by a set of

constraints representing each alternative.

Example 4.5 Let us consider a mathematical model based on two decision

variables 𝑥1 and 𝑥2 whose objective is the minimization of their linear

combination: min𝑍 = 𝐶1𝑥1 + 𝐶2𝑥2 (where 𝐶1 and 𝐶2 are pre-defined

coefficients). Additionally, let us assume that the problem can be defined

in one of the following two feasible regions: F1 where 2 ≤ 𝑥1 ≤ 4 and

4 ≤ 𝑥2 ≤ 6 and F2 where 5 ≤ 𝑥1 ≤ 8 and 2 ≤ 𝑥2 ≤ 3. Depending

on the actual values of 𝐶1 and 𝐶2, choosing F1 and F2 as the active

feasible region is recommended given the objective specified above. For

example, if (𝐶1 , 𝐶2) = (1, 1) then choosing F1 is the better choice with

(𝑥1 , 𝑥2) = (2, 4) → 𝑍 = 𝑥1 + 𝑥2 = 6 being the optimal solution and

objective. Conversely, if (𝐶1 , 𝐶2) = (1, 4) then choosing F2 is the better

choice with (𝑥1 , 𝑥2) = (5, 2) → 𝑍 = 𝑥1 + 4𝑥2 = 13 being the optimal

solution and objective respectively. We display the situation with the

two preferred feasible regions and optimal solutions according to the

(𝐶1 , 𝐶2) choice in Figure 4.3. For interested readers, the two solutions

can be computed graphically as explained in Section 6.1.

2 3 4 5 6 7 8 9

2

3

4

5

6

7

F1

F2

𝑥1

𝑥2

Figure 4.3: Feasible regions F1 (in green)

and F2 (in red) for the problem described

in Example 4.5. For the cases (𝐶1 , 𝐶2) =
(1, 1) and (𝐶1 , 𝐶2) = (1, 4), the optimal

solution is highlighted with a circle: it

is respectively (𝑥1 , 𝑥2) = (2, 4) → 𝑍 =

𝑥1 + 𝑥2 = 6 as part of F1 and (𝑥1 , 𝑥2) =
(5, 2) → 𝑍 = 𝑥1 + 4𝑥2 = 13 as part of F2.

Our objective is to refine our mathematical model to automatically select

the optimal feasible region while de-activating the alternate one, based

on the specific coefficients (𝐶1 , 𝐶2) chosen. We achieve such an objective

by leveraging the properties of the either-or constraint as follows:

min 𝐶1𝑥1 + 𝐶2𝑥2 (4.52)

s.t.:
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13: We refer interested readers to OR in
an OB World (2024) for a thorough ex-

planation of the algorithmic role of big-

𝑀 in mathematical modeling. We also

encourage readers to go through Chap-

ters 6-7 before consulting the suggested

reference.

𝑥1 ≥ 2 −𝑀1(1 − 𝑦) (4.53)

𝑥1 ≤ 4 +𝑀2(1 − 𝑦) (4.54)

𝑥2 ≥ 4 −𝑀3(1 − 𝑦) (4.55)

𝑥2 ≤ 6 +𝑀4(1 − 𝑦) (4.56)

𝑥1 ≥ 5 −𝑀5𝑦 (4.57)

𝑥1 ≤ 8 +𝑀6𝑦 (4.58)

𝑥2 ≥ 2 −𝑀7𝑦 (4.59)

𝑥2 ≤ 3 +𝑀8𝑦 (4.60)

𝑥1 , 𝑥2 ∈ ℝ0 (4.61)

If 𝑦 = 1, we select F1 as the active feasible region by activating (4.53)-

(4.56) and de-activating (4.57)-(4.60). If 𝑦 = 0, we select F2 as the active

feasible region by activating (4.57)-(4.60) and de-activating (4.53)-(4.56).

Readers will observe that we have precisely labeled the 8𝑀s with distinct

indices 𝑀1 through 𝑀8. This choice serves to underscore our earlier

assertion that each 𝑀 need not be set to an exceedingly large value,

but rather to the smallest value necessary to de-activate the associated

constraint. One primary consideration is that each 𝑀 only influences the

solution when it is multiplied by a non-zero value. For instance, in (4.54),

𝑀2 is significant only if 𝑦 = 0. If 𝑦 = 0, the objective is to activate F2,

implying the necessity to satisfy the condition 𝑥1 ≤ 8 (as in (4.58)). By

assigning 𝑀2 = 4, (4.54) transforms into 𝑥1 ≤ 4 + 4(1 − 𝑦) = 8 when

𝑦 = 0, thus harmonizing with (4.58). Any value smaller than 4 for 𝑀2

would lead to failure in activating F2 accurately. For instance, setting

𝑀2 = 3 yields 𝑥1 ≤ 7 from (4.54), resulting in a vertical truncation of

F2. Conversely, any value exceeding 4 for 𝑀2 would serve the purpose,

yet an excessively large number (e.g., 𝑀2 = 1, 000, 000) might adversely

affect the algorithm’s performance in seeking the optimal solution within

the feasible region (refer to Chapter 6)
13

.

For the sake of completeness, we report here the “smallest" values for the

eight big-𝑀s in (4.53)-(4.60): 𝑀1 = 0, 𝑀2 = 4, 𝑀3 = 2, 𝑀4 = 0, 𝑀5 = 3,

𝑀6 = 0, 𝑀7 = 0, and 𝑀8 = 3. Readers might notice that four values
were set to zero. This deliberate decision stems from the recognition
that no big-𝑀 value is necessary for these instances. Our attention

is drawn specifically to Equation 4.53, and we encourage readers to

validate the other three scenarios. When 𝑦 = 1, the model activates F1,

necessitating 𝑥1 ≥ 2. Conversely, when 𝑦 = 0, F2 is activated, requiring

𝑥1 ≥ 5. Notably, the latter inequality imposes a more stringent condition

than 𝑥1 ≥ 2. Consequently, in 𝑥1 ≥ 2 −𝑀1, there is no need to further

diminish the original right-hand side of 2 to avoid conflicting with 𝑥1 ≥ 5.

This permits us to set 𝑀1 = 0.

In conclusion, we showed how either-or decisions in a mathematical

model can be described with this specific constraint type that entails

the addition of a binary decision variable. Such a variable acts as a

switch deciding which condition to activate and which to de-activate.

We also showed that a condition could be a single constraint or a set

of constraints that should hold altogether. Finally, we showed that the

big-𝑀 coefficients we need for the de-activation do not need to be set
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to ∞, but can be properly bounded by analyzing the properties of the

considered model.

4.8.3 𝐾-out-of-𝑁 constraints

For the next special constraint type, i.e., the K-out-of-N, we directly dive

into Example 4.6.

Example 4.6 Let us consider the same situation as in Example 4.5, but

let us add a third candidate feasible region F3 where
5

2
≤ 𝑥1 ≤ 4 and

5

2
≤ 𝑥2 ≤ 7

2
. We display the new scenario (without the optimal solutions

for different (𝐶1 , 𝐶2) values) in Figure 4.4.
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Figure 4.4: Feasible regions F1 (in green),

F2 (in red), and F3 (in orange) for the

problem described in Example 4.6.

Our goal remains the same. Given a specific (𝐶1 , 𝐶2) pair of coefficients

in (4.52), we want our mathematical model to discern and select the

suitable feasible region that minimizes the objective function. Alas,

despite the knowledge acquired in Section 4.8.2, we realize an unforeseen

complication is hindering our planned modeling approach. Because now

we have three options to choose from and only one to activate, a single

binary variable 𝑦 is not enough. When two options are available, we can

employ 𝑦 as a switch that activates the option (i.e., the constraints) where

the big-𝑀 terms disappear and de-activates the option where the big-𝑀

terms are triggered instead.

Luckily, we can get inspiration from the name of this constraint type,

i.e., K-out-of-N, and realize we are in a situation where we would like

to activate one constraint set (𝐾 = 1) out of the three available (𝑁 = 3).

Hence, we need three switches (binary decision variables) instead of

one so that the model can turn them on and off in the best way possible

according to the specific (𝐶1 , 𝐶2) values in this case. We can label the

three variables 𝑦1, 𝑦2, and 𝑦3 and impose that if a certain variable is set

to 1, then the associated constraint set is active. Then, because we require

exactly one constraint set out of the three to be active in our problem
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(𝐾-out-of-𝑁→ 1-out-of-3), we need constraint 𝑦1 + 𝑦2 + 𝑦3 = 1 to impose

such a requirement.

We can model our problem as follows:

min 𝐶1𝑥1 + 𝐶2𝑥2 (4.62)

s.t.:

𝑥1 ≥ 2 −𝑀(1 − 𝑦1) (4.63)

𝑥1 ≤ 4 +𝑀(1 − 𝑦1) (4.64)

𝑥2 ≥ 4 −𝑀(1 − 𝑦1) (4.65)

𝑥2 ≤ 6 +𝑀(1 − 𝑦1) (4.66)

𝑥1 ≥ 5 −𝑀(1 − 𝑦2) (4.67)

𝑥1 ≤ 8 +𝑀(1 − 𝑦2) (4.68)

𝑥2 ≥ 2 −𝑀(1 − 𝑦2) (4.69)

𝑥2 ≤ 3 +𝑀(1 − 𝑦2) (4.70)

𝑥1 ≥
5

2

−𝑀(1 − 𝑦3) (4.71)

𝑥1 ≤ 4 +𝑀(1 − 𝑦3) (4.72)

𝑥2 ≥
5

2

−𝑀(1 − 𝑦3) (4.73)

𝑥2 ≤
7

2

+𝑀(1 − 𝑦3) (4.74)

𝑦1 + 𝑦2 + 𝑦3 = 1 (4.75)

𝑥1 , 𝑥2 ∈ ℝ0 (4.76)

𝑦1 , 𝑦2 , 𝑦3 ∈ {0, 1} (4.77)

Because of (4.75), only one of the three constraint sets (4.63)-(4.66), (4.67)-

(4.70), and (4.71)-(4.74) will be active with all the 𝑀 on the right-hand

side disapperaring. The other two sets, whose 𝑦 will be set to 0, will be

redundant. Note that, because of the larger size of the problem at hand,

we left a generic 𝑀 instead of customizing them so that they are as small

as needed. We leave this additional exercise to interested readers.

We also want to point out that Example 4.6 addresses a specific combina-

tion of (𝐾, 𝑁) values(specifically (1, 3)), but that the general version of

the 𝐾-out-of-𝑁 constraint can be generalized as follows. Let us consider

Sgroups of constraints indexed by 𝑠, where |S| = 𝑁 defines the overall

number of such groups. Each 𝑠 ∈ S can potentially contain a different

number of constraints (many 𝐾-out-of-𝑁 constraints feature a single

constraint per set 𝑠): we store the indices 𝑖 of the rows of the𝐴𝑖𝑛 coefficient

matrix forming this set R𝑠 . We then define each constraint set 𝑠 ∈ Sas∑
𝑗∈𝑥 𝐴𝑖 𝑗𝑥 𝑗 ≤ 𝑏𝑖 ∀𝑖 ∈ R𝑠 , where with

∑
𝑗∈𝑥 we imply that we sum over

every decision variable. Note that we employ a generic expression ≤,

but in each constraint set the actual constraints can appear in ≤, ≥, or

(less commonly) = form. We generalize (assuming a max problem) the

𝐾-out-of-𝑁 constraint as follows:
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14: With a slight abuse of notation, in

(4.82) with ∀𝑗 ∈ 𝑥 we intend all the in-

dices defining the decision variable set

𝑥, e.g., {0, 1, 2, · · · }. Note that we use the

general notation 𝑥 𝑗 ∈ ℝ0 to keep the for-

mulation general, but some 𝑥 𝑗 variables

can be integer.

max 𝐶𝑇𝑥 (4.78)

s.t.:

∑
𝑗∈𝑥

𝐴𝑖 𝑗𝑥 𝑗 ≤ 𝑏𝑖 +𝑀(1 − 𝑦1) ∀𝑖 ∈ R1 (4.79)

· · ·∑
𝑗∈𝑥

𝐴𝑖 𝑗𝑥 𝑗 ≤ 𝑏𝑖 +𝑀(1 − 𝑦𝑁 ) ∀𝑖 ∈ R𝑁 (4.80)∑
𝑠∈S

𝑦𝑠 = 𝐾 (4.81)

𝑥 𝑗 ∈ ℝ0 ∀𝑗 ∈ 𝑥 (4.82)

𝑦𝑠 ∈ {0, 1} ∀𝑠 ∈ S (4.83)

where (4.79)-(4.80) each define a set 𝑠 ∈ Sof constraints that the model

will decide to activate or not. We are forcing the model to activate 𝐾 of

them via (4.81). (4.82)-(4.83)
14

define the nature of the decision variables.

We discuss a variant of the K-out-of-N constraint in the  Notation
variation in the K-out-of-N constraint set box.

 Notation variation in the K-out-of-N constraint set

In our notation, we employ 𝑦𝑠 = 1 to activate constraint set 𝑠 ∈ S

by multiplying 𝑀 on all its right-hand sides by (1 − 𝑦𝑠), so that

𝑦𝑠 = 1 makes all 𝑀s disappear and the constraint set active. In other

references, all 𝑀s are multiplied by 𝑦𝑠 . This entails that a constraint

set is active when 𝑦𝑠 = 0 and not when 𝑦𝑠 = 1 as in our case. This also

calls for a change in (4.81), as now the right-hand side should define

the number of alternatives we want to be switched off, namely 𝑁 − 𝐾,

hence

∑
𝑠∈S 𝑦𝑠 = 𝑁 − 𝐾.

We can express the revised version of the K-out-of-N constraint as

follows:

max 𝐶𝑇𝑥 (4.84)

s.t.:

∑
𝑗∈𝑥

𝐴𝑖 𝑗𝑥 𝑗 ≤ 𝑏𝑖 +𝑀𝑦1 ∀𝑖 ∈ R1 (4.85)

· · ·∑
𝑗∈𝑥

𝐴𝑖 𝑗𝑥 𝑗 ≤ 𝑏𝑖 +𝑀𝑦𝑁 ∀𝑖 ∈ R𝑁 (4.86)∑
𝑠∈S

𝑦𝑠 = 𝑁 − 𝐾 (4.87)

𝑥 𝑗 ∈ ℝ0 ∀𝑗 ∈ 𝑥 (4.88)

𝑦𝑠 ∈ {0, 1} ∀𝑠 ∈ S (4.89)

Concluding this section, it is crucial to highlight the extreme cases
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𝐾 = 0 and 𝐾 = 𝑁 . In our notation, when 𝐾 = 0, it indicates that all
constraint sets should be de-activated, while 𝐾 = 𝑁 implies that all
constraint sets should be activated, effectively depriving the model
of any choice. Therefore, this constraint type holds true significance
when 1 ≤ 𝐾 ≤ 𝑁 − 1.

4.8.4 Fixed charge constraints

A fixed charge constraint is a constraint where a single decision variable

or a combination of decision variables can only be greater than zero if

another binary decision variable takes a unitary value. In general terms,

such a constraint can be expressed as∑
𝑗∈𝑥

𝐴𝑖 𝑗𝑥 𝑗 ≤ 𝑀𝑦𝑖 (4.90)

where 𝑦𝑖 is the “activating" binary variable and 𝑀 = max

{∑
𝑗∈𝑥 𝐴𝑖 𝑗𝑥 𝑗

}
entails that we set 𝑀 equal to the maximum value the left-hand side

can take. The name fixed charge can be explained by focusing on the two

terms separately:

▶ fixed: activating the binary variable 𝑦𝑖 on the right-hand side has

no bearing on the number of decision variables activated on the left-

hand side. This independence is facilitated by the precise selection

of the value for 𝑀, as previously elaborated. Therefore, activating

𝑦𝑖 constitutes a fixed and necessary condition if we desire any

combination of decision variables on the left-hand side to be active

as well. Let us consider the following example:

𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≤ 15𝑦1 (4.91)

where 𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5 ∈ {0, 1}. If all five binary variables were

unitary, then the left-hand side would be equal to 1 × 1 + 2 × 1 +
3 × 1 + 4 × 1 + 5 × 1 = 15, hence we set 𝑀 = 15. If 𝑦1 = 0, then

𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≤ 0 implies that all five variables are

only allowed to be 0. Whether we want to activate just 𝑥1 (for a

contribution of 1 unit to the left-hand side) or all five variables (for

a contribution of 15 units to the left-hand side), we are forced to

activate 𝑦1 anyway;

▶ charge: Expanding on the previous point and delving into the

real-life implications of such a constraint, it is crucial to note that

activating the left-hand side of (4.90) typically does not happen

without cost. Without some form of penalty for the choice 𝑦𝑖 = 1,

the model tends to favor it, as it grants more flexibility in selecting

appropriate decision variables. To mitigate this tendency, a penalty

can be imposed through an additional (for a max problem) −𝐶𝑖𝑦𝑖
term in the objective function for each binary decision variable 𝑦𝑖
controlling the right-hand side of a fixed charge constraint. Here,

𝐶𝑖 represents a monetary cost (or an equivalent charge, hence the

name), which must be incurred to activate the associated left-hand

side.

In summary, fixed charge constraints carry a compelling economic
interpretation. They address scenarios where an initial “flat fee" (the
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fixed charge) must be paid to initiate an activity, alongside a variable
revenue or cost directly linked to the activity level. In profit-oriented

contexts, the goal typically revolves around maximizing overall profit,

while in cost-centric situations, it is about minimizing overall costs. De-

spite their economic analogy, fixed charge constraints remain applicable

even when the initiation of an activity is not explicitly tied to economic

incentives or disincentives. To substantiate this claim, we display two

examples. In Example 4.7, we tackle a problem explicitly addressing

economic implications. In contrast, Example 4.8 pertains to a problem

initially devoid of cost considerations, but we introduce a variant that

incorporates costs.

Example 4.7 An aircraft manufacturer is contemplating the launch of two new
aircraft models: a narrow-body and a wide-body. The estimated development
costs for these models are 1 Billion e and 5 Billion e, respectively. Anticipating
market demand, the manufacturer expects to sell each narrow-body aircraft for
110 Million e and each wide-body for 340 Million e. Operating with separate
assembly lines for narrow-body and wide-body aircraft, the manufacturer projects
a maximum production capacity of 90 narrow-body and 60 wide-body aircraft
within the initial two years post-development. Due to workforce constraints, the
combined assembly capacity is capped at 120 aircraft. Given these parameters
and focusing solely on revenue from aircraft sales and costs stemming from the
development, the manufacturer seeks to evaluate the feasibility of developing
both aircraft models and determine the optimal production mix in terms of the
number of aircraft per type in the first two years after initial deployment. It
is important to note that the manufacturer is optimistic, assuming that every
aircraft produced will be sold. Our task is to develop a mathematical model
that can answer the manufacturer’s questions using profit maximization as the
objective.

Our model features a single set, i.e., the set of aircraft types A= {1, 2},
indexed by 𝑎, where 1 and 2 map the narrow- and wide-body aircraft

types, respectively. The aircraft type-specific parameters are 𝐶𝑎 , the

development cost of aircraft type 𝑎, 𝑅𝑎 , the revenue per aircraft produced

(and purchased) of type 𝑎, and 𝑁𝑎 , the maximum number of aircraft of

type 𝑎 produced in two years. Additionally, 𝑁𝑚𝑎𝑥 specifies the maximum

number of aircraft of both types that can be produced within the two-year

timeframe. In our context, we have 𝐶1 = 1, 000, 𝐶2 = 5, 000, 𝑅1 = 110,

and 𝑅2 = 340 (we divided all monetary values by 1,000,000). In addition,

𝑁1 = 90, 𝑁2 = 60, and 𝑁𝑚𝑎𝑥 = 120. To map the aircraft produced (and

purchased) per type, we define the integer decision variable 𝑥𝑎 . Recalling

the definition of fixed charge constraints, we define a second set of

binary decision variables 𝑦𝑎 that, if unitary, map the commitment of the

manufacturer to develop aircraft type 𝑎. We define our mathematical

model as:

max

∑
𝑎∈A

𝑅𝑎𝑥𝑎 −
∑
𝑎∈A

𝐶𝑎𝑦𝑎 (4.92)

s.t.:
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Figure 4.5: A glimpse of the dome of

Catania.

𝑥𝑎 ≤ 𝑁𝑎𝑦𝑎 ∀𝑎 ∈ A (4.93)∑
𝑎∈A

𝑥𝑎 ≤ 𝑁𝑚𝑎𝑥 (4.94)

𝑥𝑎 ∈ ℕ0 ∀𝑎 ∈ A (4.95)

𝑦𝑎 ∈ {0, 1} ∀𝑎 ∈ A (4.96)

(4.92) defines the profit of the aircraft manufacturer. The first term is

the revenue deriving from aircraft sales, the second term is the fixed

development cost of both aircraft types. (4.93) is the set of fixed charge

constraints. If no development cost for aircraft 𝑎 is allowed, then no

aircraft of that type can be produced (𝑦𝑎 = 0 → 𝑥𝑎 ≤ 0 → 𝑥𝑎 = 0). If

the development cost is incurred, then as many aircraft as the maximum

production allows can be sold (𝑦𝑎 = 1 → 𝑥𝑎 ≤ 𝑁𝑎). (4.94) limits the

overall production of aircraft to stay within the bounds imposed by the

available workforce, while (4.95)-(4.96) define the integer (resp. binary)

nature of decision variables 𝑥𝑎 and 𝑦𝑎 . The extended mathematical

formulation, for the sake of completeness, is:

max 110𝑥1 + 340𝑥2 − 1, 000𝑦1 − 5, 000𝑦2 (4.97)

s.t.:

𝑥1 ≤ 90𝑦1 (4.98)

𝑥2 ≤ 60𝑦2 (4.99)

𝑥1 + 𝑥2 ≤ 120 (4.100)

𝑥1 , 𝑥2 ∈ ℕ0 (4.101)

𝑦1 , 𝑦2 ∈ {0, 1} (4.102)

Example 4.8 A traveler is flying to the beautiful city of Catania, Italy (see Fig-
ure 4.5) in a few days. They want to carry a set of items I, indexed by 𝑖, ranging
from clothes, to books, electronics, and outdoor gear. Each item features a specific
weight 𝑊𝑖 and volume 𝑉𝑖 . The traveler has at their disposal a set of luggage
L, indexed by 𝑙, each capable of accommodating a volume 𝑉 𝑙 . In addition, the
airline the traveler is flying with requires a maximum weight per luggage equal
to 𝑊 . The traveler is adamant they have a sufficiently large set of luggage to
transport all the needed items 𝑖 ∈ I. Because every piece of luggage after the
first one must be paid extra via a flat rate, the traveler would like to devise a
packing strategy that avoids paying unnecessary luggage fees. Therefore, our
objective is to devise a mathematical model aimed at assisting the traveler, with
the goal of minimizing the required pieces of luggage used.

For this problem, we have already introduced the sets and parameters.

We can directly focus on the decision variables. One of our tasks is

to assign every item to a piece of luggage, hence we can define 𝑥𝑖𝑙
as a binary variable that takes a unitary value if item 𝑖 is assigned to

luggage 𝑙. Additionally, we need to track the number of pieces of luggage

being used. To address this, we define another binary variable 𝑦𝑙 that
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15: Note that (4.104) is quite a stringent

constraint as mentioned in the text and

assumes the traveler has enough capacity

(in terms of number and weight/volume

of luggage) to transport everything. Oth-

erwise, the model might be infeasible.

takes a unitary value if piece of luggage 𝑙 is utilized. This second set of

decision variables directly leads to the definition of the objective function,

namely min

∑
𝑙∈L 𝑦𝑙 . We must link our 𝑥𝑖𝑙 and 𝑦𝑙 variables. The concept

is straightforward: we do not need to transport empty luggage, but every

piece of luggage containing at least one item must accompany us (this

should resonate with the fixed charge constraint type). Furthermore, we

must ensure that items allocated to a piece of luggage do not surpass

the available volume (as limited by the piece of luggage itself) or weight

(as restricted by the airline). We directly present and then discuss the

formulation:

min

∑
𝑙∈L

𝑦𝑙 (4.103)

s.t.:

∑
𝑙∈L

𝑥𝑖𝑙 = 1 ∀𝑖 ∈ I (4.104)∑
𝑖∈I

𝑊𝑖𝑥𝑖𝑙 ≤ 𝑊 ∀𝑙 ∈ L (4.105)∑
𝑖∈I

𝑉𝑖𝑥𝑖𝑙 ≤ 𝑉 𝑙 ∀𝑙 ∈ L (4.106)∑
𝑖∈I

𝑥𝑖𝑙 ≤ |I|𝑦𝑙 ∀𝑙 ∈ L (4.107)

𝑥𝑖𝑙 ∈ {0, 1} ∀𝑖 ∈ I, 𝑙 ∈ L (4.108)

𝑦𝑙 ∈ {0, 1} ∀𝑙 ∈ L (4.109)

(4.103) aims at minimizing the used pieces of luggage. (4.104) ensures

that the traveler carries to their destination every item they need
15

.

(4.105)-(4.106) guarantee that each piece of luggage adheres to weight

and volume restrictions. In (4.105), for a given 𝑙 ∈ L the left-hand side

comprises 𝑥𝑖𝑙 multiplied by their respective weight𝑊𝑖 . Any combination

of items can be chosen as long as the cumulative weight does not exceed

𝑊 . Similarly, (4.106) operates on a volume basis. The crux lies in (4.107),

the pivotal fixed charge constraint. When 𝑦𝑙 = 0, then

∑
𝑖∈I 𝑥𝑖𝑙 ≤ 0

effectively bars the utilization of the piece of luggage, as it implies all 𝑥𝑖𝑙
should be 0 for the current piece of luggage 𝑙. Conversely, if 𝑦𝑙 = 1, we

allow piece of luggage 𝑙 to be used and potentially packed with all items

(

∑
𝑖∈I 𝑥𝑖𝑙 ≤ |I|) pending weight and volume requirements. However,

this decision comes at a cost: the objective function increases by one
unit.

We now introduce a slight variation. In this scenario, the traveler realizes they
have overlooked adding any checked-in luggage. They discover that the airline
does not impose a flat rate per piece of luggage. Instead, each piece of luggage
𝑙 ∈ L is associated with a specific purchase cost 𝐶𝑙 if carried on-board. The
updated challenge is to modify the model to incorporate this variation.

We realize the only change we need to apply is to Equation 4.103, which

is translated into
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min

∑
𝑙∈L

𝐶𝑙𝑦𝑙 (4.110)

(4.104)-(4.109) still apply to the model, because we did not change

any other parameter or requirement. This small variation entails quite

a substantial change. With a fixed flat rate 𝐶 per piece of luggage,

min

∑
𝑙∈L𝐶𝑦𝑙 = min 𝐶

∑
𝑙∈L 𝑦𝑙 = 𝐶min

∑
𝑙∈L 𝑦𝑙 . Hence, minimi-

zing the number of pieces of luggage on-board is equivalent to minimi-

zing the overall cost, which lead to (4.103). Conversely, since in (4.110)

every piece of luggage 𝑙 ∈ Lhas a specific cost, it might be more advanta-

geous to check-in more “cheap" pieces of luggage than fewer “expensive"

ones, pending weight and volume restrictions are satisfied. For example,

a hat-trick of pieces of luggage costing 20, 30, and 40e is more advised,

given (4.110), than a single piece of luggage costing 100e.

4.9 Final remarks

To make sure that a mathematical model is correct, we should always

verify the following:

▶ connection between objective function and constraints: are vari-

ables connected in a way that enforces relationships that are mean-

ingful mathematically and practically?

▶ feasibility of the mathematical model and of the underlying
original problem. Is the model triggering the right results if we

force certain decision variables, for example, to be 0?

▶ type and amount of constraints. Are we imposing the right amount

of constraints? For example, in Example 4.8 we need one constraint

per piece of luggage 𝑙 ∈ L to ensure weight restrictions are met.

We should verify we have |L| constraints of that type;

▶ indexes. Are the indices right and in the right place (e.g., in

the summations (

∑ · · · ) versus in the definition of how many

constraints we need of a certain type (∀ · · · )?

The mathematical notation introduced in this chapter may initially appear

cumbersome, as do the mentioned remarks. However, both are crucial

for improving the readability of a mathematical model and ensuring that

the defined model is accurate and meets the requirements of the original

problem.
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A line is a dot that went for a walk.

Paul Klee

In Chapter 4, we delved into how the mathematical models emphasized in

this book adhere to linearity. This necessity extends to both the objective

function and every constraint, stipulating that decision variables can only

appear in linear combinations. The requirement seems quite stringent

at first glance and indeed prevents some problems from being tackled

and solved with the solution methods described in Chapters 6, 7, and 8.

Notwithstanding, many non-linear operators can be mathematically
linearized so that the resulting model is linear. The price to pay, because

of the “no free lunch" theorem
1
, is that the linearization process generally

entails the addition of auxiliary decision variables and/or constraints,
hence contributing to the increase of the complexity of the original
mathematical model.

Some readers might be surprised to realize that, in Chapter 4, we already

“implicitly" applied some linearization techniques. One example is the

either-or constraint from Section 4.8.2 because such a constraint maps

the (non-linear) logical operator ∨2
. The “algorithmic" price we pay is

the addition of binary decision variable 𝑦. Another fitting example is

the fixed charge constraint (Section 4.8.4). If we assume that the initial

fixed charge cost 𝐶 allows the generation of revenue proportionally to

𝑥, where 𝑥 maps the level of productivity or sales (e.g., aircraft sales

in Example 4.7), via parameter 𝑅 (revenue per unit 𝑥), we can define the

profit 𝑃 as

𝑃 =

{
0 if x=0

𝑅𝑥 − 𝐶 otherwise

(5.1)

which is a non-linear function featuring a discontinuity in 𝑥 = 0. Leve-

raging the addition of binary variable 𝑦 both in the constraints and the

objective facilitates the linearization of such a discontinuity.

Despite their inherent non-linear nature, we opted to incorporate the

aforementioned constraints in Chapter 4 because they are “standard"

constraint types as per OR standards. In the subsequent sections, we

shift our focus to other constraint types. Although widely utilized in

mathematical modeling, these types are more renowned (or notorious, de-

pending on the context) for their non-linear characteristics, necessitating

a linearization process.

5.1 Product of decision variables

Often, our problem formulations necessitate representing quantities of

interest through the product of two decision variables. For instance,

https://en.wikipedia.org/wiki/No_free_lunch_theorem
https://en.wikipedia.org/wiki/Logical_disjunction
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consider a scenario involving the Champions League final. If two specific

teams (indexed 𝑖 and 𝑗) qualify for the final, we aim to capture this event

in our mathematical model. We could define binary variables 𝑥𝑖 and 𝑥 𝑗 ,

each taking a value of 1 if team 𝑖 or team 𝑗 reaches the final, respectively.

Consequently, we can introduce another binary variable 𝑦𝑖 𝑗 = 𝑥𝑖𝑥 𝑗 ,

which equals 1 if both teams qualify for the final (𝑦𝑖 𝑗 = 1 × 1 = 1), and 0

otherwise. However, this relationship is non-linear due to the product of

two binary decision variables. Fortunately, it is linearizable, as described

in Section 5.1.1. Similarly, situations may arise where we encounter the

product of a binary and a continuous decision variable, which is also

linearizable, as discussed in Section 5.1.2.

5.1.1 Product of two binary variables

We already introduced, for this specific case, our intended goal. Given

binary variables 𝑥𝑖 and 𝑥 𝑗 , our goal is to capture 𝑦𝑖 𝑗 = 𝑥𝑖𝑥 𝑗 , but in a linear

fashion. We achieve this by defining the following constraints:

𝑦𝑖 𝑗 ≥ 𝑥𝑖 + 𝑥 𝑗 − 1 (5.2)

𝑦𝑖 𝑗 ≤ 𝑥𝑖 (5.3)

𝑦𝑖 𝑗 ≤ 𝑥 𝑗 (5.4)

𝑦𝑖 𝑗 , 𝑥𝑖 , 𝑥 𝑗 ∈ {0, 1} (5.5)

where (5.2) is the key constraint. It forces 𝑦𝑖 𝑗 to be unitary if both 𝑥𝑖
and 𝑥 𝑗 are unitary 𝑦𝑖 𝑗 ≥ 1 + 1 − 1 = 1 → 𝑦𝑖 , 𝑗 = 1 and leaves it the

freedom to be either 1 or 0 otherwise. If all the 𝑦𝑖 𝑗 decision variables

appear in the objective function in a term that should be minimized,

then the model will assign them a value of 0 as this is beneficial for

the objective. In such a case, (5.3)-(5.4) are not strictly needed, but they

help with the linear relaxation of the problem (see Chapters 6-8). They

force 𝑦𝑖 𝑗 to be 0 as soon as one of the two original binary variables is

0 (𝑥𝑖 = 0 → 𝑦𝑖 𝑗 ≤ 0 → 𝑦𝑖 𝑗 = 0. The same applies if 𝑥 𝑗 = 0). Similarly,

in the case of a maximization problem, the model will favor assigning

𝑦 variables to be 1 all the time. Yet having (5.3)-(5.4) prevents this as

soon as one variable between 𝑥𝑖 and 𝑥 𝑗 is not unitary. We showcase an

application of such a linearization in Example 5.1.

Example 5.1 In many hub airports worldwide, a significant portion of passen-
gers are transfer passengers, meaning the hub airport neither marks the origin
nor the destination of their journey. For such airports, a critical KPI is the
connection time, closely linked to the distance for transfer passengers. Requiring
transfer passengers to disembark from their first flight at one end of the airport
and then traverse a considerable distance to connect to their subsequent flight
can lead to discomfort and impede the overall passenger experience. The problem
of efficiently assigning aircraft to gates is generally called the Gate Assignment
Problem (GAP), and can have different objectives reflecting the different needs of
the main stakeholders involved, namely the airport, the airlines, and passengers.
In this example, we employ the perspective of the passengers. The airport knows
the set of inbound/outbound flights F(indexed by 𝑓 ) that are to be operated on
a specific day. The airport is also characterized by a set of gates G(indexed by
𝑔), such as the ones shown in Figure 5.1, where 𝐷𝑔1𝑔2

is the walking distance
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Figure 5.1: Aircraft gated at Amsterdam

Schiphol Airport.

between gates 𝑔1 and 𝑔2. Additionally, the airport has received by all airlines
data on the number of transfer passengers 𝑃 𝑓1 𝑓2 that are expected to transfer
inside the terminal from flight 𝑓1 to flight 𝑓2. For example, if 𝑓1 is a flight
from Milan Linate Airport to Amsterdam Schiphol Airport, 𝑓2 is a flight from
Amsterdam Schiphol Airport to John F. Kennedy International Airport, and
𝑃 𝑓1 𝑓2 = 15, the hub airport (Amsterdam Schiphol Airport in this case) is aware
that 15 passengers are connecting there from Italy on their way to the United
States. We aim to formulate a suitable objective function for the GAP, aiding
the hub airport in minimizing the total distance traveled by transfer passengers
within a given day.

The airport knows the overall number of transfer passengers expected

during the analyzed day, as the total number is

∑
𝑓1∈F

∑
𝑓2∈F𝑃 𝑓1 𝑓2 . We

consider each pair of flights and aggregate the number of transfer

passengers between them. It is important to note that we should account

for both directions, i.e., ( 𝑓1 , 𝑓2) and ( 𝑓2 , 𝑓1). For instance, in the scenario

mentioned earlier, passengers may also transfer in the Netherlands from

the United States on their way to Italy. The crucial decision that drives our

objective is how to assign aircraft to gates. In fact, if we assign flight 𝑓1 to

gate 𝑔1 and flight 𝑓2 to gate 𝑔2, the overall walking distance related to

those two flights is𝐷𝑔1𝑔2

(
𝑃 𝑓1 𝑓2 + 𝑃 𝑓2 𝑓1

)
, which is obtained by multiplying

the distance between the two gates by the number of transfer passengers

in both directions (from 𝑓1 to 𝑓2 and vice versa).

Because the airport needs to assign flights to gates, a reasonable decision

variable could be 𝑥 𝑓 𝑔 ∈ {0, 1}, taking unitary value if flight 𝑓 is assigned

to gate 𝑔. Then, our goal is to add to our objective function every term in

the 𝐷𝑔1𝑔2

(
𝑃 𝑓1 𝑓2 + 𝑃 𝑓2 𝑓1

)
form if flight 𝑓1 is assigned to gate 𝑔1 and flight 𝑓2

to gate 𝑔2. We could rewrite this statement in more mathematical terms

as “if 𝑥 𝑓1𝑔1
𝑥 𝑓2𝑔2

= 1" and notice the expression entails the product of

two binary decision variables. Hence, we could rely on (5.2)-(5.4), with

the complication that now each binary variable depends on two indices,

and hence 𝑦 depends on four indices. We define 𝑦 𝑓1𝑔1 𝑓2𝑔2
∈ {0, 1} which

takes a unitary value if flight 𝑓1 is assigned to gate 𝑔1 and flight 𝑓2 to

gate 𝑔2. If we sort flights by increasing order, i.e., F= {1, 2, 3, · · · }, we

should define such a decision variable ∀ 𝑓1 , 𝑓2 ∈ F : 𝑓2 > 𝑓1 , 𝑔1 , 𝑔2 ∈ G.

With 𝑓2 > 𝑓1 we mean that flight 𝑓2 comes after flight 𝑓1 in the set
(basically, that index 𝑓2 is greater than index 𝑓1). This is done to reduce
the variables to be defined. In fact, stating that 𝑓1 is assigned to 𝑔1 and
𝑓2 to 𝑔2 is equivalent to stating that 𝑓2 is assigned to 𝑔2 and 𝑓1 to 𝑔1.
Conversely, we need to cycle over all gates twice. As a matter of fact,
𝑦 𝑓1𝑔 𝑓2𝑔 is a valid decision variable as it allows for the assignment of
two flights to the same gate 𝑔 if they are sufficiently spaced apart in
time. We can fully formalize our 𝑦 decision variables as:

𝑦 𝑓1𝑔1 𝑓2𝑔2
≥ 𝑥 𝑓1𝑔1

+ 𝑥 𝑓2𝑔2
− 1 ∀ 𝑓1 , 𝑓2 ∈ F : 𝑓2 > 𝑓1 , 𝑔1 , 𝑔2 ∈ G (5.6)

𝑦 𝑓1𝑔1 𝑓2𝑔2
≤ 𝑥 𝑓1𝑔1

∀ 𝑓1 , 𝑓2 ∈ F : 𝑓2 > 𝑓1 , 𝑔1 , 𝑔2 ∈ G (5.7)

𝑦 𝑓1𝑔1 𝑓2𝑔2
≤ 𝑥 𝑓2𝑔2

∀ 𝑓1 , 𝑓2 ∈ F : 𝑓2 > 𝑓1 , 𝑔1 , 𝑔2 ∈ G (5.8)

Thanks to the introduction of the 𝑦 𝑓1𝑔1 𝑓2𝑔2
decision variables, we can now

express our objective function (in a linear fashion) as:
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3: Note: the decision variable can also

be an integer with no changes in the

linearization process.

min

∑
𝑓1∈F

∑
𝑓2∈F: 𝑓2> 𝑓1

∑
𝑔1∈G

∑
𝑔2∈G

𝐷𝑔1𝑔2

(
𝑃 𝑓1 𝑓2 + 𝑃 𝑓2 𝑓1

)
𝑦 𝑓1 𝑓2𝑔1𝑔2

(5.9)

(5.9) expresses the overall walking distance of transfer passengers and

depends on the gate assignment choices that the airport performs. Note

that we purposely decided not to provide a full GAP formulation, as

there is no standard formulation in the first place. Apart from some

generic constraints (e.g., every flight 𝑓 should be assigned to a gate 𝑔:∑
𝑔∈G𝑥 𝑓 𝑔 = 1 ∀ 𝑓 ∈ F), there is a lot of variability related to the type of

airport, the modeling assumptions, the stakeholder’s perspective when

deciding the objective function. We refer interested readers to Daş et

al., 2020 for a comprehensive review of GAP formulations. Finally, we

comment on the size of the decision variable set 𝑦 for large hubs in  A
note on the number of 𝑦 𝑓1 𝑓2𝑔1𝑔2

decision variables in the GAP box.

 A note on the number of 𝑦 𝑓1 𝑓2𝑔1𝑔2
decision variables in the GAP

Hub airports such as Amsterdam Schiphol Airport can handle more

than 1,000 flights per day and can be characterized by roughly 200

gates. It should be noted that a flight can generally be assigned only to

a subset of gates because of customs restrictions (e.g., Schenghen vs.

non-Schenghen flights), airline preferences, or other reasons. Notwith-

standing, let us assume a hub airport that, on a given day, must handle

|F| = 1, 000 flights and that each flight can be assigned to a subset

G𝑓 of gates that “only" comprises 10 options. Hence, we could get a

rough estimate of the number of 𝑦 𝑓1 𝑓2𝑔1𝑔2
decision variables needed

as:

|𝑦 𝑓1 𝑓2𝑔1𝑔2
| = |F|(|F| − 1)

2

× G𝑓 × G𝑓

=
1, 000 × 999

2

× 10 × 10 ≃ 50, 000, 000

which highlights the complexity of such a problem for large hub

airports. It is also important to highlight that the GAP is generally
not solved for a full day, but smaller planning windows are solved
sequentially (which entails more manageable problem sizes). Be-
cause of flight delays and many other unforeseen circumstances, a
GAP solution will be subject to continuous changes throughout the
day anyway. We have all experienced at least once in our lifetime a
sudden gate change for one of our flights!

5.1.2 Product of a binary and a continuous decision
variable

Some mathematical formulations might require the product of a con-

tinuous
3

and a binary variable in the constraints or the objective. Let

𝑥 ∈ {0, 1} be the binary variable and 𝑦 ≤ 𝑈 the continuous variable

where 𝑈 is a maximum value (upper bound) such a variable can take.

Introducing a new continuous variable 𝑧, defining 𝑧 = 𝑥𝑦 achieves
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our intended goal in a non-linear fashion. The linearization of this re-

lation entails the reworking of the 𝑥𝑦 product via the following set of

constraints:

𝑧 ≤ 𝑈𝑥 (5.10)

𝑧 ≤ 𝑦 (5.11)

𝑧 ≥ 𝑦 −𝑈(1 − 𝑥) (5.12)

𝑥 ∈ {0, 1} (5.13)

𝑦 ≤ 𝑈 (5.14)

𝑧 ≥ 0 (5.15)

where in (5.10) and (5.12)𝑈 plays the role of a big-𝑀.

Let us verify that the intended goal is achieved by analyzing the behavior

of (5.10)-(5.12) for different combinations of 𝑥 and 𝑦. If 𝑥 = 0 and 𝑦 = 0

we obtain 𝑧 ≤ 0, 𝑧 ≤ 0, and 𝑧 ≥ 0, which implies 𝑧 = 0. If 𝑥 = 0 and

𝑦 > 0 we obtain 𝑧 ≤ 0, 𝑧 ≤ 𝑦, and 𝑧 ≥ 𝑦 −𝑈 , which implies 𝑧 = 0. If

𝑥 = 1 and 𝑦 = 0 we obtain 𝑧 ≤ 𝑈 , 𝑧 ≤ 0, and 𝑧 ≥ 0, which implies 𝑧 = 0.

Finally, if 𝑥 = 1 and 𝑦 > 0 we obtain 𝑧 ≤ 𝑈 , 𝑧 ≤ 𝑦, and 𝑧 ≥ 𝑦, which

implies 𝑧 = 𝑦 as requested.

5.2 Absolute value

Some mathematical formulations rely on the absolute value of the diffe-

rence between two continuous or integer variables to function correctly.

Consider a model tasked with efficiently packing two-dimensional boxes

into a two-dimensional bin along an 𝑥 − 𝑧 vertical plane. Due to Earth’s

gravity, floating boxes are not allowed. Therefore, box 𝑖 can only have a

𝑧-coordinate greater than zero if stacked on top of another box 𝑗. This

requirement can be verbalized as “if the upper side of box 𝑗 has the same
height as the lower side of box 𝑖, then box 𝑖 can be stacked on top of box 𝑗".

We can mathematically translate the absolute value |𝑥−𝑦 | of the difference

of continuous decision variables 𝑥 and 𝑦 with the following set of

equations:

𝑥 − 𝑦 ≤ 𝑧𝑥𝑦 (5.16)

𝑦 − 𝑥 ≤ 𝑧𝑥𝑦 (5.17)

𝑧𝑥𝑦 ≤ 𝑥 − 𝑦 +𝑀(1 − 𝑚𝑥𝑦) (5.18)

𝑧𝑥𝑦 ≤ 𝑦 − 𝑥 +𝑀𝑚𝑥𝑦 (5.19)

𝑚𝑥𝑦 ∈ {0, 1} (5.20)

𝑥, 𝑦, 𝑧𝑥𝑦 ≥ 0 (5.21)

where 𝑧𝑥𝑦 is an auxiliary continuous variable which is ensured to be

equal to |𝑥 − 𝑦 |, 𝑀 is an upper bound (big-𝑀) on the value 𝑧𝑥𝑦 can

take, and 𝑚𝑥𝑦 ∈ {0, 1} takes a unitary value if 𝑥 ≥ 𝑦. Let us verify the
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4: Note; we define dummy a constraint

that is always satisfied. Dummy con-

straints are found oftentimes in formu-

lations where big-𝑀s and a binary va-

riable appear in two linked constraints.

Depending on the value taken by the

binary, one of the two constraints will

be active and the other dummy (or vice

versa). Previously in the book, we also

used the term de-activated. Hence, we

might be using the terms dummy, redun-

dant, or de-activated interchangeably.

validity of (5.16)-(5.19) considering the three distinct cases 𝑥 − 𝑦 = 𝛼 > 0,

𝑥 − 𝑦 = 0, and 𝑥 − 𝑦 = 𝛼 < 0.

In the first case (𝑥 − 𝑦 = 𝛼 > 0), we have

𝛼 ≤ 𝑧𝑥𝑦
− 𝛼 ≤ 𝑧𝑥𝑦
𝑧𝑥𝑦 ≤ 𝛼

𝑧𝑥𝑦 ≤ 𝛼 +𝑀

with the second and fourth constraints being dummy
4

constraints, i.e.,

redundant. The first and third constraints (𝑧𝑥𝑦 ≥ 𝛼 and 𝑧𝑥𝑦 ≤ 𝛼) imply

𝑧𝑥𝑦 = |𝑥 − 𝑦 | = 𝑥 − 𝑦 as required.

In the second case (𝑥 = 𝑦), we have:

0 ≤ 𝑧𝑥𝑦
0 ≤ 𝑧𝑥𝑦
𝑧𝑥𝑦 ≤ 0

𝑧𝑥𝑦 ≤ 𝑀

with the fourth constraint being dummy. The first (or second) and third

constraints (𝑧𝑥𝑦 ≥ 0 and 𝑧𝑥𝑦 ≤ 0) imply 𝑧𝑥𝑦 = |𝑥 − 𝑦 | = 0 as required.

Note that this second case is the limit case of both the first and third
one when 𝛼 = 0, but we opted to highlight it as a special case of its
own.

Finally, in the third case (𝑦 − 𝑥 = 𝛼 > 0), we have

− 𝛼 ≤ 𝑧𝑥𝑦
𝛼 ≤ 𝑧𝑥𝑦
𝑧𝑥𝑦 ≤ −𝛼 +𝑀
𝑧𝑥𝑦 ≤ 𝛼

with the first and third constraints being dummy. The second and fourth

constraints (𝑧𝑥𝑦 ≥ 0 and 𝑧𝑥𝑦 ≤ 0) imply 𝑧𝑥𝑦 = |𝑥 − 𝑦 | = 𝑦 − 𝑥 as

required.

Note that, in some formulations, it may be much easier to handle absolute

value cases. For example, if we have a constraint:

|𝑥1 − 𝑥2 | ≤ 2

it is easy to represent the same with two constraints as follows:

𝑥1 − 𝑥2 ≤ 2 (5.22)

−𝑥1 + 𝑥2 ≤ 2 (5.23)
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𝑥1

𝑥2

Figure 5.2: Feasible region with the ab-

solute value constraint - convex case.

1 2 3 4

2

4

𝑥1

𝑥2

Figure 5.3: Feasible region with the abso-

lute value constraint - non-convex case.

which actually represents the feasible region given in Figure 5.2.

However, we need to be careful if we have the case with

|𝑥1 − 𝑥2 | ≥ 2

which creates a non-convex region as given in Figure 5.3 where the same

trick cannot be used. In this case, we have two disjoint feasible regions

and we can resort to the techniques discussed in Section 4.8.2.

5.3 Piecewise linear formulations

In some mathematical formulations, the objective function and/or con-

straints may be represented by a nonlinear function such as polynomials

or an exponential curve. For example, the profit as the objective function

of a mathematical model might have a diminishing rate of returns de-

pending on decision variable 𝑥 as in Figure 5.4. This logarithmic function

can be approximated by a piecewise linear curve as already indicated on

the figure. Therefore, the profit curve can be represented by those three

linear segments with the variable profits of 𝑐1, 𝑐2, and 𝑐3 respectively,

corresponding to their slopes.

In order to represent this piecewise linear relation, we need to adapt

the mathematical formulation. First of all, we need to represent the

original decision variable 𝑥 in terms of three new decision variables

corresponding to the linear segments as follows:

𝑥 = 𝛿1 + 𝛿2 + 𝛿3 (5.24)

where 𝛿1 is the linear segment for the values of 𝑥 between 0 and the

first break point 𝑏1, 𝛿2 corresponds to the segment between 𝑏1 and 𝑏2

and finally 𝛿3 corresponds the the segment between 𝑏2 and 𝑏3. The 𝛿
variables are therefore given as follows:

0 ≤ 𝛿1 ≤ 𝑏1 (5.25)

0 ≤ 𝛿2 ≤ 𝑏2 − 𝑏1 (5.26)

0 ≤ 𝛿3 ≤ 𝑏3 − 𝑏2 (5.27)

The objective function then can be reformulated as:

max 𝑐1𝛿1 + 𝑐2𝛿2 + 𝑐3𝛿3 (5.28)

so that it approximates the original full line representing the non-linear

function 𝑓 (𝑥) in Figure 5.4 with the piecewise linear dashed line. It
follows that the more segments we choose, the more accurate (in
general) the approximation, at the cost of an increased size of the
linearized model.

For this piecewise linear transformation to be valid, we need to ensure

that 𝛿1 = 𝑏1 whenever 𝛿2 > 0 and similarly that 𝛿2 = 𝑏2 whenever 𝛿3 > 0.
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Figure 5.4: Piecewise linear approxima-

tion of a non-linear function.

As per (5.28), we are reconstructing 𝑥 as the summation of the three

segments, but we only need the second one if we exceed the bound 𝑏1 of

the first one and the third one if we exceed the bound 𝑏2 of the second

segment. Note that if 𝑐1 > 𝑐2 > 𝑐3 this will already be ensured in case

of a maximization problem as we have at hand. Nevertheless, to have a

general formulation that addresses other cases we need to define binary

variables to ensure this. Let us define:

𝑤1 ∈ {0, 1}, 1 if 𝛿1 = 𝑏1, 0 otherwise

𝑤2 ∈ {0, 1}, 1 if 𝛿2 = 𝑏2, 0 otherwise.

Namely, if 𝑤1 = 𝑤2 = 0, only the first line segment is active and 𝑥 ≤ 𝑏1.

If 𝑤1 = 1 and 𝑤2 = 0, the first and second line segments are active

and 𝑏1 ≤ 𝑥 ≤ 𝑏2. Finally, if 𝑤1 = 𝑤2 = 1, all three segments are active

and 𝑥 ≥ 𝑏2. Therefore, we represent the decision variable 𝑥 through
three linear segments with the definition of three continuous variables
(𝛿) and two binary decision variables (𝑤). The number of the binary
decision variables is always equal to the number of linear segments
minus one.

Considering the above definitions and requirements, we can provide the

full formulation as follows:

max 𝑐1𝛿1 + 𝑐2𝛿2 + 𝑐3𝛿3 (5.29)

s.t.:

𝑏1𝑤1 ≤ 𝛿1 ≤ 𝑏1 (5.30)

(𝑏2 − 𝑏1)𝑤2 ≤ 𝛿2 ≤ (𝑏2 − 𝑏1)𝑤1 (5.31)

0 ≤ 𝛿3 ≤ (𝑏3 − 𝑏2)𝑤2 (5.32)

𝑤1 , 𝑤2 ∈ {0, 1} (5.33)
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5: Note that in (5.35) we do not have an

equality, but an ≥ inequality. As is many

applications the goal is to minimize time,

the equality will hold. Another reason

why the ≥ is preferred is that the truck

might have to wait at the customer be-

cause it arrived too early. Hence the start

of the service time could be delayed.

This formulation can be applied to piecewise linear curves with any

number of segments. In that case, we would need to have a general

variable 𝛿 𝑗 for each segment 𝑗 with a length of 𝐿 𝑗 , and the constraints

will read:

𝐿 𝑗𝑤 𝑗 ≤ 𝛿 𝑗 ≤ 𝐿 𝑗𝑤 𝑗−1 (5.34)

5.4 If-else statement

In some mathematical formulations, we might require a constraint to

become active if a certain choice is being made and to be redundant other-

wise. This requirement can be interpreted as an if-else statement where
if a certain condition is met, the constraint is active, while it is made
redundant otherwise. We show a standard application in Example 5.2.

Example 5.2 Let us consider a truck that must perform deliveries to a set of
customers C (indexed by 𝑖 or 𝑗) scattered across town. We need to assist the
trucking company in assessing the best sequence of customers to visit, given
that they all have specified different preferred delivery times. Hence, we want to
deliver everything on time while avoiding unnecessary detours.

In Section 4.1, we already anticipated that a routing decision variable

𝑥𝑖 𝑗 maps, if unitary, that the truck moves from customer 𝑖 to customer 𝑗.

In addition, because keeping track of time is important in this problem

to avoid delays, we can define continuous decision variable 𝑡𝑖 as the

time when our truck starts the delivery service at customer 𝑖 ∈ C.

Additionally, we assume that performing the delivery at a customer

𝑖 ∈ C takes 𝑃𝑖 time-units and that the traveling time between customers

𝑖 and 𝑗 requires 𝑇𝑖 𝑗 time-units. In such a setting, keeping track of time is

easy if a sequence of customers is pre-assigned to us. Let us assume the

first three customers are, in sequence, 𝑐 = 1, 2, 3 and that the truck starts

the journey from a depot indexed by 0 at time 0. Hence, 𝑡1 = 𝑇01 implies

that the start of service of customer 1 is simply equal to the traveling time

from the depot to the customer (assuming we can start the service as

soon as we arrive there). Conversely, 𝑡2 = 𝑡1 + 𝑃1 + 𝑇12 = 𝑇01 + 𝑃1 + 𝑇12

implies that the start of service of customer 2 is equal to the start of

service of customer 1 (𝑡1) plus the time needed for the delivery (𝑃1) and

the traveling time between customers (𝑇12). Following the same logic,

𝑡3 = 𝑡2 + 𝑃2 + 𝑇23 = 𝑇01 + 𝑃1 + 𝑇12 + 𝑃2 + 𝑇23.

Our main issue is that we are not given a pre-assigned sequence of

customers, as defining the most appropriate sequence is exactly our task.

Hence, we need to enforce a time-precedence constraint such as

𝑡 𝑗 ≥ 𝑡𝑖 + 𝑃𝑖 + 𝑇𝑖 𝑗 (5.35)

only if the truck moves from 𝑖 to 𝑗5. This is exactly an if-else constraint

type because we can rephrase the following requirement as if the truck
drives from i to j, then time-precedence constraint (5.35) must be enforced; else,
it must be made redundant. We visually display the situation in Figure 5.5,

where we assume that the truck moves from 𝑖 to 𝑗, but represent a third
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customer 𝑙 symbolizing that the arc (𝑙 , 𝑗) is also an option we could

consider in our mathematical model.

Figure 5.5: Representation of a cus-

tomer pair (𝑖 , 𝑗) served in sequence by a

truck. Because of the sequence, a time-

precedence constraint 𝑡 𝑗 ≥ 𝑡𝑖 + 𝑃𝑖 + 𝑇𝑖 𝑗
must hold.

i j

l

We achieve the intended goal by leveraging the ability of a big-𝑀 constant

to activate or de-activate a constraint depending on the value taken by a

binary decision variable which, in this case, is 𝑥𝑖 𝑗 . The correct form of

the constraint is

𝑡 𝑗 ≥ 𝑡𝑖 + 𝑃𝑖 + 𝑇𝑖 𝑗 −𝑀𝑖 𝑗(1 − 𝑥𝑖 𝑗) ∀𝑖 , 𝑗 ∈ N (5.36)

where we are specifying that such a constraint must be enforced for every

pair on nodes 𝑖 , 𝑗 in our network that comprises both the depot and all

customers (with N= {0, 1, · · · , |C|} we mean the full set of nodes). The

additional term 𝑀𝑖 𝑗(1− 𝑥𝑖 𝑗) satisfies our needs. If 𝑥𝑖 𝑗 = 1, then we obtain

the original constraint (5.35) that we want to enforce. If 𝑥𝑖 𝑗 = 0, then we

obtain

𝑡 𝑗 ≥ 𝑡𝑖 + 𝑃𝑖 + 𝑇𝑖 𝑗 −𝑀𝑖 𝑗 (5.37)

which can be re-written as

𝑀𝑖 𝑗 ≥ 𝑡𝑖 − 𝑡 𝑗 + 𝑃𝑖 + 𝑇𝑖 𝑗 (5.38)

Note that in (5.36) (and as a consequence (5.37)-(5.38)) we use 𝑀𝑖 𝑗 to

reflect that the big-𝑀 can be customized for each (𝑖 , 𝑗) customer pair

to avoid excessively large constants. Let us assume that every customer

specifies a time-window where they would like their delivery to start

being carried out, where the earliest time is 𝐸𝑖 and the latest time is 𝐿𝑖 .

This constraint is stringent, implying that deliveries beyond the planned

time-window are not permissible. We can extend this rigidity by defining

analogous values for the depot, indicating the earliest time a truck can

depart (start of shift) and the latest time it should return (end of shift).

Therefore, in constraint (5.38), we can calculate the maximum possible

value for the right-hand side as follows: since 𝑡𝑖 is preceded by a positive

sign, we substitute it with the latest (i.e., largest) permissible time node 𝑖

can be visited, denoted as 𝐿𝑖 . Conversely, as 𝑡 𝑗 is preceded by a negative

sign, we substitute it with the earliest (i.e., smallest) value it can assume,

denoted by 𝐸 𝑗 . Constants such as 𝑃𝑖 and 𝑇𝑖 𝑗 remain unchanged and

should be preserved as they are. Hence, we could assign to every 𝑀𝑖 𝑗

the value of
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𝑀𝑖 𝑗 = max

{
0, 𝐿𝑖 − 𝐸 𝑗 + 𝑃𝑖 + 𝑇𝑖 𝑗

}
(5.39)

which guarantees that 𝑀𝑖 𝑗 is “large enough" to make a constraint redun-

dant, if needed, without being excessively large. Note that (5.39) displays

a max operator with the first terms being 0. In fact, 𝐿𝑖 − 𝐸 𝑗 + 𝑃𝑖 + 𝑇𝑖 𝑗 < 0

implies𝐸 𝑗 > 𝐿𝑖+𝑃𝑖+𝑇𝑖 𝑗 , meaning that the delivery at customer 𝑗will have

to be carried out after the delivery at customer 𝑖 (and not necessarily as

the next one after 𝑖). Hence, no𝑀𝑖 𝑗 is formally needed as 𝑡 𝑗 ≥ 𝑡𝑖+𝑃𝑖+𝑇𝑖 𝑗
will be satisfied anyway.

Referring back to Figure 5.5 and focusing on node 𝑗 as the “destination"

node, if we assume it is visited right after node 𝑖 the application of (5.36)

yields

𝑡 𝑗 ≥ 𝑡𝑖 + 𝑃𝑖 + 𝑇𝑖 𝑗 (5.40)

𝑡 𝑗 ≥ 𝑡𝑙 + 𝑃𝑙 + 𝑇𝑙 𝑗 −max

{
0, 𝐿𝑙 − 𝐸 𝑗 + 𝑃𝑙 + 𝑇𝑙 𝑗

}
(5.41)

where (5.40) is active as the time-precedence between 𝑖 and 𝑗 must be

enforced, while (5.41) is made redundant. Note that (5.41) does not imply

that customer 𝑙 is not visited before customer 𝑗, but that they are not
visited immediately before customer 𝑗, which is a substantial difference
modeling-wise. The final routing could, for example, be 𝑙 → 𝑖 → 𝑗,
and (5.40)-(5.41) would still hold. We let readers verify that, in such a

case, a similar time-precedence constraint is active between 𝑙 and 𝑖 as

𝑥𝑙𝑖 = 1.

We conclude the section by providing a general form of the if-else

constraint. Let us assume that our goal is to allow our model to activate or

not a generic expression

∑
𝑗∈𝑥 𝐴𝑖 𝑗𝑥 𝑗 ≤ 𝑏𝑖 using a binary decision variable

𝑦𝑖 . Then, the generic form of an if-else constraint can be expressed as∑
𝑗∈𝑥

𝐴𝑖 𝑗𝑥 𝑗 − 𝑏𝑖 ≤ 𝑀(1 − 𝑦𝑖) (5.42)

where in (5.42) the constraint is active if 𝑦𝑖 = 1 and redundant if 𝑦𝑖 = 0.

In Part IV-Part V we will showcase several if-else constraints playing a

crucial role in different mathematical models.
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Still round the corner there may wait A new

road or a secret gate And though I oft have

passed them by A day will come at last when

I Shall take the hidden paths that run West

of the Moon, East of the Sun.

John Ronald Reuel Tolkien

6.1 Graphical representation of an LP and
corner points

Mathematical models representing real-life situations could entail mil-

lions of decision variables and constraints. This makes their graphical

representation not possible in an interpretable way. Mathematical mod-

els with three decision variables (namely 𝑥1, 𝑥2, and 𝑥3) could still

be mapped in a three-dimensional space, but we will focus on two-

dimensional examples (with decision variables 𝑥1 and 𝑥2) that can be

displayed in a two-dimensional plane. In such a plane, constraints are

half-planes if they are inequalities and lines if they are equalities as long

as the model is an LP (and hence, all constraints are linear). Being able to

properly translate a two-dimensional LP into its graphical representation

is a first step towards the understanding of the formal solution method

that efficiently can tackle larger models.

Let us consider the following example.

Example 6.1 A street food company has a budget of 360,000e to invest in two
different types of trucks. Trucks of the first type serve tacos. They cost 30,000e
each, there is a maximum of 8 available for purchase, and it is expected that
will attract 2,000 customers each per week. Trucks of the second type serve
burritos. They cost 40,000e each, there is a maximum of 6 available for purchase,
and it is expected that will attract 5,000 customers each per week. Our goal
is to determine how many trucks of the first type (decision variable 𝑥1) and of
the second type (decision variable 𝑥2) to purchase to maximize the number of
expected customers while satisfying constraints on availability and budget.

We can translate this problem into the following LP:

max 𝑍 = 2𝑥1 + 5𝑥2 (6.1)

s.t.:
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𝑥1 ≤ 8 (6.2)

𝑥2 ≤ 6 (6.3)

3𝑥1 + 4𝑥2 ≤ 36 (6.4)

𝑥1 ≥ 0 (6.5)

𝑥2 ≥ 0 (6.6)

where (6.1) defines the objective function (divided by 1,000), (6.2) defines

the maximum number of trucks of the first type that can be purchased,

(6.3) defines the maximum number of trucks of the second type that can

be purchased, and (6.4) ensures the purchase of trucks as long as the

company remains within the budget (akin to (6.1), this constraint has

been divided by 10,000). We can visualize the problem in the (𝑥1 , 𝑥2)
plane as shown in Figure 6.1.

Figure 6.1: Feasible region for the street

food company problem of Example 6.1.
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The three constraints (6.2)-(6.4) are shown with full blue lines. The arrow

perpendicular to each blue line represents the half-plane where the

inequality holds, i.e., where the constraint is satisfied. Only the first

quadrant is shown because of the non-negativity requirement on 𝑥1 and

𝑥2 due to (6.5)-(6.6). The green-shaded area is the portion of the (𝑥1 , 𝑥2)
plane where all constraints are simultaneously satisfied, also known as

feasible region .

Our goal is to determine which point, inside this region, maximizes

our objective as defined by (6.1). To achieve such a goal, in this specific

case, we can leverage the fact that our solution is defined in the (𝑥1 , 𝑥2)
two-dimensional space, and we can re-write Equation 6.1 as

𝑥2 = −2

5

𝑥1 +
1

5

𝑍 (6.7)
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where 𝑍 is the objective value. For example, if 𝑍 = 0 we have the line

𝑥2 = − 2

5
𝑥1 passing through the origin of the (𝑥1 , 𝑥2) plane, while if 𝑍 = 5

we have the line 𝑥2 = − 2

5
𝑥1 + 1 that is parallel to the previous one, but

intercepts the 𝑥2-axis in point (0, 1). Any (𝑥1 , 𝑥2) pair of values on a
given line yields the same objective value. In this instance, the slope

of every line remains consistent, set at − 2

5
. Consequently, an increase in

𝑍 shifts our line towards the top-right corner of Figure 6.1. Considering

this characteristic alongside the shape of the feasible region depicted

in Figure 6.1, determining the optimal solution to our mathematical
problem entails identifying the maximum value of 𝑍 where the result-
ing line intersects the feasible region, even if only partially. We display

several lines in orange, for increasing values of 𝑍, in Figure 6.2.
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Figure 6.2: Feasible region for the street

food company problem of Example 6.1

with some representative lines defining

different objective values 𝑍.

For 𝑍 = 10, 𝑍 = 20, and 𝑍 = 30 the line cuts the feasible region, hence

providing a wide range of (𝑥1 , 𝑥2) combinations returning a feasible

solution characterized by the same objective value. Careful readers might

argue that many combinations are not realistic. For example, purchasing

5

2
trucks of the first type and 3 of the second type, results in a number

of customers equal to 2, 000 × 5

2
+ 5, 000 × 3 = 20, 000 (that combination

of points belongs to line 𝑥2 = − 2

5
𝑥1 + 4 from Figure 6.2). Because of the

nature of the problem, we clearly cannot purchase
5

2
trucks of the first

type. To address this type of problem, we ask the careful readers to be

patient and wait for Chapter 7.

Going back to Figure 6.2, we also notice that for 𝑍 = 40 the line does

not intersect at all the feasible region. Hence, we cannot attract 40,000

customers with the current model. Focusing on the line associated with

𝑍 = 38, it appears that such a line intersects the feasible region in a

single point, i.e., (𝑥1 , 𝑥2) = (4, 6). Luckily, this solution is practically

implementable, as the number of trucks to purchase is an integer for

both types. Given the current parameters and, hence, the current slope
of our lines representing the relationship between 𝑥1 and 𝑥2 for a
given value of the objective 𝑍, 𝑍 = 38 seems the optimal solution.



62 6 The simplex method

This means we should purchase 4 trucks of the first type and 6 of the
second type so that we can attract 38,000 customers. This solution makes

sense quantitatively, as trucks of the second type attract more customers

(5,000 versus 2,000). Hence, the optimal solution is to purchase as many

trucks of the second type as possible, i.e., 6. This results in a cost of

6 × 40, 000 = 240, 000e leaving the company with 120, 000e that can be

used to buy 4 trucks of the first type.

If the interpretation of the optimal solution of Example 6.1 depicted

in Figure 6.2 is clear, it also follows that the optimal solution (𝑥1 , 𝑥2) =
(4, 6) does not change if we just slightly change the slope of the line
mapping the objective function. While the objective value will change,

point (𝑥1 , 𝑥2) = (4, 6) will be the last point touched by the objective

line before leaving the feasible region if we slightly increase or decrease

its slope. Let us now re-write the objective in more general terms as

𝑍 = 𝐶1𝑥1 + 𝐶2𝑥2 (so that in the original setting 𝐶1 = 2 and 𝐶2 = 5). If

we decrease the slope of the objective line so that it matches the slope

of constraint 3𝑥1 + 4𝑥2 ≤ 36→ 𝑥2 ≤ − 3

4
𝑥1 + 9, we obtain the situation

shown in Figure 6.3 (in this specific case, 𝐶1 = 15

4
and 𝐶2 = 5).

Figure 6.3: Feasible region for the street

food problem of Example 6.1 and objec-

tive line if 𝐶1 is increased from 2 to
15

4
.
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This is a peculiar case where all points along the line 𝑥2 = − 3

4
𝑥1 + 9

such that 4 ≤ 𝑥1 ≤ 8 and 3 ≤ 𝑥2 ≤ 6 are mathematically speaking,

equally optimal. We then have multiple optimal solutions. As already

anticipated, the only two points that yield practically feasible solutions are

(𝑥1 , 𝑥2) = (4, 6) and (𝑥1 , 𝑥2) = (8, 3). In both cases, the company managed

to attract 45,000 customers, which is an improvement over the baseline

case of 38,000 because trucks of the first type were made more attractive

(by increasing 𝐶1 from 2 to
15

4
). We can verify that both combinations are

equivalent in terms of objective as
15,000

4
× 4 + 5, 000 × 6 = 45, 000 and

15,000

4
× 8 + 5, 000 × 3 = 45, 000 as well.

We could take a step further and try to make trucks of the first type even

more attractive so that 𝐶1 > 3

4
𝐶2. For any such combination of (𝐶1 , 𝐶2)
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values, now the only optimal solution will be (𝑥1 , 𝑥2) = (8, 3): because

the slope of the objective line is now steeper, that is the last point touched

by the objective line before leaving the feasible region.
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Figure 6.4: Feasible region for the street

food company problem of Example 6.1

and objective line if 𝐶1 is increased from

2 to 4.

In Figure 6.4 we show the case where 𝐶1 = 4, which yields an optimal

solution of 47,000 customers. Note that the new optimal solution suggests

purchasing as many trucks of the first type as possible, albeit they are

still “less efficient" than trucks of the second type in attracting customers

(4,000 versus 5,000 per truck). This is due to the additional two trucks

that the company can purchase (8 versus 6).

Note that, for a maximization problem with two-decision variables, the

feasible region has generally a shape similar to the one represented

in Figure 6.1. Either both decision variables have an upper bound, or they

are linked via one constraint in the ≤ form. The reason why at least one of

the two conditions above should be met is to avoid a feasible region that

moves indefinitely toward the upper-right corner, i.e., an unbounded
feasible region. Imagine, for example, reversing all three constraints

of the street food company model from ≤ to ≥. The associated feasible

region is represented in Figure 6.5 .

We could indefinitely increase 𝑥1 and 𝑥2, hence increasing our objective

while remaining in the feasible region. Thus, in such a case we can

conclude that the optimal solution is (𝑥1 , 𝑥2) = (∞,∞) so that 𝑍 = ∞
(this means that no optimal solution could be found). This is an example

of an unbounded optimization model. Referring back to Section 1.2,

such an occurrence generally entails that the modeler failed to capture

some features of the original problem. For example, a maximization

problem might entail profit, satisfaction, connectivity, etc. as objectives,

while featuring, among other constraints, limits on budget, working

hours, etc., which bound the set of decisions that can be taken and

hence ensure a bounded feasible region. Note that, while in our example

the unbounded feasible region results in no optimal solution as 𝑥1

and 𝑥2 can grow indefinitely, this is not always the case. If we were to



64 6 The simplex method

Figure 6.5: Feasible region for the street

food company problem of Example 6.1 if

all constraints were in the ≥ form.
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minimize, rather than optimize, the very mathematical model represented

in Figure 6.5, we would get the optimal solution (𝑥1 , 𝑥2) = (8, 6) yielding

𝑍 = 2, 000 × 8 + 5, 000 × 6 = 46, 000. On a similar note, a minimization
problem whose objective function has non-negative terms should never
feature a feasible region that contains the origin (regardless of the
number of decision variables involved). In such a case, we could set all
decision variables to zero, hence obtaining an optimal objective value
𝑍 = 0. This situation is, again, a potential indication that the developed
mathematical model is not correctly mapping the constraints stemming
from the real-life problem. For example, a minimization problem might

entail distance, completion time, makespan, etc., as objectives, while

featuring, among other constraints, limits on budget, working hours, etc.,

which bound the set of decisions that can be taken and hence ensure

a bounded feasible region. Let us consider the minimization problem

of Example 6.2

Example 6.2

min 𝑍 = 𝑥1 + 2𝑥2 (6.8)

s.t.:

𝑥1 ≤ 10 (6.9)

𝑥2 ≤ 8 (6.10)

𝑥1 + 2𝑥2 ≥ 8 (6.11)

𝑥1 ≥ 0 (6.12)

𝑥2 ≥ 0 (6.13)

whose feasible region and optimal solution are shown in Figure 6.6.
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Because of (6.11), the feasible region does not contain the origin, which

means our objective is minimized in point (𝑥1 , 𝑥2) = (0, 4)where 𝑍 = 4.
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Figure 6.6: Example of feasible region

for the minimization problem presented

in Example 6.2.

