
Cognitive Technologies

Daniel Schulz
Christian Bauckhage Editors

Informed
Machine
Learning

Cognitive Technologies

Editor-in-Chief

Daniel Sonntag, German Research Center for AI, DFKI, Saarbrücken, Germany

Titles in this series now included in the Thomson Reuters Book Citation Index and
Scopus!

The Cognitive Technologies (CT) series is committed to the timely publishing
of high-quality manuscripts that promote the development of cognitive technolo-
gies and systems on the basis of artificial intelligence, image processing and
understanding, natural language processing, machine learning and human-computer
interaction.

It brings together the latest developments in all areas of this multidisciplinary
topic, ranging from theories and algorithms to various important applications. The
intended readership includes research students and researchers in computer science,
computer engineering, cognitive science, electrical engineering, data science and
related fields seeking a convenient way to track the latest findings on the founda-
tions, methodologies and key applications of cognitive technologies.

The series provides a publishing and communication platform for all cognitive
technologies topics, including but not limited to these most recent examples:

• Interactive machine learning, interactive deep learning, machine teaching
• Explainability (XAI), transparency, robustness of AI and trustworthy AI
• Knowledge representation, automated reasoning, multiagent systems
• Common sense modelling, context-based interpretation, hybrid cognitive tech-

nologies
• Human-centered design, socio-technical systems, human-robot interaction, cog-

nitive robotics
• Learning with small datasets, never-ending learning, metacognition and intro-

spection
• Intelligent decision support systems, prediction systems and warning systems
• Special transfer topics such as CT for computational sustainability, CT in

business applications and CT in mobile robotic systems

The series includes monographs, introductory and advanced textbooks, state-
of-the-art collections, and handbooks. In addition, it supports publishing in Open
Access mode.

Daniel Schulz • Christian Bauckhage
Editors

Informed Machine Learning

Editors
Daniel Schulz
Research Center Machine Learning
Fraunhofer Institute for Intelligent Analysis
and Information Systems IAIS
Sankt Augustin, Nordrhein-Westfalen,
Germany

Christian Bauckhage
Fraunhofer Institute for Intelligent Analysis
and Information Systems
Sankt Augustin, Nordrhein-Westfalen,
Germany

ISSN 1611-2482 ISSN 2197-6635 (electronic)
Cognitive Technologies
ISBN 978-3-031-83096-9 ISBN 978-3-031-83097-6 (eBook)
https://doi.org/10.1007/978-3-031-83097-6

This work was supported by Fraunhofer “Center for Machine Learning” within the Fraunhofer “Cluster
of Excellence Cognitive Internet Technologies”.

© The Editor(s) (if applicable) and The Author(s) 2025. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons license and indicate if changes
were made.
The images or other third party material in this book are included in the book’s Creative Commons
license, unless indicated otherwise in a credit line to the material. If material is not included in the book’s
Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

https://doi.org/10.1007/978-3-031-83097-6
https://doi.org/10.1007/978-3-031-83097-6
https://doi.org/10.1007/978-3-031-83097-6
https://doi.org/10.1007/978-3-031-83097-6
https://doi.org/10.1007/978-3-031-83097-6
https://doi.org/10.1007/978-3-031-83097-6
https://doi.org/10.1007/978-3-031-83097-6
https://doi.org/10.1007/978-3-031-83097-6
https://doi.org/10.1007/978-3-031-83097-6
https://doi.org/10.1007/978-3-031-83097-6
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Preface

The past decade has seen substantial progress in the field of Artificial Intelligence
(AI). This has primarily been due to the increasingly rapid developments in the
field of machine learning (ML) which, in turn, benefited from the confluence of
four technological trends: (1) availability of ever-increasing training data sets, (2)
comparatively cheap high-performance computing hardware, (3) open source code
sharing and access to software for model training or to pre-trained models, and (4)
theoretical and practical progress in deep learning and artificial neural networks. As
a consequence, there have been significant advancements, say, in natural language
processing, image/speech recognition, or autonomous systems. As a result of these
developments, AI has now made its way out of academic research into companies
and our daily lives.

Already the resulting economic impact is enormous. Practitioners in every sector,
from finance or medicine to logistics or administration, have begun using AI or
are planning for its introduction. Seemingly not a day goes by without the media
reporting on new AI applications and how these will transform economies and
societies on a level comparable to the industrial revolution.

However, there still are considerable challenges when it comes to harnessing the
full potential of AI in areas or domains outside of fully digitized industries.

A key feature of today’s cutting-edge AI technologies is their hunger for
resources. This is because modern ML models (deep neural networks) have become
incredibly large and complex and involve millions if not billions of adjustable
parameters. Their training therefore requires enormous amounts of data and con-
siderable computing infrastructures and therefore energy. Alas, in many industries
and application domains, data is still scarce or incomplete and there often is limited
access to large-scale high performance computing facilities.

But even if data availability, compute resources, and energy costs are not an
issue, model complexity may still pose challenges with respect to explainability,
accountability, or trustworthiness of AI solutions which can be dire in settings where
regulatory guidelines have to be met or safety guarantees must be ensured.

This is where the paradigm of Informed Machine Learning (Informed ML) comes
into play.

v

vi Preface

In a nutshell, the idea of Informed ML is to systematically leverage additional
prior knowledge for the design and training of data-driven AI models. The overall
goal is to use reliable background knowledge in order to, on the one hand, reduce
model complexity and the need for extensive training data and, on the other hand,
increase interpretability and explainability of the decisions made by trained models.

There are of course various possibilities for how to inject what kind of additional
knowledge into data-driven learning. It can consist of human expertise, scientific
insights, or simple common sense facts, all of which may be represented in different
forms, and these representations may enter the ML pipeline at various stages.

The contributions gathered in this volume illustrate the broad range of pos-
sibilities when working with different knowledge sources, representations, and
integration strategies. They largely assume an application-oriented perspective and
discuss working solutions for a wide range of industrial AI applications. We hope
readers will find them interesting, get an appreciation for the many practical benefits
of Informed ML, and find inspiration for their own work.

Sankt Augustin, Germany Daniel Schulz
August 2024 Christian Bauckhage

Contents

1 Introduction and Overview . 1
Christian Bauckhage, Daniel Schulz, and Laura von Rueden
1.1 Introduction to Informed Machine Learning . 1

1.1.1 Historical Context and Motivation . 2
1.1.2 Concept and Taxonomy . 3
1.1.3 Benefits. 5

1.2 Overview. 6
1.3 Summary. 11
References . 12

Part I Digital Twins

2 Optimizing Cooling System Operations with Informed ML
and a Digital Twin . 17
Steffen Wallner, Thomas Bernard, and Christian Kühnert
2.1 Introduction . 17

2.1.1 Related Work . 18
2.1.2 Informed Machine Learning for Cooling System

Optimization . 19
2.1.3 Structure. 20

2.2 Cooling System Description and Plant Operation 20
2.2.1 Components of the Cooling System . 20
2.2.2 Sensors of the Cooling System . 22
2.2.3 Analysis of the Operation Strategy . 23
2.2.4 Cooling Reserve . 24

2.3 Modeling of the Plant Using Machine Learning . 26
2.3.1 Submodels of the Cooling System . 26
2.3.2 Data Processing . 27
2.3.3 Training and Plausibility . 30
2.3.4 Recalculation of the Entire Cooling System 32

vii

viii Contents

2.4 Optimization Concept . 34
2.4.1 Variable Switchpoint Temperature . 34
2.4.2 Forecast Horizon. 35
2.4.3 Software Implementation as Assistance System 36

2.5 Conclusion and Outlook . 38
References . 39

3 AITwin: A Uniform Digital Twin Interface for Artificial
Intelligence Applications . 41
Alexander Diedrich, Christian Kühnert, Georg Maier, Joshua
Schraven, and Oliver Niggemann
3.1 Introduction . 42

3.1.1 Related Work . 43
3.2 ML/AI and the Digital Twin . 44
3.3 AI Reference Model. 47

3.3.1 Synchronized Data. 47
3.3.2 Prediction-Enabled Models . 48
3.3.3 Causalities . 50
3.3.4 The AITwin Reference Model . 52

3.4 Evaluation . 53
3.4.1 Applying AITwin to a Four Tank Model 53
3.4.2 Applying AITwin to Tennessee Eastman Process 53
3.4.3 Applying AITwin to a Quality Assurance Example 55
3.4.4 Applying AITwin to a Sensor-Based Sorting System. 55

3.5 Discussion and Future Work . 57
References . 58

Part II Optimization

4 A Regression-Based Predictive Model Hierarchy for
Nonwoven Tensile Strength Inference . 63
Dario Antweiler, Jan Pablo Burgard, Marc Harmening, Nicole
Marheineke, Andre Schmeißer, Raimund Wegener, and Pascal Welke
4.1 Introduction . 64

4.1.1 Literature Overview . 65
4.1.2 New Regression-Based Predictive Model Hierarchy 66
4.1.3 Structure. 67

4.2 First Principle Oriented Model Chain for Dataset Generation 68
4.2.1 Fiber Graph Generation and Tensile Strength

Simulation . 68
4.2.2 Production Process Class . 70
4.2.3 Stress-Strain Curve Class . 72
4.2.4 Fiber Graph Features . 73
4.2.5 Dataset . 74

Contents ix

4.3 Linear Regression-Based Predictive Models . 76
4.3.1 Linear Regression and Monte Carlo Simulations 77
4.3.2 Numerical Results . 79

4.4 Sequential Predictive Regression Model . 82
4.4.1 Coupled Polynomial Regression and

Errors-In-Variabels Model . 83
4.4.2 Numerical Results . 85

4.5 Conclusion and Future Work . 88
References . 88

5 Machine Learning for Optimizing the Homogeneity of
Spunbond Nonwovens . 91
Viny Saajan Victor, Andre Schmeißer, Heike Leitte, and Simone
Gramsch
5.1 Introduction . 92
5.2 Related Work . 94
5.3 Machine Learning-Based Optimization Workflow Using

Simulation Models . 95
5.3.1 Parameter Selection . 96
5.3.2 Data Collection with Knowledge Integration 98
5.3.3 Model Selection . 101
5.3.4 Training and Testing . 106
5.3.5 Homogeneity Optimization with Human Validation 107

5.4 Experiments . 108
5.4.1 Models Evaluation Based on the Accuracy 108
5.4.2 Models Evaluation Based on Computational

Performance. 109
5.5 Conclusion . 111
References . 111

6 Bayesian Inference for Fatigue Strength Estimation 113
Dorina Weichert, Elena Haedecke, Gunar Ernis, Sebastian Houben,
Alexander Kister, and Stefan Wrobel
6.1 Introduction . 115
6.2 Background . 116

6.2.1 Fatigue Testing. 116
6.2.2 Experimental Procedure and Analysis of the

Staircase Method . 117
6.2.3 Related Work . 121

6.3 Informed Fatigue Strength Estimation . 122
6.3.1 Overview of Approach . 122
6.3.2 Machine Learning Model . 124
6.3.3 Bayesian Inference on the Distribution Parameters 126
6.3.4 Details on the Overall Experimental Procedure 129

6.4 Validation of Approach . 130
6.5 Conclusion . 132
References . 132

x Contents

7 Incorporating Shape Knowledge into Regression Models 135
Miltiadis Poursanidis, Patrick Link, Jochen Schmid, and Uwe Teicher
7.1 Introduction . 135
7.2 Related Work . 138
7.3 Methods . 139

7.3.1 SIASCOR . 139
7.3.2 ISI . 141

7.4 Application Examples . 143
7.4.1 Press Hardening . 144
7.4.2 Brushing . 146
7.4.3 Milling . 148

7.5 Synthetic Example . 151
7.6 Conclusion . 153
References . 155

Part III Neural Networks

8 Predicting Properties of Oxide Glasses Using Informed
Neural Networks . 161
Gregor Maier, Jan Hamaekers, Dominik-Sergio Martilotti, and
Benedikt Ziebarth
8.1 Introduction . 162

8.1.1 Related Work . 162
8.1.2 Contributions . 163

8.2 Methodology . 164
8.2.1 Data Collection and Preparation . 164
8.2.2 Model Setups . 167
8.2.3 Model Training and Evaluation . 175

8.3 Results and Discussion . 181
8.4 Conclusion and Outlook . 183
References . 183

9 Graph Neural Networks for Predicting Side Effects and New
Indications of Drugs Using Electronic Health Records 187
Jayant Sharma, Manuel Lentzen, Sophia Krix, Thomas Linden,
Sumit Madan, Van Dinh Tran, and Holger Fröhlich
9.1 Introduction . 188
9.2 Methods . 190

9.2.1 Overview About Data . 190
9.2.2 Code Normalization and Mapping . 190
9.2.3 Initial Knowledge Graph Construction . 191
9.2.4 Extended Knowledge Graph Construction 191
9.2.5 Relation Aware Graph Attention Networks 193
9.2.6 Evaluation against Alternative Methods 195
9.2.7 Performance Measures . 195

Contents xi

9.3 Results . 196
9.3.1 Performance Comparison . 197
9.3.2 Use Case: Trazodone in the Treatment of Bipolar

Disorder . 198
9.3.3 Predicted Side Effects of Marketed Drugs 200

9.4 Discussion . 201
9.5 Conclusion . 202
References . 202

10 On the Interplay of Subset Selection and Informed Graph
Neural Networks . 207
Niklas Breustedt, Paolo Climaco, Jochen Garcke, Jan Hamaekers,
Gitta Kutyniok, Dirk A. Lorenz, Rick Oerder, and Chirag Varun
Shukla
10.1 Introduction . 208
10.2 Related Work . 210
10.3 Methods and Sampling Strategies . 212

10.3.1 SchNet. 212
10.3.2 Kernel Ridge Regression . 213
10.3.3 Spatial 3-Hop Convolution Network . 214
10.3.4 Graph Rate-Distortion Explanations . 216
10.3.5 Sampling Strategies . 218

10.4 Numerical Experiments . 219
10.4.1 QM9 Dataset . 219
10.4.2 SchNet. 223
10.4.3 Kernel Ridge Regression . 224
10.4.4 Spatial 3-Hop Convolution Network . 226
10.4.5 Explanation . 227

10.5 Conclusion . 228
References . 229

11 Informed Machine Learning Aspects for the Multi-Agent
Neural Rewriter. 235
Nathalie Paul, Tim Wirtz, Stefan Wrobel, and Alexander Kister
11.1 Introduction . 235
11.2 Related Work . 238

11.2.1 Informed Machine Learning . 239
11.3 Multi-Agent Neural Rewriter (MANR) . 240

11.3.1 Problem Definition . 241
11.3.2 Game Design. 241
11.3.3 Game Workflow . 243
11.3.4 Game Implementation . 244

11.4 Empirical Evaluation . 249
11.4.1 Data Generation . 249
11.4.2 Experiment Results for the MANR . 251
11.4.3 Transfer Learning Investigations. 254

xii Contents

11.5 Conclusion . 259
References . 259

Part IV Hybrid Methods

12 Training Support Vector Machines by Solving Differential
Equations . 265
Christian Bauckhage and Rafet Sifa
12.1 Introduction . 265

12.1.1 Overview . 267
12.1.2 Mathematical Notation . 267

12.2 Setting the Stage. 267
12.2.1 L2 Support Vector Machines . 268
12.2.2 Invoking the Kernel Trick . 270
12.2.3 A Baseline Training Algorithm . 270

12.3 Gradient Flows for L2 SVM Training . 271
12.4 Practical Examples . 272
12.5 Conclusion . 277
References . 281

13 Informed Machine Learning to Maximize Robustness and
Computational Performance of Linear Solvers . 285
Sebastian Gries
13.1 Introduction . 286
13.2 Short Overview on Linear Solvers in Numerical Simulations 289
13.3 Genetic Optimization of Parameters with Tree Hierarchy 291
13.4 Pre-evolution via Surrogate Learning Model . 293
13.5 Online vs. Offline Training . 295
13.6 Reproducibility . 296
13.7 Controlling Solver Setup Reusage. 298
13.8 Results: Informed Machine Learning for Linear Solver

Parameters in Various Practical Applications . 299
13.8.1 Mere Parameter Optimization: Single Reservoir

Simulation Problems . 299
13.8.2 Parameter Optimization: Linear Elasticity Problem 301
13.8.3 Setup Reusage: Sequence of Reservoir

Simulation Problems . 302
13.8.4 Full Simulation Result: Reservoir Application

(SPE10) . 304
13.8.5 Full Simulation Result: Groundwater Application 305
13.8.6 Full Simulation Result: Computational Fluid

Dynamics Application . 305
13.8.7 Full Simulation Result: Battery Aging Simulation 308

13.9 Conclusions and Future Research . 309
References . 309

Contents xiii

14 Anomaly Detection in Multivariate Time Series Using
Uncertainty Estimation . 313
Moritz Müller, Gunar Ernis, and Michael Mock
14.1 Introduction . 313
14.2 Background and Related Work . 315

14.2.1 Problem Formulation and Anomaly Categorization 315
14.2.2 Unsupervised Anomaly Detection . 317
14.2.3 Bayesian Neural Networks . 317
14.2.4 Related Work . 319

14.3 Detecting Anomalies in Time Series Using Uncertainty
Estimation . 320
14.3.1 Window Processing and Forecast Modelling 320
14.3.2 Formalization of Multivariate Anomaly Detection 322
14.3.3 Anomaly Scoring . 322
14.3.4 Anomaly Threshold Fitting . 324

14.4 Experimental Setup and Evaluation . 326
14.4.1 Skoltech Anomaly Benchmark Data Set 326
14.4.2 Experimental Hyperparameters . 327
14.4.3 Evaluation Metrics. 329
14.4.4 Discussion of Utilized Anomaly Detection Metrics 329
14.4.5 Experimental Results and Analysis . 330

14.5 Discussion of Experimental Results . 333
14.5.1 Quantile Based Threshold Versus Tabulated

Control Limits . 334
14.5.2 Competitiveness to Recent Work . 337

14.6 Conclusion . 337
References . 337

Chapter 1
Introduction and Overview

Christian Bauckhage, Daniel Schulz, and Laura von Rueden

Abstract Informed Machine Learning (Informed ML) refers to the idea of injecting
additional prior knowledge into data-driven learning systems. Such knowledge can
be given in various forms such as scientific equations or logic rules which provide
relevant information about a problem domain or task at hand. Integrating prior
knowledge at various stages of the machine learning pipeline can help to improve
generalization and trustworthiness. Specifically, Informed ML can help to train
models when training data is scarce or to ensure conformity with regulations or
safety demands.

In this introductory chapter, we briefly explain the concept of Informed ML,
provide an overview of the chapters in this book, and categorize the contributed
research and results with respect to a taxonomy of Informed ML.

1.1 Introduction to Informed Machine Learning

Over the past couple of years, Artificial Intelligence (AI) has finally found its way
into the consciousness of a wider public and into the reporting of the mainstream
media. On the one hand, this is not surprising as the capabilities of modern
(generative) AI tools are astounding and will likely disrupt societies and economies.
On the other hand, we said “finally” because the scientific discipline of AI has a
long and venerable history which largely went unnoticed except by its practitioners,
science fiction authors, and filmmakers. Yet, a brief look at this history can provide
context and motivation for what this book on Informed Machine Learning is all
about.

C. Bauckhage · D. Schulz (✉) · L. von Rueden
Fraunhofer IAIS, Sankt Augustin, Germany
e-mail: christian.bauckhage@iais.fraunhofer.de; daniel.schulz@iais.fraunhofer.de;
laura.von.rueden@iais.fraunhofer.de

© The Author(s) 2025
D. Schulz, C. Bauckhage (eds.), Informed Machine Learning,
Cognitive Technologies, https://doi.org/10.1007/978-3-031-83097-6_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-83097-6protect T1	extunderscore 1&domain=pdf

 885 55738 a 885 55738 a

mailto:christian.bauckhage@iais.fraunhofer.de
mailto:christian.bauckhage@iais.fraunhofer.de
mailto:christian.bauckhage@iais.fraunhofer.de
mailto:christian.bauckhage@iais.fraunhofer.de

 16332 55738 a 16332
55738 a

mailto:daniel.schulz@iais.fraunhofer.de
mailto:daniel.schulz@iais.fraunhofer.de
mailto:daniel.schulz@iais.fraunhofer.de
mailto:daniel.schulz@iais.fraunhofer.de

 -2016 56845 a -2016 56845 a

mailto:laura.von.rueden@iais.fraunhofer.de
mailto:laura.von.rueden@iais.fraunhofer.de
mailto:laura.von.rueden@iais.fraunhofer.de
mailto:laura.von.rueden@iais.fraunhofer.de
mailto:laura.von.rueden@iais.fraunhofer.de
https://doi.org/10.1007/978-3-031-83097-6_1
https://doi.org/10.1007/978-3-031-83097-6_1
https://doi.org/10.1007/978-3-031-83097-6_1
https://doi.org/10.1007/978-3-031-83097-6_1
https://doi.org/10.1007/978-3-031-83097-6_1
https://doi.org/10.1007/978-3-031-83097-6_1
https://doi.org/10.1007/978-3-031-83097-6_1
https://doi.org/10.1007/978-3-031-83097-6_1
https://doi.org/10.1007/978-3-031-83097-6_1
https://doi.org/10.1007/978-3-031-83097-6_1
https://doi.org/10.1007/978-3-031-83097-6_1

2 C. Bauckhage et al.

1.1.1 Historical Context and Motivation

Ideas for computational intelligence date back to the 1940s when the first electronic
computers became available, and people began researching how to equip these
“electronic brains” with thinking capabilities. The roots of Machine Learning
(ML) date back to this time, too: McCulloch and Pitts devised a mathematical
model of neural computation in 1943, Turing coined the term Machine Learning
in his 1948 work on “learning machinery”, Hebb thought of associative learning
in 1949, and Rosenblatt introduced perceptron learning in 1957. Despite this
immediate appearance of the idea of (neural) learning systems, early AI research
was dominated by methods based on symbolic logic and logical inference. In the
1950s, pioneers like Shannon, McCarthy, or Minsky thought about computer chess,
logical programming languages, and automated theorem proving. The 1960s saw the
emergence of knowledge-based systems, the development of a rule-based chatbot
(Weizenbaum’s ELIZA) and, importantly, the publications of a book by Minsky
and Pappert which was largely read as a discouragement of further neural networks
research. Indeed, AI research in the 1970s was dominated by work on rule- or
knowledge-based expert systems and neurocomputing resurfaced only in the 1980s
when the back-propagation algorithm was independently discovered several times
and finally allowed for a consistent, data-driven training neural network models.

In the 1990s, there were thus two major paradigms: knowledge-based deduction
which largely relied on hand-crafted rules for planning and decision making and
example- or data-driven learning which often involved features engineered by
experts and was mainly used for pattern recognition. Both approaches worked
reasonably well at the time (albeit not well enough for the public to take notice)
but seemed to be irreconcilable. Indeed, there were numerous issues pertaining
to the problem of the semantic gap between observations (data) and symbolic
representations (abstract concepts and their relations) and the question of whether
learning-based systems can perform symbolic inference.

These issues remained unresolved until the late 2000s when the availability of
massive amounts of data (on the Web), affordable high-performance computing
(GPUs), and open-source libraries for neural network training kickstarted what
has become known as the deep learning revolution. Ever since, the remarkable
capabilities of large-scale end-to-end machine learning models across a wide range
of domains, such as computer vision, speech recognition, text understanding, or
gaming, have become common lore [4, 14, 19, 31, 34] and deep neural networks
have begun to revolutionize engineering and the sciences [6, 7, 20].

These achievements are rooted in systematic big data analysis which allows
learning algorithms to draw insights from- or identify pattern in billions of
(input/output) examples. However, these achievements also come at a cost.

First, modern (foundation) models require massive amounts of data and compute
resources for their training. These are not always available or at least not to
everybody. Moreover, insufficient data can hinder the training of well-performing
and generalizing models and miss out on constraints or easily explained facts such

1 Introduction and Overview 3

as those imposed by natural laws or regulatory guidelines, which are essential for
ensuring trustworthy Artificial Intelligence (AI) [5].

Second, as machine learning models are becoming more and more complex,
demands for explainability and trustworthiness are growing [29]. This poses a
challenge for deep learning solutions as massive neural networks are essentially
black boxes whose internal decision making processes involving several billions of
adjustable parameters are largely intractable even to experts in the field.

