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PREFACE 

What are mathematical models? How are they developed? How much should we trust them: can we be con-
fident in their predictions, and do we know when to act upon them? These questions, routinely addressed by 
mathematical modeling practitioners, are also of interest to citizens and policy makers. Our modern society 
needs models that can be relied upon, not only to improve our understanding of a situation, but also to inform 
policy decisions. 

This introduction to mathematical modeling was developed for an audience of college seniors pursuing an 
undergraduate degree in mathematics with emphasis in applied mathematics, the life sciences, or engineering. 
The course builds on knowledge of calculus, linear algebra, and differential equations to address the basic tech-
niques and thought processes that are fundamental to mathematical modeling. The style is deliberately casual 
and the main goal is to explain how mathematics learned in core undergraduate classes may be used to under-
stand simple phenomena that arise in physics and biology, and how the corresponding models are put together, 
tested, and analyzed. 

The text covers all of the standard systems that are normally considered in a modeling class: the nonlinear pen-
dulum, chaotic maps, predator-prey models, competing species, chemical reactions, and, towards the end, dif-
fusion and spatially extended systems. None of these are complicated topics and one could argue that such 
models are too simple to be useful. They however form the building blocks of mathematical modeling and, in 
spite of their simplicity, provide the tools to tackle more elaborate and realistic models. Emphasis is placed on 
developing practice with simple but general methods, such as dimensional analysis, phase plane analysis, basic 
fixed point theory, and numerical explorations; whenever possible, connections between different systems are 
built by exploring similarities in the mathematical models that describe them. Although some sections involve 
randomness, most of the text is concerned with deterministic models based on difference or differential equa-
tions. This is a deliberate choice, in order to allow coverage of the material in a one semester course. Finally, 
because modelers need to be good communicators of science and should understand potential uses and abuses 
of mathematical models, the first chapter of the text discusses such issues, in the context of a few examples. 

Many excellent texts on dynamical systems are available in the literature, some of which motivate the study of 
nonlinear systems through mathematical models. One may thus question the usefulness of a separate course 
on mathematical modeling. The point of view presented here is that mathematical modeling is the art of 
using one’s mathematical knowledge to describe the world in mathematical terms. This requires good reason-
ing skills and a solid understanding of mathematical methods, as well as a type of mathematical fluency that 
transcends expertise in differential equations, or in any other core mathematics subject. The purpose of this 
text is to develop these skills and associated mindset through the practice of mathematical modeling in the 
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context of simple, carefully chosen examples. Appendices are provided to review the basic mathematical tools 
needed to build and analyze the models. MATLAB GUIs are supplied with the course materials, allowing read-
ers to explore the role of model parameters through graphical user interfaces, without requiring knowledge of 
numerical methods or of a particular numerical software package. 

This book will give readers the background necessary to follow general scientific research articles that use math-
ematical modeling, such as those found in Science, Nature, and PNAS, to name a few. Successive versions of 
these notes have been used since 2005 as the main text for a one-semester capstone course at the University 
of Arizona. Students who take the mathematical modeling course also work in teams on a semester-long pro-
ject, under the supervision of graduate or post-graduate mentors. Each project is based on understanding and 
reproducing the results of a research article. Teams write midterm and final reports on their projects and pre-
sent their work in a poster session held in a public venue at the end of the semester. For the online version of 
the course, posters are replaced with group video presentations, judged by members of the university commu-
nity. It is highly recommended that a similar model be used when teaching a class with this text. A list of recent 
projects and related articles is provided as an appendix. 

I would like to thank all of my colleagues in the Department of Mathematics at the University of Arizona 
who, since 2007, have taught our mathematical modeling course with this text. I am also grateful to all of the 
graduate and postgraduate mentors, who for almost two decades have guided teams of undergraduates taking 
this course through their modeling projects. Finally, the initial development of these notes was made possible 
thanks to a University of Arizona TRIF (Technology and Research Initiative Fund) grant, which is acknowl-
edged with great appreciation. 

Joceline Lega 
The University of Arizona 
Fall 2012 & Summer 2024 
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PART I 

INTRODUCTION 

The first two chapters of these notes aim to introduce basic concepts of mathematical modeling. Particular 
emphasis is placed on the modeling process, which involves successive testing and refinement of a mathematical 
model. 

Chapter 1 introduces mathematical models and the modeling process, discusses the usefulness of mathematical 
models, and considers the range of skills mathematical modelers should possess. The exercise section encour-
ages the reader to reflect on how models should or should not be used. 

The purpose of Chapter 2 is to build a mathematical model step by step, following the modeling process. Most 
readers will be familiar with the phenomenon to be modeled: a human wave in a stadium. 

INTRODUCTION  |  3



1. 

ON THE NATURE OF MATHEMATICAL 
MODELING 

Learning Objectives 

At the end of this chapter, you will be able to do the following. 

• Describe what a mathematical model is. 

• Describe what it takes to be a good mathematical modeler. 

• Explain how to build a mathematical model by going through the modeling cycle. 

• Discuss the role of hypotheses in the model-building process and how they limit potential 

applications of the model. 

• Reflect on the appropriate use of mathematical models. 

What is a model? 

The word model refers to a representation, often simplified, of an object or of an observation. A model is thus 
expected to at least mimic, but preferably explain and predict relevant aspects of a given phenomenon. A math-
ematical model typically consists of one or more equations relating dependent (or output) to independent (or 
input) variables. Often, a mathematical model involves parameters. 

This definition raises the question of reproduction versus explanation. Consider for instance the formation of 
ripples on a sandy beach. One could imagine developing a model which would take into account how each 
particle of sand interacts with its neighbors, with the surrounding air, and with particles at rest on the ground. 
This would be a fairly complicated model, which would involve many dynamical equations, but which should, 
under appropriate circumstances, be able to reproduce the formation of sand ripples. Another approach could 
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be at a more global level. One could then imagine a model that considers the elevation of the sand on the 
ground and shows that, in some parameter regime, this quantity oscillates as a function of space. Both models 
would reproduce the desired phenomenon, but would provide different types of explanation. This is due to 
the difference in their nature: the former is a model at the microscopic or particulate level, the latter is a model 
at the macroscopic level. A third model could be a sort of “black box,” whose input would be relevant parame-
ters such as the speed of the wind, and the mass and size of the particles of sand, and whose output would be 
a stripe pattern with the correct properties (period, height, etc). One could create such a model by conducting 
careful experiments, tabulating the results, and finding functions that fit the data. This model would not offer 
an explanation as to why sand ripples form, but could still have some predictive capabilities. 

Along the same lines, it is well-known that mountains, clouds, trees or even some artistic works resemble frac-
tals. Recognizing this fact may help graphic designers create convincing and aesthetically pleasing virtual land-
scapes, but does not for instance explain how mountains or clouds are formed. 

Different models may thus produce similar results, and modelers need to decide which model best suits their 
needs. This is of course a subjective task, the  outcome of which should be based on the answers to the follow-
ing questions. 

• What do we want the model to do: reproduce, explain, predict, etc? 
• Is a predictive but costly model worth the effort invested in its creation? 
• What minimal  set of criteria should the model satisfy? 

A related issue is that different phenomena may lead to similar behaviors (a little like different diseases may 
have similar symptoms). As a consequence, a model which reproduces the desired behaviors may not have any 
explanatory or predictive value (similarly, one cannot reasonably diagnose a disease based on symptoms that are 
not unique to this particular disease). 

In this text, we will not consider curve-fitting approaches (although see the exercises for applications of the 
least squares method), but focus our attention on models that are descriptive and explanatory. Such models 
will often consist of a collection of dynamical equations. We will discuss how to analyze them, in order to assess 
their ability to reproduce and predict relevant phenomena. We will assume the reader has a working knowledge 
of calculus, differential equations and linear algebra. Brief reviews of these topics are provided in the appen-
dices. 

How to develop a mathematical model 

We now turn to the basic steps involved in the creation of a mathematical model. We will follow these guide-
lines in all of the models discussed here, very explicitly at first, and then in a more implicit fashion. 
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Figure 1.1. The Mathematical Modeling Process and the Modeling Cycle. 

Identify what we want to model 

The first step is to decide what the model should accomplish. In other words, we need to find a set of criteria 
that a satisfactory model should meet. These criteria typically result from balancing the desire of having a per-
fect model against any time and cost constraints associated with creating such a model. 

Obtain data 

This is often the best way to develop an intuitive understanding of the phenomenon of interest. If appropriate, 
we should also master the basic physical, biological or chemical principles that are responsible for the observed 
behavior. This may be fairly involved, and often requires finding information in the literature and/or dis-
cussing the data with experts. 

Choose the level of complexity of the model 

Going back to the example of the formation of sand ripples discussed above, we should for instance decide 
whether a microscopic model should be preferred to a macroscopic model. Such a decision may be based on 
personal taste, on the nature of available data, and on the current level of understanding of the phenomenon. 
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Make assumptions 

We have to decide which facts (or parameters) are irrelevant and therefore negligible, and which ones have to 
be taken into account. 

Set up the model 

We need to define the independent and dependent variables, define the relevant parameters, and write a mathe-
matical formulation of the model. This formulation should be as simple as possible, and we should have a clear 
understanding of the significance of each of the terms that appear in the equations forming the mathematical 
model. 

Test the model 

This is a crucial step in deciding whether we are satisfied with our model. The behavior of the model may be 
investigated analytically, or numerically, or both. We then have to ask ourselves whether our intuition generally 
agrees with what the model does, whether the model is qualitatively and quantitatively correct, and whether 
limiting cases make sense. If not, we need to find why and amend the model accordingly – in other words, we 
need to go back to the previous steps. This is thus an iterative process, illustrated in Figure 1.1, during which 
the model is perfected by testing the results of our analysis of the model against our intuition, against available 
experimental data, or against the accepted understanding of the phenomenon under study. 

Why develop mathematical models 

A mathematical model is a set of equations that reflects our understanding of a given phenomenon. It may 
look mysterious to the neophyte, but for someone who knows how to read a model, it is an efficient and con-
cise means of communication. A lot of effort, thinking, testing and understanding goes into the creation of a 
model, but in the end, all this work is summarized by a set of equations or by the formulation of some iterative 
process. Such a model is a scientists’ expression of their perception of the world. 

Models have also more practical purposes. They may be used to describe or investigate limiting situations 
which cannot be reached in practice. In particular, the different ingredients of a model may be isolated from 
one another by setting all parameters but a few to zero. Models also allow us to save time and resources. For 
instance, computer simulations of car crashes are cheaper than performing actual experiments. Flight simula-
tors are used as training devices. Models may be run as part of feasibility studies, or to test the outcome of vari-
ous possible scenarios. 
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Because models are increasingly used to make decisions that impact society (see for instance the news articles 
listed in Problem 2 at the end of this chapter), it is important to know their limitations, to realize which 
hypotheses they are based upon, and to know the role, which may be crucial, that these hypotheses play in the 
model. An article by R. May, entitled Uses and Abuses of Mathematics in Biology, further reflects on such issues. 

What does it take to be a good modeler? 

Mathematical modeling combines various areas of mathematics (for instance differential equations, calculus, 
linear algebra, numerical analysis, probability theory, dynamical systems, statistics, uncertainty quantification) 
with, depending on the nature of the model, knowledge of physics, biology, chemistry, astrophysics, geology, 
hydrology, etc. These subjects are typically taught independently from one another, and the main instructional 
goal of a mathematical modeling course is to discuss how to draw on various areas of knowledge in order to 
build and analyze a model. As a consequence, a reader well trained in mathematics and other scientific disci-
plines will find that there is no “new material” in these notes. What is new is the use of a variety of mathemati-
cal tools to reach a single objective: develop, understand, and test mathematical models. 

Successful mathematical modeling thus requires some sort of resourcefulness, since the modeler should be able 
to “think” of the right tools or methods to use. It also requires some curiosity, imagination and patience; an 
ability to understand problems that are not purely mathematical; an ability to simplify a given problem, in 
order to decide what is relevant and what is not; an ability to turn concepts into equations, to decide whether 
a model is good or inadequate; and finally an ability to discuss problems with others, particularly those whose 
expertise is different from one’s own. 

Summary 

The phrase mathematical modeling may be understood in a variety of ways. In these notes, only models that 
are explanatory, predictive, and have a mathematical formulation qualify as mathematical models. In particu-
lar, curve fitting techniques or statistical models are not discussed. 

The modeling process involves a series of steps that modelers need to go through in a systematic fashion. These 
include knowing what one wants to model, getting data, deciding on the type of model to be developed, mak-
ing assumptions, constructing the model, testing and amending it, and finally using the model. It is particularly 
important that simplifying hypotheses made in the development of the model be clearly understood, especially 
if the results are used for policy or decision making purposes. 

Mathematical modeling is an interdisciplinary activity which requires an appreciation for the power of mathe-
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matical analysis, an interest in applied disciplines, a solid mathematical and computational background, as well 
as good communication skills. 

 

Food for Thought 

Problem 1 

Read the article by R. May entitled Uses and Abuses of Mathematics in Biology. How does this arti-

cle illustrate the dangers of trusting models blindly? Do you find the arguments convincing? 

Problem 2 

Read at least three of the news articles below. 

• Rapid Response Could Have Curbed Foot-and-Mouth Epidemic by Martin Enserink 

• Disease control: Virtual plagues get real by V. Gewin 

• African swine fever outbreak alarms wildlife biologists and veterinarians by Erik Stokstad 

• U.K. expands kill zone for badgers in fight against bovine TB, sparking controversy by Erik 

Stokstad 

• Italy’s olive crisis intensifies as deadly tree disease spreads by Alison Abbott 

• Why computer simulations should replace animal testing for heart drugs, by Elisa Passini, 

Blanca Rodriguez, and Patricia Benito 

• Could computer models be the key to better COVID vaccines? by Elie Dolgin 

• OFF THE GRID: Computer models that forecast overloaded power lines are holding back U.S. 

solar and wind energy projects, by Dan Charles 

Then answer the following questions; include a discussion of the articles that you read (with proper 

references) in your argumentation. 

• Do you believe mathematical models should be used to make decisions that impact people 

and society? Why or why not? 
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• What criteria do you think such models should satisfy, if they are to be used for policy-mak-

ing purposes? 

Problem 3 

Assume you are an important business or government person, and that you have to make a deci-

sion that will influence the future of many people. Your decision relies on simulations of a mathe-

matical model. What kind of questions would you ask the developers of the model, in order to help 

you in your decision-making process? 

Problem 4 

Read the article by N. Goldenfeld and L. Kadanoff, entitled Simple Lessons from Complexity. Sum-

marize the main points of this paper and indicate which of the authors’ conclusions you think one 

should especially keep in mind when developing a model. 

Problem 5 

Consider a set of data points in the plane  and a straight line of 

equation  Define the distance  between the data set  and the set 

 as 

Show that one can find a pair  which minimizes the value of  This particular choice of para-

meters provides a linear fit,  of the data set  This fitting technique is called the 

least squares method. 

Problem 6 

Using the least squares method (see Problem 5), find the straight line that best fits the following 
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data points: (1,3.3), (2.5, 8), (4,13), (7,22), (8,25.5). Plot the line and the data points on the same 

graph. Is the fit satisfactory? Why or why not? 

Problem 7 

Browse the MATLAB documentation on curve fitting, and familiarize yourself with MATLAB’s basic 

fitting interface. Create a set of data points close to the graphs of the following functions, and see if 

the fit proposed by MATLAB is satisfactory. What do you conclude? 

1. 

2. 

3. 

4. 
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2. 

FIRST STEPS: MODELING THE WAVE 

Learning Objectives 

At the end of this chapter, you will be able to do the following. 

• Apply the modeling process by developing a model from the ground up. 

• Translate word statements into mathematical formulations. 

• Test the behavior of a model with a numerical simulation. 

• Assess whether a mathematical model is behaving as expected. 

We will start our exploration of mathematical modeling with a simple problem, which does not require any 
particular a priori knowledge, but which allows us to illustrate the modeling process discussed in the previous 
chapter. 

Formulation of the problem 

We will consider the problem of the human wave, which occurs in a stadium when spectators stand up, raise 
their hands and sit down, in order to form a wave which propagates around the bleachers. According to Farkas 
et al., such a phenomenon is often called the Mexican Wave (La Ola), a term that was first used during the 
broadcasting of the 1986 Soccer World Cup held in Mexico. The discussion below is based on two articles by 
Farkas et al. entitled Mexican waves in an excitable medium and Human waves in stadiums. 

Our goal is to develop a model that reproduces and explains the propagation of the wave. The model will have 
to depend on parameters that can be described in everyday terms, and the behavior of the model when these 
parameters are changed should correspond to what is actually observed in a stadium. 
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Obtain data and choose the level of complexity of 
the model 

The two articles by Farkas et al. referenced above provide some information, based on 14 video recordings of 
waves in stadiums containing more than 50,000 seats. Their observations indicate that waves propagate on 
average at a speed of 12 m s-1 (or equivalently 22 seats per second), and have a width between 6 and 12 meters 
(or equivalently 11 to 22 seats), with an average of about 15 seats. Moreover, approximately 3 out of 4 waves 
propagate clockwise, when one looks at the stadium from above. 

Our model will be as simple as possible. In particular, it will be  one-dimensional, and discrete. We will however 
carefully define our hypotheses so that we will know what to modify if other effects need to be included. 

Make assumptions 

We will use periodic boundary conditions, since each row in a stadium forms a closed loop. We will not take 
into account the presence of stairs, and thus assume that all of the seats are equally spaced. We will also consider 
that all seats are occupied. Each spectator will be either seated or doing the wave. This latter state corresponds 
to consecutively standing up, waving one’s hands, and sitting down. Once a person has started doing the wave, 
they will not stop until they are seated again. At that time, the person may decide to stand up and do the wave 
again. 

Set up the model 

First, the wave needs to be initiated: some people must be standing up for the wave to start. Then, for the wave 
to propagate, spectators must be influenced by what their neighbors do. Since most waves propagate in a clock-
wise direction, people must be more sensitive to what is happening on their right than on their left. 

It is clear that the mood of the spectators is important: if the game is too boring, no one will feel like cheering. 
On the other hand, if the game is too exciting, there may be people standing up all the time, and many waves 
could be initiated at once. Based on this, we can describe the wave as a wave of enthusiasm. People standing up 
are excited and their behavior influences the level of enthusiasm of their neighbors. If this level is above a per-
son’s threshold of enthusiasm, then the person will become excited and start doing the wave as well. 

We will therefore need a parameter, , that describes the mood, or the threshold of enthusiasm, of each 
spectator. This parameter is likely to vary from one spectator to the next, and we will simply assume that it 
is uniformly distributed over an interval . More complicated distributions could be used. The 
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parameter  describes the average responsiveness of the crowd watching the game, and  measures the 
spread or the standard deviation of this responsiveness about its mean. 

We will assume that a person’s level of enthusiasm varies as they do the wave. This is reasonable since it seems 
legitimate to consider that a person who is standing and waving is more excited than a person who is just get-
ting up or sitting down. We will thus introduce a function  that describes the level of enthusiasm of a 
person doing the wave, as a function of time. 

Finally, we will define an asymmetric function,  which describes how a spectator is influenced by the behavior 
– in our case the level of enthusiasm – of their neighbors. We now discuss how to convert the above statements 
into equations. 

Let  be the number of seats in one row of the stadium (recall that this is a one-dimensional model. It can 
however easily be extended to two dimensions, as is the case for the models discussed in the articles by Farkas et 
al.). Since we assumed that all seats are occupied, we can define a function  describing the level of enthusi-
asm of spectator , for . The variable  will be either 0, if the person is seated, or larger than some 
activity threshold . If , then spectator  will start doing the wave only if the combined enthusiasm 
of their neighbors, denoted by , exceeds , i.e. exceeds their threshold of enthusiasm. Once 
becomes non-zero, this variable will evolve as a function of time as follows: 

The function  should be bell-shaped, its maximum corresponding to the moment when the person 
is standing up with their hands up. Many functional forms can be chosen; here, we will simply take 

 where  is the maximizer of  and  is a parameter which selects the dura-
tion  of the wave, that is how long it takes for one person to stand up, raise their hands, and sit down. More 
precisely, since the function  is of order one on an interval centered at the origin and of width , 

 can be approximated by 

We will choose  such that  where  is the time at which a person becomes excited, i.e. at 
which  exceeds , and  is a parameter that we can adjust. One can think of  as a reaction 
time, which measures the time elapsed between the moment a person notices their neighbors’ activity and the 
moment they stand up and do the wave. 

Since observation of human waves indicate that most waves propagate clockwise, we will use an asymmetric 
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Figure 2.1. 
MATLAB Graphic 
User Interface 
(GUI) for the 
Mexican Wave 
model. 

function to describe the combined level of enthusiasm of a person’s neighbors. Again, many choices are possi-
ble. Here, we use 

where ,  and  are parameters. This function is such that spectator  is affected by excited neighbors 
seating less than  seats away. The exponential term indicates that the most important influence comes 
from nearest neighbors, and the hyperbolic tangent term is such that neighbors on the right of person  are 
more influential than neighbors on the left (for positive values of ). When looking at the one-dimensional 
row from the center of the stadium, the more influential neighbors are thus seated left of person , leading to a 
wave propagating clockwise. 

Test the model 

The best way to test this model is by numerical simulation. Once we have chosen the number of seats, the num-
ber of people initially standing and the enthusiasm threshold of each of the spectators, and we have defined the 
functions  and , we can iteratively apply the rule given by Equation (2.1) to each spectator. Whether the 
wave propagates or dies will depend on the parameters of the model, and we can explore different situations by 
changing these parameters. 

The MATLAB code The_Wave.m simulates the above model. Figure 2.1 shows the corresponding MATLAB 
interface. The various parameters may be modified by adjusting sliders. When the simulation runs, a plot of 

 is shown in the top left window, and is updated every time step, . The bottom left window displays a 
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spectator’s threshold of enthusiasm,  as a function of their seat number . The top right panel shows 
the graph, as a function of , of the level of enthusiasm  (see Equation (2.1)) of a person doing the wave. 
The bottom right panel illustrates how neighbors affect the behavior of a person. More precisely, it shows the 
graph of 

as a function of ; the red circles indicate the contribution of spectator  sitting within a distance  of 
spectator . All of these windows are updated when the parameters are changed by the user. Default parameter 
values are such that a wave about 15 seats wide propagates clockwise. Below are a few suggestions for exploring 
the model. 

• Change the number of seats and check that the size of the wave is not affected, provided  is larger than 
the width  of the wave. What happens if  is less than ? 

• Change the threshold of enthusiasm of the spectators, by modifying the mean  and the range 
 of . 

• Change the values of  and . What do you observe? 
• Is there a relation between the minimum value of  and the minimum value of  for a wave to form? 

Why or why not? What is the significance of such a relation? 
• What is the speed of the wave? 
• Change the time step . How does it affect the size of the wave? Can you modify the value of  to com-

pensate? Why or why not? (Hint: what other time scale is there in the model?) What does  actually 
select? Why? 

• Change the activity threshold . Do you understand why the wave dies when  is too large? What 
other parameter can you modify to prevent this from happening? 

• Change the number of people initially standing. What do you observe? 
• What can you change to make the wave propagate to the left (i.e. anti-clockwise)? 

The above numerical exploration shows that the model gives a reasonable representation of the formation and 
propagation of a wave in a stadium. But the simulation can also help identify some of the limitations of the 
model. For instance, stairs or aisles could block the propagation of the wave. Another limitation is that if there 
is more than one person initially standing up, all of these spectators sit down in exactly the same fashion. This 
is because we use the same function  for each spectator. In practice, different people do the wave differ-
ently, and one could think of letting the function  depend on . 

Even the simple version of the model presented here has a large number of parameters. A numerical exploration 
of the model indicates that it is not the parameters themselves, but combinations thereof, which are in fact 
relevant. For instance, we could decide to measure time in units of the time step, . Then, we would be left 
with only two dimensionless parameters,  and . Identifying relevant combinations of parameters 

16  |  FIRST STEPS: MODELING THE WAVE



is essential for a thorough exploration of the properties of any model. We will discuss this at length in the next 
chapter, when we introduce dimensional analysis and scalings. 