Finally, let us cover one last model, whose graphical solution is meaningful

and easy to interpret, in Example 6.3.

Example 6.3 We graphically represent the following maximization pro-

blem

max 𝑍 = 𝑥1 + 𝑥2 (6.14)

s.t.:

𝑥1 + 2𝑥2 ≥ 12 (6.15)

2𝑥1 + 𝑥2 ≤ 8 (6.16)

𝑥1 ≥ 5 (6.17)

𝑥1 ≥ 0 (6.18)

𝑥2 ≥ 0 (6.19)

as shown in Figure 6.7 (note that, in practice, (6.18) is redundant because

of the presence of (6.17)). Because no region of the (𝑥1 , 𝑥2) solution space

exists where all three functional constraints are simultaneously satisfied,

we can already conclude that this is an infeasible model.

In this section, we have analyzed, for a two-dimensional optimization

problem, how to graphically construct the feasible region and how to

determine the optimal solution. We also analyzed how the optimal

solution changes with a change in the objective function, and the special

case of multiple optimal solutions. We also highlighted the two extreme



66 6 The simplex method

Figure 6.7: Maximization problem

of Example 6.3 characterized by the lack

of a feasible region.
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cases of an unbounded optimization model (due to an unbounded feasible

region) and of an infeasible model where no feasible region exists.

When the feasible region exists, our preliminary insight is that the

optimal solution to an optimization problem is always located at the

intersection of two constraint segments (as was the case for both points

(𝑥1 , 𝑥2) = (4, 6) and (𝑥1 , 𝑥2) = (8, 3) in the street food company problem

of Example 6.1). This might not be surprising because, in this two-

dimensional representation, the objective function is a line and the feasible

region is a polygon. Hence, as we try to move the objective line toward

the upper-right corner (maximization) or the origin (minimization) of

the first quadrant, there is a high chance we intersect a final corner point
before leaving the feasible region. In the street food company problem

of Example 6.1, we characterize a corner point as every intersection of

any two constraints that characterize our optimization problem.

Considering that 𝑛 = 2 (two decision variables) and 𝑚 = 3 (three

functional constraints), we have 𝑛 + 𝑚 overall constraints (we also need

to consider the non-negativity constraints 𝑥1 ≥ 0 and 𝑥2 ≥ 0). Hence,

in this example, the number of expected corner points is equal to the

number of combinations of two constraints out of the five available,

namely 𝐶5

2
=

5!

(5 − 2)! × 2!

= 10. We highlight all the corner points of the

street food company problem in Figure 6.8 with gray or red circles.

It can be noted that only 8 corner points are present in Figure 6.8 and

not 10. In our case, it can be noted how constraint 𝑥2 ≤ 6 is parallel to

the 𝑥1 axis (that maps the 𝑥1 ≥ 0 constraint), and hence no corner point

is associated with this pair of constraints. Similarly, no corner point is

associated with the intersection of constraints 𝑥1 ≤ 8 and 𝑥2 ≥ 0. Hence,

we only have 8 corner points out of the 10 theoretically available. In

general, this might be expected as:

▶ some constraints might never intersect with each other (as shown
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Figure 6.8: Corner points for the street

food company example.

1: In some other references, augmented
could be replaced by the term proper or

standard.

in Figure 6.8);

▶ some corner points might be the intersection of more than two

constraints.

Figure 6.8 highlights corner points in two distinct colors for a specific

reason. Gray corner points lie on the feasible region and are hence

defined feasible corner points because they represent combinations of the

decision variables that satisfy all the constraints, hence yielding a feasible

solution. Red corner points do not lie on the feasible region and are hence

defined infeasible corner points because they represent combinations

of decision variables where at least one constraint is violated.

We anticipated that we could use an ad-hoc algorithm to find the solution

to an LP in an equivalent fashion to what we did graphically for the street

food company case. Because such an algorithm resembles the solution to

a linear system, which is generally written in the equality form 𝐴𝑥 = 𝑏,

we first need to convert all constraints into equality form. This also entails

that the corner points we intuitively showed in Figure 6.8 will undergo

some form of modification to ensure the aforementioned equality form.

The description of how to adapt an optimization model so that it is in a

form that is suitable for such an algorithm to work, i.e., the augmented
form of an LP, is described in Section 6.2 while we will elaborate how

corner points are handled by the algorithm in Section 6.3.2.

6.2 Augmented form of an LP

When dealing with an LP, constraints can appear in three forms, namely

≤,=, or ≥. We will tackle each constraint type separately when describing

how to convert them into augmented
1

form, as they need to be treated

differently. In general, the augmented form of an LP must satisfy the

following two conditions:
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▶ all constraints should be converted into equality constraints. This

is achieved by introducing additional decision variables to the
original model;

▶ if the original decision variables of the LP are 𝑥1 , 𝑥2 , · · · , 𝑥𝑛 , the

augmented form of the LP should be initialized in a way that allows

to start the algorithm from the (mathematically) feasible corner

point (𝑥1 , · · · , 𝑥𝑛) = (0, · · · , 0). This is a key step to initialize the
algorithm that moves across corner points until the optimal one
is identified.

To meet both conditions, it is essential to address the three types of

constraints with slight variations in treatment.

6.2.1 Inequality constraints in the ≤ form

The ≤ is the simplest constraint type to be put in augmented form. Let

us consider a generic constraint

𝑛∑
𝑖=1

𝐶𝑖𝑥𝑖 ≤ 𝑏 (6.20)

We can transform (6.20) into proper form by adding decision variable 𝑥𝑠
to the left-hand side and replacing the inequality sign with an equality

sign as follows

𝑛∑
𝑖=1

𝐶𝑖𝑥𝑖 + 𝑥𝑠 = 𝑏 (6.21)

The role of 𝑥𝑠 in (6.21) is quite intuitive. Because the original left-hand side∑𝑛
𝑖=1
𝐶𝑖𝑥𝑖 cannot be greater than 𝑏, the value of 𝑥𝑠 in (6.21) is the difference

between 𝑏 and

∑𝑛
𝑖=1
𝐶𝑖𝑥𝑖 . If we assume 𝑏 to be some form of capacity

(e.g., budget), 𝑥𝑠 maps how much of that capacity we are not using.

Every decision variable that is equivalent in form to 𝑥𝑠 is called a slack
variable because it compensates the slack the left-hand side is missing to

reach the right-hand side value. If we consider (6.4) from Example 6.1,

i.e., the budget constraint, we can re-write that constraint as

3𝑥1 + 4𝑥2 + 𝑥𝑠 = 36 (6.22)

In the optimal solution, the company purchased 4 trucks of the first type

and 6 of the second type, hence using a budget of 30, 000×4+40, 000×6 =

360, 000e. In such a case, we have that 𝑥𝑠 = 0 because all the budget

available has been used. If the company were to purchase just 2 trucks

of the first type and 3 of the second type, it would use a budget of

30, 000× 2+ 40, 000× 3 = 180, 000e hence 𝑥𝑠 = 18 (recall we divided all

terms of this constraint by 10,000) to highlight that we still have 180,000e
left in terms of budget. We can apply the same logic to all the functional

constraints of the street food company problem, yielding the following

augmented form:
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max 2𝑥1 + 5𝑥2 + 0𝑥3 + 0𝑥4 + 0𝑥5 (6.23)

s.t.:

𝑥1 + 𝑥3 = 8 (6.24)

𝑥2 + 𝑥4 = 6 (6.25)

3𝑥1 + 4𝑥2 + 𝑥5 = 36 (6.26)

𝑥1 , 𝑥2 ≥ 0 (6.27)

𝑥3 , 𝑥4 , 𝑥5 ≥ 0 (6.28)

where 𝑥3, 𝑥4, and 𝑥5 are the additional slack variables which should also

be non-negative, as highlighted by (6.28). We notice that now this revised

model is in augmented form. All functional constraints are = constraints

and we can set 𝑥1 = 0 and 𝑥2 = 0 to obtain a feasible corner point where

to start the algorithm. This is possible because 𝑥3, 𝑥4, and 𝑥5 take up all

the slack in Equation 6.24, Equation 6.25, and Equation 6.26 respectively

by taking the values 𝑥3 = 8, 𝑥4 = 6, and 𝑥5 = 36. Readers may contend
that the starting point seems suboptimal since it involves purchasing
no trucks and consequently yielding no profit. While valid, we will
delve into the rationale behind this observation in Section 6.3.

A few important takeaways are:

▶ adapting an LP in augmented form increases the overall number of

decision variables. For the street food company case of Example 6.1,

we went from two to five decision variables, for example;

▶ related to the previous point, the solution space increases, as it

becomes a five-dimensional space in the street food company case

of Example 6.1;

▶ while we increase the number of decision variables, slack variables

do not appear in the objective function. Because they are additional
variables that are needed for algorithmic purposes, they play
no role in the objective which, instead, is based on the original
decision variables that relate to the original practical problem
at hand. Conversely, they have a meaning if we consider the
constraints, as they identify which constraints are “saturated"
and which are not;

▶ to start the algorithm looking for the optimal corner point, we

mentioned it is good practice to start with a corner point where all

the original decision variables are set to zero. This implies that the

initial objective is𝑍 = 0, which is the worst initial objective value for

a max problem with positive coefficients in the objective function.

Notwithstanding, it is a feasible initial solution to start the algo-

rithm. Using the slack variables, we can achieve this goal for Exam-

ple 6.1 because the solution (𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5), (0, 0, 8, 6, 36) defines

a feasible corner point where 𝑍 = 0 because both 𝑥1 and 𝑥2 are 0.
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6.2.2 Equality constraints

Equality constraints might seem a trivial case, as they are already in the

right (=) form. Readers should not forget that a second condition should

hold, i.e., that we want to initialize our algorithm from a feasible corner

point where all original decision variables are set to 0. Let us analyze the

street food company case of Example 6.1 with a slight variation to address

this case. In particular, let us replace (6.6) with the same constraint in =

form.

In such a case, the feasible region changes and turns into the segment

highlighted in Figure 6.9: any feasible solution must lie on the 3𝑥1+4𝑥2 =

36 line while being bounded by the constraints 𝑥1 ≤ 8 and 𝑥2 ≤ 6. It is

also relevant to note that the optimal solution to this problem does not

change, as point (𝑥1 , 𝑥2) = (4, 6) lies on the segment.

Figure 6.9: Feasible region for the street

food company case of Example 6.1 if in-

equality constraint (6.6) is turned into an

equality constraint.
4 5 6 7 8 9

4

6

3𝑥
1 +

4𝑥
2 =

3
6

𝑥1

𝑥2

Having two inequality constraints in the≤ form and an equality constraint,

we might be tempted to use the same logic shown in Section 6.2.1 for the

inequality constraints and leave the equality constraint unchanged. This

would lead to the following revised model:

max 2𝑥1 + 5𝑥2 (6.29)

s.t.:

𝑥1 + 𝑥3 = 8 (6.30)

𝑥2 + 𝑥4 = 6 (6.31)

3𝑥1 + 4𝑥2 = 36 (6.32)

𝑥1 , 𝑥2 ≥ 0 (6.33)

𝑥3 , 𝑥4 ≥ 0 (6.34)
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While all constraints are now in the equality form, we cannot define

a feasible solution where the original decision variables 𝑥1 and 𝑥2 are

0. Constraints (6.30)-(6.31) are satisfied if we set 𝑥3 = 8 and 𝑥4 = 4,

respectively. On the other hand, constraint (6.32) is not satisfied with

such a choice as 3 × 0 + 4 × 0 = 0 ≠ 36.

To solve this issue, we introduce an additional decision variable 𝑥𝑎
in (6.32), that we define artificial variable, as follows: 3𝑥1 + 4𝑥2 + 𝑥𝑎 =
36. It serves a different purpose than the slack variable 𝑥5 we used

in Section 6.2.1 because if it takes a non-zero value, it means the original
constraint is not satisfied and we are dealing with an infeasible solution.

To deal with this shortcoming, we modify the objective function by

introducing a penalty in the form of −𝑀𝑥𝑎 , where 𝑀 is a large enough

big-𝑀 as shown before (e.g., Section 4.8.1) in this book. This is an example

of a soft constraint where we allow constraint (6.32) to be violated, but

we considerably decrease the objective (for a max problem, a penalty

entails reducing the objective). Hence, the correct augmented form of

this LP is:

max 2𝑥1 + 5𝑥2−𝑀𝑥𝑎 (6.35)

s.t.:

𝑥1 + 𝑥3 = 8 (6.36)

𝑥2 + 𝑥4 = 6 (6.37)

3𝑥1 + 4𝑥2 + 𝑥𝑎 = 36 (6.38)

𝑥1 , 𝑥2 ≥ 0 (6.39)

𝑥3 , 𝑥4 , 𝑥𝑎 ≥ 0 (6.40)

Now, we can set 𝑥1 = 0 and 𝑥2 = 0 while satisfying (6.38) by setting

𝑥𝑎 = 36. The price we pay is that now our initial objective is not 𝑍 = 0

but 𝑍 = −36𝑀. We achieved our goal of initializing our problem from

corner point (𝑥1 , 𝑥2) = (0, 0) in a way that is mathematically feasible, but

the activation of the penalty in the objective is a red light that, actually,

we are violating a constraint in reality. This is (generally) not a problem

as the solution algorithm will soon move away from this corner point, as

we will show in Section 6.3.

6.2.3 Inequality constraints in the ≥ form

Finally, we deal with the ≥ case. At first glance, this constraint type might

seem very similar to the ≤ counterpart. While, with a constraint in the

≤ 𝑏 , we cannot exceed the right-hand side 𝑏, with a constraint in the

≥ 𝑏 form, we cannot go below the right-hand side 𝑏. Such a constraint

generally represents a minimum supply level, quality level, grade, etc.,

that we need to achieve to satisfy a practical constraint of our real-life

problem. Hence, we might be tempted to use a similar approach to a

slack variable, but a simple example will show why the ≥ is different

from the ≤ case.
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Let us consider a course whose final grade is the weighted average of a

written test and a group assignment. We define 𝑥1 as the mark of the test

and 𝑥2 as the mark of the assignment and assume they contribute equally

to the final grade. We assume a grading scale up to 10 (for both marks

and the final grade) and that we need a full 6 to pass the course. Hence,

we can map the successful completion of the course with the following

constraint

1

2

𝑥1 +
1

2

𝑥2 ≥ 6 (6.41)

which imposes that the weighted average of the two marks should be at

least 6. We could translate the inequality into equality by introducing a

surplus variable 𝑥𝑠𝑝 as follows

1

2

𝑥1 +
1

2

𝑥2−𝑥𝑠𝑝 = 6 (6.42)

We notice that 𝑥𝑠𝑝 appears with a minus in front. This is correct because

of the original ≥ sign. The original left-hand side ( 1

2
𝑥1 + 1

2
𝑥2) is allowed

to exceed the right-hand side and, if so, 𝑥𝑠𝑝 cancels that surplus to
ensure the equality holds. Let us assume we obtained an 8 both in the

exam and assignment. (6.42) needs to be
1

2
8 + 1

2
8 − 2 = 6 to be satisfied:

𝑥𝑠𝑝 = 2 maps the fact that we are happily two full marks above the

minimum passing grade and takes the needed surplus value to ensure

the equality holds.

We successfully converted an inequality into equality, but we are facing

issues if we want to initialize our algorithm with an initial solution where

all the original decision variables are set to 0. In fact, considering (6.43)

1

2

0 + 1

2

0 − 𝑥𝑠𝑝 = 6→ 𝑥𝑠𝑝 = −6 (6.43)

the only way to satisfy such equality with (𝑥1 , 𝑥2) = (0, 0) is to set 𝑥𝑠𝑝 =

−6, which is mathematically infeasible as the surplus variable, like
every other decision variable we deal with, should be non-negative. To

solve the issue, we use the same approach we introduced in Section 6.2.2

and add an artificial variable 𝑥𝑎 to the constraint as follows

1

2

𝑥1 +
1

2

𝑥2 − 𝑥𝑠𝑝 + 𝑥𝑎 = 6 (6.44)

and a −𝑀𝑥𝑎 term to the objective in case of a maximization problem or

a 𝑀𝑥𝑎 term in case of a minimization problem. In our example, (6.44)

can now be satisfied by selecting 𝑥1 = 𝑥2 = 𝑥𝑠𝑝 = 0 and 𝑥𝑎 = 6: this

is a reminder that this choice is actually infeasible because we are not

satisfying the requirements to pass the exam. Hence, in such a setting,

𝑥𝑎 will only be activated if the original left-hand side is smaller than the

right-hand side (to ensure the equality holds), which defines an infeasible

situation as mapped by the activation of the penalty in the objective. This
is generally the case during the initialization of the algorithm that
will be explained in Section 6.3. Once the left-hand side of an original
≥ constraint is greater or equal to the right-hand side, the artificial
variable is not needed and the surplus one will be activated instead.
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2: There might be exceptions to this state-

ment, but let us consider this as the

benchmark here.

3: As a reminder, the functional con-

straints of an LP are all the constraints

characterizing it apart from the non-

negativity constraints of all decision vari-

ables. In Example 6.1, the three functional

constraints are (6.2)-(6.4).

6.2.4 Final remarks

In this section, we highlighted how the constraints of an optimization

model should all be converted to the = form so that a proper algorithm

can identify the optimal solution to such a problem by moving across

corner points. Assuming a max problem, we generally want to start from

the corner point where all the original decision variables are set to 0. If

we combine these requirements, we have that

▶ a≤ constraint is put into augmented form by adding a slack variable

𝑥𝑠 to the left-hand side and replacing the ≤ with =;

▶ a = constraint is put into augmented form by adding an artificial

variable 𝑥𝑎 to the left-hand side and a −𝑀𝑥𝑎 term to the objective

(for a max problem) and a 𝑀𝑥𝑎 term to the objective (for a min

problem);

▶ a ≥ constraint is put into augmented form by adding both a surplus

variable 𝑥𝑠𝑝 (with a minus in front) and an artificial variable 𝑥𝑎
to the left-hand side and a −𝑀𝑥𝑎 term to the objective (for a max

problem) and a 𝑀𝑥𝑎 term to the objective (for a min problem).

6.3 The simplex method: description of the
algorithm

In Section 6.2 we described how a generic LP needs to be converted into

an augmented form so that an ad-hoc algorithm can move across corner

points and identify the optimal one. In this section, we finally reveal the

details of such an algorithm, i.e., the simplex algorithm. In geometry, a

simplex is a generalization of the notion of a triangle or tetrahedron to

arbitrary dimensions. Such a name is fitting for the simplex algorithm,

because it navigates across different corner points of the feasible region

of a problem looking for the optimal one.

6.3.1 Basic and non-basic variables

According to linear algebra, we can generally solve linear systems in

the 𝐴𝑥 = 𝑏 if 𝐴 is a square and invertible matrix
2
. In Section 6.2 it was

explained how bringing an LP in augmented form increases the number

of decision variables because, on top of the original ones, we must add

slack, artificial, and surplus decision variables (depending on the type

of constraint). Because of this insight, the overall number of decision

variables 𝑁 for a given optimization problem is greater or equal to the

number of original decision variables 𝑛 plus the number of functional

constraints 𝑚3
.

If we forget for a moment about the objective function, the insight implies

that the 𝐴𝑥 = 𝑏 system where:

▶ 𝑥 defines the vector with the full set of decision variables;

▶ 𝐴 defines the coefficient matrix;

▶ 𝑏 defines the vector containing the right-hand sides of all functional

constraints;
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is generally “horizontal" with 𝐴 not being square and with more columns

(decision variables) than rows (constraints). Let us consider the original

street food company problem of Example 6.1. We can map its augmented

form as

©­«
1 0 1 0 0

0 1 0 1 0

3 4 0 0 1

ª®¬︸                ︷︷                ︸
𝐴=(3×5)

©­­­­­«
𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

ª®®®®®¬︸︷︷︸
𝑥=(5×1)

=
©­«

8

6

36

ª®¬︸︷︷︸
𝑏=(3×1)

(6.45)

We cannot solve this linear system as it is, but we need to fix two decision

variables so that the resulting system is (3 × 3) and hence solvable (recall

Chapter 3). For example, if we set 𝑥1 = 0 and 𝑥2 = 0 we eliminate the

first two columns from 𝐴 in (6.45) and 𝑥1 , 𝑥2 from 𝑥, hence obtaining the

reduced linear system

©­«
1 0 1 0 0

0 1 0 1 0

3 4 0 0 1

ª®¬
©­­­­­«
𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

ª®®®®®¬
=
©­«

8

6

36

ª®¬ (6.46)

so that

©­«
𝑥3

𝑥4

𝑥5

ª®¬ = ©­«
1 0 0

0 1 0

0 0 1

ª®¬
−1 ©­«

8

6

36

ª®¬ = ©­«
8

6

36

ª®¬ (6.47)

Note that, in this particular case, the values of 𝑥3, 𝑥4, and 𝑥5 are directly

the 3 values stored in the 𝑏 vector (in the original order) because the

reduced 𝐴 was the identity matrix. The identity matrix is a special case

of orthonormal basis, i.e., a square matrix where rows/columns are unit

vectors and are all orthogonal to each other. Let us consider the following

two examples

©­«
0 1 0

1 0 0

0 0 1

ª®¬ ©­«
𝑥3

𝑥4

𝑥5

ª®¬ = ©­«
8

6

36

ª®¬→ ©­«
𝑥3

𝑥4

𝑥5

ª®¬ = ©­«
0 1 0

1 0 0

0 0 1

ª®¬
−1 ©­«

8

6

36

ª®¬→ ©­«
𝑥4

𝑥3

𝑥5

ª®¬ = ©­«
8

6

36

ª®¬
(6.48)

©­«
0 0 1

1 0 0

0 1 0

ª®¬ ©­«
𝑥3

𝑥4

𝑥5

ª®¬ = ©­«
8

6

36

ª®¬→ ©­«
𝑥3

𝑥4

𝑥5

ª®¬ = ©­«
0 0 1

1 0 0

0 1 0

ª®¬
−1 ©­«

8

6

36

ª®¬→ ©­«
𝑥5

𝑥3

𝑥4

ª®¬ = ©­«
8

6

36

ª®¬
(6.49)

which depict different cases of orthonormal matrices. In (6.48), the 𝑥

vector is re-shuffled into (𝑥4 , 𝑥3 , 𝑥5)𝑇 , while in (6.49), the 𝑥 vector is

re-shuffled into (𝑥5 , 𝑥3 , 𝑥4)𝑇 . Notwithstanding, each decision variable
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is directly mapped into one element of 𝑏 in all the examples shown
because we chose special orthonormal matrices where each row/column
features a single 1 and 0s anywhere else.

We are now ready to introduce the concept of basic and non-basic

variables in the context of the simplex algorithm. Given an optimization

problem with 𝑁 overall decision variables and 𝑚 functional constraints,

we have that:

▶ 𝑚 decision variables can take non-zero values. These decision

variables are called basic variables because they are pre-multiplied

by an orthonormal matrix with only 0/1 values and, hence, their

values are directly mapped by the current 𝑏 vector as shown

in (6.47), (6.48), or (6.49);

▶ the remaining 𝑁 − 𝑚 decision variables are arbitrarily set to 0

so that the resulting system is square and invertible (and hence

the aforementioned basic variables can be computed). These are

defined non-basic variables.

We already provided some insights into the initial selection of basic

and non-basic decision variables, and we will shortly explain how to

iteratively modify this choice, given a specific problem at hand, looking

for an optimal solution. Note that a specific choice of basic and non-

basic decision variables identifies a specific corner point as introduced

in Section 6.1. Hence, anytime we change such a choice we are moving

our solution to a different (hopefully better) corner point.

6.3.2 Basic solutions

We now expand the concept of corner points we intuitively hinted at

in Section 6.1. In Section 6.3.1, we discussed how a model with 𝑛 original

decision variables and𝑚 functional constraints ends up having𝑁 ≥ 𝑛+𝑚
overall decision variables in the augmented form (we need to add one

extra variable for every constraint in the ≤ and = form and two extra

variables for every constraint in the ≥ form). Because the underlying

set of linear equations is not square (𝑁 > 𝑚), it can only be solved if

we assign to 𝑁 − 𝑚 decision variables an arbitrary value (non-basic

variables), which we decide to be 0, so that we can solve the remaining

(𝑚 × 𝑚) square system (basic variables).

Given a problem in augmented form, readers might be wondering how

many different options exist to select 𝑚 basic variables (and hence 𝑁 −𝑚
non-basic decision variables). Similar to what we did in Section 6.1, we

need to compute

𝐶𝑁𝑚 =
𝑁 !

(𝑁 − 𝑚)!𝑚!

(6.50)

Expression (6.50) defines the number of basic solutions characterizing

an LP, where a basic solution is a solution of the augmented LP with 𝑚
basic variables and 𝑁 − 𝑚 non-basic variables. Not all basic solutions

are feasible (recall that all basic variables should be non-negative), hence

we distinguish between basic feasible solutions and basic infeasible
solutions. In addition, each basic solution is associated with a specific

corner point as defined by the original set of 𝑛 decision variables.
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Let us consider the original street food company problem of Example 6.1

and its corner points as shown in Figure 6.8. We also discussed its

augmented form in Section 6.2.1. Corner point (𝑥1 , 𝑥2) = (0, 6) (which is

feasible because it lies on the boundary of the feasible region) is associated

with the basic feasible solution (𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5) = (0, 6, 8, 0, 12). In such

a solution, 𝑥1 and 𝑥4 are non-basic, which allows solving the resulting

(3 × 3) system in 𝑥2, 𝑥3, and 𝑥5.

Given expression (6.50), we might consider fully enumerating all combi-

nations, solving all the resulting linear systems, and picking the basic

feasible solution with the highest value if we are dealing with a max

problem. This is of course possible for small-scale models, but full enu-

meration becomes challenging as the size of the model increases. Let us

consider 𝑛 = 50, 𝑚 = 70, and 𝑁 = 120. These values identify a model

larger than Example 6.1, but very small compared to many models used

for real applications. Using (6.50) we get 𝐶120

70
=

120!

50!70!

≃ 1.8× 10
34

: even

for a relatively small problem, the number of options to fully consider

explodes.

Luckily for us, we can leverage a property of the corner points (and

associated basic solutions) within the context of the simplex method.

Let us consider again the feasible region of the street food company

(Figure 6.8), and let us focus on feasible corner points A (𝑥1 , 𝑥2) =
(0, 0), B (𝑥1 , 𝑥2) = (8, 0), and C (𝑥1 , 𝑥2) = (0, 6). The associated basic

feasible solutions are, respectively, (𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5) = (0, 0, 8, 6, 36),
(𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5) = (8, 0, 0, 6, 12), and (𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5) = (0, 6, 8, 0, 12)
with objectives 𝑍𝐴 = 0, 𝑍𝐵 = 16, and 𝑍𝐶 = 30. From corner point A, we

have two adjacent corner points (B and C), i.e., the two corner points that

we can reach from A by moving along one edge of the feasible region. If

we focus on the associated basic feasible solutions, we realize that going

from A to B, we swap a basic variable with a non-basic (and vice versa)

and that the same happens if we move from A to C.

If we move from A to B, 𝑥1 switches from being basic to non-basic,

with 𝑥3 switching from non-basic to basic. The other original non-basic

variable, i.e., 𝑥2, retains its value of 0. The other two basic variables (𝑥4

and 𝑥5) retain their non-negative values. Note that the value of 𝑥4 is

unchanged: we are still not investing in trucks of the second type, hence

in the associated constraint the slack variable 𝑥4 retains its value of 6.

Conversely, 𝑥5 reduces from 36 to 12 (as already explained) because in

B part of the budget is used. This is also consistent with the concept
of feasible corner point and associated basic solution. When moving
from a feasible corner point to an adjacent feasible corner point, we
swap one basic decision variable with a non-basic one in the process.
Because both corner points are associated with basic solutions, we still
need to ensure that 𝑚 variables are basic and the remaining 𝑁 − 𝑚
non-basic to have a square system we can solve. Hence, if we consider
all the remaining non-basic variables that were not swapped as part
of the move, they should retain their 0 value. For the remaining basic
variables that were not swapped as part of the move, we might (and
most likely see for some) changes in their value because the corner
point maps a different system of equations.

For the sake of completeness, we briefly consider what happens when

we move from A to C. 𝑥2 switches from being non-basic to basic, with
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4: For more technical details on why this

guarantees that the current corner point

is the best (optimal) one we refer readers

to Hillier and Lieberman (2015).

𝑥4 switching from basic to non-basic. 𝑥1 retains its 0 value, 𝑥3 is still

basic with an unchanged value, while 𝑥5 is reduced from 36 to 12 (again

because now part of the budget is used).

If we recall that 𝑍𝐴 = 0, 𝑍𝐵 = 16, and 𝑍𝐶 = 30, it seems logical that,
assuming we are positioned in A, the smartest move in Figure 6.8 is
to go from A (𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5) = (0, 0, 8, 6, 36) to C (𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5) =
(0, 6, 8, 0, 12) by swapping with non-basic variable 𝑥2 (hence making it
basic) with the basic variable 𝑥4 (hence making it non-basic) because
we increase our objective the most. This intuition is the very cornerstone

of the simplex method, as explained in the  Basic intuition behind the
simplex method box.

 Basic intuition behind the simplex method

Given an original LP and its augmented form, the simplex method

entails the following steps for a max problem:

▶ identify a initial corner point and the associated basic solution;

▶ check all the adjacent feasible corner points, identify the

one where the associated basic solution yields the highest
increase in the objective, and move there (the “movement"

entails swapping a basic variable with a non-basic one);

▶ repeat the process until a feasible corner point is reached where

all adjacent points are associated with basic solutions with a

worse (lower) objective. This feasible corner point is the optimal
one.

This intuition also highlights that if we are very smart (or lucky) with

the choice of the initial corner point, we might need no iterations at all,

as our current corner point is already the optimal one. Considering the

original street food company problem of Example 6.1 and its feasible

region in Figure 6.8, we graphically assessed that the optimal solution

is 𝑥1 = 4 and 𝑥2 = 6. Hence, the optimal corner point is (𝑥1 , 𝑥2) = (4, 6)
and the optimal basic solution is (𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5) = (4, 6, 4, 0, 0) where

𝑥1, 𝑥2, and 𝑥3 are the basic variables and 𝑥4 and 𝑥5 are non-basic. Let us

label this corner point D so that 𝑍𝐷 = 36. Let us also label the fifth and

remaining feasible corner point (𝑥1 , 𝑥2) = (8, 3) E, whose basic feasible

solution is (𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5) = (8, 3, 0, 3, 0) and 𝑍𝐸 = 31. If we select

D as our initial corner point, both neighboring corner points B and E

are characterized by a worst objective value. Hence, we are currently

located on a corner point whose adjacent corner points all feature a worse

objective. This guarantees the basic solution associated with the current

corner point is the optimal solution
4
.

6.3.3 The simplex tableau

The last step before formalizing the intuition shown in Section 6.3.2 into

a proper algorithmic setting entails introducing the simplex tableau. The

tableau is a special matrix that captures all the information of an LP in

augmented form, considering both the objective function, the functional

constraints, the basic and non-basic decision variables. In addition, such
a tableau can be iteratively updated with elementary row operations
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5: For a thorough analysis of the re-

duced cost, we refer readers to Hillier

and Lieberman, 2015.

(as hinted at in Chapter 3) while looking for the optimal solution to a
given optimization problem.

Using, as usual, the street food company problem of Example 6.1 as a

reference, we have already shown that its LP in augmented form is:

max 𝑍 = 2𝑥1 + 5𝑥2 + 0𝑥3 + 0𝑥4 + 0𝑥5 (6.51)

s.t.:

𝑥1 + 𝑥3 = 8 (6.52)

𝑥2 + 𝑥4 = 6 (6.53)

3𝑥1 + 4𝑥2 + 𝑥5 = 36 (6.54)

𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5 ≥ 0 (6.55)

Such a problem can be initialized with the basic feasible solution

(𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5) = (0, 0, 8, 6, 36) in a simplex tableau as shown in Ta-

ble 6.1.

Table 6.1: Initial simplex tableau for the

street food company problem of Exam-

ple 6.1.

𝑍 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 R.H.S.

1 -2 -5 0 0 0 0

(𝑥3) 0 1 0 1 0 0 8

(𝑥4) 0 0 1 0 1 0 6

(𝑥5) 0 3 4 0 0 1 36

Note that Table 6.1 carries more information than (6.51)-(6.55), because it

maps a feasible corner point (and hence a basic feasible solution to the

problem). In this case, the current basic feasible solution is, as mentioned

already above, (𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5) = (0, 0, 8, 6, 36)

We now proceed to explain all the highlighted blocks of Table 6.1:

` : row vector containing the labels of the objective function 𝑍 and

all the decision variables. It highlights which column is associated

with which element in the tableau and is used for the sake of

readability and interoperability of the tableau;

` : objective row. It stores the coefficient multiplying the objective

function 𝑍 (fixed and equal to 1) and the reduced cost of each

decision variable. At every iteration of the simplex algorithm, the

reduced cost of non-basic variables should be 0. More will be

discussed about reduced costs in Section 6.3.4
5
;

` : the current value of 𝑍;

` : coefficients of the non-basic variables in the functional constraints.

They are highlighted as two distinct columns (for Example 6.1,

but they are 𝑁 − 𝑚 in general) because they are not necessarily

contiguous, as we shall see soon;

` : coefficients of the basic variables in the functional constraints. They

are highlighted as three distinct columns (for Example 6.1, but they

are 𝑚 in general), similar to the non-basic ones, because they are

not necessarily contiguous, as we shall see soon. In addition, note
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6: We will shortly elaborate that, in a

simplex tableau, all non-basic decision

variables should have a non-zero coeffi-

cient in the objective row and all basic

variables a zero cofficient instead.

that the three columns form an orthonormal basis as mentioned

above;

` : column vector containing the values of the current basic variables.

We now analyze more in detail how to read the tableau shown in Table 6.1.

The objective row tells us that 𝑥1 = 0 and 𝑥2 = 0 because they have

non-zero coefficients there
6
. Because each coefficient in the tableau is

multiplied by the associated label right above as stored in `, Table 6.1 is

equivalent to (6.56):


1 × 𝑍 − 2 × 𝑥1 − 5 × 𝑥2 + 0 × 𝑥3 + 0 × 𝑥4 + 0 × 𝑥5 = 0

0 × 𝑍 + 1 × 𝑥1 + 0 × 𝑥2 + 1 × 𝑥3 + 0 × 𝑥4 + 0 × 𝑥5 = 8

0 × 𝑍 + 0 × 𝑥1 + 1 × 𝑥2 + 0 × 𝑥3 + 1 × 𝑥4 + 0 × 𝑥5 = 6

0 × 𝑍 + 3 × 𝑥1 + 4 × 𝑥2 + 0 × 𝑥3 + 0 × 𝑥4 + 1 × 𝑥5 = 36

(6.56)

which, using the information that 𝑥1 = 0 and 𝑥2 = 0, becomes


1 × 𝑍 − 2 × 0 − 5 × 0 + 0 × 𝑥3 + 0 × 𝑥4 + 0 × 𝑥5 = 0

0 × 𝑍 + 1 × 0 + 0 × 0 + 1 × 𝑥3 + 0 × 𝑥4 + 0 × 𝑥5 = 8

0 × 𝑍 + 0 × 0 + 1 × 0 + 0 × 𝑥3 + 1 × 𝑥4 + 0 × 𝑥5 = 6

0 × 𝑍 + 3 × 0 + 4 × 0 + 0 × 𝑥3 + 0 × 𝑥4 + 1 × 𝑥5 = 36

→



𝑍 = 0

𝑥1 = 0

𝑥2 = 0

𝑥3 = 8

𝑥4 = 6

𝑥5 = 36

(6.57)

The information contained in (6.57) is the same information contained in

the tableau of Table 6.1, but the latter is more compact and better suited

for the algebraic operations that will be discussed in Section 6.3.4.

We provide a final note on the format of Table 6.1, and its leftmost and

rightmost columns specifically. The rightmost column (which we labeled

R.H.S. as it contains the right-hand side of the objective and the functional

constraints) maps the objective value and the values of the basic variables

for the current iteration. In the leftmost column, we highlight which

basic variable the associated row refers to, so that, for example, we can

immediately associate 𝑥3 with a value of 8, etc., in Table 6.1. This is

done just for visual purposes, as that column is formally redundant. To
identify which basic decision variable is associated with which value
of the rightmost column, we just need to find where the unitary value
in the orthonormal basis appears. For 𝑥3, the 1 appears in the first row

(note: we consider the objective row separately, as also highlighted by the

horizontal separation line between it and the bottom part of the tableau),

hence 𝑥3 = 8. For 𝑥4, the 1 appears in the second row, hence 𝑥4 = 6. For

𝑥5, the 1 appears in the third row, hence 𝑥5 = 36.

We will now explain how to start from an initial tableau, like the one

shown in Table 6.1, and how to perform elementary row operations to

move to a different (better) corner point and how to assess when to stop

because an optimal solution has been found.
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6.3.4 The simplex algorithm: how to iterate and when to
stop

In Section 6.3.1-Section 6.3.3 we provided some preliminary notions

that are key to understanding the simplex algorithm, namely basic and

non-basic variables and how to set up and interpret an initial simplex

tableau.

We also discussed how the rightmost column maps the values of the basic

variables for the current iteration. Because we deal with non-negative

decision variables, some readers might be wondering how to deal with

functional constraints with negative right-hand sides which, albeit not

common, can be found in some models. In such a case, using the same

logic shown in Table 6.1, we would assign a negative value to a basic

variable, which is not allowed. The workaround to tackle this issue is

very simple, and it entails rearranging the constraint so that it features a

positive right-hand side. Let us consider the following constraint

3𝑥1 − 2𝑥2 ≤ −2 (6.58)

which, once put in augmented form with a slack variable 𝑥𝑠 , might result

in 𝑥𝑠 = −2 if we followed the same initialization logic shown above. We

simply need to re-arrange (6.58) as

−3𝑥1 + 2𝑥2 ≥ 2 (6.59)

to obtain a constraint that features a non-negative right-hand side. Note
that, due to the change, we are also changing the type of inequality we
deal with (from ≤ to ≥). This also means we will have to add different
types of auxiliary decision variables to the constraint (a surplus and
an artificial one instead of a slack variable). We elaborate on a concept

stemming from the above consideration in the  Inequality constraints
with a negative right-hand side box.

 Inequality constraints with a negative right-hand side

Inequality constraints in the ≤ form with a negative right-hand

side are infeasible if all the coefficients on the left-hand side are

positive. For example, a constraint such as 3𝑥1 + 2𝑥2 ≤ −2 cannot

be satisfied because the left-hand side is non-negative. Conversely,

inequality constraints in the ≥ form with a negative right-hand side

are redundant if all the coefficients on the left-hand side are positive.

For example, a constraint such as 3𝑥1 + 2𝑥2 ≥ −2 is always satisfied

because the left-hand side is non-negative. Hence, such a constraint
can be omitted from the model because it will play no binding role.

Having clarified how to tackle constraints with negative right-hand

sides, we now proceed with the description of the simplex algorithm.

In Section 6.3.1, we stated how an LP in augmented form with 𝑁 overall

decision variables and 𝑚 functional constraints can only be solved if we

set 𝑁 − 𝑚 variables to 0 (non-basic variables) and solve the remaining

square system for the remaining 𝑚 variables (basic variables). The goal

of the simplex algorithm, in a nutshell, is the following:
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7: We refer readers to Hillier and Lieber-

man (2015) for a full explanation.

▶ at every iteration, identify a non-basic variable that should be
“activated" and made basic and identify a basic variable that
should be “de-activated" and made non-basic (recall the number

of basic variables is fixed and equal to 𝑚);

▶ keep doing so until there is a need for such a swap.

We will first analyze how to assess, given a specific tableau, if another

iteration is needed and what non-basic variable should become basic.

Then, we will describe which basic variable should follow the opposite

path and become non-basic, and finally, we will describe how to update

the tableau.

6.3.4.1 Identifying the entering basic variable

The identification of the new entering basic variable, i.e., a variable that

is currently set to 0 and should take a positive value, is the easiest step

of the algorithm. What needs to be done is to check the coefficients

of the current non-basic decision variables in the objective row (i.e.,

the reduced costs) and identify the most negative one. The associated

decision variable is the one that should become basic. While we leave the

mathematical details of the reduced cost outside the scope of the book
7
,

we can interpret the reduced cost of a non-basic decision variable as the

increase (removing the minus sign from the actual reduced cost) in the
objective function for every unit value of increase of such a variable.

Taking the street food company problem of Example 6.1, in the initial

tableau we have that 𝑥1 and 𝑥2 are the non-basic variables, with a reduced

cost of -2 and -5 respectively. Note that, at this stage, those reduced costs

are the actual coefficients of those variables in the expression of the

objective function as shown in (6.23). The explanation, in this case, is

quite intuitive. We are purchasing neither trucks of the first nor of the

second type. Hence, the additional number of customers we can attract

by purchasing trucks of the first type is 2× 𝑥1: we attract 2,000 customers

for every truck of first type we decide to buy (recall the division by 1,000).

With a similar reasoning, for the second type, we have 5 × 𝑥2: we attract

5,000 customers for every purchased truck of the second type.

Hence, in the street food problem, it is recommended to “activate"

𝑥2, hence purchasing some trucks of the second type and exploring a

different corner point where 𝑥1 remains 0 and where 𝑥2 is now greater

than zero.

6.3.4.2 Identifying the leaving basic variable

To assess which value the entering basic variable can take and which

basic variable should swap places with it and should become non-basic,

we should keep in mind the following two characteristics of every LP we

deal with:

▶ every decision variable (original and additional) is non-negative;

▶ in the rightmost column of the tableau, the 𝑏 vector maps the values
of the basic variables for the current iteration.
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If we consider the two features together, we conclude that the entering

basic variable can take the maximum value possible so that every other
basic variable remains non-negative.

We should remember that any tableau, like the one shown in Table 6.1, is a

linear system. Hence the aforementioned requirement can be checked by

analyzing each equation (row) where the entering basic variable plays a

role. Note that we do not need to check the objective row here, although
we shall see in Section 6.3.4.3 that we will have to update that row, and
hence the 𝑍 value as well. Taking again Table 6.1 as a reference, and

remembering from Section 6.3.4.1 that our goal is to make 𝑥2 basic, the

first equation reads (note that we omit the term depending on 𝑍 as it is

always multiplied by 0)

1 × 𝑥1 + 0 × 𝑥2 + 1 × 𝑥3 + 0 × 𝑥4 + 0 × 𝑥5 = 8 (6.60)

which, once we get rid of the terms multiplied by 0 and once we recall

that 𝑥1 = 0 because it is non-basic, becomes 0 × 𝑥2 + 1 × 𝑥3 = 8. Hence,

as 𝑥2 is multiplied by 0, this equation is of little use to us at this stage.

Let us now move to the second equation that, once we get rid of the null

terms, reads

1 × 𝑥2 + 1 × 𝑥4 = 6 (6.61)

This equation is more interesting because it tells us that we cannot increase

indefinitely 𝑥2 without making 𝑥4 negative. In fact, we can rearrange (6.61)

as 𝑥4 =
6 − 1 × 𝑥2

1

which becomes 0 if 𝑥2 = 6 and becomes negative if

𝑥2 > 6. Hence, from this equation, we can conclude that setting 𝑥4 as the

new non-basic variable allows us to raise the value of 𝑥2 from 0 to 6.

We should not forget that there is a third equation we have not analyzed

yet, namely

4 × 𝑥2 + 1 × 𝑥5 = 36 (6.62)

Using the same logic used for (6.61), we can write 𝑥5 =
36 − 4 × 𝑥2

1

,

which remains non-negative as long as 𝑥2 ≤ 9. Because all basic variables

should stay non-negative, we cannot make 𝑥5 non-basic by setting it to 0,

hence assigning 𝑥2 a value of 9. This would result in 𝑥4 =
6 − 1 × 9

1

= −3

from (6.61).

On the other hand, if we set 𝑥2 = 6 so that 𝑥4 becomes non-basic, we

have that 𝑥5 =
36 − 4 × 6

1

= 12, which is allowed. Hence, we should

select 𝑥4 as the exiting basic variable. Such a change implies that we

are purchasing 6 trucks of the second type. Recall that 𝑥4 maps the

slack in the original 𝑥2 ≤ 6 constraint. Hence, 𝑥4 = 0 entails we are

purchasing as many trucks of that type as we can. By doing so, we are

using 4 × 6 (×10, 000) = 240, 000e leaving us with 360, 000 − 240, 000 =

120, 000e of spare budget (𝑥5 = 12). This explains the value of 𝑥5 in

relation to the new solution we obtained.
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After the insights gained from this example, let us now formalize how to

compute the exiting basic variable. When dealing with both 𝑥4 and 𝑥5,

we wrote an expression that can be generalized as

𝑥𝑒𝑥 =
𝑏𝑒𝑥 − 𝑐𝑒𝑥,𝑒𝑛𝑡 × 𝑥𝑒𝑛𝑡

1

(6.63)

where 𝑥𝑒𝑛𝑡 is the unknown value of the entering basic variable identified

as explained in Section 6.3.4.1, 𝑥𝑒𝑥 is a candidate exiting basic variable,

𝑏𝑒𝑥 is its current value (as taken by the rightmost column in the tableau),

and 𝑐𝑒𝑥,𝑒𝑛𝑡 is the coefficient of 𝑥𝑒𝑛 in the equation row associated with

𝑥𝑒𝑥 . Note that the denominator in Equation 6.63 is set to 1 because it is
the coefficient of a basic variable in its row of the tableau. Because of
the orthonormal basis requirement, such a coefficient is 1. In the initial

street food company problem of Example 6.1 as displayed in Table 6.1,

for 𝑥4 we have 𝑏𝑒𝑥 = 6 and 𝑐𝑒𝑥,𝑒𝑛𝑡 = 1, while for 𝑥5 we have 𝑏𝑒𝑥 = 36 and

𝑐𝑒𝑥,𝑒𝑛𝑡 = 4.

Because the numerator 𝑏𝑒𝑥 − 𝑐𝑒𝑥,𝑒𝑛𝑡 × 𝑥𝑒𝑛𝑡 of every candidate exiting

basic variable should remain non-negative, we will set the value of 𝑥𝑒𝑛𝑡
equal to

min

𝑖∈𝑥𝑒𝑥

{
𝑏𝑖

𝑐𝑖 ,𝑒𝑛𝑡

}
(6.64)

so that the associated basic variable 𝑖 is set to 0, becomes non-basic, and

is replaced by 𝑥𝑒𝑛 while the remaining basic variables remain basic with

non-negative values.

Referring back to the street food company example, we are setting

𝑥2 = min

{
6

1

,
36

4

}
= 6 so that 𝑥4 = 0 and 𝑥5 = 12 because the reverse

case would assign a negative (and hence infeasible) value to 𝑥4. We refer

to this process as the minimum ratio test.

A final note regards which rows of the entering basic variable column

need to be considered to perform the minimum ratio test. Only rows with

positive coefficients should be considered. We explain why this is the

case in the  Why only rows with positive coefficients are considered
for the minimum ratio test box.

6.3.4.3 Updating the tableau

Finally, to complete an iteration we need to need to update the tableau so

that it still complies with the simplex algorithm requirements, namely:

▶ the column associated with each basic variable should feature a 1

in the row mapping the value of the variable and 0s everywhere

else, so that an orthonormal basis with 0/1 values is preserved;

▶ the coefficient in the objective row of every basic variable should

be 0.

We can use a basic property of linear systems to achieve the aforemen-

tioned goal, as introduced in Chapter 3, namely that a linear system
does not change if we replace an equation with a linear combination
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 Why only rows with positive coefficients are considered for the
minimum ratio test

Let us start with the 0 coefficient case. We can use again (6.60) for

illustrative purposes (where all the unnecessary zero terms were

already removed).

0 × 𝑥2 + 1 × 𝑥3 = 8

Recall that we assessed that 𝑥2 is the entering basic variable. Because it

is multiplied by 0, no matter which value we assign to it, the equation

will always yield 𝑥3 = 8. Hence, there is no option to lower 𝑥3 to 0

and make it non-basic.

A similar reasoning can be applied to negative coefficients. Let us

now assume 𝑥2 is still the entering basic variable and that one row

of the tableau at a certain iteration is (after all the unnecessary zero

terms are removed)

−3 × 𝑥2 + 1 × 𝑥3 = 8

We can express 𝑥3 as 𝑥3 =
8+3×𝑥2

1
. Because the numerator is 8+ 3× 𝑥2,

we can increase indefinitely 𝑥2 without ever driving 𝑥3 to 0.

Hence, for different reasons, both rows with 0 or negative coefficients
associated with the entering basic variable should not be considered
when performing the minimum ratio test.

of (some of) the original equations of such a system. Let us refer back

to the street food company problem of Example 6.1, and to the initial

tableau of Table 6.1 where we highlight the rows and columns that will

need to change, in Table 6.2. As highlighted in Section 6.3.4.1 and Sec-

tion 6.3.4.2, we expect 𝑥2 to become basic with a value of 6 and 𝑥4 to

become non-basic.

Table 6.2: Initial simplex tableau for the

street food company problem of Exam-

ple 6.1 with the row and column that

must undergo changes highlighted in

red.

𝑍 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 R.H.S.

1 -2 -5 0 0 0 0

(𝑥3) 0 1 0 1 0 0 8

(𝑥4) 0 0 1 0 1 0 6

(𝑥5) 0 3 4 0 0 1 36

Not surprisingly, in Table 6.2 the row we need to modify is associated with

the exiting variable 𝑥4 (and, after the modifications, will be associated

with 𝑥2) while the column we need to modify is associated with the

entering variable 𝑥2.

The coefficient where the highlighted row and column overlap should be

modified so that it is unitary (note that the fact that in Table 6.2 such a

number is already 1 is a coincidence). This is the case because that row
will map the entering basic variable and that column will be one of
the columns of the new basis. Hence, we expect a 1 in that row and 0s
everywhere else.

We achieve the first goal by dividing the whole row by 𝑐𝑒𝑥,𝑒𝑛𝑡 (in this case

we have that 𝑐𝑒𝑥,𝑒𝑛𝑡 = 1). By doing so, we modify the coefficients of the

other non-basic variables, the coefficient of the exiting basic variable (that
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becomes 1/𝑐𝑒𝑥,𝑒𝑛𝑡), and the value on the right-hand side. Such a value

takes the value of 𝑏𝑒𝑥/𝑐𝑒𝑥,𝑒𝑛𝑡 , which we assessed to be the new value

assigned to the entering variable. We display such a change in Table 6.3,

where we also acknowledge that the change entails the row does not map

𝑥4 any longer but 𝑥2.

𝑍 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 R.H.S.

0 0 1/1 0 1/1 0 6/1 (original 𝑥4 row)
0 0 1 0 1 0 6 (updated 𝑥2 row)

Table 6.3: Updated row of the exiting

basic variable for the street food company

problem of Example 6.1 after the first

iteration.

All the remaining values of the highlighted column should be set to 0

instead, to ensure:

▶ the reduced cost of the entering basic variable in the objective row

is set to 0;

▶ all the other coefficients of that column (aside from 𝑐𝑒𝑥,𝑒𝑛𝑡 = 1) are

set to 0 so that the tableau is still characterized by an orthonormal

matrix mapping the basic variables.

We achieve both goals by using the properties of linear systems again. For

example, in the objective row, the coefficient of 𝑥2 is -5 and should become

0 to highlight that 𝑥2 is now a basic variable. We can make this happen

by replacing the current objective row with a linear combination of the

objective row and the highlighted row in Table 6.3. While other rows

(rather than the highlighted one) could be used in the linear combination

mathematically speaking, this is the only one to be used to preserve the

properties of the tableau. It is the only row where the coefficients of
the remaining basic variables (𝑥3 and 𝑥5 in this case) are guaranteed
to be 0. Hence, their coefficients in the objective row will remain 0
after the replacement as well. This is necessary to ensure that those
two variables satisfy the requirements of basic variables at the start of
the next iteration. In addition, because the original coefficient of 𝑥4 in
the objective row is 0 and the coefficient of such a variable is 1 in the
highlighted row (𝑥4 is the exiting basic variable), its new coefficient in
the objective row after the replacement will be different from 0, hence
labeling 𝑥4 as a non-basic variable.

We carry out the row replacement as follows. Let us define 𝑅𝑖 a row

in the tableau where, in the column associated with 𝑥𝑒𝑛𝑡 , we have a

non-zero coefficient 𝑐𝑖 ,𝑒𝑛𝑡 that should become zero. In addition, let us

define 𝑅𝑒𝑛𝑡 as the row that was originally associated with the exiting

basic variable and that we have already modified by dividing all values

by 𝑐𝑒𝑥,𝑒𝑛𝑡 (hence, now it maps the entering basic variable). Using again

the objective row as an example (hence, it is our current 𝑅𝑖), we have that

𝑐𝑖 ,𝑒𝑛𝑡 = −5 and we would like this value to become 0. We can achieve

this by replacing 𝑅𝑖 with the linear combination 𝑅𝑖 − 𝑐𝑖 ,𝑒𝑛𝑡 × 𝑅𝑒𝑛𝑡 , which

is shown in Table 6.4.

𝑍 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 R.H.S.

1 -2 -5 0 0 0 0 - (original objective row)
-5×0 -5×0 -5×1 -5×0 -5×1 -5×0 -5×6 = (modified highlighted row)

1 -2 0 0 5 0 30 (updated objective row)

Table 6.4: Updated objective row for the

street food company problem of Exam-

ple 6.1 after the first iteration.

The new objective row is then 1×𝑍−2×𝑥1+0×𝑥2+0×𝑥3+5×𝑥4+0×𝑥5 =

30. This implies that swapping 𝑥2 with 𝑥4 produced an increase in

the objective of 30, as now we have 𝑍 = 30. This is the case because
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𝑥1 is still non-basic and hence 0, 𝑥3 and 𝑥5 are still basic and hence

multiplied by a zero coefficient, 𝑥2 is the entering basic variable and

hence is multiplied by a zero coefficient as well, and 𝑥4 is the exiting

basic variable and has just become non-basic taking a 0 value. Hence

1 × 𝑍 − 2 × 0 + 0 × 𝑥2 + 0 × 𝑥3 + 5 × 0 + 0 × 𝑥5 = 30→ 𝑍 = 30.

The updated objective value should not surprise us if we think about
how it was obtained. The original objective function of the street food
company in Example 6.1 is 𝑍 = 2𝑥1+5𝑥2. Let us forget, for now, about 𝑥3,

𝑥4, and 𝑥5 as they are needed in the tableau, but play no role in the original

objective. We started from a condition where 𝑥1 = 0 and 𝑥2 = 0, which

resulted in 𝑍 = 0 as highlighted by the right-hand side of the objective

row in Table 6.2. We have shown in Section 6.3.4.1 that the entering basic

variable is 𝑥2 = 6, hence the updated objective is 𝑍 = 2×0+5×6 = 30, as

confirmed by the right-hand side of the objective row in Table 6.4. Note
that we obtain such a value because we need to cancel the -5 associated
with 𝑥2 from the objective row. We cancel that value with the operation
−5 − (−5 × 1) = 0 (which is part of the linear combination of two rows
of the tableau) that updates the objective value as 0−(−5×6) = 30. The
incremental term derives mathematically from the necessity to set to 0
the coefficient of the entering basic variable (𝑥2) in the tableau. The

equivalent practical explanation is that the switch from a solution where

we purchase no trucks at all (𝑥1 = 0, 𝑥2 = 0→ 𝑍 = 0) to a solution where

we purchase 6 trucks of the second type (𝑥1 = 0, 𝑥2 = 6→ 𝑍 = 30).

We now need to modify the remaining two rows (associated with 𝑥3 and

𝑥5) of the tableau to replace their current coefficients with 0s. For the

row associated with 𝑥3 we have that 𝑐𝑖 ,𝑒𝑛𝑡 = 0. 𝑅𝑖 should be replaced by

𝑅𝑖 − 0 × 𝑅𝑒𝑛𝑡 = 𝑅𝑖 , which means no change at all, as displayed for the

sake of completeness in Table 6.5.

Table 6.5: Updated (𝑥3) row for the street

food company problem of Example 6.1

after the first iteration.

𝑍 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 R.H.S.

0 1 0 1 0 0 8 - (original (𝑥3) row)
-0×0 -0×0 -0×1 -0×0 -0×1 -0×0 -0×6 = (modified highlighted row)

0 1 0 1 0 0 8 (updated (𝑥3) row)

The fact that this row did not need any change was expected. We required

the current 𝑐𝑖 ,𝑒𝑛𝑡 coefficient to become 0, and since such a coefficient is

already 0 for the row under scrutiny, no replacement with any linear

combination is needed. Note that this lack of change has also another

interpretation that links more closely to the mathematical problem at

hand. During the current iteration, we are modifying the values of 𝑥2

(from 0 to 6) and 𝑥4 (from 6 to 0). Changing these 2 values affects:

▶ the objective row, which depends on 𝑥2;

▶ constraint 𝑥2 + 𝑥4 = 6, which depends on both;

▶ constraint 3𝑥1 + 4𝑥2 + 𝑥5 = 36, which depends on 𝑥2.

On the other hand, constraint 𝑥1 + 𝑥3 = 8 remains unaffected because 𝑥1

is still non-basic, which means 𝑥3 = 8 − 𝑥1 = 8 − 0 = 8. Because neither
the entering nor the exiting basic variables appear in such a constraint,
the associated row in the tableau needs no modification at all so that
𝑥3 retains its current value of 8.

Finally, for the row associated with 𝑥5 we have that 𝑐𝑖 ,𝑒𝑛𝑡 = 4. 𝑅𝑖 should

be replaced by 𝑅𝑖 − 4 × 𝑅𝑒𝑛𝑡 = 𝑅𝑖 as shown in Table 6.6.
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𝑍 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 R.H.S.

0 3 4 0 0 1 36 - (original (𝑥5) row)
4×0 4×0 4×1 4×0 4×1 4×0 4×6 = (modified highlighted row)

0 3 0 0 -4 1 12 (updated (𝑥5) row)

Table 6.6: Updated (𝑥5) row for the street

food company problem of Example 6.1

after the first iteration.

According to Table 6.6, the new 𝑥5 value drops from 36 to 12. Due to the

replacement of the original row with the linear combination so that the

coefficient 𝑐𝑖 ,𝑒𝑛𝑡 = 4 is turned into a 0, the right-hand side undergoes

a reduction equal to 4 × 6 = 24. Similar to the objective row, there is

an explanation that relates directly to the problem at hand behind this

reduction. Recall that, in (6.26), 𝑥5 maps the budget we are not using

to purchase trucks. If 𝑥1 = 0 and 𝑥2 = 0, then 𝑥5 = 36 because all the

budget is still available. We are now switching to a solution where 𝑥1 = 0

still holds, but where 𝑥2 = 6. Hence, 𝑥5 = 36 − 3 × 0 − 4 × 6 = 12 maps

we are using 240,000e out of the 360,000e available, saving 120,000e in

the process.

Table 6.7 displays the complete revised tableau after the first iteration is

completed.

𝑍 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 R.H.S.

1 -2 0 0 5 0 30

(𝑥3) 0 1 0 1 0 0 8

(𝑥2) 0 0 1 0 1 0 6

(𝑥5) 0 3 0 0 -4 1 12

Table 6.7: Simplex tableau for the street

food company problem of Example 6.1

after the first iteration.

Note that the 3 basic variables do not follow their increasing index
order. As the leftmost column suggests, the first row maps 𝑥3, the
second one 𝑥2 (which replaced the original 𝑥4), and the third 𝑥5. We
also want to remind readers that such a column is just added for
readability, but it is not needed because the right sequence can be
retrieved by analyzing where the 1s appear in the orthonormal basis.

The basis is highlighted again in red. Note that now the columns of the

basis are neither continuous nor define an identity matrix, but this poses

no issues to the simplex algorithm. For 𝑥2, the 1 appears in the second

row, hence such a row maps 𝑥2 and since the right-hand side is 6, we can

write 𝑥2 = 6. For 𝑥3, the 1 appears in the first row, hence 𝑥3 = 8. For 𝑥5,

the 1 appears in the third row, hence 𝑥5 = 12.

Table 6.7 carries all the information needed to interpret the new solution,

that is (𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5) = (0, 6, 8, 0, 12)with an objective 𝑍 = 30 in the

rightmost column. In addition, we can confirm it satisfies the requirements

of a tableau at any iteration: the coefficients of the basic variables are 0

in the objective row, and (as mentioned above) the basic variables are

mapped with an orthonormal basis in the tableau.

Finally, we can confirm this iteration is not the last one because one of

the non-basic variables (𝑥1) has a negative coefficient in the objective row.

As explained in Section 6.3.4.1, such a variable should be the next one to

become basic.
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6.3.4.4 The Algorithm in a nutshell

In Section 6.3.4.1, Section 6.3.4.2, and Section 6.3.4.3 we discussed sepa-

rately the steps defining a single iteration to update a simplex tableau.

Given an LP, we can solve it with the simplex method following the

sequence of steps described in the  Algorithm of the simplex method
box. In (red) we highlight, for certain mathematical operations in the algo-

rithm, the associated geometric interpretation as defined in Section 6.3.2.

We also remind readers that we assume the problem at hand is a max

problem. Hence, our goal is to increase as much as possible the objective

value.
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 Algorithm of the simplex method

▶ Convert the LP into augmented form;

▶ Choose an initial solution that satisfies the tableau requirements

(identify a starting corner point and the associated basic
solution)→ the coefficients of the basic variables are 0 in the
objective row and the associated columns in the rest of the
tableau form an orthonormal basis;

▶ WHILE there is non-basic variables with a negative reduced
cost in the objective row (the current corner point is not
optimal):

• set the variable with the most negative reduce cost as the

entering basic variable 𝑥𝑒𝑛𝑡 (Section 6.3.4.1);

• identify the exiting basic variable 𝑥𝑒𝑥 via the minimum
ratio test (identify which adjacent corner point we should
move to) (Section 6.3.4.2);

• identify the coefficient 𝑐𝑒𝑥,𝑒𝑛𝑡 at the intersection of the

row of the exiting basic variable and the column of the

entering basic;

• divide the row associated with 𝑥𝑒𝑥 by 𝑐𝑒𝑥,𝑒𝑛𝑡 . This row,
labeled 𝑅𝑒𝑛𝑡 , now maps 𝑥𝑒𝑛 . This step also sets the value

of 𝑥𝑒𝑛𝑡 equal to min𝑖∈𝑥𝑒𝑥

{
𝑏𝑖
𝑐𝑖 ,𝑒𝑛𝑡

}
;

• replace the objective row with a linear combination of

that row and 𝑅𝑒𝑛𝑡 so that the coefficient of 𝑥𝑒𝑛𝑡 is set to 0

(Section 6.3.4.3);

• replace each row below the objective row that is not 𝑅𝑒𝑛𝑡
with a linear combination of that row and 𝑅𝑒𝑛𝑡 so that the

coefficient of 𝑥𝑒𝑛𝑡 is set to 0 (Section 6.3.4.3).

▶ the rightmost column of final tableau stores the optimal ob-
jective in the objective row, and the optimal values of the
basic variables in the rows below. The sequence of the optimal

basic variables is given by the location of the 1s in the final
orthonormal basis (Section 6.3.4.3) (we are now positioned in
the optimal corner point).
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6.4 Examples

We now showcase three examples of the simplex method, from the

original LP formulation to its augmented form, to the initial tableau, to

the final optimal solution.

Example 6.4 The first example is the original version of the street food company
problem. The original LP is:

max 𝑍 = 2𝑥1 + 5𝑥2 (6.65)

s.t.:

𝑥1 ≤ 8 (6.66)

𝑥2 ≤ 6 (6.67)

3𝑥1 + 4𝑥2 ≤ 36 (6.68)

𝑥1 , 𝑥2 ≥ 0 (6.69)

while its augmented form is

max 𝑍 = 2𝑥1 + 5𝑥2 (6.70)

s.t.:

𝑥1 + 𝑥3 = 8 (6.71)

𝑥2 + 𝑥4 = 6 (6.72)

3𝑥1 + 4𝑥2 + 𝑥5 = 36 (6.73)

𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5 ≥ 0 (6.74)

We have already shown in Table 6.1 that, if we start from feasible cor-

ner point (𝑥1 , 𝑥2) = (0, 0) and the associated basic feasible solution

(𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5) = (0, 0, 8, 6, 36), the initial tableau is the one shown

in Table 6.8.

Table 6.8: Initial simplex tableau

for Example 6.4.
𝑍 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 R.H.S.

1 -2 -5 0 0 0 0

(𝑥3) 0 1 0 1 0 0 8

(𝑥4) 0 0 1 0 1 0 6

(𝑥5) 0 3 4 0 0 1 36

In Table 6.8 we highlight in red the column associated with the entering

basic variable 𝑥2 and the row associated with the leaving basic variable

𝑥4. Hence, after elementary row operations, we will move to a different

corner point and basic solution where 𝑥2 is non-zero, 𝑥4 is 0, 𝑥1 remains
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non-basic, and 𝑥3 and 𝑥5 remain basic. Note that, for this example and

specific iteration, we provided all the details in Section 6.3.4.3. After the

first iteration, the new tableau is

𝑍 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 R.H.S.

1 -2 0 0 5 0 30

(𝑥3) 0 1 0 1 0 0 8

(𝑥2) 0 0 1 0 1 0 6

(𝑥5) 0 3 0 0 -4 1 12

Table 6.9: Simplex tableau for Exam-

ple 6.4 after the first iteration.

where we are already highlighting the column of the new entering basic

variable 𝑥1 and exiting basic variable 𝑥5. From Table 6.9, we infer already

that 𝑥1 = 12

3
= 4. We will also have to translate the -2 in the objective row

and the 1 in the (𝑥3) row into 0s. After these row operations, the tableau

after the second iteration is

𝑍 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 R.H.S.

1 0 0 0 13/3 2/3 38

(𝑥3) 0 0 0 1 4/3 -1/3 4

(𝑥2) 0 0 1 0 1 0 6

(𝑥1) 0 1 0 0 -4/3 1/3 4

Table 6.10: Simplex tableau for Exam-

ple 6.4 after the second iteration.

where no more rows/columns are highlighted in red as the solution

is optimal: all the coefficients in the objective row of current non-basic

variables are now positive. Hence, the optimal corner point is (𝑥1 , 𝑥2) =
(4, 6) and the associated optimal basic solution is (𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5) =
(4, 6, 4, 0, 0). The optimal value of the objective is 𝑍 = 38. Notice that the

value coincides with the one found graphically in Section 6.1.

Example 6.5 We now tackle a first variation of the street food company problem
of Example 6.4. In this variation, the third constraint is in equality form, hence
forcing us to use all the budget available. The original LP is:

max 𝑍 = 2𝑥1 + 5𝑥2 (6.75)

s.t.:

𝑥1 ≤ 8 (6.76)

𝑥2 ≤ 6 (6.77)

3𝑥1 + 4𝑥2 = 36 (6.78)

𝑥1 , 𝑥2 ≥ 0 (6.79)

while its augmented form is:

max 𝑍 = 2𝑥1 + 5𝑥2 −𝑀𝑥5 (6.80)
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s.t.:

𝑥1 + 𝑥3 = 8 (6.81)

𝑥2 + 𝑥4 = 6 (6.82)

3𝑥1 + 4𝑥2 + 𝑥5 = 36 (6.83)

𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5 ≥ 0 (6.84)

If we were to follow the procedure from Example 6.4, we would start from

corner point (𝑥1 , 𝑥2) = (0, 0) and the basic solution (𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5) =
(0, 0, 8, 6, 36). If we were to fill in all the necessary numbers in the initial

tableau, we would get the tableau depicted in Table 6.11.

Table 6.11: Initial simplex tableau

for Example 6.5 before correct initializa-

tion.

𝑍 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 R.H.S.

1 -2 -5 0 0 M 0

(𝑥3) 0 1 0 1 0 0 8

(𝑥4) 0 0 1 0 1 0 6

(𝑥5) 0 3 4 0 0 1 36

A first wake-up call is that, as mentioned in Section 6.3.4.4, we have a

basic variable (𝑥5) whose coefficient in the objective row is different than

0. Related to this point, we should always recall that we can easily check,

at any iteration, if the objective value is correct by plugging the values

of the basic variables into the objective function. Table 6.11 is associated

with the basic solution (𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5) = (0, 0, 8, 6, 36) which, when

plugged in Equation 6.80, should yield 𝑍 = 2 × 0 + 5 −𝑀 × 36 = −36𝑀.

Our current tableau states that the current objective value is 0, which is

indeed wrong. As anticipated, the key is to transform the 𝑀 coefficient
in the objective row into a 0. This is achieved by replacing the objective

row with a linear combination of the row itself minus𝑀 times the current

(𝑥5) row. After this row operation, we finally get the correct initial tableau

displayed in Table 6.12.

Table 6.12: Initial simplex tableau

for Example 6.5 after correct initializa-

tion.

𝑍 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 R.H.S.

1 -2-3M -5-4M 0 0 0 -36M

(𝑥3) 0 1 0 1 0 0 8

(𝑥4) 0 0 1 0 1 0 6

(𝑥5) 0 3 4 0 0 1 36

Table 6.12 satisfies now all the requirements of a simplex tableau. In

particular, the coefficient of the starting basic variables 𝑥3, 𝑥4, and 𝑥5 are

all 0. We can also notice, not surprisingly, that we are now starting our

algorithm from an infeasible corner point. As visible from Figure 6.9,

corner point (𝑥1 , 𝑥2) = (0, 0) does not lie in the feasible region. This is
generally not a problem, because we acknowledge the infeasibility of
the original problem by highly penalizing the objective value (having
an objective equal to −36𝑀 implies infeasibility). As we are looking
for adjacent corner points that improve our objective, we should be
able to reach the feasible region in some iterations.
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In Table 6.12 we have highlighted, as usual, the column of the entering

basic variable and the row of the exiting basic variable. Note that, albeit

with 𝑀 the concept of larger or smaller is a bit vaguer, we selected 𝑥2 as

the entering variable as -5-4M ≤ -2-3M. After the usual row operations,

the revised tableau is shown in Table 6.13.

𝑍 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 R.H.S.

1 -2-3M 0 0 5+4M 0 30-12M

(𝑥3) 0 1 0 1 0 0 8

(𝑥2) 0 0 1 0 1 0 6

(𝑥5) 0 3 0 0 -4 1 12

Table 6.13: Simplex tableau for Exam-

ple 6.5 after the first iteration.

In Table 6.13 we highlight that 𝑥1 is the new entering basic variable and

𝑥5 is the new exiting basic variable. In addition, the objective value is

𝑍 = 30 − 12𝑀, which testifies that our new solution is still infeasible.

This can easily be verified by checking that 𝑥5 = 12 is still a basic variable,

meaning we are not satisfying the original 3𝑥1 + 4𝑥2 = 36 constraint yet.

After performing a new round of row operations, the revised tableau

after the second iteration is depicted in Table 6.14.

𝑍 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 R.H.S.

1 0 0 0 7/3 2+3M 38

(𝑥3) 0 0 0 1 4/3 -1/3 4

(𝑥2) 0 0 1 0 1 0 6

(𝑥1) 0 1 0 0 -4/3 1/3 4

Table 6.14: Simplex tableau for Exam-

ple 6.5 after the second iteration.

Analyzing the objective row of Table 6.14 we conclude the current

solution is optimal. As already shown graphically in Section 6.1, the

optimal solution to this example is the same as the one from Example 6.4,

although the process to compute it is quite different.