This has spurred research into enhancing machine learning models through by
means of hybrid approaches which integrating reliable prior knowledge into the
data-driven learning process. While one could argue that such an integration of
knowledge into learning is common through techniques such as example selection,
data labelling, or feature engineering, hybrid learning is supposed to go beyond such
measures and to incorporate more profound knowledge and formal representations.

For instance, researchers have explored the inclusion of logic rules [10, 40] and
algebraic equations [18, 32] as a means of constraining loss functions. Another
example are knowledge graphs which have been utilized to equip neural networks
with information about relationships between instances, particularly relevant in
image classification [17, 23]. Last but not least, physical simulations are now playing
an increasingly important role in enriching training data [8, 21, 27].

To refer to these methods under a single umbrella term, the designation
“Informed Machine Learning” (Informed ML) has been proposed [36]. This concept
describes the systematic fusion of data-driven and knowledge-driven approaches
and is gaining momentum as an avenue for further advancements in Artificial
Intelligence.

1.1.2 Concept and Taxonomy

From a very abstract point of view, the main idea of Informed ML is to inject
additional prior knowledge into data-driven learning as illustrated in Fig. 1.1.

Such prior knowledge is usually specific to the application context and task at
hand. For example, fundamental, well established scientific- or medical knowledge
can inform the modeling process for applications in the domains of material science
or healthcare (e.g., Chaps. 8 and 9 of this volume). Basic knowledge like this
often exists independently and in parallel to the practically gathered data samples a
machine learning system uses for training and thus constitutes a valuable additional
source of information.

Knowledge about an application context or domain is often available as formal
representations like (logic) rule bases, equations describing insights in the natural
sciences, or knowledge graphs. For example, in Chap. 8, scientific equations from
material sciences are used and, in Chap. 9, a knowledge graph is used to improve
healthcare analytics.

In Informed ML approaches, such formalized representations of prior knowledge
are injected into the ML pipeline. In general, this can happen at various stages

4 C. Bauckhage et al.

Fig. 1.1 Schematic illustration of where data independent, prior knowledge can be integrated into
the machine learning pipeline. Diagram adapted from [36]

of this pipeline. Knowledge can, for instance, inform the selection of training
data, the design of the model architecture, the choice of learning algorithm, or the
final model. Further dimensions for categorizing Informed ML approaches are the
sources for- and the representations of additional knowledge. The former can be
scientific facts and known laws of nature, general world knowledge about history,
politics, economy, society and the like, or specific expert knowledge about, say,
organizations, products, or markets. The latter typically comprise representations
in form of algebraic equations, differential equations, logic rules, invariances,
probabilistic relations, knowledge graphs, or simulations of real world phenomena.

Being conceptualized this broadly, InformedML therefore includes more specific
paradigms such as Neuro-Symbolic ML [11, 15, 16] or Neuro-Mechanistic ML
[12, 25] which—as their names suggest—focus on hybrid modeling centered
around neural networks. Indeed, the above three dimensions of knowledge source,
knowledge representation, and knowledge integration are deliberately general and
have been used to devise a taxonomy of the field of Informed ML [36]. It resulted
from an extensive literature survey of more than 150 scientific reports on hybrid
learning and allows for a more fine-grained categorization of how different solutions
or frameworks integrate knowledge into various data-driven learning approaches.
For instance, Table 1.1 shows how the different chapters of this book can be
categorized with respect to this taxonomy.

Looking at this table, it becomes apparent that there exists a wide spectrum
of combinations of knowledge sources and representations and stages where
knowledge is integrated into the machine learning pipeline. This naturally goes
hand in hand with a variety of system designs and processing modules which
seems to be in stark contrast to modern end-to-end learning systems which may
have different (neural) architectures but are fairly standardized when it comes to
information processing and information flow. The obvious question is then what are
the particular benefits that make it worthwhile to design and apply Informed ML
systems?

1 Introduction and Overview 5

1.1.3 Benefits

One of the main benefits of Informed ML is that the use of additional knowledge
about what is to be learned can allow for reducing the number adjustable parameters
(degrees of freedom) of a machine learning model as well as for restricting the
ranges of parameter values; in short, it can help to reduce model sizes and restrict
search spaces.

This is of particular interest in practical settings where training data is scarce
as the generalization capabilities of very large models typically correlate with the
amount of data they have processed during training. At first sight, it seems peculiar
to point to situations where data is scarce; after all, we are living in the age of (very)
big data and modern foundation models are now being trained on data sets in the
petabyte range. However, not all industries and organizations that want to enhance
production and business with Artificial Intelligence have such massive data at their
disposal. On the contrary, hardly any player outside of the IT sector has access to
such vast amounts of data and not everybody can fine-tune available foundation
models to their needs. Put differently, lack of data can prevent modern general
purpose architectures from generalizing well and performing reliably. Problem
specific informed architectures, on the other hand, may achieve these goals from
training with substantially less data.

Similar aspects of where Informed ML may lead to improvements are of
economical and environmental nature. While modern foundation models whose
hundreds of billions of parameters are trained on vast amounts of (multi-modal) data
are capable of remarkable feats, there are growing concerns as to the sustainability
of this current paradigm. On the one hand, the energy demands for transformer-
model training have reached levels which are difficult to justify in times of global
warming [39]. On the other hand, there now are signs of diminishing returns of
training ever ore complex models with ever growing data sets [33].

Again, an appropriate use of additional knowledge for tailoring learning systems
to specific contexts or resources may lead to smaller models with reduced training
efforts and thus reduced energy consumption. Moreover, it may even lead to novel
training procedures or algorithms which could run on resource efficient hardware
such as, say, FPGAs or reemerging analog computers. An example for the latter
is found in Chap. 12 which proposes to train simple classifier by means of solving
differential equations in a manner that could be implemented using energy efficient
analog circuits.

Finally, there are the aspects of explainability, accountability, and trustworthiness
of AI models and their alignment with human intention. We all have heard anecdotes
of hallucinating large language models or of vision systems which recognize, say,
trains because they learned and trains and railroad tracks go together and implicitly
infer trains from the presence of tracks. Then there are reinforcement learning
systems which were supposed to determine train schedules with minimal risk of
accidents and concluded that the best way of avoiding train collisions is not to
have trains riding at all. While these examples are silly, they illustrate the potential

6 C. Bauckhage et al.

(or, more daringly, the “importance”) of informed learning: fact checking against
knowledge bases, carefully curated training data, or expertly formulated learning
goals, i.e. the integration of knowledge at different stages of the ML pipeline, can
circumvent issues like these.

It is obvious that AI solutions for real world applications in most industrial
sectors must be reliable and their decisions must be in line with regulatory guidelines
and the kind of reasoning that is explainable to- or interpretable by human experts.
Modern end-to-end deep learning poses challenges in these regards. Decisions made
by purely data-driven models with (hundreds of) billions of parameters are typically
opaque and hardly ever tractable and can lead to unintended results in down-stream
processing. This, in turn, may cause accidents or costly mistakes or may even
prevent the use of learning-based AI in scenarios where there are legal requirements
with respect to the transparency of decision making processes. Informed ML with
knowledge-driven models (as in Chap. 4) or knowledge-based data augmentation
(as in Chap. 10) can circumvent such shortcomings.

1.2 Overview

Above, we emphasized that Informed Machine Learning approaches are typically
tailored to specific contexts or problem domains so that there exists a plethora of
knowledge-integration methods. The Informed Machine Learning taxonomy in [36]
systematically structures the vast landscape of hybrid techniques which integrate
data- and knowledge-driven models using the broad categories of knowledge source,
knowledge representation, and knowledge integration. These, in turn, are further
refined into fifteen subcategories (see Table 1.1) so that the taxonomy covers a wide
spectrum of combinations of knowledge sources, representations, and integration
strategies. The contributions gathered in this volume emphatically illustrate the
variety of possibilities. They report applied- and basic research on Informed
Machine Learning and account for various methodologies and the kinds of results
they allow for. In the following, we provide a short overview over the chapters of this
book and classify their contributions according to the Informed Machine Learning
taxonomy as summarized in Table 1.1. Furthermore, we sorted and arranged all
chapters after the methods they rely on respectively their area of application. This
results into four parts, namely “Digital Twins”, “Optimization”, “Neural Networks”
and “Hybrid Methods”.

Part I: Digital Twins
In Chap. 2, Wallner et al. [37] are concerned with energy optimal climate control
(cooling) for data centers, industrial plants, or office buildings. They describe how
to generate data-driven digital twins for cooling systems which can predicting
the effects of adjusting control parameters and, when combined with monitoring
capabilities, allow operators to make informed decisions for adjustments. Their

Ta
bl
e
1.
1

O
ve
rv
ie
w
 o
f
bo
ok
 p
ar
ts
 a
nd
 c
ha
pt
er
s.
 E
ac
h
ch
ap
te
r
em

pl
oy
s
a
di
ff
er
en
t I
nf
or
m
ed
 M

L
 s
tr
at
eg
y.
 W

e
ca
te
go
ri
ze
 th

em
 w
ith

 r
es
pe
ct
 to

 th
e
ta
xo
no
m
y
in
 [
36

],
 w
hi
ch

co
ns
id
er
s
kn
ow

le
dg
e
so
ur
ce
s,
 k
no
w
le
dg
e
re
pr
es
en
ta
tio

n,
 a
nd
 s
ta
ge
s
w
he
re
 k
no
w
le
dg
e
is
 in

te
gr
at
ed
 in

to
 th

e
M
L
 p
ip
el
in
e

In
fo
rm

ed
 M

L
 a
pp
ro
ac
h

So
ur
ce

R
ep
re
se
nt
at
io
n

In
te
gr
at
io
n

Sc
ie
nt
ifi
c

W
or
ld

E
xp
er
t

A
lg
eb
ra
ic

D
if
fe
re
nt
ia
l

Si
m
ul
at
io
n

Sp
at
ia
l

L
og

ic

K
no
w
le
dg

e
Pr
ob

ab
ili
st
ic

H
um

an

T
ra
in
in
g

H
yp

ot
he
si
s

L
ea
rn
in
g

Fi
na
l

Pa
rt

C
ha
pt
er

kn
ow

le
dg

e
kn

ow
le
dg

e
kn

ow
le
dg

e
eq
ua
tio

ns

eq
ua
tio

ns

re
su
lts

in
va
ri
an
ce
s

ru
le
s

gr
ap
hs

re
la
tio

ns
fe
ed
ba
ck

da
ta

se
t

al
go

ri
th
m

hy
po
th
es
is

D
ig
ita

l T
w
in
s

2
O
pt
im

iz
in
g
C
oo

lin
g
Sy

st
em

✓
✓

✓
✓

O
pe
ra
tio

ns
 w
ith

 I
nf
or
m
ed

M
L
 a
nd

 a
 D
ig
ita

l T
w
in

3
A
IT
w
in

-
A
 U
ni
fo
rm

 D
ig
ita

l
✓

✓
✓

✓
✓

Tw

in
 I
nt
er
fa
ce
 f
or
 A
rt
ifi
ci
al

In
te
lli
ge
nc
e
A
pp

lic
at
io
ns

O
pt
im

iz
at
io
n

4
A
 R
eg
re
ss
io
n-
B
as
ed
 P
re
di
ct
iv
e

✓
✓

✓
✓

✓
✓

M
od
el
 H
ie
ra
rc
hy
 f
or

N
on

w
ov
en
 T
en
si
le
 I
nf
er
en
ce

5
M
ac
hi
ne
 L
ea
rn
in
g
fo
r
O
pt
im

iz
in
g

✓
✓

✓
✓

✓

th
e
H
om

og
en
ei
ty
 o
f

Sp
un
bo
nd
 N
on
w
ov
en
s

6
B
ay
es
ia
n
In
fe
re
nc
e
fo
r
Fa
tig

ue
✓

✓
✓

St
re
ng

th
 E
st
im

at
io
n

7
In
co
rp
or
at
in
g
Sh

ap
e
K
no
w
le
dg
e

✓
✓

✓
✓

in
to
 R
eg
re
ss
io
n
M
od
el
s

(c
on
tin

ue
d)

Ta
bl
e
1.
1

(c
on
tin

ue
d)

In
fo
rm

ed
 M

L
 a
pp
ro
ac
h

So
ur
ce

R
ep
re
se
nt
at
io
n

In
te
gr
at
io
n

Sc
ie
nt
ifi
c

W
or
ld

E
xp
er
t

A
lg
eb
ra
ic

D
if
fe
re
nt
ia
l

Si
m
ul
at
io
n

Sp
at
ia
l

L
og

ic

K
no
w
le
dg

e
Pr
ob

ab
ili
st
ic

H
um

an

T
ra
in
in
g

H
yp

ot
he
si
s

L
ea
rn
in
g

Fi
na
l

Pa
rt

C
ha
pt
er

kn
ow

le
dg

e
kn

ow
le
dg

e
kn

ow
le
dg

e
eq
ua
tio

ns

eq
ua
tio

ns

re
su
lts

in
va
ri
an
ce
s

ru
le
s

gr
ap
hs

re
la
tio

ns
fe
ed
ba
ck

da
ta

se
t

al
go

ri
th
m

hy
po
th
es
is

N
eu
ra
l

8
Pr
ed
ic
tin

g
Pr
op

er
tie

s
of
 O
xi
de

✓
✓

✓
✓

✓
✓

✓
✓

N
et
w
or
ks

G
la
ss
es
 U
si
ng
 I
nf
or
m
ed

N
eu
ra
l N

et
w
or
ks

9
G
ra
ph
 N
eu
ra
l N

et
w
or
ks
 f
or

✓
✓

✓
✓

Pr
ed
ic
tin

g
Si
de
 E
ff
ec
ts
 a
nd

In
di
ca
tio

ns
 o
f
D
ru
gs
 U
si
ng

..
.

10

O
n
th
e
In
te
rp
la
y
of
 S
ub

se
t

✓
✓

✓
✓

✓
✓

Se

le
ct
io
n
an
d
In
fo
rm

ed

G
ra
ph

 N
eu
ra
l N

et
w
or
ks

11

In
fo
rm

ed
 M

ac
hi
ne
 L
ea
rn
in
g

✓
✓

✓

A
sp
ec
ts
 f
or
 th

e
M
ul
ti-
A
ge
nt

N
eu
ra
l R

ew
ri
te
r

H
yb

ri
d

12

T
ra
in
in
g
Su

pp
or
t V

ec
to
r

✓
✓

M
et
ho
ds

M
ac
hi
ne
s
by
 S
ol
vi
ng

D
if
fe
re
nt
ia
l E

qu
at
io
ns

13

In
fo
rm

ed
 M

ac
hi
ne
 L
ea
rn
in
g
to

✓
✓

✓
✓

✓
✓

M
ax
im

iz
e
R
ob
us
tn
es
s
an
d

C
om

pu
ta
tio

na
l P

er
fo
rm

an
ce
..
.

14

A
no

m
al
y
D
et
ec
tio

n
in
 M

ul
ti-

✓
✓

✓
✓

✓

va
ri
at
e
T
im

e
Se
ri
es
 U
si
ng

U
nc
er
ta
in
ty
 E
st
im

at
io
n

1 Introduction and Overview 9

solution involves the formalization of expert knowledge, the use of rules and human
feedback, and simulated training data.

In Chap. 3, Diederich et al. [9] observe that cyber-physical systems with AI
and/or earning components rely on a virtual representation of the underlying
real physical system but that different practitioners may opt for different virtual
representations. They therefore argue for standardized digital twins and present a
corresponding API which takes into account different levels of modeling granu-
larity informed by expert knowledge. Case studies with simulated and real-world
examples from industrial process and manufacturing demonstrate the potential of
this digital twin framework for AI-based solutions in industry.

Part II: Optimization
In Chap. 4, Antweiler et al. [1] focus on a prediction task whose application can
be found in practical materials science. In particular, they address the problem
of in the context of simulation-based design of non-woven textiles which, to this
day, still requires considerable compute resources. They propose a predictive model
hierarchy for inferring non-woven tensile strengths behavior which leverages linear
or polynomial regression models whose predictions are interpretable to human
experts. They find that scientific- and expert knowledge encoded in equations and
simulation modules and integrated into the data acquisition and hypothesis class
selection stages of the ML pipeline allows for significant speedup over conventional
simulations while achieving very reliable results.

Victor et al. [35] report another industrial application of Informed ML from
the same sector as in Chap. 4. Their contribution in Chap. 5 describes a learning-
based optimization workflow in textile production that improves the homogeneity
of spunbond nonwoven products. Their solution involves general scientific- and
specific expert knowledge which allows for informed simulations and, consequently,
informed training data acquisition.

Weichert et al. [38] present further work on predicting material properties in
Chap. 6. They are concerned with the long life fatigue strength of metals which
is costly to determine by means of experimental measurements. They therefore
propose a ready-to-use experimental and analysis procedure which involves proba-
bilistic learning methods. Their system connects expert knowledge about material
behaviors and test setups with historical and newly generated data and achieves the
same precision as standard experimental procedures albeit at considerably lower
costs.

In a more theory oriented contribution in Chap. 7, Poursanidis et al. [28]
show that shape knowledge such as monotonicity or convexity of functions can
compensate for insufficient training data. They consider the training of shape-
constrained regression models and propose an adaptive feasible-point algorithm
which guarantees optimality up to arbitrary precision while being faithful to the
constraints. In other words, their work incorporates scientific- and expert knowl-
edge encoded in equations which informs the learning algorithm. Experimental
evaluations with respect to manufacturing applications with scare training data show

10 C. Bauckhage et al.

that this leads to better generalizing and better performing models than purely data
driven approaches.

Part III: Neural Networks
Chapter 8 was contributed by Maier et al. [22] who also consider a practical
application in material science. In particular, they observe that Machine Learning
of the composition-property relationship of glasses promises to save on expensive
trial-and-error approaches in the design stage. They further observe that, despite
their considerable sizes, existing datasets on the composition of glasses and their
properties only cover only a minuscule fraction of the space of all possible glass
compositions. They therefore propose a neural network model which incorporates
prior scientific and expert knowledge in various representations into various stages
of the learning pipeline. Extensive empirical evaluations show that it achieves results
which are consistently better than those of corresponding uninformed models.

In Chap. 9, Sharma et al. [30] are concerned with AI assisted drug development
and note that existing learning-based solutions for drug repositioning and side effect
prediction large rely on pre-clinical data not really representative for of the real-
world situation faced by patients. They therefore work with knowledge graphs
based on diagnoses, prescriptions and diagnostic procedures found in repositories of
health records and related scientific databases and show that graph neural networks
based on such representations allow for an accurate and interpretable prediction
of indications and side effects which underlines the potential of Informed ML in
healthcare.

In Chap. 10, Breustedt et al. [3] address the problem of predicting properties of
molecules and observe that learning with large sets of chemical compound data
is still very much limited due to lacking computational resources and missing
label information. They therefore discuss the use of domain knowledge in form of
equations, simulations, and invariances when training models for predicting atomic
energies. Their approach allows them to maximize molecular diversity in training
data selection and they introduce a model-agnostic explainer component for graph
neural networks based on the rate-distortion explanation framework.

In Chap. 11, Paul et al. [26] use expert knowledge to inform team-optimal
policy learning in an agent system for multi-vehicle routing. Their multi-agent
reinforcement learning algorithm extends single-vehicle routing solutions through
a neural rule rewriter which iteratively rewrites possible solutions and, in the end,
enables agents to act and interact in a parallel and conflict-free manner.

Part IV: Hybrid Methods
In Chap. 12, Bauckhage and Sifa [2] turn the idea of Physics Informed Machine
Learning on its head and consider classifier training by means of differential
equation solving. They thus approach one of the most fundamental machine learning
problems from a direction which has the potential for implementations on energy
efficient hardware (analog computers) and thus hint at how Informed ML may
addresses sustainability concerns.

1 Introduction and Overview 11

In Chap. 13, Gries [13] focuses on learning algorithms, too. He shows how to
apply methods of evolutionary- and surrogate learning for optimizing the numerous
fine-grained control parameters of state-of-the-art linear solvers for numerical
simulations. This way, he leverages expert knowledge provided in terms of equa-
tions, simulations, and feedback and integrates it into hypothesis formulation and
learning algorithms. Practical benefits for complex simulations are demonstrated for
industrial use cases ranging from fluid dynamics and geological simulations towards
structural mechanics and battery aging predictions.

Finally, in Chap. 14, Müller et al. [24] are concerned with anomaly detection in
multivariate times series such as occurring in machine maintenance scenarios. Their
idea is to incorporates multivariate uncertainties quantified by a Bayesian neural
network and expert knowledge in the form of probabilistic relations into a novel
anomaly score. Their approach thus integrates scientific- and expert knowledge
and considers probabilistic relations during learning. Experimental verification
shows that scores separate into normal and anomalous regions when they exploit
probabilistic relations between multivariate features and comparisons to recent
state-of-the art approaches reveal competitive performance.

1.3 Summary

Artificial Intelligence has made considerable progress over the past couple of years.
To a large extent, this progress was due to end-to-end machine learning models
(deep neural networks) of ever increasing complexity and size whose training
requires ever more humongous datasets. This poses considerable challenges for
practitioners in industry who want to benefit from these developments.

In many industries and practical settings, data are still scarce, inhomogeneous,
or incomplete and compute infrastructures are not always available to the extent
needed for training modern foundation models. Moreover, even if data availability,
computing resources, and energy costs are of little concern, explainability, account-
ability, and trustworthiness of large black-box models are often reason for concern.

Informed ML is an attempt to alleviate these kind of practical challenges. The
main idea is to inject additional prior knowledge into data-driven learning because
this can reduce model complexity and need for extensive training data and, just as
well, increase interpretability and explainability of model computations.

Nowadays, there are therefore increased efforts on combining modern models
and learning algorithms with suitable representations of problem specific prior
knowledge and an attempt has been made to systematically categorize what kinds
of prior knowledge and representations thereof to integrate where in the machine
learning pipeline to achieve well working solutions across a wide range of practical
application scenarios [36].

The contributions gathered in this volume illustrate the broad range of pos-
sibilities when working with different knowledge sources, representations, and
integration strategies. They are largely application oriented, propose workable

12 C. Bauckhage et al.

solutions to industrial problems such as material property prediction, anomaly
detection, routing, or digital twin based process control and, all in all, demonstrate
various practical benefits of Informed ML.

