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C H A P T E R 1

Introduction

Python is a leading programming language in the scientific world. It is perfectly
adapted to program mathematical problems. This book focuses on the practical
use of the Python language in different areas of mathematics: sequences, linear
algebra, integration, graph theory, finding zeros of functions, probability, statis-
tics, differential equations, symbolic calculus, and number theory. Through 55
exercises of increasing difficulty, and corrected in detail, it gives a good overview
of the possibilities of using programming in mathematics and to be able to solve
complex mathematical problems.

It is not necessary to do the exercises in the order suggested, even if some exer-
cises sometimes call upon notions seen in previous exercises. The more difficult
exercises are indicated by exclamation marks:

∙ ! : longer or more difficult;

∙ !! : quite long and complex;

∙ !!! : challenge proposed without correction.

This book is the English translation of the second French edition “Programma-
tion Python par la pratique” published by Dunod in 2024. These exercises are
used as a basis for the practical work given at Sorbonne University in the frame-
work of the undergraduate mathematics studies.

The complete source code of the book is available online at the address: http
s://python.guillod.org/. This site is updated regularly, so it may differ from
this book in the future.

Acknowledgments

Thanks to Marie Postel and Nicolas Lantos for their careful proofreading of the
first version of thismanuscript and formany corrections and suggestions. Special
thanks to Johann Faouzi and Louis Thiry.

Thanks also to the members of the Sorbonne University pedagogical teams
who used these exercises for their feedback and contributions: Mathieu Barré,
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2 ■ Python Programming for Mathematics

Constantin Bône, Jules Bonnard, Cédric Boutillier, Thibault Cimic, Jeanne De-
cayeux, Cécile Della Valle, Guillaume Duboc, Jean-Jil Duchamps, Jean-Merwan
Godon, Elise Grosjean, Cindy Guichard, Sidi-Mahmoud Kaber, Nicolas Lan-
tos, Mathieu Mari, David Michel, Leo Miolane, Anouk Nicolopoulos, Arnaud
Padrol, Diane Peurichard,Marie Postel, Xavier Poulot-Cazajous, Alexandre Rege,
Othmane Safsafi, Emmanuel Schertzer, Agustín Somacal, Didier Smets, Robin
Strudel, Gauthier Tallec, Nicolas Thomas, Paul Vernhet, Jules Vidal, andRaphaël
Zanella.

Finally, I would like to thank the students who worked on these exercises
for their constructive feedback, which contributed to the improvement of this
collection.

The attentive reader is thanked in advance for pointing out typos or other
errors.

1.1 WHY PYTHON?

Python is a general-purpose interpreted programming language that has the par-
ticularity of being very readable and pragmatic. It has a very large base of exter-
nal modules, especially scientific ones, which makes it particularly attractive for
programmingmathematical problems. The fact that Python is an interpreted lan-
guage makes it slower than compiled languages, but it ensures a great speed of
development which allows humans to work a little less while the computer has
to work a little more. This particularity makes Python one of the main program-
ming languages used by scientists.

1.2 PREREQUISITES

This book does not aim to explain the syntax and principles of the Python lan-
guage, so the prerequisite is to know the basics. There are many resources to up-
date yourself if needed, for example:

∙ the online course Python Programming MOOC by the University of
Helsinki (https://programming-22.mooc.fi/);

∙ the book Python for Everybody by Charles R. Severance (https://www.py
4e.com/);

∙ various online courses, like Crash Course on Python (https://www.course
ra.org/learn/python-crash-course).

Moreover, the realization of the exercises requires access to a computer or an
online service with Python 3.6 (or more recent) completed by the followingmod-
ules: NumPy, SciPy, SymPy, Matplotlib, Numba, NetworkX, and Pandas. The use
of a code editor allowing writing in Python is also highly recommended. It is
suggested here to use Jupyter Lab, which allows both the writing of interactive
notebooks and scripts and also the addition of one’s own solutions below the

https://www.py4e.com
https://www.coursera.org/learn/python-crash-course
https://programming-22.mooc.fi
https://www.py4e.com
https://www.coursera.org/learn/python-crash-course
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statements, which is very practical. It is not necessary to use Jupyter Lab, other
environments are also suitable, such as Spyder or Jupyter Notebook.

The following sections describe how to install and run the Python environ-
ment or use it online without installation.

1.3 DOCUMENTATION

It is generally not useful (nor desirable) to know all the functions and subtleties
of the Python language for occasional use. However, it is essential to knowhow to
use the documentation efficiently. The official documentation is available at the
https://docs.python.org/. The language and version can be selected in the
upper left corner. It is strongly recommended to look at how the documentation
is written and to learn how to use it.

1.4 INSTALLATION

People who cannot or do not want to install Python can go directly to section 1.5
for alternatives available online without installation.

There are basically four ways to install Python and the modules required to
perform the exercises:

∙ Anaconda is a complete Python distribution, i.e., it directly installs a very
large quantity of modules (much more than necessary to do the following
exercises). The advantage of this installation is that it is very simple; the dis-
advantage is that it takes a lot of disk space. This is the preferred method if
you are runningWindows or MacOS and do not have disk space problems.

∙ Miniconda is a lightweight version of Anaconda, which by default installs
only the base. The advantage is that it takes up little disk space, but it re-
quires an additional action to install the modules required to do the exer-
cises. This is the preferred method if you are running Windows or MacOS
and have little disk space available.

∙ Linux repositories:Most Linux distributions allow you to install Python
and the coremodules directly from the package repositories that comewith
them. This is the preferred method under Linux.

∙ Pip is a package manager for Python. This is the preferred method to add
a module if Python is already installed by your operating system, and this
module is not included in the packages of your distribution. This method
allows a more detailed and advanced management of installed modules
than what is proposed with the previous methods.

Installation with Anaconda: The easiest way to install Python 3 and all nec-
essary dependencies on Windows and MacOS is to install Anaconda. The disad-
vantage of Anaconda is that its installation takes a lot of disk space becausemany

https://docs.python.org
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modules are installed by default. Detailed installation procedures for each operat-
ing system are described at: https://docs.anaconda.com/anaconda/install/.
In summary, the installation procedure is as follows:

1. Download Anaconda for Python 3 from the address: https://www.anacon
da.com/download.

2. Double-click on the downloaded file to launch the installation of Ana-
conda, then follow the installation procedure (it is not necessary to install
VS Code).

Installation with Miniconda:TheMiniconda distributionhas the advantage over
Anaconda of taking up little disk space at the cost of having to install the neces-
sary modules manually. The quick installation procedure is as follows:

1. DownloadMiniconda for Python 3 from the address: https://docs.anaco
nda.com/miniconda/.

2. Double-click on the downloaded file to launch the installation of Mini-
conda, then follow the installation procedure.

3. Once the installation is complete, launch Anaconda Prompt from the Start
menu or from the list of applications.

4. In the terminal, type the command:
Terminal

conda install numpy scipy sympy matplotlib numba
networkx pandas jupyterlab↪

and confirm the installation of the dependencies.

5. Optionally (but recommended), install the LSP (Language Server Protocol)
interface with the commands:

Terminal

conda config --append channels conda-forge
conda install jupyterlab-lsp python-lsp-server

Installing from repositories: Most Linux distributions allow to easily install
Python and the most standard modules directly from the distribution reposito-
ries. The following procedure is for Ubuntu, but can be easily adapted to other
distributions.

1. Install Python 3:
Terminal

sudo apt install python3 python3-pip

https://docs.anaconda.com/anaconda/install
https://www.anaconda.com/download
https://docs.anaconda.com/miniconda
https://www.anaconda.com/download
https://docs.anaconda.com/miniconda
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2. Update Pip:
Terminal

pip install --upgrade pip

3. Install the modules NumPy, SciPy, SymPy, Matplotlib, Numba, NetworkX,
and Pandas:

Terminal

sudo apt install python3-numpy python3-scipy
python3-sympy python3-matplotlib python3-numba
python3-networkx python3-pandas

↪

↪

4. Jupyter Lab is not available in the Ubuntu packages, so it must be installed
with Pip:

Terminal

pip install jupyterlab

5. Optionally (but recommended), install the LSP (Language Server Protocol)
interface with the command:

Terminal

pip install --upgrade jupyterlab-lsp
python-lsp-server[all]↪

See the following remark on Pip if this last command does not work.

Advanced installation with Pip: The following procedure describes the manual
installation of modules with the Pip manager.

1. Install Python from the address: https://www.python.org/downloads/.

2. Install Pip from the address: https://pip.pypa.io/en/stable/installa
tion/.

3. Install the required modules by typing the following command line in a
terminal:

Terminal

pip install numpy scipy sympy matplotlib numba networkx
pandas jupyterlab↪

4. Optionally (but recommended), install the LSP (Language Server Protocol)
interface with the command:

Terminal

pip install jupyterlab-lsp python-lsp-server[all]

https://www.python.org/downloads
https://pip.pypa.io/en/stable/installation
https://pip.pypa.io/en/stable/installation
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Remark: Depending on the operating system, the command pip must be re-
placed by pip3. If you encounter a permissions problem when executing these
commands, you should probably add --user to the end of the previous com-
mand.

1.5 LAUNCH OF JUPYTER LAB

With Anaconda Navigator: If Anaconda Navigator has been installed (as is the
case with Anaconda), simply launch Anaconda Navigator from the start menu or
application list, then click on the “jupyterlab” icon.

On the command line:WithAnaconda orMiniconda, launchAnaconda Prompt
from the Start menu or application list. In other cases, simply open a terminal
(if a virtual environment has been created, don’t forget to activate it). To launch
Jupyter Lab from the command line, type jupyter lab in the terminal. To quit,
click on Shutdown in the Filemenu of the Jupyter Labwindow. It is also possible
to type Ctrl+C followed by y in the terminal where the command jupyter lab
was executed.

Online without installation: For people who cannot or do not want to install
Python and the necessary dependencies on their own computer, it is possible to
use Jupyter Lab online with GESIS: https://notebooks.gesis.org/binder/v
2/gh/guillod/python-book/HEAD. No account is required, but modified docu-
ments are automatically deleted on exit, so it’s essential to save them on your
own computer before leaving. Otherwise, various services offer the possibility to
use Jupyter Lab for free after creating an account:

∙ CoCalc (https://cocalc.com/)

∙ Google Colaboratory (https://colab.research.google.com/)

1.6 USE OF JUPYTER LAB

Once Jupyter Lab is launched, the window shown in Figure 1.1 should appear in
a browser.

Jupyter Lab essentially allows us to process three types of documents: note-
books, scripts, and terminals. A notebook consists of cells that can contain ei-
ther code or text in Markdown format. Code cells can be evaluated interactively
on demand,which allows great flexibility. Text cells can contain comments, titles,
or LATEX formulas as represented in Figure 1.2.

A Python script is simply a text file containing Python instructions. It is exe-
cuted in its entirety fromA to Z and it is not possible to interact interactively with
it during its execution (unless it has been explicitly programmed). To execute a
Python script, it is necessary to open a terminal.

https://notebooks.gesis.org/binder/v2/gh/guillod/python-book/HEAD
https://notebooks.gesis.org/binder/v2/gh/guillod/python-book/HEAD
https://cocalc.com
https://colab.research.google.com
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Figure 1.1 Jupyter Lab launch window.

Figure 1.2 A Jupyter notebook is composed of several cells. Here, a code cell is
followed by an unevaluated text cell, then the same cell, evaluated, and finally a
last code cell.

Basic commands:

∙ Create a new file: click on the “+” button on the top left, then choose the
type of file to create.

∙ Rename a file: click with the second mouse button on the title of the note-
book (either in the tab or in the file list).
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∙ Change cell type: drop-down menu to choose between “Code” and “Mark-
down”.

∙ Execute a code cell: combination of keys SHIFT+ENTER.

∙ Format a text cell: combination of keys SHIFT+ENTER.

∙ Edit a text cell: double-click on the cell.

∙ Run a script: type python scriptname.py in a terminal to run the script
scriptname.py.

∙ Rearrange cells: click and drop.

∙ Juxtaposing tabs: click and drop.

The detailed documentation of Jupyter Lab is available at the address: https:
//jupyterlab.readthedocs.io/.

1.7 ADVANCED USE OF JUPYTER LAB

Recent versions of Jupyter Lab (3 and higher with ipykernel greater than 6) fea-
ture a particularly useful debugger and LSP (Language Server Protocol) interface.
The debugger allows you to find errors in the code by stopping the programat par-
ticular points to understand what’s going on. Documentation and a tutorial on
how to use the debugger are available at the address: https://jupyterlab.rea
dthedocs.io/en/stable/user/debugger.html. The LSP interface provides ac-
cess to documentation and function signatures, offers code diagnostics and au-
tocompletion. Information on installing and using the LSP interface is available
at the address: https://github.com/jupyter-lsp/jupyterlab-lsp/blob/mas
ter/README.md.
Debugger:When writing code, it’s natural to make mistakes, and one important
aspect is to locate and identify them efficiently. To do this, it’s possible to put
print commands in the right places, but it’s more appropriate to use a debugger
for this. To activate Jupyter Lab’s debugger, click on the beetle in the top right-
hand corner so that it turns orange. When the debugger is activated, the list of
global variables is available in the dedicated bar. The most useful aspect of the
debugger is the definition of breakpoints, which allow you to execute the code
up to a certain line and inspect the state of the program at that point. To do this,
consider the following function, which adds two numbers:

def add(a, b):
res = a + b
return res

Clicking to the left of a code line number places a breakpoint indicated by a red
dot. Here, we propose to click on the second line performing the addition. By
executing the following function call code:

https://jupyterlab.readthedocs.io/en/stable/user/debugger.html
https://github.com/jupyter-lsp/jupyterlab-lsp/blob/master/README.md
https://jupyterlab.readthedocs.io
https://jupyterlab.readthedocs.io
https://jupyterlab.readthedocs.io/en/stable/user/debugger.html
https://github.com/jupyter-lsp/jupyterlab-lsp/blob/master/README.md
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resultat = add(1, 2)
print(resultat)

the program will stop at the second line of the add function. You can view the
values of variables a and b in the “Variables” tab and the relevant source code
in the “Sources” tab. Breakpoints are grouped together in the “Breakpoints” tab.
By navigating the “Callstack” tab, you can continue program execution up to the
next breakpoint.
Hover: When hovering over any part of the code with the mouse, if a part of the
code becomes underlined it is then possible to get information about the function
with the CTRL key. For example, by hovering the mouse over the following code:

from numpy import linalg

and by pressing the CTRL key with themouse on numpy or linalg a windowwith
explanations about these modules is displayed. This is also the case for manually
defined functions if they contain a docstring:

def square(x):
"""Definition of the function x -> x^2"""
return x⁎x

Moving the mouse over the word square:

r = square(4)

underlines it, and with the key CTRL the definition appears.
Diagnostics: Critical errors or warnings are indicated by an underline in red or
orange, for example, in the case of an undefined variable:

def f(x):
if x:

undefined_variable
return x

Suggestions: By typing linalg. in a cell, suggestions of functions available in
this module are displayed. In other cases, the suggestions are activated with the
TAB key. This is the case, for example, with a manually defined dictionary:

dic = {'key1':3, 'key2':5}

By typing dic[ in a cell followed by the TAB key, the suggestions 'key1' and
'key2' come up.
Signatures:By typing linalg.solve( then comes the help and signature of this
function, i.e., the way the arguments are to be used in this function. By placing
the mouse on the word solve with the CTRL key, there comes also a description
of the function.
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References: By clicking on a symbol, its other uses are highlighted.

Definition: By clicking with the right mouse button on a symbol and then on
“Jump to definition”, it is possible to go to the definition of the function in ques-
tion. It is possible to test on the following code, for example:

f(None)

Renaming: It is possible to rename a variable intelligently (i.e., without renam-
ing local variables, for example) by right-clicking on the variable in question and
selecting “Rename symbol”.

Diagnostics panel: It is possible to sort and navigate through the diagnostics
using the “Diagnostics panel”. To open it, simply select “Show diagnostics panel”
from the context menu of a cell (right mouse button).

Personalization: The “Settings” menu of Jupyter Lab allows you to customize
the working environment, especially to choose the theme, the font size, the de-
fault indentation, but also many other more advanced options.



10 ■ Python Programming for Mathematics

References: By clicking on a symbol, its other uses are highlighted.

Definition: By clicking with the right mouse button on a symbol and then on
“Jump to definition”, it is possible to go to the definition of the function in ques-
tion. It is possible to test on the following code, for example:

f(None)

Renaming: It is possible to rename a variable intelligently (i.e., without renam-
ing local variables, for example) by right-clicking on the variable in question and
selecting “Rename symbol”.

Diagnostics panel: It is possible to sort and navigate through the diagnostics
using the “Diagnostics panel”. To open it, simply select “Show diagnostics panel”
from the context menu of a cell (right mouse button).

Personalization: The “Settings” menu of Jupyter Lab allows you to customize
the working environment, especially to choose the theme, the font size, the de-
fault indentation, but also many other more advanced options.

C H A P T E R 2

Data Structures

To represent data structures, Python offers four basic types: lists (type list), tu-
ples (type tuple), sets (type set), and dictionaries (type dict). The purpose of
this chapter is to show the fundamental differences between these data struc-
tures and to explain what they are best suited for. Detailed documentation on
data structures is available at the address: https://docs.python.org/3/tutori
al/datastructures.html.

Concepts covered

∙ data structures (list, tuple, set, dictionary)

∙ mutable and immutable types

∙ hashable type

∙ list, set and dictionary comprehensions

∙ numerical series

DOI: 10.1201/9781003565451-2 11

https://docs.python.org/3/tutorial/datastructures.html
https://doi.org/10.1201/9781003565451-2
https://docs.python.org/3/tutorial/datastructures.html
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EXERCISES

EXERCISE 2.1 LISTS

A list is a structure allowing to store heterogeneous elements:

list0 = [0, 5.4, "string", True]

Lists are mutable, i.e., it is possible to modify an element, add one or delete one,
without having to redefine the whole list.

list0[3] = False # replace True by False
list0.append("new") # add the string "new" to the list
list0.insert(2, 34) # insert 34 in place of 2
list0.remove(0) # remove 0

In particular, care must be taken when copying a list. If we execute the following
code:

list1 = list0
list1[2] = "change"
list0

then list0 is also modified and is equal to list1. To create a real copy, you have
to use the following code:

list2 = list0.copy()
list2[2] = "rechange"
list0

which does not modify list0. Note that it is possible to modify the elements of
a list inside a function:

def f(l):
l[0] = 0

f(list0)

Finally, it is possible to create lists with the help of list comprehension:

list1 = [2⁎i+1 for i in range(10)]

a. Search the documentation for the syntax to concatenate two lists.
Hint: See the documentation at the address: https://docs.python.org/3/libr
ary/stdtypes.html#sequence-types-list-tuple-range.
b. Look in the documentation for the syntax to extract a slice from a list, i.e., if a
is, for example, a list of length 10, return the elements from 6 to 9.

https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range
https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range
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Hint: See the documentation at the address: https://docs.python.org/3/libr
ary/stdtypes.html#sequence-types-list-tuple-range.
c. Search the documentation for the syntax to return the length of a list.
d. Write a function fibonacci(N) that returns the list of 𝑁𝑁 first terms of the
Fibonacci sequence defined by 𝑢𝑢𝑛𝑛+2 = 𝑢𝑢𝑛𝑛+1 + 𝑢𝑢𝑛𝑛 with 𝑢𝑢0 = 0 and 𝑢𝑢1 = 1.
e. Write a function pascal(N) that returns the 𝑁𝑁-th line of Pascal’s triangle:

f. Let (𝑢𝑢𝑛𝑛)𝑛𝑛∈ℕ and (𝑣𝑣𝑛𝑛)𝑛𝑛∈ℕ be the sequences defined by 𝑢𝑢0 = 1, 𝑣𝑣0 = 1, and

𝑢𝑢𝑛𝑛+1 = 𝑢𝑢𝑛𝑛 + 𝑣𝑣𝑛𝑛 , 𝑣𝑣𝑛𝑛+1 = 2𝑢𝑢𝑛𝑛 − 𝑣𝑣𝑛𝑛 ,

for 𝑛𝑛 ≥ 0. Calculate 𝑢𝑢100 and 𝑣𝑣100.
Answer: 𝑢𝑢100 = 𝑣𝑣100 = 717897987691852588770249.
g.Write a function vk(n0,K), which for two integers 𝑛𝑛0 and𝐾𝐾 ≥ 1 computes the
sequence of values 𝑣𝑣𝑘𝑘 defined by 𝑣𝑣0 = 𝑛𝑛0 and

𝑣𝑣𝑘𝑘+1 = {
3𝑣𝑣𝑘𝑘 + 1 if 𝑣𝑣𝑘𝑘 is odd,
𝑣𝑣𝑘𝑘
2

if 𝑣𝑣𝑘𝑘 is even,

for 0 ≤ 𝑘𝑘 𝑘 𝐾𝐾. For 𝐾𝐾 = 1 000 and various values of 𝑛𝑛0 ∈ {10, 100, 1 000, 10 000},
display the last five calculated values, i.e., (𝑣𝑣𝐾𝐾−4, 𝑣𝑣𝐾𝐾−3, 𝑣𝑣𝐾𝐾−2, 𝑣𝑣𝐾𝐾−1, 𝑣𝑣𝐾𝐾).
Answer: The following statements are true:

vk(10,1000) == [1, 4, 2, 1, 4]
vk(100,1000) == [2, 1, 4, 2, 1]
vk(1000,1000) == [1, 4, 2, 1, 4]
vk(10000,1000) == [4, 2, 1, 4, 2]

EXERCISE 2.2 TUPLES

Tuples allow, just like lists, to store heterogeneous elements:

tuple0 = (0, 5.4, "string", True)

But unlike lists, tuples are not mutable. It is not possible to modify an element,
add one or delete one, without redefining the whole tuple. The advantage of a
tuple over a list is that it is hashable, i.e., it can be used as a key in a dictionary.
Finally, it is possible to assign variables inside a tuple, for example:

https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range
https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range
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(a,b) = (1,9)

This is especially useful for exchanging two variables without having to use an
additional variable:

(a,b) = (b,a)

a. Check that a tuple is immutable.
b. Define a function mdlast(lst,val) having as argument a list of integer
tuples lst and an integer val and return the list of tuples with the last ele-
ment of each tuple replaced by val. For example, if lst = [(10, 20), (30,
40, 50, 60), (70, 80, 90)], then mdlast(lst,100) should return [(10,
100), (30, 40, 50, 100), (70, 80, 100)].
c. How to convert a tuple into a list and vice versa?

EXERCISE 2.3 SETS

Sets are used to store heterogeneous elements in the mathematical sense of set
theory:

set0 = {0, 5.4, "string", True}

It is possible to test if an element belongs to a set:

if "string" in set0:
print("inside")

Sets are mutable, so it is possible to add or remove an element from a set:

set0.add(18) # add 18 to the set
set0.add(0) # add 0 to the set (this does nothing as 0

already belongs to the set)↪

set0.remove("string") # remove "string to the set

On the other hand, sets can only contain hashable elements, i.e., immutable. In
particular a set cannot contain another set:

set1 = {{1,2},{3},{4}}
TypeError: unhashable type: 'set'

Note that in Python there are also immutable sets, called frozenset:

frozenset0 = frozenset([0, 5.4, "string", True])
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A string can be transformed into a set:

set1 = set('abracadabra')

As with lists, it is possible to make set comprehensions:

set2 = {x for x in 'abracadabra' if x not in 'abc'}

In this example, strings are automatically transformed into sets. Note that the
empty set is defined by set().
a. Define a function divisible(n) that returns the set of integers divisible by n
less than or equal to 100.
b. Search the literature to find the intersection, union, and difference of two sets.
Determine the numbers less than or equal to 100 that are not divisible by 2 but
divisible by 3 and 5.
Hint: See the documentation of set at the address: https://docs.python.org/3/
library/stdtypes.html#set.

EXERCISE 2.4 DICTIONARIES

Dictionaries are a structure allowing to store heterogeneous elements indexed by
keys (also heterogeneous):

dict0 = {"apples": 0, "pears": 4, 12: 2}

The elements of a dictionary are accessible through the keys:

dict0["apples"]
dict0[12]

A dictionary can be seen as an associative array associating to each key a value.
The list of keys and the list of values are accessible, respectively, with dict0. ⌋
keys() and dict0.values(). Dictionaries are mutable, so it is possible to mod-
ify a key-value association and to add or remove one:

dict0["apples"] = 3 # modify the value associated to apples
dict0["oranges"] = "many" # add oranges as key with value

"many"↪

del dict0["pears"] # remove the key pears, hence the value
dict0.pop("apples") # remove the key apples, hence the value

Although a dictionary is mutable, the keys that compose it must be hashable ob-
jects, i.e., immutable. Thus, a list or a set cannot be used as keys in a dictionary:

dict0[list0] = "test"
TypeError: unhashable type: 'list'

https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#set
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dict0[set0] = "retest"
TypeError: unhashable type: 'set'

On the other hand, it is possible to have a tuple or a frozenset as a key:

dict0[tuple0] = "test"
dict0[frozenset0] = "rest"

hence the interest of frozensets. As for lists and sets, it is possible to make dictio-
nary comprehensions:

dict1 = {x: x⁎⁎2 for x in range(5)}

Finally, an interesting thing about dictionaries is the unpacking illustrated by the
following example:

def add(a=0, b=0):
return a + b

d = {'a': 2, 'b': 3}
add(⁎⁎d)

a. How to define an empty dictionary?
b. How to concatenate several dictionaries together?
c. We consider a list of words:

words = ['Apricot', 'Cranberry', 'Pineapple', 'Banana',
'Blackcurrant', 'Cherry', 'Lemon', 'Clementine',
'Quince', 'Date', 'Strawberry', 'Raspberry',
'Pomegranate', 'Gooseberry', 'Persimmon', 'Kiwi',
'Litchi', 'Mandarin', 'Mango', 'Melon', 'Mirabelle',
'Nectarine', 'Orange', 'Grapefruit', 'Papaya', 'Peach',
'Pear', 'Apple', 'Plum', 'Grape']

↪

↪

↪

↪

↪

↪

Write a function position(words, x, n) that returns the list of words with the
character x as their n-th letter (starting from zero, as in Python).
Answer: For example, position(words,'e',4) should return the list:

['Clementine', 'Gooseberry', 'Grapefruit', 'Apple', 'Grape']

d. Assuming that the list of words is very long, then each time the position
function is evaluated, the whole set of words is searched, which takes quite a long
time. To improve this, build a dictionary mots_dict having as keys the tuples
(x,n) and as values the list of words having the character x as n-th letter, i.e.,
such that mots_dict[x,n] returns the same thing as position(words, x , n)
except for the order. Thus, the words list is traversed only once during dictionary
construction and then dictionary evaluation is extremely fast for any query.



16 ■ Python Programming for Mathematics

dict0[set0] = "retest"
TypeError: unhashable type: 'set'

On the other hand, it is possible to have a tuple or a frozenset as a key:

dict0[tuple0] = "test"
dict0[frozenset0] = "rest"

hence the interest of frozensets. As for lists and sets, it is possible to make dictio-
nary comprehensions:

dict1 = {x: x⁎⁎2 for x in range(5)}

Finally, an interesting thing about dictionaries is the unpacking illustrated by the
following example:

def add(a=0, b=0):
return a + b

d = {'a': 2, 'b': 3}
add(⁎⁎d)

a. How to define an empty dictionary?
b. How to concatenate several dictionaries together?
c. We consider a list of words:

words = ['Apricot', 'Cranberry', 'Pineapple', 'Banana',
'Blackcurrant', 'Cherry', 'Lemon', 'Clementine',
'Quince', 'Date', 'Strawberry', 'Raspberry',
'Pomegranate', 'Gooseberry', 'Persimmon', 'Kiwi',
'Litchi', 'Mandarin', 'Mango', 'Melon', 'Mirabelle',
'Nectarine', 'Orange', 'Grapefruit', 'Papaya', 'Peach',
'Pear', 'Apple', 'Plum', 'Grape']

↪

↪

↪

↪

↪

↪

Write a function position(words, x, n) that returns the list of words with the
character x as their n-th letter (starting from zero, as in Python).
Answer: For example, position(words,'e',4) should return the list:

['Clementine', 'Gooseberry', 'Grapefruit', 'Apple', 'Grape']

d. Assuming that the list of words is very long, then each time the position
function is evaluated, the whole set of words is searched, which takes quite a long
time. To improve this, build a dictionary mots_dict having as keys the tuples
(x,n) and as values the list of words having the character x as n-th letter, i.e.,
such that mots_dict[x,n] returns the same thing as position(words, x , n)
except for the order. Thus, the words list is traversed only once during dictionary
construction and then dictionary evaluation is extremely fast for any query.

Data Structures ■ 17

SOLUTIONS

SOLUTION 2.1 LISTS

a. The + operator allows the concatenation of lists:

list1 = [1,3,4,"a",29]
list2 = ["e",37,2]
list1 + list2

b. You have to use list to transform the type range into a list:

a = list(range(10))
a[6:10]

c. The len function returns the length of a list:

list3 = [2,5,"19",4,8,"R"]
len(list3)

d. The idea is to build a list element by element from the first two elements:

def fibonacci(N):
# initialization
out = [0,1]
for i in range(2,N):

# add to the list out the sum of the two previous
element↪

out.append(out[i-1]+out[i-2])
return out

e. By using a recursive function, the problem is reduced to writing the logic to
move from one line to another:

def pascal(N):
# initialization for the recursion
if N == 1:

return [1]
else:

# previous line
previous = pascal(N-1)
# return the new line composed in terms of the

preceding line↪

return [1] + [previous[i] + previous[i+1] for i in
range(N-2)] + [1]↪
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f. The following trick allows us to set the new values of u and v at once, otherwise
you have to use an additional variable to save one of the old values:

def uv(n):
# initial values
u = 1
v = 1
for i in range(n):

# this allows to define the new u and v
simultaneously↪

u,v = u+v, 2⁎u-v
return [u,v]

print(uv(100))

g. Since only the last five values are requested, it is useless to store them all. As
only even numbers are divided by 2, the sequence remains a sequence of integers.
To keep this property in Python, you have to use the integer division:

def vk(n0,K):
# initialization
v = int(n0)
# list to store the last 5 results
out = []
for i in range(K):

# if vk even
if v % 2 == 0:

v = v//2
else:

v = 3⁎v+1
# return the last 5 values
if i in range(K-5,K):

out.append(v)
return out

for n0 in [10,100,1000,10000]:
print(vk(n0,1000))

SOLUTION 2.2 TUPLES

a. If you try to modify a tuple, an error appears:

tuple0 = (0, 5.4, "string", True)
tuple0[3] = False # impossible to modify a value
TypeError: 'tuple' object does not support item assignment
del tuple0[1] # impossible to delete a value
TypeError: 'tuple' object doesn't support item deletion

b. Since tuples are immutable, a simple way to do this is to select all but the last
element of the tuple and concatenate the tuple to an element (100,):
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def mdlast(lst,val):
return [t[:-1] + (100,) for t in lst]

lst = [(10, 20), (30, 40, 50, 60), (70, 80, 90)]
mdlast(lst,100)

c. The operators list and tuple allow to make conversions to their respective
types:

list0 = [0, 5.4, "string", True]
tuple0 = (0, 5.4, "string", True)
list0 == list(tuple0)
tuple0 == tuple(list0)

SOLUTION 2.3 SETS

a. The set understanding allows to simply return the integers that are multiples
of n:

def divisible(n):
return {n⁎i for i in range(100//n+1)}

b. We calculate the intersection of the numbers divisible by 3 and 5, then we
subtract the numbers divisible by 2:

inter = divisible(3).intersection(divisible(5)) # numbers
divisible by 3 and by 5↪

inter = inter.difference(divisible(2))
inter

or equivalent:

( divisible(3) & divisible(5) ) - divisible(2)

SOLUTION 2.4 DICTIONARIES

a. There are two ways to define an empty dictionary, either with dict() or with
{}:

empty_dict = dict()
empty_dict = {}

b. One method is to create an empty dictionary and then add data from other
dictionaries to it:
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dic1={1:10, 2:20}
dic2={2:20, 3:30, 4:40}
dic3={5:50, 6:60, 3:99}
out = {}
for d in (dic1, dic2, dic3): out.update(d)

It is also possible to use unpacking:

out = {⁎⁎dic1, ⁎⁎dic2, ⁎⁎dic3}

or from Python 3.9:

out = dic1 | dic2 | dic3

c. The idea is to fill in a list as you go along, going through all the words:

def position(words, x, n) :
out = [ ]
# iterate over the words
for word in words :

# add the word if the nth letter exists and is x
if n < len(word) and word[n] == x :

out.append(word)
return out

print(position(words,'e',4))

We note here that in a condition formed by the conjunction of several predicates,
as soon as one predicate is false, the following ones are not executed. The order
of the predicates is therefore important, for example, the previous code returns
an error with if word[n] == x and n < len(word):.
d. The use of get allows an optional parameter to be returned when trying to
access a key that does not exist:

words_dict = {}
for word in words:

for i,c in enumerate(word) :
words_dict[(c,i)] = words_dict.get((c,i), []) +

[word]↪

print(words_dict['e',4])
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C H A P T E R 3

Homogeneous
Structures

Python’s default data structures can handle heterogeneous data (for example, in-
tegers and strings). This feature makes Python data structures extremely flexible
at the expense of performance. Indeed, since heterogeneous data must be sup-
ported, it is not possible to allocate a fixed memory range for a data structure,
which slows down its use. Particularly in mathematics, homogeneous datasets
of fixed size (list of integers, real or complex vectors, matrices...) appear very reg-
ularly. The NumPy module defines the ndarray type that is optimized for such
homogeneous data structures of fixed sizes. The NumPy documentation is avail-
able at the address: https://numpy.org/doc/stable/.

To load the NumPy module, it is usual to proceed as follows:

import numpy as np

Concepts covered

∙ homogeneous data table

∙ slicing

∙ vector operations

∙ indexing and selection

DOI: 10.1201/9781003565451-3 21

https://numpy.org/doc/stable
https://doi.org/10.1201/9781003565451-3
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EXERCISES

EXERCISE 3.1 INTRODUCTION TO NUMPY

Creation: The size and type of the elements of a NumPy array must be known
in advance. The first way to create a NumPy array is to construct an array filled
with zeros by specifying the size and type:

array0 = np.zeros(3, dtype=int) # vector of 3 integers
array1 = np.zeros((2,4), dtype=float) # array of floats of

size 2x4↪

array2 = np.zeros((2,2), dtype=complex) # square matrix of
complex numbers of size 2x2↪

array3 = np.zeros((5,6,4)) # three-dimensional array of
floats↪

The second way is to pass the data directly:

array4 = np.array([1,4,5]) # vector of integers
array5 = np.array([[1.1,2.2,3.3,4.4],[1,2,3,4]]) # matrix of

floats of size 2x4↪

array6 = np.array([[1+1j,0.4],[3,1.5]]) # matrix of complex
numbers of size 2x2↪

NumPy will then determine itself the type and the size of the array. Note that it
is possible to force the type:

array0 = np.array([1,4,5], dtype=complex) # vector of complex
numbers↪

The type of the elements of the NumPy array array1 can be determined by
array1.dtype. The size of this array is given by array1.shape. The following
commands are used to access the array elements:

array4[1] # return 4
array5[1,3] # return 4.0

Note that the indices start at 0 and not at 1. NumPy arrays are mutable in the
sense that the data can be modified while keeping the same type and size:

array0[1] = 4
array1[1,3] = 3.3
array3[3,4,2] = 3
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Slicing: Slicing allows you to access certain parts of a table:

array4[2:3] # return the elements of indices between 2 and 3
array1[0,:] # return the first row of array1
array1[:,-1] # return the last column of array1
array3[3,3:5,1:4] # return the corresponding sub-matrix

Iteration: It is possible to iterate an array on its first dimension, for example, to
return the sum of the rows:

for i in array5:
print(np.sum(i))

a. Study the documentation for the arange function and use this function to gen-
erate the vectors (5, 6, 7, 8, 9) and (3, 5, 7, 9).
Hint: The documentation of the arange function is available at the address: https:
//numpy.org/doc/stable/reference/generated/numpy.arange.html.
b. Study the documentation for the function linspace and use it to generate 10
evenly spaced numbers in the interval [2, 5].
c. Read the documentation for the reshape function and perform the following
transformations in succession:

(1, 2, 3, 4, 5, 6)→
⎛
⎜
⎝

1 2
3 4
5 6

⎞
⎟
⎠
→ (1 2 3

4 5 6)→
⎛
⎜
⎝

1 4
2 5
3 6

⎞
⎟
⎠

EXERCISE 3.2 OPERATIONS ON ARRAYS

The basic arithmetic operations on NumPy arrays are performed element by ele-
ment:

mat1 = np.array([[1,2.5,3],[5,6.1,8],[3,2,5]])
mat2 = np.array([[1,0.5,0],[0,0.9,8],[2,0,0]])
mat1 + mat2 # return the sum element by element
mat1 ⁎ mat2 # return the product element by element (not the

matrix product)↪

10⁎mat1⁎⁎2 # return 10 times the square of the elements of
mat1↪

Most of the mathematical functions defined by NumPy (see https://numpy.or
g/doc/stable/reference/routines.math.html) are also performed element by
element:

np.cos(mat1) # return the cosine element by element of mat1
np.exp(mat1) # return the exponential element by element of

mat1↪

https://numpy.org/doc/stable/reference/routines.math.html
https://numpy.org/doc/stable/reference/generated/numpy.arange.html
https://numpy.org/doc/stable/reference/generated/numpy.arange.html
https://numpy.org/doc/stable/reference/routines.math.html
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The matrix product can be performed in one of three ways:

np.dot(mat1,mat2)
mat1.dot(mat2)
mat1 @ mat2

a. Given a vector (𝑣𝑣0, 𝑣𝑣1,… , 𝑣𝑣𝑛𝑛−1), the discrete derivative of this vector is defined
by the vector (𝑑𝑑0, 𝑑𝑑1,… , 𝑑𝑑𝑛𝑛−2) given by 𝑑𝑑𝑖𝑖 = 𝑣𝑣𝑖𝑖+1 − 𝑣𝑣𝑖𝑖 for 𝑖𝑖 = 0, 1,… , 𝑛𝑛 − 2.
Write a function diff_list that computes the discrete derivative of a list and
a function diff_np that does the same operation but on NumPy vectors using
slicing.
b. Let a_list and a_np be, respectively, a list and an array of 1 000 elements
drawn at random in the interval [0, 1]:

a_list = [np.random.random() for _ in range(1000)]
a_np = np.random.random(1000)

Compare the execution time of diff_list(a_list) and diff_np(a_np).
Hint: In Jupyter Lab, it is very easy to determine the time taken by a cell to evaluate
itself, just start the cell with %%time, for example:

%%time
result = diff_list(a_list)

To evaluate the cell multiple times and average the execution time to get a more ac-
curate result, replace %%timewith %%timeit. The documentation is available at the
address: https://ipython.readthedocs.io/en/stable/interactive/magics.
html#magic-timeit.
Answer: The execution time with NumPy tables should be approximately 50 to 100
times faster than with lists!

EXERCISE 3.3 VANDERMONDE MATRIX

For 𝑝𝑝, 𝑛𝑛 ∈ ℕ∗ and 𝒙𝒙 = (𝑥𝑥1,… , 𝑥𝑥𝑝𝑝) a vector of size 𝑝𝑝, the corresponding Vander-
monde matrix is defined by:

𝑉𝑉(𝒙𝒙, 𝑛𝑛) =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 𝑥𝑥1 𝑥𝑥21 ⋯ 𝑥𝑥𝑛𝑛−11 𝑥𝑥𝑛𝑛1
1 𝑥𝑥2 𝑥𝑥22 ⋯ 𝑥𝑥𝑛𝑛−12 𝑥𝑥𝑛𝑛2
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
1 𝑥𝑥𝑝𝑝−1 𝑥𝑥2𝑝𝑝−1 ⋯ 𝑥𝑥𝑛𝑛−1𝑝𝑝−1 𝑥𝑥𝑛𝑛𝑝𝑝−1
1 𝑥𝑥𝑝𝑝 𝑥𝑥2𝑝𝑝 ⋯ 𝑥𝑥𝑛𝑛−1𝑝𝑝 𝑥𝑥𝑛𝑛𝑝𝑝

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

a. Write a function that constructs the matrix 𝑉𝑉(𝒙𝒙, 𝑛𝑛) element by element using
a double loop.

https://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-timeit
https://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-timeit
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⎟
⎠

.

a. Write a function that constructs the matrix 𝑉𝑉(𝒙𝒙, 𝑛𝑛) element by element using
a double loop.
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b. After establishing a relationship to write the 𝑘𝑘-th column of 𝑉𝑉(𝒙𝒙, 𝑛𝑛) solely as
a function of 𝒙𝒙 and 𝑘𝑘, write a second function that constructs the matrix 𝑉𝑉(𝒙𝒙, 𝑛𝑛)
column by column using this relationship.
c.After establishing a relationship between the 𝑘𝑘-th column of𝑉𝑉(𝒙𝒙, 𝑛𝑛), its (𝑘𝑘−1)-
th column, and the vector 𝒙𝒙, write a third function that constructs the matrix
𝑉𝑉(𝒙𝒙, 𝑛𝑛) column by column using this relationship.
d. Compare the execution times of these three functions for 𝑛𝑛 = 150, 𝑝𝑝 = 100,
and 𝒙𝒙 generated randomly.

EXERCISE 3.4 ARRAY INDEXING (!)

Slicing allows you to select blocks in an array, but it is also possible to select dis-
parate elements using an array as indexing:

a = np.arange(12)⁎⁎2 # array of perfect squares
i = np.array([1,3,8,5]) # array of indices
a[i] # array of the elements with indices i

Note that it is also possible to index by an array of higher dimension. The result
is then an array of the same shape as the index:

j = np.array([[3,4],[9,7]]) # two-dimensional array of
indices↪

a[j] # select the elements with indices j

For a multidimensional array:

b = np.array([[0,1,2,3],[4,5,6,7],[8,9,10,11]])
i = np.array([0,1,2,2]) # array of first indices
j = np.array([1,0,3,1]) # array of second indices
b[i,j] # select the elements of indices ij

Finally, it is possible to index an array by an array of Booleans:

c = np.array([[0,1,2,3],[4,5,6,7],[8,9,10,11]])
cond = (c >= 5) # array of Booleans defined by True if >= 5

and False otherwise↪

c[cond] = 5 # assign the value 5 to all entries greater than
5↪

For the following, we consider the numbers:

[0.9602, -0.99, 0.2837, 0.9602, 0.7539, -0.1455, -0.99,
-0.9111, 0.9602, -0.1455, -0.99, 0.5403, -0.99, 0.9602,
0.2837, -0.99, 0.2837, 0.9602]

↪

↪

as the results of a measurement made every 0.1 second at times between 2 and
3.7 seconds.
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a. Since themeasurements are supposed to be positive, change the data to 0when
the values are negative.
b. Calculate the times for which the previous measurements are maximum.
c.For eachmaximummeasure, return the previousmeasure, themaximummea-
sure, and the next measure. If the previous or the next measure does not exist,
replace them with np.nan.
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SOLUTIONS

SOLUTION 3.1 INTRODUCTION TO NUMPY

a. The arange function is analogous to the range function but returns a NumPy
array:

np.arange(5,10) # vector (5,6,7,8,9)
np.arange(3,10,2) # vector (3,5,7,9)

b. The function linspace allows to generate a number of points in an interval:

np.linspace(2,5,10)

c. The transformations are successively given by:

mat0 = np.arange(1,7)
mat1 = mat0.reshape(3,2)
mat2 = mat1.reshape(2,3)
mat3 = mat2.T

It is possible to go directly from the first to the last matrix:

mat0.reshape(3,2,order='F')

SOLUTION 3.2 OPERATIONS ON ARRAYS

a. The definition for lists:

def diff_list(lst):
out = []
for i in range(len(lst)-1):

out.append(lst[i+1]-lst[i])
return out

and the one for NumPy tables using indexing:

def diff_np(vec):
return vec[1:] - vec [:-1]

b. For the lists:

%%timeit
result = diff_list(a_list)

is executed in 197 µs ± 5.48 µs. For NumPy arrays:
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%%timeit
result = diff_np(a_np)

is executed in 2.07 µs ± 42.9 ns.

SOLUTION 3.3 VANDERMONDE MATRIX

a. It is a double loop to fill the matrix element by element:

def vdm_1(x,n):
p = np.size(x)
vdm = np.empty((p,n+1))
for i in range(p):

for j in range(n+1):
vdm[i,j] = x[i]⁎⁎j

return vdm

b. The 𝑘𝑘-th column of 𝑉𝑉(𝒙𝒙, 𝑛𝑛) is the vector 𝒙𝒙 whose elements are raised to the
power 𝑝𝑝, so it is possible to fill the matrix column by column:

def vdm_2(x,n):
p = np.size(x)
vdm = np.empty((p,n+1))
for k in range(n+1):

vdm[:,k] = x⁎⁎k
return vdm

c. In order to avoid raising the vector 𝒙𝒙 to the power 𝑝𝑝, it is possible to take the
previous column:

def vdm_3(x,n):
p = np.size(x)
vdm = np.ones((p,n+1))
for j in range(1,n+1):

vdm[:,j] = vdm[:,j-1]⁎x
return vdm

d. The execution times can be determined easily with %%timeit:

n, p = 150, 100
x = np.random.rand(p)

%%timeit
vdm_1(x,n)
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%%timeit
vdm_2(x,n)

%%timeit
vdm_3(x,n)

Not too surprisingly, the execution times are decreasing, as a double loop is slower
than a single loop, and a product faster to perform than a power.

SOLUTION 3.4 ARRAY INDEXING (!)

a. The easiest way is to use indexing:

# array of time and measures
time = np.arange(2,3.8,0.1)
data = np.cos([6,3,5,6,7,8,3,9,6,8,3,1,3,6,5,3,5,6]).round(4)
# correct negative values by putting zero instead
data[data < 0] = 0

b.The indexing allows to easily return the times of themaximummeasurements:

# times indexed by the Booleans array of maximum measurements
time[data == data.max()]

c. To avoid having to manage side effects too manually, the modulo is useful to
select elements that make sense, even if you have to replace them later:

# number of measures
nb = len(time)
# indices of maximum measures
ind = np.arange(nb)[data == np.max(data)]
# indices of preceding and following maximum measuresd
tab = np.array([ind-1,ind, ind+1])
# array of adjacents measures (the modulo allows us to assign

a value even outside of the range of measures)↪

adjacents = data[tab % nb]
# modify the values outside of the range
adjacents[tab < 0] = np.nan
adjacents[tab >= nb] = np.nan



C H A P T E R 4

Plotting

Plotting results from numerical or symbolic calculations is essential to analyze or
interpret them. TheMatplotlib module allowsmaking very varied visualizations.
The documentation of Matplotlib is available at the address: https://matplotl
ib.org/users/.

To use it, it is usual to import it like this:

import matplotlib.pyplot as plt

and often NumPy is also very useful:

import numpy as np

Concepts covered

∙ one-dimensional plots

∙ two- and three-dimensional plots

∙ cobweb diagram

∙ bifurcation diagram

∙ optimization by parallelization

30 DOI: 10.1201/9781003565451-4

https://matplotlib.org/users
https://doi.org/10.1201/9781003565451-4
https://matplotlib.org/users
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EXERCISES

EXERCISE 4.1 PLOTS

For example, the function plot can be used to represent the function 𝑥𝑥2:

x = np.linspace(0,1,50)
y = x⁎⁎2
plt.plot(x,y)
plt.show()

In order to define a nice figure that can be exported as in Figure 4.1, the syntax is
as follows:

plt.figure(figsize=(8,5)) # size of the figure (in inches)
plt.title(r'Plot of $x^2$') # title of the figure (LaTeX code

can be included)↪

plt.xlabel(r'$x$') # label of the horizontal axis
plt.ylabel(r'$y$') # label of the vertical axis
plt.plot(x, y, marker='o', label=r"$x^2$") # legend
plt.legend() # display the legend
plt.savefig("test.pdf") # export the figure to PDF
plt.savefig("test.png", dpi=100) # export the figure to PNG
plt.show()

a. Plot the functions sin(𝑘𝑘𝑥𝑥) and cos(𝑘𝑘𝑥𝑥) for 𝑘𝑘 = 1, 2, 3 on 𝑥𝑥 ∈ [0, 2𝜋𝜋] in the same
figure. Make the graduations on the horizontal axis all 𝜋𝜋

2
, as in Figure 4.2.

Hint: Use the xticks function described at the address: https://matplotlib.org
/api/_as_gen/matplotlib.pyplot.xticks.html.
b. Look at the help for the imshow function and use it to plot a matrix of random
numbers in [0, 1] of size 10 × 10 as in Figure 4.3.
c. Plot the density and the contour lines of the function 𝑓𝑓(𝑥𝑥, 𝑥𝑥) = −𝑥𝑥

5
+ 𝑒𝑒−𝑥𝑥2−𝑥𝑥2

for 𝑥𝑥 ∈ [−3, 3] and 𝑥𝑥 ∈ [−3, 3] as in Figure 4.4.

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.xticks.html
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.xticks.html
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Figure 4.1 Plot of 𝑥𝑥2.

Figure 4.2 Plot of sin(𝑘𝑘𝑥𝑥) and cos(𝑘𝑘𝑥𝑥) for 𝑘𝑘 = 1, 2, 3.
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Figure 4.1 Plot of 𝑥𝑥2.

Figure 4.2 Plot of sin(𝑘𝑘𝑥𝑥) and cos(𝑘𝑘𝑥𝑥) for 𝑘𝑘 = 1, 2, 3.
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Figure 4.3 Plot of a random matrix. The colors correspond to the values of the
entries of the matrix.

Figure 4.4 Density and contour lines of the function 𝑓𝑓.
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EXERCISE 4.2 DETERMINISTIC CHAOS

The goal is to study an extremely elementary model of evolution of a population.
In spite of its simplistic character, thismodel presentsmany very interesting prop-
erties, in particular chaotic ones.
The proportion of a population at a discrete time 𝑖𝑖 ∈ ℕ is noted 𝑥𝑥𝑖𝑖 ∈ [0, 1]. The
evolution of the population is given by 𝑥𝑥𝑖𝑖+1 = 𝑓𝑓𝜇𝜇(𝑥𝑥𝑖𝑖), where 𝑓𝑓𝜇𝜇 ∶ [0, 1] → [0, 1]
is the function defined by:

𝑓𝑓𝜇𝜇(𝑥𝑥) = 𝜇𝜇𝑥𝑥(1 − 𝑥𝑥) .

The parameter 𝜇𝜇 ∈ [0, 4] describes the population growth. The application 𝑓𝑓𝜇𝜇 is
called the logistic map of parameter 𝜇𝜇.
a. Define the function 𝑓𝑓𝜇𝜇 in Python as 𝚏𝚏(𝚡𝚡, 𝚖𝚖𝚖𝚖) = 𝑓𝑓𝜇𝜇(𝑥𝑥) and plot it for several
values of 𝜇𝜇.
b. Why can’t the value of 𝜇𝜇 be greater than 4 in the model?
c. Define a function that takes as argument a value of 𝜇𝜇, an initial data 𝑥𝑥0 ∈
[0, 1], and a number 𝑛𝑛 ∈ ℕ and returns the list 𝑆𝑆𝑛𝑛𝜇𝜇 = (𝑥𝑥0, 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥𝑛𝑛). Modify
this function so that it can take an optional parameter𝑚𝑚 ∈ ℕ and return the list
𝑆𝑆𝑚𝑚,𝑛𝑛𝜇𝜇 = (𝑥𝑥𝑚𝑚, 𝑥𝑥𝑚𝑚+1,… , 𝑥𝑥𝑛𝑛), i.e., remove the first𝑚𝑚 − 1 elements from 𝑆𝑆𝑛𝑛𝜇𝜇 .
d. Test this function by making a graphical representation of the list 𝑆𝑆𝑛𝑛𝜇𝜇 for dif-
ferent values of the parameters 𝑥𝑥0 and 𝜇𝜇. Observe the different behaviors of the
sequence.