Summary 

This chapter illustrates the various steps involved in the modeling process, using the example of a human wave 
in a stadium. These steps consist in formulating the problem, obtaining data, identifying the level of complex-
ity of the desired model, making simplifying assumptions, setting up the model and finally testing it. The tools 
we used were elements of calculus, to choose the functional forms of  and , and numerical simulation. The 
latter helped us test the model, but simulations are also useful to build an intuitive understanding of the prop-
erties of any model. This knowledge can then be used to identify the ingredients responsible for each particular 
property of a model, and possibly simplify or modify the model accordingly. The phenomenon discussed in 
this chapter is an example of wave propagation in an excitable medium. 

A system is said to be excitable if perturbations of large enough amplitude can trigger a fast and large response, 
followed by a slower relaxation of the system back to its resting state. Other examples of excitable media include 
neurons (nerve impulses are excitable waves – called action potentials – propagating along axons) and cardiac 
tissue (a heartbeat corresponds to an electric wave propagating through the heart, leading to contraction and 
relaxation of the heart muscle). 

 

Food for Thought 

Problem 1 

Find three different bell-shaped or pulse-like functions. How do you adjust their height? How do 

you adjust their width? 
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Problem 2 

Find a monotone, differentiable function  defined on the real line, and such that 

 

Plot the function you found and check that it is monotonically increasing from -6 (as ) 

to 3 (as ). 

Problem 3 

Plot the function  for various values of . Describe in words the role of this 

parameter. 

Problem 4 

Plot the function  for different values of the parameters 

and . Describe in words the role of each parameter. 

Problem 5 

How would you modify the model described in this chapter in order to take into account the pres-

ence of aisles or stairs in a stadium? 

Problem 6 

Read the articles by Farkas et al. entitled Mexican waves in an excitable medium and Human waves 

in stadiums. 

1. Do you find their model convincing? 

2. Is all of the needed information actually included in the articles? Why or why not? 

3. Are the hypotheses made by the authors essential? Explain. 
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Problem 7 

What are the similarities and differences between the model discussed in this chapter and a one-

dimensional version of the detailed -state model of Farkas et al. entitled Mexican waves in an 

excitable medium and Human waves in stadiums? Justify your answer. 
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PART II 

MODELS FROM CLASSICAL 
MECHANICS 

The goal of this section is to familiarize ourselves with the use of differential equations as models, to discuss 
scalings and dimensional analysis, and to introduce phase plane techniques. This will be done on examples of 
application of classical mechanics. 

In the first chapter, we will go over the derivation of the equation of motion of the nonlinear pendulum, check 
the dimension of each term in this equation, discuss the limit of small oscillations, and investigate the nonlin-
ear dynamics of the pendulum by means of phase plane analysis. 

We will then consider the problem of stone-skipping, and introduce Euler’s equation for the dynamics of a 
rigid body. This discussion will also provide a good illustration of the power of dimensional analysis. 
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3. 

THE NONLINEAR PENDULUM 

Learning Objectives 

At the end of this chapter, you will be able to do the following. 

• Apply the modeling process to a simple mechanical system, the nonlinear pendulum. 

• Use Newton’s law to derive a differential equation for the dynamics of the pendulum. 

• Combine variables and parameters into dimensionless quantities. 

• Assess whether a mathematical model is dimensionally correct. 

• Synthesize the dynamics of an autonomous second order differential equation by means of 

energy methods or phase plane analysis. 

Nature of the problem, assumptions and model 
equations 

We consider the motion of a pendulum, that is of a mass suspended at one end of a string, the other end being 
attached to a fixed point (see Figure 3.1). It is known that the period of the pendulum depends on its ampli-
tude. We refer the reader to Figure 4 of a 2005 article by Lima and Arun, and references therein. 
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Figure 3.1. Sketch of a pendulum. 

In what follows, we will assume that the object attached 
to the string is a point mass, that the string is massless and 
that neither the mass of the object nor the length of the 
string change with time. We will consider that motion 
takes place in a plane (note this is an approximation since 
the pendulum tends to undergo a slow precession 
motion). We will use Newton’s law to describe the dynam-
ics of the pendulum. The forces acting on the mass are the 
force of gravity , which we will consider constant (see 

exercises for a justification), the tension  exerted by the 

string, and the friction force  exerted on the mass by 

the surrounding air. We will assume that this force is pro-
portional to the negative of the velocity of the mass. This 

too is an approximation; for more information, see for instance Pendulum Damping by P. Squire (1986). 

In order to set up the problem, we define a basis of vectors  for the plane in which the motion is taking 
place. We call  the length of the string and  the mass of the object attached to the string. We measure the 
position of the point mass in terms of the angle  between the string and the vertical (see Figure 3.1). The posi-
tion vector of the point mass  is given by 

where . The unit vector orthogonal to  and such that  forms a direct basis 

of the  plane is 

We can now use this information to express the first and second derivatives of the position vector  in terms of 
the vectors  and , as well as of the derivatives of the angle . Indeed, we have 

Newton’s law tells us that the acceleration of the point mass is equal to the sum of the forces applied to the 
mass. In other words, we have 
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where 

•  is the force of gravity, 

•  is the tension exerted by the string, 

• , with , is the friction force (we used Equation (3.1) to obtain the 

last equality). 

Note that we have expressed the forces in terms of the vectors  and , and not  and . The reason is that 
the expression for  is simple if written in terms of  and  (see Equation (3.2)). Putting all of this 

information together, we obtain 

which, by projecting onto the  and  directions, gives the system of equations 

Equation (3.4) gives an expression for the tension  in terms of the angle  and its derivative, and Equation 
(3.5), which does not involve , is a nonlinear ordinary differential equation for the angle . This equation 
describes the motion of the nonlinear pendulum. It is typically complemented with initial conditions, which 
give the angle and angular velocity of the pendulum at a particular time, say . These initial conditions 
read 

where  and  are known. 
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Analysis in the absence of friction 

In the absence of friction, Equation (3.5) can be re-written as 

where we set . 

Dimensional analysis 

The first step in analyzing a model is to perform some dimensional analysis, in order to check that the various 
terms appearing in the equation(s) that form the model have the same dimension. In what follows, we will use 
the following standard notation: 

•  (not to be confused with the tension above) will represent quantities that have the dimension of a 
time. Note that such quantities may be expressed in different units, such as seconds, minutes, days, years, 
etc. 

•  will represent quantities that have the dimension of a mass. The corresponding units may be grams, 
kilograms, etc. 

•  will represent quantities that have the dimension of a length. Here again, such quantities my have dif-
ferent units, such as meters, feet, yards, kilometers, etc. 

It is thus important to distinguish between dimension and units. Consider for instance the terms appearing 
in Equation (3.7). The angle  is dimensionless (note that this does not mean it has no units, since typically 
angles are measured in radians or degrees). Quantities which appear as arguments of functions (such as  in the 

 term of Equation (3.7)) must be dimensionless. This is something that we always have to check, each 
time we are faced with a mathematical expression. Second, the left-hand-side of Equation (3.7) has the dimen-
sion of inverse time square. We thus write (the bracket notation indicating “dimension”) 

The right-hand-side of Equation (3.7) must have the same dimension. Since functions, such as  are 
dimensionless, we conclude that 
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which we must now check. To do so, we need to find the dimension of the acceleration of gravity . As indi-
cated by its name,  has the dimension of an acceleration, i.e.  Since , we see that 

indeed, . As a consequence, , i.e.  is a frequency, as expected. Equation (3.7) is 

therefore dimensionally correct. 

Scalings 

Before starting to analyze a differential equation, it is often useful to rescale it, that is rewrite it in a form that 
has as few parameters as possible. The reason is that, quite often, quantities that control the dynamics of the 
problem are not the parameters themselves, but combinations thereof. For instance, Equation (3.7) tells us that 
the combination  is the relevant quantity to describe the motion of a frictionless pendulum. As a conse-
quence, there is only one relevant parameter, , instead of two (  and ). We can even go one step further. 
Since  has the dimension of an inverse time, we can define a characteristic time 

and define a dimensionless time variable  as 

By substituting these relations in Equations (3.7) and (3.6), we obtain 

together with the initial conditions 

In other words, the motion of the frictionless nonlinear pendulum can be described by an ordinary differential 
equation, (3.8), which has no parameters! This is a very important result since it will dramatically simplify our 
investigation of the nonlinear pendulum: if we can completely characterize the dynamics of Equation (3.8), 
then we are done with our analysis of Equation (3.7); there is no need to vary parameters! 
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Small oscillations: the harmonic oscillator 

If the pendulum undergoes small oscillations, that is if  is small, we can write a Taylor expansion of the expres-
sion  in powers of  and obtain a simplified equation. In particular, if we keep only the first term 
in the expansion, Equation (3.8) becomes the equation for the harmonic oscillator. Indeed, at lowest order, 

, and substitution into Equation  (3.8) gives 

The general solution of this equation is 

or equivalently (see exercises) 

where , ,  and  are constants. If we now impose the initial conditions (3.9), we get 

or 

The first system of equations gives  and  directly, whereas one needs to solve the second system for  and 
(see exercises) in order to have an expression for . Writing the solution as (3.11) makes it easier to impose 
the initial conditions, but Equation (3.12) makes it easier to describe the dynamics of the solution. We indeed 

see that the angle  oscillates as a function of time between the values  and , with a 

period equal to  (in the scaled variable ). The pendulum oscillates indefinitely, which is as expected since 
we assumed that the dynamics is frictionless. 

Nonlinear dynamics 

Equation (3.8) can be solved explicitly in terms of elliptic functions, but writing such an expression would 
not necessarily help us describe the motion of the pendulum. We will thus not try to solve this equation, but 
instead qualitatively describe its dynamics in the corresponding phase space. This may seem surprising to read-
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ers who did not take a course on dynamical systems. My hope is to convince you, on a few examples through-
out this text, that this is a most general and efficient way of dealing with nonlinear differential equations. 

Our goal will be to describe the solutions of (3.8) in the phase plane . Each initial condition 
 will be associated with a curve in this plane. 1 If we know the arrangement of these solution curves, 

we can give a complete qualitative description of the dynamics of the nonlinear pendulum. An expression for 
the solution curves can be obtained as follows. If we multiply Equation (3.8) by  and integrate, we 
obtain 

where the constant  is arbitrary. It represents the energy of the dimensionless pendulum, and is conserved by 
the dynamics. The set of solution curves is thus described by 

If , then the left hand side of Equation (3.13) is real for all values of , and the corresponding solution 
curves are not closed. On the other hand, if ,  is real only for values of  in intervals of 
the form , , and the corresponding solution curves 
are closed orbits. Finally, because of the  sign in the right hand side of (3.13), trajectories are symmetric with 
respect to the horizontal axis of the phase plane. We can use software such as Maple or MATLAB to plot these 
curves, paying particular attention to the special cases  and  Figure 3.2 shows some of these 
trajectories. The description of the dynamics is completed by adding arrows to the curves, indicating the direc-
tion in which each trajectory is followed. This is not a difficult task since by definition  is positive if 

 increases as a function of  and negative otherwise. As a consequence, the arrows point to the right in the 
upper part of the phase plane, and to the left in the lower part. 

1. See the appendix on ordinary differential equations for the existence and uniqueness of solutions to initial value problems, and for a 
brief description of phase plane analysis. 
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Figure 3.2. Solution 
curves of the 
frictionless 
nonlinear 
pendulum. 

These results can be confirmed by using a phase plane analysis software such as the Phase Plane App. This pro-
gram can be run in MATLAB. It allows the user to enter Equation (3.8) written as a first order system, 

and to plot the corresponding direction field and trajectories in the phase plane. The direction field for this 
system is obtained by plotting vectors with components  (i.e. the right-hand-sides of the above 
equations) at points of coordinates  in the phase plane. The solution curve of  (3.8) that goes through 
the point  is tangent to the direction field at that point. Figure 3.3 shows the phase plane for Equa-
tion  (3.8), as obtained with PPLANE (developed by John C. Polking at Rice University). The solution 
curves found numerically are, as expected, in excellent agreement with those shown in Figure 3.2, which were 
obtained from Equation (3.13). 
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Figure 3.3. Phase 
plane of the 
frictionless 
nonlinear 
pendulum, as 
obtained with the 
software PPLANE. 

More generally, any dynamical system of the form 

can be analyzed in this manner. Indeed, multiplying Equation (3.14) by  and integrating once gives 

where the energy  is a constant of motion. By letting  we obtain an equation for the solution 

curves in the ( , ) plane: 

The corresponding phase portrait can be sketched by noticing that solution curves of energy  only exist for 
values of  such that . In particular, fixed points of the dynamics, which are such that 
is constant in time, are extrema of  (from Equation (3.14)), and the corresponding energy is given by 

 (from Equation  (3.15)). One can check that minima of  correspond to centers and maxima of 
 to saddle points (see exercises). Moreover, trajectories of energy  that cross the horizontal axis 
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do so at values of  such that . These trajectories have a vertical tangent at the points of crossing 
(see exercises). Finally, trajectories which emanate from or converge to saddle points are tangent to the eigen-
vectors of the linearization of (3.14) written as a first order system, at these equilibrium points (see exercises). 
Figure 3.4 illustrates how the previous statements may be used to plot the phase portrait of Equation (3.14) 
with . The result should be compared to Figures 3.2 and 3.3. 

Figure 3.4. Construction of the phase portrait of Equation (3.14), with V (x) = – cos(x). 

In Figure 3.4, the graph of  as a function of  is shown at the top. For each value of the energy  the quan-
tity  is proportional to  This information allows us to infer the behavior of the various solution 
curves in the  plane. The resulting phase portrait is plotted at the bottom. 
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Analysis in the presence of friction 

In the presence of friction, the equation of motion for the nonlinear pendulum reads 

As before, we first need to check that the dimension of the last term is the correct one. We have 

where we have used the fact that 

We now proceed to simplify Equation (3.16) by making the change of variable . We find 

and we can check that the parameter  is dimensionless, since 

If , then , and we recover Equation (3.8). The initial conditions for Equation (3.17) are, as 
before, given by Equation (3.9). Our next step in this analysis is to describe the phase portrait of Equation 
(3.17). We cannot use the same method as before, since the energy  is no longer conserved. Indeed, we can 
calculate 

which gives 
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Thus, since , the energy  is either constant (if ) or decreasing as a function of time. 
Since  is bounded from below by , one can expect that trajectories for which  will converge 
towards solutions of energy . Such solutions are given by , i.e. , ; they 
are fixed points of the dynamics. Pictorially, we can imagine a particle being trapped in one of the valleys of the 
potential , losing energy as it moves, and therefore converging to the local minimum of 
the potential. 

We now turn to the description of the phase plane for Equation (3.17). The corresponding first order system 
reads 

Fixed points are obtained by setting the left-hand-sides of the above equations to zero, that is solving 
and  which corresponds to points of coordinates ,  in the  plane. Infor-
mation on the local dynamics may be obtained by linearizing system (3.18) about these fixed points. To this 
end, we set 

where  and  are small, and substitute in Equations (3.18). We find 

which, if  is small, can be approximated by the following linear system 

The matrix 

is called the Jacobian of system (3.18) at the fixed point . The general solution of (3.19) can be written 
in terms of the eigenvalues and eigenvectors of , and this information may be used to assess the linear 
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stability of the corresponding fixed point 2. Since the characteristic polynomial of a  matrix  is given 
by , the eigenvalues of  satisfy the characteristic equation 

If  is even, ; the product of the two eigenvalues of  or, equivalently, the 
determinant of , is positive. The eigenvalues of  are thus either of the same sign and 
real, or complex conjugate (recall that the eigenvalues of a matrix with real entries either are real or come in 
complex conjugate pairs). The sum of the eigenvalues of  or, equivalently, the trace of 
, is , which is negative. The fixed points , , are thus always stable. We can decide on the 
nature of these fixed points by comparing the square of the trace of  to four times its determinant 
or, more directly, by calculating the eigenvalues of . They are given by 

The fixed points  are therefore stable nodes (if  or stable spirals (if ). Similarly, 

if  is odd, the eigenvalues of  have a product equal to 
 and are therefore both real and of opposite signs. 3 As a consequence, the fixed 

points  are saddle points. For completeness, we give the eigenvalues of , 
which read 

These facts are summarized in the phase portrait of Figure 3.5, obtained with PPLANE. We see that trajectories 
tangent to the eigenvectors of  at the points  are separatrices of the phase 
plane. They are called the stable and unstable manifolds of the saddle points . As expected, 
the unstable manifold of  contains the the stable fixed points  and 

. Trajectories which connect two different fixed points are called heteroclinic orbits. 

2. See the phase plane analysis section of the appendix on ordinary differential equations for a review. 
3. Since  has real entries, if its eigenvalues were complex, then they would be complex conjugate and their product would 

have to be positive. 
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Figure 3.5. Phase 
plane of the 
nonlinear 
pendulum with 
friction, as 
obtained with the 
software PPLANE. 

Summary 

The nonlinear pendulum provides a good illustration of the modeling process. Newton’s law, together with a 
set of simplifying hypotheses, allowed us to derive a differential equation model for the angle of the nonlinear 
pendulum, with or without friction. We then reviewed how to use dimensional analysis to rescale dependent 
and independent variables in order to obtain a dimensionless model with a reduced number of parameters. The 
second order differential equations derived in this chapter were studied in terms of phase plane analysis. The 
phase plane of a two-dimensional conservative system may be obtained by plotting level-sets of the conserved 
energy. Curves of constant energy may either be found analytically or drawn from the graph of the potential 
energy. The phase plane of non-conservative two-dimensional dynamical systems may often be inferred from 
the analysis of the fixed points of the system and of their linear stability. More precisely, nonlinear terms do 
not change the nature of stable or unstable nodes and spirals, and of saddles points. The reader may want to 
consult an elementary text on dynamical systems for further details. 
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Food for Thought 

Problem 1 

Show that 

 with 

can be written as 

with  by expressing  and  in terms of  and . 

Conversely, explain how you would find  and , knowing  and . Are  and  uniquely deter-

mined? Why or why not? 

Problem 2 

It is shown in the text that there exist solutions to Equation (3.8) which exhibit periodic oscillations. 

1. Write down an equation for the period  of these oscillations, as an integral over the angle 

variable . Your answer should depend on the energy . 

2. Show that the period  is an increasing function of the energy . In other words, show that 

the period of the nonlinear pendulum increases with its amplitude. 

Problem 3 

Consider a one-dimensional frictionless spring-mass system, where the forces acting on the mass 

 at position  are the force of gravity  with  constant, and the restoring 

force of the spring given by , where  and  are constant. 

1. Use Newton’s law to write down an equation for the position  of the mass. 

THE NONLINEAR PENDULUM  |  35



2. Re-scale the resulting equation. How many parameters can you get rid of? 

3. Show that the frictionless spring-mass system is conservative. 

4. Describe the dynamics of this system. 

Problem 4 

Consider the following system of differential equations, 

1. What conditions should be satisfied by the coordinates  and  of a fixed point of this sys-

tem? 

2. Assume that  is a fixed point of the above system. We are interested in describing 

the dynamics of the system in the vicinity of the fixed point. To do so, set , 

, substitute these expressions into the above system, and Taylor-expand the 

right-hand sides in powers of  and , up to order two. 

3. Using the results of part (2) above, show that the linearization of the system about the fixed 

point  reads 

where the Jacobian  of the system at  is given by 

Problem 5 

Consider a linear system of the form 

where 
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1. Give the general solution to this system. 

2. Sketch the phase plane of this system, paying particular attention to special trajectories. Can 

you tell in which direction the solution curves are traced out as time goes on? If so, add 

arrows to the trajectories you drew. 

Problem 6 

Sketch the phase plane in the vicinity of the following types of fixed points: 

1. A stable node. 

2. An unstable spiral. 

3. A center. 

4. A saddle point. 

Problem 7 

Describe the eigenvalues of the linearization of a system of dimension two in the vicinity of the fol-

lowing fixed points: 

1. A stable node. 

2. An unstable spiral. 

3. A center. 

4. A saddle point. 

Problem 8 

Find a 2 by 2 matrix  whose entries are all non-zero, and such that the linear system 

has a fixed point of the following type at the origin: 

1. A stable node. 

2. An unstable spiral. 

3. A center. 

4. A saddle point. 
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Check your answer with a phase plane analysis software, such as the Phase Plane App or equiva-

lent software. 

Problem 9 

Explain how you would determine the nature (e.g. stable or unstable node or spiral, linear center or 

saddle point) of a fixed point  of the two-dimensional differential system 

Problem 10 

Sketch the phase planes of the following dynamical systems. If the answer depends on the para-

meter(s) of the problem, all cases should be considered. Use the Phase Plane App or equivalent 

software to check your results. 

1. . 

2. . 

3. . 

4. . 

5. . 

6. . 

Problem 11 

Consider the van der Pol oscillator, 
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1. Describe the dynamics when . 

2. What is the effect of the right-hand-side when  is small? 

3. What is the effect of the right-hand-side when  is much larger than ? 

4. Based on your answers to the previous questions, explain what you expect to happen for 

intermediate values of . 

5. Sketch the phase plane of the van der Pol oscillator. 

6. Check your answer with the Phase Plane App or equivalent software. Is the result surprising? 

Why or why not? 

Problem 12 

Consider the following differential equation, 

1. What is the dimension of ? 

2. What is the dimension of ? Your answer should be in terms of the dimension of , denoted 

by . 

3. Let  be a characteristic time scale for this problem. Define a dimensionless time variable 

, and show that you can make a change of variable from  to , to “remove” the 

parameter . 

4. Can you find a change of variable that would allow you to remove  as well? 

Problem 13 

The force of gravity between two bodies of mass   and  has intensity 

where  is the distance between the centers of mass of the two bodies, and  is the gravitational 

constant. 

1. Use this formula to show that for an object of mass  at the surface of the Earth, one can 

approximate the force  by , where the acceleration of gravity  is constant. 

2. Express  in terms of , the mass  of the Earth, and the radius  of the Earth. 
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Problem 14 

Consider a smooth function , and its Taylor expansion near , 

where . Let  be the error made by approximating  with its Taylor expansion 

truncated to order , 

1. Use Equation (3.20) above to write the Taylor expansion of , near 

to order . 

2. Find a condition on  which ensures that . 

3. Use a calculator or MATLAB to check your answer to the previous question. 

Problem 15 

Consider the following model 

1. What are the dimensions of the parameters ,  and ? Write  for the dimension of . 

2. How many relevant parameters does this model have? Explain. 

Problem 16 

Consider the second order differential equation  where  is a smooth 

potential. 
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1. Re-write this second order equation as a first-order system. 

2. Find the fixed points of the first-order system and show that they correspond to critical 

points of . 

3. Find the linearized system about an arbitrary fixed point and show that maxima of  corre-

spond to saddle points and minima of  to linear centers. 

Problem 17 

Consider the dynamical system  where  is a smooth function. Assume 

that  is a saddle point of the corresponding first-order system of differential equations. 

Find an equation describing the trajectories in the associated phase plane near the fixed point 

. 

Problem 18 

Consider the dynamical system  where  is a smooth function. 

Show that, in the phase plane of coordinates , trajectories with energy  such that 

 (where  and/or  may be infinite depending on 

the potential ) cross the -axis. In addition, show that they have a vertical tangent at points of 

crossing where . 