References

1. Antweiler, D., Burgard, J., Harmening, M., Marheineke, N., Schmeißer, A., Wegener, R.,
Welke, P.: A Regression-based Predictive Model Hierarchy for Nonwoven Tensile Strength
Inference. In: D. Schulz, C. Bauckhage (eds.) Informed Machine Learning. Springer (2024)

2. Bauckhage, C., Sifa, R.: Training Support Vector Machines by Solving Differential Equations.
In: D. Schulz, C. Bauckhage (eds.) Informed Machine Learning. Springer (2024)

3. Breustedt, N., Climaco, P., Garcke, J., Hamaekers, J., Kutyniok, G., Lorenz, D., Oerder, R.,
Shukla, C.: On the Interplay of Subset Selection and Informed Graph Neural Networks. In:
D. Schulz, C. Bauckhage (eds.) Informed Machine Learning. Springer (2024)

4. Brown, T., et al.: Language Models Are Few-Shot Learners. In: Proc. Neural Information
Processing Systems (2020)

5. Brundage, M., et al.: Toward Trustworthy AI Development: Mechanisms for Supporting
Verifiable Claims. arXiv preprint arXiv:2004.07213 (2020)

6. Butler, K.T., Davies, D.W., Cartwright, H., Isayev, O., Walsh, A.: Machine Learning for
Molecular and Materials Science. Nature 559(7715), 547–555 (2018)

7. Ching, T., Himmelstein, D.S., Beaulieu-Jones, B.K., Kalinin, A.A., Do, B.T., Way, G.P.,
Ferrero, E., Agapow, P.M., Zietz, M., Hoffman, M.M.: Opportunities and Obstacles for Deep
Learning in Biology and Medicine. Journal of The Royal Society Interface 15(141), 20170387
(2018)

8. Cully, A., Clune, J., Tarapore, D., Mouret, J.B.: Robots that can adapt like animals. Nature
521(7553), 503–507 (2015)

9. Diedrich, A., Kühnert, C., Maier, G., Schraven, J., Niggemann, O.: AITwin – A Uniform
Digital Twin Interface for Artificial Intelligence Applications. In: D. Schulz, C. Bauckhage
(eds.) Informed Machine Learning. Springer (2024)

10. Diligenti, M., Roychowdhury, S., Gori, M.: Integrating Prior Knowledge into Deep Learning.
In: Proc. Int. Conf. on Machine Learning and Applications (2017)

11. Dong, T., Bauckhage, C., Jin, H., Li, J., Cremers, O., Speicher, D., Cremers, A., Zimmermann,
J.: Imposing Category Trees Onto Word-Embeddings Using A Geometric Construction. In:
Proc. Int. Conf. on Learning Representations (2019)

12. Faure, L., Mollet, B., Liebermeister, W., Faulon, J.: A Neural-mechanistic Hybrid Approach
Improving the Predictive Power of Genome-scale Metabolic Models. Nature Communications
14, 4669 (2023)

13. Gries, S.: Informed Machine Learning to Maximize Robustness and Computational Perfor-
mance of Linear Solvers. In: D. Schulz, C. Bauckhage (eds.) Informed Machine Learning.
Springer (2024)

14. Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recognition: The
shared views of four research groups. IEEE Signal Processing Magazine 29(6), 82–97 (2012)

15. Hitzler, P., Eberhart, A., Ebrahimi, M., Kamruzzaman Sarker, M., Zhou, L.: Neuro-symbolic
Approaches in Artificial Intelligence. National Science Review 9(6), nwac035 (2022)

16. Hochreiter, S.: Toward a Broad AI. Communications of the ACM 65(4), 56–57 (2022)
17. Jiang, C., Xu, H., Liang, X., Lin, L.: Hybrid Knowledge Routed Modules for Large-scale

Object Detection. In: Proc. Neural Information Processing Systems (2018)
18. Karpatne, A., Watkins, W., Read, J., Kumar, V.: Physics-guided Neural Networks (PGNN): An

Application in Lake Temperature Modeling. arXiv preprint arXiv:1710.11431 (2017)

1 Introduction and Overview 13

19. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet Classification with Deep Convolutional
Neural Networks. In: Proc. Neural Information Processing Systems (2012)

20. Kutz, J.N.: Deep Learning in Fluid Dynamics. Journal of Fluid Mechanics 814, 1–4 (2017)
21. Lee, K.H., Ros, G., Li, J., Gaidon, A.: Spigan: Privileged Adversarial Learning from

Simulation. arXiv preprint arXiv:1810.03756 (2018)
22. Maier, G., Hamaekers, J., Martilotti, D.S., Ziebarth, B.: Predicting Properties of Oxide Glasses

Using Informed Neural Networks. In: D. Schulz, C. Bauckhage (eds.) Informed Machine
Learning. Springer (2024)

23. Marino, K., Salakhutdinov, R., Gupta, A.: The More You Know: Using Knowledge Graphs for
Image Classification. arXiv preprint arXiv:1612.04844 (2016)

24. Müller, M., Ernis, G., Mock, M.: Anomaly Detection in Multivariate Time Series Using
Uncertainty Estimation. In: D. Schulz, C. Bauckhage (eds.) Informed Machine Learning.
Springer (2024)

25. Ororbia, A., Kifer, D.: The Neural Coding Framework for Learning Generative Models. Nature
Communications 13, 2064 (2022)

26. Paul, N., T.Wirtz, Wrobel, S., Kister, A.: Informed Machine Learning Aspects for the Multi-
Agent Neural Rewriter. In: D. Schulz, C. Bauckhage (eds.) Informed Machine Learning.
Springer (2024)

27. Pfrommer, J., Zimmerling, C., Liu, J., Kärger, L., Henning, F., Beyerer, J.: Optimisation
of Manufacturing Process Parameters Using Deep Neural Networks as Surrogate Models.
Procedia CiRP 72, 426–431 (2018)

28. Poursanidis, M., Link, P., Schmid, J., Teicher, U.: Incorporating Shape Knowledge into
Regression Models. In: D. Schulz, C. Bauckhage (eds.) Informed Machine Learning. Springer
(2024)

29. Roscher, R., Bohn, B., Duarte, M.F., Garcke, J.: Explainable Machine Learning for Scientific
Insights and Discoveries. IEEE Access 8, 42200–42216 (2020)

30. Sharma, J., Lentzen, M., Krix, S., Linden, T., Madan, S., Tran, V., Fröhlich, H.: Knowledge
Informed Machine Learning in Healthcare: Graph Neural Networks for Predicting Side Effects
and New Indications of Drugs Using Electronic Health Records. In: D. Schulz, C. Bauckhage
(eds.) Informed Machine Learning. Springer (2024)

31. Silver, D., et al.: Mastering the Game of Go with Deep Neural Networks and Tree Search.
Nature 529(7587), 484–489 (2016)

32. Stewart, R., Ermon, S.: Label-free Supervision of Neural Networks with Physics and Domain
Knowledge. In: Proc. AAAI Conf. on Artificial Intelligence (2017)

33. Thompson, N.C., Greenewald, K., Lee, K., Manso, G.F.: The Computational Limits of Deep
Learning. arXiv preprint arXiv:2007.05558 (2022)

34. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A., Kaiser, L.,
Polosukhin, I.: Attention Is All You Need. In: Proc. Neural Information Processing Systems
(2017)

35. Victor, V., Schmeißer, A., Leitte, H., Gramsch, S.: Machine Learning-based Optimization
Workflow of the Homogeneity of Spunbond Nonwovens with Human Validation. In: D. Schulz,
C. Bauckhage (eds.) Informed Machine Learning. Springer (2024)

36. von Rueden, L., et al.: Informed Machine Learning–A Taxonomy and Survey of Integrating
Prior Knowledge into Learning Systems. IEEE Transactions on Knowledge and Data Engi-
neering 35(1), 614–633 (2023)

37. Wallner, S., Bernard, T., Kühnert, C.: Optimizing Cooling System Operations with Informed
ML and a Digital Twin. In: D. Schulz, C. Bauckhage (eds.) Informed Machine Learning.
Springer (2024)

38. Weichert, D., Haedecke, E., Ernis, G., Houben, S., Kister, A., Wrobel, S.: Bayesian Inference
for Fatigue Strength Estimation. In: D. Schulz, C. Bauckhage (eds.) Informed Machine
Learning. Springer (2024)

14 C. Bauckhage et al.

39. Wright, D., Igel, C., Samuel, G.: Efficiency is Not Enough: A Critical Perspective of
Environmentally Sustainable AI. arXiv preprint arXiv:2309.02065 (2023)

40. Xu, J., Zhang, Z., Friedman, T., Liang, Y., Broeck, G.: A Semantic Loss Function for Deep
Learning with Symbolic Knowledge. In: Proc. Int. Conf. on Machine Learning (2018)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Part I
Digital Twins

Chapter 2
Optimizing Cooling System Operations
with Informed ML and a Digital Twin

Steffen Wallner, Thomas Bernard, and Christian Kühnert

Abstract Today, there are a variety of cooling systems available to serve smaller
data centers, industrial plants or office buildings. These are often one-off installa-
tions, and in most cases their control parameters are set at the time of installation and
are not changed subsequently. In addition, these parameters are set conservatively
and are not designed for energy-optimized operation. A digital twin of the plant,
including a simulation model, is essential to bring the cooling system closer to
energy-optimized operation over its lifetime, but this is not usually the case. One of
the main reasons is that digital twins are expensive and time-consuming to create.
However, today’s cooling systems are extensively equipped with sensors, so this
information can be used and the effort to create a digital twin is greatly reduced.

This chapter proposes an approach to generate parts of the digital twin for the
cooling system from measured data by using ML methods. In a subsequent step,
this digital twin is used to calculate the effects of alternative control parameters,
and the results are presented to the operator in an understandable way. Combined
with appropriate monitoring this allows the operator to make informed decisions to
adjust the control parameters accordingly.

2.1 Introduction

Nowadays, there is a vast amount of larger sized mostly individual designed
plants for cooling. They consist of components from different manufacturers, are
differently dimensioned and are adapted as far as possible to the requirements of
their specific location. But it can be assumed that the boundary conditions of a plant
change over the course of its lifetime and therefore a large number of these plants
have energy-saving potentials. In the use case considered here, there are already
several examples. In the last few years, the data center has expanded more and

S. Wallner (✉) · T. Bernard · C. Kühnert
Fraunhofer IOSB, Karlsruhe, Germany
e-mail: steffen.wallner@iosb.fraunhofer.de; thomas.bernard@iosb.fraunhofer.de;
christian.kuehnert@iosb.fraunhofer.de

© The Author(s) 2025
D. Schulz, C. Bauckhage (eds.), Informed Machine Learning,
Cognitive Technologies, https://doi.org/10.1007/978-3-031-83097-6_2

17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-83097-6protect T1	extunderscore 2&domain=pdf

 885 55738 a 885 55738 a

mailto:steffen.wallner@iosb.fraunhofer.de
mailto:steffen.wallner@iosb.fraunhofer.de
mailto:steffen.wallner@iosb.fraunhofer.de
mailto:steffen.wallner@iosb.fraunhofer.de

 14641
55738 a 14641 55738 a

mailto:thomas.bernard@iosb.fraunhofer.de
mailto:thomas.bernard@iosb.fraunhofer.de
mailto:thomas.bernard@iosb.fraunhofer.de
mailto:thomas.bernard@iosb.fraunhofer.de

 -2016
56845 a -2016 56845 a

mailto:christian.kuehnert@iosb.fraunhofer.de
mailto:christian.kuehnert@iosb.fraunhofer.de
mailto:christian.kuehnert@iosb.fraunhofer.de
mailto:christian.kuehnert@iosb.fraunhofer.de
https://doi.org/10.1007/978-3-031-83097-6_2
https://doi.org/10.1007/978-3-031-83097-6_2
https://doi.org/10.1007/978-3-031-83097-6_2
https://doi.org/10.1007/978-3-031-83097-6_2
https://doi.org/10.1007/978-3-031-83097-6_2
https://doi.org/10.1007/978-3-031-83097-6_2
https://doi.org/10.1007/978-3-031-83097-6_2
https://doi.org/10.1007/978-3-031-83097-6_2
https://doi.org/10.1007/978-3-031-83097-6_2
https://doi.org/10.1007/978-3-031-83097-6_2
https://doi.org/10.1007/978-3-031-83097-6_2

18 S. Wallner et al.

more, so the cooling systems needed more energy. Conversely, more people are
working from home offices and meetings are held online. This reduces the cooling
requirements of the office building.

The unused energy-saving potential results from an operation of the plant that
is not optimized to current requirements and environmental conditions. Reasons for
this are too rigid control strategies, poorly set control parameters or an intrinsically
oversized plant. Hence, to find and raise energy-saving potential, the existing control
strategies and parameters must be replaced by better, ideally dynamic ones.

Because these systems are not manufactured in series, the control strategies and
parameters cannot be readjusted according to a standard scheme. Hence, to be able
to find optimal settings, one needs to use a detailed model of the plant to estimate
the impact of new settings in advance. Unfortunately, in practice this is not the case.

Even if a simulation model of the plant exists, the integration into the running
operation of the plant is often missing. Therefore, a digital twin is needed which
contains not only a simulation model but also the specific configuration of a plant
so that the effects of alternative operating parameters can be determined.

Since no plant operator will allow operating parameters to be changed auto-
matically, e.g. since there would be problems with liability if an accident happens,
especially when the cooling system is part of a critical infrastructure, an automated
application of possibly better operating parameters is not feasible. In summary,
an overall concept is needed which makes the optimized operating parameters
explainable to the plant operator and in a subsequent step makes their effect
verifiable.

2.1.1 Related Work

Energy optimization of a cooling system basically means finding the most energy-
efficient way to cool down a medium to a certain temperature with as little energy
as possible. As outlined in the introduction, the traditional solution is to use model-
based optimization. Therefore, a digital twin is required that describes the main
functions of the plant. This model incorporates information about the behavior of
the cooling system depending on the control parameters, the cooling load, and other
influencing factors. The traditional way means that the model itself is based on
physical equations. For example, [1] uses energy equations for a cooling tower and
a centralized water-cooled chiller to calculate the proper cooling provisioning of a
data center. Another example is [6], which uses the model to switch the cooling
mode of a data center depending on the water-side economizer.

However, due to the high complexity and heterogeneity of cooling systems the
generation of those models is very time consuming [10]. That makes it even more
time consuming when one wants to integrate domain knowledge.

Fortunately, in recent years, data-driven methods have become more and more
an alternative. The clear advantage of these methods is that models can be trained
on historical data. Furthermore, if changes are made to the system a new model can

2 Optimizing Cooling System Operations with Informed ML and a Digital Twin 19

be learned with little effort. In literature, there are already many publications that
propose to use Machine Learning and other data-driven methods for optimization.
An example is [2], where the authors propose a novel energy optimization method of
a multi-cell tower with particle swarm optimization. Within this approach, a neural
network is used to predict the overall cooling system power consumption. Hosoz
[4] also uses a neural network to predict the power consumption of a cooling tower,
but additionally considers several operating conditions. Other publications include
the usage of a linear regression model to predict the outlet temperature of a cooling
tower [7], the prediction of the energy consumption using a neural network with the
overall aim to find optimal operating conditions of the chiller [5] or the combination
of clustering and different machine learning models to measure the energy-saving
benefits of a chiller system [3]. Finally, in [9] it has been examined to which extent
data-driven methods can be used for fault diagnosis in cooling systems.

2.1.2 Informed Machine Learning for Cooling System
Optimization

Informed Machine Learning refers to the process of training machine learning
models while taking into account prior knowledge. Basically, the aim is to generate
models with better performance, higher reliability, and more meaningful insights.
Within the taxonomy of von Rüden [8], several approaches are characterized on
how to integrate prior knowledge into ML, while this chapter focuses mainly on
using logic rules to improve ML performance. In detail, this chapter follows three
different ways of integrating prior knowledge into the ML model:

• Expert knowledge: Throughout the complete data analysis workflow expert
knowledge was needed. Among others, this includes especially the data prepa-
ration, model selection, training and validation phase. Furthermore, expert
knowledge led to the point that three separate regression models instead of one
large model were used.

• Human feedback: The final decision on which cooling system is used is up to the
expert. The ML model only makes a proposition.

• Data Engineering knowledge: Throughout the publication AutoML is used to
tune the three ML models. Tuning is based on many heuristics which were
developed by data engineers in the past.

Therefore, in Sect. 2.3 containing the training of the ML model, not one, but three
models distinguishing the three different operation modes are trained. Furthermore,
although this is not part of the taxonomy, care was taken to adjust the training data
depending on the season, as different modes are used with different frequencies
depending on the outside temperature. The adjustment of training data can also
be seen as one way to bring prior knowledge into ML models. Finally, it must be
noticed that publications proposing to use data-driven methods in cooling systems

20 S. Wallner et al.

usually do not consider prior or domain knowledge and are solely based on historical
data.

2.1.3 Structure

In Sect. 2.2, we will describe the setup of the investigated cooling system itself. In
addition to the known characteristics of the plant, we will deal specifically with the
three different operating modes and the basic control logic. The operating modes
and control logic are the basis for the composition of the simulation model, with
parts being trained using AutoML.

Section 2.3 explains the necessary preprocessing of the sensor data for the
training phase and how the simulation model is learned. After the simulation model
is assembled, we describe the used optimization approach in Sect. 2.4. As part of the
overall concept, we show where and how we use the optimization approach in the
currently developed assistance system. Finally, Sect. 2.5 summarizes the results and
gives an outlook for the further development of the assistance system. As a use case,
an existing cooling system in a research facility in the city of Karlsruhe is used.

2.2 Cooling System Description and Plant Operation

The research facility in the city of Karlsruhe consists of an office building with a
medium-sized data center. To cool the data center as well as the conference rooms,
a larger cooling plant is part of the building. The cooling plant itself consumes up
to 100 kW of electrical energy to provide the cooling energy using two different
generators. In 2019, the annual energy consumption of the cooling plant was
80 MWh which corresponded to a cost of approximately 16,000.e per year .

2.2.1 Components of the Cooling System

Figure 2.1 shows the cooling system, which consists of a cooling storage and two
cooling generators, namely a cooling tower and a chiller. The demand side of the
cooling system consists of a data center and during summer of some conference
rooms in the office building.

The cooling reservoir has a volume of 100 m3
. and is placed outside, just

like the two cooling generators. It has the shape of an upright boiler, including
distinguishable temperature levels in the coolant. This means that the cooling
reservoir does not have one temperature, but has several layers with different
temperatures. For simplicity, within this chapter the average reservoir temperature
T reservoir . is used.

2 Optimizing Cooling System Operations with Informed ML and a Digital Twin 21

Fig. 2.1 The principle diagram shows the main components of the cooling system. The chiller,
data center and office (load) and the cooling tower have a direct influence on the average reservoir
temperature in the cooling reservoir through their in- and outflows. The central global influencing
variable on all system components is the outside temperature

The demand side is served directly from the cooling reservoir and the reservoir
can be charged individually by the cooling generators. The active chiller has a
mean electrical power consumption of 90 kW and, compared to the chiller, a much
lower power consumption. Nevertheless, it can only be operated at lower outside
temperatures. The electrical power consumption of the cooling tower depends on
the speed of the fans and the pump power. Conservatively calculated, the energy
consumption of the active cooling tower yields 20 kW.

The operational energy of the chiller is 4.5. times that of the cooling tower. Hence,
from an energy-saving point of view, the operation of the cooling tower is generally
preferable to that of the chiller. Thus, the essential optimization task is to reduce the
operating times of the chiller and compensate them instead by operating the cooling
tower.

22 S. Wallner et al.

2.2.2 Sensors of the Cooling System

The entire cooling system is integrated into the central building control system and
its status can be monitored there. As shown in Fig. 2.2, among others, the following
five measurements are recorded:

• Outdoor temperature
• In-, outlet temperature and the current flow =⇒ . current cooling load
• Activation of the chiller

Fig. 2.2 All relevant measurements of the cooling system. The second subplot, highlights the
phases with either chiller (cyan) or cooling tower (magenta) active. The effect of the activation,
with a temperature drop can also be seen in the plots below

2 Optimizing Cooling System Operations with Informed ML and a Digital Twin 23

Fig. 2.3 The evenly
distributed temperature
sensors at the cooling
reservoir are aggregated to the
mean reservoir temperature
T̄reservoir = 1

6

∑6
n=1 TLv.n ..

The mean temperature is
sufficient when deriving the
model

• Current flow of the cooling tower =⇒ . activation of the cooling tower
• Cooling reservoir temperatures at 6 different levels

The different temperature levels in the cooling reservoir are most relevant for
the real control logic. If the inlet temperature levels exceed a threshold value, the
respective aggregate is activated. For the scope of the publication it is sufficient to
use the reservoir mean temperature T reservoir . as illustrated in Fig. 2.3.

Within the second subplot of Fig. 2.2 it can be seen that the cooling load can
be assumed to be nearly constant. This is true for the colder seasons as only the
data center has to be supplied, while during the warmer seasons office rooms are
additionally cooled.

2.2.3 Analysis of the Operation Strategy

To charge the cooling reservoir and thus reduce the mean reservoir temperature, one
of the two given cooling units must be activated. In order to decide which of them
is used and how long it operates, five adjustable threshold parameters are set in the
control of the cooling system. The basic assignment of these parameters with their
corresponding measuring points can be seen in Fig. 2.4.

In summary, these are the relevant parameters and their actual purpose regarding
the control of the cooling units:

• One parameter to decide which of the units is used (switchpoint temperature)
• Two to decide when to turn a unit on (activation temperature)
• Two to decide when to turn a unit off (deactivation temperature)

Figure 2.5 shows the unit used depending on the so called switchpoint temper-
ature parameter. If the switchpoint temperature is higher than the actual outside
temperature, the chiller is used. If the switchpoint temperature is lower than the
actual outside temperature, the cooling tower is used.

Furthermore, there is an activation temperature parameter for each unit. If a unit-
specific temperature level in the cooling reservoir exceeds this temperature, the
corresponding unit is activated. Conversely, the unit runs if a temperature measured

24 S. Wallner et al.

Fig. 2.4 The upper plot shows the outdoor temperature and depending on its value, if the chiller
or the cooling tower is used. The lower plot shows the thresholds and the different temperature
levels measured in the cooling tower. The trained simulation model will be used to optimize the
switchpoint between the chiller and the cooling tower. Hence, the later learned threshold differs
quantitatively from the one shown here

at a certain level in the cooling reservoir is lower than a unit-specific deactivation
temperature parameter.

2.2.4 Cooling Reserve

Since the data center counts as critical infrastructure, special requirements for the
cooling system like a relatively large storage tank have been installed. Furthermore,
a large reserve for cooling is set. This reserve ensures that the data center can be
cooled and thus operated even in the event of a prolonged failure of the two cooling
units.

To calculate the reserve, we define a maximum outlet temperature at the reservoir
Toutlet,max . at which cooling of the data center is still possible. The lowest subplot in

2 Optimizing Cooling System Operations with Informed ML and a Digital Twin 25

Fig. 2.5 The switchpoint parameter compared to the outdoor temperature, is solely relevant for
deciding which unit is used for charging the cooling reservoir

Fig. 2.2 shows the controller that adjusts the current flow so that there is always a
constant inlet temperature Tinlet = 20 ◦C..

The inlet temperature can not be exceeded by the outlet temperature so we define
now that this constant value is also the maximum temperature Toutlet,max . at which
the data center can still be cooled. Then the current reserve energy Ereserve . results
from the difference between the reservoir temperature T̄reservoir . and Toutlet,max .. That
can be calculated as follows:

.Ereserve = ρwater · Vreservoir · cwater · (Tinlet − T̄reservoir). (2.1)

treserve =
Ereserve

Q load
. (2.2)

ρwater = 997
kg

m3 . (2.3)

cwater = 4190
Ws

kg · K . (2.4)

T̄reservoir = 16 ◦C (2.5)

Assuming (2.3)–(2.5), since the mean reservoir temperature is still above the
highest Toutlet . in Fig. 2.2, the current reserve results in

. Ereserve = 997
kg

m3 · 100m3 · 4190 Ws

kg · K ·

(20–16 ◦C) · h

3600s
· 10−3k = 464 kWh. (2.6)

26 S. Wallner et al.

To find out how long this reserve would last, we need an estimate for the cooling
load. Referring to the second subplot in Fig. 2.2, we can assume that the cooling
load is constant at Qload = 50 kW.. After these values have been inserted into
(2.2), the cooling system could supply the data center with cold for about 9 hours
without activating a cooling unit. This is the duration under unchanged load until
the reservoir temperature reaches the actual set up Tinlet .. After this point in time, the
reservoir will heat up above its normal max reservoir temperature, which leads to a
critical system state.

2.3 Modeling of the Plant Using Machine Learning

To be able to calculate optimal operating parameters for the system, the simulation
model of the cooling system is generated. The model must be able to consider the
critical boundary conditions, meaning that it must be able to calculate the reservoir
temperature.

In the following it is described how the cooling system is decomposed into
its submodels. Furthermore, the preparation of the training data (Sect. 2.3.2) is
described, where the main focus lies on the physical plausibility of the model and in
particular the definition of the validity domain. We go into detail about the training
procedure (Sect. 2.3.3) and at the end of this section, the recalculation of results with
the trained models is shown (Sect. 2.3.4).

2.3.1 Submodels of the Cooling System

Figure 2.6 shows the three disjoint operating modes, all influencing the reservoir
temperature. To train a separate submodel for each mode, initially the influencing
variables need to be set. This results in the following three submodels:

Load Model is used when none of the cooling aggregates is active. The temper-
ature change in the reservoir depends only on the cooling power and the losses
through the outer shell of the tank. The cooling power demand is composed of
a constant part (data center) and a volatile part (office). It is assumed that the
latter correlates with the outside temperature. The losses via the outer shell of
the cooling tower depend on the difference between the reservoir temperature
and the outside temperature.

Chiller Model is used when the chiller is active. The efficiency of the chiller
depends on the difference between the reservoir and the outside temperature.
Even if this unit is running, the load that would increase the reservoir temperature
acts at the same time.