For the sake of clarity, we show in Figure 6.10 the three functional

constraints with blue lines, the resulting feasible region (which is a

segment) in green, and the feasible and infeasible corner points in gray

and red, respectively. In addition, with dark red arrows we highlight

the sequence of corner points visited by the simplex method: (𝑥1 , 𝑥2) =
(0, 0) → (𝑥1 , 𝑥2) = (0, 6) → (𝑥1 , 𝑥2) = (4, 6). Because in every iteration,
when swapping a basic with a non-basic variable, we move from
a corner point to a neighboring one, we could already expect we
needed at least two iterations to converge to the optimal corner point
(𝑥1 , 𝑥2) = (4, 6). In fact, such a corner point is not a direct neighbor of
the starting corner point (𝑥1 , 𝑥2) = (0, 0). For the same reason, if during

iteration 1 we had decided to make 𝑥1 instead of 𝑥2 the entering basic

variable (hence moving from (𝑥1 , 𝑥2) = (0, 0) to (𝑥1 , 𝑥2) = (8, 0)), we

would have needed 3 iterations to converge to the optimal corner point

(we encourage readers to try that).

Example 6.6 In this street food company scenario, our CEO allows unrestricted
truck purchases, but we must meet a minimum spending requirement of 120,000e
as the fiscal year ends. However, production limits constrain availability for both
truck types as we experienced with Example 6.4 and Example 6.5. The LP that

maps our problem is:
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Figure 6.10: Sequence of corner points

visited in Example 6.5.
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max 𝑍 = 2𝑥1 + 5𝑥2 (6.85)

s.t.:

𝑥1 ≤ 8 (6.86)

𝑥2 ≤ 6 (6.87)

3𝑥1 + 4𝑥2 ≥ 12 (6.88)

𝑥1 , 𝑥2 ≥ 0 (6.89)

while its augmented form is

max 𝑍 = 2𝑥1 + 5𝑥2 −𝑀𝑥6 (6.90)

s.t.:

𝑥1 + 𝑥3 = 8 (6.91)

𝑥2 + 𝑥4 = 6 (6.92)

3𝑥1 + 4𝑥2 − 𝑥5 + 𝑥6 = 12 (6.93)

𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5 , 𝑥6 ≥ 0 (6.94)

A thoughtful reader might question the necessity of employing the

complete simplex process for this problem. Since there is no upper
spending limit and truck purchases are only restricted by production
limits, the optimal corner point is (𝑥1 , 𝑥2) = (8, 6) and the optimal basic
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solution is (𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5 , 𝑥6) = (8, 6, 0, 0, 36, 0). Notwithstanding, we

show the full algorithm applied to this case as well so surplus variables

are also treated in one of our examples.

With a similar approach to what showed in Example 6.5, we need to

already manipulate the original tableau because we want 𝑥6 to be basic

so that it initially takes a value equivalent to the right-hand side of (6.93).

Hence, its value in the objective row should be 0 and not 𝑀. In Table 6.15

we show the initial tableau after the row operation to ensure this has

already been performed. For any doubt, we refer readers to the conversion

of Table 6.11 into Table 6.12.

𝑍 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 R.H.S.

1 -2-3M -5-4M 0 0 M 0 -12M

(𝑥3) 0 1 0 1 0 0 0 8

(𝑥4) 0 0 1 0 1 0 0 6

(𝑥6) 0 3 4 0 0 -1 1 12

Table 6.15: Initial simplex tableau

for Example 6.6 after correct initializa-

tion.

As usual, in Table 6.15 we highlight the column of the entering basic

variable (𝑥2) and the row of the exiting basic variable (𝑥6). In addition, we

can always verify, given that our current corner point (𝑥1 , 𝑥2) = (0, 0) and

associated basic solution (𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5 , 𝑥6) = (0, 0, 8, 6, 0, 12) are both

infeasible, the objective value is correctly set at −12𝑀 to map such an

infeasible starting point. After performing the necessary row operations

to ensure the swap between 𝑥2 and 𝑥6, we get the following new tableau

(Table 6.16).

𝑍 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 R.H.S.

1 7/4 0 0 0 -5/4 M+5/4 15

(𝑥3) 0 1 0 1 0 0 0 8

(𝑥4) 0 -3/4 0 0 1 1/4 -1/4 3

(𝑥2) 0 3/4 1 0 0 -1/4 1/4 3

Table 6.16: Simplex tableau for Exam-

ple 6.6 after the first iteration.

Because we made 𝑥6 (our artificial variable) non-basic, we moved to the

feasible corner point (𝑥1 , 𝑥2) = (0, 3) associated with the basic feasible

solution (𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5 , 𝑥6) = (0, 3, 8, 3, 0, 0) that yields 𝑍 = 15. Be-

cause the coefficient in the objective row of 𝑥5 is still negative, we need at

least another iteration where, because of the minimum ratio test, 𝑥4 will

become non-basic. The new iteration is shown in Table 6.17.

𝑍 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 R.H.S.

1 -2 0 0 5 0 M 30

(𝑥3) 0 1 0 1 0 0 0 8

(𝑥5) 0 -3 0 0 4 1 -1 12

(𝑥2) 0 0 1 0 1 0 0 6

Table 6.17: Simplex tableau for Exam-

ple 6.6 after the second iteration.

Because of the value of 𝑥2 doubled (3 → 6) and both 𝑥1 and 𝑥6 are

still non-basic, the objective value doubled as well: 𝑍 = 30. Because the

coefficient of 𝑥1 in the objective row is negative, we need row operations

to make such a decision variable basic while making 𝑥3 non-basic. After

this additional iteration, we obtain the final tableau shown in Table 6.18.

Because all the coefficients of the basic variables in the objective row are

now positive, optimality is proven.



96 6 The simplex method

Table 6.18: Simplex tableau for Exam-

ple 6.6 after the third iteration.
𝑍 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 R.H.S.

1 0 0 2 5 0 M 46

(𝑥1) 0 1 0 1 0 0 0 8

(𝑥5) 0 0 0 3 4 1 -1 36

(𝑥2) 0 0 1 0 1 0 0 6

The optimal corner point is (𝑥1 , 𝑥2) = (8, 6)with the optimal basic solution

(𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5 , 𝑥6) = (8, 6, 0, 0, 36, 0) and 𝑍 = 48. Note that 𝑥5 = 36

(our surplus variable) makes perfect sense. We were required to spend

at least 120,000e and we ended up spending 30, 000 × 8 + 40, 000 × 6 =

480, 000e, hence we are exceeding the minimum required value by

360,000e.

Furthermore, by plotting the feasible region and corner points, it was

evident that a minimum of three iterations would be required to reach

the optimal solution. We highlight this and, in particular, the sequence

of corner points visited, in Figure 6.11

Figure 6.11: Sequence of corner points

visited for Example 6.6.
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So far, we have primarily discussed the simplex method in the context

of max problems. However, in various instances, including practical

applications, our objective is to minimize the objective function. In a

minimization problem, we apply the same logic with row operations but

focus on the non-basic variable with the most positive (rather than the

most negative) coefficient in the objective row. Alternatively, minimizing
an objective is equivalent to maximizing the same objective with a
minus sign. In essence, we translate

min 𝑍 =

𝑛∑
𝑖=1

𝐶𝑖𝑥𝑖 (6.95)

into
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max − 𝑍 = −
𝑛∑
𝑖=1

𝐶𝑖𝑥𝑖 (6.96)

If we follow this approach, we can use the very same technique and logic

explained previously in this chapter. We showcase this with an example

where the original LP is a minimization problem.

Example 6.7 We consider the minimization problem represented by (6.97)-
(6.101). We want to translate it into a maximization problem and solve it with
the simplex method.

The original LP is:

min 𝑍 = 𝑥1 + 𝑥2 (6.97)

s.t.:

2𝑥1 + 𝑥2 ≤ 8 (6.98)

𝑥1 + 2𝑥2 ≥ 4 (6.99)

2𝑥1 + 𝑥2 ≥ 4 (6.100)

𝑥1 , 𝑥2 ≥ 0 (6.101)

while its augmented form is:

min 𝑍 = 𝑥1 + 𝑥2 +𝑀𝑥5 +𝑀𝑥7 (6.102)

s.t.:

2𝑥1 + 𝑥2 + 𝑥3 = 8 (6.103)

𝑥1 + 2𝑥2 − 𝑥4 + 𝑥5 = 4 (6.104)

2𝑥1 + 𝑥2 − 𝑥6 + 𝑥7 = 4 (6.105)

𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5 , 𝑥6 , 𝑥7 ≥ 0 (6.106)

Note that in Equation 6.102 we are penalizing the two artificial variables
𝑥5 and 𝑥7 with a plus sign because this is a minimization problem.
Therefore, when either variable exceeds 0 (indicating a violated con-
straint), we substantially raise the objective as a representation of this
infeasibility.

In Figure 6.12 we graphically represent the original problem at hand,

with the feasible region and the corner points (both feasible and infea-

sible). Because this is the only minimization example we showcase, we

also added the objective function line 𝑥2 = −𝑥1 + 𝑍 passing through

corner point (𝑥1 , 𝑥2) = (4/3, 4/3), where 𝑍 = 8/3 which represents the

optimal solution. Because we deal with a minimization problem, our
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goal (graphically) is to shift the objective function line 𝑥2 = −𝑥1 + 𝑍 as

close as possible to the origin while remaining inside the feasible region.

Figure 6.12: Corner points and feasible

region for the Example 6.7.
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We now proceed to use the simplex method and obtain the same optimal

solution. We replace (6.102) with

max − 𝑍 = −𝑥1 − 𝑥2 −𝑀𝑥5 −𝑀𝑥7 (6.107)

so that the problem we need to solve features (6.107) as the objective and

constraints (6.103)-(6.106). We want to start setting our original 𝑥1 and 𝑥2

variables and the surplus variables 𝑥4 and 𝑥6 to 0. By doing so, we let the

slack variable 𝑥3 and the artificial variables 𝑥5 and 𝑥7 take the value of the

right-hand side of the constraint where they appear. In both Example 6.5

and Example 6.6 we showed that we need to modify the initial tableau

to ensure every coefficient of a basic variable (𝑥3, 𝑥5, and 𝑥7 in this case)

is 0 in the objective row. The correct initial tableau for our example is

shown in Table 6.19. Something important to notice is the coefficient
of 𝑍 in the objective row, which is -1 instead of 1. This is not a typo
but stems from the initial conversion min𝑍 = max−𝑍. We can also

confirm this by “manually" checking the objective value of the starting

infeasible corner point (𝑥1 , 𝑥2) = (0, 0) and the associated basic infeasible

solution (𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5 , 𝑥6 , 𝑥7) = (0, 0, 8, 0, 4, 0, 4). From (6.102) we

obtain 𝑍 = 1× 0+ 1× 0+𝑀 × 4+𝑀 × 4 = 8𝑀. Expanding the objective

row from Table 6.19, we write −1 × 𝑍 + (1 − 3𝑀) × 0 + (1 − 3𝑀) × 0 +
0 × 8 + 𝑀 × 0 + 0 × 4 + 𝑀 × 0 + 0 × 4 = −8𝑀 which simplifies into

−𝑍 = −8𝑀 → 𝑍 = 8𝑀.

An interesting aspect of this example, as highlighted in Table 6.19, is that

we have two non-basic variables with the same negative coefficient in the

objective row, namely 𝑥1 and 𝑥2. Formally, each of them could be chosen

as our rule creates a tie here. We randomly pick 𝑥2, as highlighted by the

red column. Because of the minimum ratio test, 𝑥5 is the leaving basic

variable.
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𝑍 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 R.H.S.

-1 1-3M 1-3M 0 M 0 M 0 -8M

(𝑥3) 0 2 1 1 0 0 0 0 8

(𝑥5) 0 1 2 0 -1 1 0 0 4

(𝑥7) 0 2 1 0 0 0 -1 1 4

Table 6.19: Initial simplex tableau

for Example 6.7 after correct initializa-

tion.

After the usual row operations, we obtain the tableau shown in Table 6.20.

We can verify that the objective, while still featuring an 𝑀 term which

implies infeasibility, has decreased from 8𝑀 to 2+ 2𝑀. This is consistent

with the current infeasible corner point (𝑥1 , 𝑥2) = (0, 2) and associated

basic infeasible solution (𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5 , 𝑥6 , 𝑥7) = (0, 2, 6, 0, 0, 0, 2) →
𝑍 = 𝑥1 + 𝑥2 +𝑀𝑥5 +𝑀𝑥7 = 1 × 0 + 1 × 2 +𝑀 × 0 +𝑀 × 2 = 2 + 2𝑀.

With two non-basic variables having negative coefficients in the objective

row, 𝑥1 is selected as the entering basic variable, given its more negative

coefficient. Consequently, 𝑥7 follows the opposite path.

𝑍 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 R.H.S.

-1 1/2-3/2M 0 0 1/2-1/2M -1/2+1/2M M 0 -2-2M

(𝑥3) 0 3/2 0 1 1/2 -1/2 0 0 6

(𝑥2) 0 1/2 1 0 -1/2 1/2 0 0 2

(𝑥7) 0 3/2 0 0 1/2 -1/2 -1 1 2

Table 6.20: Simplex tableau for Exam-

ple 6.7 after the first iteration.

After another round of row operations, we obtain the tableau shown

in Table 6.21. Because all non-basic variables have a positive coef-

ficient in the objective row, we conclude our current corner point

(𝑥1 , 𝑥2) = ( 4
3
, 4

3
) is the optimal one and the associated basic solution

(𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5 , 𝑥6 , 𝑥7) = ( 4
3
, 4

3
, 4, 0, 0, 0, 0) yields the optimal value

𝑍 = 8

3
.

𝑍 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 R.H.S.

-1 0 0 0 1/3 -1/3+M 1/3 -1/3+M -8/3

(𝑥3) 0 0 0 1 0 0 1 -1 4

(𝑥2) 0 0 1 0 -2/3 2/3 1/3 -1/3 4/3

(𝑥1) 0 1 0 0 1/3 -1/3 -2/3 2/3 4/3

Table 6.21: Simplex tableau for Exam-

ple 6.7 after the second iteration.

This example is quite interesting if we consider again the decision we

took in the first iteration about the entering basic variable. 𝑥1 and 𝑥2

were characterized by the same negative reduced cost and we randomly

decided to make 𝑥2 the entering basic variable. It can be verified that, if we

had chosen 𝑥1 as the entering basic variable, we would have obtained the

same optimal solution with the same number of steps. This is due to the

symmetry of corner points (𝑥1 , 𝑥2) = (0, 0), (𝑥1 , 𝑥2) = (2, 0), (𝑥1 , 𝑥2) =
(0, 2), and (𝑥1 , 𝑥2) = (4/3, 4/3). We highlight the sequence of corner

points that was followed in the example, and the alternative sequence

that would have been followed if 𝑥1 had been chosen in Figure 6.13.

Another point of interest of Example 6.7 relates to the final optimal

solution. The simplex method identified corner point (𝑥1 , 𝑥2) = (4/3, 4/3)
as the optimal one. We did not describe on purpose what practical

problem the LP at hand was addressing. Let us assume it was about

workforce allocation with 𝑥1 and 𝑥2 representing, respectively, the number

of workers specialized in two different skills that we need to complete a

production task. Our objective function then aims at minimizing their

collective number (as a proxy of minimizing salary cost). We identify
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Figure 6.13: Sequence of corner points

visited in Example 6.7 (in dark red) and

alternative sequence of corner points if

𝑥1 had been chosen in the first iteration

(in orange).
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an issue with the current optimal solution. While it makes perfect
sense mathematically, it has no practical value as we cannot hire 4

3

specialized workers. This simple example highlights an issue with
the simplex method that relates to the specific nature of the decision
variables characterizing a mathematical model. We will extensively
cover this issue and how to cope with it in Chapter 7.

6.5 Additional considerations

We covered quite extensively the basic pillars of the simplex method.

We started with the graphical representation of an LP, then moved to

its augmented form that is necessary for the simplex algorithm to work.

We discussed the need for basic and non-basic variables to have a square

system that can be updated with row operations, and we discussed how

each iteration is performed and the stopping criterion use to stop the

simplex method. Notwithstanding, and to the potential surprise of the

reader, we only scratched the surface of such an important topic in linear

optimization. Some main aspects that we did not cover are:

▶ how the simplex method handles tie-breakers (such as in Exam-

ple 6.7) or non-standard situations when selecting entering/exiting

basic variables;

▶ sensitivity analysis, i.e., how to quantitatively assess if and to what

extent changes in coefficients of the objective function or of the

constraints affect the optimal solution. Recalling Example 6.4, the

optimal solution is (𝑥1 , 𝑥2) = (4, 6), indicating prioritizing trucks

of the second type. The current cost and customer attraction factors

prompt questions for the CEO: how much cheaper should the

first type of trucks be, and how many more customers must each

attract to justify more purchases? Sensitivity analysis offers tools

for precise quantitative answers to such queries;
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▶ duality, i.e., a property of every original LP (which we label

“primal" in this context) that associates with it a “dual" problem. The

primal problem involves maximizing or minimizing an objective

function subject to constraints, while the dual problem involves

minimizing or maximizing a different objective function under

constraints derived from the primal problem. The key feature of
duality is that certain properties and relationships between the
primal and dual problems hold. Specifically, the optimal value
of one problem provides a bound on the optimal value of the
other. Additionally, the dual problem can provide insights into

the sensitivity of the optimal solution to changes in the problem

parameters as described in the previous bullet point.

We do not address the listed features in this book, but refer readers

to Hillier and Lieberman (2015), for example, in case of need.
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But magic is like pizza: even when it’s bad,

it’s pretty good.

Neil Patrick Harris

7.1 Motivation for BB

In Example 6.7 we showed an example of LP where the optimal solution,

while mathematically feasible, might not be physically meaningful. In

essence, every decision variable in a model we design has a specific

meaning and, hence, type. It is the modeler’s role to ensure the solution

to an optimization model is meaningful and implementable, on top of

satisfying some mathematical optimality criteria.

Going back to the original street food company problem of Example 6.4

that has accompanied us for most of Chapter 6, we always displayed the

mathematical feasible region without questioning too much if all possible

(𝑥1 , 𝑥2) pairs inside such a region would also be practically feasible.

The answer is no, because 𝑥1 and 𝑥2 define, respectively, the number of

purchased trucks of the first and second type. Hence, we should enforce
that they only take integer values to have a solution that satisfies the
practical requirements of the original problem at hand.

Because of this reason, for Example 6.4 the original “continuous" feasible

region translates into the discrete set of integer (𝑥1 , 𝑥2) points contained

in the original feasible region, as shown in Figure 7.1.
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Figure 7.1: Integer feasible solutions

for Example 6.4.

As all the corner points in Figure 7.1 are integers ((0, 0), (8, 0), (8, 3), (4, 6),
and (0, 6)), and we know the optimal solution in an LP lies on one of these
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1: We already elaborated that the sim-

plex method will suffice if all corner

points defining the feasible region of

the problem are characterized by integer

values. This is what happened in Exam-

ple 6.4 but, in general, for large problems

we have to assume not all the corner

points are integer and hence must rely

on BB.

2: In our context, relaxing a decision va-

riable is equivalent to make it continuous.

Hence, the relaxation of a continuous de-

cision variable is the variable itself. The

relaxation of an integer decision variable

𝑥𝑖 ∈ {𝐿𝑖 , 𝐿𝑖 + 1, · · · , 𝑈𝑖 − 1, 𝑈𝑖}, where

𝐿𝑖 and𝑈𝑖 are the integer lower and up-

per value 𝑥𝑖 can take, is 𝑥𝑖 ∈ [𝐿𝑖 , 𝑈𝑖].
Notation-wise, with {𝐿𝑖 , 𝑈𝑖} we mean

the set of integer numbers between 𝐿𝑖
and𝑈𝑖 ( which is a finite set), while with

[𝐿𝑖 , 𝑈𝑖] we mean the set of continuous

numbers between 𝐿𝑖 and𝑈𝑖 (which is an

infinite set).

points, applying the simplex method to Example 6.4 is straightforward

and yields an integer solution.

If feasible corner points exhibit mismatches between decision variable

values and their nature, as seen in Example 6.7, the simplex method may

fail in finding an optimal solution where each decision variable is of

the correct type. In such cases, we turn to an approach that retains the

simplex method’s efficiency in scanning through corner points of an LP

while ensuring recognition of a fully mathematically feasible solution.

This is a capability not inherent in the simplex method alone. We call such

a method Branch & Bound (BB) because it embeds the simplex method

into a decision tree structure (hence, the branch part of the name) and it

uses ad-hoc mathematical properties to limit the exploration of such a

tree only to relevant parts (hence, the bound part of the name)

7.2 Problem types

As per the initial findings in Section 7.3, if the problem we are dealing

with is an LP, then using the simplex method suffices because every

decision variable is allowed to take fractional (continuous) values. As

soon as a single decision variable in our model is bound to be integer or

binary, then BB is (formally)
1

needed. The models that can be handled by

BB are:

▶ Binary Program (BP) models, i.e., models where every decision
variable is binary;

▶ Integer Program (IP) models, i.e., models where every decision
variable is integer;

▶ Mixed Integer Linear Program (MILP) models, i.e., models where

decision variables are of mixed type (binary, integer, and conti-
nuous).

7.3 The basics of BB

We have seen in Chapter 6 that every constraint we add to a model brings

additional decision variables that are needed for the augmented form.

This is also the case if we want to enforce a decision variable to take

an integer value. Hence, a preliminary insight tells us that if we take

an LP and transform it into an IP by forcing all the original continuous

variables to be integer, while the size of the original problem does not
change, the size of the augmented problem will. In addition, while for

continuous variables we can let the simplex method assess their optimal

value through the iterations, how do we know which integer value is the

optimal one for each decision variable? For small problems, we might

get away with full enumeration and test all feasible combinations, but

this is not a viable approach for larger problems.

We can use the aforementioned insight, leveraging the fact that dealing

with continuous variables is easier than dealing with integer ones. The

main basic insight of BB is to remove all the additional complexity

stemming from those variables and to relax2
all decision variables to

be continuous so that the simplex method can be applied. The price
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3: For the sake of simplicity, we will be

considering an MILP, but the same logic

applies to an BP or IP.

4: For the sake of simplicity, we mean

here both integer and binary decision

variables, being a binary a special type

of integer.

we pay is that the optimal solution of such a relaxed model might be

mathematically optimal, but might not guarantee that every decision

variable is of the correct type. For example, if we have an MILP where

𝑥1 ∈ [0, 4] is continuous and 𝑥2 ∈ {0, 1, 2, 3, 4} is integer, we might get

(𝑥1 , 𝑥2) = (2.5, 3.7) as the optimal solution of the relaxed problem (where

𝑥2 ∈ [0, 4] has been relaxed to be continuous). We need to take some

extra measures to restore the feasibility (in terms of the nature of the

decision variables) of such a solution. This is where the branching and

bounding will come into play.

Note that, as already hinted at in Chapter 6, we implicitly used the

aforementioned relaxation for Example 6.4. While decision variables 𝑥1

and 𝑥2 should be integers, we did not force them to be integers when

using the simplex method. Because all the corner points of Example 6.4

are integer-valued, the final optimal solution is also integer-valued.

7.4 Linear relaxation, root node, and tree
structure

Building on the preliminary insights of Section 7.3, we mentioned that

to solve an MILP
3

we need to use the BB technique which is based on a

tree structure. Such a tree structure is composed by two sets of elements:

nodes and directed edges (see Chapter 11 for more info). Each node
defines a different linear relaxation of the original MILP, where a
different subset of binary/integer variables has been relaxed to be
continuous. Each directed edge defines a relationship between two
nodes, and hence two different variations of the original MILP. We

define the parent node as the node where the edge originates, and the

child node as the node where the edge ends. Every child node inherits
all the properties of its parent node, plus an additional constraint that
is added to “reduce" the linear relaxation of the parent node.

There exists only one special node in an BB tree structure that has no

parent nodes, but only children nodes. This special node is called the

root node. In the root node, every decision variable is relaxed to be
continuous. The underlying principle of BB is to apply the simplex

method to the root node and solve it to optimality. Once the optimal

solution is found, all the decision variables are checked against their

original type. If all integer decision variables satisfy their nature, then

the optimal solution is integer
4
, and there is no need to branch at all (this

is what happened with the street food company solution of Example 6.4).

Otherwise, from the parent node (the first parent node being the root

node) two children nodes are created, where each of the two children

nodes is given an additional constraint that tries to re-instate the nature

of a decision variable that was fractional in the parent node. In a classic
decision tree fashion, the two constraints define mutually exclusive
sets.

If the fractional decision variable (let us define it 𝑥1) is binary, then one of

the two children nodes will feature the additional constraint 𝑥1 = 0, and

the other one will have the additional constraint 𝑥1 = 1. This example is

shown in Figure 7.2, where we assume all decision variables are binary.

On the other hand, if the fractional decision variable is integer (let us
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assume it was defined as 𝑥1 = {0, 1, · · · , 9, 10}, hence a decision variable

that can take any integer value from 0 to 10), and was returned with

the value 𝑥1 = 3.6 in our relaxed model, one of the two children nodes

will inherit the additional constraint 𝑥1 ≤ 3 while the other children

node will inherit the additional constraint 𝑥1 ≥ 4. This example is shown

in Figure 7.3, where we assume all decision variables are integers. Both
examples do not refer to a complete BB decision tree, but are used for
the sole purpose of providing some insights into the methodology. A
fully developed BB solution is showcased in Section 7.11.

Figure 7.2: Tree structure of BB with

binary-only decision variables. Note: in

such a model, our goal is to maximize

the objective function 𝑍.
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𝑥
1 =

1

Figure 7.3: Tree structure of BB with

integer-only decision variables. Note: in

such model, our goal is to maximize the

objective function 𝑍.

Root

node

𝑍 = 80

𝑥1 = 3.6, 𝑥2 = 1

𝑥3 = 0.2, 𝑥4 = 0.9
𝑥5 = 7.2, 𝑥6 = 0.4

Child

node 1

𝑍 = 70.3
𝑥1 = 2.7, 𝑥2 = 0.7
𝑥3 = 1, 𝑥4 = 0.8
𝑥5 = 0, 𝑥6 = 0.9

𝑥 1

≤ 3

Child

node 2

𝑍 = 71.8
𝑥1 = 8.3, 𝑥2 = 2.7
𝑥3 = 1.4, 𝑥4 = 8

𝑥5 = 0, 𝑥6 = 4.6

𝑥
1 ≥

4

We can highlight some similarities and differences between the examples

shown in Figure 7.2 and Figure 7.3.

When it comes to similarities, we can notice how in both decision trees

the quality of the solution degrades as we move from a parent to a

child node (hence, 𝑍 decreases for a max problem and increases for a

min problem). This is correct, because every child node inherits all
the constraints of the parent node, plus an additional constraint (the
constraint depicted on the branch connecting the parent with the child).
Hence, the child node represents a model that is more constrained than
the parent, resulting in an objective that can only be worse. Another

similarity is that, in both decision trees, no node has been identified that

yields a solution satisfying all the integrality constraints. In Figure 7.2

and Figure 7.3, both children nodes feature at least one decision variable

that is fractional, hence not satisfying the binary (resp. integer) nature of

the decision variables. Hence, in both cases we do not have a solution

yet that is implementable in practice. Finally, in both cases multiple

decision variables were fractional in the parent node (𝑥1, 𝑥3, 𝑥4, and 𝑥6

in Figure 7.2, 𝑥1, 𝑥2, 𝑥3, 𝑥4, and 𝑥6 in Figure 7.3). In both situations, we

decided to use 𝑥1 when adding constraints the the children nodes, but

this choice was arbitrary. As will be explained in Section 7.8, there are

different rules to decide which relaxed decision variable to use when
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5: As we will elaborate more later, with

the term separation we mean the process

of creating two children nodes from a

parent node, where each child node in-

herits an extra constraint related to the

fractional integer decision variable that

was selected for the separation.

creating the two children nodes. While different choices might increase
or decrease the convergence time of the BB process, this will not affect
the final solution as long as the BB decision tree is fully explored.

In terms of differences, a major differences between fractional binary

decision variables (Figure 7.2) and fractional integer decision variables

(Figure 7.3) is the following. In the first case, in the two children nodes

we are enforcing the value of such decision variable, as the two disjoint

constraints are 𝑥1 ≤ 0 and 𝑥1 ≥ 1. Given than the original binary decision

variable (i.e., 𝑥1 ∈ {0, 1}) was relaxed to be continuous (i.e., 𝑥1 ∈ [0, 1]),
the two constraints become 𝑥1 = 0 and 𝑥1 = 1. In the second case, given

the fractional integer decision variable, we compute the floor and ceiling

of the fractional value (in the example, we have resp. ⌊3.6⌋ = 3 and

⌈3.6⌉ = 4), and impose that the decision variable should be smaller or

equal to the floor, or greater or equal to the ceiling (i.e., 𝑥1 ≤ 3 and

𝑥1 ≥ 4 resp.). As such, in both children nodes the decision variable

could still be fractional (as a matter of fact, it still is in Figure 7.3, with

𝑥1 = 2.7 in the leftmost child node and 𝑥1 = 8.3 in the rightmost child

node). Hence, when using a fractional integer decision variable the
first time to separate5 and create children nodes, we are generally not
assigning a specific value to it in the two children nodes. Conversely,
we are reducing the interval where the decision variable is defined.

In the example, we went from 𝑥1 ∈ [0, 10] in the parent node (the

original decision variable is integer 𝑥1 ∈ {0, 1, · · · , 9, 10} and has been

relaxed to be continuous), to 𝑥1 ∈ [0, 3] and 𝑥1 ∈ [4, 10] in the left- and

rightmost nodes, respectively. If we were to develop the BB decision

tree further, we would probably reach a depth where even for fractional

integer decision variables the additional inequality constraint becomes

an equality constraint, but this is not generally achieved immediately, as

it happens with fractional binary decision variables instead.

7.5 Best bound, best incumbent, and gap
optimality

We now use the definitions and knowledge acquired in Section 7.4 to

take a step further and assess, at any point during the development of

the BB decision tree, the quality of our solution. To do so, we provide an

additional definition. We define active node a node in the BB decision

tree that has not been solved or separated further with two branches

(and associated children nodes). Because branches are associated with a

fractional decision variable where each branch defines a smaller interval

where that decision variable is defined (recall Figure 7.2 and Figure 7.3),

only nodes featuring a solution where at least one decision variable is
fractional can be separated further. Hence, a node featuring a solution
that is integer cannot be separated and hence cannot be an active
node. For a similar reason, an infeasible node (i.e., a node that cannot
be solved at all) cannot be further separated as well. We will see

in Section 7.7 how to deal with these situations.

This introduction paves the way for the two core concepts of best bound
𝔹𝔹 and best incumbent 𝔹𝕀.
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Best bound (𝔹𝔹): the best bound is the best objective value 𝑍 (best means

highest for a max problem, lowest for a min problem) across all active
nodes. In both Figure 7.2 and Figure 7.3, the root node has been explored,

while both children nodes are still active. In the first example, the current

best bound is 𝑍 = 38 (leftmost child node), because that is the highest

value across the two active nodes. In the second example, the best bound

is𝑍 = 71.8 (rightmost child node), because that is the highest value across

the two active nodes. In essence, 𝔹𝔹 is a mathematically feasible “best"

objective for our problem where at least one integer decision variable is

fractional. Hence, it is an ideal solution that still provides a bound, as

the name suggests, on our integer optimal solution. We elaborate on the

special role of the root node in providing the first 𝔹𝔹 value in the  Root
node and 𝔹𝔹 box.

 Root node and 𝔹𝔹

In a BB tree, the root node is the only node that is a full linear relaxation

of the original MILP, and hence it is the least constrained node where

decision variables have the highest freedom. Hence, in every BB
tree the root node provides the initial value for 𝔹𝔹. This means

the highest value for a max problem and the lowest value for a min

problem.

Best incumbent (𝔹𝕀): the best incumbent is the best objective value 𝑍

across all nodes with integer solutions. Note, again, that nodes featuring

integer solutions cannot be active because they cannot be separated

further with additional children nodes. In both Figure 7.2 and Figure 7.3
we do not have a 𝔹𝕀 yet, as there is no node with a solution without
any fractional decision variable.

Readers should recall that the underlying principle of BB is to remove

all the requirements on integrality of decision variables and to reinstate

them little by little (via the branches). Hence, we start from the simplest

problem (the root node) and every problem downstream will be slightly

more complicated, inheriting all the additional constraints of all the

branches leading back to the root node. We can use this insight to justify

the following statement.

𝔹𝔹 cannot improve as more nodes are solved. This is because, as we

reintroduce constraints on the integer nature of decision variables, we

will make the fully relaxed model of the root node “less relaxed" or, in

other words, more constrained. If we add constraints to a model, its

optimal solution will either stay the same or get worse. As such, 𝔹𝔹 for
a max problem is an upper bound, and will decrease over time. On the
other hand, 𝔹𝔹 for a min problem is a lower bound, and will increase
over time. Analyzing Figure 7.2 again, we notice that the very first 𝔹𝔹

was 40 (objective value of the root node), while in the current setting 𝔹𝔹

dropped to max{38, 35} = 38, i.e., the highest 𝑍 among the two active

nodes (in this case, 𝔹𝔹 is associated with the leftmost child node).

In parallel, unless the original MILP is infeasible, eventually the first 𝔹𝕀

will be found. As more active nodes are explored, 𝔹𝕀 can only retain

its current value or improve. This is true because, as more nodes are

explored, the simplex method might find in a new node a combination

of decision variables that satisfies all integrality requirements while
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yielding a better 𝑍 than the current 𝔹𝕀. As such, for a max problem 𝔹𝕀

will increase over time, while in a min problem 𝔹𝕀 will decrease over
time.

The considerations on 𝔹𝔹 and 𝔹𝕀 lead to the following insight. For a max

problem, we have that 𝔹𝔹 ≥ 𝔹𝕀 at any point during the BB process.
For a min problem, we have that 𝔹𝔹 ≤ 𝔹𝕀 at any point during the BB
process. Because 𝔹𝔹 is an “ideal" solution where at least one integer

decision variable is fractional, it is an overestimation for maximization

problems and an underestimation for minimization problems. Hence, its

value will degrade as more active nodes are explored. This is consistent

with a decrease for max problems and an increase for min problems.

We can further exploit the relationship between 𝔹𝔹 and 𝔹𝕀 to define a

parameter tracking the quality of our optimization process while BB is

being performed. This parameter is called optimality gap 𝕆𝔾 and is

defined as

𝕆𝔾 =

����𝔹𝔹 − 𝔹𝕀𝔹𝕀

���� × 100 (7.1)

The optimality gap is a percentile measure that assesses how far our 𝔹𝕀

is with respect to the “theoretical" optimal value of the MILP we are

solving, i.e., 𝔹𝔹. Note that we use the absolute value in (7.1) so that the

formula returns a positive percentage both for max problems (where

𝔹𝔹 ≥ 𝔹𝕀) and for min problems (where 𝔹𝔹 ≤ 𝔹𝕀).

We now focus on a maximization problem (the extension to a minimiza-

tion problem will follow the same logic) to display a powerful relationship

between the inequality 𝔹𝔹 ≥ 𝔹𝕀 and Equation 7.1. We stated that, in

a max problem, 𝔹𝔹 is an overestimation of the real optimal value and

hence will decrease over time without ever going lower than 𝔹𝕀, this is

what the inequality 𝔹𝔹 ≥ 𝔹𝕀 ensures. Hence, if we use this knowledge

in (7.1) we can claim that its numerator can never be negative and will

reach 0 when 𝔹𝔹 = 𝔹𝕀.

As a consequence, we can claim that the optimal solution of an MILP

model is found when 𝕆𝔾 = 0%. This condition implies that the best

bound has decreased enough, as sufficient nodes in the BB decision tree

have been solved, to “touch" the current best incumbent. Hence, the

current 𝔹𝕀 is the optimal solution.

In addition, while optimality is mathematically proven when 𝔹𝔹 = 𝔹𝕀,
an 𝕆𝔾 greater than 0% does not mean our current 𝔹𝕀 is not the optimal
one. It could be the case that 𝔹𝕀 cannot be improved already, but that

more nodes need to be explored so that 𝔹𝔹 can decrease to close the gap.

We elaborate on this concept in the  Relationship between 𝔾𝕆 and
optimality of a solution box.

An important reflection on 𝕆𝔾 is needed to wrap up the topic. We

showed the mathematical relationship that ensures an MILP is solved to

optimality, i.e., 𝕆𝔾 = 0%. This being said, for large problems the number

of nodes to be explored to drive 𝕆𝔾 to 0% might be extremely high

and may even strain the computer processing the problem, potentially

leading to out-of-memory issues. While the actual performance changes

from problem to problem at hand, it is usually wise to set a “desired"
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 Relationship between 𝔾𝕆 and optimality of a solution

For the sake of clarity, let us consider the following example. We

have an MILP we want to maximize and, given the current status

of the BB process, we have 𝔹𝔹 = 200 and 𝔹𝕀 = 100, resulting in an

𝕆𝔾 = 100%. Does it mean we are 100% off from the optimal solution?

Not necessarily. The optimal solution could be slightly lower than

200. It cannot be exactly 200, because otherwise the node currently

associated with the 𝔹𝔹 = 200 would have yielded a non-fractional

solution. Going to the other extreme of the spectrum, it could be

that our current 𝔹𝕀 = 100 is already the optimal solution, but the BB

decision tree needs to be explored further so that the best bound can

decrease. It could also be that the optimal solution falls within the

[100, 200] interval, and more nodes need to be solved so that both 𝔹𝔹

decreases and 𝔹𝕀 increases.

gap optimality, say 5% for example, and stop the BB process anytime

the current 𝕆𝔾 is below that threshold. Current BB algorithms generally

excel at quickly reducing the optimality gap, yet they face challenges

in efficiently eliminating the remaining gap. In practical applications,
prioritizing a slightly sub-optimal solution computed in advance may
be more practical than grappling to prove optimality and potentially
obtaining it too late for real-world application.

7.6 A note on functional constraints

Up until now, we put a lot of focus on fractional solutions in an BB,

i.e., solutions of nodes where at least one integer decision variable is

fractional. We did not explicitly state, but are stating now for the sake of

clarity, that in any node of the BB process, functional constraints should
be satisfied. They might, of course, be satisfied using a fractional value
(if allowed) for the relaxed decision variables as this is one of the
pillars of the BB routine.

Let us consider the following example. We are solving an MILP with

two decision variables: 𝑥1 ∈ {0, 1} (a binary) and 𝑥2 ∈ {0, 1, 2} (an

integer). One of the constraints of our problem is 𝑥1 + 2𝑥2 ≤ 2. Solving

the root node (where, because of the full relaxation, 𝑥1 ∈ [0, 1] and

𝑥2 ∈ [0, 2]), we obtain a solution that features 𝑥1 = 0.37 and 𝑥2 = 1.72

and we decide to separate on 𝑥2. One of the child nodes will inherit

the additional constraint 𝑥2 ∈ [0, 1] and the other one the additional

constraint 𝑥2 = 2.

For the first child node, the constraint can still be satisfied by many

combinations of the (𝑥1 , 𝑥2) decision variables. For example, if (𝑥1 , 𝑥2) =
(0, 1

2
), then 1 × 0 + 2 × 1

2
= 1 ≤ 2. Hence, the functional constraint is

satisfied, although the resulting solution is still fractional. For the second

child node, because the additional constraint imposes 𝑥2 = 2, we cannot

leverage the fact that 𝑥1 is still fractional. Even if we set 𝑥1 = 0, then

1 × 0 + 2 × 2 = 4 ≥ 2, hence this child node will result in an infeasible

solution. This example serves also as a link to the next topic covered

in Section 7.7, i.e., fathoming rules.
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6: In the literature, variations might ex-

ist in the number and sequence of fatho-

ming options.

7: We assume a max problem. For a min

problem, the opposite holds.

8: Again, for a max problem worse

means a lower objective value, for a min

problem worse means higher.

7.7 Fathoming rules

In Section 7.3-Section 7.6 we elaborated on some aspects on the BB

process and even dared to label it as “efficient" sometimes, but did not

support this statement yet. Readers might wonder about the benefit of

BB over full enumeration, as solving various models during branching

introduces complexity through added constraints. The answer to this

question is fathoming, i.e., a property of BB that allows to stop (fathom)

the exploration of some portions of the decision tree, based on knowledge

of the current 𝔹𝔹 and 𝔹𝕀.

There exist three ways a node can be fathomed. We list them in the

following naming them fathoming of the first, second, and third type

respectively
6
:

▶ fathoming of first type: a node is associated with an infeasible
model. Because no solution is obtained, no further children nodes

can be defined;

▶ fathoming of second type: a node is associated with a feasible
model yielding an integer solution. If the objective value is lower

than the current 𝔹𝕀, then the node is simply fathomed as such a

node does not contribute to improving 𝔹𝕀. If the objective value

𝑍 is higher than the current 𝔹𝕀7, then we still fathom the node (as

there are no more fractional variables to separate), but we update

𝔹𝕀 with the new best value 𝑍 (𝔹𝕀← 𝑍);

▶ fathoming of third type: a node is associated with a feasible model
yielding a fractional solution that is worse than the current 𝔹𝕀. In

principle, we could explore further the current node by selecting one

of the fractional decision variables and defining the two children

nodes. Every child node, as discussed in Section 7.3 and Section 7.5,

is characterized by an objective that cannot be better than the

objective of the parent node. Hence, as the objective of the parent

node is already worse than 𝔹𝕀8, such a parent node is fathomed

and not explored further: any integer solution we might find

downstream will be worse than 𝔹𝕀 anyway. This fathoming rule
is by far the most powerful in allowing an efficient exploration
of an BB decision tree as it prevents the unnecessary exploration
of portions of the decision tree.

7.8 Branching, bounding, and separation rules

A decision tree, including the BB decision tree, can be explored in various

ways. For instance, in the examples of Figure 7.2 and Figure 7.3, after

solving the root node and creating the children nodes, the decision

remains on whether to solve the left or right child node first. Prioritizing

certain nodes over others in a decision tree does not alter the outcome

but can expedite convergence by leveraging fathoming rules or other

model properties to eliminate redundant parts of the tree. In this section,

we elaborate on this topic.

We first better formalize a couple of definitions. We define A the set of

active nodes introduced in Section 7.5. As a reminder, nodes are labeled

as active if they have not been solved yet. When a node is solved, we either
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9: When it comes to the definition

of branching, we show consistency

with Carter et al., 2018 and mean which

active node to solve (and from which, if

needed, create two new children nodes).

Hence, we branch on a node and sepa-
rate on a variable. In some other refer-

ences (see Wikipedia: Branch & Cut 2024),

branching is used to describe the creation

of the two children nodes stemming from

the current solved node, hence it involves

branching on a variable. We hope this side-

note might avoid confusion if readers are

more familiar with a different termino-

logy.

fathom it or subdivide it into two children nodes using a separation rule.

Either way, a node is removed from Aonce solved.

If the node was associated with a feasible model, it is added to set S,

i.e., the set of solved nodes. An important feature of S is that when
the two children nodes of a parent node are both added to it, then
the parent node is removed from it instead. Let us clarify this point.

If a node is further subdivided into two children nodes, it means that

the node features a non-integer solution. Each child node, once solved,

can output one of the following three outcomes. The node is infeasible.

The node yields a non-integer solution which, given what was discussed

in Section 7.4, is a “tighter" bound (tighter means lower for a max and

higher for a min problem) for the problem. The node yields an integer

solution. Whichever combination characterizes the two children nodes,
once they are both solved they “dominate" their parent node, which
can be removed from Sbecause its information is now redundant as
it has been passed over to the children. Note that S contains, at any

point during our BB process, the current 𝔹𝔹 and 𝔹𝕀 values. For a max

problem they are, respectively, the highest objective of a node with a

non-integer solution and and the highest objective of a node with an

integer solution.

Efficiently exploring a BB decision tree involves selecting a node from

A to branch on and solve, followed by determining the fractional de-

cision variable for creating two children nodes and their associated

subproblems.

7.8.1 Branching options

Two main options exist when it comes to deciding which node in A to

branch on
9

next: backtracking (also known as Last In First Out (LIFO))

and jumptracking.

In backtracking, we always branch on the most recent node added to A.

When separating on a fractional decision variable, two children nodes are

added (formally) simultaneously and are hence the most recent additions

to A. Because which of them branch on next is still an open question, a

solution might be to branch on the child node where the decision variable

has been rounded down. For example, if we are separating on 𝑥1 = 0.3

(with 𝑥1 ∈ {0, 1} being originally binary), we would branch on the child

node where 𝑥1 = 0. On a similar note, if we are separating on 𝑥2 = 3.7

(with 𝑥2 ∈ {0, 1, 2, 3, 4, 5} being originally integer), we would branch on

the child node where 𝑥2 ≤ 3.

In Figure 7.4 we provide an example of backtracking where we apply the

aforementioned policy. We start branching on the root node (node 0) and

then move to node 1 (one of the two children of node 0). Then, we keep

branching on a rounded down decision variable until we solve node 3,

which is fathomed. We then backtrace to node 4, then 5, then 6 and 7.

Only now, we move back to the first layer and to node 8, which was the

second child node of the root node. We repeat a similar process until

node 14.

We now describe the second branching option, i.e., jumptracking. In such

a case, the BB algorithm can select any active node from A. Usually,
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0

1 8

2 5 9 12

3 4 6 7 10 11 13 14

Figure 7.4: Example of backtracking stra-

tegy. The ordering of the nodes repre-

sents the sequence in which they are

solved. Note: in our example, for every

couple of children nodes, the left one is

associated with a rounding down and

the right one with a rounding up. In our

policy, we always explore the rounded-

down node first.

10: We refer readers to Hillier and Lieber-

man (2015) for a thorough explanation

of this process.

the selection is not random but follows a logic that leverages the
information available. For example, branching on the node that is more

likely to yield the highest objective possible should be beneficial in

identifying a better integer solution and then improve 𝔹𝕀, albeit such

a node might lead to infeasible solutions or solutions worse than the

current 𝔹𝕀.

0

1 3

2 4 6 7

8 9 5 12 10 11 13 14

Figure 7.5: Example of jumptracking stra-

tegy. The ordering of the nodes repre-

sents the sequence in which they are

solved.

In Figure 7.5 we provide an example of jumptracking. Differently from

backtracking, no clear pattern can be (explicitly) recognized in the

sequence of solved nodes.

7.8.1.1 Advantages and disadvantages of the different branching
options

Readers may debate the effectiveness or efficiency of the two strate-

gies and their merits. However, with no one-size-fits-all solution (refer

to Section 7.10), each approach has its pros and cons.

The advantage of backtracking is that, by solving nodes that have generally

a child-parent-grandparent relationship, we are solving very similar LPs.

By efficiently storing the information of the final simplex tableau of a

parent, a child node entails “just" the addition of a single constraint. This is

algorithmically very efficient
10

and the optimal solution of the child node

can be computed quickly. This is evident if we analyze again Figure 7.4. To

solve node 1, we can extract and modify accordingly all the information

from the final simplex tableau of node 0 by adding one additional single

constraint. The same logic applies when we branch on node 2 from 1,

etc. This algorithmic efficiency does not necessarily result in a fast
convergence, because of the quite rigid sequence in which nodes are
solved. Let us assume that, in Figure 7.4, a node on the far right side is
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associated with the optimal solution With our backtracking policy, we

will have to explore every node on the left side, most of which might be

unnecessary explorations.

Conversely, if we apply jumptracking with the aforementioned policy

of branching on the node from S associated with the current 𝔹𝔹, we

might avoid going very deep in a part of the tree which can instead be

fathomed at a shallower level, hence reducing the overall number of

nodes to explore. Because of the well-known “no free-lunch theorem",

the disadvantage of this approach is correlated to the advantage of

backtracking. Because of the potential sudden “jumps" from one side

to the other of the BB decision tree, the algorithm might have to solve a

completely different LP, whereas in the backtracking case every new LP

inherits one or just a few constraints with respect to its predecessor.

In conclusion, the memory storage and computational time of each indi-
vidual LP may pose challenges for jumptracking (and serve as strengths
for backtracking). However, the intrinsic advantage of jumptracking
(and drawback of backtracking) lies in enabling a more efficient explo-
ration of the BB tree.

7.8.2 Bounding and separation rules

Let us assume that, in a BB decision tree, we just branched on a new node

using one of the branching options from Section 7.8.1. Let us also assume

that the LP associated with such a node yields a fractional solution where

multiple integer decision variables are fractional. We are faced with the

dilemma of choosing the fractional basic decision variable to separate so

that two new subproblems (children nodes) can added. In each of them,

the rounding down and up will have a similar effect in terms of direction,

i.e., that the objective will worsen (decrease for a max problem). Yet, we

do not know the severity of such degradation. It turns out we are not so

blind, as we can leverage the information of the optimal simplex tableau

of the parent node to assess the minimum loss in the objective if we were

to round down or up a fractional basic variable. Because the process we

are about to explain provides the minimum loss (hence, a lower bound
on the expected degradation of the solution), it is labeled bounding.

Before diving into the formulas, let us start with an example. Let us take

the street food company problem of Example 6.1 that has accompanied

us for the entirety of Chapter 6 and consider a slight variation. Because

of the surging prices of materials needed for the trucks, their price has

increased from 30,000 to 35,000e and from 40,000 to 45,000e. We can

write the mathematical formulation of such a variant as:

max 𝑍 = 2𝑥1 + 5𝑥2 (7.2)

s.t.:
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𝑥1 ≤ 8 (7.3)

𝑥2 ≤ 6 (7.4)

7

2

𝑥1 +
9

2

𝑥2 ≤ 36 (7.5)

𝑥1 , 𝑥2 ∈ ℕ0 (7.6)

where in (7.5) we updated the coefficients of 𝑥1 and 𝑥2 to map the increase

in price. In addition, we now acknowledge we are dealing with an IP

and not an LP in (7.6), where, as a reminder, ℕ0 represents the set of

non-negative integers.

While we will be formally describing the BB algorithm in Section 7.9, we

have already mentioned that the first step when solving, in this case, an

IP is to relax all the decision variables to be continuous and solve the root

node that starts the decision tree. If we solve the LP associated with the

root node, we obtain the optimal simplex tableau shown in Table 7.1.

𝑍 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 R.H.S.

1 0 0 0 2.429 0.571 35.14

(𝑥3) 0 0 0 1 1.286 -0.286 5.429

(𝑥2) 0 0 1 0 1 0 6

(𝑥1) 0 1 0 0 -1.296 0.286 2.571

Table 7.1: Optimal simplex tableau for

the full linear relaxation (root node) of

the variant of the street food company

problem of Example 6.1 with increased

truck cost.

It is noteworthy that, despite having the flexibility to assume continuous

values, 𝑥2 is fixed at 6. The substantial advantage in attracting customers
of trucks of the second type outweighs the price increase, prompting the
(relaxed) model to prioritize acquiring as many as feasible. Conversely,

𝑥1 is fractional in such a solution as 𝑥1 = 2.57. In the current optimal

solution 𝑥3 is also fractional, but being a slack variable and not an original

decision variable it is allowed to take fractional values anyway. We expand

on this important aspect in the  A note on which decision variables
should be considered when separating box.

 A note on which decision variables should be considered when
separating

In every MILP, according to what it represents in practice, we require

certain decision variables to be integer or binary. We also extensively

discussed how the simplex method needs an augmented form of an

LP to apply row operations. Hence, anytime the simplex method is

applied to a relaxation of an MILP, only fractional decision variables

that belong to the original model should be considered for separation.

Augmented (slack, artificial, or surplus) decision variables are not

part of the original MILP and can take continuous values as they

are exploited to ensure balance between left- and right-hand sides

in all constraints. As such, they should not be considered in the BB

decision-making process.

This being said, if an MILP is characterized by integer-only co-
efficients in the objective function and all functional constraints
(both left- and right-hand sides), then in the optimal solution also
augmented variables will be integer.
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11: We inherit our notation from Carter

et al., 2018.

Going back to our example, because 𝑥2 is integer-valued, we are already

guaranteed we will separate on 𝑥1 and introduce two children nodes,

one where 𝑥1 ≤ 2 and the other where 𝑥1 ≥ 3. In other situations, we

might have several fractional decision variables, and hence getting some

indication on which one is more promising for the separation might

expedite the convergence of the BB process. We now show how the

previously introduced bounding process works using the information

contained in Table 7.1. Let us consider fractional basic variable 𝑥𝑖
11

, and

let 𝑓𝑖 be the fractional residual that makes such a variable non-integer.

In our example, we only consider 𝑥1 where 𝑓1 = 0.57. In addition, let us

define 𝑎𝑖 𝑗 the coefficient in the tableau in the row mapping basic variable

𝑥𝑖 and in the column mapping variable 𝑥 𝑗 , and 𝑐 𝑗 the coefficient in the

objective row mapping variable 𝑥 𝑗 . We define the down penalty 𝐷𝑖 , i.e.,

the minimum reduction in the objective if we round down fractional

basic variable 𝑥𝑖 as

𝐷𝑖 = min

𝑗

{
𝑐 𝑗 𝑓𝑖

𝑎𝑖 𝑗
∀𝑗 s.t. 𝑎𝑖 , 𝑗 > 0

}
(7.7)

while we define the up penalty𝑈𝑖 , i.e., the minimum reduction in the

objective if we round up fractional basic variable 𝑥𝑖 as

𝑈𝑖 = min

𝑗

{
𝑐 𝑗( 𝑓𝑖 − 1)

𝑎𝑖 𝑗
∀𝑗 s.t. 𝑎𝑖 𝑗 < 0

}
(7.8)

In our case, we only need to consider 𝑥5 for𝐷1 and 𝑥4 for𝑈1. We compute

𝐷1 =
0.571 × 0.571

0.286

= 1.14 and 𝑈1 =
2.429 × (−0.429)
(−1.286) = 0.81 (for more

technical details pertaining (7.7) and (7.8) we refer readers to Carter et al.,

2018 or Salkin et al., 1989).

In cases where numerous integer decision variables are fractional, Carter

et al., 2018 proposes selecting the decision variable with the highest

penalty (either down or up) to generate two children nodes. The objective

is to establish a branch with potential and another with less potential,

aiming to explore the promising branch for a potential integer solution

while swiftly fathoming the less promising one. Hence, the idea is to

branch on the child node more likely to yield a better objective.

Our example can be depicted by the partial BB decision tree depicted

in Figure 7.6. Note that in the two children nodes, we are using an

inequality to express the maximum value that 𝑍 can take based on

the 𝐷1 and 𝑈1 values determined before. This is a key concept. If we

wanted, given the current parent node, to be sure to branch on the child

node yielding the best objective value, we could try to separate using all

fractional variables, solve the LPs of both children nodes, analyze all the

results, and assess which decision variable we should use to separate and

which child node to branch on. This approach entails applying the full

simplex method to several LPs, which might be computationally heavy.

The approach proposed here used the optimal tableau of the root node
(which is already available anyway) to compute a set of 𝐷𝑖s and 𝑈𝑖s
by inspecting some values from the tableau and applying (7.7)-(7.8)
(which is a much less demanding computation) to get an insight into
which fractional variable we should separate and which child node to
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solve. The trade-off is that we only obtain an estimated objective value.

Consequently, the decision variable and branch chosen for separation

might not be as optimal as in the approach with complete information.

Root

node

𝑍 = 35.14

𝑥1 = 2.57, 𝑥2 = 6

1

𝑍 ≤ 34

𝑥 1

≤ 2

2

𝑍 ≤ 34.33

𝑥
1 ≥

3

Figure 7.6: Root node and bounds on the

objective value of the two children nodes

of the variant of the street food company

problem of Example 6.1 with increased

truck cost.

In our example, there is no ambiguity regarding which fractional decision

variable to separate, as only 𝑥1 is fractional. When it comes to which child

node to explore, our insight based on 𝐷1 and𝑈1 suggests that the branch

associated with the round up should be prioritized. For the sake of the

example, let us solve both LPs and report the results in Figure 7.7.

Root

node

𝑍 = 35.14

𝑥1 = 2.57, 𝑥2 = 6

1

𝑍 = 34

𝑥1 = 2, 𝑥2 = 6

𝑥 1

≤ 2

2

𝑍 = 34.33

𝑥1 = 3, 𝑥2 = 5.66

𝑥
1 ≥

3

Figure 7.7: Root node and solved children

nodes for the variant of the street food

company problem of Example 6.1 with

increased truck cost. Node 1 is colored in

green as it resulted in an integer solution.

We notice that, in both cases, the bound on the objective turned out to

be accurate, as both objective values matched the bound. In addition,

we colored node 1 in green because it yielded an integer solution. Given

what we discussed in Section 7.7, 𝔹𝕀 = 34 and node 1 is fathomed. In

addition, 𝔹𝔹 = 34.33 because the root node is now dominated by the two

children. For the sake of completeness, let us branch on node 2 (the only

node we can branch on) and separate on 𝑥2 (the only decision variable

we can separate). We report the updated BB tree in Figure 7.8.

Root

node

𝑍 = 35.14

𝑥1 = 2.57, 𝑥2 = 6

1

𝑍 = 34

𝑥1 = 2, 𝑥2 = 6

𝑥 1

≤ 2

2

𝑍 = 34.33

𝑥1 = 3, 𝑥2 = 5.66

3

𝑍 = 32.71

𝑥1 = 3.86, 𝑥2 = 5

4

Infeasible

𝑥
1 ≥

3

𝑥 2

≤ 5
𝑥
2 =

6

Figure 7.8: Complete BB tree for the vari-

ant of the street food company problem

of Example 6.1 with increased truck cost.

Nodes 3 and 4 are colored in red as they

are fathomed.

We can notice that the solution 𝑍 = 34 is optimal, because node 4 is

infeasible (and is hence fathomed), while node 3 is fathomed because

it yielded a fractional solution worse than 𝔹𝕀 (fathoming of third type).
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Crucially, node 3 was fathomed due to the prior resolution of node 1. In
the absence of an integer solution, branching on node 3 with children
nodes defined by 𝑥1 = 3 and 𝑥1 ≥ 4 would lead to the same solution
but extend the exploration process. This example underscores that
diverse branching and separation strategies do not alter the final BB
solution but can significantly impact the efficiency of the algorithm.

7.9 The BB algorithm in a nutshell

Having covered all the different features of the BB procedure, we can

now focus on a more formal description of its algorithm.

The algorithm follows quite strictly the rules that we discussed so far

in an integrated fashion. Given an MILP, the algorithm first relaxes all

integer decision variables to create the root node, add it to A, and solve it.

If the root node is infeasible, this means the original MILP is infeasible as

well. If not, the root node is moved to S, the 𝔹𝔹 is initialized, and, given

the adopted separation rule, two children nodes are created from the

root node and added to A. Then, according to the branching rule, a node

from Ato branch on is selected and solved. Then, the fathoming rules are

checked to assess if the node should be fathomed or not, and the process

is repeated. As soon as a node in Syields an integer solution, then the 𝔹𝕀

is initialized as well. As more nodes are explored, 𝔹𝔹 is updated, and if

a node in Swith an integer solution yielding a better (for a max problem,

this means higher) objective is solved, then 𝔹𝕀 is updated as well. The

process continues until 𝔾𝕆 (recall (7.1)) falls below a pre-determined

threshold or if a time limit is reached. We summarize the algorithm in

the  BB algorithm (for a max problem) box.

If optimality must be proven, then 𝜖 = 0 should hold so that 𝔾𝕆 =

0 =⇒ 𝔹𝔹 = 𝔹𝕀. In practice, state-of-the-art solvers use values such as
𝜖 = 0.01% as it is algorithmically hard, and unnecessary, to converge
to 0%. Note that, in some other references (see Carter et al., 2018 for
example), the stopping criterion is when the set of active nodes A is
empty. The two conditions 𝔾𝕆 = 0 and A= ∅ are in fact equivalent.



7.9 The BB algorithm in a nutshell 119

 BB algorithm (for a max problem)

▶ Inputs:

• original MILP;

• 𝜖: threshold on 𝔾𝕆 (e.g., 5%);

• 𝑇𝑀 : threshold on maximum computational time (e.g., 3,600

s).

▶ initialize elapsed time 𝑡𝑒 = 0;

▶ initialize 𝔾𝕆 = ∞;

▶ initialize 𝔹𝔹 = ∞, 𝔹𝕀 = −∞;

▶ initialize A= ∅, S= ∅;
▶ create the root node by relaxing all integer decision variables

of the MILP. Add the root node to A;

▶ solve the root note, initialize 𝔹𝔹 with the root node objective;

▶ decide which fractional variable to separate on (according to

the separation rule as shown in Section 7.8) and generate the

two children nodes. Add the two children nodes to A;

▶ remove the root node from Aand add it to S;

▶ WHILE 𝑡𝑒 ≤ 𝑇𝑀 ∨ 𝔾𝕆 ≥ 𝜖:

• select which node from A to branch on and solve (accord-

ing to the branching rule as shown in Section 7.8)

* IF the node satisfies one of the fathoming conditions

(see Section 7.7), fathom it. If the node provides an

integer solution 𝑍 ≥ 𝔹𝕀, then add it to Sand update

the best incumbent value; 𝔹𝕀← 𝑍
* ELSE the node provides a fractional solution 𝑍 ≥ 𝔹𝕀.

Add the node to S, then decide which fractional
variable to separate on (according to the separation

rule as shown in Section 7.8) and generate the two

children nodes. Add the two children nodes to A.

• remove the solved node from Aand add it to S;

• if both children of a parent node are in S, then remove
the parent node from S (as discussed in Section 7.8);

• update 𝔹𝔹 as the highest objective among all nodes in S

with fractional solutions;

• Update 𝑡𝑒 and 𝔾𝕆.

▶ Outputs: 𝔹𝕀 and values of decision variables associated with

that solution
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7.10 Considerations on the algorithmic
complexity of the BB algorithm

In the previous sections, we advertised the BB algorithm as being very

efficient in exploring only the parts of the solution space of an MILP that

are deemed worthy of exploration. In particular, the fathoming rules play

an important role in preventing the algorithm from exploring solutions

that would not lead to any improvement in our objective. This being
said, there is still a plethora of parameters and tweaks that can affect
the computational efficiency of BB.

As a divide-and-conquer approach, BB involves breaking down a complex

problem into smaller and easier subproblems through branching and

systematically exploring the solution space. The algorithm’s efficiency

depends on the quality of the bounding mechanism used to discard

subproblems that cannot lead to an optimal solution (see Section 7.7).

Additionally, the branching strategy (see Section 7.8), which dictates

the order in which subproblems are explored, plays a crucial role in

determining the algorithm’s performance. The overall complexity is

influenced by the nature of the problem being solved, the problem size,

and the specific characteristics of the objective function and constraints.

While BB offers a systematic and theoretically sound method for solving
optimization problems, the efficiency of its practical implementation
relies on fine-tuning these various components to suit the specific
problem at hand.

Additionally, for large-scale problems the curse of dimensionality is

unavoidable. This means that such large problems are very seldom

solvable to optimality (or within reasonable values of𝔾𝕆) in a reasonable

time-frame. This issue calls for algorithmic advancements. A little help

can arrive from valid inequalities and cuts that we will briefly explain

in Chapter 8, but, usually, this is not enough. Oftentimes, alternative

solution approaches such as heuristics are employed to solve such large-

scale problems. The advantage of such solution methods (some examples

are Genetic Algorithm (GA), Large Neighborhood Search (LNS), or Tabu

Search (TS) just to cite a few examples) is that they are generally faster

than the BB process. The disadvantage, being non-exact methods, is that

no proof of convergence is applicable and, hence, solution quality is

hard to assess. Here, the exact BB formulation becomes crucial. When
achieving the optimal solution for the original problem is impractical
in a reasonable time, the BB process can yield a 𝔹𝔹 and a 𝔹𝕀 within
the allotted computational time. These serve as benchmarks against
our heuristic solution. For an effective heuristic in a max problem, its

solution should surpass 𝔹𝕀 (outperforming the BB solution method). The

gap between the heuristic solution and 𝔹𝔹 is akin to the optimality gap,

indicating how much better our solution could theoretically be.

7.11 An illustrative example

We wrap up this chapter with an illustrative example where the BB

algorithm is showcased in its entirety. Because the scope of the example

is to help the reader familiarize with the concepts covered in the previous
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sections, we will analyze the process step-by-step reporting the most

important sets and parameters such as A, S, 𝔹𝔹, and 𝔹𝕀.

Furthermore, the example aims to acquaint the reader with the BB process,

not to evaluate or compare algorithmic performance across strategies.

For this purpose, we opted for a custom branching strategy, resembling

backtracking, but solving sequentially the two children nodes generated

from a parent node at the same depth level, rather than delving deeply

along a single branch.

Example 7.1 We have spent a long day in the library trying to get the hang of
the BB algorithm. To reward ourselves, we decided to go our for dinner with our
friends in a pizzeria that allows customers to build their own pizza by providing
a menu with extra toppings (with prices) to be added to a regular margherita
(that costs 6e). While being happy because BB does not seem so daunting any
longer, we are not spendthrift and set our maximum budget to 13e.

Each topping has a different satisfaction value for us, turning our meal into
an optimization problem: maximize satisfaction without surpassing the budget.
Being OR enthusiasts, what better time to apply our newfound BB knowledge?

The menu, detailed in Table 7.2, categorizes toppings into cheeses, meats, and
vegetables. Mentally assigning satisfaction scores 𝑆𝑡 to each topping, higher
values indicate stronger preferences. Recognizing the problem as a 0-1 KP
(see Section 10.1.1), we associate each topping with a binary decision variable 𝑥𝑡
(1 if added to our pizza). The extended menu, containing all inputs for solving
the 0-1 KP, is presented in Table 7.3, where we also translated prices into a
topping-specific parameter 𝑃𝑡 .

Cheese Meat Vegetable
Type Price Type Price Type Price

Buffalo mozzarella 2e Parma ham 3e Zucchini 1e
Gorgonzola 1.5e Pancetta 2e Fried eggplant 2e

Ricotta 1e Salame 2e Cherry tomatoes 0.5e
Burrata 3e ’Nduja 0.5e Roasted peppers 1.5e

Table 7.2: Menu with additional top-

pings and prices of Example 7.1.

Cheese Meat Vegetable
Type 𝑃𝑡 𝑆𝑡 𝑥𝑡 Type 𝑃𝑡 𝑆𝑡 𝑥𝑡 Type 𝑃𝑡 𝑆𝑡 𝑥𝑡

Buffalo mozzarella 2e 5.0 𝑥1 Parma ham 3e 7.2 𝑥5 Zucchini 1e 3.5 𝑥9

Gorgonzola 1.5e 3.1 𝑥2 Pancetta 2e 4.2 𝑥6 Fried eggplant 2e 5.2 𝑥10

Ricotta 1e 4.2 𝑥3 Salame 2e 8.3 𝑥7 Cherry tomatoes 0.5e 3.7 𝑥11

Burrata 3e 4.7 𝑥4 ’Nduja 0.5e 4.8 𝑥8 Roasted peppers 1.5e 4.1 𝑥12

Table 7.3: Menu with additional top-

pings and prices of Example 7.1, plus

satisfaction 𝑆𝑡 and binary decision varia-

ble 𝑥𝑡 for every topping 𝑡.

In this BP, we need only one set, i.e., the set of toppings Tcontaining 12

elements: T = {buffalo mozzarella = 1, · · · , roasted peppers = 12}. In

addition, because a margherita pizza costs 6e and our overall budget is

13e this leaves us with a remaining budget 𝐵 of 7e for our toppings. We

can formulate the BP as:

max

∑
𝑡∈T

𝑆𝑡𝑥𝑡 (7.9)

s.t.:
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12: We will be using the terms solved and

explored interchangeably in the descrip-

tion.

∑
𝑡∈T

𝑃𝑡𝑥𝑡 ≤ 𝐵 (7.10)

𝑥𝑡 ∈ {0, 1} (7.11)

where (7.9) defines the objective, i.e., maximizing our satisfaction, (7.10) is

the budget constraint, and (7.11) defines the binary nature of the decision

variables. Given the small size of the problem at hand, we can even

expand all the terms as:

max 5.0𝑥1 + 3.1𝑥2 + 4.2𝑥3 + 4.7𝑥4+
7.2𝑥5 + 4.2𝑥6 + 8.3𝑥7 + 4.8𝑥8+
3.5𝑥9 + 5.2𝑥10 + 3.7𝑥11 + 4.1𝑥12 (7.12)

s.t.:

2.0𝑥1 + 1.5𝑥2 + 1.0𝑥3 + 3.0𝑥4 + 3.0𝑥5 + 2.0𝑥6+
2.0𝑥7 + 0.5𝑥8 + 1.0𝑥9 + 2.0𝑥10 + 0.5𝑥11 + 1.5𝑥12 ≤ 7 (7.13)

𝑥1 , · · · , 𝑥12 ∈ {0, 1} (7.14)

where (7.12), (7.13), and (7.14) are the expanded counterparts of (7.9),

(7.10), and (7.11), respectively.

While we could use an off-the-shelf BB solver and directly solve the BP,

we want to cement the knowledge we acquired at the library and go over

the BB decision tree with a “manual" process. We hence start with the

root node, where all 12 decision variables are relaxed to be continuous

→ 𝑥𝑡 ∈ [0, 1] ∀𝑡 ∈ T.

Implementing insights from Section 7.9, we initialize 𝔾𝕆 = ∞, 𝔹𝔹 = ∞,

𝔹𝕀 = −∞, A = 0, and S = ∅. Solving the root node (as illustrated

in Figure 7.9a), we obtain a fractional solution recommending salame,

’nduja, zucchini, cherry tomatoes, roasted peppers, and
1

4
of fried eggplant.

Despite a possible plea for a minimal serving of eggplant, the pizzeria’s

policy prohibits such modifications. As 𝑥10 is the sole fractional variable,

we perform separation on it, creating children nodes 1 and 2. We update

the BB values as follows: 𝔾𝕆 = ∞, 𝔹𝔹 = 30, 𝔹𝕀 = −∞, A= {1, 2}, and

S= {0}. In addition, in Figure 7.9 and all the following ones we will use

the following color-scale: red for fathomed nodes, green for the node

featuring the current best incumbent (albeit being formally fathomed as

well), and thicker contours for solved
12

nodes.

Opting for node 1 (with the added constraint 𝑥10 = 0), we relinquish

the fried eggplant. The solution of this modified LP remains fractional,

recommending ricotta, salame, ’nduja, zucchini, cherry tomatoes, roasted

peppers, and
1

4
of buffalo mozzarella. Faced with another unsuccessful

attempt at a partial portion of a topping, we perform separation on 𝑥1,

leading to the creation of children nodes 3 and 4. We depict this new

scenario in Figure 7.10. The main values are updated as follows: 𝔾𝕆 = ∞,
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0

𝑍 = 30

𝑥7 = 𝑥8 = 𝑥9 =

𝑥11 = 𝑥12 = 1

𝑥10 = 0.25

1

𝑥 1
0

=
0

2

𝑥
1
0 =

1

(a) Tree structure.

(b) Evolution of 𝔹𝔹 and 𝔹𝕀.

Figure 7.9: BB decision tree for the build

your own pizza problem of Example 7.1:

one node explored.

𝔹𝔹 = 30, 𝔹𝕀 = −∞, A = {2, 3, 4}, and S = {0, 1}. Note that the best

bound is still equal to 30, as we have not solved yet node 2.

Recalling our branching policy to always explore both children nodes

of a parent node at the shallowest level possible, we then branch on

node 2, where the additional constraint 𝑥10 = 1 embodies our desire not

to give up on the fried eggplant. Surprisingly, this time we achieve an

integer solution: a step closer to satisfying our hunger. The solution we

obtain entails a margherita with the addition of ricotta, salame, ’nduja,

zucchini, fried eggplant, and cherry tomatoes, for an overall satisfaction

𝑍 = 29.7. This implies we have now a 𝔹𝕀. In addition, because the

root node is now “dominated" by nodes 1 and 2, we eliminate it from

S and update 𝔹𝔹 = 29.85 (the objective value of node 1). We depict

this new scenario in Figure 7.11. We modify the main BB as follows:

𝔾𝕆 =

����29.85 − 29.7

29.7

���� × 100 = 0.5%, 𝔹𝔹 = 29.85, 𝔹𝕀 = 29.7, A = {3, 4},

and S= {1, 2}.

Because node 1 is still characterized by a fractional, yet slightly better

(29.85 > 29.7) solution than our current feasible option, we want to inve-

stigate if a different combination of toppings can yield better satisfaction.

We then explore node 3. Solving the LP, we obtain a solution suggesting

ricotta, salame, ’nduja, zucchini, cherry tomatoes, roasted peppers, and a

fraction of Parma ham (𝑥5=0.17). Having given up on the possibility of
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convincing the waiter, we separate using decision variable 𝑥5 creating

nodes 5 and 6. The only changes in the BB values pertain to the sets Aand

S: 𝔾𝕆 = 0.5%, 𝔹𝔹 = 29.85, 𝔹𝕀 = 29.7, A = {4, 5, 6}, and S = {1, 2, 3}.
See Figure 7.12 for the updated BB tree.

