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Preface 
You just opened a book about numerically approximating the solutions to 
partial differential equations that occur in technological and scientific contexts. 
Since it is important to judge the quality of obtained numerical approximations 
of solutions to partial differential equations, one needs to have an impression of 
the mathematical properties of these solutions. For this reason, the book starts 
with the treatment of elementary mathematical properties of the solutions to 
partial equations. These properties entail existence and uniqueness, maximum 
principles, conservation of mass, conservation of momentum or convergence to 
steady state. Besides these properties, also some attention is paid to the 
derivation and motivation of partial differential equations using principles from 
physics. The connection to physics is crucially important for the analysis of 
consistency of the models, as well as for the analysis of the quality and fidelity 
of numerical approximations to solutions. 

This book has been written for an audience consisting of engineers and 
scientists, who are dealing with 'real-world' problems. Most of the treatment is 
devoted to the actual implementation of the classical discretization methods, 
such as finite differences, finite volumes and finite elements. Some attention is 
paid to error analysis of finite difference and finite volume methods. The 
interested reader is provided with some basic functional analytic theory (like 
Riesz, Lax-Milgram, Cea's lemmas and theorems) that is needed for 
understanding existence and uniqueness of the (Galerkin) variational problem 
and finite element solution, as well as convergence and (apriori) error analysis 
of finite element solutions, though some important details such as the principles 
by Aubin-Nietsche and Bramble-Hilbert are omitted. Some error estimating 
upper bounds for finite element approximations have been listed. Further 
topics involve time-dependent partial differential equations and an 
introduction to linear and nonlinear solvers. 

We hope that you will enjoy reading this book ! 

Diepenbeek, August 2023 

J. van Kan
A. Segal
K. Vermolen
H. Kraaijevanger
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Preface 

This is a book about numerically solving partial differential equations occur- 
ring in technical and physical contexts and we (the authors) have set ourselves 
a more ambitious target than to just talk about the numerics. Our aim is to 
show the place of numerical solutions in the general modeling process and 
this must inevitably lead to considerations about modeling itself. Partial dif- 
ferential equations usually are a consequence of applying first principles to a 
technical or physical problem at hand. That means, that most of the time the 
physics also have to be taken into account especially for validation of the 
numerical solution obtained. 

This book in other words is especially aimed at engineers and scientists who 
have ’real world’ problems and it will concern itself less with pesky mathe- 
matical detail. For the interested reader though, we have included sections on 
mathematical theory to provide the necessary mathematical background. 

This book is an abridged but improved version of our book [15]. The scope 
corresponds to Chapters 1-4, Section 9.7 and Chapters 10 and 11 from [15]. 
The material covers the FDM and FVM, but excludes the FEM, and is suitable 
for a semester course. The improvements will also be implemented in a future 
edition of the unabridged version [15] of this book. 

Delft, August 2019 

Jos van Kan 
Guus Segal 
Fred Vermolen  
Hans Kraaijevanger 
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Chapter 1

Review of some basic
mathematical concepts

1.1 Preliminaries

In this chapter we take a bird’s eye view of the contents of the book. Further-
more we establish a physical interpretation of certain mathematical notions,
operators and theorems. As a first application we formulate a general con-
servation law, since conservation laws are the backbone of physical modeling.
Finally we treat some mathematical theorems that will be used in the remain-
der of this book.

1.2 Global contents of the book

First, in Chapter 2, we take a look at second order partial differential equa-
tions and their relation with various physical problems. We distinguish be-
tween stationary (elliptic) problems and evolutionary (parabolic and hyper-
bolic) problems.

In Chapters 3 and 4 we look at numerical methods for elliptic equations.
Chapter 3 deals with finite difference methods (FDM), of respectable age but
still very much in use, while Chapter 4 is concerned with finite volume meth-
ods (FVM), a typical engineers option, constructed for conservation laws. In
this special version of the book we do not discuss finite element methods
(FEM), which have gained popularity over the last decades. These methods
are discussed in the unabridged version [15] of the book, however.

Application of the FDM or FVM generally leaves us with a large set of alge-
braic equations. In Chapter 5 we focus on the difficulties that arise when these
equations are nonlinear.
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In Chapters 6 and 7 we look at numerical methods for evolutionary problems.
Chapter 6 deals with the heat equation (parabolic case), whereas Chapter 7
deals with the wave equation (hyperbolic case).

1.3 Building blocks for mathematical modeling

Several mathematical concepts used in modeling are directly derived from a
physical context. We shall consider a few of those and see how they can be
used to formulate a fundamental mathematical model: conservation.

1.3.1 Gradient of a scalar

Given a scalar function, u, of two variables, differentiable with respect to both
variables, then the gradient is defined as

grad u =

(
∂u
∂x
∂u
∂y

)
. (1.3.1)

Instead of the notation grad u also ∇u (pronounce: nabla u) is used. To get to
the core of what a gradient really is, think of temperature. If you have a tem-
perature difference between two points, then you get a flow of heat between
those points that only will stop when the temperature difference has been an-
nihilated. If the difference is bigger, the flow will be larger. If the points are
closer together the flow will be larger.

x

T

x 1

q

0T

1

0

Figure 1.1: One-dimensional heat flow.

The simplest one-dimensional model to reflect this behaviour is the following
linear model, illustrated in Figure 1.1. Let q be the generated flow, and assume
it is directly proportional to the temperature difference ΔT and inversely pro-
portional to the distance Δx.
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Then we obtain the formula

q = −λ
ΔT
Δx

, (1.3.2)

where λ is a material constant, the heat conduction coefficient. The minus sign
reflects the facts that

1. heat flows from high to low temperatures;

2. physicists hate negative constants.

In a sufficiently smooth temperature field T(x) we may take limits and obtain
a flow that is derived from (driven by) the temperature:

q = −λ
dT
dx

. (1.3.3)

How is this in more than one dimension? Suppose we have a two-dimensional
temperature field T(x, y) which we can represent nicely by considering the
contour lines which for temperature are called isotherms, lines that connect
points of equal temperature (see Figure 1.2).

10 10.5

11

11.5

12

Figure 1.2: Isotherms.

Since there cannot be heat flow between points of equal temperature, the heat
flow must be orthogonal to the contour lines at every point. Two vectors v
and w are orthogonal if their inner product (v,w) vanishes. In other words:

let x(s), y(s) be a parameterization of a contour line and let
(

q1
q2

)
be the

components of the heat flow field. We then have:

q1
dx
ds

+ q2
dy
ds

= 0, (1.3.4)



4 Classical Numerical Methods in Scientific Computing

at every point x(s), y(s) of the isotherm, for all isotherms. Let us substitute
the parameterization of an isotherm into the temperature field: T(x(s), y(s)).
Doing this makes T a function of s only, which is constant because we are on an
isotherm. In other words, along an isotherm:

dT
ds

=
∂T
∂x

dx
ds

+
∂T
∂y

dy
ds

= 0. (1.3.5)

Comparing Equations (1.3.4) and (1.3.5) we see that these can only be satisfied
if

q = −λ grad T. (1.3.6)

For three dimensions you can tell basically the same story that also ends in
Equation (1.3.6). This is known as Fourier’s law and it is at the core of the
theory of heat conduction.

Exercise 1.3.1 (Fick’s Law) In diffusion the flow of matter, q, is driven by differences
in concentration c. Express q in c. �

Scalar fields like T and c whose gradients drive a flow field, q, are called po-
tentials.

1.3.2 Directional derivative

In the previous paragraph we saw how the temperature, T, changes along a
curve x(s), y(s). The actual value of dT/ds depends on the parameterization.
A natural parameterization is the arc length of the curve. Note, that in that case(

dx
ds

)2
+

(
dy
ds

)2
= 1.

This forms the basis of the following definition:

Definition 1.3.1 Let n be a unit vector, then the directional derivative of T in the
direction of n is given by

∂T
∂n

=
∂T
∂x

n1 +
∂T
∂y

n2 = (grad T,n) = (n · ∇)T.

Exercise 1.3.2 Compute the directional derivative of z = x2 + y3 in (1, 1) in the
direction (1,−1). (Answer: − 1

2

√
2). �

Exercise 1.3.3 For what value of n is the directional derivative precisely ∂T
∂x ? �
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1.3.3 Divergence of a vector field

The mathematical definition of divergence is equally uninspiring. Given a

continuously differentiable vector field,
(

v1
v2

)
, the divergence of v is de-

fined by:

divv =
∂v1

∂x
+

∂v2

∂y
. (1.3.7)

For R3 you have the obvious generalization and there is also a nabla nota-
tion: divv = ∇ · v. You will appreciate the correspondence of a genuine inner
product of two vectors and the inner product of the ”nabla vector” and a vec-
tor field. Take care, however. In a genuine inner product you can change the
order of the vectors, in the divergence you cannot.

What is the physical meaning of divergence? You could think of a vector
field as a river: at any place in the river the water has a certain velocity with
direction and magnitude. Now consider a fixed rectangular volume in the
river (Figure 1.3).

Figure 1.3: Rectangular volume in river.

Water is flowing in through the left and bottom wall and flowing out through
the right and top wall. How much is flowing in through the left wall? If you
think about it, you will notice that the y-component of the velocity gives no
contribution to the inflow, because that is parallel to the left wall. So the inflow
through the left wall is equal to v1LΔy, the outflow through the right wall
v1RΔy. By the same reasoning the inflow through the bottom equals v2BΔx,
the outflow through the top equals v2TΔx. What’s left behind? If the net
outflow is larger than the net inflow we are losing matter in the volume, if on
the other hand the net inflow is larger we’re gaining. The net outflow out of
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control volume ΔΩ in Figure 1.3 is given by

Δφ(a, b) = v1(a +
Δx
2

, b)Δy − v1(a − Δx
2

, b)Δy

+ v2(a, b +
Δy
2
)Δx − v2(a, b − Δy

2
)Δx

= ΔxΔy
v1(a + Δx

2 , b)− v1(a − Δx
2 , b)

Δx

+ ΔxΔy
v2(a, b + Δy

2 )− v2(a, b − Δy
2 )

Δy

= ΔxΔy
(

∂v1

∂x
(ξ, b) +

∂v2

∂y
(a, η)

)
, (1.3.8)

for a ξ ∈ (a − Δx
2 , a + Δx

2 ), η ∈ (b − Δy
2 , b + Δy

2 ) from the Mean Value Theorem
and continuity of the partial derivatives. This implies

lim
(Δx,Δy)→(0,0)

Δφ(a, b)
ΔxΔy

= divv(a, b). (1.3.9)

From this formula, we see that divv(a, b) is the outflow density (outflow per
unit area) at point (a, b). Integration of the outflow density over an entire vol-
ume gives the total outflow. Since the total outflow can also be computed from
evaluation of the flux over its boundary, we obtain a very important relation
between the integral of the divergence of a vector-field over the volume and
the integral of the flux over its boundary. This relation is formulated in terms
of the divergence theorem, which we shall state in the next subsection.

Definition 1.3.2 A vector field v that satisfies divv = 0 is called divergence-free
or solenoidal.

Exercise 1.3.4 Explain that for an incompressible flow field u we always have
divu = 0. �

Exercise 1.3.5 Derive in the same way as above that divergence is an outflow density
in R3. �

1.3.4 Gauss’ divergence theorem

In the previous section we informally derived the divergence theorem, which
was initially proposed by Gauss. In words: the outflow density integrated
over an arbitrary volume gives the total outflow out of this volume. But this
is mathematics, so we have to be more precise.

Throughout this book, we will use the more precise concepts ‘domain‘ and
‘region‘ instead of ‘volume‘. Both are formally defined as a nonempty, open
and connected set, and are usually denoted by the Greek letter Ω. A domain
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(or region) can be bounded or unbounded. Its boundary is denoted by ∂Ω
or Γ, and its closure by Ω = Ω ∪ ∂Ω. We will often tacitly assume that the
boundary Γ = ∂Ω is piecewise smooth, so that at all boundary points (except
a finite number of them), the outward normal unit vector is uniquely defined.

Theorem 1.3.1 (Gauss’ divergence theorem)
Let Ω be a bounded domain in R2 (R3) with piecewise smooth boundary Γ. Let n be
the outward normal and v a continuously differentiable vector field. Then∫

Ω

divv dΩ =
∫
Γ

v ·n dΓ. (1.3.10)

Remarks

1. The expression v · n is the outward normal component of the vector-
field, v, with respect to the boundary. If this quantity is positive you
have outflow, otherwise inflow.

2. Any good book on multivariate analysis will have a proper proof of
Gauss’ theorem. (See for instance [2] or [12]). A good insight will be
obtained however, by subdividing the region Ω in small rectangles and
using (1.3.8). Note in particular, that the common side (plane in R3) of
two neighboring volumes cancel: what flows out of one flows into the
other. The proof is finalized by taking a limit Δx, Δy → 0 in the Riemann
sum.

Exercise 1.3.6 Let C be a closed contour in the x-y-plane and q a solenoidal vector
field. Show that

∫
C q ·n dΓ = 0. �

The divergence theorem has many important implications and these implica-
tions are used frequently in various numerical methods, such as the finite vol-
ume method and the finite element method. First, one can use the component-
wise product rule for differentiation to arrive at the following theorem:

Theorem 1.3.2 For a continuously differentiable scalar field, c, and vector field, u,
we have

div (cu) = grad c · u+ c divu. (1.3.11)

Exercise 1.3.7 Prove Theorem 1.3.2.

As a result of this assertion, one can prove the following theorem.

Theorem 1.3.3 (Green’s theorem)
For sufficiently smooth c, u, we have∫

Ω

c divu dΩ = −
∫
Ω

(grad c) · u dΩ +
∫
Γ

cu ·n dΓ. (1.3.12)
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Exercise 1.3.8 Prove Theorem 1.3.3.

By the use of Theorem 1.3.3, the following assertion can be demonstrated:

Theorem 1.3.4 Partial integration in 2 D
For sufficiently smooth scalar functions φ and ψ, we have;∫

Ω

φ
∂ψ

∂x
dΩ = −

∫
Ω

∂φ

∂x
ψ dΩ +

∮
Γ

φψn1dΓ, (1.3.13)

and ∫
Ω

φ
∂ψ

∂y
dΩ = −

∫
Ω

∂φ

∂y
ψ dΩ +

∮
Γ

φψn2dΓ. (1.3.14)

Exercise 1.3.9 Prove Theorem 1.3.4.
Hint: Use Green’s theorem (Theorem 1.3.3) with suitable choices for c and u. �

1.3.5 Conservation laws

Let us consider some flow field, u, in a volume V with boundary Γ. If the
net inflow into this volume is positive, something in this volume must increase
(whatever it is). That is the basic form of a conservation law:

d
dt

∫
V

S dV = −
∫
Γ

u ·n dΓ +
∫
V

f (t,x) dV. (1.3.15)

The term f (t,x) is a production density: it tells how much S is produced any
time, any place within V. The boundary integral describes the net inflow into
V (mark the minus sign). The flow field, u, is also called the flux vector of the
model. S just like f has the dimension of a density. Since Equation (1.3.15)
must hold for every conceivable volume in the flow field, we may formulate
a pointwise conservation law as follows. First we apply Gauss’ divergence
theorem 1.3.1 to Equation (1.3.15) to obtain∫

V

∂

∂t
S dV = −

∫
V

divu dV +
∫
V

f (t,x) dV. (1.3.16)

Note that we also moved the time-derivative d/dt inside the integral, where it
has become a partial derivative (∂/∂t) of course. Subsequently we invoke the
mean-value theorem of integral calculus for each integral separately, assum-
ing all integrands are continuous:

∂S
∂t

(x1) = −divu(x2) + f (t,x3). (1.3.17)
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Observe that we have divided out a factor
∫

V dV and that x1, x2 and x3 all lie
within V. Finally we let V contract to a single point x to obtain a pointwise
conservation law in the form of a PDE:

∂S
∂t

= −divu+ f (t,x). (1.3.18)

This is all rather abstract, so let us look at an example.

1.3.5.1 Example: Heat flow

In heat flow, conservation law (1.3.18) takes the form

∂h
∂t

= −div q + f (t,x), (1.3.19)

in which h is the heat density, q the heat flux vector and f the heat production
density. Remember, that all quantities in such a pointwise conservation law
are densities. The heat stored in a material can be related to the material’s
(absolute) temperature T:

h = ρcT, (1.3.20)

in which ρ is the mass density and c the heat capacity of the material. These
material properties have to be measured. As we already saw in Section 1.3.1,
the heat flow, q, is driven by the temperature gradient: q = −λ ∇T. This
enables us to formulate everything in terms of temperature. Substituting this
all, we get:

∂ρcT
∂t

= div (λ grad T) + f (t,x). (1.3.21)

If ρ, c are constant throughout the material and if there is no internal heat
production this transforms into the celebrated heat equation:

∂T
∂t

= div (k grad T), (1.3.22)

with k = λ/(ρc).

1.4 Preliminaries from linear algebra

In this section we briefly review a number of key concepts from linear algebra
that are needed in the forthcoming chapters. Although we assume throughout
the book that matrices are real and square, we will consider complex matrices
as well in this section. All matrices in this section are therefore square and
complex (unless explicitly assumed to be real). We start with a few definitions.

Definition 1.4.1 A matrix A is called singular if there exists a vector v ∈ Cn with
Av = 0, v �= 0. This is equivalent to the condition det A = 0, where det A stands
for the determinant of A.
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Definition 1.4.2 A matrix A is called nonsingular (or: invertible) if it is not sin-
gular. In that case, there exists a unique matrix B with AB = BA = I, where I
stands for the identity matrix. This matrix B is called the inverse of A and denoted by
A−1.

Of crucial importance are the eigenvalues and eigenvectors of matrices.

Definition 1.4.3 Let A be an n × n matrix. If λ ∈ C and v ∈ Cn satisfy

Av = λv, v �= 0, (1.4.1)

then λ is called an eigenvalue and v an eigenvector of A.

Note that the first part of relation (1.4.1) can be rewritten as (A − λI)v = 0,
showing that the eigenvalues are the values λ for which A − λI is singular,
that is,

det(A − λI) = 0. (1.4.2)

This is the so-called characteristic equation, the roots of which are exactly the
eigenvalues of A. The left-hand side of this equation is called the characteristic
polynomial of A. Since this polynomial has degree n, it follows that the matrix
A has exactly n eigenvalues (counted with their multiplicities).

Definition 1.4.4 Two matrices A and B are called similar if there exists a nonsin-
gular matrix V with A = VBV−1.

Exercise 1.4.1 Show that the matrices A and B have the same eigenvalues if they are
similar. Hint: Show that their characteristic polynomials are the same. �

An important class of matrices consists of the so-called diagonalizable matrices.

Definition 1.4.5 A matrix A is called diagonalizable if it is similar to a diagonal
matrix.

Suppose that A is diagonalizable. Then there exists a nonsingular matrix V
and a diagonal matrix Λ such that A = VΛV−1, and therefore also

AV = VΛ. (1.4.3)

If we denote the diagonal entries of Λ by λ1, λ2, . . . , λn, and the columns of V
by v1,v2, . . . ,vn, then relation (1.4.3) can be rewritten as

Avj = λjvj, j = 1, 2, . . . , n. (1.4.4)

This simply means that the diagonal entries λj are the eigenvalues of A and
the columns vj the corresponding eigenvectors. Since V is nonsingular, we
conclude that diagonalizability of A is equivalent to the existence of n linearly
independent eigenvectors of A.

We will now turn our attention to symmetric and orthogonal matrices.
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Definition 1.4.6 The transpose of a matrix A = (aij) is the matrix AT = (aji).

Definition 1.4.7 A matrix A is called symmetric if AT = A. It is called real
symmetric if A is real as well.

Definition 1.4.8 A matrix A is called orthogonal if AT A = I. This is the case if
and only if A is invertible with inverse A−1 = AT. It is called real orthogonal if it
is real as well.

For real symmetric matrices we have the following main result.

Theorem 1.4.1 A real symmetric matrix A has only real eigenvalues and can be
written as

A = QΛQ−1 = QΛQT , (1.4.5)

where Λ is a diagonal matrix with the eigenvalues of A on the diagonal, and Q is a
real orthogonal matrix with the corresponding eigenvectors of A as columns.

Real symmetric matrices are intimately connected with quadratic forms. The
study of quadratic forms requires the introduction of an inner product on Rn.
The inner product (or dot product, x · y) of two vectors x,y ∈ Rn is defined
as

(x,y) = xTy = ∑
j

xjyj. (1.4.6)

Note that the inner product is linear in both of its arguments x and y, and
symmetric, that is, (x,y) = (y,x). One further has (x,x) ≥ 0, and one easily
verifies that

‖x‖ =
√
(x,x) (1.4.7)

is the well-known Euclidean norm on Rn. A useful result is the Cauchy-Schwarz
inequality,

|(x,y)| ≤ ‖x‖‖y‖. (1.4.8)

Exercise 1.4.2 Prove the Cauchy-Schwarz inequality.
Hint: Use that (x+ ty,x+ ty) ≥ 0 for all t ∈ R. �

We consider the following five cases for the quadratic form (Ax,x) = xT Ax:

Definition 1.4.9 Let A be a real symmetric matrix.

• A is called positive definite if (Ax,x) > 0 for all x ∈ Rn,x �= 0;

• A is called positive semi-definite if (Ax,x) ≥ 0 for all x ∈ Rn;

• A is called negative definite if (Ax,x) < 0 for all x ∈ Rn,x �= 0;

• A is called negative semi-definite if (Ax,x) ≤ 0 for all x ∈ Rn;

• A is called indefinite if none of the above cases applies.
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For the determination of the ‘definiteness’ of (the quadratic form of) a real
symmetric matrix A it is useful to consider its so-called Rayleigh quotients.

Definition 1.4.10 For a real symmetric matrix A, its Rayleigh quotients are de-
fined as:

R(A,x) =
(Ax,x)
(x,x)

, x ∈ Rn, x �= 0. (1.4.9)

Theorem 1.4.2 Let A be real symmetric with eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn.
Then the set of all its Rayleigh quotients is equal to the interval [λ1, λn], that is,

{R(A,x) | x ∈ Rn,x �= 0} = [λ1, λn]. (1.4.10)

Proof
According to Theorem 1.4.1 we can write A = QΛQT , where Λ is a diagonal
matrix with the eigenvalues λj on the diagonal, and Q is a real orthogonal
matrix. With the parameterization x = Qy, y ∈ Rn, we find for any y �= 0
that

R(A,x) =
xT Ax

xTx
=

(yTQT)(QΛQT)(Qy)

(yTQT)(Qy)
=

yTΛy

yTy
=

=
λ1y2

1 + λ2y2
2 + . . . + λny2

n

y2
1 + y2

2 + . . . + y2
n

,

from which we immediately see that the set of all Rayleigh quotients of A is
equal to the set of all convex combinations (weighted averages) of its eigen-
values, which is exactly [λ1, λn]. �

Corollary 1.4.3 Let A be real symmetric with eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn.
Then:

• A is positive definite if and only if λ1 > 0;

• A is positive semi-definite if and only if λ1 ≥ 0;

• A is negative definite if and only if λn < 0;

• A is negative semi-definite if and only if λn ≤ 0;

• A is indefinite if and only if λ1 < 0 < λn.

Exercise 1.4.3 Prove Corollary 1.4.3. �

The next topic in this section is matrix norms. Along with the vector norm
‖ · ‖ defined in (1.4.7) for vectors in Rn, we introduce the induced matrix norm
as

‖A‖ = max{‖Ax‖
‖x‖ : x ∈ Rn, x �= 0}. (1.4.11)
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Theorem 1.4.4

(i) For a real square matrix A we have ‖A‖ =
√

λmax(AT A), where λmax(AT A)
denotes the largest eigenvalue of AT A.

(ii) For a real symmetric matrix A with eigenvalues λj we have ‖A‖ = maxj |λj|.
Proof
For a real square matrix A and a vector x ∈ Rn, x �= 0, we have

‖Ax‖2

‖x‖2 =
(Ax, Ax)

(x,x)
=

(Ax)T Ax

(x,x)
=

xT AT Ax

(x,x)
=

(AT Ax,x)
(x,x)

= R(AT A,x).

Since AT A is real symmetric, the proof of part (i) follows from Theorem 1.4.2.
If A is real symmetric with eigenvalues λj, then the matrix AT A = A2 has

eigenvalues λ2
j . Hence it follows from part (i) that in that case

‖A‖ =
√

λmax(AT A) =
√

max
j

λ2
j = max

j
|λj|,

which proves part (ii). �
Exercise 1.4.4 Prove that for any real n × n matrix A and vector x ∈ Rn we have

‖Ax‖ ≤ ‖A‖‖x‖. (1.4.12)

Exercise 1.4.5 Prove that the induced matrix norm defined in (1.4.11) is submulti-
plicative, that is, for all real square matrices A, B of the same size one has

‖AB‖ ≤ ‖A‖‖B‖. (1.4.13)

�

So far we have only considered the Euclidean vector norm (1.4.7) on Rn, which
is also called the L2 norm. This norm and the corresponding induced matrix
norm are often denoted by ‖ · ‖2. Another popular (and useful) vector norm
is the so-called maximum norm, defined as

‖x‖∞ = max
j

|xj|. (1.4.14)

Exercise 1.4.6 Prove that the induced matrix norm corresponding to the maximum
norm is given by

‖A‖∞ = max
i

∑
j
|aij|. (1.4.15)

�

We conclude this section with a theorem that can be of great help in estimating
bounds for eigenvalues of matrices. This is for example useful in stability
analysis.
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Theorem 1.4.5 (Gershgorin)
For each eigenvalue λ of an n × n matrix A there exists an index i such that

|λ − aii| ≤
n

∑
j=1
j �=i

|aij|. (1.4.16)

Remark:
Eigenvalues may be complex-valued in general and for complex eigenvalues
λ = μ+ iν, the absolute value is the modulus: |λ| = √

μ2 + ν2. So the eigenval-
ues of A are located within the union of n disks in the complex plane and that
is the reason why the theorem is also often referred to as Gershgorin’s disk (or
circle) theorem. But for real symmetric A, the eigenvalues of A are real-valued.

Proof
Let λ be an eigenvalue of A with corresponding eigenvector v, that is, Av =
λv, or equivalently,

∑
j

aijvj = λvi, i = 1, . . . , n. (1.4.17)

Let vi be the component of v with the largest modulus. For the corresponding
index i we have

λ − aii = ∑
j:j �=i

aij
vj

vi
, (1.4.18)

and because |vj/vi| ≤ 1 (for all j), we get

|λ − aii| ≤ ∑
j:j �=i

|aij|. (1.4.19)

This proves the theorem. �

1.5 The Poincaré inequality

The following theorem is used in the proof of Theorem 6.1.1 to show that the
Laplace operator is negative definite. As a matter of fact we use a general-
ization of the theorem dealing with more general boundary conditions. The
space of square integrable real funcions on a domain Ω ⊂ Rm is denoted by

L2(Ω) := {u|u : Ω → R,
∫
Ω

u2dΩ < ∞},

and the corresponding first order Sobolev space by

H1(Ω) := {u ∈ L2(Ω)| ∂u
∂x1

, . . . ,
∂u

∂xm
∈ L2(Ω)}.
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(0,b)

(0,y)

(0,0) (x,0) (a,0)

(x,y)

Ω

Ω1

Figure 1.4: 2-dimensional region.

Theorem 1.5.1 Inequality of Poincaré (Friedrichs)
Let Ω be a bounded domain in Rm. Then there exists a constant K > 0 such that for
all u ∈ H1(Ω) with u|Γ = 0 we have∫

Ω

m

∑
i=1

(
∂u
∂xi

)2
dΩ ≥ K

∫
Ω

u2 dΩ. (1.5.1)

Proof We shall prove the theorem for m = 2.
By shifting coordinates we may assume that (x, y) ∈ Ω implies x > 0 and
y > 0. As displayed in Figure 1.4, the region Ω is therefore contained in a
rectangular region Ω1 = [0, a]× [0, b]. We extend u to a function on the whole
domain Ω1 by defining

u(x, y) = 0, (x, y) ∈ Ω1\Ω. (1.5.2)

Let (x1, y1) be an arbitrary point in Ω1. Then

u(x1, y1)− u(0, y1) =

x1∫
0

∂u(x, y1)

∂x
dx, (1.5.3)

u(0, y1) = 0 (follows from Figure 1.4). (1.5.4)

According to the Cauchy-Schwarz inequality for the inner product ( f , g) =∫ β
α f (x)g(x)dx we have:⎛⎝ β∫

α

f (x)g(x) dx

⎞⎠2

≤
β∫

α

f (x)2 dx

β∫
α

g(x)2 dx. (1.5.5)



16 Classical Numerical Methods in Scientific Computing

Applying this with α = 0, β = x1, f (x) = 1 and g(x) = ∂u(x,y1)
∂x yields

u2(x1, y1) =

⎛⎝ x1∫
0

∂u(x, y1)

∂x
dx

⎞⎠2

≤ x1

x1∫
0

(
∂u(x, y1)

∂x

)2

dx

≤ a
a∫

0

(
∂u(x, y1)

∂x

)2

dx. (1.5.6)

Integration of inequality (1.5.6) over Ω1 gives

∫
Ω1

u2dΩ =

a∫
0

b∫
0

u2(x1, y1) dy1 dx1

≤ a
a∫

0

b∫
0

a∫
0

(
∂u(x, y1)

∂x

)2

dx dy1 dx1

≤ a2
b∫

0

a∫
0

(
∂u(x, y1)

∂x

)2

dx dy1

= a2
∫

Ω1

(
∂u
∂x

)2
dΩ

≤ a2
∫

Ω1

[(
∂u
∂x

)2
+

(
∂u
∂y

)2
]

dΩ.