Cobweb diagram: One way to study more specifically what happens when 𝜇𝜇
varies is to make a cobweb diagram that consists in connecting by straight lines
the points:

{
(𝑥𝑥0, 0), (𝑥𝑥0, 𝑥𝑥1), (𝑥𝑥1, 𝑥𝑥1), (𝑥𝑥1, 𝑥𝑥2), (𝑥𝑥2, 𝑥𝑥2),… , (𝑥𝑥𝑛𝑛, 𝑥𝑥𝑛𝑛), (𝑥𝑥𝑛𝑛, 𝑥𝑥𝑛𝑛+1)

}
.

e. Define a function that returns the list of points needed to build the cobweb
diagram.
Hint: In order to useMatplotlib afterwards, it is sometimes simpler to represent a list
of points

{
(𝑥𝑥0, 𝑦𝑦0), (𝑥𝑥1, 𝑦𝑦1),… , (𝑥𝑥𝑛𝑛, 𝑦𝑦𝑛𝑛)

}
as the vector of x-coordinates and the vector

of y-coordinates, i.e., (𝑥𝑥0, 𝑥𝑥1,… , 𝑥𝑥𝑛𝑛) and (𝑦𝑦0, 𝑦𝑦1,… , 𝑦𝑦𝑛𝑛).
f. Define a function that draws the graph of the function 𝑓𝑓𝜇𝜇, the graph of the
identity function, as well as the segments connecting the points of the previous
list.
g. By experimenting, study qualitatively the effects of the parameters and 𝑥𝑥0. De-
scribe the behavior observed when 𝜇𝜇 increases.

Bifurcation diagram: The previous experiments suggest that the behavior of the
sequence 𝑥𝑥𝑖𝑖 in large time (i.e., when 𝑖𝑖 is large) is independent of the choice of the
initial condition 𝑥𝑥0 but depends a lot on the value of the parameter 𝜇𝜇. The aim of
this section is to represent graphically for each value of 𝜇𝜇 the set of points 𝑆𝑆𝑚𝑚,𝑛𝑛𝜇𝜇 =
(𝑥𝑥𝑚𝑚, 𝑥𝑥𝑚𝑚+1,… , 𝑥𝑥𝑛𝑛), i.e., by putting 𝜇𝜇 on the horizontal axis and all the values of
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𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝜇𝜇 on the vertical axis. A good choice of parameters to clean up the diagram
and keep only the long-time behavior of the system is 𝑚𝑚 = 200 and𝑚𝑚 = 100, for
example.
h.Define a function that for a given list 𝐿𝐿 of values of 𝜇𝜇, an initial data 𝑥𝑥0 ∈ [0𝑚 1]
and integers𝑚𝑚𝑚 𝑚𝑚 ∈ ℕ returns the list of points

{
(𝜇𝜇𝑚 𝑥𝑥) ∶ 𝑥𝑥 ∈ 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝜇𝜇 for 𝜇𝜇 ∈ 𝐿𝐿

}
.

i. Define a function that plot this list of points. It is suggested to take for 𝐿𝐿 a list
of 1 000 values in the interval [0𝑚 4].
Hint: Use the scatter function of Matplotlib with s=1 and edgecolor='none'.
j. Interpret the obtained diagram, in particular what it says about the long-time
behavior of the system. Determine approximately for which values of 𝜇𝜇 the sys-
tem :

∙ has zero as its only fixed point;

∙ has a unique nonzero fixed point;

∙ oscillates between two distinct values (cycle of length two);

∙ oscillates between four distinct values (cycle of length four);

∙ oscillates between three distinct values (cycle of length three).

Representation of the attractor: For values of 𝜇𝜇 close to 4, the values of the
population 𝑥𝑥𝑖𝑖 seem to be more or less random. However, the system is purely
deterministic in the sense that for a given initial value 𝑥𝑥0, the population 𝑥𝑥𝑖𝑖 is de-
fined without randomness. This a priori random behavior is called deterministic
chaos. In order to notice that the points 𝑥𝑥𝑖𝑖 are not randomly determined, the goal
is to represent graphically the points (𝑥𝑥𝑚𝑚𝑚 𝑥𝑥𝑚𝑚+1) to see that 𝑥𝑥𝑚𝑚+1 is not random at
all with respect to 𝑥𝑥𝑚𝑚+1.
k. For each given value of 𝜇𝜇, define a function that returns the list of points:

{
(𝑥𝑥𝑚𝑚𝑚 𝑥𝑥𝑚𝑚+1)𝑚 (𝑥𝑥𝑚𝑚+1𝑚 𝑥𝑥𝑚𝑚+2)𝑚… 𝑚 (𝑥𝑥𝑚𝑚𝑚 𝑥𝑥𝑚𝑚+1)

}
𝑚

l. Plot these points for different values of 𝜇𝜇. For example, 𝑚𝑚 = 5 000 and𝑚𝑚 = 100
is a good choice of parameters.
m. How would the previous plot look like if each 𝑥𝑥𝑖𝑖 were drawn randomly in the
interval [0𝑚 1] independently of 𝑥𝑥𝑖𝑖−1?

EXERCISE 4.3 MANDELBROT SET

The Mandelbrot set is defined as the set of points 𝑐𝑐 ∈ ℂ for which the sequence
of complex numbers defined recursively by 𝑧𝑧0 = 0 and

𝑧𝑧𝑚𝑚+1 = 𝑧𝑧2𝑚𝑚 + 𝑐𝑐 𝑚

is bounded. It is possible to show that 𝑐𝑐 ∈ ℂ is in the Mandelbrot set if and only
if |𝑧𝑧𝑚𝑚| ≤ 2 for any integer 𝑚𝑚.
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a. Write a function mandelbrot(c) that checks if the point 𝑐𝑐 ∈ ℂ is in the Man-
delbrot set approximately by testing the first hundred iterations.
b. Test the previous function with 𝑐𝑐 = 0 and 𝑐𝑐 = 1 + 𝑖𝑖. What is expected theoret-
ically?
Hint: For example, the complex number 2 + 3𝑖𝑖 is defined in Python as 2+3j.
c. Write a function mandelbrot_set(N) that generates an array of size𝑁𝑁 repre-
senting the set 𝑐𝑐 ∈

{
𝑥𝑥+𝑖𝑖𝑖𝑖 ∶ 𝑥𝑥 ∈ [−2, 2] and 𝑖𝑖 ∈ [−2, 2]

}
and that returns an array

of Booleans of size𝑁𝑁 determining if the associated point is in the Mandelbrot set
or not.
d.Using the previous functionwith𝑁𝑁 = 100, plot with imshow an approximation
of the set of points belonging to the Mandelbrot set.
e.Adapting the previous functions, plot the logarithm of the number of iterations
required before |𝑧𝑧𝑛𝑛| ≤ 2 is no longer satisfied instead of a Boolean, as represented
on Figure 4.5.

Figure 4.5 Graphical representation of the Mandelbrot set, where the color rep-
resents the logarithm of the number of iterations needed to get out of the disk of
diameter two.

f. !! The previous method has the disadvantage of computing each value of 𝑐𝑐 se-
quentially, which makes the evaluation rather slow. Propose a new implementa-
tion allowing to compute in parallel all the values using NumPy indexing.
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EXERCISE 4.4 ADVANCED GRAPHICS (!)

The purpose of this exercise is to discover a range of possibilities offered by Mat-
plotlib.
a. Draw the stream lines of the vector field of the Van der Pol oscillator:

(
𝑦𝑦

−𝑥𝑥 + 𝜇𝜇(1 − 𝑥𝑥2)𝑦𝑦)

for different values of 𝜇𝜇 ∈ ℝ.
b. Plot the parametric curve:

⎛
⎜
⎜
⎝

(
1 + 𝑡𝑡2

)
sin(2𝜋𝜋𝑡𝑡)

(
1 + 𝑡𝑡2

)
cos(2𝜋𝜋𝑡𝑡)
𝑡𝑡

⎞
⎟
⎟
⎠

for 𝑡𝑡 ∈ [−2, 2].
c. Plot the function of two variables:

𝑓𝑓(𝑥𝑥, 𝑦𝑦) = sin
(√

𝑥𝑥2 + 𝑦𝑦2
)

in three dimensions for 𝑥𝑥 ∈ [−5.5] and 𝑦𝑦 ∈ [−5.5].
d. !! Represent the given Möbius strip as a parametric surface:

⎛
⎜
⎜
⎝

(3 + 𝑣𝑣 cos(𝑢𝑢∕2)) cos𝑢𝑢
(3 + 𝑣𝑣 cos(𝑢𝑢∕2)) sin𝑢𝑢

𝑣𝑣 sin(𝑢𝑢∕2)

⎞
⎟
⎟
⎠

for 𝑢𝑢 ∈ [0, 2𝜋𝜋] and 𝑣𝑣 ∈ [−1, 1].
e. !! Look at the examples available at the address: https://matplotlib.org/tut
orials/introductory/sample_plots.html and choose two to understand and
modify.

https://matplotlib.org/tutorials/introductory/sample_plots.html
https://matplotlib.org/tutorials/introductory/sample_plots.html
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SOLUTIONS

SOLUTION 4.1 PLOTS

a. To limit the repetition of code, it is wise to make a loop to obtain Figure 4.1:

x = np.linspace(0,2⁎np.pi,100)
plt.figure(figsize=(8,5))
plt.title(r'Trigonometric functions')
plt.xlabel(r'$x$')
plt.ylabel(r'$y$')
plt.xticks([0,np.pi/2, np.pi, 3⁎np.pi/2,2⁎np.pi],

[r'$0$',r'$\frac{\pi}{2}$', r'$\pi$',
r'$\frac{3\pi}{2}$', r'$2\pi$'])

↪

↪

for k in range(1,4):
plt.plot(x, np.sin(k⁎x), label=r"$\sin({}x)$".format(k))
plt.plot(x, np.cos(k⁎x), label=r"$\cos({}x)$".format(k))

plt.legend()

b. The vmin and vmax parameters of imshow are used to specify the range of the
legend bar:

A = np.random.rand(10,10)
plt.figure(figsize=(5,4))
plt.imshow(A, vmin=0, vmax=1)
plt.colorbar()
plt.xticks(range(A.shape[0]))
plt.yticks(range(A.shape[1]))
plt.show()

c. The function meshgrid allows to transform two one-dimensional arrays rep-
resenting coordinates into two two-dimensional arrays representing functions of
two variables (𝑥𝑥𝑥 𝑥𝑥) ↦ 𝑥𝑥 and (𝑥𝑥𝑥 𝑥𝑥) ↦ 𝑥𝑥. It is then sufficient to combine these
two-dimensional arrays:

# define 100 points in [-3,3] for x and y
x = y = np.linspace(-3.0, 3.0, 100)
# construct the matrices representing X and Y respectively
X, Y = np.meshgrid(x, y)
# construct the matrix representing the function
Z = -Y/5 + np.exp(-X⁎⁎2 - Y⁎⁎2)

# create a figure with a title
fig = plt.figure(figsize=(12,5))
fig.suptitle(r'Plot of $\frac{-y}{5} + e^{-x^2-y^2}$')
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# create a sub-figure for the density
sub = fig.add_subplot(1,2,1)
sub.set_title('Density')
# density plot
im = sub.imshow(Z, interpolation='bilinear', origin='lower',

extent=[-3,3,-3,3], vmin=-0.5, vmax=1)↪

# legend with 7 ticks
plt.colorbar(im, ax=sub, ticks=np.linspace(-0.5,1,7))

# create a new figure of the contours
sub = fig.add_subplot(1,2,2)
sub.set_title('Contours')
# contour plot with 13 levels
im = sub.contour(X, Y, Z, levels=np.linspace(-0.5,1,13))
# legend with 7 ticks
plt.colorbar(im, ax=sub, ticks=np.linspace(-0.5,1,7))
# force same scale on vertical and horizontal axes
sub.set_aspect('equal')

# reduces the size of the margins
fig.tight_layout()
fig.subplots_adjust(top=0.9)
plt.show()

SOLUTION 4.2 DETERMINISTIC CHAOS

a. We need to define the function 𝑓𝑓𝜇𝜇:

def f(x,mu):
return mu⁎x⁎(1-x)

then define a function to plot it:

def plot_f(mu):
x = np.linspace(0,1,100)
fx = f(x,mu)
plt.plot(x,fx)

To test:

plot_f(2)

b. By taking 𝜇𝜇 ≥ 4, the function 𝑓𝑓𝜇𝜇 takes values greater than 1 and thus leaves
the domain of definition for the next iteration:

plot_f(5)

c. The idea is to define an empty vector, then to fill it element by element, finally
to select the requested part:
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def simulate(mu, x0, n, m=0):
vec = np.zeros(n+1)
vec[0] = x0
for i in range(n):

vec[i+1] = f(vec[i], mu)
return vec[m:]

d. The easiest way is to plot the curves obtained for different values of 𝜇𝜇:

plt.figure(figsize=(8,5))
plt.title(r"Evolution of $x_{i+1}=f_\mu(x_i)$")
plt.xlabel("$i$")
plt.ylabel("$x_i$")
for mu in (0.5,1,1.5,2,2.5,3,3.5,3.9,3.90001):

data = simulate(mu,0.1,50)
plt.plot(data, label=r"$\mu={}$".format(mu))

plt.legend()

Figure 4.6 allows to observe that for values of 𝜇𝜇 lower than about 1, the sequence
stabilizes around 0. For values of 𝜇𝜇 between 1 and 3, the sequence seems to sta-
bilize around a non-zero value. When 𝜇𝜇 is even larger, the sequence oscillates.

Figure 4.6 Evolution of the logistic sequence for different values of 𝜇𝜇 starting
from 𝑥𝑥0 = 0.1.

e.Aquick and elegant way to build this list of points is to use the repeat function
of NumPy:
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def cobweb(data):
x = np.repeat(data,2)[:-1]
y = np.repeat(data,2)[1:]
y[0]=0
return (x,y)

f. The previously defined functions must be combined to obtain the cobweb dia-
gram:

def plot_cobweb(mu,x0,n):
plt.title(f"Cobweb diagram for $\\mu={mu}$")
# plot f_mu
x = np.linspace(0,1,100)
fx = f(x,mu)
plt.plot(x,fx)
# plot identity
plt.plot([0,1],[0,1])
# plot segments
data = simulate(mu,x0,n)
segments = cobweb(data)
plt.plot(segments[0],segments[1])

g. We choose different values of 𝜇𝜇 to obtain the cobweb diagrams of Figure 4.7:

fig = plt.figure(figsize=(8,8))
for i,mu in enumerate([2.5,3.2,3.5,3.8]):

plt.subplot(2,2,i+1)
plot_cobweb(mu,0.1,100)

For 0 < 𝜇𝜇 < 3, the sequence converges to one of the two fixed points of 𝑓𝑓𝜇𝜇, i.e.,
a solution of 𝑓𝑓𝜇𝜇(𝑥𝑥) = 𝑥𝑥. For 3 < 𝜇𝜇 < 3.45, the sequence oscillates between two
values and then it seems to oscillate between several values or in a very random
way.
h. The function full allows to build a constant vector equal to mu in this case:

def simulate_range(L,x0=0.5,n=200,m=100):
all_x = []
all_y = []
for mu in L:

y = simulate(mu,x0,n,m=m)
x = np.full(len(y),mu)
all_x.append(x)
all_y.append(y)

return(np.array(all_x),np.array(all_y))

i. The scatter function is used to represent a cloud of points. The options s=1
and edgecolor='none' allow to reduce the size of the points so that they overlap
less. The following code allows to obtain the bifurcation graph of Figure 4.8:
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def plot_bif(points,xlim=(0,4),ylim=(0,1), ⁎⁎options):
plt.figure(figsize=(8,5))
plt.title("Bifurcation diagram")
plt.xlabel(r"$\mu$")
plt.scatter(points[0], points[1], c=points[0], s=1,

edgecolor='none', cmap='jet', ⁎⁎options)↪

plt.xlim(xlim)
plt.ylim(ylim)

To test:

points = simulate_range(np.linspace(0,4,1000))
plot_bif(points, xlim=(0,4))

j.When 0 < 𝜇𝜇 < 1, the sequence converges to the zero fixed point. When 1 < 𝜇𝜇 <
3, the sequence converges to the unique non-zero fixed point. For 3 < 𝜇𝜇 < 1+

√
6,

the sequence oscillates between two distinct values. For 1 +
√
6 < 𝜇𝜇 < 3.54409,

the sequence oscillates between four distinct values. Finally, the smallest value
of 𝜇𝜇 with an oscillation between three values is for 𝜇𝜇 = 1 +

√
8.

k.The following function is intended to act on the output of the simulate_range
function. We choose to return also the corresponding value of 𝜇𝜇:

def attr(points):
data = points[1]
x = data[:,:-1]
y = data[:,1:]
c = points[0][:,:-1]
return (x,y,c)

l. The points returned by attr are colored according to the value of 𝜇𝜇, which
allows to represent the attractor of Figure 4.9:

data = simulate_range(np.linspace(3.5,4,10), x0=0.5, n=5000,
m=100)↪

pts = attr(data)
c = np.linspace(0,4,100)
plt.figure(figsize=(8,5))
plt.title("Plot of the attractor")
plt.xlabel("$x_n$")
plt.ylabel("$x_{n+1}$")
plt.xlim(0,1); plt.ylim(0,1)
plt.scatter(pts[0], pts[1], c=pts[2], s=2, edgecolor='none')
plt.colorbar()

For a given value of 𝜇𝜇, the points are as expected, located on the graph of the
function 𝑓𝑓𝜇𝜇. The larger the value of 𝜇𝜇 is, the larger the attractor, i.e., the set of
limit points, is.
m. The points would not be aligned on the graph of the function 𝑓𝑓𝜇𝜇.
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Figure 4.7 At 𝜇𝜇 = 2.5, the sequence converges to a fixed point, then for 𝜇𝜇 = 3.2,
it oscillates between two values. For the last two values of 𝜇𝜇, the sequence seems
to oscillate between several values or even randomly.
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Figure 4.8 Bifurcation diagram for the logistic map depending on 𝜇𝜇.

Figure 4.9 Plot of the attractor of the logistic map for different values of 𝜇𝜇.
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SOLUTION 4.3 MANDELBROT SET

a.We have to iterate the recurrence relation and check each time if the condition
|𝑧𝑧𝑛𝑛| ≤ 2 is satisfied:

def mandelbrot(c,max=100):
z = 0
for i in range(max):

z = z⁎⁎2+c
if abs(z)>2:

return False
return True

b. The point 𝑐𝑐 = 0 is clearly in the Mandelbrot set since 𝑧𝑧𝑛𝑛 = 0 for all 𝑛𝑛:

mandelbrot(0)

For 𝑐𝑐 = 1 + 𝑖𝑖, then 𝑧𝑧1 = 1 + 𝑖𝑖 and 𝑧𝑧2 = 1 + 3𝑖𝑖 which is of modulus greater than
2, so 𝑐𝑐 is not in the Mandelbrot set:

mandelbrot(1+1j)

c. The first step is to generate the grid; the second is to build the requested table:

def mandelbrot_set(N):
# construct the grid
lst = np.linspace(-2,2,N)
x, y = np.meshgrid(lst,lst)
c = x + 1j⁎y
# define the result array with adapted type
out = np.zeros_like(c, dtype=type(mandelbrot(0)))
# fill the result array
for i in range(N):

for j in range(N):
out[i,j] = mandelbrot(c[i,j])

return out

d. This represents the previously constructed array to get Figure 4.10:

plt.figure(figsize=(6,6))
plt.title("Mandelbrot set")
plt.xlabel(r"$\Re(c)$")
plt.ylabel(r"$\Im(c)$")
plt.imshow(mandelbrot_set(100), extent=[-2,2,-2,2])
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Figure 4.10 Graphical representation of an approximation of theMandelbrot set.

e. Only a slight modification of the mandelbrot function is required:

def mandelbrot(c,max=100):
z = 0
for i in range(1,max+1):

z = z⁎⁎2+c
if abs(z)>2:

return np.log(i)
return np.log(max)

to draw the same thing:

plt.figure(figsize=(6,6))
plt.title("Mandelbrot set with number of iterations")
plt.xlabel(r"$\Re(c)$")
plt.ylabel(r"$\Im(c)$")
plt.imshow(mandelbrot_set(200), extent=[-2,2,-2,2])
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f.The idea is to iterate thewhole array corresponding to the grid at the same time,
except for the values that have already diverged:

def mandelbrot_plot(N, max=1000):
# construct the grid
lst = np.linspace(-2,2,N)
x, y = np.meshgrid(lst,lst)
c = x + 1j⁎y

# output array
out = np.zeros_like(c, dtype=float)
# current iteration
z = np.zeros_like(c, dtype=complex)
# Boolean array of the z that have not diverged
cond = np.abs(z) <= 2
# iterations
for i in range(1,max+1):

# iteration on the z that have not diverged
z[cond] = z[cond]⁎⁎2 + c[cond]
# update the condition
cond[cond] = np.abs(z[cond]) <= 2
# add the logarithm for the z that diverged at this

iteration↪

div = np.logical_and(~cond,out==0)
out[div] = np.log(i)

# add the logarithm for the remaining z
out[cond] = np.log(max)

# plot
plt.figure(figsize=(6,6))
plt.title("Mandelbrot set with the number of iterations")
plt.xlabel(r"$\Re(c)$")
plt.ylabel(r"$\Im(c)$")
plt.imshow(out, extent=[-2,2,-2,2])

Figure 4.5 represents the evaluation of this function for N=1000.

SOLUTION 4.4 ADVANCED GRAPHICS (!)

a. The streamplot function allows to draw the streamlines as in Figure 4.11:

fig = plt.figure(figsize=(8,8))
fig.suptitle("Streamlines for the Van der Pol oscillator")
# discretization in space
l = np.linspace(-3,3,100)
X, Y = np.meshgrid(l,l)

for i,mu in enumerate([-1,0,1,5]):
sub = fig.add_subplot(2,2,i+1)
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sub.set_title(f"$\\mu = {mu}$")

# definition of the vector field
U = Y
V = -X + mu⁎(1-X⁎⁎2)⁎Y
# definition of the color
C = np.sqrt(U⁎⁎2+V⁎⁎2) # color

# streamlines
plt.streamplot(X, Y, U, V, color=C)
sub.set_xlim([-3,3])
sub.set_ylim([-3,3])
sub.set_aspect('equal')

fig.tight_layout()
fig.subplots_adjust(top=0.91)

Figure 4.11 Streamlines of the Van der Pol oscillator.
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b. It is a matter of initializing a 3d graphic and then using the plot function
with three arguments to get Figure 4.12:

fig = plt.figure(figsize=(6,5.5))
# initialization of a 3d plot
ax = fig.add_subplot(111, projection='3d')
ax.set_title("Parametric curve", y=1.02)
ax.set_xlabel("$x$")
ax.set_ylabel("$y$")
ax.set_zlabel("$z$")

# discretization of the parameter
t = np.linspace(-2, 2, 200, endpoint=True)
# definition of the points corresponding to the curve
r = t⁎⁎2 + 1
x = r⁎np.sin(2⁎np.pi⁎t)
y = r⁎np.cos(2⁎np.pi⁎t)
z = t

# plot the parametric curve
ax.plot(x, y, z)

Figure 4.12 Plot of a parametric curve in three-dimensional space.
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c. The function plot_surface allows to represent a function of two variables in
three dimensions as in Figure 4.13:

fig = plt.figure(figsize=(7,5.8))
# initialization of a 3d plot
ax = fig.add_subplot(111, projection='3d')
ax.set_title("Plot of the function $f(x,y)$", y=1.02)
ax.set_xlabel("$x$")
ax.set_ylabel("$y$")
# construction of the coordiantes
xy = np.linspace(-5, 5, 100, endpoint=True)
X, Y = np.meshgrid(xy,xy)
# construction of the function
R = np.sqrt(X⁎⁎2 + Y⁎⁎2)
Z = np.sin(R)
# plot the surface with data between -1 and 1
surf = ax.plot_surface(X, Y, Z, vmin=-1, vmax=1,

cmap="coolwarm")↪

# range of vertical axis between -1 and 1
ax.set_zlim(-1, 1)
# legend bar
fig.colorbar(surf)

Figure 4.13 Three-dimensional representation of a function of two variables.
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d. To represent a parametric surface, one must first define the parameter space
and then triangulate it before defining the surface itself to produce Figure 4.14:

# import triangulation module
import matplotlib.tri as mtri

fig = plt.figure(figsize=(6.5,6))
ax = fig.add_subplot(111, projection='3d')
ax.set_title("Parametric surface: the Möbius strip", y=1.02)
ax.set_xlabel("$x$")
ax.set_ylabel("$y$")
ax.set_zlabel("$z$")

# meshing of the parameters
u = np.linspace(0, 2⁎np.pi, 50, endpoint=True)
v = np.linspace(-1, 1, 10, endpoint=True)
u, v = np.meshgrid(u, v)
u, v = u.flatten(), v.flatten()

# definition of the Möbius strip
x = (3 + v⁎np.cos(u/2))⁎np.cos(u)
y = (3 + v⁎np.cos(u/2))⁎np.sin(u)
z = v⁎np.sin(u/2)

# triangulation of the parameters space
tri = mtri.Triangulation(u, v)

# plot the strip and adjust the axes
ax.plot_trisurf(x, y, z, triangles=tri.triangles,

cmap="viridis")↪

ax.set_xlim(-3.2,3.2)
ax.set_ylim(-3.2,3.2)
ax.set_zlim(-2,2)
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Figure 4.14 Representation of the Möbius strip as a parametric surface.
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Figure 4.14 Representation of the Möbius strip as a parametric surface.

C H A P T E R 5

Integration

The goal is to obtain an approximation of a definite integral of the type:

𝐽𝐽 =∫
𝑏𝑏

𝑎𝑎
𝑓𝑓(𝑥𝑥) d𝑥𝑥

for some function 𝑓𝑓 ∶ [𝑎𝑎𝑎 𝑏𝑏] → ℝ too complicated to a priori determine the
value of 𝐽𝐽 by hand. Deterministic and probabilistic approximation methods will
be introduced to obtain an approximation 𝐽𝐽 of 𝐽𝐽.

Concepts covered

∙ classical methods (rectangles, trapezoids, and Simpson)

∙ Monte Carlo method

∙ convergence speed

∙ statistics

DOI: 10.1201/9781003565451-5 53
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EXERCISES

EXERCISE 5.1 RECTANGLE RULE

The rectangle rule is based on the definition of the integral in the Riemann sense.
The first step is to split the interval [𝑎𝑎𝑎 𝑎𝑎] into 𝑁𝑁 intervals [𝑥𝑥𝑛𝑛𝑎 𝑥𝑥𝑛𝑛+1] of the same
size 𝛿𝛿 = 𝑎𝑎−𝑎𝑎

𝑁𝑁
, i.e., 𝑥𝑥𝑛𝑛 = 𝑎𝑎 + 𝑛𝑛𝛿𝛿 for 𝑛𝑛 ∈ {0𝑎 1𝑎… 𝑎 𝑁𝑁 − 1}. The second step consists

in assuming that the function 𝑓𝑓 is constant on each interval [𝑥𝑥𝑛𝑛𝑎 𝑥𝑥𝑛𝑛+1], thus to
make the approximation:

𝐽𝐽𝑛𝑛 =∫
𝑥𝑥𝑛𝑛+1

𝑥𝑥𝑛𝑛
𝑓𝑓(𝑥𝑥) d𝑥𝑥 ≈ 𝛿𝛿𝑓𝑓(�̃�𝑥𝑛𝑛) 𝑎

for �̃�𝑥𝑛𝑛 a certain value to choose in the interval [𝑥𝑥𝑛𝑛𝑎 𝑥𝑥𝑛𝑛+1]. The choice of �̃�𝑥𝑛𝑛 can,
for example, be done by �̃�𝑥𝑛𝑛 = 𝑥𝑥𝑛𝑛+𝛼𝛼𝛿𝛿 with 𝛼𝛼 ∈ [0𝑎 1]. Finally, the approximation
of 𝐽𝐽 is given by the sum of the approximations of 𝐽𝐽𝑛𝑛,

𝐽𝐽 =
𝑁𝑁−1∑

𝑛𝑛=0
𝛿𝛿𝑓𝑓(�̃�𝑥𝑛𝑛) .

Assuming that 𝑓𝑓 ∈ 𝐶𝐶1([𝑎𝑎𝑎 𝑎𝑎]), it is then possible to show that the rectangle rule
converges and that its speed of convergence is of order one. A numerical method
is of order 𝑘𝑘 if the error between the numerical approximation and the exact result
is of order 𝑁𝑁−𝑘𝑘.
a. Choose a continuous function 𝑓𝑓 ∶ [𝑎𝑎𝑎 𝑎𝑎] → ℝ and define the corresponding
Python function f(x). To test the code, it is wise to choose a function 𝑓𝑓 whose
integral can be easily computed by hand.
Hint: The list of basicmathematical functions available in Python in the mathmod-
ule is available at the address: https://docs.python.org/3/library/math.htm
l. Note that NumPy also defines mathematical functions, see the documentation
at the address: https://numpy.org/doc/stable/reference/routines.math.h
tml.
b.Write a function rectangles(f,a,b,N) that returns the approximation of the
integral 𝐽𝐽 by the rectangle rule, for example, by choosing �̃�𝑥𝑛𝑛 = 𝑥𝑥𝑛𝑛, i.e., the left
edge of the interval [𝑥𝑥𝑛𝑛𝑎 𝑥𝑥𝑛𝑛+1].
Hint: It is not necessary to store all the values of the approximations of 𝐽𝐽𝑛𝑛, but it is
possible to increment a variable for each approximation of 𝐽𝐽𝑛𝑛.
c. Modify the previous function so that it takes an optional parameter alpha de-
termining the choice of parameter 𝛼𝛼 ∈ [0𝑎 1].
d. Write a function plot_rectangles(f,a,b,N,alpha=0.5) that graphically
represents the approximation by the rectangle rule.

https://docs.python.org/3/library/math.html
https://numpy.org/doc/stable/reference/routines.math.h
https://numpy.org/doc/stable/reference/routines.math.html
https://numpy.org/doc/stable/reference/routines.math.html
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EXERCISES
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e.Determine empirically the speed of convergence of the rectangle rule as a func-
tion of 𝑁𝑁.
f.Determine analytically the convergence of the rectangle rule.What are the nec-
essary assumptions on 𝑓𝑓?
Hint: Use the mean value theorem.

EXERCISE 5.2 TRAPEZOIDAL RULE

The trapezoidal rule is based on a linear approximation on each interval
[𝑥𝑥𝑛𝑛, 𝑥𝑥𝑛𝑛+1], more specifically:

𝐽𝐽𝑛𝑛 =∫
𝑥𝑥𝑛𝑛+1

𝑥𝑥𝑛𝑛
𝑓𝑓(𝑥𝑥) d𝑥𝑥 ≈ 𝛿𝛿

𝑓𝑓(𝑥𝑥𝑛𝑛) + 𝑓𝑓(𝑥𝑥𝑛𝑛+1)
2 .

a. Write a Python function trapezes(f,a,b,N) that returns the approximation
of the integral 𝐽𝐽 by the trapezoidal rule. Test the function trapezes(f,a,b,N)
for different functions 𝑓𝑓.
b. Is your implementation of the function trapezes(f,a,b,N) optimal in terms
of the number of evaluations of 𝑓𝑓 performed compared to the number of evalua-
tions needed? An optimal implementation of the function trapezes(f,a,b,N)
should perform 𝑁𝑁 + 1 evaluations of 𝑓𝑓.
c. Determine empirically the speed of convergence of the trapezoidal rule as a
function of 𝑁𝑁.
d. ! Determine analytically the convergence of the trapezoidal rule. What are the
necessary assumptions on 𝑓𝑓?

EXERCISE 5.3 MONTE CARLO METHOD

The Monte Carlo method (named after casinos, not a person) is a probabilistic
approach to approximate the value of an integral. The basic idea is that the in-
tegral 𝐽𝐽 can be seen as the expectation of a uniform random variable 𝑋𝑋 on the
interval [𝑎𝑎, 𝑎𝑎]:

𝐽𝐽 =∫
𝑎𝑎

𝑎𝑎
𝑓𝑓(𝑥𝑥) d𝑥𝑥 = (𝑎𝑎 − 𝑎𝑎)𝔼𝔼(𝑓𝑓(𝑋𝑋)) .

By the law of large numbers, this expectation can be approximated by the empir-
ical mean:

𝐽𝐽 = 𝑎𝑎 − 𝑎𝑎
𝑁𝑁

𝑁𝑁−1∑

𝑖𝑖=0
𝑓𝑓(𝑥𝑥𝑖𝑖) ,

where 𝑥𝑥𝑖𝑖 are drawn randomly in the interval [𝑎𝑎, 𝑎𝑎] with a uniform probability
distribution.
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a. Write a function montecarlo(f,a,b,N) that determines an approximation 𝐽𝐽
of 𝐽𝐽 by the Monte Carlo method.
Hint: To generate a vector of random numbers, the random sub-module of NumPy
can be useful, see the documentation at the address: https://numpy.org/doc/st
able/reference/random/.
b. Modify the previous function, so that it returns in addition to the mean 𝐽𝐽 also
the empirical variance:

�̃�𝑉 = (𝑏𝑏 − 𝑎𝑎)2
𝑁𝑁

𝑁𝑁−1∑

𝑖𝑖=0
(𝑓𝑓(𝑥𝑥𝑖𝑖) −

𝐽𝐽
𝑏𝑏 − 𝑎𝑎)

2
.

c. Study empirically the convergence of the Monte Carlo method as a function of
𝑁𝑁 by making for each value of 𝑁𝑁 a statistic on 𝑘𝑘 executions. More precisely, this
consists inmaking 𝑘𝑘 evaluations of 𝐽𝐽 by theMonte Carlomethod and to calculate
the mean and the variance of the 𝑘𝑘 results obtained.
d.Determine analytically the convergence of the Monte Carlo method. What are
the necessary assumptions on 𝑓𝑓?
Hint: Use the central limit theorem.

EXERCISE 5.4 SIMPSON’S RULE (!)

Simpson’s rule consists in approximating the function 𝑓𝑓 on each interval
[𝑥𝑥𝑛𝑛, 𝑥𝑥𝑛𝑛+1] by a polynomial of degree 2. The most natural choice is the polyno-
mial 𝑝𝑝𝑛𝑛 of degree 2 passing through the points (𝑥𝑥𝑛𝑛, 𝑓𝑓(𝑥𝑥𝑛𝑛)), (

𝑥𝑥𝑛𝑛+𝑥𝑥𝑛𝑛+1
2

, 𝑓𝑓(𝑥𝑥𝑛𝑛+𝑥𝑥𝑛𝑛+1
2

)),
and (𝑥𝑥𝑛𝑛+1, 𝑓𝑓(𝑥𝑥𝑛𝑛+1)).
a. Determine the explicit form of the polynomial 𝑝𝑝𝑛𝑛.
Hint: The polynomial 𝐿𝐿(𝑥𝑥) = (𝑥𝑥−𝑐𝑐)(𝑥𝑥−𝑏𝑏)

(𝑎𝑎−𝑐𝑐)(𝑎𝑎−𝑏𝑏)
takes the value 1 at 𝑥𝑥 = 𝑎𝑎 and the value 0

at 𝑥𝑥 = 𝑏𝑏 and 𝑥𝑥 = 𝑐𝑐. Make a linear combination of three such polynomials.
b. Compute the approximation given by 𝐽𝐽𝑛𝑛 ≈ ∫𝑥𝑥𝑛𝑛+1𝑥𝑥𝑛𝑛 𝑝𝑝𝑛𝑛(𝑥𝑥) d𝑥𝑥 .
Hint: It is possible to calculate this integral by hand or to do it with the SymPymod-
ule, see the documentation at the address: https://docs.sympy.org/latest/mo
dules/integrals/integrals.html.
c. Simplify by hand the sum 𝐽𝐽 of the approximations of 𝐽𝐽𝑛𝑛.
Answer: The result is:

𝐽𝐽 = 𝛿𝛿
3
⎡
⎢
⎣

𝑓𝑓(𝑏𝑏) − 𝑓𝑓(𝑎𝑎)
2 +

𝑁𝑁−1∑

𝑛𝑛=0
(𝑓𝑓(𝑥𝑥𝑛𝑛) + 2𝑓𝑓 (

𝑥𝑥𝑛𝑛 + 𝑥𝑥𝑛𝑛+1
2 ))

⎤
⎥
⎦
.

d. Write a function simpson(f,a,b,N) to approximate 𝐽𝐽 with Simpson’s rule.
e. Compare the accuracy, i.e., the convergence speed of the rectangle, trapezoid,
and Simpson methods as a function of𝑁𝑁 for a smooth function and the function
𝑓𝑓(𝑥𝑥) =

√
1 − 𝑥𝑥2 on [0, 1] (whose integral is 𝜋𝜋

4
).

https://docs.sympy.org/latest/modules/integrals/integrals.html
https://numpy.org/doc/stable/reference/random
https://numpy.org/doc/stable/reference/random
https://docs.sympy.org/latest/modules/integrals/integrals.html
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a. Write a function montecarlo(f,a,b,N) that determines an approximation 𝐽𝐽
of 𝐽𝐽 by the Monte Carlo method.
Hint: To generate a vector of random numbers, the random sub-module of NumPy
can be useful, see the documentation at the address: https://numpy.org/doc/st
able/reference/random/.
b. Modify the previous function, so that it returns in addition to the mean 𝐽𝐽 also
the empirical variance:

�̃�𝑉 = (𝑏𝑏 − 𝑎𝑎)2
𝑁𝑁

𝑁𝑁−1∑

𝑖𝑖=0
(𝑓𝑓(𝑥𝑥𝑖𝑖) −

𝐽𝐽
𝑏𝑏 − 𝑎𝑎)

2
.

c. Study empirically the convergence of the Monte Carlo method as a function of
𝑁𝑁 by making for each value of 𝑁𝑁 a statistic on 𝑘𝑘 executions. More precisely, this
consists inmaking 𝑘𝑘 evaluations of 𝐽𝐽 by theMonte Carlomethod and to calculate
the mean and the variance of the 𝑘𝑘 results obtained.
d.Determine analytically the convergence of the Monte Carlo method. What are
the necessary assumptions on 𝑓𝑓?
Hint: Use the central limit theorem.

EXERCISE 5.4 SIMPSON’S RULE (!)
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𝑥𝑥𝑛𝑛+𝑥𝑥𝑛𝑛+1
2

, 𝑓𝑓(𝑥𝑥𝑛𝑛+𝑥𝑥𝑛𝑛+1
2

)),
and (𝑥𝑥𝑛𝑛+1, 𝑓𝑓(𝑥𝑥𝑛𝑛+1)).
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(𝑎𝑎−𝑐𝑐)(𝑎𝑎−𝑏𝑏)
takes the value 1 at 𝑥𝑥 = 𝑎𝑎 and the value 0

at 𝑥𝑥 = 𝑏𝑏 and 𝑥𝑥 = 𝑐𝑐. Make a linear combination of three such polynomials.
b. Compute the approximation given by 𝐽𝐽𝑛𝑛 ≈ ∫𝑥𝑥𝑛𝑛+1𝑥𝑥𝑛𝑛 𝑝𝑝𝑛𝑛(𝑥𝑥) d𝑥𝑥 .
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dules/integrals/integrals.html.
c. Simplify by hand the sum 𝐽𝐽 of the approximations of 𝐽𝐽𝑛𝑛.
Answer: The result is:

𝐽𝐽 = 𝛿𝛿
3
⎡
⎢
⎣

𝑓𝑓(𝑏𝑏) − 𝑓𝑓(𝑎𝑎)
2 +

𝑁𝑁−1∑

𝑛𝑛=0
(𝑓𝑓(𝑥𝑥𝑛𝑛) + 2𝑓𝑓 (

𝑥𝑥𝑛𝑛 + 𝑥𝑥𝑛𝑛+1
2 ))

⎤
⎥
⎦
.

d. Write a function simpson(f,a,b,N) to approximate 𝐽𝐽 with Simpson’s rule.
e. Compare the accuracy, i.e., the convergence speed of the rectangle, trapezoid,
and Simpson methods as a function of𝑁𝑁 for a smooth function and the function
𝑓𝑓(𝑥𝑥) =

√
1 − 𝑥𝑥2 on [0, 1] (whose integral is 𝜋𝜋

4
).
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f. If not already done, propose a parallel implementation of Simpson’s rule using
NumPy indexing.

EXERCISE 5.5 INTEGRATION WITH SCIPY (!!)

The above and other integration methods are defined in the integratemodule
of SciPy. This module allows in particular to handle more complicated cases: sin-
gular, generalized, or multidimensional integrals.
a. Define a function E(n,x) computing numerically the following integral:

𝐸𝐸𝑛𝑛(𝑥𝑥) =∫
∞

1

𝑒𝑒−𝑥𝑥𝑥𝑥
𝑥𝑥𝑛𝑛 d𝑥𝑥 𝑡

Hint: Read the documentation of the SciPy integrate sub-module available at the
address: https://docs.scipy.org/doc/scipy/tutorial/integrate.html.
b. Determine an approximation of the double integral:

𝐼𝐼 =∫
𝜋𝜋

0
(∫

𝑦𝑦

0
𝑥𝑥 sin(𝑥𝑥𝑦𝑦) d𝑥𝑥) d𝑦𝑦 𝑡

https://docs.scipy.org/doc/scipy/tutorial/integrate.html
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SOLUTIONS

SOLUTION 5.1 RECTANGLE RULE

a. We choose a function that gives 2 when integrated over [0, 1]:

import numpy as np
def f(x):

return 3⁎x⁎⁎2 + 2⁎x - 1 + np.sin(2⁎np.pi⁎x) +
np.exp(-x)⁎np.e/(np.e-1)↪

Jexact = 2

b. The sum is calculated iteratively:

def rectangles(f,a,b,N):
delta = (b-a)/N
J = 0
for i in range(N):

x = a + delta⁎i
J += f(x)⁎delta

return J

We find the expected result:

rectangles(f,0,1,100)

c. It is a question of barely modifying the previous function:

def rectangles(f,a,b,N,alpha=0.5):
delta = (b-a)/N
J = 0
for i in range(N):

x = a + delta⁎(i+alpha)
J += f(x)⁎delta

return J

We find the expected result:

rectangles(f,0,1,100,alpha=0.5)

d. It is convenient to use NumPy to calculate the points:

import matplotlib.pyplot as plt
def plot_rectangles(f,a,b,N,alpha=0.5):

plt.figure(figsize=(8,5))
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plt.title(f"Rectangle rule for $\\alpha = {alpha}$ and $N
= {N}$")↪

# vectorize f
f = np.vectorize(f)
# plot the function f
delta = (b-a)/N
x = np.linspace(a+alpha⁎delta, b+alpha⁎delta, N,

endpoint=False)↪

y = f(x)
plt.plot(x,y,"bo-")
# plot the boxes
bx = np.linspace(a, b, N+1, endpoint=True)
for i in range(N):

# abscissa and ordinate of rectangles
x_rect = [bx[i], bx[i], bx[i+1], bx[i+1], bx[i]]
y_rect = [0, y[i], y[i], 0, 0]
plt.plot(x_rect, y_rect,"r")

The following command allows you to test and obtain Figure 5.1:

plot_rectangles(f,0,1,10,alpha=0.2)

Figure 5.1 Graphical representation of the rectangle rule, with the height of the
rectangles taken from the fifth of each interval.
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e. To determine the speed of convergence, we compute the error 𝐸𝐸𝑁𝑁 = |𝐽𝐽 − 𝐽𝐽|
between the exact value of the integral and the value found by making 𝑁𝑁 sub-
divisions. Then, we plot 𝑁𝑁𝑘𝑘𝐸𝐸𝑁𝑁 as a function of 𝑁𝑁 and find the 𝑘𝑘 that makes the
graph asymptotically constant:

# list of values of N
list_N = np.arange(10,1000)
# apply the function on each element of the list
data = np.vectorize(lambda N:

rectangles(f,0,1,N,alpha=0))(list_N)↪

plt.figure(figsize=(8,5))
plt.title("Convergence of order one of the rectangle rule")
plt.xlabel("$N$")
plt.ylabel(r"$N \times E_N$")
plt.ylim(0,3)
plt.plot(list_N, np.abs(data-Jexact)⁎list_N)

Figure 5.2 allows to conclude that the error of the method is 𝐸𝐸𝑁𝑁 ∝ 𝑁𝑁−1 at least
for this example with 𝛼𝛼 = 0.

Figure 5.2 Error 𝐸𝐸𝑁𝑁 = |𝐽𝐽 − 𝐽𝐽| multiplied by 𝑁𝑁 as a function of 𝑁𝑁 allowing to
conclude that the rectangle rule is of order one when 𝛼𝛼 = 0.
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Another more standard way to do this is to plot 𝐸𝐸𝑁𝑁 as a function of𝑁𝑁 in logarith-
mic scales:

plt.figure(figsize=(8,5))
plt.title("Order of convergence of the rectangle rule")
plt.xlabel("$N$")
for alpha in (0,0.7,0.5):

data = np.vectorize(lambda N:
rectangles(f,0,1,N,alpha=alpha))(list_N)↪

plt.loglog(list_N, np.abs(data-Jexact), label=f"$E_N$ for
$\\alpha={alpha}$")↪

for i in (1,2):
plt.loglog(list_N, 1/list_N⁎⁎i, label=f"$N^{{-{i}}}$")

plt.legend()

In the representation of Figure 5.3, the slope of an empirical line corresponds
to the order of convergence of the method. In addition, the functions 𝑁𝑁−1 and
𝑁𝑁−2 are also represented, which makes it possible to compare the slopes and to
deduce that the rectangle rule is of order one in general, except for 𝛼𝛼 = 0.5where
it is of order two. The case 𝛼𝛼 = 0.5 is called the mid-point rule. It would also be
possible to perform linear regressions to obtain the precise values of the slopes.

Figure 5.3 Error 𝐸𝐸𝑁𝑁 as a function of 𝑁𝑁 in logarithmic scales for different values
of 𝛼𝛼. The rectangle rule is therefore of order one in general, but is of order two
for 𝛼𝛼 = 0.5.

f. For each value of 𝑛𝑛 and 𝑥𝑥 ∈ [𝑥𝑥𝑛𝑛, 𝑥𝑥𝑛𝑛+1], by the mean value theorem, there exists
𝑐𝑐𝑛𝑛 such that:

𝑓𝑓(𝑥𝑥) − 𝑓𝑓(�̃�𝑥𝑛𝑛) = (𝑥𝑥 − �̃�𝑥𝑛𝑛)𝑓𝑓′(𝑐𝑐𝑛𝑛) .
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If 𝑓𝑓′ is continuous on [𝑎𝑎𝑎 𝑎𝑎], then:

sup
𝑥𝑥∈[𝑎𝑎𝑎𝑎𝑎]

|𝑓𝑓′(𝑥𝑥)| ≤ 𝑀𝑀 𝑎

and therefore:

|𝑓𝑓(𝑥𝑥) − 𝑓𝑓(�̃�𝑥𝑛𝑛)| ≤ 𝑀𝑀|𝑥𝑥 − �̃�𝑥𝑛𝑛| ≤ 𝑀𝑀𝑀𝑀 ≤ 𝑀𝑀(𝑎𝑎 − 𝑎𝑎)
𝑁𝑁 .

Thus:

𝐸𝐸𝑁𝑁 = |||𝐽𝐽 − 𝐽𝐽||| =
||||||||||

𝑁𝑁−1∑

𝑛𝑛=0
(∫

𝑥𝑥𝑛𝑛+1

𝑥𝑥𝑛𝑛
𝑓𝑓(𝑥𝑥) d𝑥𝑥 − 𝑀𝑀𝑓𝑓(�̃�𝑥𝑛𝑛))

||||||||||

≤
𝑁𝑁−1∑

𝑛𝑛=0

|||||||||
∫

𝑥𝑥𝑛𝑛+1

𝑥𝑥𝑛𝑛
(𝑓𝑓(𝑥𝑥) − 𝑓𝑓(�̃�𝑥𝑛𝑛)) d𝑥𝑥

|||||||||
≤

𝑁𝑁−1∑

𝑛𝑛=0
∫

𝑥𝑥𝑛𝑛+1

𝑥𝑥𝑛𝑛
|𝑓𝑓(𝑥𝑥) − 𝑓𝑓(�̃�𝑥𝑛𝑛)| d𝑥𝑥

≤
𝑁𝑁−1∑

𝑛𝑛=0
∫

𝑥𝑥𝑛𝑛+1

𝑥𝑥𝑛𝑛

𝑀𝑀(𝑎𝑎 − 𝑎𝑎)
𝑁𝑁 d𝑥𝑥 ≤ 𝑀𝑀(𝑎𝑎 − 𝑎𝑎)2

𝑁𝑁 .

Therefore, if 𝑓𝑓 ∈ 𝐶𝐶1([𝑎𝑎𝑎 𝑎𝑎]), then the rectangle rule converges and is of order one.

SOLUTION 5.2 TRAPEZOIDAL RULE

a. In a similar way to the rectangle rule:

def trapezes(f,a,b,N):
delta = (b-a)/N
J = 0
for i in range(N):

x = a + delta⁎i
J += delta⁎(f(x)+f(x+delta))/2

return J

This gives:

trapezes(f,0,1,100)

b. For the calculation of 𝐽𝐽𝑛𝑛, 𝑓𝑓(𝑥𝑥𝑛𝑛) and 𝑓𝑓(𝑥𝑥𝑛𝑛+1) need to be calculated, but for 𝐽𝐽𝑛𝑛+1,
it is possible to reuse the evaluation of 𝑓𝑓(𝑥𝑥𝑛𝑛+1). Summing up all 𝐽𝐽𝑛𝑛, we get:

𝐽𝐽 =
𝑁𝑁−1∑

𝑛𝑛=0
𝐽𝐽𝑛𝑛 =

𝑀𝑀
2

𝑁𝑁−1∑

𝑛𝑛=0
(𝑓𝑓(𝑥𝑥𝑛𝑛) + 𝑓𝑓(𝑥𝑥𝑛𝑛+1)) = 𝑀𝑀

⎛
⎜
⎝

𝑓𝑓(𝑥𝑥0)
2 +

𝑁𝑁−1∑

𝑛𝑛=1
𝑓𝑓(𝑥𝑥𝑛𝑛) +

𝑓𝑓(𝑥𝑥𝑁𝑁)
2

⎞
⎟
⎠

Thus, the following function performs only the 𝑁𝑁 + 1 evaluations of 𝑓𝑓 needed
and not 2𝑁𝑁 as with the previous version:
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||||||||||

≤
𝑁𝑁−1∑

𝑛𝑛=0

|||||||||
∫

𝑥𝑥𝑛𝑛+1

𝑥𝑥𝑛𝑛
(𝑓𝑓(𝑥𝑥) − 𝑓𝑓(�̃�𝑥𝑛𝑛)) d𝑥𝑥

|||||||||
≤

𝑁𝑁−1∑

𝑛𝑛=0
∫

𝑥𝑥𝑛𝑛+1

𝑥𝑥𝑛𝑛
|𝑓𝑓(𝑥𝑥) − 𝑓𝑓(�̃�𝑥𝑛𝑛)| d𝑥𝑥

≤
𝑁𝑁−1∑

𝑛𝑛=0
∫

𝑥𝑥𝑛𝑛+1

𝑥𝑥𝑛𝑛

𝑀𝑀(𝑎𝑎 − 𝑎𝑎)
𝑁𝑁 d𝑥𝑥 ≤ 𝑀𝑀(𝑎𝑎 − 𝑎𝑎)2

𝑁𝑁 .