Cooling Tower Model is used when the cooling tower is active. It can be
compared to a passive heat exchanger. As soon as the storage water is warmer

2 Optimizing Cooling System Operations with Informed ML and a Digital Twin 27

Fig. 2.6 Operating modes of the cooling system. The reservoir temperature drops in the two
modes in which either the chiller (cyan) or the cooling tower (magenta) is active

than the outside temperature, it can release heat energy and cool itself. In this
operating mode, the load has an increasing effect on the reservoir temperature.

All three operating modes depend on the same influencing variables. Therefore,
all three submodels have the same input variables—current outside and reservoir
temperature—and each output the resulting reservoir temperature for the next time
step. The overall model of the cooling system for the calculation of the reservoir
temperature is composed as described in Fig. 2.7. In Sect. 2.3.3 the machine learning
model will be connected to the chiller and cooling tower model. Furthermore, in
Sect. 2.3.4 the parameters of the control logic will be varied to find optimal points
of operation.

2.3.2 Data Processing

To train the submodels from the existing time series data, the data is split based
on the respective operating mode, resulting in three time series data sets. Each
data set contains fragmented time series, which is filtered again, while only using
sequences that have a certain minimum duration and where a certain gap duration
is not exceeded. For the load and cooling tower models, the minimum length of the
sequences in the time series data is set to 4 hours and the maximum gap to 1 hour.
For the chiller model, the sequence needs to be at least 1 hour, since this unit is often
briefly activated.

Next, all sequences are filtered again according to the temperature difference
between two consecutive time steps. Thus, in the operating mode for the load model,
the reservoir temperature should never drop and the difference should always be
positive. If one of the generating units is running the reservoir temperature should
not rise and the difference should be negative. However, this assumption may be
violated. For instance, in the case of the load model, it is possible that the outside
temperature and the load are very low. In that case the heat energy loss through the

28 S. Wallner et al.

Fig. 2.7 Linking the measured data to the submodel. Each submodel refers to a different operating
mode and therefore they are trained with different data sets. However, the interfaces of the
submodels are always the same. The input data is T̄reservoir . and Toutside . at time tn . and output data is
T̄reservoir . for the next time step tn+1 .

outer shell of the storage is greater than the gains through the waste heat of the data
center.

Finally, we resample the data to a 15 minute interval meaning that the models
can only predict the storage temperature 15 minutes in the future.

Figures 2.8, 2.9 and 2.10 show the resulting set of samples used for training. The
slopes of the data sets are quite uniform for each operating mode.

Figure 2.8 shows that the chiller always needs a similar amount of time steps to
reach about the same temperature inside the reservoir and its performance seems to
be less dependent on the outside temperature—compared to the other two sample
sets.

If we look at the samples for the cooling tower in Fig. 2.9, the situation is more
difficult. Here the condition when the cooling tower is activated cannot be derived
directly from the reservoir temperature.

The reason of the varying start temperature is that the threshold for activating
the cooling tower may already have been exceeded, but the outside temperature is

2 Optimizing Cooling System Operations with Informed ML and a Digital Twin 29

Fig. 2.8 The time series sequences relevant for training the chiller model. It can be seen that most
of them start at 20 ◦ .C while the final reservoir temperature does not fall below 14 ◦ .C. With higher
median outdoor temperature, the slope decreases slightly

Fig. 2.9 Time series sequences relevant for training the cooling tower model. The starting
temperature varies between 15 and 20 ◦ .C while the final mean reservoir temperatures stay above
12 ◦ .C. The higher the median outdoor temperature, the longer is the second phase

still above the switchpoint temperature to activate the unit. The reserve temperature
continues to rise and at some point, the outdoor temperature could fall again
below the switchpoint temperature. The cooling tower is activated but the reservoir
temperature is already above the constant activation temperature.

The plot shows that compared to the other models a different training period for
the Cooling Tower is used. This is necessary since getting closer to warmer seasons,
the cooling tower is activated less often.

Additionally, the time series sequences for the load model have nontrivial initial
conditions, see Fig. 2.10. Still, this is not problematic, since the load model will
always be enclosed by sequences of the other two submodels.

30 S. Wallner et al.

Fig. 2.10 The time series sequences relevant to the load model training. The starting temperature
is between 13 and 18 ◦ .C. And sequences do not exceed a max mean reservoir temperature of around
20 ◦ .C

2.3.3 Training and Plausibility

As for the choice of learning method, an approach that learns the history of time
series is possible. Especially for the cooling tower this is, because the first and the
second half of a running sequence are slightly different, see Fig. 2.9.

For the machine learning part the Python library autokeras in version 1.0.19
was used. After splitting the data for each submodel into test and training dataset,
autokeras.StructuredDataRegressor calculates a suitable model for the
selected approach. You can see the corresponding call in Listing 2.1.

Listing 2.1 Python code to train a submodel

import a u t o k e r a s a s ak
r e g = ak . S t r u c t u r e dD a t aR e g r e s s o r (m a x _ t r i a l s =1)
r e g . f i t (x _ t r a i n , y _ t r a i n , e pochs =100)

Libraries that support AutoML such as autokeras are designed to search the
hyperparameter space themselves. The libraries automatically vary the hyperparam-
eters of a model structure to find those that best fit the model to the given training
data. Maybe just because the physical phenomena in the three operating modes
are not particularly complex, but it was already sufficient for us to directly use
the default starting configuration of the hyperparameters that autokeras uses by
default in its first trial. For all three submodels, even with the standard hyperpa-
rameters, the model reaches a mean square error of the mean reservoir temperature
below 0.025K. after 100 epochs. Other variations of the hyperparameters did not
significantly improve these learning results.

In order to check their physical plausibility, heatmaps of the trained submodels
are generated and all combinations of input variables that lie within the training data
of a submodel are calculated. Finally, the resulting (tn+1 .) reservoir temperature is
calculated and the difference to the input (tn .) reservoir temperature is given in the
heatmap.

2 Optimizing Cooling System Operations with Informed ML and a Digital Twin 31

Fig. 2.11 Blue: Areas in which the chiller model calculates a temperature decrease. Red: Areas
that are implausible temperature increases. The start temperatures of the sequences in the training
data are marked with ·. and the end temperatures with ×.. The sharp gradients are probably rather
fragments since they do not converge during several training runs

Fig. 2.12 Blue: areas in which the cooling tower model calculates a temperature decrease. Red:
areas are actually implausible temperature increases. The start temperatures of the sequences in the
training data are marked with ·. and the end temperatures with ×.. In contrast to the chiller model,
larger parts of the plausible temperature increase lie outside the training data. For example the area
in the upper right corner

Due to the internal implementation of training in autokeras, the heatmaps
are slightly different for different runs and the same training data, but converge
for each submodel. Thus, it makes sense to discuss the learned submodel from a
physical point of view. In Figs. 2.11, 2.12 and 2.13 the set of start and the set of end
temperatures of all sequences from the training data are shown too. All other training
data are located between these two sets. The markings help to estimate which range
of data the model has already seen during the training.

The the heatmap for the chiller model shows (Fig. 2.11) a temperature drop for
the most part. However, the dark red areas at the left edge and the upper left corner
on the heat map are physically implausible. The reservoir threshold temperature
for deactivating the chiller is at the right of these areas. Here the learned model
extrapolates since there was no value for those input variables in the training data.

The image for the cooling tower (Fig. 2.12) also shows a temperature reduction
for the most part. The absolute temperature reduction is mostly lower than for the
chiller. Again, there are areas in the image that make less sense from a physical
point of view. In the lower right corner, for example, the temperature changes are

32 S. Wallner et al.

Fig. 2.13 The load model calculates a plausible temperature increase for almost in the entire
area. The start temperatures of the sequences in the training data are marked with ·. and the end
temperatures with ×.. The blue areas of very small decreasing temperatures appear sporadically in
the trained models. Although they are not fundamentally physically implausible, they are also not
learned reliably and stably

positive. Here the reason is again the extrapolation of the model. At such low outside
temperatures the reservoir temperature simply did not rise so far in the training set.

The heatmap of the load model (Fig. 2.13) shows the expected temperature
increase in almost all areas. In the upper left corner is an area with extreme
temperature increase, the which could be a fragment of the exploration, but is also
physically plausible. The situation is different within the lower right corner. In that
case it is not explainable why the change should be particularly high at low outside
temperature and high reservoir temperature.

More of an interest is the area to the left of this lower right corner. Here the
temperature difference is negative, which means that the reservoir temperature
would fall. In principle, this is physically plausible, because at very low outside
temperatures the heat loss through the outer shell of the reservoir can be very high. If
this loss is larger or equals to the heat gained by the waste heat from the data center,
then the storage temperature decrease remains constant even without activating one
of the generator units.

In summary, it can be stated here that the autokeras models have in principle
probably learned static plant parameters. Not only the load, but also the generating
units have a quite constant output. Furthermore, the domain of the model that is
physically plausible can be seen. With other learning methods this domain could be
perhaps even larger. The advantage of using AutoML here is that we did not have to
worry about the limits and prerequisites of the learning procedure in adv ance.

2.3.4 Recalculation of the Entire Cooling System

Each submodel contains plausible output values for a single calculation. Next it is
checked how the models behave when they calculate consecutive values. Therefore,
as input signal we take the historical time series of the outdoor temperature,

2 Optimizing Cooling System Operations with Informed ML and a Digital Twin 33

Fig. 2.14 Result of recalculation of 48 hours with the trained submodels. The boundaries of the
chiller model (green) and the boundaries of the cooling tower model (red) show the minimum and
maximum temperatures that the respective models have seen in the training data

containing the first value (tn .) of the reservoir temperature as well. Finally, the
submodel is used to calculate the reservoir temperature (tn+1 .) as it would be
15 minutes later. The result is then used as the new reservoir temperature in the
next iteration. At each iteration, the historical data is used to check which operating
mode was present. Accordingly, the submodel matching the mode is used. If, for
example, according to the historical data, the chiller was active at the current
time, the chiller model is also used for this time step, regardless of the reservoir
temperature. As an illustrative example, Fig. 2.14 shows an exemplary behavior of
the trained submodels with its boundaries. It is pointed out that other time intervals
show a similar behavior of the models.

Furthermore, it should be noted that the submodels are only able to extrapolate to
a limited extent. For example, it could occur that during the recalculation a submodel
computes a reservoir temperature that is outside of that ever reached in reality. Then
the reservoir temperature (tn+1 .) can adopt to physically implausible values. Since
there is no temperature control in the recalculation by a proper control, we defined
the maximum and minimum reservoir temperatures in the training data as limits.
If a model exceeds these limits during the recalculation, the reservoir temperature
(tn+1 .) is set to this value, until a new value is calculated that is within the limits.

Since the submodels are sufficiently plausible even for consecutive calculations,
they can be combined to form a simulation model of the cooling system. A control
logic must then also be implemented and be part of this model. Based on this,
the simulation model decides when which unit is switched on and off. The logic
for this is shown in Fig. 2.15. In addition to the switchpoint temperature, the four
temperature limits are also needed to control when the cooling units are de- and
activated. We also extract these temperature limits from the training data. Therefore,
we calculate the average from all start and end times of all time series sequence in
the data sets.

34 S. Wallner et al.

Fig. 2.15 The basic decision whether to use chiller or cooling tower depends on the outdoor
temperature Tout . compared to the switchpoint temperature Tswp .. Depending on this, it is checked
whether the unit is already running and whether the current reservoir temperature Tres . is below the
deactivation temperature Toff .or above the activation temperature Ton .of the respective unit. In each
control loop, a decision is made for each unit whether to activate or deactivate it exclusively

With this simulation model of the entire cooling system, we can now search for
optimal control parameters and make predictions about the reserve of the cooling
system.

2.4 Optimization Concept

Our optimization concept is embedded into an assistance system that continuously
suggests optimized operating strategies. An operating strategy here means setting
certain variable control parameters of the cooling system. So our concept is to
optimize settings and do not make changes to the underlying control loops. The
Optimization is done by searching for the current best value for a particular
parameter.

2.4.1 Variable Switchpoint Temperature

As mentioned, the plant can generate cooling energy with two different units, the
cooling tower unit requiring less energy and the chiller is working at warmer outdoor

2 Optimizing Cooling System Operations with Informed ML and a Digital Twin 35

temperatures. The decision when to switch to which of the two units is defined by
the adjustable threshold parameter switchpoint temperature, shown in Fig. 2.5.

For this parameter we want to find the current best value and therefore calculate
three different variants of future operations. For a defined forecast horizon, the
progression of the storage temperature is calculated in every variant with a different
switchtpoint temperature in each case. Since the trained models of the components
require the outside temperature as input, the current data from a weather forecast
service is used here as well. The three variants differ in that they calculate the trend
of the reservoir temperature once with:

• the current switchpoint temperature,
• the current switchpoint temperature reduced by 1 K and
• the current switchpoint temperature increased by 1 K.

The results of a calculation for an exemplary day are shown in Fig. 2.16. In order
to compare the variants, a balance is made of how long which cooling unit was in
operation. These activation times are then multiplied by the respective power input
of the unit. At the end, the total required energy for the prediction horizon is obtained
for each variant. The value for the switchpoint temperature of the variant with the
lowest energy consumption is then, in principle, the one with the optimal operation
parameters.

2.4.2 Forecast Horizon

A forecast horizon must be defined for the calculation of future operating variants.
Since the trained models depend on the outside temperature, initially only the
horizon for which reliable weather forecasts are available comes into question.

Another central factor for the length of forecast horizon is the size of the buffer in
the storage component of the cooling system. The buffer in the storage is the amount
of energy, which can be loaded and unloaded in safe operation minus the reserve. A
rather small buffer only allows short-term optimization. If, for example, a buffer can
cover the demand for the next 6 hours when fully charged, the reasonable horizon
is also limited to 6 hours. Otherwise, since cooling demand could depend at least
on the time of day due to the dependence on the outside temperature, the length of
the horizon should cover at least one daily cycle. Even if the storage of the plant
considered here is not sufficiently dimensioned, we use a 36-hour forecast horizon.
For this horizon, the optimum parameters for operation can be found, which must
then of course also be set in the cooling plant.

36 S. Wallner et al.

Fig. 2.16 Result of the calculation of searching the current optimal value of the switchpoint
temperature. The top plot shows the historical progression of the storage temperature. It serves
to verify the calculated variant of the future operation with unchanged switchpoint temperature
in the second subplot. The last two subplots show the future operation with reduced and increased
switchpoint temperature parameter. For the evaluation which of the three variants is more favorable,
the colored areas are accumulated. In each case they show when a cooling unit was activated. Here,
only the cooling tower is used, and it can be said that the most optimal variant is the one with the
least activation time of the unit

2.4.3 Software Implementation as Assistance System

In critical infrastructures such as the cooling system studied here, setting parameters
automatically is very sensitive and demanding to implement. It is hard to define
a proper prediction horizon and operators must ensure that the automation does
not bring the cooling system into a critical state. This would require extensive test
scenarios and comprehensive models, and these were not available here. Within the
herein presented application the operator herself must decide on the application of

2 Optimizing Cooling System Operations with Informed ML and a Digital Twin 37

Fig. 2.17 View of the results from the continuously executed calculation of the future operation
variants. It is used by the operator to select the current optimal switchpoint temperature. One can
see all calculated variants and see also the total energy consumption per variant. The operator
should then set the switchpoint parameter according to the value of the variant with the lowest
energy consumption. Here it is highlighted in gray

the optimized control parameters continuously found and proposed to the assistance
system. This system must therefore provide the operator with enough information
to verify the optimal parameter and let her evaluate the decision in real-time. For
implementation, the following steps must be performed in a regularly repeating
workflow.

1. Regular automatic calculation of the variants for future operation. This should
happen at least once a day or whenever new forecast data is available. In energy
system a usual time step length for the prediction is 15 minutes. That means a
reasonable lower limit would be to perform the calculation not more than four
times per hour.

2. Present the effect of applying these parameters to the operator in a comprehensi-
ble way. You can see in Fig. 2.17 this is accomplished by providing an interactive
view of the results of a search for optimal parameters.

3. Decision and application of the optimal parameters by the operator.
4. Evaluation by the operator with the aid of monitoring (Fig. 2.18) whether the

effect of the new parameters is as expected.

The developed assistance system shows the current state of the real cooling sys-
tem and additionally the simulation model adapted to the specific plant. Regarding

38 S. Wallner et al.

Fig. 2.18 Screenshot of the interface to monitor the state of the cooling system. It shows the
current sensor and meter data and the calculated reserve of the cooling storage in hours. In addition,
the predicted energy demand of the cooling system for the current forecast horizon is displayed

potential energy-savings data from 2017 was used. Therefore, the threshold value of
the cooling system, see Sect. 2.2.3, was increased from 10 to 18 ◦ .C. This resulted in
energy-savings of around 18%. With the total costs of the plant of 16,000. e listed
above, this results in a savings potential of almost 3000 e per year. In general, as
described in this guideline [11], savings of 10–20% can be expected for plants of
this size.

2.5 Conclusion and Outlook

We have presented an approach for using Informed Machine Learning for opti-
mizing a real-world cooling system. It was shown that there is a way to derive
a simulation model from measured data, which can then be used for operation
optimization. Informed ML was integrated into the model using several ways. Dur-
ing the complete data analysis workflow, expert knowledge was needed, covering,
among others, data selection, data preparation and the decision to use three different
regression models instead of one large one. Since the resulting ML model only
makes propositions to the operator, human feedback is integrated into the decision-
making. Finally, AutoML containing a large number of heuristics was used to train
the regression models. All these individual points led to the final generation of a
simulation model of the cooling system.

2 Optimizing Cooling System Operations with Informed ML and a Digital Twin 39

The simulation model was used to reduce the overall energy consumption of the
cooling system by performing regular calculations and returning optimal operating
parameters. Due to the classification of the cooling system as critical infrastructure,
the results were embedded in an assistance system to support the operators in their
work. A procedure has thus been described for applying the optimized parameters
found to the system. In order to be able to check the effect of the updated parameters
later by the operator, corresponding monitoring is also provided.

In terms of operational optimization, there are several opportunities for future
research. One first example covers the possibility to improve the cost evaluation by
balancing the computed energy consumptions with the volatile electricity prices. In
doing so, it is possible that power consumption becomes cheaper or emits less CO 2 .
if energy is only drawn when renewable energy is available. In principle, it would
also make sense to vary other control parameters as part of the search and not just
the switchpoint temperature.

During modelling, it was still necessary to manually decompose the plant opera-
tion into disjoint operating modes in order to identify which submodel needed to be
trained. Thinking further, it would be surely conceivable to identify these operating
modes automatically from an algorithmic analysis of the available measurement
data. This would help to apply the optimization of operating parameters applied in
this chapter to a large number of existing plants.

Acknowledgments This contribution was supported by the Fraunhofer Cluster of Excellence
“Cognitive Internet Technologies”.

References

1. Beitelmal M. H. and Chandrakant D. P.: Model-based approach for optimizing a data center
centralized cooling system. In: Hewlett-Packard (HP) Lab Technical Report (2006).

2. Blackburn L. and Tuttle J. and Powell K.: Real-time optimization of multi-cell industrial
evaporative cooling towers using machine learning and particle swarm optimization. In: Journal
of Cleaner Production (2020) https://doi.org/10.1016/j.jclepro.2020.122175

3. Chun-Wei C. and Chun-Chang L. and Chen-Yu L.: Combine Clustering and Machine Learning
for Enhancing the Efficiency of Energy Baseline of Chiller System, Energies (2020) https://
doi.org/10.3390/en13174368

4. Hosoz, M. and Ertunc, H.M. and Bulgurcu, Hüseyin: Performance prediction of a cooling tower
using artificial neural network. In: Energy Conversion and Management (2007) https://doi.org/
10.1016/j.enconman.2006.06.024

5. Jee-Heon K. and Nam-Chul S. and Wonchang C.: X. et al.: Modeling and Optimizing a
Chiller System Using a Machine Learning Algorithm, Energies (2019) https://doi.org/10.3390/
en12152860

6. Jiajie L. and Zhengwei L.: Model-based optimization of free cooling switchover temperature
and cooling tower approach temperature for data center cooling system with water-side
economizer. In: Energy and Buildings (2020) https://doi.org/10.1016/j.enbuild.2020.110407

7. Karunamurthy K. et al.: Prediction of Thermal Performance of Cooling Tower of a Chiller
Plant Using Machine Learning, Earth and Environmental Science (2020) https://doi.org/10.
1088/1755-1315/573/1/012029

https://doi.org/10.1016/j.jclepro.2020.122175
https://doi.org/10.1016/j.jclepro.2020.122175
https://doi.org/10.1016/j.jclepro.2020.122175
https://doi.org/10.1016/j.jclepro.2020.122175
https://doi.org/10.1016/j.jclepro.2020.122175
https://doi.org/10.1016/j.jclepro.2020.122175
https://doi.org/10.1016/j.jclepro.2020.122175
https://doi.org/10.1016/j.jclepro.2020.122175
https://doi.org/10.1016/j.jclepro.2020.122175
https://doi.org/10.3390/en13174368
https://doi.org/10.3390/en13174368
https://doi.org/10.3390/en13174368
https://doi.org/10.3390/en13174368
https://doi.org/10.3390/en13174368
https://doi.org/10.3390/en13174368
https://doi.org/10.1016/j.enconman.2006.06.024
https://doi.org/10.1016/j.enconman.2006.06.024
https://doi.org/10.1016/j.enconman.2006.06.024
https://doi.org/10.1016/j.enconman.2006.06.024
https://doi.org/10.1016/j.enconman.2006.06.024
https://doi.org/10.1016/j.enconman.2006.06.024
https://doi.org/10.1016/j.enconman.2006.06.024
https://doi.org/10.1016/j.enconman.2006.06.024
https://doi.org/10.1016/j.enconman.2006.06.024
https://doi.org/10.1016/j.enconman.2006.06.024
https://doi.org/10.3390/en12152860
https://doi.org/10.3390/en12152860
https://doi.org/10.3390/en12152860
https://doi.org/10.3390/en12152860
https://doi.org/10.3390/en12152860
https://doi.org/10.3390/en12152860
https://doi.org/10.1016/j.enbuild.2020.110407
https://doi.org/10.1016/j.enbuild.2020.110407
https://doi.org/10.1016/j.enbuild.2020.110407
https://doi.org/10.1016/j.enbuild.2020.110407
https://doi.org/10.1016/j.enbuild.2020.110407
https://doi.org/10.1016/j.enbuild.2020.110407
https://doi.org/10.1016/j.enbuild.2020.110407
https://doi.org/10.1016/j.enbuild.2020.110407
https://doi.org/10.1016/j.enbuild.2020.110407
https://doi.org/10.1088/1755-1315/573/1/012029
https://doi.org/10.1088/1755-1315/573/1/012029
https://doi.org/10.1088/1755-1315/573/1/012029
https://doi.org/10.1088/1755-1315/573/1/012029
https://doi.org/10.1088/1755-1315/573/1/012029
https://doi.org/10.1088/1755-1315/573/1/012029
https://doi.org/10.1088/1755-1315/573/1/012029
https://doi.org/10.1088/1755-1315/573/1/012029
https://doi.org/10.1088/1755-1315/573/1/012029
https://doi.org/10.1088/1755-1315/573/1/012029

40 S. Wallner et al.

8. von Rueden L. et al.: Informed Machine Learning - A Taxonomy and Survey of Integrating
Prior Knowledge into Learning Systems. In: IEEE Transactions on Knowledge and Data
Engineering, (2021) https://doi.org/10.1109/TKDE.2021.3079836.