Problem 19 

Sketch the phase plane associated with the differential equation  where the 

potential  has the shape given below. Only the portion of the graph of  near its mini-
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mum is shown. You may assume that the trends suggested by the picture continue outside of the 

plot area, i.e. that 

Problem 20 

Sketch the phase plane associated with the differential equation  where the 

potential  has the shape given below. Only the portion of the graph of  near its 

extrema is shown. You may assume that the trends suggested by the picture continue outside of 

the plot area, i.e. that 

Problem 21 

Sketch the phase plane associated with the differential equation  where the 

potential  has the shape given below. Only the portion of the graph of  near its 

extrema is shown. You may assume that the trends suggested by the picture continue outside of 

the plot area, i.e. that 
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Problem 22 

Sketch the phase plane associated with the differential equation  where the 

potential  has the shape given below. Only the portion of the graph of  near its 

extrema is shown. You may assume that the trends suggested by the picture continue outside of 

the plot area, i.e. that 

Problem 23 

Consider the Navier-Stokes equation 

where the vector  represents the velocity of a fluid in 3 spatial dimensions,  is the density of the 

fluid,  is its pressure,  is the kinematic viscosity of the fluid, and  stands for the density of bulk 

forces applied to the fluid. The operator  is the gradient in 3 dimensions. 
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1. What is the dimension of the two terms on the left hand side of the equation? Why should 

these dimensions be the same? 

2. Use this information to find the dimension of  and that of . Is the result what you 

expected, based on your knowledge of forces and pressure? 

3. Find the dimension of . 

4. Let  be a characteristic velocity, and  a characteristic length. Define dimensionless vari-

ables  and  such that  and , where  is the position vector. Re-write 

the Navier-Stokes equation in terms of these new variables. 

5. Show that if you now re-scale time and introduce dimensionless versions of  and , then 

the dimensionless Navier-Stokes equation involves only one parameter, . This 

parameter is called the Reynolds number. 
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4. 

STONE-SKIPPING 

Learning Objectives 

At the end of this chapter, you will be able to do the following. 

• Understand stone skipping as an alternation of free flight and collision phases. 

• Apply concepts of classical mechanics to describe the dynamics of the stone during each 

phase. 

• Justify approximations to simplify the equations of motion. 

• Formulate initial conditions for each phase, based on the outcome of the previous phase. 

• Analyze the dynamics of each phase. 

• Evaluate theoretical predictions against experimental observations. 

We now consider the problem of modeling stone-skipping. The goal is to understand how the stone skims the 
surface of the water and how far it goes. With this information, it should be possible to suggest an optimal 
way of throwing the stone, in order to increase the number of rebounds. One of the major differences with 
the problem of the pendulum discussed previously, is that the stone cannot be considered as a point mass. As a 
consequence, we will use two sets of model equations: the conservation of momentum to describe the motion 
of the center of mass (a point), and the equations of motion for a rigid body, to describe the rotation of the 
stone about its center of mass. 

Experimental data 

We probably all have some sort of experience with stone-skipping, and we intuitively know that in order to 
get a large number of bounces, the stone should be rather flat, and thrown with a small incidence angle, and 
with a spin. We also know that if we do not throw the stone correctly, it may bounce once, but will then start 
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Figure 4.1. Cross-section of a flat stone during 
the collision process (adapted from L. Bocquet’s 
2003 article). 

tumbling while in the air and then sink. Remarkably enough, controlled experimental data is available for this 
problem. A 2004 article1 by C. Clanet, F. Hersen and L. Bocquet reports laboratory measurements giving the 
minimal initial velocity of the stone, the angle between the velocity vector of the stone and the water surface, 
as well as the collision time, as functions of the angle between the stone and the water surface. 

Assumptions and model equations 

The discussion below is based on the 2003 article2 by L. Bocquet, entitled The physics of stone skipping. We use 
the same notation, in order to make the reading easier. 

We will assume that the motion of the stone alternates between free flight, when the stone is in the air, and 
collisions with the surface of the water. Each of these stages can be described separately, using equations of clas-
sical mechanics. The initial conditions for say a free flight phase will be the position and velocity of the stone as 
it takes off from the water at the end of the preceding collision phase, and vice-versa. We will start by describing 
the collision process, and then discuss the free flight part of the motion. 

Collision phase 

Consider a thin, flat (planar), homogeneous and symmet-
ric (e.g. square or circular) stone of total mass  and 
assume that during the collision process, the stone does 
not spin or tumble, and thus remains parallel to itself.3 As 
a consequence, the problem may be simplified by consid-
ering the cross-section of the stone through its center of 
mass and parallel to the plane defined by the vertical and 
the velocity vector of the stone (see Figure 4.1). All of the 
points in this cross-section (and in fact in the stone) thus 
move with the same velocity vector. 

The parameters for this problem are then the size  of the 
stone (  is the side length of a square stone or the diame-
ter of a circular stone), its thickness , its velocity 
vector , and the angle  (assumed constant during 

1. C. Clanet, F. Hersen, and L. Bocquet, Secrets of successful stone-skipping, Nature 427, 29 (2004). 
2. L. Bocquet, The physics of stone skipping, Am. J. Phys. 71, 150-155 (2003). 
3. Is this assumption reasonable? Why or why not? 
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each collision phase) made by the stone with the surface of the water. We will call  the angle between 
and the horizontal, and define two orthonormal bases:  and , such that  is perpendicular 

to the plane of the cross-section,  points upward,  is normal and  is tangent to the surface of the stone. See 
Figure 4.1 for an illustration. 

Since we made the assumption that the stone does not rotate during the collision process, its motion can be 
reduced to that of its center of mass, and is completely described by Newton’s law. The forces applied to the 
stone are the force of gravity, , and the force  exerted by the water on the stone. 

If we write , we have 

Of course, we now need a model for the force . First, this force can be considered as being the sum of a lift 
force, parallel to , and of a friction force, parallel to . Second, let us consider the dynamic of the water dur-
ing the collision process. The fluid moves according to the Navier-Stokes equation, 

where  is the density of the water,  is the velocity vector of a fluid particle,  is the pressure,  is the 
dynamic viscosity of the water, and  represents bulk forces (such as gravity) exerted on the water. At the inter-

face between the water and the stone, the pressure  is given by 

where  is the surface area of the immersed portion of the stone (see Figure 4.1). We will now perform some 
dimensional analysis to compare the inertial and diffusive terms in this equation. We have 

where  is a characteristic length,  is the kinematic viscosity of water, and  is called the 
Reynolds number. If we assume that  is of the order of a few meters per second, that  is of the order of 

the size of the stone – say a few centimeters – and since, for water,  m2 s , we find 
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As a consequence, viscous terms are negligible, and we can balance inertial terms with pressure terms. This 
gives 

which together with  gives 

Since  and  are comparable, we will thus consider that the intensity of the force  is proportional 

to the density of water , the immersed surface area , and the square of the velocity vector of the stone, 
. We can then write 

where the dimensionless coefficients  and  describe how the normal (lift) and tangential (friction) 
components of  vary with . We will assume that these coefficients are constant. We can 

now substitute this expression into Equations (4.1). Since  and 
, we get 

These equations are nonlinear in  and . Moreover, we made explicit the dependence of  on the ver-
tical coordinate  of the part of the stone that is the deepest under water (see Figure 4.1). Equations (4.2) are 
valid as long as the stone is not completely immersed. If this happened, the lift exerted by the water on the 
stone would be given by Archimedes’ law, and the stone would sink. At the beginning of the collision phase, 

. In order for the stone to skim the surface of the water, we need to have , so that  is 
positive at the end of the collision phase. We see that the angle  needs to be small for this to happen, since 

 must be positive if we want 

to balance . 
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Free flight phase 

During a free flight phase, the motion of the center of mass of the stone is described by Newton’s equation in 
which the only force is gravity: 

If we denote by  and  the coordinates of the stone, we have 

where  is taken at the beginning of the free flight phase. The initial position  and 
velocity  of the stone are given by the final position and velocities of the preceding collision 
phase, unless of course this is the first free flight phase. 

The rigid rotation of the stone about its center of mass is given by Euler’s equations, 

where ,  and  are respectively the moment of inertia, angular frequency and torque about the body 
principal axis parallel to . Here,  and  are unit vectors tangent to the surface of the stone, and paral-
lel to two of its principal axes. The orthonormal frame  is attached to the center of mass of the 
stone, and rotates with it. A similar set of equations could be written for the collision phase of the motion, if 
we wanted to take into account the fact that the stone may be spinning and tumbling as it collides with the 
water. 

Since the stone is square or circular, one has , and we will use the notation . More-
over, the only force acting on the stone, , is applied at its center of mass, so that all of the torques are 
zero. Equations (4.5) can then be simplified into 
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Analysis 

We will start by analyzing the equations for the free flight phase of the motion, and then go back to the collision 
process. 

Free flight phase 

From Equations (4.6), we see that  is conserved, and is thus equal to the initial spinning velocity  of the 
stone about the axis normal to its surface and through its center of mass. We are thus left with two linear equa-
tions, 

 

which read, in matrix form,  with  In the 

absence of initial spin, i.e. if , we obtain 

which implies, since , 

In other words, if during the collision phase, the stone is even slightly put into rotation about the  axis, i.e. if 
 is non-zero, then the stone will start tumbling during the free flight phase. At the next collision, the 

stone is likely to hit the water with a large incidence angle , and then sink. 

It is thus critical that  be non-zero. In such a case, both  and  oscillate in time with frequency 
and are given by 
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As a consequence, 

and will remain close to  if the coefficients of the above equation are small. Thus, a spin about the  direc-
tion stabilizes the stone and prevents it from tumbling. This is called the gyroscopic effect. 

We now turn to the motion of the center of mass of the stone during a free flight phase. Equations (4.4) tell us 
that the duration  of each free flight phase is such that , i.e. 

and the length of each skip, that is the distance covered by the stone along the  direction is 

From Equations (4.2), it is clear that when  is small,  is decreasing during each collision phase. Thus the 
value  of  at the beginning of each free flight phase will decrease from one free flight phase to the 
next. Since we do not expect  to increase between two free flight phases, we see that the length of each skip 
decreases from one skip to the next, as expected. 

Collision phase 

Our analysis of Equations (4.2) should first of all indicate under what conditions the stone is going to emerge 
and take off from the water at the end of a collision phase. Consider the equation for , 

We can appreciate the information contained in this equation if we make the approximation , which 
is reasonable, and also assume that  is constant during the collision phase. The lat-

ter statement is not quite correct since the stone is slowed down by friction with the water, but if the stone 
bounces about 20 times, then the relative loss  during each collision is small, at 

least for most collisions. Here,  denotes the duration of the collision. Under these conditions, Equation 
(4.10) reads 
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Figure 4.2. Shape of the potential U(z) as a 
function of z for z < 0. 

The right-hand-side, , is a function of  only (recall that we assumed at the beginning that  is con-
stant during each collision phase), and since , we can multiply both sides of this equation by 
and integrate with respect to , to get 

where  and the constant  is arbitrary. When , ; moreover, 

 increases as  becomes more negative. Therefore, the potential  has a shape like that drawn in 
Figure 4.2 for negative ‘s, provided  is small enough. 

From the shape of , one can see that the trajectory of the 
stone will be such that  will have a turning point at 

, and that at the end of the collision phase, the 
stone will emerge with a vertical velocity 

, opposite to the vertical velocity it 
had at the beginning of the collision phase. This occurs 
only if the energy  is such that the stone is not com-
pletely immersed when . If we keep  fixed, this 
imposes a condition on  since the larger , the smaller 

. Therefore, the stone will not sink during a collision 
phase, provided , where the critical velocity 

depends on the parameters of the problem. Since 
, the condition on  can also be re-written as a 

condition on the initial velocity of the stone in the 
direction, which thus reads . As shown in 

the 2003 article by L. Bocquet, and in the exercises at the end of this Chapter, one can calculate  for a 
stone of a particular shape, solve Equation (4.11) explicitly, and obtain an expression for . 

As mentioned above, we made the assumption that the dynamics was conservative (i.e.  was assumed 

constant). This is obviously not true since the stone does not keep bouncing forever. There is a loss of energy 
during the collision process, due to the friction of the stone on the surface of the water. Everything we said 
before will be qualitatively correct – in particular the stone will emerge with a vertical velocity only slightly 
smaller than  – as long as the relative loss of energy during a collision phase is small. This will certainly 
be true for the first bounces, but will cease to be valid for the last ones. Since this energy loss is the major reason 
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for the slowing down of the stone, we will now try to estimate this quantity. The (signed) energy loss  is 
equal to the work of the friction force exerted by the water on the stone. This can be roughly estimated as 

where . From Equation (4.11), we see that 

and we can thus expect 

where  is the size (side length or diameter) of the stone. Therefore,  does not depend on 
at lowest order. During the collision, the right-hand-side of Equation (4.10) is small, so we can write that 

Moreover, since 

(the ratio  should not be confused with the dynamic viscosity of water), we have 

and 

Thus, since the difference in kinetic energy between the beginning and the end of the collision phase is equal 
to , we have 

and the initial velocity  must satisfy 
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Putting everything together, the velocity along  at the beginning of a collision phase must satisfy 

where  is obtained by specifying that the stone should not become completely immersed during a collision, 
and  is such that the stone is moving fast enough to compensate for the energy due to friction forces. Our 
discussion of the free flight phase shows that the length of each jump is proportional to the horizontal veloc-
ity . We know that  is conserved during a free flight phase (see Equation (4.3)), and that  decreases by 

 during each collision phase. Since  is the same at the beginning and end of each free flight phase, 
and since  varies only slightly during a collision phase, the length of a jump after  collision phases will be 
given by 

where  is the -velocity of the stone as it is initially thrown. We thus see that the length of each jump 

decreases as  gets large, and scales like . 

Summary 

This model explains the existence of a minimum velocity at which the stone should be thrown; it explains why 
the stone should be given a spin; and it describes how the length of each jump decreases as the number of 
bounces increases. It also indicate that the angle  between the stone and the surface of the water should be 
small. Experiments described in the article by C. Clanet et al.4 show that  is optimal. This value of 
minimizes the collision time; it is also the incidence angle for which successful stone-skipping occurs with the 
smallest initial speed. In order to explain these observations, one would for instance have to take into account 
the dependence of  and  on , and find the value of  that minimizes the energy loss . 

4. Figures 1.b and 1.c of the 2004 article by C. Clanet et al. show the regions of successful stone-skipping in the ( , ) and ( , ) 

planes; Figure 1.d shows the collision time as a function of  for different values of  (see Figure 4.1 for a definition of the parame-

ters). 
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Food for thought 

Problem 1 

Consider Equations (4.5). 

1. Use these equations to determine the dimension of , where  is each of  and 

. 

2. Relate the dimension of  to that of . 

3. Given that a torque is of the form  where  is a position vector and  a force, 

find the dimension of . 

4. Use the above to find the dimension of . Does this agree with the definition 

 where  is a density and  is a volume element? 

Problem 2 

This problem is based on the 2003 article by L. Bocquet. 

Consider Equation (4.11), and assume that the stone has a square shape. 

1. Show that . 

2. Using the expression for , show that Equation (4.11) becomes a linear differential equa-

tion for . 

3. Find the general solution this ordinary differential equation. 

4. Apply the boundary conditions and show that  is given by 

. 
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Problem 3 

This problem is based on the 2003 article by L. Bocquet. 

The dynamics of the immersed edge of a square stone during a collision phase is described by (see 

Problem 2) 

where 

1. Use this expression to show that the edge of the stone reaches a depth , given by 

2. What is the condition on  for the stone to be completely immersed? 

3. Show that the stone will not be completely immersed during a collision phase if 

Problem 4 

This problem is based on the 2003 article by L. Bocquet. 

Using Euler’s equations of motion (4.5), together with the appropriate expressions for the lift force 

applied to stone during the collision phase, derive Equation (20) of the 2003 article by L. Bocquet, 

where  is the projection on the  axis of the torque exerted by the water on the stone. 
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PART III 

POPULATION DYNAMICS AND 
EPIDEMIOLOGY 

We now turn to models of population dynamics and epidemics. These typically involve difference or differen-
tial equations. We will start with one-species discrete models, discuss the occurrence of chaos, and consider pop-
ulations with different age groups. We will then move on to continuous models, involving one or two species. 
The latter are too low-dimensional to exhibit any chaotic behavior, and we will concern ourselves with the 
appearance of oscillatory dynamics. 

Contrarily to classical mechanics, we are still in the process of understanding the laws of biological evolution. 
Mathematical biology has recently become a topic of broad interest, and it is generally accepted that progress 
in comprehending the dynamics of populations, diseases, epidemics, etc can only be achieved through inter-
disciplinary activities involving both mathematicians and life scientists. Modelers should be able to know the 
significance of any term in their model equations and assess, by looking at experimental results, whether such 
terms are relevant to the problem in question. Successful modeling thus involves going back and forth between 
the model, its simulation and/or analysis, and experimental results. 

Reliable biological data are difficult to obtain for a variety of reasons. First, in the case of population dynamics, 
data must be gathered over time periods much longer than the lifetime of an individual. At the human scale, 
this takes centuries. Fortunately, other systems, such as for instance bacterial systems, have a much shorter 
intrinsic time scale. Second, different studies are typically performed under different conditions, and the results 
may be affected by unknown confounding variables. It is also very rare to find very large-scale studies involv-
ing primates, in particular human subjects. As a consequence, trends may only become statistically significant 
when a variety of studies are combined. Finally, many biomedical studies are performed on mice or monkeys, 
and it is not always clear how the results may be transported to humans. More than ever, it is thus essential for 
a modeler to understand the nature and the limitations of the available data, as well as those of the models. 

The examples discussed in this section are fairly simple, but they should be sufficient to help the reader develop 
an intuition for the basic generic modeling of population dynamics and epidemics in terms of difference or 
ordinary differential equations. 
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5. 

SINGLE-SPECIES MODELS 

Learning Objectives 

At the end of this chapter, you will be able to do the following. 

• Construct discrete-time models for isolated or interacting groups of individuals, including 

models with age groups. 

• Solve linear discrete-time models exactly. 

• Analyze the dynamics of first order nonlinear difference equations by assessing the stability 

of fixed points and periodic cycles. 

• Describe the route to chaos in the logistic map. 

• Recognize continuous-time models as limits of discrete-time models. 

The population of Red-tailed Hawks in the US 

We start by analyzing data collected by the Audubon Society through its Christmas Bird Count. Counts are 
currently available for every year since 1900. This information is discrete (we are given the number of birds that 
were counted at the end of each year), imprecise (since not all of the birds were counted and different people 
participate in the counting effort every year), and necessarily reflects a combination of many factors (in particu-
lar, not just growth or decay due to births and deaths). We will focus on the data for the red-tailed hawk, which 
is a short-distance migrant. 
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Figure 5.1. Red-tailed hawk bird count in the US, from 
1900 (year 1) to 2004 (year 105), based on data 
collected by the Audubon Society. 

Figure 5.2. Plot of the quantity R(t) for the red-tailed 
hawk bird count, based on data collected by the 
Audubon Society. 

Figure 5.1 shows the number of red-tailed hawks 
that were counted in the US, from 1900 (year 1) to 
2004 (year 105). We can see that the population grew 
during most of last century, and seems to have begun 
to saturate in the late nineties. In order to under-
stand this data, we may try to plot the rate of change 
of the population, defined as 

where  is time in years,  is the bird count at 
time , and  year in this case. Such a graph 
shows that the quantity  fluctuates and 
the size of its fluctuations increases with time. Since 

the number of red-tailed hawks also increases as a function of time, we can look instead at the rate of change 
normalized by the number of individuals, which we denote by . We thus define the per capita rate of 
change of the red-tailed hawk population as 

Figure 5.2 shows  as a function of . Fluctua-
tions are of course still present, but they are now 
especially large only when  is relatively small. 
Moreover, the data appear to fluctuate about a mean 
value which is positive (although rather small). In 
the recent years, this trend breaks down, and from 
1995 on,  seems to oscillate about a value closer 
to zero. 

It is therefore reasonable to expect  to 
behave like a linear function of , up to some 
fluctuations, and to display saturation in the recent 
years. This is supported by the plot of Figure 5.3, 

which shows that  as a function of . We see that  is very close to 
. This slope was obtained by a least-square fit of the data with a straight line going through the 

origin (shown in red). As can be seen on Figure 5.3, the agreement is reasonably good. The value  is also 
quite close to the 95% confidence interval [1.026, 1.029] for the per-annum growth rate of red-tailed hawks in 
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Figure 5.3. The first return map, showing N(t + Δt) as 
a function of N(t), for the Audubon Society red-tailed 
hawk bird count. The straight line has slope 1.025. 

North America, found in a 2016 article by C.S. Soykan et al.1, which uses statistical analysis to estimate popu-
lation trends from bird counts. 

Note however that we do not expect – and in fact 
there is not – a good agreement at small values of 
. However, the scale of Figure 5.3 is such that the 
scatter of the points near the origin is not apparent 
for , which corresponds to times 

 (see Figure 5.1). In summary, even though 
the data is noisy and imprecise, a simple model for 
the red-tailed hawk population in the US from say 
1950 to 1995 appears to be of the form 

where  is a constant close to . We can under-
stand such a linear relationship as follows. If we 

neglect migration in and out of the United States – recall that the red-tailed hawk is a short distance migrant, 
we can write 

As a first approximation, it is reasonable to assume that both the number of deaths and the number of births 
may be written as the products of  with a function of  and . Such an approximation is valid for most 
population dynamics models in a closed system. We thus define the per capita birth rate   and the per capita 
death rate   as 

Then, 

1. Candan U. Soykan, John Sauer, Justin G. Schuetz, Geoffrey S. LeBaron, Kathy Dale, Gary M. Langham, Population trends for 
North American winter birds based on hierarchical models, Ecosphere 7, e01351 (2016); Table S3, line 206. 
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In a developmental phase, that is when the number of individuals is much lower than the maximum popula-
tion that can be sustained by the environment, one can assume that  and  are constant, which gives 

For the red-tailed hawk, the above discussion suggests that , i.e.  individuals per 
year. Of course, fluctuations are always present in practice, but this simple model, known as the Malthus equa-
tion in discrete time, is sufficient to explain the exponential (or Malthusian) growth of the population. Indeed, 
Equation (5.1) implies that 

If , i.e. if births exceed deaths,  grows exponentially. Conversely, if ,  decays 
exponentially and the species is driven towards extinction. We have assumed that . If not,  would 
alternate between positive and negative values, and our population dynamics model would obviously be 
flawed. 

When the number of individuals nears the carrying capacity of the environment, nonlinear effects can no 
longer be neglected, and the growth rate of the population changes with the number of individuals . For 
instance, logistic growth corresponds to 

which has a -dependent per-  growth rate equal to . The parameter  rep-

resents the carrying capacity of the environment. 

First-order difference equations 

The example discussed above suggests that discrete population models are of the form 
, or equivalently, 

where . Equation (5.2) is called a first order difference equation. It is linear if  is linear 
in , and has constant coefficients if  does not depend on . In the context of population dynamics, a model 
like Equation (5.2) is sometimes called a metered model. Equation (5.1), which can be written as 
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Figure 5.4. Graphical representation of 
successive iterations of the map Nk+1 = f(Nk). 
The first four iterates N1 to N4 of the function 
f, starting at N = N0, are also indicated. The 
symbols Ns and Nu refer to stable and 
unstable fixed points, respectively. 

is therefore a linear first order difference equation with constant coefficients. As mentioned above, its solution 
is 

where  is the initial condition. 

More generally, one can write 

where  is the  iterate of . Even if the graph of  is 
complicated, it is possible to visualize the dynamics of 
by iterating  graphically, as shown in Figure 5.4. Starting 
from the initial value  of , we first find  as the 

-coordinate of the intersection of the graph of  with the 
line . We then mark the value of 
on the -axis by drawing a vertical line through the intersec-
tion of the line  with the line . Finally, 
we repeat this process to find the successive iterates of . In 
the example of Figure 5.4, iterates starting at  con-
verge towards a fixed point . 

Fixed points and their linear 
stability 

Fixed points  of the map (5.2) are such that  and are found by intersecting the line of equa-
tion  with the curve . In the example of Figure 5.4, the function  has two fixed points, 

 and . We can study their linear stability as follows. Let  where  is a 
small perturbation. Then, 

and 

the last approximation being appropriate if  is small enough. The linear map  is such 
that its iterates converge towards zero if , and diverge if . The fixed point 
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Figure 5.5. Bifurcation diagram of the logistic 
map. 

 is thus said to be linearly stable if , and unstable if . If 
  is marginally stable. 