Therefore, if 𝑓𝑓 ∈ 𝐶𝐶1([𝑎𝑎𝑎 𝑎𝑎]), then the rectangle rule converges and is of order one.

SOLUTION 5.2 TRAPEZOIDAL RULE

a. In a similar way to the rectangle rule:

def trapezes(f,a,b,N):
delta = (b-a)/N
J = 0
for i in range(N):

x = a + delta⁎i
J += delta⁎(f(x)+f(x+delta))/2

return J

This gives:

trapezes(f,0,1,100)

b. For the calculation of 𝐽𝐽𝑛𝑛, 𝑓𝑓(𝑥𝑥𝑛𝑛) and 𝑓𝑓(𝑥𝑥𝑛𝑛+1) need to be calculated, but for 𝐽𝐽𝑛𝑛+1,
it is possible to reuse the evaluation of 𝑓𝑓(𝑥𝑥𝑛𝑛+1). Summing up all 𝐽𝐽𝑛𝑛, we get:

𝐽𝐽 =
𝑁𝑁−1∑

𝑛𝑛=0
𝐽𝐽𝑛𝑛 =

𝑀𝑀
2

𝑁𝑁−1∑

𝑛𝑛=0
(𝑓𝑓(𝑥𝑥𝑛𝑛) + 𝑓𝑓(𝑥𝑥𝑛𝑛+1)) = 𝑀𝑀

⎛
⎜
⎝

𝑓𝑓(𝑥𝑥0)
2 +

𝑁𝑁−1∑

𝑛𝑛=1
𝑓𝑓(𝑥𝑥𝑛𝑛) +

𝑓𝑓(𝑥𝑥𝑁𝑁)
2

⎞
⎟
⎠

Thus, the following function performs only the 𝑁𝑁 + 1 evaluations of 𝑓𝑓 needed
and not 2𝑁𝑁 as with the previous version:
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def trapezes2(f,a,b,N):
delta = (b-a)/N
J = delta⁎(f(a)+f(b))/2
for i in range(1,N):

x = a + delta⁎i
J += delta⁎f(x)

return J

The results are the same:

trapezes(f,0,1,100) - trapezes2(f,0,1,100)

to the rounding error.
c. In a similar way to the rectangle rule:

# list of values of N
list_N = np.arange(10,1000)
# apply the function on each element of the list
data = np.vectorize(lambda N: trapezes2(f,0,1,N))(list_N)
plt.figure(figsize=(8,5))
plt.title("Second-order convergence of the trapezoidal rule")
plt.xlabel("$N$")
plt.ylabel(r"$N^2 \times E_N$")
plt.ylim(0,1)
plt.plot(list_N, np.abs(data-Jexact)⁎list_N⁎⁎2)

or in logarithmic scales:

plt.figure(figsize=(8,5))
plt.title("Order of convergence of the trapezoidal rule")
plt.xlabel("$N$")
plt.loglog(list_N, np.abs(data-Jexact), label="$E_N$")
plt.loglog(list_N, 1/list_N⁎⁎2, label="$N^{-2}$")
plt.legend()

Figures 5.4 and 5.5 indicate that the speed of convergence of the trapezoidal rule
is of order two: 𝐸𝐸𝑁𝑁 ∝ 𝑁𝑁−2.
d. The linear function that approximates 𝑓𝑓 on the interval [𝑥𝑥𝑛𝑛, 𝑥𝑥𝑛𝑛+1] is:

𝐿𝐿𝑛𝑛(𝑥𝑥) =
𝑥𝑥 − 𝑥𝑥𝑛𝑛
𝛿𝛿 𝑓𝑓(𝑥𝑥𝑛𝑛+1) +

𝑥𝑥𝑛𝑛+1 − 𝑥𝑥
𝛿𝛿 𝑓𝑓(𝑥𝑥𝑛𝑛) ,

so that:
𝐽𝐽𝑛𝑛 =∫

𝑥𝑥𝑛𝑛+1

𝑥𝑥𝑛𝑛
𝐿𝐿𝑛𝑛(𝑥𝑥) d𝑥𝑥 =

𝑓𝑓(𝑥𝑥𝑛𝑛) + 𝑓𝑓(𝑥𝑥𝑛𝑛+1)
2 .

By Lagrange’s approximation theorem, for 𝑥𝑥 ∈ [𝑥𝑥𝑛𝑛, 𝑥𝑥𝑛𝑛+1]:

|||𝑓𝑓(𝑥𝑥) − 𝐿𝐿𝑛𝑛(𝑥𝑥)||| ≤
(𝑥𝑥 − 𝑥𝑥𝑛𝑛)(𝑥𝑥𝑛𝑛+1 − 𝑥𝑥)

2 𝑀𝑀′ ,
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Figure 5.4 Error 𝐸𝐸𝑁𝑁 = |𝐽𝐽 − 𝐽𝐽|multiplied by 𝑁𝑁2 as a function of 𝑁𝑁 for the trape-
zoidal rule: this method is of order two.

Figure 5.5 Comparison between the error 𝐸𝐸𝑁𝑁 for the trapezoidal rule and the
function 𝑁𝑁−2: the trapezoidal rule is indeed of order two.
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where
𝑀𝑀′ = sup

𝑥𝑥∈[𝑎𝑎𝑎𝑎𝑎]
|𝑓𝑓′′(𝑥𝑥)| .

Thus:

𝐸𝐸𝑁𝑁 =
||||||||||
∫

𝑎𝑎

𝑎𝑎
𝑓𝑓(𝑥𝑥) d𝑥𝑥 −

𝑁𝑁−1∑

𝑛𝑛=0
𝐽𝐽𝑛𝑛
||||||||||
≤

𝑁𝑁−1∑

𝑛𝑛=0
∫

𝑥𝑥𝑛𝑛+1

𝑥𝑥𝑛𝑛
|𝑓𝑓(𝑥𝑥) − 𝐿𝐿𝑛𝑛(𝑥𝑥)| d𝑥𝑥

≤ 𝑀𝑀′

2

𝑁𝑁−1∑

𝑛𝑛=0
∫

𝑥𝑥𝑛𝑛+1

𝑥𝑥𝑛𝑛
(𝑥𝑥 − 𝑥𝑥𝑛𝑛)(𝑥𝑥𝑛𝑛+1 − 𝑥𝑥) ≤ 𝑁𝑁𝑀𝑀′𝛿𝛿3

12 ≤ 𝑀𝑀′(𝑎𝑎 − 𝑎𝑎)3
12𝑁𝑁2 𝑎

Therefore, if 𝑓𝑓 ∈ 𝐶𝐶2([𝑎𝑎𝑎 𝑎𝑎]), the trapezoidal rule is of order two: 𝐸𝐸𝑁𝑁 ∝ 𝑁𝑁−2.

SOLUTION 5.3 MONTE CARLO METHOD

a. We use NumPy to generate 𝑁𝑁 random values and compute the average:

def montecarlo(f,a,b,N):
# draws N values in [a,b]
x = a + (b-a)⁎np.random.random(N)
y = np.vectorize(f)(x)
# mean
mean = (b-a)⁎np.mean(y)
return mean

To test:

montecarlo(f,0,1,10⁎⁎4)

b. By adapting the previous function:

def montecarlo(f,a,b,N):
# draws N values in [a,b]
x = a + (b-a)⁎np.random.random(N)
y = np.vectorize(f)(x)
# mean
mean = (b-a)⁎np.mean(y)
# variance
var = (b-a)⁎⁎2⁎np.var(y)
return (mean,var)

To test:

montecarlo(f,0,1,10⁎⁎4)

c. First, we define a function that allows us to perform statistics on 𝑘𝑘 evaluations
of montecarlo(f,a,b,N) by returning the mean of the 𝐽𝐽 values found as well as
the variance:



66 ■ Python Programming for Mathematics

def stats(f,a,b,N,k):
# list of nb results of Monte Carlo
lst = np.zeros(k)
for i in range(k):

lst[i],_ = montecarlo(f,0,1,N)
return np.array([np.mean(lst), np.var(lst)])

Using this function, it is possible to determine the speed of convergence of the
mean and variance of 𝐽𝐽 over 𝑘𝑘 runs as a function of 𝑁𝑁:

Nmax = 1000; k = 100
# list of values of N
N = np.arange(1,Nmax)
# arrays for the mean and variance
mean = np.zeros(len(N))
var = np.zeros(len(N))
for i in range(len(N)):

mean[i],var[i] = stats(f,0,1,N[i],k)
# figure
plt.figure(figsize=(8,5))
plt.title(f"Convergence of the Monte Carlo method for $k =

{k}$ evaluations")↪

plt.plot(3⁎N⁎⁎(1/2)⁎np.abs(mean-Jexact),
label=r"$3N^{1/2}\,|\mathrm{\mathbb{E}}(\tilde{J})-J|$")↪

plt.plot(N⁎var, label=r"$N\,\mathrm{Var}(\tilde{J})$")
plt.xlabel("$N$")
plt.ylim(0,1)
plt.legend()

Figure 5.6 suggests that the mean of 𝐽𝐽 converges to 𝐽𝐽 as |𝔼𝔼(𝐽𝐽) − 𝐽𝐽| ∝ 𝑁𝑁−1∕2 and
that the variance converges as Var(𝐽𝐽) ∝ 𝑁𝑁−1.
The previous implementation is actually not very clever because for each value
of𝑁𝑁 between 1 and𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚, new random numbers are generated and the function
is evaluated on them. Another approach is to generate𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 × 𝑘𝑘 random values,
evaluate 𝑓𝑓 on them, and then take into account only 𝑁𝑁 of them to compute the
dependence in 𝑁𝑁. The realizations on the different values of 𝑁𝑁 are obviously no
longer independent with this approach. Moreover, it would be better to compute
the average of the errors𝐸𝐸𝑁𝑁 = |𝐽𝐽−𝐽𝐽| over 𝑘𝑘 evaluations, rather than the deviation
of the average of 𝐽𝐽 from the exact value 𝐽𝐽. The following function returns the
mean 𝔼𝔼(𝐽𝐽), the variance Var(𝐽𝐽), and the mean error 𝔼𝔼(𝐸𝐸𝑁𝑁) over 𝑘𝑘 evaluations:

def allstats(f,a,b,Nmax,k):
fv = np.vectorize(f)
# define an array of size Nmax x nb with f(v) for v in

[a,b]↪

x = fv(a + (b-a)⁎np.random.random((Nmax, k)))
# calculate the cumulative sum divided by 1/N for each

column↪
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longer independent with this approach. Moreover, it would be better to compute
the average of the errors𝐸𝐸𝑁𝑁 = |𝐽𝐽−𝐽𝐽| over 𝑘𝑘 evaluations, rather than the deviation
of the average of 𝐽𝐽 from the exact value 𝐽𝐽. The following function returns the
mean 𝔼𝔼(𝐽𝐽), the variance Var(𝐽𝐽), and the mean error 𝔼𝔼(𝐸𝐸𝑁𝑁) over 𝑘𝑘 evaluations:

def allstats(f,a,b,Nmax,k):
fv = np.vectorize(f)
# define an array of size Nmax x nb with f(v) for v in

[a,b]↪

x = fv(a + (b-a)⁎np.random.random((Nmax, k)))
# calculate the cumulative sum divided by 1/N for each

column↪
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y = 1/np.arange(1, Nmax+1)[:, None] ⁎ np.cumsum(x,
axis=0)↪

# calculate the mean on each column
mean = (b-a)⁎np.mean(y, axis=1)
# calculate the variance on each column
var = (b-a)⁎⁎2⁎np.var(y, axis=1)
# calculate the mean error on each column
error = np.mean(np.abs((b-a)⁎y-Jexact), axis=1)
return (mean,var,error)

This allows to make statistics on many more realizations as represented in Fig-
ure 5.7 or 5.8 and to make sure that the convergence speeds found previously are
correct:

Nmax = 10⁎⁎5; k = 100;
# values of N
N = np.arange(1,Nmax+1)
# means, variances and errors associated
mean,var,error = allstats(f,0,1,Nmax,k)
# figure
plt.figure(figsize=(8,5))
plt.title(f"Convergence of the Monte Carlo method on $k =

{k}$ evaluations")↪

plt.plot(N⁎⁎(1/2)⁎error,
label=r"$N^{1/2}\,\mathrm{\mathbb{E}}(E_N)$")↪

plt.plot(var⁎N, label=r"$N\,\mathrm{Var}(\tilde{J})$")
plt.xlabel("$N$")
plt.ticklabel_format(style='sci', axis='x', scilimits=(0,0))
plt.ylim(0,1)
plt.legend()

or in logarithmic scales:

plt.figure(figsize=(8,5))
plt.title(f"Order of convergence of the Monte Carlo method on

$k={k}$ evaluations")↪

plt.xlabel("$N$")
plt.loglog(N, error, label="$\mathrm{\mathbb{E}}(E_N)$")
plt.loglog(N, var, label=r"$\mathrm{Var}(\tilde{J})$")
plt.loglog(N, 1/N⁎⁎(1/2), label="$N^{-1/2}$")
plt.loglog(N, 1/N, label="$N^{-1}$")
plt.legend()
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Figure 5.6 Representation of the convergence of the mean of the 𝐽𝐽 to the exact
value 𝐽𝐽 as well as the variance of the 𝐽𝐽 over 𝑘𝑘 = 100 runs of the Monte Carlo
method.

Figure 5.7 Statistics on 100 realizations as a function of 𝑁𝑁 of the mean of the
errors 𝐸𝐸𝑁𝑁 = |𝐽𝐽− 𝐽𝐽| and of the variance of 𝐽𝐽. It is clear that the convergence of the
mean of the errors is in 𝑁𝑁−1∕2 and that of the variance is in 𝑁𝑁−1.
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Figure 5.8 In logarithmic scales, the orders of convergence of themean𝐸𝐸𝑁𝑁 errors
and the variance of 𝐽𝐽 are even more obvious.

d.According to the central limit theorem, if 𝑌𝑌𝑖𝑖 is a sequence of independent ran-
dom variables of expectation 𝜇𝜇 and variance 𝜎𝜎2, then the random variable:

𝑆𝑆𝑁𝑁 = 1
𝑁𝑁

𝑁𝑁−1∑

𝑖𝑖=0
𝑌𝑌𝑖𝑖 ,

has an expectation 𝜇𝜇 and a variance:

Var(𝑆𝑆𝑁𝑁) =
𝜎𝜎2
𝑁𝑁 .

Taking 𝑌𝑌𝑖𝑖 = 𝑓𝑓(𝑋𝑋𝑖𝑖) with 𝑋𝑋𝑖𝑖 a sequence of independent random variables uni-
formly distributed on [𝑎𝑎, 𝑎𝑎], then the expectation of 𝑌𝑌𝑖𝑖 is the mean of 𝑓𝑓 and thus
the expectation of 𝑆𝑆𝑁𝑁 is given by:

𝔼𝔼(𝑆𝑆𝑁𝑁) =
1

𝑎𝑎 − 𝑎𝑎 ∫
𝑎𝑎

𝑎𝑎
𝑓𝑓(𝑥𝑥) d𝑥𝑥 .

The variance of 𝑌𝑌𝑖𝑖 is also the variance of 𝑓𝑓, 𝜎𝜎2 = Var(𝑓𝑓(𝑋𝑋)) and so the variance
of 𝑆𝑆𝑁𝑁 is:

Var(𝑆𝑆𝑁𝑁) =
Var(𝑓𝑓(𝑋𝑋))

𝑁𝑁 .

Therefore, this shows that 𝐽𝐽 converges to 𝐽𝐽 as𝑁𝑁−1∕2 since the variance is propor-
tional to 𝑁𝑁−1.
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Note that to establish this result, no regularity condition on 𝑓𝑓 is necessary, inte-
grability is enough.
In practice, the variance of 𝑓𝑓 can be estimated by the empirical variance.

Remark:Although not very useful in one dimension, theMonte Carlo method is
extremely efficient for computing integrals in high dimensions because the speed
of convergence of this method is independent of the dimension.

SOLUTION 5.4 SIMPSON’S RULE (!)

a. Given the indication, noting𝑚𝑚𝑛𝑛 =
𝑥𝑥𝑛𝑛+𝑥𝑥𝑛𝑛+1

2
, then:

𝑝𝑝𝑛𝑛(𝑥𝑥) =
(𝑥𝑥 −𝑚𝑚𝑛𝑛)(𝑥𝑥 − 𝑥𝑥𝑛𝑛+1)
(𝑥𝑥𝑛𝑛 −𝑚𝑚𝑛𝑛)(𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑛𝑛+1)

𝑓𝑓(𝑥𝑥𝑛𝑛) +
(𝑥𝑥 − 𝑥𝑥𝑛𝑛)(𝑥𝑥 − 𝑥𝑥𝑛𝑛+1)

(𝑚𝑚𝑛𝑛 − 𝑥𝑥𝑛𝑛)(𝑚𝑚𝑛𝑛 − 𝑥𝑥𝑛𝑛+1)
𝑓𝑓(𝑚𝑚𝑛𝑛)

+ (𝑥𝑥 − 𝑥𝑥𝑛𝑛)(𝑥𝑥 −𝑚𝑚𝑛𝑛)
(𝑥𝑥𝑛𝑛+1 − 𝑥𝑥𝑛𝑛)(𝑥𝑥𝑛𝑛+1 −𝑚𝑚𝑛𝑛)

𝑓𝑓(𝑥𝑥𝑛𝑛+1) .

b. Integrating 𝑝𝑝𝑛𝑛 by hand, we find:

𝐽𝐽𝑛𝑛 ≈∫
𝑥𝑥𝑛𝑛+1

𝑥𝑥𝑛𝑛
𝑝𝑝𝑛𝑛(𝑥𝑥) d𝑥𝑥

≈
𝑥𝑥𝑛𝑛+1 − 𝑥𝑥𝑛𝑛

6 𝑓𝑓(𝑥𝑥𝑛𝑛) +
2(𝑥𝑥𝑛𝑛+1 − 𝑥𝑥𝑛𝑛)

3 𝑓𝑓(𝑚𝑚𝑛𝑛) +
𝑥𝑥𝑛𝑛+1 − 𝑥𝑥𝑛𝑛

6 𝑓𝑓(𝑥𝑥𝑛𝑛+1)

≈ 𝛿𝛿
6 (𝑓𝑓(𝑥𝑥𝑛𝑛) + 4𝑓𝑓(𝑚𝑚𝑛𝑛) + 𝑓𝑓(𝑥𝑥𝑛𝑛+1)) .

It is also possible to do it automatically with SymPy:

import sympy as sp
sp.init_printing()
# define the symbols
func = sp.Function("f")
x = sp.Symbol("x")
xn = sp.Symbol("x_{n}")
xp = sp.Symbol("x_{n+1}")
m = (xn+xp)/2
# define the polynomial
pn = (x-m)⁎(x-xp)/(xn-m)/(xn-xp)⁎func(xn) +

(x-xn)⁎(x-xp)/(m-xn)/(m-xp)⁎func(m) +
(x-xn)⁎(x-m)/(xp-xn)/(xp-m)⁎func(xp)

↪

↪

# calculate and simplify the integral
integral = sp.simplify(sp.integrate(pn,(x,xn,xp)))
sp.simplify(integral.subs(xp,xn+sp.Symbol(r"\delta")))
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Note that to establish this result, no regularity condition on 𝑓𝑓 is necessary, inte-
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+ (𝑥𝑥 − 𝑥𝑥𝑛𝑛)(𝑥𝑥 −𝑚𝑚𝑛𝑛)
(𝑥𝑥𝑛𝑛+1 − 𝑥𝑥𝑛𝑛)(𝑥𝑥𝑛𝑛+1 −𝑚𝑚𝑛𝑛)

𝑓𝑓(𝑥𝑥𝑛𝑛+1) .

b. Integrating 𝑝𝑝𝑛𝑛 by hand, we find:

𝐽𝐽𝑛𝑛 ≈∫
𝑥𝑥𝑛𝑛+1

𝑥𝑥𝑛𝑛
𝑝𝑝𝑛𝑛(𝑥𝑥) d𝑥𝑥

≈
𝑥𝑥𝑛𝑛+1 − 𝑥𝑥𝑛𝑛

6 𝑓𝑓(𝑥𝑥𝑛𝑛) +
2(𝑥𝑥𝑛𝑛+1 − 𝑥𝑥𝑛𝑛)

3 𝑓𝑓(𝑚𝑚𝑛𝑛) +
𝑥𝑥𝑛𝑛+1 − 𝑥𝑥𝑛𝑛

6 𝑓𝑓(𝑥𝑥𝑛𝑛+1)

≈ 𝛿𝛿
6 (𝑓𝑓(𝑥𝑥𝑛𝑛) + 4𝑓𝑓(𝑚𝑚𝑛𝑛) + 𝑓𝑓(𝑥𝑥𝑛𝑛+1)) .

It is also possible to do it automatically with SymPy:

import sympy as sp
sp.init_printing()
# define the symbols
func = sp.Function("f")
x = sp.Symbol("x")
xn = sp.Symbol("x_{n}")
xp = sp.Symbol("x_{n+1}")
m = (xn+xp)/2
# define the polynomial
pn = (x-m)⁎(x-xp)/(xn-m)/(xn-xp)⁎func(xn) +

(x-xn)⁎(x-xp)/(m-xn)/(m-xp)⁎func(m) +
(x-xn)⁎(x-m)/(xp-xn)/(xp-m)⁎func(xp)

↪

↪

# calculate and simplify the integral
integral = sp.simplify(sp.integrate(pn,(x,xn,xp)))
sp.simplify(integral.subs(xp,xn+sp.Symbol(r"\delta")))

Integration ■ 71

c. By summing the approximations of 𝐽𝐽𝑛𝑛:

𝐽𝐽 = 𝛿𝛿
6

𝑁𝑁−1∑

𝑛𝑛=0
[𝑓𝑓(𝑥𝑥𝑛𝑛) + 4𝑓𝑓(𝑚𝑚𝑛𝑛) + 𝑓𝑓(𝑥𝑥𝑛𝑛+1)]

= 𝛿𝛿
6
⎡
⎢
⎣

𝑁𝑁−1∑

𝑛𝑛=0
𝑓𝑓(𝑥𝑥𝑛𝑛) + 4

𝑁𝑁−1∑

𝑛𝑛=0
𝑓𝑓(𝑚𝑚𝑛𝑛) +

𝑁𝑁∑

𝑖𝑖=1
𝑓𝑓(𝑥𝑥𝑛𝑛)

⎤
⎥
⎦

= 𝛿𝛿
6
⎡
⎢
⎣

𝑁𝑁−1∑

𝑛𝑛=0
𝑓𝑓(𝑥𝑥𝑛𝑛) + 4

𝑁𝑁−1∑

𝑛𝑛=0
𝑓𝑓(𝑚𝑚𝑛𝑛) +

𝑁𝑁−1∑

𝑛𝑛=0
𝑓𝑓(𝑥𝑥𝑛𝑛) − 𝑓𝑓(𝑎𝑎) + 𝑓𝑓(𝑏𝑏)

⎤
⎥
⎦

= 𝛿𝛿
3
⎡
⎢
⎣

𝑓𝑓(𝑏𝑏) − 𝑓𝑓(𝑎𝑎)
2 +

𝑁𝑁−1∑

𝑛𝑛=0
(𝑓𝑓(𝑥𝑥𝑛𝑛) + 2𝑓𝑓 (

𝑥𝑥𝑛𝑛 + 𝑥𝑥𝑛𝑛+1
2 ))

⎤
⎥
⎦
.

d. The implementation of the formula is straightforward:

def simpson(f,a,b,N):
delta = (b-a)/N
J = delta/6⁎(f(b)-f(a))
for i in range(0,N):

x = a + delta⁎i
J += delta/3⁎f(x) + 2⁎delta/3⁎f(x+delta/2)

return J

To test:

simpson(f,0,1,10)

Note that in the following example, Simpson’s rule is accurate to the nearest nu-
merical precision:

simpson(lambda x: 3⁎x⁎⁎2 + 2⁎x - 1 + np.sin(2⁎np.pi⁎x), 0, 1,
10) - 1↪

because it is the sum of a polynomial of order two and an odd function with
respect to the middle of the interval [0, 1].
e. The following code allows to compare the different methods as a function of
𝑁𝑁 for a smooth function and a function that is only continuous but not derivable
as shown in Figure 5.9:

# create a new figure with a title
fig = plt.figure(figsize=(14,5))
fig.suptitle(r"Comparison of numerical integration methods")
# list of the values of N
list_N = np.arange(1,1000)
# functions and methods
functions = [{"f": f, "J": Jexact, "label": "smooth"}, \
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{"f": lambda x: np.sqrt(1-x⁎⁎2), "J": np.pi/4,
"label": "non-smooth"},]↪

methods = [(lambda ⁎args: rectangles(⁎args,alpha=0),
r"Rectangle rule with $\alpha=0$"), \↪

(trapezes2, "Trapezoidal rule"), \
(simpson,"Simpson's rule")]

for i,dic in enumerate(functions):
# create a subfigure
sub = fig.add_subplot(1,2,i+1)
sub.set_title(f"for a {dic['label']} function")
plt.xlabel("$N$")
plt.ylabel(r"$E_N$")
plt.ylim(1e-16,2)
# iterate over the methods
for method,label in methods:

data = np.vectorize(lambda N:
method(dic['f'],0,1,N))(list_N)↪

plt.loglog(list_N, np.abs(data-dic['J']),
label=label)↪

plt.legend()

Figure 5.9 Comparison between the rectangle, trapezoidal, and Simpson’s rules.
For the smooth function, the orders of convergence are respectively 𝑁𝑁−1, 𝑁𝑁−2,
and 𝑁𝑁−3. On the one hand, for the function 𝑓𝑓(𝑥𝑥) =

√
1 − 𝑥𝑥2 which is not deriv-

able in 𝑥𝑥 = 1, themethod of rectangles convergeswell as𝑁𝑁−1. On the other hand,
the two other methods converge only as 𝑁𝑁−3∕2 visibly: the order of convergence
is limited by the regularity of the function. The oscillations observed when 𝑁𝑁 is
large on the curve of the Simpson’s rule come from the limit of representation of
the floating numbers which is about 10−16.
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f. The idea is to compute the points where the function will be evaluated, i.e.,
on the 2𝑁𝑁 + 1 evenly spaced points (𝑥𝑥0, 𝑚𝑚0, 𝑥𝑥1, 𝑚𝑚1, 𝑥𝑥𝑁𝑁−1, 𝑚𝑚𝑁𝑁−1, 𝑥𝑥𝑁𝑁). It is then a
matter of using slicing to select the odd points (the 𝑥𝑥𝑛𝑛) or the even ones (the𝑚𝑚𝑛𝑛):

def simpson2(f,a,b,N):
delta = (b-a)/N
# points where f is evaluated
x = np.linspace(a,b,2⁎N+1)
# evaludate f on these points
y = f(x)
# Simpson sum
J = np.sum(y[:-2:2] + 4⁎y[1:-1:2] + y[2::2])
J ⁎= delta/6
return J

For example, for N=1000, this implementation is about 50 times faster.

SOLUTION 5.5 INTEGRATION WITH SCIPY (!!)

a) The example is in the documentation; it is a matter of defining the integrator
and then passing the fixed parameters to the quad function:

import math, scipy.integrate
def integrand(t, n, x):

return math.exp(-x⁎t)/t⁎⁎n
def E(n, x):

return scipy.integrate.quad(integrand, 1, math.inf,
args=(n, x))[0]↪

E(4,2)

b) The function dblquad of SciPy allows to calculate directly the requested inte-
gral:

scipy.integrate.dblquad(lambda x, y: x⁎math.sin(x⁎y), 0,
math.pi, 0, lambda x: x)↪



C H A P T E R 6

Algebra

First, a method for solving a linear system by a direct algorithm is studied; then,
an iterative method will be used to determine the eigenvector associated to the
largest eigenvalue of a matrix. Finally, the groups generated by a set of permuta-
tions will be studied.

Concepts covered

∙ direct solver (LU decomposition)

∙ in place algorithm

∙ iterative solver (iterated power)

∙ groups of permutations

∙ orbit and stabilizer
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EXERCISES

EXERCISE 6.1 LU DECOMPOSITION

The LU decomposition consists in decomposing a matrix 𝐴𝐴 of size 𝑛𝑛 × 𝑛𝑛 into the
form 𝐴𝐴 = 𝐿𝐿𝐿𝐿, where 𝐿𝐿 is a lower triangular matrix with 1 on the diagonal and
𝐿𝐿 an upper triangular matrix. Once the decomposition 𝐴𝐴 = 𝐿𝐿𝐿𝐿 of a matrix is
known, it is then very easy to solve the linear problem 𝐴𝐴𝒙𝒙 = 𝒃𝒃 by solving first
𝐿𝐿𝒚𝒚 = 𝒃𝒃 then 𝐿𝐿𝒙𝒙 = 𝒚𝒚. The advantage of the LU decomposition over the Gauss
algorithm, for example, is that once the LU decomposition is known, it is possible
to solve the linear system quickly with different right-hand sides.
Since 𝑙𝑙𝑖𝑖𝑖𝑖 = 0 if 𝑖𝑖 𝑘 𝑖𝑖, we have:

𝑎𝑎𝑖𝑖𝑖𝑖 =
𝑛𝑛∑

𝑖𝑖=1
𝑙𝑙𝑖𝑖𝑖𝑖𝑢𝑢𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑖𝑖𝑖𝑖𝑢𝑢𝑖𝑖𝑖𝑖 +

𝑖𝑖−1∑

𝑖𝑖=1
𝑙𝑙𝑖𝑖𝑖𝑖𝑢𝑢𝑖𝑖𝑖𝑖 ,

and therefore as 𝑙𝑙𝑖𝑖𝑖𝑖 = 1:

𝑢𝑢𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖𝑖𝑖 −
𝑖𝑖−1∑

𝑖𝑖=1
𝑙𝑙𝑖𝑖𝑖𝑖𝑢𝑢𝑖𝑖𝑖𝑖 .

On the contrary, since 𝑢𝑢𝑖𝑖𝑖𝑖 = 0 if 𝑖𝑖 𝑘 𝑖𝑖, then:

𝑎𝑎𝑖𝑖𝑖𝑖 =
𝑛𝑛∑

𝑖𝑖=1
𝑙𝑙𝑖𝑖𝑖𝑖𝑢𝑢𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑖𝑖𝑖𝑖𝑢𝑢𝑖𝑖𝑖𝑖 +

𝑖𝑖−1∑

𝑖𝑖=1
𝑙𝑙𝑖𝑖𝑖𝑖𝑢𝑢𝑖𝑖𝑖𝑖 ,

and therefore if 𝑢𝑢𝑖𝑖𝑖𝑖 ≠ 0:

𝑙𝑙𝑖𝑖𝑖𝑖 =
1
𝑢𝑢𝑖𝑖𝑖𝑖

⎛
⎜
⎝
𝑎𝑎𝑖𝑖𝑖𝑖 −

𝑖𝑖−1∑

𝑖𝑖=1
𝑙𝑙𝑖𝑖𝑖𝑖𝑢𝑢𝑖𝑖𝑖𝑖

⎞
⎟
⎠
.

Thus, if the first (𝑖𝑖 − 1) rows of𝐿𝐿 and the first (𝑖𝑖 − 1) columns of 𝐿𝐿 are known, it
is possible to determine the 𝑖𝑖-th row of 𝐿𝐿 by:

𝑢𝑢𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖𝑖𝑖 −
𝑖𝑖−1∑

𝑖𝑖=1
𝑙𝑙𝑖𝑖𝑖𝑖𝑢𝑢𝑖𝑖𝑖𝑖 , 𝑖𝑖 ≥ 𝑖𝑖 ,

then, the 𝑖𝑖-th column of 𝐿𝐿 by:

𝑙𝑙𝑖𝑖𝑖𝑖 =
1
𝑢𝑢𝑖𝑖𝑖𝑖

⎛
⎜
⎝
𝑎𝑎𝑖𝑖𝑖𝑖 −

𝑖𝑖−1∑

𝑖𝑖=1
𝑙𝑙𝑖𝑖𝑖𝑖𝑢𝑢𝑖𝑖𝑖𝑖

⎞
⎟
⎠
, 𝑖𝑖 𝑘 𝑖𝑖 .

This algorithm for the LU decomposition of a matrix 𝐴𝐴 requires that 𝑢𝑢𝑖𝑖𝑖𝑖 is never
zero. This is indeed the case when the matrix 𝐴𝐴 and all its principal submatrices
are invertible.



76 ■ Python Programming for Mathematics

a. Write a function LU(A) that returns the result of the LU decomposition of a
matrix.
b. Given the LU decomposition of a matrix 𝐴𝐴, write a function solve(L,U,b)
that solves the linear system 𝐴𝐴𝐴𝐴 = 𝒃𝒃.
c. Write a function LU_inplace(A) that does not create new arrays for 𝐿𝐿 and 𝑈𝑈
but modifies𝐴𝐴 so that its lower triangular part (without the diagonal) matches 𝐿𝐿
and its upper triangular part (with the diagonal) matches𝑈𝑈. Also make a version
solve_inplace that takes as input the output of LU_inplace and returns the
solution 𝒙𝒙 without using any new arrays.
d. Using the LU decomposition of the matrix 𝐴𝐴, write a function det(A) that
returns its determinant.

EXERCISE 6.2 POWER ITERATION METHOD

The goal of this exercise is to determine the eigenvector of a matrix associated to
the largest eigenvalue (in modulus), assuming that this one is unique. Given a
real matrix𝐴𝐴 of size 𝑛𝑛× 𝑛𝑛 and a vector 𝒙𝒙0 ∈ ℝ𝑛𝑛, the sequence of vectors (𝒙𝒙𝑘𝑘)𝑘𝑘∈ℕ
is defined by:

𝒙𝒙𝑘𝑘+1 =
𝐴𝐴𝒙𝒙𝑘𝑘
‖𝐴𝐴𝒙𝒙𝑘𝑘‖

.

Assuming, for example, that the matrix 𝐴𝐴 is diagonalizable, it is then possible to
show that the sequence (𝒙𝒙𝑘𝑘)𝑘𝑘∈ℕ converges up to a sign to the eigenvector associ-
ated to the largest eigenvalue of𝐴𝐴 in absolute value. The convergence takes place
almost surely for all choices of 𝒙𝒙0.
a. Define a function power(A, x0, k) that returns 𝒙𝒙𝑘𝑘. With this function, de-
termine the largest eigenvector of the matrix:

𝐴𝐴 = (0.5 0.5
0.2 0.8) .

Answer: The largest eigenvector is ±(0.70710678, 0.70710678).
b. Determine the eigenvalue associated with the previous eigenvector.
Hint: If 𝒗𝒗 is a normalized eigenvector of 𝐴𝐴, then the associated eigenvalue is given
by 𝜆𝜆 = 𝐴𝐴𝒗𝒗 ⋅ 𝒗𝒗.
c.Write a function to automatically compute the largest eigenvalue (inmodulus)
and the associated eigenvector of a square matrix with a given precision. We will
choose the initial vector 𝒙𝒙0 randomly.
d. Assuming the matrix 𝐴𝐴 is diagonalizable with a single eigenvalue of largest
modulus, show that the sequence 𝒙𝒙𝑘𝑘 converges up to one sign to the eigenvector
associated with this largest eigenvalue for almost all choices of 𝒙𝒙0.
Hint: Decompose𝒙𝒙0 in the eigenvector basis of𝐴𝐴. For simplicity, we can assume that
the eigenvalue of largest modulus is positive.
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e. Look at the NumPy documentation to find the functions to compute the eigen-
vectors and eigenvalues of a matrix.
f. Compare the speed of the previous code and the NumPy functions for matrices
of size 𝑛𝑛 × 𝑛𝑛 with 𝑛𝑛 = 10, 100, 1 000.
Hint: Taking for example matrices whose coefficients are randomly generated in
the interval (0, 1), the Perron-Frobenius theorem ensures the existence of a single
eigenvalue of maximummodulus that is positive.

EXERCISE 6.3 EXPONENTIAL OF MATRICES

The goal of this exercise is to develop an algorithm to calculate the exponential
of a real square matrix. If 𝐴𝐴 is a real square matrix, its exponential is defined by
the series:

exp(𝐴𝐴) =
∞∑

𝑘𝑘=0

𝐴𝐴𝑘𝑘

𝑘𝑘! ,

by analogy with the exponential on real numbers. Here,𝐴𝐴𝑘𝑘 represents thematrix
product of 𝐴𝐴 with itself 𝑘𝑘 times.
a.Define the NumPy arrays corresponding to the matrices𝐴𝐴1 and𝐴𝐴2 defined by:

𝐴𝐴1 =
⎛
⎜
⎝

1 0.8 0.6
0.8 0.2 0.8
0 1.2 0.9

⎞
⎟
⎠
, 𝐴𝐴2 =

⎛
⎜
⎝

2 3 2
1 2 3
4 3 5.2

⎞
⎟
⎠
.

b. Define a function matrix_power(A,n=20) returning an approximation of
exp(𝐴𝐴) obtained by keeping only the first 𝑛𝑛+ 1 terms of the series, i.e., the terms
from 𝑘𝑘 = 0 to 𝑘𝑘 = 𝑛𝑛.
c. Test on the matrices 𝐴𝐴1 and 𝐴𝐴2 and compare with the results of the function
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d. Without using the function norm of NumPy or SciPy, define a function com-
puting the Frobenius norm ‖𝐴𝐴‖𝐹𝐹 of a matrix 𝐴𝐴 of size𝑚𝑚 ×𝑚𝑚 defined by:

‖𝐴𝐴‖2𝐹𝐹 = tr(𝐴𝐴𝐴𝐴𝑡𝑡) =
𝑚𝑚∑

𝑖𝑖=1

𝑚𝑚∑

𝑗𝑗=1
|𝑎𝑎𝑖𝑖𝑗𝑗|2 .

Compute the Frobenius norms of the matrices 𝐴𝐴1 and 𝐴𝐴2.
e. For matrices 𝐴𝐴1 and 𝐴𝐴2, plot the error in the Frobenius norm between the
result of matrix_power and the result of expm as a function of the number of
terms 𝑛𝑛 kept. Put a logarithmic scale on the y-axis.
From a theoretical point of view, it is possible to show that the error is bounded
by:

‖‖‖‖‖‖‖‖‖
exp(𝐴𝐴) −

𝑛𝑛∑

𝑘𝑘=0

𝐴𝐴𝑘𝑘

𝑘𝑘!

‖‖‖‖‖‖‖‖‖𝐹𝐹
≤ 𝑒𝑒‖𝐴𝐴‖𝐹𝐹
(𝑛𝑛 + 1)!

‖𝐴𝐴‖𝑛𝑛+1𝐹𝐹 .
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f. Plot this bound as a function of 𝑛𝑛 for different values of the ‖𝐴𝐴‖𝐹𝐹 ranging from
2 to 20, with also a logarithmic scale on the y-axis. Roughly deduce the number
of terms to keep so that the bound is lower than the machine precision of 10−15
if ‖𝐴𝐴‖𝐹𝐹 = 20. Compare the theoretical bound with what was observed in the
previous question.
A basic idea to improve the convergence of the serieswhen the normof thematrix
is large is to perform a rescaling using the relation:

exp𝐴𝐴 =
(
exp(𝐴𝐴∕𝑝𝑝)

)𝑝𝑝
,

for 𝑝𝑝 ≥ 1, a well-chosen integer such that ‖𝐴𝐴∕𝑝𝑝‖𝐹𝐹 is small, for example, less than
one.
g. Using the previous property, write a function matrix_power_opt(A,n=20)
based on this property.
h. Redo the same graph as at point e but with this new function and comment.

EXERCISE 6.4 GROUPS OF PERMUTATIONS

The goal is to study the groups of permutations by developing algorithms to char-
acterize them. A group of permutations 𝐺𝐺 𝐺 𝐺𝐺𝑛𝑛 is defined as being generated by
a number of permutations: 𝐺𝐺 = ⟨𝑔𝑔1, 𝑔𝑔2,… , 𝑔𝑔𝑘𝑘⟩, with 𝑔𝑔𝑖𝑖 ∈ 𝐺𝐺𝑛𝑛 a permutation of the
set {1, 2,… , 𝑛𝑛}. A permutation:

𝑔𝑔 = (1 2 3 4
4 1 2 3) ,

can be represented in Python by the tuple g = (0, 4, 1, 2, 3). The zero is
added in order to conform with Python’s zero-based indexing and thus simplify
the implementations a bit. This simplymeans that vertex 0 goes on vertex 0. Note
that this exercise lends itself particularly well to an object-oriented implementa-
tion, and in this case the questions can be adapted accordingly.
a.Write a function product(g1,g2) that computes the product of two permuta-
tions.
b. Write a function inverse(g) that computes the inverse of a permutation.
c. Write a function that returns the decomposition of a permutation into cycles
represented by a list of tuples.
d.Write a function that returns the permutation corresponding to a list of cycles,
i.e., that does the inverse of the previous function.
e. ! In Python, a group 𝐺𝐺 = ⟨𝑔𝑔1, 𝑔𝑔2,… , 𝑔𝑔𝑘𝑘⟩ generated by a family of permutations
can be represented by a list of permutations G = [g1,g2,...,gk]. Write a func-
tion orbit(G,x) that returns the orbit of a point 𝑥𝑥 ∈ {1, 2,… , 𝑛𝑛}:

𝑂𝑂𝑥𝑥 = 𝐺𝐺𝑥𝑥 = {𝑔𝑔𝑥𝑥, 𝑔𝑔 ∈ 𝐺𝐺} .
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𝑂𝑂𝑥𝑥 = 𝐺𝐺𝑥𝑥 = {𝑔𝑔𝑥𝑥, 𝑔𝑔 ∈ 𝐺𝐺} .
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Hint: Do not compute the set of elements of the group, it makes a list much too long.
Construct the list (𝑋𝑋0, 𝑋𝑋1, 𝑋𝑋𝑁𝑁) of disjoint sets defined recursively by 𝑋𝑋0 = {𝑥𝑥} and
𝑋𝑋𝑛𝑛 as the set of new elements of the form 𝑔𝑔𝑖𝑖𝑦𝑦 with 1 ≤ 𝑖𝑖 ≤ 𝑘𝑘 and 𝑦𝑦 ∈ 𝑋𝑋𝑛𝑛−1:

𝑋𝑋𝑛𝑛 =
⎛
⎜
⎝

𝑘𝑘⋃

𝑖𝑖=1
𝑔𝑔𝑖𝑖𝑋𝑋𝑛𝑛−1

⎞
⎟
⎠
⧵
⎛
⎜
⎝

𝑛𝑛−1⋃

𝑖𝑖=1
𝑋𝑋𝑖𝑖
⎞
⎟
⎠
.

f. !! Define a function stabilizer(G,x) that returns the stabilizer of a point
𝑥𝑥 ∈ {1, 2,… , 𝑛𝑛}:

𝐺𝐺𝑥𝑥 = {𝑔𝑔 ∈ 𝐺𝐺 ∶ 𝑔𝑔𝑥𝑥 = 𝑥𝑥} ,

in the form of a set of generators.
Hint: Use Schreier’s lemma.
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SOLUTIONS

SOLUTION 6.1 LU DECOMPOSITION

a. Applying the previous formulas and taking care that the 1 on the diagonal of
𝐿𝐿must be forced:

import numpy as np
def LU(A):

# dimensions
n = A.shape[0]
# initialization of the matrices L and U
L = np.identity(n)
U = np.zeros((n,n))
# loop on i i
for i in range(n):

# calculate the i-th row of U
for j in range(i,n):

U[i,j] = A[i,j] - np.dot(L[i,:],U[:,j])
# stop if U_ii is too small
if abs(U[i,i]) < 1e-16:

raise Exception("Zero pivot")
# calculate the i-th column of L
for j in range(i+1,n):

L[j,i] = (A[j,i] - np.dot(L[j,:],U[:,i]))/U[i,i]
return (L,U)

We check that the product does what we want:

A = np.random.random((10,10))
L,U = LU(A)
np.linalg.norm(A - L @ U)

b. We first solve 𝐿𝐿𝒚𝒚 = 𝒃𝒃 by:

𝑦𝑦𝑖𝑖 = 𝑏𝑏𝑖𝑖 −
𝑖𝑖−1∑

𝑗𝑗=1
𝑙𝑙𝑖𝑖𝑗𝑗𝑦𝑦𝑗𝑗 ,

then 𝑈𝑈𝒙𝒙 = 𝒚𝒚 by:

𝑥𝑥𝑖𝑖 =
1
𝑢𝑢𝑖𝑖𝑖𝑖

⎛
⎜
⎝
𝑦𝑦𝑖𝑖 −

𝑛𝑛∑

𝑗𝑗=𝑖𝑖+1
𝑢𝑢𝑖𝑖𝑗𝑗𝑥𝑥𝑗𝑗

⎞
⎟
⎠
.

The implementation is as follows:
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⎜
⎝
𝑦𝑦𝑖𝑖 −

𝑛𝑛∑
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⎞
⎟
⎠
.

The implementation is as follows:
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def solve(L,U,b):
n = L.shape[0]
# solve Ly = b
y = np.zeros(n)
for i in range(n):

y[i] = b[i] - np.dot(L[i,:],y)
# solve Ux = y
x = np.zeros(n)
for i in reversed(range(n)):

x[i] = (y[i] - np.dot(U[i,:],x))/U[i,i]
return x

and it returns the right solution:

A = np.random.random((4,4))
b = np.random.random(4)
L,U = LU(A)
A @ solve(L,U,b) - b

c.The idea is exactly the same, but one just has to be careful to restrict the indices:

def LU_inplace(A):
# dimensions
n = A.shape[0]
for i in range(n):

# calculate the i-th row ofU
for j in range(i,n):

A[i,j] = A[i,j] - np.dot(A[i,0:i],A[0:i,j])
# stop if A_ii is too small
if abs(A[i,i]) < 1e-16:

raise Exception("Zero pivot")
# calculate the i-th column of L
for j in range(i+1,n):

A[j,i] = (A[j,i] -
np.dot(A[j,0:i],A[0:i,i]))/A[i,i]↪

return A

Note that since the matrix A is modified in place, it is not necessary for the previ-
ous function to return it. You have to be very careful that the matrix A is not the
original matrix anymore. We check that the upper and lower triangular parts are
identical to those calculated previously:

A = np.random.random((4,4))
L,U = LU(A)
A = LU_inplace(A)
A-L, A-U

To avoid creating new arrays for 𝒙𝒙 and𝒚𝒚, it is possible to do everything in 𝒃𝒃, given
a matrix 𝐴𝐴 returned by solve_inplace:
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def solve_inplace(A,b):
n = A.shape[0]
# solve Ly = b in place
for i in range(n):

b[i] = b[i] - np.dot(A[i,:i],b[:i])
# solve Ux = y in place
for i in reversed(range(n)):

b[i] = (b[i] - np.dot(A[i,i+1:],b[i+1:]))/A[i,i]
return b

To test:

A = np.random.random((4,4))
b = np.random.random(4)
# to check the correctness of the results, one keep the

values of A and b (which will be overwritten)↪

Akeep = A.copy()
bkeep = b.copy()
# solve in place and overwrite A and b
A = LU_inplace(A)
Akeep @ solve_inplace(A,b) - bkeep

d. Since 𝐿𝐿 is lower triangular with 1 on the diagonal:

det(𝐴𝐴) = det(𝐿𝐿) det(𝑈𝑈) = det(𝑈𝑈) =
𝑛𝑛∏

𝑖𝑖=1
𝑢𝑢𝑖𝑖𝑖𝑖 ,

and therefore using either the traditional method or the in placemethod:

def det(A):
L,U = LU(A)
return U.diagonal().prod()

def det_inplace(A):
LU_inplace(A)
return A.diagonal().prod()

SOLUTION 6.2 POWER ITERATION METHOD

a. It is sufficient to act k times with the matrix A and to normalize at each step by
the norm:

def power(A, x0, k):
# define a new vector initialized with x0
xk = x0.copy()
for _ in range(k):

# calculate the matrix product of A with xk
xk = np.dot(A, xk)
# calculate the norm
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norm = np.sqrt(np.dot(xk,xk))
# normalize the vector xk
xk /= norm

return xk

In order not to find a particular case for which the method would not converge,
the simplest way is to draw the vector 𝒙𝒙0 randomly:

x0 = np.random.random(2)
A = np.array([[0.5, 0.5], [0.2, 0.8]])
v1 = power(A, x0, 100)

which gives approximately the vector (0.70710678, 0.70710678).
b. The simplest way to calculate the eigenvalue associated with a given normal-
ized eigenvector is to take the scalar product:

lambda1 = np.dot(A @ v1,v1)
A @ v1 - lambda1⁎v1

c.The idea is to put everything together and stop the iterationswhen the required
precision is reached:

def maxeig(A, precision=1e-8, maxiter=1000, verbose=False):
# initialization with a random vector
x = np.random.random(A.shape[1])
# fix a maximal number of iterations in case the method

diverges↪

for i in range(maxiter):
# calculate the matrix product of A with x
Ax = np.dot(A, x)
# determine the associated eigenvalue
val = np.dot(Ax, x)
# determine the error
error = np.linalg.norm(Ax - val⁎x)
# exit the loop if enough iterations
if error < precision:

if verbose: print(f"Converged in {i} iterations")
break

# new iteration
norm = np.linalg.norm(Ax)
x = Ax/norm

# is not converged
if verbose and i == maxiter-1:

print(f"Not converged within {maxiter} iterations,
the error is {error}.")↪

return (val,x)
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d. The first step is to notice that:

𝒙𝒙𝑘𝑘 =
𝐴𝐴2𝒙𝒙𝑘𝑘−2
‖𝐴𝐴2𝒙𝒙𝑘𝑘−2‖

=⋯ = 𝐴𝐴𝑘𝑘𝒙𝒙0
‖𝐴𝐴𝑘𝑘𝒙𝒙0‖

.

Since𝐴𝐴 is diagonalizable, let (𝒗𝒗1,𝒗𝒗2,… ,𝒗𝒗𝑛𝑛) be a basis of eigenvectors of𝐴𝐴 associ-
ated to eigenvalues 𝜆𝜆1, 𝜆𝜆2,… , 𝜆𝜆𝑛𝑛. Without loss of generality, we assume that 𝜆𝜆1 is
the eigenvalue of largest modulus, i.e., |𝜆𝜆1| > max(|𝜆𝜆2|, |𝜆𝜆3|,… , |𝜆𝜆𝑛𝑛|). Note that
this implies that 𝜆𝜆1 is real. The vector 𝒙𝒙0 decomposes into the basis:

𝒙𝒙0 =
𝑛𝑛∑

𝑖𝑖=1
𝑐𝑐𝑖𝑖𝒗𝒗𝑖𝑖 ,

thus assuming that 𝑐𝑐1 ≠ 0:

𝐴𝐴𝑘𝑘𝒙𝒙0 =
𝑛𝑛∑

𝑖𝑖=1
𝑐𝑐𝑖𝑖𝜆𝜆𝑘𝑘𝑖𝑖 𝒗𝒗𝑖𝑖 = 𝑐𝑐1𝜆𝜆𝑘𝑘1 (𝒗𝒗1 +

𝑛𝑛∑

𝑖𝑖=2

𝑐𝑐𝑖𝑖
𝑐𝑐1
( 𝜆𝜆𝑖𝑖𝜆𝜆1

)
𝑘𝑘
𝒗𝒗𝑖𝑖) .