We now pick node 4 from the set of active nodes A as the next one

to be solved. We obtain another integer solution consisting of buffalo

mozzarella, ricotta, salame, ’nduja, zucchini, and cherry tomatoes. Despite

the enticing mix of cheeses, meats, and vegetables, its satisfaction value
of 29.5 falls short of our current 𝔹𝕀 and is promptly fathomed (second
type). Because parent node 1 is dominated by children nodes 3 and 4,

𝔹𝔹 is updated (and hence 𝔾𝕆). In addition, having fathomed the solved

node, no additional children nodes are produced as part of the current

iteration. Hence: 𝔾𝕆 = 0.34%, 𝔹𝔹 = 29.8, 𝔹𝕀 = 29.7, A = {5, 6}, and

S= {2, 3, 4}. The revised BB tree is displayed in Figure 7.13.

We continue the exploration of our BB decision tree with node 5 (see Fig-

ure 7.14). Because its combination of ricotta, salame, ’nduja, zucchini,

cherry tomatoes, roasted peppers, and
1

4
of pancetta yields a fractional so-

lution whose objective (𝑍 = 29.65) is already lower than our 𝔹𝕀, then the

node is fathomed (fathoming of third type). We depict the updated deci-

sion tree in Figure 7.14 and update the BB values as follows: 𝔾𝕆 = 0.34%,

𝔹𝔹 = 29.8, 𝔹𝕀 = 29.7, A= {6}, and S= {2, 3, 4, 5}.

Left with just one unexplored node (node 6), we uncover a solution fea-

turing ricotta, Parma ham, salame, ’nduja, and roasted peppers. Despite

the intimidating trio of meats, this node yields a feasible but inferior

topping solution,→ 𝑍 = 28.2 < 𝔹𝕀. Consequently, the node is promptly

fathomed (second type). With no remaining active nodes, our BB algo-

rithm concludes. The optimal value is 𝔹𝕀 = 29.7, and 𝔹𝔹 is updated as

well to reflect convergence to optimality. Final BB values are 𝔾𝕆 = 0%,

𝔹𝔹 = 29.7, 𝔹𝕀 = 29.7, A= ∅, and S= {2, 5, 6}. Notably, in S, node 3 is

excluded, being dominated by nodes 5 and 6. The final BB tree is shown

in Figure 7.15.

Having finally computed the optimal solution, we realize our day at

the library was well-spent and we are positive we are one step closer to

mastering the basics of OR. We happily build our pizza with the selected

additional toppings ricotta, salame, ’nduja, zucchini, fried eggplant,

and cherry tomatoes. A nice blend of cheese, meats, and vegetables to

celebrate the achievement!

The model we “manually" solved using the BB process was intentio-

nally kept exceptionally simple for concise step-by-step illustration. It,

being a BP, exclusively incorporated binary variables, simplifying the

separation process (one branch with 𝑥𝑖 = 0 and the other with 𝑥𝑖 = 1).

However, despite its simplicity, it encompassed nearly every aspect of

BB. We witnessed no infeasible node, hence we did not get the chance to

fathom nodes using the fathoming of the first type. Conversely, we used

fathoming of the second and third types. We assessed how to update
KPIs such as 𝔹𝔹, 𝔹𝕀, and 𝔾𝕆 and how to update sets Aand S. We also
assessed how, in this case, the process was stopped because A= ∅ (as
described in Carter et al., 2018) and, as we had a 𝔹𝕀 at our disposal,
such solution was labeled as optimal.
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� Coded example

A coded version of Example 7.1 is available here.

In the  An extension to Example 7.1 box, we challenge readers with a

variation to the presented Example 7.1.

 An extension to Example 7.1

Let us assume that, in the menu, we missed an asterisk forwarding

us to the following footnote: “Only one meat selection is allowed as extra
topping". How would the original BP would change? Try to formulate

this new model and solve it again using an BB solver. Can you already

foresee what could/will happen to the quality of the final optimal

solution?

https://github.com/alessandroBombelli/From-theORy-to-application-learning-to-optimize-with-Operations-Research-in-an-interactive-way/tree/main/Codes/Branch%20%26%20Bound%20(BB)
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Figure 7.10: BB decision tree for the build

your own pizza problem of Example 7.1:

two nodes explored.
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(a) Tree structure.

(b) Evolution of 𝔹𝔹 and 𝔹𝕀.
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(a) Tree structure.

(b) Evolution of 𝔹𝔹 and 𝔹𝕀.

Figure 7.11: BB decision tree for the build

your own pizza problem of Example 7.1:

three nodes explored.
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Figure 7.12: BB decision tree for the build

your own pizza problem of Example 7.1:

four nodes explored.

0

𝑍 = 30

𝑥7 = 𝑥8 = 𝑥9 =

𝑥11 = 𝑥12 = 1

𝑥10 = 0.25

1

𝑍 = 29.85

𝑥3 = 𝑥7 = 𝑥8 =

𝑥9 = 𝑥11 = 𝑥12 = 1

𝑥1 = 0.25

𝑥 1
0

=
0

2

𝑍 = 29.7
𝑥3 = 𝑥7 = 𝑥8 =

𝑥9 = 𝑥10 = 𝑥11 = 1

Best Incumbent

𝑥
1
0 =

1

3 4

𝑍 = 29.8
𝑥3 = 𝑥7 = 𝑥8 =

𝑥9 = 𝑥11 = 𝑥12 = 1

𝑥5 = 0.17

5

𝑥 5
=

0

6

𝑥 1

=
0

𝑥
0 =

1

𝑥 5
=

0 𝑥
5 =

1
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(b) Evolution of 𝔹𝔹 and 𝔹𝕀.
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(a) Tree structure.

(b) Evolution of 𝔹𝔹 and 𝔹𝕀.

Figure 7.13: BB decision tree for the build

your own pizza problem of Example 7.1:

five nodes explored.
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Figure 7.14: BB decision tree for the build

your own pizza problem of Example 7.1:

six nodes explored.
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Figure 7.15: BB decision tree for the build

your own pizza problem of Example 7.1:

seven nodes explored.
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The first cut is the deepest.

Cat Stevens

8.1 Motivation for BC

In Chapter 6, we explored how the solution of an LP resides at one

of its corner points and how the simplex method efficiently navigates

these points to find the optimal one. In Chapter 7, we extended this idea,

emphasizing that when a model includes at least one integer decision

variable, the method must be integrated into a decision tree. This tree must

account for the correct treatment of each decision variable type, ensuring

both mathematical accuracy and practical relevance. While delving

into BB basics, we briefly introduced linear relaxation, highlighting its

necessity for algorithm application but acknowledging its tendency to

explore impractical regions of the solution space.

To this avail, general BB solvers are equipped with automated ways of
analyzing the MILP being solved and adding constraints that cut off
parts of the feasible region that a linear relaxation would explore but
are recognized not to lead to any integer solution (without affecting
the optimal integer solution). Because additional constraints can be
interpreted as cuts along the feasible region, this extension of BB is
named Branch & Cut (BC).

We back up this intuition with an explicative example. Let us consider

the following IP:

max 𝑥1 + 𝑥2 (8.1)

s.t.:

𝑥1 ≤ 2 (8.2)

𝑥1 + 2𝑥2 ≤ 4 (8.3)

− 𝑥1 + 2𝑥2 ≤ 2 (8.4)

𝑥1 , 𝑥2 ∈ ℕ0 (8.5)

We can visualize the feasible region and the integer (𝑥1 , 𝑥2) pairs inside

it in Figure 8.1.

Considering our earlier discussion, astute readers might assert that the

portion of the feasible region above 𝑥2 = 2 exclusively pertains to the

linear relaxation of the original IP. No integer (𝑥1 , 𝑥2) pair exists within it

for 𝑥2 > 2. A more refined version of Figure 8.1 is proposed in Figure 8.2,
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Figure 8.1: Example of integer feasible

points and LP feasible region.
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where the red region is “cut" from the feasible region. Removing this

redundant space makes our BB solver explore a more compact solu-

tion space. This intuitive enhancement precisely characterizes what BC

contributes to the BB routine detailed in Chapter 7.

The primary aim of BC is to eliminate all the red regions (as highlighted

in Figure 8.2), streamlining the exploration of the BB decision tree

by avoiding undesirable areas. In practical terms, to achieve this, one

straightforward method is computing the convex hull of the set of feasible

integer solutions within the original set of functional constraints. For

those unfamiliar with the concept of convex hull, envision stretching

an elastic band to enclose the entire green region in Figure 8.1. The

gray feasible integer points act as pins, and upon releasing the band, the

resulting shape, bounded by the pins, forms the green region in Figure 8.2.

A more formal definition of convex hull is the smallest convex set that
contains a given shape in an 𝑛-dimensional space.

Successfully computing the relevant convex hull for an MILP allows us to

define it as an integer polytope. A polytope is essentially an extension of

a polygon into an 𝑛-dimensional space. In this context, each side of the

polytope is termed a facet, with the term “side" applicable specifically

to 2-dimensional spaces. In a 3-dimensional space, a facet becomes a

surface, and in general, a facet extends to an (n-1)-dimensional set of

points that are part of the convex hull in an 𝑛-dimensional space.

While the elastic band and pins analogy offered an intuitive approach to

grasp the concept of convex hull (and thus, an integer polytope) for an

MILP, the algorithmic and mathematically rigorous computation of all

necessary facets becomes a formidable task for larger problems. Ensuring

that all facets are determined guarantees integer corner points in the

resulting MILP, thus optimizing the BB process. However, one could

argue that any cut diminishing the red region in Figure 8.2 is beneficial for

enhancing exploration efficiency. Fortunately, adding "good" cuts for this

purpose is a less challenging task, and modern BB solvers incorporate an

extensive set of cuts. These cuts are scrutinized and added to eliminate
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Figure 8.2: Example of integer feasible

points and LP feasible region reduced to

an integer polytope.

the superfluous portion of the linear solution space without impacting

the integer one. In practice, all state-of-the-art BB solvers effectively

function as BC solvers. We provide a clarification on the term “cut" in

the  A note on the term “cut" box.

 A note on the term “cut"

Given our definition of convex hull and integer polytope, it follows

that facets in a 2-dimensional space are lines. Hence, every constraint

added to tighten the feasible solution space is a cut in the strict

sense (i.e., a 1-dimensional line). In a 3-dimensional space, cuts

are cutting planes (2-dimensional surfaces), with the term cutting
plane generally applied as an umbrella term for every constraint
tightening the feasible region in higher dimensions.

As outlined in Chapter 7, when managing an MILP, the BB tree structure

employs only fractional original variables that should be integers for

separation. Augmented variables, on the other hand, can assume feasible

fractional values to secure the optimal corner point and its associated

optimal basic solution. For the sake of clarity, let us consider the following

IP:

max 𝑥1 + 𝑥2 (8.6)

s.t.:

𝑥1 ≤
5

2

(8.7)

𝑥2 ≤
7

2

(8.8)

𝑥1 , 𝑥2 ∈ ℕ0 (8.9)
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1: Named after Ralph E.Gomory, applied

mathematician and executive. See this

Wikipedia page.

As 𝑥1 and 𝑥2 are not simultaneously present in any constraint and given

that (8.6) seeks to maximize their sum, we can assign each the maximum

integer value allowed by Equation 8.7 and (8.8), respectively. This yields

the optimal solution, (𝑥1 , 𝑥2) = (2, 3), with an optimal objective of 𝑍 = 5,

obviating the need for any BB algorithm here. In an augmented form,

converting the model reveals 𝑥3 = 1

2
and 𝑥4 = 1

2
, where 𝑥3 and 𝑥4 serve as

the slack variables for (8.7) and (8.8). While these variables are fractional

due to the nature of the right-hand sides, it does not impact the integer

nature of the solution concerning the original decision variables. We

provide an additional consideration about this example in the  A note
on model (8.6)-(8.9) box.

 A note on model (8.6)-(8.9)

Some readers might question that, given that 𝑥1 , 𝑥2 ∈ ℕ0, then 𝑥1

could never assume the
5

2
value, and hence constraint (8.7) could be

tightened as 𝑥1 ≤ 2, being 2 the largest integer value that 𝑥1 can take.

The same would apply to constraint (8.8) which can be tightened as

𝑥2 ≤ 3. This is of course correct and displays a good understanding

of the problem and its mathematical features by the modeler. We
kept the original fractional right-hand sides to substantiate our
claim that in an IP the optimal solution might feature fractional
augmented variables if some coefficients are fractional.

Conversely, if an MILP includes only integer coefficients, it can be proven

that all decision variables, both original and augmented, must be integers

in the optimal corner point. For a more in-depth exploration of this

concept, readers can refer to Hillier and Lieberman, 2015 or Carter et al.,

2018. Many cutting plane techniques hinge on this assumption, grounded

in the observation that numerous parameters from real-life operations

(subsequently mapped into these coefficients) inherently possess integer

characteristics. Consequently, in the set of example cutting planes outlined

in Section 8.2, we will presume that every coefficient of the original MILP,

unless explicitly stated otherwise, is an integer.

8.2 Examples of cutting planes

8.2.1 Gomory fractional cuts

Gomory
1

cuts rank among the most renowned types of cutting planes.

These cuts leverage the property that, within any integer solution,
fractional values may persist in certain constraints of the tableau.
However, when these fractional values cancel each other out, the
ultimate outcome becomes integer-valued.

Leveraging this insight, the optimal tableau of the linear relaxation

of the original MILP can be analyzed. When confronted with at least

one fractional decision variable, a Gomory cut is introduced. This cut

excludes the current fractional solution without eliminating any integer-

valued solutions from the revised solution space. The problem is then

solved iteratively until an integer solution is attained. Readers may

ponder whether this iterative process could entirely replace BB. In
theory, continuously solving LPs while incrementally adding a new

https://en.wikipedia.org/wiki/Ralph_E._Gomory
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constraint (the latest Gomory cut) might eventually converge to the
optimal integer solution without resorting to a decision tree. While this
is true, particularly for large instances, the number of Gomory cutting
planes required for convergence can escalate, diminishing the process’s
efficiency compared to BB. As previously suggested, modern solvers

enhance the efficiency of a pure BB algorithm by rapidly generating a

subset (rather than all) of the cutting planes (see Section 8.3).

Before delving into the formal definition of a Gomory cutting plane, let

us underscore its utility with an illustrative example. Considering the

IP:

max 8𝑥1 + 5𝑥2 (8.10)

s.t.:

𝑥1 + 𝑥2 ≤ 6 (8.11)

9𝑥1 + 5𝑥2 ≤ 45 (8.12)

𝑥1 , 𝑥2 ∈ ℕ0 (8.13)

The optimal tableau of its LP relaxation is shown in Table 8.1, where 𝑥3

and 𝑥4 are, respectively, the slack variables of (8.11) and (8.12).

𝑍 𝑥1 𝑥2 𝑥3 𝑥4 R.H.S.

1 0 0 1.25 0.75 41.25

(𝑥2) 0 0 1 2.25 -0.25 2.25

(𝑥1) 0 1 0 -1.25 0.25 3.75

Table 8.1: Optimal tableau of the LP relax-

ation of (8.10)-(8.13) before the addition

of a Gomory cut.

Because of the fractional nature of the optimal basic solution (𝑥1 , 𝑥2) =
(3.75, 2.25), the current LP needs further enrichment to lead us to an

integer-valued solution. This is where a Gomory fractional cutting plane

comes in handy. Let us consider the second constraint row in Table 8.1,

i.e.,

1𝑥1 − 1

1

4

𝑥3 +
1

4

𝑥4 = 3

3

4

(8.14)

where we wrote each coefficient highlighting the integer and fractional

part. We can now separate those coefficients into an integer and positive

fractional part, e.g., 3

3

4

= 3 + 3

4

, but −1

1

4

= −2 + 3

4

, and rewrite (8.14)

by moving all the integer parts to the right-hand side together with the

original right-hand side. We hence obtain

3

4

𝑥3 +
1

4

𝑥4 = (−𝑥1 + 2𝑥3 + 3) + 3

4

(8.15)

Analyzing (8.15), the following takeaways emerge:
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2: Here, we are employing a specific as-

pect of sensitivity analysis. In this sce-

nario, we are appending a constraint in

tabular format to the optimal solution

of an optimization problem to confirm

its current validity. We are not delving

into the theoretical intricacies, such as

the effects on the optimal solution when

altering coefficients of basic or non-basic

variables, but directing curious readers

to Hillier and Lieberman (2015), which

dedicates a comprehensive chapter to

sensitivity analysis.

▶ fractional coefficients are split to feature an integer value and

a positive fractional value, and terms containing such positive

fractional values are isolated on the left-hand side. As such, the
left-hand side of (8.15) or of any equivalent constraint should be
non-negative;

▶ in any integer solution, given that assumptions on the integrality

of every coefficient of the original MILP, then the term inside the
brackets on the right-hand side (i.e., −𝑥1 + 2𝑥3 + 3) should be
integer.

Combining the two insights, we can write that in every integer solution

3

4

𝑥3 +
1

4

𝑥4 =

{
3

4

, 1
3

4

, 2
3

4

, · · ·
}

(8.16)

meaning in (8.16) that the left-hand side can take one of the values

within the brackets because the right-hand side is the summation of

a non-negative integer number (−𝑥1 + 2𝑥3 + 3) and
3

4
. Finally, we can

rewrite (8.16) as

3

4

𝑥3 +
1

4

𝑥4 ≥
3

4

(8.17)

which is the Gomory cutting plane we were looking for. Note that in
the current optimal solution both 𝑥3 and 𝑥4 are non-basic. Hence, this
cutting plane makes the current optimal solution of the LP relaxation
infeasible as 3

4
× 0 + 1

4
× 0 ≥ 3

4
is not satisfied.

We can add this inequality to the optimal tableau of Table 8.1 by first

rewriting it as − 3

4
𝑥3 − 1

4
𝑥4 ≤ − 3

4
and then putting it in augmented form

(adding the additional slack variable 𝑥5) as − 3

4
𝑥3 − 1

4
𝑥4 + 𝑥5 = − 3

4
. The

new tableau is depicted in Table 8.2.

Table 8.2: Optimal tableau of the LP re-

laxation of (8.10)-(8.13) after the addition

of a Gomory cut. Because 𝑥5 features a

negative value, the addition of the cut

makes the current fractional solution in-

feasible.

𝑍 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 R.H.S.

1 0 0 1.25 0.75 0 41.25

(𝑥2) 0 0 1 2.25 -0.25 0 2.25

(𝑥1) 0 1 0 -1.25 0.25 0 3.75

(𝑥5) 0 0 0 -0.75 -0.25 1 -0.75

As both 𝑥3 and 𝑥4 are non-basic, introducing the cut results in 𝑥5 = − 3

4
,

emphasizing that this addition renders the current solution infeasible2:
a correct outcome as the cutting plane is designed to eliminate such
fractional solutions. To determine the “revised" optimal solution after

incorporating the Gomory cut, two options exist. The first involves re-

solving the problem entirely, incorporating the additional constraint

from the outset. The second approach leverages the fact that we already

know the optimal solution to a very similar problem (“just" the additional

Gomory cut differentiates the two), and hence we could tamper with the

current infeasible tableau and with some row operations to find the new

optimal solution. This second approach relies on a variant of the method

called the dual simplex method.

While we leave out the full description of such an algorithm (we refer

interested readers to Hillier and Lieberman, 2015), we share here the
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main features of the method. One of the main applications of the
dual simplex method entails dealing with the addition to an optimal
tableau of a functional constraint in augmented form that makes the
current optimal solution infeasible. As discussed in Chapter 6, adding a

constraint either retains the feasibility of the current optimal solution or

renders it infeasible. In the latter case, for a max problem, it signifies that

the new optimal solution will be lower than the original, if an optimal

solution to the revised problem exists.

In the simplex method, we look for the entering basic variable that has

the potential to increase the objective the most by selecting the non-

basic variable with the most negative coefficient in the objective row.

Then, we determine the exiting basic variable via the minimum ratio test.

Conversely, here the reverse process is followed. The exiting basic variable

is identified first as the one with the negative value (𝑥5 in our example),

i.e., the one highlighting infeasibility. The entering basic variable is
then selected as the one that minimally reduces the objective value:
in our case, either 𝑥3 or 𝑥4. Opting for 𝑥3 involves transforming the 1.25

coefficient in the objective row to 0. This is achieved by replacing the

objective row with a linear combination of itself plus

1.25

−0.75

times the

(𝑥5) row, resulting in a revised objective value of 40. Choosing 𝑥4 would

require a linear combination involving

0.75

−0.25

times the (𝑥5) row, yielding

a revised objective value of 39. The preference for 𝑥3 is evident. Notably,

if 𝑥4 were chosen, negative coefficients for the non-basic variables in the

objective row would highlight the necessity of additional iterations, as

explained in Chapter 6. Conversely, selecting 𝑥3 as the entering basic

variable and performing all row operations leads to an optimal tableau

(shown in Table 8.3) with all coefficients in the objective row being

positive, confirming the optimality of the new solution.

𝑍 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 R.H.S.

1 0 0 0 -0.33 -1.67 40

(𝑥2) 0 0 1 0 -1 3 0

(𝑥1) 0 1 0 -0 0.67 -1.67 5

(𝑥3) 0 0 0 1 0.33 -1.33 1

Table 8.3: Optimal tableau of the LP re-

laxation of (8.10)-(8.13) after the addition

of a Gomory cut and after the dual sim-

plex method has been applied to restore

the feasibility of the solution.

After going through an application example, we formalize the expression

of a Gomory cutting plane as follows. Let us consider the optimal tableau

of the LP relaxation of an MILP, and let us assume 𝑥𝑟 to be a fractional

basic variable, with 𝑏 indicating its associated row in the tableau. Let

us also define X𝑁𝐵 the set of non-basic variables of the optimal solution

and index them with 𝑗. Hence, with 𝐴𝑏 𝑗 we represent the coefficient in

position (𝑏, 𝑗) of the tableau. Row 𝑟 can be expressed as

𝑥𝑟 +
∑
𝑗∈X𝑁𝐵

𝐴𝑏 𝑗𝑥 𝑗 = 𝑏𝑟 (8.18)

where

∑
𝑗∈X𝑁𝐵 𝐴𝑏 𝑗𝑥 𝑗 = 0 because all 𝑥 𝑗s are non-basic and 𝑥𝑟 = 𝑏𝑟 is

fractional as per our assumption. The Gomory cutting plane can be

defined as
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∑
𝑗∈X𝑁𝐵
(𝐴𝑏 𝑗 − ⌊𝐴𝑏 𝑗⌋)𝑥 𝑗 ≥ (𝑏𝑟 − ⌊𝑏𝑟⌋) (8.19)

Let us verify that (8.19) eliminates the original fractional solution while

preserving all integer solutions: a crucial criterion for any cutting plane.

Concerning the first requirement, we should remember that all 𝑥 𝑗s are 0
as they are the non-basic variables of the fractional solution. In addition,

because we assumed 𝑥𝑟 to be fractional, we have that (𝑏𝑟 − ⌊𝑏𝑟⌋) > 0.

Hence (8.19) applied to the original LP relaxation becomes 0 ≥ (𝑏𝑟 − ⌊𝑏𝑟⌋)
which is not satisfied and hence renders the current fractional solution
infeasible. We now need to verify that, on the other hand, such a cutting

plane is harmless for integer solutions. Here, the process is slightly more

complicated. First, let us realize that for any LP solution it holds that

𝑥𝑟 +
∑
𝑗∈X𝑁𝐵

⌊𝐴𝑏 𝑗⌋𝑥 𝑗 ≤ 𝑥𝑟 +
∑
𝑗

𝐴𝑏 𝑗𝑥 𝑗 = 𝑏𝑟 (8.20)

which, for the particular case of an integer solution, becomes

𝑥𝑟 +
∑
𝑗∈X𝑁𝐵

⌊𝐴𝑏 𝑗⌋𝑥 𝑗 = ⌊𝑏𝑟⌋ (8.21)

because for an integer solution 𝑏𝑟 = ⌊𝑏𝑟⌋. If we now subtract (8.21) from

(8.18) we obtain

∑
𝑗(𝐴𝑏 𝑗 − ⌊𝐴𝑏 𝑗⌋)𝑥 𝑗 ≥ (𝑏𝑟 − ⌊𝑏𝑟⌋), which is the definition

of the Gomory cutting plane of (8.19).

Going back to our example, let us leverage the fact that it is a two-

dimensional example and analyze the graphical interpretation of the

Gomory cut we added. Because the feasible region is defined in the (𝑥1 , 𝑥2)
space, we need to rewrite the Gomory cut

3

4
𝑥3 + 1

4
𝑥4 ≥ 3

4
as a function of

𝑥1 and 𝑥2. To this avail, we can use (8.11) and (8.12) in augmented form,

respectively, 𝑥1 + 𝑥2 + 𝑥3 = 6 and 9𝑥1 + 5𝑥2 + 𝑥4 = 45 and plug them in

the Gomory cut:
3

4
(6 − 𝑥1 − 𝑥2) + 1

4
(45 − 9𝑥1 − 5𝑥2) → 3𝑥1 + 2𝑥2 ≤ 15.

We can now plot the original feasible region and the feasible region

“trimmed" by the Gomory cut. The first situation is depicted in Figure 8.3.

In green it is reported the feasible region, in gray the integer points

inside such a region, and in dark orange the optimal solution of the

LP: (𝑥1 , 𝑥2) = (3.75, 2.25). We can notice how the bottom right corner of

the feasible region does not belong to the integer polytope we defined

before.

In Figure 8.4, the added value of the Gomory cutting plane is highlighted.

In this specific case, the cut passes through integer points (𝑥1 , 𝑥2) = (3, 3)
and (𝑥1 , 𝑥2) = (5, 0), hence eliminating the portion of the original feasible

region highlighted in red. By doing so, the “trimmed" feasible region
is an integer polytope (i.e., the convex hull of all integer points) as
the cutting plane coincided with the missing facet running from
(𝑥1 , 𝑥2) = (3, 3) to (𝑥1 , 𝑥2) = (5, 0). Thanks to this improvement, now the

solution to the revised LP is integer: (𝑥1 , 𝑥2) = (5, 0) as highlighted by

the dark orange circle.

A final reminder: the Gomory cutting plane method’s convergence can

generally be slow. The process is conceptually straightforward: solve

the relaxed LP of an MILP, halt if the solution is integer, or else add
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Figure 8.3: Feasible region, integer points

(in gray), and optimal solution (in dark or-

ange) of the LP relaxation of (8.10)-(8.13)

for the Gomory cutting plane example

(before the addition of the cutting plane).

a Gomory cut in the form of (8.19) to the tableau based on a selected

fractional basic variable. Subsequently, run one iteration of the dual

simplex method to compute the new (lower) objective while restoring

feasibility. In our example, a single Gomory cutting plane sufficed, but
for many large-scale problems, the substantial number of required
planes for convergence makes this approach unsuitable as a stand-alone
process.

We want to tease interested readers with the following IP:

max 𝑥2 (8.22)

s.t.:

3𝑥1 + 2𝑥2 ≤ 6 (8.23)

− 3𝑥1 + 2𝑥2 ≤ 0 (8.24)

𝑥1 , 𝑥2 ∈ ℕ0 (8.25)

Despite being similar to the previous example in size, in this case one

single Gomory cut will not suffice to converge to the optimal integer

solution.

8.2.2 Cover inequalities

Gomory cutting planes, detailed in Section 8.2.1, primarily target frac-

tional integer decision variables. In contrast, cover inequalities are cutting

planes tailored specifically for binary decision variables. Let us consider

a generic constraint
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Figure 8.4: Feasible region, integer points

(in gray), and optimal solution (in dark

orange) of the LP relaxation of (8.10)-

(8.13) for the Gomory cutting plane exam-

ple (after the addition of the cutting

plane, which is depicted in orange). Note

that the Gomory cutting plane reduces

the feasible region by eliminating the

small portion highlighted in red and

without cutting off any integer solution.

Additionally, the cutting plane passes

through integer points (𝑥1 , 𝑥2) = (3, 3)
and (𝑥1 , 𝑥2) = (5, 0) and hence defines

the missing facet of the integer polytope.
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∑
𝑖

𝐶𝑖𝑥𝑖 ≤ 𝑏 (8.26)

where every 𝑥𝑖 ∈ {0, 1}. Because of the binary nature of each decision

variable, the associated coefficient 𝐶𝑖 is activated and contributes posi-

tively to the left-hand side if 𝑥𝑖 = 1. If we identify a subset Sof decision

variables in (8.26) where

∑
𝑖∈S

𝐶𝑖 > 𝑏 (8.27)

we can infer that those binary decision variables cannot all simultaneously

take a value of 1, as doing so would violate (8.26). In principle, if they
were all to take a unitary value, the left-hand side would “cover" the
right-hand side coefficient, hence the origin of the name for this cutting
plane technique. Let us consider the following example:

4𝑥1 + 3𝑥2 + 6𝑥3 ≤ 7 (8.28)

While 𝑥1 and 𝑥2 can be simultaneously unitary in (8.28), index sets

{1, 3} → 4𝑥1 + 6𝑥3 = 4 × 1 + 6 × 1 = 10 > 7 and {2, 3} → 3𝑥2 + 6𝑥3 =

3×1+6×1 = 9 > 7 define combinations of decision variables that cannot

be simultaneously unitary because they would violate (8.28). We can

hence define the cover inequalities as

𝑥1 + 𝑥3 ≤ 1 (8.29)

𝑥2 + 𝑥3 ≤ 1 (8.30)
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3: We will talk a lot about this type of

constraints in Chapter 10.

that can be added to the original BP model to strengthen the formulation.

The general definition of a cover constraint is∑
𝑖∈S

𝑥𝑖 ≤ |S| − 1 (8.31)

This implies that, given a cover set S, at most |S| − 1 binary variables
(or possibly fewer) can be activated to satisfy the constraint from which
the set was derived. Furthermore, there are cases where removing an

element from the cover still maintains its validity as a "smaller" cover.

For instance, consider the following constraint

4𝑥1 + 5𝑥2 + 3𝑥3 + 6𝑥4 + 7𝑥5 + 2𝑥6 ≤ 18 (8.32)

and let us assume we are given the following cover setS= {1, 2, 3, 4, 5, 6}.
The set satisfies the condition for being a cover set, as 4 × 1 + 5 × 1 +
3 × 1 + 6 × 1 + 7 × 1 + 2 × 1 = 27 > 18. Note that, according to (8.31),

we could select no more than |S| − 1 = 5 variables. However, in (8.32),

we observe that there is no subset of 5 decision variables that fulfills

the constraint. Setting the decision variable with the largest coefficient

(𝑥5) to 0 and activating the other 5 variables results in a left-hand side

sum of 20, which is larger than 18. Thus, we can argue that the new

set S= {1, 2, 3, 4, 6} also forms a cover set. This example illustrates the

concept of a minimal cover: in a minimal cover set S, if we remove any

element from it, the associated constraint is now satisfied. For example,

considering again (8.32), a minimal cover set is S= {1, 2, 3, 5} and the

associated cover inequality (applying (8.31)) is

𝑥1 + 𝑥2 + 𝑥3 + 𝑥5 ≤ 3 (8.33)

and we can verify that any combination of 3 out of the 4 decision variables

being active (and all the others set to 0) results in a satisfied (8.32). For

example, 𝑥1 = 𝑥2 = 𝑥3 = 1, 𝑥5 = 0 → 4 × 1 + 5 × 1 + 3 × 1 = 12 ≤ 18,

𝑥1 = 𝑥2 = 𝑥5 = 1, 𝑥3 = 0 → 4 × 1 + 5 × 1 + 7 × 1 = 16 ≤ 18, etc. This

intuition paves the road for a formal definition of a minimal cover set

S𝑀𝐶 :

∑
𝑗∈S𝑀𝐶

𝐶 𝑗 − 𝐶𝑘 < 𝑏 ∀𝑘 ∈ S𝑀𝐶 (8.34)

which highlights that a minimum cover set S𝑀𝐶 ceases to be such a set

as soon as one single element is removed from it.

Cover inequalities are typically applied to constraints in the form of

(8.26), which are known as knapsack constraints3
. On the left-hand

side, we have potential combinations of items, each with its own weight

𝐶𝑖 . We can select any combination as long as the total weight does not

surpass the capacity 𝑏 of our knapsack. Notwithstanding, they can also be

applied to ≥ constraints by reshuffling them into an ≤ form and equality

constraints. For an equality constraint, the trick is to “duplicate" it with a

≤ and ≥ version. We clarify this with an example. Let us consider the

following constraint:
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4𝑥1 − 5𝑥2 + 6𝑥3 − 2𝑥4 = 1 (8.35)

We can rewrite (8.35) as

4𝑥1 − 5𝑥2 + 6𝑥3 − 2𝑥4 ≤ 1 (8.36)

4𝑥1 − 5𝑥2 + 6𝑥3 − 2𝑥4 ≥ 1 (8.37)

where the only case where both (8.36) and (8.37) can be satisfied is

when the two left-hand sides are both equal to 1, hence providing the

same information as (8.35). To satisfy the requirements of a knapsack

constraint, an inequality should be in the ≤ form and all coefficients of

the decision variables should be positive. In our example, this is not yet

the case. We can transform (8.37) into −4𝑥1 + 5𝑥2 − 6𝑥3 + 2𝑥4 ≤ −1. Then,

we replace all decision variables 𝑥𝑖 characterized by a negative coefficient

with the auxiliary term 1 − 𝑥′
𝑖
, where 𝑥𝑖 = 1 − 𝑥′

𝑖
. After making these

adjustments and separating all terms involving decision variables on

the left-hand side and constants on the right-hand side, we arrive at the

revised set of inequalities

4𝑥1 + 5𝑥
′
2
+ 6𝑥3 + 2𝑥

′
4
≤ 8 (8.38)

4𝑥
′
1
+ 5𝑥2 + 6𝑥

′
3
+ 2𝑥4 ≤ 9 (8.39)

where (8.38) is the revised version of 8.36 and (8.39) of (8.37). (8.38)-(8.39)

are now knapsack constraints and can be used separately to add cover

inequalities. Focusing on (8.38), a couple of minimal cover sets are

{
1, 2

′}
and {1, 3}. The associated cover inequalities (remember to convert back

to the original variables if needed) are:

𝑥1 + 𝑥
′
2
≤ 1→ 𝑥1 − 𝑥2 ≤ 0 (8.40)

𝑥1 + 𝑥3 ≤ 1 (8.41)

While the process of computing cover sets is straightforward, involving
simple algebraic operations, large-scale optimization problems can
lead to an overwhelming number of such sets. Even for a single knapsack

constraint with numerous decision variables, generating all combinations

of variables that would violate the constraint if all were active can be

algorithmically challenging. Moreover, many cover inequalities may

remain inactive unless they effectively narrow the feasible region to make

an integer (binary, in this case) point a corner point. Therefore, instead

of blindly adding numerous cuts, it is more advantageous to focus on

incorporating “good" cover inequalities. For a comprehensive discussion

on algorithms addressing this objective, readers are directed to Carter

et al. (2018).
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8.2.3 Zero-half cuts

Zero-half cuts are based on the intuition that, when the left-hand side of

an inequality features integer coefficients and decision variables, then

the right-hand side can be rounded down. The act of rounding down is

the zero-half cut. As usual, we clarify this with an example. Let us start

with the following two inequalities:

𝑥1 + 2𝑥2 + 𝑥3 + 𝑥4 ≤ 8 (8.42)

𝑥1 + 3𝑥3 + 𝑥4 + 2𝑥5 ≤ 5 (8.43)

We can sum them and obtain

2𝑥1 + 2𝑥2 + 4𝑥3 + 2𝑥4 + 2𝑥5 ≤ 13 (8.44)

which can be divided by 2 becoming:

𝑥1 + 𝑥2 + 2𝑥3 + 𝑥4 + 𝑥5 ≤
13

2

(8.45)

Note that in (8.44) all the coefficients of the decision variables are multiple

of 2, hence they retain their integer nature in (8.45). Because the left-hand

side of (8.45) cannot be fractional, we can round down the right-hand

side ⌊ 13

2
⌋ = 6 and obtain the zero-half cut:

𝑥1 + 𝑥2 + 2𝑥3 + 𝑥4 + 𝑥5 ≤ 6 (8.46)

As a side note, in the final consideration of Section 8.1 related to
model (8.6)-(8.9), readers might recognize the suggestion to translate
𝑥1 ≤ 5

2
into 𝑥1 ≤ 2 and 𝑥2 ≤ 7

2
into 𝑥1 ≤ 3 as two examples of zero-half

cuts.

8.2.4 List of other cutting planes

In this section, we only covered a subset of cutting planes that BC leverages

to improve the exploration of an BB decision tree. Both commercial solvers

such as Gurobi (Gurobi Optimization 2023) and CPLEX (IBM ILOG CPLEX
Optimization Studio 2023) and open-source ones adopt a wider variety of

cutting planes. An extract of the output of an optimization model solved

in Gurobi might look like this:

Cutting planes:

Gomory: 278

Cover: 411

Implied bound: 932

Clique: 19

MIR: 1569
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StrongCG: 557

Flow cover: 1068

GUB cover: 103

Zero half: 345

RLT: 87

Readers might recognize Gomory cutting planes, cover inequalities, and

zero-half cuts being employed by the solver. Additional (yet, the full
list is even more exhaustive) cutting planes shown in the verbatim
that solvers can leverage are implied bounds, clique cuts, Mixed
Integer Rounding (MIR) cuts, Strong Chvatal–Gomory (SCG) cuts,
flow cover, Generalized Upper Bound (GUB) covers, and Reformulation
Linearization Technique (RLT) cuts. We refer readers to Johnson et al.,

2000 for an exhaustive analysis of cutting planes.

8.3 Combining BB and cutting planes for an
efficient BC

In Section 8.2, we touched upon the computational complexity involved

in identifying all cuts of a particular type for large-scale problems.

Consequently, integrating cut generation into an BB algorithm may

prolong the overall computational time until convergence compared

to a conventional BB solver. State-of-the-art solvers employ a trade-
off between exploration (generating as many cuts as possible) and
exploitation (limiting such generation to save computational time to
explore more nodes of the decision tree). For every node of the BB tree,

the associated LP is tightened with some, and not all, potential cuts. How

to smartly select which cuts are the best to add is, to some extent, an

optimization problem on its own, and every solver employs different

techniques and rules to effectively tackle this choice. Parameters can also

be set that turn on or off the addition of specific types of cuts (Gurobi
Optimizer Reference Manual: Cuts 2023). These parameters can be leveraged

by (experienced) modelers when realizing that the problem at hand might

particularly benefit if the addition of specific cutting planes is enforced.
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1: This is the case when each assignment

entails a “negative" cost. Sometimes, as-

signment problems aim at maximizing

the objective. This is the case, for exam-

ple, when recipients 𝑗 ∈ R assign a score

to each task and the goal is to maximize

the cumulative score.

Assignment and scheduling
problems 9

9.1 Assignment problems . 149
9.1.1 The Hungarian algorithm151
9.2 Preliminaries of schedu-

ling . . . . . . . . . . . . . 158
9.3 Single Machine Schedu-

ling Problem (SMSP) . . 159
9.4 Parallel Machine Schedu-

ling Problem (PMSP) . . 163
9.5 𝑝-median problem . . . 166
9.6 Facility location problem 169

The key is not to prioritize what’s on your

schedule, but to schedule your priorities.

Stephen Covey

In OR, the concept of assignment plays a role of paramount importance.

In essence, the goal of every OR model is to unravel the intricacies of a

mathematical formulation and all the possible feasible combinations of

the decision variables on our way to the optimal solution. Hence, finding

the optimal solution entails assigning an optimal value to each decision

variable.

Aside from this semantic interpretation, there exists in OR a category

of problems called assignment problems that we discuss in this chapter.

They revolve around the optimal assignment of tasks to people (or any
equivalent set of items to be assigned and recipients of such items)
such that every person receives exactly one task and every task is
assigned exactly once. Assignment problems can be interpreted as a

special case of transportation problems (see Carter et al., 2018) that we

discuss in Chapter 12. We preferred to assign (no pun intended) them to

a dedicated chapter and refer readers to Section 12.1.1 for a description

of how assignment problems can be reinterpreted as transportation

problems.

After covering the classic assignment problem and some variants, we

move to an extension of the assignment problem that deal with one of

the most important drivers of human’s life, i.e., time. Such extension

pertains to scheduling problems, which involve assigning tasks to processing

units (workers, machines, etc.) while adhering to time constraints and

precedence relationships.

9.1 Assignment problems

An assignment problem revolves around two main sets, namely a set of

tasks T indexed by 𝑖 and a set of recipients of those tasks R indexed

by 𝑗. The nature and specific context of the two sets might severely

change according to the specific application, but a requirement of classic

assignment problems is that |T| = |R|: the number of tasks and recipients

is the same. Additionally, we map with 𝐶𝑖 𝑗 the cost of assigning task 𝑖 to

recipient 𝑗. Given the nature of the problem, a set of binary variables 𝑥𝑖 𝑗
taking unitary value if task 𝑖 ∈ T is assigned to recipient 𝑗 ∈ R seems

appropriate. The goal of the assignment problem is to assign tasks
to recipients in the most cost-effective way (hence, minimizing the
cost).1 We define all the needed notation for an assignment problem

in Table 9.1.

We define the assignment problem as:
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Table 9.1: Notation for the assignment

problem.

Sets and indices

T set of tasks 𝑖 ∈ T

R set of recipients 𝑗 ∈ R
Parameters

𝐶𝑖 𝑗 cost of assigning task 𝑖 ∈ T to recipient 𝑗 ∈ R
Variables

𝑥𝑖 𝑗 ∈ {0, 1} unitary if task 𝑖 is assigned to recipient 𝑗

2: The story behind the origin and ac-

tual invention of such an algorithm is

quite interesting. We refer readers to this

Wikipedia page.

min

∑
𝑖∈T

∑
𝑗∈R

𝐶𝑖 𝑗𝑥𝑖 𝑗 (9.1)

s.t.:

∑
𝑗∈R

𝑥𝑖 𝑗 = 1 ∀𝑖 ∈ I (9.2)∑
𝑖∈T

𝑥𝑖 𝑗 = 1 ∀𝑗 ∈ R (9.3)

𝑥𝑖 𝑗 ∈ {0, 1} ∀𝑖 ∈ I, 𝑗 ∈ R (9.4)

where (9.1) aims at minimizing the overall assignment cost, constraint

(9.3) ensures that every task is assigned exactly once, constraint (9.3)

that every recipient gets assigned exactly one task, and (9.4) defines the

binary nature of the decision variables.

The BP defined by (9.1)-(9.4) can be solved with the BB algorithm show-

cased in Chapter 7. Furthermore, all the coefficients in the models are

integer and, hence, all the corner points of the problem are also integer-

valued (recall Chapter 6). We could relax the binary requirement on the
decision variables 𝑥𝑖 𝑗 ∈ {0, 1} → 𝑥𝑖 𝑗 ∈ [0, 1] and allow every decision
variable to be continuous so that just the simplex method can be used
instead of the full BB algorithm.

Notwithstanding, this simplification that allows us to leverage the algo-

rithmic efficiency of the simplex method comes with a caveat. Recalling

that |T| = |R|, our assignment problem has 2|T| functional constraints.

Because of that was discussed in Section 6.3.1, at every iteration of the

simplex method we then require 2|T| variables to be basic and obtain

their values via row operations. This clashes with constraints (9.2)-(9.3)

which allow exactly |T| decision variables to take a value that is greater

than zero. Hence, solving an assignment problem with the simplex

method, at every iteration we would get many basic decision variables

with a value of 0. This situation entails having a degenerate solution and,

while not a problem per se, generally affects negatively the algorithmic

performance of the simplex algorithm. While we refrain from diving into

the details of degeneracy, we refer readers to Hillier and Lieberman, 2015

or Carter et al., 2018 for more details.

Fortunately, there exists an ad-hoc algorithm known as the Hungarian
algorithm2

, which exploits the special properties of the assignment

problem to solve it efficiently.

https://en.wikipedia.org/wiki/Hungarian_algorithm
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3: Note that, in Example 9.1, the defini-

tion of the cost matrix 𝐶 is consistent

with the original notation we introduced

in (9.1)-(9.4) where rows define tasks

(projects here) and the columns define re-

cipients (students here). Oftentimes, we

could be given cost matrices where ele-

ment (𝑖 , 𝑗) defines the cost of assigning

recipient 𝑖 to task 𝑗, hence reversing the

role of rows and columns. In such a case,

we have two options. In the first case we

transpose the cost matrix, so that 𝐶𝑇 is

consistent with the notation of (9.1)-(9.4).

In the second case, we keep 𝐶 but we

need to be careful with the definition of

𝑥𝑖 𝑗 . Because rows represent recipients

and columns tasks, 𝑥𝑖 𝑗 = 1 entails as-

signing recipient 𝑖 to task 𝑗 and not vice

versa.

9.1.1 The Hungarian algorithm

The Hungarian algorithm is based on an efficient manipulation of the

(|T|, |T|) cost matrix 𝐶 that stores all the 𝐶𝑖 𝑗 cost coefficients. An impor-
tant note to be made regards the fact that all costs are non-negative. The

manipulation leverages the insight that adding or removing a constant

to a row or column of 𝐶 does not affect the optimal solution. Recalling

our objective

𝑍 =
∑
𝑖∈T

∑
𝑗∈R

𝐶𝑖 𝑗𝑥𝑖 𝑗 (9.5)

let us add a constant 𝑃 to all the 𝐶𝑟 𝑗 coefficients in row 𝑟. The objective

becomes:

𝑍
′
=
∑
𝑗∈R
(𝐶𝑟 𝑗 + 𝑃)𝑥𝑟 𝑗

∑
𝑖∈T\{𝑟}

∑
𝑗∈R

𝐶𝑖 𝑗𝑥𝑖 𝑗 (9.6)

(9.6) can be rewritten as

𝑍
′
=
∑
𝑖∈T

∑
𝑗∈R

𝐶𝑖 𝑗𝑥𝑖 𝑗 + 𝑃
∑
𝑗∈R

𝑥𝑖 𝑗 = 𝑍 + 𝑃
∑
𝑗∈R

𝑥𝑖 𝑗 (9.7)

where the second term in (9.7) can be interpreted as a constant. The same

result can be achieved if the constant 𝑃 is added to a column.

We use this intuition to qualitatively explain the Hungarian algorithm as

follows. If, given a cost matrix 𝐶, a set of row and column operations
can be devised that, by subtracting specific constants from the targeted
rows and columns, yields a revised cost matrix with at least a single
0 in every row and column, then the location of those 0s identifies
the optimal assignment of tasks to recipients. The optimal objective

value is not zero (it is in the “revised" model subject to the row and

column operations), but can be easily retrieved by summing all the 𝐶𝑖 𝑗
cost coefficients in the original cost matrix located in the positions where

the 0s appear in the revised cost matrix. We showcase an introductory

exercise in Example 9.1.

Example 9.1 Three students have provided their own scores for three individual
projects. The scores range from 1 to 10, with 1 meaning the student really likes the
project and 10 meaning the student does not like the project at all. Such scores are
stored in matrix 𝐶, where element (𝑖 , 𝑗) represents the score given by student 𝑗 to
project 𝑖3. 𝐶 is reported in (9.8). The objective is to devise an assignment strategy
that minimizes the total assignment cost, which is equivalent to maximizing the
overall likelihood that students will be satisfied with their assigned projects.

𝐶 =
©­«
7 4 7

5 8 2

3 10 9

ª®¬ (9.8)

We recognize that, given the unconventional, yet ad-hoc choice of assum-

ing a lower score implies a higher preference, we can model this problem

as an assignment problem with element 𝐶𝑖 𝑗 in 𝐶 mapping the cost of

assigning project 𝑖 to student 𝑗.
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We recognize that the first project is liked the most by the second student

(the minimum score in the first row is a 4 in location (1, 2)). The second

project is liked the most by the third student (𝐶2,3 = 2) and the third

by the first student (𝐶3,1 = 3). Hence we can modify 𝐶 by subtracting 4

from the first row (to “pretend" the second student assigned a zero cost

to the first project without making any other cost in the row negative).

Similarly, we subtract 2 and 3 from the second and third row respectively.

This yields the following revised cost matrix (for the sake of simplicity,

we do not rename it):

𝐶 =
©­«
3 0 3

3 6 0

0 7 6

ª®¬ (9.9)

In matrix (9.9) we have a very special case where every row and column

feature exactly a single 0. We can then set 𝑥1,2 = 1, 𝑥2,3 = 1, and 𝑥3,1 = 1,

hence assigning the first project to the second student, the second project

to the third student, and the third project to the first student. This might

not be surprising, given that the first student rated the third, the second

student rated the first, and the third student rated the second project as

their favorite. Hence, our solution makes everyone happy as no conflicts

or ties are generated. The assignment cost is 4+ 2+ 3 = 9 (recall that we
need to check the original 𝐶 values to compute the objective value).

We can interpret the final assignment as a row and column reduction

of 𝐶 where we select a 0 value in position (𝑖 , 𝑗) and cross out the entire

row 𝑖 and column 𝑗. This means that we have decided to assign task 𝑖

to recipient 𝑗. Hence such a row and column do not play any role in
later assignments as both the task 𝑖 and recipient 𝑗 have been selected
already. We keep crossing out rows and columns starting from a new 0

until the whole 𝐶 is crossed out. In our case, we could do:

©­«
3 0 3

3 6 0

0 7 6

ª®¬→ ©­«
3 0 3

3 6 0

0 7 6

ª®¬→ ©­«
3 0 3

3 6 0

0 7 6

ª®¬ (9.10)

The sequence of perpendicular lines in (9.10) reflects again our choice

𝑥1,2 = 1, 𝑥2,3 = 1, and 𝑥3,1 = 1. Note that we chose to start with project
1, then project 2, and finally project 3, but any other sequence would
have yielded the same result.

In Example 9.1, we only needed row operations because each student

had a different preferred project. This might (and usually will not) be the

case. Let us consider the following cost matrix

𝐶 =
©­«
3 5 8

3 9 6

8 4 5

ª®¬ (9.11)

which, after applying row operations, becomes:

𝐶 =
©­«
0 2 5

0 6 3

4 0 1

ª®¬ (9.12)
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We realize that there is not a single 0 in the third column, and hence

reduce each element there by 1 unit as min {5, 3, 1} = 1, obtaining:

𝐶 =
©­«
0 2 4

0 6 2

4 0 0

ª®¬ (9.13)

This revised cost matrix proves troublesome, as we cannot repeat the same

process of row and column elimination we employed in Example 9.1. For

example, assuming we start with the 0 in position (1, 1), hence assuming

task 1 is assigned to recipient 1, and then we move to the 0 in position

(3, 2), hence assuming task 3 is assigned to recipient 2, we obtain

©­«
0 2 4

0 6 2

4 0 0

ª®¬→ ©­«
0 2 4

0 6 2

4 0 0

ª®¬ (9.14)

which leaves us with only the non-zero coefficient 2. This does not mean

our problem is infeasible, as we were left with the forced option of

assigning task 2 to recipient 3 (𝑥2,3 = 1). The fact that this assignment is
mapped by a coefficient greater than zero implies that our solution is
not optimal. We shed more light on a related property of the Hungarian

algorithm in the  An important property of the Hungarian algorithm
box.

 An important property of the Hungarian algorithm

Let us assume we have a cost matrix 𝐶 where row and column

operations have been carried out so that in every row and column

there is at least a 0. The minimum number of horizontal and vertical
lines needed to cross out all the 0s in 𝐶 is equivalent to the number
of optimal assignments (in zero-cost elements) of tasks to recipients.

Considering cost matrix (9.9), we need 3 lines (although more than

one configuration is possible as shown in (9.15)):

©­«
4 2 0

0 4 6

5 0 7

ª®¬, ©­«
4 2 0

0 4 6

5 0 7

ª®¬, ©­«
4 2 0

0 4 6

5 0 7

ª®¬, · · · (9.15)

This implies that an optimal assignment can be computed. On the

other hand, considering cost matrix (9.13) only 2 lines are needed (see

matrix (9.16)):

©­«
0 2 4

0 6 2

4 0 0

ª®¬ (9.16)

This implies that with the current cost matrix, only two assignments

at zero cost (in the revised cost matrix) can be carried out.

Whenever we can cross all the current 0s in the cost matrix with fewer

than |T| lines, we cannot identify an optimal assignment. Hence, we
need to generate additional 0s somewhere else in the matrix without
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deleting the existing ones or creating negative numbers. We first provide

a couple of definitions, then explain a procedure to generate new 0s

without affecting the existing ones by modifying cost matrix (9.13), and

then formalize the Hungarian algorithm.

When we cover all the 0s in a cost matrix with the minimum number of

lines necessary, elements not covered by any line are uncovered, elements

covered by a single line are covered, and elements covered by two lines

are double covered. Considering cost matrix (9.16), the 4 in position (3, 1)
is double covered, the four 0s are covered, and the remaining numbers

are uncovered.

To generate at least one additional 0, a potential strategy could be to

determine the smallest uncovered coefficient and subtract such a value

from the row (or column) where it appears. In our case, such a value is 2

(appearing twice), and we decide to subtract it from the first row (not the

only option possible). We obtain

𝐶 =
©­«
−2 0 2

0 6 2

4 0 0

ª®¬ (9.17)

which does not solve our problem, as the 0 in position (1, 1) has now

become a negative number. Hence, our next step to fix the problem is to

add 2 to the whole first column, leading to:

𝐶 =
©­«
0 0 2

2 6 2

6 0 0

ª®¬ (9.18)

While we restored the 0 in position (1, 1) in cost matrix (9.18), we trans-

formed the 0 in position (2, 1) into a 2. To fix this new issue, we deduct 2

from the whole second row, leading to:

𝐶 =
©­«
0 0 2

0 4 0

6 0 0

ª®¬ (9.19)

In cost matrix (9.19) we now need 3 lines to cover all the 0s. This allows

us to complete all three assignments using zero-cost elements. Note
that being able to complete all assignments using zero-cost elements,
which ensures optimality, does not entail that the optimal solution is
unique. For example, there are two distinct ways to perform an optimal

assignment given cost matrix (9.19) as reported below:

©­«
0 0 2

0 4 0

6 0 0

ª®¬ ,
©­«
0 0 2

0 4 0

6 0 0

ª®¬ (9.20)

Both the leftmost solution 𝑥1,1 , 𝑥2,3 , 𝑥3,2 and the rightmost solution

𝑥1,2 , 𝑥2,1 , 𝑥3,3 yield an overall cost of 13 if we consider the original cost

matrix (9.11). Concerning how to select the sequence of assignments, it is

suggested to start with the row or column containing the fewest 0s and

cross out both the row and column associated with the current selected 0
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(as previously shown, e.g., in (9.10)) and to repeat the process following

the same logic until all assignments have been performed.

Before formalizing the algorithm, let us compare the first version of the

modified cost matrix (9.16) with the 2 crossing lines (which did not allow

us to perform an optimal assignment) and the revised version (9.18) that

allowed us to compute an optimal assignment. Uncovered coefficients
have been reduced by a value equal to the smallest uncovered coefficient
(to create new 0s without generating negative numbers). Covered
coefficients remained unchanged. As shown above, they remained
unchanged because the same coefficient was first removed and then
added (or vice versa) to the associated row or column. Finally, double
covered coefficients were increased by a value equal to the smallest
uncovered coefficient. We can now formalize the Hungarian algorithm

in the  The Hungarian algorithm box.

 The Hungarian algorithm

▶ Inputs: original cost matrix 𝐶 of dimension (|T|, |T|)
▶ subtract the smallest number from every row in 𝐶 (row reduc-

tion);

▶ subtract the smallest number from every column in 𝐶 (column
reduction);

▶ compute minimum number of lines 𝑁𝑙 needed to cover all the

0s in 𝐶;

▶ WHILE 𝑁𝑙 < |T|:
• determine smallest value 𝜖 among uncovered coefficients;

• reduce all uncovered coefficients by 𝜖;

• increase all double covered coefficient by 𝜖;

• recompute 𝑁𝑙 ;

▶ select the 0s associated with the optimal assignment by starting
with the row or column with fewer 0s, selecting one and
crossing out its associated row and column. Repeat until the

required |T| 0s have been selected;

▶ compute the objective value identifying the proper cost coeffi-

cients in the original cost matrix 𝐶.

▶ Outputs: (task,recipient) assignment and overall assignment

cost

A final consideration regarding the Hungarian algorithm and the as-

signment problem in general is the rather restrictive assumption that

the number of tasks must match the number of recipients. While this

requirement is met in some practical examples, it may not hold true

for others. Let us consider a portfolio that group projects that students

can individually score so that a final assignment can be made with

students assigned to projects they scored positively. Because the number

of projects is generally (much) smaller than the number of students, we

have |T| ≪ |R| (we assume projects are tasks and students are the recip-

ients). Hence, we do not satisfy the main assumption of an assignment

problem. To fix the issue, dummy tasks or dummy recipients can be
added to restore the symmetry. For example, let us assume the case

of six students and two projects. Using the convention, consistent with

the original model (9.1)-(9.4) that rows represent tasks (projects) and

columns are recipients (students), the cost matrix 𝐶 is a (2, 6)matrix in

this case. Because there is an implicit assumption that groups should be as
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homogeneous as possible in terms of students, the final assignment will

entail two groups of three students each. To this avail, we can vertically

concatenate 𝐶 with two copies of itself (highlighted in shaded red), as

shown in (9.21).

©­­­­­­­«

4 3 2 3 3 5

2 5 6 1 2 4

4 3 2 3 3 5

2 5 6 1 2 4

4 3 2 3 3 5

2 5 6 1 2 4

ª®®®®®®®¬
(9.21)

Such a cost matrix can be used to perform the optimal assignment and, as

a post-processing step, the “real" projects can be assigned to students. For

example, let use assume one optimal assignment is 𝑥3,6 = 1, i.e., student

6 is assigned to project 3. Because project 3 is a copy of project 1, then

student 6 is, in reality, assigned to project 1. On a similar note, if 𝑥6,1 = 1,

then student 1 is assigned to project 2 (being project 6 a copy of project

2).

A slight complication arises when the original values of |T| are not

multiple of each other. In such a case, we need to concatenate both

vertically (with copies of the original 𝐶 cost matrix) and horizontally

(with dummy recipients) the original 𝐶. Because dummy recipients are

added to ensure symmetry, all their cost coefficients can be set at 0. Let

us assume we now have 2 projects and 3 students and the original cost

matrix 𝐶 is

𝐶 =

(
2 1 4

1 4 2

)
(9.22)

By horizontally padding a copy of itself, we can achieve a (4, 3) cost matrix.

To restore symmetry, we need to vertically pad it with a zero-valued

cost coefficient vector highlighted in shaded orange representing the

introduction of a dummy student. The resulting 𝐶 is shown in matrix

(9.23)

𝐶 =

©­­­«
2 1 4 0

1 4 2 0

2 1 4 0

1 4 2 0

ª®®®¬ (9.23)

We leave it to readers to verify that, by using the Hungarian algorithm,

the optimal assignment entails assigning students 1 and 2 to project 1,

and student 3 to project 2 for an overall cost of 5. It is worth noting

that student 4, being a dummy student, is not mentioned in the final

assignment.

We showcase more thoroughly a non-symmetric assignment problem

in Example 9.2

Example 9.2 6 teaching assistants are needed to assist students who are divided
into 3 groups and are working on their final year projects. Each teaching assistant
has assigned scores to each project based on personal preferences, with lower
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scores indicating better matches for the teaching assistant. The resulting score
matrix 𝐶 is highlighted in (9.24). The goal is to assign teaching assistants to
projects to maximize the quality of the matching.

𝐶 =
©­«
2 1 4 3 7 5

1 4 2 1 4 9

3 2 5 3 6 4

ª®¬ (9.24)

We realize this is an assignment problem in nature, where the original

cost coefficient matrix is a (3, 6)matrix and we hence need to duplicate

it vertically before applying the Hungarian algorithm. In doing so, we

assume that dummy projects 4, 5, and 6 are, respectively, projects 1, 2,

and 3. Hence, two teaching assistants will be assigned to each project.

The revised cost coefficient matrix is

𝐶 =

©­­­­­­­«

2 1 4 3 7 5

1 4 2 1 4 9

3 2 5 3 6 4

2 1 4 3 7 5

1 4 2 1 4 9

3 2 5 3 6 4

ª®®®®®®®¬
(9.25)

and, after performing row and column reduction, we obtain

𝐶 =

©­­­­­­­«

1 0 2 2 3 2

0 3 0 0 0 6

1 0 2 1 1 0

1 0 2 2 3 2

0 3 0 0 0 6

1 0 2 1 1 0

ª®®®®®®®¬
(9.26)

where all the 0s can be covered with just 4 lines as shown in matrix (9.25).

This means we cannot yet perform all the assignments optimally.

𝐶 =

©­­­­­­­«

1 0 2 2 3 2

0 3 0 0 0 6

1 0 2 1 1 0

1 0 2 2 3 2

0 3 0 0 0 6

1 0 2 1 1 0

ª®®®®®®®¬
(9.27)

By applying the algorithm and reducing all uncovered values by 1

(smallest uncovered value) and increasing all double covered values by 1,

we obtain matrix (9.28) which allows the highlighted optimal assignment.

Teaching assistants 1 and 2 are assigned to project 1, teaching assistants 3

and 5 to project 2, and teaching assistants 4 and 6 to project 3.

𝐶 =

©­­­­­­­«

0 0 1 1 2 2

0 4 0 0 0 7

0 0 1 0 0 0

0 0 1 1 2 2

0 4 0 0 0 7

0 0 1 0 0 0

ª®®®®®®®¬
(9.28)
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4: With this expression we imply every

distinct pair of jobs 𝑖 , 𝑗 where 𝑖 ∈ N

and 𝑗 ∈ N. An equivalent notation is

𝑖 , 𝑗 ∈ N×N, which reflects that every

permutation of set N is accounted for.

In both cases, sometimes the expression

𝑖 ≠ 𝑗 could appear to make it explicit

that the jobs should be distinct.

Retrieving the scores from matrix (9.25), the optimal assignment achieves

an overall score of 2 + 1 + 2 + 3 + 4 + 4 = 16.

� Coded example

The code used to model and solve Example 9.2 as a BP to verify the

outcome of the Hungarian algorithm is available here.

9.2 Preliminaries of scheduling

Real-life problems invariably involve a critical component that cannot

be overlooked: time. When time becomes a factor, we often encounter

scheduling problems. Scheduling involves arranging a set of items in
a timeline. In transportation problems, this could mean determining
the sequential visitation of nodes along a route. From a production
standpoint, scheduling entails organizing the processing of items
through machines.

Consider the following generic scheduling problem. We define a set N

indexed by 𝑖 of jobs (i.e., activities) that must be performed, each with a

processing time 𝑃𝑖 . These jobs feature precedence constraints, namely for

some pair 𝑖 , 𝑗, the starting times 𝑡𝑖 and 𝑡 𝑗 must be 𝑡𝑖 + 𝑃𝑖 ≤ 𝑡 𝑗 , and also

non-overlapping constraints (two jobs cannot be processed at the same

time, even partly). The aim could be to minimize the completion time

of the final executed task. In this setting, we can consider an unlimited

number of resources that can perform these tasks.

Let us start by formally defining the completion time, denoted as 𝑐. The

completion time represents the moment when the last job in the sequence

is completed. While modeling, it is impossible to determine in advance

which job will be the last. However, we can infer that the completion time

must be greater than or equal to the end time of any job. Therefore, we

can formulate our initial constraints and objective function as follows:

min 𝑐 (9.29)

s.t.:

𝑐 ≥ 𝑡𝑖 + 𝑃𝑖 ∀𝑖 ∈ N (9.30)

𝑡𝑖 ∈ ℝ0 ∀𝑖 ∈ N (9.31)

We can add non-overlapping constraints to enrich the model: given two

jobs 𝑖 , 𝑗 ∈ N4
, we first process 𝑖 or 𝑗. Hence, it is either

𝑡𝑖 + 𝑃𝑖 ≤ 𝑡 𝑗 (9.32)

or

https://github.com/alessandroBombelli/From-theORy-to-application-learning-to-optimize-with-Operations-Research-in-an-interactive-way/tree/main/Codes/Assignment%20and%20scheduling%20problems/Example_3Projects_6TAs
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5: 𝑖 ≺ 𝑗 means task 𝑖 precedes task 𝑗.

6: Note that the concept of machine is

quite general, as it does not have to be a

physical piece of machinery, but a worker,

a lecture hall, etc.

𝑡 𝑗 + 𝑃𝑗 ≤ 𝑡𝑖 (9.33)

A binary variable is required to trigger one of the two constraints. Let

us define 𝑦𝑖 𝑗 , which is unitary if 𝑖 ≺ 𝑗5. The big-𝑀 construct is needed

because we want one of the two constraints to be redundant when the

other holds. This is an example of either-or constraint as explained

in Section 4.8.2. Therefore:

𝑡𝑖 + 𝑃𝑖 ≤ 𝑡 𝑗 +𝑀(1 − 𝑦𝑖 𝑗) ∀𝑖 , 𝑗 ∈ N (9.34)

𝑡 𝑗 + 𝑃𝑗 ≤ 𝑡𝑖 +𝑀𝑦𝑖 𝑗 ∀𝑖 , 𝑗 ∈ N (9.35)

As desired, if 𝑦𝑖 𝑗 = 1 then 𝑖 ≺ 𝑗 as constraint (9.34) is active and constraint

(9.35) is redundant. While constraints (9.34)-(9.35) are general and allow

the model to choose the precedence relationship that is best for the

objective, the sequence of some 𝑖 , 𝑗 pairs of jobs could be pre-defined

from the start. One example is if 𝑖 represents turning on the laptop and

𝑗 represents completing a piece of code. The latter cannot start if the

former is not finished. Hence, we could define set S that stores all 𝑖 , 𝑗 job

pairs with pre-defined precedence relationships such that 𝑖 ≺ 𝑗 ∀𝑖 , 𝑗 ∈ S.

For every 𝑖 , 𝑗 pair part of this set we can write:

𝑡𝑖 + 𝑃𝑖 ≤ 𝑡 𝑗 ∀𝑖 , 𝑗 ∈ S (9.36)

In conclusion, we should use constraints (9.34)-(9.35) for those 𝑖 , 𝑗 job

pairs ∉ Sbecause we have the freedom to shuffle them as needed, while

constraint (9.36) is preferred for 𝑖 , 𝑗 job pairs ∈ S. Note that for this
second category, we could still employ constraints (9.34)-(9.35) paired
with forcing 𝑦𝑖 𝑗 = 1, which would indeed yield constraint (9.36), but
we are unnecessarily adding to the model some decision variables 𝑦𝑖 𝑗
that we force to be unitary (hence, they are not decision variables in
the first place) and constraints (every dummy constraint (9.35) which
is not needed at all for 𝑖 , 𝑗 job pairs ∈ S).

9.3 Single Machine Scheduling Problem
(SMSP)

The Single Machine Scheduling Problem (SMSP) is the problem of

scheduling a set of jobs or tasks in a single machine.
6

The goal is

to minimize, for example, the sum of the completion times or delays

(sometimes referred to as tardiness).

Formulating a mathematical model for a SMSP can be done in at least two

ways. The first, explained in this section, works with basic time variables.

The second, not presented in this book follows a routing-based approach

(see Chapter 13) where jobs are modeled as nodes and our goal is to
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7: As mentioned in a previous note, with

the expression N×Nwe mean the set of

𝑖 , 𝑗 index pairs where 𝑖 ∈ Nand 𝑗 ∈ N.

connect them via a path such that going from node 𝑖 to node 𝑗 implies

𝑖 ≺ 𝑗 and proper time precedence constraints must be activated.

The mathematical formulation of the SMSP presented here features two

related sets. The first one is the set of jobs N indexed by 𝑖. The second one

is set S⊆ N×N7
containing all the 𝑖 , 𝑗 job pairs that must be executed

following the precedence 𝑖 ≺ 𝑗. Each job features a processing time 𝑃𝑖 and

a deadline 𝐷𝑖 , representing the latest time when job 𝑖 can be completed.

In terms of decision variables, 𝑡𝑖 represents the start time of job 𝑖, 𝑐𝑖 its

completion time, and 𝑦𝑖 𝑗 ∈ {0, 1} is unitary if job 𝑖 precedes job 𝑗. We

already introduce two additional decision variables that will be needed

for extensions to this first model. We define 𝑐 as the latest completion

time across all 𝑐𝑖s, i.e., 𝑐 = max

{
𝑐1 , · · · , 𝑐 |N|

}
, and define 𝑑𝑖 as the delay

of job 𝑖 with respect to its deadline 𝐷𝑖 . We report all the needed notation

for the SMSP in Table 9.2.

Table 9.2: Notation for the SMSP. Sets and indices

N set of jobs 𝑖 ∈ N
S set of job pairs 𝑖 , 𝑗 ∈ S⊆ N×Nsuch that 𝑖 ≺ 𝑗

Parameters

𝑃𝑖 processing time of job 𝑖 ∈ N
𝐷𝑖 deadline of job 𝑖 ∈ N

Variables

𝑡𝑖 ∈ ℝ0 start time of job 𝑖
𝑐𝑖 ∈ ℝ0 completion time of job 𝑖
𝑦𝑖 𝑗 ∈ {0, 1} unitary if job 𝑖 precedes job 𝑗
𝑐 ∈ ℝ0 latest completion time across all jobs 𝑖 ∈ N
𝑑𝑖 ∈ ℝ0 delay of job 𝑖

An LP model for the SMSP minimizing completion times is:

min

∑
𝑖∈N

𝑐𝑖 (9.37)

s.t.:

𝑐𝑖 ≥ 𝑡𝑖 + 𝑃𝑖 ∀𝑖 ∈ N (9.38)

𝑡𝑖 + 𝑃𝑖 ≤ 𝑡 𝑗 +𝑀(1 − 𝑦𝑖 𝑗) ∀𝑖 , 𝑗 ∈ N\ {S} ∧ 𝑖 < 𝑗 (9.39)

𝑡 𝑗 + 𝑃𝑗 ≤ 𝑡𝑖 +𝑀𝑦𝑖 𝑗 ∀𝑖 , 𝑗 ∈ N\ {S} ∧ 𝑖 < 𝑗 (9.40)

𝑡𝑖 + 𝑃𝑖 ≤ 𝑡 𝑗 ∀𝑖 , 𝑗 ∈ S (9.41)

𝑡𝑖 ≤ 𝐷𝑖 − 𝑃𝑖 ∀𝑖 ∈ N (9.42)

𝑐𝑖 ≤ 𝐷𝑖 ∀𝑖 ∈ N (9.43)

𝑦𝑖 𝑗 ∈ {0, 1} ∀𝑖 , 𝑗 ∈ N\ {S} ∧ 𝑖 < 𝑗 (9.44)

(9.37) aims at minimizing the summation of all completion times. Con-

straint (9.38) imposes that the completion time of a job should be greater

or equal to its start time plus its completion time. Formally, it might

be argued that constraint (9.38) should be in an equality form, but as

the model aims at minimizing the objective (where all 𝑐𝑖s appear), the

equality will be automatically satisfied. Constraints (9.39)-(9.40) define
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precedence relations between job pairs where a pre-defined sequence is

not imposed, while constraint (9.41) ensures that every job 𝑖 is finished

before every job 𝑗 for every (𝑖 , 𝑗) job pair with pre-defined precedence

relationships. Constraints (9.42)-(9.44) define the nature and range of the

decision variables. We elaborate a bit more on the meaning of expression

∀ 𝑖 , 𝑗 ∈ N\ {S} ∧ 𝑖 < 𝑗 in constraints (9.39)-(9.40) and (9.44) in the

A note on the definition of the 𝑦𝑖 𝑗 decision variables in scheduling
problems box.