The logistic map 

As an example, consider the logistic map defined by Equation (5.2), with  where  is 
a parameter such that . If , then  is the only non-negative fixed point. It is stable for 

 and marginally stable if . For , there are two fixed points,  and . 
Linear stability analysis shows that  is now unstable since , and that  is linearly 
stable if  and unstable if  (see exercises). A numerical exploration of the dynamics of the dif-
ference equation  reveals the presence of attractors of increasing complexity as 
is increased, such as period-two cycles (for instance at ), period-four cycles (e.g. at ), and 
period-eight cycles (for instance at ). In fact, a period-doubling cascade occurs as  is increased, and 
the dynamics becomes chaotic near . 

Figure 5.5 shows the bifurcation diagram of the logistic 
map. As mentioned above, for a given value of , succes-
sive iterations of  converge towards an attractor, for 
instance a fixed point, a period-two cycle, or a much more 
complicated structure. The bifurcation diagram of  gives 
a representation of this attractor as a function of  It is 
numerically obtained by plotting the set of points 

for different values of . Here, the initial condition is a 
point , say ,  is large 
enough so that the dynamics is sufficiently close to its 

attractor after  iterations, and  depends on the available computing power. The bifurcation dia-
gram shown in Figure 5.5 was calculated with  and . 
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Figure 5.6. Bifurcation diagram of the logistic 
map, for 3 ≤ a ≤ 4. 

An enlargement for  is shown in Figure 5.6. 
The cycles of period 2, 4 and 8 are clearly visible. Period 3 
and 6 windows for larger values of  are also easily 
detected. 

A period-  cycle may be analyzed by looking at fixed 
points of . Of course, as  increases it quickly becomes 
difficult to solve for such fixed points. However, it can be 
shown that all of the period-doubling bifurcations occur 
in a similar, universal, fashion (see articles by P. Coullet & 
C. Tresser, 19782 and by M. Feigenbaum, 19803). For a 
simple description of the various types of instabilities 
occurring in the logistic and other iterated maps, the 
reader is referred to the 1976 article by Robert May enti-

tled Simple mathematical models with very complicated dynamics and to the exercises at the end of this chapter. 

Continuous approximation of a one-species discrete 
model 

The discrete model discussed in the first section is such that 

As , the difference quotient on the left-hand-side can be approximated by , and we thus 
obtain the following continuous approximation 

Such an approximation is meaningful only if one can think of  as a differentiable function of . In particular, 
 must be continuous. Equation (5.3) will thus be a reasonable model for a population only if  is large. 

In the case of a phenomenological model, if stochastic effects are negligible and  approximates an actual 
number of individuals, the latter should be close to the integer  nearest to  Another 
possibility is to define  as a density, i.e. an average number of individuals per surface area for instance. 

2. P. Coullet and C. Tresser, Itérations d'endomorphismes et groupe de renormalisation J. Phys. Colloques 39, C5: 25-28 (1978) 
3. Mitchell J. Feigenbaurn, Universal Behavior in Nonlinear Systems, Los Alamos Science Summer 1980, 4-27 (1980) 
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Alternatively, one may view  as the expected value of a large population. In that context, it is useful to 
think of  as a per-capita probability of growth, so that the expected change in  during 

the small amount of time between  and  is . In the rest of these notes, we 

mainly use continuous models and thus implicitly assume that the relevant quantities are adequately described 
by continuous variables. 

Linear model 

If  with  and  constant, Equation (5.3) reads 

and its solution is  where  is the population at . If  the population 
grows exponentially; if   decays to zero and the species goes extinct. There is thus a direct analogy 
between the two linear models given by Equations (5.1) and (5.4), which is further explored in the exercises. 
Equation (5.4) is known as the Malthus equation in continuous time. 

The Logistic model 

Consider now the logistic model, given by 

where  and  are parameters. This equation, known as the Verhulst equation, can be simplified into 

by making the change of variables  and . Note that  is dimensionless and 

 We could thus rescale the time variable and obtain a parameter-free model, but we will not 
do this now. The solution of Equation (5.5) with initial condition  is 

 for all values of the parameter . As ,  if 

, for all values of . In terms of the original variables, we have . The quantity  is called 
the carrying capacity of the environment. It corresponds to an equilibrium state in which the number of deaths 
balances the number of births in order to sustain a population in the presence of limited resources. If 
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Figure 5.7. The fixed points of Equation (5.39) 
are the values of N at which the graph of f(N) 
intersects the x-axis. The stability of a fixed 
point Nc can be inferred from the behavior of 
f(N) near N = Nc. 

, then  if , and  for , where  if . 

In this case, the solution therefore diverges in finite time. The dynamics of  is monotonic for all values of 
, and is therefore completely different from that of the discrete logistic map, for which chaos may be observed. 

General autonomous model 

More generally, consider the differential equation 

where  is a nonlinear function of . In the context of population dynamics,  is called the net growth 
rate of the population. It is often written as , where  is the net per capita growth 
rate of the population. Since the right-hand-side of Equation (5.6) does not depend on , this differential equa-
tion is said to be autonomous. 

The fixed points  of (5.6) are given by , 
and can be obtained graphically by looking at where the 
graph of  intersects the horizontal axis. The nonlinear 
stability of these fixed points can also be assessed graphi-
cally. Indeed,  changes sign at . We know 
that if  for , then  will grow 
towards , whereas if  for , then 

 will move away from . The stability of any fixed 
point  of  can thus be inferred by adding arrows to 
the horizontal axis that point to the left where  is nega-
tive and to the right where  is positive. A stable fixed 
point  will have arrows pointing towards it on both 
sides, whereas an unstable fixed point will be associated 
with arrows pointing away from it. This is illustrated in 

Figure 5.7. 

Discrete models with age distribution 

Models with age distribution describe the number of individuals in each age group of a population and allow 
to take into account different birth and death rates for different subgroups. Consider for instance a three-group 
model, in which  is the number of children at time ;  is the number of adults of child-bearing 
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age, and  is the number of older adults. A simple set of difference equations describing the dynamics of 
such a population is as follows, 

where  is the per capita death rate of group ,  is the rate at which surviving individuals move out of group 
 (alternatively,  represents the probability that an individual in group  will move to group  dur-

ing ), and  is the per capita rate at which individuals in group 2 give birth. The period of time  could 
be one year or five years for human populations. It should be shorter than the typical timescales of the system 
being modeled, such as the time it takes for one child to become an adult, or the time it takes for a young adult 
to move to group 3. 

The above system is linear and can thus be conveniently rewritten as a difference equation for the vector 
, which reads 

with  The matrix  typically has 

constant, non-negative entries. It is called a Leslie matrix in the context of population dynamics models. We 
can look for a solution to Equation (5.7) in the form  where  is some initial 

time. Substitution of this expression into Equation (5.7) implies that  i.e.  is an 

eigenvector of  with eigenvalue . If the matrix  is diagonalizable, the general solution of Equation (5.7) 
may thus be written as 

where the  are three linearly independent eigenvectors of  with associated eigenvalues , and the  are 

coefficients imposed by the initial condition , where  is known. Note that since  has real 

entries, its eigenvalues are either all real or consist of a real eigenvalue and a complex conjugate pair of eigenval-
ues. In this latter case, two of the , say  and , are also complex conjugates and a real initial condition 

leads to , where the star denotes complex conjugation. The dynamics of Equation (5.7) depends on 
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the position of the eigenvalues of  in the complex plane, relative to the unit circle. Indeed, if , then 
exponential growth will be observed in the direction of , with fastest and therefore dominant growth along 

the eigendirection associated with the principal eigenvalue of . Conversely, if all of the eigenvalues of  have 
modulus less than 1, then  will converge towards zero. More complex behaviors, including chaos, 

may be observed if nonlinear effects are taken into account. 

The LPA Model 

Depending on the type of species whose populations is being modeled, effects other than births and deaths 
may have to be considered. As an illustration, we now discuss a model developed by R.F. Costantino and col-
leagues456 for a population of flour beetles, for which adults are known to eat their offspring. The different 
stages in the development of a beetle are the larval, pupal and adult stages. If one chooses  (about 2 weeks 
for flour beetles) such that it corresponds to the time it takes on average for a larva to pupate and for a pupa to 
become a reproductive adult, one has, counting time in units of , and in the absence of cannibalism, 

where the positive constants  and  are the probabilities of death for larvae and adults during the period 
, the parameter  is the average number of eggs per adult that have hatched during , and 

one has neglected deaths in the pupal stage. 

Cannibalism of eggs by adults and larvae is modeled through multiplicative terms of the form 
 and  respectively, and cannibalism of pupae by adults is described by 
 (see the articles by Costantino et al. and Cushing et al. mentioned above). Here, the con-

stants ,  and  are all positive. The exponential terms represent the fraction of eggs or pupae which 
survive to the next stage in their development, and can be understood as follows. Beetles in a crawling stage 
(larvae and adults) move through the flour and may encounter individuals in a non-moving stage, such as eggs 
and pupae. When this happens, the moving larva or adult beetle will bite the egg or pupa, thereby killing it. 

4. R.F. Costantino, J.M. Cushing, B. Dennis, and R.A. Desharnais, Experimentally induced transitions in the dynamics behaviour of 
insect populations, Nature 375, 227-230 (1995). 

5. R.F. Costantino, R.A. Desharnais, J.M. Cushing, and B. Dennis, Chaotic dynamics in an insect population, Science 275, 389-391 
(1997). 

6. J.M. Cushing, R.F. Costantino, B. Dennis, R.A. Desharnais, and S.M. Henson, Nonlinear population dynamics: models, experi-
ments and data, J. Theor. Biol. 194, 1-9 (1998). 
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We assume that larvae only kill eggs, since pupae are bigger than larvae. Suppose the probability that an adult 
encounters one egg during the period of time  is given by , where  is constant. Then, the probability 
for this egg not to have been eaten by this adult at the end of  is , and the probability for this (or 
any other) egg to become a larva is then , since there are  adults. Thus, if eggs were only 

eaten by adults, one would write 

where . Following similar arguments, the fact that eggs are also eaten by larvae is 
taken into account by multiplying the right hand side of the above equation by . Therefore, 
the deterministic LPA model (where LPA stands for Larva, Pupa, Adult), which includes cannibalism of pupae 
and eggs by adults and of eggs by larvae, reads 

A review of the dynamical properties of the LPA model can be found in the 2004 article by Jim Cushing et al. 
entitled Nonlinear population dynamics: models, experiments and data. In particular, it can be shown that the 
trajectories of the LPA model which start in the non-negative octant remain non-negative. Moreover, when 
stochastic terms are added to the above equations, the predictions given by the resulting model, including 
behavior consistent with chaotic dynamics, are in particular good agreement with experiments. 

Summary 

This chapter discusses discrete and continuous models for the dynamics of a single species. We first introduced 
exponential growth in the context of the Audubon Society’s count of red-tailed hawks in the United States, 
and added nonlinear saturation to the corresponding model. We then discussed fixed points and periodic cycles 
of one-dimensional nonlinear maps and saw that simple nonlinear difference equations, such as the logistic 
map, could have very complex dynamics and exhibit chaos. We also described linear and nonlinear population 
models with age groups. An example of the latter is the LPA model, whose stochastic version gives an accu-
rate representation of experimental observations. Finally, we introduced continuous models as approximations 
of discrete models, discussed the global stability of their fixed points, and pointed out that one-dimensional 
(as well as two-dimensional) continuous models have very simple dynamics. In particular, they cannot exhibit 
chaos. 

The methods and techniques introduced in this chapter generalize to more complex situations. The exercises 
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below discuss models with continuous age distributions, delay and harvesting, as well as the evolution of the 
population of the United States. 

 

Food for Thought 

Problem 1 

Assume that a population grows according to 

1. How long does it take to double the number of individuals? 

2. Estimate the value of  from Figure 5.1, which shows the number of Red-tailed Hawks in the 

United States as a function of time. 

3. Is your estimate of  in reasonable agreement with the value  inferred from Fig-

ure 5.3? 

Problem 2 

Consider the continuous model 

1. How long does it take to double ? 

2. If this model is an approximation of a difference equation of the form 

 what is the relationship between  and ? 

3. How long does it take for a system described by the discrete model to double its population? 

4. Is the discrete model faster or slower than its continuous approximation? 

70  |  SINGLE-SPECIES MODELS



Problem 3 

Consider the continuous model  where  is a linear function of : 

. 

1. What should the signs of  and  be if one wants the population to grow for small values of 

 and saturate at large values of ? 

2. What changes of variables should you make to turn this model into Equation (5.5)? 

Problem 4 

Find the non-trivial fixed point of the logistic map 

1. Show that this fixed point becomes unstable when . 

2. Show that as soon as this fixed point becomes unstable, a period-two cycle of the map starts 

to exist. Hint: look for fixed points of . 

3. Find the value of  at which this period-two cycle becomes unstable. 

4. Check your answer against the bifurcation diagram of Figure 5.6. 

Problem 5 

Solve the difference equation , where  has two components: 

 Assume the initial conditions are  and 

Problem 6 

Consider the differential equation 
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1. What are the fixed point of the dynamics? 

2. Are they stable or unstable? 

Problem 7 

Consider the differential equation 

1. What are the fixed point of the dynamics? 

2. Are they stable or unstable? 

Problem 8 

Consider the differential equation 

1. Plot  as a function of . What happens as  changes? 

2. Without performing any calculation, sketch the behavior of the fixed points as a function of 

. 

3. Indicate the stability of each fixed point on the bifurcation diagram of question (2). 

4. Assign a value of +1 to each stable fixed point and a value of -1 to each unstable fixed point. 

For each value of , define a function  as the sum of indices associated with the fixed 

points existing for this particular value of . Sketch the graph of  as a function of . What 

do you observe? 

Problem 9 

Consider a population model where the age  is a continuous independent variable. Define the age 

distribution  such that the number of individuals between age  and age  at time  is 

given by 
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Show that the dynamics of  is described by the following partial differential equation, known as 

the McKendrick or von Foerster partial differential equation, 

where the mortality function  represents the per capita death rate of individuals of age . 

Problem 10 

Use the method of characteristics to solve the McKendrick partial differential equation derived in 

Problem 9. 

Problem 11 

Consider the LPA model described in this chapter. What are the dimensions of the parameters ( , 

, , , , ) appearing in this model? 

Problem 12 

Write a model describing a situation analogous to that of the LPA model (with cannibalism), but 

such that the time for a pupa to become an adult is twice as long as the time it takes for a larva to 

pupate. 

Problem 13 

Write a model describing a population with two subgroups, juvenile and adults, in which adults eat 

some of their own eggs. You can use an exponential term similar to that appearing in the LPA 

model to describe cannibalism. 
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Problem 14 

Consider the following model, 

where ,  and  are positive parameters. 

1. Describe in words a situation modeled by the above equations. 

2. Under what condition is there a non-trivial fixed point for this model? What is the biological 

significance of this condition? 

3. Discuss the stability of the fixed points of this model. 

Problem 15 

Read the article by R. May, entitled Simple mathematical models with complicated dynamics, and 

address (i.e. explain, justifies, work out the details of, or prove) the following statements found in 

this paper. 

1. Page 460, left column, above Equation (3): “By writing , the equation may be 

brought into the canonical form .” 

2. Page 460, left column, bottom: “If  ever exceeds unity, subsequent iterations diverge 

towards .” 

3. Page 460, right column, below Equation (6): “So long as this slope lies between 45o and -45o 

… the equilibrium point  will be at least locally stable.” 

4. Page 461, left column, below Equation (9): “Clearly, the equilibrium point  of Equation (5) 

is a solution of Equation (9).” 

5. Equation (10): . 

6. Page 461, left column, bottom: “As this happens, the curve  must develop a “loop”, 

and two new fixed points of period 2 appear.” 

7. Page 461, left column, bottom: “This slope is easily shown to be the same at both points, and 

more generally to be the same at all  points on a period  cycle.” 

8. Bottom of page 461 and beginning of page 462: “… until at last the three-point cycle appears 

(at  for equation (3)).” 

9. Page 462, right column, bottom: “This period 3 cycle is never stable.” 
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10. Page 462, right column, bottom: “As  continues to steepen, the slope  for this ini-

tially stable three-point cycle decreases beyond -1; the cycle becomes unstable and gives rise 

by bifurcation process … to stable cycles of period 6, 12, 24, …, .” 

11. Draw pictures illustrating the concepts of tangent and pitchfork bifurcations (see page 463, 

top of left column). 

12. Page 464, right column, top: “… the slope of the -time iterated map  at any point on a 

period  cycle is simply equal to the product of the slopes of  at each of the points 

 on this cycle.” 

13. Page 465, left column, bottom: “… as each new pair of cycles is born by tangent bifurcation 

(see Fig. 5), one of them is at first stable, by virtue of the way smoothly rounded hills and 

valleys intercept the 45o line.” 

14. Page 466, right column, bottom: “… in continuous two-dimensional systems … dynamic tra-

jectories cannot cross each other.” 

Problem 16 

The goal of this problem is to explore global changes in the population of the United States. 

The U.S. Census Bureau maintains a file (popclockest.txt) containing national population estimates 

between 1900 and 1999. Import this data set into MATLAB or EXCEL. Then answer the following 

questions. 

1. Plot the U.S. population as a function of time. What do you conclude? 

2. Can the growth of the U.S. population be modeled by a simple evolution equation of the 

form , where  is in years? Why or why not? If so, estimate 

. 

3. Post-census population estimates are obtained as described on the U.S. Census Bureau 

methodology page (see for instance the methodology file for the 2021 vintage). Explain the 

main formula given in the Overview section of this article. 

4. Given the following estimates7, find the population of the U.S. in 2004: 

1. Population in 2001: 285,102,075. 

2. Births, deaths, and net international immigration: 

7. Downloaded in 2005 from a now decommissioned US Census Bureau web page 
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▪ 2001-2002: 4,006,985; 2,429,999; 1,262,159. 

▪ 2002-2003: 4,055,469; 2,432,874; 1,225,161. 

▪ 2003-2004: 4,099,399; 2,453,984; 1,221,013. 

Problem 17 

The goal of this section is to explore the evolution of the population of the United States using dif-

ferent age groups. Population estimates by five-year age groups from 2010 to 2019 can be obtained 

from the U.S. Census Bureau web site (each year has its own table). 

1. Use this information to plot the age distribution of the U.S. population for different years. 

1. Has there been major changes in the last 4 years of this data set? 

2. The data set has 18 age groups. Use the age distributions that you just plotted to 

define larger age groups that can be used in a simplified model. 

2. Using recent birth and death rates estimates, as published by the Center for Disease Control 

and Prevention, create a model to predict the population in the age groups you defined, tak-

ing the 2010 data as initial condition. You may want to start with Figures 2 and 3 of the birth 

and deaths documents, respectively. There are also tables at the end that may be of use. 

(Note: do not attempt to print these files; they are more than 50 pages long!) 

1. How does your model compare to the Census Bureau estimates for 2019? 

2. Use your model to predict the population in each age group in 2050. What do you 

conclude? 

3. Discuss the limitations of your model. 
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6. 

TWO-SPECIES MODELS 

Learning Objectives 

At the end of this chapter, you will be able to do the following. 

• Create coupled differential equation models for predator-prey and competing species sys-

tems. 

• Formulate dimensionless versions of two-dimensional models and appraise their dynamics 

by means of phase plane analysis. 

• Translate the results of model analysis into biological terms and discuss their significance in 

that context. 

Predator-prey models: the Lotka-Volterra equations 

Consider a closed system involving a population of predators (e.g. sharks) and prey (e.g. little fish). Let  rep-
resent the density of prey and  that of the predator. It is clear that if there is abundant prey, predators will 
proliferate. As a consequence, more prey will be eaten and  will decrease, but so will  since there will be less 
food for the predators. However, if  decreases,  will have a chance to grow again since the prey will not be 
eaten as much. This reasoning suggests that parameter values may exist for which  and  oscillate in time12. 

1. A.J. Lotka, Elements of Physical Biology, Williams & Wilkins, Baltimore, 1925; Dover, New York, 1956. 
2. V. Volterra, Leçons sur la Théorie Mathématique de la Lutte pour la Vie, Gauthier-Villars, Paris, 1931. 
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If we neglect migration, and assume that  and  are the only dependent variables – in particular we assume 
that there is an ample (but not infinite) supply of nutrients for the prey, we may write 

where the constant parameters , , ,  and  are all non-negative. This model indicates that when 
the prey population evolves according to a logistic model, and that when , prey are eaten proportionally 
to both their own abundance ( ) and that of the predators ( ). The predators have a growth (birth minus 
death) rate equal to  if . Since  is positive, this means that in the absence of prey, the predator 
population would be driven to extinction. The growth rate of  is then corrected by a linear term , pro-
portional to . 

If , this model is called the Lotka-Volterra system (see footnotes 1 and 2 for references) and is the sim-
plest continuous model that incorporates the basic factors describing the interaction of a predator and its prey. 
It should be considered as a starting point for more complicated and more realistic models. The rest of this sec-
tion is devoted to an analysis of Equations (6.1). 

Scalings 

Equations (6.1) involve three variables, ,  and , and five parameters, which we assume are positive (except 
possibly for ). Scaling all of the variables should allow us to reduce this system to a problem with two (i.e. 
five minus three) parameters. A typical value for  is given by  (see the second equation of (6.1)), 
and a typical value for  can be chosen as  in a similar fashion. For a characteristic time, we may 

take . Then, if we define   and  we obtain a dimensionless, canonical 

model, which reads 

Here, the parameters  and  are related to the original parameters by ,  and are therefore 

positive. 
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Phase plane analysis 

A description of the phase plane associated with system (6.2) gives us a qualitative understanding of the preda-
tor-prey equations. With this information, we are able to address questions such as those listed below, even if 
we do not have explicit forms for all of the solutions of (6.2). 

• Is it possible for the populations of sharks or little fish to go extinct? 
• Does the model make biological sense? 
• Can oscillations be observed? 

Before going any further, it is important to check that the model is “biologically well-posed,” i.e. that if  and 
 are initially non-negative, they will remain so. Assume for instance that . Then, the second equation 

of (6.2) indicates that  will remain zero. Trajectories in the  plane are therefore along the  axis or away 
from it, but do not cross this axis. Similarly, the first equation of (6.2) shows that trajectories do not cross the 

 axis. 

We now turn to a description of the phase portrait of system (6.2). The fixed points of this system are given 
below in terms of their coordinates in the  plane. They are 

and are all located in the first quadrant provided , which we will assume is true. Linear stability 
analysis can be used to describe the local dynamics of (6.2) near its three fixed points. The Jacobian of (6.2) is 
given by 

Analysis near the origin, 

For ,  and the Jacobian  is diagonal. Its eigenvalues are  and , with associated 

eigenvectors  and  respectively. The origin is therefore a saddle point. 

Analysis near 

For ,  and  The Jacobian  is an upper-triangular matrix and its eigenvalues are 
therefore its diagonal entries. They are  and . Since , this fixed point is also a saddle (with 
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Figure 6.1. Phase 
plane of model 
(6.2) with a = 1 and 
b = 0.5, plotted 
with the software 
PPLANE. 

possibly a neutral direction if ). The eigenspace associated with  is spanned by , and the eigen-

space associated with  is spanned by . 

Analysis near 

For ,   and . The Jacobian  reads 

and its eigenvalues  and  are such that 

and 

Therefore  is either a stable node or a stable spiral. 
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Figure 6.2. Phase 
plane of the 
Lotka-Volterra 
model (6.2) with a 
= 1 and b = 0, 
plotted with the 
software PPLANE. 

This analysis thus indicates that if the initial values of  and  are positive, then the dynamics will converge 
to the fixed point , for which both shark and fish populations are of finite size. In other words, no periodic 
oscillations are observed. Figure 6.1 shows the phase plane of system (6.2) for  and , obtained 
with PPLANE. In this case, the fixed point  is a stable spiral. 

