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Preface

The content of this book was developed over more than 15 years of teaching the course
“Introduction to Systems Biology”, first at the University of Stuttgart and then mainly at
the University of Luxembourg. This course aims to introduce key mathematical concepts
of systems biology to students with mainly biology backgrounds. Easily accessible toy
examples are used to illustrate these concepts in a straightforward way. Some of these
examples, as well as some of the ideas in the book, come from colleagues, whom we
would like to thank very much for sharing their work.

Over the years, the course style changed from traditional classroom
teaching—with lectures on the concepts and demonstrations of exercise solutions—to
more self-paced and interactive learning using the flipped-classroom method (see the
Introduction of this book). This usually consisted of a short kick-off lecture emphasizing
the key concepts briefly and answering some general questions of the class. The
remainder of the day was then organized into flexible group work in class with the
support of tutors, and independent study time (usually in the afternoons). This allowed
the students to progress at their own pace and to support each other. Final exam results
improved by around 2 points on a scale of 20 as a result of this new method.

The course was complemented with talks about current research questions and
examples of the lab or the field in general. These talks were either given by me (Thomas
Sauter) or by the assisting postdoctoral and PhD students. Within the curriculum of the
Master’s in Integrated Systems Biology at the University of Luxembourg, this course was
tollowed by 2 practical computational courses, where the students applied the introduced
mathematical concepts to self-designed and self-executed projects. These project-based
learning courses focused on metabolic network modelling using constraint-based
modelling (see Chapter 2 of this book) and on pharmacokinetic (PK) modelling using
ordinary differential equations (see Chapter 3 of this book). The structure of these
courses, along with some illustrative example projects, is detailed in the article “Project-
Based Learning Course on Metabolic Network Modelling in Computational Systems
Biology” (Sauter et al., 2022)!. The combination of studying the theory at one’s own pace

and applying it to self-designed projects has proven to be an effective way of learning.

1 PLoS Comput Biol 2022 Jan 27; 18(1):e1009711, https://doi.org/10.1371/journal.pcbi.1009711.
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Suggestions and corrections are very welcome (by email to: thomas.sauter@uni.lu)

and will be considered for the next edition of this book.

On a personal note, I would like to take this opportunity to express my
thankfulness to my parents—your love and hard work have laid the foundation for my
career—and to my family: Sabine, it is so precious to have you by my side. Josephine, it
is great to see you growing up and shining. And Leonard, I am grateful for our days

together. You were the first to see this book.

Thomas Sauter, Nittel & Belval, October 2022
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Introduction

Thomas Sauter, Marco Albrecht

Contact: thomas.sauter@uni.lu. Licence: CC BY-NC

Motivation

In this book, you will learn how mathematical models of biological networks are built and how the analysis of
such models help to understand the system-level properties of networks. The book will introduce you to the
language of systems biology which needs to be spoken among biologists, physicists, computer scientists, and
engineers in the interdisciplinary research environment of bio-medicine. Science is about what is; Engineering
is about what can be. Combining both will enrich your profile as an academic and enrich your view of the
world around us. We are on the brink of the era of network medicine. This novel approach has the potential to
revolutionize and personalize the treatment of patients. This book focuses on some of the fundamental concepts
which are essential to developing successful network medicine approaches in the upcoming years. We hope you
enjoy reading this book as much as we enjoyed writing it.

Keywords
Systems biology — Flipped-classroom teaching

network-based drug discovery, with applications mainly
in cancer biology. He has more than 20 years of experi-
ence in educating and supporting students.

Contents

1 Authors 1
2 Overview 1 Marco Albrecht is an engineer,
trained in system theory, control
3 Planning 2  engineering, modeling, and molec-
ular biology. He studied bio-
4 Learning 3 systems engineering at the Otto-
von-Guericke University in Magde-
5 Learning checklist 8 burg and did a PhD at the Uni-
versity of Luxembourg on “Math-
6 Further reading 11  ematical histopathology and sys-
tems pharmacology of melanoma” in the context of the
References 11

Thomas Sauter has been pro-
fessor for Systems Biology
and study director of the
Master in Integrated Sys-
tems Biology and the In-
ternational Master in Bio-
Medicine at the University
of Luxembourg since 2008.
He studied Technical Biol-
ogy at the University of

MELPLEX ITN training program supported by the Eu-
ropean HORIZON 2020. He is now a research scientist
at esqLABS GmbH, Germany, with expertise in Quanti-
tative Systems Pharmacology.

1. Authors

2. Overview

Complex systems can be found in many fields, and re-
searchers in biology take ever more advantage of this
and related concepts shown in Figure 1. The concepts are
now reaching the realm of medicine and also raise sev-
eral challenges for data integration. We suggest reading
the paper on systems medicine [1] which is summarized
in Figure 2. Some of these concepts will be explained in

Stuttgart and at the Max Planck Institute for Dynamics
of Complex Technical Systems in Magdeburg, Germany.
He received a PhD in Engineering for modeling of the
metabolism of Escherichia coli. His research group de-
velops tools for molecular network reconstruction and

© 2023 Thomas Sauter and Marco Albrecht, CC BY-NC 4.0

this book "Introduction to Systems Biology".

Many computational courses rely on linear algebra
and other mathematical concepts. Consequently, it will
be very important to pay sufficient attention to these
mathematical basics. We incorporated a good share of

https://doi.org/10.11647/OBP.0291.06
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Figure 1. Complex systems organizational map. Created by H. Sayama, Collective Dynamics of Complex Systems
Research Group at Binghamton University, New York. Wikimedia. Licence: CC BY 4.0.

it in this book, as you will see in the following chapters.
But first we would like to make some remarks about
the design of the book and the respective course on "In-
troduction to Systems Biology". We therefore review
the research evidence for effective learning and reveal
pitfalls which might emerge within an interdisciplinary
study program. We also give you lists with small and
prioritized learning units, which you can tick off step by
step. This book contains several links to YouTube videos.
Check them out by clicking on the link:

YouTube: Systems Thinking

3. Planning

We divided this course into four parts with increasing
levels of modeling detail, shown in Figure 3.

The detailed content is specified in the learning check-
list on page 8. Here, we give here a rough overview of
what we want to achieve.

Course aims (what):

e Gain confidence in the step-wise calculation of
mathematical problems.

e Connect mathematical concepts to biological real-
world problems.

e Enable efficient communication between biology
and computational disciplines.

Course goals (how):

o We demonstrate the step-wise calculation in this
book and with the help of YouTube videos.

e We connect theoretical approaches with real-world
biology.

e We explain the geometrical intuition behind math-
ematical operations.


https://www.youtube.com/watch?v=ezwTPrQG9Nk&index=1&list=PLsJWgOB5mIMBinjH9ZAbiWiVxsizC5mU_
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Figure 2. Systems medicine: Brown: conventional approach. Green: data flow. Blue: information flow. Source: [1].
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This book has been developed for a full-time two-week
course following the flipped-classroom approach which
we will introduce in the next section.

4. Learning

The following insights come from educational studies
[2]. Social scientists compare between-group differences
and within-group differences with the measure Cohens
d. A Cohens d = 0.5 means that the difference between
groups is half the difference within groups. Social scien-
tists interpret d as follows:

d ~ 0.2 : small effect

d ~ 0.5 : medium effect

Part1
steady state

Part 2
steady state

network models
linear algebra

metabolic networks
stoichiometric matrix

\ 4

Figure 3. Advance organizer of this book.

d =~ 0.8 : strong effect

with the hint that even minor effects can become relevant
in combination with others.

Self-efficacy belief and regulation of effort

The most effective attitude is the self-efficacy belief (d =
1.81). Accordingly, we have organized the course in a
way that ensures you have the most flexibility in tackling
the problems on your own, and we will try to support
you. We have tried to give clear objectives, prioritize
the different tasks and optimize the course structure
to help you progress fast without losing time. These
precautions also complement your ability to regulate the
effort by yourself (d = 0.75). Your positive energy and
willingness to master this ambitious course will make
the biggest impact beyond anything we can do. Passing
this course gives you a great feeling of accomplishment
and a new view of biology. With the right practice and
the belief that you can make the most difference, you
have the key to success in your own hands. This effect
size is very strong and compensates for differences in
talent, intelligence, and unchangeable traits to a large
extent. Personality, intelligence, gender, time of year and
working hours (for an office-based job) are altogether
minor effects (—0.24 < d < 0.32). Intelligence explains
4% of the exam results. Joy, pride, and hope (—0.24 <
d < 0.32) are more productive attitudes than anger, fear,
and charm (—0.8 <d < —0.28).
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Effective practice in an interdisciplinary environment

The success of teaching various learning strategies de-
clines from elementary school (d = 0.92) to university
(d =0.28), which can be explained by the supposition
that students learn which strategy is best for achieving
results over time. However, learning strategies are highly
subject dependent and can hardly ever be transferred to
other disciplines. Studying concepts in biology requires
the memorization of many facts to achieve a sufficient
knowledge base. A huge amount of initially unrelated
facts have to be learnt in order to interpret new obser-
vations, design experiments, and understand relation-
ships. Mathematics and engineering, however, require
the memorization of a few and simple basic concepts
with which they construct their theories. Only axioms
and basic equations must be learned. The challenge is to
apply those concepts to different cases and tasks. Some
tasks seem simple but can be unsolvable problems, while
other, seemingly more complicated equation sets, can
turn out to be easy. Getting a feeling for the underlying
approaches in each discipline takes time. Biologists usu-
ally have to make countless observations and deconstruct
things in order to understand their origin. In contrast,
engineers combine different elements to build something
up and to achieve a certain behavior. Engineers combine
problem-dependent modules of equations together to
represent desired or natural systems and their behavior.
In contrast, physicists always search for a simple underly-
ing equation to help them understand nature itself. Com-
puter scientists, bio-informaticians etc structure, handle,
and store data by automating procedures according to
the wishes of a user without the inner motivation to
understand nature itself. A new problem can confront
computational scientists with the time-consuming need
to develop new software. Once this step is solved, the
computational running time for solving the actual prob-
lem might be low. Therefore, they always search for
pre-developed software modules and libraries. The gen-
eration of data in biology is much more incremental and
steady, partly because the problems and tasks are often
unique. Thus, the general thinking and research prac-
tices of different scientists can contrast. Synthetic biology
is a sub-discipline of biology which resembles the think-
ing in engineering the most. To engineers, it might be
helpful to say that they have to solve a so-called inverse
problem, which is the most frequent problem biologists
face. This is a very sharp separation of different think-
ing schools, and you will see that scientists can have a
mixture of those approaches but it might help to recog-
nize problems of misunderstanding. Neither of these
is wrong, nor better than the other. The problems they
tackle have simply moulded their way of thinking to the
optimal mode for the discipline, which would probably
fail if applied to another area.

414

Do not underestimate the amount of effort required
to learn mathematics. Concepts make up around 20-30%
of your learning time and 70-80% of your time will be
necessarily devoted to solving equations and tasks on
your own. This can be best compared with your lab
work. The more you can automatize isolated tasks like
media preparation and pipetting, the more capacity is
free to solve more comprehensive and complex working
schedules in the lab. Time set aside for practice is im-
portant (see Figure 4). In the beginning, you will work
through several subparts of a task, but one individual
subtask might still limiting your overall performance.
This can be frustrating—for example, if one learns a new
programming language. At first, it seems unfathomable,
but you can make more progress than you think. After
you have reached a certain level, you will progress very
fast. At the upper level, you will become so proficient
that the improvements seem to slow down as they are
not recognizable anymore. At this stage, expert feedback
is necessary to help you recognize flaws and find new
challenges to work on.
Additionally, having willingness to solve the given prob-
lem with different approaches, whatever it takes, is a
good trait to become a good computational scientist. We
provide you with the solutions directly to give you more
responsibility, but do notlook at the solution immediately—
only if you get stuck for a long time. You have to improve
your skills, not just your knowledge. One also has to
frequently change between studying concepts and prac-
ticing in order to progress. Some formulations might be
circuitous at first glimpse, but become more understand-
able after solving tasks. But don't worry, the purpose of
this course is an introduction to computational problem-
solving and many difficulties remain even in physics,
mathematics, and engineering schools, where years are
dedicated to solving such tasks. Much of what you learn

A late

mid

performance

early

, — >
time practicing

Figure 4. Performance gain in complex tasks can seem
nonlinear. When too many uncertainties in subtasks
hamper overall performance, sufficient practice time ac-
celerates performance until it flattens down again. Do
not give up too quickly. You never know when you will
skyrocket. Source: [3]. Copyright © 2010, John Wiley
and Sons.



in the course is comparable with learning a sequence of
activities not far from following a cooking recipe. You
will manage it! Because we integrate active learning
sessions, we will likely reduce the failure rate. Tradi-
tional lecturing would increase the failure rate by 55%
in science, engineering, and mathematics [4].

How to study engineering, math, and physics

We have some tips for studying courses with many equa-
tions. Our book will be somewhat between a classical
biology and typical engineering text.

About understanding and learning

It is quite favorable to tackle the material before the lec-
ture. Concepts in mathematics, engineering, and physics
are more or less always the same and do not change as
fast as some concepts in biology. They are also not as
comprehensive as in biology. But they are not so eas-
ily accessible, because mathematical terms are made up
of highly compressed knowledge. Lecturers in biology
more often use PowerPoint presentations to transmit
the knowledge, while lecturers in engineering use the
blackboard to slow the knowledge transfer down. It is
essential to see how things evolve. It will also be on an
entirely different level than what you are used to from
high school. In an engineering class, you have to plan
more time for digesting and understanding the material
before moving on to new topics. Most engineering stu-
dents prefer to see the concepts first in order to be able to
better follow the lecture content. Engineering students
spend hours trying to understand the material at home.
You will also need weeks and months of occasional re-
visiting until the material is sufficiently digested. This is
the reason for the late final exam. Understanding is the
biggest problem, and after you understand the material,
you have to learn little by heart. Remember, you learn a
lot in biology, and then you understand it. You have to
understand and practice a lot in engineering, and then
you learn a bit by heart.

Problem-solving

The major time-consumer will be problem-solving. You
will be confronted with many tasks and problems. The
more problems you solve, the better you will understand
how to apply the information you have learnt and the
better your grade will be. Solve the tasks we have given
you! If that is not sufficient, search for more tasks in
textbooks. Also solve the problems set out in past ex-
ams. It is important not to give up and to embrace the
intellectual challenge. Try as many methods and strate-
gies as possible and always look for possible calculation
mistakes or typos. Messing up the minus-sign and plus-
sign is quite common. Only if you get completely stuck
and consultation of the theory no longer helps, then you
should look up the solution.

Study groups

Everyone has times when they get stuck, and the desire
to give up is strong. Establish study groups of 3-5 peo-
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ple to explain the issue to each other. More or fewer
students than this is ineffective. Group members should
have more or less the same ability level. Share insights,
knowledge, and understanding of theories, formulas,
and equations. Collaborative learning is beneficial, and
you do not stand in competition with each other. How-
ever, do the work by yourself first to figure out how to
get started. In groups, some students might be very fast,
and then you do not learn how to tackle engineering
problems on your own. Moreover, never end a group
meeting when one member has still not understood the
issue. This is a great opportunity to learn and solidify
your knowledge by teaching. Find ways to achieve under-
standing. Maybe one has to figure out gaps in previous
knowledge and then explain this. Each student should
explain at the end what the problem was and how the
solution has been obtained.

Be flexible and chill a bit

The general recommended sequence is:

1. Read lecture notes

2. Read books

3. Understand sample questions
4. Do the homework

Well, not many engineering students do this. Go jovially
through the script and if you get stuck for more than
5 minutes, just go on. Forcing yourself to go through
the script and trying to understand everything step for
step has disadvantages. You might read too much, sleep
away, and at the end the questions still confuse you—and
time runs out. A better strategy might be to first read
the questions in the exercise and try to solve them.

1. Go through lecture notes calmly

2. Look at the exercise questions and look at what
you can solve already

3. Understand sample questions in the manuscript

4. Understand the manuscript explanations and search

out textbooks

. Iterate! Go back and forth

6. Atthe end, try to understand everything including
the manuscript

Q1

If you do tasks at an earlier point in this sequence, you
will get stuck for sure. One expects this without under-
standing the lecture notes. But now, you have a question
in mind, and it will be easier for you to understand the
lecture notes. After you have tried the examples, look at
the sample questions, and if you struggle there, look at
the lecture notes and books. Only at the end, and when
you have tried everything, look at the solutions. Wait
at least one day before you look up solutions. What we
want to say is that you will have to use an iterative work-
ing style between example questions and theory. Do not
be too strict and harsh with yourself. But of course, in the
end, you should understand everything, the complete
handout. Also read textbooks or related papers to get
a consistent view on the issues and connect new knowl-
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edge with old. This will help you later in the following
courses and your career, in a way that only looking up
things related to solving tasks will not.

YouTube: Nine study techniques for engineering courses
Education corner: How to study engineering?

How to study medicine and biology

Medicine and biology are characterized by a massive
workload. As a former mathematics or physics student,
you might not be used to this enormous amount. You
might think it unnecessary to learn all this as long as
you understand the underlying laws—but this is not the
case. For example, immunology is so comprehensive and
complex that you genuinely need to learn all this stuff
before you really start to understand how the immune
system works. No biologist will ever take you seriously if
you do not catch up and show a decent knowledge base.
Moreover, your computational models will fail if you
do not know enough of all the issues and complexity
around them. Even if you do not model everything,
knowing the details is nevertheless crucial. Knowing
more information helps you to guide your modeling
better. You need excellent time management, reading
skills, and memorizing strategies to manage this. You
will have to read much more, and the biology books are
much thicker. In these disciplines, it is also helpful to
teach others. Watch the highly recommended advice
of a graduate of a medical school, and the organization
skills of a medical student. Their learning strategies are
impressive.

YouTube: Medical School: How to study, read, and learn
YouTube: Watch an organized medical student

How to watch educational videos
Watching educational videos is not like watching a Bol-
lywood movie.

Learning objectives: take one to two minutes to think
about what learning goals you have before starting
a video. Many videos, linked in this handout, help
you deepen your knowledge, but do not forget to
make progress. First go through the handout and
then use the possibility to go deeper. Plan your
learning.

Pause and ponder: if you were not concentrating for a
moment or you missed the point, rewind or push
the stop button.

Speed adjustment: if you can, speed up or slow down
the video for your convenience. Double-speed?
Why not?

Take notes: you cannot ask questions immediately. Jot
your thoughts down and keep them for the lecture
in the classroom. Apply the Cornell note-taking
system: the upper left column (1/3) of your sheet
is reserved for questions and keywords. The right
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column (2/3) is used for your notes as usual. At the
bottom of your sheet is a summary section (5cm).
Fill the left column and the summary section in
within 24 hours of taking your notes. It will help
you reflect on the content.

Avoid distractions: keep distracting devices like iPods
and smartphones away.

Watch in small pieces: if you watch everything at once
for long periods, it is less efficient than spreading
the sessions over time. Watch a video every now
and then.

Enjoy with peers: you might use the opportunity to dis-
cuss the content with others so you can learn from
each other.

YouTube: Cornell notes method

Self-directed learner and critical thinking
Learning habits are set out in stages, as shown by Grow’s
levels of self-directed learning [5].

Stage 1 (Dependent learner): Relies on instructor. No
self-direction. Task-oriented.

Stage 2 (Interested learner): Notalways directed. Seeks
some opportunities and sets some goals.

Stage 3 (Involved learner): Ability to learn individu-
ally. Has learning goals and methods to achieve
those goals.

Stage 4 (Self-directed learner): Sets goals. Knows how
to assess and how to self-motivate. Finds valid and
reliable resources.

YouTube: Self-directed learning (Part 1)
YouTube: Self-directed learning (Part 2)

Tobecome a self-directed (self-regulated, lifelong) learner,
you must learn to assess the demands of the task, evalu-
ate your previous knowledge and skills, plan your ap-
proach, monitor the progress, and adjust the strategy
if needed [3]. Planning the learning process is a step
which is frequently ignored, and the time required for
learning to take place is often underestimated. Ponder
on why you take a certain approach and not another
one. Also think about what was ineffective last time
and how this can be improved in the future. Self-critical
evaluation is important to avoid directing yourself mean-
inglessly. Keep in mind what Karl Popper! said: "If we
are uncritical we shall always find what we want: we
shall look for, and find, confirmations, and we shall look
away from, and not see, whatever might be dangerous to
our pet theories". Wisdom and the best approximation

! Austrian and British philosopher Sir Karl Raimund Popper 1902—
1994.


https://www.youtube.com/watch?v=53A-3T5_2zE
https://www.educationcorner.com/engineering-study-skills-guide.html
https://www.youtube.com/watch?v=UBZfknwK56E
https://www.youtube.com/watch?v=e7LDcP4LsVM
https://www.youtube.com/watch?v=lsR-10piMp4
https://www.youtube.com/watch?v=kgfFCnBdSas
https://www.youtube.com/watch?v=zDimJQQySzA

of truth come only if you are your most merciless but
constructive critic. It is the right but the hardest way.
Also watch the lecture series on critical thinking, which
will help you to become a better scientist.

YouTube: Critical thinking

Inabook based on the work of the Foundation for Critical
Thinking we found the following definition by Francis
Brown?: "Critical thinking is a desire to seek, patience to
doubt, fondness to meditate, slowness to assert, readi-
ness to consider, carefulness to dispose and set in order;
and hatred for every kind of imposture.”

Repetition or elaboration strategies

Repetition does not have a significant measurable impact
on learning. Repetition is the consolidation of something
but this does not mean you are consolidating something
useful or correct. Misconceptions can be consolidated as
well. Thus, feedback from peers and the teacher is im-
portant. Much more effective is deliberate practice which
directly targets self-identified weaknesses and requires
a healthy portion of self-criticizing and critical thinking.
Additionally, repeating easy tasks does not help you to
become better. Search for challenges and practice annoy-
ing or difficult tasks with attainable goals. Moreover, a
better strategy than repetition is elaboration. Elabora-
tion deals with the integration of new pieces of informa-
tion into your existing network of knowledge organiza-
tion. Elaboration is more effective with high self-activity
(d = 0.7) rather than letting the teacher do it for you
(d = 0.44). Make connections to your previous knowl-
edge instead of repeating facts alone and search for tasks
which challenge you.

Approach to dealing with mistakes

Learning something new opens up space for opportu-
nity, and if you dare to learn something new, mistakes
will happen. The more mistakes you make, the more you
will learn in the long term. Embracing new challenges
and thus taking the risk of failure will carry you farther
than avoiding challenges to avoid mistakes (d = 0.44).
This strategy might lead to problems in the learning pe-
riod (d = —0.15) but result in better performance after
the learning period (d = 0.56). This approach is effective
if the test is similar to the practice tasks (d = 0.2) and
superior in applying the learned facts to new problem
types (d = 0.8), which will help you to get even more
out of this course in the future. Inaccurate prior knowl-
edge or even misconceptions (the heart oxygenates the
blood, Pluto is a planet, objects of different masses fall at
different rates, blind people hear better) are difficult to
repair if the teacher is unaware of them before the exam.
Be considerate toward others making mistakes, and do
not fear embarrassing moments yourself. Your only duty

2 English philosopher, scientist, jurist, statesman, and author Fran-
cis Brown 1561—1626. Seen as father of empiricism and scientific
methods.
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is to learn from mistakes in order to improve your work.
Careless and deliberate sloppiness has nothing to do
with it and is not appreciated.

ACQUIRE

Component
skills

Figure 5. Elements of mastery. Source: [3]. Copyright ©
2010, John Wiley and Sons.

Knowledge and skill levels

Knowledge falls into several types [3]. Declarative knowl-
edge describes the knowledge of facts and concepts that
can be stated or declared. Procedural knowledge is
knowing how to apply various procedures, methods,
theories, and styles. Contextual knowledge describes
the ability to know when something has to be applied
and conceptual knowledge says why something is ap-
propriate in a particular situation. See also Figure 5 for
the stages of mastery and Bloom’s Taxonomy in the ap-
pendix [6] (Fair Use) for the classification of thinking
skills.

We not only have different knowledge types, but this
knowledge is also organized in different ways. The knowl-
edge organization of beginners shows few connections
between elements and looks like separated knowledge is-
lands or a linear sequence of knowledge pieces, whereas
experts’ knowledge is densely connected—for example,
in a hierarchical or network form. History facts might be
memorized along a timeline, but if the question requires
knowledge organized along other criteria, or the chain of
knowledge is interrupted, the knowledge might be not
accessible. Mind maps might be a good possibility of
connecting pieces of knowledge in different ways. Com-
petence can also be classified into four different stages,
as shown in Figure 6. In the beginning, it is impossi-
ble to know what one has never learned before. After
a while, one recognizes knowledge gaps and fills them
until the acquisition process and origin get lost. Profes-
sors are frequently in the top competence level and may
find it difficult to identify the problems with which you


https://www.youtube.com/watch?v=A-jyF3ji38o&list=PLsJWgOB5mIMB3iyIqD0Z9huAIbdFV_tj_
http://www.criticalthinking.org/
http://www.criticalthinking.org/
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struggle. Participating during lectures and explaining
questions clearly can help your supervisor to help you
become better.

Unconscious
competence
Conscious
|competence

Conscious

Unconscious

incompetence
Figure 6. Competence levels. Source: [3]. Copyright ©
2010, John Wiley and Sons.

incompetence

Summary

Effect of educational strategies [2]

d = 1.81 Self-efficacy belief

d = 1.39 Preparation and planning by the lecturer

d =1.35 Clear and understandable lecturer

d = 1.13 Deliberate practice objectives

d =1.12 Clear learning objectives

d =0.90—-0.98 Attending courses regularly

d =0.77 Openness to outsider opinions

d =0.75 Student’s regulation of effort

d =0.68 Group work

d =0.68 Empathy and warm-heartedness of the teacher

d =0.67 Previous skill level

d = 0.65 Teacher-student relationship quality

d = 0.64 Co-operative learning

d = 0.57 Teacher’s enthusiasm

d =0.49 Diligence

d = 0.48 Motivation

d = 0.47 Supportive atmosphere in the classroom

d = 0.47 Encouragement of learning

d = 0.43 Solely making notes during oral presentations

d = 0.41 Addressing learning progress

d =0.41 Organized learning

d =0.41 Learning with fellow students

d = 0.41 Time management

d = 0.34 Disturbances during lessons

d = 0.32 Critical thinking

d = 0.32 Intrinsic motivation

d =0.21 Class size

d =0.21 Compulsory attendance

d =0.19 Co-teaching

d = —0.02 Making notes during PowerPoint presenta-
tions

d = —0.43 Fear exams

Disturbing effects on exam results variability is minor

(n=403623 students, 911 effects investigated ):

6 % Procrastination

5 % Diligence

4 % Fear of exams
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4 % Intelligence

3 % Emotional intelligence
2 % Socio-economic status
<2 % Biological age

<2 % Gender

<2 % Extroversion

<2 % Self-esteem

<2 % Social support

<2 % Stress

<2 % Depression

5. Learning checklist

Check boxes if appropriate. It might help you not to
forget things and might inspire you to promote your
self-directed learning. Try to stay within the script and
do not lose too much time by finding answers. Use it
as an inspiration and organization tool. You should ask
yourself the following questions [7]:
e What is it and how is it defined? (declarative)
e How is this theory applied in the real world? (pro-
cedural)
e Could you provide an example of when this for-
mula might be used? (contextual)
e Could you sketch what that (solution, device, etc.)
might look like? (procedural)
e How is this equation applied in practice? (proce-
dural)
Where did that formula come from? (conceptual)
e Do you understand when that formula is used?
(contextual)
Remember [3]: Declarative knowledge describes the
knowledge of facts and concepts that can be stated or de-
clared. Procedural knowledge is knowing how to apply
various procedures, methods, theories, and styles. Con-
textual knowledge describes the ability to know when
and in which context something has to be applied and
conceptual knowledge says why something is appropri-
ate in a particular situation. Does the concept fit your
application? Do you know the concept behind a certain
definition?
Another definition can be found (trainingindustry.com):

Definition 1. Conceptual knowledge refers to the knowl-
edge of, or understanding of concepts, principles, the-
ories, models, classifications, etc. We learn conceptual
knowledge through reading, viewing, listening, experi-
encing, or thoughtful, reflective mental activity.

Definition 2. Declarative knowledge refers to facts or
information stored in the memory, that is considered
static in nature. Declarative knowledge, also referred to
as conceptual, propositional or descriptive knowledge,
describes things, events, or processes, their attributes,
and their relation to each other. It is contrary to procedu-
ral, or implicit knowledge, which refers to the knowledge
of how to perform or operate.



Definition 3. Procedural knowledge refers to the knowl-
edge of how to perform a specific skill or task, and is
considered knowledge related to methods, procedures,
or operation of equipment. Procedural knowledge is
also referred to as implicit knowledge, or know-how.

Definition 4. Implicit knowledge is knowledge that is
gained through incidental activities, or without aware-
ness that learning is occurring. Some examples of im-
plicit knowledge are knowing how to walk, run, ride a
bicycle, or swim.

Example:

The determinant of a 2-by-2 matrix is the area between
two linear independent vectors (declarative). It can be
computed in the following ways (procedural). The de-
terminant is useful to understand whether a matrix is
invertible (contextual) and only works if the matrix is a
square matrix (contextual). The determinant is based on
the geometric intuitions and concepts of linear algebra
in the following way (conceptual).

Part 0: Introduction and learning
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Part 1: Biochemical network in the matrix form

tasks knowledge

steps
[

second read
watched YouTub
solved tasks
solved extra tasks
declarative
procedural
contextual
conceptual

<« | first read

Systems medicine

Network medicine

Self-efficacy belief

Regulation of effort

9|9 ]| priority

Performance
practice

gain-

Self-directed learner

Critical thinking

Knowledge organization

Elaboration strategy

Skill level

Elements of mastery

NININDNNNDN

Competence level

tasks steps knowledge
o) @
3 | @
g |8
T I <
5545 YFH S
X =
N 5= I = I R = = = =
= g o 2 g o ¥ o
=1 ) < O - = X
= H g o 9 O © 8 9 8
2 R EERR:
= £ 9 S99 g g 8
oL a & 2 @ o 9 g o
1| Define systems biology Vv
2| Incidence matrix
2| Adjacency matrix & list
3| Graph notation (brack-
ets)
2| Hypergraph
1| PCA, PLSR, VIP
1| Turn linear equation set

to matrix form

1| Matrix indices

1| Augmented coefficient

matrix

2| Solve equations: Rule of
Cramer

1| Gauss and Gauss Jordan
form

3| Reduced
form

row-echelon

LU decomposition

Rank

Identity matrix

Zero matrix

Trace

Matrix multiplication

== =] =] = =] W

Sum and subtract matri-
ces

—

Scalar multiplication

Juny

Transpose

1| Determinant of a 2-by-2
matrix

2| Determinant of a 3-by-3
matrix (Rule of Sarrus)

2| Determinant (Rule of
Cramer)

3| Laplace expansion

1| Inversion of a 2-by-2 ma-
trix

2| Inversion of a 3-by-3 ma-
trix

1| Eigenvalues

N

Eigenvectors

3| Eigenvalue via fast equa-
tion
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Part 2: Metabolic modeling
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tasks

knowledge

first read

second read

steps
[

watched YouTub
solved tasks

solved extra tasks

declarative
procedural
contextual
conceptional

Feedback loops

Classify metabolic mod-
els

tasks steps knowledge

%) N

g |2
P .

)|
Fg Ov—\4 E 0)'—‘.—48
g >l @ % 2 &9 3
>l O S o 8 o8 5 F &
2 S o @ S o % o
= g OH oy o
Jd 9 Y = o & o
2 b IS = = e < = =
g o5 9 S g o 5 g o
=} & @ B d @ o 4o d o
1 v

= ||| priority

State space representa-
tion

p—

Classify system types

N

SISO vs MIMO

@

Laplace transform and
frequency domain

w»

Fourier transform

N

Time domain vs fre-
quency domain

Controllability

Observability

Transfer function

Definition steady state

Stability

Damping

Uy QR U FEV IR CIN S

Characteristic
mial

polyno-

1| Stoichiometric matrix

1| Steady state

1| Rouché-Capelli theorem

2| Elementary flux modes
(EFM)

2| Conservation relations

3| Left and right null space

1| Classify MFA according
dynamic and isotope
tracer

2| Metabolic flux analysis
(MFA)

1| Pros and cons of FBA

2| Flux balance analysis
(FBA)

2| Constrained optimization

cone

Part 3: The magic of change and how to find it

p—

Eigenvalues in the fre-
quency domain to stabil-
ity classification

Phase portrait

Definition trajectory

Slope field

Definition isoclines

Discrete in state and time

Difference equation

Pp-q equation

a-b-c equation

Complex numbers

Differentiation

Product rule

Quotient rule

Chain rule

Separation of variables

Integration factor

[\O) JEEY QYUY (U JYERY [ Y Y Y N TR IS IR IR SIS

Linearization

tasks steps knowledge
o) @
LBE
CE
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g 92 89s 5
o Ao &8 &g 8 58
> | + < Rt~
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5 o = e I I = N N
= 29594998 5 ¢
QL g % 2 F J o a J o°
1| Black box concept Vv
2| Hysteresis
1| Block diagram
2| Synthetic Biology vs. Sys-
tems Biology
1| ODE
2| What is the difference be-
tween ODE & PDE
2| Change one ODE to a sys-
tem of ODEs
1| General properties of a
system
2| Nonlinear dynamic
2| Open loop vs closed loop
1| Feed-forward loops
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Part 4: Physical modeling and nonlinear enzyme kinet- 6. Further reading
ics
tasks steps Knowledge We suggest reading the great art.icle by Barabasi et L'll.. to
o 7 familiarize yourself with the topic of network medicine
3 |8 [8].
= p =
o9 9 g — e
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Chapter 1: Biochemical networks in the matrix form

Thomas Sauter, Marco Albrecht

Motivation

The biochemistry of the cell is very complex and the available data might overwhelm the abilities of interpretation
[1]. Reductionist approaches, combined with some intuition, have brought us far, but we need rational approaches
to better understand the interplay of molecules at the system level. We have to check whether a hypothesis is in
itself logical and can be aligned with data. In this chapter, we—while reducing biochemical molecules to their
function—will learn how to interlink several players to acquire a mechanistic understanding of a pathway or a

a lot of practicing to build the skills.

Keywords
Matrix — Graph — Metabolic network

Contact: thomas.sauter@uni.lu. Licence: CC BY-NC

complex system. Modeling thereby helps us in the following ways [2]:

1. Enhancing understanding of otherwise unintelligible systems
2. Requiring a way of thinking that can be beneficial to the design of experiments

While, by studying this chapter, you will not become a computational scientist, it will help you to communicate
with them. Nobody expects that you understand everything immediately. It will take time to digest and it requires

The mathematical principles introduced here will be applied to biological pathways and networks in the following
chapters. If you prefer, you could directly jump to Chapter 2 and 3 to see some applications first.

Contents
1 Lecture summary 1
1.1 M Biological networks and graph theory . 1
1.2 M Modeling of metabolic networks . . .. 4
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21 MLinearalgebra............... 5
References 15
3 Exercises 17
4 Solutions
Do not betray yourself! 20

1. Lecture summary

1.1 M Biological networks and graph theory
Biological phenomena are very complex and systems
biology helps us to understand their system’s behavior.

Definition 1. Systems biology is the science that studies
how biological function emerges from the interactions
between the components of living systems and how these
emergent properties enable and constrain the behaviour
of the components [2].

© 2023 Thomas Sauter and Marco Albrecht, CC BY-NC 4.0

Input Layer 11 12

N7

Intermediate A\'*‘ E——F
Layer T B -+ /L + +
D¢ (G‘>
+ +
v
Output Layer 01 02

Figure 1. The interaction graph of a signal transduction
pathway triggered by the inputs I1 and 12 with subse-
quent response in the output layer indicated by O1 and
02.

Put in another way: we are not interested in dissect-
ing objects into ever smaller parts and details. Instead,
we look at the elements (nodes, states) we know and
focus on their interactions (edges, coefficients). The in-
terplay of a few elements can result in manifold different
phenomena and observations, depending on how the
elements activate or inhibit each other. The interactions
between the states in a system are often represented as a
matrix. But the type of matrix used can vary for different
systems.

https://doi.org/10.11647/OBP.0291.01



Introduction to Systems Biology: Workbook for Flipped-Classroom Teaching

Example 1: Signal transduction

The example graph in Figure 1 can be written in
the form of an incidence matrix In

+ -+ 4+ o+ o+ -+ o+ o+ o+ o+ o+
(1 -1 0 0 0 0 0 0O 0 0 O 0 071
00 -1 0 0 0 0 0 0 0 0 0 0|2
00 0 -1 0 0 1 0 0 0 0 0 0 |A
1 0 0 1 -1 0 0 0 0 0 0 0 0B

Ine 00 0 0 1 -1 0 1 0 0 0 -1 0]|C
00 0 0 0 I -1 0 0 0 0 0 0 |D
01 1 0 0 0 0 -1 -1 0 0 0 0 |E
00 0 0 0 0 0 0 1 -1 1 0 0 |F
60 0 0 0 0 0 0 0 1 -1 0 -1|G
00 0 0 0 0 0 0 0 0 0 1 o0 |oOl
lo o o 0 0 0 0 0 0 0 0 0 1 |O2

with interactions as column entries and states as
row entries.

Example 1 mimics a signal transduction network
within a cell (Figure 1), where relevant molecules are
represented as nodes (states) and interactions as edges
(later resulting in mathematical terms in the balance
equations). The states represent the phosphorylation sta-
tus or the concentration of a particular molecule, while
the interactions represent binding affinities, regulatory
interactions, or metabolic fluxes etc. If molecule A is
directly responsible for a higher activity or abundance
of molecule B, we draw an arrow from A to B, which is
called a directed edge. Moreover, we write in the related
column of the incidence matrix In (see Example 1) the
number —1 for A and +1 for B. Molecule B, on the other
hand, has a positive impact on C. Molecule A would
thus indirectly lead to higher levels of activation of C,
but no direct interaction, so this is not represented in
the network. Edges can also represent inhibitory interac-
tions, which are drawn as a straight line with a transverse
line at the inhibited molecule. The true interactions can
be figured out through experimental studies or via the
analysis of the overall behavior of a network. Biologi-
cal systems can also be represented in the form of an
adjacency matrix A or as an adjacency list L, tackled in
Case Box 1 and 2. The combination of elements and
interactions makes up a graph or network. Protein inter-
actions can be represented as undirected networks. One
valuable source for such networks is, for example, the
STRING database [3].
We want to compare a directed network with an undi-
rected network by reference to the cases in Figure 2. We
note down the related matrices in Case Box 1 and 2.

A2 B-b C A-3,.B-b,C
PENEP A
FZ_e D d E e d
Figure 2. Left: undirected graph. Right: directed graph.

F~—=—D-%E

2/24

Graphs are a special case of more general hypergraphs,
shown in Figure 3. In a graph, edges connect 2 nodes,
whereas in a hypergraph H = (V,E) there is a set of hy-
peredges E connecting a set of vertices V. In other words,
in a hypergraph, a hyperedge can connect any number
of vertices. Hypergraphs are used, for example, used to
represent metabolic networks where reactions can con-
nect multiple substrates and products and sometimes
involve cofactors. Undirected hypergraphs represent set
systems, as shown in Figure 4. Directed hypergraphs
have hyperedges e = (S,K) with vertices assigned to the
tail/start knot S and vertices assigned to the head/end
knot K. An example directed graph is shown in Figure 5.
One of the hyperedges points from the tail knots A and B
(S={A,B}) to the head knots Cand D (K= {C,D}) writ-
tenase; = ({A4,B},{C,D}). Pay attention to the brackets.

Case 1: Undirected graph

An undirected graph is described by vertices V =
{A,B,C,D,E ,F} and edges E = {a,b,c,d,e, f,g} =
{(A,B), (B,C), (C.D), (D.E), (D,F), (C,F), (F.A)}.
The relevant matrices (see text) are:

A B C D E F
01 0 0 0 1]A4 B,F |A
1 01 0 0 OB A,C | B
A=|0 1 0 1 0 1|{C, L= |BDF|C,
001 01 1|D C,E,F|D
00 01 0 O|E D |E
1 01 1 0 OfF A,C,D|F
a b c d e f g
1 00000 1A
1 1.0 0 0 0 OB
In=10 1 1 0 0 1 0O|C
001 1 1 0 O|D
00 01 0 0 O|E
00 0 0 1 1 1|F

whereby the adjacency matrix A is symmetric. It is
not symmetric for a directed graph.


https://string-db.org/

Case 2: Directed graph

The directed graph is represented by vertices V =
{A,B,C,D,E,F} and by edges E = {a,b,c,d,e, f,g}
— {(4,B), (B,C),(D.C),(D.E), (F.D), (C,F), (F,A)}.
The order of vertices in the edge description is rel-
evant now. The matrices are:

A B C D E F
01 0 0 0 0|A B |A
001 0 0 O0|B C |B
A=1|0 0 0 0 0 1|C, L=|F |C,
0 01 0 1 0|D C,E|D
00 00 0 O|E — | E
1 0 01 0 O|F AD|F
a b c d e f g
-1 0 0 0 0 0 1 (A
1 -1 0 0 0 0 0 |B
In=|0 1 1 0 0o -1 0]|C
0 0o -1 -1 1 0 0 (D
0 0 0 1 0 0 0 |E
0 0 0 -1 1 —1|F
hypergraph substrate graph bipartite graph
7N
B D B—D B D

Figure 3. A hypergraph can be translated into a substrate
graph or a bipartite graph. A substrate graph cannot
be converted back to the hypergraph because the infor-
mation whether A AND B are consumed by the same
reaction is lost in the substrate graph. It could also be
possible that A is converted into C and D, and that B is
transformed into C and D by independent reactions.

(& e

V7
Figure 4. Undirected hypergraph: vV =
{vi,v2,v3,v4,v5,v6,v7} and E = {ej,ez,e3,e4} =
{{V],V27V3}7{Vz,V3},{V3,V5,V6}7{V4}}. Source:

en.wikipedia.org/wiki/Hypergraph, Fair Use.
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A C=>E

>l

Figure 5. Directed hypergraph V = {A4,B,C,D,E},
E = {el,e2,e3} = {({A,B},{C,D}),({C}{E}),
({E,D},{B})}.