Since |𝜆𝜆1| > |𝜆𝜆𝑖𝑖| for 𝑖𝑖 ≥ 2, then:

lim
𝑘𝑘→∞

(
𝐴𝐴𝑘𝑘𝒙𝒙0
𝜆𝜆𝑘𝑘1

) = 𝑐𝑐1 lim𝑘𝑘→∞
(𝒗𝒗1 +

𝑛𝑛∑

𝑖𝑖=2

𝑐𝑐𝑖𝑖
𝑐𝑐1
( 𝜆𝜆𝑖𝑖𝜆𝜆1

)
𝑘𝑘
𝒗𝒗𝑖𝑖) = 𝑐𝑐1𝒗𝒗1 ,

since
||||||
𝜆𝜆𝑖𝑖
𝜆𝜆1

||||||
< 1. Therefore,

lim
𝑘𝑘→∞
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By choosing 𝒙𝒙0 randomly, then 𝑐𝑐1 ≠ 0 almost surely and therefore the sequence
(𝒙𝒙𝑘𝑘)𝑘𝑘∈ℕ converges up to a sign to a normalized eigenvector associated with the
largest modulus eigenvalue.
e.The function eig returns the tuple formed by the eigenvalues and eigenvectors:

A = np.array([[0.5, 0.5], [0.2, 0.8]])
eigenvalues, eigenvectors = np.linalg.eig(A)
eigenvectors[:,1] # retourne the second eigenvector

f. To determine the speed of the two methods:

%%timeit
n=10
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np.linalg.eig(A)

and:
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%%timeit
n=10
A = np.random.random((n,n))
maxeig(A)

The results are as follows:

𝑛𝑛 np.linalg.eig maxeig
10 225 µs ± 9.76 µs 811 µs ± 74.4 µs
100 22.1 ms ± 2.47 ms 750 µs ± 100 µs
1 000 2.01 s ± 254 ms 27.5 ms ± 2.38 ms

The NumPy algorithm is faster for small matrices, while it is the opposite for
large matrices. The reason is that our method computes only one eigenvector,
while NumPy computes them all. But for some applications, it is not useful to
determine all the eigenvalues and all the eigenvectors.

SOLUTION 6.3 EXPONENTIAL OF MATRICES

a. Just copy the values:

A1 = np.array([[1,0.8,0.6],[0.8,0.2,0.8],[0,1.2,0.9]])
A2 = np.array([[2,3,2],[1,2,3],[4,3,5.2]])

b. The idea is to define a matrix S that will hold the sum and a matrix Ak that
contains 𝐴𝐴𝑘𝑘

𝑘𝑘!
; thus, the factorial is included in the calculation:

def matrix_exp(A, n=20):
# for the cumulative sum
S = np.identity(A.shape[0])
# for the cumulative sum of A^k/k!
Ak = np.identity(A.shape[0])
# loop to perform the sum
for k in range(1,n+1):

Ak = np.dot(Ak,A)/k
S += Ak

return S

c. First of all one has to import the function expm from scipy.linalg:

from scipy.linalg import expm

This allows to compare the function matrix_exp with the function provided by
SciPy for the matrix 𝐴𝐴1:

matrix_exp(A1)-expm(A1)

and for the matrix 𝐴𝐴2:
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matrix_exp(A2)-expm(A2)

For the second matrix, the result is less precise.
d. It is a matter of copying the definition, without forgetting the square root:

def norm(A):
return np.sqrt(np.trace(A@A.T))

The Frobenius norms of the two matrices are:

(norm(A1), norm(A2))

e. It is a matter of varying the n parameter to obtain Figure 6.1:

import matplotlib.pyplot as plt
plt.figure(figsize=(8,5))
plt.title("Error between matrix_exp and expm as function of

the truncation order")↪

plt.xlabel("Truncation order $n$")
plt.ylabel("Empirical error in Frobenius norm")
for i,A in enumerate([A1,A2]):

error = [norm(matrix_exp(A,n=n)-expm(A)) for n in
range(1,51)]↪

plt.semilogy(range(1,51), error, label=f"$A_{i+1}$")
plt.legend()

f. The aim is to plot the indicated bound as a function of 𝑛𝑛 for different values of
the Frobenius norm of 𝐴𝐴:

plt.figure(figsize=(8,5))
plt.title("Theoretical bound as a function of the truncation

order")↪

plt.xlabel("Truncation order $n$")
plt.ylabel("Theoretical error in Frobenius norm")
for a in np.linspace(2,20,10):

val = [np.exp(a)⁎a⁎⁎(n+1)/np.math.factorial(n+1) for n in
range(101)]↪

plt.semilogy(range(101), val, label=f"$\Vert
A\Vert_F={a}$")↪

plt.ylim([1e-15,1])
plt.legend()

The conclusion of Figure 6.2 is that we have to keep more and more terms in the
series when the norm of the matrix 𝐴𝐴 increases. When ‖𝐴𝐴‖𝐹𝐹 = 20, it takes about
a hundred terms. The theoretical bound is comparable to what has been observed
previously, we need about 20 terms for 𝐴𝐴1 whose norm is about 2 and about 50
for 𝐴𝐴2 whose norm is close to 9.
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Figure 6.1 Plot in logarithmic scale of the error between our implementation of
matrix exponential and the one of SciPy.

Figure 6.2 Representation of the theoretical bound on the error for matrices of
various norms.
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g.Thefirst step is to compute𝑝𝑝, then the exponential of𝐴𝐴∕𝑝𝑝 as before, andfinally
the 𝑝𝑝-th power:

def matrix_exp_opt(A, n=20):
# rescaling parameter
p = max(1,int(norm(A)))
# rescaled matrix
Ap = A/p
# for the cumulative sum
S = np.identity(A.shape[0])
# for the cumulative sum of A^k/k!
Ak = np.identity(A.shape[0])
# loop to perform the sum
for k in range(1,n+1):

Ak = np.dot(Ak,Ap)/k
S += Ak

# loop to scale back
out = np.identity(A.shape[0])
for _ in range(p):

out = np.dot(out,S)
return out

h) The same code as before:

plt.figure(figsize=(8,5))
plt.title("Error between matrix_exp and expm as function of

the truncation order")↪

plt.xlabel("Truncation order $n$")
plt.ylabel("Empirical error in Frobenius norm")
for i,A in enumerate([A1,A2]):

error = [norm(matrix_exp_opt(A,n=n)-expm(A)) for n in
range(1,51)]↪

plt.semilogy(range(1,51), error, label=f"$A_{i+1}$")
plt.legend()

allows to observe in Figure 6.3 that now the convergence takes place with only
20 terms independently of the norm of the matrix.
Note that in order to have a powerful algorithm, the second step of the𝑝𝑝-th power
calculation can be optimized by grouping the terms. This is particularly easy to
implement if 𝑝𝑝 = 2𝑠𝑠 with 𝑠𝑠 integer.
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Figure 6.3 Difference between our optimized algorithm and SciPy. Our algo-
rithmnow seems toworkwith only 20 terms regardless of the norm of thematrix.

SOLUTION 6.4 GROUPS OF PERMUTATIONS

a. This takes the composition of two permutations:

def product(g1,g2):
return tuple(g1[g2i] for g2i in g2)

and to test:

g1 = (0, 5, 4, 3, 2, 1)
g2 = (0, 2, 4, 1, 3, 5)
product(g1,g2)
product(g2,g1)

b. One way to do this is to take the indexes:

def inverse(g):
n = len(g)
return tuple(g.index(i) for i in range(n))

which verifies the definition of the inverse:

product(inverse(g1),g1)
product(g1,inverse(g1))



90 ■ Python Programming for Mathematics

c. The idea is to create a list with the elements that do not yet belong to a cycle:

def to_cycle(g):
n = len(g)
# list of vertices not belonging to a cycle yet
lst = list(range(n))
# list of cycles
out = []
# classify
while lst:

# start a new cycle
i = lst.pop()
cycle = (i,)
new = g[i]
# end the cycle
while new != i:

# add to cycle
cycle = cycle + (new,)
# remove new from the list
if new in lst: lst.remove(new)
# for the next iteration
new = g[new]

# add the cycle to the list of cycles
out.append(cycle)

return out

To test:

to_cycle(g1)
to_cycle(g2)

d. The permutation is first built as a list in order to be mutable:

def to_perm(cycles):
# dimension
n = 0
for c in cycles:

n = max(n,max(c)+1)
# permutation as list otherwise not mutable
out = list(range(n))
for c in cycles:

for i in range(len(c)):
out[c[i-1]] = c[i]

# convert to tuple
return tuple(out)

To test:

to_perm(to_cycle(g1)) == g1
to_perm(to_cycle(g2)) == g2
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e. The idea is to generate at each iteration the elements 𝑔𝑔𝑖𝑖𝑦𝑦 for any 1 ≤ 𝑖𝑖 ≤ 𝑘𝑘 and
𝑦𝑦 in the list of elements generated in the previous step:

def orbit(G,x):
# to store the final orbit
out = {x}
# to store the new elements obtained by the action of the

generators↪

Xn = {x}
# loop while new elements are found
while Xn:

# set of new elements found at this iteration
new = set()
# loop on the generators and elements found at the

previous iteration↪

for g in G:
for i in Xn:

gi = g[i]
# if not already in the orbit
if gi not in out:

new.add(gi)
# new found elements for the next iteration
Xn = new
# add to the final orbit
out = out.union(Xn)

return out

To test:

g1 = to_perm([(1, 28, 5, 3, 13, 25, 27, 8, 4, 17, 11, 29, 7,
2, 21, 23, 10, 6), (9, 16, 22, 30, 18, 15, 20, 19, 14)])↪

g2 = to_perm([(1, 4), (2, 5, 3),(30,)])
G = {g1,g2}
orbit(G,1)

f. In the previous algorithm, the elements 𝑔𝑔𝑖𝑖𝑦𝑦 with 1 ≤ 𝑖𝑖 ≤ 𝑘𝑘 and 𝑦𝑦 ∈ 𝑋𝑋𝑛𝑛−1 that
already belong to one of the previous sets 𝑋𝑋𝑖𝑖 are clearly related to the existence
of an element in the stabilizer. More precisely if:

𝑧𝑧 ∈
⎛
⎜
⎝

𝑘𝑘⋃

𝑖𝑖=1
𝑔𝑔𝑖𝑖𝑋𝑋𝑛𝑛−1

⎞
⎟
⎠
∩
⎛
⎜
⎝

𝑛𝑛−1⋃

𝑖𝑖=1
𝑋𝑋𝑖𝑖
⎞
⎟
⎠
,

then there exist 𝐼𝐼 = (𝑖𝑖1, 𝑖𝑖2,… , 𝑖𝑖𝑛𝑛) and 𝐽𝐽 = (𝑗𝑗1, 𝑗𝑗2,… , 𝑗𝑗𝑙𝑙) for some 𝑙𝑙 ≤ 𝑛𝑛 − 1 such
that:

𝑧𝑧 = 𝑔𝑔𝐼𝐼𝑥𝑥 , 𝑧𝑧 = 𝑔𝑔𝐽𝐽𝑥𝑥 ,

where

𝑔𝑔𝐼𝐼 =
∏

𝑖𝑖∈𝐼𝐼
𝑔𝑔𝑖𝑖 , 𝑔𝑔𝐽𝐽 =

∏

𝑖𝑖∈𝐽𝐽
𝑔𝑔𝑖𝑖 ,
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therefore:
(𝑔𝑔𝐽𝐽)−1𝑔𝑔𝐼𝐼𝑥𝑥 = 𝑥𝑥 𝑥

and thus (𝑔𝑔𝐽𝐽)−1𝑔𝑔𝐼𝐼 ∈ 𝐺𝐺𝑥𝑥. Schreier’s lemma shows that 𝐺𝐺𝑥𝑥 is generated by the set
of elements obtained by the previous procedure. To implement this, we need to
keep in memory for each element of 𝑋𝑋𝑛𝑛 a permutation allowing to reach this
element by acting on 𝑥𝑥. This is done by using a dictionary:

def stabilizer(G,x):
# dimension of the underlying group Sym(n)
n=0
for g in G:

n = max(n,len(g))
# identity
identity = tuple(range(n))
# dictionary of the form gx:g
orb = {x:identity}
# stabilizer
stab = set()
# new elements obtained by the action of the generators
Xn = {x:identity}
# loop while new elements are found
while Xn:

# new elements to be found in this iteration
new = dict()
# loop on the generators and elements found at the

previous iteration↪

for y in Xn:
for i,g in enumerate(G):

gy = g[y]
# if already in the orbit
if gy in orb.keys():

# new stabilizer
newstab = product(inverse(orb[gy]),

product(g,orb[y]))↪

stab.add(newstab)
else:

# add the element not already in the
orbit↪

new[gy] = product(g,orb[y])
# new found elements for the next iteration
Xn = new
# add to the final orbit
orb.update(Xn)

return stab

To test:

for g in stabilizer(G,1):
assert g[1] == 1
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C H A P T E R 7

Graph Theory

A graph is a pair 𝐺𝐺 = (𝑋𝑋𝑋 𝑋𝑋) consisting of a finite non-empty set 𝑋𝑋, and a set
𝑋𝑋 of pairs of elements of 𝑋𝑋. The elements of 𝑋𝑋 are the vertices of the graph 𝐺𝐺,
those of 𝑋𝑋 are the edges of the graph 𝐺𝐺. A graph is oriented if the edges have a
direction, i.e., if the pairs of elements of 𝑋𝑋 are ordered lists such that (𝑖𝑖𝑋 𝑖𝑖) ∈ 𝑋𝑋
is not equivalent to (𝑖𝑖𝑋 𝑖𝑖) ∈ 𝑋𝑋. Here only undirected graphs, i.e., whose pairs of
elements of 𝑋𝑋 are unordered sets ((𝑖𝑖𝑋 𝑖𝑖) ∈ 𝑋𝑋), are considered.

For example, the complete graph with 𝑛𝑛 vertices 𝐾𝐾𝑛𝑛 is defined as the
graph of vertices 𝑋𝑋 = {1𝑋 2𝑋… 𝑋 𝑛𝑛} and of edges being the two-element of the
power set of 𝑋𝑋. In particular, 𝐾𝐾4 = (𝑋𝑋𝑋 𝑋𝑋), where 𝑋𝑋 = {1𝑋 2𝑋 3𝑋 4} and 𝑋𝑋 ={
{1𝑋 2}𝑋 {1𝑋 3}𝑋 {1𝑋 4}𝑋 {2𝑋 3}𝑋 {2𝑋 4}𝑋 {3𝑋 4}

}
.

Concepts covered

∙ undirected graphs

∙ graphs as dictionaries

∙ use of frozensets

∙ adjacency matrix

∙ search for paths and triangles

∙ recursive function
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EXERCISES

EXERCISE 7.1 GRAPHS AS DICTIONARIES

One way to represent a graph 𝐺𝐺 is with a dictionary whose keys are the vertices
and the value associated to each key 𝑥𝑥 ∈ 𝑋𝑋 is a set containing the neighbors of 𝑥𝑥.
a. Construct the following graphs in dictionary form:

b.Write a function complete(n) that constructs the complete graph𝐾𝐾𝑛𝑛 as a dic-
tionary.
c. A graph given as a dictionary contains the information several times. Write a
function correct(graph) to add the missing elements of an improperly defined
graph so that for any vertex x, if y belongs to graph[x], then y is also a key and x
belongs to graph[y]. Test this function, in particular, on the improperly defined
graph {1:{3,4,2},3:{2}}.
d. Write a function that returns the set (type set) of all edges of a graph repre-
sented by a dictionary.
Hint: Sets are mutable and therefore not hashable.
e. ! Write a function to determine whether two vertices are connected by a path
or not and return the path if yes.
Hint: Use a recursive function.
f. ! Write a function that returns all paths between two vertices (without cycles).

EXERCISE 7.2 TRIANGLES IN A GRAPH

A triangle in a graph is a set of three vertices connected by three edges. Finding
and analyzing triangles in a graph is important for understanding its structure.
a. Determine mathematically the number of subsets of cardinal three that a set
of vertices 𝑋𝑋 has. Is it reasonable to iterate over these elements?
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b. Write a function that returns the set of all triangles in a graph.

To each graph 𝐺𝐺 = (𝑋𝑋𝑋 𝑋𝑋) corresponds a unique symmetric matrix𝐴𝐴 of size 𝑛𝑛×𝑛𝑛
with 𝑛𝑛 = |𝑋𝑋| defined by:

𝐴𝐴𝑖𝑖𝑖𝑖 = {1 𝑋 if {𝑖𝑖𝑋 𝑖𝑖} ∈ 𝑋𝑋 𝑋
0 𝑋 if {𝑖𝑖𝑋 𝑖𝑖} ∉ 𝑋𝑋 𝐸

This matrix is called the adjacency matrix of graph 𝐺𝐺.
c. Define a function that returns the adjacency matrix of a graph.
Hint: Be careful that the vertices are not necessarily indexed by integers between 0
and 𝑛𝑛 in the dictionary.
d. Define a function having as argument an adjacency matrix and returning the
corresponding graph as a dictionary.
e. Using the adjacency matrix 𝐴𝐴 and the matrix 𝐵𝐵 = 𝐴𝐴2, write a function return-
ing the set of triangles of a graph.
f. Using the adjacency matrix 𝐴𝐴, write a function computing the number of tri-
angles.
Hint: Interpret the entries of the matrix 𝐴𝐴𝑛𝑛.

EXERCISE 7.3 MODULE NETWORKX (!!)

Many graph theory algorithms are implemented in the NetworkX module, see
the documentation at the address: https://networkx.org/documentation/.
a. Follow the NetworkX tutorial available at the address: https://networkx.org
/documentation/stable/tutorial.html.
b. Analyze one of the downloadable graphs at: https://github.com/gephi/gep
hi/wiki/Datasets or https://snap.stanford.edu/data/.

https://networkx.org/documentation
https://networkx.org/documentation/stable/tutorial.html
https://github.com/gephi/gephi/wiki/Datasets
https://networkx.org/documentation/stable/tutorial.html
https://github.com/gephi/gephi/wiki/Datasets
https://snap.stanford.edu/data
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SOLUTIONS

SOLUTION 7.1 GRAPHS AS DICTIONARIES

a. It is possible to define these graphs by hand or to use their structure to build
them:

Ga = {1: {2,5}, 2:{1,3,5}, 3:{2,4}, 4:{3,5,6}, 5:{1,2,4},
6:{4}}↪

Gb = {i: {(a+i) % 5 for a in {1,2,3,4}} for i in range(5)}
Gc = {}
# external vertices
Gc1 = {i: {(a+i) % 5 for a in {1,4}}.union({i+5}) for i in

range(5)}↪

Gc.update(Gc1)
# internal vertices
Gc2 = {i: {5 + (a+i) % 5 for a in {2,3}}.union({i-5}) for i

in range(5,10)}↪

Gc.update(Gc2)

b. We build the set of all vertices, then we remove the current vertex:

def complet(n):
all = set(range(0,n))
return {i: all-{i} for i in range(n)}

c. The graph given as input must be copied to be able to modify it inside a loop:

def correct(graph):
# output graph
out = graph.copy()
# loops on all edges
for s in graph:

for a in graph[s]:
# if the corresponding key does not exist
if a not in out:

# add the key and corresponding value
out[a] = {s}

# if the corresponding key exists
else:

# add the value
out[a].add(s)

return out

To test:

correct({1:{3,4,2},3:{2}})
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d. Since sets are mutable, a set cannot contain another set. For this, one has to
use tuples (but then being careful about the order) or immutable sets frozenset:

def aretes(graph):
# set of edges
out = set()
# loops on all edges
for s in graph:

for a in graph[s]:
out.add(frozenset((s,a)))

return out

e. The idea is to add the optional variable path to the recursive function in order
to keep inmemory the first part of the path already explored during the recursive
calls:

def find_path(graph, start, end, path=[]):
# add to path without modifying the argument
path = path + [start]
# exit is path terminated
if start == end:

return path
# exit is start is isolated
if start not in graph:

return None
# loop on the adjacent vertices not already in the path
for node in graph[start]:

if node not in path:
# search for a new path from here
newpath = find_path(graph, node, end, path)
# exit if the new path is OK
if newpath: return newpath

return None

For example:

find_path(Ga,1,6)
find_path(Gc,0,7)

Remark: If we replace the third line path = path + [start] with path
+= [start] or with path.append(start), the code doesn’t work because it
changes the function argument itself. For example, test the function:

def append_to(element, to=[]):
to.append(element)
return to

by executing:
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print(append_to(1))
print(append_to(2))
print(append_to(2,[]))

The conclusion is to never modify a mutable optional parameter (unless you do
it on purpose to make a cache, for example). The previous function should have
been written:

def append_to(element, to=None):
if to is None:

to = []
to.append(element)
return to

f. The idea is almost identical to that of the previous function:

def find_paths(graph, start, end, path=[]):
# exit is path terminated
if start == end:

return [path+[start]]
# exit is start is isolated
if start not in graph:

return []
# list of paths
paths = []
# loop on the adjacent vertices not already in the path
for node in graph[start]:

if node not in path and node!=start:
# search for a new path from here
newpaths = find_paths(graph, node, end,

path+[start])↪

paths += newpaths
return paths

For example:

find_paths(Ga,1,6)
find_paths(Gc,0,7)

SOLUTION 7.2 TRIANGLES IN A GRAPH

a. In order not to count each set of three elements twice, we have to classify them.
Thus, the set of subsets of cardinal three of 𝑋𝑋 = {1, 2,… , 𝑛𝑛} is:

{
(𝑖𝑖, 𝑖𝑖, 𝑖𝑖) ∶ 1 ≤ 𝑖𝑖 𝑖 𝑖𝑖 𝑖 𝑖𝑖 ≤ 𝑛𝑛} ,
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and its cardinal is:
𝑛𝑛∑

𝑖𝑖=1

𝑛𝑛∑

𝑗𝑗=𝑖𝑖+1

𝑛𝑛∑

𝑘𝑘=𝑗𝑗+1
1 =

𝑛𝑛∑

𝑖𝑖=1

𝑛𝑛∑

𝑗𝑗=𝑖𝑖+1
(𝑛𝑛 − 𝑗𝑗) =

𝑛𝑛∑

𝑖𝑖=1

(𝑛𝑛 − 𝑖𝑖)(𝑛𝑛 − 𝑖𝑖 − 1)
2 = 𝑛𝑛(𝑛𝑛 − 1)(𝑛𝑛 − 2)

6 .

It is also possible to see this cardinal geometrically as the sixth of a cube by paying
attention to the equal elements. This is also the binomial coefficient:

(𝑛𝑛
3
)
= 𝑛𝑛!
(𝑛𝑛 − 3)! 3!

= 𝑛𝑛(𝑛𝑛 − 1)(𝑛𝑛 − 2)
6 .

Even for a medium size graph, this number of possible triangles is quite large,
thus a better approach as to be used.
b. For each edge {𝑖𝑖𝑖 𝑗𝑗}, we test the set of edges {𝑖𝑖𝑖 𝑘𝑘}, starting from 𝑖𝑖 and see if {𝑗𝑗𝑖 𝑘𝑘}
is an edge:

def triangles(graph):
# set of triangles
out = set()
# loop on the edges
for i in graph:

for j in graph[i]:
# loop on the flower of i
for k in graph[i]:

# if this is a triangle
if k in graph[j]:

out.add(frozenset((i,j,k)))
return out

To test:

triangles(Ga), triangles(Gb), triangles(Gc)

c. In order to make sure that even graphs with non-integer keys can be pro-
cessed, we define a dictionary of correspondence between the vertices and the
set {0𝑖 1𝑖… 𝑖 𝑛𝑛 − 1}:

import numpy as np
def adjacency(graph):

# dimension of the graph
n = len(graph)
# adjacency matrix
A = np.zeros((n,n), dtype=int)
# define the correspondence dictionary vertex -> index

between 0 and n↪

dico = {i: idx for idx,i in enumerate(graph)}
for i in graph:

for j in graph[i]:
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A[dico[i],dico[j]] = 1
return A

To test:

adjacency(Ga), adjacency(Gb), adjacency(Gc)

d. A very simple way is to use dictionary comprehension:

def graph(A): # A is supposed to be a square matrix
n = len(A)
return {i: {j for j in range(n) if A[i][j]==1} for i in

range(n)}↪

Another way is to use the where function of NumPy which allows to return the
indices (in tuple of length 1) of the entries with a 1:

def graph(A):
graph = dict()
for i,line in enumerate(A):

# indices with 1 one this row
indices, = np.where(line)
# add the key and corresponding indices as value
graph[i] = set(indices)

return graph

To test:

graph(adjacency(Ga)) == Ga, \
graph(adjacency(Gb)) == Gb, \
graph(adjacency(Gc)) == Gc

Note that graphe(adjacence(Ga)) is not equal to Ga because the numbering
starts once at 0 and once at 1.
e. An edge {𝑖𝑖𝑖 𝑖𝑖} is a member of a triangle if and only if 𝐴𝐴𝑖𝑖𝑖𝑖 ≠ 0 and 𝐵𝐵𝑖𝑖𝑖𝑖 ≠ 0.
Indeed,

𝐵𝐵𝑖𝑖𝑖𝑖 =
𝑛𝑛∑

𝑘𝑘=1
𝐴𝐴𝑖𝑖𝑘𝑘𝐴𝐴𝑘𝑘𝑖𝑖 𝑖

and therefore if 𝐵𝐵𝑖𝑖𝑖𝑖 ≠ 0, then there exists at least one 𝑘𝑘 such that 𝐴𝐴𝑖𝑖𝑘𝑘𝐴𝐴𝑘𝑘𝑖𝑖 = 1 so
{𝑖𝑖𝑖 𝑖𝑖𝑖 𝑘𝑘} is a triangle. Thus:

def triangles2(A):
# set of triangles
out = set()
# matrix product
B = A @ A
# matrix defined by True if A_ij \neq 0 and B_ij \neq 0
cond = (A !=0) & (B !=0)
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# indices of edges from which a triangle exists
lst_i,lst_j = np.where(cond)
for i,j in zip(lst_i,lst_j):

# indices k such that A_ik=1 and A_jk=1
indices, = np.where( (A[i]==1) & (A[j]==1) )
# al these indices are triangles
for k in indices:

out.add(frozenset((i,j,k)))
return out

To test with a random matrix:

# random matrix of 0 and 1
A = np.random.binomial(1,0.5,(100,100))
# symmetrize the matrix
A = A & A.T
# test
triangles2(A) == triangles(graph(A))

f. The number of distinct paths of length 𝑛𝑛 between 𝑖𝑖 and 𝑗𝑗 is given by 𝐶𝐶𝑖𝑖𝑗𝑗 where
𝐶𝐶 = 𝐴𝐴𝑛𝑛. Thus, the trace of 𝐴𝐴3 represents the number of triangles present in the
graph with their multiplicity. Since the triangles can start with one of three dif-
ferent vertices and in two different directions, the number of distinct triangles is
tr(𝐴𝐴3)
6

:

def nb_triangles(A):
# calculate A^3 in the matrix sense
B = np.linalg.matrix_power(A,3)
return np.trace(B)//6

To test:

nb_triangles(adjacency(Ga)), nb_triangles(adjacency(Gb)),
nb_triangles(adjacency(Gc))↪

SOLUTION 7.3 MODULE NETWORKX (!!)

b.We choose to analyze a graph representing the emails exchanged within a uni-
versity over a given period of time, as described at: https://snap.stanford.ed
u/data/email-EuAll.html. For a given email, the nodes are the email addresses.
An edge is created between two nodes 𝑖𝑖 and 𝑗𝑗 if 𝑖𝑖 has sent at least one email to 𝑗𝑗.
Here, the graph is considered as undirected.
The first thing is to load the NetworkX module (version 2) and Matplotlib:

import networkx as nx
import matplotlib.pyplot as plt

https://snap.stanford.edu/data/email-EuAll.html
https://snap.stanford.edu/data/email-EuAll.html
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Then, we download the graph and open it with NetworkX. The read_edgelist
function allows to define a graph from the list of edges:

import urllib.request, gzip, io
# url to download
url = "https://snap.stanford.edu/data/email-EuAll.txt.gz"
# download the gz file
file = urllib.request.urlopen(url)
# extract the compressed gz
dat = gzip.GzipFile(fileobj=io.BytesIO(file.read()))
# import the list of edges
g = nx.read_edgelist(dat)

Once the graph is defined, we can, for example, determine the number of nodes:

g.number_of_nodes()

or its density:

nx.density(g)

To get an idea of how the graph looks, we plot the degree distribution of the nodes
as in Figure 7.1:

degree = dict(g.degree())
degree = sorted(degree.values(), reverse=True)
plt.figure(figsize=(8,5))
plt.title("Degree distribution")
plt.xlabel("Rank")
plt.ylabel("Degree")
plt.loglog(degree)

To find out the number of related components:

nx.number_connected_components(g)

To have more reasonable sizes of graphs, we choose the related components that
have between 50 and 100 elements:

subgraphs = []
for s in nx.connected_components(g):

if 50 <= len(s) <= 100:
h = nx.convert_node_labels_to_integers(g.subgraph(s))
subgraphs.append(h)

and represent them graphically as in Figure 7.2:

fig = plt.figure(figsize=(12,5))
fig.suptitle(r'Connected components with 50 to 100 elements')
for i,s in enumerate(subgraphs):



102 ■ Python Programming for Mathematics

Then, we download the graph and open it with NetworkX. The read_edgelist
function allows to define a graph from the list of edges:

import urllib.request, gzip, io
# url to download
url = "https://snap.stanford.edu/data/email-EuAll.txt.gz"
# download the gz file
file = urllib.request.urlopen(url)
# extract the compressed gz
dat = gzip.GzipFile(fileobj=io.BytesIO(file.read()))
# import the list of edges
g = nx.read_edgelist(dat)

Once the graph is defined, we can, for example, determine the number of nodes:

g.number_of_nodes()

or its density:

nx.density(g)

To get an idea of how the graph looks, we plot the degree distribution of the nodes
as in Figure 7.1:

degree = dict(g.degree())
degree = sorted(degree.values(), reverse=True)
plt.figure(figsize=(8,5))
plt.title("Degree distribution")
plt.xlabel("Rank")
plt.ylabel("Degree")
plt.loglog(degree)

To find out the number of related components:

nx.number_connected_components(g)

To have more reasonable sizes of graphs, we choose the related components that
have between 50 and 100 elements:

subgraphs = []
for s in nx.connected_components(g):

if 50 <= len(s) <= 100:
h = nx.convert_node_labels_to_integers(g.subgraph(s))
subgraphs.append(h)

and represent them graphically as in Figure 7.2:

fig = plt.figure(figsize=(12,5))
fig.suptitle(r'Connected components with 50 to 100 elements')
for i,s in enumerate(subgraphs):
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sub = fig.add_subplot(1,2,i+1)
nx.draw(s, with_labels=True)

To determine the diameter of the second:

nx.diameter(subgraphs[1])

It is possible to detect the communities as represented in Figure 7.3:

from networkx.algorithms import community
fig = plt.figure(figsize=(12,5))
fig.suptitle(r'Communities detection')
for i,s in enumerate(subgraphs):

partition = community.greedy_modularity_communities(s)
color = [0]⁎s.number_of_nodes()
for c,p in enumerate(partition):

for j in p:
color[j] = c

sub = fig.add_subplot(1,2,i+1)
nx.draw(s, node_color=color, with_labels=True)

We can also calculate the PageRank of each node as shown in Figure 7.4:

fig = plt.figure(figsize=(12,5))
fig.suptitle(r'PageRank')
for i,s in enumerate(subgraphs):

pk = nx.pagerank(s)
sub = fig.add_subplot(1,2,i+1)
nx.draw(s, node_color=list(pk.values()),

with_labels=True)↪

Finally, we select the subgraph whose nodes have a degree between 50 and 100:

h = g.subgraph([x for x in g.nodes() if 50 <= g.degree(x)
<=100])↪

len(h),nx.number_connected_components(h)

and the main related component is selected:

hc = h.subgraph(max(nx.connected_components(h), key=len))
nx.draw(hc)
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Figure 7.1 Distribution of the degrees of the nodes in the graph.

Figure 7.2 Graphical representation of the two connected components with be-
tween 50 and 100 nodes in the graph.
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Figure 7.2 Graphical representation of the two connected components with be-
tween 50 and 100 nodes in the graph.
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Figure 7.3 Representation of the communities composing the two sub-graphs.

Figure 7.4 Determine the PageRank of each node for the two subgraphs.



C H A P T E R 8

Symbolic Calculation

As a general purpose language, Python does not include by default some mathe-
matical concepts. An example already seen concerns vectors and numerical ma-
trices which are implemented in the NumPy module. The goal here is to intro-
duce the SymPy module which allows to do symbolic calculation.

For example, the number
√
8 is represented by default in Python as afloat. The

advantage of SymPy is that
√
8 is kept as a root and even automatically simplified:

import sympy as sp
sp.init_printing()
sp.sqrt(8)

Note that the second instruction is not necessary, but allows to present the results
in a more elegant way in Jupyter Lab. SymPy documentation is available at the
address: https://docs.sympy.org/.

Concepts covered

∙ symbols and symbolic expressions

∙ simplification

∙ infinitesimal analysis (limit, derivation, integration, series)

∙ computer-assisted proof

∙ pathological function

∙ Green’s function

∙ spherical coordinates

106 DOI: 10.1201/9781003565451-8

https://docs.sympy.org
https://doi.org/10.1201/9781003565451-8
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EXERCISES

EXERCISE 8.1 INTRODUCTION TO SYMPY

Before you can use symbolic variables, you have to declare them as symbols:

x = sp.Symbol("x") # define the symbol x
y = sp.Symbol("y", real=True) # define a real varaible y
e = sp.Symbol(r"\varepsilon", real=True, positive=True) #

define a positive variable↪

Then, it is possible to perform operations between symbols:

x + 2⁎y + e/4 + x⁎⁎2 + 3⁎x + 2⁎y

Most of themathematical functions are implemented symbolically in SymPy and
it is also possible to simplify them:

expr = sp.cos(x)⁎⁎2 + sp.sin(x)⁎⁎2 + (y⁎⁎3 + y⁎⁎2 - y -
1)/(y⁎⁎2 + 2⁎y + 1) + sp.exp(-e)↪

sp.simplify(expr)

Finally, it is possible to make substitutions:

expr.subs(x,y) # substitute x by y
expr.subs({y:x, e:y}) # substitute y by x and e by y

then, for example, simplify the expression and plot its graph as a function of x as
in Figure 8.1:

f = sp.simplify(expr.subs({y:x, e:y}))
sp.plot(f,(x,-2,6), title=f"Plot of ${sp.latex(f)}$")

a.Read the documentation for the solve function and use it to calculate the roots
of a general polynomial of degree two, then of degree three.
Hint: The documentation on solving algebraic equations is available at the ad-
dress: https://docs.sympy.org/latest/modules/solvers/solvers.html#alg
ebraic-equations.
b.Read the documentation for the functions evalf and N to evaluate numerically
the expression 𝜋𝜋2

4
.

Hint: The documentation on the numerical evaluation is available at the address:
https://docs.sympy.org/latest/modules/evalf.html.
c. Read the documentation for the Rational function and numerically evaluate
the rational number 43609

999
to 50 decimal places.

https://docs.sympy.org/latest/modules/solvers/solvers.html#algebraic-equations
https://docs.sympy.org/latest/modules/evalf.html
https://docs.sympy.org/latest/modules/solvers/solvers.html#algebraic-equations
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Figure 8.1 Plot of a SymPy function.

d. Determine the real and imaginary part of the expression:

(1 + 𝑖𝑖
√
3

1 + 𝑖𝑖
)20

.

Hint: See the documentation at the address: https://docs.sympy.org/latest/
modules/functions/elementary.html.
e. Read the documentation for the function diff and calculate the derivative of
𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥

𝑥𝑥
with respect to 𝑥𝑥.

Hint: The documentation on derivatives is available at the address: https://docs
.sympy.org/latest/tutorial/calculus.html#derivatives.
f. Read the documentation of the functionintegrate and calculate the following
integrals:

𝐼𝐼1 =∫𝑥𝑥5 sin(𝑥𝑥) d𝑥𝑥 𝑥 𝐼𝐼2 =∫
∞

0
sin(𝑥𝑥2) d𝑥𝑥 .

g. Calculate with SymPy the following limits:

𝐿𝐿1 = lim
𝑥𝑥→0

sin(𝑥𝑥)
𝑥𝑥 𝑥 𝐿𝐿2 = lim

𝑥𝑥→0
sin

( 1
𝑥𝑥
)
𝑥 𝐿𝐿3 = lim

𝑥𝑥→∞

5𝑥𝑥2 + 3𝑥𝑥 + 2𝑦𝑦
𝑦𝑦(𝑥𝑥 − 4)(𝑥𝑥 − 𝑦𝑦)

.

h.Compute the series expansion of tan(𝑥𝑥) at 𝑥𝑥 = 0 to order 10 and the asymptotic
expansion of

(
1 + 1

𝑛𝑛

)𝑛𝑛
for 𝑛𝑛 →∞ to order 5.

i. Determine the eigenvalues of the matrix:

⎛
⎜
⎝

1 𝑎𝑎 0
𝑎𝑎 2 𝑎𝑎
0 𝑎𝑎 3

⎞
⎟
⎠
.

https://docs.sympy.org/latest/tutorial/calculus.html#derivatives
https://docs.sympy.org/latest/modules/functions/elementary.html
https://docs.sympy.org/latest/modules/functions/elementary.html
https://docs.sympy.org/latest/tutorial/calculus.html#derivatives
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⎠
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Hint: The documentation on symbolic matrices is available at the address: https:
//docs.sympy.org/latest/tutorial/matrices.html.

EXERCISE 8.2 APPLICATIONS

The goal is to use SymPy to solve symbolically different mathematical problems
by calculating the least possible things by hand.
a. Determine the number of zeros in the integer 123!.
b. Determine the ratio between the height and radius of a cylinder so as to mini-
mize its area at a fixed volume.
c. For 𝑥𝑥𝑥 𝑥𝑥 ∈ ℝ such that 𝑥𝑥𝑥𝑥 𝑥 1, show that

arctan(𝑥𝑥) + arctan(𝑥𝑥) = arctan ( 𝑥𝑥 + 𝑥𝑥
1 − 𝑥𝑥𝑥𝑥 ) .

Hint: Derive the equation with respect to 𝑥𝑥 and justify.
d. Prove the following formula due to Gauss:

𝜋𝜋
4 = 12 arctan ( 138) + 20 arctan ( 157) + 7 arctan ( 1

239) + 24 arctan ( 1
268) .

It is imperative to use SymPy, the original demonstration of Gauss being 25 pages
long, see pages 477 to 502 of the second volume of his complete works available
at the address: https://gallica.bnf.fr/ark:/12148/bpt6k99402s.
Hint: Apply the tangent function on each side of the equation and simplify. The
documentation on the different simplification functions is available at the address:
https://docs.sympy.org/latest/tutorial/simplification.html.
e. Determine the volume of the region:

{(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) ∈ ℝ3 ∶ 𝑥𝑥2 + 𝑥𝑥2 𝑥 𝑥𝑥 𝑥 2𝑥𝑥2 + 4𝑥𝑥𝑥𝑥 + 6𝑥𝑥2𝑥 |𝑥𝑥| 𝑥 5𝑥 |𝑥𝑥| 𝑥 4} .

f. Determine the expression of the real Fourier coefficients of the 2𝜋𝜋-periodic
function 𝑓𝑓 defined by 𝑓𝑓(𝑥𝑥) = | sin(𝑥𝑥)|.

EXERCISE 8.3 CONJECTURE DUE TO EULER

Euler conjectured in 1769 that at least 𝑘𝑘 powers of strictly positive integers are
necessary for the sum to be itself a 𝑘𝑘 power. In other words, if 𝑛𝑛 ≥ 2, 𝑘𝑘 ≥ 1,
𝑎𝑎1𝑥 𝑎𝑎2𝑥… 𝑥 𝑎𝑎𝑛𝑛 ≥ 1 and 𝑏𝑏 ≥ 1 are integers such that:

𝑛𝑛∑

𝑖𝑖=1
(𝑎𝑎𝑖𝑖)𝑘𝑘 = 𝑏𝑏𝑘𝑘

https://gallica.bnf.fr/ark:/12148/bpt6k99402s
https://docs.sympy.org/latest/tutorial/simplification.html
https://docs.sympy.org/latest/tutorial/matrices.html
https://docs.sympy.org/latest/tutorial/matrices.html
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thennecessarily𝑛𝑛 ≥ 𝑘𝑘. This conjecturewas disproved in 1966 byLander&Parkin
(doi:10.1090/S0002-9904-1966-11654-3) in what appears to be the shortest math-
ematical paper ever written with a counterexample for 𝑘𝑘 = 5:

275 + 845 + 1105 + 1335 = 1445 .

The goal is to show that this counterexample is the simplest possible, in the sense
that it is the only counterexample with 𝑘𝑘 ≤ 5 and 𝑏𝑏 ≤ 144.
a. Show that Euler’s conjecture is true for 𝑘𝑘 = 1 and 𝑘𝑘 = 2.
b. Check with Python the above counterexample.
c.Write a function powers(bmax,k) that returns the set (type set) of all integers
from 1 to bmax raised to the power k.
d. Check that there is no counterexample with 𝑘𝑘 = 3 and 𝑏𝑏 ≤ 144.
e. Write a function combinations(lst,n) that for a list of integers lst and
an integer n returns the list of all combinations of n integers in lst in ascend-
ing order. For example, combinations([1,2,3,4],2) should return [(1,1),
(1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)].
Hint: Use a recursive function on n.
f. Write a function test(bmax,n,k) that for three given integers bmax, n, and
k, iterates over all combinations of n integers returned by combinations and
checks whether the sum of these n integers raised to the power k is an integer
present in the list powers(bmax,k). Use this function to check that there is no
counterexample to Euler’s conjecture for 𝑘𝑘 = 4 and 𝑏𝑏 ≤ 144. Depending on the
power of your computer, it is possible to choose also 𝑘𝑘 = 5 and thus to check that
the counterexample of the introduction is indeed the simplest one.
For 𝑘𝑘 = 5, the previous method of iterating over all combinations is rather slow.
A faster method is to observe that the set of sums of type:

(𝑎𝑎1)5 + (𝑎𝑎2)5 + (𝑎𝑎3)5 + (𝑎𝑎4)5 ,

can be written as 𝑆𝑆1 + 𝑆𝑆2, where 𝑆𝑆1 and 𝑆𝑆2 are sums of two integers to the power
5.
g. Write a function sum2(bmax,k) which returns a dictionary having for keys
the sums (𝑎𝑎1)𝑘𝑘 + (𝑎𝑎2)𝑘𝑘 with the associated value (𝑎𝑎1, 𝑎𝑎2) for 0 ≤ 𝑎𝑎1 ≤ 𝑎𝑎2 ≤
bmax. We will take care to remove the trivial element zero from the dictionary.
When building the dictionary, make sure that it is uniquely defined in the sense
that there is no other possible value for an existing key. Test sum2(300,5) and
sum2(300,3).
h.Use the dictionary constructed earlier to determine the set of counterexamples
for 𝑘𝑘 = 5 and 𝑏𝑏 ≤ 300 by iterating over all elements of powers(bmax,5) and
sum2(bmax,5).
Hint: An optimal implementation takes at most a few seconds to run.

https://doi.org/10.1090/S0002-9904-1966-11654-3
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EXERCISE 8.4 PATHOLOGICAL FUNCTION

The goal is to construct a function that visually looks regular, but in fact is not.
Let the function 𝑓𝑓 ∶ ℝ→ ℝ be defined by:

𝑓𝑓(𝑥𝑥) =
∞∑

𝑘𝑘=1

sin(𝑘𝑘2𝑥𝑥)
𝑘𝑘5 .

Since the series converges absolutely, the function 𝑓𝑓 is well defined.
a. With the help of SymPy calculate the function 𝑔𝑔 ∶ ℝ defined by keeping the
first hundred terms of the series:

𝑔𝑔(𝑥𝑥) =
100∑

𝑘𝑘=1

sin(𝑘𝑘2𝑥𝑥)
𝑘𝑘5 ,

and plot the function 𝑔𝑔.
b. Estimate by hand the error between the functions 𝑓𝑓 and 𝑔𝑔 in absolute value.
c. Calculate the first derivative and the second derivative of 𝑔𝑔 and plot these two
derivatives. What can you conclude?
d. Explain mathematically what is going on.

EXERCISE 8.5 GREEN’S FUNCTION OF THE LAPLACIAN (!)

The goal of this exercise is to compute fully automatically the Green’s function of
the Laplacian in ℝ3, i.e., the solution satisfying:

∆𝐺𝐺(𝒙𝒙) = 𝛿𝛿(𝒙𝒙) ,

in ℝ3, where 𝛿𝛿(𝒙𝒙) is the Dirac distribution.
For this, we introduce the spherical coordinates 𝒙𝒙′ = (𝑟𝑟, 𝑟𝑟, 𝑟𝑟)with 𝑟𝑟 𝑟 0, 0 ≤ 𝑟𝑟 ≤
𝜋𝜋 and 0 ≤ 𝑟𝑟 𝜑 2𝜋𝜋 characterized by:

𝑥𝑥1 = 𝑟𝑟 cos𝑟𝑟 sin 𝑟𝑟
𝑥𝑥2 = 𝑟𝑟 sin𝑟𝑟 sin 𝑟𝑟
𝑥𝑥3 = 𝑟𝑟 cos 𝑟𝑟 .

a. Define a function to_spherical(expr) to convert an expression given in
Cartesian coordinates to spherical coordinates.
b.Define a function to_cartesian(expr) allowing to convert into cartesian co-
ordinates an expression given in spherical coordinates. For simplicity, we can
only deal with the case of an expression expr invoking the variables 𝑟𝑟 and 𝑟𝑟 but
not 𝑟𝑟.
c. Calculate the scale factors of the spherical coordinates:

ℎ𝑖𝑖 =
‖‖‖‖‖‖‖‖‖

𝜕𝜕𝒙𝒙
𝜕𝜕𝑥𝑥′𝑖𝑖

‖‖‖‖‖‖‖‖‖
.
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d.Define a function gradient(f) allowing to calculate the gradient of a function
𝑓𝑓 ∶ ℝ3 → ℝ in spherical coordinates:

𝛁𝛁𝑓𝑓 = ( 1ℎ𝑖𝑖
𝜕𝜕𝑓𝑓
𝜕𝜕𝜕𝜕′𝑖𝑖

)
3

𝑖𝑖=1
.

e. Do the same to define the Laplacian in spherical coordinates:

∆𝑓𝑓 =
3∑

𝑖𝑖=1

1
𝐽𝐽
𝜕𝜕
𝜕𝜕𝜕𝜕′𝑖𝑖

( 𝐽𝐽
ℎ2𝑖𝑖

𝜕𝜕𝑓𝑓
𝜕𝜕𝜕𝜕′𝑖𝑖

) where 𝐽𝐽 =
3∏

𝑖𝑖=1
ℎ𝑖𝑖 .

f. Find the radial solutions (i.e., depending only on the variable 𝑟𝑟) of the equation
∆𝐺𝐺 = 0 in ℝ3 ⧵ {𝟎𝟎}.
Hint: Look at the documentation of the function dsolve to solve a differential equa-
tion.
g. Determine the equations that the integration constants must satisfy for the
above solution to satisfy in Cartesian coordinates:

lim
|𝒙𝒙|→∞

𝐺𝐺(𝒙𝒙) = 0 and ∆𝐺𝐺(𝒙𝒙) = 𝛿𝛿(𝒙𝒙) .

Hint: We must transform the two conditions into spherical coordinates. The first
condition is expressed in spherical coordinates by:

lim
𝑟𝑟→∞

𝐺𝐺(𝑟𝑟) = 0 ,

and the second is equivalent to:

lim
𝑟𝑟→0

∫
𝜋𝜋

0
∫

2𝜋𝜋

0

(
𝛁𝛁𝐺𝐺(𝑟𝑟) ⋅ 𝒆𝒆𝑟𝑟

)
𝐽𝐽(𝑟𝑟, 𝑟𝑟, 𝑟𝑟) d𝑟𝑟d𝑟𝑟 = 1 .

h. Solve the equations on the integration constants and substitute in the radial
solution of ∆𝐺𝐺 = 0 to obtain the expression of the Green’s function of the Lapla-
cian in spherical coordinates. Finally, determine the Green’s function 𝐺𝐺 of the
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𝐵𝐵𝑅𝑅
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where𝑅𝑅 is chosen so that the support of 𝑔𝑔 is contained in𝐵𝐵𝑅𝑅 . To compute the asymp-
totic expansion of this integral, the first step is to convert 𝐺𝐺(𝒙𝒙 − 𝒙𝒙0) into spherical
coordinates for 𝒙𝒙 and 𝒙𝒙0. Since 𝑔𝑔 is invariant by rotations along the vertical axis,
then in spherical coordinates 𝑔𝑔 is independent of 𝜑𝜑 and is given by 𝑔𝑔(𝑟𝑟𝑟 𝑟𝑟). The sec-
ond step is to transform the integral in spherical coordinates with a triple integral
on 𝑟𝑟0, 𝑟𝑟0, and 𝜑𝜑0. The third step is to compute the asymptotic development of the
integrand when 𝑟𝑟 → ∞, up to order two. Finally, since 𝑟𝑟0, 𝑟𝑟0, and 𝜑𝜑0 are bounded,
the integration then commutes with the asymptotic expansion and the final result is
given by the individual integration of the two terms of the asymptotic expansion.
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SOLUTIONS

SOLUTION 8.1 INTRODUCTION TO SYMPY

a. Just define the symbols and then solve the equation with the solve function:

a,b,c,d = sp.symbols("a b c d")
sp.solve(a⁎x⁎⁎2+b⁎x+c,x)
sp.solve(a⁎x⁎⁎3+b⁎x⁎⁎2+c⁎x+d,x)

b. Your choice:

(sp.pi⁎⁎2/4).evalf()
sp.N(sp.pi⁎⁎2/4)

c. The rational number is defined using the Rational function and then evalu-
ated to 50 decimal places:

frac = sp.Rational(43609, 999)
frac.evalf(50)

d. There is two possibilities:

expr = sp.simplify(((1+sp.I⁎sp.sqrt(3))/(1+sp.I))⁎⁎20)
(sp.re(expr),sp.im(expr))
expr.as_real_imag()

e. The function diff allows to calculate symbolically the derivative of a symbolic
expression:

sp.diff(x⁎sp.exp(x⁎⁎x⁎⁎x),x)

f. It is possible to calculate definite or indefinite integrals:

I1 = sp.integrate(x⁎⁎5⁎sp.sin(x),x)
I2 = sp.integrate(sp.sin(x⁎⁎2), (x,0,sp.oo))

Note that infinity is represented in SymPy by the symbol oo.
g. The limits of expressions requested:

L1 = sp.limit(sp.sin(x)/x, x, 0)
L2 = sp.limit(sp.sin(1/x), x, 0)
L3 = sp.limit((5⁎x⁎⁎2+3⁎x+2⁎y)/(y⁎(x-4)⁎(x-y)),x,sp.oo)

h. The limited or asymptotic developments are computed with the series func-
tion:



114 ■ Python Programming for Mathematics

SOLUTIONS

SOLUTION 8.1 INTRODUCTION TO SYMPY

a. Just define the symbols and then solve the equation with the solve function:

a,b,c,d = sp.symbols("a b c d")
sp.solve(a⁎x⁎⁎2+b⁎x+c,x)
sp.solve(a⁎x⁎⁎3+b⁎x⁎⁎2+c⁎x+d,x)

b. Your choice:

(sp.pi⁎⁎2/4).evalf()
sp.N(sp.pi⁎⁎2/4)

c. The rational number is defined using the Rational function and then evalu-
ated to 50 decimal places:

frac = sp.Rational(43609, 999)
frac.evalf(50)

d. There is two possibilities:

expr = sp.simplify(((1+sp.I⁎sp.sqrt(3))/(1+sp.I))⁎⁎20)
(sp.re(expr),sp.im(expr))
expr.as_real_imag()

e. The function diff allows to calculate symbolically the derivative of a symbolic
expression:

sp.diff(x⁎sp.exp(x⁎⁎x⁎⁎x),x)

f. It is possible to calculate definite or indefinite integrals:

I1 = sp.integrate(x⁎⁎5⁎sp.sin(x),x)
I2 = sp.integrate(sp.sin(x⁎⁎2), (x,0,sp.oo))

Note that infinity is represented in SymPy by the symbol oo.
g. The limits of expressions requested:

L1 = sp.limit(sp.sin(x)/x, x, 0)
L2 = sp.limit(sp.sin(1/x), x, 0)
L3 = sp.limit((5⁎x⁎⁎2+3⁎x+2⁎y)/(y⁎(x-4)⁎(x-y)),x,sp.oo)

h. The limited or asymptotic developments are computed with the series func-
tion:

Symbolic Calculation ■ 115

S1 = sp.series(sp.tan(x), x, 0, 10)
S2 = sp.series((1+1/x)⁎⁎x, x, sp.oo, 5)

i. First, we have to construct the symbolic matrix and then calculate its eigenval-
ues:

M = sp.Matrix([[1,a,0],[a,2,a],[0,a,3]])
M.eigenvals()

Note that the multiplicity of eigenvalues is also returned.