As an exercise, the reader should work out the case where , for which only two of the fixed points are in 
the first quadrant. Then,  is a stable node and all initial conditions with  and  converge to . 
In this situation, the sharks are extinct and the fish have reached the carrying capacity of the environment they 
live in. 

It is possible to observe oscillations, provided we set . This is indeed a necessary condition if we want 
 to be a center, since Tr  and . Indeed, setting  makes 

the trace of  vanish, but keeps its determinant positive. In this case,  disappears (it is in fact sent to 
infinity as  goes to zero), and we are left with two fixed points,  and . The Jaco-

bian  has eigenvalues , so  is now a linear center, as expected. Figure  6.2 

shows the corresponding phase plane, with closed trajectories around . We can prove the existence of close 
trajectories as follows. Any trajectory in the phase plane is such that 
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When , an implicit solution to this equation is 

where  is a non-negative constant. It is easy to see that there are values of  for which this equation defines a 
closed curve around . Indeed, the function  is zero at the origin, has a maximum equal to 
at , and goes to zero as . As a consequence, for given values of  and , one can find a range of 

values of  such that the equation  has two solutions, one on each side of 

. A similar reasoning applies to cross-sections parallel to the -axis. These closed trajectories are drawn 
counterclockwise in the first quadrant of the  plane, since 

The Lotka-Volterra model therefore predicts periodic oscillations of the predator and prey populations. 

The ideas developed in this section can be generalized to more complex systems. For instance, it is shown in 
a 2000 article by G.F. Fussmann et al. entitled Crossing the Hopf Bifurcation in a Live Predator-Prey System, 
that the predictions of a predator-prey model involving environmental factors as well as reproductive and non-
reproductive fractions of a population compare very well with experimental results. 

Two competing species 

We now turn to the problem of two species competing for the same resources. We will assume that in the 
absence of the other species, each species grows according to a logistic law. The competition for food makes the 
growth rate of each species limited by the presence of the other. As a first approximation, this effect is linear. If 
we denote by  and  the average density of each species, we thus have 

where , , , ,  and  are positive parameters. As for the Lotka-Volterra model, we first rescale these equa-
tions in order to reduce the number of independent parameters. We then perform a phase plane analysis to 
describe the dynamics of the competing species. 
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Scalings 

Characteristic values of  and  are  and . A characteristic time is for instance 
. So we can define dimensionless quantities as 

substitute these expressions into Equations (6.3), and look for a simplified system for the variables  and . We 
obtain 

where   and  We thus have a three-parameter model. This was to be expected 

since we initially had a six-parameter nonlinear system, and had the possibility of rescaling three variables, , 
and . We leave the question of biological well-posedness as an exercise and directly move to an analysis of the 
fixed points of Equations (6.4). 

Phase plane analysis 

As usual, fixed points are obtained by solving  and  This system 
of equations has four solutions, given by 

The last fixed point  is in the first quadrant only if ,  and  are all of the same sign, and 
. In what follows, we assume that these conditions are satisfied, and denote by , the sign of 

any of these three quantities, i.e. 

The Jacobian of (6.4) is 
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We can now calculate the eigenvalues of  evaluated at each of the fixed points. 

Analysis near the origin, 

For   is diagonal and its eigenvalues are  and . Since they are both positive, the origin is an unsta-
ble node. 

Analysis near 

For   is upper-triangular, and its eigenvalues are  and . If  then  is a saddle. 
If , it is a stable node. 

Analysis near 

For   is lower-triangular, and its eigenvalues are  and . Thus  is a saddle if , and 
a stable node if . 

Analysis near 

For , the Jacobian is 

Since its trace  and determinant  are given by 

we see that  and  If ,  is a saddle. If ,  is a stable node. 
Indeed, the discriminant of the characteristic polynomial is 

and is therefore positive. Thus, both eigenvalues are real. 

Figures 6.3 and 6.4 show phase portraits of system (6.4) for  and  respectively. 
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Figure 6.3. Phase 
plane of system 
(6.4), with a = 0.5, 
b = 0.8, and c = 1 (ε 
= 1), plotted with 
the software 
PPLANE. 

Figure 6.4. Phase 
plane of system 
(6.4), with a = 1.2, b 
= 2, and c = 1 (ε = 
-1), plotted with 
the software 
PPLANE. 

From an ecological point of view, the two species coexist if  is stable, i.e. if . If not, then one of the 
species is driven to extinction by the other, since the only fixed points which are stable when  are 
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and , for which one of the populations is zero. From this simple example, we see how relationships between 
model parameters may be inferred from biological facts. For instance, the above analysis indicates that if the 
two species coexist, then  and  with 

Summary 

In this chapter, we introduced two classical population dynamics models, the predator-prey system and a sys-
tem describing two species competing for the same resources. The main tool we used for the analysis of these 
two-dimensional models was phase plane analysis. We only discussed elementary continuous models, but dis-
crete analogues as well as more complex models may of course be considered. 

From a biological point of view, it is important to remember that predator-prey systems may exhibit temporal 
oscillations. The latter typically arise from a Hopf bifurcation, as discussed for instance in the paper by Fuss-
mann et al.3 (see exercises), and are not related to the presence of an infinite number of closed orbits, as was the 
case in the Lotka-Volterra system with  and . 

In the case of competing species, the simple model presented in this section shows that the two species can only 
coexist if  and  in system (6.4) are both less than unity. Otherwise, one of the species will drive the other to 
extinction. 

 

Food for Thought 

Problem 1 

Write a time-continuous model which describes the following situation. Species  survives by eat-

3. G.F. Fussmann, S.P. Ellner, K.W. Shertzer, N.G. Hairston Jr., Crossing the Hopf Bifurcation in a Live Predator-Prey System, Science 
290, 1358-1360 (2000). 
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ing nutrients  and has a per-capita death rate equal to . The nutrients  are supplied to the sys-

tem at a constant rate. 

Problem 2 

Is model (6.4) biologically well-posed? Why or why not? 

Problem 3 

Consider model (6.4) with  and . 

1. Use phase plane analysis to describe the long-term dynamics of this system. Check your 

results with the Phase Plane App or equivalent software. 

2. What is the biological significance of what you found out in part (1)? 

Problem 4 

Consider the following model 

where  and  are non-negative. 

1.  Find the fixed points of this system. 

2. Linearize the system about its fixed points and find the stability of each fixed point. 

3. Use the above information to sketch the phase plane of this system. 

4. Check your answer with the Phase Plane App or equivalent software. 

5. Could this model describe a biological system? Why or why not? 
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Problem 5 

Consider the system 

1. What is the dimension of each parameter? 

2. Write this system in dimensionless form. Explain how you choose to scale the variables. 

Problem 6 

Consider the model described in the paper by G.F.  Fussmann et al. entitled Crossing the Hopf Bifur-

cation in a Live Predator-Prey System. 

1. Which species is the predator and which is the prey? 

2. What is the role of  in the model? 

3. How would you modify the model if you did not want to distinguish between reproducing 

and non-reproducing Brachionus? 
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7. 

EPIDEMIOLOGY 

Learning Objectives 

At the end of this chapter, you will be able to do the following. 

• Construct compartmental models describing infections and disease outbreaks. 

• Formulate dimensionless versions of two-dimensional models and appraise their dynamics 

by means of phase plane analysis. 

• Translate the results of model analysis into biological terms and discuss their significance in 

that context. 

Viral infections 

We first model the dynamics of a viral infection, such as hepatitis B or C, and are interested in describing how 
the corresponding virus can spread and multiply in a person’s body. Denote by  the average number of unin-
fected cells, which virions will try to infect; let  be the average number of infected cells, and  be the average 
viral load (or the number of free virions in the body). Consider that uninfected cells are produced at a con-
stant rate  by the body, die at rate , and become infected at rate , where  is some function 
of  and . As a consequence, infected cells  are created at rate , and we assume they die at 
rate . Finally, free virions are produced at a rate proportional to the number of infected cells , and are 
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removed or destroyed at rate . If we consider that, as a first approximation,  is a linear function of , i.e. 
, we have the following model.1 

This model has six parameters and four variables. We can rescale time and , but it is not a good idea to rescale 
 and  independently since they both count cells and the term in  transfers cells from the  compart-

ment to the  compartment. We can therefore reduce Equations (7.1) to a model with three parameters. More 
precisely, let 

Then, the scaled version of Equations (7.1) is 

where   and  are dimensionless parameters. 

We scaled time according to the death rate of normal cells. Alternatively, we could have scaled time according 
to the rate at which normal cells are produced by the body, i.e. we could have defined , with 

. We could also have used a combination of these two time scales. In general, there is more 

than one possible way of defining dimensionless variables. The most convenient choice is often that which 
gives dimensionless parameters of order one, if at all possible. 

We refer the reader to the 1998 article by A.U. Neumann et al., entitled Hepatitis C viral dynamics in vivo and 

1. M.A. Nowak, S. Bonhoe er, A.M. Hill, R. Boehme, H.C. Thomas, and H. McDade, Viral dynamics in hepatitis B virus infection, 
Proc. Natl. Acad. Sci. USA 93, 4398-4402 (1996). 
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the antiviral efficacy of interferon-alpha therapy, to see how estimating parameters in model (7.1) may be used 
to understand the role of interferons in hepatitis C therapy. 

Modeling infectious diseases 

There is ample literature on the modeling of infectious diseases (for a review, see for instance the 2000 article 
by H. Hethcote, entitled The Mathematics of Infectious Diseases). The most general basic model is called the 
MSEIRS model. Each letter in the acronym refers to a particular class or compartment of the population, and 
the ordering of the letters is such that individuals belonging to one class move to the class on the right under 
the effect of the disease. The various classes are defined as follows. 

• Class M corresponds to infants with passive immunity. Typically, these are newborns whose mothers 
were infected, and who received antibodies through the placenta before birth. 

• Class S is the class of susceptible individuals, who may become infected by the disease. Infants in class M 
have temporary immunity and eventually move to class S. 

• Class E corresponds to exposed individuals, who have been in contact with an infected person. 
• Class I is the class of infectious individuals, who can transmit the disease. 
• Class R corresponds to individuals who have recovered (or died) from the disease, or who have been 

removed from the group of people affected by the disease. 

Depending on the type of infectious disease, individuals in class R may have acquired permanent immunity. 
In this case, the appropriate model is of the MSEIR type. However, if individuals in class R eventually become 
susceptible again, then an MSEIRS model should be used. Most realistic models couple the classes described 
above with age groups. Some models consider the age  of a person as an independent variable. Other classes, 
such as symptomatic and asymptomatic groups of individuals, may be considered, and the appropriate num-
ber of compartments, as well as their nature, is selected by the modeler. Applications of compartmental models 
include disease forecasting, as well as predicting the effectiveness of vaccination or of a disease eradication cam-
paign. Below, we only discuss two simple models, namely the classic and endemic SIR models. 

The SIR model 

The classic SIR model does not include classes M and E, and reads 
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with initial conditions   and  Here, ,  and  are the 
expected numbers of individuals in each compartment, and  is the total population. Note 
that births and deaths are not included in the model. This typically works for diseases which evolve over a short 
period of time, so that changes in the total population are negligible. 

In this model,  represents the fraction of infectious individuals. The product of this quantity with the 
contact rate  measures the average number of positive (i.e. giving rise to transmission of the disease) con-
tacts per susceptible individual per unit of time. Since there are on average  susceptible individuals, the rate 
of change of  is . The number of infected individuals increases by contact with susceptibles, and 
decreases due to recovery, at rate , with . By adding up the three equations, one easily checks that 

, as expected since we neglected births and deaths. System (7.3) can thus be reduced to a two-
dimensional system of ordinary differential equations, by omitting the last equation for . The remaining two 
equations may be written in dimensionless form by letting 

  and 

Then, the first two equations of (7.3) become 

where . The quantity  is the contact rate  multiplied by the characteristic time 
during which a person remains infectious. It is called the contact number of the disease, and in this case is equal 
to the basic reproduction number   of the infection described by the SIR model. 

Since , Equations (7.4) only make biological sense if  and  remain positive and 
such that , provided initial conditions satisfy these requirements. In other words, trajectories of the 
dynamical system (7.4) that start in the triangle 

should remain in  To check this, consider the dynamics on the boundary of  First assume that 
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Figure 7.1. Phase 
plane of system 
(7.4), with δ = 0.2, 
plotted with the 
software PPLANE. 
Only the dynamics 
inside T (not 
shaded) is 
relevant. 

and . Then , i.e.  remains equal to zero, and  decreases towards zero, but does not become 
negative. Similarly, if , then both  and  remain constant (what is the biological significance of this 

fact?). Finally, if , then  so that  will not increase past the value 1. 

System (7.4) has an infinite number of fixed points in , which are such that  and  is arbitrary. 

 

Figure 7.1 shows the phase portrait of (7.4), obtained with PPLANE, with . In this case, we see that 
all trajectories in  converge towards one of the fixed points, i.e.  This means that the epidemic 

eventually dies out, and we are only left with susceptible individuals and/or those who have recovered from the 
disease. 

The classic endemic model 

For an endemic disease, births and deaths need to be taken into account, and the SIR model becomes 
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with initial conditions   and  Here the new parameters are 
the per capita death rate  and per capita birth rate  of the population. By choosing , the total popu-
lation  is constant. In this case, using the same dimensionless variables as for the classic SIR 
model, we are left with a two-dimensional dynamical system, which reads, in dimensionless form, 

where . 

As before, it is easy to check that trajectories starting in  remain in  (see exercises). The fixed points of (7.6) 
in the  plane are 

The Jacobian of (7.6) is 

and 

Whether  is in  depends on the parameters  and . More precisely, 
Therefore, if ,  is the only fixed point in  and since the eigenvalues of  are  and 

,  is a stable node. All of the trajectories starting in  must converge to this fixed point, which 
means that in the long run there are only susceptible individuals in the population. This is because those who 
have recovered from the disease eventually die and are replaced by newborns, who are susceptible. This is illus-
trated in Figure 7.2, which shows the phase portrait of (7.6), obtained with PPLANE, with  and 

. 
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Figure 7.2. Phase 
plane of system 
(7.6), with δ = 0.2 
and η = 1, plotted 
with the software 
PPLANE. Only the 
dynamics inside 
T (not shaded) is 
relevant. 

 

If on the other hand , then  is a saddle, and 

The determinant of  is equal to  and is positive. The trace of  is negative, so 
is either a stable spiral or a stable node. Trajectories starting in  converge to , which is called the endemic 
equilibrium. In this case, the disease is always present in the population and there is always a non-zero number 
of infected individuals. Figure 7.3 shows the phase portrait of (7.6) with  and . 
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Figure 7.3. Phase 
plane of system 
(7.6), with δ = 0.2 
and η = 0.1, plotted 
with the software 
PPLANE. Only the 
dynamics inside T 
(not shaded) is 
relevant. 

Summary 

This chapter illustrates how the modeling concepts discussed in the previous chapters may be applied to the 
description, in terms of ordinary differential equations, of the dynamics of infectious diseases and the spread 
of epidemics. Moreover, it provides the reader with a basic introduction to the terminology and applications 
of compartmental models. 

It should be clear by now that models of arbitrary complexity may be built from the simple tools discussed in 
this text. The modeling process is always the same, no matter how involved the model is. The methods of analy-
sis, in terms of maps or differential equations, are also similar, but become more complicated as the dimension 
of the model is increased. In particular, three-dimensional continuously differentiable dynamical systems may 
exhibit chaos, the understanding of which requires more advanced techniques than those discussed here. The 
section on further reading includes texts on dynamical systems and chaos that the reader may want to consult. 
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Food for Thought 

Problem 1 

Write model (7.1) in dimensionless form by defining  and appropriate variables , 

and . Explain what you are doing and check that  is dimensionless. 

Problem 2 

Consider model (7.2). 

1. Find the fixed points of this system. 

2. What are the conditions on the parameters for these fixed points to be in the first octant? 

What is the biological significance of these conditions? 

3. Discuss the linear stability of the fixed point such that . 

Problem 3 

Consider model (7.6). Show that trajectories starting in the triangle  remain in . 

Problem 4 

Consider model (7.6) with . Are there values of  and  for which  is a stable node 

and not a stable spiral? 
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Problem 5 

The MSEIR model is suitable for diseases such as rubella or measles, since once individuals are 

infected, they become immune to the disease. Write a system of equations for the MSEIR model, in 

a population with per capita birth rate  and per capita death rate , with . 
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PART IV 

CHEMICAL REACTIONS AND 
SPATIAL EFFECTS 

Chapter 8 focuses on chemical reactions. We first introduce the law of mass action to obtain rate equations, 
and consider two classical models for oscillatory chemical reactions, which only involve ordinary differential 
equations. These models may be simplified into two-dimensional dynamical systems and are amenable to the 
kind of analysis done in the previous chapters. 

So far, we did not discuss or even consider the fact that most models describe quantities which vary not only in 
time, but also in space. For instance, if  measures the density of a population, it is normal to assume that 
depends on the landscape: for humans,  is larger in cities than in mountain or desert areas; for animals, 
varies according to the presence of forests, rivers, prey, etc. 

In order to include spatial effects in the models we have discussed, we proceed as follows. First, we assume that 
the nature of the model itself does not change. For instance, if species  eats species , then at any point with 
coordinates  in the plane,  grows proportionally to the local concentration of . One 
could imagine more complicated situations where the growth rate of  depends on say the spatially averaged 
density of , but such cases are beyond the scope of these notes. In other words, we only consider local mod-
els. Second, we need to describe how each species behaves when it is not uniformly distributed over a region of 
space. Our intuition tells us that motion should take place away from regions of high concentration, in order 
to reach a uniform distribution. This is the phenomenon of diffusion, which is discussed in Chapter 9. In the 
presence of an external flow, other transport terms have to be included, but we will not consider such situa-
tions. 

Adding diffusion to nonlinear differential equations typically leads to reaction-diffusion equations. These 
models are systems of partial differential equations, and there is a vast literature on this and related topics. 
Although a complete discussion is beyond the scope of these notes, we nevertheless give a flavor of the kind 
of modeling done with such systems. Chapter 9 briefly describes an example of surface chemical reaction, in 
which diffusion is coupled to the corresponding chemical rate equations. The resulting reaction-diffusion sys-
tem is able to sustain chemical waves and we encourage the reader to study the articles referenced in the text for 
additional information. Chapter 10 discusses the general phenomenon of pattern formation in systems driven 
far from equilibrium. There, we explore the dynamics of a generic pattern-forming model, namely the Swift-
Hohenberg equation, and also consider the specific example of a two-dimensional model leading to vegetation 
patterns. 
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8. 

CHEMICAL REACTIONS 

Learning Objectives 

At the end of this chapter, you will be able to do the following. 

• Assemble systems of coupled nonlinear ordinary differential equations describing how con-

centrations of chemical reactants evolve in time. 

• Predict the dynamics of chemical reactions by applying the methods of analysis (dimensional 

analysis, scalings, fixed points and their linear stability) discussed in previous chapters. 

• Explain why oscillatory chemical reactions are possible. 

• Explain how chemical waves may be observed in spatially extended systems. 

The law of mass action 

Consider a chemical reaction 

where ,  and  represent chemicals,  and  are the reactants,  is the product, and  is the rate 
constant of the reaction. The law of mass action describes how the concentrations of ,  and  change as 
a consequence of this reaction. The idea is that the reaction will take place if chemicals  and  collide, and 
if their energy is higher than the energy of activation of the reaction. The number of successful (i.e. leading 
to a reaction) collisions between  and  is proportional to the product of the concentrations of  and 
The constant of proportionality is the constant . We thus write the following differential equations for the 
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expected values of , , , (recall that we are in a situation where large numbers of molecules of reac-
tants and products are present) 

where  denotes the concentration of chemical . If , so that the chemical reaction is 

we need two molecules of  to create one product molecule , leading to 

If a reaction is reversible, for instance if 

then  is consumed at relative rate  and produced at relative rate , so that 

and similarly for  and . 

Finally, if a reaction process involves more than one chemical reaction, the rates of change of a chemical due to 
each of the reactions are added up in order to obtain the global rate of change of that chemical. For instance, 
assume that we have a system described by 

Then the concentration of  evolves according to 

CHEMICAL REACTIONS  |  101



and the rate equations for ,  and  are 

Note that the net reaction associated with this process is . The rate equations must be written 
for each of the steps involved in the reaction, and not on the basis of the net reaction. 

Chemical reactions can thus be described in terms of coupled nonlinear ordinary differential equations, and 
the theory of dynamical systems therefore applies to their analysis. 

The Brusselator and Oregonator models 

Because rate equations describing chemical oscillations are nonlinear, it is possible to observe reactions which 
are oscillatory in time, in the same way as the Lotka-Volterra equations may describe oscillations in a predator-
prey system. The Belousov-Zhabotinsky reaction is the classical example of an oscillatory chemical reaction. 
When Russian biochemist Boris P. Belousov1 reported his findings in 1951, his results were initially received 
with disbelief. It is only after A.M. Zhabotinsky2 reproduced and improved Belousov’s experiments, that the 
existence of oscillatory reactions was finally accepted. There are two classical models for oscillatory reactions, 
called the “Brusselator” (proposed by a group in Brussels3) and the “Oregonator” (proposed by chemists at the 
University of Oregon4). We briefly discuss each of them below. 

1. B.P. Belousov, Sb. Ref. Radiats. Med., 1958, Megiz, Moscow, 145 (1950). 
2. A.M. Zhabotinsky, Oscillatory Processes in Biological and Chemical systems, Science Publ., Moscow, p. 149, 1967. A.N. Zaikin and 

A.M. Zhabotinsky, Concentration Wave Propagation in Two-dimensional Liquid-phase Self-oscillating System, Nature 225, 
535-537 (1970). 

3. P. Glansdor and I. Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuations, Wiley Interscience, London, 1971. 
Page 233. 

4. R.J. Field and R.M. Noyes, Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction, J. Chem. 
Phys. 60, 1877-1884 (1974). 
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The Brusselator 

Consider the following hypothetical chemical process (Glansdorff & Prigogine, 1971). 

where the rate constants  are all equal to 1. The corresponding rate equations for  and  form 
the Brusselator model, which reads 

where  and  are parameters. It has a unique fixed point , given by  and . 
From a dimensional analysis point of view, these expressions may look strange, but we lost track of the dimen-
sions when we set all of the reaction constants (which had different dimensions) to unity (see exercises). 
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Figure 8.1. Phase 
plane of system 
(8.1), with [A]=1 
and [B]=3, plotted 
with the software 
PPLANE. 

The Jacobian of (8.1) about the fixed point  is 

and its determinant is equal to . The stability of the fixed point therefore depends on the sign of the 

trace of , which is equal to . It is easy to see that if  or  are sufficiently 

large, then  and trajectories are almost straight lines with slope -1. However, as  gets 
close to 0, these trajectories cannot leave the first quadrant, since  if  and . 
Since at that time we also have  if  is large enough, we expect the trajectories to be brought 
back towards regions where both  and  are of order one. 
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Figure 8.2. Time 
dependence of [X] 
and [Y] for the 
trajectory of Figure 
8.1, plotted with 
the software 
PPLANE. 

If  is stable, i.e. if , then all trajectories should end up at . However, if  is an unstable node or 
an unstable spiral, trajectories cannot converge towards , and there must be another attractor of the dynam-
ics. Figure 8.1 shows the phase portrait of (8.1) with  and  (so that ). The sec-
ond attractor is a limit cycle, towards which all trajectories converge. Only one trajectory is plotted in this 
figure. The corresponding plots of  and  as functions of time are shown in Figure 8.2. One can see that 
on the limit cycle,  remains small most of the time, then quickly increases to a maximum value and comes 
back towards zero, in a periodic fashion. As  increases,  drops abruptly, and then slowly grows back to 
its maximum value while  remains small. Such relaxation oscillations are typical of many oscillatory chem-
ical reactions. 