Example 2: Simple hypergraph

The example in Figure 5 can be represented by the
incidence matrix:

el e2 e3
-1 0 0 1A
-1 0 1 |B
In=17 21 olc
1 0 -—-1|D
0 1 —1|E

Another representation of the system in Figure 5
can be realized with chemical reaction equations:

A+B—-5C+D
C-24E

D+E-—=5B

Directed hypergraphs, as mentioned previously, are
needed for an important field in systems biology: metabolic
network modeling. The only difference is that we have
additional stoichiometric information (coefficients) to
weight the edges.
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1.2 W Modeling of metabolic networks Aout B " Pout E "
Metabolic networks describe the flux of metabolites within v v ou ; v Lou

a system. The fluxes are controlled by enzymes. A sim- s BRREEE %} ——————— R i BEEE

plified metabolic network is shown in Figure 6 and Ex- i Vs l

ample 3. A more elaborate example is shown in Figure 7 ! B Vg !

and Example 4. ! Usi !

| Ve |

Example 3: Simple metabolic network | A C V1o P |

v |

We see in Figure 6, that we have two possible path- ! 7L, D E !

ways here, either via v, or v3. All edges can be

weighted according to the stoichiometric coeffi- Figure 7. A metabolic model with 2 inputs and 3 outputs,
cients so that we do not simply have an incidence whereby Molecule B is both. The system is controlled
matrix (all the entries are 1s or Os) but a stoichio- by the transport reactions of the external Metabolites A
metric matrix: and B to the cell, which releases Product P but can also

release B and E.

1 —1 -1 07A,
N=]|0 1 1 —1|By.
1 0 0 o0 A()l:t Example 4: Larger metabolic network
0 0 O 1 |Bou

Here, we see several possible routes (Figure 7) and

where the reactions determine the columns and
the metabolite concentration determines the row
entries. Often we focus on intracellular metabolites
only, so that we can reduce the system in this case
to:

Vi V2 V3 V4
N=|1 -1 -1 O0|A
0 1 1 —-1(B

This example has only unimolecular reactions.

also a hyperedge vig. It is quite difficult without

mathematics to understand and predict the fluxes,

which we will learn in the next learning block. For

now we want to set up the stoichiometric matrix:
Vi V2 vy V4 Vs V¢ V7 V8 Vo Vio

1 0 O o -1 -1 -1 0 0 0|A

01 O 0 1 0 0O -1 -1 0B
N=|0 0 O 0 0 1 0 1 0o -1|C

0 0 O 0 0 0 1 0 0 -—1|D

o0 0O -1 0 0 0 0 0 1 |E

00 -1 O 0 0 0 0 1 1|P
with the reversible reactions:

rev = {R2,R8}

and irreversible reactions:
irrev = {R1,R3,R4,R5,R6,R7,R9,R10}

After seeing some motivating examples of biological

Figure 6. A simple model of a metabolic system. The gray =~ networks and the possibility of representing these as
dotted line represents the system boundary. A molecule ~ Matrices, we will now revise some basic mathematical
comes from outside to inside and turns into internal ~ concepts of linear algebra and matrix calculation.
Molecule B via two possible reaction ways. Molecule B

is leaving the system.

_______________________



2. Basics of Mathematics

2.1 M Linear algebra

Linear algebra (Arabic: al-jabr) is one of the most funda-
mental and helpful topics from the realm of mathematics.
We recommend watching the following YouTube videos
and more from that channel the channel the videos be-
long to, by clicking on the link below:

YouTube: The essence of linear algebra

YouTube: How to read math?

Bl From a set of equations to a matrix

In science and technology, we frequently encounter sets
of linear equations. One equation might be 3x; +x, = -2,
which we can write in a general form with aj1x; +ajx; =
b1 with coefficient a1 = 3, a;» = 1 and constant b; =
—2. The variables, x, can represent molecule concentra-
tions, and coefficients can represent interactions between
molecules. If we add at least one other linear equation—
such as 2x; + 1x, = 0—with at least one common variable,
we have a linear equation set:

ajixy +apxy = by

a1 x| +axnxy = by

You see that the first index m of coefficient a,,, increases
with the number in rows, while the second index n in-
creases with the number of the variables x,,. The example
equation set can be solved for x,:

3x1+x=—-2 <+
2x1+x =0 —

Xy = —2—3)61

Xy = —2)C1

which can be geometrically interpreted as shown in Fig-
ure 8. The solution is the point x; = —2 and x, = —4,
where the vectors cross.You either get one solution, no
solution, or an infinite number of solutions for any linear
equation set. The general form, with m equations and n
variables, is then:

ajxy +apxy+ +apx, = by
az1x1 +axnx; + +ayux, = b

. (2.1)
A1 X1 + X2 + + Xy = bm

which can be written in a much denser form as:
Ax=b>b
with a matrix in a bold capital letter:

ar ap - din
az] az - dp

A:

aml  dm2 Amn
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-4 -3 2 -1 0 1 2
xy

Figure 8. A linear equation system as vectors. The solu-
tion of the equation system is the cross-section of both
vectors.

and vectors in bold lowercase letters:

X1 bl

X2 b2
X = and b= .

Xn bin

This is very convenient and compact. The solution is
simply x = A~ 'b. The exponent —1 indicates the matrix
inverse and will be explained later. The matrix A basi-
cally describes n arrows with the arrow tail in the origin
(zero-point), and the arrowhead on m coordinates in a
space spanned by the coordinate system. The equation
set 2.1 describes an inhomogeneous system. It becomes
a homogeneous system if b = 0. If the system has a
solution we have a consistent system, otherwise it is
inconsistent. A linear equation system is also fully de-
termined by the augmented coefficient matrix:

aip aip - a | by

ay axp - ay | by
(Aalp)=| . .

aml  Am2 Amn | b

YouTube: From an equation set to a matrix

B Simple matrix operations

Let’s say we have a matrix B and multiply it by a matrix
A from the left. What does it mean geometrically? It
means that we transform the system B in a way that can
be a rotation, a scaling, or any form of linear deformation
of the space, which is spanned by the coordinate system
of B. If the matrix B has p arrows pointing toward n
coordinates within a n dimensional space, the multipli-
cation of B by A from the left transforms the coordinate
system from n dimensions to m dimensions. The final
matrix C represents p arrows pointing to the new coor-
dinates in a m dimensional space. Have in mind that the


https://www.youtube.com/watch?v=kjBOesZCoqc&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab
https://www.youtube.com/watch?v=Kp2bYWRQylk
https://www.youtube.com/watch?v=NNmiOoWt86M
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order of matrix multiplication matters in contrast to the
multiplication with numbers. Because A transforms the
coordinates of B from one space to another, the number
of columns in A must equal the number of rows in B in
order to have sufficient coupling of two spaces for the
transformation or multiplication AB = C.

p
n 14

S B

Division by a matrix does not exist, but division of a
matrix by a scalar is possible.
YouTube: Multiplying matrices

Example 1: Multiply matrices

A more detailed scheme is:

4x2 matrix 4x3 matrix
a a2 2x3 matrix c12 €13
by bis|
by by|

asy  asz €32 (€33

where two ¢ elements are calculated as follows:

c12 = anbip +apbn
¢33 = az1b1z +azbis

What is the sum of two matrices geometrically? The
matrix A has n arrows originating from the coordinate
origin point to the m coordinates. If we sum up with
matrix B, the n arrows of B start from the coordinates of
A and land on the coordinates A + B. This is equivalent
to having n arrows starting from the coordinate system
origin and pointing to the coordinates described by A +
B.

YouTube: Sum up matrices and scalar multiplication

Example 2: Sum and subtract matrices

The sum or subtraction of matrices with identical
size is calculated entry-wise:

1 0 0|7 5 0/ |[1+7 045 0+0
1 36
~18 5 0|

The scalar multiplication is also a transformation of the
matrix. If you multiply a matrix by a number, you scale

ool b s o
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the matrix by this number without skewing or rotating it.
The scalar multiplication by two doubles all coordinate
values the arrows point to. Do not confuse this with
scalar product, which is a form of inner product!
YouTube: Scalar multiplication

Example 3: Scalar multiplication

IS Nl
:{2 16 —6]
8 —4 10

Another important operation is transposition (to inter-
change columns with rows).
YouTube: Transpose a matrix

Example 4: Transpose

I 2 3 4 5
6 7 8 9 10
M=1"1 12 13 14 15
16 17 18 19 20

16 11 16

2 7 12 17

Mf=|3 8 13 18

4 9 14 19

5 10 15 20

B Square matrices

Square matrices have as many rows as columns. Some
square matrices are especially secure. One example is
the matrix in diagonal Jordan form, which was the aim
of the Gauss-Jordan method:

al oee 0
A =
0 ... am
Multiplying a diagonal matrix multiple times from the

left is the same as using the number of multiplications
as exponents of the diagonal elements:

aj; ... O ai; ... O ayg ... 0
A'B=| SNE A L | B
| 0 am] | 0 amn] | 0 nn
> 0
= | : B
L 0 o]

This is much better than multiplying non-diagonal ma-
trices, which can be very frustrating after a while. A


https://www.youtube.com/watch?v=sYlOjyPyX3g
https://www.youtube.com/watch?v=EFApWAl3NJw
https://www.youtube.com/watch?v=4lHyTQH1iS8
https://www.youtube.com/watch?v=g_Rz94DXvNo

very important special form of the diagonal matrix is the
identity matrix, with which has 1s as diagonal elements:

1 ... 0

YouTube: Identity matrix
Also frequently mentioned is the zero matrix:

0o ... 0
0=:|: :
0 ... 0

One characteristic specifically of a square matrix is the
trace. The trace is the sum of the diagonal elements:

n

tr(A) =Y aii=an +an+---+dm

i=1
YouTube: See also the symmetric matrix

B Determinant
The determinant gives the area in a 2-by-2 matrix and
the volume in a 3-by-3 matrix. What does it mean when
the determinant is equal to zero for a 2-by-2 matrix? It
means that the area of the matrix is equal to zero and
therefore the vectors that compose the matrix are linear-
dependent. In other words, it means that the vectors
have parallel directions. From high school, we know that
we can describe the position of any point y of a line in a
function as an Origin O and a constant (c) that multiples
a non-zero vector v (y = ¢-v+0). For a plane and space,
any point can be described as a linear combination of two
independent vectors, respectively. Consequently, if the
two vectors are linear-dependent, we are no longer able
to describe any point in the plane, but only the points
that are situated on a line that is parallel to the vectors.
For 3-by-3, a determinant of zero indicates that at least 2
of the 3 vectors are linearly dependent and therefore only
the point located on a plane can be described by this set
of vectors. More generally, a matrix with a determinant
of zero describes a transformation of the system that
reduces its dimensions by 1. It is possible to collapse
a system to lower the number of dimensions, but the
opposite is not possible. Therefore, the inverse of matrix
A with the determinant of A equals zero, which would
geometrically result in an expansion of the system to a
higher number of dimensions. This is not possible.

’a b

det(A) = c d’ =ad — bc.

One possibility for calculating a determinant is via the
initial reduction of the matrix. Larger matrices can be

Chapter 1: Biochemical networks in the matrix form — 7/24

split into smaller matrices with the Laplace expansion:

a b ¢ d
e f g h
i j ko1
m n o p
f g h e g h
=4a-|j k I|-b-|i k I
n o p m o p
e f h e f g
4c-|i j l|—=d-|i j k
m n p m n o

Please pay attention to the alternating signs (+/-).
YouTube: Laplace expansion or cofactor expansion
Laplace expansion can be coupled with the Gauss method,
as shown in Example 5.


https://www.youtube.com/watch?v=iks8wCfPerU
https://www.youtube.com/watch?v=IBgXO5qvbrg
https://www.youtube.com/watch?v=C6fqwDGN0R0

Introduction to Systems Biology: Workbook for Flipped-Classroom Teaching

T T
-1 0 1 2 3
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T T T T T
-1 o 1 2 3

Figure 9. Geometrical interpretation of the matrix inverse and determinant impact. Left: |A| = 1. Right: |A| =3 [4].

Copyright © 2021, Stack Exchange Inc, Licence: CC BY SA.

Example 5: Determinant after reduction with Gauss ™ Inversion

D 13 2 —6 1 3 2 -6
_on-n 12 =2 =5/ 0o -1 —4 1
detd)= m_ oy 2 4 —2 —o|7l0 -2 -6 3
V-2) 2 4 -6 -9/ |0 -2 —10 3

The second row minus Row I, and Row IIT and IV
minus 2 times the first row, gives the right matrix.
Laplace expansion (see later) gives us the lower
right matrix block. Further reduction and an ad-
ditional isolation of the lower right block result in:

e T R (I N S [
m-21 |-2 -6 3/=0 2 1 :‘_2 1‘
m-21) (-2 —10 3| |0 -2

=2.1-1-(-2)=4

A reduction is not always possible. The determinant
of a 3-by-3 matrix can be obtained with the the rule of
Sarrus,’ where the first two columns can be written be-
side the determinant to facilitate the optical assessment
of the diagonal product:

a b ¢ a b a b ¢l a b
d e f| d e d e f| d e
g h i| g h g h i| g &
a b ¢

d e f|=+@eithfgtcdh

g h i| —Cegtafhtbd

Determinants can also be solved efficiently with the LU
decomposition explained in Example 10.
YouTube: The determinant

! French mathematician: Pierre Frédéric Sarrus (1798—1861).

An invertible matrix A has linear-independent rows and
columns. A matrix B is uniquely determined by A, if one
has the symmetric and invertible matrix:

AB=BA =1
with identity matrix I.

Example 6: Inverse interpreted geometrically

Geometrically one can interpret the matrix [4]

21 a) = [2 1]
A= L 1] with related vectors
a) = [1 1]

as an area in a 2-dimensional (2D) coordinate sys-
tem shown in Figure 9 left in red. The shape of the
inverse in blue is rotated by 90 degrees and is small
in the directions where A is large. The vector a” is
at right angles to a;, and a' is at a right angle to as.
The determinant |A| describes the area in 2D and
the volume in 3D. Here, the determinant |[A| = 1 is
one, and the area is preserved. If we change the
matrix

| a) = [2 1]
A= { ] with related vectors
1 2
a) = [1 2]
to get another determinant |A| = 3, we see that the
area is changed.

We use Cramer’s rule:
det(A;)  |A;] .
X; = = i=1,....,n
det(A)  |A|
with the site determinant |A;| to find the inverse analyt-
ically. The cofactors of the Laplace expansion can be



https://www.youtube.com/watch?v=Ip3X9LOh2dk

saved in the so-called matrix of cofactors or comatrix C.
Its transposed version C is the adjugate matrix:

Ch1 Cy ... Cn
1 1 1 Cr Cyn ... Cp
A= C" = —adj(Ad)= —
|A| |A| A| : :
Cin Cu ... Cu

Inversion of a 2 x 2 matrix
Al _a b 1 [d —b]_ 1 [d —b
e d] det(A)|-¢ a| ad—bc|-c a

Inversion of a 3 x 3 matrix

(2 b)) ¢
A= f al=Ler
i A
[ le f d f d e|
+ hoil g i - g h
b c a c a b
c=1" hoil g i g h‘
c a c a b
e #l e gl Tla el
+(ei—fh) —(di—fg) +(dh—eg)]
C=|—(bi—ch) +(ai—cg) —(ah—Dbg)
| +(bf —ce) —(af —cd) +(ae—bd)]
[+(ei—fh) —(bi—ch) +(bf—ce)
C' = |-(di—fg) +(ai—cg) —(af—cd)
+(dh—eg) —(ah—bg) +(ae—bd)]

YouTube: Inverse of a matrix
YouTube: Solve a linear equation set with the inverse of
a Matrix

Bl The rank

Often, matrices derived from linear equation sets can be
reduced, as not all equations are necessary to describe
the system. We often search for the minimal matrix,
which is described by the number of linear-independent
rows or columns. Linear- independent rows and columns
are sets of rows or columns where none of the rows or
columns is a linear combination of the others (example
of linear dependency: Row 1 equals to the sum of Rows
2, and Row 3 or Column 3 is three times Column 1. The
number of linear-independent rows or columns is the
rank of a matrix:

rank(A) = rank(A7) = rk(A)
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This equation states that the rank computed on the rows
is equal to the rank obtained on the columns and there-
fore, by definition, the rank of a matrix cannot be greater
than the number of rows and columns in this matrix. In
other words, if a matrix B has 6 rows and 2 columns, we
can deduce that the rank is smaller than or equal to 2 as
the rank cannot be greater than the number of columns.
Consequently, a non-square matrix has by definition at
least one linear-dependent column or row. For our ma-
trix B, we know that we have at least 4 linear- dependent
rows as we have 6 rows and the rank is smaller or equal
to 2. The Gauss elimination is used determine the rank
of a matrix by producing as many zeros as possible in the
hope of removing as many rows or columns as possible,
which results in the reduction of dimensions.

YouTube: Rank

B Solving a set of linear equation sets

Naive solving of a linear equation set can be very time-
consuming.

YouTube: Naive solving of a linear equation set

We should start to check whether an equation set is solv-
able. The set of linear equations is solvable if the rank of
the coefficient matrix A equals the rank of the augmented
coefficient matrix (A|b).

Example 7: Trivial solution only

2x1+x, =0 1
x1—x=0 1I
gives:
II: X] = X2
inl: 2Xo+x2 =0
X1 = X2 =0

This is a trivial solution. Did we have a chance to
find this out earlier?

We have a homogeneous system with as many equa-
tions m as variables n.

2 1
rk[1 _1] =2=n

which indicates that we only have trivial solutions
according to the Rouché-Capelli theorem. Because
the determinant is also non-zero:

detﬁ _11] =-2-1=-3#0

we would also not expect that the system is going
to lose a dimension. Consequently, we expect only
trivial solutions.


https://www.youtube.com/watch?v=AMLUikdDQGk
https://www.youtube.com/watch?v=a2z7sZ4MSqo
https://www.youtube.com/watch?v=a2z7sZ4MSqo
https://www.youtube.com/watch?v=JUgrBkPteTg
https://www.youtube.com/watch?v=T-b9GbfO9Eg
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rank(A) = rank(A|b)

If the matrix is quadratic with m = n and the determinant
is not zero, then the set of linear equations is solvable.
In a homogeneous system Ax = 0, it only leads to trivial
solutionsaj; =dayz...amy =00rx; =x...x, =0. Inan in-
homogeneous system we get a unique solution. If m <n
the the rows or columns are linear-dependent. Thus,
the related homogeneous system Ax = 0 has non-trivial
solutions, which is good. If m < n, the inhomogeneous
system has many non-unique solutions. The rules are
summarized in the Rouché-Campelli theorem. We illus-
trate this with two examples, 7 & 8.

Example 8: Non-trivial solution

2x1+2x =0 I
—x1—x=0 I
gives:
II X1 = —X2
inl —2X2+2x, =0

choose x, = A to get the solution:

X1\ _ A

X2 o A
What would we expect? According to the Rouché-
Capelli theorem we have many non-trivial solu-

tions because we have a homogeneous system with
fewer equations m than variables n:

2 2
rk[_1 _J =1<n

and the determinant also indicates a loss of one
dimension:

2 2
det [_1 _J =—-242=0

A set of linear equations can be solved with the Rule of
Cramer:
o det(A,-) o |Al| .
x'_det(A)_|A| i=1,...,

using the site determinant |A;|. The side determinant |A;]|
is the determinant |A| where the iy, column is replaced
by column vector b.

YouTube: Cramer’s Rule — 2x2 and 3x3 matrices
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Example 9: Cramer’s Rule 2x2 matrix
Consider the linear system:

anxy +apxy = b

az1x1 +axxy = b

which in matrix format is:

air an| (x| _ |h
a1 axn| |x by|”

The Cramer Rule is then:

by a2
o by axn|  bian—apbh
"“lan an|  anan—anay’
az an
air by
ax by ay1br —byay;
Xy = =
ajy  ap| anan—apna)
a  axn

The denominator (fraction below) is not allowed to
become zero which explains why the determinant
of A must be non-zero.

The Cramer Rule visualizes the resolvability but it takes
too much effort to get the solution. The solving process
is faster when one subtracts rows stepwise from each
other to bring the augmented coefficient matrix into a
certain form. Either in the Gauss form (row-echelon
form):

e o o oo
0O o o oo
(4]d)= 00 0 efe
0 0 0O efe

with as many zeros as possible in the lower left-corner,
or in the Gauss-Jordan form:

e 0 0 Ofe
O o o 0O e
(A12)=10 00 oo
0 0 0O eofe

with as many zeros as possible in the lower-left and
upper-right corner. If one eliminates the elements with
the largest absolute value first, one reduces rounding
mistakes. This is called pivoting. The row-echelon form
becomes a reduced row-echelon form if every leading
coefficient is 1 and is the only non-zero entry in its col-
umn:

(Alb)=

oo — 1k
—_

41 #1
41 #1
0 1
0o 1

[=NeNelle


https://www.youtube.com/watch?v=qmjapjGxf2s

We have three types of elementary row (column) opera-
tions:

e Interchanging two rows (columns)
e Multiplying a row (column) by a real number

e Adding a multiple of one row (column) to another
row (column).

If we bring the Gauss form back to the equation set form,
we get:

ayixy +apxs + +apx, = by
axnx; + +ayx, = b
AmnXn = bp

where we can get our x values by working from the bot-
tom to the top. If it is in the Gauss-Jordan form, we can
directly read the solution.

YouTube: Gauss and Gauss-Jordan elimination
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Additional reading

In practice, software usually uses more efficient
algorithms like the LU decomposition.” The LU
decomposition dissects a matrix A into two fac-
tors: a lower triangular matrix L and an upper
triangular matrix U:

A=LU
ap  app as it 0 O [unr w2 w3
a1 ax ap| = |b1 by O 0 up uxp
az; azy a4y 31 I3 I3 0 0 us;

It resembles the Gauss elimination, whereby the
upper triangular matrix can be compared with
the Gauss form and the lower triangular ma-
trix collects the steps necessary to get the Gauss
form. The diagonal elements are usually set to
onelj; = Iy = I33 = 1 for convenience and because
we have more unknowns than equations. As you
already saw in the Gauss elimination, it is practi-
cal to change row and column entries. Therefore,
algorithms use a permutation matrix P to change
the rows of matrix A and the permutation ma-
trix Q to change the columns of matrix A. A is
multiplied by P from the left and by Q from the
right. A permutation matrix has » 1s and other-
wise zero entries. Each row and each column has
only a single 1. It could look like:

010 1 00
P=|1 0 0] or Q=0 0O 1
0 0 1 010
The LU decomposition is then:

PAQ=LU

The solution of the system with linear equations
can be obtained with setting the LU decomposi-
tion into the general equation set form:

Ax=b =LUx=b =Ly=bandUx=y

Solving first Ly = b and then Ux =y gives us x
as shown in the following Example 10 and the
video:

YouTube: LU decomposition

7 Polish mathematician: Tadeusz Banachiewicz (1882—
1954).



https://www.youtube.com/watch?v=AhUyh-2aPEc
https://www.youtube.com/watch?v=m3EojSAgIao

Example 10: LU decomposition of 2-by-2 matrix

We have the system:

6 1 X1 1

4 2| x| |2
We dissect the matrix A into the lower and upper
triangular matrix:

6 1| _|ln O |un un
4 2] |l 2| [0 ux|’
We obtain the original matrix if we multiply the

lower with the upper matrix. We obtain 4 equations
with 6 unknowns:

1 -u1+0-0=6

hi-uiz+0-up =1

bi-uin+hn-0=4

by -up+ln-up =2
This underdetermined system allows us to set 2
variables to arbitrary non-zero values such as 1 for
the diagonal elements of the lower matrix: /;; =
l» = 1. This is up to you to decide. We would
get infinitely many ways as there are also many
ways to perform a Gauss elimination. We need only

1 convenient LU decomposition. The following
matrix entries are then:

4
uip =6, up=1, 121257 Uz = 3

Substituting these values into the LU decomposi-
tion above yields:

{6 1}_{1 0} [6
4 2|3 1]10
Solving Ly = b gives:
10 [w] [t
o1 el |2
and thusy; = 1 and y; = %. Solving Ux =y
NS
0 % X2 o %

gives us the solution x, = 1 and x; = 0. Let’s check
whether the solution is correct:

< alf-0

|-w.

W —
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Yes, it works.

Extra:

In the Gauss elimination, we would multiply the
first row by % (from L) and subtract this from the
second row:

6 1 ] [6
U=
2 2
4-2.6 2-2.1 0

Determinant:

The determinant is easier to solve with the LU de-
composition because it depends only on the diago-
nal elements. The determinant is det(A) = det(L) det(U).
The determinant of the matrix det(A) = (1-1)-(I1112)-
(ujjun)=1-1- (% -6) = 8 is only dependent on the
diagonal entries.

[SSTNG=
—_

The storage demand for the lower and upper coef-
ficient matrix can be huge. Thus one can make use of
many zero values and use iterative procedures with esti-
mators. An example is the Gauss-Seidel method,? which
needs much less storage but cannot be used for paral-
lel computing. For matrices larger than n = 1000, the
Strassen algorithm® might be faster with lower numeric
stability. Only the Coppersmith-Winograd algorithm*
is even faster but only for matrices too big for modern
computers.

M Eigenvectors and Eigenvalues

Modeling complicated systems can result in very ugly
mathematical problems. Instead of solving these kinds
of problems, mathematicians transform the space until
the problem becomes easier to solve. The solution of
the nice, beautiful system can then be transformed back
to the original space. Imagine, you are sitting in your
room, and you damn the authors of this script, the ex-
pectations, and math in general. Now, you squeeze and
stretch the dimensions of your room until this sheet of
paper becomes infinitely small and your head so big that
you master its challenges without any problem. After
you are done, you multiply your entire existence with
the inverse of the transformation matrix and find a fully
understood and solved script in front of you. How com-
plicated a problem is also depends on psychology. Forget
everything around you; allow yourself to make mistakes
and to be a child on discovery. The exam is not impor-
tant, but the excitement to learn and the willingness to
improve is. This is my favorite psychologic transforma-
tion matrix. Give it a try. So why is this imagination
important for the Eigenvectors? Eigenvectors are the
directions in space, which are not deformed during
transformation. Imagine, everything gets squeezed and

2 German mathematician: Philipp Ludwig von Seidel (1821—1896).

3 German mathematician Volker Strassen (1936—today).

4 Israeli American computer scientist Shmuel Winograd (1936—
today) and American mathematician Don Coppersmith (1950—
today).



changes—just not in the directions of these Eigenvectors.
The directions along the Eigenvectors become merely
scaled by the Eigenvalue. Would it not be wonderful to
see a problem related to these vectors, compared to an
original unfavorable coordinate system? But how can we
find out which directions are not influenced by a trans-
formation? Let’s say we have a transformation matrix A
and look for a vector v that can only be scaled by a factor
but not deformed by a matrix. Then we could just say
that the matrix is only like a factor. Let us call it A and
imagine the Eigenspace:

Av=Av

The idea is not bad, but the right side does not have the
same structure as the left one. The identity matrix helps:

(A-—ADv=0

The matrix (A — AI) should now be singular, to get non-
zero solutions for the Eigenvector v. The Eigenvector
v =0 would be trivial and useless. A matrix is singular
if its determinant is zero:

det(A — AI) =0,

which also means that the matrix is not invertible. We are
interested in vectors, which are scaled but not deformed
by a transformation matrix A multiplied by the left. We
calculate first the Eigenvalues and than the Eigenvectors.

Example 11: First Eigenvalues than Eigenvectors

We take the matrix:

(%)

and get the Eigenvalues by:

3-4 6
A_“:[1 4—7&
detA—Al)=0=(3—-1)4—1)—6
0=A2-71+6

0=A%+pAr+q (p-q-equation)

Mao= S (E>2—f]

2 2
7 ~-7\*
me-1o(F) -
7 5
1112:52‘:5
)C1:1
x2:6
0=(A—-6)(A—1).
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The term det(A — AI) creates a polynomial which
we call a characteristic polynomial with maximal n
solutions for a nxn matrix. Setting it to zero causes
it be renamed a characteristic equation. Now we
have the Eigenvalues A; = 6 and 4, = 1 and search
the related Eigenvectors starting with 4; = 6:

(09 oo
[ e

to obtain the Eigenvector v; = [ﬂ directly. We can

also write it in more detail:

—3v,+6v,=0
ve—2v, =0

resulting in v, = 2v;, for the first equation. The
second equation gives 2v;, — 2v;, = 0 which means
that v, can be everything but the equation set is
still solved. We have infinitely many solutions. So
we can set v, = 2 with which we know that v, must
be one v, = 1. We obtain the non-unique solution

v = [ﬂ . The reason is that we can only stretch the

Eigenvectors.
We proceed with the second Eigenvalue A, = I:

A-Alv=0
36 10
(R
ﬁ g] v=0
to obtain Eigenvector v, = {_13} .

Summary:

1 Use the determinant of (A — A1) to get a polynomial
of degree n.

2 Find the Eigenvalues by identifying the roots of
the characteristic equation with det(A —AI) = 0.

3 Find to each Eigenvalue the associated Eigenvector
via (A—Alv=0.

If all Eigenvalues have another value, we call them sim-
ple and the associated Eigenvectors are independent. If
an Eigenvalue appears several times, we say that the
Eigenvalue has multiplicity k. Software programs like
MATLAB return normalized Eigenvectors with unit length.
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YouTube: Eigenvalues and Eigenvectors

Fast equation for 2-by-2 matrix
For the dimension 2 to 4, we have fast equations to solve
the Eigenvalues. From the matrix:

a b
c d
we obtain the characteristic polynomial:

A—a —b

det{ e A—d

} =A% — (a+d)A + (ad — bc)
=A% — Atr(A) + det(A)
from which we get the Eigenvalues with the equation:

P tr(A) £ +/tr2(A) —4det(A)
— 5 .

with the distance between Eigenvalues:

A=:4/tr2(A) —4det(A)

which will play a role in the stability theory in Block 3.
Additional information: for a matrix of higher dimen-
sion, it already seems to be more complicated.

det(al —A)=0
=’ —a’tr(A) — (x% (tr(Az) - trz(A)) —det(A)
and for Dimension 4 it is not considered overly useful.

Example 12: Get Eigenvalue via fast equations

givestr(A) =4—3=1,det(A) =4(-3)-3(-2)=-6
and the characteristic equation:

0=A2-1—-6=(A—3)(1+2)

with Eigenvalues 3 and -2. The Eigenvectors are
worked out using:

1 3 6 3
a2 avae[S 2]

(3,—1) for Eigenvalue 3 and (1, —2) for Eigenvalue
-2.
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Figure 10. PCA plot of cell lines. Location and sphere size
indicate which cell lines behave more similar than others.
Cell lines which are close behave similarly. Source: [5].
Copyright © 2013, Macmillan Publishers Limited.

B More on biological data as a matrix

Often, the network topology is unknown (but of course
existent). Detected molecules change with time, and
their behavior depends on their connection to other ele-
ments. Among them, interlinked elements correlate or
anti-correlate with each other. The more different pertur-
bations are applied, the more likely a valid connection
can be detected. This is a property which can be used
for, e.g., reconstruction of networks and for data-driven
modeling. The simultaneous observation of more than
one outcome variable is the definition of multivariate
statistics. Related data-tables with multiple variables
are actually nothing other than matrices with molecular
features as rows and experimental datasets, conditions,
or organisms as columns:

Microarray 1
Microarray 2
Cell line 1
Cell line 2

Protein 1
Protein 2

Gene 1
Gene 2

The columns represent the dimensions or coordinate
axes of the data and the rows contain coordinate val-
ues on the given coordinate system. Consequently, each
gene is a vector in a coordinate system spanned by the
matrix columns.

To illustrate the application of matrix calculation, we
will briefly discuss here the statistical method of Prin-
cipal Component Analysis (PCA): sometimes, we want
to know whether the columns, with all the row entries
projecting to them, have subsets that are more similar to
one another than to other data points. Now, imagine a
dataset with 40 coordinate axes representing 40 microar-
rays, and then try to place tens of thousands of points


https://www.youtube.com/watch?v=PFDu9oVAE-g&t=11s

representing genes into this coordinate system. Horri-
ble! But maybe we can find another coordinate system
which is visually more inviting and more informative.
Let’s say 40 data points representing microarrays in a
3-dimensional coordinate system, where the biggest dif-
ferences between the microarrays are selected and are
thus pronounced. The variability in each row causes the
differences between the microarrays. Data analysts use
Principal Component Analysis (PCA) to do exactly this.
One starts with 1 additional coordinate axis which ex-
plains the most variability in the old dataset. This is the
first principal component. The algorithm then searches
for another coordinate axis which is orthogonal (90°)
to the first principal component and again describes as
much variability as possible. This procedure goes on
until all genes project to the new coordinate system. Af-
ter one has all these principle components, one neglects
stepwise the components representing the lowest vari-
ability until 2 to 4 remain. Ideally, the remaining princi-
pal components explain more than 80% of the variability.
Principal Component Analysis is used, e.g., as standard
quality control for microarrays. Are the treated and the
untreated samples in two separate groups? Is one repli-
cate completely different from the others and might it
represent an outlier? As an example, PCA also helps us
to understand the microbiome better. Are different bac-
teria types more closely related to others and how does
it change if they are exposed to drugs or another diet?
A collection of micro-organisms might build one cluster.
After the diet is changed, the micro-organisms might be
found in another cluster. Micro-organisms which have
not changed might not be affected by the diet change. In
Figure 10, you see an example with different cell lines
and their response to TNF-related apoptosis-inducing
ligand (TRAIL) [5]. The dataset contains the base level
of 17 core apoptosis proteins in 11 melanoma cell lines
under different conditions with 612 measurements in
total. The authors used network information to group
proteins to functional network motifs, which allowed
a higher accuracy in estimating the apoptosis-inducing
impact of drugs.

YouTube: PCA step for step
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Additional reading

The PCA is related to the partial least square
regression (PLSR). Here, we separate our data
matrix in two parts, whereby the upper part rep-
resents phenomenological readouts such as via-
bility:

condition 1
condition 2

Viability o o o

Celldeath |, o o
Protein 1 o 0 O

Protein 2 e o o

L] ° [ ]

Both blocks are subject to a dimension reduction
approach but now with the aim to maximize
the co-variance between both blocks. PCA uses
the variance and PLSR uses co-variance. Such
an approach is, e.g., used for systematic drug
testing and for initial hints for network modeling.
An example is shown in Figure 11. The authors
created an high-dimensional data block with 5
different RAF/MEK inhibitors, 7 doses, 5 time
points, 21 protein levels, and 10 other cell lines
[6]. Here, drug dose is the first and drug type is
the second principal component. The adjusted
variable importance in the projection (VIP)
explains which protein had the most prominent
negative or positive impact on the cell viability
at which time. This led to the identification of
a consistent down-regulation of the JNK/c-Jun
pathway upon RAF/MEK inhibitor treatment at
early time points, but an up-regulation of 6 cell
lines at later time points. In 4 out of 10 cell lines,
JNK/c-Jun up-regulation caused a subset of cells
to become quiescent and apoptosis-resistant [6].

We have learned that matrices are used in several
applications in biology. Matrices can represent biochem-
ical networks and data caused by them. In the following
section, we will learn how to work with matrices. These
basics are fundamental for the remainder of the book and
very useful for your career, independent of whether you
want to mainly work with the keyboard or the pipette
in the future. It will help us to analyze and understand
what we do.


https://www.youtube.com/watch?v=FgakZw6K1QQ
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Time (hr)
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Figure 11. After the perturbation of the system with differ-
ent conditions, we see which protein on the left correlates
positively or negatively with the cell variability in differ-
ent cell lines such as LOXIMVI or SKMEL28. The cell
lines behave quite differently. The importance of each
player depends on the time, so phosphorylated Histone
H3 is first correlated with the cell viability after 24h or
48h. Figure source (cropped): [6], Licence: CC BY 4.0.
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3. Exercises

H Representation
Write the following systems of equation in matrix form:

y1 =2x1+3x

Y2 =x2—5x (3.1)
X=1—-x—-y

y=1l+x—y (3.2)
¥1 = O11x1 + 81202 + 813x3

Y2 = 82222 + 821x1 + 8233 (3.3)

¥3 = 033x3 + 830x2 + 831X

Write the following matrix equation as a system of dif-
ferential equations:

d (xi\ (3 -2\ (xi 1
()= )Gy e
M Basic operations on matrices
Perform the following calculations:
3 -2 4 —4
(0 5)6 ) =
3 -2 4 —4
(1 5)‘(3 o) (3.6)
3 -2
5(1 5)2 (3.7)
3 -2\ /4 —4
(1 5)(3 o)_ (38)
4 -4\ (3 -2
G0 )- @)
Transpose the following matrices:
T
3 =2
3 o0
3 2 1\7
1 5 o = (3.11)
2 -1 7
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M Determinant
Find the determinants of the following matrices:

3 -2
G2 o)
3 -2 1
1 5 0 (3.13)
2 -1 7
3 -2 2
1 5 0 (3.14)
2 -1 0
3 -2 2 2
1 5 1 2
» 1 -1 (3.15)
1 2 3 1
B Rank and inversion
Determine the rank of:
3 =2
(6 4 ) (3.16)
3 -2
(6 _3) (3.17)
3 -2 1
1 5 0 (3.18)
1 2 3
1 1 -3
1 -1 2 (3.19)
2 0 -1
Invert the following matrix:
3 -2
(6 . ) (3.20)
2 1 -1
0 2 1 (3.21)
5 2 -3
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M Linear systems of equations

Solve the following systems of equations (Ax = b). Con-
sider thereby the rank of the coefficient matrix A and of
the augmented coefficient matrix (A|b).

2x14+x—x3=0

3.22
Xo+x3=0 ( )
21 +x, =0
R (3.23)
X1 —X2—0
x1+2x =1 (3 24)
X1 +2x =2 '
Sx14+x=2 (3 25)
X1 —2x =17 '
2x14+x—x3=-5 (3 26)

xy+x3=1



Notes
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4. Solutions Task 3.9
Do not betray yourself! 4 —4 3 _2
Exercises (3 O><1 5>
H Representation 12—-4 —-8-20\ (8 28
Task 3.1 9+0 —-6+0) \9 -6
y1=2x1+3x 21 +3x0 =y Task 3.10
Y2 = Xxp — 5x] —5x1+xp =y -
2 3\ /x " (3 —2) :<3 1)
(% D6)-6) s) s
Task 3.2 Task 3.11
T
X=1l—-x—y - <_1 —1)<x>+<1)_<x 3 -2 1 31 2
g -1y 1) =\ 1 5 o] =(-2 5 -1
y=l+x=y 2 1 7 10 7
Task 3.3
B Determinant
Y1 = 011x1 + 012x2 + 013%3 Task 3.12
Y2 = 62x2 + S21x1 + O23%3 3 o 3
¥3 = 033x3 + 83002 + 31X det(1 _5 > :‘1 _5 ‘:(3 5)—(1-(=2))=17
Vi Ot 012 013\ [x
=61 62 O3 b%) Task 3.13
3 01 0% 63/ \n3
3 -2 1
Task 3.4 det{1 5 0]=3B-574(-2-0-2)4+(1-1-(—1))
2 -1 7
d (x1) _ (3 =2\ (n n 1
aln) =1 5 )y NE —(2:5-1)—=(=1-0-3)—(7-1-(=2))
=108
dx1
o~ ot Task 3.14
d
§:x1+5x2 3 2 2
det[1 5 0]=040-2-20—0-0=-22 (4.1)
M Basic operations on matrices 2 -10
Task 3.5
Task 3.15
3 -2 4 4 —4\ (7 -6
1 5 3 0/ \4 s 3 -2 2
1 5 1 2
Task 3.6 2 -1 -1 =2
1 2 3 1
G _52>—<§ 2)4):(:; g) 5 1 2 1 1 2
=3|-1 —1 —=2[—(-2)]2 -1 -2
Task 3.7 2 3 1 1 3 1
1 5 2 1 5 1
5(3 2>:<15 10) w202 -1 —2[—2)2 -1 -1
L5 5 025 12 1 1 2 3
3 o\ /4 _4 +2( 1—2+12+2+6—2)
1 5 3 0)" +2(-1-10+8+24+4-10)

(-4)+(=2-3) (3-(—4)+(-2-00\ (6 —12 —2(=3-5+4+1+2-30)
((1~4)+(5~3) (1-(—4))—1—(5-0))_(19 —4) 138



M Rank and inversion
Task 3.16

3 2\II+2-1/3 -2 .
(—6 4> - (O O>—>Rank1sl
Task 3.17
3 2\II-2-1/3 -2 .
(6 3> _ (O 1)—>Rank1s2
Task 3.18
3 =2 1\I-3-I1/0 -—-17 1
1 5 0 = 1 5 0] —-Rankis3
1 2 3/ III-1I\0 -3 3
Task 3.19
1 1 -3 I—1 1 1 -3
1 -1 2 = 0 -2 5
2 0 —-1/1II-2-I1\0 -2 5
1 1 -3
IH: I -2 5 | »Rankis?2
o 0 0 0
Task 3.20
3 -2
‘6 3‘—9-1—12—21
—1
32\ 1/3 2
6 3 21\—-6 3
Task 3.21
2 1 -1
0 2 1|=-124+5+10—4=-1
5 2 -3
2 1 -1\ !
0 2 1 =
5 2 -3
H2-(-3)~(1:2)]  —[0-(=3)=(1-5)] +[0-2-2-5]
—[1-(=3)=(=1-2)] +[2-(=3)—(-1-5)] —[2-2—-1-5]
+[1-1—(=1-2)] —[2-1—=(-1-0)] +[2-2—1-0]
-8 5 —10\"
=1 -1 1
3 -2 4
-8 1 3
= — 5 -1 -2
—10 1 4
8 -1 -3
=|-5 1 2

—4
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Task 3.22

2x1+x—x3=0
xX24+x3=0

We start with the first equation:

I-1I: 2x;—2x3=0
x=Al: 24-2x3=0

and use the parametric A. Then we solve the second
equation:
x3=Ainll: x+A=0
Xy = -1

and get the parametric solution or general solution (x1,x2,x3) =
(A,—A,A). The matrices are:

21 -1 .
A_<O | l)—>Rankls2
21 —-1]0 .
(Ab)_<0 | 10>—>Rank152.