9. Tian C. et al.: Chiller Fault Diagnosis Based on Automatic Machine Learning, Front. Energy
Res. (2021) https://doi.org/10.3389/fenrg.2021.753732

10. Zhang Q. et al.: A survey on data center cooling systems: Technology, power consumption
modeling and control strategy optimization. In: Journal of Systems Architecture (2021) https://
doi.org/10.1016/j.sysarc.2021.102253

11. Leitfaden Effizientes Monitoring von Energiedaten im Bereich des Facilitymanagements
https://publica-rest.fraunhofer.de/server/api/core/bitstreams/991b3429-be99-4cf8-9a06-
ff9e435e09ef/content (last access 6.3.2023)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.3389/fenrg.2021.753732
https://doi.org/10.3389/fenrg.2021.753732
https://doi.org/10.3389/fenrg.2021.753732
https://doi.org/10.3389/fenrg.2021.753732
https://doi.org/10.3389/fenrg.2021.753732
https://doi.org/10.3389/fenrg.2021.753732
https://doi.org/10.3389/fenrg.2021.753732
https://doi.org/10.3389/fenrg.2021.753732
https://doi.org/10.1016/j.sysarc.2021.102253
https://doi.org/10.1016/j.sysarc.2021.102253
https://doi.org/10.1016/j.sysarc.2021.102253
https://doi.org/10.1016/j.sysarc.2021.102253
https://doi.org/10.1016/j.sysarc.2021.102253
https://doi.org/10.1016/j.sysarc.2021.102253
https://doi.org/10.1016/j.sysarc.2021.102253
https://doi.org/10.1016/j.sysarc.2021.102253
https://doi.org/10.1016/j.sysarc.2021.102253
https://publica-rest.fraunhofer.de/server/api/core/bitstreams/991b3429-be99-4cf8-9a06-ff9e435e09ef/content
https://publica-rest.fraunhofer.de/server/api/core/bitstreams/991b3429-be99-4cf8-9a06-ff9e435e09ef/content
https://publica-rest.fraunhofer.de/server/api/core/bitstreams/991b3429-be99-4cf8-9a06-ff9e435e09ef/content
https://publica-rest.fraunhofer.de/server/api/core/bitstreams/991b3429-be99-4cf8-9a06-ff9e435e09ef/content
https://publica-rest.fraunhofer.de/server/api/core/bitstreams/991b3429-be99-4cf8-9a06-ff9e435e09ef/content
https://publica-rest.fraunhofer.de/server/api/core/bitstreams/991b3429-be99-4cf8-9a06-ff9e435e09ef/content
https://publica-rest.fraunhofer.de/server/api/core/bitstreams/991b3429-be99-4cf8-9a06-ff9e435e09ef/content
https://publica-rest.fraunhofer.de/server/api/core/bitstreams/991b3429-be99-4cf8-9a06-ff9e435e09ef/content
https://publica-rest.fraunhofer.de/server/api/core/bitstreams/991b3429-be99-4cf8-9a06-ff9e435e09ef/content
https://publica-rest.fraunhofer.de/server/api/core/bitstreams/991b3429-be99-4cf8-9a06-ff9e435e09ef/content
https://publica-rest.fraunhofer.de/server/api/core/bitstreams/991b3429-be99-4cf8-9a06-ff9e435e09ef/content
https://publica-rest.fraunhofer.de/server/api/core/bitstreams/991b3429-be99-4cf8-9a06-ff9e435e09ef/content
https://publica-rest.fraunhofer.de/server/api/core/bitstreams/991b3429-be99-4cf8-9a06-ff9e435e09ef/content
https://publica-rest.fraunhofer.de/server/api/core/bitstreams/991b3429-be99-4cf8-9a06-ff9e435e09ef/content
https://publica-rest.fraunhofer.de/server/api/core/bitstreams/991b3429-be99-4cf8-9a06-ff9e435e09ef/content
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 3
AITwin: A Uniform Digital Twin
Interface for Artificial Intelligence
Applications

Alexander Diedrich, Christian Kühnert, Georg Maier, Joshua Schraven,
and Oliver Niggemann

Abstract Cyber-physical systems that integrate machine learning (ML)-based
services and methods from the broader field of Artificial Intelligence (AI) rely
on a virtual representation of the underlying real physical system. Unfortunately,
depending on respective solution approaches, usually similar but rarely the same
virtual representation of the physical system is required. Thus, two solutions for
the same problem might use different virtual representations. Informed Machine
Learning is one technique to integrate expert knowledge into AI applications. It uses
techniques to combine an often proprietary and expert-defined virtual representation
with data from a real cyber-physical system. But methods for Informed ML have a
much higher demand on the virtual representation than, for example, traditional
distance-based methods in Machine Learning. Informed ML requires domain
specific knowledge, which needs to be represented in some standardized Digital
Twin as its virtual representation. Practitioners benefit through some categorization
indicating which Digital Twin can be used to acquire a unique virtual representation
of a cyber-physical system. Especially, by using a common standardized application
programming interface (API). In short: a standardized Digital Twin is needed for
AI-based solutions. In this chapter, such an API for Digital Twins for AI solutions
is presented and different levels of complexity for Digital Twins are defined. The
suggested API is considered as an AI reference model and is verified by using it on
several simulated and real examples from the process and manufacturing industries.
Additionally, it is compared against currently ongoing research projects.

A. Diedrich
Fraunhofer IOSB-INA, Lemgo, Germany
e-mail: alexander.diedrich@iosb-ina.fraunhofer.de

C. Kühnert (✉) · G. Maier
Fraunhofer IOSB, Karlsruhe, German y
e-mail: christian.kuehnert@iosb.fraunhofer.de; georg.maier@iosb.fraunhofer.de

J. Schraven · O. Niggemann
Helmut Schmidt University, Hamburg, Germany
e-mail: joshua.schraven@hsu-hh.de; oliver.niggemann@hsu-hh.de

© The Author(s) 2025
D. Schulz, C. Bauckhage (eds.), Informed Machine Learning,
Cognitive Technologies, https://doi.org/10.1007/978-3-031-83097-6_3

41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-83097-6protect T1	extunderscore 3&domain=pdf

 885 49096 a 885 49096 a

mailto:alexander.diedrich@iosb-ina.fraunhofer.de
mailto:alexander.diedrich@iosb-ina.fraunhofer.de
mailto:alexander.diedrich@iosb-ina.fraunhofer.de
mailto:alexander.diedrich@iosb-ina.fraunhofer.de
mailto:alexander.diedrich@iosb-ina.fraunhofer.de

 885 52970 a 885 52970
a

mailto:christian.kuehnert@iosb.fraunhofer.de
mailto:christian.kuehnert@iosb.fraunhofer.de
mailto:christian.kuehnert@iosb.fraunhofer.de
mailto:christian.kuehnert@iosb.fraunhofer.de

 15825 52970 a 15825 52970 a

mailto:georg.maier@iosb.fraunhofer.de
mailto:georg.maier@iosb.fraunhofer.de
mailto:georg.maier@iosb.fraunhofer.de
mailto:georg.maier@iosb.fraunhofer.de

 885 56845 a 885 56845
a

mailto:joshua.schraven@hsu-hh.de
mailto:joshua.schraven@hsu-hh.de
mailto:joshua.schraven@hsu-hh.de
mailto:joshua.schraven@hsu-hh.de

 11991 56845 a 11991 56845 a

mailto:oliver.niggemann@hsu-hh.de
mailto:oliver.niggemann@hsu-hh.de
mailto:oliver.niggemann@hsu-hh.de
mailto:oliver.niggemann@hsu-hh.de
https://doi.org/10.1007/978-3-031-83097-6_3
https://doi.org/10.1007/978-3-031-83097-6_3
https://doi.org/10.1007/978-3-031-83097-6_3
https://doi.org/10.1007/978-3-031-83097-6_3
https://doi.org/10.1007/978-3-031-83097-6_3
https://doi.org/10.1007/978-3-031-83097-6_3
https://doi.org/10.1007/978-3-031-83097-6_3
https://doi.org/10.1007/978-3-031-83097-6_3
https://doi.org/10.1007/978-3-031-83097-6_3
https://doi.org/10.1007/978-3-031-83097-6_3
https://doi.org/10.1007/978-3-031-83097-6_3

42 A. Diedrich et al.

3.1 Introduction

If one wants to implement an AI-solution for some manufacturing or production
process, the virtual representation of the cyber-physical system—the Digital Twin—
is essential. A Digital Twin is a virtual representation of the (application specific)
most important information of some cyber-physical system. In the case of this chap-
ter these might be the dependencies and causalities within a system, the components
and their connections within the system, and the available process data and expert
knowledge (as far as it is relevant from an artificial intelligence standpoint). Overall,
the Digital Twin holds a collection of relevant information about the complete
physical system and of each of its entities. This virtual representation can be used for
different tasks, reaching from monitoring over fault diagnosis till optimization of the
process, depending on which information is included. Therefore, the vast majority
of publications considering the Digital Twin have a focus on engineering and
process-oriented aspects, covering topics like performing simulation scenarios [24],
the continuous enrichment of the Digital Twin during its life cycle [33] or doing
different modeling issues such as quality assurance for products [9], engineering
chains [24] or detecting optimal meta-levels [32].

Within the area of industry 4.0 (I4.0) the Digital Twin is mainly defined
through the so-called Asset Administration Shell (AAS) [15]. The AAS proposes
a standardized virtual representation of an I4.0 component which provides an
interoperability between different automated industrial systems. Like most other
publications covering the Digital Twin, the AAS barely focuses on Artificial
Intelligence (AI) and Machine Learning (ML). The growing research area of
Informed Machine Learning focuses on combinations between expert knowledge,
AI, and ML [19, 31]. Using informed ML, Models will integrate more information
of the environment and domain knowledge, meaning that the Digital Twin concept
and AI should become ever more compatible. Still, there are two contradictions:

• ML methods are very heterogeneous, meaning that each method comes with a
specialized representation. Hence, the question remains how a Digital Twin can
provide a general representation to each ML method

• ML and Informed Machine Learning, in particular, requires explicit, by an algo-
rithm processable, knowledge. Knowledge of a process in the Digital Twin such
as simulation libraries, unstructured data [29], or executables cannot be used, or
are only included implicitly. Still, most publications about Digital Twins refer to
this kind of information. Since this chapter is about the development of a Digital
Twin for ML/AI applications, no reference is made to this type of knowledge.
The conversion of unstructured knowledge into structured knowledge which is
applicable for ML is not in the scope of the chapter.

In this chapter we follow the key idea in [21] in which it is claimed that “The
intellectual heart of CPS is in studying the joint dynamics of physical processes,
software, and networks”. In terms of AI this means that the main task of a Digital
Twin must be to use models to predict the behavior of the corresponding CPS

3 AITwin: A Uniform Digital Twin Interface for Artificial Intelligence Applications 43

Fig. 3.1 Illustration of the
first research question. The
Development of a
standardized API for Digital
Twins

AI-enabled
Digital
Twin

AI
Algorithm 1

AI
Algorithm 2

AI
Algorithm n

 . . .

Standardized
API

subsystem, comprising cyber- and physical parts. Furthermore, in this chapter
the following constraint is added: The prediction knowledge, including domain
knowledge, must be explicit and processable by an AI algorithm. In summary, the
chapter addresses the following three research questions (RQ):

1. Is it possible to develop a common API of a Digital Twin which is suitable for
use with a set of heterogeneous AI algorithms like shown in Fig. 3.1 some AI
application shall be able to use this standardized API to get and post training
and data, as well as results? Therefore, neither the AI algorithms nor the
internal structure of the Digital Twin is addressed in this chapter but a common
application programming interface (API) for Digital Twins is presented.

2. Can AI algorithms use a common information base being stored in the Digital
Twin? How can AI algorithms in different hierarchies exchange information that
way? An algorithm for fault diagnosis, for example, might require information
about detected anomalies. How can this information be transmitted and stored
using a standardized Digital Twin?

3. Can a Digital Twin be integrated with Machine Learning, Informed Machine
Learning, as well as with symbolic AI algorithms? Methods from these dif-
ferent fields have quite different requirements on their input data. Bringing
sub-symbolic and symbolic AI together is currently a major topic in the AI
community.

3.1.1 Related Work

The Digital Twin with its enabling technologies plays a crucial role for success in
several areas and is a current field of research. Fuller gives a very comprehensive
overview [14] of manufacturing, smart cities and healthcare. He concludes that there
is still a lack of Digital Twin reference models, leading to discrepancies between
similar projects and thus slowing the progress of this technology. Proposals for
Digital Twin reference models have already been made by [1] focusing on risk
control and prevention in process plants, by [3] for cloud-based CPS, and by [22],
which, among others, developed a web-based Digital Twin of a thermal power
plant. An example of a more recent publication that considers Digital Twins in

44 A. Diedrich et al.

combination with ML is given by Castellani [7], who uses the Digital Twin to
generate synthetic datasets for anomaly detection. As one of the first papers in
the Industry 4.0 initiative, Löcklin et al. [20] proposes an AAS for data analytics
projects.

Section 3.2 analyzes the requirements of AI/ML methods to the corresponding
models, Sect. 3.3 presents the main solution approach, deriving the Digital Twin AI
reference model, called AITwin. Case studies, being the major part in the publi-
cation, can be found in Sect. 3.4. A conclusion is given in Sect. 3.5. The results in
this publication build on the results presented in [2]. The chapter would improve by
explaining more using the taxonomy why one wants to use a digital twin, at least to a
large degree because a digital twins provides access to representations of knowledge
about the application.

Informed Machine Learning and the Digital Twin
Informed Machine Learning refers to the use of prior knowledge and domain
expertise to improve the accuracy and efficiency of ML models. Instead of relying
solely on data-driven approaches, informed ML integrates prior knowledge into the
modeling process e.g. by guiding the selection of relevant features, optimization
algorithms, or model architectures. Within [31] a comprehensive overview and
taxonomy on how and in which way prior knowledge can be used with ML.
Promising results for the interaction of a Digital Twin with informed machine
learning algorithms have already been shown in recent publications. Gong et al. [16]
generates a physics-informed digital twin and uses it in combination with ML to
solve problems in nuclear reactor physics, Jiang et al. [18] uses ML and the Digital
Twin to develop a surrogate model for coastal floods, Chakraborty and Adhikari [8]
combine a physical and data-driven model to describe multi-timescale dynamical
systems. Still, results show that combining ML with its Digital Twin results always
in an individual solution for specific application field. The herein presented work
tries to close this gap by proposing the Digital Twin reference model AITwin. In
particular, the approach for integrating causal dependencies presented in Sect. 3.3.3
is crucial for informed ML, since this information can be directly integrated into the
model.

3.2 ML/AI and the Digital Twin

Within this section, a classification of different AI methods is performed and
requirements for Digital Twin are derived. Like the large number of different
methods, there exists also a large number of different formalisms to model and
represent domain knowledge as well as the description of the environment. For
simplicity, within this chapter the focus is on methods being used mainly for
Cyber-Physical-Systems. Therefore, the AI methods are classified into three main
categories shown on the left side of Fig. 3.2.

3 AITwin: A Uniform Digital Twin Interface for Artificial Intelligence Applications 45

Fig. 3.2 Complexity of the
digital twin in comparison to
different levels of ML

Distance-to-Normal
Machine Learning

Extrapolation
Machine Learning

Symbolic

Intelligence

K
no

w
le

d
g

e
C

om
p

ila
tio

n
us

in
g

 M
L

D
ig

ita
l T

w
in

C

om
p

le
xi

ty

Synchronized
Data

Prediction-enabled
Models

Causalities

Distance-to-Normal Machine Learning Typical examples of this approach are
traditional supervised and unsupervised approaches to anomaly detection. In that
case the machine learning model stores historical data points and calculates a
distance measure between an incoming data sample, e.g. from a production process
and the stored points. A classic use case is that historical data points are interpreted
as “normal” and samples that are in distance too far away from those samples
are classified as “abnormal”. To some extent, interpolation can be used by some
methods to process data points that are close to previous data points. To implement
distance-to-normal machine learning, the digital twin, shown on the right side in
Fig. 3.2, must contain a common temporal model to synchronize all data coming for
the CPS. Still, no prior knowledge needs to be made available for the ML model,
since results a completely data-driven.

Extrapolation Machine Learning This subsumes applications such as control
and optimization tasks. The use of a Digital Twin for optimization and self-
configuration in autonomous systems means that it is used in a closed control loop.
A classic example in that case is the use for model predictive control tasks. The
Digital Twin has the task to predict output values like resource consumption or
component positions which is again used for new input values. It is pointed out, that
this extrapolation capability means that new values are predicted from the observed
data points far away in time and/or space. In terms of Machine Learning, this can
especially cause problems for technical systems if there are only a few individual
data points available. In this case, methods that integrate physical and data-based
information can bring advantages.

Symbolic Artificial Intelligence Compared to the two other categories, symbolic AI
is not considered as being part of ML since it is not data-driven. Tasks that cover the
fields of process reconfiguration, planning, fault diagnosis or similar need additional
causal information of the process. In terms of AI this means that symbolic models
are needed: Diagnosis needs at least cause-symptom relationships (e.g. if the pipe
leaks, the tank fills slower than expected), planning requires as minimal information
the different steps in the process (e.g. a specific actuator moves a component from
position 1 to position 2). It needs to be noted that causalities always describe
effects resulting from one or several causes. Both, effects and causes, are symbolic
predicates in a formal logic. In that case, the Digital Twin must contain such logic-

46 A. Diedrich et al.

Fig. 3.3 The introductory
example for the different
complexity levels of the
Digital Twin in form of a four
tank model

t0

t1 t2

t3

v1 v2

v3

v4 v5

v6

v0

based models. Furthermore, those models can be for Informed Machine Learning,
e.g. by integrating the logic directly into the ML model to solve a specific task.

Introductory Example
To illustrate the possibly used ML methods, a running example, as shown in Fig. 3.3
is used. The system is composed of four water tanks t , seven valves p with flow
sensors, a water source and a water sink (not shown). Possible applications for the
prior presented AI methods are:

Distance-to-Normal Machine Learning The joined vector of all flows as well as the
filling levels and valve positions can be used to detect anomalies in the system. Only
the synchronized data stream is needed.

Extrapolation Machine Learning The joined vector of all flows can be used to
predict some sort of consumption profile. In combination with domain knowledge
(e.g. how to valves can the controlled) this information can be used to optimize the
system configuration.

Symbolic Artificial Intelligence The switching of a valve leading to the overflow of
a container can be modeled. In a subsequent step, this model can be used for an AI
to perform an diagnosis and to identify the root cause of an error.

3 AITwin: A Uniform Digital Twin Interface for Artificial Intelligence Applications 47

3.3 AI Reference Model

Within this section the Digital Twin AI reference model, the AITwin, is derived.
In general, the AI reference model provides a set of interfaces in different levels
of abstractions that some AI method may use to obtain its input data and post its
outputs. The actual implementations of such an AI Twin may differ and may include
logical knowledge bases, simulations, time-series data, or graphs. Most importantly,
though, the API shall be general enough such that it is irrelevant what exact process
(logical model, simulation etc.) has generated such data. In case of the introductory
example of the four-tank system the AI Twin would provide synchronized time-
series data such as the valve-set points, water level in the tanks, and flow-rates
through the pipes.

3.3.1 Synchronized Data

Time is one main feature of physical processes. However, software does not
inherently handle the concept of time. Within physical processes parallel events
can occur at arbitrary points in time. Often, the time span between commands is
defined through some measure, but through variations in the executing hardware,
the physical time span can vary. It is therefore necessary to establish a common time
model of the Digital Twin . Following the idea from [21], this leaves two options:

Cyberizing the Physical A signal values x as x(t, k). is defined where t ∈ R. is the
physical time and k ∈ N. the number of an ordered sequence of events/instructions
in the software.

Physicalizing the Cyber For time synchronization in distributed systems the Pre-
cision Time Protocol [17] allows for a consistent concept of time, especially in
controllers. An overview of industrial data acquisition for real-time system are given
in [13]. This means that software can refer to precise points in time.

“Cyberizing the Physical” has the drawback that most ML algorithms need to be
adapted, as they need a clear time model and concept of causality. Out of this reason,
“Physicalizing the Cyber” is preferred. All information x(t). refers to a unique
point in time t , which means that the underlying technical systems contain a time
synchronization between all devices. Timing refers first of all to the measurement
signals while prior knowledge plays a subordinate role.

To obtain synchronized data the Digital Twin needs two interfaces:

1. The function getData(i,t) returns the i’th signal x ∈ R. at time point t . Here i is
the i’th signal of total number X . of available signals in the digital twin.

2. The function getData(t) returns all signals x ∈ X . at a time point t . While X . is
the set of all possible values x(t). and vector x(t). records the complete observable
state of the physical system (Fig. 3.4).

48 A. Diedrich et al.

Fig. 3.4 Interface needed for
the AI twin reference model
for synchronized data

Synchronized
Data

xi=getData(i, t)
x=getData(t)

3.3.2 Prediction-Enabled Models

Prediction models can be structured in different ways. On the one hand, there
are the purely data-driven models which cover the majority of use cases, but also
expert systems or simulation models are possible. Regarding the Digital Twin it
is important that all models cover the same API. Especially with data-driven
ML models there are a number of difficulties when applied to a CPS, like for
manufacturing or similar. One main challenge is that usual data intensive ML
algorithms like deep learning, often fail or deliver wrong results even if they
generate very good results in other domains. The reasons are:

• Data in production systems is comprised of repetitive patterns—mirroring the
repetitive structure of typical production processes, this leads to sufficient data
but insufficient information.

• In production data only small numbers of samples include failure information or
other problems.

• Physical system data seldom contains multiple instances of data from the same
failure.

Thus, in many cases learned models from CPS have only limited extrapolation
capabilities. Even if learned models predict outputs for new input values, prediction
accuracy quickly decreases when values are far away from observations in time or
distance. Hence, the proposed AI reference model, not only needs to extrapolate
data, but also needs to provide information about the quality of extrapolation.
Specifically, probabilistic models should be used such that predictions are not only
implemented as a point estimator, but contain the probability that the prediction
is correct. In the case of the introductory example, the extrapolation could be
implemented by control theoretic methods, that vary the set-point of a valve
depending on some tank level. If the tank’s water level changes the valve would be
adjusted accordingly in order to keep a stable state, for example. Within the chapter,
extrapolation is distinguished between so-called static and dynamic predictors.
Static predictors make predictions only based on the current value, while in contrary,
dynamic predictors makes predictions based not only on the current but on previous
values, e.g. by looking at history table. Both are explained in the following.

Static Predictions
Condition-monitoring or anomaly detection are examples of static predicts, since
they only use signal values x(t) ∈ Rn

. at some point in time t . Thereby, the
assumption is that the data sequence with respect to time does not contain any

3 AITwin: A Uniform Digital Twin Interface for Artificial Intelligence Applications 49

information. It needs to be noted that this assumption is true for many CPSs, even for
systems which have a dynamic nature them-self. Three typical fields of application
can be derived from this:

• Anomaly Detection: For a new data point x ∈ Rn
. its probability p(x|X). given

some historical data X is computed.
• Prediction: Given a feature vector x ∈ Rn

., those entries are used to predict a label
y.with its probability.

• Optimization: The partial gradient over the signals can be created by extrapo-
lating in the vicinity of an operation point. Hence, the Digital Twin needs no
special functionality.

Dynamic Predictions
Once information is inside a sequence of signal values over time a different situation
arises. Here, three typical fields of application can be derived:

• Anomaly Detection: Given historical data X = {x(t = t0), x(t = t1), . . . , x(t =
tk)}., for a time step Δt . a new data vector x(t = tk + Δt). is computed with its
probability, such that x(t = tk + Δt). is the logical continuation of the series.

• Prediction: Provided historical data X = {x(t = t0), x(t = t1), . . . , x(t = tk)}.
and time step Δt . the next value x(t = tk + Δt). is computed with its probability
distribution.

• Optimization: The temporal gradient over the signals is be created by extrapolat-
ing in the vicinity of the time point Δt .. Therefore, no special functionality of the
Digital Twin is needed here.

For reliable predictions, the model should not only capture normal behavior but also
different failure modes. Hence, the Digital Twin must comprise this knowledge and
be enabled to set some components to failure states. Figure 3.6 presents the resulting
API methods with extrapolation. In the static case the extrapolation is solved by a
function extrapolateStatic(x'

.), where x’ is a partially filled vector with signals. The
function outputs the missing values x. with the probability vector, with null entries
if not computable. This solves the three above discussed use cases. The function
extrapolateDynamic(X , Δ.t) with X being a sequence of historical signals up to time
t is defined for the static use case. The function outputs the next signal v ector x(t +
Δt). with associated probabilities, both with null entries if not computable. Again,
this solves the three discussed use cases. Different failure modes are set using the
function setFailedComps(C’) with C’ being a subset of all components within the
physical system. The functions extrapolateStatic and extrapolateDynamic predict
the component’s behavior assuming that the components are not working correctly.
Function getComps() returns the names of all components.