The Oregonator 

The Oregonator was proposed by R.J. Fields and R.M. Noyes in 1974. It corresponds to the following chemical 
reactions 
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where  and  are constant, and  is a stoichiometric factor. The corresponding rate equations are 

Field and Noyes (1974) defined the following dimensionless quantities 

where 

Then, the dimensionless form of the Oregonator becomes 

where 
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Phase plane of 
system (8.3), with 
f=1, s=1, q=0.01 and 
ω=2, plotted with 
the software 
PPLANE. 

By assuming that  quickly reaches a steady-state value, it is possible to reduce Equations (8.2) to a two-dimen-
sional dynamical system. Indeed, setting  gives 

and by substituting this expression into (8.2), one obtains 

 

In what follows, we set . Field and Noyes (1974) estimated the values of , ,  as well as of all dimen-
sionless variables for the Belousov-Zhabotinsky reaction. Details can be found in their article entitled Oscilla-
tions in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction. They also concluded 
that the Oregonator model is capable of predicting oscillations for the concentrations of the chemicals involved 
in the reaction process. Realistic parameters make the problem very stiff (i.e. there are both very short and very 
long characteristic time scales, which is typical for excitable systems), but model (8.3) also exhibits oscillations 
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in reasonably stiff cases. Figure 8.3 shows the phase plane of model (8.3) with parameters , 
, and . Trajectories starting from the fixed point with both  and  non-zero converge towards a limit 
cycle. As a consequence, the variables  and  oscillate in time, and so do ,  and  in the Oregonator 
model. 

Chemical waves 

When a chemical reaction takes place in a spatially extended system, diffusion should be taken into account. As 
a consequence, the rate equations discussed above are turned into partial differential equations. The reaction 
terms remain the same, but the concentration of each chemical now diffuses with a diffusion coefficient which 
depends on the size and weight of the molecule in question. If the reaction is oscillatory, wave fronts, corre-
sponding to say large concentrations of some chemical, propagate in the system. Moreover, if the reaction is 
constrained to a two-dimensional surface and the wave is initiated at some point in space, then the wave fronts 
are circular. As an example, a 2001 article by C. Sachs  et al.5 describes how such wave fronts are observed in an 
experiment, and proposes a reaction-diffusion model which reproduces this behavior. The authors also discuss 
the limitation of reaction-diffusion models when macroscopic parameters are affected by the details of micro-
scopic interactions. 

What would happen if the wave front was broken, for instance if the wave went over a region where the reac-
tion could not take place? If the wave front is anchored at one point, then it will curve and eventually form 
a spiral wave. Such waves are often observed in experiments where the Belousov-Zhabotinsky reaction is con-
strained to a two-dimensional surface, such as a thin film, a porous glass disk, or even a sheet of filter paper. 
The article by S.C. Müller et al.6 discusses experiments revealing the structure of the core of such spiral waves. 

Summary 

We started with the law of mass action, which allowed us to describe the dynamics of the (average) concentra-
tions of reactants and products involved in chemical reactions. In particular, we considered two hypothetical 
sets of chemical reactions called the Brusselator and the Oregonator. By applying the methods of analysis dis-
cussed in the previous chapters, we concluded that it was possible for these chemical systems to exhibit oscil-
latory dynamics. This provides a proof of concept for oscillatory reactions such as the Belousov-Zhabotinsky 

5. C. Sachs, M. Hildebrand, S. Völkening, J. Wintterlin, G. Ertl, Spatiotemporal self-organization in a surface reaction: from the atomic 
to the mesoscopic scale, Science 293, 1635-1638 (2001). 

6. S.C. Müller, T. Plesser and B. Hess, The structure of the core of the spiral wave in the Belousov-Zhabotinskii reaction, Science 230, 
661-663 (1985). 
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reaction. In spatially extended systems, the latter leads to chemical waves and spiral defects, whose structure is 
well documented in the research literature. 

Food for Thought 

Problem 1 

Consider the following chemical reactions 

1. Write differential equations describing the dynamics of the concentrations of , , , 

and . 

2. Show that  is constant. What is the chemical significance of this fact? 

Problem 2 

Consider the chemical reaction 

1. Explain why the rate equation for  is 

2. What are the dimensions of  and ? 

3. Write this equation in dimensionless form. 
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Problem 3 

Consider the chemical reaction 

where  is a positive integer. 

1. What is the rate equation for ? 

2. Given that , find the solution of this equation. 

3. Does the solution make sense for all times? If not, what happens? 

Problem 4 

What are the dimensions of , ,  and  in the Brusselator reactions? 

 

Problem 5 

Assume that the rate constants , ,  and  in the Brusselator reactions are not equal to 1. 

Can you rescale the corresponding rate equations, in order to remove these parameters from the 

dimensionless model? Explain. 

Problem 6 

Using PPLANE, simulate the Brusselator model (8.1) with . Describe what happens as the 

parameter  varies from 1.5 to 2.5. 
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Problem 7 

Using PPLANE, simulate the Brusselator model (8.1) with . 

1. Describe what happens as the parameter  varies from 3 to 5. What is special with the 

value ? 

2. Plot  and  as functions of  for . Describe what happens in your own words. 

Problem 8 

What are the dimensions of , , ,  and  in the Oregonator reactions? 

 

Problem 9 

Check that , ,  and  defined in the discussion of the Oregonator reactions are dimensionless. 

 

Problem 10 

Using PPLANE, simulate the reduced Oregonator model (8.3) with ,  and . 

Describe what happens as the parameter  varies from 0.1 to 0.01. 

 

Problem 11 

Find the fixed points of the reduced Oregonator model (8.3) with , and analyze their stabil-

ity. You may want to use a symbolic calculation package, such as MAPLE or MATHEMATICA. 
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Problem 12 

Consider the chemical reactions 

1. Write the rate equations for  and . 

2. Show that the two-dimensional dynamical system hence obtained is a special case of the 

Lotka-Volterra model. 

3. Based on this information, what kind of dynamics do you expect? 

 

Problem 13 

The Brusselator and Oregonator models exhibit periodic oscillations because of the existence of a 

limit cycle. On the other hand, the Lotka-Volterra equations (6.2) with  possess an infinite 

number of periodic solutions. If you had an experimental system which exhibited oscillations, how 

would you distinguish between the existence of a limit cycle and that of many periodic orbits? 
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9. 

DIFFUSION 

Learning Objectives 

At the end of this chapter, you will be able to do the following. 

• Construct continuity equations using ideas from vector calculus. 

• Interpret reaction-diffusion equations as special cases of continuity equations. 

• Solve the heat equation. 

• Describe diffusion at the microscopic level. 

• Compare diffusive processes at the microscopic and macroscopic levels. 

• Justify the existence of a traveling wave solution to the Fisher-KPP equation. 

Diffusion at the macroscopic level 

Reaction-diffusion equations 

Consider a quantity , which depends on the three space variables , , and , as well as time 
 Assume that  measures the density of some species, in number of individuals per unit volume. A similar 

treatment would apply to the number of individuals per unit area in a two-dimensional model, or per unit 
length in a one-dimensional model. We are interested in describing the evolution of . 

Consider a closed region of space , and call  the number of individuals inside . From the definition of 
, we know that 
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where  denotes the volume element in . Let us evaluate the time derivative of . We will assume that 
is regular enough to allow us to swap the derivative and integral signs, so that 

On the other hand, the change in  should reflect the local variations of , as well as transport through the 
boundary  of . We thus have 

where  is a reaction term describing the local change in ,  is the position vector,  is the normal to 
pointing outwards,  is the surface element on , and  is a vector describing the flow of . The last term 
in (9.2) is the negative of the flux of  through the boundary of . The negative sign comes from the fact that 

 point outwards, and that individuals leaving  contribute to a decrease in . With the divergence theorem 
(again, we implicitly assume all quantities have enough regularity) this term can be re-written as 

so that 

By combining Equations (9.1) and (9.3), we get 

Since this equality is true for an arbitrary closed domain , we obtain the following continuity equation 

which describes the conservation of . We now have to relate  to . As a first approximation, we will assume 
that Fick’s law is valid, i.e. that  only depends on the gradient of , 
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where the diffusion tensor  is a matrix of diffusion coefficients. The entries of  may depend on , in which 
case we have nonlinear diffusion. Depending on the properties of the medium,  may not be diagonal or even 
isotropic. In what follows, me make the simplifying assumption that , where  is the 
identity matrix, and  is a constant. We thus have that  is proportional to the gradient of , 

Here  is positive, which describes the fact that  “moves away” from regions regions of high concentration, 
towards regions of low concentration. By combining (9.4) with (9.5), we obtain the following reaction-diffu-
sion equation, 

where  denotes the Laplacian. If  and  are uniform, i.e.  and 

, then Equation (9.6) reduces to an ordinary differential equation, 

where  can for instance be the logistic model, . We can thus extend all of the mod-
els discussed before by converting systems of ordinary differential equations into systems of partial differential 
equations, with appropriate diffusion terms. 

The heat equation 

In the absence of reaction terms, Equation (9.6) becomes the heat equation, 

This is a linear equation in . If appropriate initial and boundary conditions are supplied, a unique solution 
can be found in terms of Green’s functions. On an infinite domain for instance, the solution to (9.7) with ini-
tial condition  is 

where 
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From a dimensional analysis point of view, we know that 

As a consequence, one expects the square of characteristic length scales of the problem to vary like characteris-
tic time scales. 

Diffusion at the microscopic level 

A microscopic description of diffusion is as follows. Consider for instance a collection of molecules in a fluid, 
such as molecules of dye in water. If the temperature is non-zero, these molecules move randomly, and undergo 
what is called Brownian motion. What we call diffusion at the macroscopic level is the consequence of random 
motion at the microscopic level. To make this more intuitive, consider a particle undergoing a random walk in 
the plane: each step has a given length , but can be taken in a random, uniformly distributed, direction. After 

 steps, of equivalently a time , where  is the time elapsed between any two consecutive steps, 
the particle will be at a distance  from its original position, such that 

To see this, call  the position vector of the particle after  steps. Assume for simplicity that the particle started 
its walk from the origin. Since each step has length , 

where the average  is taken over all possible realizations of the particle taking one step. We will show by 
induction that after  steps, , we have 

We know this statement is true for . We now show that if it is true for , then it is also true for 
. We thus assume that 

and calculate . We have 
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Figure 9.1. Graphic User Interface showing (left) the 
cloud of particles after two hundred steps, and (right) 
the linear relationship between 〈 L2 〉 and N. 

But 

where  is an orthonormal basis of the plane, and the angle  is uniformly distributed. As a conse-
quence, 

and . Thus, 

Therefore,  for any positive integer . Thus  and since , we have 

. 

Consider the following experiment. Many non-interacting particle are simultaneously released at the origin, 
and each particle performs an isotropic random walk in the plane. The above calculation tells us that after a 
period of time , we expect to see a cloud of particles, and that if we measure the distance  between each 
particle and the origin, we should find that 

To provide a visual understanding of this result, the 
Diffusion MATLAB GUI (see Figure 9.1) simulates 
the random motion of  non-interacting particles 
on a grid – so that each particle can only go up, 
down, left or right, with equal probability. All of the 
particles star their random walk from the origin, at 
the center of the box. For each particle, the distance 

 between its position after  steps (or equiva-
lently after a time , where  is fixed) and 
the origin is measured as a function of . The result 
is averaged over all of the particles, and plotted. The 
user can choose the maximum number of steps, 

, as well as the number of particles . The 
interface shows the position of all of the particles as 
time evolves. One of the particles is marked in blue, 
so that the user can follow its random walk. At the 

end of the simulation, a plot of the average of  is shown as a function of . 
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This simulation suggests that diffusion as modeled by the heat equation at the macroscopic level can be under-
stood as resulting from the random walk of independent particles at the microscopic level. These two phenom-
ena indeed have the same scaling properties. This correspondence can in fact be made rigorous, but we will 
not discuss this here. It is however useful to keep in mind the microscopic description of diffusion. Indeed, we 
often tend to develop macroscopic models based on our understanding of behaviors at the microscopic level. 
It is thus important to know under which conditions a particular phenomenon may be adequately modeled at 
the macroscopic level by diffusive terms. 

The Fisher-Kolmogorov-Petrovsky-Piscounov 
equation 

We now turn to a simple example of a one-dimensional reaction-diffusion equation, known as the Fisher-Kol-
mogorov-Petrovsky-Piscounov (Fisher-KPP) equation.12 Consider the one-dimensional version of the logistic 
equation with diffusion, 

where ,  and  are constant. This equation can be made dimensionless by scaling space, time and the 
dependent variable . To this end, we define 

and obtain the dimensionless Fisher-KPP equation, 

1. R.A. Fisher, The wave of advance of advantageous genes, Annu. Eugenics 7, 255-369 (1937). Statement from the publisher, with 
which this author agrees: "The work of eugenicists was often pervaded by prejudice against racial, ethnic and disabled groups. Publi-
cation of this material online is for scholarly research purposes is not an endorsement or promotion of the views expressed in any of 
these articles or eugenics in general." 

2. A. Kolmogorov, I. Petrovsky, N. Piscounoff, Study of the diffusion equation with growth of the quantity of matter and its application 
to a biology problem, Bulletin de l'Université d'état à Moscou, Ser. int., Section A, Vol. 1 (1937); translated in P. Pelcé, Dynamics of 
curved fronts, Academic Press, San Diego, 1988. 
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This equation has been widely studied in the literature3, and we only mention below one of its properties, 
namely that it admits a family of traveling wave solutions defined on the real line. 

Equation (9.8) has two uniform and constant solutions, given by  and , and we can look for a 
traveling wave solution connecting these two solutions. To do so, we set , where 
and the speed  is arbitrary, and substitute into (9.8). Using the chain rule, we obtain 

so that  satisfies the ordinary differential equation 

The dynamics of this equation may be qualitatively described by looking at the corresponding phase plane. Let 

. Then, 

and (9.9) is equivalent to the following dynamical system 

Its fixed points in the  plane are are  and . The Jacobian is 

and 

For , , so that  is a saddle. The origin has eigenvalues  and  with 
 and . We can assume without loss of generality that  is non-negative, since 

3. For a review, see for instance W. van Saarloos, Front propagation into unstable states, Physics Reports 386, 29-222 (2003). 
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Figure 9.2. Phase 
plane of system 
(9.10), with c = 1, 
plotted with the 
software PPLANE. 

changing  into  is the same as changing  into  in Equation (9.9). If , the origin is a center. If 
, the origin is either a stable node or a stable spiral. Since  is a saddle and the origin a node or a spiral, 

there is, for each value of , a trajectory which connects  to . This corresponds to a front, moving 
at speed , and describing the growth of  into a region with . 

The discriminant of the characteristic polynomial of , , is positive for , in which case the 
origin is a stable node. The front solution is therefore monotonic if , and oscillatory if 
Figures 9.2 and 9.3 show the phase portraits of (9.10), for  and  respectively. In both cases, the 
front corresponds to the heteroclinic connection between  and , which is plotted as a thick solid line. If 

 describes a population density, it cannot become negative, and only speeds larger than  are thus possible. 
There is nevertheless a whole family of fronts, only one of which is selected by the partial differential equation 
(9.8). 
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Figure 9.3. Phase 
plane of system 
(9.10), with c = 3, 
plotted with the 
software PPLANE. 

Chemical waves 

When a chemical reaction takes place in a spatially extended system, diffusion should be taken into account. 
As a consequence, the rate equations discussed in Chapter 8 are turned into partial differential equations. The 
reaction terms remain the same, but the concentration of each chemical now diffuses with a diffusion coef-
ficient which depends on the size and weight of the molecule in question. If the reaction is oscillatory, wave 
fronts, corresponding to say large concentrations of some chemical, propagate in the system. Moreover, if the 
reaction is constrained to a two-dimensional surface and the wave is initiated at some point in space, then the 
wave fronts are circular. A 2001 article by C. Sachs et al.4 describes how such wave fronts are observed in an 
experiment, and proposes a reaction-diffusion model which reproduces this behavior. The authors also discuss 
the limitation of reaction-diffusion models when macroscopic parameters are affected by the details of micro-
scopic interactions. 

What would happen if the wave front was broken, for instance if the wave went over a region where the reac-
tion could not take place? If the wave front is anchored at one point, then it will curve and eventually form 
a spiral wave. Such waves are often observed in experiments where the Belousov-Zhabotinsky reaction is con-

4. C. Sachs, M. Hildebrand, S. Völkening, J. Wintterlin, G. Ertl, Spatiotemporal self-organization in a surface reaction: from the atomic 
to the mesoscopic scale, Science 293, 1635-1638 (2001). 
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strained to a two-dimensional surface, such as a thin film, a porous glass disk, or even a sheet of filter paper. 
For more information, the reader is referred to the original article by S.C. Müller et al.5, which discusses exper-
iments revealing the structure of the core of such spiral waves. 

Summary 

Reaction-diffusion equations extend ordinary differential equation models to entire spatial areas in one, two, 
or three dimensions. At the macroscopic level, diffusion describe the tendency of a quantity to spread out, 
by moving in a direction opposite to its local gradient. At the microscopic level, diffusion is associated with 
an isotropic random walk. Some reaction-diffusion equations admit traveling wave solutions, which may be 
found by means of dynamical systems methods. 

 

Food for thought 

Problem 1 

Describe the behavior of system (9.10) near the origin if . 

Problem 2 

Consider the function 

5. S.C. Müller, T. Plesser and B. Hess, The structure of the core of the spiral wave in the Belousov-Zhabotinskii reaction, Science 230, 
661-663 (1985). 
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1. Calculate . 

2. Calculate . 

3. Show that  solves the differential equation 

Problem 3 

Consider a collection of bacteria, which are chemotactic to food. This means that at the macroscopic 

level, the flow  of bacteria is given by 

where  is the concentration of nutrients,  the density of bacteria,  a diffusion coefficient, and 

 is a chemotactic coefficient. 

Write a simple reaction-diffusion model for  and , which takes into account bacterial motion, the 

diffusion of nutrients, and the fact that bacteria multiply by eating nutrients. 

Problem 4 

Consider the chemotactic bacteria described in Problem 3. Describe how you would modify the ran-

dom motion of each bacterium at the microscopic level in order to include chemotaxis. 

Problem 5 

Consider a particle performing a one-dimensional random walk, such that its probability of taking a 

step to the right (resp. to the left) is  (resp. ), with  not necessarily equal to 1/2. Describe 

how far you expect the particle to have moved after  steps. 

DIFFUSION  |  123



Problem 6 

Consider the heteroclinic trajectory of Figure 9.2. Sketch the graph of  as a function of . Explain 

why such a function cannot represent a population density. 

Problem 7 

Consider the heteroclinic trajectory of Figure 9.3. Sketch the graph of  as a function of . 
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10. 

PATTERN FORMATION 

Learning Objectives 

At the end of this chapter, you will be able to do the following. 

• Explain why different sets of parameters in a single generic model may lead to different 

types of patterns. 

• Analyze the linear stability of a homogeneous solution to a pattern-forming system. 

• Predict the wavelength of the pattern that emerges above threshold. 

• Recognize that different nonlinear terms lead to different types of patterns. 

• Reconstruct a simple model for the formation of vegetation patterns. 
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Figure 10.1. Stripe patterns in nature: sand 
ripples, saguaro ribs, colorful bands on fish 
coats, roll structures in clouds. 

Pattern Formation 

Patterns (see Figure 10.1), such as stripes and spots on ani-
mal coats or sand ripples on a beach, are very common in 
nature and in carefully controlled laboratory experiments. 
They typically occur in systems which are driven far from 
equilibrium by external forces or sources of energy. When 
the forcing is larger than what is necessary to balance iner-
tial forces, the system responds by reorganizing itself into 
a periodic structure, called a pattern. There are many 
types of patterns, such as rolls, squares or hexagons, and 
they can be stationary or dynamic. The study of pattern-
forming systems has been the subject of active research in 
physics, chemistry, nonlinear optics and applied mathe-
matics for more than half a century1. In what follows, we 
will briefly mention Turing patterns, explore a canonical 
pattern-forming model, known as the complex Swift-
Hohenberg equation, and discuss a reaction-diffusion 
model for vegetation patterns. 

Turing patterns 

In 1952, A.M. Turing2 proposed the idea that differentia-
tion patterns such as those selecting regions where a hydra 

grows its tentacles, were in fact chemical patterns, in particular those corresponding to stationary periodic 
structures3. Turing explained how such patterns could result from the instability of a homogeneous solution 
to a set of coupled reaction-diffusion equations. This instability was described as a symmetry-breaking instabil-
ity, since the periodic structure that grew as a result of the instability broke the translational invariance of the 
initial homogeneous solution. It is only in the 1990s that Turing patterns were seen in chemical experiments45, 

1. See for instance the book by P. Ball, entitled The Self-made Tapestry: Pattern formation in nature (Oxford, New York, 1999). 
2. A.M. Turing, The chemical basis of morphogenesis, Phil. Trans. R. Soc. London B 237, 37-72 (1952). 
3. Turing also mentioned the possibility of wave patterns, but these were not the main focus of his paper. 
4. V. Castets, E. Dulos, J. Boissonade, and P. De Kepper, Experimental evidence of a sustained standing Turing-type nonequilibrium 

chemical pattern, Phys. Rev. Lett. 64, 2953-2956 (1990). 
5. Q. Ouyang and H.L. Swinney, Transition from a uniform state to hexagonal and striped Turing patterns, Nature 352, 610-612 

(1991). 
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Figure 10.2. Numerical simulations (with periodic 
boundary conditions) of the complex 
Swift-Hohenberg equation showing stripe and 
hexagon patterns. 

in the form of hexagons and stripes, but also as irregular structures corresponding to a state of chemical turbu-
lence6. 

The complex Swift-Hohenberg equation 

We will explore pattern formation by means of a sin-
gle model, called the complex Swift-Hohenberg 
equation. Depending on whether the parameters of 
this model are real or complex, stationary or travel-
ing patterns will be observed. Figure 10.2 shows 
stripe and hexagon patterns produced by this model. 
The general theory of pattern formation7 explains 
why different models may produce patterns that are 
similar, and as a consequence why different chemi-
cal, physical or biological systems may display pat-
terns that look alike. It also justifies the use of a 

generic pattern forming model to understand the mechanisms involved in pattern formation, as we do in the 
next section. 

Consider the following partial differential equation 

where all of the parameters are real, , , and  is a priori complex. This equation is a 
version of the Swift-Hohenberg equation8 with complex coefficients9 and a quadratic term. It is easy to see that 

 is a solution, and it is natural to ask under what conditions such a solution is also stable. We proceed in 
the same way as we did for systems of ordinary differential equations, that is we linearize Equation (10.1) about 
the solution . The linearized equation reads 

6. Q. Ouyang and H.L. Swinney, Transition to chemical turbulence, Chaos 1, 411-420 (1991). 
7. For a review see for instance M.C. Cross, and P.C. Hohenberg, Pattern formation outside of equilibrium, Rev. Mod. Phys. 65, 

851-1112 (1993) and A. C. Newell, T. Passot and J. Lega, Order parameter equations for patterns, Ann. Rev. Fluid Mech. 25, 
399-453 (1993). 

8. J. Swift and P.C. Hohenberg, Hydrodynamic fluctuations at the convective instability, Phys. Rev. A 15, 319-328 (1977). 
9. J. Lega, J.V. Moloney, and A.C. Newell, Swift-Hohenberg equation for lasers, Phys. Rev. Lett. 73, 2978-2981 (1994). 
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Figure 10.3. Sketch of the graph of the growth rate σk 
as a function of k ≥ 0, for 0 < μ < α Ω2. (a) Ω < 0; (b) Ω 
> 0$. 

Typically, we are interested in spatially extended systems, which are large enough for patterns to develop (how 
large is “large” will be made more precise soon). We will thus only worry about instabilities that develop in the 
bulk, and consider that  can be decomposed into Fourier modes. From the linearized equation, we see that the 
rate of change (i.e. the derivative) of Fourier mode  with wave vector 

is , where 

The growth rate of this mode is thus 

where . So each Fourier mode grows (or decays) at a rate that only depends on the 

magnitude  of the associated wave vector , and not on its direction. If , all Fourier modes decay, and 
the solution  is linearly stable. As  increases, some Fourier modes will become unstable. 