We have 3 variables but only 2 equations. One of the
variables has to be chosen (or treated as a parameter)
and the solution for the 2 other variables will depend on
this choice or the parameter. Because we have infinite
different choices for this parameter (often called lambda
1), we have infinite solutions.

Task 3.23
2x14+x =0
xl—x2:0
I+1I: 3x; =0
)C]:O
x1=0inIl: 0—x,=0
x2=0

The matrices are:
A= (? 11> — Rank is 2

2 1

(alo)=(7

We have 2 equations and 2 variables with exactly 1 solu-
tion.

0

0 ) — Rank is 2.

Task 3.24
X1+2x =1
X1 +2x =2
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I-1I: 0=-1 4

The equation set is inconsistent. The matrices are:

1 2 .
A= <1 2> — Rank is 1

(Ab):<} §;>—>Rank152.

Task 3.25
Sx14+x=2
X1 — 2x2 =17

Alternative 1:

2-1+11: 11x; =11
x1=1
x1=1inll: 1-2x,=7
XQ=—3

The matrices are:

5 1 )
A= (1 _2> — Rank is 2

5 1|2 .
(Ab)< ] _27>—>Rank152.
We have 2 equations and 2 variables with exactly 1 solu-
tion.

Alternative 2:
We use Cramer’s Rule now with the determinants:

det(A) = ﬁ Ll=0-1=n
det(A ? ! 4-—17 11
=1, _Hl=—4-7=-
det(As) — ﬁ |=35-2=3
which finally give:
det(Al) —11
xl = = — =
det(A) —11
det(Az) 33
x| = ==
det(A) —11
Task 3.26

2x14+x—x3=-5

xp+x3=1

Alternative 1:
We start with the first equation:

I+1I: 2x142x,=—-4
i =Al: 24420 =4
XQZ—Z—A«
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and then we solve the second equation:

X»=-2—-Ainll: —-2—-A+x3=1

=37]

Alternative 2:
2 equations with 3 unknowns. 1 is flexible. Choose

7]

I-1I: 2X1—2X3=—6

I:xp+x3=1

=
(3}

I

|
>

The matrices are:
2 1 -1 .
Az(o 1 1)—>Rar11<152

21 —-115 .
(Ab)—<0 1 1 1>—>Rank152.

More variables than equations. Thus, we have infi-
nite solutions.

The number of solutions of linear equation sets can also
be determined with the Rouché-Capelli theorem” sum-
marized in Table 1.

5 French mathematician: Eugéne Rouché (1832—1910).
Italian mathematician: Alfredo Capelli (1855—1910).
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Table 1. Overview: Solutions of linear equation systems
(Rouché—Capelli theorem)

homogeneity

m equations (homogeneous system)
n variables

Rk(A|b) # Rk(A)  system unsolvable not possible for b =0

Task 3.24 homogeneous systems
always solvable
Rk(A|b) = Rk(A) system solvable
unique solution trivial solution
m=n (x=0)
Task 3.25 Task 3.23

non-unique solution  non-trivial solutions

Task 3.26 Task 3.22
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Chapter 2: Metabolic modeling

Thomas Sauter, Marco Albrecht

Motivation

Metabolism is a mirror of many biological processes and extracellular metabolites can be accessed with relatively
robust measurements. Moreover, basic analysis with a stoichiometric matrix (representing a metabolic network)
can be adopted by many researchers because it is mainly based on linear algebra. However, well-trained experts are
needed for the analysis of dynamic behavior, contextualization, and advanced research questions. Metabolism can
also be analyzed on a large scale, e.g. with graph-theoretical approaches or in more detail with deep, mechanistic,
and dynamical insights. In this chapter, we introduce Stoichiometric Network Analysis (SNA) which is an
approach that is somewhere between detailed and large scale. SNA helps to exclude biologically unrealistic
scenarios and, instead, gives us a variety of possible flux distributions. To thereof identify the biologically
meaningful solutions, we need to constrain the solution space further, e.g. with measurements. We have two
possible methods at hand. Either we impose known fluxes and maximize, e.g. the growth rate in a constrained
model with Flux Balance Analysis (FBA), or we impose measured fluxes and minimize residuals during numeric
matrix manipulations with Metabolic Flux Analysis (MFA). FBA also helps us to solve genome-wide problems,
while MFA scrutinizes smaller models and allows the integration of isotope-labelled metabolites. Either way, the
insight we obtain is crucial to understand the biology of metabolism.

Keywords
Metabolic modeling — Stoichiometric matrix — Flux Balance Analysis — Constraint-Based Modeling

Contact: thomas.sauter@uni.lu. Licence: CC BY-NC

Contents introduced in Chapter 3). Metabolic models can be built
with different levels of detail and in various ways. We
1 Lecture summary 1  start with the following simple classification, in which
1.1 M Stoichiometric Network Analysis . . . . 2 the capital letters in the reactions are the concentrations
1.2 M Integration of experimental data . . . . 11 of substances and the reaction arrows or edges define
1.3 M Constraint-Based Modeling . . . . . . . 14  thereactions, which can symbolize enzymes, fluxes, and
1.4 H Problems & discussion . . . . . . . . .. 18  other transport systems. Principles of mechanism-based
1.5 M Metabolic Flux Analysis . . . . . . ... 19 ~ models and dynamic analysis will be addressed in Chap-
ters 3 and 4 of this book.
References 22
2 Exercises »3 Table 1. Bottom-up approaches:
) interaction-based graph theory
3 Solutions methods
Do not betray yourself! 26 E;
1. Lecture summary (topology)

We learned about the essentials of graph theory and de-
rived the first stoichiometric matrix (Chapter 1). Nodes
and the interaction between them represent the topol-
ogy of networks. Such networks can be written in matrix
form. The introduction to linear algebra was of great
importance to entering the field of metabolic modeling.
Metabolic networks mainly describe enzyme-controlled
fluxes of metabolites within a system. We can now study
different methods for the modeling of metabolic net-
works except for dynamical mechanistic models (to be

© 2023 Thomas Sauter and Marco Albrecht, CC BY-NC 4.0

stoichiometric network
analysis

stoichiometry-based
A+B—C
mechanism-based

A+B%£C+D

-1

dynamic analysis

https://doi.org/10.11647/OBP.0291.02
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1.1 M Stoichiometric Network Analysis
The stoichiometric matrix

For balancing, we need:

m... number of substances
r... number of reactions

n... stoichiometric coefficients
vj... rate of reaction j

njj... stoichiometric coefficient (conversion) of metabo-
lite i in reaction j

S;... concentration of metabolite i (also: ¢;)

These are elements of the following general equation
that describes the change of substrate concentration S;
over time:

das; . 4 )
7 =Si=j;n,'jvj i=1,....m

=njvi+npva+... + R0V

The change of substrate concentrations is a consequence
related to both the general stoichiometry of the reac-
tion network—as indicated in the stoichiometric matrix
N—and the given flux vector v. The respective matrix
representation is:

S:NV S:(Sl,SQ,...,Sn)
V= (V],Vz,...,vr)

and the stoichiometric matrix is:

=1...m

N={my 5 s
The columns of the stoichiometric matrix represent the
reactions and the rows represent the metabolite concen-
trations.

For example, a reconstruction of a "genome-scale net-
work" for E. coli encompasses 1136 unique metabolites
and 2251 reactions. This results in a stoichiometric ma-
trix N with 1136 rows and 2251 columns resulting in
2557136 entries. However, the matrix is usually sparse
and only >25000 entries are actually non-zero [1].

The stoichiometric matrix:

e does not change over time (invariant)
e usually has many zero entries

e contains pseudo-reactions (uptake, excretion, trans-
port, growth)

e is crucial for structural analysis with linear algebra.

2/30

Concentrations are usually written with brackets [ ], but
in the context of this chapter we always assume con-
centrations when using a given molecule name in an
equation, and thus write concentrations without brack-
ets if not stated differently. E.g. we write G6P for the
concentration of glucose-6-phosphate instead of [G6P].
Also note that some reactions can be reversible. In this
case, we can only consider the net reaction rate vy — v,
(from left to right) to create the stoichiometric matrix.
Thus, some fluxes can be negative, if the backward re-
action vy, is larger than the forward reaction v¢. Alterna-
tively, we can split a reversible reaction into two elemen-
tary reactions (see Example 1).

Example 1: Glucose to fructose
PGI reaction: GgP = F¢P

Two metabolites m =2
Case 1: two elementary reactions (r=2):

v=const.

PGI reaction: :

GeP — F¢P

2
nip=-—1;n=1;np=1; npp = -1

v=(3 )

= Sl =G6P=n11vl+n12\/2=—vl+\/2

S» =FeP = np1vi +npvy = +vi — v,

Case 2: one net reaction (r=1):

PGL: GgP —— F4P
nip=—1;ny =1

v=(3)

= 81 =GP=nv=—v

v=const.

So =F¢P=npv=+v

Example 2: Oxohydrogen reaction

Reaction: 2H; + O, v:l 2H,0O
m=3;r=1;n=-2;ny1 =—1; n31 = +2
S] = H2 e (—2Vf —|—2vb) = —2v
= S =0 =(-vt+w) =-n
S3 =H0 = (+2Vf — 2vb) =429



The stoichiometric matrix is:

reactions
~~
Vi
-2\ H;
N=| —11] Oy } metabolites
2 J H,O

with the final representation in matrix and equa-
tion set form:

H, -2 H, = -2

(6)) =1 -1 (vl) =4 02 = —V]

H,0 2 H,O =+2»;
A | %1 Vs |

out Ain Bin Bout

Figure 1. A simple metabolic system. The grey dotted
line represents the system boundary. The A Molecule
is transported from outside to inside and is then con-
verted to Molecule B via two possible reactions. Finally,
Molecule B is leaving the system.

Example 3: Simple metabolic network

As shown in Figure 1, there are two possible ways
to produce Metabolite B, either via v, or v3. All net-
work edges can be weighted so that we do not have
an incidence matrix, but a stoichiometric matrix:

N=|0 1 1 —1|Ban
1 0 0 0 |Aow
0 0 0 1 |Bou

where the reactions determine the columns and
the metabolite concentration determines the row
entries. External metabolites are not balanced in
this approach because the steady state of external
metabolites (in our example A, and B, ) cannot
be assumed. Consequently, we can reduce the sys-
tem to:

Vi V2 V3 V4
N=|1 -1 -1 O0]A
0 1 1 —1|(B
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Example 4: Enzyme kinetics

V] V2
Balancing: E + S Vfl ES = E+P

Resulting in:

S 1 1 0

E| [-1 1 1| ("

Es| ™1 -1 -1 VV*‘
2

P 0 0 1)\

(4x1) (4x3)

C P |

Figure 2. Another metabolic network/system with two
inputs and three outputs. The transport of Molecule B is
bi-directional. The system is controlled by the transport
of the external concentration of A and B and produces
Product P but can also produce B and E.

Example 5: Larger metabolic network

A slightly larger metabolic network is shown in
Figure 2 with the reversible reactions:

rev = {R2,R8}
and irreversible reactions:
irrev = {R1,R3,R4,R5,R6,R7,R9,R10}

Note that the forward reactions (v, : B,y — B and
vg : B— C) were considered in order to create the
stoichiometric matrix N:

Vi V2 V3 V4 Vs Ve V7 Vg8 Vo Vio

1 0 O 0O -1 -1 -1 0 0 0 (A

01 O 0 1 0 0O -1 -1 O0|B
N=|0 0 O 0 0 1 0 1 0o -1|C

0 0 O 0 0 0 1 0 0 —-1|D

o0 0 -1 0 0 0 0 0 1 |E

00 -1 0 0 0 0 0 1 1 |P
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Example 6: Branched metabolic network

Vi 1% V4
= 5 £ 25 =
V3
S3

What does the stoichiometric matrix N and the bal-
ance equation look like?
The stoichiometric matrix is:

reactions

—
V1 V2 V3 V4

I -1 -1 0\$)2
N=(0 2 0 -2]|8,%
0 0 1 0/8)F

The balance equation of the system in the matrix
form is:

) 1 -1 -1 0 :‘
SS|=10 2 o0 -2 vz
S5 0 0 1 0 v3
4
(3x1) (4x4) (axl)

and in the equation set form is:

S] =V —V2—V3
Sy =2vy —2vy4
S3:V3.

System in steady state
Usually we would like to look closer at our system and
see what happens if:

o fluxes are constant and do not change over time

e metabolite concentrations are constant and do not
change over time (S = 0).

Therefore, we look at the steady-state solution:
Nv=0

The steady-state solution is available and appropriate as
soon as the states of the system no longer change and
thus time dynamics are not taking place.

See Example 7 with Figure 3. Here, we have the sit-
uation as described in the motivation: we have many
non-trivial solutions but we do not yet know which so-
lution is biologically meaningful. Therefore, we need
to constrain the system further by integrating experi-
mental data. In the practical work, one rate might be
measured, e.g. vi = 1 and then the other fluxes (v, v3)
can be calculated accordingly.
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Figure 3. Flux distributions of Example 7. The balance
of input flux v; and output flux v3 requires a detour via
Metabolite B with flux v,.

Example 7: Flux in steady state

The system in Figure 3 can be written as a system
of elementary reactions:

0—— A
A——B
A+B==0

and the related equation set:

AZV]-VQ—V3=0 (1)

B=vy,—v3;=0 (2)

which can be written in the matrix form:

-1 -1 "
{O | _1] v| =0 tk(N)=2<3=r
S ) ]

N

v

Because the rank of N is smaller than the number of
reactions, we have to deal with an infinite number
of non-trivial solutions.

Solution: Assume: vi = a.

Beginning with Equation 1:

a—vy—v3=0

Vo =a—Vv3
which is then put in Equation 2:

a—v3—v3=0

a=2v;

a
V3= —
372

which in turn gives the solution if it is put into the
previous equation = v, = a— 5 = 5. The solution
is:

V1 1
va| =a|0.5 ;aeR
V3 0.5



Elementary flux modes (EFM)

If we cannot determine a unique solution of the flux
network due to too many unknown rates (see also rank of
the stoichiometric matrix), then we can study elementary
flux modes and the kernel matrix, both of which allow
us to describe all possible solutions. Some applications
thereof are:

e testing a set of enzymes for the production of a
desired product

e detecting non-redundant pathways
e analyzing effects of enzyme deficiency
e identifying drug targets.

Flux modes describe possible pathways from one metabo-
lite to another if the system is in steady state. Elementary
flux modes (EFM) are a set of non-unique and linear-
independent basis vectors v;, which can be summarized
in the kernel matrix K. The kernel matrix also fulfils the
steady-state relationship:

NK=0

Example 3 delivers for the molecules A and B the follow-
ing stoichiometric matrix:

1 2
1 -1 -1 0 11
N=1o 1 1 1| 7K=|0 1
1 2

r—rk(N)=4-2=2

The kernel matrix K has as many columns as the stoichio-
metric matrix N has linear-dependent columns (number
of columns/reactions r minus the rank of N). The de-
termination of the kernel matrix is shown in Case Box 1.
The EFMs in the kernel matrix are non-unique and can
thus consist of all vectors which:

o fulfil the steady-state condition
e are linear-independent of each other.

Non-unique means that the kernel matrix can have many
different solutions which fulfil the steady-state relation-
ship NK = 0. Often, we are just interested in getting one
of these possible solutions. Now, you could say, you find
more flux modes than the indicated basis vectors (EFM)
in the kernel matrix K. Well, the flux modes v can be
reconstructed by the non-unique basis vectors (EFM) in
the kernel matrix v;:

I II— -1 SII 1210
1 2 1 -1 10 -3
v |[1[&]|1 0f; —1 ; sl =11;...
0 l 1 -2
1 1 — 10 -3
independent dependent
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In our example, another possible kernel matrix would
be:

—_ O =
—_— =

The kernel matrix can provide information about blocked
reactions. Blocked reactions are pathways without a
metabolic flux. Rows in the kernel matrix which have
only zero entries, e.g.:

K=|0 0 0| blocked.

indicate blocked reactions and two examples can be
found in Figure 4a and 4b.

b

—A—B g C R D
BL’
-A—>C
(a) Blocked reactions by dead-end or lack of input.
~ 4

D—

3A—B—C] A
e < =

\A —

/VA C\ >

(b) Coupled reactions reduced (left) and null-space analysis
via the kernel matrix (right).

The kernel matrix also refers to coupled reactions. Cou-
pled reactions are reactions which always appear to-
gether in the same ratio. Their rows only differ—if at
all—in a scalar factor:

-1
1
0

—_— O =

Blocked reactions could be removed and coupled reac-
tions could be simplified, which would reduce the num-
ber of columns r in the stoichiometric matrix so that we
reach another network representation with the property
r—r1kN = 0. Remember that, depending on the rank of
the stoichiometric matrix, we have two possibilities for a
solvable homogeneous system according to Table 2.
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Table 2. Overview: Resolvabﬂity of linear equation sys- Whereby the value 1 is the most frequenﬂy used
tems for metabolic models (Rouché-Capelli theorem). number to simplify follow up calculations. The sim-
homogeneity plification and cleanliness of calculation reduces
N has Nv=b Nv=0 the risk of errors and is thus a smarter choice. We
m metabolites (inhomogeneous system) (homogeneous system) get for the remaining unknowns, the values:
r reactions ’ ’ ’
tk(N|b) # tk(N) system unsolvable not possible for b =0 = ki =0
homogeneous systems 13
always solvable = kia=1
tk(N|b) = tk(N) system solvable
unique solution trivial solution and the basis vector:
m—r (v=0)
777777777777777777777777777777777777777 1
non-unique solution non-trivial solutions 1
m<r = k= 0
1
We either have the trivial solution or the non-trivial so- 2. Basis vector:
lution:

Trivial solution: thermodynamic equilibrium with all Nk; =0
fluxes equal to zero v = 0. ko1

1 =1 =1 07 |kn
0 1 1 —1| |kn
ko4

Non-trivial solution: under-determined system with rk(N') =0

Case 1: Calculate the kernel matrix
which is as an equation set:
A kernel matrix only contains a linear-independent 4
subset of flux I]l;lOdeS, not al}ll. };Fhus it i? a non- = koj—kp—kp3 =0 I
unique matrix. Let’s start with the example:

9 p ks + ko3 — oy = 0 1

N = -1 -1 0 We have 4 unknowns and 2 equations. So, we can

o b1 - set two unknowns to arbitrary values, e.g.:

Nullity = Number of necessary basis vectors: koy =2: kyy =1

rotk(N)=4-2=2 With this choice, we get for the remaining unknowns:
We want to know how many of the reactions r are
not fully determined by the stoichiometric matrix
with rank rk(N). = kay =2

= k3 =1

. and a second basis vector:
1. Basis vector:

2
Nk, =0 1
= k, =
ki1 2 1
L o—1 =1 0] |kz| _, 2
0 1 1 —1f|ks|
kia Building a kernel matrix:
which is as an equation set: 1 2 1 2
1 1 1 1
=  kii—kp—k3z=0 I = K = (k1,k2) = 0 1 “lo 1
kip+kiz—kia=0 I 1 2 1 2

We have 4 unknowns and 2 equations. So, we can
set 2 to arbitrary values, e.g.:

kii=1;, kip=1



Conservation relations for metabolites

If the number of balanced metabolites exceeds the rank
of the stoichiometric matrix, we can identify conserva-
tion relations such as:

NADH]+ [NAD] = const
ATP] + [ADP] = const

This means that some of the metabolites are dependent
on other metabolites and do not act independently. Such
conservation relations can be identified by calculating:

Ny =0

A linear-independent subset of the conservation rela-
tions build basis vectors in the matrix Y. The construc-
tion is shown in Case Box 2.

Case 2: Calculate the Y matrix

A given stoichiometric matrix is:

—1
—1
N= 1

1
Nullity = Number of necessary basis vectors:
m—1k(N)=4—-1=3

We want to know which metabolites can be seen as
dependent on other metabolites in our system. In
our case, we have only 1 reaction but 4 metabolites.
Thus, we have only 1 independent metabolite. The
remaining 3 metabolites depend on the selected
independent metabolite.

1. Basis vector:

Ny, =0

yu
-1 -1 1 1172 =0

Y13

Y14

is the same as the equation:

= —yi1—yi2+yi+yiu=0

We have 4 unknowns and 1 equation. So, we can
set 3 to arbitrary values, e.g.:

yu=1 yp=-1; y3=0
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With this choice, we get for the remaining variable:
= yia=0
and the non-unique elementary flux mode:
-1
0
0
2. Basis vector:
N'y,=0
Y21
-1 -1 1 1172 =0
Y23
Y24
is the same as the equation:
=  —y2u—yn+ynt+yu=0

We have 4 unknowns and 1 equation. So, we can
set 3 to arbitrary values, e.g.:

=1 yn=0; y3=1
With this choice, we get:
= y24 =0

and the non-unique elementary flux mode:

1
0
= Y2 = 1
0
3. Basis vector:
NTy3:0
Y31
-1 -1 1 1172 =0
33
V34

is the same as the equation:

=  —y31—y3+y33+yu=0

We have 4 unknowns and 1 equation. So, we can
set 3 to arbitrary values, e.g.:

v31=0; yp=1; y33=0
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With this choice, we get:
= y34=0

and the non-unique elementary flux mode:

- o = O

Building a conservation relation matrix:

1 1 0 1 10
Ly = -1 0 1 _ -1 0 1
0 1 0 0 10
0 0 1 0 0 1

Each non-unique but independent conservation relation
in matrix Y refers to one linear-dependent row of N. Two
applications can be studied in the Examples 8 and 9.

Example 8: Conservation relations

From the simple hypergraph:
A+B==C+D
we can create the stoichiometric matrix N:

-1
-1
N= 1
1

We have 3 linear-independent basis vectors (m —
tk(N)) because the stoichiometric matrix N has 4
species (rows) and one reaction (rank 1).

In order to find the conservation relations, we cal-
culate the conservation relation matrix using the
transposition of N, denoted N”. The approach to
calculating ¥ was shown in a previous section.

N'Y=0=[-1 -1 1 1]Y=0

yro Y2 y3
1 1 04
— Y=|-1 0 1|B
(4123 0 1 0|c
0 0 1D

The constraint matrix does not only constrain the
network behavior, it also tells us whether a dataset
is of good quality. The constraint matrix multiplied
with the metabolite concentrations ¢(¢) is always
the same:

Y7¢(t =0) = const =¥ ¢(t)

even if compared to the initial concentration ¢(0).
This is useful when we want to perform a consis-
tency check, scrutinized in detail in Example 9.

Example 9: Consistency check

We have a system with 4 metabolites and 2 reac-
tions:
D—+Aand2A +B—C.
The initial concentrations are:
cA (l = 0) = CB(O) = Cc<0) = CD(O) =2.
Two hard-working experimental biologists mea-
sure (independently of each other) the concentra-
tions at the same time point, :
Expl: ca(t) = c(t) = cp(t) = 1 and cc(t) = 3.
EXpZI CA([) = CB(t) =3 and Cc(t) = CD(I) =1.
Can they be right?

1) Stoichiometric matrix:

1 -2
0 -1
0 1
-1 0

N =

If we apply the calculation of conservation rela-
tions:

v a1 0 0 —1], [0
NY=0=1, 1 O]Y_M

You have two possibilities. You can either setY =0,
which is the trivial solution no one is interested
in, or you find non-zero values for this matrix. Af-
ter Gaussian elimination, we obtain the non-trivial
solution:

Y1
v |1 0 0 —1||y=24]| |0
NY=1, 211 o vy | T
y4 =M
We can set two unknowns to the arbitrary values

y4 = A1, y2 = A». Consequently, we obtain for the
remaining unknowns:

yi=A
3 =20+
y! ¥
M 1 0, , [t o
y=| A |[=4{0]+0|1]| ™S ¥Y=|0 1
20 + Ay 2 1 2 1
A 1 0 1 0

After we obtain the ¥ matrix, we can perform the



consistency check with:

Q'\‘\/
ala s & &
[1021]213_¢/4$’4$“
0 1 1 0] |21 3  [8 86
2 3 1 {444}
2 1 1

or written differently:

oy =24042-242=8; y*=0+24+2+0=4
Exply! =14+0+2-3+1=8; y>*=0+1+3+0=4
Exp2:y! =34042-1+1=6; y*=04+3+1+0=4

This indicates that Experimental Biologist 2 had a
bad day and made a mistake.

Conservation relations

A=¢-B (e.g. ATP=const—ADP)
Metabolite A depends on B

z
< £ Left nullspace
1
€19
= Elementary flux modes
(]
2 AL BS ¢ (blocked)
Z e Right null- Neglectable reaction
= v space
<2 o
A= B> C (coupled)

Reducible reaction
Reactions r

rk(N) r-rk(N)
Figure 5. Nullspace scheme. If the column space is larger
than the rank, we can obtain elementary flux modes.
If the row space is larger than the rank, we can relate
some metabolites to the metabolites being considered
independent.

Nullspace to identify conserved metabolites or coupled and
blocked reactions:

The nullspace represents linear-dependent vectors that
fall into the origin of the independent vectors, as shown
in Figure 5. An excess of metabolites can be described
as dependent on the core metabolites and then the left
nullspace disappears. An excess of reactions can contain
either blocked reactions, which can be ignored, or cou-
pled reactions, which can be pooled. In both cases, the
column space can be reduced after the identification of
the elementary flux modes.

We learned that a linear-independent subset of elemen-
tary flux modes is in the right nullspace NK, and that a
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linear-independent subset of the conservation relations
is in the left nullspace:

YIN=0" = Ny =0.

Both matrices contain basis vectors, from which in-
finite many vectors can be generated. The matrix N is
either multiplied by the kernel K from the right or by the
matrix ¥ from the left, as shown in Figure 6. This makes
sense because we know that the stoichiometric matrix N
contains the information of the reactions/fluxes in the
columns and the metabolites in the rows. During matrix
multiplication, matrices from the left conserve the row
space of N representing metabolites (conservation rela-
tions) and matrices from the right conserve the column
space of N, representing reactions (stationary fluxes).
Remember that the number of columns of the left matrix
must equal the number of the rows of the right matrix:

Y
B Y

e | -]

with o, 8, and y representing the number of columns
and rows.

Example 10: Demonstration of equivalence

Show that:
N'y=0cY'N=0"

is true for Example 9:
The stoichiometric matrix N:

-1
-1
1
1

N =

and the conservation relation matrix Y are:

1 10
-1 0 1
0 10
0 0 1
Case 1: N'Y =0
1 10
-1 0 1
e TS 1 P
0 0 1
=[-1+14+04+0 —1-0+1+0 0—1+0+1]

=0 0 0
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reactions
) vy vy [V vy
conservation relations é S, elementary flux modes
YIN=0 N=2F5 LS,
N is multiplied by YT from the left - g S N is multiplied by K from the right
- left nullspace = 3 || - right nullspace

Figure 6. Nullspace scheme: The stoichiometric matrix is either multiplied by the left to obtain the conservation of
metabolites or multiplied by the right to obtain conserved reactions.

Case 2: YIN =07

1 -1 00 :1

10 1 0f |,

0 1 0 1],
[(1-—1)+(=1-=1)+(0-1)+(0-1)

= (I-=1D)+0-=1)+(1-1)+(0-1)
| (0-—=1)+(1-—1)+(0-1)+(1-1)
[—1+1+0+0

=|-1+0+1+0
| 0—140+1
[0

=10

0



1.2 M Integration of experimental data

The balance equation Nv = 0 is frequently underdeter-
mined and rates have to be measured. A smart idea to
separate the balance equation into a measured part and
an unknown part:

Nv=0

()0
Ym
Nwv,+N,v,=0

Nuvu = _vam
v. =N, (—=N,,v,)

to obtain an inhomogeneous linear equation set.

As you can see, we are interested in v, and need the
inverse of the stoichiometric matrix. The inverse N, is
often not available, and the measured matrix entries are
hardly exact in reality due to measurement noise, which
leads to inconsistencies.

The basic integration of data can be studied in a well-
posed Example 11 with Figure 7, and more generally in
Example 12 with four typical scenarios.

Figure 7. Reduced network of glycolysis from glucose
to phosphoenolpyruvate with measured and unknown
rates.

Example 11: Glucose to phosphoenolpyruvic acid

For this small metabolic network and model (Fig-
ure 7), we assume that all components outside the
system boundary can be neglected. The system
boundary can be freely chosen and might, in this
case, be the double-lipid layer of the cell membrane.
We are interested in the steady-state concentration
of glucose-6-phosphate (G¢P), dihydroxyacetone-
phosphate (DHAP) and phosphoenolpyruvate (PEP).
The balance equation for those metabolites in steady
state is:

GeP

DHAP | =0
PEP
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If we insert the measured values from Figure 7, we
obtain:

1.4
-1 -1 0 V2 1 0 |
<10 2 -1 vi|=—10 O (14)
0 0 V4 0 -1 '
-1 -1 0 V2 —1
<1 0 2 -1 vi|=10
0 0 1 V4 1.4

We now multiply each side by the inverse from the
left to obtain the identity matrix:

V) -1 =3 I\ /-1
l=(0 3 5 ](0
V4 0 0 1 1.4
Vo 0.3
V3 =10.7
V4 14

and now we know that the fluxes in Figure 7 are
v, =0.3,v3=0.7,and v4 = 1.4.
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Measurement scenarios

Stoichiometric Network Analysis delivers physiological
snapshots and is good for testing "if-then" scenarios. It
also helps us to see how measured flux rates influence
other rates via sensitivity analysis. However, the mea-
sured rates are often not sufficient, and loops and alter-
native pathways might cause problems.

The dissection of our stoichiometric matrix into mea-
sured and unknown parts reveals the problem of calcu-
lating with an inverse matrix:

V=N, (—N,v,)

As the inverse N, ! is often not available and measure-
ments are never perfectly correct, we use an approxi-
mated matrix. The Moore-Penrose pseudo-inverse'?
N is available for all matrices. Any mathematicians
or physicists among you might enjoy a review of this
method [2]; all others might just use the MATLAB com-
mand B = pinv(A). Moreover, we use the kernel matrix
K, with related arbitrary vector a so that K,a =v.

The final equation might be:

v,=—N'N,v,+K,a

whereby we have 4 cases, which depend on the number
of unknown reactions x and the number of metabolites
m. The 4 cases are:

e determined: rk(N,) = x. All rates can be deter-
mined.

e underdetermined: rk(N,) < x. Not all rates can be
determined.

e not redundant: tk(N,) = m.
e redundant: rk(N,) < m. Inconsistencies likely.

and are presented in the following matrix as an example:

Vi V2 V3 V4
N=|1 -1 -1 O0|A
0 1 1 -—-1|B

Example 12: Principal measurement scenarios

Here are four different cases for stoichiometric net-
work analysis. Red fluxes are measured.

a) The first case describes a determined, non-redundant
system. We know that the input of the systems
needs to be equal to its output, thus v| =v4 =2.
Asvy =0, and vy +v3 = v =v4 =2, we can easily
calculate vz = 2.

1 American mathematician Eliakim Hastings Moore (1862—1932).
2 Swedish geodesist Arne Bjerhammar (1917—2011).
3 English mathematical physicist Roger Penrose (1931—today).

0
2 Y U4?
<5 B_>
X
V37

b) The second case describes an underdetermined,
non-redundant system. We know that the input of
the systems needs to be equal to its output, thus
vi = v4 = 2. The fluxes v, and v3 do not correspond
to a single solution but the sum of their fluxes needs
tobeequalto vy +v3=v; =v4 =2.

v,7?
v,?
B—»

v3?

¢) The third case describes a determined and redun-
dant system, in which v; and v4 are inconsistent.
The input v; =2 does not correspond to the output
V4 = 3.

0
2 O 3
v37?

d) The last case describes an underdetermined and
redundant system, in which v; and v4 are inconsis-
tent.

v,?

A B-C
o7 v

Case 1: determined, not redundant (Ex. 12a)

-given:

Vi W2 V3 W
1 -1 -1 0
O S
-check: rk(N,) = x = m =2 — determined, not re-
dundant

12/30



-result:
0 _ -1 0
K, = [0}; NZ—_NMI—_ [ | 1];

Yy = |::3:| = *NszVm +Kua = |:2:|
4

Case 2: underdetermined, not redundant (Ex. 12b)

-given:
vm=[v]=[2]; x=3
Vi Va2 Vi V4
1 -1 -1 0
T F]
-check: rk(N,) =m =2 < 3 =x— underdetermined,
not redundant

-result:
1 -05 0
K,=|-1|; Nt'=|-05 o0|;
0 -1 -1
Vv 1 1
Vo= |v3| =-N'N,v,+K,a=|1|+|-1|a
V4 2 0

Case 3: determined, redundant (Ex. 12c)
-given:

Vi 2

Vim = (V2| = 0 , X= 1

_V4 3

Vi V2 V4 V3

(1 -1 0 -1
DRI

-check: rk(N,) = 1 =x < 2 =m — determined, re-

dundant
-result:

N, =

K,=[0]; Nf=[-05 05];

Inconsistent and redundant scenarios might be
forced to consistency with ¥ = ¥4 =2.5 (SSR, com-
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promise between 2 and 3):

vy = [v3] = —NiN,v, +K.a

2.5
1 -1 0

—[-05 0.5][ } 0|+[0]a
0 1 —1f|,

=25
With weighted estimator processes, one could thereby

consider the variance (measurement error).

Case 4: underdetermined, redundant (Ex.12d)

==l
ely 3 e[ ﬂ

-check: tk(N,)=1<m

-given:

=x =2 — underdetermined,

redundant
-result:
1 —-0.25 0.25
K, = [_J ; Nﬁ: [_0.25 0.25] — get no rate;

Inconsistent, redundant scenarios might be forced
to consistency with ¥ = ¥4 =2.5 (SSR):

Vs X
v, = vj = —Nﬁva,,, +K,a

_[-025 025|(1 0|25 n 1 a
— |-025 025| |0 —1] |25 -1
125 + L,

S 125 -1

An underdetermined and redundant system can

also have rates, which we can calculate. An exam-
ple is rate vs.
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1.3 M Constraint-Based Modeling

Flux Balance Analysis (FBA) [3] is a widely used method
within Stoichiometric Network Analysis to determine
possible flux distributions. It can be conducted with
a more general Constraint-Based Modeling approach
(CBM), thereby allowing the integration of more infor-
mation beyond the steady-state assumption. Possible
applications are:

e Prediction of phenotypes
e Prediction of mutant behavior.

We will now step-by-step introduce FBA and CBM. In
the beginning, the solution space can be considered un-
constrained, meaning that any reaction can carry any
flux. Then, we apply constraints, such as the mass bal-
ance constraints imposed by the stoichiometric matrix S.
YouTube: FBA

The basic idea: start from all possible fluxes and incor-
porate further constraints to limit network behavior to a
smaller and thus more informative solution space.

A Flux space
J Constraint 2

Real solution

Constraint 1

A
>

%

The lower v,,;, and upper v, bounds of a reaction are
thereby also taken into account.

Main applied constraints

- Mass conservation: (Nv =0)

The material that is entering via the influx does not get
lost or accumulate (steady-state assumption). The out-
going fluxes need to balance the incoming fluxes for each
balanced metabolite. However, the fluxes are often given
in mole per time. Metabolites might be split during bio-
chemical reactions and thus the respective molar fluxes
multiply accordingly. But the mass remains the same.

Uy
2 A/
Py

. |
A=vi—vy—v3=0

= V+V3 =V

eg. vy = 1:
Case 1: vy =0 — v3 =1 — mark point:(v; = 0;v3 = 1)

Solution space —» not unique
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Case 2: v3 =0 — v = 1 — mark point:(v, = 1;v3 =0)
Case 3: v3 = % — vy = % — mark point:(v, = %;V3 = %)

U3
1

1N\,
- Reaction reversibility:
Irreversible: v; > 0
Reversible: —inf < v; <inf
e.g. v2,v3 > 0 (irreversible)

V3

1

V2

- Boundary conditions:
imposed by experimental setup or measurements, e.g.,
stationary continuous cultivation:

(e.g.=0.1h71)
vj = V; = const.

u=D

- Enzyme capacities:
eg. Vj < Vj max

(maximal catalysis rate):

- Thermodynamic constraints: based on chemical poten-
tials:

Vj min < Vj < Vi max


https://www.youtube.com/watch?v=eNo7NeQPA2c

=,

0.5

0.5 1™ v

The constraint-based model:

We end up with a constraint-based model for which
we can use an optimization algorithm—such as linear
programming—to find the best possible flux combina-
tion to maximize (or minimize) a given objective func-
tion F = CTv. The coefficient matrix C thereby defines
which flux(es) shall be optimized. This optimization is
constrained by the system in the steady state itself Nv =0

but also by all incorporated equality and inequality con-
straints:

maximize Clv=civi+covm+...4+cv,
Vaim
subject to Nv=0
0<v; ; some j

vj=7V;=const. ;some j

Vimin < Vj < Vjimax ;SOmMe j

We obtain a system of linear equality and inequality
constraints. This also defines a cone in the v-space, as
shown in Figure 8.

Example 13: Apply the constraints and optimize

We have the simple system:

v U/ZV
1
@

with:
e mass constraint: vi = vy +v3
e reaction irreversible: v, > 0,v3 >0
e enzyme capacity: vi <1
Solutions space? Unique solution?

v3/\
1

17,
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The idea behind this is that biological systems are
evolutionarily optimized to maximize a certain be-
havior such as:

e maximal growth yield (microorganism)
e maximal growth rate (microorganism)
e maximal energy production (mitochondria)

e maximal yield of product (genetic manipula-
tion by human).

We optimize the objective function F with:

F=CT v — max

eg. F=[0 1 0] [vz| - max

Optimal solution

/

1t v,

The solution is obtained by linear optimization,
which is fast and reliable. We use software for it,
although we have the problem that the algorithms
usually compute only 1 optimal solution. Other
equally optimal solutions might exist and need to
be determined by corresponding algorithms (like
flux variability analysis or random sampling).

We could now also include an enzyme capacity e.g.
v <0.6:

USA

N

™~ 1;2

Then, the optimization does not result in a single

solution. Instead all values 0 < v3 < 0.4 are possi-
ble.

What would happen if we impose v3 = 0.5?

=vi=m+rv3=06+05=11<1 %
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V3 V3 V3
A ] A
constrain
1) Sv=0 optimise
2) Vi,min <V; <Vi,max max vs
— >, - 1 Vi
unconstrained constrained ootimal solution
solution space solution space P
V2 Vo Vo
V3 V3 V3
)F A A
N
Vamax4 - - = = = == —— = 1\
V3 max = =
) S 'i\ ) V2 ) V2
max catalysis rate
Y Vo + V3= Vi= 1 max Vs

of the enzyme

Figure 8. FBA and constraint-based modeling.

Top: Stoichiometric Network Analysis might leave a large solution space. Due to the mass balance constraints
imposed by the stoichiometric matrix S and the upper and lower bounds of a reaction, one obtains a constrained
solution space (red). This space is used by optimization algorithms to find one optimal solution for biomass (for
example).

Bottom: One constraint captures the maximum turnover velocity of an enzyme v3 max < 1, which is combined with
another constraint v; = 1 from measuring this rate. We know then that the sum of the v, and v3 fluxes must be 1 as
well (dark lines). The red area shows the constrained solution space for an alternative v; constraint: 0 <v; <1.
After maximizing v», it becomes clear that the enzyme responsible for v; has to be inactive in order to maximize v,.
Adapted from [3]. Copyright © 1969, Nature Publishing Group.

Example 14: FBA example that the influx is fixed:
Given a simple network: vi =1
Vi s V2 We can further assume that some fluxes depend

on enzymes with limited capacity v3 < v3 e and
assume that one flux such as through the biomass

V3
reaction has to be maximized:

V1
maxF:CTv:[O 1 O] | =v

. | V3
S=V1—V2—V3=0

with mass conservation Nv = 0 leading to:

Vi = vy + V3. The optimal solution is v, = 1.

We assume that all reactions are irreversible and
the respective rates are thus positive:

v2,v3 >0

We can introduce boundary conditions, such as
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Aou[ Bout Pout Eout Aout Bout Pout Eout
1 v, 1 21 IR ] R 1T, S
B | — B\

v 4 .;U's*\

3 A#C (21 P ‘ V1o p

| 10 !

S D 1 D E

maximize Poy¢ with fixed Agyt and no Boyyt. We obtain two extreme linear-independent solutions: the first solution
with direct flux from A to B and the second solution indirect via C. The last scheme represents infinite solutions
with different ratios of the two extreme pathways from A to B.

Example 15: Opt. flux balance for Pext without Bex;

We use the metabolic network shown in Example
5 and Figure 2. We search for the optimal flux
distribution for blocked B.,; and maximized P,
as, shown in Figure 9 with objective function F =
C'v:

maximize CTv = (0,0, 1,0,0,0,0,0,0,0)v = v3
With constraints:
e Nv =0, according to Example 5.

o Set fluxes vi = 1 (uptake) and v, =0 (no up-
take) according to the available measurement
information.

e Lowerbounds vy, =(1,0,0,0,0,0,0,—inf,0,0)
Upper bounds vmax = (1,0,inf,.. . ,inf).

The resulting infinite solutions (linear combina-
tions from the first two solutions) are illustrated in
Figure 9.

Always check uniqueness.

Optimization after knockout:

Another optimization example is shown in Figure 10.
The central metabolism across different related organ-
isms is especially well-conserved while pathways with
less evolutionary pressure might be less optimized. One
can also assume that organisms optimize their program
after knockout experiments, as shown in Figure 11 and
studied e.g. by Segre et. al. [4].

Figure 10. FBA constrains the solution space. If we only
consider fluxes v; and v,, we can either optimize for v;
or v, alone, or we can optimize for the sum of the fluxes
of vi +vy.