 A note on the definition of the 𝑦𝑖 𝑗 decision variables in scheduling
problems

Let us consider constraints (9.39)-(9.40) and (9.44). On top of con-

sidering only job pairs for which no pre-defined order is given

(∀ 𝑖 , 𝑗 ∈ N \ {S}), we also want to define such constraints for job

pairs where the index 𝑖 of the first job is smaller than the index 𝑗
of the second job (∧ 𝑖 < 𝑗). While omitting this second condition

does not imply a formal mistake, it unnecessarily defines additional

decision variables. Because every 𝑦𝑖 𝑗 defines a precedence relation-
ship between two jobs, if a specific 𝑦𝑖 𝑗 is assigned a unitary value,

this implies that 𝑦 𝑗𝑖 = 0. In words: if job 𝑖 precedes job 𝑗, then job 𝑗
comes after job 𝑖. The aforementioned intuition can be translated into

𝑦𝑖 𝑗 + 𝑦 𝑗𝑖 = 1 ∀ (𝑖 , 𝑗) ∈ N. Instead of forcing such a constraint, we only

define 𝑦𝑖 𝑗 for potential job pairs where 𝑖 < 𝑗. For example, 𝑦1,4 = 1

automatically implies 𝑦4,1 = 0 without the need to define the latter

variable. If a specific 𝑦𝑖 𝑗 is unitary, this automatically implies that
𝑗 comes after 𝑖 (or vice versa) with no need for the redundant 𝑦 𝑗𝑖
decision variable. Defining 𝑦𝑖 𝑗 ∀ 𝑖 , 𝑗 ∈ N\ {S} would not change
the result, but unnecessarily increases the size of the mathematical
model.

If a single machine is responsible for processing all the required jobs,
it is essential to consider the final completion time as a critical KPI.
This metric signifies the moment when the entire process concludes.

We can incorporate this aspect into the showcased SMSP model with the

following variant:

min 𝑐 (9.45)

s.t.:

𝑐𝑖 ≥ 𝑡𝑖 + 𝑃𝑖 ∀𝑖 ∈ N (9.46)

𝑐 ≥ 𝑐𝑖 ∀𝑖 ∈ N (9.47)

𝑡𝑖 + 𝑃𝑖 ≤ 𝑡 𝑗 +𝑀(1 − 𝑦𝑖 𝑗) ∀𝑖 , 𝑗 ∈ N\ {S} ∧ 𝑖 < 𝑗 (9.48)

𝑡 𝑗 + 𝑃𝑗 ≤ 𝑡𝑖 +𝑀𝑦𝑖 𝑗 ∀𝑖 , 𝑗 ∈ N\ {S} ∧ 𝑖 < 𝑗 (9.49)

𝑡𝑖 + 𝑃𝑖 ≤ 𝑡 𝑗 ∀𝑖 , 𝑗 ∈ S (9.50)

𝑡𝑖 ≤ 𝐷𝑖 − 𝑃𝑖 ∀𝑖 ∈ N (9.51)

𝑐𝑖 ≤ 𝐷𝑖 ∀𝑖 ∈ N (9.52)

𝑦𝑖 𝑗 ∈ {0, 1} ∀𝑖 , 𝑗 ∈ N\ {S} ∧ 𝑖 < 𝑗 (9.53)

𝑐 ∈ ℝ0 (9.54)
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8: There exists also the max-min coun-

terpart, where the model aims at ma-

ximizing the minimum across a set of

values

Now the objective function (9.45) aims at minimizing 𝑐, the final comple-

tion time. The model does not know beforehand which job will be the last

one, hence we need constraint set (9.47) to define 𝑐 as the largest across all

𝑐𝑖s (this constraint set linearizes the max non-linear operator defined
in the text above). This approach is known as a min-max problem8

. The

goal is to minimize the maximum across a set of values. In this specific

case, the set of values is the set of all completion times. The rest of the

constraints are inherited directly from the original formulation, with

(9.53)-(9.54) defining the additional decision variables.

Both variants of the SMSP presented so far entail that every job can

be completed within its deadline. While deadlines are set with the

expectations of being met, we all know that reality is slightly different. To

this avail, another variant to the SMSP might be defined where we allow

jobs to be finished after their specified deadline. To limit this unwanted

(yet allowed) behavior, a proper objective function aims at minimizing

the summation of delays. The mathematical formulation of this variant

is:

min

∑
𝑖∈N

𝑑𝑖 (9.55)

s.t.:

𝑡𝑖 + 𝑃𝑖 ≤ 𝑡 𝑗 +𝑀(1 − 𝑦𝑖 𝑗) ∀𝑖 , 𝑗 ∈ N\ {S} ∧ 𝑖 < 𝑗 (9.56)

𝑡 𝑗 + 𝑃𝑗 ≤ 𝑡𝑖 +𝑀𝑦𝑖 𝑗 ∀𝑖 , 𝑗 ∈ N\ {S} ∧ 𝑖 < 𝑗 (9.57)

𝑡𝑖 + 𝑃𝑖 ≤ 𝑡 𝑗 ∀𝑖 , 𝑗 ∈ S (9.58)

𝑡𝑖 + 𝑃𝑖 − 𝑑𝑖 ≤ 𝐷𝑖 ∀𝑖 ∈ N (9.59)

𝑡𝑖 ∈ ℝ0 ∀𝑖 ∈ N (9.60)

𝑦𝑖 𝑗 ∈ {0, 1} ∀𝑖 , 𝑗 ∈ N\ {S} ∧ 𝑖 < 𝑗 (9.61)

𝑑𝑖 ∈ ℝ0 ∀𝑖 ∈ N (9.62)

where (9.55) aims at minimizing the summation of all delays. Most

constraints are inherited from the previous models, with constraint set

(9.59) being specific to this variant. It allows the completion time of
job 𝑖, i.e., 𝑡𝑖 + 𝑃𝑖 to exceed its deadline 𝐷𝑖 pending the “activation" of
delay variable 𝑑𝑖 . If every job can be finished within the deadline, then
𝑑𝑖 = 0 ∀𝑖 ∈ Nwhich implies min

∑
𝑖∈N 𝑑𝑖 = 0.

Readers might contend that minimizing the total sum of delays may not

always be optimal, as a solution could potentially involve a combination

of numerous small and a few significant delays. Therefore, an alternative

min-max approach similar to the one showcased for the completion time

can be devised.
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9.4 Parallel Machine Scheduling Problem
(PMSP)

The Parallel Machine Scheduling Problem (PMSP) concerns the sche-

duling of a set of tasks on two or more machines. There are several

variants, and the one presented here assumes that a task should be

entirely processed in one machine (hence, a task cannot be started on

one machine and then moved and completed on another). Regarding

the objective function, multiple options are possible in accordance with

what was discussed in Section 9.3. In the following, we present a PMSP

formulation that minimizes the maximum completion time.

In terms of modeling, most of the notation is inherited from the PMSP.

An additional decision layer is now required to assign each job to a

specific machine. This can be accomplished using the binary decision

variable 𝑥𝑖𝑚 , which is unitary if job 𝑖 ∈ N is assigned to machine 𝑚 ∈M.

We define the notation for the SMSP in Table 9.3.

Sets and indices

N set of jobs 𝑖 ∈ N
S set of job pairs 𝑖 , 𝑗 ∈ S⊆ N×Nsuch that 𝑖 ≺ 𝑗
M set of machines 𝑚 ∈M

Parameters

𝑃𝑖 processing time of job 𝑖 ∈ N
𝐷𝑖 deadline of job 𝑖 ∈ N

Variables

𝑡𝑖 ∈ ℝ0 start time of job 𝑖
𝑐𝑖 ∈ ℝ0 completion time of job 𝑖
𝑥𝑖𝑚 ∈ {0, 1} unitary if job 𝑚 is assigned to machine 𝑚
𝑦𝑖 𝑗 ∈ {0, 1} unitary if job 𝑖 precedes job 𝑗
𝑐 ∈ ℝ0 latest completion time across all jobs 𝑖 ∈ N

Table 9.3: Notation for the PMSP.

The mathematical formulation for the version of the PMSP defined above

is:

min 𝑐 (9.63)

s.t.:
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∑
𝑚∈M

𝑥𝑖𝑚 = 1 ∀𝑖 ∈ N (9.64)

𝑐𝑖 ≥ 𝑡𝑖 + 𝑃𝑖 ∀𝑖 ∈ N (9.65)

𝑐 ≥ 𝑐𝑖 ∀𝑖 ∈ N (9.66)

𝑡𝑖 + 𝑃𝑖 ≤ 𝑡 𝑗 +𝑀(3 − 𝑦𝑖 𝑗 − 𝑥𝑖𝑚 − 𝑥 𝑗𝑚) ∀𝑖 , 𝑗 ∈ N\ {S} ∧ 𝑖 < 𝑗 , 𝑚 ∈M
(9.67)

𝑡 𝑗 + 𝑃𝑗 ≤ 𝑡𝑖 +𝑀𝑦𝑖 𝑗 ∀𝑖 , 𝑗 ∈ N\ {S} ∧ 𝑖 < 𝑗 (9.68)

𝑡𝑖 + 𝑃𝑖 ≤ 𝑡 𝑗 ∀𝑖 , 𝑗 ∈ S (9.69)

𝑡𝑖 ≤ 𝐷𝑖 − 𝑃𝑖 ∀𝑖 ∈ N (9.70)

𝑐𝑖 ≤ 𝐷𝑖 ∀𝑖 ∈ N (9.71)

𝑥𝑖𝑚 ∈ {0, 1} ∀𝑖 ∈ N, 𝑚 ∈M (9.72)

𝑦𝑖 𝑗 ∈ {0, 1} ∀𝑖 , 𝑗 ∈ N\ {S} ∧ 𝑖 < 𝑗 (9.73)

𝑐 ∈ ℝ0 (9.74)

(9.63) minimizes the overall completion time. Constraint (9.64) ensures

that each job is assigned to exactly one machine. Constraint (9.65) defines

the completion time of each job, while constraint (9.66) maps the max-

imum completion time across all jobs. Constraints (9.67)-(9.68) ensure

that time precedence constraints are satisfied for jobs assigned to the

same machine. In particular, if both jobs 𝑖 and 𝑗 are assigned to machine

𝑚 (𝑥𝑖𝑚 = 1 and 𝑥 𝑗𝑚 = 1) and 𝑖 precedes 𝑗 (𝑦𝑖 𝑗 = 1), then constraint (9.67)

is active (𝑡𝑖 + 𝑃𝑖 ≤ 𝑡 𝑗) and constraint (9.68) is dummy. Constraint (9.68)

implies that 𝑡 𝑗 + 𝑃𝑗 ≤ 𝑡𝑖 if 𝑦𝑖 𝑗 = 0 regardless of the machines the two jobs

are assigned to, with constraint (9.67) being redundant. Constraint (9.69)

imposes time precedence for those jobs that are required by a pre-defined

time hierarchy, while (9.70)-(9.74) define the nature and range of the

decision variables.

We showcase an application example of the PMSP in Example 9.3.

Example 9.3 3 university students are studying altogether for an exam. They
want to study individually 6 main topics so that they can later summarize them
together. Each topic 𝑖 ∈ Nis expected to take 𝑃𝑖 hours to be mastered. In addition,
the three students have assigned to each topic a deadline𝐷𝑖 such that topic 𝑖 must
be completed by that time. Due to the prerequisite nature of certain topics, there
exist precedence relationships among the six topics. In other words, some topics
cannot be started until others have been completed. All pertinent information
regarding the six topics is provided in Table 9.4. The objective is to formulate
a mathematical model to assist the students in distributing the workload such
that each topic is covered by one of them, accounting for the required precedence,
with the aim of completing the study session as expeditiously as possible.

Table 9.4: Data pertaining to the six top-

ics of Example 9.3.

Topic 𝑖 𝑃𝑖 𝐷𝑖 Precedence

Derivatives 1 3 5 -

Integrals 2 3 3 -

Heat equation 3 4 7 1

Biot–Savart law 4 1 4 2

Kirchhoff’s circuit laws 5 6 6 -

Maxwell’s equations 6 3 10 5
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We recognize that this is a PMSP where the 6 topics are the jobs 𝑖 ∈ Nand

the 3 students the 3 machines 𝑚 ∈M. In addition, the set of pre-defined

time precedence requirements is S= {(1, 3), (2, 4), (5, 6)}. Our goal is to

minimize the latest completion time as in (9.63). We do not show the

full set of constraints, as it would take up too much space, but directly

display the obtained solution in Figure 9.1 and critically assess it.

Figure 9.1: Final solution for the PMSP

of Example 9.3.

The optimal solution suggests an overall completion time of 9 hours.

Student 1 starts at time 𝑡 = 0 with topic 𝑖 = 5. Because such a topic has

duration of 6 hours and must be completed within 6 hours (𝐷5 = 6), the

only feasible option is that a student starts immediately with it. Because

student 1 is occupied for 6 hours with that topic, the other two students

split the remaining workload. Student 2 takes care of topic 1 and then

3, so that the precedence relationship is met. On a similar note, student

3 takes care of topic 2 and then 4. The only remaining topic is then

6, which is assigned by the model to student 3, who cannot tackle it

immediately after being done with topic 4 as topic 5 is not completed yet.

An equivalent solution would entail assigning topic 6 to student 1 right

after the completion of topic 5. Additionally, note that this solution has
symmetrical equivalent solutions that can be obtained by shuffling
the assigned topics to a different student. For example, if student 1
takes care of topics 1 and 3, student 2 of topics 2,4, and 6, and student
3 of topic 5, the solution will stay the same. It is worth noting that in
our model, not all topics with precedence relationships are necessarily
assigned to the same machine (student). For instance, while topic 5
is assigned to student 1, topic 6 is assigned to student 3. Although
permitted by our model, this arrangement may not be ideal in practice,
as it is typically preferable for the same student to study a topic and any
prerequisite topics. Consequently, in some variants of the PMSP, we
may require that jobs with specific precedence relationships must be
handled by the same machine. Formulating such additional constraints
is relatively straightforward.

� Coded example

The code used to model and solve Example 9.3 is available here.

https://github.com/alessandroBombelli/From-theORy-to-application-learning-to-optimize-with-Operations-Research-in-an-interactive-way/tree/main/Codes/Assignment%20and%20scheduling%20problems/Parallel%20Machine%20Scheduling%20Problem%20(PMSP)
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� PMSP as a serious game

A serious game based on the PMSP can be found here.

9.5 𝑝-median problem

The 𝑝-median problem is a typical network design problem that entails

allocating a set of nodes N (indexed by 𝑖) to at most 𝑝 potential locations

from a set F indexed by 𝑓 . Nodes are typically referred to as demand
points and locations as facilities. The goal is to minimize the sum of

the distances between the nodes and their assigned facilities. One of
the main applications of the 𝑝-median problem is the opening of
certain facilities when there is a limited budget. An example could be
the location of warehouses in a new region. In line with the goal of
the model, it is desirable that the sum of the distances between the
warehouses and the demand points is minimized.

Because distances play a crucial role in the problem, we define 𝐷𝑖 𝑓

as the distance between demand node 𝑖 ∈ N and facility 𝑓 ∈ F. The

other parameter is 𝑝 ≤ |F|, i.e., the maximum number of facilities to

be potentially opened. The variables are all binary. First, we define the

assignment variable 𝑥𝑖 𝑓 , unitary if demand node 𝑖 ∈ N is assigned to

facility 𝑓 ∈ F. Next, the activation variable 𝑦 𝑓 , with 𝑓 ∈ F, unitary if

facility 𝑓 ∈ F is active (i.e., if at least one demand node is connected to

it). The notation for the 𝑝-median problem is shown in Table 9.5

Table 9.5: Notation for the 𝑝-median pro-

blem.

Sets and indices

N set of demand nodes 𝑖 ∈ N
F set of facilities 𝑓 ∈ F

Parameters

𝐷𝑖 𝑓 distance between demand node 𝑖 ∈ Nand facility 𝑓 ∈ F

𝑝 maximum number of facilities to use

Variables

𝑥𝑖 𝑓 ∈ {0, 1} unitary if demand node 𝑖 is served by facility 𝑓
𝑦 𝑓 ∈ {0, 1} unitary if facility 𝑓 is used

The BP describing the 𝑝-median problem is:

min

∑
𝑖∈N

∑
𝑓 ∈F

𝐷𝑖 𝑓 𝑥𝑖 𝑓 (9.75)

s.t.:

https://github.com/alessandroBombelli/from_theORy_to_application/tree/main/Serious%20games/Parallel%20Machine%20Scheduling%20Problem%20(PMSP)
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9: In Section 10.2.1 we will see an alterna-

tive way of modeling such a constraint.

∑
𝑓 ∈F

𝑥𝑖 𝑓 = 1 ∀𝑖 ∈ N (9.76)∑
𝑓 ∈F

𝑦 𝑓 ≤ 𝑝 (9.77)∑
𝑖∈N

𝑥𝑖 𝑓 ≤ |N|𝑦 𝑓 ∀ 𝑓 ∈ F (9.78)

𝑥𝑖 𝑓 ∈ {0, 1} ∀𝑖 ∈ N, 𝑗 ∈ F (9.79)

𝑦 𝑓 ∈ {0, 1} ∀ 𝑓 ∈ F (9.80)

(9.75) aims at minimizing the overall distance connecting demand nodes

with facilities. Constraint (9.76) enforces that each demand node is

connected to a facility, while constraint (9.77) ensures that at most 𝑝

facilities are used. Constraint (9.78) does not allow any demand node

𝑖 ∈ Nto be connected to facility 𝑓 ∈ Funless the associated 𝑦 𝑓 is unitary
9
.

Finally, (9.79)-(9.80) define the nature of the decision variables.

We showcase an application of the 𝑝-median problem in Example 9.4.

Example 9.4 A logistics company has identified 100 new customers to be served
in a 20 × 20 km area where 10 of its facilities are present. The location of both
customers and facilities is shown in Figure 9.2. The company would like to assess
the benefit of using a different number of facilities to serve the identified set of
customers. The goal is to devise a mathematical model that assigns customers
to a facility, given a maximum number of exploitable facilities, with the goal of
minimizing the overall distance between customers and facilities.

Figure 9.2: Location of the customers

and facilities for Example 9.4.

We recognize that this problem is a 𝑝-median one because we have a

maximum cap on the number of facilities we can use and the goal is

to minimize the distance between customers and their assigned facility.

Because we are asked to assess the impact of different values of 𝑝 on

the solution, we solve 10 versions of the same model where the only

difference is 𝑝, which we range from 1 to 10. We showcase the different

final assignments in Figure 9.3, where used and unused facilities are

highlighted, as well as distances between customers and the assigned

facility.

The solution changes quite substantially moving from 𝑝 = 1 (Figure 9.3a)

to 𝑝 = 10 (Figure 9.3j). In the first scenario, the model seeks to activate a
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Figure 9.3: Assignment of demand nodes

to facilities for different values of 𝑝
in Example 9.4. The used facilities are

highlighted in green, the others in red.

(a) 𝑝 = 1. (b) 𝑝 = 2.

(c) 𝑝 = 3. (d) 𝑝 = 4.

(e) 𝑝 = 5. (f) 𝑝 = 6.

(g) 𝑝 = 7. (h) 𝑝 = 8.

(i) 𝑝 = 9. (j) 𝑝 = 10.
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single facility to minimize the distances to all 100 customers. As intuition
would imply, the selected facility is typically the most centrally located
within the area of interest. Increasing 𝑝 allows for more flexibility and

de-centralization. Figure 9.3j showcases this as facilities are assigned to

their closest customers, with a facility even serving a single customer.

The advantage in terms of objective value becomes apparent when we

visualize the actual objective, namely the cumulative distance between

customers and facilities, as a function of 𝑝, as demonstrated in Figure 9.4.

Starting from an initial cumulative distance of roughly 800 km when

𝑝 = 1, the model halves it if 𝑝 = 5. Then, the additional reduction due to

increasing values of 𝑝 becomes less prominent. This can be an insightful
managerial consideration to report to the company, i.e., that increasing
the number of active facilities beyond a certain value of 𝑝 does not
provide a consistent additional benefit.

Figure 9.4: Objective value (cumulative

distance between customers and facili-

ties) as a function of 𝑝 for Example 9.4.

Related to the previous point, it is important to emphasize that, in practice,

activating and operating a facility typically incurs costs. In the 𝑝-median

model outlined here, increasing 𝑝 yields either a better or equivalent

objective, as no penalty is incurred for employing additional facilities.

However, if such a penalty is necessary, a different model is required,

which we will introduce in Section 9.6.

� Coded example

The code used to model and solve Example 9.4 is available here.

9.6 Facility location problem

A facility location problem relies on the same set of inputs as the 𝑝-

median problem defined in Section 9.5, namely a set of demand nodes

or customers 𝑖 ∈ N and a set of potential facilities 𝑓 ∈ F. We would

like to stress the term potential, as this is in general a strategic problem.

A company has identified a set of potential locations Fwhere to build

new facilities. The construction of each facility 𝑓 ∈ F is expected to cost

𝐶 𝑓 monetary units. Furthermore, serving a customer 𝑖 ∈ N from facility

𝑓 ∈ F incurs a cost 𝐶𝑖 𝑓 , which could, for instance, be proportional or at

least correlated with the distance𝐷𝑖 𝑓 between the customer and facility. It

https://github.com/alessandroBombelli/From-theORy-to-application-learning-to-optimize-with-Operations-Research-in-an-interactive-way/tree/main/Codes/Assignment%20and%20scheduling%20problems/p-median
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is also assumed that every customer 𝑖 ∈ N, who generates revenue equal

to 𝑅𝑖 , must be served. The objective of the facility location problem
is to determine which facilities to construct and which customers to
serve from each constructed facility, maximizing overall profit.

To achieve the goal, the same decision variables as in the 𝑝-median

problem are employed, although 𝑦 𝑓 has a slightly different practical

connotation, i.e., it maps whether facility 𝑓 is built (and used) rather than

just used. We report the notation needed for the facility location problem

in Table 9.6.

Table 9.6: Notation for the facility loca-

tion problem.

Sets and indices

N set of demand nodes 𝑖 ∈ N
F set of facilities 𝑓 ∈ F

Parameters

𝐶𝑖 𝑓 cost of serving demand node 𝑖 ∈ N from facility 𝑓 ∈ F

𝐶 𝑓 cost of building facility 𝑓 ∈ F

Variables

𝑥𝑖 𝑓 ∈ {0, 1} unitary if demand node 𝑖 is served by facility 𝑓
𝑦 𝑓 ∈ {0, 1} unitary if facility 𝑓 is built

The BP modeling the facility location problem is:

min

∑
𝑖∈N

∑
𝑓 ∈F

𝐶𝑖 𝑓 𝑥𝑖 𝑓 +
∑
𝑓 ∈F

𝐶 𝑓 𝑦 𝑓 (9.81)

s.t.:

∑
𝑓 ∈F

𝑥𝑖 𝑓 = 1 ∀𝑖 ∈ N (9.82)∑
𝑖∈N

𝑥𝑖 𝑓 ≤ |N|𝑦 𝑓 ∀ 𝑓 ∈ F (9.83)

𝑥𝑖 𝑓 ∈ {0, 1} ∀𝑖 ∈ N, 𝑓 ∈ F (9.84)

𝑦 𝑓 ∈ {0, 1} ∀ 𝑓 ∈ F (9.85)

(9.81) minimizes the overall cost. Recall that we stated that our goal is to

maximize profit. The formal definition of profit for the problem at hand

is

∑
𝑖∈N

∑
𝑓 ∈F

𝑅𝑖𝑥𝑖 𝑓 −
∑
𝑖∈N

∑
𝑓 ∈F

𝐶𝑖 𝑓 𝑥𝑖 𝑓 −
∑
𝑓 ∈F

𝐶 𝑓 𝑦 𝑓 (9.86)

but as we impose that every customer must be visited in constraint

(9.82), the first term of (9.86) is a constant equal to

∑
𝑖∈N𝑅𝑖 . Hence,

maximizing (9.86) is equivalent to minimizing the overall costs as
defined in (9.81). Constraint set (9.83) ensures that customers can be

served from a facility if that facility is built, while constraints (9.84)-(9.85)

define the binary nature of the decision variables.

We showcase an application of the facility location problem defined in the

same initial setting as the 𝑝-median case of Example 9.4 in Example 9.5
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Example 9.5 The same company from Example 9.4 wants to perform a what-if
analysis. Considering the same 20× 20 km area, 100 customers, and the location
of the 10 facilities, the company now assumes that no facility has been built yet
and plans to strategically build some of them in the coming years. The company
has computed an estimate 𝐶 𝑓 of how much the construction of each facility
𝑓 ∈ Fwould cost (the estimate is considered to be accurate. Hence, it will not
change according to inflation and other events). In addition, it has been estimated
that the service cost related to servicing a specific customer 𝑖 ∈ N from a facility
𝑓 ∈ F is directly proportional to the distance 𝐷𝑖 𝑓 via a constant 𝐶𝐷 . Such a
constant will probably change between now and when customers will be served,
and it has been estimated to go as low as 200, 000e per unit distance (best-case
scenario) and as high as 500, 000e per unit distance (worst-case scenario). The
goal is to assist the company in assessing the optimal selection of facilities and
customers to be served by each facility in the two scenarios with the goal of
minimizing overall costs. We report the location of the customers and facilities
in Figure 9.5 and the construction costs 𝐶 𝑓 in Table 9.7 (costs are divided by
1, 000 for the sake of readability).

Figure 9.5: Location of the customers and

facilities for Example 9.5. We also report

the index 𝑓 of each facility to more ea-

sily extract its construction cost from Ta-

ble 9.7.

𝑓 𝐶 𝑓

1 18487

2 12137

3 13790

4 17841

5 19573

6 17184

7 19687

8 17480

9 15029

10 19608

Table 9.7: Construction cost 𝐶 𝑓 for each

facility 𝑓 ∈ Fof Example 9.5.

We recognize this is a facility location problem and solve it twice, using

once the best-case value of 𝐶𝐷 = 200 and once the worst-case value

of 𝐶𝐷 = 500 (these values are also divided by 1, 000 for consistency

with Table 9.7) to determine the servicing costs. We directly report the

two solutions in Figure 9.6.

Upon visual examination of the results (Figure 9.6a), we observe that

when servicing costs, contingent on the overall distance between cus-

tomers and facilities, are low, the model favors fewer facilities and longer

routes to reach customers. This behavior is anticipated, as the expense
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Figure 9.6: Assignment of demand nodes

to facilities for different values of 𝐶𝐷
in Example 9.5. The built facilities are

highlighted in green, the others in red.

(a) 𝐶𝐷 = 200.

(b) 𝐶𝐷 = 500.

of constructing an additional facility to shorten routes may not be
completely offset by the savings in servicing costs. Conversely, when
the servicing costs are at their expected maximum, the model favors
more facilities as the extra construction costs are fully compensated by
the savings in servicing costs. This behavior is evident in Figure 9.6b.

In the new scenario, the same three facilities ( 𝑓 = 2, 3, 6) chosen in the

first case, as depicted in Figure 9.6a, are selected again. However, some

customers originally assigned to these facilities are now redistributed to

two additional facilities ( 𝑓 = 8, 10) in order to minimize travel distances.

Notably, facility 8 is positioned roughly at the center of the triangle

formed by the three originally selected facilities in Figure 9.6a. This

adjustment is anticipated, as customers who were previously served by

facilities 2, 3, or 6 and located far from them (resulting in significantly

higher costs if serviced by the same facilities with the increased value of

𝐶𝐷) are now reassigned to the closer facility 8.

� Coded example

The code used to model and solve Example 9.5 is available here.

https://github.com/alessandroBombelli/From-theORy-to-application-learning-to-optimize-with-Operations-Research-in-an-interactive-way/tree/main/Codes/Assignment%20and%20scheduling%20problems/facility%20location
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On a long journey even a straw weighs

heavy.

Spanish Proverb

This chapter deals with two foundational problems in OR: the Knapsack

Problem (KP) and the Bin Packing Problem (BPP). The KP revolves around

managing limited supply to accommodate varying demands, while

the classic BPP aims to fulfill all demands while minimizing required

supply. Although introduced briefly in Chapter 4 through examples,

we now provide a comprehensive overview of these core problems and

explore their basic versions along with extensions. Additionally, we justify

their inclusion in Part IV, categorizing them as specialized assignment

problems
1
.

10.1 KPs

The KP derives its name from a representative analogy: envision having

a knapsack (e.g., a backpack) with a fixed volume capacity, and a set of

items, each with its own volume and value. Due to the limited space in

the knapsack, not all items can be accommodated. The objective of the

KP is to help us choose a subset of items that fit within the knapsack’s

volume constraints while maximizing the total value carried. Within this

very general setting, several variants are possible, which we explain in

the following sections.

10.1.1 0-1 KP

The 0-1 KP is the foundation of all KPs. It features a single knapsack

of given capacity 𝑊 and a set of items I, where each item 𝑖 ∈ I is

characterized by a needed capacity 𝑊𝑖 and a value 𝑉𝑖 . Note that we

stick with a generic definition of capacity, as it does not affect how the

KP is defined. Capacity can be intended in terms of volume, weight,

budget, etc. The goal is to map which items to select (via decision variable

𝑥𝑖 ∈ {0, 1}, unitary if item 𝑖 is placed in the knapsack). We report the

needed notation for the 0-1 KP in Table 10.1.

We define the 0-1 KP as:

max

∑
𝑖∈I

𝑉𝑖𝑥𝑖 (10.1)

s.t.:
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Table 10.1: Notation for the 0-1 KP. Sets and indices

I set of items 𝑖 ∈ I

Parameters

𝑊 capacity of the knapsack

𝑊𝑖 capacity needed by item 𝑖 ∈ I

𝑉𝑖 value of item 𝑖 ∈ I

Variables

𝑥𝑖 ∈ {0, 1} unitary if item 𝑖 is placed in the knapsack

∑
𝑖∈I

𝑊𝑖𝑥𝑖 ≤ 𝑊 (10.2)

𝑥𝑖 ∈ {0, 1} ∀𝑖 ∈ I (10.3)

(10.1) maximizes the value carried in the knapsack, while (10.2) ensures

that the carried items do not exceed the available capacity. (10.3) defines

the nature of the decision variables.

We present the KP in a unique context compared to the typical standards

of OR in Example 10.1.

Example 10.1 A bounty hunter in the realm of Hilmor is entering an enchanted
forest where they know 8 outlaws, ranging from humanoids to beasts, oozes, and
undeads are hiding. Each outlaw comes with bounty money that the bounty
hunter can collect if they defeat the outlaw in combat. Combats come with a
price, as each outlaw takes away some life points from the hunter, who needs
to save at least one life point (we leave a glorious death for another story). The
hunter has at their disposal 16 life points (meaning that 15 can be spent defeating
outlaws). The 8 outlaws are depicted as card games in Figure 10.1, where the
top-left number inside the heart symbolizes the life points that the outlaw takes
away during combat and the top-right number inside the coin represents the
bounty money that is collected if such an opponent is defeated. Our task is to
assist the bounty hunter so that they can maximize the money collected while
remaining alive in the process.

We acknowledge that this problem, despite its departure from the conven-

tional framing, aligns with the KP because the value is represented by the

bounty money and the capacity by the life points of the bounty hunter. A

slight deviation from the original formulation is evident in (10.2). Unlike
a typical KP where the entire capacity is generally utilized, the bounty
hunter must reserve one life point. Thus, the right-hand side of Equa-

tion 10.2 in our model is 𝐿 − 1, where 𝐿 represents the total life points,

considering that life points can only decrease in integer increments.

There is only one set, namely the set of outlaws O. For every outlaw 𝑜 ∈ O,

we define parameters 𝐶𝑜 and 𝐿𝑜 as, respectively, the coins received in

bounty money and the life points lost if outlaw 𝑜 is defeated. We report

the information regarding the eight outlaws in Table 10.2.

Our KP becomes:
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(a) Zorgoiln the Zombie. (b) Hermy the Hermit Crab. (c) Ghost of your past.

(d) Marion of the Haron. (e) Gerald the Gunk. (f) The Big Brown Bear.

(g) The Frog Prince. (h) The Mummy.
Figure 10.1: The eight outlaws of Exam-

ple 10.1.

Outlaw 𝑜 𝐶𝑜 𝐿𝑜
Zorgoiln the Zombie 1 5 2

Henry the Hermit Crab 2 17 5

Ghost of your past 3 15 4

Marion of the Haron 4 19 5

Gerald the Gunk 5 55 14

The Big Brown Bear 6 8 2

The Frog Prince 7 8 2

The Mummy 8 32 7

Table 10.2: Data pertaining to the eight

outlaws of Example 10.1.
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2: This solution method is a heuristic,
i.e., an approach to solve an optimiza-

tion problem that is not characterized by

convergence proofs or optimality criteria,

as opposed to the simplex method and

the BB methods shown in Chapter 6 and

Chapter 7.

3: In some literature (e.g., Carter et al.,

2018) such a heuristic is labeled bang for
the buck.

max

∑
𝑜∈O

𝐶𝑜𝑥𝑜 (10.4)

s.t.:

∑
𝑜∈O

𝐿𝑜𝑥𝑜 ≤ 𝐿 − 1 (10.5)

𝑥𝑜 ∈ {0, 1} ∀𝑜 ∈ O (10.6)

which can be expanded as:

max 5𝑥1 + 17𝑥2 + 15𝑥3 + 15𝑥4 + 55𝑥5 + 8𝑥6 + 8𝑥7 + 32𝑥8 (10.7)

s.t.:

2𝑥1 + 5𝑥2 + 4𝑥3 + 5𝑥4 + 14𝑥5 + 2𝑥6 + 2𝑥7 + 7𝑥8 ≤ 15 (10.8)

𝑥1 , · · · , 𝑥8 ∈ {0, 1} (10.9)

Solving the model results in 𝑥3 = 𝑥6 = 𝑥7 = 𝑥8 = 1, hence the bounty

hunter should defeat the Ghost of your past, the Big Brown Bear, the

Frog Prince, and the Mummy resulting in 15 life point lost and 63 gold

coins accrued as bounty money. Note that the bounty hunter uses all the
allowed 𝐿 − 1 life points in this case. In KPs it is usually the case that
the whole capacity is used, if this helps increasing the objective value,
but there might be occurrences where some capacity is left unused.

We now proceed to showcase an alternative solution method which,

while not proven to yield the optimal solution, does not rely on an BP

mathematical model but on a more intuitive approach
2
. This solution

method is based on the intuition that an “ideal" outlaw provides a
substantial bounty in gold coins while inflicting minimal damage
to the bounty hunter’s life points. Even more, the ideal outlaw is the

one characterized by the highest 𝐵𝑜 =
𝐶𝑜
𝐿𝑜

possible, as this KPI defines

how much bounty money is obtained per each life point lost
3
. Hence,

the bounty hunter could sort the outlaws by decreasing values of 𝐵𝑜 .

Then, the outlaw with the highest remaining 𝐵𝑜 value is defeated if

the remaining life points allow that or they are skipped. The process is

continued until all available life points have been used or all outlaws

have been “processed". This heuristic solution is showcased in Table 10.3,

where outlaws are sorted by decreasing value of 𝐵𝑜 . In red are marked

outlaws who should have been defeated according to the 𝐵𝑜 KPI but

were skipped due to not enough life points available.

In the context of this example, we realize this sorting heuristic provides

the optimal solution, as it suggests to defeat, in sequence, the Mummy,

the Big Brown Bear, the Frog Prince, and the Ghost of your past. Note that

in Table 10.3 we reported the outlaws after the Ghost of your past just

for the sake of completeness. As the bounty hunter is left with just one
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Outlaw
𝐶𝑜
𝐿𝑜

𝐶𝑜 𝐿𝑜 Life points remaining

The Mummy 4.57 32 7 9

The Big Brown Bear 4 8 2 7

The Frog Prince 4 8 2 5

Gerald the Gunk 3.93 55 14 -9
Marion of the Haron 3.8 19 5 0
Ghost of your past 3.75 15 4 1

Hermy the Hermit Crab 3.4 17 5 -
Zorgoiln the Zombie 2.5 5 2 -

Table 10.3: Solution to Example 10.1

using the sorting heuristic based on 𝐵𝑜
values.

life point after having defeated the Ghost of your past and the minimum

loss when defeating any outlaw is one life point, the bounty hunter is

done after defeating the Ghost of your past anyway. In addition, as the

Big Brown Bear and the Frog Prince are characterized by the same 𝐵𝑜 ,

we arbitrarily chose to defeat the former first.

� Coded example

The code used to model and solve Example 10.1 is available here.

� 0-1 KP as a serious game

A serious game based on the 0-1 KP can be found here. It entails three

levels of increasing complexity and a fourth level based on the theory

that will be unraveled in Chapter 14.

10.1.2 Bounded KP

The bounded KP provides a small twist to the original 0-1 KP introduced

in Section 10.1.1 by not restricting each item 𝑖 ∈ I to be “unique", but

assuming 𝑁𝑖 copies of it. In Example 10.1, this would be the case for the

Big Brown Bear and the Frog Prince. Due to their identical values for 𝐿𝑜
and 𝐶𝑜 , both entities are equivalent within the scope of the KP. While

readers might point out numerous distinctions between a brown bear and

a frog prince, we defer this discussion for another occasion. Therefore,

Example 10.1 can be reconsidered as a bounded KP comprising seven

types of items, with six appearing individually and one appearing in

duplicate. Aside from new parameters 𝑁𝑖 , the nature of the decision

variables changes as well, as now 𝑥𝑖 ∈ {0, 1, · · · , 𝑁𝑖} is integer-valued.

We report the needed notation for the bounded KP in Table 10.4.

Sets and indices

I set of items 𝑖 ∈ I

Parameters

𝑊 capacity of the knapsack

𝑊𝑖 capacity needed by item 𝑖 ∈ I

𝑉𝑖 value of item 𝑖 ∈ I

𝑁𝑖 copies available of item 𝑖 ∈ I

Variables

𝑥𝑖 ∈ {0, 1, · · · , 𝑁𝑖} number of copies of item 𝑖 is placed in the knapsack

Table 10.4: Notation for the bounded KP.

We define the bounded KP as:

https://github.com/alessandroBombelli/From-theORy-to-application-learning-to-optimize-with-Operations-Research-in-an-interactive-way/tree/main/Codes/Packing%20problems/0-1%20KP
https://github.com/alessandroBombelli/from_theORy_to_application/tree/main/Serious%20games/Knapsack%20Problem%20(KP)
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max

∑
𝑖∈I

𝑉𝑖𝑥𝑖 (10.10)

s.t.:

∑
𝑖∈I

𝑊𝑖𝑥𝑖 ≤ 𝑊 (10.11)

𝑥𝑖 ∈ {0, 1, · · · , 𝑁𝑖} ∀𝑖 ∈ I (10.12)

(10.10) maximizes the value carried in the knapsack, while (10.11) ensures

that the carried items do not exceed the available capacity. (10.12) defines

the integer nature of the decision variables and is the only tangible diffe-

rence model-wise with respect to the original 0-1 KP of Section 10.1.1.

10.1.3 0-1 multiple KP

The 0-1 multiple KP provides a different twist to the original 0-1 KP by

allowing multiple knapsacks to be used. Differently from the bounded KP

from Section 10.1.2, each item is “unique", but we now need a second set

K representing the knapsacks available, each with its own capacity𝑊 𝑘 .

Because now there is more than a single knapsack, the type of decision

changes as well. On top of deciding if an item should be transported or

not, we also need to assign it to a knapsack. Hence, we define 𝑥𝑖𝑘 ∈ {0, 1}
to be unitary if item 𝑖 is assigned to knapsack 𝑘. We report the needed

notation for the 0-1 multiple KP in Table 10.5.

Table 10.5: Notation for the 0-1 multiple

KP.
Sets and indices

I set of items 𝑖 ∈ I

K set of knapsacks 𝑘 ∈ K
Parameters

𝑊 𝑘 capacity of knapsack 𝑘 ∈ K
𝑊𝑖 capacity needed by item 𝑖 ∈ I

𝑉𝑖 value of item 𝑖 ∈ I

Variables

𝑥𝑖𝑘 ∈ {0, 1} unitary if item 𝑖 is placed in knapsack 𝑘

We define the 0-1 multiple KP as:

max

∑
𝑖∈I

∑
𝑘∈K

𝑉𝑖𝑥𝑖𝑘 (10.13)

s.t.:
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∑
𝑘∈K

𝑥𝑖𝑘 ≤ 1 ∀𝑖 ∈ I (10.14)∑
𝑖∈I

𝑊𝑖𝑥𝑖𝑘 ≤ 𝑊 𝑘 ∀𝑘 ∈ K (10.15)

𝑥𝑖𝑘 ∈ {0, 1} ∀𝑖 ∈ I, 𝑘 ∈ K (10.16)

(10.13) maximizes the value carried across all knapsacks. (10.14) is a

constraint set that was not needed in the previous KPs as they relied on

a single knapsack. Now, we limit the assignment of each item to at most

one knapsack. (10.15) ensures that the carried items in each knapsack

𝑘 ∈ Kdo not exceed the available capacity𝑊 𝑘 . (10.16) defines the binary

nature of the decision variables.

10.1.4 Other variants of the KP

Several variants of the KP exist in addition to the variants we presented

in Section 10.1.2 and Section 10.1.3. We report in the following a couple of

them and refer interested readers to Cacchiani et al., 2022a and Cacchiani

et al., 2022b for extensive literature reviews on the topic.

▶ multi-dimensional KP. In this case, the capacity of the knapsack

is not a scalar value but an 𝑛-dimensional vector (𝑊1 , · · · ,𝑊𝑛).
Following the same logic, each item requires 𝑛 capacities, one

per dimension. The goal is to maximize the value of the items

transported while ensuring that the used capacity per dimension

is not exceeded;

▶ geometric KP. In this case, the knapsack and each item are either

a rectangle (two-dimensional case) or a parallelepiped (three-

dimensional case). The goal is to maximize the value of the items

that can inserted into the knapsack without exceeding its bounds.

10.2 BPPs

In a BPP, the foremost objective is to guarantee the packing of all

considered items. This stands in stark contrast to the KP, where the

central decisions revolve around item selection or exclusion. Conversely,

in the BPP, the pivotal decision revolves around selecting the type and

quantity of bins required to accommodate all items while minimizing

associated packing costs. Because of such a requirement, an important
consideration is that there should always be a bin “large" enough to
be able to contain the “largest" item in our set, otherwise our problem
cannot be solved. In analogy to the KP case, we present a couple of

foundational models in the following sections. Both of them revolve

around a set of items Iand bins B as the main inputs.

10.2.1 One-dimensional BPP

In this version of the BPP, the capacity of both items 𝑖 ∈ I and bins

𝑏 ∈ B is one-dimensional (it could be thought of as weight or volume,
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for example). We could even take one step further and consider different

bin types (e.g., larger vs. smaller ones) by defining T the set of bin types.

For each 𝑡 ∈ T, B𝑡 is the subset of bins 𝑏 ∈ B that are of type 𝑡. Having

defined T, we can define type-specific parameters such as 𝑊 𝑡 and 𝐶𝑡 :

the available capacity and cost of a bin of type 𝑡. Hence, every bin 𝑏 ∈ B𝑡

inherits the same parameters𝑊 𝑏 =𝑊 𝑡 and 𝐶𝑏 = 𝐶𝑡 . It also follows that

B= B1 ∪B2 ∪ · · · ∪B|T| , i.e., the set of bins is the union of the subsets

containing bins of a specific type.

Each item must be packed into a single bin, yet the optimal assignment of

items to bins is unknown beforehand. Therefore, adopting a highly risk-

averse approach involves assuming that |I| bins of type 𝑡 are available

for each bin type 𝑡 ∈ T. With such an approach, we ensure the feasibility

of the worst-case scenario where each item can only fit into the same bin

type 𝑡 and just by itself because of capacity restrictions. Therefore, all bins

of type 𝑡 are utilized, each containing a single item, while all other bins

remain unused. Although uncommon, this risk-averse approach is the

only method guaranteeing the feasibility of such a scenario. Before diving

into the formulation, we need to define the decision variables needed.

As our primary goal is to minimize the cost of the used bins, a decision

variable mapping which bins are used is needed: 𝑧𝑏 ∈ {0, 1} which takes

a unitary value if bin 𝑏 ∈ B is used. In addition, the assignment of

items to bins must also be tracked via 𝑥𝑖𝑏 ∈ {0, 1} which takes a unitary

value if item 𝑖 is assigned to bin 𝑏. We report the needed notation for the

one-dimensional BPP in Table 10.6.

Table 10.6: Notation for the one-

dimensional BPP.
Sets and indices

I set of items 𝑖 ∈ I

T set of bin types 𝑡 ∈ T

B set of bins 𝑏 ∈ B
B𝑡 ⊆ B set of bins of type 𝑡 ∈ T

Parameters

𝑊 𝑏 capacity of bin 𝑏 ∈ B
𝐶𝑏 cost of bin 𝑏 ∈ B
𝑊𝑖 capacity needed by item 𝑖 ∈ I

Variables

𝑥𝑖𝑏 ∈ {0, 1} unitary if item 𝑖 is placed in bin 𝑏
𝑧𝑏 ∈ {0, 1} unitary if bin 𝑏 is used

We define the one-dimensional BPP as:

min

∑
𝑏∈B

𝐶𝑏𝑧𝑏 (10.17)

s.t.:
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4: For the variant presented here,

we took inspiration and adapted

the three-dimensional BPP formulation

from Paquay et al., 2016.

∑
𝑏∈B

𝑥𝑖𝑏 = 1 ∀𝑖 ∈ I (10.18)∑
𝑖∈I

𝑊𝑖𝑥𝑖𝑏 ≤ 𝑊 𝑏 ∀𝑏 ∈ B (10.19)∑
𝑖∈I

𝑥𝑖𝑏 ≤ |I|𝑧𝑏 ∀𝑏 ∈ B (10.20)

𝑥𝑖𝑏 ∈ {0, 1} ∀𝑖 ∈ I, 𝑏 ∈ B (10.21)

𝑧𝑏 ∈ {0, 1} ∀𝑏 ∈ B (10.22)

(10.17) minimizes the cost of the used bins. (10.18) ensures that each item

is assigned to exactly one bin, while (10.19) ensures that each bin is used

within its capacity. (10.20) is a fixed-charge constraint (recall Section 4.8.4)

that allows assigning items to bin 𝑏 (potentially all the |I| items pending

(10.19)) if 𝑧𝑏 is unitary. A variant of such a constraint that achieves the same

goal is discussed in the  An alternative version of constraint (10.20)
box. Finally, (10.21)-(10.22) define the nature of the decision variables.

Some readers might have noticed that set Tdoes not appear anywhere
in the formulation. While it appears implicitly in the definition of
the properties of each bin 𝑏 ∈ B (which inherits the properties of
its bin type 𝑡 ∈ T), there is no explicit mention to it. This is not an
oversight, because in the shown formulation we assume every item
can be assigned to every bin. On the other hand, let us assume that

every item 𝑖 can only be packed in a subset of bin types T𝑖 . In such a case,

(10.18) can be rewritten as

∑
𝑡∈T𝑖

∑
𝑏∈B𝑡

𝑥𝑖𝑏 = 1 ∀𝑖 ∈ I (10.23)

so that the contribution of Tis apparent. Constraints (10.19)-(10.21) should

be updated as well.

10.2.2 Two-dimensional horizontal BPP

This variant
4

of the BPP is defined on a horizontal (𝑥, 𝑦) plane where

both items 𝑖 ∈ Iand bins 𝑏 ∈ B are rectangular-shaped. Each item 𝑖 is

defined by an original length 𝐿𝑖 and width𝑊𝑖 : we assume that, originally,

𝐿𝑖 is aligned with the 𝑥- and𝑊𝑖 with the 𝑦-direction. Items can generally

be rotated by
𝜋
2

(hence aligning𝑊𝑖 with the 𝑥-direction and 𝐿𝑖 with the

𝑦-direction), but for some of them such a rotation might not be allowed.

Additionally, some items might only be packed in specific bin types,

with set Tdefining the different bin types. Each bin type 𝑡 ∈ T features

a length 𝐿𝑡 and a width 𝑊 𝑡 : every bin 𝑏 ∈ B𝑡 ⊆ B (subset of bins of

type 𝑡) inherits such geometric properties. Finally, some items might
not be packed in the same bin. This last constraint has some practical
implications. In air cargo operations, for example, packing in the same
container vegetables and chemicals is generally not allowed as the
latter might contaminate the former. We define B𝑖𝑛𝑐 as the set of all

item pairs (𝑖 , 𝑗) that are incompatible, i.e., that cannot be assigned to the

same bin.
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 An alternative version of constraint (10.20)

Let us explain constraint (10.20) again. If 𝑧𝑏 = 1, which implies an

increment of 𝐶𝑏 in the objective function, then

∑
𝑖∈I 𝑥𝑖𝑏 ≤ |I|. This

means that, potentially, every item could be packed there, pending

that the bin has enough capacity and every item can be packed there.

If 𝑧𝑏 = 0, then

∑
𝑖∈I 𝑥𝑖𝑏 ≤ 0 prevents any item from being assigned to

bin 𝑏 (basically, bin 𝑏 is unused).

An alternative way of expressing the same concept is the following

𝑥𝑖𝑏 ≤ 𝑧𝑏 ∀𝑖 ∈ I, 𝑏 ∈ B (10.24)

which is defined for every item 𝑖 and bin 𝑏 combination and achieves

the same goal, albeit with a slightly different nuance. (10.24) implies

that bin 𝑏 is labeled as used as soon as one item 𝑖 is assigned to it

and, conversely, no single item 𝑖 can be assigned to bin 𝑏 unless it is

flagged as used. Constraint set (10.24) entails more constraints than

the set (10.20) (namely |I| × |B| instead of |B|). Notwithstanding,

according to Postek et al., 2024 it provides a tighter linear relaxation

(recall Chapters 7-8) and hence might be preferred for larger-scale

problems.

To map the position of each item 𝑖, we define two continuous decision

variables 𝑥𝑖 and 𝑦𝑖 that map the (𝑥, 𝑦) location of the left-bottom vertex

of the item. We then express the location of the right-front vertex (𝑥′
𝑖
, 𝑦
′
𝑖
)

as

𝑥
′
𝑖 = 𝑥𝑖 + 𝐿𝑖(1 − 𝑟𝑖) +𝑊𝑖𝑟𝑖 (10.25)

𝑦
′
𝑖 = 𝑦𝑖 + 𝐿𝑖𝑟𝑖 +𝑊𝑖(1 − 𝑟𝑖) (10.26)

where 𝑟𝑖 ∈ {0, 1} is unitary if item 𝑖 ∈ I is rotated by
𝜋
2

and zero if

it retains its original orientation. We provide a visual interpretation

of how such a rotation decision variable operates in Figure 10.2. We

decide to place item 𝑖, with 𝐿𝑖 = 6 and 𝑊𝑖 = 2, with its left-bottom

vertex in position (𝑥, 𝑦) = (0, 0). If we assume that no rotation occurs

(𝑟𝑖 = 0), then 𝑥
′
𝑖
= 𝑥𝑖 + 𝐿𝑖(1 − 𝑟𝑖) +𝑊𝑖𝑟𝑖 = 0 + 6 × 1 + 2 × 0 = 6 and

𝑦
′
𝑖
= 𝑦𝑖 + 𝐿𝑖𝑟𝑖 + 𝑊𝑖(1 − 𝑟𝑖) = 0 + 6 × 0 + 2 × 1 = 2. This results in

box 𝑖 being located as the green box in Figure 10.2. Conversely, if we

assume a
𝜋
2

rotation (𝑟𝑖 = 1), we have 𝑥
′
𝑖
= 0 + 6 × 0 + 2 × 1 = 2 and

𝑦
′
𝑖
= 0 + 6 × 1 + 2 × 0 = 6, resulting in the red box in Figure 10.2.

Before diving into the notation and formulation, we highlight that this

version of the BPP is based on specific geometric properties, one of which

implies that items cannot overlap with each other. In fact, the available

capacity of each bin 𝑏 ∈ B is the available surface 𝐿𝑏 ×𝑊𝑏 it offers. We

ensure that such a capacity is not exceeded by:

▶ ensuring each item 𝑖 placed in bin 𝑏 does not exceed the boundary
of the bin itself;

▶ ensuring that all the items placed in the same bin 𝑏 do not overlap.

To enforce the second requirement, we need decision variables 𝑙𝑖 𝑗 ∈ {0, 1}
and 𝑏𝑖 𝑗 ∈ {0, 1} defined ∀ 𝑖 , 𝑗 ∈ I (i.e., for every distinct pair or items).
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𝑥

𝑦

Figure 10.2: Example of the role of rota-

tion decision variable 𝑟𝑖 for an item with

original length 𝐿𝑖 = 6 and width𝑊𝑖 = 2,

whose left-bottom vertex is placed in the

origin (0, 0). If 𝑟𝑖 = 0, no rotation occurs,

resulting in the green configuration. If

𝑟𝑖 = 1, a rotation of
𝜋
2

occurs, resulting

in the red configuration.

They are unitary if item 𝑖 is completely to the left to (resp. behind) item 𝑗.

We showcase a visual interpretation of the 𝑙𝑖 𝑗 and 𝑏𝑖 𝑗 decision variables

in Figure 10.3. Focusing on item 1, we can write 𝑙1,2 = 0, 𝑏1,2 = 1 (item

1 is not to the left but behind item 2), 𝑙1,3 = 1, 𝑏1,3 = 1 (item 1 is to the

left and behind item 3), and 𝑙1,4 = 1, 𝑏1,4 = 0 (item 1 is to the left but not

behind item 4). Note that the term completely is key. For example, item 1 is

slightly behind item 4, but not completely, as 𝑦
′
1
= 3 > 𝑦4 = 3

2
: basically,

if we were to prolong the horizontal side of item 1 with 𝑦 = 3, we would

intersect item 4.

We report the needed notation for the two-dimensional horizontal BPP

in Table 10.7. The mathematical formulation of the two-dimensional

horizontal BPP is:

min

∑
𝑏∈B

𝐶𝑏𝑧𝑏 (10.27)

s.t.:
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Figure 10.3: Example of the role of deci-

sion variables 𝑙𝑖 𝑗 and 𝑏𝑖 𝑗 in mapping the

relative position between items 𝑖 and 𝑗. 2 4 6 8 10
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3
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𝑥

𝑦

Table 10.7: Notation for the two-

dimensional horizontal BPP.
Sets and indices

I set of items 𝑖 , 𝑗 ∈ I

I𝑖𝑛𝑐 set of incompatible items 𝑖 , 𝑗 ∈ I

T set of bin types 𝑡 ∈ T

B set of bins 𝑏 ∈ B
B𝑡 subset of bins 𝑏 ∈ Bof type 𝑡 ∈ T

T𝑖 subset of bin types 𝑡 ∈ Twhere item 𝑖 ∈ I can be placed

B𝑖 subset of bins 𝑏 ∈ B that can accommodate item 𝑖 ∈ I

Parameters

𝐶𝑏 cost of bin 𝑏 ∈ B
𝐿𝑏 length of bin 𝑏 ∈ B
𝑊 𝑏 width of bin 𝑏 ∈ B
𝐿𝑚𝑎𝑥 max𝑏∈B

{
𝐿𝑏

}
: maximum length across all bins

𝑊𝑚𝑎𝑥 max𝑏∈B
{
𝑊 𝑏

}
: maximum width across all bins

𝐿𝑖 length of item 𝑖 ∈ I

𝑊𝑖 width of item 𝑖 ∈ I

Variables

𝑥𝑖 ∈ ℝ0 𝑥-position of the left-bottom vertex of item 𝑖
𝑦𝑖 ∈ ℝ0 𝑦-position of the left-bottom vertex of item 𝑖
𝑟𝑖 ∈ {0, 1} unitary if item 𝑖 ∈ I is rotated by

𝜋
2

𝑙𝑖 𝑗 ∈ {0, 1} unitary if item 𝑖 is to the left of item 𝑗
𝑏𝑖 𝑗 ∈ {0, 1} unitary if item 𝑖 is behind item 𝑗
𝑝𝑖𝑏 ∈ {0, 1} unitary if item 𝑖 is placed in bin 𝑏
𝑧𝑏 ∈ {0, 1} unitary if bin 𝑏 is used
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𝑙𝑖 𝑗 + 𝑙 𝑗𝑖 + 𝑏𝑖 𝑗 + 𝑏 𝑗𝑖 ≥ 𝑝𝑖𝑏 + 𝑝 𝑗𝑏 − 1 ∀𝑖 , 𝑗 ∈ I, 𝑏 ∈ B𝑖 ∩B𝑗

(10.28)

𝑥 𝑗 ≥ 𝑥𝑖 + 𝐿𝑖(1 − 𝑟𝑖) +𝑊𝑖𝑟𝑖 − 𝐿𝑚𝑎𝑥(1 − 𝑙𝑖 𝑗) ∀𝑖 , 𝑗 ∈ I (10.29)

𝑥 𝑗 + 𝜖 ≤ 𝑥𝑖 + 𝐿𝑖(1 − 𝑟𝑖) +𝑊𝑖𝑟𝑖 + 𝐿𝑚𝑎𝑥 𝑙𝑖 𝑗 ∀𝑖 , 𝑗 ∈ I (10.30)

𝑦 𝑗 ≥ 𝑦𝑖 + 𝐿𝑖𝑟𝑖 +𝑊𝑖(1 − 𝑟𝑖) − 𝐻𝑚𝑎𝑥(1 − 𝑏𝑖 𝑗) ∀𝑖 , 𝑗 ∈ I (10.31)

𝑦 𝑗 + 𝜖 ≤ 𝑦𝑖 + 𝐿𝑖𝑟𝑖 +𝑊𝑖(1 − 𝑟𝑖) + 𝐿𝑚𝑎𝑥𝑏𝑖 𝑗 ∀𝑖 , 𝑗 ∈ I (10.32)

𝑥𝑖 + 𝐿𝑖(1 − 𝑟𝑖) +𝑊𝑖𝑟𝑖 ≤
∑
𝑏∈B𝑖

𝐿𝑏𝑝𝑖𝑏 ∀𝑖 ∈ I (10.33)

𝑦𝑖 + 𝐿𝑖𝑟𝑖 +𝑊𝑖(1 − 𝑟𝑖) ≤
∑
𝑏∈B𝑖

𝑊 𝑏𝑝𝑖𝑏 ∀𝑖 ∈ I (10.34)∑
𝑏∈B𝑖

𝑝𝑖𝑏 = 1 ∀𝑖 ∈ I (10.35)

𝑝𝑖𝑏 ≤ 𝑧𝑏 ∀𝑖 ∈ I, 𝑏 ∈ B𝑖

(10.36)

𝑝𝑖𝑏 + 𝑝 𝑗𝑏 ≤ 1 ∀𝑖 , 𝑗 ∈ I𝑖𝑛𝑐 , 𝑏 ∈ B𝑖 ∩B𝑗

(10.37)

𝑧𝑏 ≤ 𝑧𝑏−1 ∀𝑡 ∈ T, 𝑏 ∈ B𝑡 \ {1}
(10.38)

𝑥𝑖 ∈ ℝ0 ∀𝑖 ∈ I (10.39)

𝑦𝑖 ∈ ℝ0 ∀𝑖 ∈ I (10.40)

𝑟𝑖 ∈ {0, 1} ∀𝑖 ∈ I (10.41)

𝑙𝑖 𝑗 , 𝑏𝑖 𝑗 ∈ {0, 1} ∀𝑖 , 𝑗 ∈ I (10.42)

𝑝𝑖𝑏 ∈ {0, 1} ∀𝑖 ∈ I, 𝑏 ∈ B𝑖

(10.43)

𝑧𝑏 ∈ {0, 1} ∀𝑏 ∈ B (10.44)

(10.27) aims at minimizing the overall cost associated with the used

bins. (10.28) enforces that if two items are placed in the same bin (the

right-hand side is unitary), then at least one of the four decision variables

on the left-hand side should be unitary. This ensures that the two items

cannot overlap. Constraints (10.29)-(10.30) are either-or constraints that

force 𝑥
′
𝑖
(recall (10.25)) to be smaller or equal to 𝑥 𝑗 if 𝑙𝑖 𝑗 = 1, hence correctly

enforcing the left-right relationship between items 𝑖 and 𝑗. 𝜖 is a small

number used to avoid ambiguity when 𝑥 𝑗 = 𝑥
′
𝑖
, as in such a case both

𝑙𝑖 𝑗 = 0 and 𝑙𝑖 𝑗 = 1 would satisfy the inequality. By introducing 𝜖, we

force 𝑙𝑖 𝑗 = 1 when 𝑥 𝑗 = 𝑥
′
𝑖
. Constraints (10.31)-(10.32) are the equivalent

counterpart along the 𝑦-direction. (10.33) ensures that the right side of

item 𝑖 is within the horizontal extension of the bin where it is placed, and

(10.34) is the counterpart for the 𝑦-direction. (10.35) ensures that every

item 𝑖 is assigned to one of the bins 𝑏 ∈ B𝑖 that can allocate such an item.

Constraints (10.36) ensure that as soon as an item is assigned to a bin that

bin is active (here we used the version of the constraint explained in the

 An alternative version of constraint (10.20) box from Section 10.2.1),

while constraints (10.37) ensure that incompatible items are not assigned

to the same bin. With 𝑏 ∈ B𝑖 ∩ B𝑗 we ensure that the constraint is

imposed only for the bins that can accommodate both items 𝑖 and 𝑗
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(we followed the same logic in (10.28)). (10.38) is a symmetry-breaking

constraint that does not affect the optimal solution, but limits symmetries

by enforcing that bins of each type 𝑡 ∈ Tare used in increasing sequence.

With ∀𝑡 ∈ T, 𝑏 ∈ B𝑡 \ {1} we mean that such a constraint should be

imposed for every bin of a specific type apart from the first one of that

type (whose index might be different than 1 though). Let us consider an

example where T= {1, 2}, B1 = {1, 2, 3}, and B2 = {4, 5, 6}. Constraint

(10.38) enforces that 𝑏2 ≤ 𝑏1 and 𝑏3 ≤ 𝑏2 for 𝑡 = 1 and 𝑏5 ≤ 𝑏4 and

𝑏6 ≤ 𝑏5 for 𝑡 = 2. This allows the model to immediately use bin 1 (the

first one of type 1) and bin 4 (the first one of type 2) and only later (and

in sequence) the others. Finally, (10.39)-(10.44) define the nature of the

decision variables.

We show an application example of this two-dimensional horizontal BPP

in Example 10.2.

Example 10.2 A farming company is considering acquiring land to cultivate
various fruit and vegetable crops. In the designated area, two types of lots are
available: two larger fields measuring 1, 000 meters long and 700 meters wide,
and two smaller ones measuring 800 meters long and 500 meters wide. The cost
of purchasing a large or small field is 1, 000, 000 and 800, 000e, respectively.
We define T= {1, 2} the set of field types, with 1 representing the large one
and 2 the small one. The company aims to cultivate 16 different products 𝑖 ∈ I,
each requiring a specific land area. Certain products can be grown in either
field type due to soil specifications (T𝑖 represents the allowed field types for
crop 𝑖). However, some crops cannot be planted together due to the risk of
attracting harmful insects or cannot be rotated with respect to the original
orientation because of proper sun exposure. We report all the characteristics of
the sixteen crops in Table 10.8 (dimensions have been divided by 100 for the sake
of simplicity). The company is striving to formulate a mathematical model that
can determine the most cost-effective solution, detailing which fields to acquire
and how to arrange the various crops to fulfill all constraints effectively.

Table 10.8: Data pertaining to the 16

crops of Example 10.2.

Crop 𝑖 𝐿𝑖 𝑊𝑖 T𝑖 Rotation Incomp.

Strawberries 1 4 2 1,2 Y 12,15

Comice pears 2 2 3 1,2 Y 12,16

Fuji apples 3 2 5 1 N

Eggplant 4 5 1 1 Y 14

Kabocha squash 5 3 3 1,2 Y -

Orri mandarines 6 3 2 1,2 Y -

Navel oranges 7 2 3 1,2 Y 13

Iceberg lettuce 8 5 2 1,2 Y 14

Raspberries 9 3 1 1 N -

Kale 10 2 1 1,2 Y -

Chioggia radicchio 11 5 1 1,2 Y 15

Shiitake mushrooms 12 4 3 2 N 2

White asparagus 13 4 2 1,2 Y 3

Blueberries 14 2 1 1,2 Y 4

Jintao kiwi 15 2 3 1,2 Y 5

Cantaloupe melon 16 2 6 1,2 Y 2,3

We realize that this problem can be interpreted as a two-dimensional

horizontal BPP, where the products are the items 𝑖 ∈ I and the fields

are the bins 𝑏 ∈ B. We can define I= {1, · · · , 16} and B= {1, · · · , 4}.
Recalling the definition of the two field types (i.e., of the two bin types),

we get B1 = {1, 2} and B2 = {3, 4}. In this case, making the model

explicit would be tedious and require quite a few pages, hence we refrain

from doing that. We directly display the solution in Figure 10.4 and
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5: We use this example to display

that this particular version of the two-

dimensional horizontal BPP can be in-

terpreted as a cutting stock problem. In a

cutting stock problem, rectangular sheets

of paper or metal (or any other material)

must be cut into smaller rectangles ac-

cording to specific orders by customers.

The goal of the problem is to find a

minimum-waste solution where all nec-

essary orders are cut from some sheets

while the unused (i.e., wasted) material

per sheet is minimized. Our example

translates into an “ideal" cutting stock

problem where no waste at all is pro-

duced. We refer interested readers to this

Wikipedia page for more information.

critically discuss it.

(a) Large field (bin 𝑏 = 1 of type 𝑡 = 1).

(b) Small field (bin 𝑏 = 3 of type 𝑡 = 2).

Figure 10.4: The final solution in terms

of fields purchased and location of crops

to Example 10.2.

The optimal solution indicates that just two fields, one large and one small,

are adequate to accommodate all the crops for an overall investment of

1, 800, 000e. It is worth noting that this scenario perfectly matches the re-

quired land for the 16 products. While some empty spaces are permissible

in BPPs, we deliberately crafted this example to fully utilize the two fields

for enhanced visualization
5
. In Figure 10.4a and Figure 10.4b the location

and index of the cultivated crops are shown. Furthermore, crops that

cannot be rotated maintain their original length and width alignment

with the 𝑥- and 𝑦-coordinates, respectively, while incompatible crops are

assigned to different fields. Finally, the symmetry-breaking constraints,
while not contributing to improving the optimal solution, ensured
that the first bin available per type (𝑏 = 1 and 𝑏 = 3, respectively) was
selected. In larger-scale models, such symmetry-breaking constraints

might contribute quite significantly in reducing the computational time.

Another important consideration still addresses symmetry. While we
ensured to avoid symmetrical solutions in terms of which bins are
used, the issue is more complex when it comes to relative positioning
of items inside a bin. Let us consider, for example, Figure 10.4a. An

https://en.wikipedia.org/wiki/Cutting_stock_problem
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equally optimal solution would be achieved if crops 11 and 8, or 6 and

1, or 2, 9, and 5 were shuffled. Many other reshufflings are possible.

Furthermore, a rotation of 𝜋 of each bin (i.e., crop 1 would be placed

in the top-right and crop 4 in the lower-left corner of bin 𝑏 = 1) would

result in another equally optimal solution.

� Coded example

The code used to model and solve Example 10.2 is available here.

10.2.3 Other variants of the BPP

Regarding variants and extensions of the BPP, an initial considera-

tion involves an increase in dimensionality. Having examined one- and

two-dimensional versions, the logical progression leads to exploring a

three-dimensional BPP. In Paquay et al., 2016, a formulation of such an

extension is presented, primarily focusing on air cargo operations and

the palletization of cargo items into containers for air transport.

A significant complication of transitioning to a fully three-dimensional

BPP is the consideration of gravity. In our two-dimensional horizontal

example (depicted in Figure 10.4), the absence of empty spaces between

items posed no issues; however, in a three-dimensional scenario, the

presence of empty spaces horizontally can still be accommodated. Yet,

empty spaces vertically are not feasible as items cannot levitate. Hence,

items must either rest on the ground or have their lower side vertices

properly supported by other items, typically at least three out of four

vertices according to Paquay et al., 2016 (although having just two

vertices supported might be enough depending on considerations on the

position of the center of gravity). We showcase some illustrative examples

regarding vertical stability in a three-dimensional BPP in Figure 10.5

In addition to the three-dimensional extension, bins with irregular
shapes represent another variant in BPPs. Because of the linear require-

ments of the objective function and constraints, the level of irregularity

of the bin shape cannot be extreme. In Paquay et al., 2016, bins with

some of their corner being cut are presented. This approach is adopted

to simulate Unit Load Device (ULD)s utilized in air cargo operations,

especially containers (see Figure 10.6). This cutting technique is essential

to enable the container to conform more closely to the fuselage shape of

the aircraft, thereby enhancing the transportable volume. Since the cut

is represented as a line equation, only minor geometric adjustments are

made to the three-dimensional BPP.

https://github.com/alessandroBombelli/From-theORy-to-application-learning-to-optimize-with-Operations-Research-in-an-interactive-way/tree/main/Codes/Packing%20problems/2D%20Horizontal%20Bin%20Packing%20Problem%20(BPP)
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(a) Item 2 is floating. Hence, none of its four lower-side

vertices are supported.
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(b) Item 4 partially lies on item 3, but not enough to be

stable as its center of gravity’s projection falls outside

item 3.
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(c) Item 6 partially lies on item 5 and its center of

gravity’s projection falls inside item 5, hence suggesting

a stable configuration.

Figure 10.5: Different examples of infea-

sible, unstable, and stable configurations

in a three dimensional BPP. In all three

figures, a frontal view of the (𝑥, 𝑧) plane

is depicted.
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Figure 10.6: Several containers in front

of an aircraft.

For a comprehensive exploration of two-dimensional BPPs handling

irregular shapes of items and bins, along with tailored solution method-

ologies, we recommend referring to Guo et al., 2022. Additionally, it

is worth mentioning another variant of the BPP known as the online
BPP. Many real-world applications of BPPs revolve around logistical

processes where items are not delivered all at once but rather scattered

over time. In such scenarios, it may be more prudent to pack the items

as they become available rather than waiting for the entire batch, even

though waiting could potentially lead to a better solution. Therefore,

making decisions regarding what to pack and when to wait is crucial for

improving logistical processes. This stands in contrast to offline packing,

where all information is known in advance (refer to Ali et al., 2022 for a

literature review comparing the two approaches).
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1: In the literature, this book included,

the terms vertex and node might be used

interchangeably. Along a similar note,

the terms edge, arc, and link might be

used interchangeably.

2: A 2-tuple is an ordered set of 2 ele-

ments. In general, a 𝑛-tuple is an ordered

set of 𝑛 elements. See this Wikipedia

page for more information.
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We are all now connected by the Internet,

like neurons in a giant brain.

Stephen Hawking

Graph theory is a mathematical branch devoted to studying graphs, i.e.,

mathematical structures that define connections between elements. This

branch of mathematics encompasses a wide array of domains such as

sociology, linguistics, and computer science, as well as numerous applica-

tions like social networks and transportation networks. A comprehensive

grasp of graph theory serves as a robust foundation for understanding

many of the OR topics addressed in this book, particularly in Part V.

This motivated us to include this chapter in the book. It is worth noting

that definitions of what constitutes a graph and the distinction between

a graph and a network can vary significantly across literature. While

we have added our own perspective and customization to this chapter,

our aim is not to completely supplant seminal books or other references

on the topic. For readers interested in expanding their knowledge, we

recommend for example Trudeau, 2013.

11.1 Definition of a graph

A graph 𝐺 = (V, E) is an object consisting of two sets, namely the set of

vertices Vand the set of edges E1
. While E can potentially be empty

(although we will see this option is not interesting for our purposes), V
must contain at least one element. Each edge 𝑒 ∈ E is a 2-tuple2 (𝑣1 , 𝑣2)
where 𝑣1 and 𝑣2 ∈ V and 𝑣1 ≠ 𝑣2: E ⊆ {(𝑣1 , 𝑣2)|𝑣1 , 𝑣2 ∈ V∧ 𝑣1 ≠ 𝑣2}.
If (𝑣1 , 𝑣2) is an edge of a graph, then such an edge connects the vertices

𝑣1 and 𝑣2 (in Section 11.2 we will elaborate on this) and is incident to both

𝑣1 and 𝑣2.

Note that, so far, we have not committed to any specific application

domain for a graph. A first graph 𝐺1 = ({𝐴, 𝐵, 𝐶} , {(𝐴, 𝐵), (𝐴, 𝐶)}) and

a second graph 𝐺2 = ({1, 2, 3} , {(1, 2), (1, 3)}), respectively dealing with

alphabet letters and numbers, are both graphs according to our definition.