 

If , the graph of  as a function of 
is monotonic (see Figure 10.3.a), and the first 
Fourier mode to become unstable is the 
mode. This instability occurs for . If on 

the contrary , then  has a maximum for 
 (see Figure 10.3.b), and modes 

with  become unstable when  increases 
past zero. In this case, we expect a pattern to form 

above threshold with a characteristic length equal to . The size of the system in which the pattern 
is to be observed should thus be much larger than . 

Above threshold, it is the nonlinear terms which decide which pattern is selected. Typically, if quadratic terms 
are present (i.e. if  in Equation (10.1)), then hexagons are observed near threshold. On the contrary, if 
cubic terms dominate, then rolls (or stripes) prevail. If the imaginary parts of the coefficients in (10.1) are set 
to zero, the patterns that develop above threshold are stationary. If not, they are time-dependent. These and 
other aspects of the dynamics of Equation (10.1), including secondary instabilities and space-time disorder, 
may be explored with the MATLAB GUI interface called Patterns. This GUI allows the user to select the para-
meters and start a simulation from small, random initial conditions. Color-coded snapshots of the real part of 
the solution  are shown at successive times as the simulation progresses. After a simulation has ended, new 
parameters can be entered and a new simulation may then be restarted from the last solution. 
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The theory of pattern formation10 provides means of describing the nonlinear dynamics of a pattern-forming 
system near and above threshold. A full discussion of this topic is however beyond the scope of these notes. 
In the next section, we briefly mention a reaction-diffusion model for the description of vegetation patterns in 
semiarid regions. 

Vegetation patterns 

In semiarid regions, plants (shrubs, grass, etc) tend to arrange themselves into stripes parallel to elevation con-
tours on hilly terrain, and into patches on flat ground. Reaction-diffusion models have been proposed to 
explain these observations111213. In one of these articles, C.A. Klausmeier introduces a simple model with two 
dependent variables, the plant biomass  and the amount of water . Written in dimensionless form, the 
model reads 

where  represents water input through rain,  is the speed at which water is transported downhill (in the 
direction),  represents biomass increase due to water consumption, and  is the plant death rate. More-
over, water evaporates at rate , and the diffusion of  accounts for the spreading of vegetation patches. 

After finding equilibrium points (stationary and uniform solutions) of this model, the author investigates their 
linear stability. Figure 2 of the 1999 Klausmeier article shows a level set of the wavelength of the pattern that 
is expected to grow above threshold, in the  parameter plane, for a fixed value of . More precisely, 
the  plane can be divided into three regions, one where the fixed point corresponding to no vegeta-
tion is stable, one where the fixed point corresponding to homogeneous vegetation is stable, and a region in 
between where linear stability analysis predicts the existence of vegetation patterns. A numerical simulation 
of the model in this latter regime confirms the existence of traveling stripes on hilly terrain, and of vegetation 
patches on flat ground. The speed  at which water flows downhill measures the steepness of the slope. 

10. See the articles in Footnote #7 
11. C.A. Klausmeier, Regular and irregular patterns in semiarid vegetation, Science 284, 1826-1828(1999). 
12. R. Lefever, O. Lejeune and P. Couteron, Generic modelling of vegetation patterns. A case study of Tiger bush in sub-saharian Sahel, 

in Mathematical Models for Biological Pattern Formation, edited by P.K. Maini and H.G. Othmer, pp. 83-112, Springer, New York, 
2001. 

13. J. von Hardenberg, E. Meron, M. Shachak, and Y. Zarmi, Diversity of vegetation patterns and desertification, Phys. Rev. Lett. 87, 
198101 (2001). 
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Summary 

Different types of patterns may be obtained from the same, generic model, by choosing different sets of para-
meters. We have seen how to use linear stability analysis to predict whether a pattern can develop from a homo-
geneous solution as a control parameter (  in the discussion of the Swift-Hohenberg equation) is varied, and 
if so, how to determine the typical length scale of the structure that will emerge. Although such a treatment is 
linear, it is nevertheless indicative of the kind of pattern one may expect. The same methodology, which con-
sists in finding homogeneous solutions and studying their linear stability, can be applied to any pattern-form-
ing system, as briefly illustrated in the case of the Klausmeier model. 

 

Food for thought 

Problem 1 

Consider Equation (10.2) with . Find a solution to this equation in the form 

Try to express ,  and  in terms of the parameters of this equation. Is this solution unique? 

Problem 2 

Find a solution of the form 

to Equation (10.2) with . Try to express ,  and  in terms of the parameters of this equa-

tion. Is this solution unique? 
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Problem 3 

Find a solution of the form 

to Equation (10.2) with . Try to express ,  and  in terms of the parameters of this equa-

tion. Is this solution unique? 

Problem 4 

Read the 1999 article by C.A. Klausmeier. Explain how to go from their system of equations (1) to 

the dimensionless form (2). 

Problem 5 

Read the 1999 article by C.A. Klausmeier. What are the dimensions of the parameters , , , , 

,  and , and variables  and  in their system of equations (1)? 

Problem 6 

Read the 1999 article by C.A. Klausmeier. 

• Explain how to find the fixed points of their system of equations (2). 

• Find the Jacobian of (2). 
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PART V 

APPENDICES 

The rest of these notes is devoted to a review of typical concepts and methods presented in introductory 
courses on linear algebra (Chapter 11), vector calculus (Chapter 12), and ordinary differential equations 
(Chapter 13). Each section is meant to be used as a quick reference to support the various analyses conducted 
in the main chapters of the text. Results are stated without proof. 

Chapter 14 gives examples of modeling projects that can be pursued while learning the material presented in 
this text. 
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11. 

REFRESHER: LINEAR ALGEBRA 

In this appendix, we state basic facts of linear algebra concerning matrices, eigenvalues and eigenvectors. No 
proofs are given and the reader should consult linear algebra texts for more details. The brief review presented 
below, although far from being complete, should however provide sufficient information for a reader to follow 
most of the linear stability arguments made in the previous chapters. 

Vector spaces 

Definitions 

•  is a real (resp. complex) vector space if and only if it is closed under addition and under multiplication 
by a scalar. In other words, 

• The vectors in  are linearly independent if and only if any linear combination 
equal to zero must have all of its coefficients equal to zero. In other words, 

•  is finite dimensional if there exists a finite set of linearly independent vectors that span . 
• Such a set is called a basis of . In what follows, we are only concerned with finite dimensional vector 

spaces. 
• The dimension of a finite dimensional vector space  is the number of vectors in any basis of . 
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Linear mappings 

We say that the mapping  from a vector space  to a vector space  is linear if for every 
, 

where  (resp. ) if  and  are vector spaces over  (resp. ). 

Properties of linear mappings 

• The range  of , which is the image of  under , is a linear subspace of . 
• The nullspace or kernel of  is a linear subspace of . It is defined as the set  of vectors of  whose 

image under  is zero, 

• The dimensions of  and  are such that 

Matrices 

Every linear mapping 

can be written as 
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where  is a  (  rows,  columns) matrix with real entries. By convention,  is the entry 

at the intersection of the  row and  column of . 

Note that once a basis has been chosen, every linear vector space of dimension  is isomorphic to . We can 
then represent any linear mapping between two finite dimensional vector spaces by a matrix. In what follows, 
we will only consider matrices with real coefficients. 

Definitions 

• The transpose of the matrix  is  such that . 

• The rank of the matrix  associated with the linear transformation  is the dimension of . It is also 
equal to the rank of . 

• The determinant of a  matrix,  is 

• The determinant of an  matrix  can be calculated by means of the formula below, 
where  is one row of  and  is the matrix obtained from  by deleting row  and column : 

• A similar formula exists for expanding  with respect to one column of . 
• The trace Tr( ) of a square matrix  is the sum of the diagonal entries of . 

Properties 

• If  is an  matrix, the system  has at least one solution for every  if and only if the 
columns of  span . Then the rank of , , is such that , which implies . 

• The system  has at most one solution for every  if and only if the columns of  are linearly 
independent, i.e. if and only if the nullspace of  is trivial. Then, , which implies . 

• Let  be an  matrix. Then, the following statements are equivalent. 
◦ The equation  has exactly one solution. 
◦ The range of  is . 
◦ The nullspace of  is trivial. 

REFRESHER: LINEAR ALGEBRA  |  135



◦ The matrix  is invertible. 
◦ The determinant of , , is non-zero. 

Eigenvalues and eigenvectors 

Definitions 

Let  be a real  matrix. 

• The vector  is an eigenvector of  with eigenvalue  if 

• The vector  is a generalized eigenvector of  with eigenvalue  if, for some positive integer 
, we have 

In the above equation,  is the  identity matrix. To find the eigenvalues and eigenvectors of a matrix, 
first note that if  is an eigenvector of a matrix  with eigenvalue , then the equation 

has a non-trivial solution. This implies that 

and one can therefore find the eigenvalues of  by solving this equation. 

Properties 

• The left-hand-side of (A1.2) is a polynomial of degree  in , called the characteristic polynomial of . 
• The characteristic polynomial of  has  complex roots, which are the eigenvalues of . 
• Since  has real entries, if  is an eigenvalue of , so is its complex conjugate . As a consequence, the 

eigenvalues of  are either real, or complex conjugate pairs. 
• The trace of  is the sum of the eigenvalues of . 
• The determinant of  is the product of the eigenvalues of . 
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Once an eigenvalue is found, one needs to solve (A1.1) in order to obtain a corresponding eigenvector. There 
is not one such eigenvector, but a linear subspace thereof. Each of these eigenspaces is an invariant subspace of 
the linear transformation  associated with the matrix . The vector space , or equivalently , can thus 
be viewed as the sum of the eigenspaces of , and this decomposition gives a geometric picture of how  acts 
on . 

 

Food for thought 

Problem 1 

Show that eigenvectors  and  of a matrix  corresponding to different eigenvalues are linearly 

independent. 

Problem 2 

Find the determinant of the following matrix 

Problem 3 

Find the eigenvalues and eigenvectors of the following matrix 
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Problem 4 

Consider the transformation from  to  defined by 

1. Is  a linear transformation ? Why or why not ? 
2. Find the matrix of  relative to the standard bases of  and . 

Problem 5 

Consider the matrix 

1. Find a basis for the column space (or range) of . Justify your answer. 

2. Find a basis for the null space of . Justify your answer. 

3. What is the rank of ? 

Problem 6 

Consider the space  of polynomials of degree less than or equal to 2, and let 

 be a set of polynomials in , where 

1. Find the coordinates of the polynomial  relative to the standard basis of , where 

. 
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2. Give a basis of  which consists of vectors in . Explain how you choose the vectors. 

3. Find the coordinates of the polynomial  defined in Question #1 relative to the basis you 

found in Question #2. 

Problem 7 

Consider the following vectors in . 

Show that  is a linearly dependent set. 
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12. 

REFRESHER: VECTOR CALCULUS 

The information below is an elementary overview of the basic properties of the gradient of a function and of 
the divergence and curl of a vector field. These topics are typically covered in a third semester calculus course. 

The gradient 

The gradient of a differentiable function of three variables  is defined by 

and has the following properties. 

•  points in the direction where  is increasing the fastest. 

• The rate of change of  in that direction is equal to . 

•  is perpendicular to the level surfaces of  (i.e. to surfaces of equation  = constant). 

• The directional derivative of  in the direction of the unit vector  is equal to . 

• Critical points of  are such that  at these points. Generic critical points are minima, maxima 

and saddle points of the function . 
• The extrema of  subject to the constraint  are points on the curve of equation 

 where the gradient of  is parallel to the gradient of  The constant of proportional-
ity is called a Lagrange multiplier. 

Line integrals and gradient fields 

Line integrals 

The line integral of a continuous vector field  along the oriented path  is written 
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where  is the position vector and  is tangent to the path . If we know a parametrization of , i.e. if  is 
drawn by  when  varies between  and , the above line integral reads 

and can thus be computed. 

Example 1 

Consider the vector field . Let  be the part of the ellipse , joining 

 to  in the clockwise direction. A parametrization of  is , , with 
varying between 0 and . Therefore, 

Example 2 

The work done by a force  along the path  is given by . If  moves according to Newton’s 

law, , so that 

i.e. the work done by  as a point mass moves along the path  is equal to the difference in kinetic energy of 
the point mass between the end points of . 
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Gradient fields 

A vector field  is a gradient field if there is a function  such that . The vector field  is 

then conservative, path-independent, and circulation free. 

• A path-independent vector field  is such that the line integral of  along any path in the domain of 
only depends on the end points of the path. 

• A circulation free vector field is such that its circulation (i.e. its line integral along any closed curve) is 
zero everywhere in the domain of . 

The fundamental theorem of calculus for line integrals tells us that a gradient field is path-independent, i.e. 

where  is a (piecewise) smooth path joining  to  and  is continuous on . Conversely, any path-inde-

pendent vector field is a gradient field. 

Example 

Consider the force  discussed above. If  has a potential function, i.e. if there exists a function 

 such that , we have 

Thus,  i.e. the total energy, which is the sum of 

the kinetic and potential energies, is conserved. 

• If  is a gradient field with continuous partial derivatives, then 

i.e. . 
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The curl 

The curl of a vector field  with continuous partial derivatives is a vector given by 

It has the following properties. 

• The direction of  at a point  is the direction around which the circulation density of  is the 
greatest. 

• The magnitude of  is the circulation density around that direction. 
• The circulation density of  around any unit vector  is equal to . 
• For any function  with continuous second partial derivatives, 

• Conversely, any smooth vector field defined on a domain with no codimension-one holes and whose curl 
is zero everywhere is a gradient field (this is the curl test). 

Stokes’s and Green’s theorems 

The flux of a vector field  through an oriented surface  is . 

• If the surface  is the graph of a function , then, if  is the domain of , we may write 

• If  is a parametric surface parametrized by  where  and  vary in a region , and if we 

assume that  points in the direction of the normal  to the surface  everywhere, then we 

may write 
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Stokes’s theorem 

Stokes’s theorem links the circulation of a smooth vector field around a (piecewise) smooth closed curve  to 
the flux of  through any smooth surface  whose boundary is equal to . It reads: 

where the orientation of  is determined from the orientation of  (or vice-versa) by the right hand-rule. Note 
that Stokes’s theorem is valid only if  is defined everywhere on  and . 

Green’s theorem 

Green’s theorem is a planar version of Stokes’s theorem and reads 

where  is a smooth vector field defined at every point of  as well as 

inside , and  is a (simple) closed curve oriented such that its interior  is on the left as one moves along . 

The divergence theorem 

The divergence of a vector field  with continuous partial derivatives is given by 

Note that it is a scalar quantity. It has the following properties. 

• . 

• 

• . 
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• The divergence of  at a point  is equal to the limit, when the surface  surrounding  is shrunk to 
zero, of the flux of  through  (oriented outward) divided by the volume of the region  bounded 
by . In other words, 

• For any vector field  with continuous second partial derivatives, 

• Conversely, any smooth vector field  whose domain is closed and has no holes, and whose divergence is 
zero everywhere is a curl field, i.e. there exists a vector field  such that  (this is the diver-
gence test). 

The divergence theorem relates the flux of a smooth vector field through a (piecewise) smooth closed surface 
 oriented outward to the volume integral of its divergence over the region  bounded by , and reads 

assuming that  is defined at every point in  and on . 

Example: the continuity equation 

Consider the flow  of a fluid of density . Call  a fixed region of the fluid domain. The mass of 

fluid in  is given by , and its rate of change is 

if one assumes that  is smooth. On the other hand, this rate of change is given by the negative of the flux of 
matter  through the boundary  of , and by virtue of the divergence theorem, 
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By comparison of the two expressions of  which are equal for every region , we get the continuity 
equation, which reads 
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13. 

REFRESHER: ORDINARY DIFFERENTIAL 
EQUATIONS 

This appendix briefly reviews the most common methods for solving ordinary differential equations (ODEs). 
Many ODEs or systems of ODEs introduced in these notes are nonlinear and cannot therefore be easily solved 
with such methods. However, linear stability analysis of fixed points relies on solving linear systems with con-
stant coefficients, which are discussed here. Moreover, it is essential for a modeler to be able to recognize ODEs 
that can be solved exactly, and to solve them if necessary. The information below is meant to be used as a quick 
reference; theorems are given without proof and the reader should consult classical texts on differential equa-
tions for details. 

Definitions and basic existence theorems 

Definitions 

• An ordinary differential equation of order  is an equation of the form 

• A solution to this differential equation is an -times differentiable function  of a real variable  that 
satisfies Equation (13.1). 

• An initial condition is the prescription of the values of  and of its st derivatives at a point . 
It takes the following form, where , , …  are given numbers: 

• Boundary conditions prescribe the values of linear combinations of  and its derivatives at two different 
values of . 
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Existence and uniqueness theorems 

We list below the main existence and uniqueness theorems for solutions to first-order systems of ordinary dif-
ferential equations. The reader should note that Equation (13.1) may be written as a first-order system 

by setting . 

The Cauchy-Peano theorem 

If  is continuous on the rectangle  where  and 
then there exists a continuously differentiable solution  of (13.3) on  for which 

, where 

The Picard-Lindelöf Theorem 

If  is Lipschitz on , i.e. if there exists a constant  such that 

and if  is continuous on , then there exists a unique solution  to (13.3) on , such that 

Together, these theorems imply that for continuously differentiable dynamical systems of the form (13.3), 
there is a unique solution to every initial value problem. In other words, if  in (13.3) is continuously differen-
tiable, then trajectories in the phase space of the dynamical system (13.3) cannot cross. 

In the following, we list various common techniques used to solve differential equations. Initial or boundary 
conditions should be imposed after the general solution has been found. 

First order differential equations 

We start with a first order differential equation, which we write as 
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Separable equations 

If  then the equation is separable, and reads 

which can be integrated easily. 

Example 

The solution to the initial value problem  is 

. 

Equations where M and N are both homogeneous of 
degree n 

If  and  are both homogeneous of degree , then the change of variable  (or 
) will make the ODE separable. 

Example 

The general solution to  is , where  is an arbitrary constant. 

Exact equations 

If  and  are continuous and if  then the ODE is exact, i.e. there exists 

 such that 
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Then the ODE can be written in the form 

which gives , i.e. . The function  can be found by integrating the two equa-
tions 

Example 

The general solution to  is implicitly given by 

, where  is an arbitrary constant. 

Integrating factor 

An integrating factor is a function  such that the differential equation 

is exact. If  but if 

•  try the integrating factor 

• If  is a function of  only, try the integrating factor 

• If  is a function of  only, try the integrating factor 

Example 

The general solution to  is implicitly given by . 
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Linear equations 

If the differential equation can be written in the form  i.e. if 

then the ODE is linear. Let . We have 

and by multiplying the ODE by , we get 

Example 1 

The general solution to  is 

Example 2 

The solution to ,  is 

Bernoulli’s equation 

If  with  we obtain the following Bernoulli’s equation 
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This nonlinear equation can be brought to the form of a linear equation by the change of variable . 

Example 

The general solution to  is . 

Riccati’s equation 

If  we have the following Riccati’s equation 

To solve it, proceed as follows. 

1. Find a particular solution  by trying simple functions such as  or . 
2. Note that  satisfies the following Bernoulli’s equation (where ): 

3. Convert the above equation into a linear equation by applying the change of variable 
, and solve for . In terms of the original variable, the solution  is given by 

. 

Example 

The general solution to  is . 

Clairaut’s equation 

The differential equation  has for solution the family of straight lines 

and may also have a singular solution in the parametric form 
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Example 

The general solution to  is  and a singular solution is . 

Second order differential equations 

Equations without y 

Second order differential equations without  are of the form  With  this equa-
tion reads  which is a first order equation. It can first be solved for  and then for  using 

. 

Example 

The general solution to  is 

where  and  are arbitrary constants. 

Equations without x 

Such ODEs read  Let  be a function of . Then, 

and the ode becomes  which is a first order differential equation where the indepen-

dent variable is . One can solve this equation for  in terms of  and then solve the first order separable equa-

tion . 
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Example 

The general solution to  is implicitly given by 

. 

Linear equations 

The general solution to  reads 

where 

•  is a particular solution to , 
•  and  are two linearly independent solutions of the associated homogeneous equation 

•  and  are two arbitrary constants. 

Therefore, the above linear equation is solved in two steps: 

1. Solve the homogeneous equation (i.e. find two linearly independent solutions  and ), 
2. Find a particular solution to the full equation. 

How to solve the homogeneous equation 

The general solution  to the homogeneous equation 

is a linear combination of two of its linearly independent solutions  and , i.e.  where 
 and  are constants. 

Equations with constant coefficients 

Assume that the homogeneous differential equation reads 
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where ,  and  are constants. The associated characteristic equation is . 

• If the characteristic equation has 2 real distinct roots  and , then two linearly independent solu-
tions to the homogeneous equation are 

• If the characteristic equation has 2 complex roots , two linearly independent solutions are 

• If the characteristic equation has 1 real repeated root , two linearly independent solutions are 

Example 1 

The solution to ,  and  is . 

Example 2 

The general solution to  is . 

Cauchy-Euler equation 

If the ODE reads 

we look for solutions in the form  (defined for ). Then,  must satisfy 

• If this equation has 2 real distinct roots  and , then two linearly independent solutions are 

• If this equation has 2 complex roots , two linearly independent solutions are 
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• If this equation has 1 real repeated root , two linearly independent solutions are 

Note: If you have to solve for  first make the change of variable . 

Example 

 solves , , . 

Other equations 

If you have a particular solution  (for instance found by inspection) to the homogeneous equation, you 
may apply the method of variation of constants: look for another solution in the form , sub-
stitute into the homogeneous equation and solve the first order equation for . This procedure is called reduc-
tion of order. 

How to find a particular solution to the full equation 

We now turn to  and look for a particular solution  to this 
equation. As before, there are a few of special cases for which a systematic method of solution exists. 

Equations with constant coefficients: Method of undetermined coefficients 

If the ode has constant coefficients and if 

where  and  are polynomials of degree , then try the particular solution given below, where  and 
 are polynomials of degree  in each case. 

•  if  are not roots of the 
associated characteristic equation, 

•  if  are roots of 

multiplicity  of the associated characteristic equation (  can be 1 or 2). 

Note: Since the equation is linear, it might be useful to use the principle of superposition: if 
, and if  and  are particular solutions to 

 and  respec-
tively, then  is a particular solution to . 
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Example 1 

A particular solution to  is . 

Example 2 

A particular solution to  is . 

Cauchy-Euler equations 

The change of variable  will turn a Cauchy-Euler equation into an equation with constant coefficients, 
which can then be solved as described above. 

Other equations 

If the ODE does not have constant coefficients, or if  is not of the form discussed above, you may 
want to try using the method of variation of constants: look for a particular solution 

 where  and  are two linearly independent solutions to the associ-
ated homogeneous equation and solve for  and  after imposing 

Example 

The general solution to ,  is 

. 

Note: There is a convenient way to check that two functions  and  are linearly independent: their Wron-
skian 

must be nonzero. 

Linear differential equations of order higher than two 

The general solution to 
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reads 

where 

•  is a particular solution to the full equation 

• , are  linearly independent solutions to the associated homogeneous equation 

• , are  arbitrary constants. 

Therefore, the method to solve the linear equation is as follows. 

1. Solve the homogeneous equation (i.e. find  linearly independent solutions ), 
2. Find a particular solution to the full equation. 

How to solve the homogeneous equation 

The general solution  to the homogeneous equation 

is a linear combination of  of its linearly independent solutions , i.e. 
 where the  are constants. 