FBA of knockout
A (optimal)
v
2 FBA of wild type
(optimal)

N

e
FBA of knockout
(suboptimal)

Objective function
max CTv = c;v; + ¢,

-
U1

Feasible space of
wildtype

Feasible space of
knockout

Figure 11. Evolutionary adjustment after knockout of
a gene and its respective reactions. After a knockout,
the feasible space is reduced and a suboptimal solution
might be present. With time, the evolutionary optimiza-
tion step b results in a new optimal flux distribution in
the reduced solution space. Figure guided by [4].
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. roblems iscussion — Unique value of the objective function ('growt
1.4 H Probl & di i Uniq lue of the objective f ion ('g h’
False positive and false negative prediction of gene/reaction - Existence of infinitely many optimal solutions
knockouts with optimal value of objective possible.

False positive prediction (the organism does not live in ' ' . '

reality after the knockout although the model states that e Without incorporating further constraints often
it should): poor performance in predicting flux distributions.

o Kinetics / regulation not considered in the model

o Neglected side-effects, e.g. toxic intermediates.

False negative prediction (the organism does live in re-
ality although the model states that it should not):

e Proof for incorrect network structure — Quality
control & iterative model refinement possible.

Limited applicability

e Steady-state assumption — no dynamics consid-
ered, e.g. accumulation of metabolites

e Focus on mass transfer — barely applicable to cel-
lular information processing.

Objective function

e Strong dependence of results on choice of objective
function

e Use of 'natural’ objective functions such as growth:

— Not applicable to all organisms (e.g. cells in
multicellular organisms — cancer)

— Not applicable under all conditions (e.g. after
perturbation of an organism)

e Alternative/ conflicting numerical approaches for
optimization

o Alternative approach for fluxes: principles of flux
minimization (~ effort for establishing a network).

Alternative optima

e Linear programming problem: finding a solution
can be guaranteed



1.5 B Metabolic Flux Analysis

Metabolic flux analysis (MFA), together with '3C-labelled
isotope experiments, improves the characterization of
fluxes and is called isotope-based flux analysis. Different
experiments using labelled isotopes are summarized in
Figure 12 together with the two possibilities of stoichio-
metric network analysis without isotopes. We do not go
into detail but you are encouraged to study Figure 13
and the referenced paper.

Metabolic flux analysis gives us deeper insights into
metabolic processes. See also the following reviews
[5, 6]. The models remain small. See also Figure 14
for a comparison with the previously described Flux
Balance Analysis (FBA). FBA returns a larger solution
space, which is more helpful for large metabolic net-
works. However, these solutions might contain different
flux distributions that can all maximize the assumed cel-
lular objective, i.e. growth or biomass production [5].
The different principles of MFA and FBA are reflected
by two major optimization strategies in computational
biology shown in Figure 15. Either one imposes the mea-
surements and either tries to reduce the sum of squared
residuals, or one defines boundaries in which the func-
tion is forced to stay.

Isotopic Steady State

NO TRACER YES NO
A MFA B 1c.MFA C  13c.NMFA

Flux ! ! Flux ! ! ! ! Flux
o 13C-labeling
i)
>
®
Qo time —> time —> time ——>
]
o D DMFA NECEnD E  13C.DMFA
[}
e}
*g % — Flux
=

— Isotopic Labeling

! Measurement

time —> time —>

Figure 12. Isotope experiments for dynamic and steady-
state MFA. The blue line represents metabolites and not
fluxes. Source [5]. Copyright © 2015, Oxford University
Press.
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Cell culture

Labeled Measure

Substrate

Simulate Metabolite labeling

i g‘w'g

uenj:imde. J ’%& s

5| B3A%S
-

& > 8 Compare
1\ imn
a0
F€>D—>¢ Lack of fit

30¢ 70
ey

MO M1 M2 M3

B simulated

Adjust fluxes B Measured

Figure 13. Isotope tracing and '?C-metabolic flux analy-
sis. "In simple metabolic networks, each pathway pro-
duces a unique labeling pattern in the final product, and
the resulting mass isotopomer distribution provides a
direct measure of relative flux in the network. Mass iso-
topomers are molecules with the same chemical formula
but different molecular weights due to varying incorpo-
ration of heavy isotopes. They are denoted M0, M1, M2,
etc., in order of increasing weight. In complex networks,
a computational model is applied to determine fluxes
by minimizing the lack of fit between simulated and
measured labeling patterns at multiple pathway nodes.
The flux parameters in the model are iteratively adjusted
until the optimization converges". Direct quotation: [7].
Licence: CC BY-NC-SA 3.0.



Introduction to Systems Biology: Workbook for Flipped-Classroom Teaching 20/30

Flux balance analysis Stoichiometric flux analysis Isotope-based flux analysis
(FBA) (MFA, DMFA) ('*C-MFA, '*C-NMFA, '3C-DMFA)

( ) ( ) ( )

Large-scale model Small-scale model Medium-scale model
(e.g. genome-scale) (simplified) (central metabolism)
Maximize Vgrouin Minimize SSR Minimize SSR
st. Sxv=0 Sxv=0 Sxv=0
LB<v<UB Rxv=r fisotopomer(X;V) = 0

!

V4

V.
2 A

Flux solution space Simplified . .
Metabolic flux map Detailed and precise

\ ) \ ) \ Metabolic flux map )

Figure 14. Overview on methods. Each of these methods uses mathematical optimization to approach the measured
data. S x v = 0 corresponds here with Nv = 0 and R x v = r corresponds here with N,v, = —N,,v;,. FBA: fluxes are
balanced until they remain between defined lower (LB) and upper (UB) boundaries. MFA: numeric adjustment
to minimize sum of square residuals. DMFA: dynamic metabolic flux analysis. SSR: sum of squared errors of
prediction, either without isotopes (Stoichiometric Network Analysis) or with isotopes (isotope-based flux analysis).
Source: [5]. Copyright © 2015, Oxford University Press.




Measurement-based fit (MFA)

Minimize SSR
@

® e
:I:Minimize SSR

Constraint-based fit (FBA)

Maximize gain

Figure 15. Conceptual illustration of fitting a function
to measurement data vs. constraining it: Functions can
be fitted in at least two ways. The most frequent is the
measurement-based fit. Mean values (red dots) are im-
posed and a function (blue line) shall come close enough
to the function in order to fit, usually by minimizing the
sum of squared residuals (SSR). The second possibility
is the imposing of constraints. The function has to stay
within the bounds. The latter can also be based on mea-
surements, e.g. by using mean +/ standard deviation as
the maximum and minimum values.
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2. Exercises

M Stoichiometric matrix N
a) Formulate N for the following biochemical system:

vi:E+S=ES
v:ES—E+P

b) Formulate N for the following biochemical system:

vi:E4+S=ES
w.:ES—E+P
vi:E+I=FEI
va:ES+I1=ESI
vs:EI4+S=ESI

c) Formulate N for the following biochemical reaction
chain:

VI vy V3o vq Vs
A=B=C=D=E=A

d) Extract the biochemical reaction of metabolites S|
to S5 from the following stoichiometric matrix N:

1 -1 0 O
0o -2 0 0
N=|0 1 -1 0
0O 3 -1 0
o 0 2 -1

B Flux Balance Analysis (FBA)
The following biochemical equation system is given:

Vi —=A © ©)

. —B .'4 _____ L -,
v:A—=C EA Bi
B C | e |
vs:B—D i__?____]_f__i
v6:C— O
vi:D—> g

Under the steady-state condition, the following rates
were measured: vi =1, v, = 1, and v; = 0.5. Calculate
the remaining rates v3 to vg, applying the methodology
of Flux Balance Analysis (via N and by dividing the
balance equation into known and unknown parts)! To
make your life easier:

-1 0 0 0 -1 0 0 0
0 -1 -1 0| |0 -1 0 -1
1 1 0 -1 ~fo o o 1
0 10 —1 -1 -1 -1
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M The kernel matrix K
a) Calculate the kernel matrix K of the following stoi-
chiometric matrix N = (1 1 -2.)

b) Determine dead ends and unbranched reactions
pathways, given the following kernel matrix K:

-11 0 0
0 0 -1 2
-1 1 0 O
0 0 0 O
k= 1 2 -1 0
0 0 -1 2
-1 1 0 O
-2 0 0 1

B Constraint-Based Modeling of an example network
An example network is composed of substrates (51, S2),
intracellular metabolites (4, B, C), and the biomass (X).

o The following reactions v to ve take place:

vi: S —A
v:S —B
:C—X
v4:A—C
vs:B—C
ve:A=HB

e Reactions vy, v;,v3,v4, V5 are irreversible.

e For v, a maximal enzyme capacity is given: ve <

V6,max-
e Due to the experimental setting, v is fixes to v3 = D.

Questions:

a) Draw the biochemical network based on v; to vg
and the irreversibility information.

b) Formulate the balance equations for the intracellu-
lar metabolites A, B, and C in steady state.

c) Replace v3 by D in the resulting equations. Keep
v1 and vg as variables and solve for v,, v4, and vs.

d) Apply the irreversibility information of v; to vs and
extract therefore (several) inequality constraints
for the remaining variables v; and vs.

e) Mark the possible solution space using a v over v
plot using the obtained inequality constraints and
the enzyme capacity ve mqc. Distinguish thereby
two cases:

1) V6,max >D
2) V6, max < D
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f) Give the (unique) solution for the case v > D while
optimizing for ve — max (Remember that when
not otherwise indicated, the maximization of a re-
versible reaction implies the maximization of the
production of the metabolites on the right side of
the equation).



Notes
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3. Solutions

Do not betray yourself!

B The stoichiometric matrix N
Task a) Formulate N for the following biochemical sys-
tem:

Vi:E+S=ES
w.ES—E+P

The solution is:

V1 V2

-1 1 |E
-1 0]S
1 —1|ES
0 1|P

N=

Task b)
tem:

Formulate N for the following biochemical sys-

vi:E+S=ES
v ES—E+P
w:E+I=EI
va ES+I1=ESI
vs:EI+S—=ESI

The solution is:

Vi
-1
-1

1
0
0
0
| 0

V2
1
0
—1
1
0
0
0

V3
~1
0
0
0
—1
1
0

V4
0
0
—1
0
—1
0
1

Vs
0
—1
0
0
0
~1
1

EI
ESI

Task ¢) Formulate N for the following biochemical re-
action chain:

A=B=C=D=E=A
The solution is:

Vi V2 V3 V4 Vs

-1 0 0 O 1 [A
1 -1 0 0 O|B
N= 0 1 -1 0 0]C
0 O 1 -1 0]|D
0O 0 O 1 —1|E

Task d) Extract the biochemical reaction of metabolites
Sy to S5 from the following stoichiometric matrix N:

121 %) V3 V4
1 -1 0 0[S
10 2 0 0|s
N= 0 1 -1 0S8
0 3 -1 0|[S8
0 0 2 —1|S8;s
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The solution is:

Vi —= 8

v 1 81+28 — S3+38,
v3 1S3+ 854 — 285

Vg .85 —

B Flux Balance Analysis (FBA)
The following biochemical equation system is given:

Vi@ —A @ @
w:.:Jd—B .‘4“"#‘.
v:A—=>C EA BE
4B C i é/];
e W
vi:D— O

Under the steady-state condition, the following rates
were measured: vi =1, v, = 1, and v; = 0.5. Calculate
the remaining rates v3 to vg, applying the methodology of
flux balance analysis (via N and by dividing the balance
equation into known and unknown parts)! To make
your life easier:

-1 0 0 0 -1 0 0 0
0 -1 -1 0| [0 -1 0o -1
1 1 0 —-1] ~lo o o 1
0 0 1 0 1 -1 -1 -1

The solution is:
From the biochemical equation system we get:

Vi V2 V3 V4 Vs Ve \ %
1 0 -1 0 O 0 0\A
N=|01 0 -1 -1 O 0 |B
0 0 1 1 0o -1 0 |C
00 O 0 1 0 —-1/D

1
1
10 -1 0 0 0 0 0
01 0 -1 -1 0 of|”] Jo
00 1 1 0 -1 of|l™]| 1|o
00 0 0 1 0 —1)]|"5 0
V6
0.5

Removing columns that corresponds to vy, v2, and v7:



-1 0 0 0\ [/
0 -1 —1 0 |[ws
1 1 0 —1]]vs
0 10/ \v

Let us bring the flux vector to the right and solve the

system for v3, v4, v5, and vg:

V3 -1 0 0 O
V4 o 0 —1 —1 0
vs] 1 1 0 -1
Ve 0 0 1 0
-1 0 0 O

o -1 0o -1
1o o0 0 1

| +1-05
- 0.5
+14+1-05
1
_|os
~los
1.5

Drawing:

[oNeNelle

1

1

0
—0.

-1

SO = O

S OO

5

-1
—1

0.5

—1
—1

0.5

~ measured

ORRON
A B
ll

o

B The kernel matrix K

Task a) Calculate the kernel matrix K of the following

stoichiometric matrix N:

The solution is:
With

calculated
0.5“
s @
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we calculate:
ki1
22) | ke
ki3
< 1kji + 1kipp —2kiz =0

(11 =0

In order to solve the system, we first need to determine
the nullity:

r—tk(N)=3—-1=2

We have an underdetermined system and 2 kernel vector
are necessary to solve the system:
2 assumptions are necessary, ki = ¢2 and k;3 = c3:

kiit+1cp—2c3=0
kit =2c3—¢3

26‘3 —C2
<~ kil = (65)
c3

Let us choose 2 non-identical values for ¢; and c3: e.g.
c=1,¢c3=0

2
k=10
1
thus,
-1 2
K=|1 0
0 1
Task b) Determine dead ends and unbranched reac-

tions pathways, given the following Kernel matrix K:

11 0 0
0 0 —1 2
-1 1 0 0
0 0 0 0

K=117 42 1o
0 0 -1 2
11 0 0
-2 0 0 1

The solution is:
Dead ends: v4
Unbranched reaction pathways:

® Vi, V3, V7

® V), Vg
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B Constraint-Based Modeling of an example network
An example network is composed of substrates (1, S2),
intracellular metabolites (A, B, C) and the biomass (X).

o The following reactions v to ve take place:

vi:S1 —A
vy :8 —B
v3:C—X
vy :A—C
vs:B—C
ve:A=HB

e Reactions vy, vy,v3,v4,vs are irreversible

e For vg, a maximal enzyme capacity is given: v <

V6,max
o Due to the experimental setting, v3 is fixed tovz = D

Questions:

Task a) Draw the biochemical network based on v; to
v and the irreversibility information.

\X D
V 3

6 C—)X

%1
Sy —

Vs
SZ—)B

Task b) Formulate the balance equations for the intra-
cellular metabolites A, B and C in steady state:

A=vi—vw—vg=0
B=V2—V5+V6=0

C=v4+vs—v3=0

Taskc) Replace v3 by D in the resulting equations. Keep
v1 and vg as variables and solve for v;, v4, and vs:

Ava=v|—vg

C:vy+vs—D=0
Svi—vet+vs—D=0
Svs=D+ve—v;

B:vi—D—vg+vi+vg=0
Svy=D—v

Taskd) Apply the irreversibility information of v; to vs
and extract from there (several) inequality constraints
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for the remaining variables v; and ve:

v >0
vw=D—v; >0
- <D

v3=D

vg=v—vg >0
—ve < Vi

vs=D+vg—v; >0
—ve>vi—D

Taske) Mark the possible solution space using a vg over
v1 plot using the obtained inequality constraints and the
enzyme capacity ve mqr. Thereby distinguishing thereby
two cases:

Task el) Vemax = D
Vg 3 Ve‘
>0 vy <D
V1 N 1 D .
21 U1
Vep Ve
DA D y
Ve S Vg Ve =V, — D
Dy, D v,
—DA
Help:
Casel:vi=D
ve > 0 (fix the point)
Case2:vi=0
ve > —D (fix the point)
Task e.2) Ve maxr <D
V6,max > D V6,max < D
v v
D )
vé,max
A‘o
%
A'\r
0 D > D >
N Vi 21
7/
QY
A‘:]/ ~Ve,max
- v,<Dlv,2D




Task f) Give the (unique) solution for the case v¢ > D
while optimizing for ve — max.

U1
51 —_—
Vs
\ v3 = D
Ve C —_— X
AZ
S2 —B

Vi=Vv3=vs=ve=D

V2=V4=O

Flux cone of an example network
From the previous system, we know that:

1. v to 5 are irreversible

2. | ve < V6,max

3. V3 =D
vi >0 7 >0
v, >0 V2 >0

3 20=vi+v, >0
vg >0 vi—vs >0
vs >0 vo+vs >0

V1
A 10 0 -1 0 —1\][|"
s 01 0 0 -1 1}|[™
cc 00 -1 1 1 V4
Vs
V6

with quasi-steady-state assumption for A, B, and C (0 =
Nv):

Vi 1 0 0
vy 01 0
il |11 o ("
val "1 0 —1[|™
Vs 01 1|\
Ve 0 0 1

Represented in 3D:

Chapter 2: Metabolic modeling — 29/30




Notes




Chapter 3: The magic of change and how to find it

Thomas Sauter, Marco Albrecht

Motivation

The world around us is connected and changes all the time. But do we know where things are going? Are they
on a path to endless infinity or do they find a condition where they are in balance with all their neighbors? In
reality, we often see mysterious black boxes, and it is not clear why we get a particular outcome for a specific
input. Sometimes the result depends on the history of movements. If this is the case, we see different final results
for the same condition. In this block, we strive for answers in the realm of systems science. We will learn to
model so-called systems in time, and we will ponder on how to bring them to desired states as quickly and
precisely as possible. Likewise, we will learn how organisms develop an effective control of various regulatory
biochemical processes forged by the forces of evolution. On this journey, we will also understand the beauty
of connected things and what they teach us when we address biological problems, a perspective that make us

better experimental biologists too.
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1. Lecture summary

In the previous two chapters, we studied systems in
equilibrium and learned about powerful tools for the
modeling of metabolic networks. However, the process

© 2023 Thomas Sauter and Marco Albrecht, CC BY-NC 4.0
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Extracellular TMG (uM)

Figure 1. Example where the measurement seems myste-
rious. The GFP signal depends on the non-metabolizable
lactose analogue thiomethyl-galactoside (TMG), but
whether we increase TMG or decrease TMG remarkably
changes the outcome, also referred to as hysteresis or
multistability. What is behind this? See Figure 2. Source:
[1]. Copyright © 2004, Macmillan Magazines Ltd.

of coming to a steady state has been assumed heretofore.
In this chapter we will introduce some of the theoretical
basics to treating and understanding biological systems
which are dynamically changing over time and thus are
no longer in steady state.

1.1 W Examples of non-linear dynamics

Let us start with a dynamic experiment on the popula-
tions of cells in Figure 1, which also shows that reality
cannot always be described with basic linear tools. In
this example, we see that the expression of genes relevant
for the lactose metabolism (GFP signal) does not merely

https://doi.org/10.11647/OBP.0291.03
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depend on the availability of the non-metabolizable lac-
tate analogue (TMG). It also depends on the previous
amount of TMG in the cellular environment. If 30 ug
TMG were present at the beginning and this concen-
tration was further decreased, gene expression for the
lactose metabolism is measurable down to 5 ug TMG.
But if, instead, the TMG concentration was increased
starting with a low value of 2 ug TMG, gene expression
will not set in until 15 ug TMG. Whether there will be
lactose metabolism or not in the range from 5 to 15 ug
TMG consequently depends on the history of the system,
a phenomena known as hysteresis. Hysteresis can also
be seen as a bistable state which can result in discrete
switch-like outputs from continuous inputs.
Hysteresis increases the resistance to noise as it requires
higher values of the input in order to switch to a par-
ticular state, as compared to the input needed to stay
in a state. The switch also means that a transition is
not continuously reversible after it has been triggered.
The behavior is often hidden and encoded in unknown
connections of biological elements. Here, the regulatory
principles behind the observation in Figure 1 are well
understood and illustrated in Figure 2.

Other examples of hysteresis can be studied in Figure
3 and 4, where the regulatory network structure (mu-
tual molecule dependency) and the time behavior are
depicted side by side. Take some time to understand
how these schemes relate to each other. In Figure 4 we
have an example from stem cell biology with the home-
obox protein Nanog. Regulatory interconnections are
not restricted to molecular biology. We might also have
physiological and anatomical systems with regulatory in-
terconnections. One example is the control of the blood
sugar level by the liver and pancreas, illustrated in Figure
5. Another anatomical example can be found in Figure 6
on the adaptation of the eye. The restriction of the pupil
compensates for disturbances with different light inten-
sities. The control of this system can be drawn as a block
diagram (see next section and Figure 7). Such regulatory
circuits are also used in synthetic biology, within which
scientist constructs or re-design existing biological sys-
tems for useful purposes. Let us explore the impact of
some basic network motifs on the dynamics of a system
next.



Glu T™MG
- - 1(— ——————————— 1
cAMP TMG LacY
Vo
metabolism
CRP Lacl :lcz

Figure 2. Underlying the hysteresis in Figure
1 is the specific regulatory network of the Lac
operon model. LacY fascilitates the influx of
TMG, which in turn inhibits the repressor. This

again increases again the production of LacY,

leading to a positive feedback loop and thus

enabling bistability. Reproduced from: [1].

Copyright © 2004, Macmillan Magazines Ltd.
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Figure 3. Stem cell differentiation network. Bifurcation diagram
of transcription factor Nanog expression as a function of the
levels of signal B. Solid lines represent stable states, dashed lines
represent unstable states. The bistable region is shaded in gray.
Bifurcations occur at signal intensities c1 and ¢2. Source: [2].
Copyright © 2015, The Company of Biologists Ltd.
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Figure 4. Stem cell differentiation network. A progenitor cell can differentiate into an epiblast cell (Epi), primitive
endoderm (PrE; generating extra-embryonic membranes) and trophectoderm (TE; giving rise to extra-embryonic
tissues), depending on the culture environment. This is a bifurcation diagram of transcription factor Nanog
expression as a function of the levels of Fgf4 or Oct4 with different network motifs. Solid lines represent stable states,
dashed lines represent unstable states. The bistable region is shaded in gray. TE-like state: stem cell switch with
Nanog is off. PrE-like state: Gata6 expression is present but Nanog transcription is efficiently suppressed. ICM-like
state: co-expression of Nanog and Gata6. Epi-like state: Nanog expression. Source: [2]. Copyright © 2015, The

Company of Biologists Ltd.

Think about the following question: Could one use a linear regression approach between Nanog and Fgf4 or Oct4?
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Figure 5. Blood sugar regulation. If the sugar concen-
tration is too high in the blood, the pancreas releases
insulin. Insulin makes tissue cells and the liver store
or consume more sugar. If the sugar concentration is
too low in the blood, the pancreas releases glucagon to
cleave glycogen with subsequent up-regulation of blood
sugar. Licence: CC BY-NC-ND 4.0 (Fair Use).
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Figure 6. Adaptation of the eye to adjust to various light
intensities. The light source disturbs the retina. The
retina detects the light intensity and gives the actual
value to the brain. The brain compares this value with
the setpoint. If the light intensity is higher than accept-
able, the brain gives the signal to reduce the light. If the
light intensity is too low, the brain provides the signal
to increase the light intensity. The actual adjustment is
achieved via the pupil constriction by the iris muscle.
Credit to Greyson Orlando, wikimedia. Fair Use.




1.2 M The impact of network motifs
We distinguish two main types of loops in networks: the
feedback loop and the feed-forward loop (FFL).

Definition 1. Feedback: Processes which influence their
own cause or input.

Feedback is a type of closed loop regulatory unit, as
shown in Figure 7. Such control structures are widely
used in engineering in many applications too—for ex-
ample, to keep the output y at the desired level.

_r>oe>C u>xy>

-t

Figure 7. Block diagram of control loop (negative feed-
back).

A controller C uses the error e, which is the difference

between the desired steady state r (set point) and the
system output y, to adjust the control u. The control u
acts on the system states x.
The feedback loop can encode negative and positive feed-
back, and occurs often in biology, as shown in Figure
10 with some examples. Negative feedback occurs fre-
quently among repressors, which repress their own tran-
scription. This allows a strong maximal promoter activ-
ity with a fast response, but at the same time strong
repression once the desired product’s steady state is
achieved.

A variety of examples of network motifs have been iden-
tified in biological systems and analyzed. We can distin-
guish motifs with 1, 2, 3 and more than 3 nodes.

One node: In the E. coli. transcriptional network, 85% of
the auto-regulative self-edges are negative and 10% are
positive [3]. There are many cases where all edges start
and come back to the same node.

Two-node networks with feedback occur in e.g. develop-
mental networks and can be seen as memory elements.
Once this motif is triggered, a mutual inhibition or acti-
vation is conserved and remains independent of further
input under certain circumstances. A decision for the
subsequent development has been made. For an exam-
ple, see Figure 26 at the top with the toggle-switch motif.

Coming to three-node network motifs, feed-forward loops

are more than 30-fold enriched in the E. coli transcription
network than random networks. Feed-forward loops can
be split into coherent FFL, where the indirect path has
the same overall sign as the direct path, and incoherent
FFL, where the indirect path sign is the opposite to the
sign of the direct path, shown in Figure 8.

Type I of both coherent and incoherent FFL are much
more enriched in the E. coli network than the other types.
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Coherent FFL
Coherent Coherent Coherent Coherent
type 1 type 2 type 3 type 4

N == < = X<
N == < | <
N = < = X<
N e < e <

Incoherent FFL

Incoherent Incoherent Incoherent Incoherent
type 1 type 2 type 3 type 4

X X X X

Y Y Y Y

z z YA YA

Figure 8. Feed-forward loops (FFL) split from one node
and fall together at another node. Thereby information
is transmitted in the forward direction via two parallel
branches (pathways). The multiplication of the signs
along the interactions of each branch gives the overall
sign of a specific branch. A coherent FFL results in an
end node which receives either only positive or only
negative signals. An incoherent FFL end node receives
both sign types. Source: [4]. Copyright © 1969, Nature
Publishing Group.

The dynamic consequence of the Type 1 feed-forward
loop with AND gate is shown in Figure 9 and Example
1. The output Z requires both activated X and activated
Y. Once X is activated, Y begins to increase and is consid-
ered active as soon as it trespasses a certain threshold.
If Y is active, it does not mean that Z is activated, as
it requires maintained activation of X at the same time.
This motif can be seen as a noise reducer in fluctuating
environments. Only a signal that is present over a longer
period can trigger a response, which arises then after a
certain delay. An interruption of the input leads to in-
stantaneous shutdown of the signal without delay. The
Type 1 coherent FFL with an OR gate would activate
Z instantaneously, and Y would have no relevance for
the activation. Instead, the OR gate would make Y into a
sustained activator of Z until it falls below the threshold.
This motif would activate Z immediately and keep the
response activation longer even if the original input was
removed. The Type 1 incoherent FFL with AND gate
would create a peak. We would see short activation of Z
during long time-input activation. Once the level of Y
trespasses the threshold, it inhibits the activation with
different levels of strength, determined by the repression
coefficient. The Type 1 incoherent FFL with OR gate
would be activated instantaneously, but would acceler-
ate the off-signal in Y. The acceleration increases with an
increased repression coefficient.
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Reminder: Logical operators such as OR and AND
help us to define rules:

A B|AANDB | AORB
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

‘
‘
N
i
.

Figure 9. The coherent Type 1 feed-forward loop. Th
output Z shows delay after S, addition in the input, but
no delay after S, removal. The network motif is a sign-
sensitive filter, which responds only to persistent stim-
uli. Source: [4]. Copyright © 1969, Nature Publishing
Group.

Example 1: Simulation of coherent Type 1 FFL

Referring to the dynamic feed-forward loop with
AND gate and its dynamic behavior shown in Fig-
ure 9, we show here the underlying computational
model which allows us to obtain such time course
plots. This requires the formulation of balance
equations for each of the modeled molecule con-
centrations (states), which include mathematical
terms describing how the different effects change
that specific concentration. This concept of balance
equations will be explained in more detail and with
more examples later in this chapter (Section 1.4,
page 9) and in Chapter 4. So consider coming back
to this example after reading more about balance
equations.

This balance equation can then either be solved
analytically—which we will discuss later in this
chapter—or with the help of computer simulations.
But these equations can also be solved with the help
of computer simulations. Such simulations are usu-
ally used if the equation system is too complex to
be solved analytically. Below, we give the com-
puter model in the IQM toolbox format [5]. Other
tools use similar but slightly different formats. This
model is used within computational frameworks
for numerical integration. This allows us to obtain
usually very accurate approximations of the sys-
tem behavior for a specific set of initial conditions
and parameters. The parameters in this example
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were arbitrarily chosen. The activation cutoff for ¥
matches the dashed line in Figure 9. Only above
this threshold, Y transmits a positive signal (Yeff).
The chosen initial conditions are matching the val-
ues of the states atr = 0.

**kx*kxkx*kx*x MODEL NAME
FFL

****xxxxx++* MODEL STATES

d/dt (X) = k1xSx - klxX
d/dt (Y) = k2+X — k2*Y

d/dt (Z) = k3xYeffxX — k3x7Z
X(0) =0

Y(0) =0

Z(0) =0

***x*x*x*x*xxxx MODEL PARAMETERS

Sx =0
k1l =1
k2 =1
k3 =1
thry = 0.5

*kkxxx*xxx*x MODEL VARIABLES
Yeff = piecewiseIQM(Y-thrY,Y>thrY, 0)

All motifs are possible considering networks with

more than 3 nodes. It is imaginable that one element
in a signaling branch might inhibit the first element of
that branch in a negative feedback loop. This section
builds upon the work of Uri Alon. His book is a classic
in systems biology and highly recommended to help you
understand regulatory network motifs [3].
We will revisit feedbacks again within this Chapter (Ex-
ample 9 & Figures 23/24/25 and the respective text),
once we have learned about characteristics of systems
and useful mathematical approaches which will help us
to formally analyze such motif structures.

For further deepening of knowledge around this topic
we also recommend:
YouTube: Network motifs

Summary: Mode of action of network motifs
positive feedback = self-potentiating

— (often) destabilizing

— bifurcations

— bistabilities

— switching behavior

— hysteresis

= self-degrading

— stabilizing

— oscillating

— regulating

negative feedback


https://www.youtube.com/watch?v=1sTFWS0Py80
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(a) Naturally occurring bistable system: The p42 MAPK T S &

cascade of a frog oocyte depends on the progesterone stim-
ulation. The more progesterone, the more the cells shift
to MAPK active differentiation. Source: [6]. Copyright ©

(b) Switch-like activation and bistability in the apoptosis
signaling network. Source: [7]. Copyright © 2011, Elsevier

2002, Elsevier Science Ltd. Inc.
Glucose transport
;g . Pentose
; CG1P>

AATED phosphate
pathway

||28/13/14

Embden-Meyerhof-Parnas-Pathway

(c) Negative tryptophan feedback: Numbers indicate molar fluxes normal-
ized to the glucose uptake flux (100). Each of the 3 numbers belong to another
model variant. Source: [8]. Copyright © 2004, Elsevier Inc.

Figure 10. Naturally occurring feedback in biology: (a) Positive feedback on the genetic level. (b) Positive feedback
on the protein level.(c) Negative feedback on the metabolic level.
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1.3 B What is a system?
Next, we are moving into the formal description of such
networks as systems.

Definition 2. System: A system is a group of interde-
pendent items which are interacting with each other in
a way that forms an integrated whole.

One can also say: a system is a set of interrelated ob-
jects (elements, parts) which all have certain general
properties [9].

1. The system fulfils a certain function, i.e. it can be
defined by a system purpose recognizable by an
observer.

2. It has a characteristic constellation of (essential)
system elements and an (essential) system struc-
ture which determines its function, purpose, and
identity.

3. Itloses its identity if its integrity is destroyed. A
system is therefore not divisible, i.e. the system
purpose can no longer be fulfilled if one or several
(essential) elements are removed.

system

environment feedbacks f(x)

system
elements x

system
outputy

system

inputu

oe*
.
.
.
.
.
.
.

disturbances z

system structure f(x) ~ System boundary

Figure 11. A system consists of system elements and the
connections between them [9].

As a side note, the system structure might be (par-
tially) hidden, i.e. we do not know what is underlying
the observed system dynamic. We might refer to the sys-
tem, then, as a black box—and we could try to decipher
the system behavior by analysis of the relationship of
inputs u and outputs y, as illustrated in Figure 12.

—| black box L

Figure 12. The black box concept. We know little about
the system, but we can learn about its behavior from the
input u to the output y.

Let us look at some examples. A sand pile is not
a system, as after the removal of a sub-part it is still a
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sand pile. One grain of sand is also not a system, as it
is only one element. A chair or a building is a system
because the removal of one particular element destroys
its integrity. These are static systems. Dynamic sys-
tems show changes over time. We do not have to restrict
ourselves to observable behaviors. Relevant state vari-
ables are of functional importance but not necessarily
observable. Furthermore, the non-linearity of biological
systems (non-additivity) is prevalent.

Linear: V[Sl] +V[Sz] = V[Sl —I—Sz}
Non-linear: v[S;]+v[Ss] # v[S1 + S2]

Vv A
linear

nonlinear

>
[S]
As we have seen so far already, non-linear dynamics
can lead to a variety of phenomena like:
e oscillations
o amplification
o adaptation (see Figure 13)

o switching, bistability, hysteresis (see Figures 1,3,4).

e e W

input
=®

4f\ﬂ_l\—\,v_vw
0 10 20 30 40 50

output Time
Figure 13. Near-perfect adaptation to varying input levels
obtained from negative feedback. Other examples and
source: [10]. Copyright © 2016, Elsevier Inc.

output (A) feedback (B) Input

See also
YouTube: The beauty of a chaotic double pendulum

We will explore these important behaviors on the next
pages, starting with the introduction of a mathematical
approach for describing dynamics over time.


https://www.youtube.com/watch?v=d0Z8wLLPNE0

1.4 M How to describe change mathematically

The change of a variable is described by a derivative—a
concept from calculus. The most widely used mathe-
matical approach to capture such changes in models
is done with Ordinary Differential Equations (ODE).
Such ODEs have a dependent variable y which is a func-
tion y(z) of 1 independent variable such as time 7. The
derivatives of the dependent variable are found with re-
spect to the independent variable %. If the independent
variable is time, we can use the dot above the dependent
variable % =y to indicate derivatives, otherwise we use
a prime symbol: y'. The dependent and independent
variable appear in the explicit:

y=f(t,y)

or implicit equation form:

f(t,y,y) =0.

Important: In the context of models of biological sys-
tems, often only 1st order ODEs are applied, as illus-
trated in Example 2. We have therefore included an in-
troduction to these cases only. ODEs might also contain
higher derivatives, i.e. derivatives of derivatives. Fur-
thermore, Partial Differential Equations (PDE) have
a dependent variable y, which is a function y(z;, z2, .. -,
zn) of at least 2 independent variables z;, such as time
(e.g.: z1 =t) and 3 room coordinates (e.g.: 22,23, & z4).
While an ODE is frequently used for processes over time,
a PDE is often used to describe processes over time and
space. These advanced cases are not discussed here but
are the subject of further reading if you are interested.

A simple ODE model can be studied in Example 2 to-
gether with Figure 14.

Example 2: Simple ODE for biomass growth

Another example of what x and its time derivative
X might represent is biomass and its growth.

x... population size
x... growth rate
p=1%... specific growth rate

With the assumption p = const, we can write the
following ODE:

X=Ux
with initial condition x(r = 0) = xp and
u > 0: exponential growth

u < 0: asymptotic decay

Chapter 3: The magic of change and how to find it — 9/56
visualized in Figure 14. The calculation of the time
response x(1) is:

|-dt:x

X

In(—) = ut |e to both sides
X0
X
X0
x(t) = xpe!

¢
Figure 14. Population growth x depending on time and
the specific growth rate p1. See Example 2.

A set of non-linear ODEs of n-th order can be written
as:

dx,'

— i=1...
a7 N n

:xi:fi(xla"'7-xn7p17"'apn7t)

and in vector notation as:

dx
7 5= f(x,p,t)

with the independent variable 7, the time-dependent
states x = (x1,...,x,)7, mostly time-invariant parame-
ters p = (p1,...,ps)", and the functions f = (fi,...,f,)".
Although the system states are time-dependent, they
should still be linearly independent of each other. The
order of an ODE equals the number states within the
set of 1st order ODEs.

Reactions depend on changing substrate concentrations
In the last chapter, we considered constant substrate
concentration in the steady state:

S=N-v=0

and we looked mainly at the fluxes v, which can also
be dissected into forward vy and backward v;, reaction
fluxes. If the substrate concentrations are constant, it is
possible to combine these with the constant parameters
to a flux value for a given reaction.
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With the study of the time behavior of each substrate’s
concentrations in our system with:

S=N-v

we cannot do this anymore. We have to dissect the flux
vectors into constant parameters k and now variable
substrate concentrations S;. Therefore, we usually use
the very important Law of Mass Action formulated by
Waage' and Guldberg? in 1864 [11]. For each reaction
Jj, we can define the concentrations of substrates S; and
products P;:

kj
LmjaSja = L migPip
o -i B

with indexes o and 3 being subsets of the metabolite in-
dexesi=1,...,mand molecularities m;q,m g for reaction
j and participating substances a, 8 € i. The molecularity
is often 1 or 2.

We can say that the reaction rate is proportional to the
probability of collision of the reactants. The probability
of collision, in turn, is proportional to the concentration
of reactants to the power of molecularity (stoichiometric
coefficient). The general mass action kinetics for chemi-
cal reaction networks is:

_ m
vi=vip=vip =k [ 18—k 1P
« [

with the product of sequence operator [T which indicates
that the following elements are multiplied (same princi-
ple as for the operator )" to sum up the following terms).
The equilibrium constant:

B
:K4e :ﬁzinﬁPJlLEq
" kej [a Sl;gt?eq

for reaction j can be obtained if the substances are in
equilibrium v; s = v;,. In contrast to Chapter 2, here
we do not have a dynamic equilibrium of metabolites’
production and consumption.

For the biochemical reaction:

k
S1+95 kﬁlZP

—1
we get the net reaction rate:
V=Vr—Vp Zkl -51 -Sz—k_l -P2

with S, S> and P denoting the respective concentrations
and k; and k_; being the rate constants of the forward
and backward reactions.

! Norwegian chemist Peter Waage (1833-1900).
2 Norwegian mathematician and chemist Cato Maximilian Guld-
berg (1836—1902).
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One can also derive the equations directly from the
reaction schemes without using the stoichiometric ma-
trix. This might be error-prone for larger biochemical
systems and molecularities of 2 and above. For the given
scheme, the ODE system is:

S] =—k1515; +k_1P2
Sz = —lelSz—Hc,le
P =2k 88, — 2k | P?

_ . _ 2
= 2 (kiSi1S, —k_1P?)
N v

This modeling principle can equivalently by applied for
protein-binding reactions where the parameters k repre-
sent the affinity between proteins—for example, between
ligand and receptor:

ki
L+R—1LR

-1
with the net reaction rate (from left to right):

V= Vpind — Vunbind = k1 *L-R—k_1-LR

We could, for example, use this equation to see how
much ligand-receptor complex LR will be present for
certain initial concentrations of ligand L and receptor R.
High affinity with a large constant K, = k /k_; shifts the
equilibrium towards the complex, and low affinity shifts
this equilibrium to the monomers. After we have mod-
eled a reaction network, an equilibrium can be found
for the whole system. Trying to derive such an equi-
librium for many coupled reactions by intuition alone
might be too challenging. Thus, we need mathematical
models. The ODE modeling framework gives the highest
quality of mechanistic insight among all tools in systems
biology—Dbut only if we have enough data to adjust this
kind of model properly.



1.5 B What is a steady state?
A steady state is characterized by the absence of change
in the variable values while time progresses.

Definition 3. Steady state: In systems theory, a system
or a process is in a steady state if the variables (called
state variables) which define the behavior of the system
or the process are not changing over time.

This definition is referring to macro-scale changes over
time. Back reactions equal forward reactions at the molec-
ular scale in a closed system. In an open system, a dy-
namic equilibrium occurs in which fluxes and reactions
are constant. We have a steady state if all derivatives of
all state variables x; become zero:

Xi=X%=x;j=...=0

for all i. Moreover, specifically for the 1st-order systems
we consider in this chapter, we have a steady state if the
(1st-order) derivatives of all state variables x; become
Zero:

x=0
for all i.
Consider the following Examples 3, 4, and 5:

Example 3: Balance equation in steady state

dod .
——d=J-p
dt
Steady state?
d=J-P=0
=J=P

Example 4: One steady state of a linear system
The derivatives of all states shall be zero:

X=y+2x—2=0
y=y—x+2=0
Subsequently, we mark all state values with a star

* to indicate that these are steady-state values and
re-order the equations above as follows:

y =2-2x"
yi=x"-2

Eliminating y* by setting both of the right-hand
sides to be equal delivers:

22" =x"=-2
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which gives the steady-state solution:

4 L2
3 Y T3

X =

Example 5: Steady states of a non-linear system

We work on a non-linear system and will thereby
often obtain multiple steady states, like in this ex-
ample:

i=(y+2x—-2)x=0
y=0=x+2)y=0

This set of equations is already in the factored form.
1 of the 2 factors in each single equation must be
zero so that the whole term is zero. We have 2
equations with 2 factors each. Thus, we expect 4
steady states, whereby a subset can be the same.
To simplify our approach, we will look at different
cases.

Case 1

Let’s say the first variable x* shall be zero:

x’f'2:0
i=@+2x-2)"x =0
y=@-x+2) y =0
N—
¥ i

Then Equation 1 is zero as well. The second equa-
tion is then:

0=("+2)y"

which results in two allocated y* values:

with which we get our first 2 steady states (0,0)
and (0,-2).
Case 2

We now take the other factor (y 4 2x —2) in the first
equation and set it to zero:

20%)@4
—_——~
x=(y+2x—-2)x=0
y=(-x+2)y=0
~——
x?z

Therefore, y* has to be:

v =2(1-x")
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with which the second equation becomes:
0=2(1—x")(4—3x%)

which results in:

=1, x= g
and two allocated y* values with which we get our
last 2 steady states (1,0) and (3, —3).

Case 3 (redundant)

Ansatz: y* =0

with the solutions (1,0) and (0,0).