This proves the theorem with K = 1/a2. �

Exercise 1.5.1 Prove Theorem 1.5.1 with K = 1/b2. �

We note that it follows from the proof of Theorem 1.5.1 and Exercise 1.5.1 that
K = max(1/a2,1/b2) is a lower bound for the best (largest) possible K.

1.6 Summary of Chapter 1

In this chapter we have seen the importance of conservation laws in the de-
velopment of models and the role the mathematical operators divergence and
gradient play in that development. We have met the famous divergence theo-
rem of Gauss as an expression of global conservation.

We have looked at various applications deriving from conservation: heat
transfer and diffusion. We concluded the chapter with preliminaries from lin-
ear algebra and an inequality due to Poincaré.



Chapter 2

A crash course in PDEs

Objectives

In the previous chapter we looked at PDEs from the modeling point of view,
but now we shall look at them from a mathematical angle. Apparently you
need partial derivatives and at least two independent variables to speak of a
PDE (with fewer variables you would have an ordinary differential equation),
so the simplest case to consider is a PDE with exactly two independent vari-
ables. A second aspect is the order of the PDE, that is the order of the highest
derivative occurring in it. First order PDEs are a class of their own: the trans-
port equations. These equations are beyond the scope of this book, and are
only dealt with in the unabridged version [15] of the book. In this chapter we
shall concentrate on second order PDEs and show that (for two independent
variables) they can be classified into three types. We shall provide boundary
and initial conditions that are needed to guarantee a unique solution and we
will consider a few properties of the solutions to these PDEs. We conclude the
chapter with a few examples of second and fourth order equations that occur
in various fields of physics and technology.

2.1 Classification

Consider a linear second order PDE in two independent variables with constant
coefficients,

a11
∂2u
∂x2 + 2a12

∂2u
∂x∂y

+ a22
∂2u
∂y2 + b1

∂u
∂x

+ b2
∂u
∂y

+ cu + d = 0. (2.1.1)

By rotating the coordinate system we can make the term with the mixed sec-
ond derivative vanish. This is the basis of the classification. To carry out this
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rotation, we keep in mind that

(
∂

∂x
,

∂

∂y
)A

(
∂u
∂x
∂u
∂y

)
= a11

∂2u
∂x2 + 2a12

∂2u
∂x∂y

+ a22
∂2u
∂y2 , (2.1.2)

where A =

(
a11 a12
a12 a22

)
. Since A is real symmetric, it follows from Theo-

rem 1.4.1 that we can factorize A into A = QΛQT , where Λ = diag (α11, α22),
in which α11 and α22 are eigenvalues of A, and Q is a real orthogonal ma-
trix (cf. Definition 1.4.8) whose columns are the normalized (with length one)
eigenvectors of A. Hence one obtains from Equation (2.1.2)

a11
∂2u
∂x2 + 2a12

∂2u
∂x∂y

+ a22
∂2u
∂y2 = (

∂

∂x
,

∂

∂y
)QΛQT

(
∂u
∂x
∂u
∂y

)
=

(
∂

∂ξ
,

∂

∂η
)Λ

(
∂u
∂ξ
∂u
∂η

)
= α11

∂2u
∂ξ2 + α22

∂2u
∂η2 .

(2.1.3)

The resulting equation will look like:

α11
∂2u
∂ξ2 + α22

∂2u
∂η2 + β1

∂u
∂ξ

+ β2
∂u
∂η

+ cu + d = 0. (2.1.4)

Exercise 2.1.1 Show that a11a22 − a2
12 > 0, a11a22 − a2

12 = 0 and a11a22 − a2
12 < 0

correspond to α11α22 > 0, α11α22 = 0 and α11α22 < 0, respectively. (These cases
correspond to the situations in which the eigenvalues of A have the same sign, one of
the eigenvalues of A is zero and opposite signs of the eigenvalues of A, respectively.)
�

There are three possibilities:

1. α11α22 > 0. (I.e. both coefficients have the same sign) The equation is
called elliptic. An example of this case is Poisson’s equation

−∂2u
∂x2 − ∂2u

∂y2 = f . (2.1.5)

2. α11α22 < 0. (I.e. both coefficients have opposite sign) The equation is
called hyperbolic. An example of this case is the wave equation in one
space dimension:

∂2u
∂t2 − ∂2u

∂x2 = 0. (2.1.6)

3. α11α22 = 0. (I.e. either coefficient vanishes). The equation is called
parabolic. An example is the heat equation in one space dimension:

∂u
∂t

=
∂2u
∂x2 . (2.1.7)
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Exercise 2.1.2 Let D = a11a22 − a2
12. Show that the condition for elliptic, parabolic

or hyperbolic in the original coefficients aij is given by D > 0, D = 0 and D < 0,
respectively. Use the result of Exercise 2.1.1. �

For the classification only the second order part of the PDE is important. The
three different types have very different physical and mathematical proper-
ties. To begin with, elliptic equations are time-independent and often describe
an equilibrium or steady state. Parabolic and hyperbolic equations are time-
dependent: they describe the time evolution or transient behavior of a process.
The difference in nature between parabolic and hyperbolic equations is that
the first class describes an evolution towards an equilibrium, whereas the sec-
ond class mimics wave phenomena.

This classification strictly spoken holds only for equations with constant coef-
ficients. For equations with varying coefficients this classification only holds
locally. If the coefficients depend on the solution itself, the PDE is called quasi-
linear, and its type will depend on the solution itself.

2.1.1 Three or more independent variables

In this section, we consider a generalization of the simple classification. The
general second order part of a quasi-linear PDE in N > 2 independent variables
is given by:

N

∑
i=1

N

∑
j=1

aij
∂2u

∂xi∂xj
. (2.1.8)

Without loss of generality we may assume that aij = aji and in a way similar
to that in the previous section one may remove the mixed derivatives. This
leads to:

N

∑
i=1

αii
∂2u
∂ξ2

i
. (2.1.9)

We treat the following cases in this book:

1. All αii have the same sign. In this case all independent variables ξi are
space variables. The equation is called elliptic. Example: Laplace’s equa-
tion in 3D:

−∂2u
∂x2 − ∂2u

∂y2 − ∂2u
∂z2 = 0. (2.1.10)

2. Exactly one αii, say α11, has different sign from the rest. In this case ξ1
is a time variable, all other ξi are space variables. The equation is called
hyperbolic. Example: 2D wave equation

∂2u
∂t2 =

∂2u
∂x2 +

∂2u
∂y2 . (2.1.11)
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3. Exactly one αii vanishes, say α11, while the other αii have the same sign.
Then ξ1 is a time variable and the equation is called parabolic. Example:
2D heat equation

∂u
∂t

=
∂2u
∂x2 +

∂2u
∂y2 . (2.1.12)

Exercise 2.1.3 If A is a real symmetric N × N matrix, then (cf. Theorem 1.4.1) there
exists a real orthogonal matrix Q such that QT AQ = Λ, where Λ is a diagonal
matrix containing the eigenvalues of A on the diagonal. Show that the substitution
ξ = QTx eliminates the mixed derivatives in the differential operator div A grad u.

2.2 Boundary and initial conditions

To ensure a unique solution to our PDE we need to prescribe appropriate
boundary conditions and for time-dependent problems we need initial con-
ditions too. We will just consider second order PDEs here because the con-
siderations for first order PDEs are very different and beyond the scope of the
book.

2.2.1 Boundary conditions

Consider in Figure 2.1 the bounded region Ω ⊂ R2 with boundary Γ .

0

2

1

Γ

Ω

Γ

Γ

Figure 2.1: The bounded region Ω.

Let Γ consist of three disjoint pieces Γ0, Γ1 and Γ2. For an elliptic equation of
the form

−div k grad u = f , (2.2.1)

with k(x) > 0 (for all x ∈ Ω), the following boundary conditions guarantee a
unique solution:



2. A crash course in PDEs 21

1. the Dirichlet boundary condition:

u = g0(x), x ∈ Γ0, (2.2.2)

2. the Neumann boundary condition:

k
∂u
∂n

= g1(x), x ∈ Γ1, (2.2.3)

3. the Robin, radiation, kinetic or mixed boundary condition:

k
∂u
∂n

+ σu = g2(x), σ ≥ 0, x ∈ Γ2. (2.2.4)

These boundary conditions do not have to occur together, each (but not all)
of Γ0, Γ1 or Γ2 could be empty. Because the pieces are disjoint, exactly one
boundary condition occurs at each point of the boundary. There is a small
problem if Γ = Γ1, in other words, if there is a Neumann boundary condition
on all of the boundary. Physically this may be understood as that the inflow at
each point of the boundary is prescribed. And since we have an equilibrium,
the net inflow over the whole region must be annihilated inside or the net
outflow must be produced inside. This result is stated in mathematical form
in the following theorem.

Theorem 2.2.1 If a Neumann boundary condition is given on all of Γ, then the so-
lution u of Equation (2.2.1) is determined up to an additive constant only. Moreover
the following compatibility condition must be satisfied:

−
∫
Γ

g1 dΓ =
∫
Ω

f dΩ. (2.2.5)

Exercise 2.2.1 Prove Theorem 2.2.1. Use Gauss’ divergence theorem on the PDE. It
is not necessary to prove the only part. �

Remarks

1. Only the highest order part of the PDE determines what type of bound-
ary conditions are needed, so the same set of boundary conditions is
needed if first and zeroth order terms are added to elliptic equation (2.2.1).

2. On each part of the boundary precisely one boundary condition applies.
This situation is not restricted to elliptic equations but also applies to the
wider class of general second order PDEs.

3. Boundary conditions involving the flux vector (Neumann, Robin) are
also called natural boundary conditions. Boundary conditions only involv-
ing the value of u (Dirichlet) are called essential boundary conditions.



22 Classical Numerical Methods in Scientific Computing

4. The boundary conditions needed in parabolic and hyperbolic equations
are determined by the spatial part of the equation.

5. If the coefficients of the terms of highest order are very small compared
to the coefficients of the lower order terms, it is to be expected that
the nature of the solution is mostly determined by those lower order
terms. Such problems are called singularly perturbed. An example is the
convection-dominated convection-diffusion equation (see Section 3.3).

2.2.2 Initial conditions

Initial conditions only play a role in time-dependent problems, and we can be
very short. If the equation is first order in time, u has to be given on all of Ω
at t = t0. If the equation is second order in time, ∂u

∂t has to be given as well on
all of Ω at t = t0.

Exercise 2.2.2 Consider the transversal vibrations of a membrane that is fixed to an
iron ring. These vibrations are described by the wave equation. What is the type of
boundary condition? What initial conditions are needed? �

2.3 Existence and uniqueness of a solution

Physicists and technicians usually consider the mathematical chore of proving
existence and uniqueness of a solution a waste of time. ‘I know the process
behaves in precisely one way’, they will claim and of course they are right in
that. What they do not know is: if their mathematical model describes their
process with any accuracy then existence and uniqueness of a solution is an
acid test for that. In the simplest ODEs a practical way to go about this is try
and find one. In PDEs this is not much of an option, since solutions in closed
form are rarely available.

Proving existence and uniqueness is usually a very difficult assignment, but to
get some of the flavor we shall look at a relatively simple example: Poisson’s
equation (2.1.5). We shall prove that a solution to this equation with Dirichlet
boundary conditions on all of Γ is unique.

2.3.1 The Laplace operator

The Laplace operator div grad is such a fundamental operator that it has a
special symbol in the literature: Δ. So the following notations are equivalent:

∇ · ∇u ≡ div grad u ≡ Δ u ≡ ∂2u
∂x2 +

∂2u
∂y2 . (2.3.1)

In a technical context div grad is mostly used, in mathematical contexts the
other three. The Laplace operator is often referred to as the Laplacian.



2. A crash course in PDEs 23

In a physical context it is clear that if there are no sources, a heat equation in
equilibrium takes its minimum and maximum at the boundary. Mathemati-
cally this is also true as we shall show in the next subsection.

2.3.2 The maximum principle and uniqueness

Solutions to Laplace’s and Poisson’s equation satisfy certain properties with
respect to existence, uniqueness and the occurrence of extremal values at the
boundaries of a bounded domain or in the domain. We note that a function
u(x) has a local maximum in some point x0 ∈ Ω if there exists a δ > 0 such
that u(x0) ≥ u(x) for all x with ‖x− x0‖ < δ.

Definition 2.3.1 The Hessian matrix in R2 is defined as

H(x0) =

⎛⎝ ∂2u
∂x2 (x0)

∂2u
∂x∂y (x0)

∂2u
∂y∂x (x0)

∂2u
∂y2 (x0)

⎞⎠ . (2.3.2)

Theorem 2.3.1 Assume that the function u = u(x) is defined and sufficiently smooth
in a neighborhood of the point x0. If u has a local maximum in x0 then the gradient
∇u(x0) must be zero and the Hessian matrix H(x0) must be negative semi-definite.

Proof Consider the 2-D Taylor expansion of u around x0:

u(x) = u(x0) +∇u(x0) · (x− x0)

+
1
2
(H(x0)(x− x0),x− x0) +O(‖x− x0‖3). (2.3.3)

Since u has a local maximum in x0, there exists a δ > 0 such that u(x0) ≥ u(x)
for all x with ‖x− x0‖ < δ. First we note that we must have ∇u(x0) = 0.
This easily follows from (2.3.3) by considering x = x0 + t∇u(x0) for t ≈ 0,
since for this choice of x we have

0 ≥ u(x)− u(x0) = t‖∇u(x0)‖2 +O(t2),

which is only possible if ∇u(x0) = 0.
Let v be an arbitrary vector v ∈ R2. We show that (H(x0)v,v) ≤ 0 by consid-
ering x = x0 + tv for t > 0 so small that t‖v‖ < δ. For these values of t we
have

0 ≥ u(x)− u(x0) =
1
2

t2(H(x0)v,v) +O(t3), (2.3.4)

from which (H(x0)v,v) ≤ 0 follows. Hence H(x0) is negative semi-definite.
�

Exercise 2.3.1 Prove that H(x0) is positive semi-definite if u has a local minimum
in x0. �
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Exercise 2.3.2 Show that if H is positive semi-definite, then both diagonal elements
must be non-negative. Hint: Make special choices for v in (Hv,v).

Corollary 2.1 Assume that the function u = u(x) is defined and sufficiently
smooth in a neighborhood of the point x0.

(i) If u has a local maximum in x0 then ∇u(x0) = 0 and −Δu(x0) ≥ 0;

(ii) If u has a local minimum in x0 then ∇u(x0) = 0 and −Δu(x0) ≤ 0.

Proof Combine Theorem 2.3.1 and Exercises 2.3.1, 2.3.2. �

Exercise 2.3.3 Give an alternative (simpler) proof of Corollary 2.1 by only consider-
ing u(x, y) in the x-direction and y-direction. �

Next we are going to consider solutions to Laplace’s equation, −Δu = 0.

Definition 2.3.2 A function satisfying Laplace’s equation −Δu = 0 in Ω is called
harmonic in Ω.

Definition 2.3.3 A function satisfying −Δu ≤ 0 in Ω is called subharmonic in Ω.

Definition 2.3.4 A function satisfying −Δu ≥ 0 in Ω is called superharmonic in
Ω.

Theorem 2.3.2 (Maximum principle)
Let Ω be a bounded domain with boundary Γ and closure Ω, that is Ω = Ω ∪ Γ.
If u ∈ C2(Ω) ∩ C(Ω) is subharmonic in Ω, then

(i) (Weak maximum principle)
At no point in Ω can the value of u exceed the maximum value of u on Γ.

(ii) (Strong maximum principle)
If there is a point x0 in Ω where u reaches its maximum, i.e., u(x0) = max

x∈Ω
u,

then u is constant on Ω, that is u(x) = u(x0) on Ω.

This theorem is formulated and proved in Evans [7] among others. To prove
the maximum principle, we shall use the arguments given in Protter and
Weinberger [11]. Theorem 2.3.2 says that the maximum of a subharmonic
function is only found on the boundary Γ unless the function is constant. By
replacing u by −u, we recover for superharmonic functions u similar asser-
tions as in Theorem 2.3.2 with min replacing max. Before we prove the theorem
we give several corollaries.

Theorem 2.3.3 Laplace’s equation in Ω with a homogeneous Dirichlet boundary
condition, that is u = 0 on Γ, has only the trivial solution, that is u = 0 in Ω.

Exercise 2.3.4 Prove Theorem 2.3.3. �
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Theorem 2.3.4 (uniqueness) Let Ω be a bounded region in R2 with boundary Γ.
Then the problem

−Δu = f (x, y), (x, y) ∈ Ω, (2.3.5)
u = g(x, y), (x, y) ∈ Γ (2.3.6)

has at most one solution u ∈ C2(Ω) ∩ C(Ω).

Exercise 2.3.5 Prove Theorem 2.3.4.
Hint: assume that there are two solutions u1 and u2 and consider the difference. �
Next we prove part (i) of Theorem 2.3.2.

Proof of Theorem 2.3.2.
We prove the theorem for Ω ⊂ R2. Any dimensionality is dealt with analo-
gously.
Let um be the maximum on Γ, that is u ≤ um on Γ. We introduce the function

v(x, y) = u(x, y) + ε(x2 + y2), with ε > 0 arbitrary. (2.3.7)

Since u is subharmonic, this implies

−Δv ≤ −4ε < 0, in Ω. (2.3.8)

Suppose that v has a local maximum in the domain Ω, then according to Corol-
lary 2.1 we have −Δv ≥ 0. This contradicts with the strict inequality (2.3.8),
and hence v cannot have a local maximum in Ω. Since Ω is a bounded domain
in R2, there exists a finite radius R such that

R = max
x∈Γ

‖x‖ = max
x∈Γ

√
x2 + y2. (2.3.9)

This implies v(x, y) ≤ um + εR2 on Γ. Since v does not have a maximum
within the interior Ω, we deduce

u(x) ≤ v(x) ≤ um + εR2, in Ω = Ω ∪ Γ. (2.3.10)

Since ε > 0 can be taken arbitrarily small, we get u ≤ um in Ω. Hence at no
point in Ω, the value of u can exceed the maximum value of u on Γ.
For the proof of (ii) we refer to [11]. �

Uniqueness for the solution to the Poisson equation with Robin conditions can
also be proved easily.

Theorem 2.3.5 (uniqueness) Let Ω be a bounded domain in R2 with boundary Γ.
Then the problem

−Δu = f (x, y), (x, y) ∈ Ω, (2.3.11)

σu +
∂u
∂n

= g(x, y), (x, y) ∈ Γ, (2.3.12)

with σ > 0, has at most one solution u ∈ C2(Ω) ∩ C1(Ω).
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Exercise 2.3.6 Prove Theorem 2.3.5.
Hints: Assume that there are two solutions u1 and u2 and consider the difference
v = u1 − u2. Use multiplication by v and integration by parts to conclude that v = 0
on Ω. �

Theorem 2.3.6 Let u ∈ C2(Ω) ∩ C(Ω) satisfy

−Δu ≥ 0, in Ω, (2.3.13)
u = 0, on Γ, (2.3.14)

where Ω is a bounded domain with boundary Γ. Then u ≥ 0 in Ω.

Exercise 2.3.7 Show that Theorem 2.3.6 is a corollary of Theorem 2.3.2.

Exercise 2.3.8 Let a, b, c be given constants with ac − b2 > 0. Show that the elliptic
operator auxx + 2buxy + cuyy satisfies the same maximum principle as the Laplace
operator.
Hint: Use scaling and rotation of the coordinates. �

Qualitative properties of the solutions to Poisson’s or Laplace’s equation like
the maximum principle are an important tool to evaluate the quality of nu-
merical solutions. Indeed we want our numerical solution to inherit these
properties.

2.3.3 Existence

To prove existence of a solution of Poisson’s equation is very hard. In general
one needs extra requirements on the smoothness of the boundary. This is far
outside the scope of this book, the interested reader may look at [5].

2.4 Examples

In this section we give a few examples of PDEs that describe physical and
technical problems. For all problems we consider a bounded region Ω ⊂ R2

with boundary Γ.

2.4.1 Flows driven by a potential

Flows driven by a potential we already met in Chapter 1. They all have the
form

∂c(u)
∂t

= div λ grad u + f (t,x, u). (2.4.1)

For uniqueness c must be a monotone function of u and for stability it must be
non-decreasing. In ordinary heat transfer and diffusion, c is linear. In phase
transition problems and diffusion in porous media it is non-linear. If f de-
pends on u, the function f may influence the stability of the equation.
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2.4.1.1 Boundary conditions

In Section 2.2 three types of linear boundary conditions have been introduced.
These conditions may occur in any combination. This is not a limitative enu-
meration, there are other ways to couple the heat flow at the boundary to the
temperature difference one way or another, mostly non-linear.

2.4.1.2 Initial condition

To guarantee that Problem (2.4.1) with boundary conditions (2.2.2) to (2.2.4)
has a unique solution u(x, t), it is necessary that u is prescribed at t = t0:
u(x, t0) = u0(x), ∀x ∈ Ω.

2.4.1.3 Equilibrium

An equilibrium of Equation (2.4.1) is reached when all temporal dependence
has disappeared. But this problem can also be considered in its own right:

−div λ grad u = f (x, u), (2.4.2)

with boundary conditions (2.2.2) to (2.2.4).

2.4.2 Convection-Diffusion

The convection-diffusion equation describes the transport of a pollutant with
concentration, c, by a transporting medium with given velocity, u. The equa-
tion is

∂c
∂t

+ u · grad c = div λ grad c + f (t,x, c). (2.4.3)

Comparing Equation (2.4.3) with (2.4.1) shows that a convection term u · grad c
has been added. Boundary and initial conditions are the same as for the
potential-driven flows.

In cases where the diffusion coefficient, λ, is small compared to the velocity,
u, the flow is dominated by the convection. The problem then becomes sin-
gularly perturbed and in these cases the influence of the second order term is
mostly felt at the boundary in the form of boundary layers. This causes specific
difficulties in the numerical treatment, see for example Section 3.3.

2.4.3 Navier-Stokes equations

The Navier-Stokes equations describe the dynamics of material flow. The mo-
mentum equations are given by:

ρ(
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

) = div sx + ρbx, (2.4.4a)

ρ(
∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

) = div sy + ρby. (2.4.4b)
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We shall not derive the equations (see for instance [3]), but we will say a few
things about their interpretation. The equations describe Newton’s second

law on a small volume V of fluid with density, ρ, and velocity, u =

(
u
v

)
,

moving along with the flow. Thus, a particle P ∈ V with coordinates x at time t
has at time t + Δt, with Δt → 0, coordinates x+ uΔt. Therefore the change in
velocity of a moving particle is described by

Δu = u(x+ uΔt, t + Δt)− u(x, t). (2.4.5)

We recall Taylor’s theorem in three variables:

f (x + h, y+ k, t+ τ) = f (x, y) + h
∂ f
∂x

+ k
∂ f
∂y

+ τ
∂ f
∂t

+O(h2 + k2 + τ2). (2.4.6)

Applying this to Equation (2.4.5) we get:

Δu = uΔt
∂u
∂x

+ vΔt
∂u
∂y

+ Δt
∂u
∂t

, (2.4.7a)

Δv = uΔt
∂v
∂x

+ vΔt
∂v
∂y

+ Δt
∂v
∂t

. (2.4.7b)

If we divide both sides by Δt and let Δt → 0 we find the material derivative

Du
Dt

= u
∂u
∂x

+ v
∂u
∂y

+
∂u
∂t

, (2.4.8a)

Dv
Dt

= u
∂v
∂x

+ v
∂v
∂y

+
∂v
∂t

. (2.4.8b)

The right hand side of Equations (2.4.4) consists of the forces exerted on a
(small) volume of fluid. The first term describes surface forces like viscous
friction and pressure, the second term describes body forces like gravity. The
symmetric 2 × 2-matrix

Σ =

(
sT

x
sT

y

)
=

(
σxx τxy
τxy σyy

)
(2.4.9)

is called the stress tensor.

The form of the stress tensor depends on the fluid. A Newtonian fluid has a
stress tensor of the form:

σxx = −p + 2μ
∂u
∂x

, (2.4.10a)

σyy = −p + 2μ
∂v
∂y

, (2.4.10b)

τxy = μ(
∂u
∂y

+
∂v
∂x

), (2.4.10c)
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in which p is the pressure and μ the dynamic viscosity. The minimum config-
uration to be of practical importance requires a mass conservation equation in
addition to (2.4.4):

∂ρ

∂t
+ div (ρu) = 0, (2.4.11)

and a functional relation between ρ and p like for instance Boyle’s law.

An important special case is where ρ is constant and Equation (2.4.11) changes
into the incompressibility condition

divu = 0. (2.4.12)

In this case ρ can be scaled out of Equation (2.4.4) and together with (2.4.10)
and (2.4.12) we obtain

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+
∂ p̄
∂x

= νΔu + bx, (2.4.13a)

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

+
∂ p̄
∂y

= νΔv + by, (2.4.13b)

∂u
∂x

+
∂v
∂y

= 0, (2.4.13c)

with ν = μ
ρ the kinematic viscosity and p̄ = p

ρ the kinematic pressure. In this
case p̄ is determined by the equations.

Exercise 2.4.1 Derive Equation (2.4.13). �

2.4.3.1 Boundary conditions

On each boundary two boundary conditions are needed, one in the normal
direction and one in the tangential direction. This can be either the velocity or
the stress. The tangential stress is computed by (t, Σn) for given unit tangent
vector, t, and unit normal vector, n. For reasons that go beyond the scope
of this book, no boundary conditions for the pressure are required. For an
extensive treatment of the Navier-Stokes equations we refer to [14] and [6].

2.4.4 Plane stress

Consider the flat plate in Figure 2.2.
The plate is fixed along side ABC but forces are applied along the free

boundary ADC as a consequence of which the plate deforms in the x-y-plane.

We are interested in the stresses Σ =

(
σxx τxy
τxy σyy

)
and the displacements u =(

u
v

)
. The differential equations for the stresses (compare also (2.4.4)) are
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D
B

A

C

Ω

Γ

Figure 2.2: Fixed plate with forces applied along the boundary.

given by

∂σxx

∂x
+

∂τxy

∂y
+ b1 = 0, (2.4.14a)

∂τxy

∂x
+

∂σyy

∂y
+ b2 = 0, (2.4.14b)

in which b is the (given) body force per unit volume. Usually only gravity
contributes to the body force term. We transform Equations (2.4.14) in two
stages into a set of PDEs in the displacements. If the medium is isotropic we
have a a very simple form of Hooke’s Law relating stresses and strains:

Eεx = σxx − νσyy, (2.4.15a)

Eεy = −νσxx + σyy, (2.4.15b)

Eγxy = 2(1 + ν)τxy. (2.4.15c)

E, the modulus of elasticity, and ν, Poisson’s ratio, are material constants. Fur-
thermore, for infinitesimal strains, there is a relation between strain and dis-
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placement:

εx =
∂u
∂x

, (2.4.16a)

εy =
∂v
∂y

, (2.4.16b)

γxy =
∂u
∂y

+
∂v
∂x

. (2.4.16c)

This leads to the following set of PDEs in the displacements u:

E
1 − ν2

∂

∂x

(
∂u
∂x

+ ν
∂v
∂y

)
+

E
2(1 + ν)

∂

∂y

(
∂u
∂y

+
∂v
∂x

)
= −b1, (2.4.17a)

E
2(1 + ν)

∂

∂x

(
∂u
∂y

+
∂v
∂x

)
+

E
1 − ν2

∂

∂y

(
ν

∂u
∂x

+
∂v
∂y

)
= −b2. (2.4.17b)

Exercise 2.4.2 Derive Equations (2.4.17) �

2.4.4.1 Boundary conditions

The boundary conditions are comparable to those of the Navier-Stokes equa-
tions. At each boundary point we need a normal and a tangential piece of
data, either the displacement or the stress.

Exercise 2.4.3 Formulate the boundary conditions along ABC. �
Exercise 2.4.4 Along ADC the force per unit length is given: f . Show that

σxxnx + τxyny = f1, (2.4.18a)

τxynx + σyyny = f2, (2.4.18b)

and hence:
nxE

1 − ν2

(
∂u
∂x

+ ν
∂v
∂y

)
+

nyE
2(1 + ν)

(
∂u
∂y

+
∂v
∂x

)
= f1, (2.4.19a)

nxE
2(1 + ν)

(
∂u
∂y

+
∂v
∂x

)
+

nyE
1 − ν2

(
ν

∂u
∂x

+
∂v
∂y

)
= f2. (2.4.19b)

�

2.4.5 Biharmonic equation

The prototype of a fourth order PDE is the biharmonic equation on a bounded
region Ω ⊂ R2 with boundary Γ:

ΔΔw = f . (2.4.20)

It describes the vertical displacement w of a flat plate in the x-y-plane, loaded
perpendicularly to that plane with force f . To this problem belong three sets
of physical boundary conditions:
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1. Clamped boundary

w = 0,
∂w
∂n

= 0, x ∈ Γ. (2.4.21)

2. Freely supported boundary

w = 0,
∂2w
∂n2 + ν

∂2w
∂t2 = 0, x ∈ Γ. (2.4.22)

3. Free boundary

∂2w
∂n2 + ν

∂2w
∂t2 = 0,

∂3w
∂n3 + (2 − ν)

∂3w
∂t3 = 0, x ∈ Γ. (2.4.23)

∂
∂n and ∂

∂t stand for the normal and tangential derivative, respectively. Further ν
is Poisson’s ratio, which depends on the material. In the biharmonic equation
the natural boundary conditions contain derivatives of second order or higher,
all other boundary conditions are essential.