SOLUTION 8.2 APPLICATIONS

a.One way is to evaluate 123! and then convert it to a string to count the number
of zeros:

fact = sp.factorial(123)
str(fact).count('0')

and discover that there are 42.
b. The variables defining the problem and the equations:

r = sp.Symbol("r", real=True, positive=True) # radius
h = sp.Symbol("h", real=True, positive=True) # height
V = sp.Symbol("V", real=True, positive=True) # volume
volume = sp.pi⁎r⁎⁎2⁎h # volume of the cylinder
surface = 2⁎sp.pi⁎r⁎⁎2 + 2⁎sp.pi⁎r⁎h # area of the cylinder

The first step is to remove h from the first equation and replace it with V in the
second:

solh = sp.solve(volume-V,h)[0]
S = surface.subs(h,solh)

Finally, we have to minimize S with respect to r and solve for r:

rmin = sp.solve(sp.diff(S,r),r)[0]
sp.solve(rmin.subs(V,volume)-r,r)

Thus, the cylinder of minimal area with fixed volume verifies 𝑟𝑟 = ℎ
2
.

c. The function 𝑓𝑓 formed by the difference of the two sides of the equation:

𝑓𝑓(𝑥𝑥𝑥 𝑥𝑥) = arctan(𝑥𝑥) + arctan(𝑥𝑥) − arctan ( 𝑥𝑥 + 𝑥𝑥
1 − 𝑥𝑥𝑥𝑥 ) 𝑥

is defined for all 𝑥𝑥𝑥 𝑥𝑥 ∈ ℝ such that 𝑥𝑥𝑥𝑥 ≠ 1. By taking the partial derivative of 𝑓𝑓
with respect to 𝑥𝑥:



116 ■ Python Programming for Mathematics

x = sp.Symbol("x", real=True)
y = sp.Symbol("y", real=True)
f = sp.atan(x) + sp.atan(y) - sp.atan((x+y)/(1-x⁎y))
sp.simplify(sp.diff(f,x))

we obtain that the latter is zero on the domain of definition of 𝑓𝑓. For any fixed
𝑦𝑦 ∈ ℝ, since 𝑓𝑓(0, 𝑦𝑦) = 0 and 𝑓𝑓(𝑥𝑥, 𝑦𝑦) is continuously differentiable in 𝑥𝑥 for 𝑥𝑥𝑦𝑦 𝑥 1
and of zero derivative, then 𝑓𝑓(𝑥𝑥, 𝑦𝑦) = 0 for 𝑥𝑥𝑦𝑦 𝑥 1, which ends the proof.
d. The first step is to define the right-hand side of the equation, denoted Θ:

T = 12⁎sp.atan(sp.Rational(1,38)) +
20⁎sp.atan(sp.Rational(1,57)) \↪

+ 7⁎sp.atan(sp.Rational(1,239)) +
24⁎sp.atan(sp.Rational(1,268))↪

To keep the symbolic character of the expression, it is imperative to use the
Rational function, otherwise 1/38 is directly evaluated as a floating-point num-
ber by Python. The second step is to apply the tangent function to Θ and to sim-
plify with expand_trig:

sp.expand_trig(sp.tan(T))

which shows that tan(Θ) = 1. This last equation has an infinity number of solu-
tions, but verifying that 0 𝑥 Θ 𝑥 𝜋𝜋

2
:

0 < T < sp.pi/2

then it shows that Θ = arctan(1) = 𝜋𝜋
4
since the tangent function is bijective on

]0, 𝜋𝜋
2
[.

e. One way to do this is to integrate the constant function 1 over the specified
domain:

x,y,z = sp.symbols("x y z")
sp.integrate(1,(z,x⁎⁎2+y⁎⁎2,2⁎x⁎⁎2+4⁎x⁎y+6⁎y⁎⁎2),(y,- ⌋

5,5),(x,-4,4))↪

f. We define the function 𝑓𝑓, then the symbol corresponding to 𝑛𝑛 ≥ 1 allowing to
calculate the integrals defining the Fourier coefficients:

x = sp.Symbol("x", real=True)
n = sp.Symbol("n", integer=True, positive=True)
f = abs(sp.sin(x))
a0 = sp.integrate(f,(x,-sp.pi,sp.pi))/(2⁎sp.pi)
an = sp.integrate(f⁎sp.cos(n⁎x),(x,-sp.pi,sp.pi))/sp.pi
bn = sp.integrate(f⁎sp.sin(n⁎x),(x,-sp.pi,sp.pi))/sp.pi
sp.simplify((a0,an,bn))
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SOLUTION 8.3 CONJECTURE DUE TO EULER

a. Since by hypothesis 𝑛𝑛 ≥ 2, then necessarily 𝑛𝑛 ≥ 𝑘𝑘.
b. List comprehension allows the sum of the fifth powers:

sum([i⁎⁎5 for i in [27,84,110,133]]) == 144⁎⁎5

c. The easiest way is to use set comprehension:

def powers(bmax,k):
return {i⁎⁎k for i in range(1,bmax+1)}

d. If we want to find a counterexample for 𝑘𝑘 = 3, then necessarily 𝑛𝑛 = 2. So, we
just have to test all combinations of two integers 𝑎𝑎1 and 𝑎𝑎2:

def check3(bmax):
out = set()
integers3 = powers(bmax,3)
for a1 in range(1,bmax+1):

for a2 in range(a1,bmax+1):
s = a1⁎⁎3 + a2⁎⁎3
if s in integers3:

out.add(s)
return out

which gives an empty set for 𝑏𝑏 ≤ 144:

check3(144)

e. The idea is to make a recursive function adding the new cases to the output
list:

def combinations(lst,n):
if n==1:

return [(i,) for i in lst]
else:

out = []
for l in combinations(lst,n-1):

for i in lst:
if i >= l[-1]: out.append(l+(i,))

return out

for example:

combinations([1,2,3,4],2)
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f. Just iterate on the combinations:

def test(bmax,n,k):
out = set()
p = powers(bmax,k)
for c in combinations(range(1,bmax+1),n):

s = sum([i⁎⁎k for i in c])
if s in p:

out.add(c)
return out

For 𝑘𝑘 = 3, 4, we do not find a solution:

test(144,2,3) | test(144,2,4) | test(144,3,4)

For 𝑘𝑘 = 5, we find the expected solution:

test(144,2,5) | test(144,3,5) | test(144,4,5)

Note that it is possible to improve the performance of this algorithm a bit by doing
the combinations on powers powers(bmax,k) rather than on integers. This algo-
rithm stores all the combinations inmemory, but the use of the combinations_ ⌋
with_replacement function of itertools allows to get rid of this problem.
g. The idea is to iterate over all the values of 𝑎𝑎1 ≤ 𝑎𝑎2 and to test if the key does
not already exist:

def sum2(bmax,k):
out = dict()
for i in range(0,bmax+1):

for j in range(i,bmax+1):
s = i⁎⁎k + j⁎⁎k
# this should never happen, otherwise the

dictionary is not uniquely defined↪

if s in out: raise ValueError("Dictionary not
unique")↪

out[s] = (i,j)
del out[0] # remove 0:(0,0) from the dictionary
return out

For 𝑘𝑘 = 5, the dictionary seems to be uniquely defined:

sum2(300,5)

whereas for 𝑘𝑘 = 3, this is not the case:

sum2(300,3)

Note that the unique dictionary definition for k=5 and any value of bmax is an
open mathematical problem.
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h. It is important to iterate only once on sum2(bmax,5) and to test the member-
ship of the difference to sum2(bmax,5):

def test5(bmax):
# list of counter-examples
out = set()
# dictionary of the sum of two 5th power
s2 = sum2(bmax,5)
# loop on the 5th powers
for p in powers(bmax,5):

for s in s2:
if p - s in s2:

# sort the counter-example values
l = sorted(s2[s] + s2[p-s])
out.add(tuple(l))

return out

This allows us to discover a second counter-example:

test5(300)

given by:
545 + 1685 + 2205 + 2665 = 2885 .

Note that it is possible to optimize this code by sorting the result of sum2(bmax,5)
beforehand in order to exit the loop when it is no more useful:

def test5opt(bmax):
# list of counter-examples
out = set()
# dictionary of the sum of two 5th power
s2 = sum2(bmax,5)
s2sorted = sorted(s2)
# loop on the 5th powers
for p in powers(bmax,5):

for s in s2sorted:
if p <= s: break
if p - s in s2:

# sort the counter-example values
l = sorted(s2[s] + s2[p-s])
out.add(tuple(l))

return out
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Figure 8.2 Plot of the function 𝑔𝑔.

SOLUTION 8.4 PATHOLOGICAL FUNCTION

a. We define the variables, the term of the series, and then the sum of the first
hundred terms:

x = sp.Symbol("x")
k = sp.Symbol("k")
g = sp.summation(sp.sin(k⁎⁎2⁎x)/k⁎⁎5, (k,1,100))

Note that it is important to use the summation function and not Sumwhich keeps
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b. The error is bounded by:

|𝑓𝑓(𝑥𝑥) − 𝑔𝑔(𝑥𝑥)| ≤
|||||||||

∞∑

𝑘𝑘=101

sin(𝑘𝑘2𝑥𝑥)
𝑘𝑘5

|||||||||
≤

∞∑

𝑘𝑘=101

1
𝑘𝑘5 ≤ ∫

∞

100

1
𝑘𝑘5 d𝑘𝑘 ≤ 2.5 × 10−9 ,

so 𝑔𝑔 seems to be a very good approximation of 𝑓𝑓.
c. It suffices to take the derivatives with SymPy and plot them to get Figure 8.3:
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The conclusion is that 𝑔𝑔′ seems to be continuous while 𝑔𝑔′′ does not.
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Figure 8.3 Plot the derivatives of the function 𝑔𝑔. The first derivative still seems
regular while the second derivative does not seem continuous.

d. Since the series defining 𝑓𝑓 is uniformly convergent, then 𝑓𝑓 is continuous. By
formally deriving term by term:

𝑓𝑓′(𝑥𝑥) =
∞∑

𝑘𝑘=1

cos(𝑘𝑘2𝑥𝑥)
𝑘𝑘3

,

and since this series converges uniformly, then 𝑓𝑓 is continuously derivable and
the derivative is given by the above series. By deriving again formally:

𝑓𝑓′′(𝑥𝑥) =
∞∑

𝑘𝑘=1

− sin(𝑘𝑘2𝑥𝑥)
𝑘𝑘 .

However, this series is not uniformly convergent because it is not even convergent
for all values of 𝑥𝑥 (take for example 𝑥𝑥 = 𝜋𝜋

2
). Thus, 𝑓𝑓′ is not differentiable.

SOLUTION 8.5 GREEN’S FUNCTION OF THE LAPLACIAN (!)

a. First, we need to define the symbols 𝑥𝑥, 𝑥𝑥, 𝑥𝑥 of the Cartesian coordinates:

x, y, z = sp.symbols("x y z", real=True)
xyz = [x,y,z]

then the symbols of the spherical coordinates:

r, t, p = sp.symbols(r"r \theta \varphi", real=True,
positive=True)↪

rtp = [r,t,p]
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By defining the spherical coordinates by a dictionary:

coords = {x: r⁎sp.cos(p)⁎sp.sin(t), y: r⁎sp.sin(p)⁎sp.sin(t),
z: r⁎sp.cos(t)}↪

it is very easy to write a function to convert an expression into spherical coordi-
nates:

def to_spherical(expr):
return sp.simplify(expr.subs(coords))

b. For that, it is necessary to invert the equations defining the spherical coordi-
nates. Because of the multiple solutions for the angles, it is difficult for SymPy to
solve these equations alone correctly. Ideally it would be enough to do:

eqn = [i-v for i,v in coords.items()]
inversecoords = sp.solve(eqn, rtp, dict=True)[0]

Unfortunately, according to the versions of SymPy, this gives either a solution
which is correct only for some signs of 𝑥𝑥 and 𝑦𝑦 or no answer at all. The first step
is to solve the last equation for 𝜃𝜃:

sol_t = sp.solve(eqn[2], t, dict=True)

then select the solution located in the interval [0, 𝜋𝜋]:

inversecoords = sol_t[1]

The second step is to substitute this solution into the first two equations and solve
for 𝑟𝑟 and 𝜑𝜑:

eqn12 = [sp.simplify(e.subs(inversecoords)) for e in
eqn[0:2]]↪

sol_rphi = sp.solve(eqn12, (r,p), dict=True)
inversecoords.update(sol_rphi[0])

Note that the solution returned for 𝜑𝜑 is the only solution, this last one is only
correct for 𝑥𝑥 𝑥 0. To obtain the correct solution for the angle 𝜑𝜑, the idea is to
solve first for cos(𝜑𝜑) and sin(𝜑𝜑)):

sol_cosp_sinp = sp.solve([e.subs({r:sol_rphi[0][r]}) for e in
eqn12], (sp.cos(p),sp.sin(p)), dict=True)↪

then solve by hand with the atan2 function:

sol_p = sp.atan2(sp.cos(p),sp.sin(p)).subs(sol_cosp_sinp[0])
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The last step is to create a simplification rule:

a,b,c = map(sp.Wild, "abc")
sol_p = sol_p.replace(sp.atan2(b/a,c/a), sp.atan2(b,c))
inversecoords[p] = sol_p

to finally obtain the inverse coordinates:

inversecoords = {k: v.subs(inversecoords) for k,v in
inversecoords.items()}↪

inversecoords

The result should be:

{𝜃𝜃 ∶ acos ( 𝑧𝑧
√
𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2

), 𝜑𝜑 ∶ atan2 (𝑥𝑥, 𝑦𝑦), 𝑟𝑟 ∶
√
𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2} .

Thus, the function allowing to convert into Cartesian coordinates an expression
given in spherical coordinates is identical to the one allowing to do the opposite:

def to_cartesian(expr):
return sp.simplify(expr.subs(inversecoords))

For example, to test it:

to_cartesian(r⁎sp.sin(t))

c. The first step is to compute the Jacobian matrix 𝜕𝜕𝑥𝑥𝑗𝑗
𝜕𝜕𝑥𝑥′𝑖𝑖

.

Jac = [[sp.diff(c,v) for c in coords.values()] for v in rtp]
sp.Matrix(Jac)

This allows us to define the scaling factors:

h = [sp.Matrix(line).norm() for line in Jac]

To simplify them, we have to say to SymPy that sin(𝜃𝜃) ≥ 0:

assumption = sp.Q.positive(sp.sin(t))
h = [sp.refine(sp.simplify(i), assumption) for i in h]

Another way to do this is to take the roots of the elements of the diagonal of the
metric:

metric = [[sum([sp.diff(c,v)⁎sp.diff(c,w) for c in
coords.values()]) for v in rtp] for w in rtp]↪

metric = sp.simplify(sp.Matrix(metric))
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d. According to the definition of the gradient in terms of the scaling factors:

def gradient(expr):
gradient = [sp.diff(expr,v)/h[i] for i,v in

enumerate(rtp)]↪

return sp.simplify(sp.Matrix(gradient))

To test this function:

f = sp.Function("f")(r,t,p)
gradient(f)

e. For the Laplacian, we first compute the product of the factors ℎ𝑖𝑖 in order to
apply the definition:

J = sp.prod(h)
def laplacian(expr):

laplacian =
1/J⁎sum([sp.diff(J/(h[i]⁎⁎2)⁎sp.diff(expr,v),v) for
i,v in enumerate(rtp)])

↪

↪

return sp.expand(sp.simplify(laplacian))

To verify that the result is correct:

f = sp.Function("f")(r,t,p)
laplacian(f)

f. We need to define a function depending only on the radial variable 𝑟𝑟 and then
compute its Laplacian:

G_radial = sp.Function("G")(r)
equation = laplacian(G_radial)

Finally the function dsolve allows to solve this ordinary differential equation:

G_sol = sp.dsolve(equation, G_radial)

g. The first condition is easy to transform into spherical coordinates:

cond1 = sp.limit(G_sol.rhs, r, sp.oo)

The second condition being seen in the sense of distributions, it is equivalent to:

lim
𝜀𝜀→0

∫
𝐵𝐵𝜀𝜀
∆𝐺𝐺(𝒙𝒙) d3𝒙𝒙 = 1 ,

where 𝐵𝐵𝜀𝜀 denotes theℝ3 ball of radius 𝜀𝜀 and centered at the origin. By integrating
the left side by parts:

lim
𝜀𝜀→0

∫
𝜕𝜕𝐵𝐵𝜀𝜀

𝛁𝛁𝐺𝐺(𝒙𝒙) ⋅ 𝒏𝒏 d3𝒙𝒙 = 1 ,
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and finally by expressing this last integral in spherical coordinates:

lim
𝜀𝜀→0

∫
𝜋𝜋

0
∫

2𝜋𝜋

0

(
𝛁𝛁𝐺𝐺(𝜀𝜀) ⋅ 𝒆𝒆𝑟𝑟

)
𝐽𝐽(𝜀𝜀𝜀 𝜀𝜀𝜀 𝜀𝜀) d𝜀𝜀d𝜀𝜀 = 1 .

Since 𝜀𝜀 can be replaced by 𝑟𝑟 in this last expression, we define the normal to the
surface in spherical coordinates, then we compute the integral in spherical coor-
dinates, and finally the limit:

normal = sp.Matrix([1,0,0])
integral = sp.integrate(normal.dot(gradient(G_sol.rhs))⁎J,

(t,0,sp.pi), (p,0,2⁎sp.pi))↪

cond2 = sp.limit(integral, r, 0) - 1

h. It is sufficient to solve the equations given by the two previous conditions:

constants = sp.solve([cond1, cond2], [sp.Symbol('C1'),
sp.Symbol('C2')])↪

then substitute in the solution:

G_spherical = G_sol.rhs.subs(constants)

To obtain the Green’s function in Cartesian coordinates, we use the function de-
fined previously:

G = to_cartesian(G_spherical)

i. First, we define a new set of Cartesian coordinates 𝒙𝒙0 and of spherical coordi-
nates (𝑟𝑟0𝜀 𝜀𝜀0𝜀 𝜀𝜀0):

x0, y0, z0 = sp.symbols("x_0 y_0 z_0", real=True)
xyz0 = [x0,y0,z0]
r0, t0, p0 = sp.symbols(r"r_0 \theta_0 \varphi_0", real=True,

positive=True)↪

rtp0 = [r0,t0,p0]
coords0 = {i.subs({x:x0, y:y0, z:z0}): v.subs({r:r0, t:t0,

p:p0}) for i,v in coords.items()}↪

inversecoords0 = {i.subs({r:r0, t:t0, p:p0}): v.subs({x:x0,
y:y0, z:z0}) for i,v in inversecoords.items()}↪

Then, we define the Green’s function 𝐺𝐺(𝒙𝒙 − 𝒙𝒙0) and convert it into spherical
coordinates:

green_cartesian = G.subs({x: x-x0, y:y-y0, z:z-z0})
green_spherical =

sp.simplify(green_cartesian.subs(coords).subs(coords0))↪
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To do the asymptotic development:

serie = sp.series(green_spherical, r, sp.oo, 3)

Then, we define a function 𝑔𝑔 depending only on 𝑟𝑟0 and 𝜃𝜃0 and the factor
𝐽𝐽(𝑟𝑟0, 𝜃𝜃0, 𝜑𝜑0):

g = sp.Function("g")(r0,t0)
J0 = J.subs({r:r0, t:t0, p:p0})

To calculate the asymptotic first order decreasing as 𝑟𝑟−1:

int1 = serie.coeff(r,-1)
asy1 = sp.integrate(int1⁎g⁎J0, (p0,0,2⁎sp.pi))
sp.expand(asy1)

and identically for the second order decreasing as 𝑟𝑟−2:

int2 = serie.coeff(r,-2)
asy2 = sp.integrate(int2⁎g⁎J0, (p0,0,2⁎sp.pi))
sp.trigsimp(sp.expand(asy2), method='combined')

Thus, the final result can be written mathematically as:

𝑓𝑓(𝑟𝑟, 𝜃𝜃, 𝜑𝜑) = 𝑀𝑀0
𝑟𝑟 + 𝑀𝑀1 cos(𝜃𝜃)

𝑟𝑟2
+ 𝑂𝑂( 1

𝑟𝑟3
) ,

where𝑀𝑀0 and𝑀𝑀1 are the real numbers given by:

𝑀𝑀0 =
−1
2 ∫

∞

0
∫

𝜋𝜋

0
𝑔𝑔(𝑟𝑟, 𝜃𝜃)𝑟𝑟2 sin(𝜃𝜃) d𝜃𝜃d𝑟𝑟 ,

𝑀𝑀1 =
−1
4 ∫

∞

0
∫

𝜋𝜋

0
𝑔𝑔(𝑟𝑟, 𝜃𝜃)𝑟𝑟3 sin(2𝜃𝜃) d𝜃𝜃d𝑟𝑟 𝑟

These last two real numbers can also be calculated in Cartesian coordinates:

car = [sp.simplify(asy/J0/g/(4⁎sp.pi)) for asy in [asy1,
asy2]]↪

[x.subs(inversecoords0).subs(inversecoords) for x in car]

which gives mathematically:

𝑀𝑀0 =
−1
8𝜋𝜋 ∫

ℝ3
𝑔𝑔(𝒙𝒙) d3𝒙𝒙 , 𝑀𝑀1 =

−1
8𝜋𝜋 ∫

ℝ3
𝑥𝑥3 𝑔𝑔(𝒙𝒙) d3𝒙𝒙 𝑟
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C H A P T E R 9

Root Finding

The aim of this series of exercises is to determine the roots of a function in an
approximate way, in particular by Newton’s method. This allows in particular to
find approximate solutions of nonlinear equations. This method is fundamental
both from a numerical and an analytical point of view.

Concepts covered

∙ Newton’s method in one and several dimensions

∙ Jacobian matrix

∙ Newton’s method attractor

∙ fractal set

∙ optimization by parallelization

∙ nonlinear differential equation

∙ finite differences
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EXERCISES

EXERCISE 9.1 NEWTON’S METHOD IN ONE DIMENSION

In one dimension, Newton’s method consists in finding an approximate solution
of a single equation. This equation can be put in the general form𝐹𝐹(𝑥𝑥) = 0, where
𝐹𝐹 ∶ ℝ→ ℝ is a fairly regular function; so, the goal is to find a zero of the function
𝐹𝐹. The equation 𝐹𝐹(𝑥𝑥) = 0 is equivalent (if 𝐹𝐹′(𝑥𝑥) ≠ 0) to the equation 𝐺𝐺(𝑥𝑥) = 𝑥𝑥,
where 𝐺𝐺 is the function defined by:

𝐺𝐺(𝑥𝑥) = 𝑥𝑥 − 𝐹𝐹(𝑥𝑥)
𝐹𝐹′(𝑥𝑥)

.

Newton’s method consists in finding a fixed point of 𝐺𝐺, i.e., solving 𝐺𝐺(𝑥𝑥) = 𝑥𝑥 by
successive iterations:

𝑥𝑥𝑖𝑖+1 = 𝐺𝐺(𝑥𝑥𝑖𝑖) = 𝑥𝑥𝑖𝑖 −
𝐹𝐹(𝑥𝑥𝑖𝑖)
𝐹𝐹′(𝑥𝑥𝑖𝑖)

,

from an initial value 𝑥𝑥0 ∈ ℝ. When the sequence (𝑥𝑥𝑖𝑖)𝑖𝑖∈ℕ converges, then the
limit 𝑥𝑥 is a solution of 𝐺𝐺(𝑥𝑥) = 𝑥𝑥 therefore of 𝐹𝐹(𝑥𝑥) = 0.
a. Write a function newton1d(F, DF, x0, eps=1e-10, N=1000) that given a
function 𝐹𝐹, its derivative 𝐹𝐹′, and an initial value 𝑥𝑥0 computes Newton’s iterations
until |𝐹𝐹(𝑥𝑥𝑖𝑖)| < 𝜀𝜀 and returns 𝑥𝑥𝑖𝑖 . If 𝑁𝑁 iterations were not enough to reach this
convergence criterion, then return an error.
b.Using the function defined above, find an approximate solution of the equation
𝑒𝑒−𝑥𝑥 = 𝑥𝑥.
Answer: The solution is approximately given by 𝑥𝑥 = 0.56714.
c. Without using the function sqrt, log, or fractional powers, define a function
root(x,n) that computes 𝑛𝑛

√
𝑥𝑥.

Sometimes, the derivative of the function 𝐹𝐹 cannot be calculated analytically, so
it is necessary to approximate it numerically:

𝐹𝐹′(𝑥𝑥𝑖𝑖) ≈
𝐹𝐹(𝑥𝑥𝑖𝑖) − 𝐹𝐹(𝑥𝑥𝑖𝑖−1)

𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1
,

which leads to the secant method:

𝑥𝑥𝑖𝑖+1 = 𝑥𝑥𝑖𝑖 − 𝐹𝐹(𝑥𝑥𝑖𝑖)
𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1

𝐹𝐹(𝑥𝑥𝑖𝑖) − 𝐹𝐹(𝑥𝑥𝑖𝑖−1)
= 𝑥𝑥𝑖𝑖−1𝐹𝐹(𝑥𝑥𝑖𝑖) − 𝑥𝑥𝑖𝑖𝐹𝐹(𝑥𝑥𝑖𝑖−1)

𝐹𝐹(𝑥𝑥𝑖𝑖) − 𝐹𝐹(𝑥𝑥𝑖𝑖−1)
,

where 𝑥𝑥0 and 𝑥𝑥1 must be chosen.
d. Write a method secant1d(F, x0, x1, eps=1e-10, N=1000) implement-
ing the secant method and test it on the previous example.
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EXERCISES

EXERCISE 9.1 NEWTON’S METHOD IN ONE DIMENSION
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Answer: The solution is approximately given by 𝑥𝑥 = 0.56714.
c. Without using the function sqrt, log, or fractional powers, define a function
root(x,n) that computes 𝑛𝑛

√
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EXERCISE 9.2 NEWTON’S METHOD IN SEVERAL
DIMENSIONS

Newton’s method in one dimension is easily generalized to several dimensions
to solve equations of the form 𝐹𝐹(𝒙𝒙) = 𝟎𝟎, where 𝐹𝐹 ∶ ℝ𝑛𝑛 → ℝ𝑛𝑛 is a fairly reg-
ular function. Conceptually, the method is identical: the equation 𝐹𝐹(𝒙𝒙) = 𝟎𝟎 is
equivalent to 𝐺𝐺(𝒙𝒙) = 𝒙𝒙 with the function 𝐺𝐺 defined by:

𝐺𝐺(𝒙𝒙) = 𝒙𝒙 −
(
𝐹𝐹′(𝒙𝒙)

)−1
𝐹𝐹(𝒙𝒙) ,

where 𝐹𝐹′(𝒙𝒙) denotes the Jacobian matrix of size 𝑛𝑛 × 𝑛𝑛 of 𝐹𝐹 in 𝑥𝑥. Thus, Newton’s
iterations are written:

𝒙𝒙𝑖𝑖+1 = 𝒙𝒙𝑖𝑖 −
(
𝐹𝐹′(𝒙𝒙𝑖𝑖)

)−1
𝐹𝐹(𝒙𝒙𝑖𝑖) ,

a.Write a function newton(F, DF, x0, eps=1e-12, N=10000) implementing
Newton’s method in more than one dimension.
Hint: To have an optimal performance, one should not invert the Jacobian matrix
but solve a linear system with 𝐹𝐹(𝒙𝒙𝑖𝑖) as second member.
b. Use the previous function to solve the following system:

cos(𝑥𝑥) = sin(𝑦𝑦) , 𝑒𝑒−𝑥𝑥 = cos(𝑦𝑦) .

Answer: A solution is approximately given by 𝑥𝑥 = 0.58853 and 𝑦𝑦 = 0.98226.

EXERCISE 9.3 NEWTON’S METHOD ATTRACTOR

The goal of this exercise is to solve the equation 𝑧𝑧3 = 1 in the complex plane
using Newton’s method and to analyze to which of the three roots of unity the
method will converge depending on the choice of the initial point 𝑧𝑧0.
a. If necessary, adapt the function newton1d so that it also applies to complex
numbers and test it to solve 𝑧𝑧3 = 1 from different values of 𝑧𝑧0.
b. Determine for each 𝑧𝑧0 ∈

{
𝑥𝑥0 + 𝑖𝑖𝑦𝑦0 ∶ 𝑥𝑥0 ∈ [−3, 3] and 𝑦𝑦0 ∈ [−3, 3]

}
to which

root of unity Newton’s method will converge. Represent graphically this set as
in Figure 9.1.
Hint: NumPy’s meshgrid function can be useful to construct thematrix correspond-
ing to the set of 𝑧𝑧0.
c. ! The previous method has the disadvantage of proceeding sequentially to the
calculation for each value of 𝑧𝑧0, whichmakes this evaluation rather slow. Propose
a new implementation allowing to compute in parallel all the values of 𝑧𝑧0 using
NumPy indexing.
Hint: To speed-up the method even more, Newton’s iterations of 𝐹𝐹(𝑧𝑧) = 𝑧𝑧3 − 1 can
be calculated by hand:

𝑧𝑧𝑛𝑛+1 =
1
3𝑧𝑧2𝑛𝑛

+ 2𝑧𝑧𝑛𝑛
3 .
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Figure 9.1 Graphical representation of the convergence of Newton’s method as
a function of the initial value 𝑧𝑧0.

EXERCISE 9.4 NONLINEAR DIFFERENTIAL EQUATION (!!)

The goal is to solve the following differential equation with boundary conditions:

𝑢𝑢′′(𝑥𝑥) + 𝑢𝑢3(𝑥𝑥) = sin(𝑥𝑥) , 𝑢𝑢(0) = 𝑢𝑢(2𝜋𝜋) = 0 ,

on the interval [0, 2𝜋𝜋]. This equation is a simplified model for a nonlinear
Schrödinger equation.
The method used is finite differences that consists in looking for the values of 𝑢𝑢
at the points 𝑥𝑥𝑛𝑛 =

2𝜋𝜋𝑛𝑛
𝑁𝑁

for 𝑛𝑛 = 0, 1,… , 𝑁𝑁. The unknowns are then the numbers
𝑢𝑢𝑛𝑛 = 𝑢𝑢(𝑥𝑥𝑛𝑛) and form a vector of dimension 𝑁𝑁 + 1. The finite difference method
consists in approximating the second derivative by:

𝑢𝑢′′(𝑥𝑥) ≈ 𝑢𝑢(𝑥𝑥 + ℎ) − 2𝑢𝑢(𝑥𝑥) + 𝑢𝑢(𝑥𝑥 − ℎ)
ℎ2

,

when ℎ is small. Taking ℎ = 2𝜋𝜋
𝑁𝑁
, then:

𝑢𝑢′′(𝑥𝑥𝑛𝑛) ≈
𝑢𝑢𝑛𝑛+1 − 2𝑢𝑢𝑛𝑛 + 𝑢𝑢𝑛𝑛−1

ℎ2
,
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and so the initial equation is approximated by:

𝑢𝑢𝑛𝑛+1 − 2𝑢𝑢𝑛𝑛 + 𝑢𝑢𝑛𝑛−1
ℎ2

+ 𝑢𝑢3𝑛𝑛 = sin(𝑥𝑥𝑛𝑛) , 𝑢𝑢0 = 𝑢𝑢𝑁𝑁 = 0 ,

for 𝑛𝑛 = 1, 2,… , 𝑁𝑁−1. This equation can be seen as an equation of the type𝐹𝐹(𝒖𝒖) =
𝟎𝟎 for 𝒖𝒖 = (𝑢𝑢𝑛𝑛)𝑁𝑁+1𝑛𝑛=0 and thus be solved by Newton’s method.
a. Show the following approximation:

𝑢𝑢′′(𝑥𝑥) = 𝑢𝑢(𝑥𝑥 + ℎ) − 2𝑢𝑢(𝑥𝑥) + 𝑢𝑢(𝑥𝑥 − ℎ)
ℎ2

+ 𝑂𝑂(ℎ2) as ℎ → 0 .

Hint: Use Taylor’s theorem.
b. Define a vector x representing 𝑁𝑁 + 1 evenly spaced points in [0, 2𝜋𝜋] and h the
distance between the points, with, for example, 𝑁𝑁 = 200.
c. Define a function F(u) representing the function 𝐹𝐹 ∶ ℝ𝑁𝑁+1 → ℝ𝑁𝑁+1 allowing
to put the approximated equation in the form 𝐹𝐹(𝒖𝒖) = 𝟎𝟎.
Hint: To have a fast implementation, it is imperative to use the NumPy slicing in-
stead of a loop to build 𝐹𝐹.
d. Define a function DF(u) representing the Jacobian of the previous function.
Hint: The Jacobian is the derivative of 𝐹𝐹(𝒖𝒖) = 𝐹𝐹(𝑢𝑢0, 𝑢𝑢1,… , 𝑢𝑢𝑁𝑁) with respect to 𝒖𝒖 =
(𝑢𝑢0, 𝑢𝑢1,… , 𝑢𝑢𝑁𝑁), i.e.:

𝐹𝐹′(𝒖𝒖) =
(
𝜕𝜕0𝐹𝐹(𝒖𝒖) 𝜕𝜕1𝐹𝐹(𝒖𝒖) 𝜕𝜕2𝐹𝐹(𝒖𝒖) ⋯ 𝜕𝜕𝑁𝑁−1𝐹𝐹(𝒖𝒖) 𝜕𝜕𝑁𝑁𝐹𝐹(𝒖𝒖)

)
,

and can be calculated explicitly by hand.
e.Use the newton function defined earlier to calculate an approximate solution of
the equation. By changing the initial values, is it possible to find other solutions?
Hint: Try with the initial data 𝑢𝑢0(𝑥𝑥) = (1 + 𝑘𝑘) sin(𝑘𝑘𝑥𝑥) for 𝑘𝑘 = 1, 2, 3, 4 as the
starting point of Newton’s method.
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SOLUTIONS

SOLUTION 9.1 NEWTON’S METHOD IN ONE DIMENSION

a. In order not to create an infinite while loop if Newton’s method does not con-
verge, the simplest way is to use a for loop even if you have to exit it when con-
vergence is reached:

def newton1d(F, DF, x0, eps=1e-12, N=10000):
x = x0
for i in range(N):

# calculate F(x) and DF(x)
Fx = F(x)
DFx = DF(x)
# test if the precision is sufficient
if abs(Fx) < eps:

return x
# test that the derivative is not too small
if abs(DFx) < eps:

raise Exception(f"Derivative DF = {DFx} too
small")↪

# otherwise Newton's iteration
x -= Fx/DFx

# if the loop ends, one has not converged (yet)
raise Exception(f"The error after {N} iterations is

{abs(Fx)} > {eps}")↪

b. The equation 𝑒𝑒−𝑥𝑥 = 𝑥𝑥 can be put in the form 𝐹𝐹(𝑥𝑥) = 0 with 𝐹𝐹(𝑥𝑥) = 𝑒𝑒−𝑥𝑥 − 𝑥𝑥:

import math
F = lambda x: math.exp(-x)-x
DF = lambda x: -math.exp(-x)-1
newton1d(F, DF, 1)

c. Just solve the equation 𝑡𝑡𝑛𝑛 = 𝑥𝑥 with Newton’s method:

def racine(x,n):
F = lambda t: t⁎⁎n - x
DF = lambda t: n⁎t⁎⁎(n-1)
return newton1d(F, DF, x)

To test:

[racine(17,i) for i in range(1,17)]
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d. The assignment of a tuple allows to get rid of a temporary variable:

def secant1d(F, x0, x1, eps=1e-12, N=10000):
x_ = x0 # old x
x = x1 # new x
for i in range(N):

# calculate F(x)
Fx = F(x)
Fx_ = F(x_)
# test if the precision is sufficient
if abs(Fx) < eps:

return x
# test that the derivative is not too small
if abs(Fx-Fx_) < eps:

raise Exception(f"Approximate derivative {Fx-Fx_}
too small")↪

# otherwise secant iteration
x, x_ = (x_⁎Fx - x⁎Fx_)/(Fx - Fx_), x

# if the loop ends, one has not converged (yet)
raise Exception(f"The error after {N} iterations is

{abs(Fx)} > {eps}")↪

secant1d(F, 0, 1)

SOLUTION 9.2 NEWTON’S METHOD IN SEVERAL
DIMENSIONS

a. The choice is made to treat 𝒙𝒙 as a NumPy vector, which allows the use of the
NumPy linear system solver:

import numpy as np
def newton(F, DF, x0, eps=1e-12, N=10000):

x = x0.copy()
for i in range(N):

# calculate F(x) and DF(x)
Fx = F(x)
DFx = DF(x)
# test if the precision is sufficient
if np.linalg.norm(Fx) < eps:

return x
# test that the derivative is not too small
if np.linalg.norm(DFx) < eps:

raise Exception(f"Derivative |DF| =
{np.linalg.norm(DFx)} too small")↪

# solve d = DFx^{-1} Fx then Newton's iteration
x -= np.linalg.solve(DFx, Fx)

# if the loop ends, one has not converged (yet)
raise Exception(f"The error after {N} iterations is

{np.linalg.norm(Fx)} > {eps}")↪
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b. The previous equation can be written as 𝐹𝐹(𝒙𝒙) = 𝟎𝟎 with:

𝐹𝐹(𝑥𝑥𝑥 𝑥𝑥) = (cos𝑥𝑥 − sin 𝑥𝑥
𝑒𝑒−𝑥𝑥 − cos 𝑥𝑥 ) 𝑥

Thus:

𝐹𝐹′(𝑥𝑥𝑥 𝑥𝑥) = (−sin𝑥𝑥 −cos 𝑥𝑥
−𝑒𝑒−𝑥𝑥 sin 𝑥𝑥 ) 𝑥

and therefore:

F = lambda x: np.array([np.cos(x[0]) - np.sin(x[1]),
np.exp(-x[0]) - np.cos(x[1])])↪

DF = lambda x: np.array([[-np.sin(x[0]), -np.cos(x[1])],
[-np.exp(-x[0]), np.sin(x[1])]])↪

newton(F, DF, np.array([0.,0.]))

SOLUTION 9.3 NEWTON’S METHOD ATTRACTOR

a. The previously defined function does not need to be modified:

F = lambda z: z⁎⁎3-1
DF = lambda z: 3⁎z⁎⁎2
[newton1d(F, DF, z0, eps=1e-15) for z0 in

[1,1+2j,-3-1j,-3+1j]]↪

b. First we define the set of 𝑧𝑧0:

nb = 100
lst = np.linspace(-3,3,nb)
x0, y0 = np.meshgrid(lst,lst)
z0 = x0 + 1j⁎y0

Then, we build the set of results of Newton’s iterations:

out = z0.copy()
for i in range(nb):

for j in range(nb):
out[i,j] = newton1d(F, DF, z0[i,j])

Finally, using Matplotlib, we represent the argument of each complex number to
obtain Figure 9.1:

import matplotlib.pyplot as plt
plt.figure(figsize=(6,6))
plt.title("Newton's method as a function of $z_0$")
plt.xlabel(r"$\Re(z_0)$")
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plt.ylabel(r"$\Im(z_0)$")
plt.imshow(np.angle(out), extent=[-3,3,-3,3])

The conclusion is that in a neighborhood of each of the three roots, Newton’s
method converges well toward this root; on the contrary, as soon as one moves
too far away from one of the roots, then Newton’s method can converge toward
one or the other of the roots in a fractal way.
c.An array of the same size as 𝑧𝑧0 is iterated successively. To gain evenmore speed,
only the entries of the array that have not yet converged are iterated:

def parallel(z0, eps=1e-12, N=1000):
z = z0.copy()
# boolean array of the z that have not diverged
cond = np.abs(z⁎⁎3-1) > eps
# iterations
for i in range(N):

# select the z that have not converged
cond[cond] = np.abs(z[cond]⁎⁎3-1) > eps
# terminate when all z have converged
if cond.any() == False:

return z
# Newton's iteration
z[cond] = 1/(3⁎z[cond]⁎⁎2) + 2⁎z[cond]/3

# some z have not converged
raise Exception("Some z have not converged")

For 1 000× 1 000 values of 𝑧𝑧0, the method computing the iterates for each 𝑧𝑧0 sep-
arately and successively takes about 10 seconds to complete. The current method
takes about 0.4 seconds to compute the result:

out = parallel(z0)

This can be used to generate a high-resolution fractal:

# calculate the points
nb = 4000
lst = np.linspace(-3,3,nb)
x0, y0 = np.meshgrid(lst,lst)
z0 = x0 + 1j⁎y0
out = parallel(z0)
# create the figure with 1 pixel per calculated point
fig = plt.figure(figsize=(nb/100,nb/100))
ax = fig.add_axes([0, 0, 1, 1])
ax.axis('off')
ax.imshow(np.angle(out))
ax.set(xlim=[0, nb], ylim=[nb, 0], aspect=1)
plt.savefig('newton.png', dpi=100, transparent=True)
plt.clf()
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SOLUTION 9.4 NONLINEAR DIFFERENTIAL EQUATION (!!)

a. With the Taylor’s theorem,

𝑢𝑢(𝑥𝑥 + ℎ) = 𝑢𝑢(𝑥𝑥) + 𝑢𝑢′(𝑥𝑥)ℎ + 1
2𝑢𝑢

′′(𝑥𝑥)ℎ2 + 1
6𝑢𝑢

′′′(𝑥𝑥)ℎ3 + 𝑂𝑂(ℎ4) ,

𝑢𝑢(𝑥𝑥 − ℎ) = 𝑢𝑢(𝑥𝑥) − 𝑢𝑢′(𝑥𝑥)ℎ + 1
2𝑢𝑢

′′(𝑥𝑥)ℎ2 − 1
6𝑢𝑢

′′′(𝑥𝑥)ℎ3 + 𝑂𝑂(ℎ4) ,

and therefore:

𝑢𝑢(𝑥𝑥 + ℎ) − 2𝑢𝑢(𝑥𝑥) + 𝑢𝑢(𝑥𝑥 − ℎ) = 𝑢𝑢′′(𝑥𝑥)ℎ2 + 𝑂𝑂(ℎ4) .

b. This is the perfect example of how to use the linspace function of NumPy:

N = 200
x = np.linspace(0,2⁎np.pi,N+1)
h = x[1]-x[0]

c. Mathematically the function 𝐹𝐹 is defined by:

𝐹𝐹(𝒖𝒖) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑢𝑢0
𝑢𝑢0 − 2𝑢𝑢1 + 𝑢𝑢2

ℎ2
+ 𝑢𝑢31 − sin(𝑥𝑥1)

𝑢𝑢1 − 2𝑢𝑢2 + 𝑢𝑢3
ℎ2

+ 𝑢𝑢32 − sin(𝑥𝑥2)
⋮

𝑢𝑢𝑁𝑁−2 − 2𝑢𝑢𝑁𝑁−1 + 𝑢𝑢𝑁𝑁
ℎ2

+ 𝑢𝑢3𝑁𝑁−1 − sin(𝑥𝑥𝑁𝑁−1)
𝑢𝑢𝑁𝑁

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and is therefore implemented in the following way:

def F(u):
# result
out = np.zeros_like(u)
# second order finite difference
upp = (u[:-2] - 2⁎u[1:-1] + u[2:])/h⁎⁎2
# define F inside the interval
out[1:-1] = upp + u[1:-1]⁎⁎3 - np.sin(x[1:-1])
# force zero on the boundaries of the interval (this

should always be the case)↪

out[0] = u[0]
out[-1] = u[-1]
return out
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d. Mathematically the Jacobian is given by:

𝐹𝐹′(𝒖𝒖) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0
1
ℎ2

− 2
ℎ2

+ 3𝑢𝑢21
1
ℎ2

0 0 0

0 1
ℎ2

− 2
ℎ2

+ 3𝑢𝑢22 ⋱ 0 0

0 0 ⋱ ⋱ 1
ℎ2

0

0 0 0 1
ℎ2

− 2
ℎ2

+ 3𝑢𝑢2𝑁𝑁−1
1
ℎ2

0 0 0 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and therefore:

def DF(u):
# matrix of the second order derivative
A = -2⁎np.eye(N+1) + np.eye(N+1,k=1) + np.eye(N+1,k=-1)
A /= h⁎⁎2
# add the nonlinear parts on the diagonal
A += np.diag(3⁎u⁎⁎2)
# corrections due to boundary conditions
A[0,0] = 1 ; A[0,1] = 0 ; A[-1,-1] = 1 ; A[-1,-2] = 0
return A

Note that this implementation is not optimal when 𝑁𝑁 is very large. Indeed, the
Jacobianmatrix is tridiagonal and so it is useless to store thewholematrix; storing
the three diagonals is enough. This can be done using the sparsematrices defined
in the sparsemodule of SciPy.
e. Startingwith the initial data𝑢𝑢0(𝑥𝑥) = 0 forNewton’smethod,wefind a solution:

u0 = np.zeros(N+1)
sol = newton(F, DF, u0, eps=1e-8)
plt.plot(x,sol)

By changing the initial data to 𝑢𝑢0(𝑥𝑥) = (1 + 𝑘𝑘) sin(𝑘𝑘𝑥𝑥) for 𝑘𝑘 = 1, 2, 3, 4, then we
get other solutions as shown in Figure 9.2:

plt.figure(figsize=(8,5))
plt.title(r"Solutions of the ODE $u^{\prime\prime} + u^3 =

\sin(x)$")↪

for k in range(1,5):
u0 = (1+k)⁎np.sin(k⁎x)
sol = newton(F, DF, u0, eps=1e-8)
plt.plot(x, sol, label = f"{k}")
plt.xticks([0,np.pi/2, np.pi, 3⁎np.pi/2,2⁎np.pi],

[r'$0$',r'$\frac{\pi}{2}$', r'$\pi$',
r'$\frac{3\pi}{2}$', r'$2\pi$'])

↪

↪
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plt.xlim([0,2⁎np.pi])
plt.legend()

Figure 9.2 First solutions of the nonlinear differential equation 𝑢𝑢′′ + 𝑢𝑢3 = 0.
There seems to be a discrete infinity of solutions.
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C H A P T E R 10

Probability and
Statistics

In a first step, the statistics of the proportion of numbers beginning with a certain
digit will be studied. Then in a second step, important probabilistic models will
be introduced and simulated, such as random walks, illustrations of the central
limit theorem, or percolation.

Concepts covered

∙ statistics and probability

∙ random harmonic series

∙ random walk

∙ central limit theorem

∙ random vectors

∙ percolation

∙ phase transition

∙ histograms

∙ optimization by compilation
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EXERCISES

EXERCISE 10.1 HARMONIC SERIES OF RANDOM SIGN

The goal of this exercise is to simulate the convergence of a harmonic series
whose sign is drawn randomly. More precisely, if (𝑋𝑋𝑖𝑖)𝑖𝑖∈ℕ is a sequence of inde-
pendent random variables worth −1 or 1 with probability 1

2
, then we define the

partial sum:

𝑊𝑊0 = 0 , 𝑊𝑊𝑛𝑛 =
𝑛𝑛∑

𝑖𝑖=1

𝑋𝑋𝑖𝑖
𝑖𝑖 ,

and the question is to determine if the sequence (𝑊𝑊𝑛𝑛)𝑛𝑛∈ℕ converges and if so
toward what.
a. Write a function sign() that simulates the random variable 𝑋𝑋𝑖𝑖 .
b. Write a function simulate(n) that returns a realization of (𝑊𝑊0,𝑊𝑊1,… ,𝑊𝑊𝑛𝑛).
c. Plot the function 𝑛𝑛 ↦ 𝑊𝑊𝑛𝑛 for different realizations, for example, for 0 ≤ 𝑛𝑛 ≤
1 000 and make a conjecture about the convergence of the sequence (𝑊𝑊𝑛𝑛)𝑛𝑛∈ℕ.
d. ! Determine the histogram of𝑊𝑊1 000 for 104 or 105 realizations to get an idea of
the law of the limiting random variable.

EXERCISE 10.2 GAMBLER’S RUIN

The goal is to simulate the evolution of the amount ofmoney of a gambler playing
heads or tails. At each toss, the player wins one euro if it is heads and loses one
if it is tails. The probability of getting tails is noted 𝑝𝑝, that of getting heads 𝑞𝑞. In
particular, 𝑝𝑝 = 𝑞𝑞 = 1

2
if the coin is balanced.

Mathematically, the sum 𝑆𝑆𝑖𝑖 owned by the player at time 𝑖𝑖 is given by a random
walk:

𝑆𝑆𝑖𝑖 = {0 , if 𝑆𝑆𝑖𝑖−1 = 0 ,
𝑆𝑆𝑖𝑖−1 + 𝑋𝑋𝑖𝑖 , if 𝑆𝑆𝑖𝑖−1 ≥ 1 ,

where (𝑋𝑋𝑖𝑖)𝑖𝑖 are independent random variables of law ℙ(𝑋𝑋𝑖𝑖 = 1) = 𝑝𝑝 and ℙ(𝑋𝑋𝑖𝑖 =
−1) = 𝑞𝑞.
a. Write a function simulate(p,k,N) that generates a realization of length 𝑁𝑁
of the process from 𝑆𝑆0 = 𝑘𝑘, i.e., returns (𝑆𝑆0, 𝑆𝑆1, 𝑆𝑆2,… , 𝑆𝑆𝑁𝑁). Represent graphically
several realizations.
b. Simulate a player who, starting with a sum 𝑘𝑘, plays until he loses everything
or has the amount 𝑛𝑛 ≥ 𝑘𝑘.
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EXERCISES

EXERCISE 10.1 HARMONIC SERIES OF RANDOM SIGN

The goal of this exercise is to simulate the convergence of a harmonic series
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particular, 𝑝𝑝 = 𝑞𝑞 = 1
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where (𝑋𝑋𝑖𝑖)𝑖𝑖 are independent random variables of law ℙ(𝑋𝑋𝑖𝑖 = 1) = 𝑝𝑝 and ℙ(𝑋𝑋𝑖𝑖 =
−1) = 𝑞𝑞.
a. Write a function simulate(p,k,N) that generates a realization of length 𝑁𝑁
of the process from 𝑆𝑆0 = 𝑘𝑘, i.e., returns (𝑆𝑆0, 𝑆𝑆1, 𝑆𝑆2,… , 𝑆𝑆𝑁𝑁). Represent graphically
several realizations.
b. Simulate a player who, starting with a sum 𝑘𝑘, plays until he loses everything
or has the amount 𝑛𝑛 ≥ 𝑘𝑘.
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c. If 𝑇𝑇 is the time at which the game stops, i.e., when 𝑆𝑆𝑇𝑇 = 0 or 𝑆𝑆𝑇𝑇 = 𝑛𝑛, recover
by simulation the theoretical results on the average time:

𝔼𝔼(𝑇𝑇) =
⎧

⎨
⎩

𝑘𝑘(𝑛𝑛 − 𝑘𝑘) , if 𝑝𝑝 = 𝑞𝑞 ,
𝑛𝑛

𝑝𝑝 − 𝑞𝑞
1 − 𝜌𝜌𝑘𝑘
1 − 𝜌𝜌𝑛𝑛 −

𝑘𝑘
𝑝𝑝 − 𝑞𝑞 , if 𝑝𝑝 ≠ 𝑞𝑞 ,

and the place of exit:

ℙ(𝑆𝑆𝑇𝑇 = 0) =
⎧

⎨
⎩

𝑛𝑛 − 𝑘𝑘
𝑛𝑛 , if 𝑝𝑝 = 𝑞𝑞 ,

𝜌𝜌𝑘𝑘 − 𝜌𝜌𝑛𝑛
1 − 𝜌𝜌𝑛𝑛 , if 𝑝𝑝 ≠ 𝑞𝑞 ,

where 𝜌𝜌 = 𝑞𝑞∕𝑝𝑝. For this, we can plot these quantities as a function of 𝑝𝑝 or just
consider the case 𝑝𝑝 = 𝑞𝑞 = 1

2
.