Case 4 (redundant)

Ansatz: y* =x* -2

with the solutions (0,-2) and (%,—%).



1.6 M Stability theory: Idle state or explosion
Stability is a system-intrinsic property and is character-
ized without external input # = 0. A non-linear system
can have several steady states. The system’s steady state
might be slightly deflected by dx:

X0 =x"+06x

and the subsequent behavior indicates whether a system
is stable, unstable, or metastable—as illustrated in Figure
15.

@/ @

unstable stable metastable
(system leaves (system returns (behavior is
steady state) to steady state) indifferent)

Figure 15. To get an initial intuition, imagine a ball on
different surfaces. If you poke it a bit, what will happen?

To test this, we linearize around the steady state of the ex-
ample system x = mx and can see by the slope m whether
the steady state is stable or not. Linearization is scruti-
nized in the mathematics section. Ponder on Figure 16.
The linearization:

Ax =JAx

with the Jacobian matrix J is explained in the mathemat-
ics section. The formal approach employs the exponen-
tial function starting from the system equation:

X =mx

with the ansatz x(r) = ¢ and its derivative () = s -
e, and consequently we transform the system into the
Laplace Domain. It results in:

se” =me" =s=m

with s being the Eigenvalue of system x = mx. See also
Figure 17.

The characteristic polynomial and Eigenvalues for higher
order systems

In general, the characteristic polynomial allows us to
determine the Eigenvalues of the system and thereof the
stability of the steady states.

An ordinary differential equation in the non-matrix rep-
resentation

4
(x)—i—...—l—ag)'c'—i—alx—i—aox: bou

is the base for the characteristic polynomial without con-
sideration of the control (u = 0). We use the Laplace
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m>0 ; x> 0|x* x <0|x* ; m<0
Xy _Si>o0 >0 __ X
‘;' ‘
X X
st 4 |\ x > 0|x*
$<0 : P

X =mx

unstable stable

Figure 16. Assessing stability with an X% over x plot. For
the unstable steady state, if x is deviating in the positive
direction from steady state, the resulting derivative will
also be positive and thus make x even more positive—
and vice versa for negative deviations. Contrarily, for
the stable steady state the derivative (change) will be
negative if x is positive and positive if x is negative. This
will outbalance deviations and stabilize the steady state.

x(t)4 ssm>0 x(t)4 s=m=0 x(t) s;m<0
ot —
est 5 o er=1 est=0
1
¢ t t
unstable meta stable stable

Figure 17. Behavior over time for the unstable, metastable,
and stable system of the form x = mx with different pa-
rameter values m.

ansatz:
— est
X = se”
i S2 est
¥ = S3 est
4)
Y — S4 est

to transform our problem into the frequency domain
and get:

" .. +axs* +ays+ag=0
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Example 6: 2nd-order system

Xt+ax+apx=0

ansatz:
X = eSI
x=se"
i s2est
s?e" 4 ayse 4+ age” =0 | e (#£0)
s+ a; s+ ay =0
~— =~
tr det
—ay+4/a? -4
1 ay ao
' 2

The linear x = Ax or linearized system x = Jx in the

matrix form can also be treated with the same ansatz:

x= I

x=sle"
and the identity matrix I to get:

sle” = Ale” = Ae”
(sI—A)e" =0
(sI—A)x=0

We only obtain non-trivial solutions (x # 0) of the homo-
geneous system if we look for:

det(sI—A) =0,

which is another form of the characteristic polynomial.
However, if the system matrix is a square matrix, and
the rank equals the number of variables (tk(A) = n), we
only obtain the trivial solutions (x = 0).

Eigenvalues of the 2x2 matrix (fast equation)

The characteristic polynomial of a 2nd-order system (n =
2) is introduced in Example 7 and can be obtained by
the following procedure:

X1 =anx; +apx;

Xp = az1x1 +anx;

=
X\ _ (an an) (x _0
X2 az; axn) \x
e~ ———— N —
4 A x
with:
x= I¢"

x = sle*
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we get:
SX] = ajx) +apnx
SXp = a1x1 +axnx
=
s X1\ _ (ann an X1 -0
X2 azr axn) \x2
M~ ————
x A x

1 0\ [an an X1\ _
(6 D) -G ) ()0
=0 #0

_ 1 0 ai;  ap
’sIfA| =|s {0 J — lel azz}

_ s 0] |an a2
10 s ary an

§S—aii

—an
§—ann

—as]

(s—an)(s—axn)—anay =0

2
s°—ays —axns+ajan —apay =0

2
s — (a1 +an)s+anan —apay =0

tr(A) detA
s? —tr(A)s +detA =0
tr(A) &+ /tr2(A) — 4 det(A)

S12 = 2 .

s1,82 can be real numbers but also complex numbers of
the form s = Re(s) +ilm(s) with i = /—1. If the number is
complex, the system has oscillating behavior. See Figure
18 for different Eigenvalue pairings and the consequen-
tial systems behavior. Additionally, we can also classify
the systems according to the Final Value Theorem (FVT).
Eigenvalues on the imaginary axis and the right half of
the plane indicate that the system does not converge to a
value and is thus not classified with the FVT. We classify
the system type according to the number of Eigenval-
ues in the origin. If the real part of the Eigenvalues is
on the left-hand side, we have a Type 0 system. If one
Eigenvalue is on the origin and the rest is in the left-half
plane, we have a Type 1 system that is going to have a
real finite number, as shown in Figure 17 middle. With
each additional Eigenvalue at the origin, we increase the
system type order and get unstable behavior.

YouTube: Final Value Theorem (up to 8:17).


https://www.youtube.com/watch?v=PXxveGoNRUw&list=PLUMWjy5jgHK1NC52DXXrriwihVrYZKqjk&index=15

Im(s) 4 Im(s)y
- — 1o o
Re(s) Re(s)
Im(s), Im(s)y
[} [}
R Re(s) o Rels)
Im(s)} Im(s)y
> ——
+ Re(s) Re(s)
Im(s) Im(s)
Re(s) R:e(s)

Figure 18. Eigenvalues in the frequency domain are
shown in the s-plane. Each Eigenvalue has a real and
imaginary part: s = 6 +i@ with Im(s) = i®w,and Re(s) = &

Example 7: Eigenvalues and stability

a)
X\ _ (3 -2 X1 n 1
X)) \1 5 X 0 “
We search for the Eigenvalues with:
det(A—sI)=0
3—s =2
det< 1 5—s):O
B3—=s5)(5-5)+2=0
57 —8s+17=0

-8 —8\?
— 24/ (==) =1
S12 > <2> 7

=512 =4+i — unstable focus
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b)

=03 4

=51 =—1;5=—-3 — stable node

| 0)-6 N

— unstable saddle

()G D)

— metastable limit cycle

=51 =55n=—1

d)

:>S1’2:0:|:\/§i

Stability classification

We can classify the stability properties via the Eigenval-

ues, as summarized in Figure 18. For 2x2 matrices, we

can also use the trace and the determinant of the system

matrix as shown in the Poincaré diagram in Figure 21:
tr(A) £ +/tr2(A) —4det(A)

A= > .

with the distance between Eigenvalues:

A=:\/tr2(A) —4det(A) =0

det(A) = %trz(A)

to get the threshold above which we gain imaginary
numbers.

e A1,A2 < 0thendet(A) > 0,tr(A) <0 — stable node

e A1,A2 > 0 then det(A) > 0,tr(A) > 0 — unstable
node

e A1 < 0,4, >0thendet(A) <0 — saddle node with
one stable and one unstable direction

® Re(A1) =Re(A2) < 0 with no vanishing imaginary

part. Thendet(A) > 0,tr(A) < 0,tr>(A) < 4det(A) —stable

spiral

e Re(A1) = Re(A2) > 0 with no vanishing imaginary

part. thendet(A) > 0,tr(A) > 0,tr*>(A) < 4det(A) —unstable

spiral

Slopefield

A slopefield describes the slope at each point in the phase
plot and thereby is an informative visual representation
of the system dynamics.

YouTube: Slope fields


https://www.youtube.com/watch?v=24pxJ1DuWR8
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A
w
ke
S
ot
s_é. _critically damped
©
underdamped
-
time

Figure 19. An ODE system can show various behavior de-
pending on the damping ratio. The higher the damping
ratio is, the more the oscillatory behaviour is reduced.
See Example 8.

Example 8: Damping

For a deeper understanding of the origin of real
and imaginary Eigenvalues and the respective sys-
tem behavior, it is beneficial to look at damping, as
shown in Figure 19. Damping reduces the impact
of the oscillatory behavior. In physical systems it
is achieved by the dissipation of energy stored in
the oscillatory system. Let’s assume a system has
the following characteristic equation:

s 4+25+C=0.

The quadratic equation can be solved with the p-g-
equation:

s1p=—1=% 1-¢

We see that the first term indicates negative Eigen-
values at the first glimpse. This remains the case
as long 0 < § <1. If we have { < 0 we have one
positive Eigenvalue and thus an unstable saddle. If
¢ > 1, we obtain a negative value below the square
root and the term turns into the imaginary part
+oi of the complex number s. Consequently, we
have oscillatory behaviour. Thus ¢ has a damping
function with:

0<{¢ <1 overdamped
§ =1 critically damped
¢ > 1 underdamped

The smooth transition within the p-q equation and
the symbol + explains why the imaginary parts of
the complex Eigenvalues arise pairwise with the
same real part in Figure 18. This only applies to
simple systems with a 2x2 system matrix A.



1.7 M Phase portrait: How elements relate to each other
Let’s assume we have a stable system with two elements
X1 and X2.

1) = fi(x (), x2(1))
(1) = f(x(),%2(1))
We do not only want to know how the elements change

over time. We also want to know how the elements relate
to each other:

dxy(t) _ fa(xi(2),x2(1))
dxi(t)  fila(t),x(t))

by making use of the relationship:

B B dundt dn
x](l‘) dditl _dtdxl _dxl’

Put in simple terms, the time derivative has been can-
celled out and we have no time axis anymore, as illus-
trated in Figure 20. But time is still present, because
at each time point and for each state magnitude x, has
an allocated %magnitude x1. For the whole time, it
could be that the system has passed different magni-
tudes of x; at a particular magnitude of x;. Moreover,
there might be several different values for x; at the mag-
nitude x,. But let us go back to the start. You can now
choose which initial values you would like to start with
[x1(t = 0),x2(r = 0)]. From this point on, the system will
move in the phase plot until it reaches a stable state
where it will remain forever [x|(t — o0),x(t — 0)]. The
path which the system takes until it arrives a stable point
is called a trajectory.

lek

trajectory
N 1 (0),%,(0)]

stable steady state

\ 4

Figure 20. Phase portrait. The axes represent the mag-
nitude of the elements x;,x,. The trajectories start from
[x1(t =0),x2(z = 0)] and move over time to a stable steady
state [x (f — o0),x2(¢t — 0)]. In this way, we can plot our
system as the change of element x, over the change of
the element x;. One could also decide to show the rela-
tionship the other way around, e.g., the phase plot as the
change of x; over the change of x;.

Definition 4. Trajectory: Set of all state points (x1,x2) in
the state plane starting from 7y or t = 0.
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Interestingly, not all initial points might lead to the

same steady state. Depending on your initial point, the
trajectories might be shaped differently and might land
at different steady states, given that you have multiple
stable points. Thus, it is interesting to look at several
trajectories which start at different initial points.
If we want to draw a phase plot by hand, we would
greatly benefit from orientation lines. Therefore, we
determine asymptotes with the most simple cases as
being:

e Vertical asymptotes (vertical tangents)

e Horizontal asymptotes (horizontal tangents)

e Oblique asymptotes.
What horizontal and vertical means depends on which
element you want to study in dependence on the other.
We remain in the general equations shown above (see
also Figure 20). We obtain the horizontal and vertical
tangents with the following ansatz:

e Horizontal tangent ("no change in the x,-direction"):

fa(x1,%2) =0 (1.1)

e Vertical tangent ("no change in the x;-direction"):

fi(x1,%2) =0 (1.2)

For the oblique asymptote, we introduce the general
linear equation into our phase plot equation:

d(xy = mxy) I F2(x1, (xa = mxy))
dx filxr, (o = moxy))”

The obtained values for m are set back in the linear equa-
tion x, = mx; and represent the oblique asymptotes. For
a deeper discussion of this topic, please refer to the exer-
cises at the end of this chapter.

Definition 5. Nullclines: Curves on which the trajecto-
ries have the derivative 0.
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Figure 21. Poincaré diagram for 2x2 matrices: Classification of phase portraits in the (det(A),tr(A)) plane. Credit to

Gernot Salzer, No rights reserved.
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1.8 M Feedback revisited tem for the concentrations of A and B:

In the next step we will use the introduced mathematical

concepts and analyze the systemic properties of some . : | | MA
network motifs discussed earlier. We will thereby see (A) = ( _1 01 ) k
how and when these motifs give rise to characteristic B 0 1o I/??
1 . g 4
non-linear dynamic phenomena. 8 N
v
Sequential

k k, ks
1 ) A =) B 3

Positive feedback
ky>0

ks

k k-

Negative feedback
ky <O

k k ks
1 2 B K

Figure 22. Network structures of the feedback examples
as analyzed in Example 9.

Example 9: Feedback

In this example we will perform a detailed, mathe-
matical analysis of the effects of negative and posi-
tive feedback in a simple metabolic pathway (Fig-
ure 22). We start with the general stoichiometric
matrix:

Vi V2 V3 V4
N=|1 -1 0 1|A
o 1 -1 0B

We have 2 equations (m = 2) and 4 reactions (r =4).
The rank is 2 (rk(N) = 2). This means, we can set
2 unknowns k to arbitrary numbers to find 1 of
the many possible solutions. We decide to take
the influx k; as control u and to set k4 to different
values:

k4 < 0: negative feedback
k4 = 0: sequential (no feedback)
k4 > 0: positive feedback

We use mass action kinetics to set up an ODE sys-

A\ [~k ki (A (!

B)]  \kh —k3)\B 0)"
~— ———— N ——

x A x u

which is the ODE system:

A=—kA+kB+u
B = kyA—k3B

Let’s interpret these equations: We have an influx
u, which positively influences the change of A. A
part of the substance A turns into B with reaction
rate k. If term k»A is subtracted from the first equa-
tion, it negatively influences the change of A. The
same term appears in the equation for the change
of B. This ensures that no mass is lost. Thus, the
term koA positively influences the change of B as it
negatively influences the change of A, which makes
sense because we want to turn substance A into sub-
stance B. The substance B leaves the system with
rate k3. One can see that the loss of substance of B
increases with the abundance of B. The feedback
via k4B influences A depending on the abundance
of B. This interaction is modeled as signaling flow.
B "only" transmits a signal but is not converted.
This means that it does not preserve the mass con-
servation at this point and it does not reduce B by
k4B.

This is a fundamental and important difference:

e Preserve mass conservation — substrate flow

e Not preserve mass conservation — informa-
tion flow.

We will now look at the stability of system matrix
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A via the Eigenvalues:

—k2 k4 _ s 0
kb —ki) \o s
(kz +S)(k3 +S) —koks =0
5?4 (ky +k3)s +ky (ks —kg) =0

_ ’—(k2+s) ke | _

ko —(k3 +35)

We study the case ky = k3 = 1:
s 425+ (1—ky) =0
The related p-q equation is:
sio=—1xt\/1-(1—ks)=—1%t/ka

Sequential setting k4 = 0:

Both Eigenvalues are negative

=51 =—1;5=—1 stable (Type 0)
Positive feedback (k4 =2):

=5, =04142; S, = —-2.41 unstable saddle
Positive feedback (ks = 1):

=8=0;,5=-2 metastable (Type
1)

Negative feedback (ks = —1):

= S1p=—1=%£i

Damped oscillations, stable (Type 0)

The following video show the simulation of the
dynamic behavior of this pathway with different
strengths of negative or positive feedback:
YouTube: Example simulated


https://www.youtube.com/watch?v=SXV2DY1LhLg

1.9 M Bifurcation: Split it baby!

Adding to Example 9, we will now tackle the mathemat-
ical analysis of another example model of feedback. We
will, in addition, analyze how the obtained steady states
and dynamic properties depend on the value of a system
parameter. Simple feedback can also be modeled as:

%= —kneg X kneg >0, x(t =0) =1
which turns out to be a stable steady state, as shown in

Figure 16.
The time-course is:

x(t) = xo - ¢ Fres!

as shown in Figure 23 left. Positive feedback, however,
might destabilize a system. Let’s have a look at combined
negative and positive feedback

% = —Kneg - X+ Kpos - X kneg, kpos > 0; x(0) =1
whereby the variable x is the cause and the change % is

the consequence within the feedback loop. The related
solution of this differential equation is:

x(t) =x0- e(kpos—kneg>"

As you see in Figure 23 right below, the system becomes
unstable if the parameter exceeds certain values. How-
ever, healthy biological systems are never globally un-
stable, because they run into saturation. Malignancies
like cancer and virus production, however, can be seen
as biological systems that might lead to global system
failure, if outbalancing feedback (medicament, immune
system) are too weak to control the disease.

° kpas =0
x(t) = xo - e Fneg't

GD Kneg =3

x(t) =Xxp" e(kpos_kneg)'t

x Ar x‘r 5
kneg =0 kpos = 3
& 2
5 3 0 (
t t
x* A x*‘f
0 0

kneg 3 kpos

Figure 23. Feedback: On the left-hand side the behavior
of simple negative feedback is shown. On the right-hand
side the behavior of a system with fixed negative feed-
back kneg = 3 is shown with different strengths of positive
feedback.
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fx) X4 2 £
6_

0.5 kpos
Figure 24. Feedback with saturation: The Michaelis-
Menten equation stabilizes the system, so that we get a
stable state for each k,,;. Compare with Figure 23.

X A
1,15,55
5.5
2 15
1
1 5%
05 950,05
005115 o o
»
N t
X A

[
»

1 4 k,,os

Figure 25. Feedback with complex behavior: Here we
get several stable states, but also hysteresis. Compare
with Figure 23 and 24.

We can use the Michaelis-Menten function to mimic a
saturation for the positive feedback:

kpos X
kp().\' ‘X + 1

Vmax
n 6 -x
X+ l/kpos
~—~—

Ko

X = —kpeg-x+6

:7kneg.x

The solution for the steady state(s) is:

—kneg * kpos (X*)> = Kneg * X* + 6kpg - x* =0
x*(*kneg 'kp()x - kneg + 6kpos) =0
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Steady states:
Case1)
Case 2) - knegkp(,sx* + 6kp0s - kneg =0
6kpos — k
=|x; = —pos  Tneg
kpos : kneg
6kpos —3  2kpos— 1 1
Forky, =3: x;j=—2% = P =2—
neg Xy 3 kpm kp o5 k pos

Stability: Linearization

kpos X
kpos-x+1
(kposx* + 1) - kpvs (kp()sX*)
(kp()SX* - 1)2

X=—kpeg-x+6-

Ax

k()S
= At = —Kkyog - Ax+6-2

Which roughly gives the steady state x] =0
Ax = —kyogAx + 6k pos AX = (6kpos — kneg ) Ax
For ke = 3:

Ax = (6kpos —3)Ax
<0 for kpos < 1/2
>0 for kpos > 1/2

Stability of this steady state?

§ = 06kpos — 3
x] unstable for kp,s > 1/2
stable for kp,s < 1/2

For an illustration of how the steady state(s) and their
stability depends on parameter value k., (bifurcation
plot), see Figure 24. The system is not simply unstable
beyond a parameter threshold. It changes to the closest
stable steady state.

When combining negative feedback and positive feed-
back with saturation and some basal activation, a bistable
system can be obtained (Figure 25). Here, which steady
state is reached depends on the parameter value k., as
well as on the initial conditions:

. (k posX ) 3
= 2 — L PO
X 0 knegx + 6 (k,,mx)S 1
P

Spos(x)

basal level

Summary of key points here:
e Two stable steady states = bistability

o Increase of steady state with k., not continuous
anymore, but step-like. (See next section on bifur-
cation for more details.)
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Neg. feedback — stabilizing

— oscillating (not shown here)
— (often) destabilizing

— bifurcations

— bistability, switching behavior

— hysteresis

Pos. feedback

e Contains no information about how long the sys-
tem needs to reach steady states

e Hysteresis: influence of history. Consequence per-
sists after cause vanishes.

The plot at the bottom of Figure 23 shows the change
of a system’s steady state depending on parameter value.
In the bottom right part of the figure, we see that the
system suddenly changes to an unstable steady state,
although the previous behavior was approaching an
equilibrium. This unstable steady state can lead to differ-
ent directions—the trajectories split up. The trajectories
could split up several times until we, with certain param-
eter sets, reach chaotic system behavior (not shown).

Definition 6. Bifurcation: Qualitative change of system
behavior with parameter displacement.

This is relevant if:

e parameter unknown (welcome to Systems Biol-
ogy)

e parameter is influenceable (drug target?)

A double negative feedback loop, the toggle switch, is
a common motif in differentiation biology, as shown in
Figure 26. Waddington’s” epigenetic landscape is a visu-
alization of the bifurcation valleys and laid a cornerstone
of systems biology, epigenetics, and developmental bi-
ology. A change of parameters changes the landscape
shape. Look back also to Figures 3 and 4 where a dotted
line marks the unstable regions. The individual trajec-
tories might go to the adjacent stable stem cell states. If
you are as excited and curious as we are, read this paper
about bistability, bifurcations, and Waddington's epige-
netic landscape [12].

Mathematically, a local bifurcation (xo,A9) appears
to be a continuous dynamic system:

x = f(x,A)

is linearized around a certain fixed point, and the ob-
tained Jacobian reveals an Eigenvalue with a zero real

3 British biologist and philosopher Conrad Hal Waddington (1905—
1975).



Chapter 3: The magic of change and how to find it — 23/56

state space A
SMALL CIRCUIT network states with
(2-gene genome) = gene expression profiles epigenetic landscape
stable attractor

Archtecture
("wiring diagram”)

(‘23)
exr)ressioni level 0 m = B _‘

high low
9 A state

” Potential «

expression level

w

COMPLEX NETWORK (N gene genome)

each network state is
a point in N-dimensional state space.
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(projected to a 2D plane)
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Figure 26. Bifurcation example: (A) depending on the initial values of the protein level states in the toggle switch
motif, we can have a stable or unstable situation. An unstable state can fall into the one or the other direction. (B)
Developmental trajectories follow the imaginary epigenetic landscape of Conrad Waddington. Adapted from [13].

Copyright © 2009, Elsevier Ltd.
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part. If you get stuck here, do not worry. Come back
later after you have worked through the rest of the doc-
ument. The Poincaré-Andronov-Hopf bifurcation,*>°
or (in short) Hopf bifurcation, is an interesting case
because, beyond this point, the solution becomes os-
cillatory (complex Eigenvalues). Biological examples
are the Lotka—Volterra model for the interplay of preda-
tors and prey, the Hodgkin— Huxley model of neuro-
electrophysiology, and the Selkov model of glycolysis
[14].

Also check out the time profiles and bifurcations as oc-
curring in a cancer-signaling network (Figure 27).

* Austrian-Hungarian mathematician and astronomer Eberhard
Frederich Ferdinand Hopf (1902—1983).

5 French mathematician, theoretical physicist, engineer, and philoso-
pher Henri Poincaré (1854—1912).

6 Soviet physicist Aleksandr Aleksandrovich Andronov (1901—
1952).



Chapter 3: The magic of change and how to find it — 25/56
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Figure 27. Time profiles in cancer: "Intracellular signaling regulating cancer associated phenotypes and dynamic
properties of key signaling proteins. The main signaling cascades regulating cancer hallmarks focused on in this
review are depicted. Key signaling proteins in each signaling pathway have various dynamic properties. Cell cycle
drivers such as CycD/CDK4 and CycE/CDK2 show oscillatory dynamics, whereas Rb, which is involved in entry for
S phase, shows switch-like response. Caspase 3, which mediates programmed cell death (also known as apoptosis),
also shows switch-like activation. The tumor suppressor gene p53 displays various dynamics, ¢e.g., oscillation, in
response to DNA damage [...]. Racl and RhoA, which are involved in epithelial-mesenchymal transition (EMT) and
cell motility show bistability. Akt and ERK, which play a key role in multiple cellular processes such as proliferation,
differentiation and cell death display sustained and transient dynamics, respectively". Direct quote and source: [15].
Copyright © 2017, Elsevier Ltd.
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1.10 M Simulation-based analysis of motifs

As mentioned earlier in Example 1 to 6, computer simu-
lation is the method of choice to analyze large or com-
plex dynamical systems. For such systems, analytical
solutions cannot usually be obtained anymore. For the
simulation within a computational framework, the set
of balance equations (ODEs) has to be supplied in a
specific form. These equations will then be numerically
integrated and the time-course behavior for a given set of
initial conditions and parameters will be approximated.
By repeatedly simulating a system with different initial
conditions and parameters, an overview on the overall
system behavior can be obtained. We will not introduce
more advanced methods like Parameter Identification or
Sensitivity Analysis here (further reading e.g. [16]), but
will illustrate the basic simulation approach with two
examples:

k1p K1d
—»P |—
A M
S |-<” \ k2dp
b \
v+ R v+
k2p . 2d

Figure 28. Network structure of the Sniffer motif. Stimu-
lus S activates the production of proteins P and R which
both also get degraded. The degradation of P also de-
pends on P. The respective parameter names are given
in italics.

Example 10: Change detection & adaptation

The Sniffer motif as depicted in Figure 28 is a small
motif consisting of two proteins and an activat-
ing input stimulus [17]. The respective balance
equations are incorporated in the computer model
which is given below in the IQM toolbox format
[5]. Other tools use similar but slightly different
formats. This model allows to simulate the system
behavior, i.e. the behavior of the output as a func-
tion of the input (Figure 29). From this we can see
that the response shows perfect adaptation to vary-
ing inputs, signaling that there is change but then
resettling at the same steady state and being ready
to newly respond to another change. Understand-
ing this function of the motif is on a different level
compared to just drawing the network interactions.
For further reading we recommend the full paper
that this extract comes from [17].
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*x*kx**k*x+x* MODEL NAME
Sniffer

**k*xxxxxxx*x MODEL STATES

d/dt (P) = klpxS - k1d«P

d/dt (R) = k2p*S - k2d*R — k2dp*RsP
P(0) = 0

R(0) = 0

*x*kxxkxxx MODEL PARAMETERS
S =20

klp =
kld =
k2p
kz2d =
k2dp =1

Il
o R PP

0.5

00 50 100 00 50

time time

Figure 29. Dynamics of the Sniffer motif. The time

course of output R is depicted (right) as a consequence
of the varying input S (left).

100

Example 11: Toggle switch

The toggle switch motif is depicted in Figure 26
and consists of two proteins which are mutually re-
pressing each other’s activity, resulting in a double-
negative feedback loop. This motif was nicely an-
alyzed by Huang et al. [18] and we recommend
reading the paper. One of the variants of the motifs
is modeled with the following ODEs:

x| thb'}
f—gy e — 4 p. L
M G T b
_ o thb!

= " — nifk .
R G T 2



With the MATLAB code below, using this model
and analyzing (with repeated simulations) the ef-
fect of the degradation parameter value k = k1 = k2
on the number and exact value of the steady states,
one obtains the bifurcation plot as shown in Fig-
ure 30. The system is bistable for parameter values
k < 1.8. This results in a phase plot with two stable
steady states and one unstable steady state (Figure
31). The slopefield indicates the regions of attrac-
tion towards one or the other stable steady state.
For parameter values k > 1.8 the bistability disap-
pears and the system has only one stable steady
state (Figure 32). The respective phase plot shows
only that steady state with all the slopefields point-
ing towards it. This motif plays an important role
in many developmental processes (see Figure 26
and [18]).

bifurcation plot: X2__ = fik) with k=k1=k2

blue = stable
181 red = unstable

X2
55
*

08¢ ®
0.6 % *
04r

o R kok
02t * ¥ AR

=
it
B
#
*
¥
*

Figure 30. Toggle switch motif. Bifurcation plot for the
toggle switch motif (Example 11). The dependency of
the steady state(s) for X2 as a function of parameter
k = k1 = k2 is depicted. Stable steady states are plotted
in blue and unstable in red.
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phase portrait: X2@) = {X1{))
blue red: stable & unstable steady states, dotted lines: horizontal & vertical tangents
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Figure 31. Toggle switch motif. Phase plot for the tog-
gle switch motif (Example 11) with slopefield. For pa-
rameter values k = k1 = k2 = 1 the system is showing a
bistability. Stable steady states are plotted in blue and
unstable in red.

phase portrait X2(t) = (1(t))
blue red: stable & unstable steady states, dotted lines: horizontal & vertical tangents

Wi
/%%//

X2it)

05

XA(t)
Figure 32. Toggle switch motif. Phase plot for the toggle
switch motif (Example 11) with slopefield. For parame-
ter values k = k1 = k2 = 2 the system is having only one
(stable) steady state (indicated in blue).

%% Toggle switch motif

1
2 %$Thomas Sauter, University of Luxembourg
3 clear all
4 syms X1 X2
5 syms al a2 thal tha2 n bl b2 thbl thb2 kl k2
6 egXl_gen=alxX1"n/(thal”n+X1”n) + ...
bl thbl”n/ (thbl*n+X2%n) - k1xX1
7 egX2_gen=a2xX2”n/ (tha2”n+X2"n) + ...
b2+thb2”n/ (thb2"n+X1%n) - k2xX2
8 % parameters for model A
9 n=4

10 kl=1 %1 %2
1 k2=1 %1 %2
12 thal=0.5
13 tha2=0.5
14 thbl=0.5
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47
48
49
50
51
52
53
54
55
56

57
58
59

60
61
62
63

65

66
67

68
69

thb2=0.5
al=0 %2de: 1
az=0 %2de: 1
bl=1 %4a: 0.5
b2=1 %4a: 0.5
egXl=eval (egXl_gen)
egX2=eval (egX2_gen)
pretty (egXl)
pretty (egX2)
%% step 3
[X1_ss_sym,X2_ss_sym]=vpasolve (egXl,eqgX2,X1l,X2) ;
X1_ss_tmp=X1l_ss_sym; Seval (X1_ss_sym)
X2_ss_tmp=X2_ss_sym; %eval (X2_ss_sym)
X1_ss=[]; X2_ss=[];
for k=l:numel (X1l_ss_tmp) Sremove complex roots
if (imag(X1l_ss_tmp(k))==0) &&
(imag (X2_ss_tmp (k) )==0)
X1_ss=[X1_ss; X1l_ss_tmp(k)];
X2_ss=[X2_ss; X2_ss_tmp(k)];
end
end
X1_ss
X2_ss
%% step 4 using a for loop
syms X1 X2
%general linearization
Lin = jacobian([egXl;
%around steady states:
for i=1l:size (X1_ss)
X1=X1_ss (i)
X2=X2_ss (1)
eval ([['Lin' num2str (i)
eval ([['eig' num2str (i)
eig(eval (Lin)) '])

egX2], [X1 X21)
using for loop

] '= eval(Lin);'1])

] =

end
%% ht and vt tangents
syms X1 X2
[X1_ht,X2_ht,params_ht,conditions_ht]
=solve (egX2,X1,X2, '"MaxDegree',5, ...
'ReturnConditions', true)
[X1_vt,X2_vt,params_vt,conditions_vt]
=solve (egXl,X1l,X2, 'MaxDegree',5, ...
'ReturnConditions', true)
%% plotting the phase portrait + numerical
simulation of vector field
figure; hold on
axis([-0.1 1.5 -0.1 1.5]) %Plot range
X1_range=linspace(0,1.5,50); %Evaluate all
results in the same range
X2_range=linspace(0,1.5,50);
% plot steady states
for k=1:numel (X1_ss)
ss_plot = plot(X1l_ss(k),X2_ss(k),"'x',...
'MarkerSize', 20, 'LineWidth',4);
eig_check=['eig' num2str (k)]; S%check
stability
if max(real (eval (eig_check)))>0

set (ss_plot, 'Color', 'r') S%red for
unstable (=0)
else
set (ss_plot, 'Color', 'b'") Sblue for
stable (<0)
end

end
% plot vertical and horizontal tangents
for i=l:size(X1l_vt)
for k=1:numel (X2_range)
z=X2_range (k) ;
for 1=1:numel (X2_range)
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if (imag(eval (X1_vt (i)))==0) &&
(imag (eval (X2_vt (1)))==0)
plot (eval(X1_vt(i)),eval (X2_vt...
(1)), 'r."', "MarkerSize',10)

end

o

end
end
end
for i=1l:size (X1_ht)
for k=1:numel (X2_range)
z=X2_range (k) ;
for 1=1:numel (X2_range)
X2=X2_range (1) ;
if (imag(eval (X1_ht (i)))==0) &&
(imag (eval (X2_ht (1)) )==0)
plot (eval (X1_ht (i)),eval(X2_ht(i)).
,'g."', '"MarkerSize',10)
end
end

oo oo

end

% numerical computation of example
trajectories

X1_ic=[0:0.1:1.5]"
the x-axis (X1)

X2_ic=[0:0.1:1.5]"
the y-axis (X2)

$initial conditions on

$initial conditions on

syms X1 X2
egXl=subs (egXl, X1, str2sym('x
egXl=subs (egXl,X2,str2sym('x
egX2=subs (egX2, X1, str2sym('x
egX2=subs (egX2, X2, str2sym('x
eval (['dxdt=@Q (t,x,tmp) (["'
char (egX2) '1)'l])
t_int=[0 .1] %vectorfield tend=0.1
trajectories tend=1
options=[]; % =tmp
for i=l:size (X1_ic)
for k=l:size(X2_1ic)
[t, x] = .
oded5 (dxdt, t_int, [X1_ic(i);
X2_ic(k)],options);
plot(x(:,1),x(:,2),"'k")
plot (X1_ic(i),X2_dic(k),'k.", ...
'MarkerSize',5)
end

(1)"));
(2) "))
(1) ")) ;
(2) "))
char (egxl) ';'

1
2
1
2

$full

end

hold off

title ({'phase portrait:
f(X1(t))"', '"blue, red:

stable & unstable steady states,
lines:

horizontal & vertical tangents'})

xlabel ("X1(t)")

ylabel ('X2(t)")

X2 (t) =

dotted

oe

X2=z;




1.11 M Additional reading: Cybernetics—The art of
creating equilibrium in a world of constraints and
possibilities

Cybernetics or control engineering enables us to under-

stand systems and to design the optimal control. The

optimal control brings and keeps the system in a favor-
able state. We can assume that the evolutionary pressure
forced living systems to develop elegant control systems.

Let’s start with the general state-space representation

with a multi-input multi-output (MIMO) system with
the block diagram in Figure 33. We are not only inter-
ested in the actual system & = Ax itself, but also in how
to control and how to observe our system. Often we do
not know the real state values of our system. We have to
measure the states and get an observed output y, such
as the pERK level change in a cell culture experiment.
Measurements, e.g. with western blot, can bias the real
data of an untouched system. The observation matrix C
describes which real states are pooled to our output and
how the experimental analysis modifies the information
of the true state values. Besides the analysis, we also
know that it is very hard to precisely perform an experi-
ment e.g. in cell culture. The pipette might have not been
calibrated for a while and who knows what the clumsy
intern from the computational department did with it.
Thus, all the bias related to the control u is accounted
for in the input matrix B. Additionally, not everything
that we put into the cell culture (fetal calf serum, DMSO,
stains) influences our system x = Ax, but might directly
influence the observed output. Such bias is considered
with the feedthrough matrix D. After we have explained
the principle ideas behind the state-space representation,
we can look at the equations for a simpler single-input
single-output (SISO) system of Order Two:

linear system non-linear system

X Ax bu X f(xu)
~ =~ ———N— = P U et
X1 |=|anx1 +apxy [+|bu i1 = f1(er,x2,u)
Xo|=|axx1 + axxs |+|bou X |=| fo(x1,x2,u)
y =| cixi+ x|+ du y =| glx1,x2,u)
ﬁ_/ Ne——  —
cTx g(x,u)
x =Ax+bu x =f(x,u)
y =c'x+du y =g(xu)

with the matrices and vectors:
A= (@ @z b :
ax axn by
x(+) is called the "state vector", x(¢) € R";

y(-) is called the "output vector", y(r) € R%;

u(-) is called the "input (or control) vector", u(r) € R?;
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A(-) is the "state (or system) matrix", dim[A(-)] =nxn,
B(-) is the "input matrix", dim[B(-)] =n X p,
C(-) is the "output matrix", dim[C(-)] = ¢ x n,

D(-) is the "feedthrough (or feedforward) matrix" (in
cases where the system model does not have a di-
rect feedthrough, D(-) is the zero matrix), dim[D(-)] =

qxp,

and the vector function:
fl (xa u)
f(x,u) =
o= (e
YouTube: State-space representation (all relevant)

Systems often show oscillations and subsiding behav-
iors over time as shown in Figure 19. The calculation
is very difficult as we have to deal with complex inte-
gral convolutions. As discussed in linear algebra, we
might facilitate our problem by changing the coordinate
system. The transfer to a frequency-based coordinate
system is indeed a very good idea and has become the
main tool of cybernetics. The transfer from the time do-
main to the frequency domain allows us to treat control
problems, for the most part, with simple algebraic oper-
ations. The Laplace transform’ splits our function into
harmonic sinusoids and exponential decay terms, and is
an extension of the Fourier transform,® which dissects
periodic functions into harmonic sinusoids only, as ani-
mated in Figure 34. The sinusoid can either occur with
different phase shifts or in combination with the cosines.
The Laplace transform transfers our mathematical prob-
lem from the time-dependent space into the frequency-
dependent space (Figure 35) with the complex variable
s = 0 +iw, as shown in Figure 36. The easily obtained so-
lution in the frequency domain can be transformed back
into the time domain by the inverse Laplace transform,
as shown in Figure 35. The discrete time equivalent of
the Laplace transform is the Z-transform.

Some other important concepts in control theory are:

Definition 7. Controllability describes the ability of an
external input u to shift the internal state of a system
from any initial state xp to any other final state x in a
finite time interval.

Definition 8. Observability is a measure of how well in-
ternal states of a system can be inferred from knowledge
of its external outputs.

7 French astronomer and mathematician Pierre-Simon Laplace
(1749—1827).

8 French mathematician and physicist Jean-Baptiste Joseph Fourier
(1768—1830).


https://www.youtube.com/watch?v=Ufcv_WLuKo4
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Every input, which influences the output without influencing the system

D
Drug

PERK

u

experimental
error modify
control

g1
o]

cell culture

Result| ;**
*é-w

Measurement
error or pooling
of state values

Figure 33. Block diagram of a multi-input multi-output (MIMO) system with associations to experimental cell
biology. The operation t is an integral in the frequency space (Laplace transform) that turns the state derivatives

into state values. See text for explanation.

Definition 9. Transfer function: A transfer function is
a mathematical function which gives for each possible
input value the corresponding output value.

Two types of principal design can be distinguished: open
loop and a closed loop. An open loop design requires
a complete understanding of all physics involved. An
open loop system approaches the desired state after a
certain time, but might not exactly reach it due to dis-
turbances. A closed system compares the system output
with a set point and permanently tries to reduce the
error. A closed system reaches the set point despite dis-
turbances and can reach the desired state faster with
oscillations around the target. A good control system
brings our system into the desired state in a short time
with high precision despite possible disturbances. Watch
the first five videos on control theory here:

YouTube: Control theory lectures (videos 1-5).


https://www.youtube.com/watch?v=oBc_BHxw78s&list=PLUMWjy5jgHK1NC52DXXrriwihVrYZKqjk
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Time domain

x(t) ——| h(t) |[— y(t) = h(t) * z(t)

@ | | t
] Inverse

T T
i “ren Laplace Laplace

'“'H'J\. L Ao N s
' [ N .-"/—F/H-F l l |

W y/ X(s)—> | H(s) |[—> Y(s) = H(s)- X(s)

Frequency domain

Figure 35. Time and frequency domain. In-
put x(¢), impulse-response h(t), and output
¥(¢) in the time domain, and their analogues
(X(s),H(s),Y(s)) in the frequency domain. We

Figure 34. Fourier transform: a periodic func-
tion in the time domain (f, red, magnitude

over time) can be split into several sinus and co-

sinus functions or several sinus functions with have complicated convolution operations (x)
phase shift. These are peaks in the frequency in the time domain, and we have simple alge-
domain (f, blue, amplitude over frequency). braic operations (-) in the frequency domain.
Credit to Lucas V Barbosa, Wikimedia, Licence: Picture source: Wikimedia, Licence: CC0 1.0
Public Domain Dedication. Universal Public Domain Dedication.

time domain ® frequency domain
x X4 oscillation e~iwt X decay e~ %t Imaginary (frequency)
s-plane
Lw
== ®
= Eﬂﬂ Real (exponential)

4

%
time time time
original Fourier transform

Laplace transform e-ote=ivt = g=(o+iw)t = g-st
Figure 36. Time and frequency domain: an ODE can be described by a number of sinusoids with phase shift or
sinusoids and cosinoids. The process is known as the Fourier transform. This is not enough for control engineering,
but if we represent the original ODE as a sum of sinusoids and exponential decay functions, it is sufficient. This
process is called the Laplace transform, which allow us to work in the s-plane and frequency domain.
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2. Basics of mathematics

Before you go through the following chapter, consider
watching this series of YouTube videos on calculus (3
h):

YouTube: Essence of calculus

B Solving quadratic equations
p-q formula
The solution of:

X+ px+q=0

is:

=5 (4)
=—=4 =) —q.
X1,2 ) ) q

a-b-c formula
The solution of

ax® +bx+c=0

is:

. —b++b?—4ac
12=
’ 2a

B Complex numbers

Scientists had huge difficulties calculating the roots of
negative numbers for a long time. The situation im-
proved after defining i as the solution of the equation
x? = —1 resulting in i* = —1 and i = v/— 1. We get a com-
plex number:

z=a-+bi

with a real part ¢ and an imaginary part . This is needed
in this course, when you apply the p-g-equation. More-
over, it is important to know that the imaginary part is
directly linked to the sine function via Euler’s formula
€9 = cos(¢)+i-sin(¢):

z=re'?