2.5 Summary of Chapter 2

In this chapter we obtained a classification of second order PDEs into hyper-
bolic, parabolic and elliptic equations. We formulated appropriate initial and
boundary conditions to guarantee a unique solution. We obtained a maxi-
mum principle for subharmonic (and superharmonic) functions and used this
to prove uniqueness for elliptic equations. We looked at a few examples of
partial differential equations in various fields of physics and technology.



Chapter 3

Finite difference methods

Objectives

In this chapter we shall look at the form of discretization that has been used
since the days of Euler (1707-1783): finite difference methods. To grasp the
essence of the method we shall first look at some one-dimensional examples.
After that we consider two-dimensional problems on a rectangle because that
is a straightforward generalization of the one-dimensional case. We take a
look at the discretization of the three classical types of boundary conditions.
After that we consider more general domains and the specific problems at the
boundary. Finally we shall turn our attention to the solvability of the resulting
discrete systems and the convergence towards the exact solution.

3.1 The cable equation

As an introduction we consider the displacement y of a cable under a vertical
load (see Figure 3.1).

y

x

0 1

Figure 3.1: Loaded cable.
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This problem is described mathematically by the second order ordinary dif-
ferential equation

− d2y
dx2 = f , (3.1.1)

and since the cable has been fixed at both ends we have a Dirichlet boundary
condition at each boundary point:

y(0) = 0, y(1) = 0. (3.1.2)

Note that, also here, one boundary condition is necessary for each point of the
boundary, which just consists of two points.

3.1.1 Discretization

We divide the interval (0, 1) into N subintervals with length h = 1/N (see
Figure 3.2). We introduce the notation xi = ih, yi = y(xi) and fi = f (xi).

1

x

0

x x x x x x
0 1 2 i−1 i i+1 N

h

Figure 3.2: Subdivision of the interval (0, 1).

In the nodes or nodal points xi we have

− d2y
dx2 (xi) = fi, (3.1.3)

and we shall try to derive an equation that connects the three variables yi−1,
yi and yi+1 with the aid of Equation (3.1.3). We recall Taylor’s formula for
sufficiently smooth y:

yi+1 = yi + h
dy
dx

(xi) +
h2

2!
d2y
dx2 (xi) +

h3

3!
d3y
dx3 (xi) +O(h4), (3.1.4a)

yi−1 = yi − h
dy
dx

(xi) +
h2

2!
d2y
dx2 (xi)− h3

3!
d3y
dx3 (xi) +O(h4). (3.1.4b)

When we sum Equations (3.1.4) together, the odd order terms drop out, which
gives us

yi+1 + yi−1 = 2yi + h2 d2y
dx2 (xi) +O(h4). (3.1.5)

Rearranging and dividing by h2 finally gives us the second divided difference
approximation to the second derivative:

yi−1 − 2yi + yi+1

h2 =
d2y
dx2 (xi) +O(h2). (3.1.6)
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The O(h2) error term is called the truncation error, caused by truncating the
Taylor series.

Exercise 3.1.1 Show by the same method that for sufficiently smooth y the forward
divided difference (yi+1 − yi)/h satisfies

yi+1 − yi
h

=
dy
dx

(xi) +O(h). (3.1.7)

Show that the backward divided difference (yi − yi−1)/h satisfies

yi − yi−1

h
=

dy
dx

(xi) +O(h). (3.1.8)

�

Exercise 3.1.2 Show by the same method that for sufficiently smooth y the central
divided difference (yi+1 − yi−1)/2h satisfies

yi+1 − yi−1

2h
=

dy
dx

(xi) +O(h2). (3.1.9)

�

Subsequently, we apply Equation (3.1.6) to every internal node of the interval,
i.e. x1, x2, . . . , xN−1, neglecting the O(h2) error term. Of course by doing so,
we only get an approximation (that we denote by ui) to the exact solution yi.
So we get

h−2(−u0 + 2u1 − u2) = f1, (3.1.10a)

h−2(−u1 + 2u2 − u3) = f2, (3.1.10b)

. . . . . . . . .
...

h−2(−uN−2 + 2uN−1 − uN) = fN−1. (3.1.10c)

Taking into account the boundary values y(0) = y(1) = 0 we find that u0 =
uN = 0. These values are substituted into Equations (3.1.10a) and (3.1.10c)
respectively. Hence the system becomes

h−2(2u1 − u2) = f1, (3.1.11a)

h−2(−u1 + 2u2 − u3) = f2, (3.1.11b)

. . . . . . . . .
...

h−2(−uN−2 + 2uN−1) = fN−1. (3.1.11c)

Or in matrix-vector notation:
Au = f , (3.1.12)
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with A an (N − 1)× (N − 1) matrix:

A = h−2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 . . . . . . 0

−1 2 −1 0
...

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
... 0 −1 2 −1
0 . . . . . . 0 −1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.1.13)

Exercise 3.1.3 Show that in case of the non-homogeneous Dirichlet boundary condi-
tions y(0) = a, y(1) = b, the matrix A is given by (3.1.13) and that the first and last
element of the right-hand side f are given by f1 + h−2a respectively fN−1 + h−2b. �

The solution of this system can be found by LU-decomposition. Since the matrix
A is symmetric positive definite, also Cholesky decomposition (see [9]) can be
used. The proof of positive definiteness will be given in the next section.

3.1.2 Properties of the discretization matrix A

From Expression (3.1.13) it is clear that the matrix A is symmetric. It is easy to
prove that the (N − 1)× (N − 1) matrix A is positive semi-definite.

Exercise 3.1.4 Show that matrix A is positive semi-definite.
Hint: Use Gershgorin’s theorem 1.4.5. �

There are several methods to prove that the matrix A is positive definite. The
first one is by showing that the inner product (Ax,x) can be written as a sum
of squares.

Exercise 3.1.5 Show that

h2(Ax,x) = x2
1 +

N−2

∑
k=1

(xk+1 − xk)
2 + x2

N−1. (3.1.14)

Derive from this result that A is positive definite. �

Another method is to estimate the eigenvalues of the matrix. In this simple
case it is possible to compute the eigenvalues of the matrix A, which is more
accurate than using the bounds that follow from Gershgorin’s theorem.
To that end we consider the eigenvalue problem corresponding to the Laplace
equation,

−d2 ϕ

dx2 = λϕ, ϕ(0) = ϕ(1) = 0, (3.1.15)

which is a special case of the set of Sturm-Liouville problems.
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Theorem 3.1.1 The eigenvalues of Equation (3.1.15) form an infinite set given by
λ = k2π2 with k any positive integer. Hence the smallest eigenvalue is exactly π2.

Proof
If we disregard the boundary conditions ϕ(0) = ϕ(1) = 0, any function of
the form ϕ(x) = eiμx with μ ∈ R is an eigenfunction with corresponding
eigenvalue λ = μ2.
Taking the boundary conditions into account and requiring the eigenfunctions
to be real we arrive at the eigenvalues λk and eigenfunctions ϕk defined by

λk = k2π2, ϕk(x) = sin(kπx) = Im(eikπx), k = 1, 2, . . . (3.1.16)

�
For the discrete problem (3.1.12), the corresponding eigenvalue problem
Av = λv can be solved using a discrete version of the above harmonic ϕ(x) =
eiμx. If we extend the vector v to a grid function with values vj for all j ∈ Z

and disregard the boundary conditions

v0 = vN = 0, (3.1.17)

then any vector of the form vj = eiμjh with μ ∈ R is a solution to the discrete
eigenvalue problem

1
h2 (−vj−1 + 2vj − vj+1) = λvj, j ∈ Z (3.1.18)

with corresponding eigenvalue

λ =
1
h2 (2 − e−iμh − eiμh) =

2
h2 (1 − cos(μh)) =

4
h2 sin2(μh/2). (3.1.19)

Taking the boundary conditions (3.1.17) into account, and requiring the values
vj to be real, we arrive at the eigenvalues λk and eigenvectors vk defined by

λk =
4
h2 sin2(kπh/2), k = 1, 2, . . . , N − 1,

(vk)j = sin(kπ jh) = Im(eikπ jh), k, j = 1, 2, . . . , N − 1.
(3.1.20)

Exercise 3.1.6 Use (3.1.20) to show that the smallest eigenvalue of the symmetric
matrix A is approximately π2. �

Since the smallest eigenvalue of the symmetric matrix A is positive, it follows
from Corollary 1.4.3 that A is positive definite.

The above method is only applicable for simple cases with constant coeffi-
cients, like the one treated here.
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3.1.3 Global error

We will estimate the order of the error in our approximate solution u. From
Equation (3.1.6) we know that each of the equations of the set (3.1.11) con-
tains a truncation error of order O(h2), provided that y is sufficiently smooth.
Suppose that this error in the k-th equation, Ek, is given by Ek = h2 pk. We
know that pk remains bounded as h → 0 by the definition of O. Now let
Δyk = yk − uk, where yk is the exact solution and uk our numerical approxi-
mation. Then

Ay = f + h2p, (3.1.21)

and
Au = f . (3.1.22)

We subtract (3.1.22) from (3.1.21) to obtain a set of equations for the global
error Δy = y − u:

AΔy = h2p. (3.1.23)

We shall show that the global error is of order O(h2) when measured in the
scaled L2-norm defined by ‖x‖2,h =

√
h‖x‖2.

Theorem 3.1.2 The discretization of the Poisson equation (3.1.1) with boundary
conditions (3.1.2) by Equation (3.1.6) gives a global error Δy = y − u satisfying
‖Δy‖2,h = O(h2). �

Proof
From Equation (3.1.23) we obtain Δy = h2 A−1p, which implies (cf. Exercise
1.4.4)

‖Δy‖2 ≤ h2‖A−1‖2‖p‖2. (3.1.24)

Since it follows from Theorem 1.4.4 that for a real symmetric positive definite
matrix A, the induced matrix norm ‖A−1‖2 is equal to the reciprocal of its
smallest eigenvalue, λ1, we get

‖Δy‖2 ≤ h2

λ1
‖p‖2 ≈ h2

π2 ‖p‖2. (3.1.25)

Multiplication by
√

h and using that ‖p‖2,h remains bounded gives the re-
quired result. �

In this special case it is also possible to estimate the error in the maximum
norm as will be shown in the following theorem.

Theorem 3.1.3 Let Ek = h2 pk denote the truncation errors defined above, and let p
be the vector with components pk. Then the global error Δy of Theorem 3.1.2 satisfies

‖Δy‖∞ ≤ h2

8
‖p‖∞.

�
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The above theorem will be proved in the remainder of this section.

Exercise 3.1.7 Let e be the vector with components ek = 1, k = 1, 2, . . . , N − 1.
Show by substitution that the solution v of the set of equations Av = e has compo-
nents vk =

1
2 h2(N − k)k, k = 1, 2, . . . , N − 1. Show that this implies ‖v‖∞ ≤ 1/8.

(Hint: Recall the definition (1.4.14) of the maximum norm and use Nh = 1.) �

In Chapter 2, we saw that the smooth solutions of Laplace’s equation satisfy a
maximum principle. This should also hold for the numerical solution, which
is obtained after the discretization. The following theorem represents the dis-
crete version of the maximum principle. The vector inequality y ≥ x means
that the inequality is valid for every component.

Theorem 3.1.4 (Discrete Maximum Principle)
Let A be the discretization matrix defined in (3.1.13). Then Au ≥ 0 implies u ≥ 0.
�

Exercise 3.1.8 Prove Theorem 3.1.4. Reason by contradiction and assume that u has
a negative minimum for some component uk. Now consider the k-th equation and
show that this is impossible. �

The next important property is the existence and uniqueness of a numerical
solution. This is formulated in the following theorem:

Theorem 3.1.5 (Existence and uniqueness)

1. Let A be the matrix defined in (3.1.13). Then Au = 0 implies u = 0.

2. The set of equations Au = f has a unique solution for every f .

Exercise 3.1.9 Prove Theorem 3.1.5. First use Theorem 3.1.4 to prove assertion 1,
and then use assertion 1 to prove assertion 2. �

Exercise 3.1.10 With the definitions as in Exercise 3.1.7, show that

−h2‖p‖∞v ≤ Δy ≤ h2‖p‖∞v. (3.1.26)

Show that therefore

‖Δy‖∞ ≤ h2

8
‖p‖∞. (3.1.27)

Hint: use Theorem 3.1.4. �

This concludes the proof of Theorem 3.1.3.
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3.2 Some simple extensions of the cable equation

The Poisson equation (3.1.1) is a special case of the diffusion equation

− d
dx

(κ(x)
dϕ

dx
) = f , (3.2.1)

with boundary conditions

ϕ(0) = a, ϕ(1) = b, (3.2.2)

and κ(x) a positive function of x.

3.2.1 Discretization of the diffusion equation

There are several possibilities to discretize Equation (3.2.1) with an accuracy
of O(h2). The first one is to rewrite Equation (3.2.1) as

−κ(x)
d2 ϕ

dx2 − dκ(x)
dx

dϕ

dx
= f . (3.2.3)

However, if we apply central differences to discretize (3.2.3), the symmetry
that is inherent to Equation (3.2.1) is lost.
One could use Taylor expansion to derive a O(h2) symmetric discretization of
(3.2.1). Unfortunately, such an approach is quite complicated.

A better method is to use the central divided differences of Exercise 3.1.2
repeatedly. Define

y(x) = κ(x)
dϕ

dx
(3.2.4)

and use central differences based on the midpoints xi− 1
2
, xi+ 1

2
(see Figure 3.3).

x x x x xi−1/2 i i+1/2 i+1i−1

Figure 3.3: Position of discretization points.

This leads to
yi+ 1

2
− yi− 1

2

h
=

dy
dx

+O(h2). (3.2.5)

Substitution of (3.2.4) into (3.2.5) gives

−
κ(xi+ 1

2
) dϕ

dx (xi+ 1
2
)− κ(xi− 1

2
) dϕ

dx (xi− 1
2
)

h
= − d

dx
(κ(x)

dϕ

dx
) +O(h2). (3.2.6)

Next use central differences to discretize dϕ
dx to get the final expression

−κ(xi+ 1
2
)

ϕi+1 − ϕi
h2 + κ(xi− 1

2
)

ϕi − ϕi−1

h2 = fi. (3.2.7)
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Exercise 3.2.1 Use Taylor series expansion to prove that

κ(xi+ 1
2
) = κ +

h
2

κ′ + h2

8
κ′′ +O(h3). (3.2.8)

Derive a similar expression for κ(xi− 1
2
).

Use Taylor series expansion to prove that

− 1
h

[
κ(xi+ 1

2
)

ϕi+1 − ϕi
h

− κ(xi− 1
2
)

ϕi − ϕi−1

h

]
=

− d
dx

[
κ(xi)

dφ

dx
(xi)

]
+O(h2). (3.2.9)

Hint: Use Equation (3.2.3). �

This discretization matrix is clearly symmetric and one can prove that it is also
positive definite. Hence the original properties of Equation (3.2.1) are kept.

3.2.2 Boundary conditions

The treatment of Dirichlet boundary conditions is trivial as shown in the pre-
vious section. In case the boundary condition contains derivatives, getting an
O(h2) accuracy requires a thorough discretization.
Consider the Poisson equation (3.1.1) with boundary conditions

y(0) = a,
dy
dx

(1) = c. (3.2.10)

If we use the subdivision of Figure 3.2, then the value of yN is unknown. Since
the discretization (3.1.6) is only applicable to internal points (why?), we need
an extra equation to get a square matrix. The most simple method is to use
a backward difference to discretize the Neumann boundary condition. This
introduces an extra equation, but the truncation error is only O(h) according
to Exercise 3.1.1. A better method is to introduce an extra virtual point, xN+1,
outside the domain. This implies that the discretization (3.1.6) can be extended
to node xN . The Neumann boundary condition in x = 1 can be discretized
by central differences. So y(xN+1) can be expressed into y(xN) and y(xN−1),
and this can be substituted in the discretization of the differential equation in
x = 1. In fact the virtual point is eliminated in this way. The error in each
of the steps is O(h2), but unfortunately the symmetry of the matrix is lost.
Another option is to let the boundary x = 1 be in the middle of the interval
(xN−1, xN) as in Figure 3.4. If we omit the truncation error, Equation (3.1.6)
for i = N − 1 leads to

−yN−2 − 2yN−1 + yN

h2 = fN−1. (3.2.11)
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1
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0

x x x x x
0 1 2 i−1 i i+1

h

x
N

x
N−1

Figure 3.4: Subdivision with virtual point.

Central difference discretization of dy
dx (1) = c gives

yN − yN−1

h
= c, (3.2.12)

and substitution of (3.2.12) in (3.2.11) results in

−yN−2 + yN−1

h2 = fN−1 +
c
h

. (3.2.13)

Remark
A simpler way to get a symmetric matrix would be to use the original matrix
and to divide the last row of matrix and right-hand side by 2. However, such
an approach is only applicable for constant coefficients.

Although in each step of the derivation O(h2) approximations are used, still
the local truncation error of Equation (3.2.13) is O(h), see Exercise 3.2.2.

Exercise 3.2.2 Show that the Taylor series expansion around xN−1 of the left-hand
side of Equation (3.2.13) can be written as

y′

h
− y′′

2
+

h
6

y′′′ +O(h2), (3.2.14)

where y = y(xN−1) = y(1 − h
2 ).

Show, using a Taylor series around xN−1, that the first derivative of y(x) in point
x = 1 can be written as

y′(1) = y′ + h
2

y′′ + h2

8
y′′′ +O(h3). (3.2.15)

Show by substitution of (3.2.15) in (3.2.14) and the boundary condition (3.2.10) that
the local truncation error of (3.2.13) is O(h). �

It is rather disappointing that the local truncation error is O(h), despite the
fact that we used O(h2) approximations in each step. Fortunately it is possible
to prove that the global error is still O(h2). For that purpose we write the
truncation error for the complete system as h2p+ hq, where p is defined as in
(3.1.21) and q is a vector that is completely zero except for the last component
which is equal to qN−1, so

q = (0, 0, ..., 0, qN−1)
T . (3.2.16)
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The global error Δy can be split into Δy = Δy1 + Δy2, with

AΔy1 = h2p, (3.2.17)
AΔy2 = hq. (3.2.18)

Exercise 3.2.3 Prove analogous to Section 3.1.2 that the smallest eigenvalue of the
matrix A is approximately π2/4.

Exercise 3.2.4 Show the matrix A satisfies a discrete maximum principle similar to
that in Theorem 3.1.4.

From Exercises 3.2.3 and 3.2.4 it follows that ‖Δy1‖ = O(h2) both in the
maximum norm and the scaled L2-norm. The exact solution of (3.2.18) is
(Δy2)i = h2qN−1xi, hence the global error ‖Δy‖ is also O(h2).

Exercise 3.2.5 Show that ϕ(x) = hqN−1x is the solution of

−d2 ϕ

dx2 = 0, ϕ(0) = 0,
dϕ

dx
(1) = hqN−1.

Deduce from this result that (Δy2)i = h2qN−1xi, and hence ‖Δy2‖ ≤ |qN−1|h2. �

Periodic boundary conditions require a slightly different approach. This type
of boundary condition is for example used in case the solution repeats itself
endlessly. Consider for example the Poisson equation

−d2u
dx2 = f (x), x ∈ [0, 1], (3.2.19)

where u(x) and f (x) are periodic functions with period 1.
Periodicity implies

u(x) = u(x + L) (3.2.20)

with L the length of the interval. Therefore the trivial boundary condition is

u(0) = u(1). (3.2.21)

However, since a second order elliptic equation requires a boundary condition
for the whole boundary, two boundary conditions are needed. The second
boundary condition one can use is

du
dx

(0) =
du
dx

(1). (3.2.22)

Exercise 3.2.6 Derive (3.2.22). Hint: use (3.2.20). �

To discretize Equation (3.2.19) we use the grid of Figure 3.2. The discretization
of the differential equation is standard. The discretization of the boundary
condition (3.2.21) is trivial. It is sufficient to identify the unknowns u0 and



44 Classical Numerical Methods in Scientific Computing

uN and represent them by one unknown only (say uN). To discretize bound-
ary condition (3.2.22) one could use divided differences for both terms in the
equation. A more natural way of dealing with this boundary condition is to
use the periodicity explicitly by discretizing the differential equation (3.2.19)
in x = 1 and using the fact that the next point is actually x1. So we use condi-
tion (3.2.20). Hence

−uN−1 + 2uN − u1

h2 = fN . (3.2.23)

Exercise 3.2.7 Why is it sufficient to apply (3.2.23) only for x = 1 (and not for
x = 0)? �

Exercise 3.2.8 Show that the discretization of (3.2.19) using (3.2.23) gives the fol-
lowing system of equations:

h−2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 . . . 0 −1
−1 2 −1 0 . . . 0

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
... 0 −1 2 −1

−1 0 . . . 0 −1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1
u2
...
...

uN−1
uN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1
f2
...
...

fN−1
fN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

3.3 Singularly perturbed problems

Singularly perturbed problems occur when the coefficient of the highest or-
der derivative is very small compared to the other coefficients. A common
example is the convection-diffusion equation

−ε
d2c
dx2 + v

dc
dx

= 0, c(0) = 0, c(L) = 1, (3.3.1)

which describes the transport of a pollutant with concentration c by a convect-
ing medium with known velocity v.

3.3.1 Analytical solution

For constant velocity v and diffusion coefficient ε there is a solution in closed
form:

c(x) =
exp(vx/ε)− 1
exp(vL/ε)− 1

. (3.3.2)

For L = 1 and vL/ε = 40 the solution has been plotted in Figure 3.5.
The dimensionless quantity vL/ε that occurs regularly in convection diffusion
problems is called the Péclet number Pe. It is a measure for by how much the
convection dominates the diffusion. Note that if the Péclet number is large
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Figure 3.5: Analytic solution.

(say |Pe| > 10), there is a boundary layer at x = L: the right-hand side bound-
ary condition makes itself felt only very close to the boundary. This boundary
layer will cause problems in the numerical treatment.

3.3.2 Numerical approximation

Let us take central differences for the first derivative to provide us with an
O(h2) consistent scheme. This gives us a set of equations

Ac = f , (3.3.3)

where A and f are given by

A = h−2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 + ph 0 . . . . . . 0

−1 − ph 2 −1 + ph 0
...

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
... 0 −1 − ph 2 −1 + ph
0 . . . . . . 0 −1 − ph 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

f =
1
h2

⎛⎜⎜⎜⎜⎜⎝
0
0
...
0

1 − ph

⎞⎟⎟⎟⎟⎟⎠ ,

in which ph = vh
2ε is the so-called mesh Péclet number.
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Exercise 3.3.1 Derive the above expressions for the matrix A and vector f in Equa-
tion (3.3.3). �

In Figures 3.6 and 3.7 you see the numerical solution for Pe = 40 and h = 0.1
and h = 0.025 respectively. In Figure 3.6 we observe wiggles and negative
concentrations. These oscillations are unacceptable from a physical point of
view. The wiggles have disappeared in Figure 3.7.

Figure 3.6: Numerical (solid) and exact (dotted) solution, coarse grid.
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Figure 3.7: Numerical solution, fine grid.
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3.3.2.1 Explanation

To explain this phenomenon we consider the following set of linear difference
equations:

buk−1 − (b + a)uk + auk+1 = 0, u0 = 0, un = 1. (3.3.4)

This system can be solved by substituting u = rk. From Equation (3.3.4) it
follows that

b − (b + a)r + ar2 = 0, (3.3.5)

with solutions r = 1 and r = b/a. The general solution of (3.3.4) can now be
written as

uk = A + B
(

b
a

)k
. (3.3.6)

After application of the boundary conditions we find

uk =

(
b
a

)k − 1(
b
a

)n − 1
. (3.3.7)

Apparently it is necessary that b
a ≥ 0 to have a monotone, increasing solution.

3.3.2.2 Upwind differencing

For the mesh Péclet number ph we need the condition |ph| ≤ 1 to have a mono-
tone solution. This follows directly from the result of the previous section. To
satisfy this inequality we need a condition on the stepsize h: apparently we
must have h

L ≤ 2
|Pe| . This condition may lead to unrealistically small step-

sizes, because in practice Pe can be as large as 106. To overcome this you often
see the use of backward differences for v > 0 and forward differences for v < 0.
This is called upwind differencing.

Exercise 3.3.2 Show that taking a backward difference leads to a three-term recur-
rence relation of the form:

(−1 − 2ph)uk−1 + (2 + 2ph)uk − uk+1 = 0. (3.3.8)

Show that this recurrence relation has a monotone solution if ph > 0. �

Exercise 3.3.3 Give the three-term recurrence relation for v < 0. Show that this also
has a monotone solution. �

Upwind differencing has a big disadvantage: the accuracy of the solution
drops an order and in fact you’re having the worst of two worlds: your ap-
proximation is bad and you will not be warned that this is the case. See Figure
3.8.
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Figure 3.8: Upwind (solid) and exact (dotted) solution.

Why is this approximation so bad? The first order approximation of the first
order derivative introduces an artificial diffusion term to suppress the wig-
gles. This artificial diffusion is an order of magnitude larger than the physical
diffusion. So in fact you solve a different problem. See Exercise 3.3.4.

Exercise 3.3.4 Show that

ck − ck−1
h

= c′k −
h
2

c′′k +O(h2). (3.3.9)

Show that this approximation reduces the Péclet number to

P̂e =
Pe

1 + ph
. (3.3.10)

Deduce from this that p̂h < 1 for v > 0. Give analogous relations for v < 0 and
explain why it is necessary to take a forward difference in this case. �
Effectively, using upwind differencing, you are approximating the solution of

−(ε +
vh
2
)

d2c
dx2 + v

dc
dx

= 0. (3.3.11)

It is clear that for a good accuracy vh
2 must be small compared to ε. Hence

upwind differencing produces nice pictures, but if you need an accurate solu-
tion, then, central differences with small h are preferred.

A better way to handle the boundary layer is mesh refinement in the boundary
layer itself. The boundary layer contains large gradients and to resolve these
you need a sufficient number of points. Actual practice shows that taking suf-
ficient points in the boundary layer suppresses the wiggles. In Figure 3.9 the
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solution is calculated with 10 points only, but at nodes 0.5, 0.8, 0.85, 0.88, 0.91,
0.93, 0.95, 0.97, 0.99 and 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.9: Non-equidistant nodal points.

In favor of the upwind differencing method it has to be said that it is the only
course of action available in the neighborhood of shocks. As a result you often
see methods with a higher accuracy in smooth regions of the solution that fall
back on the first order upwind scheme close to shocks.

3.3.2.3 Source terms

If source terms in the equation suppress the boundary layer there will be no
wiggles in the numerical solution, even if the matrix does not satisfy the mesh
Péclet condition |ph| ≤ 1.

Exercise 3.3.5 Calculate with central differences the numerical solution of

−y′′ + vy′ = π2 sin πx + vπ cos πx, y(0) = y(1) = 0. (3.3.12)

Take v = 40 and h = 0.1. �

Remark
The use of the previous upwind differencing, also called first order upwind,
may be inaccurate, but it usually produces nice pictures. This makes the
method attractive from a selling point of view. In the literature more accu-
rate higher order upwind schemes can be found. Treatment of these schemes
goes beyond the scope of this textbook.
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3.4 Poisson’s equation on a rectangle

We now generalize our procedure to two dimensions. Consider a rectangle Ω
with length L and width W. In this rectangle we consider Poisson’s equation

−Δu = f (3.4.1)

with homogeneous boundary conditions u = 0 on Γ.

Γ

Ω

i i+1

L

W

i−1

j+1

j

j−1

Figure 3.10: Rectangular grid with 5 point molecule.

We divide Ω into small rectangles with sides Δx and Δy such that MΔx = L
and NΔy = W. At the intersections of the grid lines we have nodes or nodal
points where we shall try to find approximations of the unknown u. The un-
known at node (xi, yj) (or (i, j) for short) we denote by ui,j. In the same way
as in Section 3.1 we replace the differential equation in this node by

−ui−1,j + 2ui,j − ui+1,j

Δx2 +
−ui,j−1 + 2ui,j − ui,j+1

Δy2 = fi,j. (3.4.2)

Exercise 3.4.1 Use Taylor expansion in two variables to show that the truncation
error in (3.4.2) is given by

Eij = − 1
12

(
Δx2 ∂4u

∂x4 (xi, yj) + Δy2 ∂4u
∂y4 (xi, yj)

)
. (3.4.3)

In this expression terms of order 5 and higher in the Taylor expansion have been
neglected. �

Writing down Equation (3.4.2) for every internal nodal point (i, j) with i =
1, 2, . . . , M − 1, j = 1, 2, . . . , N − 1, presents us with a set of (M − 1)× (N − 1)
equations with just as many unknowns.
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Exercise 3.4.2 Give the equation with node (1,5) as central node. Substitute the
homogeneous boundary conditions. �

Exercise 3.4.3 Give the equation with node (M − 1, N − 1) as central node. Substi-
tute the homogeneous boundary conditions. �

3.4.1 Matrix vector form

Since the system we obtained is a linear system we can represent it in matrix
vector form Au = f . This is not exactly a trivial task, because we have a
vector of unknowns with a double index and the conventional matrix vector
representation uses a single index. We shall show how to do this in a specific
example, M = 6, N = 4. First of all we show how to convert the double
index (i, j) into a single index α. As we will see below, this can be done in a
number of different ways. Each of these numbering schemes will give rise to
a so-called band matrix.