50 A. Diedrich et al.

3.3.3 Causalities

For ML algorithms and especially for the emerging topic of informed ML the
integration of physical information, such as the knowledge of causal dependencies,
is becoming more and more important. When causal dependencies are included in
the Digital Twin , logical rules or knowledge graphs can be derived and according to
[31], used to be integrated into the ML model. Unfortunately, concerning causality,
until now there is no definition of causality that is accepted by the majority of
researchers. Therefore, within this section, initially, we analyze the specific usage
of causality models in two main AI applications and from there we derive a suitable
definition of causality for the Digital Twin . To illustrate, in the introductory
example, causalities could be represented through a graph-based structures or
logical frameworks [11]. Such graph-based structures describe which component’s
output influences which other components. This is necessary information for tasks
such as fault diagnosis and planning.

Application 1—Consistency-Based Diagnosis
Diagnosis is the task of computing a fault based on incomplete symptoms, e.g.
observations. Therefore, knowledge about causalities between faults and symptoms
must be available since failures can often lead to complex symptom patterns.
More specific, operators often face complex alarms but fail to identify the true
fault. Models often predict only normal behavior, while consistency-based diagnosis
(CBD) [10] often uses so-called weak fault models. In many cases, CBD uses partial
system models such as

.OK(Ci1) ∧ . . . ∧ OK(Cik) → (s1 → s2 ∧ . . . ∧ sl) , k, l ∈ N , (3.1)

where OK(C). denotes a correct functioning of component C and si ∈ {0, 1}.
is a binary/symbolic representation of the current system status. This means, if
components Ci1 , . . . , Cik . work correctly, the implication describes the normal sys-
tem causality. CBD then redraws OK-assumptions until no contradictions between
predictions and observation are left.

Application 2—Planning
Planning describes the procedure to compute a sequence of process steps to
transform raw objects into some given final object. Let P be the set of all possible
objects. Then a process step qi . is an implication qi : x → y., which takes u input
objects x ∈ P u

. and transforms them into v output objects y ∈ P v
.. We denote the

set of all process steps as Q.

3 AITwin: A Uniform Digital Twin Interface for Artificial Intelligence Applications 51

Fig. 3.5 Causality concept of
AITwin, si .s are system states,
Cj . are components, pk . are
products

3.3.3.1 System and Product State Causalities

From those two applications, a common causality model for the Digital Twin can
be defined. Figure 3.5 shows two distinct types of causalities, namely system state
causalities and product state causalities. Both are explained in the following.

System State Causalities
System state causality models describe the transition from one system state si ∈ S .

to another system state sj ∈ S .. The occurrence of some event e1 ∈ {0, 1}. triggers
this transition, while the event e1 . denotes Pearl’s do operator [30]. This means, that
if e1 . is forced to be one, the event is triggered.

A system state s ∈ S . corresponds to a subset of X ., with X . being the set of
all possible values x(t).. An event e1 . is defined as the crossing of some threshold
in X .. The thresholds correspond to a number of equations of the form f · x(t) <

c, f, x(t), c ∈ Rn
. defining a halfspace of X. Such a system state causality is

only valid under the condition that specific components C1, . . . , Cl . are functioning
correctly, f.e.OK(C1)∧. . .∧OK(Cl). is true (see Sect. 3.3.2). With this information
the diagnosis (CBD) task from above can be implemented, such that consistencies
between predictions x(t). from the predictions API level and causalities predicting
system states si . can be checked as si . is a subspace of X ..

Product State Causalities
Product state causalities model the transition from one set of objects pi, . . . , pj . to
another set of objects pk, . . . , pl .. A product pi . might be any kind of complete or
partial product or some raw material.

The occurrence of an event e2 . triggers this transition, while empty events are
possible. Events are interpreted as defined above. A system state causality is only
valid under the condition that specific components C'

1, . . . , C
'
l ., see Sect. 3.3.2, are

functioning correctly, e.g. OK(C'
1) ∧ . . . ∧ OK(C'

l). is true. The resulting API
extensions are shown in Fig. 3.6. Using this information the planning task from
above can be implemented.

Using an implication API allows for the handling of causalities in form of transi-
tions or implications: The function getSystemCausalities(si). returns all causalities

52 A. Diedrich et al.

Fig. 3.6 The complete
Digital Twin AI reference
model AITwin

Synchronized
Data
Model

xi=getData(i, t)
x=getData(t)

x, p=extrapolateStatic()

Prediction-
enabled
Closed-Loop
Model

Data
API

Extrapolation
API

Failure Mode
API

b=setFailedComps(C)

x, p=extrapolateDynamic(X, t)

C=getComps()

Causality
Model

S1, E, S2, I, n, OK=getSystemCausalities(si)

Concept
API

Implication
API P1, E, P2, I, n, OK =getProductCausalities(p i)

s=getConcepts(x)

Event
API

e=getEvent()

s1, e, s2, I, n,OK .. Where s1 . denotes the starting state, s2 . the end state, e is the
event, n the name of the causality and I stores additional information such as
probabilities, timing etc. OK is the s et of OK assumptions OK = OK(C1)∧ . . .∧
OK(Cl). which are a precondition for the validity of the causality. The function
getProductCausalities(pi). returns all causalities p1 = (p1

1, . . . , p
l
1), e, p2 =

(p1
2, . . . , p

k
2), I, n,OK . where p1 . denotes the original objects, e is the event, p2 .

denotes the resulting objects, n, I,OK . are defined as above.
e = defineEvent(halfspace). defines an event e which corresponds to a halfspace.

The parameter halfspace is defined using a mathematical inequality in the language
MathML [27]. The function getEvent(x, x'). returns all events which are triggered
when moving from the operation point x ∈ X . to x' ∈ X ..

s = defineConcept(region).defines a system state s, namely a concept, as a causal
convex region region, meaning that there is no violation of causality. The parameter
region is part of in X .using a mathematical inequality in the language MathML [27].
The function getConcepts (x). returns all system states si . (aka concepts) with x ∈ si ..

3.3.4 The AITwin Reference Model

The complete AITwin reference model is shown in Fig. 3.6. The focus on those parts
that are required by AI algorithms and further information about specific domains
must be added. It has to be noted that the AITwin can be used in parallel with
different system granularities. Note that the three levels on the right of Fig. 3.2
correspond to the three levels on the left of Fig. 3.6 and form a holistic concept:
Data x. from the “Synchronized Data Model”-API is used also in the “Prediction-
enabled Closed-Loop Model”-API. These data points may further be correlated to
system states from the “Causality Model”-API. Note that all APIs use the same
components for modeling failure modes.

3 AITwin: A Uniform Digital Twin Interface for Artificial Intelligence Applications 53

Besides the APIs, the Digital Twin is based on three state spaces necessary
for the Digital Twin definition: X . denotes all possible signal values, P denotes
all possible object/product configurations and COMPS is the set of components
which may fail. Further, two derived state spaces exist, which normally are defined
via API methods during the operation phase: S is a set of system states where s ∈ S .

is a subset of X . and E is the set of all events where e ∈ E . is a halfspace of X ..

3.4 Evaluation

The aim of this section is to focus on known use cases from literature as well as
one real-world process. This includes the four tank model from control engineering,
which has already been presented in Sect. 3.2, the Tennessee Eastman Process [12]
and the SECOM [28] data set. Finally, as a real-word use case, the Digital Twin is
evaluated on a sensor-based sorting system.

3.4.1 Applying AITwin to a Four Tank Model

To evaluate AITwin the API is used on the four tank process introduced in
Sect. 3.2. Therefore, especially the getData(t) method to have synchronized data
and the extrapolateStatic(x’) method have been used to detect anomalies in the
measurements. Abnormal data has been inserted via the setFailedComps(C) API.

In a first step, data describing the normal behavior of the process is extracted
by using the getData(t) method from the Digital Twin. As a subsequent step these
samples are used to perform the training of the model by using an unsupervised
learning algorithm. To evaluate the trained model, non-normal data is extracted,
again using the getData(t) function.

3.4.2 Applying AITwin to Tennessee Eastman Process

As second use case, the AITwin API is applied to symbolic AI tasks. Therefore,
concepts are extracted from the Digital Twin via the “concept” API and causalities
via the “implication” API. This information can be used to create a model for
Consistency-Based Diagnoses (see Sect. 3.3.3). Failures can be added via the
“failure” API. As Table 3.1 shows the results, most failures can be identified
correctly.

Therefore, two quantitative simulations of the Tennessee Eastman process where
used. (1) The implementation of Downs et al. [12] and (2) an implementation of
the alarm management benchmark developed by Manca [26].

54 A. Diedrich et al.

Table 3.1 Results for the
simulated Tennessee Eastman
Process [12]

IDV Fault isolated Injected fault

1 not ok Feed ratio changed

6 ok Pipe A feed loss

8 ok Feed ratio changed

13 not ok Reactor kinetics fault

14 ok Reactor cooling fault

15 ok Condenser cooling fault

Table 3.2 Experimental results with the Tennessee Eastman process by Manca. |ω'|. denotes the
size of the diagnosis set

Runs Avg. # injected faulty OBS |ω'|.
100 13.16 2.05

In summary, the proposed simulation in [12] has the possibility to generate 20
different injected faults. Still, it is assumed that the instrumentation does not exactly
identify all faults and some fault modes are not due to the fault of one component.
Hence, Table 3.1 shows the results for the remaining six experiments.

In Table 3.1, the ok means that the that the minimal cardinality diagnosis found
faulty component, while the not ok means that the faulty component has not been
detected by using the diagnosis algorithms. In summary, the AI-solution is able to
detect all faults which are identifiable as the cause of the process disturbance. Since
no observations are available at the inputs, the change of input ratios can only be
detected indirectly .

Regarding the AITwin reference model, the getData(t), setFailedComps(), and
getSystemCausalities() functions were used. getData() is used to obtain simulated
process information from the simulation, setFailedComps() returns binary residuals
for each component, and getSystemCausalities() returns expert-defined causality
rules formulated in predicate logic.

Using the another simulation developed by Manca [26], we were able to
evaluate more fault modes than by the implementation described by Downs et al.
Additionally, we used a different implementation of the AITwin API: getComps()
is implemented through expert knowledge denoting the time and place when
faults occur. setFailedComps() is implemented through a simulation. The system
causalities are learned data-driven using getSystemCausalities() to obtain a Granger
Causality measurement. The results in Table 3.2 show that through Granger Causal-
ity we can obtain predicate logic rules suitable for consistency-based diagnosis and
symbolic AI.

It is evident that, although on average 13 faults were injected (with a high
standard deviation), the average diagnosis size is small compared to the number of
components. It must be noted, however, that the number of components contained in
the rules is less than those in the simulation, due to the constraints explained above.

3 AITwin: A Uniform Digital Twin Interface for Artificial Intelligence Applications 55

Table 3.3 Results with
systems S1, S2, S3, S4 of the
developed benchmark

System Runs Avg. # injected faulty OBS |ω'|.
S1 100 1.09 3.66

S2 100 1.9 7.7

S3 100 2.41 4.5

S4 100 0.52 1.38

We have used the same API functions as above to automatically generate rules
and diagnose systems S1, S2, S3, and S4 of the benchmark developed by Balzereit
et al. [5]. The results are presented in Table 3.3.

It can be seen that although the average number of injected faults was low (albeit
with a high standard deviation), the number of possible faults components is large
compared to the system size. This can be explained by the connected nature of the
tanks systems, where injected faults propagate almost instantaneous.

3.4.3 Applying AITwin to a Quality Assurance Example

A real manufacturing process of semiconductors is used as an application example
for the use of the AITwin model for product quality assurance. This process is
continuously monitored using various sensors and measuring points, so that 591
characteristics are recorded and documented for the evaluation of the product
quality. These data points are included in the SECOM dataset [28] for 1567
instances along with the quality assessment (pass or fail). As [28] describes, not
all included features have the same relevance. Therefore, the features should be
evaluated by an intelligent system depending on their impact on the product quality.
Furthermore, causal relationships between the identified main features could be
detected. Arif et al. [4] uses a ML approach to train a prediction model that classifies
this dataset with an accuracy of >90%.. With the API introduced in Sect. 3.3.3, the
prediction model can be connected to the digital twin in a standardized way. Similar
to the sensor-based sorting system described in Sect. 3.4.4, the collection of sensor
data is done by the function getData(t). Once the prediction model is trained, it
becomes part of the Digital Twin and can be called through the Extrapolation API.
By using the function extrapolateStatic(x'

.) the predicted product quality can be be
retrieved, while x’ describes in the input parameters needed for the prediction of the
quality.

3.4.4 Applying AITwin to a Sensor-Based Sorting System

As a real world example on how to apply the AITwin model, a lab-scale sensor-
based sorting system is used. Sensor-based sorting is a single particle separation

56 A. Diedrich et al.

Fig. 3.7 Sensor-based
sorting system used to
evaluate the AITwin API at
Fraunhofer IOSB

technology that finds wide application in the fields of mining, recycling, and
the processing of agricultural products and foodstuffs. The goal is to remove
residues, for instance low-quality entities, from a product stream to be recovered.
The functional principle, as for instance described in [25] in more detail, can
be summarized as follows. A material stream is observed by one or multiple
imaging, line-scanning sensors. The sensor data is then processed with the goal
to calculate a sorting decision per particle. The sorting decision is then executed by
an actuator that handles the actual physical separation. Most commonly, an array of
fast switching pneumatic valves is used for this purpose. An image of the considered
laboratory scale sensor-based sorting system is given in Fig. 3.7. The system is used
to sort small quantities of bulk materials, in our case roasted coffee beans according
to their quality. The system is equipped with a vibratory feeder, a conveyor belt,
a hyperspectral short-wavelength infrared (SWIR) line-scan camera and an array
of pneumatic valves. The coffee bean quality is determined using the camera and
an array of pneumatic valves is used to blow out the low quality roasted beans.
Since the conveyor belt runs on high speed, in our case approximately 1m

s ., the
attached valves need to execute the sorting decision in high speed as well. To ensure
optimum sorting quality, the beans need to be evenly distributed on the conveyor belt
perpendicular to the transport direction. Whenever this is not the case, the following
two problems may arise:

• The valves on the valve bar operate unevenly. This leads to the point that
individual valves have to be replaced more frequently since some valves have
reached their maximum switching life cycle.

• Due to the fact that the beans are discharged from the conveyor belt at high speed,
if only a small number of valves is operating, the sorting quality is reduced since
the valve can not open and close as fast as low quality beans pass by.

To remedy these two problems, a ML model, namely an Autoencoder, is used to
monitor the lateral distribution of particles using the sensor data as well as the

3 AITwin: A Uniform Digital Twin Interface for Artificial Intelligence Applications 57

behavior of the valve bar, respectively checking if the bean distribution on the
conveyor belt and the activation of valves follows an equal distribution. Therefore,
the Autoencoder is trained on a data set containing the observed positions and valve
behavior with equally distributed beans. In a subsequent step this model is used to
monitor the distribution and raise an alarm if the valve bar is unevenly stressed.

In terms of Fig. 3.2, the ML-task corresponds to distance-to-normal learning.
Since the digital twin of the sensor-based sorting system has already implemented
some features of the AITwin reference model, for training the model, the function
getData(t) is used to collect the training data. Therefore, an operator monitors
whether the beans are equally distributed. After training, the Autoencoder itself
becomes a part of the Digital Twin . Therefore, the function extrapolateStatic(x'

.)
is implemented and used to ask the current ML model results, e.g., if the valves are
evenly stressed. In that case, x’ describes the opening and closing of the individual
valves over a certain time interval. As mentioned after training, the Autoencoder
becomes a part of the AITwin and can be queried by using the function getComps().

3.5 Discussion and Future Work

Within the introduction, three research questions focusing on the Digital Twin for
AI based solutions were identified as key challenges. In short, the challenges were
the development a common API, a common information storage and whether an
interaction between symbolic and sub-symbolic AI is possible. As an answer to
those challenges, a common Digital Twin reference model, called the AITwin, has
been defined. Therefore, in Sect. 3.3, initially the conceptual requirements of CPS
with respect to timing models were analyzed. This was expanded in Sect. 3.3.2 by
analyzing the conceptual requirements of CPS with respect to machine learning
models. Section 3.3.3 continued with the analysis of the conceptual requirements of
CPS with respect to symbolic AI models and Informed Machine Learning. Finally,
all sections led to the point that a common application programming interface (API)
could be derived in Sect. 3.3.4. It is concluded that the proposed and developed
AITwin reference model could answer all three key challenges defined in the
introduction.

In summary, the authors do not claim that following the ideas of the developed
reference models is the ultimate definition of a Digital Twin for AI solutions. But
we hope it is still a helpful standardized interface which practitioners may use to
build compatible AI applications over several hierarchies of abstractions. Still, it
can be assumed, that in the future Digital Twins, as well as AI, will be one of the
center-points of future CPS architectures. Nonetheless, lots of work still needs to
be done to bring both worlds together and to harmonize them. When looking at
some public research projects it can be identified that their results may easily benefit
from adherence to the AITwin model. For examples, the results from Li [23], could
have used many of the methods to predict the surface roughness in extrusion-based
additive manufacturing. Similarly, in [6] an on-line defect recognition may have

58 A. Diedrich et al.

benefited from an AITwin. Planning and diagnosis tasks may also derive most of
their needed information from the AITwin. Thus far, descriptions of machines and
about most expert knowledge must be implemented individually and often using
proprietary methods. Using the AITwin, instead of having several incompatible data
models, domain knowledge, interfaces, and formats, it is possible to use a single
Digital Twin with its common interfaces and thus integrate a multitude of disparate
algorithms. However there are still some applications whose requirements may not
be met specifically. For example, applications making explicit use of simulations.
The API is designed in such a way that simulations are only included implicitly. This
is sufficient for many industrial AI use-cases, for example, reinforcement learning
applications would prefer a more simulation oriented API.

Acknowledgments This contribution was supported by the Fraunhofer Cluster of Excellence
“Cognitive Internet Technologies”.

References

1. Bevilacqua et al., M.: Digital twin reference model development to prevent operators’ risk in
process plants. Sustainability 12(3), 1088 (2020)

2. Niggemann et al., O.: A generic digitaltwin model for artificial intelligence applications. In:
IEEE International Conference on Industrial Cyber-Physical Systems (ICPS) (2021)

3. Alam, K.M., El Saddik, A.: C2PS: A digital twin architecture reference model for the cloud-
based cyber-physical systems. IEEE Access (2017)

4. Arif, F., Suryana, N., Hussin, B.: A data mining approach for developing quality prediction
model in multi-stage manufacturing. International Journal of Computer Applications 69(22),
35–40 (2013)

5. Balzereit, K., Diedrich, A., Ginster, J., Windmann, S., Niggemann, O.: An ensemble of
benchmarks for the evaluation of AI methods for fault handling in CPPS. In: 19th IEEE
International Conference on Industrial Informatics (2021)

6. Caggiano, A., Zhang, J., Alfieri, V., Caiazzo, F., Gao, R., Teti, R.: Machine learning-based
image processing for on-line defect recognition in additive manufacturing. CIRP Annals 68(1),
451–454 (2019)

7. Castellani, A., Schmitt, S., Squartini, S.: Real-world anomaly detection by using digital twin
systems and weakly supervised learning. IEEE Transactions on Industrial Informatics (2021)

8. Chakraborty, S., Adhikari, S.: Machine learning based digital twin for dynamical systems with
multiple time-scales. Computers and Structures 243, 106410 (2021)

9. Cheng, D.J., Zhang, J., Hu, Z.T., Xu, S.H., Fang, X.F.: A digital twin-driven approach for on-
line controlling quality of marine diesel engine critical parts. International Journal of Precision
Engineering and Manufacturing 21(10), 1821–1841 (2020)

10. Diedrich, A., Niggemann, O.: Model-based diagnosis of hybrid systems using satisfiability
modulo theory. In: Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19) (2019)

11. Diedrich, A., Niggemann, O.: On residual-based diagnosis of physical systems. Engineering
Applications of Artificial Intelligence 109, 104636 (2022)

12. Downs, J.J., Vogel, E.F.: A plant-wide industrial process control problem. Computers &
chemical engineering 17(3), 245–255 (1993)

13. Flammini, A., Ferrari, P.: Clock synchronization of distributed, real-time, industrial data
acquisition systems. In: M. Vadursi (ed.) Data Acquisition, chap. 3. IntechOpen, Rijeka (2010)

3 AITwin: A Uniform Digital Twin Interface for Artificial Intelligence Applications 59

14. Fuller, A., Fan, Z., Day, C.: Digital twin: Enabling technology, challenges and open research.
arXiv preprint arXiv:1911.01276 (2019)

15. German Institute for Standardization: Reference architecture model industrie 4.0 (rami4.0); din
spec 91345 (2016)

16. Gong, H., Cheng, S., Chen, Z., Li, Q.: Data-enabled physics-informed machine learning for
reduced-order modeling digital twin: Application to nuclear reactor physics. Nuclear Science
and Engineering 196(6), 668–693 (2022)

17. https://www.nist.gov/el/intelligent-systems-division-73500/ieee-1588. Accessed 10/10/22
18. Jiang, P., Meinert, N., Jordão, H., Weisser, C., Holgate, S.J., Lavin, A., Lutjens, B., Newman,

D., Wainwright, H.M., Walker, C., Barnard, P.L.: Digital twin earth – coasts: Developing a fast
and physics-informed surrogate model for coastal floods via neural operators (2021)

19. Karniadakis, G.E., Kevrekidis, I.G., Lu, L., Perdikaris, P., Wang, S., Yang, L.: Physics-
informed machine learning. Nature Reviews Physics 3(6), 422–440 (2021)

20. Löcklin, A., Vietz, H., White, D., Ruppert, T., Jazdi, N., Weyrich, M.: Data administration shell
for data-science-driven development. Procedia CIRP pp. 115–120 (2021)

21. Lee, E.A.: CPS foundations. In: Proceedings of the 47th Design Automation Conference, DAC
’10. ACM, New York, NY, USA (2010)

22. Lei, Z., Zhou, H., Hu, W., Liu, G.P., Guan, S., Feng, X.: Towards a web-based digital twin
thermal power plant. IEEE Transactions on Industrial Informatics (2021)

23. Li, Z., Zhang, Z., Shi, J., Wu, D.: Prediction of surface roughness in extrusion-based additive
manufacturing with machine learning. Robotics and Computer-Integrated Manufacturing 57,
488–495 (2019)

24. Madni, A.M., Madni, C.C., Lucero, S.D.: Leveraging digital twin technology in model-based
systems engineering. Systems 7(1) (2019)

25. Maier, G., Pfaff, F., Pieper, C., Gruna, R., Noack, B., Kruggel-Emden, H., Längle, T.,
Hanebeck, U.D., Wirtz, S., Scherer, V., Beyerer, J.: Experimental evaluation of a novel sensor-
based sorting approach featuring predictive real-time multiobject tracking. IEEE Transactions
on Industrial Electronics 68(2), 1548–1559 (2021)

26. Manca, G.: “tennessee-eastman-process” alarm management dataset. IEEE Dataport (2020).
https://doi.org/10.21227/326k-qr90

27. https://www.w3.org/TR/REC-MathML. Accessed 10/10/22
28. Michael McCann, A.J.: SECOM data set, UCI machine learning repository. Accessed 10/10/22

(2008). URL https://archive.ics.uci.edu/ml/datasets/SECOM
29. Panzner, M., von Enzberg, S., Meyer, M., Dumitrescu, R.: Characterization of usage data with

the help of data classifications. Journal of the Knowledge Economy pp. 1–22 (2022)
30. Pearl, J.: Causality: Models, Reasoning and Inference, 2nd edn. Cambridge University Press,

New York, NY, USA (2009)
31. von Rueden, L., Mayer, S., Beckh, K., Georgiev, B., Giesselbach, S., Heese, R., Kirsch, B.,

Walczak, M., Pfrommer, J., Pick, A., Ramamurthy, R., Garcke, J., Bauckhage, C., Schuecker,
J.: Informed Machine Learning – A Taxonomy and Survey of Integrating Prior Knowledge into
Learning Systems. IEEE Trans. on Knowledge and Data Engineering 35(1), 614–633 (2023)

32. Stark, R., Damerau, T.: Digital twin. In: L. Laperrire, G. Reinhart (eds.) CIRP encyclopedia of
production engineering. Springer Publishing Company (2019)

33. Tao, F., Qi, Q., Wang, L., Nee, A.: Digital twins and cyber-physical systems toward smart
manufacturing and industry 4.0: Correlation and comparison. Engineering 5(4) (2019)

https://www.nist.gov/el/intelligent-systems-division-73500/ieee-1588
https://www.nist.gov/el/intelligent-systems-division-73500/ieee-1588
https://www.nist.gov/el/intelligent-systems-division-73500/ieee-1588
https://www.nist.gov/el/intelligent-systems-division-73500/ieee-1588
https://www.nist.gov/el/intelligent-systems-division-73500/ieee-1588
https://www.nist.gov/el/intelligent-systems-division-73500/ieee-1588
https://www.nist.gov/el/intelligent-systems-division-73500/ieee-1588
https://www.nist.gov/el/intelligent-systems-division-73500/ieee-1588
https://www.nist.gov/el/intelligent-systems-division-73500/ieee-1588
https://www.nist.gov/el/intelligent-systems-division-73500/ieee-1588
https://www.nist.gov/el/intelligent-systems-division-73500/ieee-1588
https://doi.org/10.21227/326k-qr90
https://doi.org/10.21227/326k-qr90
https://doi.org/10.21227/326k-qr90
https://doi.org/10.21227/326k-qr90
https://doi.org/10.21227/326k-qr90
https://doi.org/10.21227/326k-qr90
https://doi.org/10.21227/326k-qr90
https://www.w3.org/TR/REC-MathML
https://www.w3.org/TR/REC-MathML
https://www.w3.org/TR/REC-MathML
https://www.w3.org/TR/REC-MathML
https://www.w3.org/TR/REC-MathML
https://www.w3.org/TR/REC-MathML
https://www.w3.org/TR/REC-MathML
https://archive.ics.uci.edu/ml/datasets/SECOM
https://archive.ics.uci.edu/ml/datasets/SECOM
https://archive.ics.uci.edu/ml/datasets/SECOM
https://archive.ics.uci.edu/ml/datasets/SECOM
https://archive.ics.uci.edu/ml/datasets/SECOM
https://archive.ics.uci.edu/ml/datasets/SECOM
https://archive.ics.uci.edu/ml/datasets/SECOM
https://archive.ics.uci.edu/ml/datasets/SECOM

60 A. Diedrich et al.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Part II
Optimization

Chapter 4
A Regression-Based Predictive Model
Hierarchy for Nonwoven Tensile Strength
Inference

Dario Antweiler, Jan Pablo Burgard, Marc Harmening, Nicole Marheineke,
Andre Schmeißer, Raimund Wegener, and Pascal Welke

Abstract Nonwoven materials, characterized by a random fiber structure, are
essential for various applications including insulation and filtering. An industrial
long-term goal is to establish a framework for the simulation-based design of
nonwovens. Due to the random structures, simulations of material properties on
fiber network level are computational expensive. We propose a predictive model
hierarchy for inferring an important material property—the nonwoven tensile
strength behavior. The model hierarchy is built using regression-based approaches,
including linear and polynomial models, which provide interpretable results. This
allows for significant speedup (six orders of magnitude) over the conventional
simulations, while achieving good prediction results (R2 = 0.95.). The proposed
models open the application to nonwoven material design, as they provide accurate
and cost-effective surrogates for predicting material properties. In this way, our work
serves as a proof of concept.