= r(cos(9) +i-sin(9))

e = e[Re(s)tJriIm(s)t]

_ eRe(S)t . eilm(s)t]

= RO [cos(Im(s)t) +i-sin(Im(s)1))]

Watch Part 1 to 10 of this series on imaginary numbers
to get a feeling:
YouTube: Series on imaginary numbers
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M Derivative
The derivative is defined as:

f/(a) = lim f<a+h) _f(a).

h—0 h

where the distance & becomes infinitesimally small. The
derivative symbolizes the tangent at a function, as shown
in Figure 37.

TR )] R ———

e

x X+ h
Figure 37. Derivative. [llustration of the derivative of a
function is obtained.

Differentiation
y=x"'
dy / n—1
- = =n-x
dx Y

Example 1: Differentiation

y=x

y:3x2

y:4x4
y=16x°

Product rule

(x) - v(x)
() v(x) +u(x) V' (x)

y

/

y

|
S

Example 2: Product rule
y=x’e"

y=2x-¢4x*-&

Quotient rule

_u(x) _ numerator
Y~ %) ~ denominator
/

) W) -v(x) —ux) V(x)

Y= v(x)?

<

<



https://www.youtube.com/watch?v=WUvTyaaNkzM&list=PLZHQObOWTQDMsr9K-rj53DwVRMYO3t5Yr
https://www.youtube.com/watch?v=T647CGsuOVU&list=PLiaHhY2iBX9g6KIvZ_703G3KJXapKkNaF&index=1 

Example 3: Quotient rule

d ¢ _ (£e) ) —(e) (&)

(¢")(2x)

(0 -
x*

e(x—2)
B

(Source: Wikipedia)

Chain rule
y=u(v(x))
with y = u(z) and z = v(x)
% =y = % ’ % =1/ (V' (x) = f'(v(x))V (x)

Example 4: Chain rule

y=(2x+1)>
y=2(2x+1)-2=402x+1)

M Basic integrals

An integral is basically the area under the curve (AUC).
The term AUC is often used, e.g., in pharmarcokinetics.

1
/)C"cl)cz—_~_1,v’1J“17 forn # —1
n

/u dv:uv—/vdu
/exdx:ex
1

/lnxdx =xlnx—x

BTransform one ODE of n" order into n ODEs
of 1%t order

Approach

1. Introduce n new variables:

X1 =X
X =X
x3 =X

Xp= X
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iCa. 63% (1—e 1) =063

. >
t=T t
Figure 38. Time course behavior of an inhomogeneous
ODE, given as Tx +x = u. The Euler number is e =2.718.

2. Write (n — 1) equations of the form:
Xi = Xir1 si=1...(n—1)

3. Transform original ODE into 1 ODE of 1st-order by
replacing the derivatives with x;.

Example 5: Converting an ODE of n™" to n 1% order

The equation of 2nd order is:
i+4i+5x=0
With the ansatz

X =X1
X=Xy =X

X=x3=xp
we obtain for our system:

X =Xxo

Xy = —4xy — 5x1

with the matrix form:
X 1 _ 0 1 X1
X)) \=5 —4 B

ETransform two ODEs of 1% order into one ODE

of 2" order
Approach: 1. Solve one ODE for the other state variable:

%1 = f(x1,x2,u) — solve for x,

2. Differentiate the solution.
3. Insert into other ODEs.
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Example 6: Converting ODEs from 1% to 2" order
We begin with the equation set:

X1 = apx) +apxy +biu
Xy = an1x1 +axxy +byu

The first equation is differentiated with respect to
time £:

1
X =— (X1 —aixi —biu)
an
) [ ; .
X = — (& —anx) —bu)
an

Transfer of the functions x(x;,u) and X;(x;,u) to
the second equation delivers:

L . .
7()(1 —dapxy —blu) =anx1 +byu
12

an .
+ (X1 —anx; —biu)
an

which in a nicer form gives:

%1 = (an +axn)x — (an1a2 — anax )x
+biu+ (a12b2 —amb )u

B Linearization

Biological systems are usually non-linear and the mea-
sured effects rarely follow the law of additivity (Figure
39). Still, the linearization of equations helps us for the
following reasons:

e Linear equations are mathematically easier to solve/
treat

e Linear system properties are transferable to non-
linear systems around the approximated area

e A unique steady-state exists
e They have a simple controller design

e The response to a variety of simuli can be separated
into linear combinations of the system down to
individual stimuli.

o Additivity f(x1,x2) = f(x1)+ f(x2) (Figure 39)
e Scalability c¢- f(x1) = f(c-x1) (Figure 39)

For the linearization, we can use the Taylor approxima-
tion:

1) =s(e)+ £ ()
//(x*) . ///(x*) .
+ P 2 e e

higher order terms often neglected
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around a point of interest x*, which can be written as
f(x) —glx") = Av = ¢'(x")Ax

whereby the difference between original function g(x*)
and its approximation f(x*) is emphasized. A set of
non-linear equations:

g1(x)
g2(x)

8n(x)
can be approximated by the general form:

ofg(x)

ox Ax

x*

f(x) = g(x") +

with the Jacobian matrix:

981 981

T e
oox | |- :
* 88711 agﬂ’l

Jx| ox,

A linearized system in the general form is then:
x=JAx.

The Taylor approximation is a very important concept.
It delivers a function that, with increasing terms, aligns
with any continuous, smooth function around a certain
point. However, if one moves too far away from the point
of interest, the differences can be extreme.

YouTube: Taylor series explained

Because we are only interested in a linear tangent at
a steady state x*, we neglect all higher order terms and
look only at the function value plus the first term of the
Taylor approximation:

flx) =g(x") + (x—x")g(x")

of x = x* + Ax with Ax = (x —x*).


https://www.youtube.com/watch?v=3d6DsjIBzJ4
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linear non-linear linear function f(x) at this point:
f(X)“ fOr+x2) = f(x1) + f(x2) f(x) F(xy +x3) # f(x1) + f(x2)
‘ flx)=x=(2x"—1)+2Ax

1
fx+x2) ) =xi= (25— 1) +2Ax =2Ax
foef----- £
fe)
N % (5t ) 11 T i Example 8: Linearization 2
f4 :}i;fsrz . f(x)g linearisation First, we determine the steady state:
3/(x)
o gx) =i=x*+2x—1
I e
. gx) =x=2x+2
— R =) 4w —120=
* X x x
NI/ 24/
Figure 39. Linear vs non-linear behavior. Linear systems X, = b+ vb®—dac = 2Eva+a
show additivity and scalability. 7 2a 2

=—14+V2

Second, we approximate the function g(x) with a
linear function f(x) at this point:

Tangent plane at
PofXo. Yo, Zo}

Flx) =k =((x*)> +2x" — 1) + (2x" +2)Ax
For x] = -1 +/2:

=i =((-14+v2)*+2(-1+V2) - 1)
cuec +(2(~1+v2) +2)Ax

passes through

Polxo, Yo. Zo} ‘: :2\/§Ax

For x5 = —1—2

=x=((-1-v2)?+2(-1-v2) - 1)

Figure 40. Linearization of a multi-dimensional equation +(2(=1—V2)+2)Ax

at one point with a plane. Source: LibreTexts Library for — _2V2Ax

mathematics. If the point is an equilibrium point, the

plane is horizontal. Source: LibreTexts Library. Licence: The steady state at x} = — 1 ++/2 is unstable and at

CCBY-NC-SA 4.0 (Fair Use). x; = —1 — /2 is stable. See Figure 16.

Example 7: Linearization 1 Example 9: Linearization 3
First, we determine the steady state: First, we determine the steady state
glx) =x=2x—1 gx) =x =222 —2x—12
glx) =x=2 glx) =i=4x-2
1
i=2x"—-1= =>x*:§ x:2(x*)272x*712£0
. —b+Vb>—4ac 2++/4+96
Second, we approximate the function g(x) with a Xjp= a = 2
1
2 2

and obtain the steady states at: x] =3 ; x5 = -2
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Second, we approximate the function g(x) with a
linear function f(x) at this point:

Fx) =5 =(2(x")? — 2x* — 12) 4 (4x" —2)Ax
=% =0+ (4x" —2)Ax

For x} = 3:
=10Ax
For x5 = -2:

=—10Ax

The steady state at x] = 3 is unstable and at x; = —2
is stable. See Figure 16.

Figure 41. Linearization of a function (hanging carpet)
in respect to two directions. The blue plane is horizontal
at the steady state of function f. The red plane gives the
slopes if shifted slightly moving away from the steady
state point P.

Example 10: Linearization 4

If we linearize a system with two non-linear equa-
tions:

gilxy)=x=(1—-x—y)x

=2+ (1 -y
= fx2+x—xy
gi(x,y)y=-2x+1-y
g1(x,y)y=—x
g2(xy)=y=(1—-x-y)y
==+ (1-x)y
=y +y—xy
g(xy)x=—y

g2(6y)y =2y +1-x
we approximate it with a plane at a particular point
Fx,y) =g(x™,y") + & (x",y") - Ax+ g, (x",y%) - Ay

such as shown in Figure 40. But our points of inter-
est are, as usual, steady—state solutions. For these
steady-state solutions, the linearized system is:

filxy) =% =0+(1—-2x"—y")Ax—x"Ay
Hlxy)=x =0+(1-2y"—x")Ay—y"Ax

Example 11: Linearization 5

We want a linear approximation on a higher-order
ODE

i+x+x=1

on the steady state x* = 1. The equation is rewrit-
ten:

glx,x,X) =%+x+x—1=0,

and we treat any derivative as an independent vari-
able. For:

%, %) = g(x") + gL (x7) - A+ gy (x7) - Ak g5 (x7) - A%

with
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we simply get:

fx,%,%) = Ax+ Ak +Ai =0

Example 12: Linearization 6

We aim for a linear approximation of a higher order
non-linear ODE:

g(x, %, %) =i+i+x>+5=0

With

F Ok, 5) = g (x7) 4 g5 (x%) - Ax+ g5 (x*) - Ak + g5 (x") - Ak

and with
ge(x") =2x
g(x) =1
(") =1
we get:

FO,%,%) =5 4+ 1" 4 (x*)> + 5+2Ar+ At + Ak =0

=0
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3. Exercises
B Steady states

Calculate the steady states for systems (3.1) to (3.8):
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c) Calculate the Eigenvalues of the linearized system

in the steady states and determine thereof the sta-
bility of the individual steady states. For which
values of k do you get stable steady states?

In the following, k = 5 holds:

d) Mark within a X-over-r diagram the domains where

X . L . .
s positive, then respectively negative.

e) Draw X(¢) in a diagram using the results of parts

a)-d) for different initial conditions of X.

M Ist-order system

i=2x—1 (3.1)
X =x"42x—1 (3.2)
X = sin(x) (3.3)
Etitx=1 (3.4)
B+ 2042 —5x+6=0 (3.5)
d X1 _ 3 =2 X1 1
i(2) =0 )l oo
x=(1-x—y)x
y=(1—x—y)y 37)
i=a—(b+1)u+u’v (3.8)

Vv =bu—uv
M Stability
Test the following systems for the stability of their steady
state(s). Draw, therefore, x over x.

X =3x (3.9)
X=-5x (3.10)
x=-x>40.5 (3.11)
i=—x 4 12‘ (3.12)

B Eigenvalues and stability of the steady state
Determine the Eigenvalues and the stability of steady
states of following tasks:

i (2) = (ol _43) (2) (3.13)
a()=0 1) (319
% (2) = (_i i) (ﬁ;) (3.15)

EPopulation growth
The growth of a specific population is described with
the following model:

ax

=2 X)X~ DX~k

a) Derive the steady states of the system.

(withk >0 and X (0) =Xp)

b) Linearize the differential equation around the steady
states.

The growth of a specific population is described with
the following model:

AN

— ="NQ@-N)(N-1)  (withr>0 and N(0) = No)

a) Derive the steady states of the system.

b) Linearize the differential equation around the steady
states.

c) Calculate the Eigenvalues of the linearized system
in the steady states and test for stability of the in-
dividual steady states.

d) Mark within a ¢, N diagram the domains where

dN . o . .
s positive, then respectively negative.

e) Draw N(t) in a diagram using the results of parts
a)-d) for different initial conditions of N. Also
Calculate the position of the inflection points.

B Characteristic equation of a 2nd-order system
The following characteristic equation of a 2nd-order sys-
tem is given:

(s—a+T)(s—14aT)=0 (a,T arereal)

a) What is the corresponding homogeneous differen-
tial equation?

b) For which values of the parameters a and 7' do we
have one single Eigenvalue on the stability bound?

¢) For which values of the parameters a and T is the
system stable, metastable, or unstable?

d) Draw the results of c) in a stability diagram with
abscissa T and ordinate a.



M Biomass growth in a bioreactor

A batch fermentation is carried out in an ideally mixed
tank reactor. At the beginning, substrate and biomass
is provided with concentrations Sy = S(r = 0) and Xp =
X(t=0).

The reaction volume of the reactor (Vz) is considered
to be constant. The specific growth rate of the microor-
ganisms shall be u. The yield coefficient” shall be Yys.
The biomass is linearly proportional to the decline in
substrate X = —YxsS and this anti-correlating behavior
is thus a measurement of efficiency.

a) Set up balance equations for biomass (X) and sub-
strate () concentrations.

b) Derive S(r) as a function of X (), Xp und Sp.

¢) Derive a differential equation for X which does not
depend on the substrate concentration anymore
[X = f(X)] using the assumption u = cS.

d) Repeat this while assuming a logistic growth rate
U =a—bX with (a, b > 0).

e) Compare the differential equations obtained for X
in ¢) and d). What would a and b have to be in
order to obtain identical differential equations?

f) Calculate the steady states (X*,S5*) of system d)
g) Show that the following ansatz is a solution for X (z):
" l4cre<!

How do you have to choose ¢; and ¢; (c¢1,c2 # 0)?

X(r) (3.16)

B Prey-Predator Model 1

We have two versions of the Prey-Predator Model of
Lotka and Volterra. Prey X grows independently of
Predator Y and is depleted by interacting with Y. Thereby
Predator Y grows and, in turn, is depleted by a natural
death rate. The most simple differential equation model
reflecting these relations is:

X=X(1-Y) I
Y=Y(X-1) 11

a) Assign the facts described above to the individual
model terms in the system.

b) Calculate the steady states of the system.

¢) How can the behavior in vicinity of the steady
states be approximated (without calculations)?

9 "Yield based on substrate (Yx/s) or oxygen consumption (Yx/o0)
is a very important parameter. This parameter indicates how efficient
a fermentation is. At the same time it is very closely related with
the maintenance coefficient (m). By means of yield and maintenance
coefficient it is possible to estimate the proportion of energy that cells
consume in biomass and metabolites synthesis and the proportion
of energy that allows the cells to maintain their capability for their
biological performance." Direct quote [?].
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B Prey-Predator Model 2

In the following, a more complex Lotka-Voltera model
shall be investigated. The growth rate of the prey is in-
cluded with a parameter y > 0 and the predator’s growth
rate is modeled with a yield coefficient ¢ > 0. Further-
more an influx of predators into the system is assumed.
The resulting model description is:

X=Xu-Y) I
Y=Y(aX—-1)+1 I

a) Assign the facts described above to the individual
model terms in this system.

b) Calculate the steady states of system as a function
of parameters o and .

¢) Which condition has to be fulfilled for parame-
ter u to obtain only biologically reasonable steady
states?

d) Draw thesteady states for u =2and o = [1/5;1/4;1/3;1/2; 1]

in a diagram (x-axis: X, y-axis: Y).

B Prey-Predator Model 3 (fish)

Small and big fishes are living in a lake. The small fishes
(X) depend on plankton which is available in excess. Big
fishes (Y) feed on the small ones. If only small fishes
were present, it would grow exponentially, i.e. their num-
ber grows with a constant specific growth rate o (o > 0).
In the absence of small fishes, the big fishes would die
out with a decay rate B (f > 0). The following sim-
ple equations describe these facts using the parameters
o, f,7,6 >0:

d
EX—(oc—yY)X I
d
EY =—(B-06X)Y I

a) Determine the steady states of this simple ecologi-
cal model.

b) Linearize the differential equations around the steady
states and transform the linearized equations into
state-space description (states, inputs, outputs in
matrix/vector representation).

¢) Determine for every steady state the Eigenvalues of
the linearized system and deduce from that the sta-
bility of the system in the vicinity of the respective
steady state.

B Prey-Predator Model 4 (fish)

The previously introduced fish population model is mod-
ified as follows: itis assumed that the small fishes (X) are
furthermore depleted via social attrition effects within
their own population. This depletion depends on the
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probability that two small fishes meet. It is therefore
modeled proportional to X*. The extended population
model reads as follows witha = =y=56 =1;6 =0.5:

d 2

—X = —yY)X —eX 1
o (o —17Y) €

d

—Y =—(f—-0X)Y II
S¥ = —(B— )

a) Determine the steady states of the system.

b) Linearize the differential equations around the steady

state and transform them into state-space descrip-
tion (states, inputs, outputs in matrix/vector rep-
resentation).

¢) Calculate the Eigenvalues of the linearized system
at the steady states and determine thereof the be-
havior of the system in the vicinity of the steady
states.

d) Determine the equations of the vertical and hori-
zontal tangents.

e) Optional: Determine the rectilinear trajectories.

f) Sketch the phase portrait.

M Reaction system
The following reaction system is given:

A+Xx M ox

X+y 2 oy
oy By B

The concentration of substance A shall be constant. The
reactions take place in an ideally mixed enclosed reactor
with constant volume.

a) Give the balance equations for the amount of sub-
stance (mol) of the reaction partners X and Y.

One obtains the following differential equation system
by specifically choosing the reaction constants k1, k7, k3:

dCX

? = CX(l_CY)
d
g = cy(ex—cy)

b) Determine the steady states of the system.

¢) Linearize the differential equations around the steady

state and transform them into state-space descrip-
tion (states, inputs, outputs in matrix/vector rep-
resentation).

d) Calculate the Eigenvalues of the linearized system
at the steady states and determine thereof the be-
havior of the system in the vicinity of the steady
states.
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e) Determine the equations of the vertical and hori-
zontal tangents.

f) Optional: Determine the rectilinear trajectories.

g) Sketch the phase portrait.



Notes
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4. Solutions Task 3.6

Do not betray yourself! d X1 3 -2 X1 1
() =G )6
Exercises dt \x2 2

B Steady states
Calculate the steady states for systems 3.1 to 3.8:

is:

3x1 —2x+u=0 I

Task 3.1 X145 =0 I
x=2x—1 II: = x3=-5%
0=2x—-1 .

inl
|
==
2 —15xp —2x+u=0
Task 3.2 1T =—u
.1
X =—=u
i=x42x—1 T
0=x>42x—1
Back in II:
You need the p-q equation (learn it by heart!) and then
you get: S 0
X1+ l7u
5
2 2\’ -2
xXo=—Z44/(2) +1==-1£V2 LT A
' 2 2
Task 3.3

Thus, we have:

X = sin(x) [x’l‘} B <—5/17> ;
0 = sin(x) X 117
x*=nn forrneZ Z={.;-2,—-1;0;1;2;...} or the steady state (—5/12u, —1/17u).

Works for integers Z. Task 3.7
Task 3.4 i=1—-x—yx 1
L y=(-x=y)y I
i+xi+x=1
=1 I: = 0=(l-x—y)x
Case 1:
Task 3.5
i+ 2i+22 —5x+6=0 =|x} =0
¥ —5x+6=0 in 11
(x=2)(x=3)=0 (1-y)y=0=[r/ =0]and[r; = 1]
x;=3
Xy =2 The steady states are (0;0) & (0;1).
Alternatively, with p-q equation: Case 2:
2
x’f@:%i (;) —6 (I-x=y)=0
x=1—y
5 1
=4+ y=1-—x
2 2



in II:

(I—=1+y—y)y =0
0-y=0 — always true
y* = c any desired value

With this we have the steady states (1 —y;c) & (¢;1—x)
which includes the steady state (0;1).

Task 3.8

i=a—(b+u+u’v

Vv = bu—u’v

becomes:

i=vi? —(b+1u+a=0 I
v=u(vu—>b)=0 I

Case 1:
I if u=0
inl = 4if a#0

Case 2:

o if u#0

b

= y=-

u

=bu—u—bu+a=0

with the two solutions:

ut =

v =

QIS R

B Stability
Test the following systems for stability of their steady

state(s). Draw, therefore, x over x. See Figure 42.
Case 1: Stable

if x>x*
then x<0

or

if x<x*
than x>0
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x = 3x X = —5HXx
5 5
""""" unstable stable
x | e x
0 e 0
----------- i
5 -5
1 0.5 0 0.5 1 -1 0.5 0 0.5 1
b'd X
1
S — _ 34 =
0.5 X=—-x*+ 2 05 X x>+ 2
x / \4 x \ / Y
0 / 0 — \
—0.5¢ -0.5
-0.5 0 0.5 1 -0.5 0 0.5 1

X X
Figure 42. Plot of change of x over state x. Stable: if the
state x is positive, the change % makes it more negative.
Unstable: if the state x is positive, the change X makes it
even more positive.

Case 2: Unstable

if x>x*

then x>0
or

if x<x*

then x<0

B Eigenvalues and stability of the steady state
Task 3.13

i X1\ —1 4 X1
di\x) \0 =3)\x
sl = —1; s2 = —3: stable
Task 3.14

i X1\ 3 8 X1
dt \x2») \1 1)\x,
s1 = —1; s2 = 5: unstable

Task 3.15

i X1 _ -1 3 X1
dt \x2) \-1 1)\x
s1 = iv/2; s2 = —iv/2: metastable oscillations

EPopulation growth
The growth of a specific population is described with
the following model:

ax =2-X)X-1)(X—k)

7 (withk >0 and X(0) =Xp)
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Task a) Derive the steady states of the system.

2-X)(X*—1)(X*—k)=0
:|X1* =1 | |X2* =2|, |X3* :k|

Task b) Linearize the differential equation around the
steady states.

X=02X-2-X*+X)(X—k)
=(BX-2-X*)(X —k)
= (3X? — 3kX — 2X + 2k — X° + kX?)
=X+ X*(3+k)+X(—3k—2)+2k
AX = [-3(X*)?+2X*(3+k) -3k —2] - AX

Task ¢) Calculate the Eigenvalues of the linearized sys-
tem in the steady states and determine thereof the sta-
bility of the individual steady states. For which values
of k do you get stable steady states?

Steady State 1 (X* =1):

= s=-3+23+k) —3k—2
= -346+2%k—3k—-2=1—k

= stable for k > 1.
Steady State 2 (X* =2):

= s=-124+4(3+k) —3k—2
=k—2

= stable for k < 2.
Steady State 3 (X* =k):

= 5= -3k +2k(3+k) —3k—2
= 3k +6k+2k> —3k—2
= k> +3k—2

= stable

s=—k>+3k—2<0
K —3k+2>0
(k—1)(k—2)>0

Solution1: k~—1 >0 OR k—2>0
=k>2

Solution2: k—1<0 OR k—-2<0
=k<1
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Task d) and Task e) Mark within a X-over- diagram the

. ax . o .
domains where o s positive, then respectively nega-

tive. One parameter is fixed k = 5. Draw X (¢) in a dia-
gram using the results of parts a)-d) for different initial
conditions of X. One parameter is fixed k = 5.

X4 X<0
5
X>0
2 N
. X<o
— X>0 >
t
X| 0.5 | 1.5 | 2.5 | 5.5
X’| >0 | <0 | >0 | <0

M 1st-order system
The growth of a specific population is described with
the following model:

dN

E:rN(Z—N)(N—l) (withr >0 and N(0) =Np)
Task a) Derive the steady states of the system.

dN

= N@=N)(N—1) =0 =[N} = 0}[N5 = T}[N5 =2

Task b) Linearize the differential equation around the
steady states.
The equation can also be written in the following form:

N =rN(2N —2—N>+N)
= rN(—N*+3N —2)
= —rN3+3rN> —2rN.

With only small deflections n, one can linearize ODEs
around the steady states:

N=N/+n for i=1,2,3
According to Taylor:

df(N)
oN

d *
SN £n) = F(N) |y + .
——

dt
=0

After the implementation of the non-linear equation into
the Taylor equation, one obtains:

r(N*)? 4+3r(N*)* — 2rN*
0
+ ((=3(N*)>+6N*—=2)r)-n

d
Z(N* _
dt( +n)




d
= (=3(N*)>4+6N*—2)rn

d
Steady State 1: Nf =0 — = —2rn

d
Steady State 2: N; =1 — Sn=m

d
Steady State 3: N3 =2 — = —2rn

Task ¢) Calculate the Eigenvalues of the linearized sys-
tem in the steady states and test for stability of the indi-
vidual steady states.

Steady State 1: The Eigenvalue is s=-2r and is negative
because r > 0. The Steady State 1 is thus asymptot-
ically stable.

Steady State 2: Because the Eigenvalue s=r is always
positive, the Steady State 2 is unstable.

Steady State 3: Similar to Steady State 1 and thus asymp-
totically stable.

Task d) Mark within a t — N—diagram the domains

dNn . o . .
where — is positive, then respectively negative.

dt
Nl v,
N<O
N>0 (] K \ .
1 ! N
N<O
o 1

In the second plot (N over N) one can see very well
where the derivative becomes negative or positive.

Task e) Draw N(¢) in a diagram using the results of
parts a)-d) for different initial conditions of N. Calculate
also the position of the turning points.

For the turning points, we need the second derivative:

d? d d
ZN=—f(N)-=N
N ='W g

=r[2-N)(N-1)-N(N-1)+NQ2—-N)|]N=0

This solution of the equation gives us only trivial solu-
tions N = 0. This does not mean that the steady states
are inflection points at the same time, because the third
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derivative is zero for equilibrium points. To sketch the
curves we are only interested in the solutions:

F[2=N)N=1)=N(N—1)+N(2—-N)] =0
—3N?>4+6N—-2=0

N> —2rN+2/3r=0

N?—2N+2/3=0

With:

=>N1,2

3
=1y =158, ny=0.42

—Zi‘/4_83—1i‘/§
==

we obtain the solution:

vo1x %2

Now one can sketch some solutions for the time-course
behavior with N(r) over ¢.

NG|

2

B Characteristic equation of a 2nd-order system
The following characteristic equation of a 2nd-order sys-
tem is given:

(s—a+T)(s—1+4+aT)=0 (a,T arereal) I

Task a) What is the corresponding homogeneous dif-
ferential equation? Characteristic equation with formal
ansatz:

s+ (T —a+aT —1)s+ (T —a)(aT — 1) =
s*+(T—1)(1+a)s+ (T —a)(aT — 1)

0
0
Homogeneous ODE:

i+(T-1)(14+a)x+ (T —a)(aT —1)x=0
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Task b) For which values of the parameters ¢ and T do
we have one single Eigenvalue on the stability bound?

From Equation I we get:
si=a—T
sp=1—aT
An Eigenvalue lays on the stability margin, if:

1) [a=T]—=s1=0, s0=1-T*#0 =T#=+I

1 1
2) azf — 50 =0, s]:?;éo

=T #=+1

Task ¢) For which values of the parameters a and 7T is
the system stable, metastable, or unstable?

1.) Asymptotic stability exists for s; < 0 and s, < 0.

a—T<0 and 1—aT <0 — aT >1
1
a<T Case 1: a>? AND T >0
1
Case 2: a<? AND T <0

2.) Metastability exists if one Eigenvalue lies on the
stability margin and the rest is negative.

o) a=T and T?>1 -] |
1 1
=— and —~-T<0 T>1
B) a T an T <0 — aT >

Case1: [T >0 AND 7 > 1|
Case2: |7 <0 AND 7 > —1]|

3.) In the remaining cases we have no stability.

Task d) Draw the results of c) in a stability diagram
with abscissa T and ordinate a.

as
unstable
1+
10 lll >T
\4\\“ |__unstable
| metastable
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B Biomass growth in a bioreactor

Task a) Set up balance equations for biomass (X) and
substrate (S) concentrations.
X =uXx I
. 1 .
S=——X
Yxs
S = ! ux II
Yxs
Task b) Derive S(¢) as a function of X (), Xo, and Sp.

X dX t
Equation I o / dt
quation I = WX "o U
(In(X)]%, = [1-1]f
In(X) ~In(Xo) = [l
In(x/x0) =

dS 1
Equation Hia:fny.LX()'em
X§
1
dS = —~—-uXo- " -di
X§
S X 't
dS:—M-/ oMt
So Yxs Jo
s pXo 1 t
[S]s():*a'ﬁ ],
Xo
S—Sp=——2 (et 1
0=~y (¢ =1)
1
§=S80—5— [X(t) — Xo]
Yxs
or simply:
as 1
& ux
dt Yxs H
__ L&
o Yxs dt
P
X§
S(1) 1 X(1)
/ :——-/ dx
So Yxs Jx,
S(t) 1 X()
[STs, = Vs RO
1
S(f)—Soz—KS [X () — Xo]
1
éS(f)*So—%'[X(f)—XO]

Task ¢) Derive a differential equation for X which does
not depend on the substrate concentration anymore [X =



f(X)] using the assumption u = cS.

ax X =cSX
—_— = = C,
a
1
=c[So— Y—[X(t) —Xo]X
Xs
Task d) Repeat this while assuming a logistic growth

rate 4 = a —bX with (a, b > 0).

dx

E:,LLX:X(a—bX):aX—sz (4.1)

ds 1

—=——"X(a—bX 42

g X(a=by) (42)
Taske) Compare the differential equations obtained for

X inc) and d). What values would you have to choose for
a and b in order to obtain identical differential equations?

1754 X X |
Sy —+ 2L X =aX-bX2=0
dt YXS YXS S——
Task d)
Task ¢)
cX cX
0=Xx [cs(, + 20 } =X [a—bX]
Yys  Yxs

A comparison of coefficients delivers:

Task f) Calculate the steady states (X*,5*) in task d).

0=(a—bX)X (4.3)
—bX
0=-2"""x (4.4)
Yxs
Equation 4.3 delivers two solutions:
a
Xf=0 X5==
1 2=y
Inserting into Equation 4.4
_ —pe
0=_1 bOO and Oz—a bg:_ig
YXS YXS b YXS b

shows that the substrate does not matter and that the
steady-state values for X are valid for any substrate con-
centration. The solution does not say anything about the
dynamic until the steady state. One could say that either
the reactor content is dead at the end or the growth and
death rate balances the amount of individuals. Have
in mind that the logistic growth equation does not de-
pend on the "substrate" and it is the responsibility of the
modeler to set up realistic but still simple equations.
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Task g) Show that the following ansatz is a solution for
X(1):
X*
Xit)=—=—
®) 1+cie=!
What values would you have to choose for ¢; and ¢;?

The equation:

dx
= =(a—bX)X
5 = (@~ bX)

has X itself and its derivative. We do not have the deriva-
tive of the ansatz yet. Let’s do it! Therefore, we need the
quotient rule:

(f)’ _f's—f¢
g g

which is applied on our ansatz:

dx(t) (“#}vzr)*(X*(OJrClCz@_cZ’))
d (14 cre—c2t)?
X*cicpe 2!

Now we have an equation for X and X. We can insert the
ansatz into Equation 4.1.
dX
— =(a—bX)X
o = ( )
X*cicpe 2t

X* X*
A2a9f - _(,_p
(1+crec2t)? (” 1+ cle"ﬂ) 1+cre—<!

and multiply with (1 +cje™)%

X* ) X*(14cre=)?
1+cre—<! 1 2!
X*cicpe " = (a(1+cre ") —b)X*
0= (a(1+cre ) —bX* —cicre” 2 )X*
= (a —bX*+(a— cz)clef"z’) X*

X*cicpe ! = (u —b

Check the steady states
Let’s test the first steady state :

0= (a—b-0+(a—ca)cre ) -0

Well, this equation is always true. But we are rather
interested in the time response.

A

S|

X*=0 @

v
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We could try to get more out of the ansatz by checking

what happens at time point zero t = 0.
X* X*

- 14cre—20 - 14¢

X(1=0) =X, (4.5)

which tells us that with the steady state X* = 0:

0
e

Xo

the equation is only valid if Xo = 0: So it means that
if we do not have any micro-organisms in the tank at
the beginning, we will also have no micro-organisms at
the end and stay in the steady state X* = 0. Not really

interesting, is it? Remark: this steady state is unstable.

Let’s do something useful by checking the second steady
state.

We introduce [ X* =

4|
i

0= (a/—Kg—&- (a—cz)clefczt) %

with which we know that:

C)=a

We insert this into Equation 4.5:

a

Xo= "~
0 1+c¢
a

1 =L
+c1 Xo
a 1
= ——
! bXo

Inserting this into our ansatz

X*

Xt)= ——
® 14 cre—c2!

we obtain a final solution:
_ a/b
1+ (17“70 — 1) e

Isn’t this beautiful?

X(1)
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B Prey-Predator Model

We have 2 versions of the Prey-Predator Model of Lotka
and Volterra. Prey X grows independently of Predator Y
and is depleted by interacting with Y. Thereby Predator
Y grows and, in turn, is depleted by a natural death rate.
The most simple differential equation model reflecting
these relations is:

X=X(1-Y) I

Y=Y(X-1) 11
Task a) Assign the facts described above to the individ-
ual model terms in the system.

Predator eats prey

—-YX

YX Y
growth on prey  death

i birth
X=X

Y:

Prey number change:
Predator number change:

Task b) Calculate the steady states of the system.
X=X"(1-Y")=0 I
Y=Y*(X*—1)=0 I

Case differentiation:
Equation I é
inEq. I Y*(0—1)=0=
Equation I :>
inEq. I 1-(X*=1)=0=|X*=1]

Task ¢) How can the behavior in vicinity of the steady
states be approximated (without calculations)? Calcu-

Cases 0<Y<1l1|Y>1
0<X<1 X>0 X <0
Y <0 Y <0
X>1 X>0 X <0
Y >0 Y>0

lation close to the steady state at the zero point: (0.1 |
0.1):

=X =0.1(1-0.1)=0.09
Y =0.1(0.1—1) = —0.09

Phase plot with oscillating system
Y 4

VAN
1 l o T
\_,

- - >




B Prey-Predator Model 2

In the following, a more complex Lotka-Voltera model
shall be investigated. The growth rate of the prey is in-
cluded with a parameter y > 0 and the predator’s growth
rate is modeled with a yield coefficient ¢ > 0. Further-
more, an influx of predators into the system is assumed.
The resulting model description is:

X = Xu-Y) (4.6)
Y = Y(aX—1)+1 (4.7)
Task a) Assign the facts described above to the individ-

ual model terms in this system.

predation

-YX
aYX

growth on prey

. birth
X =uX
Y =

Prey number change:

Predator number change:
death

Task b) Calculate the steady states of system as a func-
tion of parameters o and u.
. !
X=X"(u-Y")=0 I
Y=Y*(aX*—1)+1=0 I

Case differentiation:

Equation I é
inEq. I ¥*(0—1)+1=0= [y =1]
EquationI =(u—-Y*)=0 :>
inEq. I: p-(aX*—1)+1=0
poX*—u+1=0

=X =——

Task ¢) Which condition has to be fulfilled for parame-
ter i to obtain only biologically reasonable steady states?
We assume it is reasonable to always have enough of each

species in in the system X*,¥* > 0 then:

Y >0 = ©>0
1

X*>0 = HZ >
a-u

u—1>0

Task d) Draw the steady states for u =2 and o = [/5;
1/4; 1/3; 1/2;1] in a diagram (x-axis: X, y-axis: ¥).

-Y +1

immigration
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X*:#_IZL Y*

o= o-u 200 =H
1 5/ 2
% 2 2
3 3/2 2
o 1 2
1 1/2 2

Plot with parameter-dependent shift of the steady state:
Y 4

2] o000 0 0

1-9

<v

B Prey-Predator Model 3 (fish)

Small and big fishes are living in a lake. The small fishes
(X) depend on plankton which is available in excess. Big
fishes (Y) feed on the small ones. If only small fishes
would be present, it would grow exponentially, i.e. their
number grows with a constant specific growth rate o
(0t >0). In the absence of small fishes, the big fishes
would die out with a decay rate 8 (8 > 0). The following
simple equations describe these facts using the parame-
tersa,f,7,6 > 0:

d !
EX_ (a—yY)X =0 I
d !
ZY = —(B—8X)Y £ 0 11

Task a) Determine the steady states of this simple eco-
logical model.

Equation I :>
in Eq. II: _([3_50))/:0:>

EquationI =(ax—79Y)=0 = YZ*:%
. o

in Eq. IT: —(ﬁ—5X);=O

o o

0X—=8—

Y ﬁ?’

_B

=X =5

Task b) Linearize the differential equations around the
steady states and transform the linearized equations into



Introduction to Systems Biology: Workbook for Flipped-Classroom Teaching 50/56

state-space description (states, inputs, outputs in ma-
trix/vector representation).

We assume:
X=X"+x
Y=Y"+y

The right-hand side of the non-linear equation system
will be linearized around the steady states. If one de-
notes the right-hand side of the first ordinary differential
equation (ODE) as function of X and Y, one can use the
Taylor approximation:

d d

e Og(X,Y dg(X,Y
=g v+ BTy 28T

Applied on our system, we obtain:

|ys-y+...

d
X =(a—yr") -x—yX*.
e (@—=yY*)-x—yX*-y

d * *
Ey—BY x—(B—0X")-y

The related state-space representation is:

X\ _ [(oa—yY* —yX* X

y) \ oY" —B+06X*)\y
Steady State 1: X" = 0,Y" = 0. The steady-state values
are inserted into the state-space representation:

@ B (8‘ —013> <y) (48)

Steady State 1: X = .1/ = §

@ B (—gf; —gé) @ (49)

Task ¢) Determine for every steady state the Eigenval-
ues of the linearized system and deduce from that the
stability of the system in the vicinity of the respective
steady state.

Steady State 1:
Eigenvalues directly from the related state-space repre-
sentation 4.8: s = o, 5 = —f3 — steady state is unstable
Steady State 2:

We use the state-space representation 4.9 to get the char-
acteristic equation:

0 —y%

5« 0 =S2+Olﬂ:0
Y

|sI—A’ = ‘

Thus, we obtain the complex Eigenvalues:

sia=+v/—aP =+ivap

Thus, we have a metastable steady state with conserved
oscillations, also known as a limit cycle.

B Prey-Predator Model 4 (fish)

1 1
g1<x7y):x:(17y)x7§)€2: _xf_xyfixz;o I

. !
g(x,y) =y=(x—1)y = —y+xy =0 I

Task a) Determine the steady state.
From II:

(x—l)yzO—>
]

y;=0inL
1 *
(149 =0T =0]
|x§:2|—> y§:0|

x;=1inl
1 1
l—y—==0—|ys==
y 3 Y2 3

Taskb) Linearize around the steady state with the equa-
tion

Fey) =g, y") + & (x™,y ) Ax+ g, (x™, y*) Ay
using x = x* + Ax with Ax = (x —x*).
= filxy) = (¢ =xy = S () + (1 -y —x")Ax+ (—x")Ay
V= H00) = (2 x0T + (07 A (27— DAy
which is in the general state-space representation:

B _ 1=y —x" —x* Ax + X —xtyt — S (x)?
y y* x*—1)\Ay =y Hxty

_ 9g(x)
J= Jx

and for Steady State 1 (x = 0]y =0) — (0]0):

56 &)

Steady State 2 (1] %)

Steady State 3 (2]0):

(O-(3 )



Task ¢) Determine the stability with the Eigenvalues:
|sI—A|: s—dar a2
az s—an

!
=(s—an)(s—ax)—apan =0

For Steady State 1 (0]0):

(s—D)(s+1)=0

This characteristic polynomial delivers s; =1, 5o = —1,
which indicates an unstable saddle point.
Asymptote:
We start with the equation in the state plane:
y_dy_ oy
X dx x
and introduce the linear equation y = mx and obtain a
equation

—mx

m =
X

that only works for m =0

Steady State 2 (1|%) delivers the characteristic equation:

1 1o, 11
—) - - = —y— - = 0
(shg)sty=st3573
252 +5+1=0
—1+v1-8 1 7
Sip=—"F—— =~ Fi—
4 4 4
which indicates a stable focus.
Asymptote:
We start with the equation in the state plane
y_dy_ o
X dx —%x—y

and introduce the linear equation y = mx and obtain the
equation

m = lix
—Ex—mx
1 2
fimxfm x= Ex
0:m2+%m+%
1 1 1 —1++/-7
ma= g E e 2T T 4

which delivers imaginary slope values.
Steady State 3 (2|0) result in the characteristic equation

(+1)(s—1)—0=0 = s=1lis=—1
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and consequently is an unstable saddle.
Asymptote:
We start with the equation in the state plane

Yoy
X dx —x—2y
and introduce the linear equation y = mx and obtain a
equation
nmx
m=-———
—X —2mx
—mx — 2m*x = mx
—2mx —2m*x =0
2mx(l+m) =0

which result in the slope values m; = 0 and mp = —1

Task d) Tangents
To draw our phase plot, we calculate horizontal and
vertical asymptotes with:

e horizontal tangents: y < 0in Equation II:
—x=1,y=0

e vertical tangents: x =0in Equation I:
— x=0, y:—%x—l—l

Task e) Rectilinear tangents
10 11.

Ansatz ry=mx+b

dy —y+xy —mx — b+ mx® + bx

a:m:x_ % . SR (4.10)
Xy — 53X X —mx X — 53X

10 Ansatz: x =my+b

dx xfxyf%)cz
S o= 2
dy —y+xy
o2 by L1202 2
_my+b—my” —by— 3[m*y* +2mby + b*]
B —y+my? + by

1 1
= —rny+m2y2 +mby—my—b+my2+by+ §m2yz+mby+ Ebz =0

1 1
= (m* +m+zm?)y*+ (b) y+ (56> —b)=0
2 RZERY)
0! o 0!

Coefficients:
by=0—=m =0—

h2:2%m2:1%%+1:§7€0 4.