Definition 3.4.1 A matrix A = (aij) is called a band matrix if all elements outside
a certain band are equal to zero. In formula: aij = 0 if i − j > b1 or j − i > b2.
The bandwidth of the matrix is in that case b1 + b2 + 1.

We will now discuss three numbering schemes. They are most easily repre-
sented in a picture.

3.4.1.1 Horizontal numbering

The nodes are numbered sequentially in horizontal direction (see Figure 3.11).

10

12

5

1514

9

4

76

11

1 2 3

8

13

Figure 3.11: Horizontal numbering.

The conversion formula from double index (i, j) to single index α is straight-
forward:

α = i + (j − 1) ∗ (M − 1). (3.4.4)

Exercise 3.4.4 Show that A is a 3 × 3 block matrix in which each block is 5 × 5.
What is the bandwidth of A? �
The diagonal blocks are tridiagonal, the sub- and super-diagonal blocks are
diagonal and all other blocks are 0.
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3.4.1.2 Vertical numbering

The nodes are numbered sequentially in vertical direction (see Figure 3.12).
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4 13
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52
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Figure 3.12: Vertical numbering.

The conversion formula from double index (i, j) to single index α is straight-
forward:

α = (i − 1) ∗ (N − 1) + j. (3.4.5)

Exercise 3.4.5 Show that A is a 5 × 5 block matrix in which each block is 3 × 3.
What is the bandwidth of A? �

The diagonal blocks are tridiagonal, the sub- and super-diagonal blocks are
diagonal and all other blocks are 0.

3.4.1.3 Oblique numbering

The nodes are numbered sequentially along lines i + j = k, k = 2, . . . , 8 (see
Figure 3.13).
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6 12

13

Figure 3.13: Oblique numbering.

The conversion formula from double index (i, j) to single index α is not so
straightforward. A is still a block matrix, in which the diagonal blocks increase
in size from 1 × 1 to 3 × 3. The diagonal blocks are diagonal, the sub- and
super-diagonal blocks are bidiagonal and all other blocks are 0.

Exercise 3.4.6 What is the bandwidth of A? �
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3.5 Boundary conditions extended

3.5.1 Natural boundary conditions

Basically natural boundary conditions (i.e. Neumann or Robin boundary con-
ditions) involve a flow condition. The treatment in 2D is similar to 1D (see
Section 3.2.2). Since these conditions are dealt with in a natural way by Finite
Volume Methods we postpone a more detailed discussion of that subject until
the next chapter.

3.5.2 Dirichlet boundary conditions on non-rectangular regions

Unfortunately on non-rectangular regions the boundary does not coincide
with the grid, see Figure 3.14.

interior points

boundary points

exterior points

Figure 3.14: Grid on non-rectangular region.

For each interior point we have an equation involving function values in five
nodes. The black points in Figure 3.14 have to be determined by the Dirich-
let boundary condition. It is acceptable to express a black point in a nearby
boundary value and the function values in one or more interior points (interior
variables). The idea is to end up with a system of equations that only contains
interior variables. In this way we can guarantee that we have as many equa-
tions as unknowns. We explain the way to proceed by an example. Consider
the situation in Figure 3.15.

In this figure we have to express uS in the known value uB and the interior
variable uC. Let h be the distance between grid points and sh the fraction that
separates the boundary from the S-point. By linear interpolation we have

uB = (1 − s)uS + suC +O(h2), (3.5.1)
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u
S

sh

u
B

u
C

h

Figure 3.15: Boundary molecule, uS is an exterior boundary point.

and that gives us the relation that we can substitute into the equation:

uS =
uB − suC

1 − s
. (3.5.2)

If s is close to 1 this procedure may lead to an unbalanced set of equations.
For that reason we usually consider a point that is closer than say 1

4 h to the
boundary as a boundary point even if it belongs to the interior. In that case uS
falls in between uB and uC (see Figure 3.16) and the formula changes corre-
spondingly.

u
S

u
C

h

u
B

sh

Figure 3.16: Boundary molecule, uS is an interior boundary point.
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Here we have
uS =

uB + suC
1 + s

. (3.5.3)

Remark
The method treated here is quite old-fashioned. It is better to use a coordinate
transformation (Section 3.7).

3.6 Global error estimate

We shall try to get some of the flavor of global error estimates for numerical
solutions of Problem (3.4.1). The scaled L2 error estimate can be derived in
the same way as in Theorem 3.1.2. Here we shall concentrate ourselves on
pointwise estimates. In order to do so we need to develop some properties
for the discrete Laplace operator. These properties also hold in 3 dimensions,
so in a certain way this is a generic treatment of the problem. We will do
the estimate on a rectangle with homogeneous Dirichlet boundary conditions,
but in subsequent sections we shall hint at ways to apply the theory to more
general domains and boundary conditions.

3.6.1 The discrete maximum principle

If the N × N system of equations Au = f is a Finite Difference discretization
of Problem (3.4.1) with Dirichlet boundary conditions then A has the follow-
ing properties:

ajk ≤ 0, if j �= k, (3.6.1a)

akk > 0, for all k, (3.6.1b)

|akk| ≥
N

∑
j=1
j �=k

|akj|, k = 1, . . . , N. (3.6.1c)

We first formulate some definitions and after that an important theorem.

Definition 3.6.1 A is a Z-matrix if

aij ≤ 0, for all i, j with i �= j.

Definition 3.6.2 A is an L-matrix if A is a Z-matrix and

aii > 0, for all i.

Definition 3.6.3 A is diagonally dominant if

|aii| ≥
N

∑
j=1
j �=i

|aij|, i = 1, 2, . . . , N. (3.6.2)
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Definition 3.6.4 A is reducible if there exists a permutation matrix P such that

PT AP =

(
A11 A12
0 A22

)
, (3.6.3)

where A11 and A22 are square matrices of order less than N. If no such P exists, then
A is called irreducible.

Exercise 3.6.1 For a given N × N matrix A = (aij) we say that one can ”step” from
row i to row j if and only if aij �= 0.
Show that the matrix A is irreducible if and only if you can ”walk” (in one or more
steps) from any row i to any other row j. �

In most practical cases our discretization matrices are irreducible.

Definition 3.6.5 A is irreducibly diagonally dominant if it is irreducible, diag-
onally dominant, and we have strict inequality in (3.6.2) for at least one row index
i.

The following theorem is a generalization of Theorems 3.1.4 and 3.1.5.

Theorem 3.6.1 (Discrete Maximum Principle)
If A is an irreducibly diagonally dominant L-matrix, then

(i) Au ≥ 0 ⇒ u ≥ 0.

(ii) A is non-singular.

Proof
First we prove (i). Suppose Au ≥ 0 but that u ≥ 0 does not hold. Then we
define M > 0 and the non-empty index set K by

−M = min
1≤i≤N

ui, K = {k|uk = −M}. (3.6.4)

Let k be an arbitrary member of K. By noting that A is an L-matrix, it follows
from (3.6.4) and the assumption Au ≥ 0 that

|akk|M = −akkuk ≤
N

∑
j=1
j �=k

akjuj =
N

∑
j=1
j �=k

−|akj|uj ≤
N

∑
j=1
j �=k

|akj|M. (3.6.5)

Since M > 0 we can divide by M in (3.6.5), which leads to a contradiction with
the diagonal dominance of A unless

|akk| =
N

∑
j=1
j �=k

|akj|. (3.6.6)
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Note that (3.6.6) implies that both inequalities in (3.6.5) are equalities, imply-
ing that uj = −M for all j with akj �= 0. This means that j ∈ K for all j with
akj �= 0. Hence all rows j to which you can ”step” from row k (cf. Exercise 3.6.1)
also belong to K. Since A is irreducible we can repeat the above argument and
”walk” (in one or more steps) to any other row and hence K = {1, 2, . . . , N}.
But this means that (3.6.6) must hold for all rows k of A, which contradicts the
assumption that (3.6.2) holds strictly for at least one row i. This proves part (i)
of the theorem.
The non-singularity of A is proven in Exercise 3.6.2. �

Exercise 3.6.2 Prove, under the hypothesis of Theorem 3.6.1, that Au ≤ 0 implies
u ≤ 0 (Hint: consider −u). Use this result to prove that Au = 0 implies u = 0. �

According to Theorem 2.2.1 the solution of the Poisson equation with Neu-
mann boundary conditions is not unique. In that case the row sum of each
row of the matrix is equal to 0. In Exercise 3.6.3 it is shown that also the nu-
merical solution is not unique.

Exercise 3.6.3 Show that if equality holds in Equation (3.6.1c) for all k the system
Au = 0 (A being an L-matrix) has a nontrivial solution. Determine that solution. �

Exercise 3.6.4 Use Theorem 3.6.1 to prove that if A is an irreducibly diagonally
dominant L-matrix and Au = f and Aw = |f |, then |u| ≤ w.
Hint: also consider A(−u). �

3.6.1.1 Discrete harmonics and linear interpolation

We show an important consequence of the discrete maximum principle. This
theorem is in fact the discrete equivalent of the weak maximum principle
(Theorem 2.3.2).

Theorem 3.6.2 A discrete solution to Laplace’s equation with Dirichlet boundary
conditions has its maximum and minimum on the physical boundary, provided the
boundary conditions have been approximated by linear interpolation.

Proof
We only sketch the proof, the reader will have no difficulty in filling in the
details. The ordinary five point molecule to approximate the Laplace oper-
ator generates an irreducibly diagonally dominant L-matrix, and application
of linear interpolation does not alter that. The inequality (3.6.1c) is only strict
for those molecules (rows) that contain a Dirichlet boundary condition. So
the maximum M will, by a now familiar reasoning, be attained by an interior
point that is one cell away from the boundary, like uC in Figure 3.16. This
equation has been modified into:

−uW − uN − uE + (3 +
1

1 + s
)uC =

1
1 + s

uB. (3.6.7)
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But since uN , uW and uE are not greater than M this means

−3M + (3 +
1

1 + s
)uC ≤ 1

1 + s
uB, (3.6.8)

or since uC = M by assumption

M ≤ uB. (3.6.9)

An analogous reasoning shows that the minimum m is attained at the physical
boundary. �

Exercise 3.6.5 Derive Equation (3.6.7). �

3.6.2 Super solutions

The (discrete) maximum principle is used to bound (discrete) solutions to Pois-
son’s equation. Why would we want to do such a thing? Remember that we
have an error estimate in the form:

Aε = h2p, (3.6.10)

in which the vector p is uniformly bounded as h → 0. Suppose we had a
solution q to the equation Aq = p; we would then have an error estimate
ε = h2q. Usually this is asking too much. But if we are able to bound the
vector p by a vector r ≥ p then the solution s to As = r bounds q by the
discrete maximum principle: q ≤ s. This gives us an error estimate as well:
ε ≤ h2s. Such a super solution s is obtained by solving the Laplacian for a
specific right-hand side that has the properties:

• the solution can be easily obtained;

• it dominates the right-hand side of the equation that we are interested
in.

An obvious choice for the vector r would be the constant vector h2‖p‖∞. We
will show that to get the solution s, it is sufficient to consider the equation
−Δu = 1.

3.6.2.1 A discrete solution to −Δu = 1

Consider the problem −Δv = 1 on a disk of radius 1 and the origin as its
midpoint with homogeneous Dirichlet boundary conditions. By substitution
it is easily verified that v = 1

4 (1 − x2 − y2) is the solution of this problem. But
since second divided differences are exact for polynomials of degree 2 (why?)
the discrete function vij =

1
4 (1 − x2

i − y2
j ) is a solution to the discretized equa-

tion Au = e in which e contains all ones and the single index vector u is an
appropriate remap of the double index vector vij. That is, if we disregard the
approximation to the boundary conditions for the moment.
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Exercise 3.6.6 Show that ‖u‖∞ = 1
4 . �

Exercise 3.6.7 Give the solution of −Δu = 1 with homogeneous Dirichlet boundary
conditions on a disk D with midpoint (0, 0) and radius R. Show that this is a super
solution to the same problem on an arbitrary G region wholly contained in D. Hint:
consider the difference of the two solutions and show that they satisfy a Laplace equa-
tion with nonnegative boundary conditions. Use Theorem 3.6.2 to conclude that the
difference must be nonnegative also. �

3.6.2.2 Pesky mathematical details: the boundary condition

To develop our train of thoughts unhampered in the previous section we over-
looked a pesky mathematical detail. At a boundary point we used linear in-
terpolation and that has influenced our equation somewhat. As a result, the
function vij as introduced in the previous paragraph is not really the solution
of Au = e but rather of a perturbed system Aũ = e + eb. The vector eb
contains the interpolation error of O(h2) at the boundary.

Exercise 3.6.8 Consider the discretization of −Δu = 1 with homogeneous Dirichlet
boundary conditions on the disk with radius 1 in the neighborhood of the boundary as
in Figure 3.16. Show that this discretization is given by:

−uW − uN − uE + (3 +
1

1 + s
)uC = h2. (3.6.11)

Verify, that the discrete solution vij =
1
4 (1 − x2

i − y2
j ) does not satisfy this equation,

but rather the equation:

−uW − uN − uE + (3 +
1

1 + s
)uC = h2 +

s
4

h2. (3.6.12)

(Hint: 1 − x2
i − (yj − (1 + s)h)2 = 0.)

Show that this is equivalent with an error in the boundary condition ΔuB of O(h2).
�

Exercise 3.6.9 Show by using Theorem 3.6.2 and the result of Exercise 3.6.8 that
ũ− u = O(h2). �

In the sequel we shall neglect the influence of linear interpolation error on the
boundary conditions.

3.6.2.3 A pointwise error estimate to the discrete solution

Let us apply the results of the previous sections to our error estimate. We have
the following theorem:
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Theorem 3.6.3 Let Au = f be the discretization of the Poisson equation with ho-
mogeneous Dirichlet boundary conditions on a region G wholly contained in a disk
with radius R. Let the discretization error be given by Aε = h2p such that ‖p‖∞ is
bounded as h → 0. Then

‖ε‖∞ ≤ 1
4

R2h2‖p‖∞ (3.6.13)

Exercise 3.6.10 Explain why the midpoint of the disk does not play a role in Theorem
3.6.3. Is it true that we can take the smallest disk that wholly contains G? �

Exercise 3.6.11 Show that if Aw = ‖p‖∞e, then |ε| ≤ h2w. �

Exercise 3.6.12 Prove Theorem 3.6.3. �

3.7 Boundary fitted coordinates

In Section 3.5 we looked at boundary conditions on general domains. A dif-
ferent approach is the use of boundary fitted coordinates that make the boundary
of the domain a coordinate line. This usually leads to a reformulation of the
problem in general curvilinear coordinates. This solves one problem, but intro-
duces another because usually the PDE (even a simple PDE like the Lapla-
cian) can easily become very complex. This approach can also be used if one
wants to apply a local grid refinement. We will explain the principle for a one-
dimensional problem. Suppose that one has to solve the following problem:

− d
dx

(
D(x)

du
dx

)
= f (x), with u(0) = 0 and u(1) = 1. (3.7.1)

Here D(x) and f (x) are given functions. For specific choices of D(x) and f (x)
a local grid refinement is desirable at positions where the magnitude of the
second derivative is large. One can use a coordinate transformation such that
the grid spacing is uniform in the transformed co-ordinate. Let this coordinate
be given by ξ, then in general, the relation between x and ξ can be written as

x = Γ(ξ), (3.7.2)

where Γ represents the function for the coordinate transformation and we re-
quire that Γ is a bijection (that is, Γ is one-to-one and onto). Then, differentiation
with respect to x yields

1 = Γ′(ξ) dξ

dx
, (3.7.3)

so dξ
dx = 1

Γ′(ξ) and this implies, after using the Chain Rule for differentiation

du
dx

=
1

Γ′(ξ)
du
dξ

. (3.7.4)
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Hence, the differential equation (3.7.1) in x transforms into the following dif-
ferential equation for ξ

− 1
Γ′(ξ)

d
dξ

[
D(Γ(ξ))

Γ′(ξ)
du
dξ

]
= f (Γ(ξ)).

u(ξL) = 0, u(ξR) = 1,

(3.7.5)

where 0 = Γ(ξL) and 1 = Γ(ξR). The above differential equation is much more
complicated than E quation (3.7.1), but it can be solved on an equidistant grid.
After the equation is solved, the solution is mapped onto the grid nodes on the
x-number line. In practice, one often does not know the function Γ(ξ) in an
explicit form, so one has to use a numerical approximation for the derivative
of Γ(ξ). We will return to this subject in Section 4.3.1.

Exercise 3.7.1 Consider equation (3.7.1), where

f (x) =

{
256 (x − 1/4)2(x − 3/4)2, for 1/4 < x < 3/4
0, elsewhere.

Suppose that we prefer to discretize such that the mesh is refined at positions where
the error is maximal. Then, one has to use a local mesh refinement near x = 1/2.
Therefore, we use the transformation x = Γ(ξ) = 3ξ − 2ξ2(3 − 2ξ). Show that
this transformation yields a mesh refinement at x = 1/2, and give the transformed
differential equation expressed in ξ, in which one will use an equidistant grid. �

The extension to two dimensions is quite simple. Consider for example Pois-
son’s equation on a disk,

−div grad u = f (x, y), for (x, y) ∈ Ω. (3.7.6)

In order to get a rectangular grid we map the disk onto a rectangle in (r, θ)
space, i.e. we transform to polar coordinates. This transformation is defined
by

x = r cos θ, y = r sin θ. (3.7.7)

Exercise 3.7.2 Express the derivatives of u with respect to x and y in ∂u
∂r and ∂u

∂θ . �

Exercise 3.7.3 Show that the derivatives, ∂r
∂x , ∂r

∂y , ∂θ
∂x and ∂θ

∂y are given by

(
∂r
∂x

∂r
∂y

∂θ
∂x

∂θ
∂y

)
=

1
r

(
r cos θ r sin θ
− sin θ cos θ

)
. (3.7.8)

�
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Exercise 3.7.4 Use the results of Exercises 3.7.2 and 3.7.3 to prove that the Poisson
equation (3.7.6) in polar coordinates is defined by

−
(

∂2u
∂r2 +

1
r

∂u
∂r

+
1
r2

∂2u
∂θ2

)
= f (r cos θ, r sin θ). (3.7.9)

�

Remark
Note that r = 0 is a singular line in Equation (3.7.9).

Exercise 3.7.5 Which boundary conditions are needed to get rid of the singularity?
�

Exercise 3.7.6 Discretize Poisson’s equation on a disk of radius 1 in the (r, θ)-plane.
Use homogeneous Dirichlet boundary conditions on the disk. Formulate boundary
conditions for r = 0, θ = 0 and θ = 2π. �

3.8 Summary of Chapter 3

In this chapter we have seen finite difference methods in one and two dimen-
sions. We have looked at the effect of a boundary layer on numerical approxi-
mations. We have derived pointwise error estimates for problems with homo-
geneous Dirichlet boundary conditions using a discrete maximum principle.
A method to include Dirichlet boundary conditions on more general regions
has been shown and finally we have presented the formula of the Laplacian
operator in general coordinates.



Chapter 4

Finite volume methods

Objectives

In the previous chapter we got to know discretization by finite differences.
This discretization has two major disadvantages: it is not very clear how to
proceed with non-equidistant grids; moreover natural boundary conditions
are very hard to implement, especially in two or three dimensions. The fi-
nite volume discretization that we are about to introduce do not possess these
disadvantages. But they apply only to differential operators in divergence or
conservation form. For physical problems this is rather a feature than a bug:
usually the conservation property of the continuous model will be inherited
by the discrete numerical model.

We shall start out with a one-dimensional example that we left dangling
in our previous chapter: a second order equation on a non-equidistant grid.
We shall pay attention to Neumann and Robin boundary conditions too. Sub-
sequently we shall turn our attention to two dimensions and discretize the
Laplacian in general coordinates. Then we will look at problems with two
components: fluid flow and plane stress. We shall introduce the concept of
staggered grids and show that that is a natural way to treat these problems.
There will be a problem at the boundaries in this case that we have to pay
attention to.

4.1 Heat transfer with varying coefficient

We consider the diffusion equation on the interval (0, 1) :

− d
dx

(
λ

dT
dx

)
= f , λ

dT
dx

(0) = 0, −λ
dT
dx

(1) = α(T(1)− TR). (4.1.1)

In this equation λ may depend on the space coordinate x. TR is a (given)
reference temperature and as you see we have natural boundary conditions
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on both sides of the interval. We divide the interval in (not necessarily equal)
subintervals ek, k = 1, . . . , N, where ek is bounded by the nodal points xk−1,
xk. See Figure 4.1.

xx x
k−1 k k+1

Figure 4.1: Non-equidistant grid.

To derive a discrete equation to this problem we consider three subsequent
nodes xk−1, xk and xk+1 in isolation, see Figure 4.2.

x x xx x
k−1 k−1/2 k k+1k+1/2

h h
k k+1

Figure 4.2: Control volume.

We let hk = xk − xk−1, hk+1 = xk+1 − xk and define xk−1/2 = xk − 1
2 hk and

xk+1/2 = xk +
1
2 hk+1. We now integrate Equation (4.1.1) over the control volume

(xk−1/2, xk+1/2) to obtain

xk+1/2∫
xk−1/2

− d
dx

(
λ

dT
dx

)
dx =

xk+1/2∫
xk−1/2

f dx,

which gives

−λ
dT
dx

∣∣∣∣
xk+1/2

+ λ
dT
dx

∣∣∣∣
xk−1/2

=

xk+1/2∫
xk−1/2

f dx. (4.1.2)

Equation (4.1.2) represents the physical conservation law: the net outflow
through the left and right boundary of the control volume is equal to the pro-
duction in the control volume. We may approximate the derivatives on the
left-hand side by central divided differences and the integral on the right by
one-point integration to obtain:

λk−1/2
Tk − Tk−1

hk
− λk+1/2

Tk+1 − Tk
hk+1

=
1
2
(hk + hk+1) fk + ET , (4.1.3)

which after rearrangement becomes:
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− λk−1/2

hk
Tk−1 +

(
λk−1/2

hk
+

λk+1/2

hk+1

)
Tk − λk+1/2

hk+1
Tk+1

=
1
2
(hk + hk+1) fk + ET . (4.1.4)

The structure of the error term ET will be considered in Exercises 4.1.2 and
4.1.3. To get a set of discrete equations we drop the error term.

Exercise 4.1.1 Show that in case of an equidistant grid Equation (4.1.4) without the
error term is identical to the finite difference discretization of (4.1.1) multiplied by the
length h. (Hint: check Equation (3.2.7).) �
The error ET in Equation (4.1.4) consist of two terms: one part of the error, E1,
originates from the use of one point integration instead of exact integration,
the other part, E2, originates from the use of central differences instead of
derivatives. In the following exercises it is shown that both error terms E1 and
E2 are of the order O(h2

k+1 − h2
k) +O(h3

k+1 + h3
k). Further, if the grid spacing

satisfies hk+1 = hk(1 + O(h)), where h denotes the maximum hk, then it is
shown in a subsequent exercise that both error terms are of the order O(h3).
The global error is one order lower, that is O(h2), since compared to the finite
difference method all equations are multiplied by the length h.

Exercise 4.1.2 Show that the error that originates from the one-point integration is
given by E1 = O(h2

k+1 − h2
k) +O(h3

k+1 + h3
k).

Hint: Assume that f (x) is the derivative of F(x). Express the integral in terms of F
and use Taylor series expansion. �
Exercise 4.1.3 Show that the error from the use of central differences is given by
E2 = O(h2

k+1 − h2
k) +O(h3

k+1 + h3
k). You may assume that λ does not depend on x.

�
Exercise 4.1.4 Show that if hk+1 = hk(1 +O(h)), k = 1, . . . , N − 1, then
hk+1 − hk = O(h2), k = 1, . . . , N − 1, and therefore E1 = O(h3) and E2 = O(h3).

�

4.1.1 The boundaries

At the left-hand boundary we take (x0, x1/2) as control volume and we inte-
grate to get:

λ
dT
dx

∣∣∣∣
x0

− λ
dT
dx

∣∣∣∣
x1/2

=

x1/2∫
x0

f dx. (4.1.5)

The left-hand boundary condition can be substituted directly:

− λ
dT
dx

∣∣∣∣
x1/2

=

x1/2∫
x0

f dx. (4.1.6)
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Application of central differences and one-point integration gives:

λ1/2

h1
T0 − λ1/2

h1
T1 =

1
2

h1 f0 + ET . (4.1.7)

Exercise 4.1.5 Show that the truncation error ET is O(h2
1) in the above equation. �

At the right-hand boundary we take (xN−1/2, xN) as control volume and inte-
grate to get:

λ
dT
dx

∣∣∣∣
xN−1/2

− λ
dT
dx

∣∣∣∣
xN

=

xN∫
xN−1/2

f dx. (4.1.8)

On substitution of the right-hand boundary condition this becomes:

λ
dT
dx

∣∣∣∣
xN−1/2

+ αTN =

xN∫
xN−1/2

f dx + αTR. (4.1.9)

Application of central differences and one-point integration gives:

−λN−1/2

hN
TN−1 +

(
λN−1/2

hN
+ α

)
TN =

1
2

hN fN + αTR + ET . (4.1.10)

Remark
If we would have a Dirichlet boundary condition, for example T = T0 at the
left-hand boundary, there is no need to use the control volume (x0, x1/2). We
treat this boundary condition like in Chapter 3, i.e., we substitute the given
value and no extra equation is required.

4.1.2 Conservation

Finite volume schemes are often described as conservative schemes for the fol-
lowing reason. When we write the finite volume equations in terms of fluxes
by applying Fick’s (Darcy’s, Ohm’s, Fourier’s) law for each finite volume
(xL, xR), each equation looks like:

qR − qL =

xR∫
xL

f dx, (4.1.11)

or in words: the local production in a control volume is equal to the net out-
flow through its boundary points. This will be true regardless of the numerical
approximation to the fluxes. If the production is zero, there will be no generation
of mass (energy, momentum) by the numerical scheme. The only error that
will be made in the fluxes will be caused by the error in approximating the
production term.
In the following exercises we shall prove that the error in the flux is equal to
the error in the inflow flux at the left boundary x = 0 plus the maximum error
in the production, provided the flux itself is not discretized.
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Exercise 4.1.6 Show that if the equation

− (
λy′

)′
= 0 (4.1.12)

is discretized on the interval (0, 1) by the Finite Volume Method, necessarily q0 = qN
with q = −λy′, regardless of the number of steps N. �

Exercise 4.1.7 Show that if the equation

− (
λy′

)′
= 1 (4.1.13)

is discretized on the interval (0, 1) by the Finite Volume Method, necessarily qN =
q0 + 1 with q = −λy′, regardless of the number of steps N. �

Let the vector q be the vector of fluxes defined for all boundary points of the
control volumes. Hence q = (q0, q1/2, q3/2, . . . , qN−1/2, qN)

T . The error in the
fluxes is denoted by dq, and its components can be solved from the following
relations, where the right-hand sides are the production errors:

dq1/2 − dq0 = 1
2 h1E0, (4.1.14a)

dqk+1/2 − dqk−1/2 = 1
2 (hk + hk+1)Ek (k = 1, . . . , N − 1), (4.1.14b)

dqN − dqN−1/2 = 1
2 hN EN , (4.1.14c)

Exercise 4.1.8 (Propagation of production error)
Show that it follows from (4.1.14) that

|dqk+1/2| ≤ |dq0|+ max
0≤j≤k

|Ej|, k = 0, 1, . . . , N − 1, (4.1.15a)

|dqN | ≤ |dq0|+ max
0≤j≤N

|Ej|. (4.1.15b)

Hint: use ∑k hk = 1. �

Exercise 4.1.9 (Propagation of boundary error)
Show that it follows from (4.1.14) with Ek = 0 (k = 0, 1, . . . , N) that all components
of dq are equal to dq0. �

4.1.3 Error in the temperatures

The error in the fluxes is in general of the same order as the error in the pro-
duction terms (see Exercise 4.1.8). Since we have approximated this term
with one-point integration, we may expect an error of magnitude O(h2) in
the fluxes, qk+1/2, for smoothly varying stepsizes. By the same reasoning as
in Exercise 4.1.8 we may now show, that the error in the temperatures remains
O(h2), because if

−λT̃′(xk+1/2) = qk+1/2 +O(h2), (4.1.16)
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the approximation with central differences also generates an O(h2) error term
and we get for the error dTk:

λk+1/2
dTk − dTk+1

hk+1
= Ek+1, (4.1.17)

where Ek+1 = O(h2). Now defining the error in temperature dT in much the
same way as in Exercise 4.1.8 we can show that

|dTk| ≤ |dTN |+ sup
j>k

|Ej|/λj−1/2. (4.1.18)

However, since the numerical approximation to qN has an error of O(h2), it
follows from the right-hand-boundary condition qN = α(TN − TR) that dTN =
O(h2). Backsubstitution into inequality (4.1.18) proves the result.