In Figure 11.1 and Figure 11.2 we show a possible representation of 𝐺1

and 𝐺2. We want to stress the importance of the term possible, as no more

bounding indication has been provided regarding the nature of the two

graphs. Hence, the fact that in 𝐺1 the three vertices are positioned in

a triangular fashion while they are linear in 𝐺2 is arbitrary. The same

applies to edges being straight lines in 𝐺1 and sloped in 𝐺2.

Conversely, if an object with vertices and edges fails to meet all of
the conditions necessary for it to be labeled as a graph, it cannot
be classified as a graph. We highlight three examples in Figure 11.3.

In Figure 11.3a, an edge connects vertex 𝐴 with itself. This is not allowed

because 𝑣1 ≠ 𝑣2 must hold, and hence an edge should connect two

distinct vertices. In Figure 11.3b, an edge connects vertex 𝐴 with nothing.

https://en.wikipedia.org/wiki/Tuple
https://en.wikipedia.org/wiki/Tuple
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Figure 11.1: A graphical representation

of 𝐺1.

A

B C

Figure 11.2: A graphical representation

of 𝐺2.

12 3

Figure 11.3: Examples of objects that

closely resemble a graph, but that are

not a graph due to failing to satisfy one

necessary condition.

1

2 3

(a) Example of a “non-graph" due to an edge connecting a vertex with itself.

1

2 3

(b) Example of a “non-graph" due to an edge connecting a vertex with nothing.

1

2 3

(c) Example of a “non-graph" due to two edges connecting the same pair of vertices.
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3: Multiple edges connecting the same

(𝑣1 , 𝑣2) pair are not allowed in a graph.

Notwithstanding, they are allowed if an

extension of a graph, called multigraph,

is considered.

4: In some references, directed graphs

are generally abbreviated into digraphs.

This is not allowed because (𝑣1 , 𝑣2) | 𝑣1 , 𝑣2 ∈ Vmust hold, and hence

an edge represents a connection between two vertices part of V. Finally,

in Figure 11.3c two edges connect the same vertex pair. Hence, set E

would contain twice element (𝑣1 , 𝑣2): E = {· · · , (𝑣1 , 𝑣2), (𝑣1 , 𝑣2), · · · }.
Because a set is a collection of distinct items, this is not allowed either

3
.

11.2 Properties of a graph

Fully enumerating all the possible properties that might characterize a

graph is a daunting task extending well and beyond the scope of this

chapter. We renew our suggestion to consult Trudeau, 2013 for a thorough

treatment of the topic. Here, we limit ourselves to the properties that are

more relevant within the OR topics of interest.

One of the most important features of every graph is whether edges

are characterized by directionality or not. The latter case identifies an

undirected graph, the former a directed4
graph.

Definition 11.1 An undirected graph is a graph where the set of edges

E ⊆ {(𝑣1 , 𝑣2) | 𝑣1 , 𝑣2 ∈ V∧ 𝑣1 ≠ 𝑣2} contains unordered pairs. Hence,

edge (𝑣1 , 𝑣2) is equivalent to edge (𝑣2 , 𝑣1) and only one of the two should

be stored in E. This also implies that an edge in an undirected graph
can be transversed in both directions.

Definition 11.2 A directed graph is a graph where the set of edges E⊆
{(𝑣1 , 𝑣2) | 𝑣1 , 𝑣2 ∈ V∧ 𝑣1 ≠ 𝑣2} contains ordered pairs. Hence, edge

(𝑣1 , 𝑣2) is not equivalent to edge (𝑣2 , 𝑣1). This also implies that an edge
in a directed graph can only be transversed following the sequence of
vertices that define it.

In general, edges of undirected graphs are visualized without any ar-

row tips (rather than with an arrow per side), while edge (𝑣1 , 𝑣2) of a

directed graph is visualized with an arrow tip pointing towards vertex

𝑣2. Figure 11.4 emphasizes the contrasting visualizations of an undirected

graph 𝐺𝑢 (Figure 11.4a) and a directed one 𝐺𝑑 (Figure 11.4b). In the

figure, we assumed that every edge of 𝐺𝑢 was duplicated into the two

corresponding directed edges of 𝐺𝑑 to maintain consistency. However,

𝐺𝑑 would still be a valid directed graph even if any of the four edges

in Figure 11.4b were removed.

This final statement lays the groundwork for introducing the concept of

a subgraph.

Definition 11.3 Given two graphs 𝐺1 = (V1 , E1) and 𝐺2 = (V2 , E2), 𝐺2

is a subgraph of 𝐺1 if V2 ⊆ V1 and E2 ⊆ E1, i.e., if the set of vertices of
𝐺2 is a subset of the set of vertices of 𝐺1 and if the set of edges of 𝐺2 is
a subset of the set of edges of 𝐺1.

We showcase a directed graph 𝐺1 and one of its potential subgraphs 𝐺2

in Figure 11.5. In Figure 11.5b, we left in light gray the original vertices

and edges of 𝐺1 that are instead absent in 𝐺2. It is crucial to note that

any subgraph must still adhere to the fundamental properties of a graph

mentioned earlier. In line with this, when a vertex is removed from a
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Figure 11.4: Example of undirected graph

and its transformation into a directed

graph. Note: we assumed that every

(𝑣1 , 𝑣2) edge of the undirected version

was replaced by both edge (𝑣1 , 𝑣2) and

edge (𝑣2 , 𝑣1) in the directed version.

1

2 3

(a) Undirected graph.

1

2 3

(b) Directed graph.

Figure 11.5: A directed graph 𝐺1 and

a subgraph 𝐺2 of 𝐺1. In Figure 11.5b

we highlight with light gray the vertices

and edges that were removed from 𝐺1

to obtain subgraph 𝐺2.

1

2 3

4 5

(a) 𝐺1.

2 3

4 5

(b) 𝐺2.
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graph, every edge incident to that vertex must also be removed to prevent

situations like the one depicted in Figure 11.3b.

While 𝐺1 is characterized by |V| = 5 vertices and |E| = 10 edges, its

subgraph 𝐺2 has |V| = 4 vertices and |E| = 5 edges.

For both undirected and directed graphs, the number and “location"

of the edges plays a role of paramount importance in determining the

connectivity properties of the graph. Connectivity is an umbrella term

related to questions such as “Can any vertex be reached from any other vertex
in the graph?" or “What is the minimum number of edges to be transversed
moving from vertex 𝑣1 to vertex 𝑣2?". A first key definition pertaining to

graph connectivity is graph completeness.

Definition 11.4 A complete graph is defined by having the maximum

possible number of edges given the number of vertices |V|. A complete

undirected graph is characterized by
|V|(|V|−1)

2
edges, a complete directed

graph by |V|(|V| − 1) edges.

Definition 11.4 stems from the following consideration. In a complete

undirected graph with V =
{
𝑣1 , 𝑣2 , · · · , 𝑣 |V|

}
, vertex 𝑣1 must be con-

nected to 𝑣2 , 𝑣3 , · · · , 𝑣 |V| , for a total of |V| − 1 edges. Then, vertex 𝑣2

must be connected to 𝑣3 , 𝑣4 , · · · , 𝑣 |V| (not to 𝑣1 as edge (𝑣1 , 𝑣2) already

exists). Following the same logic, vertex 𝑣 |V|−1
only connects to 𝑣 |V|

while vertex 𝑣 |V| does not need any additional edge because all of them

have already been defined. The overall number of defined edges is

(|V| − 1) + (|V| − 2) + (|V| − 3) + · · · + 1 =
∑|V|−1

𝑖=1
𝑖 =
|V|(|V| − 1)

2

. For

a directed graph, we can use the insight from Figure 11.4 and recognize

that each edge in an undirected graph translates into two edges in the

directed counterpart. Hence, in a complete directed graph, the number

of edges in |V|(|V| − 1).

Because not every graph is complete, a related definition is graph den-
sity.

Definition 11.5 The density𝐷 of a graph 𝐺 = (V, E) is the ratio between

the number of edges characterizing 𝐺 and the maximum number of

edges that𝐺 could have (i.e., if𝐺was complete). For an undirected graph,

we have

𝐷 =
|E|2

|V|(|V| − 1) (11.1)

while for a directed graph we have

𝐷 =
|E|

|V|(|V| − 1) (11.2)

Note the subtle difference at the numerator of (11.1) and (11.2). Given an

undirected and directed graph with the same number of vertices |V|
and edges |E|, the density of the undirected one is twice as large as the

directed one. This is coherent with the fact that a complete undirected

graph has half the number of edges as a complete directed graph with

the same number of vertices.
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5: As a matter of fact, for undirected

graphs we do not need to fill a full ad-

jacency matrix, but only the upper (or

lower) triangular part due to symmetry.

A compact and useful representation of the connectivity properties of a

graph is the adjacency matrix.

Definition 11.6 For a graph 𝐺 with |V| vertices, the adjancency matrix

𝐴 is an (|V|, |V|) binary matrix where 𝐴𝑖 𝑗 is unitary if there exists an

edge connecting vertices 𝑖 and 𝑗 and 0 otherwise. 𝐴 is symmetrical for
undirected graphs because of the lack of directionality of edges, while
it is not bound to be symmetrical for directed graphs.

Example 11.1 Given the two graphs of Figure 11.6, define the associated
adjacency matrices.

Figure 11.6: An undirected graph𝐺1 and

directed graph 𝐺2 used in Example 11.1.

1 2

34

(a) 𝐺1.

1

2 3

4 5

(b) 𝐺2.

Let us start with 𝐺1. Because |V| = 4, then 𝐴𝐺1
is a (4, 4)matrix. Because

there are 4 edges in Figure 11.6a, we expect to have eight 1s in 𝐴𝐺1
as

elements (𝑖 , 𝑗) and (𝑗 , 𝑖) are equivalent due to the lack of directionality
5
.

The set of edges is E= {(1, 2), (1, 3), (1, 4), (2, 3)}, hence

𝐴𝐺1
=

©­­­«
𝑗=1 𝑗=2 𝑗=3 𝑗=4

0 1 1 1 𝑖 = 1

1 0 1 0 𝑖 = 2

1 1 0 0 𝑖 = 3

1 0 0 0 𝑖 = 4

ª®®®¬ (11.3)
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6: In an undirected graph, we define a

vertex even if its degree is even and odd
if its degree is odd.

where, to enhance clarity, the indices of rows and columns in Equation 11.3

are specified to reflect the vertices names in Figure 11.6a.

For 𝐺2, we expect 𝐴𝐺2
to be a (5, 5)matrix as |V| = 5. The set of edges

is E = {(1, 3), (1, 5), (2, 1), (3, 5), (4, 2), (4, 5), (5, 4)}, with |E| = 7. If we

count the number of edges in Figure 11.6b, we obtain 7 edges. This

highlights consistency. The resulting adjacency matrix is

𝐴𝐺2
=

©­­­­­«

𝑗=1 𝑗=2 𝑗=3 𝑗=4 𝑗=5

0 0 1 0 1 𝑖 = 1

1 0 0 0 0 𝑖 = 2

0 0 0 0 1 𝑖 = 3

0 1 0 0 1 𝑖 = 4

0 0 0 1 0 𝑖 = 5

ª®®®®®¬
(11.4)

In both (11.3) and (11.4) the diagonal is filled with 0s. This is correct and

a recommended check anytime an adjacency matrix is defined. If some

unitary elements were present, they would define an edge of the (𝑖 , 𝑖) type,

hence a loop: “regular" graphs do not feature loops (recall Figure 11.3a).

It is essential to note that both Figure 11.6a and matrix (11.3) convey

identical information about 𝐺1, albeit presented in different formats.

While Figure 11.6a may offer visual appeal and flexibility for additional

enhancements, both representations are equivalent in terms of the quality

and quantity of information they provide about 𝐺1.

We can leverage the concept of adjacency matrix to introduce the concept

of degree of a vertex in a graph.

Definition 11.7 In an undirected graph 𝐺 with |V| vertices, the degree

of vertex 𝑖, generally defined as 𝑘(𝑖), is the number of edges incident to
it6

. Given the adjacency matrix 𝐴, 𝑘(𝑖) can be defined as

𝑘(𝑖) =
|V|∑
𝑗=1

𝐴𝑖 𝑗 =
|V|∑
𝑗=1

𝐴 𝑗𝑖 (11.5)

where in (11.5) we provided two equivalent expressions that entail,

respectively, counting all the unitary values along the 𝑖-th row or co-

lumn of adjacency matrix 𝐴. Because of the symmetrical properties of

the adjacency matrix of an undirected graph, the two expressions are

equivalent.

In a directed graph𝐺with |V| vertices, the in-degree of vertex 𝑖, generally

defined as 𝑘𝑖𝑛(𝑖), is the number of edges pointing towards it. Given the

adjacency matrix 𝐴, 𝑘𝑖𝑛(𝑖) can be defined as

𝑘𝑖𝑛(𝑖) =
|V|∑
𝑗=1

𝐴 𝑗𝑖 (11.6)

where (11.6) is equivalent to counting all the edges of 𝐺 in the form (𝑣1 , 𝑖).
The in-degree has a counterpart, namely the out-degree. It is generally

defined as 𝑘𝑜𝑢𝑡(𝑖) and is the number of edges pointing away from vertex
𝑖. Given the adjacency matrix 𝐴, 𝑘𝑜𝑢𝑡(𝑖) can be defined as
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7: In general, the concept of efficiency
can change quite broadly and relates to

the specific objective function of the ma-

thematical problem based on the graph

under scrutiny.

𝑘𝑜𝑢𝑡(𝑖) =
|V|∑
𝑗=1

𝐴𝑖 𝑗 (11.7)

where (11.7) is equivalent to counting all the edges of 𝐺 in the form (𝑖 , 𝑣2).
Finally, the degree of vertex 𝑖 in a directed graph is the summation of its

in- and out-degree values

𝑘(𝑖) = 𝑘𝑖𝑛(𝑖) + 𝑘𝑜𝑢𝑡(𝑖) =
|V|∑
𝑗=1

𝐴 𝑗𝑖 +
|V|∑
𝑗=1

𝐴𝑖 𝑗 (11.8)

and represents the overall number of edges incident to it (pointing

towards and away).

Example 11.2 Given the two graphs of Figure 11.6, compute the degree values
of all the vertices.

Let us start with the undirected graph 𝐺1. For vertex 1 we can write

𝑘(1) = ∑
4

𝑗=1
𝐴1, 𝑗 = 0 + 1 + 1 + 1 = 3. This is confirmed by Figure 11.6a,

where 3 edges are incident to vertex 1. With a similar strategy, we obtain

𝑘(2) = 2, 𝑘(3) = 2, and 𝑘(4) = 1.

We focus now on the directed graph𝐺2. For vertex 1 we can write 𝑘𝑖𝑛(1) =∑
5

𝑗=1
𝐴 𝑗 ,1 = 0+1+0+0+0 = 1 and 𝑘𝑜𝑢𝑡(1) =

∑
5

𝑗=1
𝐴1, 𝑗 = 0+0+1+0+1 = 2,

hence 𝑘(1) = 3. We can confirm these values by analyzing Figure 11.6b.

For the other vertices we have 𝑘𝑖𝑛(2) = 1, 𝑘𝑜𝑢𝑡(2) = 1, 𝑘(2) = 2, 𝑘𝑖𝑛(3) = 1,

𝑘𝑜𝑢𝑡(3) = 1, 𝑘(3) = 2, 𝑘𝑖𝑛(4) = 1, 𝑘𝑜𝑢𝑡(4) = 2, 𝑘(4) = 3, and 𝑘𝑖𝑛(5) = 3,

𝑘𝑜𝑢𝑡(5) = 1, 𝑘(5) = 4.

We can leverage the definition of in- and out-degree to convey an intere-

sting property of directed graphs. If a vertex 𝑖 in a directed graph has an

in-degree of zero, i.e., 𝑘𝑖𝑛(𝑖) = 0, then such a vertex cannot be reached

starting from another vertex in the graph and leaping from a vertex to

another one using edges as bridges. We formally define that vertex as

not-reachable from any other vertex. Conversely, if we place ourselves

on a vertex 𝑖 of a directed graph with an out-degree of zero (𝑧𝑜𝑢𝑡(𝑖) = 0),

then we cannot leave such a vertex due to the lack of outbound edges.

Readers may have observed our discussion about navigating from one

vertex to another in a graph using the available edges. As we will explore

in Section 11.3, graphs serve as mathematical representations of real-world

problems in OR and other fields. Many of these problems necessitate

efficient
7

movement within the graph. To ease into these concepts, we

will introduce the concept of a walk.

Definition 11.8 A walk in a graph from vertex 𝑣1 to vertex 𝑣2 is a sequence

of vertices (where the same vertex can appear multiple times in the walk)

where each vertex 𝑣𝑖 of the walk (apart from the initial 𝑣1) can be reached

from the previous one 𝑣𝑖−1 because of the presence of edge (𝑣𝑖−1 , 𝑣𝑖). The

walk is said to join 𝑣1 and 𝑣2. Additionally, the walk is defined open if

𝑣2 ≠ 𝑣1 and closed if 𝑣2 = 𝑣1.

Example 11.3 Considering Figure 11.6b, compute all the walks from vertex 1 to
any other vertex.
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8: Leonhard Euler (1707-1783) has been

one of the greatest mathematicians of all

time. To know more about him and his

incredible discoveries, we refer readers

to this Wikipedia page.

9: A beautiful application of such a con-

cept is the Seven Bridges of Königsberg
problem, as shown in Figure 11.7. We

refer readers to this Wikipedia page.

Figure 11.7: A representation of the fa-

mous Königsberg problem.

10: William Rowan Hamilton (1805-1865)

has also been one of the greatest ma-

thematicians of all time. To know more

about him and his incredible discoveries,

we refer readers to this Wikipedia page.

A walk from vertex 1 to vertex 2 is {1, 5, 4, 2}, a walk from vertex 1 to

vertex 3 is {1, 3}, a walk from vertex 1 to vertex 4 is {1, 5, 4}, and a walk

from vertex 1 to vertex 5 is {1, 5}. Note that there might be other potential

walks connecting the same pair of vertices.

We now leverage the definition of walk to provide a formal definition of

connected graph.

Definition 11.9 A connected graph is a graph where every pair of
vertices is joined by a walk. A complete graph (both undirected and
directed) is connected by definition.

We now introduce the beautiful concept of Euler8 walk.

Definition 11.10 An Euler walk is a walk that uses every edge in the
graph exactly once.

9

Closely related to the concept of Euler walk is the concept of an Hamilton10

walk.

Definition 11.11 An open Hamilton walk is a walk that uses every vertex
in the graph exactly once. A closed Hamilton walk is a walk that uses
the first vertex twice (hence, it starts and ends there) and every other
vertex once.

Considering Figure 11.6, in Figure 11.6a the walk {(4, 1), (1, 3), (3, 2), (2, 1)}
is an open Euler walk as it used every edge exactly once starting in ver-

tex 4 and ending in vertex 1. The walk {(1, 3), (3, 5), (5, 4), (4, 2), (2, 1)}
in Figure 11.6b is a closed Hamilton walk, as it uses every vertex once and

vertex 1 twice (the walk starts and ends there). Hamilton walks, especially

in their closed variant, will play a role of paramount importance in many

mathematical models from Chapter 13.

We conclude this section with a special type of directed graph which

will also play an important role in Chapter 13. Before introducing such a

directed graph, we need to introduce the concept of cycle.

Definition 11.12 A cycle in a graph (undirected or directed) is a sequence
of connected vertices where only the first and last vertex are the same.

For example, the closed Hamilton walk {(1, 3), (3, 5), (5, 4), (4, 2), (2, 1)}
from Figure 11.6b is also a cycle. Note that not every closed Hamilton

walk is a cycle, as the former requires every vertex of the graph to be

visited, while a cycle does not. To substantiate this claim, in Figure 11.6b,

we have also cycle {(1, 5), (5, 4), (4, 2), (2, 1)} which is not a Hamilton

walk because it by-passes node 3. We provide an additional example

in Figure 11.8, where both a closed Hamilton walk and a cycle are

highlighted.

Having clarified the definition of a cycle, we are now ready to introduce

readers to the concept of Directed Acyclic Graph (DAG).

Definition 11.13 A DAG is a directed graph that features no cycles.

DAGs will also play a predominant role in some applications from

Chapter 13. To better contextualize them, an example is provided in Fig-

ure 11.9.

https://en.wikipedia.org/wiki/Leonhard_Euler
https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg
https://en.wikipedia.org/wiki/William_Rowan_Hamilton
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Figure 11.8: Example of a directed graph

with a closed Hamiltonian walk (green
arrows) and a cycle (red arrows). In or-
ange are represented edges of the graph

that are neither part of the closed Hamil-

ton walk nor of the cycle.

1
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Figure 11.9: Example of a DAG.
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11: This does not mean that a network

is a very faithful representation of the

practical problem at hand. A network is

still a mathematical abstraction of such

a problem, yet tailored in a way that re-

presents well enough the problem while

being in a mathematical format that can

be solved with ad-hoc algorithms.

12: In Example 11.4 we will use use In-

ternational Air Transport Association

(IATA) codes to define airports to have a

more concise representation.

11.3 From “abstract" graphs to “concrete"
networks

In the relevant literature, the distinction between a graph and a network

is frequently ambiguous and subject to various interpretations. Here, we

take a specific approach. We use the term graph, as we have throughout

this chapter, to denote an underlying and abstract representation of a

mathematical problem. In contrast, once the graph is fully constructed

and adapted to represent the practical problem at hand, it transforms

into a network11
.

Let us take, for example, the DAG from Figure 11.9. Its vertices could

represent airports, with airport 1 being the origin airport for a planned

trip and airport 8 the destination airport for the same trip. Vertices 2-6

then represent other airports where a traveler can perform a stopover on

their journey from vertex (airport) 1 to vertex (airport) 8. Because of our

association of a generic graph to a specific context, now our network can

be customized. For example, the edges we highlighted are not random,

but do represent direct flights between airports. Analyzing Figure 11.9,

we can infer there is no direct flight between airports 1 and 8 as there is

no (1, 8) edge.

Now that we have transitioned from an abstract graph to a more concrete

network, both vertices and edges can be contextualized with a set of

features. For instance, vertices representing airports may be characterized

by specific names, geographic locations, and other relevant information

for modeling or visualization purposes. Similarly, edges can also be

enriched with features. For example, in the context of air transport, an

edge may represent a direct flight between two airports, with features

such as average flying time and ticket fare. This notion sets the stage for the

concept of a weighted graph. In the graphs we have discussed thus far, we

assumed that the cost of an edge was unitary, symbolizing that traversing

an edge equates to taking one step in the graph. However, when the graph

is tailored to represent a practical problem and captures its features,

thereby becoming a network, its underlying graph representation can

incorporate weighted edges, where each weight represents the associated

cost of using the edge. The adjacency matrix 𝐴 can be used to store such

weights by replacing, in each (𝑖 , 𝑗) element associated with an edge, the 1

with the appropriate weight. This matrix is generally called the weighted
adjacency matrix𝑊 . We substantiate this statement in Example 11.4

Example 11.4 We consider a couple of travelers who want to travel from Venice
Marco Polo airport (VCE)12 to Los Angeles International airport (LAX). The
travelers have identified a set of airports and direct connections as represented
in Figure 11.9, where vertex 1 represents VCE and vertex 8 represents LAX.
The first traveler of the couple is mostly concerned about the overall flight time
and, for every direct flight among the set of 8 airports, they collected data on the
average flight time. This information is reported in Figure 11.10a, where the label
of every edge reports the average time in hours. Conversely, the second traveler of
the couple is mostly concerned about the overall money spent for the trip and, for
every direct flight among the set of 8 airports, they collected data on the average
ticket fare. This information is reported in Figure 11.10b, where the label of every
edge reports the average ticket fare in e. Our goal is to help the two travelers
assess what is the best traveling options available given their different needs.
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Figure 11.10: Graph representation of the

airport network from Example 11.4.
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(a) Edge weights represent the average flight time in hours.
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(b) Edge weights represent the average ticket fare in e.
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13: In practice, especially for large prob-

lems, the full matrix format, as depicted

in Equation 11.9, is highly inefficient.

This inefficiency stems from the fact that

many graphs, which serve as mathemati-

cal representations of real networks, are

not densely populated. For instance, the

graph illustrated in Fig.11.9 exhibits a

density of 25%, and this percentage sig-

nificantly decreases for larger networks.

In our airport example, a low density im-

plies that each airport typically connects

to only a subset of all possible airports

in the vertex set. Consequently, a ma-

jority of entries in the adjacency matrix

are zero. To conserve memory space, al-

ternative data structures such as sparse
matrices are more adept at storing the

same information with minimal memory

consumption. We refer readers to this

Wikipedia page for more information on

sparse matrices.

14: Before doing so, we want to stress

that while now we identify vertices with

their IATA code both in Figure 11.10a

and in (11.9), it is recommended to keep

a numerical indexing as described in Sec-

tion 4.1. Computers work more efficiently

with numbers while we can switch be-

tween the numerical and any other con-

vention of choice defining a relation-

ship between the two. In this case, we

kept the same numerical indexing as the

original Figure 11.9 (also highlighted by

the sequence of rows/columns in Equa-

tion 11.9), such that 1 → 𝑉𝐶𝐸, 2 →
𝑀𝑋𝑃, · · · , 7→ 𝑂𝑅𝐷, 8→ 𝐿𝐴𝑋.

15: While this reasoning sounds legiti-

mate for travel time minimization, airline

ticketing is a complex and highly non-

linear process. Sometimes, the cheapest

traveling option entails weird itineraries.

To help the couple of travelers, we must formally compute a shortest
path (see Section 12.5) in the airport network defined by the graphs

of Figure 11.10. It is important to note that “shortest" is a broad term, and

neither traveler is specifically concerned with distance as the primary

KPI for their journey (which would typically be associated with a shortest
path). The first traveler aims to minimize travel time, while the second

traveler aims to minimize the financial cost of the trip. We can trans-

late Figure 11.10a and Figure 11.10b into the associated weighted adjacency

matrices to map the same amount of information in a different format

(which might be less elegant visually, but handier for an algorithm
13

. For

the first traveler we have

𝑊 =

©­­­­­­­­­­­«

𝑉𝐶𝐸 𝑀𝑋𝑃 𝐴𝑀𝑆 𝐹𝑅𝐴 𝐵𝑂𝑆 𝐽𝐹𝐾 𝑂𝑅𝐷 𝐿𝐴𝑋

0 1.0 1.5 1.4 0 0 0 0 𝑉𝐶𝐸

0 0 1.0 1.3 7.0 8.2 0 0 𝑀𝑋𝑃

0 0 0 0 0 8.0 0 0 𝐴𝑀𝑆

0 0 1.0 0 0 8.4 8.5 0 𝐹𝑅𝐴

0 0 0 0 0 1.3 0 6.0 𝐵𝑂𝑆

0 0 0 0 0 0 0 6.2 𝐽𝐹𝐾

0 0 0 0 0 2.3 0 5.8 𝑂𝑅𝐷

0 0 0 0 0 0 0 0 𝐿𝐴𝑋

ª®®®®®®®®®®®¬
(11.9)

where we can practice with some of the definitions we covered in this

chapter
14

.

While we are not reporting the adjacency matrix 𝐴 characterizing the

airport network explicitly, it can be retrieved from either (11.9) or (11.10)

by replacing any non-zero 𝑊𝑖 𝑗 value with a unitary value in the corre-

sponding 𝐴𝑖 𝑗 . For instance, when computing

∑
8

𝑗=1
𝐴 𝑗 ,1, the result is 0,

indicating that vertex 1 (VCE) has an in-degree of 0. This aligns with the

airport network’s structure, where VCE serves as the origin airport for

the travelers and only features outbound connections. Similarly, when

computing

∑
8

𝑗=1
𝐴8, 𝑗 , the result is 0, signifying that vertex 8 (LAX) has an

out-degree of 0. This corresponds to LAX being the destination airport

for the travelers and only having inbound connections. However, it is
essential to clarify that this does not imply that VCE lacks inbound
connections or LAX lacks outbound connections altogether. In the con-
text of the relevant airport network for the travelers, such connections
are simply not pertinent.

Another insight is that JFK (vertex 6) is the airport with the most

connections overall, as 𝑘6 =
∑

8

𝑗=1
𝐴 𝑗 ,6 +

∑
8

𝑗=1
𝐴6, 𝑗 = 5 + 1 = 6 is the

highest among all vertices. This degree value shows imbalance between

inbound (5) and outbound (1) flights. Again, readers with some air

travel experience might argue that JKF features connections towards all

the other airports (set aside VCE, probably). The travelers might have

overlooked flights from JFK to BOS or ORD indeed, but the choice not to

include flights from JFK to MXP, AMS, or FRA is justified by the purpose

of the problem. As the travelers are moving from Europe to the West

Coast of the United States, it is logistically reasonable to mostly select

flights headed towards west
15

. Similarly, we would agree with readers if

they highlighted omissions by the travelers of flights from AMS to BOS,

https://en.wikipedia.org/wiki/Sparse_matrix
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ORD, and LAX. We wanted Example 11.4 not to become to cluttered at

the cost of omitting well-known flight routes.

Focusing now on the second traveler, we build the weighted adjacency

matrix as

𝑊 =

©­­­­­­­­­­­«

𝑉𝐶𝐸 𝑀𝑋𝑃 𝐴𝑀𝑆 𝐹𝑅𝐴 𝐵𝑂𝑆 𝐽𝐹𝐾 𝑂𝑅𝐷 𝐿𝐴𝑋

0 150 140 170 0 0 0 0 𝑉𝐶𝐸

0 0 90 150 700 810 0 0 𝑀𝑋𝑃

0 0 0 0 0 500 0 0 𝐴𝑀𝑆

0 0 85 0 0 890 750 0 𝐹𝑅𝐴

0 0 0 0 0 230 0 450 𝐵𝑂𝑆

0 0 0 0 0 0 0 480 𝐽𝐹𝐾

0 0 0 0 0 250 0 630 𝑂𝑅𝐷

0 0 0 0 0 0 0 0 𝐿𝐴𝑋

ª®®®®®®®®®®®¬
(11.10)

which features non-zero elements in the same (𝑖 , 𝑗) locations as (11.9)

(assuming flying for free is not yet an option), as both weighted adjacency

matrices relate to the very same adjacency matrix.

We abstain from presenting the actual mathematical formulation at

this juncture. Nonetheless, we underscore that in this scenario, the best

travel solution varies depending on whether we aim to minimize flight

time to accommodate the first traveler or select the cheapest itinerary

as requested by the second traveler. We highlight the two resulting

itineraries in Figure 11.11.

In Example 11.4 we provided readers with some insights on how the same

graph (in this case, a graph with |V| = 8 vertices and|E| = 16 edges)

can lead to different behaviors even when applied to the same practical

network (an airport network), but with a different objective in mind.

The same graph structure can actually define the same mathematical

foundation for problems that have nothing in common (apart from the

same graph representation). To better contextualize this claim, Figure 11.9

can represent the underlying graph of a network of water pipelines,

where vertex 1 is the inlet and vertex 8 the outlet of water. In such

a setting, our goal might be to process as much water throughput as

possible without exceeding the structural capacity of each segment of the

network. In another example, the graph could represent the network of

cities reachable one another with a single charge of an electric car, with

vertex 1 representing the origin city of a trip and vertex 8 representing

the destination city of such a trip. The goal here could be to minimize

the overall distance of the trip or to maximize the overall satisfaction

(assuming every edge is associated with some sightseeing along the

way which has been translated into a “positive" cost). Hence, three very

distinct networks and related problems, but based on the very same

graph. We will discuss more about network problems in Chapter 12.

� Coded example

A tutorial to practice with the Python package networkx, designed

for studying graphs and networks, is available here.

https://github.com/alessandroBombelli/From-theORy-to-application-learning-to-optimize-with-Operations-Research-in-an-interactive-way/tree/main/Codes/An%20introduction%20to%20graph%20theory/networkx%20crash%20course
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(a) Best itinerary according to the first traveler.
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(b) Best itinerary according to the second traveler.

Figure 11.11: Best itinerary for Exam-

ple 11.4 according to the first (green ar-

rows) and second (red arrows) traveler.





1: In this chapter, we will use inter-

changeably vertices with nodes and edges

with links and arcs. In fact, while vertices

and edges are more appropriate when

dealing with the more abstract graph

representation, nodes and links/arcs are

more common when dealing with the

more concrete network representation,

especially when the network entails rou-

ting of commodities of some sort.

Network problems 12
12.1 Transportation Problem

(TP) . . . . . . . . . . . . 209
12.1.1 General Setting . . . . 209
12.1.2 TP: LP mathematical

formulation . . . . . . . 210
12.1.3 TP: solution with the

transportation simplex 212
12.2 Maximum flow problem225
12.2.1 An introduction to

Column Generation
(CG) . . . . . . . . . . . 229

12.3 Minimum Cost Flow
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12.6 Minimum Spanning
Tree (MST) problem . 243

Do not follow where the path may lead. Go

instead where there is no path and leave a

trail.

Ralph Waldo Emerson

In this chapter, we deal with network problems, i.e., problems that

can be represented using the graph representation we introduced in

Chapter 11. Because many real-life problems can be modeled using a

graph representation, network problems are part of the most studied

and taught classes of problems in the OR domain. While some problems

rely on a physical or geographical network representation, others are

more abstract in nature and rely on such graph representation to ease

the mathematical formulation.

Problems belonging to this category range are extremely diverse be-
cause a graph can be used to represent transportation systems (a set of
roads, inland-water connections, airline connections, etc.), pipelines
(e.g., water supply systems) and power grids, or precedence relation-
ships between project activities, just to name a few examples.

Regardless of the specific case or nuance under scrutiny, a graph 𝐺 =

(V, E) can always be associated with the original network problem. The

set of vertices N represents elements where flows (or commodities) can

originate, end, or be exchanged, such as road intersections, airports, or

activities that precede or follow other activities in a project. The edges

represent the way flows or commodities can move within the graph, and

hence define the connectivity properties of the graph. For example, as

described in Chapter 11, some network problems might be defined on a

complete graph, where flows can occur between any pair of nodes, while

some other problems might offer a more restricted set of connectivity

options. In addition, most network problems are defined on directed

graphs, because the direction of flow is important in the problem at

hand, but we shall see that there are some network problems based on

undirected graphs
1
.

12.1 Transportation Problem (TP)

12.1.1 General Setting

A Transportation Problem (TP), in its general form, can be defined as the

problem of transporting goods from a set of sources (𝑠 ∈ S) to a set of

destinations (𝑑 ∈ D) in a way that satisfies both the supply and demand

requirements of the different stakeholders while minimizing the overall

transportation costs. The set of sources Scan represent warehouses or

distribution centers where goods are produced or stored, while the set

of destinations D can represent another set of warehouses downstream

or the final recipients of the goods. Given such a setting, we can define
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𝐶𝑠𝑑 the transportation cost (per unit) from source 𝑠 to destination 𝑑. In

addition, we can define 𝑆𝑠 as the supply (amount of goods produced)

of source 𝑠 and, in a similar fashion, 𝐷𝑑 as the demand (amount of

goods received) of destination 𝑑. Finally, we only need one set of decision

variables 𝑥𝑠𝑑 (generally speaking, continuous) that define the flow of

goods from source 𝑠 to destination 𝑑.

Note that both supply and demand could be characterized by bounds

and not by a fixed value. For example, a certain warehouse (source) could

be able to deliver between 10 and 30 tonnes of flowers, and a certain

flower retailer (destination) might be requesting between 5 and 10 tonnes

of flowers. In order for a transportation problem to be feasible, it follows

that the maximum supply available should at least match the minimum
demand requested. We will see in Section 12.1.3 that a condition to ensure

this is that

∑
𝑠∈S

𝑆𝑠 =
∑
𝑑∈D

𝐷𝑑 (12.1)

,i.e., that the overall supply produced exactly matches the requested

demand. This is a necessary requirement if we want to solve the TP with

ad-hoc algorithms, while it is a condition that might not be enforced

if we decide to use a more general LP approach. Notwithstanding, the

condition mentioned above of maximum supply and minimum demand

should hold in order to have a feasible solution. In addition, it might be
the case that the transportation of goods from every source to every
destination is not possible, because of distance constraints or other
conditions.

Figure 12.1 depicts an example of the TP with 3 sources (|S| = 3) and 4

destinations (|D| = 4). In the example, out of the 12 potential connections,

only 9 are exploitable as source 1 can send goods to destinations 1,2, and

3, source 2 to destinations 1, 3, and 4, and source 3 to destinations 2, 3,

and 4.

12.1.2 TP: LP mathematical formulation

We have already defined most of the parameters needed to model a generic

TP as an LP in Section 12.1.1. Let us add parameters (𝑆−𝑠 , 𝑆+𝑠 ) ∀𝑠 ∈ S that

define, respectively, the minimum and maximum supply a source can

produce, such that 𝑆−𝑠 ≤ 𝑆𝑖 ≤ 𝑆+𝑠 ∀𝑠 ∈ S. We follow the same logic for the

destinations with parameters (𝐷−
𝑑
, 𝐷+

𝑑
) ∀𝑑 ∈ D that define, respectively,

the minimum and maximum demand a destination can accept, such

that 𝐷−
𝑑
≤ 𝐷𝑖 ≤ 𝐷+𝑑 ∀𝑑 ∈ D. In addition, let us define S𝑑 the subset of

sources that can serve destination 𝑑 and D𝑠 as the subset of demand

destinations that source 𝑠 can serve. We define the resulting LP as:

min

∑
𝑠∈S

∑
𝑑∈D𝑠

𝐶𝑠𝑑𝑥𝑠𝑑 (12.2)

s.t.:
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Figure 12.1: Generic framework of a TP.

𝑆−𝑠 ≤
∑
𝑑∈D𝑠

𝑥𝑠𝑑 ≤ 𝑆+𝑠 ∀𝑠 ∈ S (12.3)

𝐷−𝑑 ≤
∑
𝑠∈S𝑑

𝑥𝑠𝑑 ≤ 𝐷+𝑑 ∀𝑑 ∈ D (12.4)

𝑥𝑠𝑑 ∈
[
0,min{𝑆+𝑠 , 𝐷+𝑑 }

]
∀𝑠 ∈ S, 𝑑 ∈ D𝑠 (12.5)

(12.2) defines the objective function, i.e., the minimization of transporta-

tion costs from all sources to all destinations that each source can serve.

(12.3) ensures that each source delivers goods within its capabilities, while

(12.4) ensures that each destination receives goods within its specified

interval. Finally, (12.5) defines the continuous nature of each decision va-

riable. Because of the capacity bounds on sources 𝑠 ∈ Sand destinations

𝑑 ∈ D, each 𝑥𝑠𝑑 cannot exceed the minimum between the maximum

capacity that source 𝑠 can produce or destination 𝑑 can accommodate.

Let us now consider an example based on the same setting of Figure 12.1.

The supply parameters are 𝑆−
1
= 10, 𝑆−

2
= 10, 𝑆−

3
= 10, 𝑆+

1
= 50, 𝑆+

2
= 80,

and 𝑆+
3
= 60. The demand parameters are 𝐷−

1
= 50, 𝐷−

2
= 10, 𝐷−

3
= 70,

𝐷−
4
= 10, 𝐷+

1
= 50, 𝐷+

2
= 40, 𝐷+

3
= 70, and 𝐷+

4
= 50. Transportation

costs per unit are 𝐶1,1 = 20, 𝐶1,2 = 11, 𝐶1,3 = 10, 𝐶2,1 = 14, 𝐶2,3 = 13,

𝐶2,4 = 13, 𝐶3,2 = 12, 𝐶3,3 = 11, and 𝐶3,4 = 20.

By solving the TP model (12.2)-(12.5), the final solution is the following:
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x1,2 = 10, x1,3 = 40, x2,1 = 50, x2,4 = 10, and x3,3 = 30. The overall trans-

portation cost of such a solution is 1, 670 monetary units. Hence, source

1 delivers as many goods as its production can allow (𝑆1 = 50), while

sources 2 and 3 are utilized below maximum capacity (𝑆2 = 60 ≤ 𝑆+
2
= 80

and 𝑆3 = 30 ≤ 𝑆+
3
= 60). As it concerns the destinations, destinations

1 and 3 receive exactly as requested (not surprisingly, as they require

an exact amount), while destinations 2 and 4 receive an amount equal

to their requested lower bound 𝐷−
2

and 𝐷−
4

. This is also not surprising

because it is a cost-minimization problem and supply providers have
no incentive, in the current setting, to provide customers with more
than the bare minimum requested.

� Coded example

The code used to model and solve the example TP as an LP is available

here.

� Coded example

In some circumstances, transporting goods from a source 𝑠 ∈ S to

a demand node 𝑑 ∈ D𝑠 might incur, on top of the transportation

costs proportional to the amount of goods delivered, a fixed cost

that “activates" the transportation arc (see Section 4.8.4). Because this

variant is not a classic transportation problem, we do not treat it from

a theoretical standpoint here, but directly provide an implementation

with the associated LP formulation here.

12.1.3 TP: solution with the transportation simplex

In Section 12.1.2, we analyzed how to set up and solve a TP as, generally

speaking, an LP if we allow transported values between origin and

destinations to be continuous numbers. This is generally the case because

we deal with aggregate values and not specific packages or items. In

addition, if all the transportation costs 𝐶𝑠𝑑 are integer values, all the final

values of our optimal solution will also be integers because of the way

the simplex method operates.

In this section, we explain a solution method that is tailored to TP and

that might be more efficient, especially for large-scale problems. Such

a solution method is based on a specific matrix representation of the

TP at hand, which we refer to as TP table. A necessary requirement to

apply this ad-hoc method is that (12.1) must hold, because the underlying

principle of such a method is to find the most efficient way (as in, cost-

minimizing way) to move that aggregate supply from all the sources

available to all the destinations available. We will see that using the TP

table is only possible mathematically if

∑
𝑠∈S𝑆𝑠 =

∑
𝑑∈D𝐷𝑑 . In principle,

this is necessary to comply with the never-aging concept of conservation

of mass. This method requires two steps:

1. definition of an initial solution that allocates the supply from the

different sources 𝑠 ∈ S to the different destinations 𝑑 ∈ D;

https://github.com/alessandroBombelli/From-theORy-to-application-learning-to-optimize-with-Operations-Research-in-an-interactive-way/tree/main/Codes/Network%20problems/Transportation%20Problem%20(TP)
https://github.com/alessandroBombelli/From-theORy-to-application-learning-to-optimize-with-Operations-Research-in-an-interactive-way/tree/main/Codes/Network%20problems/Transportation%20Problem%20(TP)/TP%20variant%20with%20activation%20costs
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2. iterative revision of the supply and demand allocation until a

specific optimality criterion is met, i.e., until we can prove the

achieved solution cannot be further improved.

We initially illustrate an example of the TP table set up in Table 12.1. In

this example, we have 3 sources and 4 destinations, each delivering a

precise amount of goods (sources) and requesting a precise amount of

the same goods (destinations). Hence, we have 𝑆−𝑠 = 𝑆+𝑠 = 𝑆𝑠 ∀𝑠 ∈ Sand

𝐷−
𝑑
= 𝐷+

𝑑
= 𝐷𝑑 ∀𝑑 ∈ D. We assume that 𝑆1 = 40, 𝑆1 = 50, and 𝑆1 = 60

for the supply side and 𝐷1 = 30, 𝐷2 = 35, 𝐷3 = 40, and 𝐷4 = 45 for the

demand side, so that

∑
𝑠∈S𝑆𝑠 =

∑
𝑑∈D𝐷𝑑 = 150. Let us also assume that

goods can be transported from any source to any destination with the

following costs 𝐶1,1 = 5, 𝐶1,2 = 3, 𝐶1,3 = 8, 𝐶1,4 = 9, 𝐶2,1 = 6, 𝐶2,2 = 4,

𝐶2,3 = 5, 𝐶2,4 = 3, 𝐶3,1 = 9, 𝐶3,2 = 8, 𝐶3,3 = 7, and 𝐶3,4 = 6. Finally,

let us assume that an analyst working on optimizing this TP came up

with the following solution (where we inherit the same notation used

in Section 12.1.2): 𝑥1,1 = 30, 𝑥1,2 = 10, 𝑥2,2 = 25, 𝑥2,3 = 25, 𝑥3,3 = 15, and

𝑥3,4 = 45.

We can map all the aforementioned information, which encompasses

both parameters and a candidate solution, in Table 12.1 in a quite compact

way. We have as many rows as sources (i.e., |S|) and as many columns

as destinations (i.e., |D|). In each of the |S| × |D| cells, we report the

transportation cost per unit in the small square in the top-right corner,

and specify the amount of goods transported from 𝑠 to 𝑑 in the main

cell. In addition, we pad the matrix at the bottom side with the values

of requested demand per destination, and at the right side the values of

produced supply per source.

𝐷1 𝐷2 𝐷3 𝐷4 Supply

𝑆1

5

30

3

10

8 9

40

𝑆2

6 4

25

5

25

3

50

𝑆3

9 8 7

15

6

45 60

Demand 30 35 40 45 150

Table 12.1: Example of a TP table.

We can verify that the solution in Table 12.1 is feasible because every

source delivers exactly the amount of goods produced (the summation of

colored values in every row matches the supply value to the right) and

every destination receives exactly the requested quantity (the summation

of colored values in every column matches the demand value below).

Notwithstanding, some questions that might (and should) arise are:

▶ how to set up the TP table if supply and demand do not initially

match?

▶ how to obtain a feasible, and possibly of good-quality, initial

solution in a structured way?
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▶ how to modify the values of the initial table to still satisfy

∑
𝑠∈S𝑆𝑠 =∑

𝑑∈D𝐷𝑑 while reducing costs, and how to perform this in an

iterative fashion until we converge to the optimal solution?

For situations where no explicit balance between overall supply and

demand is found, we need to evaluate the maximum supply that sources

can provide and the maximum demand that destinations can receive,

and assess where the deficit is. If there is a shortage of supply, a dummy
source that produces that shortage must be defined. If there is a shortage

of demand, a dummy destination that receives the excess of supply must

be defined. Let us focus on a revised variant of the example showcased

in Section 12.1.2, where we fix the three supply values to their upper

bound and fix the four demand values to the lower bound (we proved

that this is what they will receive anyway). If we sum all the supply and

demand values we obtain


𝑆1 = 50

𝑆2 = 80

𝑆3 = 60

→
∑
𝑠∈S

𝑆𝑠 = 190


𝐷1 = 50

𝐷2 = 10

𝐷3 = 70

𝐷4 = 10

→
∑
𝑑∈D

𝐷𝑑 = 140

The overall supply exceeds the overall demand by 50 units. If we want to

solve a TP with the table structure shown in Table 12.1, we need balance

between the two values. Hence, in this particular example, we need to
introduce a fifth demand such that D5 = 50. Readers must be wondering

what is the role of a dummy supply or demand, since they are “fictitious"

nodes that are added to ensure the overall balance between supply and

demand. We will see later in this section how we can ensure that our

solution avoids infeasible scenarios, such as when part of the minimum

demand a destination requires comes from the dummy source, which

is a non-existing source in reality. This scenario, albeit mathematically

feasible, is not realistic in practice. We can map the revised problem as

shown in Table 12.2.

Table 12.2: TP table with a dummy des-

tination.

𝐷1 𝐷2 𝐷3 𝐷4 𝐷5 (dummy) Supply

𝑆1

20 11 10 M 0

50

𝑆2

14 M 13 13 0

80

𝑆𝐶

M 12 11 20 0

60

Demand 50 10 70 10 50 190

In a TP table, every (source,destination) pair is mapped, even pairs that

are formally not allowed to witness any flow of goods. We circumvent

this apparent issue by assigning an extremely high cost to those pairs.

This is the case, for example, of cell (𝑆1 , 𝐷4) whose cost is M (a big-𝑀
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as explained in Section 4.8.1: in our setting, source 𝑆1 can only serve the

first three destinations 𝐷1, 𝐷2, and 𝐷3 (recall Figure 12.1).

A special mention goes to the 𝐷5 column of Table 12.2, i.e., the column

mapping the dummy destination. Because a dummy destination is a

non-physical destination, it receives flows of goods that are meaningful

only in our mathematical setting, but not in the real world. Hence, the cost

of sending goods from a real source to a dummy destination is 0 because

it ensures the mathematical balance between supply and demand but

does not represent a “real" flow. Conversely, if a cell maps a flow of goods

from a dummy source to a real destination, then the cost of that cell

should be set to M because we cannot provide a real destination node
with goods emanating from a dummy source, as that is a non-physical,
but just mathematically defined, flow.

Having clarified how to ensure the balance of supply and demand in a

TP table, we now describe in Section 12.1.3.1 two algorithms to obtain an

initial solution.

12.1.3.1 Defining an initial solution of a TP

The first method is the simplest one, and is called the North-West corner
rule. As the name implies, it requires starting from the North-West corner

cell of a TP table (e.g., from cell (𝑆1 , 𝐷1) in Table 12.2). In that cell, which

we define (𝑠, 𝑑) to represent we are currently in row 𝑠 and column 𝑑,

we should place a value equal to the minimum between the remaining

supply that row 𝑠 can offer and the remaining demand that column

𝑑 requires. If, for example, the remaining supply value is the smallest

between the two, this means that supply node 𝑠 is now saturated, as it is

providing to some destinations everything it can produce. Hence, any

additional value to the right along the same row 𝑠 can be set to 0 (as they

are using the whole supply 𝑠 already), and we should move down to

cell (𝑠 + 1, 𝑑). Because the current demand 𝑑 is not fully satisfied yet, we

will need to rely on the next available supply node. Conversely, if the

remaining demand value is the smallest between the two, we should set

all the remaining values below cell (𝑠, 𝑑) to 0, as the current demand has

been satisfied. Because the current remaining supply 𝑠 is not saturated

yet, we will move to the right instead. We keep moving either to the

right or below, introducing proper values in the cells, until we reach

the South-East corner. Note that this process works because of the
assumption that the overall supply and demand levels are equal.

We now show the application of the North-West corner rule to the TP

defined in Table 12.2. The final result is shown in Table 12.3.

𝐷1 𝐷2 𝐷3 𝐷4 𝐷5 (dummy) Supply

𝑆1

20

50

11

0

10 M 0

50

𝑆2

14 M

10

13

70

13

0

0

80

𝑆3

M 12 11 20

10

0

50 60

Demand 50 10 70 10 50 190

Table 12.3: TP table with an initial (infea-

sible) solution generated with the North-

West corner rule.
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In Table 12.3 we see that two flow values are zero. Let us explain why.

Starting from the North-West corner, we have an available supply of 50

(the full 𝑆1) and a requested demand of 50 (the full 𝐷1). Because the two

values match, both the row and the column are saturated simultaneously

and we then need to move diagonally. We split the diagonal movement

into two steps: a horizontal and a vertical one. We arbitrarily decided

to move horizontally first to (𝑆1 , 𝐷2) and then vertically to (𝑆2 , 𝐷2). It

would have been equivalent to first move vertically and place a flow of

zero in (𝑆2 , 𝐷1) and then move to the right to (𝑆2 , 𝐷2). The same “trick"

is carried out between (𝑆2 , 𝐷3) and (𝑆3 , 𝐷4). With this initial solution,

sources 1 and 2 use their supply in full (they do not send any supply to

the dummy destination), while source 3 only provides 10 units of “real"

supply, with the remaining 50 allocated to the dummy destination.

We can then retrieve the objective value by multiplying every non-zero

coefficient in a cell by the associated cost. In our case 𝑍 = 20 × 50 +𝑀 ×
10+ 13× 70+ 20× 10+ 0× 50 = 2, 110+ 10𝑀 (we omitted the two values

with a flow of 0 as they are in the table just to ensure horizontal/vertical

movements only). This is not a good solution for two reasons. First, we

should recall from above that the optimal solution for this TP is𝑍 = 1, 670.

In addition, our solution obtained with the North-West corner rule
features a 10𝑀 term, which suggests infeasibility: we provide 10 units
from 𝑆2 to 𝐷2, which is not allowed.

The low quality of the initial solution provided by the North-West
corner rule can be explained as follows. While this algorithm is based
on a very intuitive logic, it does not account anyhow the cost of
each cell we place flow in. As a matter of fact, we just move right or
down computing the smallest value between the remaining supply
or demand, but such a move cannot prevent us from placing flow
in a very costly cell. As we witnessed in Table 12.3, this process does

not even prevent us from placing flow in a cell that maps an infeasible

(source,destination) combination.

We now present an alternative algorithm to generate an initial solution

for a TP that accounts for cost considerations when filling in the table,

i.e., the Vogel’s method. This method improves the myopic assignment

performed by the North-West corner rule as follows. For each row and

column of the table, it is computed the difference between the cheapest

and second-cheapest cost. Then, the row or column with the highest

difference is selected and a proper flow value is placed in the cell

characterized by the cheapest cost so that either the row or column

associated with the cell is saturated. The saturated row or column is

“removed" from the table, supply and demand values are updated, and

the process is repeated until no more rows or columns are left. In the

case of ties, they can be broken arbitrarily. The underlying idea of
Vogel’s method is that we should focus on rows or columns where
the difference between the best (cheapest) and second-best (second-
cheapest) option is the largest, because missing the opportunity of
using that “cheap" cell will incur a considerable increase in cost.

We showcase Vogel’s method with the same TP table that we used for the

North-West corner rule. In each presented table, we add an additional

column displaying the row difference and an additional row displaying

the column difference.



12.1 Transportation Problem (TP) 217

𝐷1 𝐷2 𝐷3 𝐷4 𝐷5 (dummy) Supply Row diff.

𝑆1

20 11 10 M 0

50 10

𝑆2

14 M 13 13 0

80 13

𝑆3

M 12 11 20 0

60 11

Demand 50 10 70 10 50 190

Column diff. 6 1 3 7 0

Table 12.4: TP table filled in with the

Vogel’s method: initial setup.

Analyzing Table 12.4, the largest value is in the 𝑆2 row. Focusing on that

row, the cell with the smallest cost is (𝑆2 , 𝐷5)with a cost of 0 (being𝐷5 the

dummy destination). We can place there a value of min {80, 50} = 50 so

that column 𝐷5 is saturated. We update the table as shown in Table 12.5.

Note that we removed column 𝐷5 and updated the supply of 𝑆2. We also

updated the value depicting the remaining supply/demand available,

which is now reduced to 140. Albeit not explicit in the table because of the

removal of column 𝐷5, we should remember that (𝑆2 , 𝐷5) = 50. Another

relevant note regards row 𝑆2. Because there are two columns with the

same smallest cost of 13, the row difference for that row is 0.

𝐷1 𝐷2 𝐷3 𝐷4 Supply Row diff.

𝑆1

20 11 10 M

50 1

𝑆2

14 M 13 13

30 0

𝑆3

M 12 11 20

60 1

Demand 50 10 70 10 140

Column diff. 6 1 1 7

Table 12.5: TP table filled in with the

Vogel’s method: situation after setting

(𝑆2 , 𝐷5) = 50 and removing column 𝐷5.

In Table 12.5, the new highest value is yielded by column 𝐷4 with a value

of 7. A value of min {30, 10} = 10 is placed in cell (𝑆2 , 𝐷4), saturating

column𝐷4. The remaining supply of 𝑆2 is then 20. We report the updated

table in Table 12.6. The largest value is now in column 𝑆2. We place a

value of min {20, 50} = 10 in cell (𝑆2 , 𝐷1) which saturates row 𝑆2. We

update the situation as displayed in Table 12.7. The largest difference is

now in column 𝐷1, where a value of min {50, 30} = 30 is placed. Column

𝐷1 is now saturated and removed. The revised situation is displayed

in Table 12.8. In Table 12.8, every remaining row and column features

a difference of 1, hence we have a tie. We decide arbitrarily to select

cell (𝑆1 , 𝐷3) and insert a value of min {20, 70} = 20 there. This saturates

row 𝑆1. We need one last step, as we are left with just row 𝑆3, as shown

in Table 12.9. Given Table 12.9, the only feasible option to satisfy the

remaining demand is to set (𝑆3 , 𝐷2) = 10 and (𝑆3 , 𝐷3) = 50. We can now

summarize the solution obtained with the Vogel’s method restoring the

original TP table and placing all the flow values that were selected at

every iteration. The final result is displayed in Table 12.10.

The solution reported in Table 12.10 is feasible, as no cell with a cost of

M has been assigned a flow value. This is an inherent property of the
Vogel’s method, which identifies the row or column with the highest
difference between the lowest and second-lowest cost. Hence, a cell
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Table 12.6: TP table filled in with the

Vogel’s method: situation after setting

(𝑆2 , 𝐷4) = 10 and removing column 𝐷4.

𝐷1 𝐷2 𝐷3 Supply Row diff.

𝑆1

20 11 10

50 1

𝑆2

14 M 13

20 1

𝑆3

M 12 11

60 1

Demand 50 10 70 130

Column diff. 6 1 1

Table 12.7: TP table filled in with the

Vogel’s method: situation after setting

(𝑆2 , 𝐷2) = 20 and removing row 𝑆2.

𝐷1 𝐷2 𝐷3 Supply Row diff.

𝑆1

20 11 10

50 1

𝑆3

M 12 11

60 1

Demand 30 10 70 110

Column diff. M 1 1

Table 12.8: TP table filled in with the

Vogel’s method: situation after setting

(𝑆1 , 𝐷1) = 30 and removing column 𝐷1.

𝐷2 𝐷3 Supply Row diff.

𝑆1

11 10

20 1

𝑆3

12 11

60 1

Demand 10 70 80

Column diff. 1 1

Table 12.9: TP table filled in with the

Vogel’s method: situation after setting

(𝑆1 , 𝐷3) = 20 and removing row 𝑆1.

𝐷2 𝐷3 Supply Row diff.

𝑆3

12 11

60 1

Demand 10 50 60

Column diff. - -

Table 12.10: TP table with an initial (feasi-

ble) solution generated with the Vogel’s

method.

𝐷1 𝐷2 𝐷3 𝐷4 𝐷5 (dummy) Supply

𝑆1

20

30

11 10

20

M 0

50

𝑆2

14

20

M 13 13

10

0

50 80

𝑆3

M 12

10

11

50

20 0

60

Demand 50 10 70 10 50 190
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2: The range of methods to determine

the initial solution of a TP table is wider

than the two options presented here. For

example, Hillier and Lieberman (2015)

discusses the Russel’s method as well,

while Carter et al. (2018) discusses the

minimum cost and minimum “row" cost

methods.

with a cost equal to 𝑀 is extremely unlikely to be ever chosen. We

compute the objective value of the solution represented in Table 12.10 as

𝑍 = 20×30+10×20+14×20+13×10+0×50+12×10+11×50 = 1, 880.

While we now have a feasible solution
2
, the result still does not match

the optimal one we previously identified. In other words, we should

define a way to improve our initial solution and converge towards

an optimal value. By achieving this, we address the third question

from Section 12.1.3 that has been left unanswered so far. We answer such

a question in Section 12.1.3.2.

12.1.3.2 The transportation simplex

As the title of this section suggests, we shall see that the TP can be

interpreted similarly to what is done for any LP with the simplex method,

and the simplex tableau in particular. As a matter of fact, a structure
such as Table 12.10 can be interpreted as a tableau. Before diving into
the specifications of the transportation simplex method, let us provide
readers with an insight.

Let us consider, in Table 12.10, row 𝑠 = 1 associated with 𝑆1. While we do

not know yet how to assign the five flow values optimally, we are required

to assign them such that

∑
𝑑∈D𝐶1𝑑𝑥1𝑑 = 50, (as the 50 units from 𝑆1 must

be allocated somewhere). With 𝐶𝑠𝑑 we define the transportation cost per

unit flow from supply node 𝑠 to demand node 𝑑. The same reasoning

applies to every other row (supply) or column (demand). If we model

a TP with the table setting shown here, our goal is represented by the

following mathematical model:

min

∑
𝑠∈S

∑
𝑑∈D

𝐶𝑠𝑑𝑥𝑠𝑑 (12.6)

s.t.:

∑
𝑑∈D

𝑥𝑠𝑑 = 𝑆𝑠 ∀𝑠 ∈ S (12.7)∑
𝑠∈S

𝑥𝑠𝑑 = 𝐷𝑑 ∀𝑑 ∈ D (12.8)

𝑥𝑠𝑑 ≥ 0 ∀𝑠 ∈ S, 𝑑 ∈ D (12.9)

(12.6) aims at minimizing the overall transportation costs. Constraints

(12.7) ensure that the supply of each source node 𝑠 ∈ S is used entirely

across the different demand destination nodes, and constraint (12.8)

ensure that each demand 𝑑 ∈ D is exactly met, regardless of which

combination of supply nodes satisfies such a demand. Finally, constraints

(12.9) ensure that the flow variables 𝑥𝑠𝑑 are non-negative. Note that
the formulation is slightly different than (12.2)-(12.5) because we are
enforcing that each supply and demand node produces (resp. requests)
a fixed amount of goods, not a value within a range. We now reconnect

to the assignment problem and stipulate why it can be interpreted as

a network problem (see Hillier and Lieberman (2015) and Carter et al.
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(2018) for even more details) in box  Interpretation of an assignment
problem as a TP.

 Interpretation of an assignment problem as a TP

Given the formulation (12.6)-(12.9), we realize that the assignment

problem is a special type of TP where the set of supply nodes S

becomes the set of tasks Tand the set of destination nodes D is the
set of recipients R. In addition, each task 𝑖 ∈ Toffers a supply of 1

unit (each task should be assigned to one recipient) and each recipient

demands 1 task, hence a unitary demand as per TP jargon. Because

each flow can be unitary at most, we can also replace continuous

decision variables with binary ones (if all the coefficients are integer-

valued, we can leave them continuous because all the corner points

will be integer-valued anyway). Replacing 𝑆𝑠 and 𝐷𝑑 with 1 and the

nature of the decision variables (and acknowledging the different

notation set- and index-wise) we translate formulation (12.6)-(12.9)

into formulation (9.1)-(9.4).

An important insight is now to analyze what happens if, for example,

we reduce every coefficient of a specific row, i.e., row 𝑠 = 1 mentioned

above, by a fixed quantity 𝑢1. Because such a constant does not appear
in any constraint, the current solution will remain feasible. Conversely,

our revised objective value 𝑍
′
is:

𝑍
′
=
∑
𝑠∈S

∑
𝑑∈D

𝐶𝑠𝑑𝑥𝑠𝑑−
∑
𝑑∈D

𝑢1𝑥1𝑑 =
∑
𝑠∈S

∑
𝑑∈D

𝐶𝑠𝑑𝑥𝑠𝑑︸           ︷︷           ︸
𝑍

−𝑢1

∑
𝑑∈D

𝑥1𝑑︸  ︷︷  ︸
𝑆1

= 𝑍−𝑢1𝑆1

(12.10)

Hence, we are reducing our initial objective by a quantity equal to 𝑢1𝑆1,

i.e., the constant we used to reduce every coefficient of row 𝑠 = 1 times

the supply associated with the row. We could apply the same process

to every other row 𝑠 by reducing all its coefficients by constant 𝑢𝑠 and

every column 𝑑 by reducing all its coefficients by constant 𝑣𝑑. We hence

obtain the general expression for the revised objective:

𝑍
′
=
∑
𝑠∈S

∑
𝑑∈D

𝐶𝑠𝑑𝑥𝑠𝑑︸           ︷︷           ︸
𝑍

−
∑
𝑠∈S

𝑢𝑠𝑆𝑠 −
∑
𝑑∈D

𝑣𝑑𝐷𝑑 = 𝑍 −
∑
𝑠∈S

𝑢𝑠𝑆𝑠 −
∑
𝑑∈D

𝑣𝑑𝐷𝑑

(12.11)

In practice, given a choice of constants 𝑢𝑠 for the rows and 𝑣𝑑 for the
columns, we scale our objective value without hindering the feasibility
of the solution. Furthermore, this implies that every transportation cost

coefficient of the original problem 𝐶𝑠𝑑 is scaled as

𝐶
′

𝑠𝑑 = 𝐶𝑠𝑑 − 𝑢𝑠 − 𝑣𝑑 (12.12)

where the minus sign in front of 𝑢𝑠 and 𝑣𝑑 implies that we are reducing
the original coefficient if the constants are positive and increasing the
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3: A case where some basic variables are

characterized by a value of 0, as hinted

at in Chapter 6, is called a degenerate

solution. We refer readers to Hillier and

Lieberman (2015) for more details.

original coefficient if the constants are negative.

We now take a step forward. Given a feasible solution of a TP tabulated

as in Table 12.10, finding a combination of 𝑢𝑠 and 𝑣𝑑 such that every

revised coefficient 𝐶
′

𝑠𝑑
of a cell characterized by a flow is 0, implies

that 𝑍
′
= 0. We can achieve this in Table 12.10 by setting 𝑢1 = 6,

𝑢2 = 0, 𝑢3 = 7, 𝑣1 = 14, 𝑣2 = 5, 𝑣3 = 4, 𝑣4 = 13, and 𝑣5 = 0 (we

will explain soon how to compute such constants). Recalling that from

the original Table 12.10 𝑍 = 1, 880, we apply Equation 12.11 to obtain

𝑍
′
= 1, 880 − 6 × 50 − 7 × 60 − 14 × 50 − 5 × 10 − 4 × 70 − 13 × 10 =

1, 880 − 1, 880 = 0

Note that this does not mean we managed to reduce our transportation
cost to 0, as we should always refer to the original Table 12.10. Notwith-

standing, this “revised" problem sets the basis for the transportation

simplex method. We display the revised problem in tabular form in Ta-

ble 12.11, where we added a column and row to display the chosen 𝑢𝑠
and 𝑣𝑑 and revised all cost coefficients according to (12.12). In addition,

in the top-right box of each cell we retain the original transportation cost

coefficient 𝐶𝑠𝑑, while in the cell itself we display either the flow value

in orange or the reduced cost 𝐶
′

𝑠𝑑
in fuchsia. Note that there should be

no confusion in this way. Orange values represent flows, i.e., the basic

decision variables for which 𝐶
′

𝑠𝑑
reduced costs are 0. Conversely, fuchsia

values represent the reduced cost 𝐶
′

𝑠𝑑
of non-basic variables.

𝐷1 𝐷2 𝐷3 𝐷4 𝐷5 (dummy) Supply 𝑢𝑠

𝑆1

20

30

11

0

10

20

M

M − 19

0

−6 50 6

𝑆2

14

20

M

M − 5

13

9

13

10

0

50 80 0

𝑆3

M

M − 21

12

10

11

50

20

0

0

−7 60 7

Demand 50 10 70 10 50 190

𝑣𝑑 14 5 4 13 0

Table 12.11: TP table with the revised

problem where cells with flow variables

feature a cost coefficient𝐶
′
𝑠𝑑

= 𝐶𝑠𝑑−𝑢𝑠−
𝑣𝑑 = 0.

In Table 12.11, cells with flow values are now characterized by a cost

coefficient equal to 0. This resembles very suspiciously what explained

in Chapter 6 for the simplex method and the coefficients of each basic

variable in the simplex tableau. As a matter of fact, we are leveraging

the same intuition here. We define, as already anticipated above, the 𝑥𝑠𝑑
values characterizing a flow from 𝑠 to 𝑑 in a TP table the basic variables
of the problem, with all the remaining cells mapping non-basic variables
where no flow is present. While we leave the mathematical details out

(but refer interested readers to Hillier and Lieberman (2015) for the

explanation), it can be proven that for a TP with |S| sources and |D|
demand nodes, |S| + |D| − 1 basic variables are needed. In our example,

|S| = 3 and |D| = 5, hence 7 basic variables are needed. This is the
case of the solution obtained with Vogel’s method (Table 12.10) and
with the North-West corner rule (Table 12.3). In the latter case, 2 basic
variables are 03, but the overall number is 7 anyway.

Similar to what was done in Chapter 6, we can assess the “quality" of our

solution by checking the revised coefficients of the non-basic variable in

a TP table. A negative coefficient of a non-basic variable, given the way

we defined 𝑢𝑠 , 𝑣𝑑, and the table, implies that if we make such a decision
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variable basic, the objective will be reduced by that coefficient for every

unit of flow we place in that cell. Referring back to Table 12.11, we have
𝐶
′
3,5 = −7. Hence, for every unit of flow that we place in cell (3, 5), our

transportation cost will be reduced by 7.

We now proceed how to accomplish this. Note that we cannot simply
add a random positive value in cell (3, 5). Every row and column of a TP
table sums up to a specific supply or demand value. Hence, increasing a
variable from 0 to a positive value (hence, making a non-basic variable
basic) will start a chain reaction so that in every row and column the
summation of all values is preserved. In particular, if we make 𝑥𝑠𝑑 basic,

we will have to reduce the value of a basic variable both in row 𝑠 and

column 𝑑 to leave the summation unscathed. Note that, as 𝑥𝑠𝑑 is currently
non-basic, there must be at least one basic variable in row 𝑠 and in
column 𝑑 to ensure that supply and demand values, respectively, are
met. This step will in turn generate a snowball effect unless we identify a

closed circuit starting and ending in cell (𝑠, 𝑑). Within this closed circuit,

we will re-arrange the flows so that their summation does not change in

every row and column involved.

In addition, we will identify the maximum amount that we can subtract

from any of the basic variables part of the circuit without making any

other negative and that we can reallocate to variable 𝑥𝑠𝑑. The former

basic variable will be deducted by its current value, hence featuring a

revised value of 0 and becoming non-basic. That amount will be added

to the non-basic variable 𝑥𝑠𝑑 so that it becomes basic. This step ensures

that the number of |S| + |D| − 1 remains fixed. After updating the 𝐶
′

𝑠𝑑

coefficients to ensure they are 0 for all the basic variables, the process is

repeated until no negative coefficient of a non-basic variable is found.
This condition, equivalent to what we already discussed in Chapter 6,
ensures the current allocation of flows is optimal.

Let us describe how to form the closed circuit for the case represented

in Table 12.11. Making cell (3, 5) basic means reducing the flow value in

cell (2, 5) to ensure demand 𝐷5 is not exceeded. Reducing (2, 5)means

increasing either (2, 1) or (2, 4) to ensure 𝑆2 is not underutilized. If we

were to increase (2, 4)we would exceed 𝐷4 as there are no basic variables

in column 𝑑 = 4 that can then be reduced. Hence, we need to increase

(2, 1). By doing so, we exceed 𝐷1 unless we reduce (1, 1). Reducing (1, 1)
must be compensated by an increase of (1, 3) to preserve 𝑆1. In turn, the

increase of (1, 3) must be matched by an equivalent decrease of (3, 3)
to ensure 𝐷3 is not exceeded. The decrease of (3, 3) connects with the

original sought increase of (3, 5), closing the circuit, so that 𝑆3 is used

fully.

So far, we discussed which basic variables should increase or decrease

their value, but did not discuss to what extent. recall that we are not
creating or destroying flow, but only reallocating it. Hence, along the

closed circuit, we identify the smallest value of the basic variable that

should decrease its value. We subtract this value from every basic variable

that must be reduced and add it to every other basic variable and to

the entering basic variable. In essence, the non-basic variable “steals"

the flow value from the smallest basic variable part of the closed circuit

(which becomes non-basic).
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While this process might seem daunting, it is nothing more than an

application of the conservation of mass principle. We reallocate flows in

every row and column part of the closed circuit so that the cell with the

current most negative reduced cost receives a flow (doing this reduces

the objective value). This reallocation must ensure that no negative flows

are generated as a by-product of the process. We now proceed to translate

this theoretical description into practice.

In the left matrix of (12.13) we show the closed circuit. The matrix

replicates Table 12.11 but only reports the flow values for simplicity. In

green we display values that should increase, while in red we display

values that should decrease. Recall that our goal is to increase the flow

value in element (3, 5), which is currently non-basic. Because the smallest

red value is 30, then we will set 𝑥3,5 = 30 and increase all the other green

values by 30 as well while reducing the red values by the same amount.

The right matrix of (12.13) depicts the revised flows. Note that each row

and column still sums up to the associated 𝑆𝑠 or 𝐷𝑑 value: as mentioned,

we are just reallocating flows across the closed circuit.

©­­­«
30 0 20 0 0

20 0 0 10 50
0 10 50 0 0

ª®®®¬ −→
©­­­«

0 0 50 0 0

50 0 0 10 20

0 10 20 0 30

ª®®®¬ (12.13)

We can update the TP table as shown in Table 12.12.

𝐷1 𝐷2 𝐷3 𝐷4 𝐷5 (dummy) Supply 𝑢𝑠

𝑆1

20

?

11

?

10

50

M

?

0

? 50 ?

𝑆2

14

50

M

?

13

?

13

10

0

20 80 ?

𝑆3

M

?

12

10

11

20

20

?