EXERCISE 10.3 PÓLYA URN

An urn initially contains (at 𝑡𝑡 = 0) 𝑟𝑟0 red balls and 𝑏𝑏0 white balls. At each time,
we pick a ball uniformly at random from the urn. This ball is then returned to
the urn and a ball of the same color is added. Such a system is called a Pólya urn.
The purpose of this exercise is to study the behavior of the fraction of red balls in
the urn, i.e., the number of red balls out of the total number. We will call 𝑟𝑟𝑛𝑛 and
𝑏𝑏𝑛𝑛, respectively, the number of red and white balls in the urn at time 𝑛𝑛.
a.Write a function density taking as argument a tuple representing the number
of red and white balls in an urn, and which returns the density of red balls.

We want to recursively construct the distribution of the number of red balls at
time 𝑛𝑛, i.e., the list of probabilities that the number of red balls is equal to a given
integer 𝑘𝑘 (which will be the index of the list). This is done by writing two func-
tions: next_dist_red, which takes as argument the distribution at time 𝑛𝑛 and
returns the one at time 𝑛𝑛 + 1, which is thus the function that does all the work,
and dist_red, which is the wrapper function, taking as argument 𝑟𝑟0, 𝑏𝑏0, and
time 𝑛𝑛 and returning the distribution at time 𝑛𝑛 by a recursive call. We will use
the following useful facts (make a small drawing):

∙ The distribution passed as an argument to next_dist_red is a list r, and
r[k] represents the probability of having k red balls in the urn at time 𝑛𝑛.
The indices for r vary from 0 to the total number s of balls at time 𝑛𝑛.

∙ At time 𝑛𝑛 + 1, to have 𝑘𝑘 red balls, we need:

– either having had 𝑘𝑘 red balls at the previous time and not having
drawn a red ball;
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– or having had 𝑘𝑘−1 red balls at the previous time and having drawn a
red ball.

∙ If 𝑛𝑛 = 0, the result of dist_red is completely deterministic and the coeffi-
cients of the list are only 0 and 1, depending on 𝑟𝑟0 and 𝑏𝑏0.

b. Write the functions next_dist_red and dist_red using the directions pro-
vided. Look at the result of dist_red(0,1,n) and dist_red(1,1,n) for differ-
ent values of n (1, 2, 5, 10, 20,… ) and comment.

Rather than theoretically computing for each 𝑛𝑛 the sequence of theoretical prob-
abilities, we will do statistics on a large number of Pólya urn realizations after a
large number of steps. For this, we need a function to evolve a Pólya urn.
c. Define a function polya_step(r,b) which, given the composition of an urn
passed as two parameters r and b, returns the (random) evolution after one step
of the composition of the urn as a tuple. Also define a function polya(r0,b0,N)
taking as arguments 𝑟𝑟0, 𝑏𝑏0, and𝑁𝑁 as parameters and returning the (random) com-
position of a Pólya urn after 𝑁𝑁 steps, also as a tuple.
d. Write a function data_rdens_polya(r0,b0,N,nbexp) that returns a list of
length nbexp containing the densities of nbexp realizations of Pólya urns at time
N initialized with r0 red balls and b0 white balls.
e. Store the result of data_rdens_polya(2,3,1000,10_000) in a variable and
draw a histogram to see the distribution of densities. Be careful, we want the
heights of the bars to be normalized so that their surface represents the propor-
tion of points, and not so that they give the number of points per bin.
Hint: A good rule of thumb is to choose the number of bins for a histogram of the
order of the square root of the number of points. See the documentation of the hist
function of Matplotlib.

EXERCISE 10.4 CENTRAL LIMIT THEOREM

The central limit theorem establishes the convergence of the sum of a sequence
of random variables toward the normal distribution. Intuitively, this result states
that a sum of identical and independent random variables tends (under certain
conditions) toward a Gaussian random variable. Here’s how it works:

Theorem: Let (𝑋𝑋𝑛𝑛) be a sequence of independent real random variables of the
same distribution with expectation 𝜇𝜇 and standard deviation 𝜎𝜎 ≠ 0. Let (�̄�𝑋𝑛𝑛) be
the sequence defined by:

�̄�𝑋𝑛𝑛 =
1
𝑛𝑛

𝑛𝑛∑

𝑘𝑘=1
𝑋𝑋𝑘𝑘 .

For 𝑛𝑛 large enough, the distribution of �̄�𝑋𝑛𝑛 can be approximated by the normal
distribution𝒩𝒩(𝜇𝜇, 𝜎𝜎

2

𝑛𝑛
).
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The aim of this exercise is to check whether this theorem is valid for different
laws of probability:

∙ Poisson distribution: discrete distribution on ℕ, of parameter 𝜆𝜆, defined
by:

ℙ(𝑋𝑋 = 𝑘𝑘) = exp(−𝜆𝜆)𝜆𝜆
𝑘𝑘

𝑘𝑘! , ∀𝑘𝑘 ∈ ℕ .

∙ Normal distribution: continuous distribution onℝ, of parameters𝑚𝑚 and
𝜎𝜎, defined by density:

1
√
2𝜋𝜋𝜎𝜎2

exp (−(𝑥𝑥 −𝑚𝑚)2
2𝜎𝜎2 ) , ∀𝑥𝑥 ∈ ℝ .

∙ Cauchy distribution: continuous distribution on ℝ, of parameters 𝑎𝑎 and
𝛾𝛾, defined by density:

1

𝜋𝜋𝛾𝛾 (1 + (𝑥𝑥−𝑎𝑎
𝛾𝛾
)
2
)
, ∀𝑥𝑥 ∈ ℝ .

a. Define a function normal_density(x, mu var) taking as an argument :

∙ x (array): an array of floating-point numbers;

∙ mu (floating number): average 𝜇𝜇;

∙ var (strictly positive floating number): variance 𝜎𝜎2;

andwhich returns the density of the normal distribution evaluated for each num-
ber 𝑥𝑥 in x:

𝒩𝒩(𝜇𝜇, 𝜎𝜎2) = 1
√
2𝜋𝜋𝜎𝜎2

exp (−
(𝑥𝑥 − 𝜇𝜇)2

2𝜎𝜎2 ) .

b. Look at the documentation for the numpy.random.poisson function and gen-
erate 10 random values according to Poisson distribution with parameter 𝜆𝜆 = 2.
c. Write a function samples_poisson(lam, N, M) which takes as arguments:

∙ lam (strictly positive real): parameter 𝜆𝜆 for the Poisson distribution;

∙ N (strictly positive integer): number of experiments;

∙ M (strictly positive integer): number of random variables generated for each
experiment;

and which generates N experiments with M random variables generated per ex-
periment, and returns:

∙ the average value (floating number) over the N ⁎ M random variables
generated;
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∙ the standard deviation (floating number) on the N ⁎ M random variables
generated;

∙ a numpy vector of size N where each element is the mean of the random
variables in an experiment.

For the values lam=2 and N=10_000, run samples_poisson(lam, N, M) for
𝑀𝑀 ∈ {10, 100, 1 000} and save the results in variables.
d. For each value of M, display the distribution of the numpy vector containing
the means of each experiment, as well as the distribution of the expected normal
distribution if the central limit theorem is verified. You can use Matplotlib hist
function to display the histogramof a table, with the bins=50 parameter to set the
number of columns and density=True to display a probability distribution. Use
the empirical means and standard deviations returned by the samples_poisson
function for normal distribution parameters. Choose relevant values for the x-axis
boundary values. Make a hypothesis on the validity of the central limit theorem
for the Poisson distribution.
e. Repeat questions c. and d. for the normal distribution. Using the function nu
mpy.random.normal, generate averages for loc=2, scale=1, N=10_000, and𝑀𝑀 ∈

the central limit theorem for the normal distribution.
f. Repeat questions c. and d. for the Cauchy distribution with 𝑎𝑎 = 0 and 𝛾𝛾 = 1.
To do this, use the function numpy.random.standard_cauchy. Use bins=np. ⌋
arange(-10, 10.1, 0.1) and make an assumption about the validity of the
central limit theorem for the Cauchy distribution.

EXERCISE 10.5 RANDOM GENERATION OF UNIT VECTORS

The aim of this exercise is to find an efficient method for randomly generating
unit vectors in ℝ𝑛𝑛 according to a uniform distribution. We will start with the
case 𝑛𝑛 = 2, where a real vector can be represented by a complex number.
a. Consider the following strategy for randomly generating a unit vector in ℝ2:

1. Generate 𝑥𝑥 randomly according to the uniform distribution on [−1, 1];

2. Generate 𝑦𝑦 randomly according to the uniform distribution on [−1, 1];

3. Return the unit complex 𝑧𝑧 = 𝑥𝑥√
𝑥𝑥2+𝑦𝑦2

+ 𝑦𝑦√
𝑥𝑥2+𝑦𝑦2

𝑖𝑖.

Write a function generate_complex which takes as argument a positive inte-
ger 𝑁𝑁 and returns a NumPy array of size 𝑁𝑁, where each element is a complex
generated by the above strategy.
Hint: It is much more efficient to generate 𝑁𝑁 random variables directly using the
size argument of the function numpy.random.uniform than to generate them one
by one with a for loop.

{10, 100, 1 000}. Plot the histograms and make a hypothesis about the validity of
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{10, 100, 1 000}. Plot the histograms and make a hypothesis about the validity of
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b. For 𝑛𝑛 = 2, one way to check whether the distribution of vectors is uniform is to
look at the distribution of angles/arguments of the complex numbers (i.e., arg 𝑧𝑧):
this should be uniform. Use the generate_complex function with 𝑁𝑁 = 106 and
display the distribution of angles/arguments. Does the strategy described in the
previous question generate unit vectors uniformly?
Hint: You can use the function numpy.angle.
c. The following modification to the previous strategy is proposed:

1. Generate 𝑥𝑥 randomly according to the uniform distribution on [−1, 1];

2. Generate 𝑦𝑦 randomly according to the uniform distribution on [−1, 1];

3. If 𝑥𝑥2 + 𝑦𝑦2 ≤ 1, return the unit complex 𝑧𝑧 = 𝑥𝑥√
𝑥𝑥2+𝑦𝑦2

+ 𝑦𝑦√
𝑥𝑥2+𝑦𝑦2

𝑖𝑖 (otherwise
return nothing at all).

Write a function generate_complex_monte_carlo which takes as argument a
positive integer𝑁𝑁 corresponding to the number of candidate vectors and returns
a NumPy array of size 𝑛𝑛 ≤ 𝑁𝑁, where each element is a complex generated by
the above strategy.Warning: 𝑛𝑛 is random and therefore cannot be determined
in advance.
Repeat the previous question and display the angle/argument distribution of the
complexes generated by this strategy. Does this strategy generate unit vectors uni-
formly?
d. We now ask how many candidate complexes must be generated on average
to accept 𝑛𝑛 of them, which is equivalent to determining how many complexes
are accepted on average from the𝑁𝑁 candidates. The law of large numbers means
that the ratio converges to the probability that a candidate vectorwill be accepted.
This probability is equal to the ratio of the inclusion area 𝜋𝜋 (the unit circle) to the
total area 4 (the square [−1, 1]2), i.e., 𝜋𝜋

4
. Compare the ratio 𝑛𝑛

𝑁𝑁
to 𝜋𝜋

4
.

e. We now consider the general case 𝑛𝑛 ≥ 2. The strategy considered is the same
as in question c.:

1. Generate a vector 𝒙𝒙 = (𝑥𝑥1,… , 𝑥𝑥𝑛𝑛), where each 𝑥𝑥𝑘𝑘 is randomly and inde-
pendently generated according to the uniform distribution on [−1, 1];

2. If ‖𝒙𝒙‖2 ≤ 1, return the unit vector 𝒙𝒙
‖𝒙𝒙‖2

.

The volume of the unit ball in ℝ𝑛𝑛 is given by:

𝑉𝑉𝑛𝑛 =
𝜋𝜋𝑛𝑛∕2

Γ(𝑛𝑛
2
+ 1)

and the volume of the cube [−1, 1]𝑛𝑛 is 2𝑛𝑛. Plot the probability of a vector being
accepted in step 2 of this strategy for 𝑛𝑛 ∈ {2,… , 20}. Do you think this strategy is
effective for large 𝑛𝑛 values?
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Hint: We can use scipy.special.gamma for the Γ function and the function scat
ter of Matplotlib to graphically display the values of a sequence with an adapted
scale.
f. The following strategy can be shown to generate random vectors on ℝ𝑛𝑛:

1. Generate a vector 𝒙𝒙 = (𝑥𝑥1,… , 𝑥𝑥𝑛𝑛), where each 𝑥𝑥𝑘𝑘 is generated randomly
and independently according to the reduced centered normal distribution:
𝑥𝑥𝑘𝑘 ∼𝒩𝒩(0, 1);

2. Return the unit vector 𝒙𝒙
‖𝒙𝒙‖2

.

Verify for 𝑛𝑛 = 2 that this strategy does indeed randomly generate unit vectors
according to a uniform distribution by displaying the angle distribution (repre-
senting the vectors as complex numbers) for 𝑁𝑁 = 106 vectors.
Hint: You can use the function numpy.random.standard_normal.

EXERCISE 10.6 PERCOLATION (!!)

The goal is to study a percolation model in a porous medium. The medium is
modeled by a random matrix of Booleans that determines which sites can be in-
vaded bywater andwhich are impermeable. Amatrix percolates if there is awater
path from the top row to the bottom row. In the examples in Figure 10.1, the en-
tries of amatrix that can be percolated are colored and the entries that are actually
filled with water are in blue.

Figure 10.1 The matrix on the left does not percolate while the one on the right
does.
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a. Write a function generate(n,p) that generates a matrix of Booleans of size
𝑛𝑛 × 𝑛𝑛 such that each entry has probability 𝑝𝑝 of being right and 1 − 𝑝𝑝 of being
wrong.
Hint: The random.binomial function of NumPy can be useful.
b. Define a function fill(isopen) that for a given Boolean matrix returns an-
other Boolean matrix with the entries invaded by water.
Hint: Define a Boolean matrix isfull to store whether an input is filled with wa-
ter or not, and then define a recursive function flow(isopen, isfull, i, j) to
invade all possible inputs from (𝑖𝑖𝑖 𝑖𝑖).
c. Using Matplotlib, represent the filling of different randomly generated matri-
ces.
d. Define a function percolate(isopen) to determine whether a Boolean ma-
trix is percolating or not.
e. !! Calculate the time needed to determine if amatrix of size 50×50with 𝑝𝑝 = 0.9
is percolating or not. Read the documentation of the Numba module to reduce
the calculation time by compiling one of the functions: https://numba.pydata
.org/.
Hint: The function that is most used is the recursive function, so it is the one that
should be optimized when compiling it.
f. By doing statistics, determine the probability that a Boolean random matrix of
size 𝑛𝑛 × 𝑛𝑛 with probability 𝑝𝑝 will percolate. Study this probability as a function
of 𝑝𝑝 and 𝑛𝑛.
Hint: Plot this percolation probability as a function of 𝑝𝑝 for different values of 𝑛𝑛.
Answer: In the limit of 𝑛𝑛 very large, a matrix almost surely percolates if 𝑝𝑝 𝑝
0.592746 and almost never otherwise.
g. !!! The statistics performed in the previous point are a typical example of calcu-
lations that can be easily executed in parallel because each case is independent
of the others. Parallelize the previous algorithm in such a way as to use all the
cores of your processor, for example, with the help of the module mpi4py.
Hint: Using Jupyter Lab to do parallel computing is quite complex to implement, it
is better to use the command line to run a script in parallel, for example, for four
cores: mpirun -n 4 script.py. Note that OpenMPI orMPICHmust be installed
on the computer.

https://numba.pydata.org
https://numba.pydata.org
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SOLUTIONS

SOLUTION 10.1 HARMONIC SERIES OF RANDOM SIGN

a. It is sufficient to test whether a number generated uniformly in [0, 1] is smaller
or larger than 1

2
:

import random
random.seed(1234567)
def sign():

if random.random() < 1/2:
return 1

else:
return -1

b. Using the definition:

def simulate(n):
W = [0]
for i in range(1,n+1):

W.append(W[i-1]+sign()/i)
return W

c.Taking𝑛𝑛 ≤ 1 000, the sequence (𝑊𝑊𝑛𝑛)𝑛𝑛∈ℕ seems to converge as suggested in Fig-
ure 10.2, but at each realization to another limit:

n = 1000
plt.figure(figsize=(8,5))
plt.title(f"Simulations of $W_n$ of length {n}")
plt.xlabel("$n$")
for i in range(5):

plt.plot(simulate(n), label=f"Realization {i}")
plt.legend()

d. We start by generating a list of 𝑘𝑘 realizations of𝑊𝑊𝑛𝑛:

n = 1000; k = 10⁎⁎5
lst = [simulate(n)[-1] for i in range(k)]

then we plot the histogram represented in Figure 10.3 to get an idea of the limit:

plt.figure(figsize=(8,5))
plt.title(f"Law of $W_{{{n}}}$ for {k} realizations")
plt.xlabel(f"$W_{{{n}}}$")
plt.hist(lst, bins=100, density=True)
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plt.legend()

d. We start by generating a list of 𝑘𝑘 realizations of𝑊𝑊𝑛𝑛:

n = 1000; k = 10⁎⁎5
lst = [simulate(n)[-1] for i in range(k)]

then we plot the histogram represented in Figure 10.3 to get an idea of the limit:

plt.figure(figsize=(8,5))
plt.title(f"Law of $W_{{{n}}}$ for {k} realizations")
plt.xlabel(f"$W_{{{n}}}$")
plt.hist(lst, bins=100, density=True)
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Figure 10.2 Simulations of different realizations of the random sign sequence.
The sequence seems to converge, but the value of the limit depends on the real-
ization.

Figure 10.3 Representation of an approximation of the law of𝑊𝑊1 000 for 105 re-
alizations.
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SOLUTION 10.2 GAMBLER’S RUIN

a. First, we define a function that represents the random variable 𝑋𝑋:

def rand(p):
if random.random() < p:

return 1
else:

return -1

then a function that simulates the gambler’s sum:

def simulate(p,k,N):
S = [k]
for i in range(N):

X = rand(p)
Snew = S[-1] + X
S.append(Snew)
if Snew == 0: break

return S

Finally, to represent several trajectories as in Figure 10.4:

p = 1/2; k = 10; N = 1000
plt.figure(figsize=(8,5))
plt.title(f"Processes of length $N$ with p = {p} and k =

{k}")↪

for i in range(5):
plt.plot(simulate(p,k,N), label=f"Realization {i}")

plt.legend()

b. The idea is almost identical:

def process(p,k,n):
S = [k]
while True:

X = rand(p)
Snew = S[-1] + X
S.append(Snew)
if Snew == 0 or Snew == n: break

return S

This generates Figure 10.5:

p = 1/2; k = 10; n = 20
plt.figure(figsize=(8,5))
plt.title(f"Process with p = {p}, k = {k} and n = {n}")
for i in range(5):

plt.plot(process(p,k,n), label=f"Realization {i}")
plt.legend()
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Figure 10.4 Plot of some trajectories in time for the gambler’s ruin. On the cho-
sen time window, some realizations already end up at zero, while others have not
yet lost everything.

Figure 10.5 Trajectories of the ruin of the player who stops when he has won
more than 𝑛𝑛 = 20.
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c. First of all, we define a function that returns the time and place of exit of a
process:

def len_last(sim):
return [len(sim), sim[-1]]

ThususingNumPy,wedefine a function that performs𝑁𝑁 simulations and returns
the average of the exit time and the average of the exit location:

def experimental(p,k,n,N):
lst = np.array([len_last(process(p,k,n)) for _ in

range(N)])↪

mean_time = np.mean(lst[:,0])
exit_proba = 1 - np.mean(lst[:,1])/n
return [mean_time, exit_proba]

Then, we define the theoretical values for the same thing:

def theory(p,k,n):
if p == 0.5:

mean_time = k⁎(n-k)
exit_proba = (n-k)/n

else:
q = 1-p
rho = q/p
mean_time = n/(p-q)⁎(1-rho⁎⁎k)/(1-rho⁎⁎n) - k/(p-q)
exit_proba = (rho⁎⁎k-rho⁎⁎n)/(1-rho⁎⁎n)

return [mean_time,exit_proba]

To simulate the whole thing:

k = 10; n = 20; N = 1000;
p = np.linspace(1/1000,1-1/1000,100)
exp = np.array([experimental(v,k,n,N) for v in p])
the = np.array([theory(v,k,n) for v in p])

The empiricalmean absorption time and probability of ruin follow the theoretical
values well, as shown in Figure 10.6:

fig = plt.figure(figsize=(16,6))
plt.suptitle(f"For k = {k} and n = {n}")
# generate the two figures at the same time
for i,title in [(0, "Mean absorption time"), \

(1, "Probability of ruin")]:
sub = fig.add_subplot(1,2,1+i)
sub.set_title(title)
sub.set_xlabel("p")
sub.plot(p,exp[:,i], label=f"{N} simulations")
sub.plot(p,the[:,i], label="Theory")
sub.legend()
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Figure 10.6 Empirical and theoretical probability of the duration of the game as
well as of the ruin.

SOLUTION 10.3 PÓLYA URN

a. Simply divide the number of red balls by the total number of balls:

def density(nb_boules):
r,b = nb_boules
return r/(r+b)

b. The function that allows you to move forward in time:

def dist_next_red(r):
s = len(r) # number of balls at time n+1
rnext = [0.0]⁎(s+1)
rnext[0] = r[0] # 0 unless no red balls
rnext[s] = r[s-1] # in fact 0 unless at least one white

ball↪

for i in range(1,s):
rnext[i] = r[i-1]⁎(i-1)/(s-1)+r[i]⁎(s-1-i)/(s-1)

return rnext

and the recursive function to obtain the distribution at time 𝑛𝑛:

def dist_red(r0,b0,n):
if n==0:

res = [0.0]⁎(r0+b0+1)
res[r0] = 1
return res

else:
return dist_next_red(dist_red(r0,b0,n-1))
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The conclusion is that when we start with one red ball and one white ball, the
distribution of the number of red balls seems uniform over the values from 1 to
𝑛𝑛 − 1:

dist_red(1,1,20)

To illustrate this, it is possible to plot the distributions in different cases, as shown
in Figure 10.6:

plt.figure(figsize=(8,5))
for i in (0, 1):

for j,n in enumerate([1, 2, 5, 10]):
plt.subplot(4, 2, 1+2⁎j+i)
plt.bar(np.arange(n+i+2), dist_red(i,1,n))
plt.xticks(np.arange(n+i+2))
plt.title(f'dist_red({i}, 1, {n})')

Figure 10.7 Representation of the theoretical distribution of a Pólya urn at times
1, 2, 5, and 10 from a single blue ball or a ball of each color.
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c. The function to take a step back in time:

def polya_step(r,b):
u = random.random()
if u<r/(r+b): # has pick a red ball

return (r+1,b)
else:

return (r,b+1)

and the function to simulate a Pólya urn:

def polya(r0,b0,N):
r,b = r0,b0
for i in range(N):

r,b = polya_step(r,b)
return (r,b)

d. Just run nbexp Pólya urns and put the results in a list:

def data_rdens_polya(r0,b0,N,nbexp):
return [density(polya(r0,b0,N)) for _ in range(nbexp)]

e. The hist function of Matplotlib allows to compare the empirical and theoret-
ical distributions as in Figure 10.8:

r0 = 2; b0 = 3; N = 1000;
data = data_rdens_polya(r0,b0,N,10_000)
theory = np.array(dist_red(r0,b0,N))
plt.figure(figsize=(8,5))
plt.title(f"Distribution of the amount of red balls\n with

initially {r0} red balls and {b0} white balls")↪

plt.hist(data, 100, density=True, label="Empirical
distribution")↪

plt.plot(np.linspace(0,1,len(theory)), len(theory)⁎theory,
label="Theoretical distribution")↪

plt.legend()
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Figure 10.8 Comparison between empirical and theoretical distributions for the
proportion of red balls with initially two red and three white balls. The empirical
distribution indeed follows the theoretical distribution.

SOLUTION 10.4 CENTRAL LIMIT THEOREM

a. Essentially, it’s a matter of copying the formula using NumPy’s functions:

def normal_density(x, mu, var):
return 1 / (np.sqrt(2⁎np.pi⁎var)) ⁎ np.exp(-(x-mu)⁎⁎2 /

(2⁎var))↪

b. The historic way is to use:

np.random.poisson(lam=2, size=10)

The modern way is to use a generator:

rng = np.random.default_rng()
rng.poisson(lam=2, size=10)

c. This involves using the mean function with the axis=1 argument to average
over the second dimension:

def samples_poisson(lam, N, M):
sim = rng.poisson(lam=lam, size=(N, M))
return sim.mean(), sim.std(), sim.mean(axis=1)
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lam = 2 ; N = 10_000 ; Mliste = (10,100,1000)
poisson = [samples_poisson(lam, N, M) for M in Mliste]

d. Take the previously generated data and plot the histogram and normal distri-
bution with the empirical parameters mean and standard deviation:

plt.figure(figsize=(8, 2.5))
for i,result in enumerate(poisson):

plt.subplot(1, 3, i+1)
M = Mliste[i]
mean,std,data = result
rstd = std/np.sqrt(M) # renormalized standard

deviation↪

plt.title(f"M = {M}")
plt.hist(data, bins=50, density=True)
x = np.linspace(0, 4, 501)
y = normal_density(x, mean, rstd⁎⁎2)
plt.plot(x, y)
plt.xlim((2-5⁎rstd,2+5⁎rstd))

The conclusion seems to be that the central limit theorem is satisfied for the Pois-
son distribution, as shown in Figure 10.9.

Figure 10.9 Histograms for the Poisson distribution with the corresponding nor-
mal distribution for various numbers𝑀𝑀 of simulated random variables.

e. The first step is to generate the samples:

def samples_normal(loc, scale, N, M):
sim = rng.normal(loc=loc, scale=scale, size=(N, M))
return sim.mean(), sim.std(), sim.mean(axis=1)

loc = 2 ; scale = 1
normal = [samples_normal(loc, scale, N, M) for M in Mliste]
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The second stage is identical:

plt.figure(figsize=(8, 2.5))
for i,result in enumerate(normal):

plt.subplot(1, 3, i+1)
M = Mliste[i]
plt.title(f"M = {M}")
mean,std,data = result
rstd = std/np.sqrt(M)
plt.hist(data, bins=50, density=True)
x = np.linspace(0, 4, 501)
y = normal_density(x, mean, rstd⁎⁎2)
plt.plot(x, y)
plt.xlim((2-5⁎rstd,2+5⁎rstd))

The conclusion is that the central limit theorem seems to be very well verified for
the normal distribution, as represented in Figure 10.10, and this independently
of the choice of𝑀𝑀.

Figure 10.10 Histograms for the normal distribution for various numbers𝑀𝑀 of
simulated random variables.

f. The first step is virtually identical:

def echantillons_cauchy(N, M):
sim = rng.standard_cauchy(size=(N, M))
return sim.mean(), sim.std(), sim.mean(axis=1)

cauchy = [echantillons_cauchy(N, M) for M in Mliste]

To plot histograms with intervals of length 0.1, bins must be set explicitly:

plt.figure(figsize=(8, 2.5))
for i,result in enumerate(cauchy):

plt.subplot(1, 3, i+1)
M = Mliste[i]
plt.title(f"M = {M}")
mean,std,data = result
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rstd = std/np.sqrt(M)
plt.hist(data, bins=np.arange(-10, 10.1, 0.1),

density=True)↪

x = np.linspace(0, 4, 501)
y = normal_density(x, mean, rstd⁎⁎2)
plt.plot(x, y)

These results shown in Figure 10.11 seem to indicate that the central limit theo-
rem is not valid for Cauchy’s law. This is indeed the case, as Cauchy’s law has no
expectation, so even the weak law of large numbers is invalid.

Figure 10.11 Histograms for the Cauchy distribution for various numbers𝑀𝑀 of
simulated random variables. The central limit theorem is not verified.

SOLUTION 10.5 RANDOM GENERATION OF UNIT VECTORS

a. Simply copy the formulas above:

def generate_complex(N):
V = rng.uniform(-1, 1, N) + 1j ⁎ rng.uniform(-1, 1, N)
V /= np.abs(V)
return V

b. The easiest way is to use Matplotlib hist function to plot the histogram:

plt.hist(np.angle(generate_complex(N=1_000_000)),
bins='auto', density=True)↪

The resulting histogram is shown in Figure 10.12. The unit vectors generated in
this way are not uniformly distributed. Vectors with angles close to 𝜋𝜋

4
± 𝑘𝑘𝜋𝜋

2
are

more likely to be generated than vectors with angles close to 0 ± 𝑘𝑘𝜋𝜋
2
because the

corresponding surface area is higher.
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Figure 10.12 Distribution of angles/arguments of complex numbers generated
with the algorithm done in a.

c. With NumPy indexing, the third step is easy:

def generate_complex_monte_carlo(N):
V = rng.uniform(-1, 1, N) + 1j ⁎ rng.uniform(-1, 1, N)
V_abs = np.abs(V)
V = V[V_abs <= 1.] / V_abs[V_abs <= 1.]
return V

plt.hist(np.angle(generate_complex_monte_carlo(N=1_000_000)),
bins='auto', density=True)↪

d. This is the relationship between the size of the array returned by the previous
function and 𝑁𝑁:

N = 1_000_000
abs(generate_complex_monte_carlo(N).size / N - np.pi / 4)

e. The probability of a vector being accepted is the quotient between the volume
of the unit ball 𝑉𝑉𝑛𝑛 and the volume 2𝑛𝑛 of the cube [−1, 1]𝑛𝑛:

from scipy.special import gamma
n = np.arange(2, 41)
volumes = np.pi⁎⁎(n/2) / gamma(n/2 + 1)
probabilities = volumes / (2⁎⁎n)
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To represent this probability in logarithmic scale:

plt.scatter(n, probabilities)
plt.yscale('log')
plt.ylim((1e-21, 10))

This strategy is clearly not effective: for𝑛𝑛 = 40, you need to generate an average of
around 1021 candidates to accept just one! And this number only increases with
higher values of 𝑛𝑛.
f. The idea is the same as above:

N = 1_000_000
V = rng.standard_normal(N) + 1j ⁎ rng.standard_normal(N)
V /= np.abs(V)

and for the histogram:

plt.hist(np.angle(V), bins='auto', density=True)

SOLUTION 10.6 PERCOLATION (!!)

a.We create a randommatrix with zeros and ones usingNumPy and then convert
it to a Boolean matrix:

rng = np.random.default_rng(123456)
def generate(n,p):

# random matrix of 0 and 1 with probability p and (1-p)
A = rng.binomial(1,p,(n,n))
# convert to Boolean matrix
return A==1

b. First, we define a recursive function allowing to invade all the sites from (𝑖𝑖𝑖 𝑖𝑖):

def flow(isopen, isfull, i, j):
m,n = isopen.shape
# invalid row
if i < 0 or i >= m: return
# invalid column
if j < 0 or j >= n: return

# site not open
if not isopen[i,j]: return
# site already filled
if isfull[i,j]: return
# mark the site as filled
isfull[i,j] = True

# invades adjacent sites
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flow(isopen, isfull, i, j+1)
flow(isopen, isfull, i, j-1)
flow(isopen, isfull, i+1, j)
flow(isopen, isfull, i-1, j)

Finally, we just have to initialize an isfull matrix and fill it with the elements
of the first row:

def fill(isopen):
# generate a matrix of False of the size of isopen
isfull = np.zeros_like(isopen, dtype=bool)
# flow starting from each element of the first row
for j in range(isopen.shape[1]):

flow(isopen, isfull, 0, j)
return isfull

c. A new color bar is defined to color the non-invaded elements black and the
invaded ones blue as in Figure 10.13:

import matplotlib
cmap = matplotlib.colors.ListedColormap(['w','k','b'])
fig = plt.figure(figsize=(8,5))
for i in range(6):

sub = fig.add_subplot(2,3,i+1)
A = generate(10,0.6)
sub.matshow(1⁎A+1⁎fill(A), cmap=cmap)

fig.tight_layout()

d. To decide if a matrix is percolating, we only need to test if at least one element
of the last row is filled:

def percolate(isopen):
# fill the matrix
isfull = fill(isopen)
# test if a site of the last row is filled
for j in range(isfull.shape[1]):

if isfull[-1,j]: return True
# if no filled sites on last row
return False

e. The typical execution time of:

%%timeit
A = generate(50,0.9)
percolate(A)

is about 16 ms. The recursive function flow being clearly the most used one, let’s
see what happens if we decide to compile it with Numba:
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fig = plt.figure(figsize=(8,5))
for i in range(6):

sub = fig.add_subplot(2,3,i+1)
A = generate(10,0.6)
sub.matshow(1⁎A+1⁎fill(A), cmap=cmap)

fig.tight_layout()

d. To decide if a matrix is percolating, we only need to test if at least one element
of the last row is filled:

def percolate(isopen):
# fill the matrix
isfull = fill(isopen)
# test if a site of the last row is filled
for j in range(isfull.shape[1]):

if isfull[-1,j]: return True
# if no filled sites on last row
return False

e. The typical execution time of:

%%timeit
A = generate(50,0.9)
percolate(A)

is about 16 ms. The recursive function flow being clearly the most used one, let’s
see what happens if we decide to compile it with Numba:
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from numba import jit
@jit
def flow(isopen, isfull, i, j):

m,n = isopen.shape
# invalid row
if i < 0 or i >= m: return
# invalid column
if j < 0 or j >= n: return

# site not open
if not isopen[i,j]: return
# site already filled
if isfull[i,j]: return
# mark the site as filled
isfull[i,j] = True

# invades adjacent sites
flow(isopen, isfull, i, j+1)
flow(isopen, isfull, i, j-1)
flow(isopen, isfull, i+1, j)
flow(isopen, isfull, i-1, j)

then:

%%timeit
A = generate(50,0.9)
percolate(A)

is executed in 590 µs, which is about 30 times faster.
The use of Numba allows to greatly improve the efficiency of functions that can-
not be parallelized using NumPy.
f.First, a function to determine the percolation probability of amatrix of size 𝑛𝑛×𝑛𝑛
with probability 𝑝𝑝 on average over 𝑁𝑁 realizations:

def stats(n,p,N):
out = np.zeros(N, dtype=bool)
for i in range(N):

out[i] = percolate(generate(n,p))
return np.mean(out)

and then to plot as a function of 𝑝𝑝 as in Figure 10.14 :

N = 10_000
# list of probabilities
p = np.linspace(0,1,100)
# list of n
n = [10,50,100]
plt.figure(figsize=(8,5))
plt.title(f"Percolation probability for $N = {N}$")
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plt.xlabel(r"$p$")
plt.ylim(-0.1,1.1)
# new curve for each value of n
for i in n:

data = np.vectorize(lambda p: stats(i,p,N))(p)
plt.plot(p, data, label=f"n = {i}")

plt.legend()

We can clearly see that the larger the 𝑛𝑛 is, the more the probability of percolation
has a jump. In the limit where 𝑛𝑛 is very large, this probability is a jump function:
it is a phase transition.

Figure 10.13 In this example, three matrices percolate and three others do not.
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Figure 10.14 Empirical probability of percolation over 𝑁𝑁 = 104 realizations of a
matrix of size 𝑛𝑛 × 𝑛𝑛 as a function of the filling probability 𝑝𝑝. The larger the 𝑛𝑛 is,
the steeper the transition.
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Differential Equations

The goal is to introduce the basic methods for solving first-order ordinary differ-
ential equations of the type:

�̇�𝒙(𝑡𝑡) = 𝑓𝑓(𝑡𝑡𝑡𝒙𝒙(𝑡𝑡)) 𝑡 𝒙𝒙(0) = 𝒙𝒙0 𝑡

where 𝑓𝑓 ∶ ℝ+ × ℝ𝑛𝑛 → ℝ𝑛𝑛 is a smooth enough function and 𝒙𝒙0 ∈ ℝ𝑛𝑛 is an
initial data. Note that higher-order ordinary differential equations can be put in
the previous first-order form.

Concepts covered

∙ Euler’s methods

∙ Runge-Kutta methods

∙ nonlinear partial differential equation

∙ finite differences

∙ adaptive methods

166 DOI: 10.1201/9781003565451-11

https://doi.org/10.1201/9781003565451-11


C H A P T E R 11

Differential Equations

The goal is to introduce the basic methods for solving first-order ordinary differ-
ential equations of the type:

�̇�𝒙(𝑡𝑡) = 𝑓𝑓(𝑡𝑡𝑡𝒙𝒙(𝑡𝑡)) 𝑡 𝒙𝒙(0) = 𝒙𝒙0 𝑡

where 𝑓𝑓 ∶ ℝ+ × ℝ𝑛𝑛 → ℝ𝑛𝑛 is a smooth enough function and 𝒙𝒙0 ∈ ℝ𝑛𝑛 is an
initial data. Note that higher-order ordinary differential equations can be put in
the previous first-order form.

Concepts covered

∙ Euler’s methods

∙ Runge-Kutta methods

∙ nonlinear partial differential equation

∙ finite differences

∙ adaptive methods

166 DOI: 10.1201/9781003565451-11

Differential Equations ■ 167

EXERCISES

EXERCISE 11.1 EULER’S METHODS

The simplest idea to approximate an ordinary differential equation is to discretize
time with a step ℎ and approximate the time derivative on each interval of length
ℎ. There are two simple ways to approximate the time derivative. The first is the
forward finite difference approximation:

�̇�𝒙(𝑡𝑡) ≈ 𝒙𝒙(𝑡𝑡 + ℎ) − 𝒙𝒙(𝑡𝑡)
ℎ ,

the second, the backward finite difference:

�̇�𝒙(𝑡𝑡) ≈ 𝒙𝒙(𝑡𝑡) − 𝒙𝒙(𝑡𝑡 − ℎ)
ℎ .

The unknowns being the evaluations of the solution 𝒙𝒙 at times 𝑡𝑡𝑖𝑖 = 𝑖𝑖ℎ for 𝑖𝑖 ≥ 0,
i.e., 𝒙𝒙𝑖𝑖 = 𝒙𝒙(𝑡𝑡𝑖𝑖). The differential equation can thus be approximated using forward
finite differences by:

𝒙𝒙𝑖𝑖+1 − 𝒙𝒙𝑖𝑖
𝑡𝑡𝑖𝑖+1 − 𝑡𝑡𝑖𝑖

= 𝑓𝑓(𝑡𝑡𝑖𝑖,𝒙𝒙𝑖𝑖) ,

which gives the explicit Euler formula:

𝒙𝒙𝑖𝑖+1 = 𝒙𝒙𝑖𝑖 + (𝑡𝑡𝑖𝑖+1 − 𝑡𝑡𝑖𝑖)𝑓𝑓(𝑡𝑡𝑖𝑖,𝒙𝒙𝑖𝑖) .

With the backward finite difference approximation, we obtain the implicit Euler
method (also called backward Euler method):

𝒙𝒙𝑖𝑖 = 𝒙𝒙𝑖𝑖−1 + (𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1)𝑓𝑓(𝑡𝑡𝑖𝑖,𝒙𝒙𝑖𝑖) .

On the one hand, the explicit Euler formula allows to compute directly all 𝒙𝒙𝑖𝑖 by
recurrence knowing 𝒙𝒙0. On the other hand, the implicit Euler formula requires
at each time step the resolution of a nonlinear equation for 𝒙𝒙𝑖𝑖 , for example, with
the Newton’s method.
a. Write a function euler_explicit(f,x0,t) that given an initial data x0 re-
turns the values 𝒙𝒙0,𝒙𝒙1,… ,𝒙𝒙𝑚𝑚 computed with the explicit Euler method at times
(𝑡𝑡𝑖𝑖)𝑚𝑚𝑖𝑖=0 represented by the vector t.
b. Use the explicit Euler method to solve the differential equation:

�̇�𝑥(𝑡𝑡) + 𝑥𝑥(𝑡𝑡) = sin(𝑡𝑡) , 𝑥𝑥(0) = 1 ,

for 𝑡𝑡 ∈ [0, 10]. Compare the results with the exact solution:

𝑥𝑥(𝑡𝑡) = 1
2
(
sin(𝑡𝑡) − cos(𝑡𝑡) + 3𝑒𝑒−𝑡𝑡

)
,

for different time discretizations.
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c. Solve the previous problem with the implicit Euler method.
Hint: Since the previous equation is linear, we can actually make the implicit Euler
method explicit by solving the implicit equation by hand.
d. !! Define a function euler_implicit(f, Dxf, x0, t) implementing the im-
plicit Euler method for nonlinear equations. Note that to solve the nonlinear
problem with Newton’s method, the derivative of 𝑓𝑓 according to 𝒙𝒙 is required.
Hint: It is also possible to use the root finding algorithm optimize.fsolve from
SciPy that does not require to know the derivative of 𝑓𝑓.
e. ! Use the previous methods to find an approximate solution of the system:

�̇�𝑥(𝑡𝑡) + cos(𝑦𝑦(𝑡𝑡)) = sin(𝑡𝑡) , 𝑥𝑥(0) = 1 ,
�̇�𝑦(𝑡𝑡) + cos(𝑥𝑥(𝑡𝑡)) = 0 , 𝑦𝑦(0) = 0 .

EXERCISE 11.2 RUNGE-KUTTA METHODS

The purpose of this exercise is to introduce a class ofmethodsmore accurate than
Euler’s methods for solving ordinary differential equations. Instead of doing a
first order approximation in ℎ the idea is to do a higher-order approximation of
the derivative.
The basic idea is to construct a sequence 𝒙𝒙𝑖𝑖 giving an approximation of the solu-
tion of �̇�𝒙(𝑡𝑡) = 𝑓𝑓(𝑡𝑡,𝒙𝒙) at time 𝑡𝑡𝑖𝑖 for 𝑖𝑖 ∈ ℕ. This sequence is defined by:

𝒙𝒙𝑖𝑖+1 = 𝒙𝒙𝑖𝑖 +𝑀𝑀(𝑡𝑡𝑖𝑖,𝒙𝒙𝑖𝑖 , 𝑡𝑡𝑖𝑖+1 − 𝑡𝑡𝑖𝑖) ,

for a certain function 𝑀𝑀 called method. For example, for the explicit Euler
method, the function𝑀𝑀 is given by:

𝑀𝑀(𝑡𝑡,𝒙𝒙, ℎ) = ℎ𝑓𝑓(𝑡𝑡,𝒙𝒙) .

A Runge-Kutta method of order two is given by:

𝑀𝑀(𝑡𝑡,𝒙𝒙, ℎ) = ℎ𝑓𝑓(𝑡𝑡 + ℎ
2 ,𝒙𝒙 +

ℎ
2𝑓𝑓(𝑡𝑡,𝒙𝒙)) .

A Runge-Kutta method of order four is given by:

𝑀𝑀(𝑡𝑡,𝒙𝒙, ℎ) = ℎ
6
(
𝒌𝒌1 + 2𝒌𝒌2 + 2𝒌𝒌3 + 𝒌𝒌4

)
,

where

𝒌𝒌1 = 𝑓𝑓(𝑡𝑡,𝒙𝒙) ,

𝒌𝒌2 = 𝑓𝑓(𝑡𝑡 + ℎ
2 ,𝒙𝒙 +

ℎ
2𝒌𝒌1) ,

𝒌𝒌3 = 𝑓𝑓(𝑡𝑡 + ℎ
2 ,𝒙𝒙 +

ℎ
2𝒌𝒌2) ,

𝒌𝒌4 = 𝑓𝑓(𝑡𝑡 + ℎ,𝒙𝒙 + ℎ𝒌𝒌3) .
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Note that more generally, a Runge-Kutta method of order 𝑠𝑠 is given by:

𝑀𝑀(𝑡𝑡𝑡𝒙𝒙𝑡 ℎ) = ℎ
𝑠𝑠∑

𝑖𝑖=1
𝑏𝑏𝑖𝑖𝒌𝒌𝑖𝑖 𝑡

where

𝒌𝒌1 = 𝑓𝑓(𝑡𝑡𝑡𝒙𝒙) 𝑡
𝒌𝒌2 = 𝑓𝑓(𝑡𝑡 + 𝑐𝑐2ℎ𝑡𝒙𝒙 + ℎ𝑎𝑎21𝒌𝒌1) 𝑡
𝒌𝒌3 = 𝑓𝑓(𝑡𝑡 + 𝑐𝑐3ℎ𝑡𝒙𝒙 + ℎ(𝑎𝑎31𝒌𝒌1 + 𝑎𝑎32𝒌𝒌2)) 𝑡

⋮
𝒌𝒌𝑠𝑠 = 𝑓𝑓(𝑡𝑡 + 𝑐𝑐𝑠𝑠ℎ𝑡𝒙𝒙 + ℎ(𝑎𝑎𝑠𝑠1𝒌𝒌1 + 𝑎𝑎𝑠𝑠2𝒌𝒌2 +⋯ + 𝑎𝑎𝑠𝑠𝑡𝑠𝑠−1𝒌𝒌𝑠𝑠−1)) .

The coefficients 𝑎𝑎𝑖𝑖𝑖𝑖 (for 1 ≤ 𝑖𝑖 𝑗 𝑖𝑖 ≤ 𝑠𝑠), 𝑐𝑐𝑖𝑖 (for 2 ≤ 𝑖𝑖 ≤ 𝑠𝑠), and 𝑏𝑏𝑖𝑖 (for 1 ≤ 𝑖𝑖 ≤ 𝑠𝑠)
are often represented in a Butcher table:

0
𝑐𝑐2 𝑎𝑎21
𝑐𝑐3 𝑎𝑎31 𝑎𝑎32
⋮ ⋮ ⋱
𝑐𝑐𝑠𝑠 𝑎𝑎𝑠𝑠1 𝑎𝑎𝑠𝑠2 ⋯ 𝑎𝑎𝑠𝑠𝑡𝑠𝑠−1

𝑏𝑏1 𝑏𝑏2 ⋯ 𝑏𝑏𝑠𝑠−1 𝑏𝑏𝑠𝑠

For example, the Butcher array from the previous method of order two is:

0
1
2

1
2

0 1

and that of the fourth order method:

0
1
2

1
2

1
2

0 1
2

1 0 0 1
1
6

1
3

1
3

1
6

a. Define a function integrate(f, x0, t, M) which for a given list of times
(𝑡𝑡𝑖𝑖)𝑁𝑁𝑖𝑖=0 returns the corresponding values 𝒙𝒙0𝑡𝒙𝒙1𝑡… 𝑡𝒙𝒙𝑁𝑁 with method𝑀𝑀.
b. Implement the functions M(f,t,x,h) for the explicit Euler method and the
Runge-Kutta method of order two. Compare the two methods.
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c. Implement the function M(f,t,x,h) for the Runge-Kutta method of order
four. Compare with the second-order method.

EXERCISE 11.3 MOVEMENT OF A PLANET

The goal is to simulate the two-dimensional motion of a planet orbiting around
a fixed star. The star is supposed to be fixed at the origin and the position of the
planet in the plane is described by the vector 𝒙𝒙 ∈ ℝ2. The star is supposed to
interact with the planet with the potential:

𝑉𝑉(𝒙𝒙) = 1
𝛼𝛼 |𝒙𝒙|

𝛼𝛼 ,

for a certain 𝛼𝛼 ∈ ℝ, where |𝒙𝒙| denotes the euclidean norm of the vector 𝒙𝒙. Note
that the gravitational potential corresponds to 𝛼𝛼 = −1. The equation of the planet
in this force field is given by:

�̈�𝒙 = −𝛁𝛁𝑉𝑉(𝒙𝒙) = −𝒙𝒙|𝒙𝒙|𝛼𝛼−2 .

a.Rewrite the second-order differential equation as a first-order differential equa-
tion for 𝒙𝒙 and 𝒑𝒑 = �̇�𝒙.
b. Implement the function f(t,xp) corresponding to the equation found in the
previous point.
c. Using the Runge-Kutta method of fourth order, solve the differential equation
for different initial data and different values of 𝛼𝛼 and plot the 𝒙𝒙(𝑡𝑡) trajectories in
the plane. Interpret the results and explain in particular why the cases 𝛼𝛼 = −1
and 𝛼𝛼 = 2 are different from the others.

EXERCISE 11.4 LORENZ ATTRACTOR

The Lorenz model is a system of three coupled differential equations of the form

�̇�𝑥 = 𝜎𝜎(𝑦𝑦 − 𝑥𝑥) ,
�̇�𝑦 = 𝑥𝑥(𝜌𝜌 − 𝑧𝑧) − 𝑦𝑦 ,
�̇�𝑧 = 𝑥𝑥𝑦𝑦 − 𝛽𝛽𝑧𝑧 ,

where𝜌𝜌, 𝜎𝜎, 𝛽𝛽 are three real parameters. This is a very simplifiedmodel of coupling
between the atmosphere and the ocean proposed in 1963 by Edward Lorenz.
a. Write mathematically the expression of the function 𝑓𝑓 ∶ ℝ × ℝ3 allowing to
put the Lorenz system in the form

�̇�𝒙 = 𝑓𝑓(𝑡𝑡,𝒙𝒙) ,

where 𝒙𝒙 is the vector (𝑥𝑥, 𝑦𝑦, 𝑧𝑧). Implement a function f(t,x,rho,sigma,beta)
corresponding to the function 𝑓𝑓.
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for different initial data and different values of 𝛼𝛼 and plot the 𝒙𝒙(𝑡𝑡) trajectories in
the plane. Interpret the results and explain in particular why the cases 𝛼𝛼 = −1
and 𝛼𝛼 = 2 are different from the others.