4.2 The stationary diffusion equation in 2 dimen-
sions

The Finite Volume approximation of the stationary diffusion equation in two
dimensions is a straightforward generalization of the previous section. Let us
consider:

−div λ grad u = f , x ∈ Ω, (4.2.1a)

−λ
∂u
∂n

= α(u − u0), x ∈ Γ. (4.2.1b)

Both λ and f are functions of the coordinates x and y. In the boundary con-
dition the radiation coefficient α > 0 and the reference temperature u0 are
known functions of x. We subdivide the region Ω into cells like in Figure 4.3.

Figure 4.3: Subdivision of rectangular region into cells.

Usually these cells are rectangles, but also quadrilaterals or even triangles are
allowed. In the literature one can find two ways of positioning the unknowns.
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The first one is to place the unknowns in the nodes of the grid. This is called
the vertex-centered approach. The other one is to put the unknowns in the
centers of the cells (cell-centered). These methods only differ at the boundary
of the domain. For the moment we restrict ourselves to the vertex-centered
method, and a rectangular equidistant grid.

We use the same (i, j) notation for the nodes as in Chapter 3. In the litera-
ture a node xij somewhere in the interior of Ω is also denoted by xC and the
surrounding neighbors by their compass names in capitals: N, E, S, W. Cell
quantities and quantities on the cell edges are denoted with lower case sub-
scripts: n, s, e, w. If appropriate we shall also apply this notation. We construct
a control volume V with edges half way between two nodes, like in Figure 4.4.

u uu

u

u

h

hy

x

i,j i+1,ji−1,j

i,j+1

i,j−1

Figure 4.4: Control volume for the diffusion equation.

We integrate the equation over the control volume V to obtain:

∫
V

−div λ grad u dV =
∫
V

f dV,
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which we can rewrite by using the divergence theorem (Theorem 1.3.1 ) as∫
∂V

−λ
∂u
∂n

dΓ =
∫
V

f dV. (4.2.2)

Using central differences for ∂u
∂n and one-point integration for the left-hand-

side edges and the right-hand-side volume we get the interior molecule:

− λi−1/2,jhy
ui−1,j − ui,j

hx
− λi,j−1/2hx

ui,j−1 − ui,j

hy
− λi+1/2,jhy

ui+1,j − ui,j

hx

− λi,j+1/2hx
ui,j+1 − ui,j

hy
= hxhy fi,j. (4.2.3)

Note that Equation (4.2.3) is identical to the finite difference Equation (3.4.2) if
λ = 1.

Exercise 4.2.1 Derive the finite volume discretization of (4.2.1) for non-uniform step-
sizes. �

Exercise 4.2.2 Apply the finite volume method to the convection-diffusion equa-
tion with incompressible flow:

div (−ε(grad c) + cu) = 0, (4.2.4)

with ε and u constant. Show that the contribution of the convection term is non-
symmetric. �

4.2.1 Boundary conditions in case of a vertex-centered method

The treatment of boundary conditions is usually the most difficult part of the
finite volume method. Dirichlet boundary conditions are treated in the same
way as in 1D. The Robin boundary condition (4.2.1b) requires a special ap-
proach. For simplicity we restrict ourselves to the east boundary. All other
boundaries can be dealt with in the same way. Since the nodes on the bound-
ary correspond to the unknown function u, it is necessary to define a control
volume around these points. The common approach is to take only the half
part inside the domain as sketched in Figure 4.5. Integration of the diffusion
equation (4.2.1a) over the control volume gives Equation (4.2.2). The integral
over the west edge is treated as for the internal points. The integral over the
north and south edges are also treated in the same way, but their length is
multiplied by 1

2 . On the east edge boundary condition (4.2.1b) is applied to
get ∫

Γe

−λ
∂u
∂n

dΓ =
∫
Γe

α(u − u0) dΓ. (4.2.5)
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i,j

i,j+1

i,j−1

i−1,j

Figure 4.5: Half cell control volume for the vertex-centered Robin b.c.

Discretization of the right-hand side of (4.2.5) gives∫
Γe

α(u − u0) dΓ ≈ hyαi,j(ui,j − (u0)i,j), (4.2.6)

so the complete discretization for a point (i, j) at the east boundary becomes

− λi−1/2,jhy
ui−1,j − ui,j

hx
− λi,j−1/2hx

ui,j−1 − ui,j

2hy
− λi,j+1/2hx

ui,j+1 − ui,j

2hy

+ hyαi,jui,j = hyαi,j(u0)i,j +
hxhy

2
fi,j. (4.2.7)

Exercise 4.2.3 Suppose we want to solve the diffusion equation (4.2.1a) over the
square Ω = (0, 1) × (0, 1). Let λ and f be periodic in x-direction. Assume we
have periodic boundary conditions at the boundaries x = 0 and x = 1. Furthermore
boundary condition (4.2.1b) holds for the other two boundaries.

(i) Formulate the periodic boundary conditions at x = 0 and x = 1. Motivate
why the number of boundary conditions is correct.

(ii) Derive the finite volume discretization of the equation at the periodic bound-
aries. Use an equidistant grid with hx = hy. �

4.2.2 Boundary conditions in case of a cell-centered method

If a cell-centered method is applied, cells and control volumes coincide. All
unknowns are positioned in the centers of the cells, which implies that there
are no unknowns on the boundary.

Exercise 4.2.4 Show that the discretization of Equation (4.2.1a) for all internal cells
(which have no common edge with the boundary), is given by Equation (4.2.3). �
The absence of unknowns on the boundary has its effect on the treatment of
boundary conditions. Neumann boundary conditions of the type

−λ
∂u
∂n

= g at Γ (4.2.8)
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are the easiest to implement since (4.2.8) can be substituted immediately in the
boundary integrals.

Exercise 4.2.5 Derive the discretization for a boundary cell with boundary condition
(4.2.8). �

In case of a Dirichlet boundary condition u = g2 on the south boundary, one
may introduce a virtual point i, j − 1 like in Figure 3.15. The value of ui,j−1
can be expressed in terms of ui,j and the boundary value ui,j−1/2 using linear
extrapolation. Substitution in the 5-point molecule results in a 4-point stencil.

The introduction of such a virtual point can actually be avoided by the
following equivalent approach, where the boundary integral∫

ΓS

−λ
∂u
∂n

dΓ (4.2.9)

is approximated with the midpoint rule, where the value of the integrand in
the south boundary point B (with indices i, j − 1/2) is approximated by

−λ
∂u
∂n

≈ −λB
uB − uC

1
2 Δy

= −λi,j−1/2
(g2)i,j−1/2 − ui,j

1
2 Δy

. (4.2.10)

Exercise 4.2.6 Derive the discretization of Equation (4.2.1a) in a cell adjacent to the
Dirichlet boundary. �

The Robin boundary condition (4.2.1b) is the most difficult to treat. On the
boundary we have to evaluate the integral∫

∂V

α(u − u0) dΓ (4.2.11)

while u is unknown, and not present on the boundary either. In order to keep
the second order accuracy, the best way is to express u using linear extrapo-
lation from two internal points. Consider for example the south boundary in
Figure 4.6. We can express uB in terms of uC and uN using linear extrapolation,
resulting again in a 4-point molecule.

i−1,j i,j

i,j+1

i,j−1/2

i+1,j

Figure 4.6: Control volume for the cell-centered Robin boundary condition.

Exercise 4.2.7 Derive the 4-point molecule. �
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4.2.3 Boundary cells in case of a skewed boundary

This section applies to both the vertex- and the cell-centered method.
The best way to treat a skewed boundary is to make sure that unknowns fall

on the boundary. This leads to triangular grid-cells at the boundary, see Figure
4.7.

S

W C

nw

sw se

Figure 4.7: Triangular boundary cell.

Integration over the triangle and substitution of central differences give with
the notations of Figure 4.7:

−βWuW − βSuS + (βW + βS)uC +
∫

hyp

−λ
∂u
∂n

dΓ =
1
2

hxhy fC, (4.2.12)

where the integral has to be taken over the hypotenuse of the triangle. Writing
hh for the length of the hypotenuse and substituting the boundary condition
(4.2.1b) we get:

−βWuW − βSuS + (βW + βS + αChh)uC = αChhu0C +
1
2

hxhy fC. (4.2.13)

Of course a Dirichlet boundary condition is trivial to implement if the un-
knowns are on the boundary.

Remark 4.2.1 (Symmetry and diagonal dominance)

1. The discretization matrix generated by the FVM is symmetric;

2. The numerical approximation of Problem (4.2.1) with the FVM leads to an ir-
reducibly diagonally dominant L-matrix.
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Exercise 4.2.8 Prove the first statement in Remark 4.2.1.
Hint: across a volume edge between, say, volumes Vi+1,j and Vi,j the flux is approxi-
mated in the same way for the equations of ui+1,j and ui,j. �

Exercise 4.2.9 Prove the second statement of Remark 4.2.1. �

Theorem 4.2.1 Consider the Finite Volume discretization in this section for Problem
(4.2.1). If f ≥ 0 (for x ∈ Ω) and u0 ≥ 0 (for x ∈ Γ), then the solution of the discrete
problem is non-negative.

Exercise 4.2.10 Prove Theorem 4.2.1. (Hint: use the second statement of Remark
4.2.1.) �

Theorem 4.2.2 Consider the Finite Volume discretization in this section for Prob-
lem (4.2.1). The solution of the discrete problem with f = 0 has a maximum and
minimum on the boundary.

Exercise 4.2.11 Prove Theorem 4.2.2. (Hint: use the second statement of Remark
4.2.1.) �

If the boundary is curved, then the discretization with a rectangular Cartesian
grid is toilsome. An alternative could be to introduce boundary fitted coordi-
nates.

4.2.4 Error considerations in the interior

We shall not go into great detail in error analysis, but indicate sources of error.
We started out by integrating the conservation law of the flux vector exactly:

Φw + Φn + Φe + Φs =
∫
V

f dV, (4.2.14)

where Φ stands for the net outflow through that particular edge of the control
volume. After that we made a number of approximations:

1. Approximate integrals over the sides by one-point integration:
O(h2) accurate for smoothly changing stepsizes, otherwise O(h).

2. Approximate derivatives by central differences:
O(h2) accurate for smoothly changing stepsizes, otherwise O(h).

3. Approximate the right-hand side by one-point integration:
O(h2) accurate for smoothly changing stepsizes, otherwise O(h).

It gets monotonous. From finite difference approximations we already know
that uniform stepsizes lead to overall O(h2) accuracy. The same accuracy
can be obtained with smoothly varying stepsizes, by which we mean that
hk+1 = hk(1 +O(h)), where h denotes the maximum hk. Smoothly varying
stepsizes were also considered in Section 4.1, and give still pretty much lee-
way in stretching grids, so that should not be regarded as too restrictive.
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4.2.5 Error considerations at the boundary

At the boundary one-point integration of the right-hand side is always O(h),
because the integration point has to be the gravicenter for order O(h2) accu-
racy, whereas the integration point is always on the edge. (Note that in fact
the absolute magnitude of the error is O(h3), but that is because the volume
of integration is itself O(h2).)

So the situation looks grim, but in fact there is nothing that should worry
us. And that is because of the following phenomenon: for the solution u of
the discrete equations with f = 0, we have

‖u‖∞ ≤ sup
x∈Γ

|u0|. (4.2.15)

Exercise 4.2.12 Prove Inequality (4.2.15). Use the results of Exercise 4.2.9 and fol-
lowing items. �

Exercise 4.2.13 Prove that if ũ0 = u0 + ε0 then the perturbation ε in the solution of
the homogeneous discrete problem is less than sup |ε0| for all components of ε. (Hint:
subtract the equations and boundary conditions of u and ũ to obtain an equation and
boundary condition for ε. Then use (4.2.15)) �

From all this we see that a perturbation of O(h3) in the right-hand side of
equations for the boundary cells leads to an error of O(h2) in the solution. But
one-point integration of the right-hand side also gives a perturbation of O(h3).
So the effect on the solution should also be no worse than O(h2).

4.3 Laplacian in general coordinates

4.3.1 Transformation from Cartesian to General coordinates

Consider a region in the x-y-plane as in Figure 4.8 that we want to transform
into a rectangular region in the ξ-η-plane.

We assume that there is a formal mapping x(ξ, η) and y(ξ, η) and its in-
verse ξ(x, y) and η(x, y) exists. Coordinate lines in the ξ-η-plane transform to
the curves x(ξ0, η) and x(ξ, η0) respectively. Such a transformation is called
regular if it has an inverse, otherwise it is singular. Sufficient conditions for
regularity is, that the Jacobian matrix exists and is non-singular. The Jacobian
matrix consists of the partial derivatives of x and y with respect to ξ and η,

J =
(

xξ xη

yξ yη

)
(4.3.1)

and its inverse consists of the partial derivatives of ξ and η with respect to x
and y,

J−1 =

(
ξx ξy
ηx ηy

)
. (4.3.2)
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y

x

η

ξ

Figure 4.8: General region transformation.

Usually the mapping is only known in the cell vertices. This means that we
do not have an analytical expression for the derivatives and we must compute
them by finite differences. Unfortunately not all derivatives are easily avail-
able. Take a look at a cell in the ξ-η-plane (Figure 4.9): Given the configuration

i+1,j+1

i+1,jx    y
ξ ξ

x y
η η

i, j+1

i, j

Figure 4.9: Cell in the ξ-η-plane with natural place of coordinate derivatives.

in Figure 4.9, central differences can be applied to compute xξ and yξ at the
midpoints of the horizontal cell boundaries. Analogously, central differences
are applied to compute xη and yη at the vertical cell boundaries. Everything
else has to be computed by averaging over the neighbors. The quantities ξx, ξy
etcetera have to be calculated by inverting J.

Exercise 4.3.1 Consider Figure 4.9. Explain how to express xξ , xη , yξ , yη in the cell
center in the ξ-η-plane in terms of the cell coordinates in the x-y-plane. Explain how
to calculate ξx, ξy, ηx and ηy. �
In the Finite Volume Method, we consider integration of a function, or of a
differential expression. If a regular transformation is applied from (x, y) to
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(ξ, η), then the Jacobian enters the picture. Suppose that we integrate over
a domain Ωxy defined in (x, y)-space, and that Ωxy is mapped onto Ωξη in
(ξ, η)-space Then, from Calculus, it follows that∫

Ωxy

f (x, y)dΩxy =
∫

Ωξη

f (x(ξ, η), y(ξ, η))

∣∣∣∣ ∂(x, y)
∂(ξ, η)

∣∣∣∣ dΩξη , (4.3.3)

where the Jacobian is defined as the determinant of the Jacobian matrix,

∂(x, y)
∂(ξ, η)

= det(J),

which is expressed in the coordinate framework (ξ, η). We use the notation
dΩxy and dΩξη to emphasize that the integral is in (x, y)-space and (ξ, η)-
space respectively. For the derivation of this procedure, we refer to a textbook
on Calculus, like Stewart [12] or Adams [1]. This procedure is applied in gen-
eral to all integrals that are involved in the Finite Volume discretization. We
will illustrate how the finite volume method works in a polar coordinate sys-
tem.

4.3.2 An example of finite volumes in polar coordinates

We consider an example on a cut piece of cake, on which Poisson’s equation
is imposed,

−div grad u = f (x, y), on Ω, (4.3.4)

where Ω is described in polar coordinates by

Ωrθ = {(r, θ) ∈ R2 : 1 < r < 3, 0 < θ < π/4}.

To solve the above equation by Finite Volumes, the equation is integrated over
a control volume V, to obtain

−
∫
V

div grad u dΩxy =
∫
V

f (x, y)dΩxy. (4.3.5)

From Equation (3.7.9), we know that the above PDE (4.3.4) is transformed into

−
(

∂2u
∂r2 +

1
r

∂u
∂r

+
1
r2

∂2u
∂θ2

)
= f (r cos θ, r sin θ). (4.3.6)

Note that Ωrθ is a rectangular domain in (r, θ)-space. The Jacobian of the
transformation from polar coordinates to Cartesian coordinates is given by

∂(x, y)
∂(r, θ)

= r. (4.3.7)
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Exercise 4.3.2 Prove the above formula. �

Next, we integrate the transformed PDE (4.3.6) over the untransformed con-
trol volume in (x, y)-space, and rewrite it to an integral over the transformed
control volume in (r, θ)-space, which is rectangular and hence much easier to
work with, to get

∫
V

−
(

∂2u
∂r2 +

1
r

∂u
∂r

+
1
r2

∂2u
∂θ2

)
rdΩrθ =

∫
V

f (r cos θ, r sin θ)rdΩrθ . (4.3.8)

Note that the Jacobian has been implemented on both sides of the above equa-
tion. The integral of the left-hand side of the above equation can be worked
out as∫

V

− ∂

∂r

(
r

∂u
∂r

)
− 1

r
∂2u
∂θ2 dΩrθ = −

∫
V

(
∂

∂r
,

∂

∂θ
) · (r ∂u

∂r
,

1
r

∂u
∂θ

)dΩrθ . (4.3.9)

The integrand in the right-hand side of the above equation consists of an inner
product of the divergence operator and a vector field. Both vectors are in the
(r, θ) frame. The domain over which the integral is determined is closed and
hence the divergence theorem can be applied in this volume with piecewise
straight boundaries. This implies that Equation (4.3.8) can be written as

−
∫

∂V

(nr, nθ) · (r ∂u
∂r

,
1
r

∂u
∂θ

)dΓ =
∫
V

f (r cos θ, r sin θ)rdΩrθ . (4.3.10)

This equation contains a volume integral with the function f over a control
volume and a line integral related to the Laplacian over the boundary of the
control volume. The treatment of both integrals is analogous to the Cartesian
case: Consider the control volume, with length Δr and Δθ, around C, with
coordinates (rC, θC) in Figure 4.10. The integral at the right-hand side in the
above equation is approximated by∫

V

f (r cos θ, r sin θ)rdΩrθ ≈ fCrCΔrΔθ, (4.3.11)

where fC = f (rC cos θC, rC sin θC). The boundary integral is replaced by the
sum of the approximations of the integrals over all the boundary segments.
Substitution of these approximations into (4.3.10) gives the final result for an
internal control volume:

−
{

1
rC

uS − uC
Δθ

Δr + re
uE − uC

Δr
Δθ +

1
rC

uN − uC
Δθ

Δr

+ rw
uW − uC

Δr
Δθ

}
= fCrCΔrΔθ. (4.3.12)
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Figure 4.10: General control volume.

4.3.3 Boundary conditions

Boundary conditions of Dirichlet type do not present any problem, so we shall
turn our attention to radiation boundary conditions of the form

∂u
∂n

= α(u0 − u),

where we assume for simplicity that α and u0 are constant. From an imple-
mentation point of view, it is easiest to take the nodal points on the boundary,
which gives us a half cell control volume at the boundary like in Figure 4.11.

u
N

u
C

u
S

u
W

Figure 4.11: Boundary cell.

Integrating over the half volume and applying the divergence theorem we get:

−
{

1
rC

uS − uC
Δθ

Δr
2

+ rCα(u0 − uC)Δθ +
1
rC

uN − uC
Δθ

Δr
2

+ rw
uW − uC

Δr
Δθ

}
= fCrC

Δr
2

Δθ, (4.3.13)

where the radiation boundary condition has been substituted into the bound-
ary integral of the right (east) boundary of the control volume.
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4.4 Finite volumes on two component fields

We shall show an example of an application of the FVM on a two component
field. We recall the problem for plane stress from Section 2.4.4. We consider a
rectangular plate fixed at the sides ABC and subject to a body force b inside
Ω = ABCD and boundary stresses t at the two free sides CDA, see Figure
4.12.

A

B C

D

Ω

Figure 4.12: Square plate.

The equations for the stresses, already presented in (2.4.14), are:

∂σxx

∂x
+

∂τxy

∂y
+ b1 = 0, (4.4.1a)

∂τxy

∂x
+

∂σyy

∂y
+ b2 = 0. (4.4.1b)

We integrate the first equation over a control volume V1 and the second one
over a control volume V2. We define

sx =

(
σxx
τxy

)
and sy =

(
τxy
σyy

)
. (4.4.2)
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After application of Gauss’ divergence theorem we obtain:∮
Γ1

sx ·n dΓ +
∫
V1

b1 dV = 0, (4.4.3a)

∮
Γ2

sy ·n dΓ +
∫
V2

b2 dV = 0, (4.4.3b)

or ∫
e1

σxx dy −
∫

w1

σxx dy +
∫
n1

τxy dx −
∫
s1

τxydx = −hxhyb1, (4.4.4a)

∫
e2

τxy dy −
∫

w2

τxy dy +
∫
n2

σyy dx −
∫
s2

σyydx = −hxhyb2. (4.4.4b)

It is not self-evident that the control volumes for the two force components
should be the same for Equation (4.4.4a) and Equation (4.4.4b) and in fact we
shall see that a very natural choice will make them different.

4.4.1 Staggered grids

We apply the finite volume method with volume V1 to Equation (4.4.4a) and
we express the stress tensor components in the displacements u and v. In e1 we
now need to have ∂u/∂x and ∂v/∂y, so in fact we would like to have uE, uC,
vne and vse in order to make compact central differences around e1. Checking
the rest of the sides of V1 makes it clear that we need: uE, uS, uW , uN , uC and
vne, vnw, vsw, vse, see Figure 4.13.

V1

u points

v points

Figure 4.13: V1-variables.

Exercise 4.4.1 Derive the discretization in the displacement variables u and v for
Equation (4.4.4a) in the V1 volume. �
When we apply FVM with volume V2 to Equation (4.4.4b) we need ∂u/∂y and
∂v/∂x in e2, so now we would like to have vE, vC, une and use.
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Exercise 4.4.2 Derive the discretization in the displacement variables u and v for
Equation (4.4.4b) in the V2 volume. �

So apparently we must choose a grid in such a way that both V1 and V2 can
be accommodated and the natural way to do that is take u and v in different
nodal points, like in Figure 4.14.

Figure 4.14: Staggered grid.

Such an arrangement of nodal point is called a staggered grid. This means that
in general different problem variables reside in different nodes.

4.4.2 Boundary conditions

When discretizing a scalar equation you can often choose the grid in such a
fashion that the boundary conditions can be easily implemented. With two or
more components, especially on a staggered grid, this is no longer true.

Consider the W-boundary of our fixed plate in Figure 4.12. On this bound-
ary we have the boundary conditions u = 0 and v = 0. A quick look at the
staggered grid of Figure 4.14 shows a fly in the ointment. The u-points are
on the boundary all right. Let us distinguish between equations derived from
Equation (4.4.4a) (type 1) and those derived from Equation (4.4.4b) (type 2). In
equations of type 1 you can easily implement the boundary conditions on the
W-boundary. By the same token, you can easily implement the boundary con-
dition on the N-boundary in type 2 equations. For equations of the ”wrong”
type you have to resort to a trick. The generic form of an equation of type 2 in
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Figure 4.15: Ghost point.

the displacement variables is:

BWvW + Bnwunw + BNvN + Bneune + BEvE + Bseuse

+ BSvS + Bswusw + BCvC = h2bC. (4.4.5)

To implement the boundary condition on the W-side in equations of type 2,
we assume a virtual (”ghost”) grid point on the other side of the wall acting
as W-point, see Figure 4.15

Now we eliminate vW by linear interpolation: (vW + vC)/2 = 0, hence
vW = −vC and Equation (4.4.5) transforms into

Bnwunw + BNvN + Bneune + BEvE + Bseuse + BSvS

+ Bswusw + (BC − BW)vC = h2bC. (4.4.6)

Exercise 4.4.3 Explain how to implement the boundary condition on the N-boundary
in equations of type 1. �

The boundary conditions on the E- and S boundary are natural boundary con-
ditions. When a boundary of a full volume coincides with such a boundary,
there are no problems, the boundary condition can be substituted directly.
That is equations of type 2 are easy at the E-boundary, equations of type 1 are
easy at the S-boundary.

Exercise 4.4.4 Derive the equation of type 1 at the S-boundary in the displacements
and substitute the natural boundary condition. �

What of the half volumes? Consider an equation of type 1 at the E-boundary,
see Figure 4.16.
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w
C

n

s

Figure 4.16: Half volume at natural boundary.

Let us integrate Equation (4.4.1a) over a half volume V1 to obtain:

h(−σxxw + σxxC) +
1
2

h(τxyn − τxys) = −1
2

h2b1C. (4.4.7)

Since by the natural boundary conditions σxx = f1 and τxy = f2 are given
quantities at the boundary this transforms into

hσxxw = h f1C +
1
2

h( f2n − f2s) +
1
2

h2b1C. (4.4.8)

Again one-point integration of the right-hand side causes a perturbation of
O(h3), because it is not in the gravicenter of the volume, and also the integra-
tion along the n- and s-sides of the volume has an error of O(h3).

Exercise 4.4.5 Prove these last two assertions. �

Since this perturbation is of the same order as a perturbation of O(h2) in the
stresses applied at the boundary, we may expect that this gives a perturbation
of the same order in the displacements u and v.
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4.5 Stokes equations for incompressible flow

A fairly simple and admittedly artificial model for stationary viscous incom-
pressible flow is represented by the Stokes equations:

−div μ grad u +
∂p
∂x

= 0 (4.5.1a)

−div μ grad v +
∂p
∂y

= 0 (4.5.1b)

∂u
∂x

+
∂v
∂y

= 0 (4.5.1c)

In these equations the first two ones describe the equilibrium of the viscous
stresses, the third equation is the incompressibility condition. The viscosity
μ is a given material constant, but the velocities u and v and the pressure p
have to be calculated. Let us consider this problem in a straight channel (see
Figure 4.17).

u=0,  v=0

u=0,  v=0

o
u

tl
et

in
le

t

Figure 4.17: Channel for Stokes flow.

At the inlet the velocities are given: u = u0(y), v = v0(y), the channel walls
allow no slip, so u = 0 and v = 0 at both walls. At the outlet there is a
reference pressure p0 in the natural boundary conditions: −μ ∂u

∂x + p = p0 and
∂v
∂x = 0.

To solve the equations, we use a staggered approach, in which the un-
knowns are ordered as in Figure 4.18. For the horizontal component of the
velocity u, the finite volume method gives

−
∫

Ωu

∇ · (μ∇u)dΩ +
∫

Ωu

∂p
∂x

dΩ = 0, (4.5.2)

where Ωu is a control volume with a u-node as the center. The divergence
theorem yields

−
∫
Γu

μ
∂u
∂n

dΓ +
∫
Γu

pnxdΓ = 0. (4.5.3)

This equation is discretized by similar procedures as the Laplace equation.
Note that nx represents the horizontal component of the unit outward normal
vector. The equation for the vertical component of the velocity is worked out
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Figure 4.18: The ordering of the unknowns in a staggered approach for the
Stokes equations. The solid circles and squares respectively correspond to u
and v indicating the horizontal and vertical components of the fluid velocity.
The open circles denote the pressure nodes.

similarly, to get

−
∫
Γv

μ
∂v
∂n

dΓ +
∫
Γv

pnydΓ = 0. (4.5.4)

Subsequently, we consider the continuity equation divu = 0. This equation is
integrated over a control volume with a pressure node as the center:∫

Ωp

divu dΩ =
∫
Γp

u ·n dΓ. (4.5.5)

For the implementation of the outlet condition −μ ∂u
∂x + p = p0, we use half a

cell over a u-node, in which the integral over the right (east) boundary ΓR
u is

given by ∫
ΓR

u

(
−μ

∂u
∂x

+ pnx

)
dΓ =

∫
ΓR

u

p0dΓ ≈ p0h.

Exercise 4.5.1 Derive discrete equations for all three volumes Ωu, Ωv and Ωp. Note
that the pressure and equation of continuity are coupled, that is, the continuity equa-
tion is integrated over a pressure cell. �
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Exercise 4.5.2 Explain how the no-slip boundary conditions are implemented in the
equations (Hint: Use ghost points and averaging in the spirit of Section 4.4.2.).
�

Exercise 4.5.3 Explain how to implement the inlet boundary conditions. �

Exercise 4.5.4 Take care to end in a vertical line with u points at the outlet. Now
explain how to implement the outlet boundary conditions. Argue why you ended up
with as many equations as unknowns. �

Exercise 4.5.5 In the half Ωu volume at the outlet boundary the one-point integra-
tions over the horizontal edges cause an error of O(h3). Show this and argue that this
is equivalent to a perturbation of O(h2) in the reference pressure p0. �

4.6 Summary of Chapter 4

We have learned a new way to discretize: the Finite Volume Method, espe-
cially suited to conservation laws. We have seen a one-dimensional and a
two-dimensional example with non-uniform stepsizes and radiation bound-
ary conditions. Despite the fact that at the boundary the accurate midpoint
integration rule was replaced by less accurate one-point integration, we have
shown or made plausible that that would not affect the overall accuracy of the
solution. We concluded the chapter with extensive treatment of the Laplacian
in curvilinear coordinates and an example of the two-component problem of
plane stress. We have seen that for problems of that kind it is sometimes useful
to take the variables in different node points: staggered grids.
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Chapter 5

Non-linear equations

Objectives

The discretization of an elliptic PDE leads always to a system of algebraic
equations. If the PDE is linear, the resulting system of algebraic equations will
be linear too, and the corresponding matrices are generally large and sparse.
The efficient numerical solution of these large and sparse linear systems is
important, but beyond the scope of this book.