Equations with constant coefficients 

Suppose the homogeneous equation reads 
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where the  are real constants. The associated characteristic equation is 

• If the characteristic equation has only simple roots , you can find  linearly independent solutions by 
using  for real roots, and the following solutions for any set of complex conjugate 
roots  and : 

• If the characteristic equation has one or more roots of multiplicity greater than one, use the above for-
mula for roots of multiplicity one, and for any root  of multiplicity , use 

Again, if , it is customary to use  and 

instead of  (since the ODE has real coefficients). 

Example 1 

The general solution to  is 

. 

Example 2 

The solution to  with , ,  and  is 
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Cauchy-Euler equation 

To solve 

where the  are real constants, make the change of variable . This gives an equation with 
constant coefficients for  (as a function of ), which can be solved as described above. Then, the change of 
variable  gives  in terms of . 

Note: If you have to solve for  make the change of variable , and proceed as before 
(but now, ). 

Example 

The general solution to ,  is 

. 

How to find a particular solution to the full equation 

We now look for a particular solution to 

If the above equation has constant coefficients and if 

where  and  are polynomials of degree , then try the following particular solution, where  and 
 are polynomials of degree  in each case. 

•  if  are not roots of the 
associated characteristic equation. 

•  if  are roots of 

multiplicity  of the associated characteristic equation. 

If the ODE does not have constant coefficients, or if  is not of the form discussed above, use the method 
of variation of constants: look for a particular solution  where 
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the  are  linearly independent solutions of the associated homogeneous equation, and solve for the  after 
imposing the  following conditions: 

Note: If the Wronskian 

of  is nonzero, then these functions are linearly independent. 

Systems of first order linear differential equations 

We consider systems of the form 

which can also be written as 

where 
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and 

If  and the  are continuous on an interval , and if , then there is a unique solu-
tion to  which satisfies , valid on the inter-
val . 

The general solution to  reads 

where 

•  is a particular solution to , 
• , are  linearly independent solutions to the associated homogeneous system 

, 
• , are  constants. 

The matrix  is called a fundamental matrix of the homogeneous sys-
tem . Therefore, to solve the differential system, proceed as follows. 

1. Solve the homogeneous system (i.e. find  linearly independent solutions ), 
2. Find a particular solution to the full system. 

How to solve the homogeneous system 

The general solution  to the homogeneous system  is a linear combination of  linearly inde-
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pendent solutions , i.e.  where the  are constants. 
In other words, it reads 

where  is a fundamental matrix and  a constant vector. 

In the following, we consider systems with constant coefficients only, that is we assume the matrix  does not 
depend on time. The procedure is then as follows. 

1. Find the eigenvalues and eigenvectors of . 
2. For each eigenvector  belonging to the eigenvalue , we know that  is a solution 

to . Therefore, 

◦ If  has  distinct eigenvalues, we already know  linearly independent solutions to the homoge-
neous system, namely , . 

◦ If an eigenvalue  has a multiplicity  higher than one, find as many linearly independent eigenvec-
tors as you can, and write the corresponding solutions . Then, look for the 
missing solutions in the form 

 where the  are constant 

vectors. Substitute this solution in the homogeneous system and solve for the . Always make 
sure that you have found  linearly independent solutions to the homogeneous system, and write 
the corresponding fundamental matrix. 

Note: If one eigenvalue is complex, and since (in general)  has real coefficients, its complex conjugate is also 
an eigenvalue. In the same way, if  is a (complex) eigenvector that belongs to the complex eigenvalue , then 
its complex conjugate  belongs to the eigenvalue . Thus, if one eigenvalue  is complex, you 
may use the real functions  and  instead 
of the complex solutions  and . 

Example 1 

A fundamental matrix for  with  is . 
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Example 2 

A fundamental matrix for  with  is . 

How to find a particular solution to the full system 

If , where  is a constant vector, and if  is not an eigenvalue of , then try the particular 
solution  where  is a constant vector. Substitute the expression of  back into the 
differential system  and solve for . 

Note: It might be useful to use the principle of superposition. Indeed, since  has real coefficients, if 
is a solution to  (where  is a constant vector and is real), then 

and  are respectively solutions to  and to

. Thus, if  has the form  or 

 and if  is not an eigenvalue of , the above method can be used to find a par-
ticular solution to . Its real or its imaginary part (depending on the form of 

) is then a particular solution to the original differential system. 

If the above method cannot be applied, use the method of variation of constants: look for a solution in the 
form  where  is a fundamental matrix associated with the homogeneous system, and 

 is a vector to be determined. Then 

satisfies  i.e. 

Example 1 

A particular solution to  with  and  is 

. 
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Example 2 

A particular solution to  with  and  is 

. 

General remark: Sometimes, the elimination method (which consists in making successive operations on the 
rows of the linear system) may be easier to apply, or may simply go faster. It may also be useful if the matrix 
depends on time. 

Phase plane analysis 

We now apply the information presented above to the linear stability analysis of fixed points of two-dimen-
sional dynamical systems. Suppose that the nonlinear system of differential equations 

where  has a fixed point at . The linearization of the above system near  is obtained 
by setting , where  is small, substituting this expression into Equation (13.4), and keeping 
only the terms that are linear in . One thus writes 

where  is the Jacobian of  at ,  represents nonlinear terms, and we used the fact 

that  since  is a fixed point of (13.4). The Jacobian of  at  is defined as 

where we used the following notation 

The dynamics of the linear system 
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Figure 13.1 

Figure 13.2 

Figure 13.3 

Figure 13.4 

depends on the eigenvalues and eigenvectors of the matrix . Indeed, we know that if  has 
distinct eigenvalues, the general solution of the linear system is of the form 

where  and  are eigenvectors of  associated with eigenvalues  and , and where  and  are arbi-
trary constants. 

The fixed point  of (13.4) is linearly stable if all solutions of the linearized system (13.5) converge 
towards the origin as . This only occurs if the real parts of  and  are both negative, which 
implies that the trace of  is also negative. If we assume that  is real, as we do from now on, then  has real 
coefficients and its eigenvalues are either both real or complex conjugate of one another. In this case, a linearly 
stable fixed point is such that both  and . 

If the eigenvalues of  are both negative, real and distinct, then the fixed point is a 
stable node. The phase portrait of the linear system (13.5) looks like the sketch of Fig-
ure 13.1. Note that the trajectories are tangent at the origin to the eigendirection asso-
ciated with the slowest eigenvalue. 

If  is proportional to the identity matrix (i.e. if the eigen-
values of  are the same but the corresponding eigenspace 

is two-dimensional), then the fixed point  is called a star. 

If the eigenvalues of  are the same but the corresponding eigenspace is one-dimen-
sional, then  is called a degenerate node. 

Figures 13.2 and 13.3 show the typical phase portrait of the linear system (13.5) when 
the fixed point is a stable star and a stable degenerate node, respectively. 

If the eigenvalues of  have non-zero imaginary parts, then  is a stable spi-
ral. The corresponding phase portrait of (13.5) is shown in Figure 13.4. 

If one of the eigenvalues of  has positive real part, then 
the fixed point  is linearly unstable. This occurs if either , in 
which case the fixed point is a saddle point, or if  and . 
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Figure 13.5 

Figure 13.6 

Figure 13.7 

The phase portrait of (13.5) when the origin is a saddle point is shown in Figure 13.5. 
The phase portraits of (13.5) when the origin is an unstable node, an unstable star, an 
unstable degenerate node, or unstable spiral are similar to those of Figures 13.1, 13.2, 
13.3, and 13.4, but with the direction of the arrows reversed. 

If  and , then one of the eigenvalues of  is zero, and system 
(13.5) has a line of fixed points. 

This is a degenerate situation and in most cases the dynamical system (13.4) has a sin-
gle fixed point, even though its linearization has a continuous family of fixed points. 
The phase portrait of (13.5) in a case where  and  is shown in Figure 
13.6. 

Finally, if all of the eigenvalues of  have zero real part, then 
 is marginally stable. Since we ignore the non-generic situa-

tion where , this implies that  has purely imaginary complex conjugate eigenvalues, 
and the fixed point  is called a linear center. In this case,  but 

. Figure 13.7 shows the phase portrait of the linear system (13.5) when the origin 
is a (linear) center. Determining whether the fixed point  is a nonlinear center for the 

dynamical system (13.4) requires further analysis. 

The above results can be summarized in the diagram of Figure 13.8, which shows the classification of the fixed 
point  of the linear system (13.5), as a function of the trace and determinant of . 
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Figure 13.8. Classification of the fixed point  of the linear system (13.5), as a function of the trace and 
determinant of its Jacobian . 

The Hartman-Grobman theorem indicates that for a smooth dynamical system, the nature of a fixed point is 
not changed by nonlinear terms provided the fixed point is hyperbolic, i.e. provided the eigenvalues of the Jaco-
bian of its linearization all have non-zero real parts. Linear stability analysis can therefore be used to classify 
hyperbolic fixed points of nonlinear dynamical systems. Further analysis is required to determine the nonlinear 
stability of non-hyperbolic fixed points. In particular, centers may remain centers or become stable or unstable 
spirals. Methods to investigate the effect of nonlinearities on hyperbolic and non-hyperbolic fixed points are 
typically discussed in an introductory text on dynamical systems. 
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Food for thought 

Problem 1 

What is the type (linear, separable, exact, solvable after a change of variable, Riccati’s, Bernoulli’s, 

Clairaut’s) of the following first order equations? (Do not try to solve the 

equations). 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

Problem 2 

Solve equations (5) and (6) above. 

Problem 3 

1. Show that  is an implicit solution to 

2. Find a solution to the above differential equation which satisfies . Does the 
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corresponding initial value problem have a unique solution ? Explain. 

Problem 4 

1. Find the general solution to . 

2. Solve the initial value problem consisting of the above ODE and the initial condition 

 and . 

3. Is there a solution to the boundary value problem  and ? If so, 

what is it ? 

Problem 5 

Solve the differential equation 

Problem 6 

Solve . 

Problem 7 

Solve the differential equation 

Problem 8 

Solve the following system of differential equations 
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Problem 9 

Solve the system  where 

Problem 10 

Solve the differential equation 

Problem 11 

Solve  with 

the initial condition . 

Answers 

Problem 1 

1. Separable. 
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2.  is an integrating factor. 
3. Homogeneous of degree 2. 
4. Linear. 
5. Linear. 
6. Exact. 
7. Bernoulli with 

Problem 2 

• (5): 

• (6): 

Problem 3 

Problem 4 

1. 

2. 

3. Yes, 

Problem 5 
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Problem 6 

Problem 7 

Problem 8 

Problem 9 

Problem 10 

Problem 11 
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14. 

MODELING PROJECTS 

This section lists modeling projects, each based on a recently published research article, that can be explored 
in conjunction with the material presented in this text. At the University of Arizona, students enrolled in the 
Mathematical Modeling course form teams of 4 or 5 individuals and work together on one such project for the 
entire semester. Each group has their own project. They aim to understand the modeling approach described 
in the article, reproduce its results, and present the main ideas and conclusions to the rest of the class. Students 
are encouraged to formulate modeling questions that extend the work discussed in each article and, time per-
mitting, to address some of them. 

1. Collective Intelligence 

Understand and quantify whether different cooperative strategies between group members 

lead to increased problem-solving performance. 

Project Information 

• Article: Agent-based models of collective intelligence by S.M. Reia, A.C. Amado, J.F. Fontanari, Physics 
of Life Reviews 31, 320–331 (2019). 

• Relevant Course Sections: The modeling process (Chapter 1). Agent-based models (Chapter 2). 
• Useful Advanced Knowledge: Logical reasoning and critical thinking. Coding. 

Project Expectations 

• Synthesize the different models introduced in the article and contrast the problem-solving approaches 
they represent. 

• Develop a code to reproduce the authors’ results on the performance of each approach as a function 
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group size. 
• Interpret the outcome of your exploration of each model, including the role of relevant parameters. 
• Evaluate the hypotheses made in support of the overall modeling strategy and assess the validity of the 

conclusions reached by the authors. 
• Interpret any additional explorations of the model and defend your conclusions. 

2. A Model for the Early Spread of COVID-19 

Explore a simple mechanistic description of the zoonotic transmission of SARS-CoV-2 at the 

Wuhan market, the subsequent spread to humans, and associated mitigation measures. 

Project Information 

• Article: A conceptual model for the coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China 
with individual reaction and governmental action by Q. Lin et al., Int. J. Infectious Diseases 93, 
211–216 (2020). 

• Relevant Course Topics: The modeling process (Chapter 1). Compartmental models and epidemiol-
ogy (Chapter 7). 

• Useful Advanced Knowledge: Dynamical Systems. Numerical simulations of systems of ODEs. 

Project Expectations 

• Summarize the model hypotheses. 
• Construct the compartmental model and analyze its behavior. 
• Synthesize the modeling approach and explore different scenarios. 
• Evaluate the contributions of the model in light of what was known about the disease in early 2020. 
• Assess how to revise the model hypotheses given what is currently known about SARS-CoV-2 and its 

variants. 
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3. Non-pharmaceutical Interventions for the 
Mitigation of Disease Spread 

Develop a compartmental model to assess the potential of non-pharmaceutical interventions to 

mitigate the spread of COVID-19 in Italy, before vaccines became available. 

Project Information 

• Article: Modelling the COVID-19 epidemic and implementation of population-wide interventions in 
Italy by G. Giordano, F. Blanchini, R. Bruno, P. Colaneri, A. Di Filippo, A. Di Matteo, and M. 
Colaneri, Nature Medicine 26, 855–860 (2020). 

• Relevant Course Sections: The modeling process (Chapter 1). Fixed points and their stability (Chap-
ter 3). Epidemics (Chapter  7). 

• Useful Advanced Knowledge: Dynamical Systems. Numerical simulations of systems of ODEs 
(requires some coding experience). Proofs. 

Project Expectations 

• Summarize the model hypotheses, construct the compartmental model, and analyze its behavior. 
• Write a code to simulate the coupled ODEs, explore different mitigation scenarios, and reproduce the 

results of the article. 
• Synthesize the modeling approach, and evaluate the contributions of the model in light of what was 

known about COVID-19 in early 2020. 
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4. Vaccination Campaigns, Non-pharmaceutical 
Interventions, and the Burden of COVID-19 

Develop a compartmental model to assess the effect of non-pharmaceutical interventions and 

COVID-19 vaccination campaigns on the health-care system in Italy. 

Project Information 

• Article: Modeling vaccination rollouts, SARS-CoV-2 variants and the requirement for non-pharmaceuti-
cal interventions in Italy by G. Giordano, M. Colaneri, A. Di Filippo, F. Blanchini, P. Bolzern, G. De 
Nicolao, P. Sacchi, P. Colaneri, and R. Bruno, Nature Medicine 27, 993–998 (2021). 

• Relevant Course Sections: The modeling process (Chapter 1). Epidemics (Chapter 7). 
• Useful Advanced Knowledge: Dynamical Systems. Numerical simulations of systems of ODEs 

(requires some coding experience). 

Project Expectations 

• Summarize the model hypotheses, construct the compartmental model, and discuss the significance and 
importance of each term, especially those related to vaccination. 

• Write a code to simulate the coupled ODEs, explore different vaccine rollout scenarios, and reproduce 
the results of the article. 

• Quantify how vaccination campaigns and non-pharmaceutical strategies affect the health-care system 
and the number of disease-related deaths. 

• Synthesize the modeling approach and evaluate the contributions of model. 
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5. Glucose–Insulin Dynamics 

Develop an ODE model of diabetes and study its dynamics, including the analysis of disease 

management strategies. 

Project Information 

• Article: Dynamics of a Glucose–Insulin Model by M. Ma & J. Li, Journal of Biological Dynamics 16, 
733-745 (2022). 

• Relevant Course Sections: The modeling process (Chapter 1). Phase plane analysis (Chapter 3). 
Chemical reactions (Chapter 8). 

• Useful Advanced Knowledge: Dynamical Systems. Numerical simulations of systems of ODEs. 
Proofs. Michaelis-Menten kinetics. 

Project Expectations 

• Summarize the model hypotheses, compare current and previous approaches to model glucose-insulin 
dynamics discussed in the article, and explain how the current model is constructed. 

• Develop a complete phase plane analysis of the model by finding all of its fixed points and analyzing their 
stability, as well as through numerical simulations (no coding necessary if you use the Phase Plane app). 

• Assess various disease control strategies based on your interpretation of how parameters affect the 
dynamics of the system. 

• Evaluate the contributions of the model and interpret any of its limitations. 

6. Collective Behaviors in Crowds 

Develop and agent-based models to explain how visual cues can lead to the emergence of col-

lective behaviors in crowds. 
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Project Information 

• Article: The visual coupling between neighbours explains local interactions underlying human ‘flock-
ing’ by G.C. Dachner, T.D. Wirth, E. Richmond, and W.H. Warren, Proc. R. Soc. B 289, 20212089 
(2022). 

• Relevant Course Sections: The modeling process (Chapter 1). Agent-based models (Chapter 2). 
• Useful Advanced Knowledge: Coding. Advanced Applied Analysis. 

Project Expectations 

• Synthesize the motivations of the authors and judge (critique, argue against or in favor of) their model-
ing choices, based on your understanding of the problem and of the data discussed in the article. 

• Develop a code to simulate the dynamics between agents and reproduce the “simulation experiments” 
described in the article. 

• Explore the effect of different parameter choices and compile your results, including any limitations of 
the model. 

• Decide how you might improve the model and explore some of these improvements. 
• Appraise the modeling approach and its contributions. 

7. Trade-off Between Model Complexity and 
Parameter Identification 

Develop and compare two different compartmental models for the transmission of dengue, a 

vector-borne disease. 

Project Information 

• Article: Comparing vector-host and SIR models for dengue transmission by A. Pandey, A. Mubayi, J. 
Medlock, Mathematical Biosciences 246, 252–259 (2013). 

• Relevant Course Sections: The modeling process (Chapter 1). Epidemics (Chapter 7). 
• Useful Advanced Knowledge: Dynamical Systems. Numerical simulations of systems of ODEs 

(requires some coding experience). Theory of Probability. Markov-Chain Monte-Carlo (MCMC) meth-
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ods. 

Project Expectations 

• Describe how vector-borne diseases are transmitted, summarize the modeling hypotheses, and build the 
compartmental models introduced in the article. 

• Discuss the significance of the different terms in each of the models, and justify their form in light of the 
hypotheses that were made. 

• Develop a numerical simulation of each model and simulate trajectories for different initial conditions 
and parameter choices, including those identified in the article. 

• Describe the MCMC method for parameter estimation and reflect on the trade-off between model com-
plexity and difficulties associated with parameter identification. 

• Conclude with your own reflection on what modelers should take into account during the model selec-
tion step of the modeling process. 

8. Predator-Prey Models 

Develop predator-prey models, analyze their behavior, and consider their relevance in ecology. 

Project Information 

• Article: Asymptotic stability of a modified Lotka-Volterra model with small immigrations by T. Tahara, 
M.K. Areja Gavina, T. Kawano, J.M. Tubay, J.F. Rabajante, H. Ito, S. Morita, G. Ichinose, T. Okabe, T. 
Togashi, K. Tainaka, A. Shimizu, T. Nagatani & J. Yoshimura, Scientific Reports 8, 7029 (2018). 

• Context Article: Long-term cyclic persistence in an experimental predator–prey system by B. Blasius, L. 
Rudolf, G. Weithoff, U. Gaedke & G.F. Fussmann, Nature 577, 226-230 (2020). The context article 
describes recent experimental results on the persistence of cyclic dynamics a predator-prey system. 

• Relevant Course Sections: The modeling process (Chapter 1). Fixed points and their stability (Chap-
ter 3). Two-Species Models (Chapter 6). 

• Useful Advanced Knowledge: Dynamical Systems. Advanced Applied Analysis. Proofs. 
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Project Expectations 

• Describe the modeling approach and the goals of the study. 
• Analyze the linear model and describe the dynamics of the classical Lotka-Volterra model (no coding 

necessary if you use the Phase Plane app). 
• Examine and justify the different modifications proposed in the article. 
• Implement the corresponding models and analyze the resulting dynamics: use phase plane analysis tech-

niques (find the fixed points and study their stability) as well as numerical simulations (e.g. with the 
Phase Plane app). 

• Compare the results to the discussion in Chapter 7 of this text. 
• Decide whether exploring additional variations of the model is warranted. 
• Synthesize the results and critically evaluate the contributions of the work, especially in light of the 

recent discoveries presented in the context article. 

9. Predator-Prey Interactions when the Prey Fears 
the Predator 

A predator-prey system that takes fear into account. 

Project Information 

• Article: Fear factor in a prey–predator system in deterministic and stochastic environment by J. Roy & S. 
Alam, Physica A 541, 123359 (2020). 

• Relevant Course Topics: The modeling process (Chapter 1). Stability analysis (Chapter 3). Compet-
ing species (Chapter 6). 

• Useful Advanced Knowledge: Dynamical Systems. Numerical simulations of systems of ODEs. 
Proofs. Real analysis. 

Project Expectations 

• Synthesize the modeling approach. 
• Construct the deterministic autonomous model. 
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• Find the fixed points and analyze their stability. 
• Explore the dynamics of the deterministic model, both with and without seasonal forcing. 
• Assess the contributions of the model. 

10. Communication in Honeybee Swarms 

Understand how honeybees create a dynamic network of scents that allows them to locate 

their queen from afar. 

Project Information 

• Article: Flow-mediated olfactory communication in honeybee swarms by D.M.T. Nguyen et al., PNAS 
118, e2011916118 (2021). 

• Relevant Course Topics: The modeling process (Chapter 1). Agent-based models (Chapter 2). Diffu-
sion (Chapter 9). 

• Useful Advanced Knowledge: Applied Mathematical Analysis. Partial Differential Equations. Coding. 
Stochastic Processes. 

• Additional Information: Movies and a detailed description of the model are provided in the online 
supplementary materials. 

Project Expectations 

• Summarize the data-collection process and subsequent analysis. 
• Explain how the agent-based model works. 
• Reproduce some of its results. 
• Synthesize the modeling approach. 
• Appraise the contributions of model. 

182  |  MODELING PROJECTS

https://doi.org/10.1073/pnas.2011916118
https://www.pnas.org/content/suppl/2021/03/23/2011916118.DCSupplemental
https://www.pnas.org/content/suppl/2021/03/23/2011916118.DCSupplemental


11. Whale Migration 

How sea water temperature and krill density affect whale migration along the coast of Califor-

nia. 

Project Information 

• Article: Disentangling the biotic and abiotic drivers of emergent migratory behavior using individual-
based models by S. Dodson et al., Ecological Modelling 432, 109225 (2020). 

• Relevant Course Topics: The modeling process (Chapter 1). Agent-based models (Chapter 2). Diffu-
sion (Chapter 9). 

• Useful Advanced Knowledge: Applied Mathematical Analysis. Theory of Probability. Coding. Sto-
chastic Processes. 

Project Expectations 

• Synthesize the modeling approach. 
• Construct approximate seasonal maps of sea water temperature and krill density. 
• Build and run the individual-based model. 
• Appraise the contributions of the model in light of our current knowledge of climate change. 

12. Melt Ponds in the Arctic 

A simple model that reproduces the geometric and scaling properties of melt ponds in the Arc-

tic. 
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Project Information 

• Article: Ising model for melt ponds on Arctic sea ice by Y-P. Ma et al., New J. Phys. 21, 063029 (2019). 
• Relevant Course Topics: The modeling process (Chapter 1). Scalings and Energy Minimization Meth-

ods (Chapter 3). Agent-based models (Chapter 2). 
• Useful Advanced Knowledge: Physics (phase transitions, the Ising model). Applied Mathematical 

Analysis. Coding. 
• Additional Information: for helicopter images of sea ice, see Aerial observations of the evolution of ice 

surface conditions during summer by D.K. Perovich, W.B. Tucker III, K.A. Ligett, as well as the SHEBA 
Reconnaissance Imagery, Version 1 database. 

Project Expectations 

• Synthesize the modeling approach. 
• Construct the model and explore its behavior. 
• Reproduce the results of the article. 
• Assess the contributions of the model. 
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