D. Antweiler (✉)
Fraunhofer IAIS, Sankt Augustin, Germany
e-mail: dario.antweiler@iais.fraunhofer.de

J. P. Burgard · M. Harmening · N. Marheineke
Trier University, Trier, Germany
e-mail: burgardj@uni-trier.de; harmening@uni-trier.de; marheineke@uni-trier.de

A. Schmeißer · R. Wegener
Fraunhofer ITWM, Kaiserslautern, Germany
e-mail: andre.schmeisser@itwm.fraunhofer.de; raimund.wegener@itwm.fraunhofer.de

P. Welke
University of Bonn, Bonn, Germany
e-mail: welke@cs.uni-bonn.de

© The Author(s) 2025
D. Schulz, C. Bauckhage (eds.), Informed Machine Learning,
Cognitive Technologies, https://doi.org/10.1007/978-3-031-83097-6_4

63

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-83097-6protect T1	extunderscore 4&domain=pdf

 885 45222 a 885 45222 a

mailto:dario.antweiler@iais.fraunhofer.de
mailto:dario.antweiler@iais.fraunhofer.de
mailto:dario.antweiler@iais.fraunhofer.de
mailto:dario.antweiler@iais.fraunhofer.de

 885 49096 a 885 49096 a

mailto:burgardj@uni-trier.de
mailto:burgardj@uni-trier.de
mailto:burgardj@uni-trier.de

 9606 49096 a 9606 49096
a

mailto:harmening@uni-trier.de
mailto:harmening@uni-trier.de
mailto:harmening@uni-trier.de

 19204 49096 a 19204 49096 a

mailto:marheineke@uni-trier.de
mailto:marheineke@uni-trier.de
mailto:marheineke@uni-trier.de

 885 52970
a 885 52970 a

mailto:andre.schmeisser@itwm.fraunhofer.de
mailto:andre.schmeisser@itwm.fraunhofer.de
mailto:andre.schmeisser@itwm.fraunhofer.de
mailto:andre.schmeisser@itwm.fraunhofer.de

 15914 52970 a 15914 52970 a

mailto:raimund.wegener@itwm.fraunhofer.de
mailto:raimund.wegener@itwm.fraunhofer.de
mailto:raimund.wegener@itwm.fraunhofer.de
mailto:raimund.wegener@itwm.fraunhofer.de

 885 56845 a 885 56845
a

mailto:welke@cs.uni-bonn.de
mailto:welke@cs.uni-bonn.de
mailto:welke@cs.uni-bonn.de
mailto:welke@cs.uni-bonn.de
https://doi.org/10.1007/978-3-031-83097-6_4
https://doi.org/10.1007/978-3-031-83097-6_4
https://doi.org/10.1007/978-3-031-83097-6_4
https://doi.org/10.1007/978-3-031-83097-6_4
https://doi.org/10.1007/978-3-031-83097-6_4
https://doi.org/10.1007/978-3-031-83097-6_4
https://doi.org/10.1007/978-3-031-83097-6_4
https://doi.org/10.1007/978-3-031-83097-6_4
https://doi.org/10.1007/978-3-031-83097-6_4
https://doi.org/10.1007/978-3-031-83097-6_4
https://doi.org/10.1007/978-3-031-83097-6_4

64 D. Antweiler et al.

4.1 Introduction

The efficient prediction of material properties based on production parameters is a
common goal for many industrial applications. This includes the nonwoven airlay
manufacturing, which serves as practical basis for this chapter. Nonwovens are
characterized by a random fiber structure that is usually bonded by thermal, chem-
ical, or mechanical procedures. Their low-cost production makes them a suitable
choice for many fabrics, such as filters, insulation materials or hygiene products
[7]. Predicting nonwoven properties from production parameters enables nonwoven
material design by providing insight into the effects of individual parameters. In
order to avoid costly experimental testing, this mainly involves simulation-based
approaches, which, however, often suffer from high computational effort [33]. More
recently, machine learning approaches have gained ground in this field, as they
allow comparatively efficient predictions, see [2]. In particular, the integration of
prior knowledge into the training process, termed “Informed Machine Learning”,
proved to be beneficial in terms of training speed and quality of final predictive
models [29]. This chapter demonstrates the use of machine learning approaches for
predicting nonwoven material properties. We focus, as an example, on the tensile
strength behavior of airlay fabricated nonwovens (see Fig. 4.1a–c), for which we
develop and propose a predictive model hierarchy driven by simulation data. With
this goal in mind, we begin with a brief discussion of related literature in the field of
nonwoven tensile strength simulations and machine learning approaches, and then
explain the novelty and the structure of this chapter.

Fig. 4.1 Nonwoven airlay manufacturing and property testing: (a) simulated fiber dynamics
and laydown in turbulent airflow (process of Airlay-K12 by machine manufacturer AUTEFA
Solutions), (b) fiber laydown zone, (c) final product, (d) tensile strength test for a material sample
(photo by IDEAL Automotive). Image adapted from [14]

4 Predictive Model Hierarchy for Nonwoven Tensile Strength Inference 65

4.1.1 Literature Overview

Mapping production parameters to the tensile strength behavior of nonwovens
requires the simulation of the underlying production process and the mechanical
behavior of the resulting fiber structure. There are many approaches to virtual
generation of fiber structures, coming from statistical analysis and stochastic
geometry [23, 31] or three-dimensional volume imaging covering microscopy and
X-ray tomography [10, 24]. However, the challenge is to model the underlying
production process, which was done by [14] for nonwoven airlay production.
The authors introduced a chain of mathematical models coupled by parameter
identification to deal with the computational complexity that arises from several
thousand airlaid fibers in a complex machine geometry. The models cover a highly
turbulent fiber suspension flow, a stochastic surrogate for the fiber laydown on a
moving conveyor belt, and a bonding process mimicking the thermobonding. The
suitability of such model hierarchies for virtual nonwoven generation is topic in
[33].

Various approaches in the literature deal with the simulation of the mechanic
behavior of nonwovens. A common procedure is to treat the nonwoven material
as a continuum, which allows the use of finite element methods [8, 12]. In these
approaches, the behavior of individual fibers is not considered, but instead knowl-
edge of the statistical fiber orientation is incorporated to account for the randomness
in the material web. In contrast, there are approaches that consider the mechanical
behavior at the fiber network level, cf. [15, 19]. Kufner et al. [19] described the
material’s structure as an elastic Cosserat network. As resolving the behavior of
the individual beam-type fibers in an industrial-size virtual material sample is too
complex, additional homogenization techniques are necessary [20, 27]. Harmening
et al. [15] modeled the fiber structure as truss with nonlinear elastic behavior
and reduced the applied stress to the forces at the individual fiber joints, which
mainly determine the nonwovens’ tensile strength behavior. A problem-tailored
data reduction strategy and a singularly perturbed regularization approach enable
simulations with industrial-size samples. The approach underlying this chapter
handles the problem-inherent multiscales (interplay of deterministic structural
effects at macro-scale and random fiber alignment at micro-scale) and realizes the
randomness in the fiber structure generation by Monte-Carlo simulations.

In the field of Machine Learning, there is much literature on woven material
prediction, while modeling approaches for nonwovens are rare. Early work used
simple neural network architectures, which prevent any interpretability of the
results, to predict the strength of yarns [6] or worsted fabrics [11]. Abou-Nassif
[1] investigated neural networks and linear regression for predicting the tensile
strength of woven fabrics, limiting the work to seven training samples. Eltayib
et al. [9] used linear regression to predict tear strength of fabrics based on yarn
count, yarn tenacity and fabric liner density. The approach in [28] deploys multiple
regression models to predict different material properties of woven fabrics, but
heavily relies on huge datasets and extensive manual feature selection by domain

66 D. Antweiler et al.

experts. Due to the high computational cost of generating training data and due
to their specialization on weaving features, these approaches cannot be applied to
property prediction of nonwovens. For nonwovens, Rahnama et al. [26] proposed a
feed-forward neural network based on a numerical propagation model to compare
heat and moisture propagation through different nonwoven fabrics. Chen et al. [4]
integrated simple logical rules developed by domain experts into a neural network
to predict elongation at break, but the paper is limited to a single test example.
Investigating nonwoven features and developing a stretch algorithm, we employed
linear regression for tensile strength prediction in [2], which yields promising,
accurate and interpretable results.

Aside from (non-)woven manufacturing, there are other works that address the
prediction of material properties from production parameters. Related to our work
are those that integrate prior knowledge about the underlying physical mechanics
into the data, the model architecture, or the loss term being optimized. For example,
Karpatne et al. [18] integrated physical knowledge about feature dependencies into
a neural network as additional loss terms. Lu et al. [21] presented an approach
in which knowledge about underlying material mechanics was incorporated into a
machine learning approach as algebraic formulas. However, with the handcrafted
neural network architectures, they are not able to provide interpretable results.
Recent research on combining machine learning and simulation approaches in a
more general context can be found in [29, 30]. Within the proposed taxonomy, our
approach can be contextualized as the integration of (i) algebraic equations and (ii)
simulation results from scientific and domain knowledge sources.

4.1.2 New Regression-Based Predictive Model Hierarchy

The model-based simulation framework underlying this chapter goes back to [14]
for virtual fiber structure generation and to [15] for tensile strength computation. Its
evaluation yields a tuple consisting of (utilized) production parameters, a random
fiber graph and an associated stress-strain curve indicating the relationship between
strain and stress during nonwoven’s tensile strength testing. To account for the
randomness in the fiber structure generation, Monte-Carlo simulations are required,
which multiply the already high time requirements. This makes nonwoven material
design impossible in practice and motivates a predictive surrogate. Following our
ideas and strategies developed in [2], we propose a new regression-based model
hierarchy for the prediction of the nonwovens’ stress-strain behavior from produc-
tion parameters (see Fig. 4.2). Once trained, the regression models are characterized
by efficient evaluations allowing for significant speedup, while providing good,
interpretable results, as we will show.

The tensile strength model-based simulation framework (TSS-model) at the top
of the model hierarchy is built on a first principle-oriented model chain. It serves
as ground truth for predictions and provides the required datasets for Machine
Learning. By considering linear regression, two approaches have been proposed

4 Predictive Model Hierarchy for Nonwoven Tensile Strength Inference 67

Monte-Carlo Simulation

Production Parameter
()

Random Fiber Graph
()

Tensile Strength
Simulation (ODE)

Stress-Strain Curves
(random instances)

LR-model
(Dataset 1&2)

Material Behavior
()

LR-model
(Dataset 1&2)

Mean Graph FeaturesPR-model
(Dataset 3)

EIV-model
(Dataset 1&2)

TSS-model:

FGF-model:

PP-MGF-model:

PP-model:

Fig. 4.2 Predictive model hierarchy: Mappings from the production parameters to the associated
tensile strength behavior. Predictive relations are indicated with dashed lines and simulations
procedures with solid lines. For predictions, we employ linear regression (LR), polynomial
regression (PR) and an errors-in-variables model (EIV)

in [2] that allow to circumvent the high computational effort associated to the
TSS-model: The fiber graph feature-based predictive model (FGF-model) samples
multiple fiber graphs, extracts associated graph and stretch features, and uses them
to predict the stress-strain curve for each fiber graph. The production parameter-
based predictive model (PP-model) predicts directly the mean stress-strain curve
based solely on production parameters. The FGF-model provides better predictions,
but Monte-Carlo simulations are necessary to derive expectations and variances
from individual fiber graph features. This is accompanied by a computational
overhead required to generate random fiber graph samples. The fact that the purely
linear PP-model performs worse suggests some nonlinear relationships between
production parameters and fiber graph features. In this chapter we introduce the
novel production parameter and mean graph feature-based predictive model (PP-
MGF-model) as a compromise between the established ones. The PP-MGF-model
intercepts the nonlinearities by predicting the mean graph features using polynomial
regression. Then, these (artificial) features are used as additional explanatory
variables for predicting the stress-strain curves with a linear (errors-in-variables)
model, in order to recover the good quality of the FGF-model. Its main advantage
is that the model provides a good predictive quality without requiring Monte-Carlo
simulations.

4.1.3 Structure

The structure of this chapter is based on the regression-based predictive model
hierarchy depicted in Fig. 4.2. Section 4.2 outlines the TSS-model, by introducing
the first principle-oriented model chain, and lays the foundations for predictions.
Section 4.3 discusses the FGF-model and the PP-model originating from [2] and
presents a performance study with focus on predictive quality. Section 4.4 intro-
duces the new PP-MGF-model, which is numerically investigated in comparison to

68 D. Antweiler et al.

the established ones. Finally, Sect. 4.5 concludes with a general discussion and an
outlook to future work.

4.2 First Principle Oriented Model Chain for Dataset
Generation

The TSS-model is a first principle-oriented model chain that covers fiber graph
generation and tensile strength simulation, see [14, 15]. It maps from an input set
of 28 (production) parameters to a random stress-strain curve instance as output.
In this chapter, we restrict to practically relevant production processes that are
characterized by 4 parameters and refer to them as 4-parametric (production)
process class. The resulting stress-strain curves obey a similar behavior that
motivates a 2-parametric labeling. We refer to this restriction as stress-strain curve
class. To improve the predictions in machine learning we consider additional fiber
graph features. In this section we explain the TSS-model (Sect. 4.2.1) and introduce
input (production parameters u., Sect. 4.2.2), output (stress-strain characteristics y .,
Sect. 4.2.3), and auxiliary variables (random fiber graph features v ., Sect. 4.2.4),
before we describe the generation of the datasets used for training and testing our
regression models in Sect. 4.2.5. Readers with focus on the predictive models may
skip this rather technical and mathematically extensive section and think of it as a
black box for data generation.

4.2.1 Fiber Graph Generation and Tensile Strength Simulation

The TSS-model involves a stochastic fiber lay-down model (A) with graph gener-
ation (B) and an ordinary differential system for tensile strength testing (C). The
model parameters are specified in Sect. 4.2.2.

(A) A nonwoven material is the image of fibers deposited onto a moving
conveyor belt. Consider a cubic reference material volume VR . over the nonwoven
height H with base area w2

R . and let TR .be the time needed to produce it. A deposited
fiber of length L is identified with the lay-down time T and the p lanar coordinates
(X, Y).of one of its end points. It contributes toVR ., ifX−xB(T) ∈ [−wR/2, wR/2].
is satisfied, where xB . accounts for the motion of the conveyor belt. In the three-
dimensional web a fiber is modeled in terms of the curve η(X,Y,T) : [0, L] → VR .,

.dηs = R(ηs · ex + xB(T)) · τ s ds, η0 = (X − xB(T))ex + Y ey + r(X)ez,

R(x) = 1
✓
1 + r '(x)2

[I + (
✓
1 + r '(x)2 − 1)ey ⊗ ey + r '(x)(ez ⊗ ex − ex ⊗ ez)],

r(x) = H

⎛ x

−∞
g(x̄) dx̄

4 Predictive Model Hierarchy for Nonwoven Tensile Strength Inference 69

with X distributed according to the lay-down probability density function g as well
as Y ∼ U([−wR/2, wR/2]). and T ∼ U([0, TR]).uniformly distributed. The system
above is based on the stochastic Stratonovich differential system

. dξ s = τ s ds, dτ s = − 1

B + 1
[Πs(B) · ∇ε(ξs) ds + AΠs(

√
B) ◦ dws]

with unit tensor I ., projection Πs(x) = n1,s ⊗n1,s + x n2,s ⊗n2,s . as well as ξ0 = 0.
and τ 0 . uniformly distributed in the unit circle spanned by ex . and ey .. The stochastic
lay-down model for position and orientation ((ξ , τ) : [0, L] → R

3 × S2). with unit
sphere S2 ⊂ R3 . describes the path of a deposited fiber onto the ex .-ey . plane. In the
modeling for the fiber tangent τ ., the drift term prescribes the characteristic coiling
behavior with the potential ε ., while the white noise term with the Wiener process
(w : [0, L] → R

3). and the amplitude A accounts for fluctuations in the lay-down
process. Anisotropic behavior is indicated by the parameter B ∈ [0, 1].with the local
orthonormal triad {τ ,n1,n2}., n1 ∈ span{ex, ey}.. The typical nestling behavior of
the fiber on the ramp-like contour surface of the nonwoven is modeled by the curve
η .. The contour line r of the fiber material in machine direction is described by
means of the joint probability density function g of the deposited material. A fiber
end point lies on the associated contour surface and the fiber orientation is aligned
to it due to the local rotation R(x) ∈ SO(3)..

(B) Our considerations are restricted to the embedded test material volume
V ⊂ VR . with smaller base w2

., w = wR − 2L., to exclude lateral boundary
effects. The random fiber web is consolidated by adhesive joints resulting from
thermobonding. Let ηh . denote the discretized fiber, i.e., a set of discrete fiber points.
An adhesive joint a . to be formed between two fibers ηh . and η̃h . is modeled as

. a = 1

2
(q* + q̃*)

if ||q* − q̃*||2 < κ, (q*, q̃*) = argmin
(q,q̃)∈ηh×η̃h

||q − q̃||2

with contact threshold κ > 0.. The adhesive joint takes the place of the fiber points in
contact within the respective fibers. As the minimizer might be not unique, we use
the first minimizer found for practical reasons. Since the fibers lie rather straight,
cf. [14], we assume at most one contact between each fiber pair. If more fibers are
involved in a contact, the resulting adhesive joint is centered between the respective
fiber points in contact. The resulting adhered fiber structure is considered as a
connected graph G = (V ,E). with the nodes V representing adhesive joints as
well as fiber ends and the edges E indicating fiber connections between them. The
graph is supplemented by the node positions p0 : V → R

3
. and the edge-associated

fiber lengths l : E → R≥0 ..

70 D. Antweiler et al.

(C) The tensile strength test is modeled as differential system on the node
positions p : V × [0, 1] → R

3
., initialized with p(·, 0) = p0 .,

. p(v, 0) = p0(v), ∀v ∈ Vl, p(v, t) = p0(v) + t he3, ∀v ∈ Vu

ε ∂tp(v, t) =
⎲

e∈δ(v)

f v
e (t), ∀v ∈ V \ (Vl ∪ Vu)

f v
e={v,v'}(t) = p(v', t) − p(v, t)

d(e, t)
N

⎛
d(e, t) − l(e)

l(e)

⎫

with δ(v) ⊂ E . incident edges of node v. For fixed lower face Vl ., the upper
face Vu . of the fiber structure is linearly shifted away in (vertical) e3 .-direction
(with maximal displacement h > 0.). In the interior nodes of the graph the acting
traction forces are balanced by a friction term with ε > 0.. The force amplitude
N depends on the relative strain of the fiber connection e with respect to its
length l(e)., where d(e, t). denotes the Euclidean distance between its endpoints,
d(e, t) = ||p(v, t) − p(v', t)||2 .. It reflects Hooke’s law in the stretched state and is
taken as zero in the unstretched state. The characterizing stress-strain relation for the
fiber structure (with initial height H) is then given by (ε(t), T (p(·, t)))., t ∈ [0, 1].,

. ε(t) = h

H
t, T (p(·, t)) = −

⎲

v∈Vu

⎲

e∈δ(v)

f v
e (t) · e3.

4.2.2 Production Process Class

An airlaid nonwoven typically consists of two fiber types for which the TSS-model
has 28 input parameters in total: Each fiber type is characterized by length Lf .,
line density (ρA)f ., cross-sectional weighted elasticity modulus (EA)f . and lay-
down probability density gf . considered as normally distributed gf ∼ N(μf , σ 2

f).,
f = 1, 2.. The joint probability density is then g = βng1 + (1 − βn)g2 . with fiber
number fraction βn . determined by mass fraction β .. For technical reasons, we use
a compact support supp(g) = [xl, xr].. The production plant is characterized by
conveyor belt width b and speed vB . as well as mass rate ṁ.. The nonwoven sample
is specified by height H and width w. Production time TR ., trace curve xB . and
number of deposited fibers per type nf ., for f = 1, 2., are resulting quantities. The
laydown is parameterized regarding diffusion A, anisotropy B and bending potential
ε . expressed by the three standard deviations σx ., σy ., σz . in ex ., ey ., ez .-directions.
The bonding considers fiber discretization length Δs . and contact threshold κ .. The
strength test is parametrized by adhesive thickness z for upper and lower structure
faces, friction-associated regularization ε . as well as traction function N with a
regularization parameter δ .. Note that the displacement h in the strength test belongs
to the input quantities.

4 Predictive Model Hierarchy for Nonwoven Tensile Strength Inference 71

Table 4.1 Characteristic dimensionless input parameters for TSS-model. Values for an industrial
airlay process (mixture of solid (PES) and bi-component (PES/PET) fibers in plant K12, cf.
scenario in [14]). Referential values in SI units: w = 1.0 · 10−2 . m, vB = 3.3 · 10−2 . m/s,
(EA)1 = 1.0.N

Description Symbol Value

Fiber length L1/w ., L2/L1 . 5.5., 1.0.

Fiber number α1w
2/vB ., α2/α1 . 1150, 0.65.

Elasticity modulus (EA)2/(EA)1 . 1.0.

Lay-down pdf mean μ1/w ., μ2/w . 0., 0

Lay-down pdf std σ1/w ., σ2/σ1 . 2.0., 1.0.