EXERCISE 11.4 LORENZ ATTRACTOR

The Lorenz model is a system of three coupled differential equations of the form

�̇�𝑥 = 𝜎𝜎(𝑦𝑦 − 𝑥𝑥) ,
�̇�𝑦 = 𝑥𝑥(𝜌𝜌 − 𝑧𝑧) − 𝑦𝑦 ,
�̇�𝑧 = 𝑥𝑥𝑦𝑦 − 𝛽𝛽𝑧𝑧 ,

where𝜌𝜌, 𝜎𝜎, 𝛽𝛽 are three real parameters. This is a very simplifiedmodel of coupling
between the atmosphere and the ocean proposed in 1963 by Edward Lorenz.
a. Write mathematically the expression of the function 𝑓𝑓 ∶ ℝ × ℝ3 allowing to
put the Lorenz system in the form

�̇�𝒙 = 𝑓𝑓(𝑡𝑡,𝒙𝒙) ,

where 𝒙𝒙 is the vector (𝑥𝑥, 𝑦𝑦, 𝑧𝑧). Implement a function f(t,x,rho,sigma,beta)
corresponding to the function 𝑓𝑓.
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b.Write a function plot_lorenz(rho,sigma,beta)which for given parameters
𝜌𝜌𝜌 𝜌𝜌𝜌 𝜌𝜌, plots the trajectory (𝑥𝑥(𝑡𝑡)𝜌 𝑧𝑧(𝑡𝑡)) for 𝑡𝑡 ∈ [0𝜌 20] from the initial data 𝒙𝒙0 =
(𝑥𝑥0𝜌 𝑦𝑦0𝜌 𝑧𝑧0) = (1𝜌 1𝜌 1). Use, for example, the Runge-Kutta method of order four
with a time step ∆𝑡𝑡 = 0.001. Test with 𝜌𝜌 = 10, 𝜌𝜌 = 8∕3, and the values 𝜌𝜌 =
10𝜌 15𝜌 20𝜌 25, and describe what is observed.
c. Using SymPy, determine the stationary solutions according to the parameters
𝜌𝜌𝜌 𝜌𝜌𝜌 𝜌𝜌, i.e., the solutions of 𝑓𝑓(𝑡𝑡𝜌𝒙𝒙) = 𝟎𝟎 for all 𝑡𝑡 𝑡 0. Interpret the previous graphs
in the light of this.

EXERCISE 11.5 CUBIC WAVE EQUATION (!!)

The goal is to solve numerically the nonlinear wave equation on ℝ:

−𝜕𝜕
2𝑢𝑢
𝜕𝜕𝑡𝑡2

+ 𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

= 𝑢𝑢3 𝜌 𝑢𝑢(0𝜌 ⋅) = 𝑢𝑢0 𝜌
𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡 (0𝜌 ⋅) = 𝑣𝑣0 𝜌

for 𝑢𝑢 ∶ ℝ+ ×ℝ→ ℝ with 𝑢𝑢0𝜌 𝑣𝑣0 ∶ ℝ→ ℝ two given functions.
Remark: The properties of this seemingly simple equation are very poorly un-
derstood mathematically, see the following research article for more details:
doi:10.2140/apde.2012.5.411.

a. Rewrite the previous equation as two first-order equations in time for 𝑢𝑢 and
𝑣𝑣 = 𝜕𝜕𝑢𝑢

𝜕𝜕𝑡𝑡
.

b. By approximating the second derivative in space by finite differences as in Ex-
ercise 9.4, show that the equation can be approximated as follows:

𝜕𝜕𝑢𝑢𝑛𝑛
𝜕𝜕𝑡𝑡 = 𝑣𝑣𝑛𝑛 𝜌 𝑢𝑢𝑛𝑛(0) = 𝑢𝑢0(𝑥𝑥𝑛𝑛) 𝜌

𝜕𝜕𝑣𝑣𝑛𝑛
𝜕𝜕𝑡𝑡 =

𝑢𝑢𝑛𝑛−1 − 2𝑢𝑢𝑛𝑛 + 𝑢𝑢𝑛𝑛+1
ℎ2

− 𝑢𝑢3𝑛𝑛 𝜌 𝑣𝑣𝑛𝑛(0) = 𝑣𝑣0(𝑥𝑥𝑛𝑛) 𝜌

where (𝑥𝑥𝑛𝑛)𝑁𝑁𝑛𝑛=0 denotes 𝑁𝑁 + 1 evenly spaced points from ℎ in the interval [−𝐿𝐿𝜌 𝐿𝐿]
and 𝑢𝑢𝑛𝑛(𝑡𝑡) = 𝑢𝑢(𝑡𝑡𝜌 𝑥𝑥𝑛𝑛) and 𝑣𝑣𝑛𝑛(𝑡𝑡) = 𝑣𝑣(𝑡𝑡𝜌 𝑥𝑥𝑛𝑛). For the conditions at the boundary of
the domain, i.e., when 𝑛𝑛 = 0 or 𝑛𝑛 = 𝑁𝑁, we take:

𝜕𝜕𝑣𝑣0
𝜕𝜕𝑡𝑡 = 0 𝜌 𝜕𝜕𝑣𝑣𝑁𝑁

𝜕𝜕𝑡𝑡 = 0 .

c. Determine the function 𝑓𝑓 ∶ ℝ2𝑁𝑁+2 → ℝ2𝑁𝑁+2 allowing to put the previous ap-
proximation in the form �̇�𝒖 = 𝑓𝑓(𝑡𝑡𝜌𝒖𝒖) for 𝒖𝒖 = (𝑢𝑢𝜌 𝑣𝑣) and implement this function.
d. Solve the differential equation given by �̇�𝒖 = 𝑓𝑓(𝑡𝑡𝜌𝒖𝒖), for example, with the
fourth-order Runge-Kutta method. A good choice of parameters is 𝐿𝐿 = 100,
𝑁𝑁 = 1 000 and for the initial data 𝑢𝑢0(𝑥𝑥) = 𝑒𝑒−𝑥𝑥2 and 𝑣𝑣0(𝑥𝑥) = 0. The speed of
propagation of the wave is one and, therefore, after a time greater than 𝐿𝐿, the
wave leaves the box [−𝐿𝐿𝜌 𝐿𝐿] and no longer corresponds to a good approximation
of the initial equation.

https://doi.org/10.2140/apde.2012.5.411


172 ■ Python Programming for Mathematics

e. Using the animationmodule of Matplotlib, make a video showing the evolu-
tion of the wave as a function of time.
Hint: Use, for example, the FFMpegWriter function.

EXERCISE 11.6 BOGACKI-SHAMPINE METHODS (!!!)

By combining two Runge-Kuttamethods of different orders (for example, (2,3) or
(4,5)), one will obtain an empirical estimate of the error over a time step. Using
this error estimate, it is possible to adapt the time step, either by increasing or
decreasing it, and thus adapt to the equation.
For a Runge-Kutta method of order 𝑠𝑠, an internal method of lower order (usually
𝑠𝑠 − 1) is given by:

𝑀𝑀∗(𝑡𝑡𝑡𝒙𝒙𝑡 ℎ) = ℎ
𝑠𝑠∑

𝑖𝑖=1
𝑏𝑏∗𝑖𝑖 𝒌𝒌𝑖𝑖 𝑡

where the 𝒌𝒌𝑖𝑖 are identical to those of the 𝑠𝑠 order method. An estimate of the error
is then given by:

𝐸𝐸(𝑡𝑡𝑡𝒙𝒙𝑡 ℎ) = 𝑀𝑀(𝑡𝑡𝑡𝒙𝒙𝑡 ℎ) −𝑀𝑀∗(𝑡𝑡𝑡𝒙𝒙𝑡 ℎ) = ℎ
𝑠𝑠∑

𝑖𝑖=1
(𝑏𝑏𝑖𝑖 − 𝑏𝑏∗𝑖𝑖 )𝒌𝒌𝑖𝑖 .

Such a method is given by an extended Butcher table:

0
𝑐𝑐2 𝑎𝑎21
𝑐𝑐3 𝑎𝑎31 𝑎𝑎32
⋮ ⋮ ⋱
𝑐𝑐𝑠𝑠 𝑎𝑎𝑠𝑠1 𝑎𝑎𝑠𝑠2 ⋯ 𝑎𝑎𝑠𝑠𝑡𝑠𝑠−1

𝑏𝑏1 𝑏𝑏2 ⋯ 𝑏𝑏𝑠𝑠−1 𝑏𝑏𝑠𝑠
𝑏𝑏∗1 𝑏𝑏∗2 ⋯ 𝑏𝑏∗𝑠𝑠−1 𝑏𝑏∗𝑠𝑠

a. Implement the Bogacki-Shampine method of order (4,5). The original article
is available at doi:10.1016/0898-1221(96)00141-1.
Hint: The coefficients of the Butcher tables are implemented in the nodepy package,
whose documentation is available at the address: https://nodepy.readthedocs
.io/. The name of the method in this package is “BS5”.

https://doi.org/10.1016/0898-1221(96)00141-1
https://nodepy.readthedocs.io
https://nodepy.readthedocs.io
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SOLUTIONS

SOLUTION 11.1 EULER’S METHODS

a. First of all, load NumPy and Matplotlib:

import numpy as np
import matplotlib.pyplot as plt

The following implementation allows to handle systems of equations, hence x is
a matrix:

def euler_explicit(f, x0, t):
# initialize the vector solution
x = np.zeros((len(t),len(x0)))
# initial data
x[0] = x0
# time stepping
for i in range(len(t)-1):

x[i+1] = x[i] + (t[i+1]-t[i])⁎f(t[i],x[i])
return x

b. For this equation, the function 𝑓𝑓 is given by:

𝑓𝑓(𝑡𝑡𝑡 𝑡𝑡) = sin(𝑡𝑡) − 𝑡𝑡 𝑥

The finer the discretization, the closer the approximated solution is to the exact
solution as in Figure 11.1:

# define problem data
f = lambda t,x : np.sin(t) - x
x0 = np.array([1])
# figure
plt.figure(figsize=(8,5))
plt.title(r"Solution of $\dot{x} + x = \sin(t)$ using the

explicit Euler method")↪

# various discretizations
for N in [10,20,50,100]:

t = np.linspace(0,10,N)
sol = euler_explicit(f, x0, t)
plt.plot(t, sol, label=f"solution with {N} points")

exact = (np.sin(t) - np.cos(t) + 3⁎np.exp(-t))/2
plt.plot(t, exact, label="exact solution")
plt.legend()

c. The implicit Euler iterations are given by:

𝑡𝑡𝑖𝑖 = 𝑡𝑡𝑖𝑖−1 + (𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1)(sin(𝑡𝑡𝑖𝑖) − 𝑡𝑡𝑖𝑖) 𝑡
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Figure 11.1 Approximation of the solution of the differential equation �̇�𝑥+𝑥𝑥 = sin
by the explicit Euler method for different discretizations.

i.e., explicitly by:

𝑥𝑥𝑖𝑖 =
1

1 + 𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1
(
𝑥𝑥𝑖𝑖−1 + (𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1) sin(𝑡𝑡𝑖𝑖)

)
.

It is then sufficient to implement this recurrence:

def solve_eq(t):
# define problem data
f = lambda x,t : np.sin(t) - x
x0 = 1
# initialize the vector solution
x = np.zeros(len(t))
# initial data
x[0] = x0
# time loop
for i in range(1,len(t)):

x[i] = (x[i-1] + (t[i]-t[i-1])⁎np.sin(t[i])) / (1 +
t[i] - t[i-1])↪

return x

By testing it, we notice in Figure 11.2 that the implicit Euler method is hardly
more accurate than the explicit one for large time steps:
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# figure
plt.figure(figsize=(8,5))
plt.title(r"Solution of $\dot{x} + x = \sin(t)$ using the

implicit Euler method")↪

# various discretizations
for N in [10,20,50,100]:

t = np.linspace(0,10,N)
sol = solve_eq(t)
plt.plot(t, sol, label=f"solution with {N} points")

exact = (np.sin(t) - np.cos(t) + 3⁎np.exp(-t))/2
plt.plot(t, exact, label="exact solution")
plt.legend()

Figure 11.2 Solving a linear differential equation by the implicit Euler method,
thus, not requiring the solution of an algebraic equation.

d. First, we recall Newton’s algorithm from Exercise 9.2 for solving a nonlinear
equation:

def newton(F, DF, x0, eps=1e-12, N=10000):
x = x0.copy()
for i in range(N):

# calculate F(x) and DF(x)
Fx = F(x)
DFx = DF(x)
# test if the precision is sufficient
if np.linalg.norm(Fx) < eps:
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return x
# test that the derivative is not too small
if np.linalg.norm(DFx) < eps:

raise Exception(f"Derivative |DF| =
{np.linalg.norm(DFx)} too small")↪

# solve d = DFx^{-1} Fx then Newton's iteration
x -= np.linalg.solve(DFx, Fx)

# if the loop ends, one has not converged (yet)
raise Exception(f"The error after {N} iterations is

{np.linalg.norm(Fx)} > {eps}")↪

The nonlinear equation to solve is given by 𝐹𝐹(𝒙𝒙𝑖𝑖) = 𝟎𝟎 for 𝐹𝐹 ∶ ℝ𝑛𝑛 → ℝ𝑛𝑛 defined
by:

𝐹𝐹(𝒙𝒙𝑖𝑖) = 𝒙𝒙𝑖𝑖 − 𝒙𝒙𝑖𝑖−1 − (𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1)𝑓𝑓(𝑡𝑡𝑖𝑖,𝒙𝒙𝑖𝑖) .
The derivative of 𝐹𝐹 is therefore given by:

𝐹𝐹′(𝒙𝒙) = 𝐼𝐼𝑛𝑛 − (𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1)𝐷𝐷𝒙𝒙𝑓𝑓(𝑡𝑡𝑖𝑖,𝒙𝒙𝑖𝑖) ,

where 𝐼𝐼𝑛𝑛 denotes the identity matrix of size 𝑛𝑛 × 𝑛𝑛 and 𝐷𝐷𝒙𝒙𝑓𝑓 the derivative of 𝑓𝑓
with respect to 𝒙𝒙 only. Then, the implicit Euler method is given by:

def euler_implicit(f, Dxf, x0, t):
# initialize the vector solution
x = np.zeros((len(t),len(x0)))
# intitial data
x[0] = x0
# time loop
for i in range(1,len(t)):

# function whose zero must be found
F = lambda xi: xi - x[i-1] - (t[i]-t[i-1])⁎f(t[i],xi)
# derivative of this function
DF = lambda xi: np.identity(len(x0)) -

(t[i]-t[i-1])⁎Dxf(t[i],xi)↪

# solution using Newton's method
x[i] = newton(F, DF, x[i-1])

return x

e. The function 𝑓𝑓 is given by:

𝑓𝑓(𝑡𝑡, 𝑡𝑡, 𝑡𝑡) = (sin(𝑡𝑡) − cos(𝑡𝑡)
− cos(𝑡𝑡) ) ,

and so its derivative with respect to 𝒙𝒙 = (𝑡𝑡, 𝑡𝑡) is given by:

𝐷𝐷𝒙𝒙𝑓𝑓(𝑡𝑡, 𝑡𝑡, 𝑡𝑡) = ( 0 sin(𝑡𝑡)
sin(𝑡𝑡) 0 ) .

So using the functions defined above, we obtain Figure 11.3:
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return x
# test that the derivative is not too small
if np.linalg.norm(DFx) < eps:
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x -= np.linalg.solve(DFx, Fx)
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{np.linalg.norm(Fx)} > {eps}")↪
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# derivative of this function
DF = lambda xi: np.identity(len(x0)) -

(t[i]-t[i-1])⁎Dxf(t[i],xi)↪

# solution using Newton's method
x[i] = newton(F, DF, x[i-1])

return x
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sin(𝑡𝑡) 0 ) .

So using the functions defined above, we obtain Figure 11.3:
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# define problem data
f = lambda t,x : np.array([np.sin(t)-np.cos(x[1]),

-np.cos(x[0])])↪

Dxf = lambda t,x : np.array([[0,
np.sin(x[1])],[np.sin(x[0]),0]])↪

x0 = np.array([1,0])
# figure
plt.figure(figsize=(8,5))
plt.title(r"Solution of $\dot{x}+\cos(y)=\sin(t)$ and

$\dot{y}+\cos(x)=0$")↪

# resolution
t = np.linspace(0,10,101)
sol = euler_explicit(f, x0, t)
plt.plot(t, sol[:,0], label=r"explicit Euler: $x(t)$")
plt.plot(t, sol[:,1], label=r"explicit Euler: $y(t)$")
sol = euler_implicit(f, Dxf, x0, t)
plt.plot(t, sol[:,0], label=r"implicit Euler: $x(t)$")
plt.plot(t, sol[:,1], label=r"implicit Euler: $y(t)$")
plt.legend()

Figure 11.3 Comparison of the explicit and implicit Euler methods for a system
of differential equations with a time step of ℎ = 0.1.
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SOLUTION 11.2 RUNGE-KUTTA METHODS

a. The code is almost identical to the one used for the explicit Euler method:

def integrate(f,x0,t,M):
# initialize vector solution
x = np.zeros((len(t),) + x0.shape)
# initial data
x[0] = x0
# time stepping
for i in range(len(t)-1):

x[i+1] = x[i] + M(f, t[i], x[i], t[i+1]-t[i])
return x

This implementation allows x to also be an array with more than one dimension.
b. The method for the explicit Euler method is:

def euler(f,t,x,h):
return h⁎f(t,x)

and that for Runge-Kutta of order two:

def rk2(f,t,x,h):
return h⁎f(t+h/2, x+h/2⁎f(t,x))

As shown in Figure 11.4, the second-order method is quite a bit more accurate
than the explicit Euler method which is of order one:

f = lambda t,x: np.sin(t) - x
x0 = np.array([1])
t = np.linspace(0,10,21)
plt.figure(figsize=(8,5))
plt.title("Comparison between explicit Euler and RK2")
for M in [euler,rk2]:

sol = integrate(f,x0,t,M)
plt.plot(t,sol,label=M.__name__)

t = np.linspace(0,10,200)
exact = (np.sin(t) - np.cos(t) + 3⁎np.exp(-t))/2
plt.plot(t,exact,label="exact")
plt.legend()

c. It is enough to calculate the 𝒌𝒌𝑖𝑖 then to sum:

def rk4(f,t,x,h):
k1 = f(t,x)
k2 = f(t+h/2, x+h/2⁎k1)
k3 = f(t+h/2, x+h/2⁎k2)
k4 = f(t+h, x+h⁎k3)
return h/6⁎(k1+2⁎k2+2⁎k3+k4)
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Figure 11.4 As expected the Runge-Kutta method of order two is more accurate
than the explicit Euler method for the same time step ℎ = 0.5.

The fourth-order method allows to be very close to the exact solution even with
a large time step, as shown in Figure 11.5:

f = lambda t,x: np.sin(t) - x
x0 = np.array([1])
t = np.linspace(0,10,10)
plt.figure(figsize=(8,5))
plt.title("Comparison between RK2 and RK4")
for M in [rk2,rk4]:

sol = integrate(f,x0,t,M)
plt.plot(t,sol,label=M.__name__)

t = np.linspace(0,10,200)
exact = (np.sin(t) - np.cos(t) + 3⁎np.exp(-t))/2
plt.plot(t,exact,label="exact")
plt.legend()
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Figure 11.5 The fourth-order Runge-Kutta method provides a practically indis-
tinguishable approximation to the exact solution even for ℎ = 1.

SOLUTION 11.3 MOVEMENT OF A PLANET

a. The equation is rewritten as a first-order system of dimension four:

�̇�𝒙 = 𝒑𝒑 , �̇�𝒑 = −𝒙𝒙|𝒙𝒙|𝛼𝛼−2 .

b. The vector xp represents the concatenation of the vectors 𝒙𝒙 and 𝒑𝒑, so the in-
dices 0 and 1 correspond to 𝒙𝒙 and the indices 2 and 3 to 𝒑𝒑:

def f(t,xp):
# result dxp=(\dot{x},\dot{p})
dxp = xp.copy()
# derivative of x
dxp[0:2] = xp[2:4]
# derivative of p
dxp[2:4] = -xp[0:2]⁎np.linalg.norm(xp[0:2])⁎⁎(alpha-2)
return dxp

c. For 𝛼𝛼 = −1 and 𝛼𝛼 = 2, the trajectories are either ellipses, circles, or hyperbolas.
For example, with 𝒙𝒙0 ∝ (1, 0) and 𝒑𝒑0 = (0, 1), we obtain Figure 11.6:

fig = plt.figure(figsize=(12,5))
fig.suptitle(r'Closed bounded orbits for $\alpha=-1$ and

$\alpha=2$')↪

# alpha=-1 and alpha=2
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for i,alpha in enumerate([-1,2]):
sub = fig.add_subplot(1,2,i+1)
sub.set_title(f"$\\alpha = {alpha}$")
for s in [0.2,0.5,0.8,1,1.2,1.5,2]:

x0 = np.array([s,0,0,1])
# adapt time intervals on the cases
if alpha==-1:

t = np.linspace(0,10⁎s⁎⁎2,10000)
elif alpha==2:

t = np.linspace(0,10,10000)
sol = integrate(f, x0, t, rk4)
sub.plot(sol[:,0], sol[:,1], label=f"$x_0={s}$")

sub.set_xlim([-2,2])
sub.set_ylim([-2,2])
sub.set_aspect('equal')
sub.legend()

Figure 11.6 For the gravitational potential (𝛼𝛼 = −1) and the harmonic potential
(𝛼𝛼 = 2), the trajectories are closed.

For other values of 𝛼𝛼, this gives Figure 11.7:

fig = plt.figure(figsize=(12,12))
fig.suptitle(r'Bounded unclosed orbits for $\alpha\neq-1$ or

$\alpha\neq2$')↪

alpha = -1.5
sub = fig.add_subplot(2,2,1)
sub.set_title(f"$\\alpha = {alpha}$")
x0 = np.array([1.1,0,0,1])
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t = np.linspace(0,500,10000)
sol = integrate(f, x0, t, rk4)
sub.plot(sol[:,0], sol[:,1])
sub.set_xlim([-3,3])
sub.set_ylim([-3,3])
sub.set_aspect('equal')

alpha = -0.5
sub = fig.add_subplot(2,2,2)
sub.set_title(f"$\\alpha = {alpha}$")
x0 = np.array([2,0,0,1])
t = np.linspace(0,500,10000)
sol = integrate(f, x0, t, rk4)
sub.plot(sol[:,0], sol[:,1])
sub.set_xlim([-4,4])
sub.set_ylim([-4,4])
sub.set_aspect('equal')

alpha = 1.5
sub = fig.add_subplot(2,2,3)
sub.set_title(f"$\\alpha = {alpha}$")
x0 = np.array([0.1,0,0,1])
t = np.linspace(0,95,10000)
sol = integrate(f, x0, t, rk4)
sub.plot(sol[:,0], sol[:,1])
sub.set_xlim([-1,1])
sub.set_ylim([-1,1])
sub.set_aspect('equal')

alpha = 4
sub = fig.add_subplot(2,2,4)
sub.set_title(f"$\\alpha = {alpha}$")
x0 = np.array([2,0,0,1])
t = np.linspace(0,95,10000)
sol = integrate(f, x0, t, rk4)
sub.plot(sol[:,0], sol[:,1])
sub.set_xlim([-2.5,2.5])
sub.set_ylim([-2.5,2.5])
sub.set_aspect('equal')

Here, the orbits are of more varied forms and are not necessarily periodic al-
though bounded. This is an illustration of Bertrand’s theorem which states that
among all central potentials, only the gravitational potential (𝛼𝛼 = −1) and the
harmonic potential (𝛼𝛼 = 2) have the property that all bounded orbits are closed.
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Figure 11.7 For non-physical potentials given by values of 𝛼𝛼 different from −1
or 2, the orbits are no longer closed and form rosettes.
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SOLUTION 11.4 LORENZ ATTRACTOR

a. We need to define the function 𝑓𝑓:

def f(t, vec, rho=28, sigma=10, beta=8/3):
x = vec[0]
y = vec[1]
z = vec[2]
return np.array([sigma⁎(y-x), x⁎(rho-z)-y, x⁎y-beta⁎z])

b. In order to be able to use the previous functions, you have to pass the param-
eters of the f function manually:

def plot_lorenz(rho=28, sigma=10, beta=8/3):
t = np.linspace(0,20,20⁎1000)
x0 = np.array([1,1,1])
sol = integrate(lambda t,x: f(t,x,rho,sigma,beta), x0, t,

rk4)↪

plt.title(f"$\\rho={rho}$, $\\sigma={sigma}$, and
$\\beta={beta:.4f}$")↪

plt.xlabel("$x$")
plt.ylabel("$z$")
plt.plot(sol[:, 0], sol[:,2])

This allows to draw the four requested trajectories represented in Figure 11.8:

fig = plt.figure(figsize=(12,10))
for i,rho in enumerate([10,15,20,25]):

sub = fig.add_subplot(2,2,i+1)
plot_lorenz(rho=rho, sigma=10, beta=8/3)

c. It is necessary to begin to load SymPy:

import sympy as sp
sp.init_printing()

then define the necessary symbols and solve the equation 𝑓𝑓(𝑡𝑡𝑡𝒙𝒙) = 𝟎𝟎:

rho = sp.Symbol(r"\rho")
sigma = sp.Symbol(r"\sigma")
beta = sp.Symbol(r"\beta")
x,y,z,t = sp.symbols("x y z t")
vec = sp.Matrix([x,y,z])
steady = sp.solve(f(t, vec, rho=rho, sigma=sigma, beta=beta),

vec)↪

steady

The conclusion is that for 𝜌𝜌 𝜌 1, there are three fixed points. The three fixed
points appear through a bifurcation represented in Figure 11.9:
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plot = None
for s in steady:

cp = sp.plot(s[0].subs(beta,8/3),(rho,0,10), show=False,
xlabel=r"$\rho$", ylabel="$x$")↪

if plot:
plot.extend(cp)

else:
plot = cp

plot.show()

SOLUTION 11.5 CUBIC WAVE EQUATION (!!)

a. The equation is equivalent to the following system:
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 𝑣𝑣 𝑣 𝜕𝜕(0𝑣 ⋅) = 𝜕𝜕0 𝑣

𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕 =

𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

− 𝜕𝜕3 𝑣 𝑣𝑣(0𝑣 ⋅) = 𝑣𝑣0 .

b. This is a direct application of Exercise 9.4.
c. The function 𝑓𝑓 is defined by:

𝑓𝑓(𝜕𝜕𝑣 𝜕𝜕𝑣 𝑣𝑣) =

⎛
⎜
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⎜
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⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝
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⎟
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⎟
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⎟
⎟
⎠

and therefore:

def f(t,uv):
# number of discretizations
N = len(uv)//2 -1
# time derivative duv = {\dot{u}, \dot{v}}
duv = np.zeros_like(uv)
# derivative of u
duv[:N+1] = uv[N+1:]
# derivative of v
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duv[N+1] = 0
duv[N+2:-1] = (uv[2:N+1] -2⁎uv[1:N] + uv[0:N-1])/h⁎⁎2 -

uv[1:N]⁎⁎3↪

duv[-1] = 0
return duv

d. Using the Euler method, the time step must be strictly smaller than the space
step to respect theCourant-Friedrichs-Lewy condition and guarantee the stability
of the scheme.Here,we choose theRunge-Kuttamethod of order fourwith a time
step that represents 90% of the space step:

N = 1000 ; L = 100
x = np.linspace(-L,L,N+1)
h = x[1]-x[0]
t = np.arange(0,L,0.9⁎h)
# initial data
uv0 = np.zeros(2⁎N+2)
uv0[0:N+1] = np.exp(-x⁎⁎2)
# resolution
sol = integrate(f,uv0,t,rk4)

e. The animationmodule of Matplotlib allows to create a video, capturing each
frame in a loop:

import matplotlib.animation as manimation
# create empty figure
fig,ax = plt.subplots(figsize=(8,5))
plot, = ax.plot([], [])
ax.set_xlim(-L, L)
ax.set_ylim(-1, 1)
# write the movie at 200dpi and 15fps
writer = manimation.FFMpegWriter(fps=15)
with writer.saving(fig, "nonlinear-wave.mp4", 200):

for i in range(len(t)):
ax.set_title(r"Solution of the non-linear wave

equation $t = {:.2f}$".format(t[i]))↪

plot.set_data(x, sol[i][0:N+1])
writer.grab_frame()

The hundredth image is represented in Figure 11.10.
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Figure 11.8 Trajectories of the Lorenz model from the initial data (𝑥𝑥0, 𝑦𝑦0, 𝑧𝑧0) =
(1, 1, 1) for various choices of parameters. For 𝜌𝜌 = 10, the trajectory seems to
converge to a point. For 𝜌𝜌 = 15, 20, the trajectory seems to converge to another
point. For 𝜌𝜌 = 25, the trajectory oscillates between two regions.
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Figure 11.9 Bifurcation diagram as a function of 𝜌𝜌. When 𝜌𝜌 𝜌 1, there are two
additional fixed points and the solution can converge to one or the other or oscil-
late around both in a chaotic way.

Figure 11.10 Solution of the cubic wave equation at 𝑡𝑡 = 18 for the initial data
𝑢𝑢0(𝑥𝑥) = 𝑒𝑒−𝑥𝑥2 and 𝑣𝑣0(𝑥𝑥) = 0.
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C H A P T E R 12

Data Science

The methodology of data science is to use available data (usally a large amount)
to answers questions. Dealingwith large number of data is not very practical with
Python’s default data structures or NumPy. First, the Pandasmodule specially de-
signed for data analysis will be presented. The Pandas documentation is available
at the address: https://pandas.pydata.org/docs/.

To load the Pandas module, it is usual to proceed as follows:

import pandas as pd

Next, real datawill be analyzed bymaking statistics on the proportion of num-
bers beginning with a certain digit, as well as determining trends. Finally, three
aspects of machine learning will be examined, with handwritten digit recogni-
tion, automatic differentiation, and the use of a neural network.

Concepts covered

∙ data import and analysis

∙ use of Pandas

∙ Benford’s law

∙ least-squares methods

∙ image classification

∙ automatic differentiation

∙ neural networks
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EXERCISES

EXERCISE 12.1 INTRODUCTION TO PANDAS

Creation: In Pandas, a data table is a DataFrame and constructing a table can be
done manually from a dictionary, for example:

df = pd.DataFrame(
{

"Name": [
"Braund, Mr. Owen Harris",
"Allen, Mr. William Henry",
"Bonnell, Miss. Elizabeth",

],
"Age": [22, 35, 58],
"Sex": ["male", "male", "female"],

}
)

In Jupyter Lab, it suffices to execute the cell:

df

to display the table. One can see here, it consists of three columns (with given
labels) and three rows that are labeled by integers by default.

Columns extraction: One single column of a DataFrame is called a Series and
can be extracted easily:

df["Age"]

On such a column, statistics can be done in a simple way, for exemple, to deter-
mine the oldest people and the mean age:

df["Age"].max(), df["Age"].mean()

Two columns can also be extracted:

df[["Age", "Sex"]]

New column creation: One can also add additional data, for example, a new
column with 100 over the ages:

df["Age inv"] = 100/df["Age"]
df
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We note that such operation are elementwise so there is no need for a loop, in the
same spirt as NumPy, even for more complex logic:

def myfunction(l):
if l["Sex"] == "male":

return l["Age"]+5
else:

return l["Age"]+2
df["Age new"] = df.apply(myfunction, axis=1)

Rows extraction: Selecting rows satisfying some criterion is very important and
quite simple, for example, people being more than 30 years old:

df[df["Age"]>30]

or female being more than 30 years old:

df[(df["Age"]>30) & (df["Sex"]=="female")]

This concept is very similar to NumPy indexing. For a more complex selection,
we could use the following syntax:

value=3
df.query('`Age inv`>@value and Sex=="male"')

Slicing: Similar to NumPy, it is possible to use slicing to select part ot the table:

df.loc[0:1, "Sex":"Age new"]

Note that the end points are included, unlike the standard Pythonmethod. How-
ever, here is slicing without endpoints:

df.iloc[0:2,3:5]

Plotting: Finally, data can be represented graphically in various ways. The sim-
plest way is to do:

df.plot(x="Name", y=["Age","Age inv"])

a. Download the World Bank’s education data in CSV format at the following
address: https://data.worldbank.org/topic/education.
b. By inspecting the previous files, extract the data required to create a two-
column table, the first containing country codes, the second country names.
Hint: Use the read_csv function to read a CSV file with Pandas.
c. Looking at the documentation of the rename and set_index functions, re-
name the column labels to code and country, then set the country code as the

https://data.worldbank.org/topic/education
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row index. The aim is that the name of the country can then be determined from
its code with the function loc["FRA"].
d. Determine the code for Zimbabwe from the table above.
e. Determine the code associated with the proportion of unemployed and the
proportion of people with at least a master’s degree from the data downloaded
above.
Hint: Search for the “Unemployment” and “Master” strings in the file Metadata_ ⌋
Indicator....
f. Plot the evolution of the unemployment rate in France.
Hint: The file API... contains a header and really only starts at line 5; use the
skiprows=4 option to ignore the header.
g.Write a function time_plot(code, countries) to plot the time evolution of
the code indicator for the countries in the countries list. Test it on the unem-
ployment rate and the proportion of people with at least a master’s degree for
different countries.

EXERCISE 12.2 BENFORD’S LAW

Benford’s law predicts that statistically in a list of given numbers, the probability
that one of these numbers begins with the digit 1 is greater than the probabil-
ity that it begins with the digit 9. More precisely, Benford’s law predicts that the
probability that a number begins with the digit 𝑑𝑑 is:

𝑝𝑝𝑑𝑑 = log10 (1 +
1
𝑑𝑑) ,

where log10 is the logarithm in base 10. It is possible to verify that Benford’s law
is the only one that remains invariant by change of units, i.e., by multiplying the
numbers of the list by a constant, the previous probabilities remain unchanged.
a. Write a function firstdigit(n) which for a given number n returns its first
digit and a function occurrences(lst) which returns the number of occur-
rences of the first digits in lst.
Hint: Make the occurrences function work even if the list contains zeros by ignor-
ing them.
b. Check if Benford’s law seems to be satisfied for the sequence of numbers
(2𝑛𝑛)𝑛𝑛∈ℕ by comparing the empirical histogram with Benford’s law.
c. Check if Benford’s law seems to be satisfied for the sequence of numbers (3𝑛𝑛+
1)𝑛𝑛∈ℕ.
d. By going to the INSEE website at the address: https://www.insee.fr/fr/st
atistiques/7631680, download the file in CSV format containing the French
population data by sex and age grouped (POP1A). Import this data to have the
population by postal code, sex, and age group.
Hint: Documentation on how to read files is available at the address: https://docs
.python.org/3/tutorial/inputoutput.html#reading-and-writing-files.

https://www.insee.fr/fr/statistiques/7631680
https://www.insee.fr/fr/statistiques/7631680
https://docs.python.org/3/tutorial/inputoutput.html#reading-and-writing-files
https://docs.python.org/3/tutorial/inputoutput.html#reading-and-writing-files
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e. Determine if the list of all populations by postal code, sex, and age follows
Benford’s law.
f. Sum the previous data to obtain the list of populations by postal code and de-
termine if it follows Benford’s law.
g. Repeat the previous two questions, but using the POP1B population file with
ungrouped ages and using Pandas.
h. !! By going to the INSEE website or elsewhere download your favorite dataset
and test if it follows Benford’s law.
Hint: Use, for example, the detailed French government accounts available at
the address: https://www.data.gouv.fr/fr/datasets/donnees-de-comptabi
lite-generale-de-letat/.

EXERCISE 12.3 LEAST SQUARES METHOD

a.Reuse the INSEE data on the French population by sex and age POP1B.Write a
function pop(code) that returns, as a list orNumPy vector, the population by age,
without distinction between men and women, in the municipality with postal
code code. Use this function to determine the total number of people living in
postal code 75102.
b.Write a function plot_pop(code) to plot the population fractions (normalized
by the total population of the municipality) as a function of age, without distinc-
tion between men and women, in the municipality with postal code code. Test
for municipalities with postal codes 13201 and 75102.
For a given municipality, if we denote by 𝑝𝑝(𝑎𝑎) the fraction of the population of
age 𝑎𝑎, we look for the coefficients 𝑟𝑟0, 𝑟𝑟1, 𝑟𝑟2 such that the law:

𝑝𝑝(𝑎𝑎) = 𝑟𝑟0 + 𝑟𝑟1𝑎𝑎 + 𝑟𝑟2𝑎𝑎2

is best satisfied for ages 𝑎𝑎 ≥ 25. To do this, we solve the least squares problem:

min
𝒓𝒓∈ℝ3

‖𝑋𝑋𝒓𝒓 − 𝒑𝒑‖2 ,

where by noting the vector of ages 𝒂𝒂 = (25, 26,… , 100), 𝑋𝑋 is the matrix of size
76 × 3 such that 𝑋𝑋𝑖𝑖,1 = 1, 𝑋𝑋𝑖𝑖,2 = 𝑎𝑎𝑖𝑖 , 𝑋𝑋𝑖𝑖,3 = 𝑎𝑎2𝑖𝑖 , and 𝒑𝒑 is the vector of populations
by age 𝑝𝑝𝑖𝑖 = 𝑝𝑝(𝑎𝑎𝑖𝑖). The solution to this problem is 𝒓𝒓 = (𝑟𝑟0, 𝑟𝑟1, 𝑟𝑟2) ∈ ℝ3. This
solution satisfies the equation:

𝑋𝑋𝖳𝖳𝑋𝑋𝒓𝒓 = 𝑋𝑋𝖳𝖳𝒑𝒑 ,

where 𝑋𝑋𝖳𝖳 is the transpose of 𝑋𝑋.
c. For the municipality with postal code 13201, form the matrix 𝑋𝑋 and the vector
𝒑𝒑, then determine the solution 𝒓𝒓.
d. For municipalities with postal codes 13201 and 75102, plot the theoretical
curve 𝑟𝑟0 + 𝑟𝑟1𝑎𝑎 + 𝑟𝑟2𝑎𝑎2 as a function of age over the data.

https://www.data.gouv.fr/fr/datasets/donnees-de-comptabilite-generale-de-letat
https://www.data.gouv.fr/fr/datasets/donnees-de-comptabilite-generale-de-letat
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EXERCISE 12.4 HANDWRITTEN NUMBER RECOGNITION

The aim of this exercise is to classify images of handwritten numbers, i.e., to rec-
ognize handwritten numbers. This is a simple example of machine learning and
one of the first industrial applications for automatic reading of cheques or postal
codes.
The scanned handwritten digits dataset comes from the UCI ML repository.
There are two ways to import this dataset. If the scikit-learn package (import
name sklearn) is installed, simply run:

from sklearn.datasets import load_digits
digits = load_digits()
X, y = digits.data, digits.target

If the sklearn module is unavailable, the following commands can be used in-
stead to load data:

import urllib.request, gzip, io
# download link
url = "https://raw.githubusercontent.com/scikit-learn/ ⌋

scikit-learn/main/sklearn/datasets/data/digits.csv.gz"↪

# download gz file
file = urllib.request.urlopen(url)
# extracts the gz file
file = gzip.GzipFile(fileobj=io.BytesIO(file.read()))
# import txt file
digits = np.loadtxt(file, delimiter =',')
# extract images and labels
X, y = digits[:,:-1], digits[:,-1]

In both cases, X is a NumPy array containing numerous examples of handwritten
digitized digits in an 8 × 8 pixel image stored as an array of 64 integers stored as
floats. The y variable contains the integer between 0 and 9 corresponding to the
digitized digit. This is referred to as label.
a. Determine the dimensions of X and y and deduce the number of examples
contained in the database.
b. Display the data contained in X associated with the index idx=12. This is the
12th line of the X table, starting the numbering at zero.
c. Using NumPy function reshape and Matplotlib function imshow, display the
imagewith index idx=12. You can use the cmap='gray' argument in the imshow
call to display the result in grayscale. Which digit is encoded in this way?
For each digit class (from 0 to 9), the idea is to calculate its centroid, i.e., the
“average” representation of a class.
d. Define the X and y sub-tables corresponding to all digitized 0 digits.
e. For all the zeros from the previous question, calculate the mean value for each
pixel to define the “average zero”.
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f. For all the digits from 0 to 9, plot the associated average image on the same line
as shown in Figure 12.1.
Hint: Use Matplotlib’s subplot function.

Figure 12.1 Averages of digitized figures.

Finally, we will implement our own classifier: for a new digitized digit image,
we will predict the class whose average digit is closest. To do this, we divide our
dataset into two parts of similar size: the first part will serve as training data (X_ ⌋
train and y_train) and the second part will serve as test data (X_test and y_ ⌋
test).
g. Define variables: X_train, y_train, X_test and y_test.
h. For each digit in the training set, calculate the centroids (i.e., the average dig-
its) of the classes from 0 to 9. Note the variable containing the set of averages
centroids_train.
i. Write a function which, given a number in the test set (X_test), returns the
centroid of the nearest centroids_train in the Euclidean norm.
j. Finally, evaluate whether the digit thus obtained corresponds to the true digit
using y_test and deduce an estimate of the percentage of correct predictions on
the test set.

EXERCISE 12.5 AUTOMATIC DIFFERENTIATION (!)

The aim of this exercise is to introduce one of the fundamental building blocks of
machine learning: automatic differentiation. This is a technique for calculating
derivatives or gradients of Python functions in a way that is virtually transparent
to the user. Given a certain Python function f(x), the aim of automatic differen-
tiation is to make it virtually as easy for the user to evaluate the derivative of f at
a point x=1 as it is to do f(1), even if the function 𝑓𝑓 is complicated. This is the
fundamental building block enabling machine learning to learn parameters by
optimizing complicated nonlinear functions.
The idea behind automatic differentiation is to use the derivation rule for com-
pound functions and knowledge of the derivatives of basic functions. In fact, a
Python function is “just” a composition of basic functions (or instructions).
For sake of simplicity, we are only interested here in the composition of func-
tions on ℝ. For any 𝑖𝑖 ∈ {0, 1,… , 𝑛𝑛}, let 𝑓𝑓𝑖𝑖 ∶ ℝ be an elementary function whose
derivative is known. Consider the composition of the first 𝑖𝑖 ≤ 𝑛𝑛 functions:

𝐹𝐹𝑖𝑖 = 𝑓𝑓𝑖𝑖◦𝑓𝑓𝑖𝑖−1◦⋯◦𝑓𝑓1◦𝑓𝑓0 .
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The derivative is given by the composition rule (or chain rule):

𝐹𝐹′𝑖𝑖 = (𝑓𝑓𝑖𝑖◦𝐹𝐹𝑖𝑖−1)′ = (𝑓𝑓′𝑖𝑖◦𝐹𝐹𝑖𝑖−1) ⋅ 𝐹𝐹
′
𝑖𝑖−1 .

This gives a recursive way of calculating 𝐹𝐹′𝑛𝑛 with the anchor 𝐹𝐹′0 = 𝑓𝑓′0. To calcu-
late the value of𝐹𝐹𝑛𝑛(𝑥𝑥) for a given𝑥𝑥, Pyhonwill intrinsically calculate successively
𝐹𝐹0(𝑥𝑥), then 𝐹𝐹1(𝑥𝑥), 𝐹𝐹2(𝑥𝑥), up to 𝐹𝐹𝑛𝑛(𝑥𝑥). Automatic differentiation consists of eval-
uating 𝐹𝐹′0(𝑥𝑥), 𝐹𝐹

′
1(𝑥𝑥) up to 𝐹𝐹

′
𝑛𝑛(𝑥𝑥) at the same time or later.

Note that automatic differentiation is neither a numerical approximation nor
symbolic calculation. In fact, the value of the derivative is determined exactly
(to machine precision), which is not the case with numerical approximation:

𝑓𝑓′(𝑥𝑥) ≈ 𝑓𝑓(𝑥𝑥 + ℎ) − 𝑓𝑓(𝑥𝑥)
ℎ ,

with some ℎ > 0 small. It is not symbolic calculation either, as there are no sym-
bols in automatic differentiation, only real numbers. Automatic differentiation
calculates the value of the derivative at a given point, whereas symbolic differen-
tiation does this for any symbol.
a. The first step is to define the derivatives of the elementary functions. To do
this, build the tuples 𝑓𝑓 = (𝑓𝑓, 𝑓𝑓′)manually for the elementary functions sin, cos,
op ∶ 𝑥𝑥 ↦ −𝑥𝑥, inv ∶ 𝑥𝑥 ↦ 𝑥𝑥−1 et square ∶ 𝑥𝑥 ↦ 𝑥𝑥2.
b.A composition of functions 𝐹𝐹𝑛𝑛 = 𝑓𝑓𝑛𝑛◦𝑓𝑓𝑛𝑛−1◦⋯◦𝑓𝑓1◦𝑓𝑓0 will be stored in Python
as the list of tuples [𝑓𝑓0, 𝑓𝑓1,… , 𝑓𝑓𝑛𝑛]. In Python, define the composition correspond-
ing to the function:

𝐹𝐹(𝑥𝑥) = cos ( 1
sin(− cos𝑥𝑥2)2

) .

c. Write a function eval(list, x) which, given a list of tuples defining a com-
position of functions 𝐹𝐹𝑛𝑛, returns 𝐹𝐹𝑛𝑛(𝑥𝑥). Test on the previous example.
d.Write a function autodiff(list, x)which, given a tuple list defining a com-
position of functions 𝐹𝐹𝑛𝑛, returns 𝐹𝐹𝑛𝑛(𝑥𝑥) and 𝐹𝐹′𝑛𝑛(𝑥𝑥). Test again on the same exam-
ple.

The previous approach only allows the composition of functions of one variable,
which is very limiting, as sum and multiplication are functions of two variables.
The idea is to be able to considermore complicated functions aswell, for example:

𝐺𝐺(𝑥𝑥) = cos(𝑥𝑥)
sin(𝑥𝑥) + cos(𝑥𝑥) sin(𝑥𝑥2)

.

e. As before, implement the sum function add ∶ 𝑥𝑥, 𝑥𝑥 ↦ 𝑥𝑥 + 𝑥𝑥 and the multipli-
cation functionmult ∶ 𝑥𝑥, 𝑥𝑥 ↦ 𝑥𝑥𝑥𝑥 in tuple form.
f. The previous function 𝐺𝐺 can no longer be represented in Python as a list of
compositions, as it has the structure of a graph:
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The derivative is given by the composition rule (or chain rule):

𝐹𝐹′𝑖𝑖 = (𝑓𝑓𝑖𝑖◦𝐹𝐹𝑖𝑖−1)′ = (𝑓𝑓′𝑖𝑖◦𝐹𝐹𝑖𝑖−1) ⋅ 𝐹𝐹
′
𝑖𝑖−1 .
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′
1(𝑥𝑥) up to 𝐹𝐹

′
𝑛𝑛(𝑥𝑥) at the same time or later.
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ℎ ,
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) .
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cation functionmult ∶ 𝑥𝑥, 𝑥𝑥 ↦ 𝑥𝑥𝑥𝑥 in tuple form.
f. The previous function 𝐺𝐺 can no longer be represented in Python as a list of
compositions, as it has the structure of a graph:
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mult
inv add

mult
sin square
cossin

cos

We choose to store it in Python as a list of lists, with the first element of each list
being the function to be applied, and the arguments being the following children.
For the example 𝐺𝐺 above:

myG = [mult, [cos], [inv, [add, [sin], [mult, [cos], [sin,
[square]]]]]]↪

Write the previous simple composition𝐹𝐹 in this new form, aswell as the function:

𝐻𝐻(𝑥𝑥) = cos(𝑥𝑥2) + sin𝑥𝑥
cos𝑥𝑥 + 2 sin(𝑥𝑥−1)

.

g.Write a function eval(list,x)which evaluate an expression in the form of a
list of lists described above at x. Test on functions 𝐹𝐹, 𝐺𝐺, and𝐻𝐻.
h. !!Write a functionautodiff(list,x)which, in addition to returning the eval-
uation of the function at x, also returns the evaluation of its derivative at x.
i. !! The previous implementation is not very usable concretely. In practice, au-
tomatic differentiation is coded by overloading basic operations in order to be
relatively transparent to the user. Using the package JAX or PyTorch, determine
the derivative of the following function by automatic differentiation at x=0.4:

def f(x):
for i in range(50):

if x>0.5:
x = 3.7⁎x⁎(1-x)

else:
x = 3⁎x⁎(1-x)

return x

Finally, compare with numerical differentiation.
Hint: The documentation on automatic differentiation with JAX is at the ad-
dress: https://jax.readthedocs.io/en/latest/automatic-differentiation
.html and with PyTorch at the address: https://pytorch.org/tutorials/begi
nner/blitz/autograd_tutorial.html.

EXERCISE 12.6 NEURAL NETWORK (!)

The aim of this exercise is to introduce the concept of neural network for find-
ing a real function for which only its noisy evaluation is known. More precisely,
consider the function 𝑓𝑓 ∶ [0, 1]→ ℝ defined by:

𝑓𝑓(𝑥𝑥) = 1 + sin(4 cos𝑥𝑥)2 ,

https://jax.readthedocs.io/en/latest/automatic-differentiation.html
https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html
https://jax.readthedocs.io/en/latest/automatic-differentiation.html
https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html
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and consider the data generated by 500 noisy evaluations of 𝑓𝑓:

rng = np.random.default_rng(123456)
f = lambda x: 0.1 + np.sin(4⁎np.cos(x))⁎⁎2
x = rng.random(500)
y = f(x) + rng.normal(0,0.1,500)

The aim is to forget that the data were generated in this way and to find a func-
tion approximating 𝑓𝑓 from x and y alone. To achieve this, a single-layer neural
network will be used, and we speak of learning the function from the data. The
principle is to construct the learned function in the form:

𝑓𝑓𝝎𝝎(𝑥𝑥) =
1
𝑛𝑛

𝑛𝑛−1∑

𝑖𝑖=0
𝑤𝑤𝑖𝑖𝜎𝜎(𝑎𝑎𝑖𝑖𝑥𝑥 + 𝑏𝑏𝑖𝑖) ,

where 𝝎𝝎 = (𝒂𝒂,𝒃𝒃,𝒘𝒘) ∈ ℝ𝑛𝑛 ×ℝ𝑛𝑛 ×ℝ𝑛𝑛 are parameters to be determined and 𝜎𝜎 the
sigmoid function:

𝜎𝜎(𝑥𝑥) = 1
1 + 𝑒𝑒−𝑥𝑥 .

This is a single-layer neural network with 𝑛𝑛 neurons. The principle is to sum 𝑛𝑛
nonlinear functions (the sigmoids) with input weights 𝒂𝒂 = (𝑎𝑎𝑖𝑖)𝑛𝑛−1𝑖𝑖=0 , biases 𝒃𝒃 =
(𝑏𝑏𝑖𝑖)𝑛𝑛−1𝑖𝑖=0 , and output weights𝒘𝒘 = (𝑤𝑤𝑖𝑖)𝑛𝑛−1𝑖𝑖=0 . Parameters are chosen to minimize the
following cost function:

𝐽𝐽(𝝎𝝎) =
499∑

𝑘𝑘=0

(
𝑓𝑓𝝎𝝎(𝑥𝑥𝑘𝑘) − 𝑦𝑦𝑘𝑘

)2
.