If the PDE is non-linear, the resulting system of algebraic equations will
be non-linear too. These non-linear equations are usually solved by a series
of linear problems with the same structure. Although many methods to solve
non-linear algebraic systems are available in the mathematical literature, we
will only treat two classical iterative processes: Picard iteration and Newton it-
eration. These two methods usually exhibit linear and quadratic convergence,
respectively.

5.1 Picard iteration

First we consider a class of problems that are small perturbations of linear
problems. For instance

−div grad u = f (u), on Ω, (5.1.1)

and u = 0 on Γ. If you discretize this the standard way, you end up with a set
of equations of the form

Au = f (u), (5.1.2)

in which fi(u) = f (ui). To approximate the solution of the above equation,
we generate a sequence uk with the goal that uk → u as k → ∞. The estimates
uk are obtained by solving a linear system of equations. Since we are only able
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to solve linear problems such as Au = b, a natural way to go about this is to
start out with an initial estimate u0 and solve the following iteratively:

Auk+1 = f (uk). (5.1.3)

Such an iterative process is known as Picard iteration.

Exercise 5.1.1 Show that if u is the solution of (5.1.2) and εk = u− uk, with uk

the solution of (5.1.3), that

Aεk+1 = D(u)εk +O(‖εk‖2), (5.1.4)

in which D is a diagonal matrix with dii(u) = f ′(ui). Show that this process cannot
converge if at least one eigenvalue of A−1D has a modulus larger than 1. �

Another example concerns the case of an elliptic equation in which the coeffi-
cients depend on the solution u. Let us consider the following equation

−div (D(u)grad u) = f (x). (5.1.5)

If D(u) is not a constant, for instance D(u) = u, then the above equation is
nonlinear. To solve the above equation, we generate a sequence of approxi-
mations uk as in the previous example. Here the above equation is solved by
iterating

−div
(

D(uk)grad uk+1
)
= f (x). (5.1.6)

After construction of an appropriate discretization, a linear system to obtain
uk+1 has to be solved. In general if one wants to solve a nonlinear problem
using Picard’s method, convergence is not always guaranteed. One needs to
use common-sense to solve the problem.

So a natural way to obtain an iterative process to a non-linear set of equations
F (x) = 0 is to reform it to a fixed point form x = G(x) with the same solution.
On this fixed point form you graft an iterative process called fixed point iteration
or Picard iteration:

xk+1 = G(xk). (5.1.7)

There is a famous convergence result due to Banach on such processes.

Theorem 5.1.1 Let D be a closed non-empty subset of Rn and let G: D → Rn be a
mapping such that

(i) If x ∈ D then G(x) ∈ D;

(ii) There exists an α ∈ [0, 1) such that ‖G(x) −G(y)‖ ≤ α‖x − y‖ for all
x,y ∈ D.

Then D contains precisely one fixed point of G.
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Proof
Choose x0 ∈ D. Then it follows from (i) that the sequence (xk)∞

k=0 defined by
(5.1.7) lies in D. To prove convergence of a sequence in a finite-dimensional
space like Rn, it is sufficient to show that this sequence is a so-called Cauchy
sequence, that is,

lim
k,�→∞

‖xk − x�‖ = 0. (5.1.8)

As a first step, note that

‖xj+1 − xj‖ = ‖G(xj)−G(xj−1)‖ ≤ α‖xj − xj−1‖ ≤ . . . ≤ αj‖x1 − x0‖.

As a second step, one can repeatedly make use of the triangle inequality (‖u +
v‖ ≤ ‖u‖+ ‖v‖) to show that for all k, � with k ≥ � ≥ 0 that

‖xk − x�‖ ≤
k−1

∑
j=�

‖xj+1 − xj‖. (5.1.9)

Combining both steps we obtain for all k, � with k ≥ � ≥ 0 that

‖xk − x�‖ ≤
k−1

∑
j=�

αj‖x1 − x0‖ ≤ α�

1 − α
‖x1 − x0‖,

from which the Cauchy property (5.1.8) immediately follows. We may con-
clude that the sequence converges to a limit ξ ∈ Rn, which must lie in D
since D is closed. Note that it follows from ‖G(xk)−G(ξ)‖ ≤ α‖xk − ξ‖ that
G(xk) converges to G(ξ), so ξ is a fixed point of G. Finally, there cannot be
two different fixed points ξ and η. If there were, then

‖ξ− η‖ = ‖G(ξ)−G(η)‖ ≤ α‖ξ− η‖,

which is clearly impossible since α < 1. �

Exercise 5.1.2 Prove (5.1.9) by repeatedly using the triangle inequality. �

A mapping that satisfies the conditions of Theorem 5.1.1 is called a contraction
or a contractive mapping on the set D.

Exercise 5.1.3 Let G: Rn → Rn be a mapping with fixed point ξ. Assume that
G has continuous partial derivatives in a neighborhood E of ξ. Further assume that
‖G′(x))‖ < 1, x ∈ E , where G′ is the matrix with elements

g′ij =
∂gi
∂xj

. (5.1.10)

Show that E contains a closed neighborhood D of ξ on which G is a contraction. �
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5.2 Newton’s method in more dimensions

In order to find a faster converging solution process to the set of non-linear
equations

F (x) = 0, F : Rn → Rn, x ∈ Rn (5.2.1)

we try to find an analogue to Newton’s method for functions of one variable:

xk+1 = xk − F(xk)/F′(xk). (5.2.2)

In the neighborhood of the root ξ we have by Taylor’s theorem:

0 = F(ξ) = F(x) + (ξ − x)F′(x) +O((ξ − x)2), (5.2.3)

for functions of one variable. We arrive at Newton’s formula by neglecting
the second order term. We try something similar in n dimensions. In the
neighborhood of the root ξ we have:

0 = f1(ξ) = f1(x) +
n

∑
j=1

(ξ j − xj)
∂ f1

∂xj
(x) +O(‖ξ− x‖2), (5.2.4a)

0 = f2(ξ) = f2(x) +
n

∑
j=1

(ξ j − xj)
∂ f2

∂xj
(x) +O(‖ξ− x‖2), (5.2.4b)

...

0 = fn(ξ) = fn(x) +
n

∑
j=1

(ξ j − xj)
∂ fn

∂xj
(x) +O(‖ξ− x‖2). (5.2.4c)

Neglecting the second order terms in Equations (5.2.4) we arrive at an iteration
process that is analogous to (5.2.2):

f1(x
k) +

n

∑
j=1

(xk+1
j − xk

j )
∂ f1

∂xj
(xk) = 0, (5.2.5a)

f2(x
k) +

n

∑
j=1

(xk+1
j − xk

j )
∂ f2

∂xj
(xk) = 0, (5.2.5b)

...

fn(x
k) +

n

∑
j=1

(xk+1
j − xk

j )
∂ fn

∂xj
(xk) = 0. (5.2.5c)

We can put this into vector notation:

F′(xk)(xk+1 − xk) = −F (xk), (5.2.6)
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where F′(x) is the Jacobian matrix

F′(x) =

⎛⎜⎜⎜⎜⎜⎝
∂ f1
∂x1

∂ f1
∂x2

. . . ∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

. . . ∂ f2
∂xn

...
...

...
∂ fn
∂x1

∂ fn
∂x2

. . . ∂ fn
∂xn

⎞⎟⎟⎟⎟⎟⎠ (x). (5.2.7)

We now present the algorithmic form.

Newton’s method for multivariate functions
1: Presets: x0 {initial estimate}, r0 = F (x0), k = 0
2: while ‖rk‖ > ε do
3: Solve F′(xk)ck = −rk

4: xk+1 = xk + ck

5: rk+1 = F (xk+1)
6: k = k + 1
7: end while

The calculation of the Jacobian matrix is often very time consuming and var-
ious schemes have been proposed to improve on that. For the solution of the
linear system in line 3 we can use any type of solver. The Jacobian matrix often
has the same sparsity pattern as the corresponding linearization of the PDE.

Example 5.2.1 We consider the following differential equation in one spatial dimen-
sion, with homogeneous Dirichlet boundary conditions:

u(1 − u)
d2u
dx2 + x = 0, u(0) = u(1) = 0. (5.2.8)

A finite difference discretization, with uniform grid-spacing h and n unknowns (h =
1/(n + 1)), gives

Fi(u) = ui(1 − ui)
ui−1 − 2ui + ui+1

h2 + xi = 0, for i ∈ {1, . . . , n}. (5.2.9)

Note that for i = 1 and i = n, the boundary conditions must be used. This system of
n equations with n unknowns is seen as a system of non-linear equations. Using the
Picard fixed point or Newton method requires an initial guess for the solution. This
initial guess could be chosen by solving the linearized system or by choosing a vector
that reflects the values at a Dirichlet boundary. In this particular case u = 0 is not a
good initial guess since the Jacobian matrix would be completely zero (why?). Let uk

represent the solution at the k-th iterate, then, one way of using the Picard fixed point
method is the following:

uk
i (1 − uk

i )
uk+1

i−1 − 2uk+1
i + uk+1

i+1
h2 + xi = 0, for i ∈ {1, . . . , n}. (5.2.10)
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This requires the solution of a system of linear equations at each iteration.
If one prefers to use Newton’s method, then the calculation of the Jacobian matrix

is necessary. Considering the i-th row of the Jacobian matrix, all entries are zero,
except the one on and the ones adjacent to the main diagonal, that is

∂ fi
∂ui−1

(uk) =
uk

i (1 − uk
i )

h2 ,

∂ fi
∂ui

(uk) = −2uk
i (1 − uk

i )

h2 + (1 − 2uk
i )

uk
i−1 − 2uk

i + uk
i+1

h2 ,

∂ fi
∂ui+1

(uk) =
uk

i (1 − uk
i )

h2 .

(5.2.11)

The rest of the procedure is straightforward. �

Exercise 5.2.1 Consider on the square (0, 1)× (0, 1) the discretization of

−div grad u = eu. (5.2.12)

Calculate F′(u). Compare the structure of the Jacobian matrix to that of the matrix
generated by the discretization of the Laplacian. �

Exercise 5.2.2 Consider on the square (0, 1)× (0, 1) the discretization of

div

⎛⎝ grad u√
1 + u2

x + u2
y

⎞⎠ = 0, (5.2.13)

by the finite volume method. What is the sparsity structure of F′(u)? �

5.2.1 Starting values

Although Newton’s method converges quadratically in a neighborhood of the
root, convergence is often very sensitive to good initial estimates. These are
suggested sometimes by the technical context, but if obtaining an initial es-
timate appears to be a problem, the following trick, known as the homotopy
method, may be applied.

Suppose the solution to some other problem, say F0(x) = 0 is known (e.g.
a linearization of the original). Consider the following set of problems:

(1 − λ)F0(x) + λF (x) = 0, λ ∈ [0, 1]. (5.2.14)

For λ = 1 we have our original problem, for λ = 0 we have our auxiliary
problem. Now the idea is to proceed in small steps h from λ0 = 0, λ1 = h, λ2 =
2h to λN = Nh = 1, using Newton’s method as solver and always taking the
solution to the problem with λk as initial estimate to the problem with λk+1.
This is an expensive method but somewhat more robust than simple Newton.
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5.3 Summary of Chapter 5

In this chapter we have studied methods to solve non-linear sets of equations.
We looked at Picard iteration and Newton’s method. The homotopy method can
be used to find a starting value if all other inspiration fails.
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Chapter 6

The heat- or diffusion
equation

Objectives

In this chapter several numerical methods to solve the heat equation are con-
sidered. Since this equation also describes diffusion, the equation is referred
to as the diffusion equation. The equation describes very common processes
in physics and engineering and we would like our numerical models to inherit
certain properties of the physics. The most important aspect - and typical for
diffusion equations - is the property that the solution generally tends to an
equilibrium solution as time proceeds. If the coefficients in the heat equa-
tion and the boundary conditions do not depend on time, there exists exactly
one equilibrium solution (unless the whole boundary is a Neumann bound-
ary), and the solution of the heat equation tends to this equilibrium solution
independent of the initial condition. If the whole boundary is a Neumann
boundary then the situation is more complicated.

6.1 A fundamental inequality

The next theorem states this result more precisely.

Theorem 6.1.1 Let Ω be a bounded domain in R2 with a boundary Γ consisting of 3
parts Γ1, Γ2 and Γ3. One or more of these parts may be empty, but Γ2 �= Γ. Let Δ be
given by

Δ = div grad =
∂2

∂x2 +
∂2

∂y2 . (6.1.1)

Let uE(x) be the solution of
Δu + f (x) = 0, (6.1.2)
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with boundary conditions

u(x) = g1(x), x ∈ Γ1, (6.1.3)
∂u
∂n

(x) = g2(x), x ∈ Γ2, (6.1.4)

(σu)(x) +
∂u
∂n

(x) = g3(x), x ∈ Γ3. (6.1.5)

Further, let u(x, t) be the solution of the initial value problem

∂u
∂t

= Δu + f (x), (6.1.6)

with initial condition u(x, t0) = u0(x) and boundary conditions (6.1.3)–(6.1.5). Let
R(t) be the quadratic residual, which is

R(t) =
∫
Ω

(u(x, t)− uE(x))
2 dΩ. (6.1.7)

Then there is a γ > 0 such that

R(t) ≤ R(t0)e−γ(t−t0), ∀t > t0. (6.1.8)

Proof
Note that uE is a solution of (6.1.6) with ∂uE/∂t = 0. The difference v = uE − u
therefore satisfies

∂v
∂t

= Δv, (6.1.9)

with initial condition v(x, t0) = uE(x)− u0(x) and boundary conditions

v(x) = 0, x ∈ Γ1, (6.1.10)
∂v
∂n

(x) = 0, x ∈ Γ2, (6.1.11)

(σv)(x) +
∂v
∂n

(x) = 0, x ∈ Γ3. (6.1.12)

Multiplication of Equation (6.1.9) by v and subsequent integration over Ω,
gives ∫

Ω

v
∂v
∂t

dΩ =
∫
Ω

vΔv dΩ,

which can be rewritten as∫
Ω

1
2

∂v2

∂t
dΩ = −

∫
Ω

‖grad v‖2 dΩ +
∫
Γ

v
∂v
∂n

dΓ.
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Here the right-hand side follows from Green’s theorem 1.3.3. We interchange
the order of integration over Ω, differentiate with respect to time and apply
the boundary conditions to get:

1
2

dR
dt

= −
∫
Ω

‖grad v‖2 dΩ −
∫
Γ3

σv2 dΓ. (6.1.13)

According to Poincaré’s Lemma [1], which is an extension of Theorem 1.5.1 to
the case of more general boundary conditions, there exists a γ0 > 0 such that∫

Ω

‖grad v‖2 dΩ ≥ γ0

∫
Ω

v2 dΩ = γ0R. (6.1.14)

Letting γ = 2γ0 we obtain
dR
dt

≤ −γR, (6.1.15)

that is,
dR
dt

+ γR ≤ 0. (6.1.16)

This inequality holds for all t > t0. We multiply this inequality by eγt to get

eγt
(

dR
dt

+ γR
)
=

d
(
eγtR

)
dt

≤ 0. (6.1.17)

After integration from t0 to t this yields

eγtR(t)− eγt0 R(t0) ≤ 0, (6.1.18)

so that
R(t) ≤ e−γ(t−t0)R(t0). (6.1.19)

This proves the theorem. �

Remarks

1. The quadratic residual R(t) tends to zero exponentially. Hence the time-
dependent solution tends to the equilibrium solution exponentially.

2. If a Neumann boundary condition is given on the entire boundary, a com-
patibility condition (which?) has to be satisfied in order that a physical
equilibrium is possible. For this particular case the conditions of the the-
orem have to be adapted and the physical equilibrium depends on the
initial condition. If the compatibility condition condition is not satisfied,
the solution of the time-dependent problem is unbounded. Depending
on the sign of the net heat production, the temperature goes to ±∞.
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3. This theorem, proved for the Laplace operator, also holds for the general
elliptic operator

L =
n

∑
α

n

∑
β

∂

∂xα
Kαβ

∂

∂xβ
,

with K positive definite.

4. In a similar way, it is possible to establish analytical stability for this prob-
lem, i.e., one can demonstrate well-posedness in relation to the initial
conditions: Given two solutions u and v with initial conditions u0 and
u0 + ε0 respectively, then, for ε(x, t) = (v − u)(x, t), we have⎛⎝∫

Ω

ε2 dΩ

⎞⎠ (t) ≤ e−γ(t−t0)
∫
Ω

ε2
0 dΩ. (6.1.20)

Hence, for this problem, we have absolute (or asymptotic) stability, because
the error tends to zero as t → ∞.

�

Exercise 6.1.1 Prove Theorem 6.1.1 for the general elliptic operator mentioned in
Remark 3 above.
Hint: For any real symmetric matrix K it follows from Theorem 1.4.2 that we have
(Kx,x) ≥ λ1(x,x), x ∈ Rn, where λ1 denotes the smallest eigenvalue of K. �

Exercise 6.1.2 Prove the stability estimate (6.1.20) mentioned in Remark 4 above. �

6.2 Method of lines

A very general method to solve time-dependent problems is the method of lines.
In this method we start with the spatial discretization of the problem

∂u
∂t

= Δu + f . (6.2.1)

This spatial discretization can be based on Finite Differences or Finite Vol-
umes. It can also be based on Finite Elements (FEM), but we limit ourselves
to FDM and FVM in this book. The spatial discretization results in a system of
ordinary differential equations the size of which is determined by the number
of parameters used to approximate u. Formally, this system can be written as

M
duh
dt

= Suh + fh. (6.2.2)

The quantities with index h represent the discrete approximations of the con-
tinuous quantities. Note the matrix M, the mass matrix, in the left-hand side. It
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is the identity matrix in Finite Differences, and a (positive) diagonal matrix in
Finite Volumes. In case of Finite Elements, which is beyond the scope of this
book, the matrix M is generally not diagonal. The mass matrix M represents
the scaling of the equations in the discretization. The matrix S is a (possibly
scaled) discrete representation of the elliptic operator L. We will refer to S as
the stiffness matrix, but would like to point out that in the literature this name
is also often reserved for −S. We illustrate the method with a few examples.

6.2.1 One-dimensional examples

In this section we consider the following equation with one space coordinate:

∂u
∂t

=
∂2u
∂x2 + f (x, t), x ∈ [0, 1], (6.2.3)

with initial condition u(x, t0) = u0(x). We look at two different discretization
methods.

Example 6.2.1 FDM, Dirichlet
We use as boundary conditions: u(0) = u(1) = 0. Similarly as in Chapter 3, the
interval (0, 1) is divided into sub-intervals of size h, such that Nh = 1. The second
order derivative is discretized using the second divided difference in each internal grid
node xj, j = 1, 2, . . . , N − 1. In each grid node xj, j = 0, . . . , N, there is a uj,
which, of course, also depends on time. From the boundary conditions it follows that
u0 = 0 = uN, so the remaining unknowns are u1, . . . , uN−1. After elimination of u0
and uN we obtain the following system of ordinary differential equations:

duh
dt

= Suh + fh, (6.2.4)

with

S =
1
h2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 0 . . . . . . 0

1 −2 1
. . .

...

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
...

. . . 1 −2 1
0 . . . . . . 0 1 −2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (6.2.5)

uh =

⎛⎜⎝ u1
...

uN−1

⎞⎟⎠ and fh =

⎛⎜⎝ f1
...

fN−1

⎞⎟⎠ , (6.2.6)

in which uh and fh both depend on t. �
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Example 6.2.2 FVM, right-hand boundary point Neumann
We take as boundary conditions u(0) = 0, u′(1) = 0. Further, a non-equidistant
grid is used with N + 1 grid nodes, and hi = xi − xi−1, i = 1, 2, . . . , N. As a control
volume around the node xi, i = 1, 2, . . . , N − 1, the interval Vi = (xi−1/2, xi+1/2)

is used, with xi−1/2 =
xi+xi−1

2 and xi+1/2 =
xi+1+xi

2 . Integration of the differential
equation over the control volume gives

xi+1/2∫
xi−1/2

∂u
∂t

dx =

xi+1/2∫
xi−1/2

(
∂2u
∂x2 + f )dx, (6.2.7)

and therefore

d
dt

xi+1/2∫
xi−1/2

udx =
∂u
∂x

∣∣∣
xi+1/2

− ∂u
∂x

∣∣∣
xi−1/2

+

xi+1/2∫
xi−1/2

f dx. (6.2.8)

For the integrals

xi+1/2∫
xi−1/2

udx and

xi+1/2∫
xi−1/2

f dx

the mid-point rule will be used. The Neumann boundary condition is treated by in-
tegrating the differential equation over the control volume VN = (xN−1/2, xN) and
proceeding as in Section 4.1.1, with λ = 1 and α = 0. �

Exercise 6.2.1 Show that the discretization of this problem can be written as

M
duh
dt

= Suh + fh, (6.2.9)

where the mass matrix M and the stiffness matrix S are given by

M =

⎛⎜⎜⎜⎜⎜⎝
1
2 (h1 + h2)

1
2 (h2 + h3)

. . .
1
2 (hN−1 + hN)

1
2 hN

⎞⎟⎟⎟⎟⎟⎠ , (6.2.10)

S =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

− 1
h1

− 1
h2

1
h2

1
h2

− 1
h2

− 1
h3

1
h3

. . . . . . . . .
1

hN−1
− 1

hN−1
− 1

hN
1

hN
1

hN
− 1

hN

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (6.2.11)

�
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6.2.2 Two-dimensional example

In this section we consider the 2D heat equation with source term,

∂u
∂t

=
∂2u
∂x2 +

∂2u
∂y2 + f (x, t), x ∈ Ω = [0, 1]× [0, 1]. (6.2.12)

We assume homogeneous Dirichlet boundary conditions u|Γ = 0 and an initial
condition u(x, t0) = u0(x).

Example 6.2.3 FDM, Dirichlet
Following Section 3.4 (with M = N) we divide Ω into N2 small squares with sides
Δx = Δy = h with Nh = 1. At each grid node (xi, yj) (or (i, j) for short) there is an
unknown ui,j, i, j = 0, 1, . . . , N, which, of course, also depends on time.

The Laplacian is discretized using second divided differences (see (3.4.2)), which
leads to the following differential equation in all internal grid nodes (i, j) with i, j =
1, 2, . . . , N − 1:

dui,j

dt
=

1
h2

[−4ui,j + ui−1,j + ui+1,j + ui,j−1 + ui,j+1
]
+ fi,j, (6.2.13)

where fi,j = f (xi, yj).
From the boundary conditions it follows that ui,j = 0 for all boundary nodes (i, j).

For the remaining (N − 1)2 unknowns ui,j (corresponding to the internal nodes) we
obtain a system of ordinary differential equations of the form

du
dt

= Su+ f . (6.2.14)

The exact definition of u, S and f depends on the chosen numbering scheme (cf.
Section 3.4.1). �

Exercise 6.2.2 Show that for horizontal (or vertical) numbering the matrix S in the
above example is an (N − 1)× (N − 1) block matrix given by

S =
1
h2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T I 0 . . . . . . 0

I T I
. . .

...

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
...

. . . I T I
0 . . . . . . 0 I T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (6.2.15)

where I is the (N − 1)× (N − 1) identity matrix and T is the (N − 1)× (N − 1)
tridiagonal matrix with −4 on its main diagonal and 1 on its first sub- and super-
diagonal. �
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6.3 Consistency of the spatial discretization

In Chapter 3 we discussed consistency of a discretization of a differential op-
erator. For the FVM discretization of the diffusion equation, it is necessary to
include the scaling of the mass matrix M. This means that consistency of the
discretization implies that M−1Sy tends to Ly as h tends to zero. In practical
situations this can be hard to verify. In order to determine the order of consis-
tency, it suffices to scale each equation from a FVM discretization by the area
of the control volume.

We will demonstrate (in Theorem 6.3.1) that the truncation error of the
spatial discretization (6.2.2) causes a global error of the same order. We start
with substituting the exact solution of the heat equation into Equation (6.2.2)
of the discrete approximation,

M
dy
dt

= Sy + f + ME(t), (6.3.1)

where Ek(t) = O(hp) is the error of the kth equation, which, of course, de-
pends on t. The generic discretization parameter (for instance the diameter of
the largest element) is denoted by h and p represents the order of the consis-
tency. In the remaining part of this chapter, the following properties of S and
M will be used:

• M and S are real symmetric,

• M is positive definite, S is negative definite (i.e. (x, Sx) < 0, for x �= 0).

These properties are sufficiently general to include not only FDM and FVM
(where M is a diagonal matrix) but also FEM (where M is generally non-
diagonal). One easily verifies that these properties imply (see Exercise 6.3.1)
that there is a γ0 > 0 such that

(Sx,x)
(Mx,x)

≤ −γ0 for all x �= 0. (6.3.2)

This inequality can be seen as a discrete analogue of Poincaré’s inequality
(Theorem 1.5.1) and its generalization (6.1.14) used in the proof of Theorem
6.1.1.

Now we will show that the difference between the exact solution of the
heat equation and the solution of the system of ordinary differential equa-
tions can be bounded in terms of the error E(t). Since M is a positive definite
matrix, the expression ‖x‖M defined by ‖x‖M =

√
(Mx,x) is a proper vector

norm. We formulate our result in this norm.

Theorem 6.3.1 The difference ε = y − u between the exact solution, y, of the heat
equation and the solution, u = uh, of the system of ordinary differential equations
(6.2.2), satisfies the following estimate:

‖ε‖M ≤ 1
γ0

sup
t>t0

‖E(t)‖M. (6.3.3)
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Proof
The proof is similar to the proof of the fundamental inequality (6.1.8) of Theo-
rem 6.1.1. We subtract the solution of

M
du
dt

= Su+ f ,

from (6.3.1), to obtain:

M
dε
dt

= Sε+ ME.

Since y and u have the same initial condition, we have ε(t0) = 0. Taking the
inner product of the above equation with ε we get:

1
2

d(Mε, ε)
dt

= (Sε, ε)+ (ME, ε), or

‖ε‖M
d‖ε‖M

dt
= (Sε, ε)+ (ME, ε).

With (Sε, ε) ≤ −γ0(Mε, ε) and the Cauchy-Schwarz inequality (ME, ε) ≤
‖E‖M‖ε‖M this transforms into

d‖ε‖M
dt

≤ −γ0‖ε‖M + ‖E‖M,

and hence
d
dt

(
eγ0t‖ε‖M

) ≤ eγ0t‖E‖M.

We integrate this expression and use ε0 = 0 to obtain

eγ0t‖ε‖M ≤
t∫

t0

eγ0τ‖E‖M dτ.

Hence

‖ε‖M ≤ 1
γ0

(1 − e−γ0(t−t0)) sup
t>t0

‖E‖M,

and the theorem follows. �

Exercise 6.3.1 Prove inequality (6.3.2).
Hint: Consider

sup
x �=0

(Sx,x)
(x,x)

(x,x)
(Mx,x)

≤ sup
x �=0

(Sx,x)
(x,x)

inf
y �=0

(y,y)
(My,y)

and apply Theorem 1.4.2 and Corollary 1.4.3. �
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Exercise 6.3.2 Prove the Cauchy-Schwarz inequality

|(Mx,y)| ≤ ‖x‖M‖y‖M (6.3.4)

for the inner product (Mx,y) and associated norm ‖x‖M =
√
(Mx,x).

Hint: similar to the proof of the Cauchy-Schwarz inequality (1.4.8) in Exercise 1.4.2.
�
Exercise 6.3.3 Formulate and prove a discrete equivalent of the fundamental inequal-
ity (6.1.8) of Theorem 6.1.1 for the solution of

M
du
dt

= Su+ f . (6.3.5)

Do the same for the stability estimate (6.1.20). �

6.4 Time integration

The next step we have to take is to integrate in time our system of ordinary
differential equations, that we obtained by the method of lines. To this end we
use well-known methods for numerical integration of initial value problems,
like Euler, improved Euler, Runge-Kutta or the trapezoidal rule.

Example 6.4.1 Application of Euler’s method gives:

M
un+1

Δt
= M

un

Δt
+ Sun + fn, (6.4.1)

in which un+1 and un represent the solutions at times tn+1 and tn respectively,
with tn = t0 + nΔt. �
Exercise 6.4.1 Formulate the implicit (backward) method of Euler for the system of
ordinary differential equations as obtained from the method of lines. �
Exercise 6.4.2 Formulate the improved Euler method for this system. �
Example 6.4.2 The method of Crank-Nicolson or the trapezoidal rule for our sys-
tem of ordinary differential equations is given by:

(
M
Δt

− 1
2

S)un+1 = (
M
Δt

+
1
2

S)un +
1
2

(
fn + fn+1

)
. (6.4.2)

�
Example 6.4.3 Let θ ∈ [0, 1] be given. The θ-method for the system of ordinary
differential equations is defined by

(
M
Δt

− θS)un+1 = (
M
Δt

+ (1 − θ)S)un + (1 − θ)fn + θfn+1. (6.4.3)

Note that θ = 0, θ = 1 and θ = 1
2 correspond to the Forward, Backward Euler and

the Crank-Nicolson method respectively. �
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For the θ-method it can be shown that the global error in the time integration
is of second order if θ = 1

2 and of first order if θ �= 1
2 .