11 Ansatz: x=1b

x=>b

. 1, X,
=i=(1-yx 7% =x(1—y 2)70

ib(lfy,é)zo =b=0 (forally)

5 =[x=0]
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1
=mx —m*x* — bmx — gmx2 = —mx—b+mx> +bx
1
= —m*x - mez—mx2+mx—bmx+mx—bx+b:0
3 2y.2
=(—zm—m)x"+2m—bm—b)x+_b =0
2 | — ~~
h g o
Coefficients:
=[b=0]
=2m—0-m—0=0—2m=0—[m=0]
3 3
=mm+=)=0—|m =0, m=—=
2 2
Inserted in Equation 4.10:
form =0=
3
for m; = )
3_ 3@
2 x+x?
3 3
272 7
Task f) Draw the phase plot.
The phase plot can be seen in Figure 43.
2r I
!
18F !
!
16 \
!
1.4+ }
121 }
> 1 ~d }
08F | T~ 1
\\ |
0.6 ~L
AN
0.4 LI~
! ~
0.2 \ I~
| S
00 I 1 I o I |
0 0.5 1 15 2 25 3

X
Figure 43. Phase plot: Red dots are steady states of
the system. Dotted lines are the vertical and horizon-
tal tangents. Initial values are: (x = 0.2,y = 2) and
(x=2,y=0.2).
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Bl Reaction system
Task a) Balance equations for X and Y.
The balance equation can be written directly
A=0
X = —kjAX +2k1AX — ko XY = X (k1A —kyY)
Y = —kpXY + 2ko XY — 2k3Y? =Y (ko X — 2k3Y)
B = +k3Y 2
whereby one has to carefully pay attention to the coeffi-

cients. Or one uses the network approach learned in the
previous section:

Vi V2 V3
-1-=0 0 0 1A
N=|-1+2 -1 0 |X
0 —142 =2|Y
0 0 1 |B
which results in:
?‘( , (1) —01 8 kAX
| =S=Nv= kXY
1( o 1 =2 Y2
B 0 0 1 3

This way might be less error prone in praxis. In both
cases we obtain:

X =X(kiA —kyY)

Y =Y (ko X —2k3Y)
where A is kept constant, and B does not influence the
behavior of X or Y. Because A is constant, we could also
combine it with k; to another constant k1A = C. Also
ks could be updated 2k3 = k}. In the following we do
not want to drag the parameters on and only study the
system:

X=X(1-Y)

Y=Y(X-Y)

Task b) Determine the steady states of the system.

giX.Y)=X=X(1-ky) =0 I
2(X,Y) =V =Y(X-Y) =0 I
Steady State 1:
|xT:0|:>yT:O|
Steady State 2:
=1

inII

la—1)=0=[x5=1]



Task ¢) Linearize the differential equations around the
steady state and transform them into state-space descrip-
tions (states, inputs, outputs in matrix/vector represen-
tation).

The general form is:

FX,Y) = g(X*,Y") + & (X", Y*)AX + g} (X*,Y)AY
sometimes also written as:

AX = fi(X,Y) —gi1(X",Y")
= g1 (X", Y*)AX + g, (X*,Y")AY
AY = f(X,Y) — g2(X*,Y¥)
= gh (X", Y)AX + g5, (X", Y*)AY
using X = X* + AX with AX = (X —X*). In our example,
we obtain:
X=AXY)=X"(1-Y")+ (1 -Y*)Ax+ (—X")Ay
Y = /(XY =YX —Y) + (V) Ar+ (X* —2Y*)Ay

which is in the general state-space representation:
¥\ [(1-y* —Xx* Ax\ ([ X*(1-7")
y) L re oxr—2r¢) \ay Y*(X*—Y*)

_98(x)
J= Jx

Steady State 1 (X* =0,Y* =0):

()= o) (&)

Steady State 2 (X* =1,Y* =1):

B-6 )

Task d) Calculate the Eigenvalues of the linearized sys-
tem at the steady states and determine thereof the be-
havior of the system in the vicinity of the steady states.

’sIfA‘ _ §—aiy a
asy s—an
=(s—an)(s—axn)—anay =0
Steady State 1:
s—1 0
|sI—A| =10 s

(s—1)s=0

Chapter 3: The magic of change and how to find it — 53/56

with the Eigenvalues:

S1=1
S2:O

The positive Eigenvalue indicates an unstable steady
state. Steady State 2:

sI-A| =

s 1
-1 s+1
=s(s+1)+1=0
=5 +s+1

The quadratic equation is solved:

1£V1-4 1,1
K = —— :I: —
12 2 RPA
and results in 2 complex numbers with negative real part.
Thus, we have a stable focus.

Task e) Determine the equations of the vertical and
horizontal tangents.

Horizontal tangent:

Y=Y(X-Y)=0
=y =0}

X =Y]

Vertical tangent:

X=X(1-Y)=0
:>|X:0|;

Y =1]

Task f) Optional: Determine the rectilinear trajectories.

Ansatz'?'3: y = mx+b

12 Ansatz: X =mY +b

diXimimY—l-b—(mY-‘rb)Y
av ~ 7 (mY +b)Y Y12
_ mY+b—mY?—by
T omYr+by-y?

= m’Y? +bmY —mY* —mY —b+my*+bY =0
Y (m? —m+m)+Y(bm—m+b)—b=0

13 Ansatz: X =b
X=0
X=0=X(1-Y)=b(1-Y)
=b=0, [X=0]
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25r s
d 1 function PhasePlot2
// 2 5555555555555 5%5%5%5%5%5%5%%5%5%5%5%%5%5%5%%5%5%5%5%5%5%%%
< 3 % Title: phase plot
2r Pid 4 % Author: Marco Albrecht
Pd 5 % Licence: EUPL vl1.2
P 6 % Last change: 01.09.2018
15F // 7 clear global ;close all ; clc ;
// 8 5555555555555 55%5%55555%%5555%%%5%5%5%%
> e 9 %% Parameters
- 10 p.a= 1;%
L i _ - 2ininy i n p.b=1;%
e 12 %% Trajectories
e 13 S$Trajectory 1
05F // 14 tspan=0:0.01:150;%[t_start t_end]
// 15 c0=[0.2; 2];%[initial conditions]
// 16 [7,cl] = odel5s(@system,tspan,c0,[]1,p);
s 17 %$Trajectory 2
Og 0‘5 1‘ 1‘5 é 2‘5 18 tspan=0:0.01:150;%[t_start t_end]
' X ’ ’ 19 c0=[2.5;2];%[initial conditions]
Figure 44. Phase plot: Red dots are steady states of zf [Frc2] = odelSs (Esystem, tspan, c0, [1,p);
the system. Dotted lines are the vertical and horizon- | 5, 32 piot
tal tangents. Initial values are: (x =02,y =2) and | =» figure (1)
(x=2.5,y:2). 24 set (gcf, '"color', 'w'");
25 hold on
26 % trajectories
27 plot(cl(:,1),cl(:,2),"'Color', [0.4
0.75 0.75], 'Linewidth', 2)
28 plot(c2(:,1),c2(:,2),"'Color', [0.85
dy X (mX +b) — (mX +b)? 0.6 0.85], 'Linewidth',2)
a =m= X —X(mX+b) 29 % Asymptotes
3 plot ([0 2.5],[0 2.5], 'k—")
mX? +bX —m*X? —2bmX — b* a plot ([0 2.5],[1 1], 'k——")
X—mXZ—bX 32 % steady states
33 plot (0,0, 'ro', 'MarkerSize', 3, 'LineWidth',5)
34 plot(l,1, 'ro', 'MarkerSize',3, 'LineWidth"', 5)
35 % arrows
émX7m2X27me7mX27bX+m2X2+2me+b2:0 36 annotation('arrow', [0.54/2.5

20_ 2 2 — b — 2 _ 0.52/2.5],[1.8/2.5
X2(=m” —mtm7) + X (m = bm — b+ 2bm) + b7 =0 1.6/2.5],'Color', [0.4 0.75

0.75], 'Linewidth',2)

élb:()l, |m:0|, |Y:0| 37 annotation('arrow', [1.2/2.5
1.3/2.5],[0.8/2.5
Task g) Sketch the phase portrait. 0.87/2.5], 'Color', [0.4 0.75
We try to help our drawing with additional point tests: 0.75], 'Linewidth',2)
38 annotation('arrow', [1.5/2.5
1.3/2.51,11.9/2.5
Testat (X =2,Y =1): 1.78/2.5], 'Color', [0.85 0.6
0.85], 'Linewidth',2)
X:2(1_1):0 39 % etc
. 40 ylabel ('Y")
Y=12-1)=1 a xlabel ('X')
42 end
Test at (X =1,Y= 2): 4 function dcdt=system(—,c,p)
4 %% Load parameters
45 % p.a=1
X—l(l—Z):—l 46 % p.b=1
Y = 2(1 _2) =_2 7 %% System dxdt=Axx
48 dcdt (1) = p.axc(l)*(1-c(2)) it ox
. . _ 49 dcdt (2) = p.bxc(2)*(c(1l)-c(2)) ity
The phase plot can be seen in Figure 44 and the corre % dodt — dedt'; % important! - transposes

sponding MATLAB code is shown below: the solution vector
51 end
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Chapter 4: Physical modeling and non-linear enzyme
kinetics

Thomas Sauter, Marco Albrecht

Motivation

Reality can be difficult to grasp. Philosophers puzzle their heads over the true nature of reality and our image of
it. Accordingly, modeling is the art of coming close enough to reality to give valuable insights, without actually
being reality. Sometimes we have to include more details. The reaction rates v, with which you are already
familiar, can be replaced by more complicated non-linear enzyme kinetics under certain circumstances. Moreover,
mathematical equations might be too flexible initially because they are entirely virtual. We have to actively
include physical constraints to let the model behave more like reality and to force the model behavior into realistic
paths. Different modeling techniques can require the application of different physical laws. But instead of making
our models more and more complicated, we have to ask ourselves: what is essential and thus has to be included
in a model and what only distracts us from the real kernel? But what is the real kernel? Which criterion can help
us to choose an appropriate approximation of our problem? We can neither ignore reality nor can we ever fully
represent it. Join us in finding a healthy distance from reality and in exploring the fascinating and comprehensive
field of enzyme kinetics. Modeling is a wonderful tool for thinking deeply about the origin of all these superficial

Keywords

equation — Enzyme kinetics

Contact: thomas.sauter@uni.lu. Licence: CC BY-NC

observations which we encounter in private life and our professional existence. Let’s make this tool sharp!

Model classification — Model building — Assumptions — SI units — Akaike information criterion — Balance
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1. Lecture summary

We learned in the previous chapters how to set up system
equations and understand their dynamics. This is espe-
cially helpful for Metabolic Network Analysis. There,

© 2023 Thomas Sauter and Marco Albrecht, CC BY-NC 4.0

already, the graph alone can give us insight. However,
we have not modeled physical systems. In order to model
physical systems, we need to think about physical laws
in thermodynamics, include physical relevant param-
eters, think about reaction laws, and get familiar with
unit calculus. However, we begin with the question of
what distinguishes reality from its approximation.

If you prefer, you could also jump directly to balancing
(page 10)—an approach which enables us to formulate
mathematical models of physical and biological systems.

1.1 M What is a model?

"Un cercle n’est pas absurde,[..] Mais aussi un cercle
n'existe pas" / "A circle is not absurd; it is clearly ex-
plained by the rotation of a straight segment around one
of its extremities. But neither does a circle exist." This
citation is from the work La Nausée written by Jean-Paul
Sartre! [1,2]. Sartre was desperate because whenever he
had a word for or a model of something, it would never
be the reality he wanted to describe. Because we are
unable to name something appropriately, the real things
remain nameless. The difference between the beauty of
abstract description and the imperfection of real-world

! French philosopher, novelist, political activist, playwright, literary
critic, and biographer Jean-Paul Charles Aymard Sartre (1905—1980).

https://doi.org/10.11647/OBP.0291.04
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phenomena nauseated him because it revealed to him the
uselessness of existence. In the world of mathematics, ev-
erything seems to be perfect and pure—Ilike a circle. But
you will never find a perfect circle in reality. Thus, the va-
riety of human existence might suggest that something
perfect—or a higher power which leads us—cannot exist.
Instead, it is up to us to turn our existence into essence.
Independent of our opinion of the European movement
of existentialism, this movement urges us to get a bal-
anced feeling for what models are. We have to bring
them close enough to reality to be useful, but one has to
stop the refinement if this stops helping us answering
real-world questions. George Box” once wrote: "Remem-
ber that all models are wrong; the practical question
is how wrong do they have to be to not be useful" [3].
This pragmatic view helps us navigate the process of
understanding reality with useful models, but it spares
us depression caused by exaggerated perfectionism.

Mechanistic models have the following advantages [3]:

o They contribute to our scientific understanding of
the phenomena under study.

e They usually provide a better basis for extrapola-
tion (at least to conditions worthy of further ex-
perimental investigation, if not through the entire
range of all input variables).

o They tend to be parsimonious (i.e. frugal) in the
use of parameters and provide better estimates of
the response.

We want to address what the reality is in our specific case.
Biologists know that experimental models in biology
should resemble—but usually do not fully represent—
real-world phenomena in vivo. However, the biologist
does not really need to think about characteristics he or
she does not care about. We biologists have enough trou-
ble ensuring that one’s experimental setting allows one’s
living system to operate in the desired states and that
the observations (measurements) indeed show what the
real system states look like in principle. It is also the
pragmatic realization that it is just impossible to mea-
sure all possible players at any time under any condition.
But, many things in biologists” system of interest are al-
ready true because they work on a real system. If they
model something, they work on an entirely virtual sys-
tem which they think represents what they care about.
This does not mean it is true. It is an abstraction. One
has to actively ensure that one’s mathematical model
is physically correct, to figure out which elements one
can neglect and which not, and to iteratively compare
one’s simulation result with experimental data. Which
constraints one must take into account depends on one’s
chosen modeling framework, its inherent mathematical

2 British statistician George Edward Pelham Box (1919—2013).
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characteristics, and the underlying assumptions. Con-
sequentially, the interpretation of the model’s result de-
pends on one’s modeling strategy and the considered
assumptions, and is restricted to the considered concep-
tualization. This applies to the modeling framework
itself and to the content of the model. Modeling helps us
to dive into a deeper understanding of what we observe
and to find out what does not work or maybe why our
conception of reality fails. Modeling is not a tool to con-
firm our premature beliefs about what is helpful in order
to seem successful. The less we know, the more careful
we should be with interpretation. Modeling is a tool
to helps us understand biology, but it does not replace
experiments. Bottom-up modeling helps us to develop
a consistent theory on what we observe and top-down
modeling help us to extract the most likely relationships,
but modeling cannot magically generate new data from
nothing. Never fall in love with your model and always
be sceptical and aware of its shortages. Moreover, it is
not an excuse to oversimplify a model until it shows the
obvious and thus becomes useless. Useful modeling is
the art of representing reality to a degree that goes be-
yond what you can understand on your own and find
the limits of what the mathematical framework can han-
dle with given data. Therefore, you need to master the
mathematical framework, its physical interpretation, and
the biology of what your model represents. You need
the knowledge on how experimental data has been de-
rived, how data can be interpreted, and whether you can
use this data in the context of your model. The general
modeling approach is part of the next section.

1.2 B Modeling procedure
A mathematical model uses mathematical descriptions
and computer simulations. A model can be defined as:

Definition 1. Model: A model is the representation of
the essential aspects of a system which represents knowl-
edge of that system in usable form (Eykhoff, 1974) [4].

The modeling procedure is an iterative approach and fol-
lows a cycle such as that shown in Figure 1 and usually
requires an iterative procedure of computational and ex-
perimental analysis (Figure 2). The next section is based
on a textbook in German language [5].

Specify the question of interest

The question of interest is of utmost importance. It will
hardly ever be the case that you have a universal model
with which you can explain all kind of questions. With
the main question in mind, you can start with the sim-
plest model that can roughly represent your system. As
soon as it works, you can refine it iteratively. Modeling
scopes can be:

e Scientific understanding
e Validation or falsification
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3

real /\O mathematical
model model

2

=

real Z%_" situation
situation model

6

real mathematical
results D\/ results

rest of =
mathematics

the world

Figure 1. Modeling cycle of Blum and LeifS. 1: under-
standing 2: simplifying/structuring 3: mathematizing
4: working mathematically 5: interpreting 6: validating
[6]. Copyright © 2007 Authors (Blum, Leif3), Fair Use.

Prediction

Decision-making, strategy planning
Design of a controller

Virtual prototype or material simulation
Pattern recognition.

The modeling scope determines the level of detail of
the model. An experienced modeler can plan the mod-
eling strategy with the mathematical implementation
and numerical issues in mind. Numerical analysis® is a
mathematical discipline which tends to solve problems
approximately. Thereby, errors can occur which have to
be minimized. Not all numerical methods can be applied
to any problem, and sometimes the solving process can
go completely wrong.

Assumptions

Assumptions about reality help us to make the real-
world problem abstract and solvable. There are, for
example, assumptions for simplifying the description
of inter-dependencies or assumptions for constraining
the number of states to investigate. Assumptions should
not contain the obvious, should enable a useful model,
and should not lead to infeasible models. Assumptions
build the foundation of the model and determine the
interpretation of the outcome. Each assumption has to
be justified and checked for the qualitative and quan-
titative impact on the model. The assumptions should
not contradict one another. Assumptions might change
during the modeling process. The following questions
help us to identify appropriate assumptions:

e Which effects can be neglected?

e Which scenario might be a good starting case?

e Which parts of a system are necessary and which
are not relevant?

e Can a part of the system be prescribed?

3 Earliest mathematical writings from Babylon 1800—1600 BC
(Iraq).

Model building

The modeling procedure starts with a verbal model
which is the initial model concept. It helps us to de-
termine what belongs to the model and what does not,
and is specified by the expert of the system. Defining
the system’s purpose is a part of this process. The verbal
model is written in the everyday language of the mod-
eler and the experts. It is also the starting point for the
influential structure of a given system. The following
steps are necessary to build a model in order to answer
the question of interest:

e Specify model and system parameters

e Specify model variables and system states

e Specify the interdependencies between the states
with auxiliary conditions and physical laws

e Formulate the mathematical procedures, such as
optimization, sensitivity analysis etc.

The system variables represent the states which change
during the simulation. The system variables span the
phase space and should fulfil the following criteria:

e Independence: No system variable can be described
as a function of another.

e Completeness: The state of the system is fully ex-
plained by all state variables.

The auxiliary conditions describe the interdependencies
between the system variables and are adjusted by the
system parameter. Modelers use concept maps to draw
potential cause-effect relationships and to reason about
what has to be modeled and how. Engineers are, like
biologists, very visual scientists and need drawings for
fruitful communication.

A system parameter is a number that does not change
with time. In the previous chapters, we mainly talked
about rates. These rate terms represent equations by
themselves and include parameters. Only in the most
simple case are rates represented by a single parameter.
A typical procedure in modeling is the search for param-
eters which are able to let the model behave comparably
to reality.

A good procedure to get good models is to ensure that
one has as many equations as variables (remember the
Rouché-Capelli theorem).

1.3 B Mathematical analysis of models

Mathematical methods can be used to make models fea-
sible, to solve them and to understand their properties.
This section is based on the same textbook in German
language [5].

Dimension analysis

The model variables might have physical meaning and
units. A reformulation can be helpful to get rid of the
units with a proper unit calculus. This process is called
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/ \{ Prediction

Figure 2. The principle of iteration in modeling. We usually start with a hypothesis and choose an appropriate
modeling strategy (graph, discrete, continuous, static, stochastic, deterministic). We integrate data and adjust the
model until it fits. Then we perform a prediction and see whether the model is qualitatively and quantitatively good
enough. If not, the cycle is repeated until we sufficiently understand the system. More information and source: [7].

Copyright © 2009, Nature Publishing Group.

non-dimensionalization. Moreover, relevant lengths or
magnitude ranges of the variable values might be de-
fined to determine what relevant influences are. Ques-
tions of scale are relevant. Multi-scale models can con-
tain different relevant magnitude orders of interest.

Inverse and poorly posed problems

One might perform certain steps to check whether the
model is mathematically well-posed in itself. If not,
mathematical procedures might perform poorly. A well-
posed problem has a unique solution. This solution
changes continuously with continuously changing pa-
rameters. A system matrix which is not invertible can
cause numerical problems. Matrices with a high condi-
tion number are ill-conditioned. A condition number
measures how much an output value changes with small
changes of the input number.

Investigate special problems

One might first solve special cases before investigating
the more complicated general case.

Simplification and linearization

One might neglect terms with minor impact to see if the
simplified model behaves similarly to the original model.
The neglected terms are called small disturbances of the

simplified model (perturbation theory). Karl Popper *
once said: "Science may be described as the art of sys-
tematic over-simplification—the art of discerning what
we may with advantage omit."

Linearization around specific points might help inves-
tigate the model’s behaviour and acquire information
about the non-linear model at specific points.

Check qualitative properties

One runs the model and gets conclusions on asymptotic
behavior, system stability, and if oscillations can occur,
among other qualitative properties.

Sensitivity analysis

After one has found a solution with a given set of opti-
mal parameters, one wants to know how small changes
of parameter values influence the solution. This is an
important type of analysis to carry out.

Interpretation and validation

The interpretation of the results might happen in light
of previous expectations and requires the consideration
of all assumptions. The simulation might give us a pre-
diction which is then subjected to a validation process.
If experimental data can be generated, one has to deter-
mine how tolerant one is ready to be. How well does

4 Austrian and British philosopher Sir Karl Raimund Popper (1902—
1994).
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the model fit the new data? Sometimes no data can be
generated. In this case, check the plausibility with the
experts of the given system. Surprising simulation re-
sults might lead to a deeper investigation of subsystems
or checking whether parameters and variables remained
in physically meaningful ranges after the previous opti-
mization. One cannot prove the 'correctness’ of a model,
and a model cannot be "verified’. Correct settings in a
simulation cannot constitute proof of accurate behavior
under all possible circumstances. The only thing it can
do is falsify the theories and models, e.g. if observations
and simulations disagree. Consequently, we always say
that we validate a model in light of the model’s purpose
and in the following aspects:

Structural validity: The model has an influence struc-
ture which resembles the influence structure of
the original. The number of essential states and
the feedback structures have counterparts in the
original system.

Behavioral validity: The model shows qualitatively the
same dynamic behavior, e.g., oscillations or not.

Empirical validity: Within the model’s constraints, the
simulation result follows experimental data and,
if no observable data is available, the results are at
least consistent and plausible, and the parameter
ranges are empirically justified.

Application validity: The model fulfils its purpose and
can be applied to make decisions, to control pro-
cesses etc.

1.4 M Model classification

Usually you do not have to reinvent a modeling strategy.
Often you can use previous procedures and apply these
to your problem of interest. How often which method
type is used can be seen in Figure 3. The spectrum of
some methods in systems biology can be seen in Figure
4. Mathematical approaches are listed in Figure 16 in
the section on mathematical basics. Here, we give an
overview on model types. This section is based on the
same textbook [5].

Mathematical structure
We can distinguish the following contrasting pairs:

Static or dynamic models: Dynamic models change over
time. Static models are time-independent or are in the
steady state of a dynamic model. The time can be con-
tinuous or discrete.

Discrete or continuous models: If the variable values can
be counted, one is dealing with a discrete model. See
Figure 5 for an illustration of continuous and discrete sig-
nals in time and state. Each class requires fundamentally
different modeling strategies. Discrete models require
methods of graph theory and the theory of finite-state
machines. Continuous models require higher mathe-
matical models of calculus. However, it is possible to

discretize continuous models to obtain and handle a
simpler and reduced discrete model in the hope it suffi-
ciently resembles the original continuous model.

Deterministic or stochastic models: A deterministic model
always comes to the same solution with given parame-
ters and initial variable values. Stochastic models oper-
ate with random events and are used for models with
certain likelihoods. Stochastic models are also used for
very complex models where the structure is not fully
understood.

Sometimes we have models with mixed elements; how-
ever, it helps to understand the character of each in or-
der to make wise choices and to be aware of the conse-
quences.

Level of description

1st-principle models, white-box models Models can be
assembled from known laws or well-understood 1st prin-
ciples.

Heuristic models, gray-boxmodels Models based on more
or less justified assumptions for the cause and effect
inter-relationships. Often for complicated systems with-
out stringent rules, such as ecologic systems and the
Predator-Prey Model.

Descriptive models, black-box models Models generated
on the basis of data without system knowledge. Typically
input-output relationships, as illustrated in Figure 6.

—u> black box —Y->

Figure 6. The black-box concept. We know little about
the system, but we can learn from the input u - output y
behavior.
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1.5 M Akaike Information Criterion

"Whenever a theory appears to you as the only possible
one, take this as a sign that you have neither understood
the theory nor the problem which it was intended to
solve," said Karl Popper. Therefore, we usually have
several candidate models and ask ourselves which model
might be the best. A scheme is shown in Figure 7.
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Model complexity

Model ranking
f(Mg) > f(Mg) > f(M+)

Model selection

M2

°

Figure 7. Model selection: We generate different hypothe-
ses and select the best-balanced model. Model M is too
simple to mimic reality (not enough parameters). Model
M3 fits the noise rather than the underlying system and
is thus not robust (too many parameters, overfitting).
Model M2 represents a good fit. Source: [10]. Copyright
© 2013, Elsevier Ltd.

A commonly used decision tool for the model selec-
tion is the Akaike Information Criterion (AIC), amongst
other similar criteria. The AIC takes into consideration
the goodness of fit L and the number of parameters k:

AIC; = 2k —2In(L).

The model with the minimal AIC should be preferred.
This criterion says nothing about whether a model is
good or bad. It simply says that a model is capable
of generating behavior in line with data. The relative
likelihood of a subordinate model i to the minimal model
AIC; can be calculated with:

exp((AICnin — AIC;)/2)

For small models, the AIC might point to models with
too many parameters. The model is overfitting then. It
means that you fit noise instead of the model dynamic,
which increases the likelihood of giving false predictions.

With the following correction:

2k% + 2k

AICc = AICH ———
¢ Jrn—/’c—l

you increase the impact of the parameters. A large sam-
ple size n can reduce the impact of this correction factor.
For those of you who want to learn more, there is also the
Bayesian Information Criterion (BIC), the Takeu-chi’s
Information Criterion (TIC), and the Widely Applicable
Information Criterion (WAIC) [10]. The model selec-
tion can thereby depend on the experimental design [11].
Minimizing the AIC is effectively equivalent to maximiz-
ing entropy in a thermodynamic system according to the
second law of thermodynamics.

1.6 M Extensive properties & SI units

Besides continuous macro-scale and stochastic micro-
scale thermodynamics, we have to differentiate between
extensive quantities® and intensive quantities, if it comes
to transporting from one system to another. Intensive
quantities such as temperature, concentration, pressure,
and density are independent of the system size or amount
of material. Thus they cannot be physically transported
through a system boundary. Extensive quantities, how-
ever, are defined quantities whose magnitude is additive
for subsystems, according to the International Union
of Pure and Applied Chemistry IUPEC. Around 30 ex-
tensive quantities are listed in Table 1 and are grouped
according to their relationship to mass.

The old SI units (International System of Units) in Figure
8 are currently under reformulation. We mention the
newest proposals:

Definition 2. Second: The second, symbol s, is the SI
unit of time. It is defined by taking the fixed numerical
value of the caesium frequency AvCs, the unperturbed
ground-state hyperfine transition frequency of the cae-
sium 133 atom, to be 9192631770 when expressed in the
unit Hz®, which is equal to s~!.

Definition 3. Meter: The meter, symbol m, is the SI unit
of length. It is defined by taking the fixed numerical
value of the speed of light in vacuum c to be 299792458
when expressed in the unit m- s, where the second is
defined in terms of the caesium frequency AvCs.

Definition 4. Kilogram: The kilogram, symbol kg, is the
Sl unit of mass. Itis defined by taking the fixed numerical
value of the Planck’ constant 4 to be 6.62607015 - 1034

5 Most textbooks use the term "extensive properties"; however, this
term is impure in this context because properties like color are not
quantitative, and some extensive quantities such as heat and work are
not properties [12].

6 German physicist Heinrich Rudolf Hertz (1857—1894).

7 German theoretical physicist Max Karl Ernst Ludwig Planck
(1858—1947).
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Table 1. Extensive properties: This table gives you a feeling for different extensive properties. You do not need
to learn this by heart—you simply need to understand the principle. Z: extensive property. m: mass. z: intensive

property.
Symbol Quantity Unit Conditions Formula Notes
(Z/m=)

Z1 proportional to mass
m mass kg none? m/m =1
F weight Jm™! gconstant F/m=g g=981ms?
Z2 proportional to mass under constant composition (Z/m = k), else Z2 = Z3,°
Cy heat capacity JK™! n; constant C,/ m=c ¢, = specif ¢ heat cap.
n amount of substance  mol n; constant  n/m = 1/ M M = molar mass
VsL volume (solid, liquid) m? n; constant Vg /m = p p = density
N number of particles  — n; constant
73 mass is constant of proportionality, or conditional proportional (Z/m = z)
Ey kinetic energy J E/m = %Vz v = velocity
E, gravitational J Eg/m = gh h = height,

energy g =9.81m/s?
p momentum kg -ms™! p/m=v v = velocity
F® force Jm™! F/m=a a = accelaration
U internal energy J U/m = u(T) T = temperature
G free enthalpy J G/m = g(T,p) g = specif ¢ free

enthalpy

H enthalpy J H/m=h h = specif ¢ enthalpy
S entropy JK™! S/m=s s = specif ¢ entropy
Vg volume (gas) m? Vo/m = M.vg(T,p) vg = molar volume
\Y% volume m? V = Vg + Vg

(all phases)
74 extensive quantities independent of mass
A area (interface) m? -
Eq electric energy J -
Ep spring energy J E, = 1kx? k = spring constant
E,y displacement energy J E,=pV p = ambient pressure
Equr surface energy J Eww=v.A4 Yy = surface tension
i current (electric-) Cs™! —
P power (most forms) ~ Js™! - -
Q heat J - _
q charge (electric) C -
Y work J - -
& extent of reaction eq’ - conjugate to aff nity
d&/dt  reaction rate eqs!d -

fow (fuid) kgs™! -

total quantities =29  total

when expressed in the unit J-s, which is equal to kg-  fixed numerical value of the elementary charge e to be

2

terms of ¢ and AvCs.

Definition 5. Ampere: The ampere,® symbol A, is the

m?-s~!, where the meter and the second are defined in  1.602176634 - 10~'° when expressed in the unit C, which

is equal to A -s, where the second is defined in terms of
AVCs.

SI unit of electric current. It is defined by taking the

8 French physicist and mathematician André-Marie Ampeére (1775—  1836).
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Old Si

Figure 8. Old SI units: s: second, kg: kilogram, mol:
mole, cd: candela, K: kelvin, A: ampere. m: meter.
Source: Wikipedia, Emilio Pisanty, 2016, Licence: CC
BY-SA 4.0.

Definition 6. Mole: The mole, symbol mol, is the SI
unit of amount of substance. One mole contains exactly
6.02214076 - 10>} elementary entities. This number is the
fixed numerical value of the Avogadro constant,” Ny,
when expressed in mol !, and is called the Avogadro
number (IUPEC, 2018, [13]).

Definition 7. Amount of substance: The amount of
substance, symbol n, of a system is a measure of the
number of specified elementary entities. An elementary
entity may be an atom, a molecule, an ion, an electron, or
any other particle or specified group of particles (IUPEC,
2018, [13]).

Definition 8. Dalton: The 1971 definition of the mole
implies that the Avogadro number equals the ratio of the
gram to the Dalton'’ (mu = 1u = 1 Da), with the value of
the Dalton (Da) expressed in grams. The historical conti-
nuity of the present definition preserves this relation, not
exactly, but to within an uncertainty 10~!'° negligible for
practical purposes (IUPEC, 2018, [13]). The relationship
of Dalton to the Avogadro constant might be redefined

to a scaling factor Ny = £ -mol .

Definition 9. Kelvin: The kelvin,!! symbol K, is the
SI unit of thermodynamic temperature. It is defined
by taking the fixed numerical value of the Boltzmann'?
constant K to be 1.380649 - 102} when expressed in the

9 Italian scientist Amedeo Carlo Avogadro (1776—1856).
10 English chemist, physicist, and meteorologist John Dalton (1766—
1844).
11 Scots-Irish mathematical physicist and engineer William Thomson
Kelvin (1824—1907).
12 Austrian physicist and philosopher Ludwig Eduard Boltzmann
(1844—1906).

New SI

Figure 9. Proposed SI units: s: second, kg: kilogram,
mol: mole, cd: candela, K: kelvin, A: ampere. m: meter.
Source: Wikipedia, Emilio Pisanty, 2016, Licence: CC
BY-SA 4.0.

unit J- K1, which is equal tokg-m2- s72.K~!, where the
kilogram, meter, and second are defined in terms of /, ¢
and AvCs.

Definition 10. Candela: The candela,®, symbol cd, is
the SI unit of luminous intensity in a given direction.
It is defined by taking the fixed numerical value of the
luminous efficacy of monochromatic radiation of fre-
quency 540 - 102 Hz, K4, to be 683 when expressed in
the unit Im- W~!, which is equal to'* cd-sr-W~!, or
cd-sr-kg™!-m~2-s?, where the kilogram, meter, and
second are defined in terms of h, ¢ and AvCs.

With this new SI set, the relationships between the SI
units might change according to the scheme in Figure 9.

13 From candle.
14 sr: The steradian or square radian is the SI unit of solid angle.
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1.7 W Balancing

After this detailed introduction to modeling concepts
and other relevant background information, we are now
coming back to the question on how to formulate mathe-
matical models of biological systems. We will introduce
the approach of balancing here, which is an extension of
the ODE equations derived for biochemical reactions in
the previous chapters. The general concept of balancing
for describing system behavior over time is:

temporal change
of state variables

L)

Inflows and outflows are exchanges across the system
boundary. In contrast, sources and sinks are system
internal processes.

Continuous changes are described with differential equa-
tions.

a0 _
dr

= +[ inflow ]—[ outflow ] +( source

b= J+P
N——

Rates of change
In a (time) discrete form this would be:

AP=D(t+1)—D(1)= J+P
~—~—
Changes

= D(t+1)=D(r)+J+P

Example 1: Population balance

A continuous population balance with population
size N [—].

death
rate

birth
rate

immigration
rate

emigration
rate
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m3 kg
Ain T 5 Pin ﬁ:l

V m3 kg
Qout T 5 Pout [ﬁ]

Figure 10. Mass balance of a liquid container.

Example 2: Mass balance

The mass balance of a liquid container is as shown
in Figure 10:

kg

S

it = Qin * Pin — ex " Pex

Example 3: Volume balance

The volume balance can be derived from the mass
balance:

m=p-V)=p-V+p-V=p-V

with the product rule, and with the assumption
that the density is constant and does not change
p = const.

p=0

Example 4: Amount of substance balance

The amount of substance balance is a type of mass
balance which is especially suited for chemical reac-
tions. It is also known as mole balance. The change
of the amount of substance is 7 with the unit 2]
The rate constant is k and can have different units.
Let us look at the following reaction:

A+B-X,p
with the balance equation:

—np=—-np=np=k-C4-Cp-V

The unit calculus is

(= {5



Chapter 4: Physical modeling and non-linear enzyme kinetics — 11/36

The missing unit X for the rate constant & is there-

fore [-L-]. Remember: ny =Cy -V

=g = (C4V) = CUV +CaV = CaV

with the product rule and constant volume V =
const:

V=0
We moreover obtain the following relationships:

é—ﬁA:—CA‘V:k'CA-CB-V

= Cy=—k-C4-Cp

We might also point to the rate of mole change:

Some useful equations
The molar mass is:
m .

M=—= pi

nj Ci

~ m,-zM,--ni

The mass flow 7; [l%g} is:
1 =q - p;
with volume flow rate ¢ {m%} and mass density p {;—g] .
The molar flow 7; [™!] is:
ni=q-c
with volume flow rate ¢ [m%} and molar concentration

ci {%‘2'] . The conversion is:

mol ymol

— 10— — 10~ 3M —

with the unit molar M and millimolar mM.
Reactions

We repeat some reactions and their respective balance
equations:

k

AL e By
ki

A—P ddL[A:—kl'CA'V—kal'CP'V

k-1

A+B=L:p
-1

A+B=P4+5S

k-1

dny _

=—ki-ca-cg-V+k_1-cp-V

dt

dny _
dt

—ki-ca-cg-V4+k_1-cp-cs-V
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1.8 M Enzyme kinetics

Enzymes are very important proteins and good drug
targets. For example, the BRAF kinase' can be inhib-
ited by the drug dabrafenib. Dabrafenib in turn can be
degraded by another enzyme class named cytochrome
P450. The CYP450 enzyme class accounts for 75% of
drug metabolism and five of the 57 human CYPP450s
are involved in 95% of these reactions [14]. Enzymes
are sometimes very unspecific and share similar targets.
Thus when an enzyme is inhibited, this can result in
undesired off-target effects also on other enzymes. Have
a look at the phylogenetic tree of the human kinome in
Figure 11.
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Figure 11. Kinase tree: The maps shows the phylogenetic
tree of the human kinome using the KinMap software.
Sky-blue annotations are kinases which are melanoma-
specific. Red dots indicate kinases for which drugs are
available. Source: [15], Licence: CC BY-SA 4.0.

Chemoinformatics can analyze the molecular struc-
ture of both enzyme pockets and drugs together. 3D
pockets of key targets and off-target kinases thereby al-
low the design of more specific drugs [16]. This helps us
to predict off-target effects, enzyme-drug affinities, and
support the improvement of drug structures. We will

15 Kinases catalyses the transfer of the phosphate group to specific
substrates. The opponent is the phosphatase.
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concentrate on the enzyme kinetic for biochemical net-
works. In Systems Biology, we are often more interested
in the interplay of an enzyme with other molecules and
the role of an enzyme in a network. We might thereby
ignore the chemical complexity as well as the structural
geometry of the enzymes and ask e.g. only the following
questions:

e Which molecules can bind the enzyme?

e Which molecules will be released?

e Which molecule-enzyme affinities appear?
e Is the binding reversible?

e Does the molecule inhibit or activate the enzyme
function?

e Does the molecule bind the catalytic side or an
allosteric side?

e [s the enzyme specific?

YouTube:
Academy)

Enzyme kinetics series (7 videos by Khan

The reaction from substrate to product is usually pro-
moted by enzymes. Enzymes split the reaction into less
energy-intensive subreactions and thereby have a bind-
ing phase and a catalytic phase, as shown in Figure 12.
You learned in Chapter 2 that we can model biochemical
networks with the stoichiometric matrix:

S=N-v

which we often scrutinize in the steady state (dynamic
equilibrium) with:

O0=N-v

The non-trivial solution gave us the fluxes and interest-
ing properties such as dead ends, linear paths, and the
kernel matrix K. We repeat the balancing of a biochemi-
cal reaction in Example 5. In this section we will focus
on the reaction vector v.


https://www.khanacademy.org/test-prep/mcat/biomolecules/enzyme-kinetics/v/an-introduction-to-enzyme-kinetics
https://www.khanacademy.org/test-prep/mcat/biomolecules/enzyme-kinetics/v/an-introduction-to-enzyme-kinetics
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Spontaneous S » P

Catalysed E+S =<——== ES ——> E+P

Binding Catalysis
%, Transition

= . state
5 ES
c
w

Substrates

Products

Catalysis
Reaction coordinate

Binding

E, (no catalyst)

Energy

E, (with catalyst)

AG

Reaction Progress

Figure 12. Energy profile during an enzymatic reaction:
The bigger the energy difference, the lower the probabil-
ity of transformation to the products. Consequently, the
reaction rate is lower as well. Source: Thomas Shafee
& Smokefoot, Wikimedia, Licence: CC BY 4.0 (upper
figure) & CCO 1.0 Universal Public Domain Dedication
(lower).

Example 5: Balancing a biochemical reaction

The substrates are catalyzed to form 2 product
molecules:

Vf
S1+S, —2P

Vb
The overall (net) reaction rate is calculated by the
forward reaction rate vy minus the backward reac-
tion rate v,. The ODE equation set is:

Si=8=

—ki-S1-Sy+k_y-P?
—— —
v
P=2k -S51-8S—2k_;-P?
N—_—— N—_——

vr

Vb

Vp

The reaction coefficients v¢ and v, are based on the
Law of Mass Action formulated by Waage'® and Guld-
berg!” in 1864 [17]. We say that the reaction rate is pro-
portional to the probability of a collision of the reactants.
The probability of a collision in turn is proportional to

16 Norwegian chemist Peter Waage (1833—1900).
17 Norwegian mathematician and chemist Cato Maximilian Guld-
berg (1836—1902).

mj...
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the concentration of reactants to the power of molecu-
larity (stoichiometric coefficient). Refer once again to
Example 5. The net rate of the product is:

VZVf—VbZkl -S1-8 —k_y . p?

with the related unit calculus:

mol | L mol | | mol _ L mol]?
L-s| |mol-s L L mol - s L
——— e e e e — e —
v ki N S k_ P2

The unit of the kinetic parameters k;, in the reaction
rate v, depends on the number of reaction partners. This
unit changes from reaction to reaction.

The general mass action rate law for a single reaction is:

V=vp—Vvp = k+1HSlr-ni —k_1 HP;nj
i J

m; ... molecularities of substrates
molecularities of products

Reactions in equilibrium = concentrations in equilibrium
(Seq I Peq) .

vE="vp
K= I, P
“k ILS

The free energy difference of a reaction:
AG = —RT InK,,

depends on the temperature T and the gas constant
R =8.314—1_ . The free energy is indicated in Figure 12.

mol-K*

The Law of Mass Action might result in a lot of equations,
and simplifications are often used. These are based on
certain assumptions, such as those illustrated in the fol-
lowing for the kinetic rate law of, e.g., Michaelis-Menten.
One standard textbook on enzyme kinetics is from Cornish-
Bowden'® [18]. We will derive some of the kinetics and
will provide, at the end a summary in Table 2.