0

30 60 ?

Demand 50 10 70 10 50 190

𝑣𝑑 ? ? ? ? ?

Table 12.12: TP table with the revised

problem after having made 𝑥3,5 basic

and 𝑥1,1 non-basic, but before having

updated the 𝑢𝑠 and 𝑣𝑑 coefficients.

The revised value of the basic variables reflect the changes applied using

the closed circuit and the conservation of mass principle. We can compute

the new solution using such flow values and the original coefficients

(as those are the coefficients mapping the actual transportation costs):

𝑍 = 10×50+14×50+13×10+0×20+12×10+11×20+0×30 = 1, 670.

While we know this solution to be optimal because we solved the same
problem as an LP, we have not proven it yet with the transportation
simplex. As a matter of fact, Table 12.12 does not comply with the

requirements of a TP table as not all the 𝐶
′

𝑠𝑑
= 𝐶𝑠𝑑 − 𝑢𝑠 − 𝑣𝑑 reduced

costs of the basic variables are 0. Hence, we need to recompute all 𝑢𝑠
and 𝑣𝑑 values to ensure all basic variables are characterized by a revised

coefficient 𝐶
′

𝑠𝑑
= 𝐶𝑠𝑑 − 𝑢𝑠 − 𝑣𝑑 = 0. This is also highlighted by the

question marks in the associated column and row in Table 12.12. As

we did not explain how to properly compute those coefficients when

constructing Table 12.11, we proceed to do it in the  How to determine
𝑢𝑠 and 𝑣𝑑 values to update a TP table box.
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 How to determine 𝑢𝑠 and 𝑣𝑑 values to update a TP table

Note that there is not a single combination of 𝑢𝑠 and 𝑣𝑑 values that

sets all the revised cost coefficients of the basic variables to be 0. Here,

we provide the same procedure as described in Hillier and Lieberman

(2015). While explaining the procedure, we will use Table 12.12 to

showcase the procedure. The procedure is as follows:

▶ Input: TP table with original coefficients 𝐶𝑠𝑑 and an initial

solution comprising |S| + |D| − 1 basic variables;

▶ identify the row 𝑠 or column 𝑑 with the most basic variables.

Let us assume it is row 𝑠 (if it was a column, we would need to

swap the sequence of columns and rows when determining new

values). We then set 𝑢𝑠 = 0 and label that row as marked because

all 𝑢𝑠 and 𝑣𝑑 of basic variables associated to that row have been

determined. Because we need to enforce 𝐶
′

𝑠𝑑
= 𝐶𝑠𝑑−𝑢𝑠−𝑣𝑑 = 0,

then 𝑣𝑑 = 𝐶𝑠𝑑 for every basic variable in that row. In our example,

row 𝑠 = 2 has 3 basic variables. We set 𝑢2 = 0, which implies

𝑣1 = 14, 𝑣4 = 13, and 𝑣5 = 0.

▶ WHILE not all rows and columns are marked:

• from the last marked row (column), identify the column 𝑑
(row 𝑠) characterized by basic variables with an assigned

𝑣𝑑 (𝑢𝑠) but no 𝑢𝑠 (𝑣𝑑). Update those values using the

relationship 𝐶𝑠𝑑 − 𝑢𝑠 − 𝑣𝑑 = 0 and set the column (row)

as marked

▶ Once all 𝑢𝑠 and 𝑣𝑑 constants are computed, we set all the 𝐶
′

𝑠𝑑
coefficients of basic variables to 0 and update all the coefficients

of non-basic variables as 𝐶
′

𝑠𝑑
= 𝐶𝑠𝑑 − 𝑢𝑠 − 𝑣𝑑 (recall that

regardless of which iteration we are, the 𝐶𝑠𝑑 coefficients are
the original ones);

▶ Output: updated TP table with new basic variables and 𝐶
′

𝑠𝑑
coefficients.

In our case, after marking row 𝑠 = 2 and setting 𝑢2 = 0 and then

𝑣1 = 14, 𝑣4 = 13, 𝑣5 = 0, we focus on column 𝑑 = 5, where we

set 𝑢3 = 𝐶3,5 − 𝑣5 = 0 − 0 = 0 and label it as marked. We then

focus on row 𝑠 = 3 where we set 𝑣2 = 𝐶3,2 − 𝑢3 = 12 − 0 = 12 and

𝑣3 = 𝐶3,3−𝑢3 = 11−0 = 11 and label both columns as marked. Finally,

because in column 𝑑 = 3 there is still cell (1, 3) with an unassigned

𝑢1, we focus on row 𝑠 = 1 and set 𝑢1 = 𝐶1,3 − 𝑣3 = 10 − 11 = −1.

Table 12.13: TP table with the revised

problem after having made 𝑥3,5 basic

and 𝑥1 , 1 non-basic and having updated

the 𝑢𝑠 and 𝑣𝑑 coefficients.

𝐷1 𝐷2 𝐷3 𝐷4 𝐷5 (dummy) Supply 𝑢𝑠

𝑆1

20

7

11

0

10

50

M

𝑀 − 12

0

1 50 -1

𝑆2

14

50

M

M − 12

13

2

13

10

0

20 80 0

𝑆3

M

M − 14

12

12

11

20

20

7

0

30 60 0

Demand 50 10 70 10 50 190

𝑣𝑑 14 12 11 13 0
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By using the described procedure, we update all 𝐶
′

𝑠𝑑
coefficients in Ta-

ble 12.12 as shown in Table 12.13. We notice that all 𝐶′
𝑠𝑑

reduced costs of
the non-basic variables are either 0 or positive. Hence, turning any of
them into a basic variable will not further reduce the transportation
costs: our solution is proven to be optimal. We summarize the full

transportation simplex algorithm in the  The transportation simplex
algorithm box.

 The transportation simplex algorithm

▶ Input: TP table with original coefficients 𝐶𝑠𝑑, supply and de-

mand values 𝑆𝑠 ∀𝑠 ∈ Sand 𝐷𝑑 ∀𝑑 ∈ D;

▶ compute an initial solution (with any available method) com-

prising of |S| + |D| − 1 basic variables;

▶ determine all the 𝑢𝑠 and 𝑣𝑑 constants and update all 𝐶
′

𝑠𝑑
values.

In the main portion of each cell of the TP table, store either the
flow value (if that cell represents a basic variable) or the 𝐶′

𝑠𝑑
value (if that cell represents a non-basic variable);

▶ WHILE min

{
𝐶
′

𝑠𝑑

}
< 0:

• identify most-negative reduced cost 𝐶′
𝑠𝑑

of a non-basic

variable;

• construct a closed circuit and update the flow values so

that the aforementioned non-basic variable becomes basic

and a basic variable becomes non-basic;

• recompute all constants 𝑢𝑠 and 𝑣𝑑.

▶ Output: optimal TP table with final basic variables and associa-

ted 𝑥𝑠𝑑 values.

12.2 Maximum flow problem

A maximum flow model deals with finding a feasible flow distribution
across a capacitated network so that the maximum inflow in the network
is obtained. Some practical applications of such a model are:

▶ hydraulic engineering. Maximum flow network models can be

applied to optimize the flow of water in pipelines or distribution net-

works under normal circumstances. Additionally, they are applied

in the context of flood management to determine the maximum

capacity of flood barriers, thereby reducing the risk of flooding in

urban areas;

▶ transportation systems. Maximum flow network models are used,

for example, in road networks to determine the maximum capacity

of roads or routes, helping to alleviate congestion and reduce travel

times;

▶ communication networks. Maximum flow network models can be

used to optimize data routing, ensuring efficient transmission of

information between network nodes while avoiding bottlenecks

and congestion.

As demonstrated in some of the previous examples, directionality signif-

icantly influences maximum flow network problems. Whether dealing

with traffic flow networks, logistic systems for goods transportation,
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4: We use the set of nodes N instead of

the set of vertices V that we introduced

in Chapter 11 because in flow problems

the concept of node is more widespread

than the concept of vertex.

5: While 𝑠 would be the best candidate

option as the index for the sink node, 𝑠 is

already taken by the source node. Hence,

we chose 𝑡 to highlight the fact that the

sink node acts as a target node.

or data transmission networks, the directional nature of flows in these

networks is crucial. To this avail, the maximum flow network problem is

defined in the context of a directed graph 𝐺 = (N, E)4, with N the set

of nodes and E the set of edges. Among the set of nodes, two special

nodes are the source 𝑠 ∈ Nand the sink 𝑡 ∈ N5
. The underlying setting

entails determining the maximum flow incoming to 𝑠 that can be feasibly

routed across the network on its way to 𝑡. The limitation on processing

all inbound flow to 𝑠 arises from the maximum capacity𝑈𝑒 associated

with each edge 𝑒 ∈ E. Consequently, we introduce a set of decision

variables 𝑥𝑒 ∈ ℝ0, where 𝑥𝑒 represents the flow quantity along edge 𝑒.

We report all the notation employed in the description of the maximum

flow problem in Table 12.14.

Table 12.14: Notation for the maximum

flow problem. Sets and indices

N Set of nodes 𝑖 ∈ N
E Set of edges 𝑒 ∈ E

Parameters

𝑈𝑒 maximum capacity of arc 𝑒

Variables

𝑥𝑒 ∈ ℝ0 flow along edge 𝑒 ∈ E

Before diving into the formulation, let us define some important subsets

related to edges. We define 𝛿−
𝑖
⊆ E the subset of edges outbound from

node 𝑖, i.e., all the edges in 𝐺 in the form (𝑖 , 𝑣2) (where 𝑖 is the first node).

Conversely, we define 𝛿+
𝑖
⊆ E the subset of edges inbound to node 𝑖, i.e.,

all the edges in 𝐺 in the form (𝑣1 , 𝑖) (where 𝑖 is the second node). We

use this notation as sending flow along an edge 𝑒 ∈ 𝛿−
𝑖

“reduces" the

net flow across node 𝑖 (the flow is leaving the node), while sending flow

along an edge 𝑒 ∈ 𝛿+
𝑖

“increases" the net flow across node 𝑖 (the flow is

approaching the node).

We define the maximum flow problem as:

max

∑
𝑒∈𝛿−𝑠

𝑥𝑒 −
∑
𝑒∈𝛿+𝑠

𝑥𝑒 (12.14)

s.t.:

∑
𝑒∈𝛿−

𝑖

𝑥𝑒 −
∑
𝑒∈𝛿+

𝑖

𝑥𝑒 = 0 ∀𝑖 ∈ N\ {𝑠, 𝑡} (12.15)

𝑥𝑒 ≤ 𝑈𝑒 ∀𝑒 ∈ E (12.16)

(12.14) defines our objective, namely to maximize the difference between

the overall flow exiting and entering the source node 𝑠. In some cases, the

network assumes no inbound arcs to 𝑠 (𝛿+𝑠 = ∅) and no outbound arcs

from 𝑡 (𝛿−𝑡 = ∅). In such a case, the objective reduces to max

∑
𝑒∈𝛿−𝑠 𝑥𝑒 .

This scenario is prevalent in academic and educational literature on
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6: In essence, the difference between the

two cases is simply whether to check if

a network can feasibly process a certain

expected inflow after the optimization

(first case) or already as a direct result of

the optimization (second case).

OR. In some other cases, the network features a single inbound arc to 𝑠

with a fixed flow 𝐹, leading to an objective of max

∑
𝑒∈𝛿−𝑠 𝑥𝑒 −

∑
𝑒∈𝛿+𝑠 𝑥𝑒 =∑

𝑒∈𝛿−𝑠 𝑥𝑒 −𝐹. Although 𝐹 is a constant and could be omitted, it is retained

in the objective to assess whether the final objective value is positive, zero,

or negative. A negative difference signifies excess flow that the network

cannot process, which must be redirected in practical operations
6
. In our

examples, we will employ the more traditional first approach.

Example 12.1 A water pipeline comprises 5 primary junctions and 7 connecting
pipes. It foresees an influx of 600 liters of water per hour in the next few hours,
following heavy rains, with the influx originating from a single entry point
into the pipeline. The pipeline network, depicted in Figure 12.2, specifies the
maximum hourly capacity for each pipe connection. The objective is to determine
if the network can accommodate the anticipated water influx.
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Figure 12.2: Network representation of

the water pipeline of Example 12.1.

Our graph 𝐺 = (N, E) is defined by the set of nodes N= {𝑆, 𝐵, 𝐶, 𝐷, 𝑇}
and edges E= {(𝑆, 𝐵), (𝑆, 𝐶), (𝐵, 𝐶), (𝐵, 𝐷), (𝐶, 𝐷), (𝐶, 𝑇), (𝐷,𝑇)}. We

assume the inflow enters the network in node 𝑆 (source) and must be

routed towards node 𝑇 (sink). We divided every flow value by 100 to

have a more compact notation. Given the small scale of the problem, we

express the full LP formulation as

max 𝑥𝑆𝐵 + 𝑥𝑆𝐶 (12.17)

s.t.:

𝑥𝐵𝐷 + 𝑥𝐵𝐶 − 𝑥𝑆𝐵 = 0 (12.18)

𝑥𝐶𝐷 + 𝑥𝐶𝑇 − 𝑥𝑆𝐶 − 𝑥𝐵𝐶 = 0 (12.19)

𝑥𝐷𝑇 − 𝑥𝐵𝐷 − 𝑥𝐶𝐷 = 0 (12.20)

𝑥𝑆𝐵 ≤ 4 (12.21)

𝑥𝑆𝐶 ≤ 5 (12.22)

𝑥𝐵𝐶 ≤ 3 (12.23)

𝑥𝐵𝐷 ≤ 1 (12.24)

𝑥𝐶𝐷 ≤ 6 (12.25)

𝑥𝐶𝑇 ≤ 5 (12.26)

𝑥𝐷𝑇 ≤ 2 (12.27)
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7: As described in Chapter 6 and Chap-

ter 7, because all coefficients are integer,

the final solution is also integral. Note

that in this particular case, this was not

needed as water flows could, and most

likely will be, fractional values.

8: There are other options available (we

encourage readers to find them).

which, once solved with BB as described in Chapter 7, yields the following

objective 𝑥𝑆𝐵 + 𝑥𝑆𝐶 = 7 with 𝑥𝑆𝐵 = 2, 𝑥𝑆𝐶 = 5, 𝑥𝐵𝐶 = 2, 𝑥𝐶𝐷 = 2,

𝑥𝐶𝑇 = 5, and 𝑥𝐷𝑇 = 2
7
. This example provides valuable insights into the

solution and offers practical considerations. Among the 7 edges, only

one, (𝐵, 𝐷), is not intended to handle the flow. Significantly, this edge

has the lowest hourly capacity of 100 liters, suggesting it may function

as a bottleneck if utilized. We conclude that the pipeline, pending no
unexpected circumstances, will handle the water influx safely as it can
accommodate 700 liters per hour compared with an expected 600.

To illustrate this assertion, we present the solution in Figure 12.3. The

green arcs represent edges utilized in the solution. Each arc is annotated

with two values: the first indicates the current flow along the edge, while

the second, enclosed in parentheses, denotes the remaining capacity

available on the edge. For instance, the notation 5, (2) signifies a current

flow of 5 with a total capacity of 7, indicating that 2 units could still be

sent along the edge.

Figure 12.3: Final solution to the maxi-

mum flow problem applied to the water

pipeline of Example 12.1.
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We report a couple of additional considerations that can be drawn

from the solution of Example 12.1. In a network like the one depicted

in Figure 12.3, one can establish an upper bound on the maximum flow

the network can accommodate by computing min

{∑
𝑒∈𝛿−𝑠 𝑈𝑒 ,

∑
𝑒∈𝛿+𝑡 𝑈𝑒

}
.

The first term signifies the total capacity of all edges departing from
the source node 𝑠, while the second term represents the total capacity
of all edges leading into the sink node 𝑡. Since we presume that all flow
originates from 𝑠 and terminates at 𝑡, the minimum value between these
two cumulative capacities defines a theoretical maximum that limits
the flow the network can sustain. Furthermore, the solution illustrated

in Figure 12.3 demonstrates the dispatch of 700 liters of water within the

network, not the expected 600. Being a maximum flow problem, it just

adheres to its own set of semantics. Adjusting the solution from Figure 12.3

to reflect the expected 600 liters can be carried out as a post-processing

step. For example, by reducing 𝑥𝑆𝐶 from 5 to 4 and 𝑥𝐶𝑇 from 5 to 4 as

well. An alternative is to reduce 𝑥𝑆𝐵, 𝑥𝐵𝐶 , 𝑥𝐶𝐷 , and 𝑥𝐷𝑇 from 2 to 1
8
.

This small example justifies the following statement. Generally, the
ways to dispatch the maximum flow possible along a network are quite
limited. If we reduce the injected flow, then the number of allowed
options increases quite substantially. Notwithstanding, we might be

asked to find one of the many options already as part of the output of

the mathematical model and not as a post-processing by-product. We

display this in Example 12.2
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� Coded example

The code used to model and solve Example 12.1 is available here.

Example 12.2 After confirming that the network from Example 12.1 can handle
a flow rate of 𝐹 = 600 liters of water per hour, our next objective is to formulate
an optimization model that determines a feasible routing of this water within the
network.

The graph 𝐺 = (N, E) is unchanged with respect to Example 12.1. The

only difference is that now we use the expected water flow 𝐹 as an integral

part of the model rather than in the post-processing phase to assess if

the network can handle it (we verified it can). We define this new LP as:

max 1 (12.28)

s.t.:

∑
𝑒∈𝛿−

𝑖

𝑥𝑒 −
∑
𝑒∈𝛿+

𝑖

𝑥𝑒 =


𝐹, 𝑖 = 𝑠

−𝐹, 𝑖 = 𝑡

0, otherwise

∀𝑖 ∈ N (12.29)

𝑥𝑒 ≤ 𝑈𝑒 ∀𝑒 ∈ E (12.30)

(12.28) implies that this is a feasibility and not an optimization problem.

We already assessed in Example 12.1 that the network can handle 600

liters of water per hour. Hence, our goal here is to find a feasible solution
by ensuring the constraints are satisfied. Formally, there is no objective

to maximize or minimize, and we highlight this by specifying max 1

(choosing 1 is arbitrary) as a dummy objective. Because we require 𝐹

units to be injected into the system via 𝑠 and to exit the system via 𝑡, flow

conservation constraints must be enforced there as well. This is what

(12.29) achieves: it ensures a net flow equal to 𝐹 leaves the source and

converges to the sink, while maintaining a net flow of zero elsewhere in

the network. (12.30) is inherited directly from Example 12.1. A potential

solution to this problem is displayed in Figure 12.4, where for the sake

of clarity we report with red arrows the flow of water 𝐹 = 600 (recall

that we divided all values by 100 in Figure 12.4) entering and exiting the

network.

We conclude this section by briefly touching upon an alternative solution

approach widely applied to problems dealing with the routing of flows

in networks (among other applications).

12.2.1 An introduction to Column Generation (CG)

Column Generation (CG) is a mathematical modeling approach to ef-

ficiently deal with problems with a vast number of decision variables.

Instead of considering all possible variables upfront, the main insight
of CG is to start with a small subset and iteratively add new variables.

https://github.com/alessandroBombelli/From-theORy-to-application-learning-to-optimize-with-Operations-Research-in-an-interactive-way/tree/main/Codes/Network%20problems/Maximum%20Flow%20and%20Minimum%20Cost%20Flow%20(MCF)%20Problems
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Figure 12.4: A feasible solution to the

variation of the maximum flow problem

applied to the water pipeline of Exam-

ple 12.2.
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In mathematical modeling, the constraints of a problem are typically

represented as rows, while decision variables are represented as columns

in the 𝐴𝑥 ≤ 𝑏 matrix structure. Hence, because this methodology adds
new decision variables iteratively, the approach is aptly named CG.

It is not our goal to fully explain CG, and we refer readers to Desaulniers

et al., 2006 for a seminal reference on the technique. In this section, our

goal is to provide some insights and show how CG can be applied to

solve the same problem as in Example 12.1. In problems based on a

graph representation 𝐺 = (N, E), usually decision variables are based

on the edges (such as 𝑥𝑒 from Example 12.1). This modeling choice,

paired with ensuring that solutions make sense physically (for example

enforcing conservation of flow), allows exploring the whole spectrum of

possible solutions and, hopefully, converge to an optimal one. The issue

of such an approach, as hinted at above, is that the number of variables

explodes with the size of the problem. This approach is sometimes

labeled an arc-based approach. An alternative approach, which is the

underlying principle of CG, is to use a path-based approach. With this
approach, we decide how to route flows (or other commodities such
as aircraft, cars, information packages, etc.) along paths directly going
from the intended origin to the intended destination rather than along
connected sequences of arcs.

Each newly generated path serves as a distinct decision variable, effe-

ctively adding a new column to the model. However, unlike traditional

methods where flow conservation is explicitly imposed as a constraint,

in CG, the generated paths must adhere to fundamental conditions

such as continuity without the need for explicit flow conservation con-

straints. The key for such a method is how and to what extent to compute

“promising" paths, i.e., paths that can improve our objective. This step

is the main challenge of the whole CG and is based on the concept of

duality that we refrain from treating here (we refer interested readers to

Hillier and Lieberman (2015)). Notwithstanding, we provide an intuitive

interpretation in Example 12.3

Example 12.3 We are asked to tackle the same problem as in Example 12.1, but
by considering the water flow to move along paths connecting 𝑠 and 𝑡 rather
than along sequences of edges.

We start the exercise by providing an example of a path. Considering Fig-

ure 12.2, water could move from 𝑆 to 𝑇 using the sequence of arcs (𝑆, 𝐶),
(𝐶, 𝐷), and (𝐷,𝑇), where the associated path can be expressed as the
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sequence of nodes (𝑆, 𝐶, 𝐷, 𝑇). We might wonder how much water can

flow along the path, as each edge is capacitated. Because the path should

be feasible, we need to satisfy the capacity of edges (𝑆, 𝐶), (𝐶, 𝐷), and

(𝐷,𝑇) simultaneously. Hence, we compute min {5, 6, 2} = 2. We could

then add this flow of water to our network and update the values of the

used and available capacity of all edges part of the path, and look for

another path until we can: this is exactly the strategy we will follow.

While a proper CG will give us indications on how to select the most

promising path, here we test out chances by randomly selecting them.

We start with path (𝑆, 𝐶, 𝑇) that can accommodate 5 units. We display

the updated situation in Figure 12.5.
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Figure 12.5: Solution to the maximum

flow problem of Example 12.3 after

adding path (𝑆, 𝐶, 𝑇).

We notice that now both edges (𝑆, 𝐶) and (𝐶, 𝑇) are “saturated", i.e., we

use them at their full capacity, as highlighted by the label 5, (0). The next

step is to look for other paths to add. An option is (𝑆, 𝐵, 𝐶, 𝐷, 𝑇), whose

capacity is min {4, 3, 6, 2} = 2. Hence, we add the path and our flow from

𝑆 to 𝑇 increases to 7. We display the updated solution in Figure 12.6.
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Figure 12.6: Solution to the maximum

flow problem of Example 12.3 after

adding path (𝑆, 𝐵, 𝐶, 𝐷, 𝑇). The solu-

tion matches the one obtained in Exam-

ple 12.1.

We could search for more paths, but to no avail. Because every path

must end either with edge (𝐷,𝑇) or edge (𝐶, 𝑇) and since both of them

are saturated (respectively with 2 and 5 units of water), no additional

path with a positive flow can be added. We could have guessed this

already, as out current solution of 7 units (5 sent via (𝑆, 𝐶, 𝑇) and 2 via

(𝑆, 𝐵, 𝐶, 𝐷, 𝑇)) matches the optimal one from Example 12.1.

Without realizing this, we employed the policy of adding each time the
path with the highest capacity left. Given the objective at hand, this

“greedy" approach sounds reasonable to achieve the intended goal. We

encourage readers to try a different sequence, for example starting with
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9: Similar to Section 12.2, we use the set

of nodes N instead of the set of vertices

V that we introduced in Chapter 11.

path (𝑆, 𝐵, 𝐶, 𝑇) as the first path to add, and to verify if the same optimal

solution is attained.

12.3 Minimum Cost Flow (MCF) problem

A Minimum Cost Flow (MCF) problem displays resemblance with the

maximum flow network problem described in Section 12.2, yet the over-

arching goal is different. Here, the goal is to find the cheapest way to

process a given amount of flow across a network. We will analyze two

variants of such a problem, namely the single-source single-sink version

in Section 12.3.1 and the multiple-source multiple-sink variant in Sec-

tion 12.3.2. Both variants are based on a directed graph representation

𝐺 = (N, E)9 of the network defining the problem. A selection of practical

applications of such a model is:

▶ transportation and logistics. MCF models are used for optimizing

the flow of goods and resources through networks. This includes op-

timizing shipping routes, managing vehicle fleets, and minimizing

transportation costs while satisfying demand constraints;

▶ network design. MCF models are applied to design communication

networks, such as telecommunication networks and computer

networks. They help in routing data packets efficiently while

considering factors like bandwidth constraints and minimizing

communication costs;

▶ water distribution networks. MCF models are used to optimize

the flow of water through distribution networks, such as water

supply systems and irrigation networks. They help in managing

water resources efficiently, minimizing water loss, and ensuring

equitable distribution of water to consumers.

12.3.1 Single-source single-sink variant

In this version of the MCF problem, the goal is to process within the

directed graph 𝐺 a flow of a given commodity that spawns from a single

vertex, namely the source 𝑠 ∈ Nand must be channeled towards a single

vertex, namely the sink 𝑡 ∈ Nat minimum cost.

This single-source single-sink variant is characterized by the following

parameters. Each arc 𝑒 ∈ E features a maximum flow it can withstand

𝑈𝑒 and a cost 𝐶𝑒 we incur if the arc is used in the solution. In addition,

the source node 𝑠 and the sink node 𝑡 are characterized by the same net

flow value 𝐹 that enters the network in 𝑠 and exits in 𝑡. Using the same

notation as in Section 12.2, we need the same set of decision variables

𝑥𝑒 ∀𝑒 ∈ E, where 𝑥𝑒 defines the amount of flow moving across arc 𝑒. We

summarize all the introduced notation in Table 12.15

We define the single-source single-sink variant of the MCF as:

min

∑
𝑒∈E

𝐶𝑒𝑥𝑒 (12.31)

s.t.:
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Sets and indices

N set of nodes 𝑖 ∈ N
E set of edges 𝑒 ∈ E

Parameters

𝐶𝑒 cost of using edge 𝑒 ∈ E

𝑈𝑒 maximum capacity of edge 𝑒 ∈ E

𝐹 flow exiting source node 𝑠 ∈ Nand entering sink node 𝑡 ∈ N

Variables

𝑥𝑒 ∈ ℝ0 flow along edge 𝑒 ∈ E

Table 12.15: Notation for the single-

source single-sink MCF problem.

10: Note that here, differently from the

maximum flow problem of Section 12.2,

we assume the full flow 𝐹 can be pro-

cessed across the network. Otherwise,

we would obtain the optimal solution∑
𝑒∈E𝐶𝑒𝑥𝑒 = 0 where no flow at all is

processed at zero cost. In case there is

no feasible solution for a given 𝐹, this

entails such a value should be reduced

as the current network cannot dispatch

such a flow across the set of edges.

∑
𝑒∈𝛿−𝑠

𝑥𝑒 −
∑
𝑒∈𝛿+𝑠

𝑥𝑒 = 𝐹 (12.32)∑
𝑒∈𝛿−𝑡

𝑥𝑒 −
∑
𝑒∈𝛿+𝑡

𝑥𝑒 = −𝐹 (12.33)∑
𝑒∈𝛿−

𝑖

𝑥𝑒 −
∑
𝑒∈𝛿+

𝑖

𝑥𝑒 = 0 ∀𝑖 ∈ N\ {𝑠, 𝑡} (12.34)

𝑥𝑒 ≤ 𝑈𝑒 ∀𝑒 ∈ E (12.35)

where (12.31) defines the objective function, i.e., the minimization of the

overall cost due to the utilization of the arcs in the network
10

. We activate

some of the arcs via (12.32)-(12.33) which enforce, respectively, that the

summation of the flows leaving the source node 𝑠 and the summation

of the flows entering the sink node 𝑡 is equal to 𝐹. As a reminder, with

𝛿−
𝑖
⊆ Eand 𝛿+

𝑖
⊆ Ewe identify, respectively, the subset of arcs outbound

from and inbound to node 𝑖. (12.34) enforce the more classic version of

conservation of flow for all nodes that are neither the source nor the sink

of the network. Finally, (12.35) enforces the proper upper bound to every

flow decision variable 𝑥𝑒 .

� Coded example

A coded version of a single-sink single-source MCF problem is

available here.

12.3.2 Multiple-source multiple-sink variant

The multiple-source multiple-sink variant of the MCF problem inhe-

rits all the features of the single-source single-sink version presented

in Section 12.3.1. The additional complexity resides in the fact that now

multiple source nodes are possible. They are stored in set S⊆ Nwhere

𝐹𝑠 is the flow emanating from source node 𝑠. Similarly, multiple sink

nodes are possible. They are stored in set T ⊆ Nwhere 𝐹𝑡 is the flow

required by sink node 𝑡. We assume that a node cannot behave as both
a source and sink of flow, hence S∩T= ∅. Even if there was a node 𝑗
behaving, formally, both as a source and as a sink, we could compute
the difference between the specified outbound flow and inbound flow.
If such a difference is zero, then the node behaves as a “regular" node.

https://github.com/alessandroBombelli/From-theORy-to-application-learning-to-optimize-with-Operations-Research-in-an-interactive-way/tree/main/Codes/Network%20problems/Maximum%20Flow%20and%20Minimum%20Cost%20Flow%20(MCF)%20Problems
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If the difference is positive, the node behaves as a source where 𝐹𝑠 is
the computed difference. If the difference is negative, the node behaves
as a sink where 𝐹𝑡 is the absolute value of the computed difference
(because the minus sign is already captured in the constraints). We

define all the notation needed for the multiple-source multiple-sink MCF

in Table 12.16.

Table 12.16: Notation for the multiple-

source multiple-sink MCF problem. Sets and indices

N Set of nodes 𝑖 ∈ N
E Set of edges 𝑒 ∈ E

S⊆ N Set of sources 𝑠 ∈ N
T⊆ N Set of sinks 𝑡 ∈ N

Parameters

𝐶𝑒 cost of using edge 𝑒 ∈ E

𝑈𝑒 maximum capacity of edge 𝑒 ∈ E

𝐹𝑠 flow exiting source node 𝑠 ∈ S
𝐹𝑡 flow entering sink node 𝑡 ∈ T

Variables

𝑥𝑒 ∈ ℝ0 flow along edge 𝑒 ∈ E

We define the multiple-source multiple-sink variant of the MCF as:

min

∑
𝑒∈E

𝐶𝑒𝑥𝑒 (12.36)

s.t.:

∑
𝑒∈𝛿−𝑠

𝑥𝑒 −
∑
𝑒∈𝛿+𝑠

𝑥𝑒 = 𝐹𝑠 ∀𝑠 ∈ S (12.37)∑
𝑒∈𝛿−𝑡

𝑥𝑒 −
∑
𝑒∈𝛿+𝑡

𝑥𝑒 = −𝐹𝑡 ∀𝑡 ∈ T (12.38)∑
𝑒∈𝛿−

𝑖

𝑥𝑒 −
∑
𝑒∈𝛿+

𝑖

𝑥𝑒 = 0 ∀𝑖 ∈ N\ {S∪T} (12.39)

𝑥𝑒 ≤ 𝑈𝑒 ∀𝑒 ∈ E (12.40)

The structure of the problem is left unchanged. The only differences are

in the definition of (12.37)-(12.38), which now potentially define multiple

constraints according to the |S| and |T| values.

An important principle to emphasize is that, while each source 𝑠 ∈ Sand
sink 𝑡 ∈ Tmay have different flow values 𝐹𝑠 and 𝐹𝑡 , it is essential that
the following equality holds:

∑
𝑠∈S𝐹𝑠 =

∑
𝑡∈T𝐹𝑡 . This equality, although

left without a mathematical proof here, stems from the conservation of

mass principle within the network. Simply put, mass cannot be created

or destroyed within the system. Therefore, the total flow injected into the

system (

∑
𝑠∈S𝐹𝑠) must equal the total flow leaving the system (

∑
𝑡∈T𝐹𝑡).
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It is worth noting that we implicitly acknowledged this principle earlier

in Section 12.3.1 by defining 𝐹 as both the flow exiting the single source

and the flow entering the single sink. In essence, the single-source
single-sink variant can be seen as a special case of the multiple-source
multiple-sink variant when |S| = |T| = 1. However, we chose to
introduce and discuss the single-source single-sink variant first before
expanding to the more general case.

Example 12.4 A water supplier manages water from two origin stations,
producing 10, 000 and 5, 000 𝑚3 per day, respectively. The total volume must
be transported through a pipeline network to an urban area for distribution. The
network, represented by graph 𝐺 = (N, E), includes the two water sources and
the final destination node, as shown in Figure 12.7. Each directed edge in the
network indicates its maximum capacity in 1, 000 𝑚3 per day and its associated
cost per 1, 000 𝑚3 processed. The objective is to determine the optimal flow of
water across the network to minimize operational costs.
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Figure 12.7: Graph representation 𝐺 =

(V, E) of the water pipeline network

of Example 12.4.

We start tackling the problem by defining our sets: N= {1, 2, 3, 4, 5, 6}
and E= {(1, 2), (1, 3), (2, 3), (2, 4), (3, 2), (3, 4), (3, 5), (4, 5), (4, 6), (5, 6)}.
In addition, S = {1, 3} and T = {6}. We model this multiple-source

single-sink MCF problem as:

min 3𝑥1,2 + 5𝑥1,3 + 2𝑥2,3 + 4𝑥2,4 + 10𝑥3,2

+ 8𝑥3,4 + 5𝑥3,5 + 3𝑥4,5 + 3𝑥4,6 + 7𝑥5,6 (12.41)

s.t.:
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11: Because this model is described in a

very generic fashion here, we stick with

the graph-oriented notation of vertices
and edges.

𝑥1,2 + 𝑥1,3 = 10 (12.42)

𝑥2,3 + 𝑥2,4 − 𝑥1,2 − 𝑥3,2 = 0 (12.43)

𝑥3,2 + 𝑥3,4 + 𝑥3,5 − 𝑥1,3 − 𝑥2,3 = 5 (12.44)

𝑥4,5 + 𝑥4,6 − 𝑥2,4 − 𝑥3,4 = 0 (12.45)

𝑥5,6 − 𝑥3,5 − 𝑥4,5 = 0 (12.46)

− 𝑥4,6 − 𝑥5,6 = −15 (12.47)

𝑥1,2 ≤ 8, 𝑥1,3 ≤ 6, 𝑥2,3 ≤ 5, 𝑥2,4 ≤ 5, 𝑥3,2 ≤ 7,

𝑥3,4 ≤ 10, 𝑥3,5 ≤ 4, 𝑥4,5 ≤ 5, 𝑥4,6 ≤ 5, 𝑥5,6 ≤ 10 (12.48)

The optimal solution (all values are divided by 1, 000) is 𝑥1,2 = 5, 𝑥1,3 = 5,

𝑥2,4 = 5, 𝑥3,4 = 6, 𝑥3,5 = 4, 𝑥4,5 = 6, 𝑥4,6 = 5, and 𝑥5,6 = 10, for an overall

cost of 231 monetary units. We represent the final solution in Figure 12.8,

where we highlight in green the used edges and report the used capacity

and remaining capacity per edge using the same notation as in Figure 12.3.

Figure 12.8: Final solution for Exam-

ple 12.4.
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� Coded example

The code used to model and solve Example 12.4 is available here.

12.4 Graph coloring problem

The graph coloring problem is a fascinating network problem with

various real-world applications. In its most general form, it involves an

undirected graph 𝐺 = (V, E)11, where the objective is to determine the
smallest number of colors needed to color the vertices such that no two
adjacent vertices share the same color. For the sake of notation, we will

define each edge 𝑒 ∈ Eas 𝑒 = (𝑣1 , 𝑣2) where 𝑣1 and 𝑣2 are the vertices

where 𝑒 is incident to.

https://github.com/alessandroBombelli/From-theORy-to-application-learning-to-optimize-with-Operations-Research-in-an-interactive-way/tree/main/Codes/Network%20problems/Maximum%20Flow%20and%20Minimum%20Cost%20Flow%20(MCF)%20Problems/Multiple%20Source%20Multiple%20Sink%20MCF
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The mathematical model, on top of 𝐺 = (V, E), needs a set of colors C.

For graphs that are not too large, we can define as many distinct colors
as |V|. This upper bound covers the worst-case scenario of a complete
graph, as described in Chapter 11, where every vertex is connected
to every other and hence we need |V| distinct colors to satisfy our
constraint. We will see later that this approach is doomed to severely

underperform if larger graphs are involved, and we will describe an

approach to tackle this issue.

No specific parameter is needed for a generic graph coloring problem.

The first decision variable that is needed is 𝑥𝑣𝑐 ∈ {0, 1}, which takes a

unitary value if vertex 𝑣 ∈ V is assigned color 𝑐 ∈ C. We also define

𝑦𝑐 ∈ {0, 1}, which takes a unitary value if color 𝑐 ∈ C is used in the final

solution. We store all the notation needed for the graph coloring problem

in Table 12.17.

Sets and indices

V set of vertices 𝑣 ∈ V

E set of edges 𝑒 ∈ E

C set of colors 𝑐 ∈ C

Variables

𝑥𝑣𝑐 ∈ {0, 1} unitary if vertex 𝑣 is colored with color 𝑐

𝑦𝑐 ∈ {0, 1} unitary if color 𝑐 is used

Table 12.17: Notation for the graph colo-

ring problem.

The graph coloring problem is a BP defined as:

min

∑
𝑐∈C

𝑦𝑐 (12.49)

s.t.:

∑
𝑐∈C

𝑥𝑣𝑐 = 1 ∀𝑣 ∈ V (12.50)

𝑥𝑣𝑐 ≤ 𝑦𝑐 ∀𝑣 ∈ V, 𝑐 ∈ C (12.51)

𝑥𝑣1𝑐 + 𝑥𝑣2𝑐 ≤ 1 ∀𝑒 = (𝑣1 , 𝑣2) ∈ E, 𝑐 ∈ C (12.52)

𝑥𝑣𝑐 ∈ {0, 1} ∀𝑣 ∈ V, 𝑐 ∈ C (12.53)

𝑦𝑐 ∈ {0, 1} ∀𝑐 ∈ C (12.54)

where (12.49) minimizes the number of selected colors, (12.50) ensures

that every vertex is assigned to exactly one color, (12.51) labels a color

as used as soon as it is assigned to a vertex, and (12.52) prevents two

connected vertices from being assigned to the same color 𝑐. Finally,

(12.53)-(12.54) define the binary nature of the two decision variable sets.

The minimum number of colors needed to color graph 𝐺 is also known as

its chromatic number. Some practical applications of the graph coloring

problem are:

▶ lecture hall timetabling. Graph coloring is employed in creating

class schedules for schools and universities. Each class corresponds

to a vertex with constraints such as room availability and teacher



238 12 Network problems

12: This is not a coincidence, but a na-

tural consequence of the boundaries of

those states converging into the Four cor-
ners monument (see Figure 12.9). We refer

interested readers to this Wikipedia page

for more information.

Figure 12.9: The Four corners monument

at the intersection of Utah (UT), Colorado

(CO), New Mexico (NM), and Arizona

(AZ).

availability represented as edges. The goal is to assign time slots to

classes so that no two conflicting classes share the same time slot. A

variant entails scheduling exams so that students can participate in

all the exams they have planned without any scheduling conflicts;

▶ frequency assignment in telecommunications. Graph coloring is

utilized in frequency assignment problems to assign frequencies

to transmitters so that adjacent transmitters operate on different

frequencies to avoid interference;

▶ map coloring. In cartography, maps featuring distinct regions

should be colored so neighboring regions have distinct colors to

avoid misinterpretation.

We illustrate the graph coloring problem with Example 12.5, where the

application is map coloring and hence directly reflects the essence of the

problem’s name.

Example 12.5 We consider the map of the United States with its 50 states and
the federal district of Washington D.C., hence considering 51 states overall (with
a slight abuse of notation, we consider the federal district of Washington D.C an
additional state). We want to determine the minimum number of colors needed
to color each of the 51 regions so that no two contiguous regions share the same
color.

To tackle the problem, the initial step is to represent the 51 states as a graph

𝐺 = (V, E). The definition of the set of vertices is quite straightforward,

as each state defines one 𝑣 ∈ V. Hence, |V| = 51. For the set of edges

E, we analyze the boundaries of different states to determine which

states border each other. This information is obtained from Adjacency
List of States of the United States (US) 2024, where for each state the list of

neighboring states is provided. We modeled each pair of neighboring

states as an edge 𝑒 ∈ Eand ensured duplicates were removed, as 𝐺 is

undirected. We identified 109 neighboring relationships, hence |E| = 109.

The resulting graph 𝐺 = (V, E) is depicted in Figure 12.10, where we

used the centroid (in terms of longitude and latitude) of each state to

locate each vertex. Additionally, each vertex is labeled with the postal

code of its respective state (e.g., the state of California is CA, the state of

Nevada NV, etc.). Some insights from Figure 12.10 are:

▶ Alaska (AK) and Hawaii (HI) are nodes with a degree of 0 (recall

Chapter 11) and hence 𝐺 is not connected. This correctly reflects

the geography of the United States of America;

▶ vertices in the mid-West seem to connect with more vertices rather

than vertices along the two coasts. In particular, states such as

Missouri (MO) and Colorado (CO) share boundaries with many

other states (respectively 8 and 7);

▶ related to the previous point, if we isolate the subgraph comprising

Utah (UT), Colorado (CO), New Mexico (NM), and Arizona (AZ),

we notice that it is a complete graph, with each of the four states

sharing boundaries with the other three
12

. Hence, at least 4 colors
are needed for this problem.

Alaska and Hawaii have no influence on the solution. In fact, we can solve

the graph coloring for the remaining 49 states and then randomly assign

a color to both from the set of colors selected. The number of vertices of

the graph is hence reduced to |V| = 49. Given the relatively small size

https://en.wikipedia.org/wiki/Four_Corners_Monument
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Figure 12.10: Graph representation of

the 51 states forming the United States of

America in Example 12.5.

of the graph (|V| = 49, |E| = 109), we assume the worst-case scenario

and define a set C of colors with |C| = 49. We will probably need far

fewer colors than that, and it might not be a good idea algorithmically to

employ such a risk-averse approach, but we will elaborate more about

this later in the context of this example.

We then employ the BP formulation of (12.49)-(12.54) and the final

solution suggests that we only need 4 colors, out of the 49 we initially

designed, to color the 49 states (plus Alaska and Hawaii) in a way that

no neighboring states share the same color. The final solution is reported

in Figure 12.11, where we decided to color the name of each state rather

than the full state for a neater visualization. Because of the small size of

states along the East Coast, the coloring is less evident there.

We also report the states divided by color:

▶ color 1: Alabama (AL), Connecticut (CT), Washington D.C. (DC),

Iowa (IA), Kansas (KS), Kentucky (KY), Louisiana (LA), Maine

(ME), North Carolina (NC), North Dakota (ND), New Jersey (NJ),

New Mexico (NM), Nevada (NV), Vermont (VT), Washington (WA),

Wyoming (WY);

▶ color 2: Delaware (DE), Florida (FL), Illinois (IL), Michigan (MI),

Minnesota (MN), Montana (MT), Nebraska (NE), New Hampshire

(NH), New York (NY), Oklahoma (OK), Oregon (OR), Rhode Island

(RI), South Carolina (SC), Tennessee (TN), Utan (UT), West Virginia

(WV);

▶ color 3: California (CA), Colorado (CO), Georgia (GA), Idaho (ID),

Massachussets (MA), Maryland (MD), Missouri (MO), Mississippi

(MS), Ohio (OH), South Dakota (SD), Texas (TX), Wisconsin (WI);

▶ color 4: Arkansas (AR), Arizona (AZ), Indiana (IN), Pennsylvania

(PA), Virginia (VA)

Eventually, only 4 colors are needed in the context of this graph coloring

problem, where any of the 4 (or two distinct ones) can be used to

“color" the disconnected Alaska and Hawaii. As expected, we were

overly-conservative with our initial selection of |C| = 49 potential colors.

Because the optimal solution states that four colors are needed, but not

which ones out of the pool of 49, any combination of 4 out of the 49 is
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Figure 12.11: Final solution to the graph

coloring model applied to the 51 states

forming the United States of America

in Example 12.5.. Four colors are suffi-

cient to have any two neighboring states

with different colors.

13: This strategy prevents the BB deci-

sion tree, as described in Chapter 7, from

exploring regions of the solution associa-

ted with symmetrical solutions.

“equally optimal". This implies a staggering
49!

45!4!
= 211, 876 equivalent

(or symmetrical) solutions. For example, solution {1, 7, 12, 35} is as good

as solution {3, 27, 40, 49} as they both entail four distinct colors from

C. While this relatively high number of symmetrical solutions might
not pose challenges for this small-scale problem, it might hinder
convergence to an optimum for larger problems.

We can devise a strategy to avoid symmetries by imposing a constraint

that allows a color to be used only if colors with lower indices are also

used. This constraint can be reformulated as follows: we sort our set of

colors C in descending order of preference, with color 𝑐 = 1 being the

favorite and color 𝑐 = |C| the least favorite. Then, we enforce the model
to select colors in order of preference. For instance, if the model needs

seven colors for a specific graph coloring application, it should choose the

first seven colors from our list, representing our seven favorite colors
13

.

Assuming that set C is defined with increasing indices as {1, 2, · · · , |C|},
we can implement symmetry-breaking constraints with the additional

constraint set:

𝑦𝑐 ≤ 𝑦𝑐−1 ∀𝑐 ∈ C\ {1} (12.55)

(12.55) implies that we can use color 1 (our “favorite") with no restrictions,

but we can only use color 𝑐 if the previous color in the set is used

(𝑦𝑐 ≤ 1) while we cannot use color 𝑐 if the previous one is not used

(𝑦𝑐 ≤ 0 → 𝑦𝑐 = 0). For example, if color 6 is not used (𝑦6 = 0), then

the model is forcing 𝑦7 ≤ 0→ 𝑦7 = 0. This, in turn, forces every other

color with an index greater to 7 not to be used as well. We elaborate an

alternative solution strategy to the graph coloring problem, especially

effective for large-scale problems, in theAn alternative solution method
for the graph coloring problem box.

� Coded example

The code used to model and solve Example 12.5 is available here.

https://github.com/alessandroBombelli/From-theORy-to-application-learning-to-optimize-with-Operations-Research-in-an-interactive-way/tree/main/Codes/Network%20problems/Graph%20Coloring
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 An alternative solution method for the graph coloring problem

We conclude this example by proposing an alternative strategy to

manage the potentially high number of colors while adhering to our

color preferences. Given that most decision variables and constraints

in a graph coloring problem scale with the number of potential colors

|C|, limiting this value is crucial. However, pinpointing the exact value

of |C| to solve the problem eliminates the need for graph coloring

altogether.

To address this, we can employ an iterative approach inspired by the

divide-and-conquer paradigm. We start with a conservative estimate

for |C| and attempt to solve the model. If successful, we halt the

process. If the model proves infeasible due to an underestimated |C|,
we increment |C| by adding at least one color and attempt to solve the

model again. This iterative process continues until we find a feasible

solution. While this approach entails solving multiple models, each
iteration should be relatively faster than setting |C| equal to |V| or
an excessively large upper bound that could hinder convergence or
lead to memory usage issues.

14: We use 𝑠 to represent the origin and 𝑡

to represent the destination because they

serve the same purpose as the source

and sink in the maximum flow problem

and MCF problem.

15: In this version of the book, we only

focus on the BP implementation of the SP

problem, but there are other approaches.

The most famous approach overall is the

Dĳkstra algorithm. We refer interested

readers to this Wikipedia page.

12.5 Shortest Path (SP) problem

The Shortest Path (SP) problem is one of the most common and widespread

OR models. Its portfolio of applications is extremely wide, ranging
from navigation systems to transportation networks, robotics path
planning, and supply chain management, just to cite a few examples.

The main setting entails a directed graph 𝐺 = (V, E), where each 𝑒 ∈ E

is characterized by a cost 𝐶𝑒 . Note that the cost 𝐶𝑒 depends on the nature

of the problem at hand and is key in capturing and describing the essence

of it.

The term “shortest" in the SP model might seem overly restrictive, as

the model actually seeks to find the path with the minimum cost from

an origin 𝑠 ∈ V to a destination 𝑡 ∈ N14
. Here, 𝐶𝑒 represents the cost

associated with traversing edge 𝑒, which could represent various metrics

such as distance, time, or monetary value.

While in some cases, the minimum cost path may indeed be the shortest

in terms of distance, “minimum cost" can have broader implications. For
instance, consider routing through a congested road network on the
way home. If the objective is to reach home as quickly as possible,
the minimum cost path (the most efficient in terms of time) might not
necessarily be the shortest one in terms of distance.

In a general SP, we do not consider edges as capacitated. We are not

interested in dispatching flows in a capacitated network, but to efficiently

route inside the network from 𝑠 to 𝑡. To this avail, one set of decision

variables is needed: 𝑥𝑒 ∈ {0, 1} which takes a unitary value if edge 𝑒 is

used in the solution. We report all the notation needed for the SP problem

in Table 12.18.

The SP problem is a BP
15

defined as:

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
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Table 12.18: Notation for the SP problem.

Sets and indices

V Set of vertices 𝑣 ∈ V

E Set of edges 𝑒 ∈ E

Parameters

𝐶𝑒 cost of edge 𝑒 ∈ E

Variables

𝑥𝑒 ∈ {0, 1} unitary if edge 𝑒 is used in the SP

min

∑
𝑒∈E

𝐶𝑒𝑥𝑒 (12.56)

s.t.:

∑
𝑒∈𝛿−

𝑖

𝑥𝑒 −
∑
𝑒∈𝛿+

𝑖

𝑥𝑒 =


1, 𝑖 = 𝑠

−1, 𝑖 = 𝑡

0, otherwise

∀𝑖 ∈ V (12.57)

𝑥𝑒 ∈ {0, 1} ∀𝑒 ∈ E (12.58)

(12.56) defines the objective function, i.e., to minimize the overall cost

of the used edges. (12.57) is a flow conservation constraint split into

three parts according to the specific vertex considered. For the source

𝑠, we impose to leave such a node via one of the edges outbound from

it

∑
𝑒∈𝛿−𝑠 𝑥𝑒 −

∑
𝑒∈𝛿+𝑠 𝑥𝑒 = 1 is equivalent to

∑
𝑒∈𝛿−𝑠 𝑥𝑒 = 1. For the sink

𝑡, we impose to reach such a node via one of the edges inbound to it∑
𝑒∈𝛿−𝑡 𝑥𝑒 −

∑
𝑒∈𝛿+𝑡 𝑥𝑒 = −1 is equivalent to

∑
𝑒∈𝛿+𝑡 𝑥𝑒 = 1. For every other

node, the net flow should be zero. (12.58) defines the binary nature of

the decision variables.

Example 12.6 A group of friends is organizing a road trip from Austin (TX) to
Raleigh (NC). Along the trip towards East, the group plans potential visits to the
following state capitals: Little Rock (AK), Baton Rouge (LA), Nashville (TN),
and Montogomery (AL). Despite the keen interest on the beautiful South-East
states of the United States of America, the group plans to arrive at the destination
following the path with the shortest distance. The potential connections between
the state capitals that the group considers are shown in Figure 12.12, where the
numbers represent the distance (in miles) between cities. The goal is to formulate
the problem as a SP problem and find the optimal solution.

In Figure 12.12, on top of the the postal code of the state, we add a

numerical index for the sake of simplicity: 𝑇𝑋 → 1, 𝐴𝐾 → 2, 𝐿𝐴 →
3, 𝑇𝑁 → 4, 𝐴𝐿→ 5, 𝑁𝐶 → 6. Hence, 𝑠 = 1 and 𝑡 = 6. We define the SP

problem as:

min 446𝑥1,2 + 432𝑥1,3 + 343𝑥2,3 + 347𝑥2,4 + 463𝑥2,5

+ 587𝑥3,4 + 365𝑥3,5 + 539𝑥4,6 + 281𝑥5,4 + 569𝑥5,6 (12.59)
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Figure 12.12: Graph representation 𝐺 =

(V, E) of the six state capitals (V) and

their connections (E) of Example 12.6.

16: We recollect some notation from

Chapter 11 here. A spanning tree is a

subgraph of 𝐺 that features all the origi-

nal vertices and a subset of edges so that

every pair of vertices is connected by a

single path only.

s.t.:

𝑥1,2 + 𝑥1,3 = 1 (12.60)

𝑥1,2 − 𝑥2,3 − 𝑥2,4 − 𝑥2,5 = 0 (12.61)

𝑥1,3 + 𝑥2,3 − 𝑥3,4 − 𝑥3,5 = 0 (12.62)

𝑥2,4 + 𝑥3,4 + 𝑥5,4 − 𝑥4,6 = 0 (12.63)

𝑥2,5 + 𝑥3,5 − 𝑥5,4 − 𝑥5,6 = 0 (12.64)

− 𝑥4,6 − 𝑥5,6 = −1 (12.65)

𝑥1,2 , · · · , 𝑥5,6 ∈ {0, 1} (12.66)

We wrote the flow conservation constraints following the numerical

indexing, hence (12.60) relates to vertex 1 (TX) and (12.65) refers to vertex

6 (NC). Solving the problem yields the following routing: Austin (TX)

→ Little Rock (AK)→ Nashville (TN)→ Raleigh (NC), for an overall

distance of 1, 332 miles.

� Coded example

The code used to model and solve Example 12.6 is available here.

12.6 Minimum Spanning Tree (MST) problem

The Minimum Spanning Tree (MST) problem is another widespread

problem in OR. Its mathematical representation entails an undirected

graph 𝐺 = (V, E), with every 𝑒 ∈ Echaracterized by a cost 𝐶𝑒 . The goal

of the MST problem is to connect all the vertices of 𝐺without any cycles
16

and with the minimum possible total edge cost. Hence, among all the
possible spanning trees of 𝐺 = (V, E), we are interested in looking for
the one with the minimum cumulative cost.

In the SP problem, the focus lies on efficient traversal from a designated

origin to a destination within a graph, emphasizing directionality as a

key factor. Conversely, the adoption of an undirected graph in the MST

problem stems from the goal of establishing comprehensive connections

https://github.com/alessandroBombelli/From-theORy-to-application-learning-to-optimize-with-Operations-Research-in-an-interactive-way/tree/main/Codes/Network%20problems/Shortest%20Path%20(SP)%20Problem
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17: As will become apparent later, this

formulation is called subtour elimination
formulation, as opposed to the alterna-

tive cutset formulation. We refer readers

to the suggested reference for the other

formulation.

among vertices, rather than prioritizing specific paths between individual

nodes. We use this last statement to list some applications of the MST

problem: transportation networks (optimal design of road or railway

lines that maximizes connectivity between locations while limiting in-

frastructure costs), power grid design (layout of power lines to connect

different substations or power generation sources while minimizing the

total length of wire needed), cluster analysis (constructing a tree that

connects all data points with the minimum total edge weight can be

leveraged to efficiently cluster such points), etc.

In the academic literature, several variants of the MST exist. We adopt

the first version presented in Columbia University: IEOR 6614 course notes
2024

17
, but after providing a couple of preliminary insights. We start by

intuitively proving that in an undirected graph𝐺 = (V, E) exactly |E−1|
edges are needed to form a spanning tree. In Figure 12.13 we provide

three examples of spanning trees for graphs with |V| = 2 (Figure 12.13a),

|V| = 3 (Figure 12.13b), and |V| = 4 (Figure 12.13c) vertices. While

in Figure 12.13a that is the only spanning tree existing, different options

are available when |V| = 3 or |V| = 4 and our goal would be to find the

“cheapest" one. In all three cases, if we start from any vertex we can reach

any other vertex within a limited number of steps (the spanning tree

indeed defines a connected graph) and no cycles are present. Therefore,

we might naturally seek the optimal spanning tree by formulating the

objective function as minimizing the sum of costs

∑
𝑒∈E𝐶𝑒𝑥𝑒 , while

enforcing the constraint

∑
𝑒∈E 𝑥𝑒 = |E| − 1. In essence, among all the

conceivable combinations of |E| − 1 edges in 𝐺, our objective is to
identify the combination with the lowest total cost.

We now show why this approach might be doomed to fail under specific

circumstances with the example of Figure 12.14. Figure 12.14a displays a

graph with |V| = 4 nodes and |E| = 5 edges, where the number on each

edge 𝑒 represents 𝐶𝑒 . Following our previous intuition, if we construct

a mathematical model searching for the combination of |V| − 1 = 3

edges with the smallest cumulative edge cost, the solution we obtained

is the one reported in Figure 12.14b, where edges (1, 2), (1, 4), and (2, 4)
are selected for a cumulative cost of 6. This solution is not a proper
minimum spanning tree for two reasons: vertex 3 is disconnected and
hence not reachable from any other vertex and vertices 1,2, and 4 form
a cycle.

This does not mean we were completely wrong, but that we need an

additional set of constraints to avoid such a situation from occurring.

More precisely, we need to prevent subtours (which is another term

for cycles) from being selected by the model. To do so, we first need

to define set S. This set contains, given a graph 𝐺 = (V, E), all the

unique combinations of vertices ranging from 3 vertices up to |V| − 1

vertices. Such a set plays an active role only for graphs where |V| ≥ 4

(as in Figure 12.14). At least 3 edges are needed to form a cycle, and we

specified that a minimum spanning tree for a graph with |V| vertices

is composed by |V| − 1 edges. Hence, as shown by Figure 12.13a and

Figure 12.13b, minimum spanning trees in graphs where |V| ≤ 3 cannot

feature subtours anyway.

Considering again Figure 12.14, we showcase how to compute setSand its

relevance. Because |V| = 4 and we need to find combinations of vertices

from 3 up to |V|−1, we only need to find combinations of 3 vertices out of
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1 2

(a) |V| = 2.

1

2 4

(b) |V| = 3.

1 2

34

(c) |V| = 4.

Figure 12.13: Examples of spanning trees

for graphs with |V| = 2, |V| = 3, and

|V| = 4 vertices.

1 2

34

1

5

4

2 3

(a) Original graph 𝐺 = (V, E).

1 2

34

1

5

4

2 3

(b) Incorrect MST where the only condition enforced is

∑
𝑒∈E 𝑥𝑒 = |V| − 1.

Figure 12.14: Example of a wrong mathe-

matical modeling approach to compute

a MST.



246 12 Network problems

4. Hence, S= {(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)}. Additionally, for every

combination 𝑠 ∈ Swe need to store E(𝑠) ⊆ E, i.e., the subset of edges

where both vertices belong to 𝑠. In our case, E((1, 2, 3)) = {(1, 2), (2, 3)},
E((1, 2, 4)) = {(1, 2), (1, 4), (2, 4)}, E((1, 3, 4)) = {(1, 4), (3, 4)},
and E((2, 3, 4)) = {(2, 3), (2, 4), (3, 4)}.

The last step of this process is to define the constraint set:

∑
𝑒∈E(𝑠)

𝑥𝑒 ≤ |𝑠 | − 1 ∀𝑠 ∈ S (12.67)

12.67 enforces that, given a subset 𝑠 ∈ S (with |𝑠 | vertices) in the graph,

at most |𝑠 | − 1 edges that both originate and end in vertices part of 𝑠 can

be chosen. Imposing such a constraint set, we avoid the situation shown

in Figure 12.14b because, for 𝑠 = {(1, 2, 4)}, we impose that at most 2

edges among (1, 2), (1, 4), and (2, 4) can be chosen when determining the

MST.

In practice, (12.67) plays a constraining role only for those 𝑠 ∈ Swhere
a subtour can occur in the first place, i.e., for those subsets 𝑠 where
|E(𝑠)| = |𝑠 |. In our example, this is the case for 𝑠 = {(1, 2, 4)}, as shown
in Figure 12.14b, and 𝑠 = {(2, 3, 4)}, where without the constraint
the simultaneous selection of edges (2, 3), (2, 4), and (3, 4) would be
allowed. With (12.67), we impose instead 𝑥2,3 + 𝑥2,4 + 𝑥3,4 ≤ 2, hence

preventing that subtour from occurring. On the other hand, let us take

the example of 𝑠 = {1, 2, 3}. We see from Figure 12.14a that those 3

vertices alone cannot form a cycle on their own. This is confirmed if we

apply (12.67) to 𝑠 = {1, 2, 3}. Because E((1, 2, 3)) = {(1, 2), (2, 3)}, the

constraint becomes 𝑥1,2 + 𝑥2,3 ≤ | {1, 2, 3} | − 1 = 2 → 𝑥1,2 + 𝑥2,3 ≤ 2

which is always verified anyway.

We showcase the notation needed for the subtour elimination formulation

of the MST in Table 12.19

Table 12.19: Notation for the MST pro-

blem.
Sets and indices

V Set of vertices 𝑣 ∈ V

E Set of edges 𝑒 ∈ E

S Set of vertices subsets 𝑠 ∈ Swith 3 ≤ |𝑠 | ≤ |V| − 1

Parameters

𝐶𝑒 cost of edge 𝑒 ∈ E

Variables

𝑥𝑒 ∈ {0, 1} unitary if edge 𝑒 is used in the MST

and define its mathematical BP formulation as:

min

∑
𝑒∈E

𝐶𝑒𝑥𝑒 (12.68)

s.t.:
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∑
𝑒∈E

𝑥𝑒 = |V| − 1 (12.69)∑
𝑒∈E(𝑠)

𝑥𝑒 ≤ |𝑠 | − 1 ∀𝑠 ∈ S (12.70)

𝑥𝑒 ∈ {0, 1} ∀𝑒 ∈ E (12.71)

(12.68) minimizes the overall cost of the edges forming the MST. (12.69)

defines the number of edges needed for the MST, (12.70) prevents subtours

from occurring, and (12.71) defines the binary nature of the decision

variables.

We showcase an application of the MST model described in (12.68)-(12.71)

using the same initial setting as in Example 12.6.

Example 12.7 Using the same set of state capitals and edges as in Example 12.6,
i.e., Austin (TX), Little Rock (AK), Baton Rouge (LA), Nashville (TN), Mon-
togomery (AL), and Raleigh (NC), the goal is to determine the shortest length
of the railway network that allows to reach any of the six capitals from any
other. We assume that railway connections are only allowed according to the
original set of edges and that the length of each allowed connection is the same
as in Example 12.6.

We realize that this problem can be solved as an MST problem because

our task is to find a way to connect all 6 state capitals via a unique

path per city pair. Because MSTs are defined on undirected graphs, we

highlight the initial setting in Figure 12.15 by removing the arrow tips

from all edges.

TX, 1

AK,2

LA,3

TN,4

AL,5

NC,6

4
4
6

4
3
2

3
4
3

347

4
6
3

5
8
7

365

2
8
1

5
3
9

5
6
9

Figure 12.15: Graph representation 𝐺 =

(V, E) of the six state capitals (V) and

their connections (E) for Example 12.7.

Before showcasing the mathematical formulation, we display how to

compute set S. Because |V| = 6, we must compute all the combinations

of 3, 4, and 5 cities out of 6. Their number is, respectively,
6!

3!3!
= 20,

6!

4!2!
= 15, and

6!

5!1!
= 6, so that |S| = 41. For the sake of conciseness, we do

not list all of them, but highlight a couple of relevant cases. If 𝑠 = (1, 2, 3),
then E(𝑠) = {(1, 2), (1, 3), (2, 3)}, which results (applying (12.70)) in 𝑥1,2+
𝑥1,3 + 𝑥2,3 ≤ 2. If 𝑠 = (2, 3, 4, 5), then E(𝑠) = {(2, 3), (2, 4), (2, 5), (3, 4)},
which results in 𝑥2,3 + 𝑥2,4 + 𝑥2,5 + 𝑥3,4 ≤ 3. In both cases, the constraint

prevents the model from creating a subtour encompassing the selected

vertices.
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We formulate the MST problem as:

min 446𝑥1,2 + 432𝑥1,3 + 343𝑥2,3 + 347𝑥2,4 + 463𝑥2,5

+ 587𝑥3,4 + 365𝑥3,5 + 281𝑥4,5 + 539𝑥4,6 + +569𝑥5,6 (12.72)

s.t.:

𝑥1,2 + 𝑥1,3 + 𝑥2,3 + 𝑥2,4 + 𝑥2,5 + 𝑥3,4 + 𝑥3,5 + 𝑥4,5 + 𝑥4,6 + 𝑥5,6 = 5

(12.73)

𝑥1,2 + 𝑥1,3 + 𝑥2,3 ≤ 2 (12.74)

· · ·
𝑥2,3 + 𝑥2,4 + 𝑥2,5 + 𝑥3,4 + 𝑥3,5 + 𝑥4,5 + 𝑥4,6 + 𝑥5,6 ≤ 4 (12.75)

𝑥1,2 , · · · , 𝑥5,6 ∈ {0, 1} (12.76)

(12.72) defines the objective function, i.e., to minimize the overall length of

the railway connections. (12.73) imposes that the MST should have 5 edges

in this specific instance, and (12.74)-(12.75) define the first (𝑠 = (1, 2, 3))
and last (𝑠 = (2, 3, 4, 5, 6)) of the 41 subtour elimination constraints.

(12.75) defines the binary nature of the decision variables.

The resulting solution suggests that the MST should be formed by

the following edges: (1, 3), (2, 3), (2, 4), (4, 5), and (4, 6), for an overall

length of the railway system of 1, 942 miles. Such a solution is depicted

in Figure 12.16.

Figure 12.16: Resulting MST connecting

the 6 state capitals.
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Given the strong symmetry of the original graph 𝐺 = (V, E), it is
worth discussing the resulting MST and interpreting such a solution.
The solution incentivizes connecting TX to the “main block" formed
by AK, LA, TN, and AL by selecting the shortest edge (𝑇𝑋, 𝐿𝐴) rather
than (𝑇𝑋, 𝐴𝐾). Following the same logic, NC connects to the main
block via TN as it is a shorter connection than via AL. Then, to complete
the MST the shortest 3 remaining edges, namely (𝐴𝐾, 𝐿𝐴), (𝐴𝐾, 𝑇𝑁),
and (𝑇𝑁, 𝐴𝐿) are chosen so that connectivity properties are ensured
while minimizing the overall distance. North-south movements are
shorter using the (𝐴𝐾, 𝐿𝐴) and the (𝑇𝑁, 𝐴𝐿) connections rather than
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the longer (𝐴𝐾, 𝐴𝐿) and (𝐿𝐴, 𝑇𝑁) ones. Additionally, the solution
would still be an MST is (𝐿𝐴, 𝐴𝐿)was chosen instead of (𝐴𝐾, 𝑇𝑁) to
allow east-west movements, but as connection (𝐴𝐾, 𝑇𝑁) is 18 miles
shorter than (𝐿𝐴, 𝐴𝐿), the model selects the first one.

� Coded example

The code used to model and solve Example 12.7 is available here.

In the  An alternative way of dealing with subtour elimination
constraints in the MST problem box we describe an alternative approach

to solve an MST which avoids full enumeration of all potential subtours

upfront.

https://github.com/alessandroBombelli/From-theORy-to-application-learning-to-optimize-with-Operations-Research-in-an-interactive-way/tree/main/Codes/Network%20problems/Minimum%20Spanning%20Tree%20(MST)%20Problem
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An alternative way of dealing with subtour elimination constraints
in the MST problem

Readers with a penchant for combinatorics might have realized

that defining all subtour elimination constraints upfront might be a

daunting task. This is especially true for larger graphs 𝐺 = (V, E)
with respect to the one presented in Example 12.7. Let us take a slightly

larger graph where |V| = 20. Enumerating all the combinations of

vertices from 3 up to 19 yields

20!

17!3!

+ 20!

16!4!

+ · · · + 20!

2!18!

+ 20!

1!19!

=

1, 140 + · · · + 20 = 1, 048, 364

combinations already. For graphs where |V| is in the range of the

hundreds or thousands (quite common in practical applications),

the number of combinations spikes even more. Adding so many
constraints to the model might affect negatively the solution time,
especially given that only a fraction of the “theoretically needed"
subtour elimination constraints is really needed for a mathemati-
cally feasible solution.

This is where the concept of lazy constraints comes into play. The idea

is to discard initially any subtour elimination constraint and solve the

MST problem with just constraint (12.69). Then the solution is analyzed

and, if there are no subtours, that solution is accepted. Otherwise,
the constraints that prevent the identified subtours from occurring
are added and the problem is solved again until a certain iteration
is reached where the solution is subtour-free. This approach of
adding constraints is labeled “lazy" because constraints are not
added upfront, but only as needed to fix some infeasible behavior
(the subtours). This process might entail solving an updated problem

many times rather than once. Notwithstanding, each problem (albeit

growing in size due to the added lazy constraints) is much smaller

than the original problem where all subtour elimination constraints

are present, and hence the process should be algorithmically more

efficient. Considering again Figure 12.14, adopting this approach

the first MST we would compute would be the one represented

in Figure 12.14b, which features a subtour. Hence, we would add to

the model the additional constraint 𝑥1,2 + 𝑥1,4 + 𝑥2,4 ≤ 2 and solve the

model again.
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“Begin at the beginning," the King said, very

gravely, “and go on till you come to the end:

then stop."

Lewis Carroll

Routing problems are at the core of various collection and distribution

systems which directly and indirectly are part of our lives. Formally,
they are network problems as well since they are defined over a graph
𝐺 = (V, E). Nevertheless, there have been substantial developments

specific to the nature of routing problems in terms of the formulation and

solution methods which is the reason why we cover them in a dedicated

chapter.

For routing problems, the Traveling Salesman Problem (TSP) is the

building block that carries the core complexity and is easy to explain.

Consider a salesperson that needs to visit 𝑛 cities, i.e., nodes, exactly once.

This reminds us of a Hamilton cycle, as pointed out in the  A reminder
on Hamiltonian cycles box. The TSP looks for the least costly tour to

achieve this. The visit may be related to delivering packages, containers,

etc., or collecting them such as the case of waste collection. We refer

to Lawler et al. (1985) for an overview of the historical development of

the TSP. The TSP is generalized with different variants under the class of

Vehicle Routing Problem (VRP)s. The main generalization is that more

than one vehicle is available, which essentially means that we can have

multiple tours. We refer to Toth and Vigo (2002) for an overview of VRPs

and the different variants.

In this chapter, we will first cover the formulation and solution methods

for a TSP in Section 13.1-13.2 and then discuss VRPs in Section 13.3-

Section 13.5.

 A reminder on Hamiltonian cycles

A TSP looks for a tour that visits each node, i.e., vertex, exactly

once. As a reminder (see Section 11.2), such tours are referred to as

Hamiltonian cycles. A graph that contains a Hamiltonian cycle is then

a Hamiltonian graph.

13.1 Traveling Salesman Problem (TSP)

A TSP is defined over a graph where each city to be visited is denoted

by a node and two nodes are connected by arcs (or edges). The set of

nodes is given by N. The objective is to have the least costly tour, where

the cost of traveling from a city 𝑖 to city 𝑗 is given by 𝐶𝑖 𝑗 . This cost

can be representing the distance, time, or indeed a monetary cost or a

combination of them in the form of a generalized cost. For formulating
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the problem, we need to introduce a set of binary decision variables as

follows:

𝑥𝑖 𝑗 =

{
1 if arc (𝑖 , 𝑗) is in the tour

0 otherwise.
(13.1)

We report the needed notation for the TSP in Table 13.1.

Table 13.1: Notation for the TSP.