6.5 Stability of the numerical integration

In Section 6.1 we demonstrated that the heat equation is absolutely stable with
respect to the initial conditions (see inequality (6.1.20)). This means that if
two solutions have different initial conditions, the difference between these
two solutions vanishes as t → ∞. This property also holds for the system of
ordinary differential equations obtained by the method of lines (see Exercise
6.3.3). We want to make sure that the numerical time integration inherits this
property, so that the numerical time integration is absolutely stable as well.
Stability of numerical integration methods in time is treated more extensively
in [4]. We state the most important results. The stability of the system of
ordinary differential equations

du
dt

= Au+ f , (6.5.1)

is determined by the ’error-equation’

dε
dt

= Aε. (6.5.2)

1. The system is absolutely stable if and only if the real part of the eigen-
values λk of the matrix A is negative, i.e. Re(λk) < 0.

2. Each numerical solution procedure has an amplification matrix G(ΔtA),
given by the numerical solution of (6.5.2):

εn+1 = G(ΔtA)εn. (6.5.3)

If the error equation is scalar (i.e. the system reduces to one equation
only: ε′ = λε), the matrix reduces to an amplification factor , which is
denoted by C(Δtλ).

3. A numerical solution method is absolutely stable if all eigenvalues μk of
G(ΔtA) have the property |μk| < 1.

4. The eigenvalues μk of G(ΔtA) can be obtained by substitution of the
eigenvalues λk of the matrix A into the amplification factor:

μk = C(Δtλk). (6.5.4)

Hence, for stability we need |C(Δtλk)| < 1.
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Exercise 6.5.1 The amplification matrices for forward Euler, improved Euler, back-
ward Euler, Crank-Nicolson and the θ-method are given by

I + ΔtA,

I + ΔtA +
1
2
(ΔtA)2,

(I − ΔtA)−1,

(I − 1
2

ΔtA)−1(I +
1
2

ΔtA),

(I − θΔtA)−1(I + (1 − θ)ΔtA).

Show this. What are the corresponding amplification factors? �
We recall that our matrix A is of the form A = M−1S, with M and S satisfying
the conditions of Section 6.3. Hence, in order to investigate the stability of the
numerical time integration, the eigenvalues of M−1S have to be estimated.

Lemma 6.5.1 Let M and S be real symmetric matrices of the same size. If M is
positive definite and S negative definite, then the matrix A = M−1S is diagonalizable
with all eigenvalues real and negative.

Proof: It follows from Theorem 1.4.1 and Corollary 1.4.3 that M has only posi-
tive, real eigenvalues, and can be written as M=QΛQT , where Λ is a diagonal
matrix with the eigenvalues of M on the diagonal, and Q is a real orthogo-
nal matrix. This implies that M−1/2 = QΛ−1/2QT exists and is symmetric
positive definite too. Hence A = M−1S is similar to B = M1/2 AM−1/2 =
M−1/2SM−1/2. The matrix B is real symmetric and is therefore diagonaliz-
able and has only real eigenvalues (see Theorem 1.4.1). Since A is similar to B,
A is diagonalizable as well, and has the same eigenvalues as B (see Exercise
1.4.1). Furthermore, S is symmetric negative definite, i.e. (Sx,x) < 0 for all
x �= 0. Hence (Bx,x) = (M−1/2SM−1/2x,x) = (SM−1/2x, M−1/2x) < 0 for
all x �= 0. This implies that the eigenvalues of B (and therefore also of A) are
negative. �

We note that the eigenvalues of M−1S are the same as the eigenvalues of the
following so-called generalized eigenvalue problem:

Determine λ and x �= 0 such that Sx = λMx. (6.5.5)

All eigenvalues of the above generalized eigenvalue problem are therefore
real-valued and negative (see also [13]). Hence all eigenvalues are contained
in the real interval [λmin, 0), where λmin < 0 denotes the minimal eigenvalue
of A. In this case, the following criterion for stability holds:

Δt <
c

|λmin| , (6.5.6)

with c = 2 for Euler and improved Euler and c = 2.8 for Runge-Kutta (see
[4]). Hence we have to estimate the minimal eigenvalue of the generalized
eigenvalue problem. This is treated in the next section.
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6.5.1 Gershgorin’s disk theorem

We recall that the mass matrix M is diagonal in case of Finite Differences
(FDM) or Finite Volumes (FVM). We extend Gershgorin’s theorem (see The-
orem 1.4.5) for this case to estimate the location of the eigenvalues.

Theorem 6.5.2 (Gershgorin)
If M is diagonal, then, for each eigenvalue λ of M−1S, there exists an index i with

|miiλ − sii| ≤
N

∑
j=1
j �=i

|sij|. (6.5.7)

Exercise 6.5.2 Prove Theorem 6.5.2 using Theorem 1.4.5. �

Example 6.5.1 For the heat equation in one spatial dimension (see Example 6.2.1)
the Finite Difference Method gives M = I and hence

|λmin| ≤ 4
h2 . (6.5.8)

From this we obtain a stability criterion for the Forward Euler method:

Δt <
2h2

4
=

1
2

h2. (6.5.9)

For the 2D heat equation, the Finite Difference Method (see Example 6.4.1) gives in a
similar way:

|λmin| ≤ 4
(Δx)2 +

4
(Δy)2 , (6.5.10)

and the following stability criterion for Euler’s method:

Δt <
β2

2(1 + β2)
(Δx)2, (6.5.11)

where β = Δy
Δx . �

Example 6.5.2 We consider the matrices M and S of Example 6.2.2.

Exercise 6.5.3 Let si denote the sum of the absolute values of the elements in the i-th
row of M−1S. Show that the following relations for si hold:

s1 =
2

h1 + h2

(
1
h1

+
2
h2

)
<

2
h1 + h2

(
2
h1

+
2
h2

)
=

4
h1h2

,

si =
2

hi + hi+1

(
2
hi

+
2

hi+1

)
=

4
hihi+1

, i = 2, . . . , N − 1,

sN =
2

hN

2
hN

=
4

h2
N

.

�
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Gershgorin’s theorem results in the following estimate:

|λmin| ≤ max

(
4

h2
N

, max
1≤i≤N−1

4
hihi+1

)
,

and a stability criterion for the Forward Euler method of the form

Δt <
1
2

min
(

h2
N , min

1≤i≤N−1
hihi+1

)
.

�

In all the examples the time step has to be smaller than the product of a factor
times the square of the grid spacing. In practical situations, this could imply
that the time step has to be very small. For that reason explicit time integration
methods are not popular for the heat equation. Implicit methods such as the
Crank-Nicolson method or the implicit (backward) Euler method are usually
preferred. This always implies the solution of a problem with the complexity of the
Laplacian in each time step. In one space dimension, this amounts to the solution
of a tridiagonal system of equations in each time step, which is no big deal.
Two and more space dimensions, however, lead to the same type of problems
as the Laplacian. For iterative methods the solution on the previous time level
is of course an excellent starting value.

For regions with simple geometries some special implicit methods for the heat
equation are available. This will be addressed in Section 6.8.

Exercise 6.5.4 Prove that Euler backward and Crank-Nicolson are absolutely stable
for each value of the stepsize Δt if Re(λk) < 0. �

Exercise 6.5.5 Prove that the θ-method is absolutely stable for all Δt > 0 if θ ≥ 1
2 .

Derive a condition for stability for the case that θ < 1
2 . �

As an illustration of the stability of the numerical solution to the heat problem
we consider a Finite Difference solution in the square Ω = [0, 1] × [0, 1], on
which

∂u
∂t

= 0.5Δu. (6.5.12)

We take as initial condition and boundary condition on the whole boundary
Γ:

u(x, y, 0) = sin(x) sin(y), (x, y) ∈ Ω,

u(x, y, t) = sin(x) sin(y), (x, y) ∈ Γ.
(6.5.13)

Exercise 6.5.6 Prove that the analytical solution to the above problem is given by

u(x, y, t) = e−t sin(x) sin(y). (6.5.14)

�
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In Figure 6.1 we show the numerical solution to the above problem as com-
puted by the use of the Forward Euler method with Δt = 0.1. For this case the
stability criterion is violated and hence the solution exhibits unphysical be-
havior. In Figure 6.2 we show the solution that has been obtained for the same
data by the backward Euler method. Now the solution exhibits the expected
physical behavior. The contour lines are nice and smooth and are similar to
the ones of the analytical solution.

Figure 6.1: Contour lines of the numerical solution to the heat equation with
Δt = 0.1 as obtained by the use of the Forward (explicit) Euler method (unsta-
ble solution).

Figure 6.2: Contour lines of the numerical solution to the heat equation with
Δt = 0.1 as obtained by the use of the Backward (implicit) Euler method.
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6.5.2 Stability analysis of Von Neumann

As an alternative method for estimating the eigenvalues of the matrix M−1S
we present a method due to the American mathematician John von Neumann.
We recall that in the method-of-lines setting, stability of the (fully discrete)
numerical scheme is determined by the eigenvalues μk = C(Δtλk) of the am-
plification matrix G(ΔtA), where A = M−1S is the spatial discretization ma-
trix with eigenvalues λk and C is the amplification factor of the time stepping
method.
The Von Neumann method is applicable to linear equations with constant co-
efficients such as the heat equation when using equidistant grids. By neglecting
the boundary conditions the eigenvectors can be assumed of the form

vk = eiρkh (6.5.15)

in one and
vkl = ei(ρkΔx+σlΔy) (6.5.16)

in two space dimensions. The region must be rectangular in 2D and the num-
bers ρ and σ are considered arbitrary real numbers. In order to find an interval
[a, b] containing the eigenvalues of A it is sufficient to substitute these expres-
sions in one single equation of the generalized eigenvalue problem.
The Von Neumann method provides a necessary condition for stability by re-
quiring that

|C(Δtλ)| ≤ 1 for all λ ∈ [a, b] (6.5.17)

Example 6.5.3 As an example we consider the heat equation with an equidistant grid
in one space dimension,

λeiρkh =
1
h2 (e

iρ(k−1)h − 2eiρkh + eiρ(k+1)h). (6.5.18)

We divide the left and right-hand sides of this equation by eiρkh and obtain, using the
relation 1/2(eiφ + e−iφ) = cos φ:

λ =
2(cos(ρh)− 1)

h2 = −4
sin2 ρh/2

h2 . (6.5.19)

From this we find that the interval [− 4
h2 , 0] contains all eigenvalues of A.

The corresponding Von Neumann stability criterion is

Δt ≤ 1
2

h2 (6.5.20)

for the forward Euler time-integration. �
Remark

In case of two space dimensions, the domain of computation, in which the Von
Neumann analysis is applied, does not necessarily have to be rectangular. In
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that case the analysis gives a rough upper bound for the eigenvalues, which in
fact holds for the smallest rectangle that encloses the domain of computation.
The coefficients in the PDE have to be constant. Furthermore the discretiza-
tion has to be equidistant, otherwise the analysis is not valid. In contrast,
Gershgorin’s theorem can also be applied for non-constant coefficients and
non-equidistant grids, but the mass matrix has to be diagonal in that case.

6.6 The accuracy of the time integration

When we use a numerical method for time integration we make an error at
each time step. These errors accumulate in general, and you might ask if this
accumulation could be disastrous. From [4] we know that in a bounded time
interval (t0, T] a local truncation error of the order O(hm) gives a global error
of the same order. The forward and backward methods of Euler have m = 1,
whereas the improved Euler method and the method of Crank-Nicolson have
m = 2. Absolutely stable systems like the heat equation have even better
properties. If the numerical integration is stable, the global error is uniformly
bounded on the interval (t0, ∞).

Theorem 6.6.1 Let y(t) be the solution of the absolutely stable system

dy
dt

= Ay + f , y(t0) = y0, (6.6.1)

where A = M−1S with M symmetric positive definite and S symmetric negative
definite. Further, let un be the solution of the numerical method

un+1 = G(ΔtA)un + In(f ), u0 = y0, (6.6.2)

where In(f ) represents an approximation of

tn+1∫
tn

e(tn+1−t)Af (t) dt.

Assume that there exists a stepsize τ > 0 such that

lim
n→∞

G(ΔtA)n = 0, for all Δt ≤ τ,

and
y(tn+1) = G(ΔtA)y(tn) + In(f ) + (Δt)m+1pn, (6.6.3)

where ‖pn‖ is uniformly bounded for all n and Δt ≤ τ.
Then it follows that

‖y(tn)− un‖ = O((Δt)m). (6.6.4)
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In other words: if the local truncation error in time is of order m (after division
of Equation (6.6.3) by Δt), the global error is also of order m provided the
integration is stable.

Proof
We define εn = y(tn)−un and subtract Equation (6.6.2) from Equation (6.6.3)
to get:

εn+1 = G(ΔtA)εn + (Δt)m+1pn. (6.6.5)

Taking into account that ε0 = 0, this recurrence relation can be solved to give

εn = (Δt)m+1
n−1

∑
k=0

G(ΔtA)n−k−1pk. (6.6.6)

Since ‖pk‖ is uniformly bounded, there exists a vector pmax with ‖pk‖ ≤
‖pmax‖ for all k and Δt. Putting this into (6.6.6) and using Exercise 1.4.4 we
obtain

‖εn‖ ≤ (Δt)m+1
n−1

∑
k=0

‖G(ΔtA)n−k−1‖‖pmax‖.

It follows from Lemma 6.5.1 that A is diagonalizable and has real negative
eigenvalues λk only, so can be written as

A = VΛV−1,

where Λ is a diagonal matrix containing the eigenvalues λk and V is the matrix
whose columns are the corresponding eigenvectors. Hence we have

G(ΔtA) = VDV−1,

where D is the diagonal matrix with the eigenvalues μk of G(ΔtA), which
are given by μk = C(Δtλk) (see (6.5.4)). This yields G(ΔtA)k = VDkV−1,
and using the submultiplicativity of the matrix norm (cf. Exercise 1.4.5) we
conclude that

‖G(ΔtA)k‖ ≤ |μ1|k‖V‖‖V−1‖,

where μ1 is the eigenvalue of G(ΔtA) with the largest modulus. This gives

‖εn‖ ≤ (Δt)m+1 1 − |μ1|n
1 − |μ1| ‖V−1‖ ‖V‖ ‖pmax‖.

Since μ1 = C(λ1Δt) = 1 + λ1Δt + O((Δt)2), we have 1 − |μ1| = |λ1|Δt +
O((Δt)2) and we finally obtain

‖εn‖ ≤ K(Δt)m,

which proves the theorem. �
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6.7 Conclusions for the method of lines

We summarize the results of the methods of lines for the heat/diffusion equa-
tion.

• Using the method of lines, the PDE is written as a system of ordinary
differential equations by the spatial discretization of the elliptic operator.

• The global error of the analytic solution of this system of ordinary differ-
ential equations (compared to the solution of the solution of the PDE) is
of the same order as the order of consistency of the FDM and FVM.

• The numerical solution of this system has an additional error due to the
numerical time integration. This global error is of the order of KΔtm

if the local truncation error is of the order O(Δtm). This constant does
not depend on time t and this estimate holds on the entire time interval
(t0, ∞).

• Explicit (and some implicit) methods have a stability criterion of the
form

Δt < c(Δx)2 (6.7.1)

and hence these methods are less suitable for the heat equation.

6.8 Special difference methods for the heat equa-
tion

The method of lines is a general method, which is applicable to one, two or
three spatial dimensions. At each time step, the implicit methods give a prob-
lem to be solved with the same complexity as the Poisson problem. Therefore,
one has searched for methods that are stable but have a simpler complexity
than the Poisson problem. We present one example of such a method: The ADI
method. This method can only be used with regular grids with a five-point
molecule for the elliptic operator. First we sketch the principle of the ADI
method and subsequently a formal description of the ADI method is given.

6.8.1 The principle of the ADI method

The abbreviation ADI means Alternating Direction Implicit. This is a fairly ac-
curate description of the working of the method. Suppose that we have to
solve the heat equation on a rectangle with length lx and width ly and we use
a discretization with stepsize Δx and Δy respectively, such that NxΔx = lx
and NyΔy = ly. For convenience we apply Dirichlet boundary conditions at
all the boundaries of the domain of computation, where we set u = 0. For the
time integration from tn to tn+1 the ADI method uses two steps. The idea is
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as follows: first we use a half time step with an intermediate auxiliary quan-
tity u∗. To compute u∗ we use the implicit Euler time integration method for
the derivative with respect to x and the explicit Euler time integration for the
derivative with respect to y. In the next half time step, we reverse this pro-
cess. Hence: The first step, a so-called half time step, computes an auxiliary-
quantity u∗

ij according to:

u∗
ij = un

ij+
Δt

2(Δx)2 (u
∗
i+1,j − 2u∗

ij + u∗
i−1,j)+ (6.8.1)

Δt
2(Δy)2 (u

n
i,j+1 − 2un

ij + un
i,j−1) +

Δt
2

f ∗ij ,

i = 1, . . . , Nx − 1, j = 1, . . . , Ny − 1,

where f ∗ij denotes f (iΔx, jΔy, tn + 1
2 Δt). Subsequently un+1 is calculated ac-

cording to:

un+1
ij = u∗

ij+
Δt

2(Δx)2 (u
∗
i+1,j − 2u∗

ij + u∗
i−1,j)+ (6.8.2)

Δt
2(Δy)2 (u

n+1
i,j+1 − 2un+1

ij + un+1
i,j−1) +

Δt
2

f ∗ij ,

i = 1, . . . , Nx − 1, j = 1, . . . , Ny − 1.

Equation (6.8.1) requires that, for each fixed index j, a tridiagonal system of
equations has to be solved for u∗

j , with

u∗
j =

⎛⎜⎜⎜⎜⎝
u∗

1j
u∗

2j
...

u∗
Nx−1,j

⎞⎟⎟⎟⎟⎠ . (6.8.3)

In total there are Ny − 1 systems like this one to be solved in order to determine
all the values of u∗

j . Similarly, one has to solve in Equation (6.8.2) for a fixed

index i a tridiagonal system of equations in un+1
i , with

un+1
i =

⎛⎜⎜⎜⎜⎝
un+1

i1
un+1

i2
...

un+1
i,Ny−1

⎞⎟⎟⎟⎟⎠ . (6.8.4)

This is exactly in the other direction, which explains the name of the method.
In total we are faced with Nx − 1 of such systems. Hence to integrate the heat
equation from tn up to tn+1 one has to
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• solve Ny − 1 tridiagonal systems of size Nx − 1,

• solve Nx − 1 tridiagonal systems of size Ny − 1.

Exercise 6.8.1 Verify that the amount of computational effort per time step for the
ADI method is proportional to the total number of gridpoints. (Hint: How many
operations does it take to solve an N × N tridiagonal system of equations?) �

Indeed the computational complexity of the ADI method is better than that
of the method of lines. However, the question remains whether this benefit is
not at the expense of the accuracy or the stability of the method. To scrutinize
this, a formal description of the ADI method is presented in the next section.

6.8.2 Formal description of the ADI method

The ADI method can be seen as a special way to integrate the system of ordi-
nary differential equations

du
dt

= (Ax + Ay)u+ f , (6.8.5)

which arises from a PDE using the method of lines. The ADI method of this
system is given by:

u∗ = un +
1
2

Δt(Axu
∗ + Ayu

n + f ∗), (6.8.6)

un+1 = u∗ + 1
2

Δt(Axu
∗ + Ayu

n+1 + f ∗). (6.8.7)

From this the intermediate quantity u∗ can be eliminated as follows. First
rewrite the above two equations as

(I − 1
2

ΔtAx)u
∗ = (I +

1
2

ΔtAy)u
n +

1
2

Δtf ∗, (6.8.8)

(I − 1
2

ΔtAy)u
n+1 = (I +

1
2

ΔtAx)u
∗ + 1

2
Δtf ∗. (6.8.9)

After multiplication of the first relation by I + 1
2 ΔtAx and the second one by

I − 1
2 ΔtAx, and noting that these matrices commute, one easily obtains:

(I − 1
2

ΔtAx)(I − 1
2

ΔtAy)u
n+1 =

(I +
1
2

ΔtAx)(I +
1
2

ΔtAy)u
n + Δtf ∗. (6.8.10)

Equation (6.8.10) is the basis of our investigations. First, we make a statement
about the accuracy.
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Theorem 6.8.1 Equation (6.8.10) differs from Crank-Nicolson’s method applied to
(6.8.5) by a term of the order of O(Δt3).

Proof
Crank-Nicolson applied to (6.8.5) gives

(I − 1
2

ΔtAx − 1
2

ΔtAy)u
n+1 = (I +

1
2

ΔtAx +
1
2

ΔtAy)u
n +

1
2

Δt(fn + fn+1).

Elaboration of (6.8.10) gives:

(I − 1
2

ΔtAx − 1
2

ΔtAy)u
n+1 = (I +

1
2

ΔtAx +
1
2

ΔtAy)u
n

+
1
4
(Δt)2 Ax Ay(u

n − un+1) + Δtf ∗.

Now the theorem immediately follows by noting that un − un+1 is of order
O(Δt) and that f ∗ = 1

2 (f
n + fn+1) +O((Δt)2). �

It follows from the above theorem that the ADI method has the same accuracy
as the method of Crank Nicolson, which is O((Δt)2).

It is hard to investigate the stability of the ADI method theoretically. In
practical situations, it turns out that the ADI method does not require a strin-
gent stability criterion. In a special case, there is a theoretical justification for
the unconditional stability of the ADI method:

Theorem 6.8.2 If Ax and Ay are commuting matrices (i.e. Ax Ay = Ay Ax), then
the ADI method is unconditionally stable.

Proof
We have to calculate the eigenvalues of

(I − 1
2

ΔtAy)
−1(I − 1

2
ΔtAx)

−1(I +
1
2

ΔtAx)(I +
1
2

ΔtAy),

but under the conditions of the theorem all these matrices commute. Then,
the eigenvalues of this matrix are given by products of the eigenvalues of the
separate matrices

(I − 1
2

ΔtAx)
−1(I +

1
2

ΔtAx) and (I − 1
2

ΔtAy)
−1(I +

1
2

ΔtAy).

These eigenvalues are

1 + 1
2 Δtλx

1 − 1
2 Δtλx

and
1 + 1

2 Δtλy

1 − 1
2 Δtλy

.

Since λx and λy are real-valued and negative, the modulus of all these eigen-
values is less than one. �
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Exercise 6.8.2 Show that the operators Ax and Ay commute for the problem of the
rectangle with Dirichlet conditions. �

Extension of the ADI method to three spatial dimensions is not straightfor-
ward. The most straightforward way (three steps, subsequently for the x-, y-
and z-coordinate) is no longer unconditionally stable. Further, its global er-
ror is of the order O(Δt). There exist adequate ADI methods for three spatial
coordinates, see [10].

6.9 Summary of Chapter 6

In this chapter we looked at the numerical solution of the heat or diffusion equa-
tion. We have shown that with one exception this equation has an equilibrium
solution and that independent of the initial values the transient solution tends
to this equilibrium solution exponentially fast.

We introduced the method of lines for the numerical solution which transforms
the PDE into a set of ODEs by discretizing first the spatial differential opera-
tors. We estimated the effect of the truncation error of the spatial discretization
on the solution of this system of ODEs. We proved that this effect is uniformly
bounded.

We briefly looked at the stability of the explicit integration schemes for which
we had to estimate the location of the eigenvalues of the system matrix. To this
end we could use Gershgorin’s disk theorem or Von Neumann’s stability analysis.

Finally we considered the ADI-method, an unconditionally stable method of
much lower complexity than Crank-Nicolson’s method, but with the same
accuracy.
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Chapter 7

The wave equation

Objectives

In this chapter we shall look at various methods for the time integration of
the wave equation. This equation is crucial in applications dealing with elec-
tromagnetic radiation, wave propagation, acoustics and seismics (used for oil
finding for instance). Before we do this, a conservation principle for the so-
lution of the wave equation is derived. The numerical solution should satisfy
this principle as well. Stability in terms of decay and growth of the numerical
solution as a function of time is investigated for several methods. Further-
more, the concepts dispersion and dissipation will be introduced and an illus-
tration of these concepts will be given. Finally a procedure to derive the CFL-
criterion, a criterion for the numerical solution to represent the exact solution,
will be given by using the concept of (analytical and numerical) domain of
dependence.

7.1 A fundamental equality

Consider the wave equation on a domain Ω:

∂2u
∂t2 = c2

(
∂2u
∂x2 +

∂2u
∂y2

)
=: c2Δu. (7.1.1)

In Equation (7.1.1) no internal energy source term is taken into account. Fur-
ther, homogeneous boundary conditions are imposed on the boundaries Γ1,
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Γ2 and Γ3 of the domain Ω, i.e.

u = 0, (x, y) ∈ Γ1,
∂u
∂n

= 0, (x, y) ∈ Γ2, (7.1.2)

σu +
∂u
∂n

= 0, (x, y) ∈ Γ3.

Hence there is no transport of energy through the boundaries. Therefore the
PDE (7.1.1) with boundary conditions (7.1.2) is homogeneous. As initial con-

ditions, we have that u and
∂u
∂t

are given at t = t0 at all points in the domain
of computation. Now we will show that the ’energy’ of this equation is pre-
served in time.

Theorem 7.1.1 The homogeneous wave equation (7.1.1) with homogeneous bound-
ary conditions (7.1.2) satisfies the following conservation principle:

1
2

∫
Ω

{(
∂u
∂t

)2
+ c2‖grad u‖2

}
dΩ +

1
2

∫
Γ3

σc2u2dΓ = Constant. (7.1.3)

Proof: We multiply both sides of the equality of Equation (7.1.1) by ∂u
∂t and

integrate the results over the domain Ω to obtain

∫
Ω

1
2

∂

∂t

(
∂u
∂t

)2
dΩ =

∫
Ω

c2 ∂u
∂t

Δu dΩ =
∫
Ω

c2 ∂u
∂t

div grad u dΩ.

Assuming that all derivatives are continuous and using the product rule for
differentiation (Theorem 1.3.2), the integrand of the right-hand side can be
written as

div
(

∂u
∂t

grad u
)
− grad

(
∂u
∂t

)
· grad u.

This yields

∫
Ω

1
2

∂

∂t

(
∂u
∂t

)2
dΩ =

∫
Ω

c2div
(

∂u
∂t

grad u
)

dΩ −
∫
Ω

c2grad
(

∂u
∂t

)
· grad u dΩ.

We apply the divergence theorem to the first term on the right-hand side and
use the product rule for differentiation on the second term of the right-hand
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side to get

∫
Ω

1
2

∂

∂t

(
∂u
∂t

)2
dΩ =

∫
Γ1∪Γ2∪Γ3

c2 ∂u
∂t

∂u
∂n

dΓ − 1
2

∫
Ω

c2 ∂

∂t
(grad u · grad u) dΩ. (7.1.4)

The integrand of the boundary integral on the right-hand side vanishes on Γ1
and Γ2 due to the boundary conditions. Application of the boundary condi-
tion on Γ3 then transforms Equation (7.1.4) into∫

Ω

1
2

∂

∂t

(
∂u
∂t

)2
dΩ = −

∫
Γ3

c2σu
∂u
∂t

dΓ − 1
2

∫
Ω

c2 ∂

∂t
(grad u · grad u) dΩ.

Finally using a standard differentiation property we get∫
Ω

1
2

∂

∂t

(
∂u
∂t

)2
dΩ = −

∫
Γ3

1
2

c2σ
∂u2

∂t
dΓ − 1

2

∫
Ω

c2 ∂

∂t
(grad u · grad u) dΩ.

Interchanging the differentiation and integration operations in the above ex-
pression and subsequent integration over time t proves the theorem. �

Remarks

1. Consider the wave equation with a source term,

∂2u
∂t2 = c2Δu + f (x, t). (7.1.5)

The difference between two solutions of Equation (7.1.5) with the same
source term f and the same boundary conditions satisfies the homo-
geneous wave equation (7.1.1) and homogeneous boundary conditions
(7.1.2).

2. The first term in Equation (7.1.3) gives the kinetic energy of the vibrat-
ing medium, whereas the second and a third term involve the potential
energy. Therefore, the left-hand side of Equation (7.1.3) is commonly
referred to as (the square of) the energy norm.

3. The total amount of energy is entirely defined by the two initial condi-

tions u(x, y, t0) and
∂u
∂t

(x, y, t0).

4. The difference in this ’energy-norm’, between two solutions of (7.1.5)
with the same boundary conditions and different initial conditions is
constant at all stages.
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Exercise 7.1.1 Prove remarks 1 and 4. �

Exercise 7.1.2 The solution of the heat equation in the previous chapter tends to an
equilibrium solution (i.e. a steady-state) as t tends to infinity. Does the solution of the
wave equation tend to a steady state as t tends to infinity? �

From remark 4 it follows that the solution of the wave equation is neutrally
stable, that is, an error made in the initial conditions will neither decrease nor
increase and hence it persists. This property must also hold for our numer-
ical methods. Otherwise the numerical solution would not exhibit the same
physical characteristics as the analytical solution.