Michaelis-Menten kinetics
The Michaelis-Menten kinetic [19] is based on the most
common known enzyme reaction scheme:
k
E+S——ES 2, E+P

-1
An enzyme E binds a substrate S to form an enzyme sub-

strate product ES. This enzyme substrate complex can
break down either back to the substrate or into the prod-
uct. In both cases the enzyme is recovered, as expected

18 British biochemist Athelstan John Cornish-Bowden (1943—
today).
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Umax

1 Almost all enzyme molecules occupied
Evmax

Competition for enzyme molecules

Lots of enzyme molecules available

Reaction rate v

Kin Substrate concentration S

Figure 13. Michaelis-Menten kinetic.

for a catalyst. The balance equations of the reaction net-
work are:

ds

— =—k1-E-S+k_;-ES

ar 1 + K1

dES
?:k]ES—(kfl‘sz)Es
dE

dpP

— =ky-ES

e~

The overall reaction rate is:

_das _dp
dr — dt

The substrate decrease is equal to the product increase.
The enzyme is recovered. Because our equation set can-
not be solved analytically, we will make some assump-
tions:

1.) Quasi-equilibrium assumption

Michaelis'” and Menten?’ stated that the forward and
backward reactions between the substrate and the en-
zyme substrate complex are much faster than the final
reaction to the product:

ki,k—1 >k

2.) Quasi-steady-state assumption

Briggs®! and Haldane % stated that if and only if the
substrate is in much higher abundance than the enzyme
S(r =0) > E, then the ES complex has constant concen-
tration levels, or more generally:

dES
p—
dt

19 German biochemist, physical chemist, and physician Leonor
Michaelis (1875—1949).

20 Female Canadian physician and scientist Maud Leonora Menten
(1879—1960).

21 English scientist John Burdon Sanderson Haldane (1892—1964).

22 English professor for Botany George Edward Briggs (1893—1985).
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with which:
dE
=0
dt
is obtained. But if neither enzyme levels nor the levels of

enzyme substrate change, there must be a total amount
of enzyme which we can consider as a constant:

Etotal =E+ES = E= Etotal —ES

Putting everything together
Reformulation of the differential equation of the enzyme
substrate complex gives:

dES
= =h ‘E-S—(k_1 +k)-ES =0
ki - (Etotal —ES™)-S — (k-1 +k2) -ES" =0

ki -Eiotal-S — ki -ES*-S— (k_1 +k2)-ES* =0

and:
ES* ky - Etotal - S _ Etotal - S

- kl'S-i-(k,l—i-kg) - S+%

We are interested in the generation rate of the product
depending on the substrate availability:

dP
= — =ky-ES*
Y dt 2

which is finally:

_ k> - Egotal - S _ Vmax * S
1‘*17“‘2_1'_5 K.+S
1

k

with the Michaelis-Menten parameter K, and the max-
imal catalysis velocity vmax. The Michaelis-Menten pa-
rameter indicates the substrate concentration with which
one can obtain the half-maximal reaction velocity. You
will need to be able to distinguish between the parameter

types!

Mechanistic parameters: k,k_j,... (based on mecha-
nisms)

&
Phenomenological parameters: vimax, Ky, - .. (based on
systemic behavior)

Lineweaver-Burk plot

Lineweaver”’ and Burk®* established a linear represen-
tation of the function in Figure 14 to more easily access
the parameters. This was of great importance before the
appearance of appropriate computer programs. How-

23 American physical chemist Hans Lineweaver (1907—2009).
24 American biochemist Dean Burk (1904—1988).
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Figure 14. Lineweaver-Burk plot. Source: Wikimedia,
Licence: CC BY SA 3.0.

ever, modern methods are available to experimentally
determine more physical parameters without the quasi-
steady-state assumption [20]. The research is still on-
going (for example, taking substrate inhibition into ac-
count [21]). Unfortunately, many publications use the
kinetic laws although their underlying assumptions are
violated—e.g. drugs might lead to enzyme induction
of the CYP450 class leading to a changing total enzyme
concentration Eyqtq].

Michaelis-Menten kinetic for reversible reaction
The reaction scheme for the reversible Michalis-Menten
kinetic is:
k1 ko
E+S=—ES—=——E+P
ko1 koo

where the product concentration changes accordingly:

dP
= — =kES—k_,P-E.
v dt 2 2

The rate equation is:

q-S—P

v :Etotal 4 =
Skj 1 ko P ’ k_1k
Tk, T, Tk, T —1%-2

S b
Vmax S — Vmax P
_ KmS KmP

- S 3
s Kor
The phenomenological parameters are related in the fol-

lowing way:

7
VimaxKmp

€
K q b K
max mS

according to Haldene (1930).

General Michaelis-Menten kinetic for inhibition
We look at the general reaction scheme:

Physical modeling and non-linear enzyme kinetics — 15/36

ky ky

E+S kﬁ ES - E+ P

+ o4

I I

k—31ks k—alks

ks ke

EI—|—Sk¢ ESI — E+ P +1
-5

We distinguish the following cases considering the re-
lated reaction numbers 1-6:

1,2 Michaelis-Menten
1,2,3 Competitive inhibition
1,2,4 Uncompetitive inhibition
1-5 Noncompetitive inhibition
1-6 Partial inhibition

We can assume the following binding equilibria between
the entities and the complexes:

k., E-S
K, ~—l_ =
"k ES

k.3 E-1I
K = — = —
B T EI
k. k4 ES:I
YTk T OESI

ks EI-S
K = —— —
L= s ESI

The respective reaction kinetics are listed in Table 2.

Substrate inhibition
The reaction network for substrate inhibition is:

E+S = ES » E+ P
+
S
I
ESS
which leads to the kinetic:
v:szSZ% ;KI:E:@
Kn+8(1+%) ki ESS

with the optimal substrate concentration:
S = vVK,Ki
and the optimal velocity:

N Vmax
opt — T 7"
P 12K /K

An example for substrate inhibition of CYP1A2 (CYP450
enzyme class) can be found e.g. here [23]. The CYP450
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Table 2. Types of inhibition for irreversible and reversible Michaelis-Menten kinetics, so you can see that one needs different kinetic laws for different
approaches. It is not necessary to learn this information by heart, but you might ponder on it for a while. Reproduced from source: [22]. Copyright © 2016,

John Wiley and Sons.
. Equation - irreversible . . .
Name Implementation Equation - reversible Characteristics
p q
C it I'binds only to free E; S N T K, changes, vmax remains;
) waﬂm e P-release only from ES v = F v= Bmﬂkam . Bmx.wa_u S and I compete for the binding
inhibition Kog = kus = kg =0 Kin-i3+S s TRy TB place; high S may out compete I
. I binds only to ES; v S P Ky, and vmax change, but their

Uncompetitive P-release only from ES b E - max g o max K p ratio remains; S may not out
inhibition Kn,+S-i 1 S 4 P )

kiz=kis=ke=0 m 4 + Kos + Rop) 14 compete |
Zodn.ow%mam,\m W gﬂam to B wbw ES; ES C VmaxS . Vhax wwm — Vinax %_% K, remains, vmax changes;
inhibition -release only from v= (Kn+S)-i3 - s P\ - S may not out compete I

Nﬂﬁu”\ﬂrf ke =0 m AH+N‘=&+N‘%V.E

K, and vmax change;
Mixed I binds to E and ES; S Ki3 > Ki4 : competitive-
e P-release only from ES p= —omax> noncompetitive inhibition;
inhibition Kis % Kia, ke =0 Kn-ia+S-i3 K13 < K14 : noncompetitive-
competitive inhibition

Partial I wa bind % m and ES; VimaxS Q + Lol v K,y and vmax change; if ks > k2,
inhibition P-release only from ES and ESI V= : 213 activation instead of inhibition.

Ki3 # Kia, k¢ #0 Ky -is+S-i3

- k_ ke . .

Abbreviations: Ki3 = ﬁmv Kia = ﬂ;f iz=1+ %g is=1+ %
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enzyme class is unspecific and thus sensitive to substrate
inhibition. Another consequence might be a drug-drug
interaction where another drug is processed by the same
enzyme as the main drug. This is why we talk about
perpetrator and victim drugs—because of the influence
of the pharmacokinetics over the other drug.

Cooperative enzymes
Regulatory enzymes often have more complicated ki-
netics and their sub-units display cooperative behavior.
Cooperativity is the property whereby an enzyme can
have a steep dependence on the substrate or inhibitor
[18]. The positive”> homotropic?® cooperativity can be
formulated on the following base for a dimeric enzyme
E2 [22]
E> +S—— E,S
slow
ExS+S— E)Sp
fast

Because the second reaction is faster, one can assume
that we have complete cooperativity. This means that
the dimeric enzyme is either empty or full:

E» +2S —— E»Sp
The binding constant:

_ ES
B S$?

B

represents the equilibrium of concentration levels, and
the fractional saturation of the enzyme is:
_ 2ExS;  KS?
2E2,total 1+ KBS2

However, this Hill”” equation should be written with the
parameter & (no integer) instead of n

h <1 First ligand reduces affinity for the second ligand
h =1 Quasi Michaelis-Menten
h > 1 First ligand increases affinity for the second ligand

It is incorrect to treat / as an estimate of the number of
substrate-binding sites on the enzyme, though for some
models it does provide a lower limit for this number [18].
Hemoglobin has 4 sub-units with a lower Hill coefficient,
h = 2.7. Thus we reformulate our equation to:

_ kgsh
1+ KpSh
We assume that the fractional enzyme saturation scales
with the substrate turnover:
KpS"
1+ KpSh

V = Vmax

% Ligand facilitates binding of the next ligand. 4 > 1.

26 Homotropic means that the allosteric modulator is the substrate.
When the modulator is not the substrate it is called heterotropic.

27 English physiologist Archibald Vivian Hill (1886—1977). Nobel
Prize in medicine for his work on physical properties of muscles in
1922.

Table 3. Calmodulin model. Different approaches to
model cooperativity with and without simplifying as-
sumptions. Source: [24]. Copyright © 2014, Elsevier
B.V.

Model Actual number Effective number
of parameters of parameters
(generated by framework) (after assumptions)

Induced fit (generic) 15 15

Cooperative model 15 5

(strong and weak sites)

Sequential 15 4

Allosteric 31 7

Macroscopic 4 4

Hill's equation 2 2

The kinetic dependence on the Hill coefficient is visual-
ized in Figure 15.

2F5S,
2E total

0 0.5 1 1.5 2 25 3
Substrat S

Figure 15. Hill kinetic. Factural saturation Y with Kz =
0.3 and different Hill coefficients.

The Hill equation is a pseudo-mechanistic equation which
Hill himself saw as purely empirical. However, the use
of the cooperativity index R, of Taketa and Pogell is more
empiric (experimentally meaningful) as it focusses on
the 10-90% range of full activity. A mechanistic formu-
lation is the Adair?® equation, which is most often used
for positive cooperativity in practice. Moreover, we have
the allosteric model or symmetric model*’*’3! with the
assumption that the subunits of cooperative oligomeric
proteins are independent of the ligand and all sub-units
are in the same conformation at any time, while the se-

28 British protein scientist Gilbert Smithson Adair (1896—1979).

2 French biochemist Jacques Lucien Monod (1910—1976). Nobel
Prize in Medicine for genetic control of enzyme and virus synthesis.
Lac-operon-model.

30 American biologist and biophysicist Jeffries Wyman (1901—1995).

31 French neuroscientist Jean-Pierre Changeux (1936—today).
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quential model®” considers ligand-induced changes in
a sub-unit with possible consequences to others. Thus,
the sequential model assumes that sub-units show in-
dependent conformations in contrast to the allosteric
MWC?* model. Monomeric enzyme can show kinetic
cooperativity if the different conformational states relax
slowly. The section is based on the textbook found in
[18]. Table 3 might give an impression of the model sizes
for reflecting cooperativity.

32 American biochemist Daniel Edward Koshland Jr. (1920—2007).
Together with G. Némethy and D. Filmer in 1966.
33 Author names: Monod-Wyman-Changeux.
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2. Basics of Mathematics

We have a collection of mathematical methods to help us tackle biological questions. They are listed in Figure 16.
We recommend this review for further reading [25].

Testing for differences Significance Analysis Is there a difference between the two groups? :ﬂ
=
llb f ft 2’ ? I m
— —_— )
[ et 95% Cl= X £(1,,.,,(5%) x SE) . &
with/without & —
S
x y Q
Analvsi A C B Analvsi Does a small/large value of x, coincide with Q
nalysing covariaton orrelation Analysis o sl argevalue ot 03
()]
(.
PR
“coincides with” r, = —— o
V \jzxizz}’fz Q
(7))
&
Identifying groups Cluster/Discriminant Analysis on tf‘ae"btahs?sfft?e:teui‘;‘ip::d o
“is similar to” D = mind mind 407
i J m;axd '(k)
o a Explain the variability through a weighted linear
Condensing data Component/Factor Analysis g combination of principg, Compfnentsl
“reduces to” X=UzW"
Fitting data Regression Analysis What is the predicted value of y, given x; and x,?
¥
T’ ° ° o
8 L]
“relates to” A i) el
o7
Numerical predictions Time Series Analysis th:‘fv::;:’::gistae'fe‘;ag;;’ i
y
“follows” 0= f(ye=1),5=2),...) : c
: O
=
Py - ime E
©
Analyzing influences Bayesian (network) Analysis From the observed evidence, H, is most probable. g
—
pe(E|H, )P (H,) O ) o
“Given E, the probability of H is” P(H,-|E)=— e @ X
X pe(E[H,)Pr(H,) O i) Q
©
Investigating mechanisms Dynamical Systems Theory '™ resp°"ssfﬂff:h?nze;':fggﬁi:f afbistabic) al
q;J
“causally entails” d £
—x, = f(%,(t)se o, (), u(t Z e
“If ... Then ...” 7%= @, () & 8

Stimulus
Figure 16. Mathematical analysis approaches. More information and source: [25]. Copyright © Frontiers Physiol,
Licence: CC BY-5A 4.0.
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3. Exercises

M Balance equations

Set up balance equations for the volume and for the
amount of substance (in mol) of every reaction partner
for the systems depicted below. The reactions take place
in an ideally mixed and closed reactor.

B CSTR

In the following, a Continuous Stirred Tank Reactor
(CSTR) is investigated. A substance A with concentra-
tion ' and temperature 7 is pumped into the reactor
with the volume flow rate ¢™. A 1st-order reaction takes
place, during which Substance A is converted irreversibly
into Substance B with a reaction rate constant k;. To in-
crease the conversion rate, heat flow Q. is fed into the
CSTR. The change in reaction enthalpy is neglectable.
The volume flow rate ¢ (temperature 7°; concentra-
tions ¢{“,c3") is removed from the CSTR.

i i in
qm’ Tin, cl

Ongar[< T
A T B
N\

L

Ca,Cp

out
q°*T,carcp

a) Set up the balance equations for the amounts of
Substance A and Substance B.
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out out
q°", carcp,cc q-"",CaCB,Cc

For the questions below, the following simplifying as-
sumptions shall apply: ¢ = ¢" = ¢°* and V =const.

b) Which simplified amount of substance balances
can you achieve? Which variable are you balancing
now?

¢) Which concentrations ¢, ¢j; do you obtain in steady
state?

B Balancing a CSTR

Cell-free medium (substrate S, influx concentration c¥,
volume flow rate ¢) is added to a Continuous Stirred
Tank Reactor (CSTR) in continuous cultivation mode.
The reaction volume within the reactor (Vz) is kept con-
stant. Micro-organisms are growing on the substrate
within the CSTR. The specific growth rate u of the micro-
organisms is approximated with a Michaelis-Menten
kinetic. The yield coefficient shall be Yys.

a) Set up mass balance equations for the concentra-
tions of the biomass (X) and the substrate (S).

b) Derive the steady-state concentration values (cj,cy)
as a function of the dilution rate D = D* = Vi
R

M Intracellular reaction

We will now focus on enzyme-catalyzed reactions in the
interior of a bacterial cell with a constant cell volume V.
Thereby a substrate S is converted into Product P:

k
S+E—==ES

—1

ES *2,P+E
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The reaction is regulated via a feedback repression of the
enzyme synthesis. A simplified mechanism is assumed
as follows:

C+D-53E4D enzyme synthesis

D+P —% pp

—4

ks

E——F enzyme degradation

Within the cell, ideal mixing is assumed. Reaction orders
are according to the stoichiometric coefficients.

a) Set up balance equations for the concentrations of
reaction partners E, ES, S, P, D, and DP in the form
% (Vc). The bacterial cell is thereby considered as
a closed system.

b) Show that the overall concentration of substance
D is constant, i.e. c¢p + cpp =const= cpy

¢) Determine a, § and y in:

@:_a.cs.cls

dt

dp __ B,
1ty O

using the result of part b) and applying the follow-
ing assumptions:

1. The concentration of the enzyme substrate
complex cgg is considered to be constant, i.e.
—cgs =0.

2 ES

2. Reaction 4 is considered to be in equilibrium

(quasi-steady state).

. . _
3. Concentration c¢ is constant (cc = c.).

Remark: The results of points a) to c) are not
needed for us to solve the following parts. For the
remaining parts of this exercise, it is assumed that
a constant substrate concentration cj is achieved
within the cell via regulation of the substrate trans-
port:

d) Which concentrations ¢}, and ¢ do you get in steady
state, if Product P is further converted with rate
rp(t) = rp? This conversion results in the following

equations:
dcg B
bt A N I
dr  1tyep O
d
CPZ(X-Cs-CE—rp II

dr

e) Derive a single 2nd-order differential equation for
the product concentration cp from Equation I and
IT while applying the assumption ¢s = ¢ and con-
sidering a time variable rate rp(z).

repression of enzyme synthesis f) Linearize this differential equation around the steady

state (cp,rp) with Acp = cp —cp and Arp =rp —rp.

B Mixed population

In the following we will focus on a mixed population in
a CSTR in continuous cultivation. The reaction volume
V is kept constant. The mixed population consists of
two species of micro-organisms: prey (P) and predator
(R). Prey grows with a specific growth rate u and de-
creases proportionally with the number of predator and
the number of prey. (The more prey is available, the
more will be depredated). Ideal mixing and a constant
growth rate u (with p # dilution rate D = i) is assumed.

a) Describe the occurring processes in the population.

b) Assign the individual terms within the following
equations to the occurring population processes:

d
—cp = —k —D.
i cp = HUcp 1CPCR cp

—CR = IQCRCP — DCR
dt

¢) Determine the steady state(s) and characterize it
(them) qualitatively.

d) Linearize the system around the steady state(s).

e) Calculate the Eigenvalues for the cases:

1.D=2u
1

2.D=—
HH

f) What can generally be stated on the stability of the
steady states? Focus therefore on 3 cases (i > D,
1 =D and u < D) for every steady state.

B Deriving rate parameters from biological data

A cartoon model for gene regulation via an extracellular
signaling molecule (also called a ligand) is given as fol-
lows:

L is the signaling molecule, R the membrane receptor,
A an adaptor protein, and TF the transcription factor
involved in the regulation.

From the cartoon model, one derives the biochemical
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oL e The parameter k3 has been measured directly as

© k3 =0.01—.
¥,

J ‘_\@)(’ The following assumptions, done by the modeler, are
needed to determine all parameter values uniquely: k_; =
®©, 4 dedtod Ip I quely: k

0.011, k ,=1-1031 and ky =1-10751.

/\ @ a) Convert the unit molar M to molecules per cell for
TF

— = ligand and transcription factor states TF and TFn.

Nucleus b) Calculate the degradation rate constant (k) from

Cytosal the half-life time T .

¢) Construct an ODE model for the sub-network in-
volving the reactions IV - VI, i.e., the unstimulated

reaction network as follows: ;
case. Use, therefore, the law of mass action.

LIS

L+R kg R L d) Use the biological measurements in the unstimu-
ko lated case (steady-state condition) and the assump-
Ri+A &, R4 1 tions to determine all parameters in reactions IV -
K VI. Use units such that state variables are given as

R, +TF — Tkn I numbers of molecules per cell.

ks

TF . TFn v e) Determine the parameters for reactions I - III from
ks the biological measurements and the assumptions,

TFn — TFn+A v using the same units as before.

ALy VI

The following information is known from biological mea-
surements:

e Experiments are done with 2 mL of medium and
6-10° cells, using a ligand concentration of 1 nM.

e The volume of a cell is 1 - 107121, with the nucleus
taking /5 of the total volume.

e The concentration of the transcription factor in
whole cell extracts (TF + TFn) was measured as
0.1uM.

e The concentration of the transcription factor with-
out stimulus in nuclear extracts was measured as
SnM.

e The concentration of the adaptor protein without
stimulus in whole cell extracts is 1uM.

o The adaptor protein has a half-life time of 1 h.
e A cell has a total of 10000 membrane receptors.

e The associated constant K, for the ligand-receptor
binding is 0.01 ;. Hint:
ki[LIIR] = k-1 [Ri
ki [Ri]

7ok mm

e The associated constant for the receptor-adaptor
protein binding is 0.01 ‘%M
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q, @

qout’ CA

in .i
q " ,Cp

out out
q ", CaCB Cc q-"",CaCB,Cc

4. Solutions Reactor 4
Do not bet 1f!
o not betray yourse dl e ow
Exercises dt
M Balance equations dny otk AV 42k enV
Concentrations in the extraction pipe are assumed to a 1A 1A 1o
correspond to the concentrations within the tank. Thus, ang _ iwoin  ou 21,
we have omitted the specific indication with the indices a LTt gV —kaesV
out.
Reactor 1 Reactor 5
eactor
dav ; dl __ in __ _out
E :qm_qout dr =4q q
dn -
dstA - d—tA =q"c —q™ s — 2klc%V
in i dn
=q"cy —q™ca d—tB = —¢%cp —|—k1c§V —kycgV
Reactor 2 dditc = —q™"cc+3kacgV
dl _ qin __out
dt Reactor 6
dn L
=2 ="t — g™ ca—kicaV
dt dl _qin _ qaut
dn N
71‘3 = —qoutCB +kicaV dit o
d—tA =gt — g cp — 2k 3V 4 2k_1cgV +kacgV
Reactor 3 o k,zc%cAV
dv ; dn
E = qm — q"ut 71‘3 =— qoutcB + ki CI%V —k_1cgV —kycgV + kfzc%CAV
dn in i dn
A gy — g™ ca —kicaV +k_1cgV e _ G cc+2kycgV — 2k_pctcaV
dt dt ¢
dnB

o= —q¢™ cp+kicaV —k_1cgV
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in pin .in
q", T, ¢y

Qnear| < !

ATI’B
\_
L

Ca,Cp

t
q‘"‘ ,T ¢y,

B CSTR
Task a) Amount of substance balances:
d
;;4 qlncz'l q()M[cA _ kchV
d
% =0—q™cp+kicaV

Taskb) Applying the simplifying assumptions ¢ = ¢™ =
¢”" und V = const.:

di’lA d

dr ot

Applying the product rule and assume that a CSTR does

not change the volume in the tank during the process
(derivative of constant V is zero):

(ca-V)=Vea+Via=0+Véy

->V~c’A:ch‘—ch—k1cAV
C"A:%~(CT7CA)7]€1~CA (41)
¢p= —%cg +kica (4.2)

Task ¢) From the equation (4.1) with ¢4 =0

L —ei)—kici 0
q in q « *
=ci —=c kicy =0
yeA — ) —kiea
g(cin
:>C*: V\*A
A k1+%
q in
ch = c
A q+kiV A

and for Substance B based on the equation (4.2) with
cg=0:

c'B:—g-cZ-i-klcjg 20

1%

q * *

L. —k

v Cp 1CA
. kv,
Cg=—20Ch
C* :kll 9 Cin
B q q+kV A
N leC,T
cp=—"—
B (q+kV)

M Balancing a CSTR

Cell-free medium (substrate S, influx concentration ¢,
volume flow rate ¢) is added to a Continuous Stirred
Tank Reactor (CSTR) in continuous cultivation mode.
The reaction volume within the reactor (V) is kept con-
stant. Micro-organisms are growing on the substrate
within the CSTR. The specific growth rate u of the micro-
organisms is approximated with a Michaelis-Menten
kinetics. The yield coefficient shall be Yys.

Task a) Set up mass balance equations for the biomass
(X) and the substrate (S) concentrations.

mol
s
7d<CXVR)—’—_/c\+/_c,?——c+ _ S,

a9« Hex VR = —qcx .umaxKS+CSXR
d(CSVR) u 1

= —Cy) — —pexV,

dt q(CS S) YXSMCX R
With Vi = const. we get
dcx q
- M —-D I
o = x=y)=cx(n-D)
dcs ¢ 1 1
o V(cfg —cs)— TSMCX =D(cg' —cs) = TS“CX II
Task b) Derive the steady-state concentration values

(c§,cx) as a function of the dilution rate D = D* = 4

Vi
d
Eq.I: %:cx(u—D)éo
Casel: =
—inIl: D*(c5—c5) =0 =
Case 2: =D*
ase 2: U* = pnax *-I-Ks
Cillmax = D* ¢t + KsD*
KsD*
== 1
,umax -D
KsD*
—in II: D* ( a S)
:umax —-D
KsD*
1 u /'lmax*D* c* ! O
- Mmax * X =
Yxs Ks #mKanlzD*
KsD*
(ei5)
§ umax -D
b KEP7
Yxs K/j-lm/
KyD*
= |ct :Ys<cz"—) v
T =D
Conditions:

The substrate concentration cannot be negative (Cs > 0),
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so that Equation III tells us that:
= lpax > D* \Y

If fhnax < D* we get a wash-out of the biomass, which is
usually not desired in a CSTR.
Biomass should also be positive (cy > 0):

KsD*

— >0
Hmax - D

= —
with e > D*:

€5 Wmax — ¢§'D — KsD* >0

cg'+Ks

u
Cs

whereby Equation V is contained in Equation VI, be-
cause:

Cgu + Ky

> 1.
Zu
Cs

(4.3)

for practical considerations one uses Hpqy > D.
In summary:

CZM +K
Case 1:  pax > SizuSD*
Cs
= Two steady states
C§'+K
Case2:  Uypaxr = SiwsD*
Cs
KsD*
= C; = usi
< jLKSD* _ D
g’
_ KsD*C§! _ ca
(c§'+ Ks)D* — D*c! S
= cx =0
= Both steady states are equal.
C¥ + K.
Case 3:  Upax < SizusD*
Cs

= It exists only the first steady state

cy = 0;c5% = ¢’

B Intracellular reaction

We will now focus on enzyme-catalyzed reactions in the
interior of a bacterial cell with a constant cell volume V.
Thereby a substrate S is converted into Product P:

k
S+Ek:11~:s

—1

ES 2, P+E

28/36

The reaction is regulated via a feedback repression of the
enzyme synthesis. A simplified mechanism is assumed
as follows:

C+D-,E+D enzyme synthesis

D+P ké DP repression of enzyme synthesis
4
E-S,F enzyme degradation

Within the cell, ideal mixing is assumed. Reaction orders
are according to the stoichiometric coefficients.

1st Part

Taska) Set up balance equations for the concentrations
of reaction partners E, ES, S, P, D, and DP in the form
%(V -¢). The bacterial cell is thereby considered as a
closed system.

— (Ve -ce) = (—kicgcs +k_icgs +kaces + kscpee — kscp)Ve

dt
d
E(VC -cgs) = (kicpes —k_1ces — kacps)Ve
d
E(VC cs) = (—kicgcs +k_1cgs)Ve
d
E(VC . Cp) = (kZCES - k4CDCp + k74CDP)VC
d
E(VC -¢p) = (—kacpep +k_acpp)Ve
d
o (Ve - epp) = (kacpep — k—acpp)Ve
with:
dn d(cV) dc  dV¢ dc ,
g =Vr— 4o =V~— th Vg = t.
dt dt Car ¢ dt Cdt with Ve = cons
Thus we get:
d
7 CE= —kicpcs +k_1cgs+kacgs +kscpec — kscg I
7 CES = kicpcs —k_1ces — kaces I
d k +k III
—C§ = —K|CEC —1C
P 1CECS 1CES
ECP =kycps — k4CDCp +k_4cpp v
d
—cp = —kgcpep +k_4cpp \%
dt
ECDP = k4CDCP — k_4CDP VI

which works only if the volume remains constant.

Task b) Show that the overall concentration of Sub-
stance D is constant, i.e. ¢cp + cpp =const= cpg

If you look at the balances of cp and cpp, you see that
the sum is zero:

d

d
ECD -+ ECDP = —kygcpep+k_gcpp+kscpep—k_scpep =0.
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By integrating this equation, one obtains: task description. Let’s use the equilibrium equa-
tion (IV):
[¢p + cpp = const. |
d
Task ¢) Determine a, 8, and y in: ECP =kocps — kscpep +k_4cpp L 0
d kacpep = k_acpp +koc
95 _ _acgecp VII 4cpep acpp +kaces
dt
dcp _ B . VIII We got another hint from task b) where we define
dt I+y-cp a total concentration of enzyme-regulating protein

cpo with ¢p + cpp = ¢po = const. Using this gives:
using the result of part b) and applying the following o prebE T oRe 8 8

assumptions:
kacpep =k_a(cpo—cp) + kocks
1. The concentration of the enzyme substrate complex (kscp +k_s)cp = k_scpo + kacrs
cgs is considered to be constant, i.e. ECES =0: _ k_4cpo+kacgs
(kacp+k_4)
! cpo+ 22¢
7 CES = kicg-cs—k-_1cps —kacps =0 _ DO R CES
ky
ky (gher+1)
= — IX
CES k1 +k CECS
in Equation III:
ds ‘ N k_1ky . 4
= —kicrcC ————CFC . — T A~
ar ICECS ) CECS DP = 3, eper
 —kik_y —kiky +k_ 1k ere
k_1+ko EES
ds kiks 3. Concentration cc is constant (cc = c.).
& —=——""
dt k_1+ky CECS
kika Finally, we obtain the parameters:
=la=—"—
k_1+ko
 kik
2. ReactionIV is considered to be in equilibrium (quasi- ki +k
steady state). y= ks
We already have ¢ and still need y and . These 2 k4
parameters can be found in Equation VIII, because B = kscicpo

this equation contains the derivative of cg. We
might tinker something together that looks similar.

Let’s use Reaction I: 2nd Part

We assume now that we give as much substrate as the

dc :
TIE — —kicges + (kot +ka)ers + kscpee — kscx cells consume so that:
Now, we have the problem that we have the terms cs(r) =c5.

cg and cg, and cgg (which we do not want). If we

put Equation IX in we get: Task d) Which concentrations ¢}, and c¢; do you get

in steady state, if Product P is further converted with

d ky (k
@“r __ kicges + MC‘ECS rate rp(t) = rj? This conversion results in the following
dt k1o N
equations:
+kscpee —kscg
dCE
I =k3cpec —kscg deg B —ks-cE I
t dt 1+7v-cp
Well, that is some progress. Now, we take care of dcp —G-cs cp—rp I

¢p,cc and therefore we have another hint in the dt
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In the stationary case:

ddgza.cs.cE—rpéo :>Cz-:a’i;;c§
?:H?mo—kngéo
H[;"C}?:kslcz:kyar-;c?
I+y p,zﬁji
o afc _1_a[3c§—k5~r}

Yks-rp Y Yks-rp

Task e) Derive a single 2nd-order differential equation
for the product concentration cp from Equation I and II
while applying the assumption cg = c5 and considering
a time variable rate rp(t). Assume cs(t) = c5.

From the system equations I and II we get:

- kscr =
dtCE+ SCE 14 ycp

1 d .
CE = —c,+r
E ocg \ dt Pt

We use this to obtain:

L d Nk (d N B
aci \d2 " " a'’") Tac \at ") T 1 yer

or
d? d ocsP d
p+ks—cp— S rp—ksrpl
di2 P TS g er 14 yep ar B
Task f) Linearize this differential equation around the

steady state (cp,rp) with Acp = cp —cp and Arp =rp —r}.
Assume cs(t) = c§.

The linearization of f = ; +]},L_P delivers:
af 1 af
5 N | = T =Y *A
Flep)+ dep PP 1+ ych + dcp ’CP ¢
1 1

- - y-Sep...
Thych  (Ltyep)? VO

with which we get:

d? d . (ks-rp)y
—Acp+ks—Acp — k5rP + T};;

dr? dt
=——Arp—k (r*—i—Ar )
= =g Arp —ks(rp P)

ACP

and finally:

d? d (ks-13)%y d
S Acptks—Acp+ Pl IAcp = — S Arp—ksArp|
a2 PSP T T gBey P T TN T IeAT
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B Mixed population

In the following we will focus on a mixed population in
a CSTR in continuous cultivation. The reaction volume
V is kept constant. The mixed population consists of
two species of micro-organisms: prey (P) and predator
(R). Prey grows with a specific growth rate u and de-
creases proportionally with the number of predator and
the number of prey. (The more prey is available, the
more will be depredated). Ideal mixing and a constant
growth rate y (with u # dilution rate D = {¢) is assumed.

Task a) Describe the occurring processes in the popu-
lation.
Birth, prey-predator interaction, extraction

Task b) Assign the individual terms within the follow-
ing equations to the occurring population processes:

X d birth predation extraction
prey concentration: ECP =Uucp —kicgcp —Dcp
. d
predator concentration: —cgr=  kocpcg —Dcg
dt growth on prey  extraction

Task ¢) Determine the steady state(s) and characterize
it (them) qualitatively.

0= (u—kicg—D)cp I

0 = (kocy — D)ck I

Steady State 1: —

* _D * _.LL*D
CPZ_Echl_T

Steady State 2: —

Steady State 1 basically says that neither prey nor preda-
tors are present because they are washed out.

Steady State 2 exists only if ¢}, > 0 is. Therefore, the
growth rate has to compensate at least the dilution rate
u > D. If p <D, we have Steady state 1.

Taskd) Linearize the system around the steady state(s).
From Equation I:

c¢p = Hcp —kicpcg —Dcp
we get:

¢y +Acp = f(clyck) +( — D) -Acp — kicp - Acg — kicly - Acp
~— N—_——
0 0(ss)
Aép = (L —kicg —D)-Acp —kicp - Acg

with cp = ¢ +Acp and cg = ¢ + Ack.

From Equation II:

cR = kocpcr — Dcg
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we get:

Acg = —D-Acg+ kzc;g -Acp + kch) -Acg
Acg = kZC; -Acp+ (sz}k:- — D) -Acg

Steady State 1 (0,0):

Acp = (‘Ll, —D) -Acp
AC"R = —D-ACR

(aar) = (5" ) (5ep)

Steady State 2 (%, %):

k k
Aép= (U —+D—D)-Acp— ~~DAcg = ——DAcg
kz k2

k k
Aég = ki(u —D)Acp+(D—D)-Acg = ki(u —D)-Acp
1 1

Acp _ [ MO —EDY\ (Acp
Acg 2u-D) 0 )\Ack

Task e) Calculate the Eigenvalues for the cases:
1.D=2u
2.D= %u
Steady State 1 (0,0):
[sI—A|=0
[s—(L=D)](s+D)=0 =|si=pu—D;s=-D
1.) D=2u
s1=—U
§2 = —Z/J
= stable1
) D=—
2.) M
_!
s = 2#
_ !
2= 51

= unstable saddle

Steady State 2 ( ot D) :

|SI—A|—||:O s:| [kulD 0

s> +D(u—D)=0

S1p = + —D([J, —D)

1.) D =2pu Because the growth rate is just the half of the
dilution rate we will have a wash-out. See task c).

2)D=1
) D=5u
Slzi.uv
s
2= 5K

= unstable saddle

Steady State 2 (%, %):

1 1 1
= Si2=H\ ol Sh =i ol

= metastable circle (limit circle).

Task f) What can generally be stated on the stability
of the steady states? Focus therefore on 3 cases (i > D,
u =D and u < D) for every steady state.

Steady Statel | u>D | u=D u<D
unstable X
stable X
metastable X
Steady State2 | u>D | u=D u<D
unstable X not exists
stable not exists
metastable X not exists

B Deriving rate parameters from biological data

A cartoon model for gene regulation via an extracellular
signaling molecule (also called a ligand) is given as fol-
lows:

J

| |

YAY

Nucleus
Cytosol

L is the signaling molecule, R the membrane receptor,
A an adaptor protein, and TF the transcription factor
involved in the regulation.

From the cartoon model, one derives the biochemical
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reaction network:

k
L+R==R; I
k-1
ky
R+ A —=R, I
k2
R, +TF - TFn 1
ks
TF —= TFn v
k-4
TFn = TFn+ A \%
Ao, VI

The following information is known from biological mea-
surements:

e Experiments are done with 2 mL of medium and
6- 10 cells, using a ligand concentration of 1 nM.

e The volume of a cell is 1 - 107121, with the nucleus
taking 1/5 of the total volume.

e The concentration of the transcription factor in
whole cell extracts (TF + TFn) was measured as
0.1uM.

e The concentration of the transcription factor with-
out stimulus in nuclear extracts was measured as
SnM.

e The concentration of the adaptor protein without
stimulus in whole cell extracts is 1 M.

o The adaptor protein has a half-life time of 1 h.
e A cell has a total of 10000 membrane receptors.

e The associated constant K, for the ligand-receptor
binding is 0.01 ;. Hint:

kLR =k 1[Ri
ki [Ri]

7ok R

e The associated constant for the receptor-adaptor
protein binding is 0.01 A%M

e The parameter k3 has been measured directly as:

k3 =0.01

The following assumptions, done by the modeler, are
needed to determine all parameter values uniquely: k_; =
0011,k ,=1-103% ky=1-10751
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Task a) Convert the unit molar M to molecules per cell
for ligand and transcription factor TF and TFn.
Ligand:

[L] = 1nM = 10-omol _ ¢ 10“‘@
lecul
:>an€.‘/:6.1014%'2'10_3]“

=1.2-10"> molecules in 2 mL

1.2-10"molecules

molecules
—|2.100 22
6-105cells 0

cell

Transcription factor:

nmol mol
—5.1079=—=
L L

1

[TFn]=5nM =35

=5-10"

g mol

=5.-10" 7.6022.1023M
3 .

.0.2-10712L

lecul
_ 602mo ecules

cell

Task b) Calculate the degradation rate constant k¢ from
the half-life time 7} /:

Task ¢) Construct an ODE model for the sub-network
involving the reactions IV - VI, i.e. the unstimulated case.
Use, therefore, the law of mass action.

¢L = —kicpcr +k_icg;i I
Cr = —kicrcr +k_icri 1I
Cri = +kicrcr — k_1cri — kacrica + k—_2cra I

CRa = +kocRrica —k_2CRa — k3CRaCTF v
¢a = —kocrica +k_2crqa +kscrpn — keca Vv
¢TF = —k3CRaCTF — kacTF +k_scTFn VI

CTFn = +k3craCTF +kacrr —k_scTFn VIl
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Taskd) Use the biological measurements in the unstim-  given: 7/,(A) = 1h = 3600s
ulated case (steady-state condition) and the assumptions
to determine all parameters in reactions IV - VI. Use
units such that state variables are given as numbers of

molecules per cell. = ke = n(2) = In(2) =1.9. 10*41
. . ° T,(A) ~ 36005 s
I:II _kl'O'CR"'_k*lCRi:O
= given: ky = 10731
11 : k]-O-Cl*g—k,1~0—k2'0—|—k72'C]§a=0
1
=[cka =0] V2= k5:k6-CA
TFn
IV: ky-0-ca—k »-0—k3-0- =0 1 602000 1
e TR e —1.9-107%=. ~0.19-
V.2: ¢a = —kocrica +k_ocra +ksctr —keca =0 s 602 K
VI.2: ¢rr = —kscractr — kaCTr +k_4CTRn =0
VIL2:  érpp = +Kscracrr + Kacrp — k_acrpn = 0 Task e) Determine the parameters for reactions I - I1I
from the biological measurements and the assumptions,
Volume: using the same units as before.
given: Vel = 107121
1 —12 —12
= V,mcl:§-10 L=02-10""L given: ka(L—R):0.0lﬁ, k_ :0.0I%
4
= Veyo = 3 1072L=0.8-10712L k 1 molec
1 . ~ 6 .
=K, =—=001— Lig.:InM=2-10
ko nM ( 180 cell )
Concentrations: K, = ki —5. 10*9Lll
k_1 molecules
- 5 109 cell
given: crr +crrn = 0.1uM ki =k-y-5-10 molecules
mol B 1 _¢ cell
6 M =0.01--5-107"——
= =0.1-10" T Ny - Veenl s molecules
CTF+CTFn _5 10_11 cell
_mol molecules - lecul
=0.1-107°—.6.022- 107 ——— - 10 '’L molecules
cell
— 60220 molecules given: K,(Ri—A) =0.1 ;%M considerd only in the cyto-
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Parameter Value Unit
K, 2.1-1077 Ceu/molecules
k1 5.1071! Ce”/smolcc
ko, 0.01 s
ko 2.1- 10710 Cell/s-rnolec
k_» 1073 1/5
k3 2.1-107 Cell/s-molec
ks 1073 1/5
kg 1073 1/s
ks 0.19 s
ke 1.9-1074 1/s
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A clear, concise and easy-to-read textbook with plenty of examples, superb graphics and
helpful links. An excellent text for a future generation of interdisciplinary researchers in the
area of biomedical sciences and network medicine.

Jan Rychtar, co-author of Game-theoretical Models in Biology

This volume provides an introduction to the language of systems biology, which
is spoken among many disciplines, from biology to engineering. Authors Thomas
Sauter and Marco Albrecht draw on a multidisciplinary background and evidence-
based learning to facilitate the understanding of biochemical networks, metabolic
modeling and system dynamics.

Their pedagogic approach briefly highlights core ideas of concepts in a broader
interdisciplinary framework to guide a more effective deep dive thereafter. The
learning journey starts with the purity of mathematical concepts, reveals its
power to connect biological entities in structure and time, and finally introduces
physics concepts to tightly align abstraction with reality.

This workbook is all about self-paced learning, supports the flipped-classroom
concept, and kick-starts with scientific evidence on studying. Each chapter comes
with links to external YouTube videos, learning checklists, and Integrated real-
world examples to gain confidence in thinking across scientific perspectives. The
result is an integrated approach that opens a line of communication between
theory and application, enabling readers to actively learn as they read.

This book will interest adherers of systems biology and network analysis, as well
as related fields such as bioinformatics, biology, cybernetics, and data science.

This is the author-approved edition of this Open Access title. As with all Open
Book publications, this entire book is available to download for free on the
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