Sets and indices

N set of nodes 𝑖 , 𝑗 ∈ N, |N| = 𝑛

Parameters

𝐶𝑖 𝑗 cost from node 𝑖 ∈ N to node 𝑗 ∈ N

Variables

𝑥𝑖 𝑗 ∈ {0, 1} unitary if arc (𝑖 , 𝑗) is in the tour

𝑢𝑖 order of node 𝑖 ∈ N in the tour

Each of the cities needs to be visited exactly once and this means there

will be one arc incoming to each node and one outgoing (see below in

( 13.3) and ( 13.4)). Up to now, the TSP resembles an assignment problem

from Chapter 9. Yet it needs to be expanded to have subtour elimination

constraints to avoid disjoint tours. This can be done in multiple ways and

the two most common ones are known as DFJ (Dantzig et al., 1954) and

MTZ (Miller et al., 1960) subtour elimination constraints. The problem

formulation below utilizes MTZ subtour elimination constraints and is

provided as follows:

min

∑
𝑖∈N

∑
𝑗∈N

𝐶𝑖 𝑗𝑥𝑖 𝑗 (13.2)

s.t.:

∑
𝑖∈N

𝑥𝑖 𝑗 = 1 ∀𝑗 ∈ N (13.3)∑
𝑗∈N

𝑥𝑖 𝑗 = 1 ∀𝑖 ∈ N (13.4)

𝑢1 = 1 (13.5)

2 ≤ 𝑢𝑖 ≤ 𝑛 ∀𝑖 ∈ N : 𝑖 > 1 (13.6)

𝑢𝑖 − 𝑢𝑗 + 𝑛𝑥𝑖 𝑗 ≤ 𝑛 − 1 ∀𝑖 , 𝑗 ∈ N (13.7)

𝑥𝑖 𝑗 ∈ {0, 1} ∀𝑖 , 𝑗 ∈ N (13.8)

𝑢𝑖 ≥ 0 ∀𝑖 ∈ N (13.9)

(13.2) aims at minimizing the cost of the tour. (13.3)-(13.4) ensure that

each node has one ingoing and one outgoing arc. The MTZ subtour

elimination constraints order the visit of the nodes with the use of the

𝑢𝑖 variables. The starting node is given the order of 1 (13.5) and the
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remainder of the nodes will be ordered between 2 and 𝑛 (13.6) based

on the routing decision 𝑥𝑖 𝑗 thereafter (13.7). In fact, if 𝑥𝑖 𝑗 = 1 we obtain

from (13.7) that 𝑢𝑗 ≥ 𝑢𝑖 + 1 → 𝑢𝑗 = 𝑢𝑖 + 1. Because 𝑗 is visited right

after 𝑖, their ordering is correctly captured by the constraint. (13.8)-(13.9)

define the nature of the decision variables.

Figure 13.1: An example network for the

TSP.

Example 13.1 Let us now consider an example as given in Figure 13.1 where
the coordinates of four cities (blue nodes) and a depot (green square) are provided
as a network. Table 13.2 provides the Euclidean distances between the nodes.

depot 1 2 3 4

depot 26 33 21 14

1 26 36 45 28

2 33 36 50 46

3 21 45 50 20

4 14 28 46 20

Table 13.2: Distance matrix for Exam-

ple 13.1

Considering that the objective is to minimize the total distance, i.e.,∑
𝑖∈N

∑
𝑗∈N𝐶𝑖 𝑗𝑥𝑖 𝑗 with each 𝐶𝑖 𝑗 given in Table 13.2, the optimal solution

for this TSP is given in Figure 13.2 with a total distance of 138.

� Coded example

The code used to model and solve Example 13.1 is available here.

https://github.com/alessandroBombelli/From-theORy-to-application-learning-to-optimize-with-Operations-Research-in-an-interactive-way/tree/main/Codes/Routing%20problems/Traveling%20Salesman%20Problem%20(TSP)
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Figure 13.2: Solution to Example 13.1

13.2 Solution methods for the TSP

The formulation provided in (13.2)-(13.9) is a MILP and can be solved in

different ways. An exhaustive enumeration for such problems will corre-

spond to (𝑛 − 1)! permutations considering Hamiltonian cycles. Already

a graph with 10 nodes would lead to the enumeration of more than 10
5

cycles, which shows the computational complexity of the problem.

As discussed in Part III, one option is to go for exact methods such as

BB which are typically at the backbone of available optimization solvers.

There are also various dedicated heuristic algorithms developed for the

TSP, which we do not cover in this book.

In any solution method, an initial feasible solution is essential and serves

as an upper bound for the problem (in the case of min problems). For

obtaining such an initial feasible solution, there are different techniques

available. Nearest Neighbor, Farthest Neighbor, Nearest Insertion, and Farthest
Insertion are listed as the most commonly used ones. These are also

referred to as Tour Construction Heuristics.

For the TSP provided in Example 13.1 let us apply the Nearest Neighbor

method. From the depot, the nearest node is node 4. The nearest one

to node 4 is node 3. The nearest one to node 3 is 4, but it will create

a subtour so we select the next closest one which is node 1. From

node 1 we need to cover the remaining node, which is node 2 and

then we go back to the depot. So the nearest neighbor solution is:

depot → 4 → 3 → 1 → 2 → depot which has a total distance of 148.

The Nearest Neighbor method is myopic when it comes to the objective
of a minimum tour length. It looks for the nearest node, yet we need
to come back to the depot and we may end up traveling longer (this

concept shares similarities with the myopic North-West corner rule we

discussed in Chapter 12). In this case, the myopic choice of selecting node

4 at the start of the tour, comes at the cost of having a long-distance edge

of (3, 1) later.
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13.3 Vehicle Routing Problem (VRP)

VRPs have been developed to generalize the TSP in terms of many as-

sumptions. First of all, having a fleet of vehicles to perform various
transport and logistics activities brings the possibility of having mul-
tiple tours in the routing solution. Furthermore, capacity is a core
limitation that cannot be avoided for practical applications. Therefore,

the Capacitated Vehicle Routing Problem (CVRP) is one of the most

studied VRPs in the literature.

We provide the notation used for the CVRP formulation in Table 13.3.

Note that, the terms already introduced for the TSP in Section 13.1

are kept to the same notation except for introducing a vehicle index

to some of them. Note that, for the sake of an easier explanation, we

are now representing the depot by two nodes at identical locations; 0

represents the start and 𝑛 + 1 represents the end. Considering a set of

customers C= {1, · · · , |C| = 𝑛}, we can then define the full set of nodes

as N= {0, 1, · · · , 𝑛, 𝑛 + 1} where the first and last terms are the nodes

representing the same depot (the first as the origin of a tour, the second

as the destination of a tour) and all the others are the customer nodes.

It also follows that |N| = |C| + 2 = 𝑛 + 2. In addition, we do define

the ordering decision variables for the origin depot node and customer

nodes, but not for the destination depot node.

Sets and indices

N Set of nodes 𝑖 , 𝑗 ∈ N, |N| = 𝑛 + 2, 0 is the start and 𝑛 + 1 is the end node (depot)

C Set of customer nodes 𝑖 , 𝑗 ∈ C, excluding the depot nodes 0 and 𝑛 + 1, C ⊂ N

V Set of vehicles 𝑘 ∈ V

Parameters

𝐶𝑖 𝑗 cost (or distance or time) from node 𝑖 ∈ N to node 𝑗 ∈ N
𝐷𝑖 demand of node 𝑖

𝑄𝑘 capacity of vehicle 𝑘

Variables

𝑥𝑖 𝑗𝑘 ∈ {0, 1} unitary if arc (𝑖,𝑗) is traversed by vehicle 𝑘, 0 otherwise

𝑢𝑖𝑘 order of node 𝑖 ∈ N\ {𝑛 + 1} in the tour of vehicle 𝑘

Table 13.3: Notation for the CVRP.

The mathematical formulation then follows as:

min

∑
𝑖∈N

∑
𝑗∈N

∑
𝑘∈V

𝐶𝑖 𝑗𝑥𝑖 𝑗𝑘 (13.10)

s.t.:
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1: Note that we need to ensure subtours

are not created between customer nodes

only. Because of this, we initialize 𝑢
0𝑘 =

1 ∀𝑘 ∈ Vas every vehicle starts its tour

from the origin depot and we do not

define 𝑢𝑛+1,𝑘 . Because of (13.15), every

vehicle will move from its last visited

customer node to the destination depot

anyway.

∑
𝑘∈V

∑
𝑗∈N

𝑥𝑖 𝑗𝑘 = 1 ∀𝑖 ∈ C (13.11)∑
𝑖∈C

𝐷𝑖

∑
𝑗∈N

𝑥𝑖 𝑗𝑘 ≤ 𝑄𝑘 ∀𝑘 ∈ V (13.12)∑
𝑖∈N

𝑥0𝑖𝑘 = 1 ∀𝑘 ∈ V (13.13)∑
𝑖∈N

𝑥𝑖ℎ𝑘 −
∑
𝑗∈N

𝑥ℎ 𝑗𝑘 = 0 ∀ℎ ∈ C, 𝑘 ∈ V (13.14)∑
𝑖∈N

𝑥𝑖 ,𝑛+1,𝑘 = 1 ∀𝑘 ∈ V (13.15)

𝑢0𝑘 = 1 ∀𝑘 ∈ V (13.16)

2 ≤ 𝑢𝑖𝑘 ≤ 𝑛 + 1 ∀𝑖 ∈ C, 𝑘 ∈ V (13.17)

𝑢𝑖𝑘 − 𝑢𝑗𝑘 + (𝑛 + 1)𝑥𝑖 𝑗𝑘 ≤ 𝑛 ∀𝑖 , 𝑗 ∈ N\ {𝑛 + 1}, 𝑖 ≠ 𝑗 , 𝑘 ∈ V (13.18)

𝑥𝑖 𝑗𝑘 ∈ {0, 1} ∀𝑖 , 𝑗 ∈ N, 𝑘 ∈ V (13.19)

𝑢𝑖𝑘 ≥ 0 ∀𝑖 ∈ N\ {𝑛 + 1}, 𝑘 ∈ V (13.20)

The objective function (13.10) is similar to the TSP case and minimizes

the total cost across all nodes to be visited and the vehicles. Constraints

(13.11) ensure that exactly one vehicle visits each of the nodes (except

the depot). The capacity of the fleet is maintained by constraints (13.12).

Constraints given in (13.14) state that if vehicle 𝑘 arrives at customer

node ℎ, then the same vehicle must leave node ℎ (hence, conservation of

flow per vehicle 𝑘 ∈ V is enforced in each customer node). Constraints

(13.13) and (13.15) ensure that each vehicle starts in the depot and ends

in the depot, respectively. Note that, the vehicles that are not needed to

perform any tours can stay in the depot, i.e., can start at node 0 and end

at node 𝑛 + 1 (which is a tour at zero cost as 𝐶0,𝑛+1 = 0). Constraints

(13.16)-(13.18) are the same subtour elimination constraints as before

but expanded with the vehicle index 𝑘. In (13.17), the lower bound of

every node except the origin depot is 2 while the upper bound is 𝑛 + 1:

these bounds allow to map the case where a single vehicle visits all

customers (the last one in the tour inheriting the index 𝑛 + 1 because

index 1 is assigned to the origin depot via (13.13)) before reaching the

destination depot
1
. The coefficients on the left- and right-hand sides are

slightly different with respect to (13.7) as now 𝑛 + 1 (and not 𝑛) nodes

are considered. Additionally, in (13.18) it is also made explicit that such

constraints are only enforced for different nodes: 𝑖 ≠ 𝑗. Note that the

same logic applies to the objective function and all the other constraints.

For example, in (13.10), when writing

∑
𝑖∈N

∑
𝑗∈N we imply as well 𝑖 ≠ 𝑗

as 𝐶𝑖𝑖 is not defined. For the depot, we fix this problem by fictitiously

defining two separate nodes 𝑖 = 0 and 𝑖 = 𝑛 + 1 which allows modeling

departures/arrivals from/to the depot and unused trucks that travel

between the two nodes at zero cost 𝐶0,𝑛+1 = 0 as mentioned above. The

type of the variables is given in (13.19)-(13.20).

Note that, there could also be an explicit upper bound on the total number

of vehicles for example as follows:∑
𝑘∈V

∑
𝑗∈N

𝑥0𝑗𝑘 ≤ |V| (13.21)



13.3 Vehicle Routing Problem (VRP) 257

It is also another convention to define a binary variable for the assignment

of the vehicles to the nodes, e.g., 𝑧𝑖𝑘 which is 1 if node 𝑖 is served by

vehicle 𝑘 and zero otherwise. It is not compulsory to do so as we did not
have it above. We can reconstruct which vehicle visits which customer
by analyzing decision variables 𝑥𝑖 𝑗𝑘 . Yet for some formulations, it may

help to explicitly have this assignment for easier readability.

The formulation provided in (13.10)-(13.20) assumes that each vehicle
has a maximum of one tour and that we do not have any time-related
limitations. Capacity is already defined for each vehicle separately so

in principle the fleet can be heterogeneous. Yet if this brings additional

cost considerations, it needs to be incorporated as part of the objective

function. For adding such costs on the fleet utilization, we can make

use of the total number of used vehicles

∑
𝑘∈V

∑
𝑗∈C 𝑥0𝑗𝑘 . Note that, here

we do not consider those staying at the depot and rather count those
leaving the depot towards a customer node (the second summation∑
𝑗∈C only spans over customer nodes and does not consider the zero-

cost connection between the depot nodes 0 and 𝑛 + 1). This can be

adapted for the case at hand, for example as follows. Let us define 𝐶𝑘
the fixed cost incurred if vehicle 𝑘 ∈ V is used, and 𝑦𝑘 ∈ {0, 1} a binary

variable that is unitary if truck 𝑘 performs a “real" tour (with the only

“non-real" tour being a direct trip from node 0 to node 𝑛 + 1). In our

current setting, we consider variable costs that are proportional to the

traveled distance via parameters 𝐶𝑖 𝑗 , but not such a fixed cost yet. We

leverage the fixed charge constraints from Section 4.8.4 to model fixed

costs. In particular, we replace (13.13) with the following constraints:

𝑥0,𝑛+1,𝑘 +
∑
𝑖∈C

𝑥0𝑖𝑘 = 1 ∀𝑘 ∈ V (13.22)∑
𝑖∈C

𝑥0𝑖𝑘 ≤ 𝑦𝑘 ∀𝑘 ∈ V (13.23)

(13.22) states that each truck must move from the origin depot node 0 to

the destination depot node 𝑛 + 1, either via the “non-real" tour mapped

with 𝑥0,𝑛+1,𝑘 = 1 (representing a truck not used) or via any “real" tour

where at least one customer is visited (mapped with

∑
𝑖∈C 𝑥0𝑖𝑘 = 1).

(13.23) is the fixed charge constraint set stating that a vehicle can visit its

first customer only if the associated 𝑦𝑘 decision variable is equal to 1. To

ensure that the model decides to activate trucks only if advantageous

for the objective, the objective function (13.10) must also be modified as

follows:

min

∑
𝑖∈N

∑
𝑗∈N

∑
𝑘∈V

𝐶𝑖 𝑗𝑥𝑖 𝑗𝑘 +
∑
𝑘∈V

𝐶𝑘𝑦𝑘 (13.24)

The initial term in (13.24) mirrors (13.10), representing variable costs

linked to the trucks’ routing. The subsequent term, however, is novel,

capturing fixed costs attributed to the trucks utilized in the solution.

Further variants of the CVRP will be discussed later in Section 13.4. We

consider an application of the CVRP in Example 13.2.
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Example 13.2 Consider the network provided in Example 13.1. Given that we
have a load of 20 units to be delivered to each of the 4 cities in the network and
that a vehicle can carry a maximum of 40 units, we want to assess the minimum
distance covered to solve the problem.

We recognize this is an example of CVRP and, using the formulation

presented in (13.10)-(13.20), we realize we need at least two vehicles to

perform these deliveries. Figure 13.3 provides the two tours correspond-

ing to these two vehicles. The cost, in this case, is 150 which is higher

than the cost in Example 13.1 where the capacity of the vehicles was

not an issue. As we already explained a few times throughout the book,

Example 13.2 is a more constrained version of Example 13.1, hence its

optimal solution can only be the same or worse (as it is in this instance).

� Coded example

The code used to model and solve Example 13.2 is available here.

Figure 13.3: Solution to Example 13.2

13.4 Widely-used VRP variants

Up to now, we have only considered the fleet size and the capacity of

the vehicles for VRPs. There are various interesting variants that enable

representing real-life routing problems better. In this section, we will

cover some of the most commonly used ones.

13.4.1 Vehicle Routing Problem with Time Windows
(VRPTW)

Time windows are quite relevant in real-life cases as not all activities
can be performed all around the clock. In the case of VRPs, this is
typically considered as the time interval for each customer, i.e., node,
to be served. Therefore, the earliest and latest start times of service at

each node are introduced and together form the time window (𝐴𝑖 , 𝐵𝑖) for

https://github.com/alessandroBombelli/From-theORy-to-application-learning-to-optimize-with-Operations-Research-in-an-interactive-way/tree/main/Codes/Routing%20problems/Vehicle%20Routing%20Problem%20(VRP)
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node 𝑖 ∈ N. The additional notation for the Vehicle Routing Problem with

Time Windows (VRPTW) is given in Table 13.4. We refer to Kallehauge

et al. (2005) for an overview of the VRPTW together with its structure

and solution methods developed.

Parameters

𝐴𝑖 earliest start time of service at node 𝑖

𝐵𝑖 latest start time of service at node 𝑖

𝑇𝑖 𝑗 travel time between nodes 𝑖 and 𝑗

𝑀𝑖 𝑗 large constant, i.e., big-𝑀, for each node combination 𝑖 and 𝑗

Variables

𝑠𝑖𝑘 start time of service at node 𝑖 by vehicle 𝑘

Table 13.4: Additional notation for the

VRPTW

The set of constraints needs to be enhanced to respect the time windows,

which means we need to now keep track of the service time at each node.

Therefore, we need a new set of decision variables, 𝑠𝑖𝑘 to indicate the start

time of service at node 𝑖 by vehicle 𝑘. Constraints (13.25) ensure that a

vehicle that visits two nodes consecutively starts the service considering

the travel time in between, i.e., if node 𝑖 is visited just before node 𝑗, the

start time of service at node 𝑗 should be at least 𝑇𝑖 𝑗 time units later than

the start time of service at node 𝑖. The time windows constraint is given

in (13.26) such that the start time of service at each node respects the

earliest and latest times indicated by the time windows.

𝑥𝑖 𝑗𝑘(𝑠𝑖𝑘 + 𝑇𝑖 𝑗 − 𝑠 𝑗𝑘) ≤ 0 ∀𝑖 , 𝑗 ∈ N, 𝑘 ∈ V (13.25)

𝐴𝑖 ≤ 𝑠𝑖𝑘 ≤ 𝐵𝑖 ∀𝑖 ∈ N, 𝑘 ∈ V (13.26)

Note that constraints (13.25) are not linear as we have a product of 𝑥 and

𝑠 decision variables. Nevertheless, they can be linearized (as described

in Section 5.4) as follows:

𝑠𝑖𝑘 + 𝑇𝑖 𝑗 −𝑀𝑖 𝑗(1 − 𝑥𝑖 𝑗𝑘) ≤ 𝑠 𝑗𝑘 ∀𝑖 , 𝑗 ∈ N, 𝑘 ∈ V (13.27)

(13.27) ensures that if node 𝑖 is visited just before node 𝑗, the start times

at these nodes are related to each other based on the travel time between

them. Otherwise, the constraint becomes non-binding thanks to the large

constant 𝑀𝑖 𝑗 . When we use such large constants, we need to have them

large enough yet as small as possible for computational reasons. In this

case, having the constant value specific to each node pair (𝑖 , 𝑗) enables us

to tailor it to the time window of each node. We discussed in Section 5.4

how to tailor these constants.

The addition of the time tracking constraints (13.27) enables ordering the

visit of the nodes, which is the idea behind the MTZ subtour elimination

constraints introduced earlier. If a node is visited after another node, the
time is always later and this avoids going back to that earlier visited
node again (as we cannot travel back in time, basically). Therefore,

when everything is put together, the MILP formulation for the VRPTW
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can be provided as follows:

min

∑
𝑖∈N

∑
𝑗∈N

∑
𝑘∈V

𝐶𝑖 𝑗𝑥𝑖 𝑗𝑘 (13.28)

s.t.:

∑
𝑗∈N

∑
𝑘∈V

𝑥𝑖 𝑗𝑘 = 1 ∀𝑖 ∈ C (13.29)∑
𝑖∈C

𝐷𝑖

∑
𝑗∈N

𝑥𝑖 𝑗𝑘 ≤ 𝑄𝑘 ∀𝑘 ∈ V (13.30)∑
𝑖∈N

𝑥0𝑖𝑘 = 1 ∀𝑘 ∈ V (13.31)∑
𝑖∈𝑁

𝑥𝑖ℎ𝑘 −
∑
𝑗∈𝑁

𝑥ℎ 𝑗𝑘 = 0 ∀ℎ ∈ C, 𝑘 ∈ V (13.32)∑
𝑖∈N

𝑥𝑖 ,𝑛+1,𝑘 = 1 ∀𝑘 ∈ V (13.33)

𝑠𝑖𝑘 + 𝑇𝑖 𝑗 −𝑀𝑖 𝑗(1 − 𝑥𝑖 𝑗𝑘) ≤ 𝑠 𝑗𝑘 ∀𝑖 , 𝑗 ∈ N, 𝑘 ∈ V (13.34)

𝐴𝑖 ≤ 𝑠𝑖𝑘 ≤ 𝐵𝑖 ∀𝑖 ∈ N, 𝑘 ∈ V (13.35)

𝑥𝑖 𝑗𝑘 ∈ {0, 1} ∀𝑖 , 𝑗 ∈ N, 𝑘 ∈ V (13.36)

We would like to mention that, in some problems, the time aspect also

comes into play through time-dependent input parameters. For example,

the travel times in the network change throughout the day which is the

common feature of time-dependent VRPs. This in a sense is an attempt

to handle the changing conditions in the network which is also the

purpose of dynamic and/or stochastic VRPs which we will talk about in

Section 13.5.

� Coded example

The code used to model and solve a VRPTW here.

� VRPTW as a serious game

A serious game based on the VRPTW can be found here. It entails

three levels of increasing complexity.

13.4.2 Split Delivery Vehicle Routing Problem (SDVRP)

In real-life applications, it may not always be possible, and even not
desirable sometimes, to serve a customer once in full. In other words,

multiple vehicles may visit the same node each fulfilling part of the

demand. This is also carried to VRP formulations under the name of

Split Delivery Vehicle Routing Problem (SDVRP).

In order to facilitate the idea of split delivery, we need to make a few

changes in the model. First of all, constraints (13.29) need to allow for

multiple visits of the nodes as follows:

https://github.com/alessandroBombelli/From-theORy-to-application-learning-to-optimize-with-Operations-Research-in-an-interactive-way/tree/main/Codes/Routing%20problems/Vehicle%20Routing%20Problem%20(VRP)
https://github.com/alessandroBombelli/From-theORy-to-application-learning-to-optimize-with-Operations-Research-in-an-interactive-way/tree/main/Serious%20games/Vehicle%20Routing%20Problem
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∑
𝑗∈N

∑
𝑘∈V

𝑥𝑖 𝑗𝑘 ≥ 1 ∀𝑖 ∈ C (13.37)

Next, we need a continuous variable to represent the quantity of demand
served by each vehicle for each node. Say 𝑦𝑖𝑘 is such a continuous variable

that then needs to be constrained to ensure (i) that the total amount

served by the set of vehicles indeed fulfills the entire demand of node 𝑖,

(ii) that the capacity of each vehicle is respected, and (iii) that quantity

served by vehicle 𝑘 is positive only if 𝑥 variables agree that there is an arc

visiting node 𝑖 with vehicle 𝑘. These constraints are provided as follows

in the same order:

∑
𝑘∈V

𝑦𝑖𝑘 = 𝐷𝑖 ∀𝑖 ∈ C (13.38)∑
𝑖∈N

𝑦𝑖𝑘 ≤ 𝑄𝑘 ∀𝑘 ∈ V (13.39)

𝑦𝑖𝑘 ≤ 𝐷𝑖

∑
𝑗∈N

𝑥𝑖 𝑗𝑘 ∀𝑖 ∈ C, 𝑘 ∈ V (13.40)

In particular, (13.40) is similar to a fixed charge constraint (see Section 4.8.4)

where 𝑦𝑖𝑘 (for a given 𝑖 ∈ Cand 𝑘 ∈ V) can only be greater than 0 if one

𝑥𝑖 𝑗𝑘 is unitary (i.e., if vehicle 𝑘 reaches node 𝑖). The entire formulation

for the SDVRP is as follows:

min

∑
𝑖∈N

∑
𝑗∈N

∑
𝑘∈V

𝐶𝑖 𝑗𝑥𝑖 𝑗𝑘 (13.41)

∑
𝑗∈N

∑
𝑘∈V

𝑥𝑖 𝑗𝑘 ≥ 1 ∀𝑖 ∈ C (13.42)∑
𝑖∈N

𝑦𝑖𝑘 ≤ 𝑄𝑘 ∀𝑘 ∈ V (13.43)∑
𝑘∈V

𝑦𝑖𝑘 = 𝐷𝑖 ∀𝑖 ∈ C (13.44)

𝑦𝑖𝑘 ≤ 𝐷𝑖

∑
𝑗∈N

𝑥𝑖 𝑗𝑘 ∀𝑖 ∈ C, 𝑘 ∈ V (13.45)∑
𝑖∈N

𝑥0𝑖𝑘 = 1 ∀𝑘 ∈ V (13.46)∑
𝑖∈N

𝑥𝑖ℎ𝑘 −
∑
𝑗∈N

𝑥ℎ 𝑗𝑘 = 0 ∀ℎ ∈ C, 𝑘 ∈ V (13.47)∑
𝑖∈N

𝑥𝑖 ,𝑛+1,𝑘 = 1 ∀𝑘 ∈ V (13.48)

𝑠𝑖𝑘 + 𝑇𝑖 𝑗 −𝑀𝑖 𝑗(1 − 𝑥𝑖 𝑗𝑘) ≤ 𝑠 𝑗𝑘 ∀𝑖 , 𝑗 ∈ N, 𝑘 ∈ V, (13.49)

𝐴𝑖 ≤ 𝑠𝑖𝑘 ≤ 𝐵𝑖 ∀𝑖 ∈ N, 𝑘 ∈ V (13.50)

𝑥𝑖 𝑗𝑘 ∈ {0, 1} ∀𝑖 , 𝑗 ∈ N, 𝑘 ∈ V (13.51)

𝑦𝑖𝑘 ∈ ℝ0 ∀𝑖 ∈ N, 𝑘 ∈ V (13.52)
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2: Note that in Section 13.3 we identify

a single depot with two distinct nodes

already. Notwithstanding, this was done

just to facilitate some constraints, as the

physical depot was only one. Here we

extend the number of physical depots

that can be used to perform delivery

tours.

where the full formulation (13.41)-(13.52) has already been described

either in previous sections or above. One note we need to make is that, in

this split delivery formulation, we still have the assumption that each
vehicle performs only one tour. The customer nodes can be visited
by multiple vehicles. There are also other relevant variants where the

vehicles are allowed to perform multiple trips.

13.4.3 Multi-depot VRP

Considering distribution networks, a natural extension is that we have

multiple depots in the network where the vehicles start and end their

tours. This extension entails that we need to also have a set of depot nodes

in our formulation. Namely, a depot set
2 D such that D∪ C= N.

One decision that needs to be made is whether vehicles belong to a
depot or not. In other words, in some applications, it might be possible
for vehicles to end their tours at a different depot than the start depot.
This version is related to the open VRP formulations where the vehicles

are free to end at a customer node (Li et al., 2007). Nevertheless, in some

cases, it is necessary to restrict the use of the depots such that a vehicle

can use only one of the depots for its entire tour.

Let us now focus on a case where vehicles are assigned to a particular

depot as part of the decision of the model, i.e., the vehicles are restricted

to start and end at the same depot. The assignment of the vehicles to

depots is given by 𝑧𝑖𝑘 such that it is 1 if vehicle 𝑘 belongs to depot 𝑖 ∈ D

and 0 otherwise.

We need to make sure that the depot assignment is consistent with the

routing decisions, i.e., 𝑧 variables need to be linked to 𝑥 variables:

∑
𝑗∈N

𝑥𝑖 𝑗𝑘 = 𝑧𝑖𝑘 ∀𝑖 ∈ D, 𝑘 ∈ V (13.53)

(13.53) ensures that if vehicle 𝑘 belongs to depot 𝑖 ∈ D, it starts its journey

from that depot. In addition, here we decide

Therefore, the formulation for the multi-depot VRPTW can be provided

as follows (without split deliveries, i.e., we only allow full deliveries):

min

∑
𝑖∈N

∑
𝑗∈N

∑
𝑘∈V

𝐶𝑖 𝑗𝑥𝑖 𝑗𝑘 (13.54)
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∑
𝑗∈N

∑
𝑘∈V

𝑥𝑖 𝑗𝑘 = 1 ∀𝑖 ∈ C (13.55)∑
𝑖∈C

𝐷𝑖

∑
𝑗∈N

𝑥𝑖 𝑗𝑘 ≤ 𝑄𝑘 ∀𝑘 ∈ V (13.56)∑
𝑗∈C

𝑥𝑖 𝑗𝑘 = 𝑧𝑖𝑘 ∀𝑖 ∈ D, 𝑘 ∈ V (13.57)∑
𝑖∈N

𝑥𝑖ℎ𝑘 −
∑
𝑗∈N

𝑥ℎ 𝑗𝑘 = 0 ∀ℎ ∈ C, 𝑘 ∈ V (13.58)∑
𝑗∈C

𝑥 𝑗𝑖𝑘 = 𝑧𝑖𝑘 ∀𝑖 ∈ D, 𝑘 ∈ V (13.59)

𝑠𝑖𝑘 + 𝑇𝑖 𝑗 −𝑀𝑖 𝑗(1 − 𝑥𝑖 𝑗𝑘) ≤ 𝑠 𝑗𝑘 ∀𝑖 , 𝑗 ∈ N, 𝑘 ∈ V (13.60)

𝐴𝑖 ≤ 𝑠𝑖𝑘 ≤ 𝐵𝑖 ∀𝑖 ∈ N, 𝑘 ∈ V (13.61)

𝑥𝑖 𝑗𝑘 ∈ {0, 1} ∀𝑖 , 𝑗 ∈ N, 𝑘 ∈ V (13.62)

𝑧𝑖𝑘 ∈ {0, 1} ∀𝑖 ∈ D, 𝑘 ∈ V (13.63)

Constraints (13.55)-(13.56) and (13.60)-(13.62) are the same as in the case

of the VRPTW. The core flow conservation constraints at the customer

nodes (13.58) are also the same. We need to be careful about leaving

the depot nodes and returning back to them. As mentioned earlier, this

needs to be done by relating the 𝑥 and 𝑧 variables. Constraints (13.57)

ensure that if a vehicle 𝑘 uses depot 𝑖 then this vehicle will start from that

depot. Similarly, if vehicle 𝑘 is assigned to depot 𝑖, it needs to return to

that depot (13.59). Constraint set (13.63) defines the new set of decision

variables. In the current setting, if vehicle 𝑘 is assigned to a depot 𝑖

(𝑧𝑖𝑘 = 1), we force the vehicle to leave the depot→ ∑
𝑗∈C 𝑥𝑖 𝑗𝑘 = 1 and

to go back to the depot→ ∑
𝑗∈C 𝑥 𝑗𝑖𝑘 . If a truck 𝑘 is not needed in the

solution, then the model will set 𝑧𝑖𝑘 = 0 ∀𝑖 ∈ D. Hence, there is no

strict need to duplicate each depot into an origin and destination node as

seen previously in Section 13.3. Notwithstanding, we would bump into

issues if we had to ensure that each vehicle does not exceed a pre-defined

maximum time range. We explain this in detail in the  How to handle
time range restrictions in model (13.54)-(13.63) box.

Finally, sometimes each depot has already a certain number of trucks

pre-assigned to it, similar to what showed in Figure 4.1. In such a case,

assignment variable 𝑧𝑖𝑘 is not needed any longer, but we can define

V𝑖 ∀𝑖 ∈ D the subset of trucks starting/ending their trip in depot 𝑖. We

leave the modifications to model (13.54)-(13.63) that reflect such a change

to interested readers.

13.4.4 Pickup and Delivery Problem (PDP)s

Another commonly used variant is the Pickup and Delivery Problem

(PDP), which means that we are not only delivering or picking up
goods but rather doing both. For example, if we think of a ridesharing
vehicle, a vehicle needs to pick up and drop off travelers and we need to
ensure that the same vehicle performs both of the operations. Therefore,

typically a set of pickup and delivery nodes are defined and they are

associated with each other to indicate the pairs that correspond to the
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 How to handle time range restrictions in model (13.54)-(13.63)

In model (13.54)-(13.63) 𝑠𝑖𝑘 ∀𝑖 ∈ N, 𝑘 ∈ V is defined for the origin

depot and all customer nodes. With such a setting, time from the start

of a vehicle’s tour can be modeled via (13.60) and (13.61) to, respectively,

apply time precedence constraints from the depot to every visited

customer and between customers and to ensure customers are visited

between the specified time window. If the tour of each vehicle 𝑘 ∈ V

is bounded by a maximum time range 𝑇𝑘 , we need to duplicate each

depot into an origin an destination depot so an 𝑠𝑖𝑘 decision variable for

each destination depot can be defined. This can be done by extending

the concept seen in Section 13.3 with a set of origin depots D𝑜 and a set

of destination depots D𝑑 so that N= D𝑜 ∪ C∪ D𝑑 and origin depot

𝑖 is associated with destination depot indexed by 𝑗 = 𝑖 + |C| + |D𝑜 |.
With such a change, we can define a maximum time range constraint

per truck as:

𝑠𝑖+|C|+|D𝑜 |,𝑘 − 𝑠𝑖𝑘 ≤ 𝑇𝑘 ∀𝑖 ∈ D𝑜 , 𝑘 ∈ V (13.64)

Accordingly, we will have to modify (13.57) to only focus on origin

depots and (13.59) to only focus on destination depots as follows:

∑
𝑗∈C

𝑥𝑖 𝑗𝑘 = 𝑧𝑖𝑘 ∀𝑖 ∈ D𝑜 , 𝑘 ∈ V (13.65)∑
𝑗∈C

𝑥 𝑗𝑖𝑘 = 𝑧𝑖𝑘 ∀𝑖 ∈ D𝑑 , 𝑘 ∈ V (13.66)

same job, e.g., traveler or a package. We refer to Dumas et al. (1991) for

an overview of PDPs with time windows.

The main differences in the formulation lie in tracking the entities that
are being transported to make sure that the pickup and delivery of the
same entity is performed by the same vehicle. Moreover, the capacity
tracking needs to be adapted accordingly. until now, it was sufficient to
consider the total demand of the served customers in order to comply
with the capacity of the vehicles, yet in this case, we need to take into
account the increased or decreased load at each node visit.

PDPs are also widely studied under the name of Dial-A-Ride Problem

(DARP)s, which focus on the case of travelers who are picked up and

dropped off for different activities. We refer to Cordeau and Laporte

(2007) for an overview of DARPs with different mathematical models

and solution algorithms.

13.5 Further VRP variants

We have covered important variants developed for VRPs and there are

further variants that may be relevant for different settings. We refer

to a recent review paper, Elshaer and Awad (2020), for an overview

of different variants and solution methods provided for them. In this

section, we will list some important variants with references and brief

explanations:
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▶ Multi-trip VRP. In the problems covered so far, we assumed that

each vehicle performs a single tour. In real-life settings, the vehicles

may perform multiple tours given that operational hours permit

that. There are different conventions adopted to represent these

multiple trips, e.g., a set of trips defined for each vehicle or handling

the assignment of trips to vehicles. We refer to Brandão and Mercer

(1998) for an early introduction of multi-trip VRPs and to Cattaruzza

et al. (2016) for a variant including time windows and release times

(e.g., when each truck is available to be operated);

▶ Dynamic VRP. The transportation systems have been shaped to

have a more dynamic nature in the last few decades in order to

keep up with the changing behavior in demand. For example, in

delivery systems, the customers expect to receive their orders in

much shorter times. This means that the delivery system needs to

be prepared to accommodate newly arriving requests in a timely

manner. In this regard, routing problems are also shaped to have

a dynamic nature accordingly. We refer to a review by Pillac et

al. (2013) for an overview of this class of problems. Typically, in

these problems, the demand arrives dynamically and the routing

problem needs to be re-optimized in different ways. In some other

problems, the travel and/or service times are dynamic in order

to accommodate changing conditions on the network. Note that,

dynamic problems in a sense handle uncertainties in the system

through their capability of adapting the decisions and are often

considered together with stochastic approaches which we mention

in the next class of problems;

▶ Stochastic VRP. Stochastic variants of VRPs are very relevant

considering the various uncertainties embedded in transportation

systems. Some of those uncertainties are related to the demand,

e.g., the amount of demand that will be observed or whether the

customer will show up at a given node or not. There are also

various uncertainties related to the transportation network, e.g.,

travel and/or service times on the network. We refer to Gendreau

et al. (1996) for a relatively early review paper on stochastic TSPs

and VRPs. These problems are formulated in different ways in

order to handle the embedded uncertainty such as Chance Con-
strained Programming or Stochastic Programming. We touch upon

some stochastic optimization techniques in Chapter 14;

▶ Rich VRP. This terminology is used for VRPs where various

constraints and specifications are combined to better represent the

complexities of real-life routing problems. We refer to Lahyani et al.

(2015) for the taxonomy and an overview of such problems. It is

important to note that rich VRPs do not refer to a particular type of

problem but rather highlight the real-life challenges and how to

model and solve them.
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Life is like a box of chocolates. You never

know what you’re gonna get.

Forrest Gump

Uncertainty plays a significant role in several industries and applications.

Investments in accurate forecasting tools are rising to predict the future

better and make more sound decisions. When parameters of a certain

problem are affected by uncertainty, the proposed mathematical model

should take that into account. What a waste to buy some vehicles with

high capacity when it turns out later that the demand volumes are lower

than expected. How unfortunate to be late to our customers due to

traffic. These examples highlight that how we described parameters
in Section 4.2, i.e., as deterministic (certain) values, might be an overly
simplistic approach sometimes.

On the other hand, models considering deterministic parameters are

somewhat acceptable in several cases. When the total demand can be

easily determined, for example, by pre-orders, or when the traffic can

cause, on average, delays of a few minutes, exact quantities for our

parameters may not severely affect the goodness of the model’s solution.

In such cases, avoiding the computational burden of more complex

stochastic (i.e., uncertain) models should be avoided. It is the task of

the modeler to opt for a deterministic or stochastic model based on the

application and the pre-conditions.

In this chapter, we study how to turn a deterministic model into a

stochastic one, and we show a set of indicators to appreciate the benefit

of using a stochastic approach. The reader must be aware of two main

issues. First, a stochastic model will increase the number of variables
and the complexity of solving the model. Second, a good definition of
the parameters and the related probabilities must be done carefully.

14.1 Stochastic programming

In a stochastic setting, information on parameters is uncertain. However,

the value of these parameters will become known at some point. An

important aspect is whether or not the decision can be adapted after

knowing the information. The possibility of adapting the information
is called recourse. We now proceed to elaborate on both cases.

The first example concerns the possibility of recourse. When driving from

home to a destination in an urban area, our Global Positioning System

(GPS) may provide two similar alternatives with a given Estimated Time

of Arrival (ETA) based on real-time traffic or projections. During travel,

more information is disclosed, and the GPS could suggest alternative

routes because traffic has increased on the original path or decreased on

connecting roads. The key point here is that while we can adjust our plans
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to some extent, our initial decisions have already influenced the initial

portion of the route. However, we can mitigate the impact by adapting

our route as we progress. If the GPS had foreseen the traffic conditions
from the start, it could have favored a different route, minimizing the
time required to reach our destination.

A no-recourse situation arises when the initial decision cannot be
adjusted. For instance, consider a scenario in the transportation domain

where we must decide whether to travel by boat or by flight, balancing

cost and time considerations, amidst the possibility of unexpected delays

caused by flight cancellations or rough seas. Once the journey begins, we

are unable to alter our initial decision or make any minor adjustments.

We must accept the consequences of our initial choice.

In this chapter, our focus will be on recourse problems. We will leverage
scenarios and probabilities to devise robust solutions against future
uncertainties. The model can be deployed at the outset of the decision-
making period, offering both the initial decision and its adaptation
based on realized scenarios. On the other hand, no-recourse problems
could be addressed using simulation tools.

14.2 Two-stage recourse problem

Although the GPS example can somehow easily show the dynamics of a

recourse problem, its actual implementation is quite challenging. The

main reason is that we can have multiple moments during the route

where we can make adjustments to our decision. This can generate a

huge quantity of possibilities to consider. Because of this, a more suitable

approach could be to solve a SP multiple times while traveling. We will

use a simpler but more common example in the literature to explain

stochastic programming, namely manufacturing. But first, let us formalize

a stochastic programming model.

We consider a problem where some parameters 𝜉 are initially uncertain.

Our problem requires us to make some decisions now, given what we

know about the present situation while trying to acknowledge and

capture effectively the uncertainty of those 𝜉 parameters. This first set

of decisions is generally defined 𝑥, i.e., first stage decisions. At some

point in the future, the unknown parameters 𝜉 will become known and

we might take different actions according to the revealed outcome. This

point in future is called second stage and is where some recourse action
can be taken. Let us assume our problem is defined by an objective

function to maximize. We can define such a problem in mathematical

form as:

max 𝑐𝑇𝑥︸︷︷︸
𝑍1

+𝔼 [𝑄(𝑥, 𝜉)]︸       ︷︷       ︸
𝑍2

(14.1)

s.t.:
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1: In general, 𝑈 does not depend on 𝜉.

This case is called fixed recourse and fea-

tures mathematical properties that make

it easier to solve. We refer readers to Birge

and Louveaux, 2011 for more details.

𝐴𝑥 ≤ 𝑏 (14.2)

𝑥 ≥ 0 (14.3)

where the objective function (14.1) is divided into two parts as follows:

▶ 𝑍1: contribution to the objective from the first stage. 𝑐 is the known

vector of coefficients of the first stage decision variables 𝑥;

▶ 𝑍2: expected contribution to the objective from the second stage.

Because we are evaluating this problem “now" and not in the
future, this contribution is an expected value 𝔼 that depends
on the decision we take now (𝑥) and on the unknown set of
parameters 𝜉. Referring back to our GPS example, our initial

decision on which route to take (𝑥) will take us to a different

location in the future. This decision, coupled with the current

congestion level (𝜉) which was unknown when the initial decision

was made, will shape and influence the available recourse actions.

Constraint set (14.2) encapsulates all the constraints that are known and

we need to comply with from the first stage only while constraint set

(14.3) defines the general non-negative nature of the first stage decision

variables (while still allowing them to appear in a mix of continuous,

integer, and binary).

With [𝑄(𝑥, 𝜉)] we mean a realization of the second stage part of our

problem, which can be expanded as:

max 𝑞𝑇𝜉 𝑦 (14.4)

s.t.:

𝐺𝜉𝑥 +𝑈𝜉𝑦 ≤ ℎ𝜉 (14.5)

𝑦 ≥ 0 (14.6)

where (14.4) is the counterpart of (14.1) with 𝑞𝜉 being the coefficients of

the second stage decision variables that depend on a specific realization of

𝜉. Similarly, 𝐺𝜉 and𝑈𝜉 in constraint set (14.5) are the coefficient matrices

for the first and second stage decision variables. They also depend on the

actual realization of the unknown parameters 𝜉1
. Additionally, constraint

set (14.5) emphasizes how first stage decisions do affect the second stage. If

we consider a specific ℎ𝜉 as some capacity we can use without exceeding,

the more capacity we have used in the first stage, the less we have still

available in the second stage. Finally, (14.6) defines the non-negativity of

second stage decisions.

The final stage of this process is to embed (14.4)-(14.6) into the initial

formulation by finding a way to mathematically approximate the 𝔼𝜉 [·]
(expected value) operator with something that a linear solver can
handle.
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We achieve such a goal with a technique called Sample Average Approxi-

mation (SAA). This technique resembles a Monte Carlo simulation and

approximates the uncertainty regarding the future and the unknown

parameters 𝜉 with a set of scenarios S indexed by 𝑠. In practice, each

scenario is a possible realization of the future and its unknown para-

meters 𝜉 with a certain probability 𝑃𝑠 . We assume that our future can

only be represented by our set of scenarios S, hence

∑
𝑠∈S𝑃𝑠 = 1. A

crucial component of such an approach is then to define S in a way

that can well capture at least the most likely realizations of the future:

tools such as simulation can help in this regard. For each scenario 𝑠 ∈ S,

the specifications are known. Hence, we can define 𝜉𝑠 and 𝑦𝑠 as the

parameters and second stage decision variables specific to scenario 𝑠.

To summarize, we translate uncertainty into a set of “certain" (i.e.,
deterministic) scenarios, each characterized by a certain probability 𝑃𝑠
of occurring. For example, if a weather forecast states that, in one week
from now, there is an equal probability that it will be sunny, cloudy,
or rainy with no other alternative, we could consider the three options
as the three scenarios S= {1, 2, 3} each characterized by 𝑃𝑠 = 1

3
. As it

concerns 𝑦𝑠 , these variables represent the decision we would take when

we would find ourselves in the realized scenario 𝑠.

Considering SAA, our final formulation is:

max 𝑐𝑇𝑥 +
∑
𝑠∈S

𝑃𝑠𝑞
𝑇
𝑠 𝑦𝑠 (14.7)

s.t.:

𝐴𝑥 ≤ 𝑏 (14.8)

𝐺𝑠𝑥 +𝑈𝑦 ≤ ℎ𝑠 ∀𝑠 ∈ S (14.9)

𝑥 ≥ 0 (14.10)

𝑦𝑠 ≥ 0 ∀𝑠 ∈ S (14.11)

(14.7) and constraints (14.8)-(14.11) define the two-stage recourse problem

we aim at solving. In (14.7), if we assume that all scenarios are equally

likely we can replace the second term with
1

|S|
∑
𝑠∈S 𝑞

𝑇
𝑠 𝑦𝑠 as 𝑃1 = 𝑃2 =

· · · = 𝑃|S| =
1

|S| . Constraint set (14.8) defines the constraints stemming

from the first stage only, while constraint set (14.9) defines, for every

scenario, the constraints linking the first stage decisions and the recourse.

Note that we assume a fixed recourse matrix𝑈 . Finally, constraint sets

(14.10)-(14.11) define the non-negativity of the decision variables.

Before applying the model (14.7)-(14.11) to an example, we briefly elaborate

on the key role of the set of scenarios S. We introduced that S is key

in approximating the uncertainty of the second stage. Therefore, akin
to a Monte Carlo simulation, one might assume that having a vast
array of scenarios could lead to a superior final solution. This notion
holds particularly true for large-scale problems, where the potential
realizations of the future are marked by such significant uncertainty
that the possible scenarios essentially become infinite. Considering

model (14.7)-(14.11), both second stage decision variables and constraints
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grow with |S|. Hence, providing our model with a large set of scenarios

might make it more realistic, but also computationally way harder to

solve. Finally, it is also worth noting that more scenarios are generally

better pending that those scenarios are “good" ones. In essence, a good
two-stage stochastic problem is the one where the minimum number
of good-quality scenarios is added.

One of the most prominent examples in the literature for two-stage

stochastic programming is the procurement of resources for producing a

set of goods. Each unit of a good requires a defined amount of resources.

The demand for the goods is uncertain, but we know the profit for each

unit and the cost to buy a unit of each resource. The problem is about

deciding the quantities of resources to buy in the first stage based on

projected demand, with the aim of maximizing the profit. The timing

of the problem is as follows. During the first stage (at time 𝑡𝐹𝑆), we

decide the quantity of each resource to buy. We assume that this decision

cannot be adapted later because, for example, it takes a long time for

the supply to arrive and, if ordered later, the resources would arrive too

late for production. Once the resources are ordered, we can wait to start

production until the demand is known at a later time (the second stage,

at time 𝑡𝑆𝑆). Here, we can decide the production quantities based on the

realized scenario. Due to the assumption that only the available scenarios

can occur in the future, we can define a two-stage stochastic model at

time 𝑡𝐹𝑆 and decide both the first stage variables 𝑥 and the second stage

ones 𝑦𝑠 which are scenario-dependent, for every scenario 𝑠 ∈ Swe have

predicted. The model will find a good compromise that considers the
probability of each scenario and the trade-off between cost and profit,
so that at time 𝑡𝑆𝑆 our second stage decisions should be applicable in a
robust manner regardless of the realized scenario. We showcase and

critically assess such a framework in Example 14.1

Example 14.1 A company produces three products, A, B, and C, from three
resources (e.g., raw materials), R1, R2, and R3. To produce A, they need 3 units
of R1, 2 of R2, and 4 of R3. To produce B, they need 1 unit of R1, 2 units of R2,
and 2 of R3. Finally, to produce C, they need 4 units of R1, 2 units of R2, and no
units of R3. With regard to profit, it is obtained 25e per unit for product A, 20e
for product B, and 10e for product C. Costs for the resources per unit are: 3e for
R1, 2e for R2, and 1e for R3. The company has forecasted 3 possible scenarios
to occur. With probability 50%, the expected demand for the three products is,
respectively, 40, 30, and 10. With a 40% probability, it is 30, 20, 0. Finally, with
a 10% probability, the expected demand is 10, 30, and 50. All the input data is
summarized in Table 14.1. The company would like to devise a strategy in terms
of resource acquisition and production so that the expected profit is maximized.

We recognize that this is a problem where we can apply the two-stage

stochastic programming methodology that was described above. Before

even diving into the model, it is good practice to analyze the input data.

For example, it appears that C is as costly as A, roughly, production-wise

but generates less than half the profit. It is also very likely that the

demand for this product will not be high, except for a 10% chance. On

average, we expect a demand from C of
1

2
× 10 + 2

5
× 0 + 1

10
× 50 = 10.

Let us define the set of products P = {1, 2, 3}, indexed by 𝑝 (where

𝐴 = 1, 𝐵 = 2, and 𝐶 = 3), and the set of resources R = {1, 2, 3}, indexed

by 𝑟 (where 𝑅1 = 1, 𝑅2 = 2, and 𝑅3 = 3). In addition, we define the set
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Table 14.1: Input data for Example 14.1.
Cost (unit) A B C

R1 3 3 1 4

R2 2 2 2 2

R3 1 4 2 0

Revenue (unit) 25 20 10

Demand Probability

50% 40 30 10

40% 30 20 0

10% 10 30 50

of scenarios S= {1, 2, 3}, where 𝑃1 = 1

2
, 𝑃2 = 2

5
, and 𝑃3 = 1

10
. The only

parameter that is scenario-dependent is the demand per product𝐷𝑝𝑠 , i.e.,

the demand of product 𝑝 in scenario 𝑠. We define 𝐶𝑟 as the cost of one

unit of resource 𝑟 and 𝑄𝑟𝑝 as the units of resource 𝑟 needed to produce

one unit of product 𝑝. Finally, 𝑅𝑝 is the revenue per unit of product 𝑝.

The decision variables relate to the two-stage stochastic programming

framework. In the first stage, we purchase the resources needed for the

production. Hence, we define 𝑥𝑟 ∈ ℝ0 as the purchased units of resource

𝑟 ∈ R. Then, we define 𝑦𝑝𝑠 ∈ ℝ0 as the units of product 𝑝 produced and

sold in scenario 𝑠.

We define the two-stage recourse model as:

max −
∑
𝑟∈R

𝐶𝑟𝑥𝑟 + 𝔼 [𝑄(𝑥, 𝐷)] (14.12)

s.t.:

𝑥𝑟 ∈ ℝ0 ∀𝑟 ∈ R (14.13)

where in (14.12) the contribution of the first stage is non-positive. This
is correct as, in the first stage, we are only buying resources, hence
contributing negatively to the profit. Additionally, with 𝔼 [𝑄(𝑥, 𝐷)] we

imply that the uncertainty of the second state resides in the demand 𝐷.

Note that, apart from the usual non-negativity of the decision variables

(we also assume decision variables can be continuous, and hence we can

purchase partial units), there are no specific constraints in the first stage

decision. This is generally not the case, as in some other problems, for

example, some budget-related constraints could be necessary.

For a specific scenario 𝑠 ∈ Swe can express 𝑄(𝑥, 𝐷) as:

max

∑
𝑝∈P

𝑅𝑝𝑦𝑝𝑠 (14.14)

s.t.:
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∑
𝑝∈P

𝑄𝑟𝑝𝑦𝑝𝑠 ≤ 𝑥𝑟 ∀𝑟 ∈ R (14.15)

𝑦𝑝𝑠 ≤ 𝐷𝑝𝑠 ∀𝑝 ∈ P (14.16)

𝑦𝑝𝑠 ∈ ℝ0 ∀𝑝 ∈ P (14.17)

where (14.14) aims at maximizing the revenue generated from the sales of

the three products. The production is capped by the first stage decisions

in constraint set (14.15) and by the demand occurring in the current

scenario 𝑠 in constraint (14.16). Finally, (14.17) defines decision variables

𝑦𝑝𝑠 as continuous and non-negative (some readers might argue it could

have been omitted because of (14.16). We left it to make it explicit that

the nature of the decision variables is continuous and not necessarily

integer).

We can combine models (14.12)-(14.13) and (14.14)-(14.17) and leverage the

SAA paradigm to obtain the full two-stage recourse problem as follows:

max −
∑
𝑟∈R

𝐶𝑟𝑥𝑟 +
∑
𝑠∈S

𝑃𝑠
∑
𝑝∈P

𝑅𝑝𝑦𝑝𝑠 (14.18)

s.t.:

∑
𝑝∈P

𝑄𝑟𝑝𝑦𝑝𝑠 ≤ 𝑥𝑟 ∀𝑟 ∈ R, 𝑠 ∈ S (14.19)

𝑦𝑝𝑠 ≤ 𝐷𝑝𝑠 ∀𝑝 ∈ P, 𝑠 ∈ S (14.20)

𝑥𝑟 ∈ ℝ0 ∀𝑟 ∈ R (14.21)

𝑦𝑝𝑠 ∈ ℝ0 ∀𝑝 ∈ P, 𝑠 ∈ S (14.22)

where (14.18) defines the objective function comprising the first stage

costs and the expected revenue from the second stage, (14.19) and (14.20)

ensure that production is carried out considering the available resources

acquired and the maximum demand, respectively, and (14.21)-(14.22)

define the continuous and non-negative nature of decision variables 𝑥𝑟
and 𝑦𝑝𝑠 . In particular, constraint (14.19) is the explicit form of (14.9)
and depicts how first stage decisions affect the recourse actions of the
second stage.

Given the relatively small size of the model, we write it in explicit form

as:

max − 3𝑥1 − 2𝑥2 − 𝑥3 +
1

2

(25𝑦11 + 20𝑦21 + 10𝑦31)

+ 2

5

(25𝑦12 + 20𝑦22 + 10𝑦32) +
1

10

(25𝑦13 + 20𝑦23 + 10𝑦33) (14.23)

s.t.:
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3𝑦11 + 𝑦21 + 4𝑦31 ≤ 𝑥1 (14.24)

3𝑦12 + 𝑦22 + 4𝑦32 ≤ 𝑥1 (14.25)

3𝑦13 + 𝑦23 + 4𝑦33 ≤ 𝑥1 (14.26)

2𝑦11 + 2𝑦21 + 2𝑦31 ≤ 𝑥2 (14.27)

2𝑦12 + 2𝑦22 + 2𝑦32 ≤ 𝑥2 (14.28)

2𝑦13 + 2𝑦23 + 2𝑦33 ≤ 𝑥2 (14.29)

4𝑦11 + 2𝑦21 ≤ 𝑥3 (14.30)

2𝑦12 + 2𝑦22 ≤ 𝑥3 (14.31)

2𝑦13 + 2𝑦23 ≤ 𝑥3 (14.32)

𝑦11 ≤ 40 (14.33)

𝑦21 ≤ 30 (14.34)

𝑦31 ≤ 10 (14.35)

𝑦12 ≤ 30 (14.36)

𝑦22 ≤ 20 (14.37)

𝑦32 ≤ 0 (14.38)

𝑦13 ≤ 10 (14.39)

𝑦23 ≤ 30 (14.40)

𝑦33 ≤ 50 (14.41)

𝑥1 , 𝑥2 , 𝑥3 ≥ 0 (14.42)

𝑦11 , 𝑦12 , 𝑦13 , 𝑦21 , 𝑦22 , 𝑦23 , 𝑦31 , 𝑦32 , 𝑦33 ≥ 0 (14.43)

The model depicted by (14.23)-(14.43) is an LP. If we had been presented

with this model initially, we might not have recognized that it incorporates

uncertainty through SAA. The level of complexity of the suggested

example is highly manageable. In these types of efforts, the numerical

analysis before and after the model is usually quite interesting and

impactful for the final application.

Post-analysis typically involves evaluating the advantages of employing

a stochastic approach over a deterministic one. Here, we will present an

analysis along with some KPIs to facilitate this evaluation. In Table 14.2,

we present the results of the stochastic model alongside its deterministic

counterpart. For the latter, we adopt a straightforward approach in
which the weighted average demand is considered. This yields a demand

of 33 units for product A, 26 units for product B, and 10 units for product

C.

Table 14.2: Different solutions for Exam-

ple 14.1. Stoc. Sol. stands for the solution

from the two-stage stochastic model. Det.
Sol. stands for the solution from the deter-

ministic counterpart using the weighted

average demand. Det. Sol. 𝑠 = ∗ stands

for the outcome of the deterministic so-

lution in case of realized demand from

scenario ∗.

𝑥1 𝑥2 𝑥3 𝑦𝑝1 𝑦𝑝2 𝑦𝑝3 𝑦𝑑𝑒𝑡 Profit

Stoc. sol. 110 113.33 166.7 26.67,30,0 30,20,0 10,30,12.5 467.5

Det. sol. 125 118 184 - - - 33,26,0 550

Det. sol. 𝑠 = 1 125 118 184 - - - 33,26,0 550

Det. sol. 𝑠 = 2 125 118 184 - - - 30,20,0 355

Det. sol. 𝑠 = 3 125 118 184 - - - 10,30,16.25 217.5

Det. sol. AVG 438.75

Table 14.2 conveys some interesting insights. The expected profit of

the stochastic solution is 467.5e, whereas the deterministic solution

is 550e. Although the deterministic solution initially appears more
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favorable, it is contingent upon the “expected" weighted average
demand materializing. In essence, we achieve a profit of 550e only if

we are fortunate enough to experience the expected demand value. We

should also check what happens when the three scenarios occur. Based

on our initial assumption, these are the only possibilities in the future that

we considered in the stochastic model. This is displayed in the second

half of the table. If we opted for producing the quantities suggested by

the deterministic model, we would still get a profit of 550e if the first

scenario occurs. In this case, the model is giving priority to the more

profitable products A and B. The same occurs for scenario 2, but in this

case, the production for A and B is lower, and C is not produced because

its demand is 0. Resources are now wasted and the profit is lower. In

scenario 3, C is now produced with the remaining resources from the

production of A and B. If this scenario occurs, the company will suffer a

somewhat hard blow with a profit of 217.5e only. The average profit of

the deterministic approach is 438.75e, providing evidence that, in the

long run, the stochastic approach is safer and more profitable. Note that
product C is not profitable to produce, however the stochastic model
will produce it to reduce damage in case the third scenario occurs.

From the numerical analysis, we can also evaluate other KPIs to assess

the benefit of using a stochastic approach. The first performance indicator

is named Value of Stochastic Solution (VSS), which is given by the

difference between the solution of the two-stage recourse problem and

the weighted average of the deterministic solutions. In the example,

VSS= 467.5 − 438.75 = 28.75e. The positive value further corroborates
the added value of the stochastic approach.

Another important KPI is the Expected Value of Perfect Information

(EVPI). EVPI expresses the amount we should be willing to pay to get

perfect information about the future. It is equal to the difference between

stochastic solution and the so-called Wait-and-See (WS) approach. WS

means deciding everything only when the future is disclosed. In our

example, it basically means deciding in the first stage while knowing what

will happen in the future. Hence, in the context of Example 14.1, this is

equivalent to solving three deterministic problems, one for each scenario:

there is no distinction any longer between the first and second stage. In

each problem, we assume the demand for the products is equivalent to

the one of the scenario considered. The results are shown in Table 14.3.

𝑥1 𝑥2 𝑥3 𝑦 Profit

𝑠 = 1 150 140 220 40,30,0 650

𝑠 = 2 110 100 160 30,20,0 460

𝑠 = 3 60 80 100 10,30,0 410

Det. sol. AVG 550

Table 14.3: WS solution to Example 14.1.

Because product C is not profitable, it will never be produced in the

WS solution. The solution is equal to the one solving the deterministic

model with weighted averages for the demand. The EVPI is equal to

550 − 467.5 = 82.5e.

We now showcase a second example, i.e., Example 14.2, very different in

nature. This example strongly correlates with Example 10.1 as it features

the same setting but with a revamped twist.
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� Coded example

The code used to model and solve Example 14.1 is available here.

Example 14.2 The same bounty hunter from Example 10.1 (hence, with the
same 𝐿 = 16 life points) has been told that the outlaws they captured have
escaped and are hiding again in the forest. This time, armed with valuable intel
from their informant, they confront a new dilemma. Initially encountering four
outlaws - Zorgoiln the Zombie, Henry the Hermit Crab, Ghost of your past, and
Marion of the Haron - the bounty hunter must decide their fate wisely. However,
the twist lies in the subsequent encounter, where only two out of the remaining
four outlaws - Gerald the Gunk, The Big Brown Bear, the Frog Prince, and the
Mummy - will appear, each pair having equal probability. The bounty hunter’s
objective is clear: to strategically determine which outlaws to defeat and which to
spare among the initial four in light of the future encounter with two unknown
additional outlaws, ensuring the maximum expected return in terms of gold
coins.

We recognize this as another example of a two-stage recourse program,

where the first stage decision variables define whether we decide to

defeat or not the four opponents we know with certainty, and the second

stage decision variables define, for each scenario, our recourse actions.

Because in the second stage two outlaws out of four will appear, we have

a fairly limited set of scenarios: |S| = 4!

2!2!
= 6. They are (Gerald the Gunk,

The Big Brown Bear), (Gerald the Gunk, The Frog Prince), (Gerald the

Gunk, The Mummy), (The Big Brown Bear, The Frog Prince), (The Big

Brown Bear, The Mummy), and (The Frog Prince, The Mummy). We

report the outlaws from the first stage in Table 14.4, and the outlaws

associated to each 𝑠 ∈ S in Table 14.5.

Our first set of decision variables entails binary variables 𝑥1 , · · · , 𝑥4

which are unitary if the associated outlaw is defeated in the first stage.

Then, in the second stage we define binary decision variables 𝑦𝑠,𝑜𝑠 that

are unitary if in scenario 𝑠 we decide to defeat outlaw 𝑜𝑠 . Because we have

6 scenarios and 2 outlaws per scenario, there will be 12 𝑦𝑠,𝑜𝑠 variables. For

example, when 𝑠 = 1 we have 𝑦1,5 and 𝑦1,6, related, respectively, to the

possibility of defeating Gerald the Gunk or The Big Brown bear. In this

regard, we define O1 as the subset of outlaws that the bounty hunter faces

in the first stage. On a similar note, O2,𝑠 is the subset of outlaws present

in the second stage of scenario 𝑠, so that (using indices for compactness)

O2,1 = {5, 6}, O2,2 = {5, 7}, · · · , O2,6 = {7, 8}.

In this specific case, given the small-scale of the problem, Scovers the

full set of realizations of the second stage. The bounty hunter does not

know which of the six scenarios will they face, but they know it will be

one of those six. This is generally not the case for larger-scale problems,

where infinite realizations of the future are possible. In addition, we

explicitly stated that each scenario is equally likely to happen, hence

𝑃1 = 𝑃2 = · · · = 𝑃| |S| = 1

| |S| .

The objective of the bounty hunter is to maximize the expected gold

coins obtained in the first and second stage. The only set of constraints

pertains to the necessity to stay alive.

https://github.com/alessandroBombelli/From-theORy-to-application-learning-to-optimize-with-Operations-Research-in-an-interactive-way/tree/main/Codes/Two-stage%20stochastic%20programming/Procurement%200f%20Resources
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Outlaw 𝑜 𝐶𝑜 𝐿𝑜

Zorgoiln the Zombie 1 5 2

Henry the Hermit Crab 2 17 5

Ghost of your past 3 15 4

Marion of the Haron 4 19 5

Table 14.4: Data pertaining to the four

outlaws in the first stage of Example 14.2.

Outlaw 𝑜 𝐶𝑜 𝐿𝑜

𝑠 = 1

Gerald the Gunk 5 55 14

The Big Brown Bear 6 8 2

𝑠 = 2

Gerald the Gunk 5 55 14

The Frog Prince 7 8 2

𝑠 = 3

Gerald the Gunk 5 55 14

The Mummy 8 32 7

𝑠 = 4

The Big Brown Bear 6 8 2

The Frog Prince 7 8 2

𝑠 = 5

The Big Brown Bear 6 8 2

The Mummy 8 32 7

𝑠 = 6

The Frog Prince 7 8 2

The Mummy 8 32 7

Table 14.5: Data pertaining to the two

outlaws for each scenario 𝑠 ∈ S in the

second stage of Example 14.2.

We can write the two-stage recourse mathematical formulation of this

problem as:

max

∑
𝑜∈O1

𝐶𝑜𝑥𝑜 +
∑
𝑠∈S

𝑃𝑠
∑
𝑜∈O2,𝑠

𝐶𝑜𝑦𝑠,𝑜 (14.44)

s.t.:

∑
𝑜∈O1

𝐿𝑜𝑥𝑜 +
∑
𝑜∈O2,𝑠

𝐿𝑜𝑦𝑠,𝑜 ≤ 𝐿 − 1 ∀𝑠 ∈ S (14.45)

𝑥𝑜 ∈ {0, 1} ∀𝑜 ∈ O1 (14.46)

𝑦𝑠,𝑜 ∈ {0, 1} ∀𝑠 ∈ S, 𝑜 ∈ O𝑠 (14.47)

(14.44) maximizes the gold coins from the first stage and the expected

gold money return from the second stage. Constraint set (14.45) ensures

that the bounty hunter stays alive in every scenario considering both the

known outlaws from the first stage and the scenario-specific outlaws of
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the second stage, while (14.46)-(14.47) define that nature of the decision

variables.

In this case, we do not display the explicit version of the model but

directly report the solution and critically assess it. The solution states that

𝑥1 = 0 and 𝑥2 = 𝑥3 = 𝑥4 = 1. Hence, in the first stage the bounty hunter

should let Zorgoiln the Zombie go and defeat Henry the Hermit Crab,

the Ghost of your past, and Marion of the Haron. This implies spending

14 life points out of 16 and accruing 51 gold coins. As there is no outlaw
in the second stage who only reduces our life points by a single unit,
the model suggests doing nothing in the second stage, regardless of
the scenario.

Differently than Example 14.1, we cannot compute a deterministic solution

based on an “average" value, as shown in Table 14.4. Conversely, we can

compute the 6 WS solutions. The results are reported in Table 14.6.

Table 14.6: WS solution to Example 14.2.

𝑥1 𝑥2 𝑥3 𝑥4 𝑦 Gold coins

𝑠 = 1 0 0 0 0 1,0 55

𝑠 = 2 0 0 0 0 1,0 55

𝑠 = 3 1 0 0 1 0,1 56

𝑠 = 4 1 0 1 1 1,1 55

𝑠 = 5 1 0 1 0 1,1 60

𝑠 = 6 1 0 1 0 1,1 60

Det. sol. AVG 56.8

We obtain that EVPI is equal to 56.8−51 = 5.8. In particular, there are two

scenarios (1 and 2) where it is recommended to let go of all the outlaws

in the first stage so that we can the bounty hunter can allocate sufficient

life points for Gerald the Gunk. The most profitable scenarios are 5 and 6,

where 15 life points can be spent to muster 60 gold coins. Notably, these
two scenarios are equivalent in practice as, in mathematical terms and
as mentioned in Example 10.1, the Big Brown Bear and the Frog Prince
are equivalent.

� Coded example

The code used to model and solve Example 14.2 is available here.

We elaborate a bit more on the obtained solution to Example 14.2 in the

 A note on the solution to Example 14.2 box.

https://github.com/alessandroBombelli/From-theORy-to-application-learning-to-optimize-with-Operations-Research-in-an-interactive-way/tree/main/Codes/Two-stage%20stochastic%20programming/Modified%200-1%20KP
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 A note on the solution to Example 14.2

The obtained solution to Example 14.2 seems greedy at first glance.
It suggests that the bounty hunter should allocate all the available
life points to defeat outlaws in the first stage, basically by-passing
every potential outlaw they might face in the second stage. This is

not the result of a greedy approach, but the result of the two-stage

recourse problem given the choice of outlaws for the first and second

stage. If the outlaws of the first stage were Zorgoiln the Zombie, Henry

the Hermit Crab, Ghost of your past, and the Mummy, and two out

of the four remaining were to appear during the second stage, we

would witness some second stage decision variables to be unitary in

the final solution. We encourage interested readers to check that by

modifying the provided code.

� Two-stage stochastic programming as a serious game

A serious game based on the 0-1 KP stochastic variant shown in Exam-

ple 14.2 can be found here in the Through hills and brambles final set of

cards.

14.3 Final words and recommended literature

Compared to a deterministic model, the number of combinations of a

stochastic counterpart increases notably, and for relatively large models,

tailor-made algorithmic approaches can be needed. The effort of using a
stochastic model should be justified by the application, while simple
preliminary analyses using EVPI and VSS may provide evidence to
investigate further. Also, the way the scenarios are generated can
substantially impact the validity of the outcomes. We refer to Kaut

and Stein, 2003 for a review of methods. Multi-stage models can also be

formulated for situations where more than two decision-making stages

are permissible, tailored to the specific practical requirements of the

problem at hand. One of the most prominent examples of stochastic

models using continuous random variables is the newsvendor problem,

where an analytical approach is performed. For interested readers, we

refer to the seminal book Birge and Louveaux, 2011.

https://github.com/alessandroBombelli/from_theORy_to_application/tree/main/Serious%20games/Knapsack%20Problem%20(KP)
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Copyright of Figures

In this book, we tried our best to design our own figures, either using the TikZ LAT
E
X package or using the

Matplotlib Python library (Matplotlib: Visualization with Python 2024). Oftentimes, these figures needed icons

or other supporting images. Some other images were directly taken from websites or other sources. For this

reason, we are listing in Table 1 all these supporting icons and images with the original source and the proper

copyright.

Table 1: List of figures using images or logos from various sources. For each figure, we provide a brief description, the reference website,

and the specified copyright.

Figure Description Copyright

Figure 1.1 The question mark and train icons were retrieved from iconoir.com c MIT

Figure 1.1 The map of the Milano subway system was retrieved from

Wikipedia

c CC BY-SA 4.0

Figure 2.1 Retrieved from Pixabay.com c CC0

Figure 4.2 Retrieved from Pixabay.com c CC0

Figure 4.5 Retrieved from Pixabay.com c CC0

Figure 5.1 Retrieved from Pixabay.com c CC0

Figure 5.5 The truck icon was retrieved from iconoir.com c MIT

Figure 10.6 Retrieved from Pixabay.com c CC0

Figure 11.7 Retrieved from Wikipedia c CC BY-SA 3.0

Figure 12.1 The industry and shop icons were retrieved from iconoir.com c MIT

Figure 12.9 Retrieved from Wikipedia c CC BY-SA 3.0

https://iconoir.com/
https://en.wikipedia.org/wiki/List_of_Milan_Metro_stations#/media/File:Milano_-_mappa_rete_metropolitana_(schematica).svg
https://pixabay.com/photos/dungeons-and-dragons-dungeons-dragons-4413051/
https://pixabay.com/photos/lighthouse-grass-sand-dunes-wind-1847517/
https://pixabay.com/photos/catania-city-church-italy-sicily-246007/
https://pixabay.com/photos/airport-terminal-schiphol-amsterdam-2322977/
https://iconoir.com/
https://pixabay.com/photos/aircraft-airport-uld-5352581/
https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg
https://iconoir.com/
https://en.wikipedia.org/wiki/Four_Corners_Monument


Synopsis: This book serves as a comprehensive roadmap for navigating the realm of 
Operations Research (OR). From laying down fundamental mathematical principles 
to crafting precise modeling techniques and their solution methods, it culminates 
in a panoramic view of OR models mirroring real-world operations. Delving into 
diverse applications-from assignment problems to network problems like graph 
coloring and minimum spanning trees, and navigating through routing problems that 
are very common in logistics-the book equips readers with practical insights. Each 
model is accompanied by meticulously detailed examples, seamlessly integrated 
with hyperlinked codes accessible via an open repository. Moreover, it introduces 
an engaging dimension with hyperlinks to three serious games replicating some 
cornerstone OR models, offering a playful yet educational environment for solo or 
group experimentation.
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