7.2 The method of lines

In a similar way as we did for parabolic equations we may first discretize only
the spatial part of the wave equation. The difference with the previous chapter
is that we now have to deal with a second order system with respect to time.
After the discretization of Equation (7.1.5), we obtain:

M
d2u

dt2 = c2Su+ f , u(t0) = u0,
du
dt

(t0) = v0. (7.2.1)

Here M and S are the mass matrix and stiffness matrix, respectively, just like in
the previous chapter. Next, we establish that Equation (7.2.1) also conserves
the energy if f = 0.

Theorem 7.2.1 If f = 0, then

1
2

(
M

du
dt

,
du
dt

)
− 1

2
c2(Su,u) = constant. (7.2.2)

Exercise 7.2.1 Prove this theorem. Hint: take the inner product of (7.2.1) with
du/dt and use the symmetry of M and S. �

7.2.1 The error in the solution of the system

Application of the method of lines generates a truncation error E in the spatial
discretization. This may be defined by

M
d2y

dt2 = c2Sy + f + ME, (7.2.3)

where y denotes the exact solution to the wave equation. This truncation er-
ror causes an error in the solution of (7.2.1) of the form Chp, where h denotes a
generic discretization parameter (such as the diameter of the largest element
used in the discretization) and p represents the order of consistency. For the
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heat equation it was possible to find a constant C, valid for the entire interval
of integration (t0, ∞). For the wave equation this is not possible. The constant
C depends linearly on the length of the integration interval (t0, T). A com-
plete analysis of the error is beyond the scope of the book, but qualitatively the
phenomenon is explained as follows: An eigenvibration of (7.1.1) is given by a
function of the form of eiλctU(x, y), where U satisfies the homogeneous bound-
ary conditions (note that the boundary conditions can be of several types).
Substitution into Equation (7.1.1) yields

−λ2c2U = c2ΔU. (7.2.4)

This is just the eigenvalue problem for the Laplace operator, which has an in-
finite number of solutions in terms of eigenpairs λk and Uk. Here λk is the
eigenfrequency of the vibration and Uk the eigenfunction. These quantities de-
pend on the domain of computation Ω. Generally speaking the wavelength
of the eigenfunction (which is inversely related to the number of peaks) de-
creases as the eigenfrequency increases.

Consider the discrete version of Equation (7.1.1), which is given by system
(7.2.1). We obtain:

−λ2
hc2MU = c2SU . (7.2.5)

The subscript h indicates that eigenvalues of the discretized problem are con-
sidered. The discretized system only has a finite number of eigenvalues, or
to put it differently: the resolution is finite on the discrete grid. The shortest
wave that can be represented on a grid has wavelength O(2h). For eigenfunc-
tions that can be represented well on the grid we have

|λ − λh| = O(hp) and ‖U −Uh‖ = O(hp). (7.2.6)

Since the eigenfrequencies of numerical and exact solution differ, the differ-
ence between the numerical solution and the exact solution increases as the
simulation proceeds. This results in a phase-shift error. Moreover, this phase-
shift error differs for the different eigenvibrations. This phenomenon is called
dispersion. Since each solution can be written as a linear combination of eigen-
vibrations, there will be dispersion in the solution of Equation (7.2.1) in re-
lation to the solution of Equation (7.1.1). This dispersion even exists for the
eigenfunctions, which are represented well on the grid (i.e. eigenfunctions
with a large wavelength, i.e. a small frequency). Therefore, the difference be-
tween the solution of (7.2.1) and the exact solution of the wave equation (7.1.1)
increases as the interval of the time integration increases. Since the error is of
the form C(T − t0)hp, one has to use a more accurate spatial discretization as T
increases if the same absolute accuracy is to be maintained for the final stages
of the time interval as for the initial stages of the computation process.

As an example, we consider

∂2u
∂t2 =

∂2u
∂x2 , for 0 < x < 1, (7.2.7)
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subject to boundary conditions u(0, t) = 0 = u(1, t) and some initial condi-
tion. It was shown in Section 3.1.2 that the eigenvalues and eigenfunctions
of the spatial differential operator ∂2/∂x2 with the given boundary conditions
are respectively given by

λk = kπ and Uk = sin kπx, k = 1, 2, . . . . (7.2.8)

Note that λk are the eigenfrequencies of the vibrations, but −λ2
k are the actual

eigenvalues of the spatial differential operator ∂2/∂x2. Once a finite difference
method with an equidistant grid for which h = 1

N (where h represents the
stepsize) has been used, it follows (see again Section 3.1.2) that the eigenvalues
and eigenvectors of the discretized problem are respectively given by

λhk =
2
h

sin
(

1
2 kπh

)
and Uk =

⎛⎜⎜⎝
sin(kπh)

sin(2kπh)
. . .

sin((N − 1)kπh)

⎞⎟⎟⎠ . (7.2.9)

Note that −λ2
hk are the actual eigenvalues of the spatial discretization matrix

M−1S of the discretized problem (see (3.1.20)). Note that the eigenvectors are
exact. It can be demonstrated that |λ1 − λh1| = O(h2) and that for k = N

2 the
phase-shift error is already significant. In the following exercise, the claims
that we made in this paragraph must be proved from scratch, without using
the results from Section 3.1.2.

Exercise 7.2.2 Consider the initial boundary value problem in Equation (7.2.7).

• Verify by substitution that the eigenfunctions Uk and eigenvalues −λ2
k of the

spatial differential operator ∂2/∂x2 are given by (7.2.8).

• Use the Finite Difference Method to create an equidistant discretization for
which h = 1

N , with h representing the stepsize.

• Verify by substitution that the eigenvectors Uk and eigenvalues −λ2
hk of the

spatial discretization matrix are given by (7.2.9). Note that the eigenvectors

are exact. Further, show that |λ1 − λh1| = O(h2) and that for k =
N
2

the
phase-shift error is already significant.

�
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7.3 Numerical time integration

One possibility to integrate Equation (7.2.1) numerically is to write it as a sys-
tem of first order differential equations with respect to time:

du
dt

= v,

M
dv
dt

= c2Su+ f ,

(7.3.1)

with initial conditions u(t0) = u0 and v(t0) = v0. For this system the ordinary
numerical methods for initial value problems can be used.

Example 7.3.1 Forward Euler applied to System (7.3.1) gives

un+1

Δt
=

un

Δt
+ vn,

M
vn+1

Δt
= M

vn

Δt
+ c2Sun + fn.

(7.3.2)

Exercise 7.3.1 Give the equations for u and v when a Crank-Nicolson time integra-
tion of System (7.3.1) is applied. �

7.4 Stability of the numerical integration

From the conservation of energy of the solutions of both the wave equation
and the discretization based on the method of lines, it follows that asymptotic
stability does not make much sense here. A perturbation of the initial condi-
tions will never vanish. A fundamental solution of the form u(t) = eλctu,v(t) =
eλctv of system (7.3.1) with f = 0 has a purely imaginary λ as is shown in the
next theorem.

Theorem 7.4.1 Consider system (7.3.1) and let λ be an eigenvalue of the generalized
eigenvalue problem

λcu = v,
λcMv = c2Su. (7.4.1)

If M is symmetric positive definite and S symmetric negative definite, then, the eigen-
values of this generalized eigenvalue problem are purely imaginary.

Proof: We use the upper equation to eliminate v from the lower equation,

λ2Mu = Su, (7.4.2)

which shows that λ2 is an eigenvalue of the generalized eigenvalue problem
for M and S. Hence λ2 is an eigenvalue of the matrix M−1S. It follows from
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Lemma 6.5.1 that λ2 is real and negative, implying that λ is purely imaginary.
�

With the purely imaginary eigenvalues of the above generalized eigenvalue
problem (7.4.1), it follows that the solution of system (7.3.1) is neutrally stable.
An absolutely stable time integration method decays the error of the solution
and also the solution itself as t → ∞. An unstable time integration method
blows up the error and the solution. This implies that with neither of these
time integration methods, the wave equation can be integrated numerically
up to any large time t. Hence we have to define an end time T and choose
the time step Δt accordingly small. If T = nΔt and limΔt→0 |C(λΔt)|n = 1
for a particular method, then the wave equation can be integrated up to this
bounded time T. Note that n → ∞ as Δt → 0.

7.5 Total dissipation and dispersion

Since the eigenvalues of (7.4.1) are purely imaginary, the solution of (7.3.1) can
be written as a linear combination of products of eigenvectors and undamped
vibrations. Hence it is sufficient to consider a single differential equation of
the form

dw
dt

= iμw, subject to w(t0) = w0. (7.5.1)

The behavior of this differential equation qualitatively reflects the behavior of
the total system (7.3.1). The exact solution is

w(t) = w0eiμ(t−t0). (7.5.2)

For the solution at tn+1 = t0 + (n + 1)Δt we note that

w(tn+1) = w(tn)eiμΔt. (7.5.3)

Hence the amplification factor of the exact solution is given by

C(iμΔt) = eiμΔt ⇒ |C(iμΔt)| = 1 and arg(C(iμΔt)) = μΔt. (7.5.4)

The argument of the amplification factor, arg(C(iμΔt)), is referred to as the
phase shift. Hence in each time step there is a phase shift in the exact solution,
whereas the modulus of the exact solution does not change.

Exercise 7.5.1 Show that the complex differential equation (7.5.1) is equivalent to
the system

du
dt

= −μv

dv
dt

= μu,

(7.5.5)

where u = Re{w} and v = Im{w}. Show that |w(t)| = Constant is equivalent to
conservation of energy. �
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For the numerical method, the following relation holds

wn+1 = C(iμΔt)wn. (7.5.6)

If the modulus of the amplification factor is larger than one, the energy in-
creases in each time step. This is called amplification. Conversely, if the ampli-
fication factor is smaller than one the energy decreases. This is called dissipa-
tion.

Example 7.5.1 The modulus of the amplification factor of Euler’s method is

|C(iμΔt)| =
√

1 + (μΔt)2. (7.5.7)

Hence the amplification of the method is O(μ2(Δt)2) accurate.

The phase shift per time step of a numerical method is defined by the argu-
ment of the amplification factor, i.e.

ΔΦ = arg(C(iμΔt)) = arctan
(

Im{C}
Re{C}

)
. (7.5.8)

Remark: the last equals sign is only true if the argument is between −π
2 and

π
2 , which is the case if Δt is small enough.

Example 7.5.2 The phase shift of the improved Euler method is given by

ΔΦ = arctan

(
μΔt

1 − 1
2 (μΔt)2

)
. (7.5.9)

The phase error or dispersion is the difference between the exact and numerical
phase shifts. This is referred to as dispersion because the phase shifts differ for
the different values of μk in Equation (7.5.1).

Exercise 7.5.2 Show that the phase error of the improved Euler method per time step
is O((μΔt)3). �

The total dissipation, Dn(iμΔt), is the product of the dissipations of all the time
steps from t0 up to the end time T. The total dispersion, ΔΦn(iμΔt), is the sum
over the phase errors of all the time steps. Note that we have nΔt = T − t0.
The total dissipation and the total dispersion are measures of the error in the
numerical solution. As Δt → 0 the total dissipation should tend to 1 and the
total dispersion should tend to 0.

Exercise 7.5.3 Why do we need

lim
Δt→0

Dn(iμΔt) = 1? (7.5.10)

�
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As an illustration we calculate the total dissipation and total dispersion for the
forward Euler method:

Dn = |C(iμΔt)|n = (1 + (μΔt)2)
T−t0
2Δt . (7.5.11)

From a Taylor series of the exponential, we see that

1 ≤ Dn ≤
[
exp

(
(μΔt)2

)] T−t0
2Δt . (7.5.12)

Subsequently, from a linearization of the exponential, we get

exp
(
(μΔt)2 T − t0

2Δt

)
= 1 +O(μ2Δt). (7.5.13)

So the condition limΔt→0 Dn(iμΔt) = 1 is satisfied. For the total dispersion we
have

ΔΦn(iμΔt) = n(μΔt − ΔΦ) = n(μΔt − arctan(μΔt)) =

n(μΔt − (μΔt +O((μΔt)3))) = nO((μΔt)3) = O(μ3(Δt)2).
(7.5.14)

Note that nΔt = T − t0 and that the exact phase shift is μΔt. This has been
used in this expression. It is clear from the expression that the total dispersion
tends to zero as the time step tends to zero. In Figures 7.1 and 7.2 the total
dissipation and dispersion are plotted as a function of the time step Δt.

Figure 7.1: Total dissipation of the forward Euler method for μ = 1, T − t0 = 1.

The total dissipation Dn and total dispersion ΔΦn can be investigated for other
time integration methods as well. We leave this as an exercise to the reader.
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Δ

Figure 7.2: Total dispersion of the forward Euler method for μ = 1, T − t0 = 1.

7.6 Direct time integration of the second order sys-
tem

In principle it is not necessary to write Equation (7.2.1) as a system (7.3.1)
of two first order differential equations. A lot of methods are available to
integrate a second order differential equation of the form

d2y

dt2 = f (y, t) (7.6.1)

directly. For a comprehensive survey of numerical methods to solve this sys-
tem of second order differential equations we refer to [8]. In this course we
will treat two example schemes applied to (7.2.1):

1. Explicit scheme:

Mun+1 − 2Mun + Mun−1 = (Δt)2
(

c2Sun + fn
)

. (7.6.2)

2. Implicit scheme:

Mun+1 − 2Mun + Mun−1 =

(Δt)2

4

(
c2(Sun+1 + 2Sun + Sun−1) + fn+1 + 2fn + fn−1

)
. (7.6.3)
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Both methods are consistent of O((Δt)2) in time. These methods are referred
to as three-level schemes because they are defined as a recurrence relation in-
volving three time levels. This implies that these schemes are not self-starting:
one first has to do one step of a two-level method, such as Euler explicit:

u1 = u0 + Δtv0. (7.6.4)

Using the explicit Euler method for the first step is satisfactory, since its error
for the first step is O(Δt2).

Equations (7.6.2) and (7.6.3) are special cases of the popular Newmark-(β, γ)
scheme. This scheme is usually written in a form based on displacement u,
velocity v and acceleration a. It uses a Taylor expansion, where the higher
order terms are averaged.

The Newmark scheme reads:

un+1 = un + Δtvn +
(Δt)2

2
((1 − 2β)an + 2βan+1), (7.6.5)

vn+1 = vn + Δt((1 − γ)an + γan+1), (7.6.6)

Man+1 − c2Sun+1 = fn+1. (7.6.7)

At t = t0 we solve a0 from the equation of motion (7.6.7). In the following
steps we substitute (7.6.5) in (7.6.7) to get an equation for an+1. Finally (7.6.5)
and (7.6.6) are used to compute un+1 and vn+1.
It is possible to rewrite Newmark as a three-level scheme for the displace-
ments u:

(M − βc2(Δt)2S)un+1 − (2M + (
1
2
+ γ − 2β)c2(Δt)2S)un+

(M − (
1
2
− γ + β)c2(Δt)2S)un−1 = (Δt)2F n,

(7.6.8)

with
F n = (

1
2
− γ + β)fn−1 + (

1
2
+ γ − 2β)fn + βfn+1. (7.6.9)

Remark
At t = t0, (7.6.7) can not be used to compute a0 at boundaries with prescribed
displacements. Why not? In practice one often takes a0 = 0 in that case.
An alternative is to use a Taylor series expansion at t = t0 + Δt and to express
a0 in u0, v0, and u1 at that boundary.

Exercise 7.6.1 Prove that (7.6.8), (7.6.9) follows from (7.6.5)-(7.6.7).
Hint: Eliminate vn from (7.6.5) by using (7.6.6), and replace in the resulting equation
the index n by n − 1:

un−1 = un − Δtvn +
Δt2

2

[
(1 − 2(γ − β))an−1 + 2(γ − β)an

]
. (7.6.10)
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Add (7.6.5) and (7.6.10) to get a relation between un−1, un, un+1, an−1, an, an+1.
Then use the equation of motion (7.6.7) to eliminate an−1, an, an+1. �

Exercise 7.6.2 Show that the Newmark scheme reduces to the explicit central differ-
ence scheme (7.6.2) if β = 0 and γ = 1

2 . �

Exercise 7.6.3 Show that the Newmark scheme reduces to the implicit central differ-
ence scheme (7.6.3) if β = 1

4 and γ = 1
2 . �

Exercise 7.6.4 Show that the three-level implicit scheme (7.6.3) is identical to Crank-
Nicolson’s method for (7.3.1). (Hint: write out the steps for n and n+ 1 and eliminate
all the v’s.) Note that the first step of the three-level method should be taken with
Crank-Nicolson’s method instead of the previously mentioned Euler explicit method.
�

7.7 The CFL criterion

From the section about the numerical time integration, it is clear that the time
step plays an important role in the numerical integration. In general the time
step Δt and stepsize Δx cannot be chosen independently. This was already ob-
served for Euler’s method. In 1928 Courant, Friedrichs and Lewy formulated
a condition for the time step for the numerical solution to be a representa-
tion of the exact solution. Their condition was obtained by using a physical
argument. Commonly one refers to it as the CFL criterion. Often this CFL
condition is used in relation with stability of a numerical method. Strictly, this
is not true since the CFL criterion represents a condition for convergence. In
the following text an intuitive justification of the CFL criterion will be given.
It is possible though to derive the CFL criterion in full mathematical rigor.

The solution of the wave equation can be represented by a superposition
of linear waves, which all have a velocity c. Consider the solution at any node
xi at time tj, then, within a time interval Δt, this point source influences the
solution within the distance cΔt from position xi. Within a time interval Δt,
the solution at locations with distance larger than cΔt from xi is not influenced
by the solution at xi on tj. In this way we obtain the (analytical) forward
cone of influence of u(xi, tj). Vice versa, u(xi, tj+1) is determined by the point
sources of u(x, tj+1 − τ), where τ > 0 and |x − xi| < cτ. This leads to the
(analytical) backward cone of influence of u(xi, tj+1) usually referred to as the
(analytical) domain of dependence of u(xi, tj+1) and indicated by the grey region
in Figure 7.3. For the explicit time integration of the wave equation, the spatial
discretization is done at time tj. For the finite differences solution with one
spatial coordinate at xi on tj, one uses u(xi, tj), u(xi−1, tj) and u(xi+1, tj), i.e.

d2u
dx2

∣∣∣∣
t=tj

=
u(xi−1, tj)− 2u(xi, tj) + u(xi+1, tj)

(Δx)2 . (7.7.1)
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x

t
(xi, tj+1)

Figure 7.3: In this situation the CFL condition is satisfied because the ana-
lytical domain of dependence (the grey cone) is contained in the numerical
domain of dependence (the cone bounded by the dotted lines).

If we use explicit time integration, the recursive computation of the finite dif-
ference approximation of u(xi, tj+1) involves many grid points. The cone cor-
responding to these grid points is the numerical backward cone of influence of
u(xi, tj+1), and is usually referred to as the numerical domain of dependence of
u(xi, tj+1).

The CFL criterion of an explicit scheme for the wave equation is as follows: The
numerical domain of dependence must contain the analytical domain of dependence.

The CFL criterion guarantees that the numerical solution has access to all the
point sources that physically have an influence on this solution. In the case
of Figure 7.3, it turns out that the numerical domain of dependence is a wider
cone than the analytical domain of dependence (the grey region) and hence for
this Δt the CFL criterion is satisfied and convergence of the numerical solution
is to be expected. An example of a time step not satisfying the CFL criterion is
shown in Figure 7.4. Before we present an example showing the derivation of
the CFL criterion for an actual method, we make the following remarks.

Remarks

1. For an implicit scheme the CFL criterion is satisfied for all Δt > 0 since
the numerical solution at a point (xi, tn+1) depends on all numerical so-
lution values at the previous time level tn.

2. In the literature the analytical and numerical domain of dependence are
actually not exactly defined as a cone, but as the intersection of the cone
with the line segments on which the initial and boundary conditions are
defined. This slight difference is not essential, however, and does not
alter our conclusions.
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x

t
(xi, tj+1)

Figure 7.4: In this situation the CFL condition is violated because the analyt-
ical domain of dependence (the grey cone) is not contained in the numerical
domain of dependence (the cone bounded by the dotted lines).

We now present an example of the derivation of the CFL criterion for an actual
method:

Example 7.7.1 Consider the explicit time integration of the wave equation in one
dimension with equidistant nodes:

un+1
i − 2un

i + un−1
i =

(
cΔt
Δx

)2
(un

i+1 − 2un
i + un

i−1). (7.7.2)

The analytical domain of dependence of un+1
i is the cone with apex (xi, tn+1) and

slopes ±1/c, which consists of all points (x, t) with |x − xi| ≤ c(tn+1 − t). The
numerical domain of dependence is the cone with the same apex but with slopes ± Δt

Δx .
Hence, the CFL criterion for this case is given by Δt

Δx ≤ 1
c , which is equivalent to

cΔt
Δx

≤ 1. (7.7.3)

Exercise 7.7.1 Show that for the wave equation with one spatial coordinate, the Euler
forward method defined by

un+1
i = un

i + Δtvn
i

vn+1
i = vn

i +
c2Δt
(Δx)2 (u

n
i+1 − 2un

i + un
i−1),

(7.7.4)

can be written in the form

un+2
i − 2un+1

i + un
i =

(
cΔt
Δx

)2 (
un

i+1 − 2un
i + un

i−1
)

. (7.7.5)
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Use this last formula to determine the numerical domain of dependence, and show
that the CFL criterion is given by

cΔt
Δx

≤ 1
2

. (7.7.6)

�

Exercise 7.7.2 Show that if the first equation in (7.7.4) in Exercise 7.7.1 is replaced
by

un+1
i = un

i +
Δt
4
(vn

i−1 + 2vn
i + vn

i+1), (7.7.7)

the system can be written in the form:

un+2
i − 2un+1

i + un
i =

(
cΔt
2Δx

)2 (
un

i+2 − 2un
i + un

i−2
)

. (7.7.8)

Use this last formula to determine the numerical domain of dependence, and show
that the CFL criterion is given by

cΔt
Δx

≤ 1. (7.7.9)

�

7.8 Summary of Chapter 7

This chapter has dealt with numerical methods for the solution of the (hyper-
bolic) wave equation. The hyperbolic nature of the wave equation is impor-
tant for the nature of the numerical solutions. To solve the PDE the method
of lines has been used. It first deals with the spatial derivatives and considers
time integration of the resulting system of ODEs as a separate problem.

A direct time integration scheme for the second time derivative has also been
presented. The numerical amplification factor, which determines dissipation
and phase shift of the numerical solution, has been defined and analyzed.
Finally, the derivation of the CFL-criterion, using the concept of the (analytical
and numerical) domain of dependence in the x, t plane, has been given. This
CFL criterion is necessary for the numerical solution to be a representation of
the exact solution.
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absolute stability, 100, 107, 113
ADI method, 115
amplification, 129
amplification factor, 107, 128, 129
amplification matrix, 107
analytical domain of dependence, 133
asymptotic stability, 100

backward cone of influence, 133, 134
backward divided difference, 35
band matrix, 51
bandwidth, 51
biharmonic equation, 31
boundary conditions, 20
boundary fitted coordinates, 60
boundary layer, 27, 45, 48, 49
Boyle’s law, 29

cable equation, 33
Cauchy Schwarz inequality, 11, 15, 106
cell-centered, 69, 71
central divided difference, 35, 40, 64
CFL criterion, 133, 134
characteristic equation, 10
characteristic polynomial, 10
clamped boundary, 32
compatibility condition, 21
cone of influence, 133, 134
conservation form, 63
conservation law, 1, 8, 29, 64, 122
conservative scheme, 66
consistency, 45, 104
contraction, 91
contractive mapping, 91
control volume, 64, 69
control volume (half cell), 70, 71, 79

convection-diffusion eqn, 27, 44, 70
coordinate transformation, 60, 75
Crank-Nicolson, 106
curvilinear coordinates, 60

diagonalizable matrix, 10
diagonally dominant matrix, 55
diffusion equation, 26, 40, 63, 68, 97
directional derivative, 4
Dirichlet boundary condition, 21
discrete maximum principle, 39, 55
dispersion, 125, 129
displacements, 29–31
dissipation, 129
divergence, 5
divergence form, 63
divergence theorem, 6, 7
divergence-free, 6
domain of dependence, 133, 134
dot product, 11

eigenfrequency, 125
eigenvalue, 10
eigenvector, 10
eigenvibration, 125
elliptic, 18, 19
elliptic operator, 26, 100
energy norm, 123
equilibrium (solution), 19, 27, 97, 99
essential boundary conditions, 21
Euclidean norm, 11, 13
evolution (over time), 19
existence (of a solution), 22, 26

Fick’s Law, 4
finite difference method (FDM), 1, 33
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finite element method (FEM), 1
finite volume method (FVM), 1, 63
fixed point form, 90
fixed point iteration, 90
flux vector, 8, 9
forward cone of influence, 133
forward divided difference, 35
Fourier’s law, 4
free boundary, 32
freely supported boundary, 32

Gauss divergence theorem, 6, 7
general curvilinear coordinates, 60
Gershgorin’s theorem, 14, 109
ghost point, 83
global error, 38, 55
gradient, 2
Green’s theorem, 7

harmonic function, 24
heat conduction coefficient, 3
heat equation, 9, 18, 20, 63, 97
heat flow, 2, 9
Hessian matrix, 23
homogeneous boundary cond., 24, 50
homotopy method, 94
Hooke’s law, 30
horizontal numbering, 51
hyperbolic, 18, 19

incompressibility condition, 29, 85
incompressible flow, 6, 70, 85
indefinite matrix, 11
initial conditions, 20, 22
inner product, 11, 15, 106
interpolation (linear), 53, 57, 59
interpolation error, 59
inverse, 10
invertible matrix, 10
irreducible matrix, 56
irreducibly diagonally dominant, 56

Jacobian, 77
Jacobian matrix, 75, 77, 93, 94

kinetic boundary condition, 21

kinetic energy, 123

L-matrix, 55
Laplace operator, 22
Laplace’s equation, 19, 24
Laplacian, 22
Laplacian in general coordinates, 75
Laplacian in polar coordinates, 62, 77

mass matrix, 100, 124
material derivative, 28
matrix norm, 12, 13
maximum norm, 13
maximum principle, 23
mesh Péclet condition, 47, 49
mesh Péclet number, 45
mesh refinement, 48, 60
method of lines, 100, 115, 124
mixed boundary condition, 21
modulus of elasticity, 30
molecule, 50, 54, 70, 72

nabla, 2, 5
natural boundary conditions, 21
Navier-Stokes equations, 27
negative (semi-)definite matrix, 11
Neumann boundary condition, 21
neutrally stable, 124, 128
Newmark scheme, 132
Newton iteration, 89, 92
Newtonian fluid, 28
nodal points, 34, 50
nodes, 34, 50
nonsingular matrix, 10
numerical domain of dependence, 134

oblique numbering, 52
orthogonal matrix, 11

Péclet number, 44
parabolic, 18, 20
periodic boundary conditions, 43
phase shift, 128
phase(-shift) error, 125, 129
Picard iteration, 89, 90
plane stress, 29, 80
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Poincaré inequality, 14
Poisson’s equation, 18, 25, 26, 50
Poisson’s ratio, 30, 32
polar coordinates, 61, 62, 77
positive (semi-)definite matrix, 11
potential, 4, 26
potential energy, 123

quasi-linear PDE, 19

radiation boundary condition, 21, 79
Rayleigh quotient, 12
reducible matrix, 56
Robin boundary condition, 21

second divided difference, 34
similar matrices, 10
singul. perturbed problem, 22, 27, 44
singular matrix, 9
skewed boundary, 73
solenoidal, 6
staggered grid, 81, 82, 86
steady state, 19
stiffness matrix, 101, 124
Stokes equations, 85
strain, 30
stress tensor, 28, 81
subharmonic function, 24
super solution, 58
superharmonic function, 24
symmetric matrix, 11

Taylor’s formula, 34
time-dependent (problem), 19, 22
transient behavior, 19
transpose, 11
truncation error, 35
two component field, 80

unconditional stability, 118
uniqueness (of a solution), 20, 22
upwind differencing, 47

vector field, 5
vertex-centered, 69, 70
vertical numbering, 52

virtual point, 41, 72, 83
Von Neumann stability, 112

wave equation, 18, 19, 121
well-posedness, 100
wiggles, 46

Z-matrix, 55



Partial differential equations are paramount in mathematical modelling 
with applications in engineering and science. The book starts with a 
crash course on partial differential equations in order to familiarize the 
reader with fundamental properties such as existence, uniqueness 
and possibly existing maximum principles. The main topic of the book 
entails the description of classical numerical methods that are used to 
approximate the solution of partial differential equations. The focus is on 
discretization methods such as the finite difference, finite volume and 
finite element method. The manuscript also makes a short excursion 
to the solution of large sets of (non)linear algebraic equations that 
result after application of discretization method to partial differential 
equations. The book treats the construction of such discretization 
methods, as well as some error analysis, where it is noted that the error 
analysis for the finite element method is merely descriptive, rather than 
rigorous from a mathematical point of view. The last chapters focus on 
time integration issues for classical time-dependent partial differential 
equations. After reading the book, the reader should be able to derive 
finite element methods, to implement the methods and to judge whether 
the obtained approximations are consistent with the solution to the 
partial differential equations. The reader will also obtain these skills for 
the other classical discretization methods. Acquiring such fundamental 
knowledge will allow the reader to continue studying more advanced 
methods like meshfree methods, discontinuous Galerkin methods and 
spectral methods for the approximation of solutions to partial differential 
equations.
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