The strategy for minimizing 𝐽𝐽 on the parameters 𝝎𝝎 is to perform a gradient de-
scent starting with random values 𝝎𝝎0 of the parameters and then successively
defining:

𝝎𝝎𝑖𝑖+1 = 𝝎𝝎𝑖𝑖 − 𝜂𝜂𝐽𝐽′(𝝎𝝎𝑖𝑖) ,

where 𝐽𝐽′(𝝎𝝎) is the gradient of 𝐽𝐽(𝝎𝝎)with respect to the parameters and 𝜂𝜂 ∈ (0, 1] is
a parameter called the learning rate. The idea of the gradient descent algorithm is
to move the parameters in the direction of greatest gradient in order to minimize
𝐽𝐽(𝝎𝝎). This is known as parameters learning.
a. Plot the data x and y and the function 𝑓𝑓.
b. Determine the value of the cost function 𝐽𝐽 for the function 𝑓𝑓:

𝐽𝐽𝑓𝑓 =
499∑

𝑘𝑘=0

(
𝑓𝑓(𝑥𝑥𝑘𝑘) − 𝑦𝑦𝑘𝑘

)2
.

c. Define the sigmoid function 𝜎𝜎 in Python and its derivative 𝜎𝜎′, and represent
the sigmoid graphically.
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c. Define the sigmoid function 𝜎𝜎 in Python and its derivative 𝜎𝜎′, and represent
the sigmoid graphically.
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d. Implement in Python a function F(x,omega) corresponding to the function
𝑓𝑓𝝎𝝎(𝑥𝑥). Make the function F(x,omega) vectorized, i.e., if 𝑥𝑥 = (𝑥𝑥0, 𝑥𝑥1,… , 𝑥𝑥𝑘𝑘−1) ∈
ℝ𝑘𝑘, then the function should return (𝑓𝑓𝝎𝝎(𝑥𝑥0), 𝑓𝑓𝝎𝝎(𝑥𝑥1),… , 𝑓𝑓𝝎𝝎(𝑥𝑥𝑘𝑘−1)).
e.Calculate by hand the gradient of 𝑓𝑓𝝎𝝎(𝑥𝑥)with respect to𝝎𝝎 (and not with respect
to 𝑥𝑥) and implement this gradient in Python, taking care that it is also vectorized.
f. Implement in Python 𝐽𝐽(𝝎𝝎) and its gradient 𝐽𝐽′(𝝎𝝎).
g. With learning rate 𝜂𝜂 = 0.01 and four neurons, learn the parameters 𝝎𝝎 ∈ ℝ12

that tend to minimize 𝐽𝐽. Compare the value of the cost function 𝐽𝐽(𝝎𝝎) of the
learned function 𝑓𝑓𝝎𝝎 with the value of the cost function 𝐽𝐽𝑓𝑓 of the function 𝑓𝑓. Plot
the function 𝑓𝑓𝝎𝝎 as a function of 𝑥𝑥 for these parameters and compare with the
function 𝑓𝑓.
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SOLUTIONS

SOLUTION 12.1 INTRODUCTION TO PANDAS

a. You can download the file using your computer’s browser, then decompress it,
but it’s also possible to do this with Python:

import urllib.request, zipfile, io
url = "https://api.worldbank.org/v2/en/topic/ ⌋

4?downloadformat=csv"↪

# download zip file
file = urllib.request.urlopen(url)
# extract the zip file
# (io.ByteIO creates a pseudo file for in-memory

decompression)↪

zipper = zipfile.ZipFile(io.BytesIO(file.read()))
# lists files present
zipper.namelist()

b. The file Metadata_Country... contains country information. Simply extract
the file and import it:

# opens csv file with countries
filename = [l for l in zipper.namelist() if

l.startswith("Metadata_Country")][0]↪

f = zipper.open(filename)
meta_country = pd.read_csv(f)
meta_country

and finally extract the requested data:

countries = meta_country[["Country Code", "TableName"]]

c. First, rename the columns, then transform the first column into an index:

countries = countries.rename(columns={"Country Code": "code",
"TableName": "country"})↪

countries = countries.set_index("code")
countries

This is then used to determine the full name of the country from its code:

countries.loc["FRA"]
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d. First, select the lines containing Zimbabwe, then take the first line and extract
the code:

countries[countries["country"] == "Zimbabwe"].iloc[0].name

e. The first step is to import the file Metadata_Indicator...:

filename = [l for l in zipper.namelist() if
l.startswith("Metadata_Indicator")][0]↪

meta = pd.read_csv(zipper.open(filename))
meta

then search for “Unemployment” in the column INDICATOR_NAME:

meta[meta['INDICATOR_NAME'].str.contains('Unemployment')]

The code associated with unemployment is therefore SL.UEM.TOTL.ZS. The
same applies to the proportion of people with at least a master’s degree:

meta[meta['INDICATOR_NAME'].str.contains('Master')]

and we find SE.TER.CUAT.MS.ZS.
f. The first step is to import the data, ignoring the first header lines:

filename = [l for l in zipper.namelist() if
l.startswith("API")][0]↪

data = pd.read_csv(zipper.open(filename), skiprows=4)
data

Then, select unemployment data for France:

df = data.query('`Country Code` == "FRA" and `Indicator Code`
== "SL.UEM.TOTL.ZS"')↪

df

The problem now is that the data is in one row, whereas we would like to have
the years as a column. To do this, select the range of years to be extracted and
take the transpose:

df = df.loc[:,"1990":"2022"].T
df

Finally, graphical representation is easy:

df.columns = ["France"]
df.plot()

The first instruction simply renames the column name to “France” and thus dis-
plays the correct label on the graph.
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g. The following function can be used to graphically represent the temporal evo-
lution of an indicator for several countries:

def time_plot(code, countries, title=""):
df = data.query('`Country Code` in @countries and

`Indicator Code` == @code')↪

df = df.set_index('Country Name')
df = df.loc[:,"1990":"2022"].T
df.plot(title=title)

Finally, to test the unemployment rate:

time_plot("SL.UEM.TOTL.ZS", ["FRA", "USA", "CHE", "ZWE"],
title="Evolution of the unemployment rate")↪

and the proportion of masters:

time_plot("SE.TER.CUAT.MS.ZS", ["FRA", "USA", "CHE", "ZWE"],
title="Evolution of the proportion of master's degrees")↪

where some data is unfortunately lacking.

SOLUTION 12.2 BENFORD’S LAW

a. Just convert the number to a string, then select the first one and convert it back
to an integer:

def firstdigit(n):
return int(str(n)[0])

To determine the number of occurrences of each number:

def occurrences(lst):
out = 9⁎[0]
for d in lst:

if d != 0:
out[d-1] += 1

return out

b. To generate the first digits of the first 104 numbers of the sequence:

N = 10_000
liste = [2⁎⁎n for n in range(N)]
freq = occurrences(map(firstdigit, liste))

Such an approach is rather slow and hardly applicable to more terms. The rea-
son is the time needed to convert a large integer into a decimal representation. To
do statistics on more terms, one possibility is to use the decimalmodule which
keeps a decimal representation of the numbers and easily allows to take into ac-
count 105 terms or more:
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import decimal
N = 100_000
liste = [decimal.Decimal(2)⁎⁎n for n in range(N)]
freq = occurrences(map(firstdigit, liste))

Finally, we define a function that allows us to produce the histogram of a list of
frequencies:

import numpy as np
import matplotlib.pyplot as plt
def compare(freq, title=""):

N = sum(freq)
plt.figure(figsize=(8,5))
plt.title(title)
# occurrences according to Benford's law
benford = [N⁎np.log10(1+1/d) for d in range(1,10)]
# bar width
width = 0.3
plt.bar(np.arange(1,10)-width/2, benford, width,

label="Benford's law")↪

plt.bar(np.arange(1,10)+width/2, freq, width,
label="Data")↪

plt.xticks(range(1,10))
plt.legend()

This allows us to see in Figure 12.2 that Benford’s law is extremely well satisfied
by the sequence 2𝑛𝑛:

compare(freq, title=r"Frequencies of $2^n$ for $0\leq n \leq
10^5$")↪

c. Benford’s law does not seem to be satisfied in this case as shown in Figure 12.3:

N = 100_000
liste = [3⁎n+1 for n in range(N)]
freq = occurrences(map(firstdigit, liste))
compare(freq, r"Frequencies of $3n+1$ for $0\leq n \leq

10^5$")↪

d. The following implementation automatically downloads the file, decom-
presses it into memory, and reads it:

import urllib.request, zipfile, io
# file to download
url = "https://www.insee.fr/fr/statistiques/fichier/7631680/ ⌋

TD_POP1A_2020_csv.zip"↪

# download the zip file
file = urllib.request.urlopen(url)
# extract the zip file
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Figure 12.2 Number of occurrences of each digit in the sequence 2𝑛𝑛. For this
sequence, Benford’s law is very well satisfied.

Figure 12.3 Benford’s law is not satisfied on the first numbers of the sequence
3𝑛𝑛 + 1.
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# (io.ByteIO create a virtual file to uncompress in memory)
zipper = zipfile.ZipFile(io.BytesIO(file.read()))
# open the CSV file
f = zipper.open("TD_POP1A_2020.csv")

In an equivalent way, it is possible to place the downloaded and decompressed
file by hand in the current directory and use it instead:

f = open("TD_POP1A_2020.csv", "rb")

Then, you have to make a loop to import the data into a list:

# list to store the results (postal code, age, population)
data = []
# read the first line with labels
f.readline()
# loop on all remaining lines
for line in f:

# decode the line in UTF-8 and split the fields
line = line.decode().split(";")
# consider only valid lines
if len(line)==6:

code = line[1] # postal code
sex = int(line[3]) # sex
age = int(line[4]) # age
pop = float(line[5]) # population
# add to the list of data
data.append((code,sex,age,pop))

e. The data follow Benford’s law rather well as shown in Figure 12.4:

lst = [firstdigit(v[-1]) for v in data]
freq = occurrences(lst)
compare(freq, "Population by postal code, sex, and age

group")↪

f. When aggregated by municipality, the data still follow Benford’s law well:

dic = {}
for v in data:

# index the dictionary of the postal codes and sum the
populations with same codes↪

dic[v[0]] = dic.get(v[0],0) + v[-1]
lst = [firstdigit(p) for p in dic.values()]
freq = occurrences(lst)
compare(freq, "Population by postal code")
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g. Using Pandas, the import is immediate:

import pandas as pd
# file to download
url = "https://www.insee.fr/fr/statistiques/fichier/7631680/ ⌋

TD_POP1B_2020_csv.zip"↪

# pandas download and uncompress the file automatically
data = pd.read_csv(url, sep=";", dtype={"CODGEO":str})

The population by ungrouped age follows Benford’s law less well as represented
in Figure 12.5 because small numbers are overrepresented in small municipali-
ties:

freq = occurrences(data["NB"].apply(firstdigit))
compare(freq, "Population by the postal code, sex, and age")

With Pandas, the aggregation of data by municipality is simplified:

s = data.groupby(["CODGEO"])["NB"].sum()
freq = occurrences(s.apply(firstdigit))
compare(freq, "Population by postal code")

h. For example, for detailed French government accounts:

url = "https://www.data.gouv.fr/fr/datasets/r/f2b03519-de6f- ⌋
4ca3-9eee-6a6004a414c9"↪

f = urllib.request.urlopen(url)
data = []
# read the first line with labels
f.readline()
for line in f:

# decode the line in ISO-8859-1 and split the fields
line = line.decode("iso-8859-1").split(";")
# 2022 accounts
val = line[8]
# remove punctuation and minus signs
for c in [",", "-", " "]:

val = val.replace(c,"")
# do not keep missing values
if val != "":

data.append(int(val))

Figure 12.6 shows that the 2022 accounts follow Benford’s Law:

liste = [firstdigit(v) for v in data]
freq = occurrences(liste)
compare(freq, "Accounts 2022 of the French government")
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Figure 12.4 The French population in each municipality and for each age group
follows Benford’s law.

Figure 12.5 By taking the list of populations bymunicipality and by year of birth,
Benford’s law is less well satisfied. Indeed, there is not enough aggregation of
data.
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Figure 12.6 The general accounts of France follow Benford’s law surprisingly
well.
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SOLUTION 12.3 LEAST SQUARES METHOD

a. As before, with Pandas import is immediate:

url = "https://www.insee.fr/fr/statistiques/fichier/7631680/ ⌋
TD_POP1B_2020_csv.zip"↪

data = pd.read_csv(url, sep=";", dtype={"CODGEO":str})

Then, write the function required to group them by postcode:

def pop(code):
return data[data['CODGEO'] ==

code].groupby('AGED100')['NB'].sum().values↪

Obtaining the total population of the requested municipality is very simple:

pop('75102').sum()

b. This displays the previously calculated data:

import matplotlib.pyplot as plt
def plot_pop(code):

pop_code = pop(code)
plt.plot(pop_code/pop_code.sum(),'.',label=code)
plt.legend()

plot_pop('13201')
plot_pop('75102')

c. Using NumPy to extract the requested age range:

agemin = 25
a = np.arange(agemin,101)
pop_code = pop('13201')
frac_code = pop_code/pop_code.sum()
p = frac_code[agemin:]
X = np.array([np.ones(len(a)),a,a⁎⁎2]).T
r = np.linalg.solve(np.dot(X.T,X),np.dot(X.T,p))

d. It is all about wrapping the previous code to get Figure 12.7:

def plot_reg(code):
agemin = 25
a = np.arange(agemin,101)
pop_code = pop(code)
frac_code = pop_code/pop_code.sum()
p = frac_code[agemin:]
X = np.array([np.ones(len(a)),a,a⁎⁎2]).T
r = np.linalg.solve(np.dot(X.T,X),np.dot(X.T,p))
plt.plot(a, p,'.', label=f"Data {code}")
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plt.plot(a, np.dot(X,r), label=f"Regression {code}")
plt.legend()

plt.figure(figsize=(8,5))
plt.title("Second-order regression on population density by

municipality")↪

plot_reg('13201')
plot_reg('75102')

Figure 12.7 Second-order regression on population age structure for two French
municipalities.
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SOLUTION 12.4 HANDWRITTEN NUMBER RECOGNITION

a. The len function can be used to determine array dimensions:

len(X)
len(y)
len(X[0])

or the shape property of NumPy arrays:

X.shape
y.shape

This means that there are 1797 examples in the database.
b. Simply display the 12th element of X:

idx=12
X[idx]

c. We need to convert the vector of size 64 into a matrix of size 8 × 8 for display:

plt.imshow(X[idx].reshape(8,8),cmap='gray')
plt.title(f'Chiffre {y[idx]}')

and so the coded digit is indeed a two, as indicated by y[idx].
d. With indexing, this is trivial:

X0 = X[y==0]
y[y==0]

e.Use the mean function to average along only one axis to give the “average zero”:

X0mean = np.mean(X0, axis=0)
plt.imshow(X0mean.reshape(8,8),cmap='gray')
plt.title('mean 0')

f. Iterating on numbers from 0 to 9:

plt.figure(figsize=(8,1))
for i in range(10):

mean=np.mean(X[y==i],axis=0)
plt.subplot(1,10,i+1)
plt.imshow(mean.reshape(8,8),cmap='gray')
plt.title(f'mean {i}')
plt.axis('off')

plt.tight_layout()
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g. We calculate the half-length, staying within the integers, and then calculate
the requested variables:

L = len(X)//2
X_train = X[:L]
y_train = y[:L]
X_test = X[L:]
y_test = y[L:]

h. It is almost done with the above:

centroids_train = [np.mean(X_train[y_train==i],axis=0) for i
in range(10)]↪

i. The following function estimates which digit a xt vector is closest to:

def estimation(xt):
dist = np.array([np.linalg.norm(xt-c) for c in

centroids_train])↪

chiffre = np.argmin(dist)
return chiffre

j. We define the vector with the estimates of the numbers tested:

y_estim = np.apply_along_axis(estimation,1,X_test)

which allows y_estim to be compared with y_test:

np.mean(y_estim==y_test)

to determine that the algorithm predicts correctly in almost 90% of cases.

SOLUTION 12.5 AUTOMATIC DIFFERENTIATION (!)

a. The requested tuples are defined using NumPy functions:

sin = (np.sin, np.cos)
cos = (np.cos, lambda x: -np.sin(x))
op = (lambda x: -x, lambda x: -1)
inv = (lambda x: 1/x, lambda x: -1/x⁎⁎2)
square = (lambda x: x⁎⁎2, lambda x: 2⁎x)

Note that -np.sin is not defined in Python and that the derivative of 𝑥𝑥 ↦ −𝑥𝑥 is
the function 𝑥𝑥 ↦ −1 and not just the number −1.
b. It is just a matter of listing the sequence of operations:

myF = [square, cos, op, sin, square, inv, cos]
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c. This involves iterating over the list of tuples and applying the function each
time:

def eval(liste, x):
for f,fp in liste:

x = f(x)
return x

On the previous example, this gives:

eval(myF,2)

which corresponds to the classic NumPy evaluation:

F = lambda x: np.cos(1/np.sin(-np.cos(x⁎⁎2))⁎⁎2)
F(2)

d. This involves implementing the recurrence formula 𝐹𝐹′𝑖𝑖 = (𝑓𝑓′𝑖𝑖◦𝐹𝐹𝑖𝑖−1) ⋅ 𝐹𝐹
′
𝑖𝑖−1:

def autodiff(liste, x):
Fi = x
Fpi = 1
for f,fp in liste:

Fpi = fp(Fi)⁎Fpi
Fi = f(Fi)

return Fi,Fpi

On the same example:

autodiff(myF,2)

and a numerical approximation of the derivative gives a similar result:

h = 1e-10
(F(2+h)-F(2))/h

e. The idea is to implement them as functions of two variables, the second part
of the tuples being the gradient:

add = (lambda x,y: x+y, lambda x,y: [1,1])
mult = (lambda x,y: x⁎y, lambda x,y: [y,x])

f. Compared with the previous representation of 𝐹𝐹, the order is reversed, and
more parentheses are required:

myF = [cos, [inv, [square, [sin, [op, [cos, [square]]]]]]]

For the function𝐻𝐻, its graph is:
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mult
inv add

mult
2

sin inv
cos

add
sin
cos square

and therefore:

two = (lambda x: 2⁎x, lambda x: 2)
myH = [mult, [add, [sin], [cos, [square]]], [inv, [add,

[cos], [mult, [two], [sin, [inv]]]]]]↪

g. The easiest way is to define a recursive function that evaluates the function on
leaves (i.e., nodes without children) and then on children:

def eval(liste, x):

# function and its derivative
f, fp = liste[0]

# leave: evaluate f on x
if len(liste) == 1:

return f(x)
# otherwise evaluate f on children
else:

Fi = [eval(liste[i], x) for i in range(1,
len(liste))]↪

return f(⁎Fi)

On the function 𝐹𝐹, we recover the previous result:

eval(myF,2)

For the function 𝐺𝐺, we obtain:

eval(myG,2)

which is in line with the classic assessment:

G = lambda x: np.cos(x) / (np.sin(x) +
np.cos(x)⁎np.sin(x⁎⁎2))↪

G(2)

The same applies to𝐻𝐻:

H = lambda x: (np.sin(x)+np.cos(x⁎⁎2)) / (np.cos(x) +
2⁎np.sin(1/x))↪

eval(myH,2) - H(2)
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h. The tuple (𝑓𝑓𝑖𝑖, 𝑓𝑓′𝑖𝑖 ) is evaluated each time, and the chain rule becomes a matrix
product:

def autodiff(liste, x):

# function and its derivative
f, fp = liste[0]

# leave: evaluate f and f' on x
# x is then a real number
if len(liste) == 1:

return f(x), fp(x)
# otherwise rate f on children
# x is then a tuple (Fi, Fpi)
else:

# autodiff on the children
out = [autodiff(liste[i], x) for i in range(1,

len(liste))]↪

# list of children's values
Fi = [t[0] for t in out]
# list of children's derivatives
Fpi = [t[1] for t in out]
# case of a function of a single variable
if len(out) == 1: Fpi = Fpi[0]
# applies the chain rule
return f(⁎Fi), np.dot(fp(⁎Fi), Fpi)

Then, we test on 𝐺𝐺:

autodiff(myG,2)

which corresponds well to the numerical approximation of the derivative:

(G(2+h)-G(2))/h

And, finally on𝐻𝐻:

autodiff(myH,2)[0] - H(2), autodiff(myH,2)[1] -
(H(2+h)-H(2))/h↪

i. With JAX, all you need to do is import grad:

from jax import grad

then the result is obtained trivially:

grad(f)(0.4)

With PyTorch, it is a little more complex: you need to define x as a tensor with
automatic differentiation enabled:
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import torch
x = torch.tensor(0.4, requires_grad=True)

The next step is to evaluate the function f at x and then calculate the value of the
derivative:

fx = f(x)
fx.backward()
x.grad

Note that numerical differentiation is very unstable on this example:

h=1e-14
(f(0.4+h)-f(0.4))/h

because the function contains a jump composed 50 times.

SOLUTION 12.6 NEURAL NETWORK (!)

a. Simply use Matplotlib:

xx = np.linspace(0,1,100)
plt.plot(x, y, ".")
plt.plot(xx, f(xx))

We observe that the data follow the 𝑓𝑓 function, but with relatively high noise.
b. It is a matter of taking the sum of the squares:

np.sum((f(x) - y)⁎⁎2)

c. The sigmoid is simply defined with NumPy:

def sigmoid(z):
return 1/(1 + np.exp(-z))

and the derivative is calculated by hand:

def Dsigmoid(z):
return np.exp(-z)/(1 + np.exp(-z))⁎⁎2

Finally, the graphical representation of the sigmoid is a function that is 0 when
𝑥𝑥 → −∞ and 1 when 𝑥𝑥 → ∞ and interpolates smoothly and increasingly be-
tween the two:

xx = np.linspace(-10,10,100)
plt.plot(xx,sigmoid(xx))
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d. For x real, the function corresponding to 𝑓𝑓𝝎𝝎(𝑥𝑥) is given in Python by:

def F(x, omega):
a, b, w = omega
return np.sum(sigmoid(a⁎x + b)⁎w)/len(w)

When x is a NumPy vector, one has to extend the parameter dimension and sum
only on the first axis:

def F(x, omega):
a, b, w = omega[..., np.newaxis]
return np.sum(sigmoid(a⁎x + b)⁎w, axis=0)/len(w)

e. The gradient of 𝑓𝑓𝝎𝝎(𝑥𝑥) with respect to 𝝎𝝎 = (𝒂𝒂,𝒃𝒃,𝒘𝒘) is:

𝜕𝜕𝑓𝑓𝝎𝝎(𝑥𝑥)
𝜕𝜕𝝎𝝎 = (

𝜕𝜕𝑓𝑓𝝎𝝎(𝑥𝑥)
𝜕𝜕𝒂𝒂 , 𝜕𝜕𝑓𝑓𝝎𝝎(𝑥𝑥)𝜕𝜕𝒃𝒃 , 𝜕𝜕𝑓𝑓𝝎𝝎(𝑥𝑥)𝜕𝜕𝒘𝒘 ) ,

with

𝜕𝜕𝑓𝑓𝝎𝝎(𝑥𝑥)
𝜕𝜕𝜕𝜕𝑖𝑖

= 1
𝑛𝑛𝑤𝑤𝑖𝑖𝜎𝜎′(𝜕𝜕𝑖𝑖𝑥𝑥 + 𝑏𝑏𝑖𝑖)𝑥𝑥 ,

𝜕𝜕𝑓𝑓𝝎𝝎(𝑥𝑥)
𝜕𝜕𝑏𝑏𝑖𝑖

= 1
𝑛𝑛𝑤𝑤𝑖𝑖𝜎𝜎′(𝜕𝜕𝑖𝑖𝑥𝑥 + 𝑏𝑏𝑖𝑖) ,

𝜕𝜕𝑓𝑓𝝎𝝎(𝑥𝑥)
𝜕𝜕𝑤𝑤𝑖𝑖

= 1
𝑛𝑛𝜎𝜎

′(𝜕𝜕𝑖𝑖𝑥𝑥 + 𝑏𝑏𝑖𝑖) .

In Python and for x a NumPy vector, the idea is to concatenate the gradients with
respect to the three parameter vectors:

def DF(w, omega):
a, b, w = omega[..., np.newaxis]
return np.stack([Dsigmoid(a⁎x + b)⁎w⁎x, Dsigmoid(a⁎x +

b)⁎w, Dsigmoid(a⁎x + b)])/len(w)↪

f. The implementation of 𝐽𝐽 is immediate:

def J(omega):
return np.sum((F(x,omega) - y)⁎⁎2)

The gradient of 𝐽𝐽 is given by:

𝐽𝐽′(𝝎𝝎) =
499∑

𝑘𝑘=0

(
𝑓𝑓𝝎𝝎(𝑥𝑥𝑘𝑘) − 𝑦𝑦𝑘𝑘

)𝜕𝜕𝑓𝑓𝝎𝝎(𝑥𝑥𝑘𝑘)
𝜕𝜕𝝎𝝎 ,

which gives the following implementation, taking care to sum only on the last
axis:
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def DJ(omega):
return np.sum(2⁎(F(x,omega) - y)⁎DF(x,omega), axis=-1)

g. First, a function implementing the gradient descent algorithm andmonitoring
the cost function every monitor iteration:

def optimize(DJ, omega, eta=0.01, steps=100_000,
monitor=1000):↪

print(f"J = {J(omega)}")
for i in range(steps):

domega = DJ(omega)
omega -= eta⁎domega
if i % monitor == 0: print(f"J = {J(omega)}")

return omega

Next, we initialize the parameters randomly, then perform gradient descent to
learn the parameters:

nb_para = 4
omega = rng.random((3,nb_para))
omega = optimize(DJ,omega, steps=20_000)

The cost function does indeed decrease, then stagnates at a level comparable to
the cost 𝐽𝐽𝑓𝑓 of the function 𝑓𝑓. Note that the cost of the learned function is even
slightly lower than that of 𝑓𝑓. Finally, to plot the data, the function 𝑓𝑓 and the
learned function 𝑓𝑓𝝎𝝎:

xx = np.linspace(0,1,100)
plt.figure(figsize=(8,5))
plt.title("Learning a real function")
plt.plot(x, y, ".")
plt.plot(xx, f(xx), label='$f$')
plt.plot(xx, F(xx,omega), label=r'$f_{\omega}$')
plt.legend()

Even with a single layer of four neurons, the learned function is very close to the
original function, as shown in Figure 12.8.
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Figure 12.8 Representation of the function 𝑓𝑓, data generated by noisy evaluation
of 𝑓𝑓, and learned function 𝑓𝑓𝝎𝝎 by a single-layer network of four neurons.
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Cryptography

Since the Caesar cipher, the cryptographic methods allowing to transmit secret
messages evolved following the progress allowing to break them. The Vigenère
cipher which is an improvement of the Caesar cipher will be studied and we will
see how it is possible to break this encryptionmethod. Then, the RSA encryption
method which is one of the most used asymmetric cryptography methods today
will be introduced.

Concepts covered

∙ Vigenère cipher

∙ greatest common divisor

∙ text import

∙ prime and pseudoprime numbers

∙ Fermat’s little theorem

∙ Euclid’s algorithm

∙ Miller-Rabin algorithm

∙ optimization by decorator

∙ asymmetric RSA encryption
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EXERCISES

EXERCISE 13.1 VIGENÈRE CIPHER

TheVigenère cipher consists in choosing a key formed by a secret word (in capital
letters) and to transform it into a vector whose elements are the positions of these
letters in the alphabet. For example, “ASECRET” corresponds to (0, 18, 4, 2, 17, 4,
19). To encode a text (in capital letters, without spaces or punctuation) with the
“ASECRET” key, you just have to shift the first letter by 0, the second by 18, the
third by 4, and so on, and repeat in a loop. The details, especially the historical
ones, are available on Wikipedia.
a. Write a function to_int(s) that transforms a character into its place in the
alphabet and write the inverse function to_chr(i).
Hint: See the documentation of the ord and chr functions.
b. Write a function crypt(text, key) that encrypts text with the secret word
key.
c. Write a function to decipher a text by knowing the key.

EXERCISE 13.2 BREAKING THE VIGENÈRE CIPHER (!)

Charles Babbage was the first to break the Vigenère cipher. The idea is that three
consecutive letters appearing several times in the cipher text are likely to be the
result of encrypting the same letters of the message with the same letters of the
key. This is even more likely with a group of four letters. Thus, the spacing be-
tween two same groups of cipher letters is a multiple of the key length. For exam-
ple, if the repetition of one group is spaced 28 letters apart, then the repetition of
another is spaced 91 letters apart, the greatest common divisor (GCD) of 28 and
91 is 7. So, it is likely that the key has 7 letters. Then knowing the size of the key,
it is enough to base on the fact that the letter “E” is the most common in English.
For this strategy to have a chance of success, the size of the text must be large
enough.
a. Write a function to calculate the GCD between two numbers. Write another
function to calculate the GCD between a list of numbers.
b. Visit the Project Gutenberg website (https://www.gutenberg.org/), choose
your favorite English text and download it in “Plain Text” format. Write a func-
tion that converts the text to uppercase and strips it of all punctuation and other
special characters.
Hint: To convert a text to uppercase (converting accents) and remove all punctuation
and other characters, it is possible to use the following function:

https://www.gutenberg.org
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import unicodedata, re
def convert_upper(text):

# convert to upper case
text = text.upper()
# convert accents
text = unicodedata.normalize('NFKD', text)
# delete special characters
regex = re.compile('[^a-zA-Z]')
text = regex.sub('', text)
return text

c. Keep about of few thousand characters in the middle of the chosen text and
encrypt it with a key. Then, write a function to determine the length of the key by
looking at identical strings of three or more characters in the encrypted message.
Hint: First, form a dictionary with as key all occurrences of three letters and as value
the positions of the occurrences. Then, determine the list of distances between the oc-
currences of three letters, then calculate the GCD of these distances. If this GCD is
equal to 1 or is too small, then try again but with strings of more than three charac-
ters.
d. Write a function to decrypt an encrypted message by returning the key. Try to
decrypt the text of your favorite author with this function.
Hint: To find the first letter of the key, it is necessary to calculate the number of oc-
currences of the 26 letters of the alphabet in the encrypted message that have been
encrypted with the first character of the key. In principle, the letter with the maxi-
mum occurrence corresponds to the letter “E”. It is then enough to do the same thing
to find the other letters of the key.

EXERCISE 13.3 GENERATING PRIME NUMBERS

Most current encryption algorithms are based on the use of large prime numbers.
The goal is to write a function to generate prime numbers. The first step is to
generate a large random number, i.e., having a certain number of bits. Then, a
primality test allows to decide if this number is prime or not. If 𝜋𝜋(𝑛𝑛) denotes the
number of primes less than or equal to 𝑛𝑛, then asymptotically 𝜋𝜋(𝑛𝑛) ≈ 𝑛𝑛

ln𝑛𝑛
. For

a number less than 𝑛𝑛 drawn at random, the probability that it is prime is about
1∕ ln(𝑛𝑛). For example, to generate a prime number of 1 024 bits (the minimum
guaranteeing reasonable security at the moment), i.e., of the order of 21024, one
must try ln(21024) ≈ 710 random numbers before finding one that is prime. Since
all even numbers are clearly not prime, it is enough to test an average of 355.
a. Write a program to generate an odd random number of 𝑘𝑘 bits, i.e., between
2𝑘𝑘−1 and 2𝑘𝑘.
Hint: The fastest way to implement this is to use the bit operations explained
at the address: https://docs.python.org/3/reference/expressions.html#b
inary-bitwise-operations.

https://docs.python.org/3/reference/expressions.html#binary-bitwise-operations
https://docs.python.org/3/reference/expressions.html#binary-bitwise-operations
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The simplest way to determine whether a number 𝑛𝑛 is prime is to try to divide it
by all the integers 1 < 𝑑𝑑 < 𝑛𝑛. There are two reasons for not testing all 𝑑𝑑 between
2 and 𝑛𝑛 − 1. The first is that it is unnecessary to try even 𝑑𝑑 greater than 2. The
second is that there is no point in testing numbers larger than

√
𝑛𝑛.

b. Write an algorithm isprime(n) to determine if a number is prime or not.
c. Write a function generate(k,primality) to generate a random prime of k
bitswith the primality test. Testwith the primality test isprime. Is it reasonable
to expect to generate a prime number of 1 024 bits with this algorithm?

EXERCISE 13.4 GENERATING PSEUDOPRIME NUMBERS

The previous algorithm for generating primes being unusable for generating
large primes, another approach, probabilistic, is advocated. A probabilistic pri-
mality test decides that a number is prime if it is prime with a very high probabil-
ity. Such a number is called pseudoprime. Thus, a probabilistic test can be wrong
and assume that a number is prime when in fact it is not.
The simplest primality test is based on Fermat’s little theorem: if 𝑛𝑛 is prime, then
𝑎𝑎𝑛𝑛−1 = 1 (mod 𝑛𝑛) for all 1 ≤ 𝑎𝑎 ≤ 𝑛𝑛 − 1. So, if we find an 𝑎𝑎 such that 𝑎𝑎𝑛𝑛−1 ≠ 1
(mod 𝑛𝑛), then 𝑛𝑛 is not prime. Fermat’s primality test tests 𝑁𝑁 values of 𝑎𝑎 chosen
at random and if 𝑎𝑎𝑛𝑛−1 = 1 (mod 𝑛𝑛) for these 𝑁𝑁 values, then it declares that
𝑛𝑛 is probably prime. Carmichael numbers are not prime, but satisfy 𝑎𝑎𝑛𝑛−1 = 1
(mod 𝑛𝑛) for all 𝑎𝑎 prime with 𝑛𝑛. The prime Carmichael numbers are 561, 1 105,
and 1 729. If 𝑛𝑛 is not a Carmichael number, then the probability that Fermat’s test
is wrong is 2−𝑁𝑁 . Choosing, for example, 𝑁𝑁 = 128, we get a probability of being
wrong of less than 3 × 10−39.
a.Write a function implementing Fermat’s primality test. Use this test to generate
random pseudoprimes.
Hint: See the documentation for the pow function for a quick implementation. If
OpenSSL is installed on your computer, it is easy to check if a number is prime with
the command openssl prime 11, for example, for 11.
b. ! Improve the speed of the previous algorithm by first testing whether 𝑛𝑛 is
divisible by primes less than 1 000 before applying Fermat’s test.
Fermat’s primality test allows to generate large pseudoprime numbers with a
good probability of being right. The main problem comes from the existence of
Carmichael numbers which are excluded from this probability. TheMiller-Rabin
primality test avoids this problem.
c. !! Understand and implement the Miller-Rabin primality test explained in de-
tail on Wikipedia.

EXERCISE 13.5 RSA ENCRYPTION

The RSA algorithm, from the initials of Ronald Rivest, Adi Shamir, and Leonard
Adleman who invented it in 1983, is one of the most widely used asymmetric
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cryptographic algorithms still in use today. Asymmetric encryption allows an en-
crypted message to be transmitted to Alice without having to first transmit a se-
cret key to Bob who encrypts themessage. The creation by Alice of a public key is
enough for Bob to encrypt themessage and for Alice to decrypt it with his private
key. There are three main steps in the RSA algorithm:

Creation of the keys: Alice wanting to receive a secret message chooses two
very large prime numbers 𝑝𝑝 and 𝑞𝑞 which she keeps secret. She then computes
𝑛𝑛 = 𝑝𝑝𝑞𝑞 and the Euler’s totient function 𝜑𝜑(𝑛𝑛) = (𝑝𝑝 − 1)(𝑞𝑞 − 1) which counts the
number of integers between 1 and 𝑛𝑛 which are prime with 𝑛𝑛. Then, she chooses
an encryption exponent 𝑒𝑒 that is prime with 𝜑𝜑(𝑛𝑛). The public key of Alice is given
by the pair (𝑛𝑛𝑛 𝑒𝑒). Finally, Alice computes the decryption exponent 𝑑𝑑 which is the
inverse of 𝑒𝑒 modulo 𝜑𝜑(𝑛𝑛), i.e., such that 𝑒𝑒𝑑𝑑 = 1 (mod 𝜑𝜑(𝑛𝑛)). The private key of
Alice is (𝑝𝑝𝑛 𝑞𝑞𝑛 𝑑𝑑).

Encryption of the message:To encrypt hermessage, Bob first transforms it into
an integer𝑀𝑀 𝑀 𝑛𝑛. The encrypted message is then given by:

𝐶𝐶 = 𝑀𝑀𝑒𝑒 (mod 𝑛𝑛) .

Decryption of the message: The encrypted message 𝐶𝐶 is then transmitted to
Alice. To decrypt it, Alice calculates:

𝑀𝑀 = 𝐶𝐶𝑑𝑑 (mod 𝑛𝑛) 𝑛

which is again the original message.

Remark: The prime numbers 𝑝𝑝 and 𝑞𝑞 must be truly random, otherwise it is pos-
sible to guess their values. The random numbers generated by the randommod-
ule are generated with the Mersenne Twister algorithm. This algorithm is not
considered cryptographically secure in the sense that an observation of about a
thousand random numbers generated by this algorithm is sufficient to predict
all future iterations. To generate cryptographically secure random numbers one
would have to use the secrets module.

a. Show mathematically that the decoded message corresponds to the original
message.
Hint: If 𝑎𝑎 = 𝑏𝑏 (mod 𝜑𝜑(𝑛𝑛)) and𝑀𝑀 is prime with 𝑛𝑛, then𝑀𝑀𝑎𝑎 = 𝑀𝑀𝑏𝑏 (mod 𝑛𝑛).
b. Given 𝑒𝑒 and 𝜑𝜑(𝑛𝑛), write a function bezout(e, phi) to determine 𝑑𝑑 such that
𝑒𝑒𝑑𝑑 = 1 (mod 𝜑𝜑(𝑛𝑛)).
Hint: Use the generalized Euclid algorithm to determine the GCD 𝑔𝑔 between two
numbers 𝑎𝑎 and 𝑏𝑏 and 𝑥𝑥 and 𝑦𝑦 satisfying 𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑦𝑦 = 𝑔𝑔.
c. Write an algorithm generate_keys(length) that generates prime numbers
𝑝𝑝 and 𝑞𝑞 such that 𝑛𝑛 has length bits, then determines 𝜑𝜑(𝑛𝑛), 𝑒𝑒, and 𝑑𝑑, and finally
returns the public key (𝑛𝑛𝑛 𝑒𝑒) and the private key (𝑝𝑝𝑛 𝑞𝑞𝑛 𝑑𝑑).
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d. By choosing to encode each character on 8 bits, a string of length 𝓁𝓁 is written
as a list (𝑎𝑎0, 𝑎𝑎1,… , 𝑎𝑎𝓁𝓁) with each 0 ≤ 𝑎𝑎𝑖𝑖 ≤ 255. This list can be converted into an
integer 𝑘𝑘 in the following way:

𝑘𝑘 =
𝓁𝓁∑

𝑖𝑖=0
𝑎𝑎𝑖𝑖256𝑖𝑖 .

Write a function toint and a function tostr allowing respectively to convert a
string into this integer and vice versa.
e. Write a function to encrypt a text with a public key and another to decrypt it
with the private key. To do this, we must make sure that the text is convertible to
an integer less than 𝑛𝑛, otherwise we must split it into blocks and encrypt them
separately.

EXERCISE 13.6 BREAKING RSA ENCRYPTION (!!!)

Here is a public key:

(68117338482399392463470612359918949867243158421743691127857 ⌋
737867721430816193,↪

85748048897720393795849637289135115452853334614290225583580 ⌋
93567068308193213)↪

and a message encrypted with this public key:

[58596475619506534790513764457287009750782774091650513492129 ⌋
616474442548981218,
63104441776088042791326380939334783287587514668094966738 ⌋
945085681279666911085,
28554071027878428355220078106239724269975910095918920153 ⌋
395621402277475101298,
59741501338113334375364443871445379652906086792175677977 ⌋
732561102242895663472,
58112750329964299619137149248787612030029527546642617307 ⌋
333293076280314987312,
35797889480880131361419044106285382024227752245483928531 ⌋
935179265371527989598,
40720672564903953103257522703989328334587437415699233514 ⌋
026965026895256621366]

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

a. Decrypt the previous message!
Hint: It is probably necessary to choose a suitable algorithm, for example, using
quadratic screens (QS, MPQS, SIQS).
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SOLUTIONS

SOLUTION 13.1 VIGENÈRE CIPHER

a. The ord function returns the Unicode number of the character and the chr
function does the opposite. Thus, it is enough to shift so that the letter “A” corre-
sponds to 0:

def to_int(s):
return ord(s.upper()) - ord('A')

def to_chr(i):
return chr(i+ord('A'))

b. To encrypt, determine how much to offset each letter of the text, then make
the offset:

def crypt(text, key):
out = ""
for i,c in enumerate(text):

# shift given by the key
shift = to_int(key[i % len(key)])
# add encrypted letter
out += to_chr((to_int(c)+shift) % 26)

return out

c. Decrypting is the same as encrypting but moving backward in the alphabet
instead of forward, so you just have to modify the previous function:

def crypt(text, key, reverse=False):
out = ""
for i,c in enumerate(text):

# shift given by the key
shift = to_int(key[i % len(key)])
# reverse the shift to decrypt
if reverse: shift = -shift
# add encrypted letter
out += to_chr((to_int(c)+shift) % 26)

return out

To test that it works well:

crypt("UNSUPERBEMESSAGECODE", "ASECRET")
crypt("UFWWGIKBWQGJWTGWGQUI", "ASECRET", reverse=True)
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SOLUTION 13.2 BREAKING THE VIGENÈRE CIPHER (!)

a. To calculate the GCD between two numbers:

def gcd(a, b):
if a == 0:

return b
else:

return gcd(b % a, a)

To calculate the GCD of a list of numbers:

def lgcd(lst):
if len(lst) == 0:

raise Exception("Impossible to determine a GCD")
out = lst[0]
for i in lst:

out = gcd(out,i)
return out

b. It is possible to download a file manually, then open it with the open function,
but also to download it directly from Python:

import urllib.request
# download Alice's Adventures in Wonderland by Lewis Carroll

in UTF8↪

url = "https://www.gutenberg.org/files/11/11-0.txt"
text = urllib.request.urlopen(url).read().decode('utf-8')
# convert to upper case without punctuation
text = convert_upper(text)

c. The following function constructs a dictionary with as key the set of three-
letter words and as values the positions of the occurrences of these three letters,
then computes the distance between the sets and returns the GCD:

def length_key(text, mot=3):
# constructs a dictionary with as key the set of words of

three letters and as values the positions of the
occurrences of these three letters

↪

↪

d = {}
for i in range(0, len(text)-mot+1):

t = text[i:i+mot]
if t in d:

d[t].append(i)
else:

d[t] = [i]
# lists the distances between occurrences of the same

letters↪

distances = []
for p in d.values():
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# if more than one element
if len(p) > 1:

for i in range(0, len(p)-1):
distances.append (p[i+1] - p[i])

# the key should be the GCD between the distances
return lgcd(distances)

To test, we keep about five thousand characters of the text, we encrypt it, then we
try to determine the length of the key:

# keep 5000 characters and encrypt
cypher = crypt(text[10000:15000], "ASECRET")
# determine the length of the key
for mot in [3,4,5,6,7,8,9,10]:

length = length_key(cypher, mot=mot)
print(f"mot = {mot} => length = {length}")

We can see that the key is of length 7 as expected.
On the other hand, if we try to determine the key of a randomly generated mes-
sage, it does not work:

import random
random.seed(1234567)
# generate a random message of 1000 characters
random_text = "".join([to_chr(random.randint(0,25)) for _ in

range(1000)])↪

random_cypher = crypt(random_text, "ASECRET")
# try to guess the length of the key
for mot in [3,4,5,6,7,8,9,10]:

length = length_key(random_cypher, mot=mot)
print(f"mot = {mot} => length = {length}")

d. The following function returns the dictionary of occurrences of each letter of
the alphabet in the letters of the encrypted message that have been encoded with
the i-th letter of the key:

def occurrences(text, length, i):
# dictionary to contain the occurrences of the 26 letters
d = {to_chr(i):0 for i in range(26)}
# extraction of letters modulo the length of the key

starting at i↪

subtext = text[i:len(text):length]
# establishes the statistics of occurrence of each letter
for c in subtext:

d[c] += 1
return d

To decrypt the message without knowing the key, the first step is to determine
the length of the key with the length_key function. To do this, we give ourselves
a minimum key length key_min and a maximum word length word_max:
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def decrypt(text, key_min = 5, mot_max=10):
# loop to find the length of the key
for mot in range(3, mot_max+1):

length = length_key(text, mot)
# if key found is long enough then probably right
if length > key_min:

print(f"The key is apparently of length {length}
with words to length {mot}.")↪

break
# impossible to determine a key of sufficient length
if mot == mot_max:

raise Exception("Impossible to decrypt the
message")↪

# loop to find each letter of the key
key=""
for i in range(length):

# calculate the occurrences of each letter
occ = occurrences(text, length, i)
# return the letter with the highest occurrence
c = max(occ, key=occ.get)
# this letter should correspond to "E"
key += to_chr((to_int(c)-to_int("E")) % 26)

return key

Try to decipher the cipher text:

decrypt(cypher)

which returns the encryption key. As the algorithm uses statistics on the most
used letter in English, the key might not always be found correctly.

SOLUTION 13.3 GENERATING PRIME NUMBERS

a.The following algorithmgenerates a randomnumber between 2𝑘𝑘−1 and 2𝑘𝑘 and,
if it is even, adds 1 to make it odd:

def rand(k):
p = random.randrange(2⁎⁎(k-1),2⁎⁎(k))
if p % 2 == 0:

p = p+1
return p

A faster way to generate such numbers is to generate a number of 𝑘𝑘 bits, then set
the most significant bit to 1 to ensure that the number is greater than 2𝑘𝑘−1 and
set the least significant bit to 1 as well to ensure that the number is odd:
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def rand(k):
p = random.getrandbits(k)
# apply a mask
p |= (1 << k - 1) | 1
return p

b. The idea is to test if the number is divisible by two and then to test the division
by all the odd numbers from 3 to the root of the number. Note the use of the &
operator performing the conjunction “and” bit by bit which allows to determine
if a number is divisible by two in a slightly faster way than with modulo.

import math
def isprime(n):

# test if n is even
if n & 1 == 0:

return False
# test even odd number from 3 to sqrt(n)
for d in range(3, math.floor(math.sqrt(n))+1, 2):

if n % d == 0:
return False

# if no divisor found, then n is prime
return True

c.Generates a randomnumber of k bits, then tests if it is prime and repeats if not:

def generate(k, primality):
while True:

n = rand(k)
if primality(n):

return n

By testing, it is possible to generate 32 bits numbers quickly with this algorithm,
but with 64 bits numbers it becomes very long (several minutes). It is therefore
illusory to want to generate prime numbers of 1 024 bits with this algorithm.

SOLUTION 13.4 GENERATING PSEUDOPRIME NUMBERS

a. Tests N values of a to determine if n is prime or not.

def fermat(n, N=128):
# test N values of a
for _ in range(N):

a = random.randint(2,n-2)
# if not prime
if pow(a, n-1, n) != 1:

return False
# no a allowed to determine that n is composite
return True
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With Fermat’s primality test, it is now possible to generate 1 024-bit pseudoprime
numbers in a few seconds:

generate(1024, fermat)

b. To construct the list of prime numbers less than 1 000:

low = []
for i in range(3,1000):

if isprime(i):
low.append(i)

Here is a function that optimizes a primality test test by first testing divisibility
by primes less than 1 000:

def optimize(test, low=low):
def testopt(n):

# if already in the list
if n in low:

return True
# if even
if n & 1 == 0:

return False
# if divisible
for i in low:

if n % i == 0:
return False

# otherwise other primality test
return test(n)

return testopt

This saves about a factor of two on speed of execution:

generate(1024, optimize(fermat))

c. Since the optimize function is used to optimize a test, it is possible to define
the optimized miller_rabin function directly with a decorator:

@optimize
def miller_rabin(n, N=128):

# write n-1 as d⁎2^r
d = n-1
r = 0
while r & 1 == 0:

r += 1
d //= 2

# test N values of a
for _ in range(N):

a = random.randint(2, n-2)
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x = pow(a, d, n)
# if a^d = 1 then the test is false and continue with

another a↪

if x == 1:
continue

# determine if x^(2s) = -1 for s=0,...,r-1
s=0
while x != (n-1):

# Miller-Rabin test finished so n is not prime
if s == r-1:

return False
else:

s += 1
x = pow(x, 2, n)

return True

To test the Miller-Rabin algorithm:

generate(1024, miller_rabin)

SOLUTION 13.5 RSA ENCRYPTION

a. First of all:
𝐶𝐶𝑑𝑑 = 𝑀𝑀𝑒𝑒𝑑𝑑 (mod 𝑛𝑛)

then, we distinguish two cases:

∙ if 𝑀𝑀 is prime with 𝑛𝑛, then since 𝑒𝑒𝑑𝑑 = 1 (mod 𝜑𝜑(𝑛𝑛)), then 𝑀𝑀𝑒𝑒𝑑𝑑 = 𝑀𝑀
(mod 𝑛𝑛);

∙ if𝑀𝑀 is not prime with 𝑛𝑛, then𝑀𝑀 is a multiple of 𝑝𝑝 or 𝑞𝑞 or both and wemust
distinguish these three cases:

– if 𝑀𝑀 is a multiple of 𝑝𝑝 but not of 𝑞𝑞, then 𝑀𝑀 is prime with 𝑞𝑞. Since
𝜑𝜑(𝑛𝑛) = 𝜑𝜑(𝑝𝑝)𝜑𝜑(𝑞𝑞), then 𝑒𝑒𝑑𝑑 = 1 (mod 𝜑𝜑(𝑞𝑞)) and thus 𝑀𝑀𝑒𝑒𝑑𝑑 = 𝑀𝑀
(mod 𝑞𝑞). Since𝑀𝑀 = 0 (mod 𝑝𝑝), this shows that𝑀𝑀𝑒𝑒𝑑𝑑 = 𝑀𝑀 (mod 𝑛𝑛).

– if 𝑀𝑀 is a multiple of 𝑞𝑞 but not of 𝑝𝑝, then the proof is identical to the
previous case with 𝑝𝑝 and 𝑞𝑞 exchanged.

– if 𝑀𝑀 is a multiple of 𝑝𝑝 and 𝑞𝑞, then 𝑀𝑀 = 0 (mod 𝑛𝑛) and the result is
trivial.

b. Generalized Euclid algorithm that for given 𝑎𝑎 and 𝑏𝑏 returns 𝑔𝑔, 𝑥𝑥, and 𝑦𝑦 such
that 𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑦𝑦 = 𝑔𝑔 = GCD(𝑎𝑎𝑎 𝑏𝑏):

def egcd(a, b):
if a == 0:

return (b, 0, 1)
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if a == 0:

return (b, 0, 1)
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else:
g, x, y = egcd(b % a, a)
return (g, y - (b//a)⁎x, x)

Then, the modular inverse is easily calculated:

def bezout(e, phi):
g, d, _ = egcd(e, phi)
assert g==1, "e has to be prime with phi"
return d % phi

c. Generate the numbers 𝑝𝑝 and 𝑞𝑞, then determine a possible 𝑒𝑒 and compute the
𝑑𝑑 with the bezout function:

def generate_keys(length):
# generates two pseudoprime numbers p and q of size

length/2↪

p = generate(length//2, miller_rabin)
q = generate(length//2, miller_rabin)
# as such n should have length bits
n = p⁎q
phi = (p-1)⁎(q-1)
# find e prime to phi
while True:

e = random.randrange(1, phi)
if gcd(e, phi) == 1:

break
# determine d
d = bezout(e, phi)
public_key = (n,e)
private_key = (p,q,d)
return (public_key, private_key)

d. Converting a string to an integer is like converting a base 256 number to base
10:

def toint(string, bit=8):
# base
base = 2⁎⁎bit
# list of characters converted in the base according to

their position↪

lst = [ord(c)⁎base⁎⁎i for i,c in enumerate(string)]
# the sum is the representation in the base
return sum(lst)

To go back, you have to decompose the integer in base 256:

def tostr(integer, bit=8):
# base
base = 2⁎⁎bit
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# number of letters
size = integer.bit_length()//bit+1
# gives the list of letters by converting from the base
lst = [chr((integer//base⁎⁎i) % base) for i in

range(size)]↪

return ''.join(lst)

e. Function to encrypt with the public key:

def encrypt(public_key, text):
# unpack public key
n,e = public_key
# length of the key
bits = n.bit_length()
# blocksize by encoding each character on 8 bits
blocksize = bits//8
# list of groups of blocksize letters
groups = [text[i:i+blocksize] for i in range(0,

len(text), blocksize)]↪

# list of integers associated with groups of letters
integers = map(toint, groups)
# encrypt each integer in the list of integers
return [pow(i, e, n) for i in integers]

Function to decrypt with the private key:

def decrypt(private_key, text):
# unpack private key
p,q,d = private_key
# calculate n
n = p⁎q
# length of the key
bits = n.bit_length()
# blocksize by encoding each character on 8 bits
blocksize = bits//8
# decrypt each integer
integers = [pow(i, d, n) for i in text]
# convert integers to groups of letters
groups = map(tostr, integers)
return ''.join(groups)

To test that everything works well:

public_key, private_key = generate_keys(256)
cypher = encrypt(public_key, "This is a top-secret message!")
decrypt(private_key, cypher)
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