Support joint lay-down pdf xl/σ1 ., xr/σ1 . − 5.0., 5.0.

Nonwoven sample height H/w . 6.0.

Bending potential (std) σy/w ., σx/σy ., σz/σy . 2.0., 0.75., 0.075.

Diffusion A
√

σy . 2.8 · 10−2 .

Anisotropy B . 3.0 · 10−1 .

Fiber discretization Δs/w . 2.75 · 10−2 .

Contact threshold κ/w . 2.6 · 10−2 . (calibrated)

Adhesive thickness at faces z/w . 6.0 · 10−2 .

Friction regularization ε . 1 · 10−7 .

Traction regularization δ . 1 · 10−4 .

Table 4.2 Input u. (4-parametric production process class) for Machine Learning. Parameter
ranges for dataset used in ML approach and respective values in industrial scenario, Table 4.1.
The values of all other parameters (ratios) are taken from Table 4.1

Symbol Range Industrial value Effect

α̂ = α1w
2/vB . [1000, 1515]. 1150 Amount of fibers

σ̂ = σ1/w . [1.0, 5.0]. 2.0. Laydown behavior

σ̂y = σy/w . [1.0, 5.0.] 2.0. Laydown behavior

κ̂ = κ/w . [2.8, 3.0] · 10−2 . 2.6 · 10−2 . Bonding

Since the parameters (ρA)1 ., (ρA)2 ., β = β1/β2 ., ṁ. and b only occur in the
quantities αf = βf ṁ/((ρA)f Lf b .), for f = 1, 2., indicating the number of fibers
for each type deposited per second and meter in cross direction on the conveyor
belt, three parameters can be eliminated. Making the model dimensionless with
nonwoven sample width w, conveyor belt speed vB . and elasticity modulus (EA)1 .

reduces the set of input parameters by further three. The resulting dimensionless
numbers are mainly formulated as ratios, cf. Table 4.1. Note that the strength test is
stated in dimensionless form to incorporate the friction-associated (dimensionless)
regularization parameter ε ⪡ 1. that ensures a unique solution.

In this chapter, we consider a 4-parametric production process class. The process
class is motivated from the industrial test setting in [14]: We adopt all industrial
values—except for u = (α̂, σ̂ , σ̂y, κ̂) ∈ R4+ .. These four inputs affect the fiber
amount in the nonwoven (sample), the fiber laydown behavior and the bonding
(i.e., fiber graph topology). By varying them in a certain regime, a broad variety
of practically relevant airlay scenarios are covered, see Table 4.2 for the parameter

72 D. Antweiler et al.

ranges underlying our dataset for Machine Learning. Note that the larger chosen κ̂ .

ensures a stronger bonding and hence a denser fiber structure than in the industrial
test case.

4.2.3 Stress-Strain Curve Class

The stress-strain curves of the nonwovens obtained by the 4-parametric production
process class show a similar pattern and allow for a 2-parametric labeling, y =
(α, β).. The observed output curves are constant at a stress close to zero up to a
threshold value α . of applied strain, above which they increase quadratically with
coefficient β ., see Fig. 4.3. The behavior results from more and more fibers coming
under strain and thus contributing to the tensile strength, neglecting plastic effects
and fiber tearing. Hence, we model the relation between strain and stress for a
nonwoven sample by

.Ty(ε) =
⎛
0, ε < α

β(ε − α)2, ε ≥ α
, y = (α, β) ∈ R2+ , (4.1)

where ε . refers to the relative strain applied to the sample and Ty : R+ → R+ . to the
resulting reacting force.

The approximation of the stress-strain curve by the constant-quadratic ansatz
enables a straightforward machine learning modeling approach with only two output
parameters y = (α, β). as labels for prediction—instead of a complex output
curve. The general tensile strength behavior can be characterized using the joint
distribution of α . and β .. To draw conclusions about the randomness of the material,
the constant-quadratic ansatz can be used to compute, for example, the mean stress
and the associated variance at individual strain levels.

Fig. 4.3 Stress-strain curves
obtained for fixed parameter
setting by TSS-model

4 Predictive Model Hierarchy for Nonwoven Tensile Strength Inference 73

4.2.4 Fiber Graph Features

The use of fiber graph features for predicting tensile strength has turned out to be
advantageous in Machine Learning. According to [2] we use two groups of features:
topological graph features representing the fiber structure connectivity which likely
affects the nonwoven’s tensile strength and stretch features, which are obtained
by a heuristic stretching algorithm based on elongation of the nonwoven samples,
allowing only vertical displacements of nodes and no strain on the individual fibers.
The identification of the features and the stretching algorithm originate from [2].

Topological Graph Features The graph feature set contains the numbers of
nodes |V |. and edges |E|., maximum node degree dmax = maxv∈V δ(v)., total
fiber lengths Lfiber = ∑

e∈E l(e). as well as the numbers |Vu|., |Vl |. of upper and
lower face nodes. Moreover, to encode the graph connectivity several path and
length-associated features are considered, see Fig. 4.4. Let L1(P) = len(P). denote
the edge count, L2(P) = ∑

e∈P l(e). and L3(P) = ∑
e∈P d(e). the fiber and

Euclidean lengths for a path P . Of interest are the shortest paths connecting the
upper and lower faces—in terms of edge count P1 . and fiber length P2 ., i.e., P1 =
argmin {L1(Puv) | u ∈ Vl, v ∈ Vu}.and P2 = argmin {L2(Puv) | u ∈ Vl, v ∈ Vu}., so
we include L1(P1)., L2(P2). and L3(P2). to the feature set. In addition, we consider
mean, median and sum of differences between fiber and Euclidean length over all
edges {l(e) − d(e) | e ∈ E}. and the size of a minimum cut Cmin ., i.e., edge set with
minimum cardinality disconnecting Vu . from Vl .when removed.

Stretch Features The stretch features obtained from the stretching algorithm [2]
provide information about the nonwoven behavior under vertical tensile loading. A

Fig. 4.4 Illustration of some graph features. Fiber graph with |V | = 10. nodes, |E| = 17. edges.
Face sets Vu . and Vl . are colored in blue, and red, respectively. For path P , length variants L1 ., L2 .
and L3 . are based on edge-wise fiber lengths l(e). and Euclidean lengths d(e).. A minimum cut Cmin .
separates all nodes above the value 1.5 from all nodes below that value, |Cmin| = 4. [2]

74 D. Antweiler et al.

graph G with node positions p . and edge-associated fiber lengths l is called a valid
instance if the following length constraint is satisfied,

. l({v,w}) ≥ ||p(v) − p(w)||2 = d ({v,w}) ∀ {v,w} ∈ E.

The stretching algorithm (Algorithm 1) addresses the question of how far the
nonwoven sample can be stretched vertically without stretching any fibers, i.e.,
maximizing the sum of height coordinates of the upper face nodes Vu ., while
fixing the positions of the lower face nodes Vl . and keeping the instance valid. For
computational reasons the algorithm assumes that the fiber nodes (outside Vl .) can
only move freely in the vertical (third) dimension while their horizontal position is
fixed. Given a valid instance (G,p, l). and Vl ⊆ V . the ZStretch problem reads:

. max
⎲

v∈Vu

p̃3(v)

subject to: p̃(v) = p(v) ∀v ∈ Vl,

p̃1(v) = p1(v) ∀v ∈ V,

p̃2(v) = p2(v) ∀v ∈ V,

d({v,w}) ≤ l({v,w}) ∀{v,w} ∈ E,

where pi = p ·ei ., i = 1, 2, 3., denote the spatial coordinates. The optimization prob-
lem certainly ignores many real-world structure properties, e.g., fiber intertwining,
or the fact that fiber nodes can in reality move in all three dimensions to allow
further stretching of the nonwoven sample in the third dimension. But due to its
simplicity it can be solved in O (|E| log(|V |)). run time by Algorithm 1. As a result,
a lower bound to the maximum movement of any fiber node in vertical direction is
determined. We use mean, standard deviation, median, maximum, and sum of the
differences between initial and optimized upper face node positions as stretching
features.

As extension, stretching of the individual fibers up to a multiple of their lengths
is incorporated by weakening the length constraint to l̃(e) = cl(e) ≥ d(e). for
some c > 1.. For increasing values of c and a fixed graph, this provides a nonlinear
behavior of the average vertical positions of the upper face nodes. We particularly
determine the stretch features for various length factors, c ∈ {1, 1.05, 1.1, . . . , 1.5}.,
see Table 4.3.

4.2.5 Dataset

The machine learning dataset is generated using the TSS-model. The combinations
of input production parameters are randomly selected from a range that yields

4 Predictive Model Hierarchy for Nonwoven Tensile Strength Inference 75

Table 4.3 Input features for regression models

Set Symbols Description

Param u. Four parameters for production process

|V |. Number of nodes

|E|. Number of edges

dmax . Maximum node degree

Lfiber . Total fiber lengths

|Vu|. Number of upper face nodes

Graph |Vl |. Number of lower face nodes

L1(P1). Minimal edge count of all paths from Vu . to Vl .

L2(P2). Minimal fiber lengths of all paths from Vu . to Vl .

L3(P2). Euclidean length of weighted shortest path P2 .

D1,D2,D3 . {mean, median, sum} of differences between

edge-wise fiber and Euclidean lengths

|Cmin|. Size of minimum edge cut separating Vu . and Vl .

Stretch Sc
1, S

c
2, S

c
3, S

c
4, S

c
5 . {mean, std, median, max, sum} of stretching

distance for c ∈ {1, 1.05, 1.1, . . . , 1.5}.

Algorithm 1 Graph stretching algorithm
Input: a valid instance (G, p, l) and Vl /= ∅
Output: a valid instance (G, p̃, l) that maximizes the objective of ZStretch

set p̃(v) = p(v) ∀v ∈ V
set V⊥ = Vl and B = N (V⊥) where N () refers to the neighbor nodes
for v = argminw∈B maxMove(w, V⊥) do

pop v from B
p̃3(v) = maxM ove(w, V⊥) + p3(v)
add v to V⊥
B = B ∪ N (v) \ V⊥

end

Algorithm 2 maxMove subroutine
Input: a node v ∈ V and V⊥ ⊆ V
Output: the largest h such that p̃(v) = p(v) + he3 satisfies ||p̃(v) − p(w)||2 ≤ l({v, w}) ∀w ∈

N (v) ∩ V⊥

forall the {v, w} ∈ E do
find the largest h s.t.

p̃(v) = p(v) + he3
satisfies

||p̃ (v) − p(w)||2 ≤ l(v, w) ∀w ∈ N (v) ∩ V⊥
end

reasonable fiber structures, cf. Table 4.2. While the generation of fiber graphs
and accompanying features is fast, the computation of the stress-strain curves is
very time-consuming as it requires solving large-scale dynamical systems on the
individual fiber structure samples. To account for the systems’ stiffness, we employ

76 D. Antweiler et al.

Table 4.4 Composition of dataset

Set 1: fully labeled Set 2: single labeled Set 3: unlabeled Total

Graphs 6 ×.25 37 ×.25 2.000 × 1. 3.075

Stress-strain curves 6 ×.25 37 ×.1 – 187

an implicit Euler scheme with variable step size control. For the resulting nonlinear
equation systems, we use an exact Newton method with analytical Jacobian and
Armijo’s line search. An explicit Euler step provides a suitable initial guess for
warm start. The ODE-solver typically requires between 24 and 48 hours for a
single instance, making it the bottleneck for building datasets. Both the fiber graph
generation as well as the tensile strength simulations are performed in parallel on a
machine with 88 CPU cores (Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz) and
792 GB RAM running Ubuntu 18.04.6 using Matlab (R2019a).

For 43 parameter combinations, we generate 25 sample graphs each, totaling
1.075 graphs. On average, each graph contains 51.507 nodes (standard deviation
±2.182.) and 198.744 edges (±29.996.). We randomly select six of our parameter
combinations and compute the 25 stress-strain curves associated to the graphs
(set 1, fully labeled), while for all other combinations we compute only a single
stress-strain curve for one of the corresponding samples (set 2, single labeled)
because of the high cost of the ODE-solver. The dataset thus includes 187
supervised/monitored samples (6×25. samples + 37×1. sample) across 43 different
parameter combinations. The graphs and corresponding stress-strain curves serve
as ground truth examples for supervised learning. Additionally, set 3 (unlabeled)
contains 2.000 graphs for 2.000 parameter combinations, cf. Table 4.4. Given an
unseen parameter combination, our goal is to predict the average behavior as well
as a range of deviation of the resulting stress-strain curves as close as possible to
the ground truth. The data that we generated and used for the results shown in this
chapter is available for download at https://github.com/pwelke/random-nonwoven-
fibers.

4.3 Linear Regression-Based Predictive Models

This section deals with the two multivariate linear regression models recently
proposed by [2]: the PP-model (production parameter-based) and the FGF-model
(fiber graph feature-based). We explain the underlying modeling ideas (Sect. 4.3.1)
and discuss the advantages of the model variants by means of a performance study
(Sect. 4.3.2). For this purpose, we investigate the goodness of fit for the prediction
of the mean stress-strain curves as an example. Both models aim at avoiding the
high computational effort associated to the TSS-model. In the following the TSS-
model is represented by the random field S : Uad × Ω → Y.with set of admissible
production parameters Uad ⊂ Rn

., n = 4. (cf. Table 4.2) and set of stress-strain
curve parametrizations Y ⊂ Rr

., r = 2., cf . (4.1).

https://github.com/pwelke/random-nonwoven-fibers
https://github.com/pwelke/random-nonwoven-fibers
https://github.com/pwelke/random-nonwoven-fibers
https://github.com/pwelke/random-nonwoven-fibers
https://github.com/pwelke/random-nonwoven-fibers
https://github.com/pwelke/random-nonwoven-fibers
https://github.com/pwelke/random-nonwoven-fibers

4 Predictive Model Hierarchy for Nonwoven Tensile Strength Inference 77

4.3.1 Linear Regression and Monte Carlo Simulations

PP-model The PP-model directly relates the production parameters to the stress-
strain curve parametrizations using multiple multivariate linear regression, cf. [17].
Given k ∈ N. observation pairs {(ui , yi)}ki=1 ., consisting of input (production
parameters) ui ∈ Rn

. and output (random stress-strain curve parametrizations)
yi = S(ui , ωi) ∈ Rr

., the model assumes the relation

. yi = bP + BT
P,1ui + εP,i for i = 1, . . . , k ,

where the errors εP,i : Ω → R
r
. account for the stochastic nature of the tensile

strength simulation framework. They are assumed to be independent and identically
distributed (i.i.d.) with E[εP,i] = 0. and Cov[εP,i] = ∑P ∈ Rr×r

.. The task is to
identify the unknown intercept bP ∈ Rr

. and regression coefficients BP,1 ∈ Rn×r
..

The regression model for BP = [bP,BT
P,1]T ∈ R1+n×r

. can be summarized as

. Y = UBP + EP,

Y =

⎡

⎢⎢⎢
⎣

yT
1

yT
2
...

yT
k

⎤

⎥⎥⎥
⎦

, U =

⎡

⎢⎢⎢
⎣

1 uT
1

1 uT
2

...
...

1 uT
k

⎤

⎥⎥⎥
⎦

, EP =

⎡

⎢⎢⎢⎢
⎣

εT
P,1

εT
P,2
...

εT
P,k

⎤

⎥⎥⎥⎥
⎦

with response Y ∈ Rk×r
., design matrix U ∈ Rk×1+n

., and error matrix EP ∈ Rk×r
..

By the assumptions on the individual errors Cov[(EP)·,i , (EP)·,j] = (∑P)i,j Ik .
holds true, for i, j = 1, . . . , r . and the identity Ik ∈ Rk×k

.. Thus, the individual
observations are independent, but correlations between the responses are allowed.

A linear, unbiased estimator of BP . is the well-known least-squares estimator

B̂P = (UT U)−1UT Y .. Considering the decomposition B̂P = [̂bP, B̂T
P,1]T . yields the

predictor

.̂yP(u) = b̂P + B̂
T
P,1u, with ŷP : Rn → R

r (4.2)

that maps the production parameters to the associated mean stress-strain curve
parametrization. If the errors are assumed to be multivariate normally distributed,
i.e., εP,i ∼ N(0,∑P)., the maximum likelihood estimator of the covariance matrix
∑P . is given by

.∑̂P = 1

k
Ê

T
P ÊP, ÊP = Y − UB̂P, (4.3)

where ÊP . are the residuals between actual observation and prediction.

78 D. Antweiler et al.

The PP-model approximates the TSS-model as S ≈ ŜP ., which is specified by
ŜP(u, ·) ∼ N(̂yP(u), ∑̂P). for all u ∈ Uad .. Note that ŷP . only predicts the mean
stress-strain curve parametrization. However, if we use the additional distributional
assumptions, we can resample multiple stress-strain curve parametrizations and
insert them in the constant-quadratic ansatz (4.1). Averaging over the resulting
curves yields then a prediction of the mean stress-strain curve.

FGF-model The FGF-model, unlike the PP-model, builds on predicting the stress-
strain curve parametrizations for individual fiber graphs. This requires the gen-
eration of random fiber structure samples, from each of which m ∈ N. features
(i.e., combinations of production parameters, topological graph and stretch features,
as listed in Table 4.3) are extracted. We view fiber graph generation and feature
extraction as a random fieldM : Uad × Ω → R

m
.. Then, the FGF-model relates

production parameters and (fiber graph) features to the associated stress-strain
curve parametrizations for which we again consider a multiple multivariate linear
regression model. Given k ∈ N. observation tuples {(ui , vi , yi)}ki=1 ., consisting of
production parameters ui ∈ Rn

., random features vi = M(ui, ωi) ∈ R
m

. and
associated1 stress-strain curve parametrizations yi = S(ui , ωi) ∈ Rr

., it reads

. yi = bF + BT
F,1ui + BT

F,2vi + εF,i for i = 1, . . . , k

with intercept bF ∈ Rr
. and regression coefficients BF,1 ∈ Rn×r ,BF,2 ∈ Rm×r

..
The assumptions on the errors are the same as those of the PP-model, with
covariance matrix Cov[εF,i] = ∑F .. However, the errors are here motivated as
simple regression errors and not as sampling errors, as the FGF-model describes the
input-output behavior of the deterministic tensile strength simulations. The model
can be summarized as

. Y = WBF + EF

with BF = [bF,BT
F,1,B

T
F,2]T . and W = [U ,V]. using V = [v1, . . . , vk]T .. Again,

the task is to identify intercept and regression coefficients, for which the unbiased
linear least-squares estimator is given by B̂F = (W T W)−1W T Y .. Thus, we obtain
the linear predictor

.̂yF(u, v) = b̂F + B̂
T
F,1u + B̂

T
F,2v with ŷF : Rn × Rm → R

r (4.4)

that maps a given set of production parameters and fiber graph features to the stress-
strain curve parametrization associated to the respective fiber graph.

1 The explicit usage of a fixed production parameter combination ui . together with a fixed
probabilistic state ωi . emphasizes that graph features and stress-strain curve parametrization are
obtained from the same fiber graph sample (by simulation and feature extraction).

4 Predictive Model Hierarchy for Nonwoven Tensile Strength Inference 79

The FGF-model approximates the TSS-model by the coupling of the predictor
ŷF . with the random field M., i.e., S ≈ ŜF . where ŜF(u, ·) ∼ ŷF(u,M(u, ·)). for all
u ∈ Uad .. As we have no analytical insights in the behavior of M., this coupling has
to be treated as a stochastic black box. To obtain a predictor of the mean stress-strain
curve we have to conduct Monte-Carlo simulations where we repeatedly sample
fiber graphs, predict their stress-strain curves and average over the results.

Remark 4.1 The case where only fiber graph features are used for predictions in
the FGF-model can be covered by choosing B̂F,1 = 0.. The corresponding least-

squares estimator is [̂bF, B̂F,2] = (Ṽ
T
Ṽ)−1Ṽ

T
Y .with design matrix Ṽ = [1,V] ∈

R
k×1+m

. containing an extra column of ones to account for the intercept term.

Remark 4.2 We state the closed form solution of the least-square estimator for
convenience. In practice, we avoid solving the ill-conditioned normal equations and
instead solve the associated least-squares optimization problem via pseudo inverse
by means of a singular value decomposition.

4.3.2 Numerical Results

Experimental Setting To assess the predictive quality for inferring the mean
stress-strain curves, we perform a leave-one-out cross-validation (LOOCV) across
all 43 production parameter combinations contained in the labeled datasets 1&2
(Table 4.4). In each run, we separate the data into a training set containing the
samples of 42 parameter combinations and a test set containing the samples of the
remaining parameter combination. Hence, the test set always contains 25 fiber graph
samples, where either one (set 2) or all of them (set 1) are labeled with a stress-
strain curve parametrization. The training set is used to fit the PP-model and the
FGF-model. For the latter one, we compare different combinations of the feature
groups (listed in Table 4.3). During inference, the fitted models use the production
parameters without/with fiber graph features as input to predict the mean stress-
strain curve parametrizations (PP-model) or the stress-strain curve parametrizations
associated to individual fiber graphs (FGF-model). For the FGF-model, the stress-
strain curves of the 25 fiber graphs in the test set are reconstructed using the
constant-quadratic ansatz (4.1). Averaging these curves yields a mean stress-strain
curve prediction. For the PP-model, the procedure differs slightly. As it only predicts
mean stress-strain curve parametrizations we use the covariance estimate (4.3) on
top of the predicted mean parametrization (4.2) to resample 1.000. stress-strain curve
parametrizations. Then, averaging over the associated stress-strain curves that are
reconstructed by means of the constant-quadratic ansatz provides a prediction of the
mean stress-strain curve.

For each production parameter combination, we compare the predicted mean
curve to the ground truth curve. Using parameter combinations with multiple
training samples (set 1), we compare the means of the predicted and the ground

80 D. Antweiler et al.

truth curves. For the single-sample parameter combinations (set 2) we take all 25
(mainly unlabeled) graph samples and check how much the ground truth curve of
the single labeled sample deviates from the mean of the predicted curves that our
model produces. For assessment, we use the test set to calculate the coefficient of
determination, R2

., and the adjusted coefficient of determination, R̄2
., between the

means of predicted and ground truth curve evaluations. This provides a measure of
the model fit that is independent of the strain. Thus, to compute the R2

. values, we
evaluate each curve (predicted and ground truth) at K (=1.000) equally distanced
strain points in the interval [0, 0.5]. and take the means over the values at each
strain point. In every run, this yields the predicted means ˆ̄y1, . . . , ˆ̄yK . as well as
the observed means ȳ1, . . . , ȳK ., from which we compute the (adjusted) coefficient
of determination through

. R2 = 1 −
∑K

i=1 ȳi − ˆ̄yi
∑K

i=1 ȳi − ¯̄y and R̄2 = 1 − (1 − R2)
K − 1

K − m − 1
,

where ¯̄y = ∑K
i=1 ȳi . and m is the number of features used by the predictive model.

Given the variability of the samples within the same parameter combination, this
validation provides a robust estimation of the model quality. While the R2

. value
is a default evaluation score for regression tasks, we supplement it with the R̄2

.

value which penalizes for larger numbers of selected attributes within a model.
Furthermore, we perform an Optimal Transport (OT) optimization between the sets
of curves embedded in RK

.. It computes a mapping between two sets of points,
that is minimal in terms of total work, i.e. transportation of mass. For optimization,
the Wasserstein distance for discrete distributions is used. In comparison to the
median R2

. score, the OT score penalizes substantial differences between individual
predicted and actual curves to a larger degree. With this additional score, we can
adequately assess the difference in distribution between prediction and ground truth
curves.

As baseline, in each run of the LOOCV we also compare the (mean) ground truth
curve to the curve obtained by feeding the constant-quadratic ansatz with the means
of the parametrizations in the training set. Computing the corresponding R2

. values
yields a simple comparative value to beat. Moreover, we include a comparison of the
ground truth curves to that obtained by means of the best found constant-quadratic
curve fits to get an idea of the suitability of the utilized stress-strain curve model
class. Corresponding code and experimental data are available at https://github.com/
pwelke/random-nonwoven-fibers and as a reproducible run on CodeOcean https://
codeocean.com/capsule/7514050/tree/v1 [3].

Results and Discussion The main results for the prediction of the mean stress-
strain curves are illustrated in Table 4.5. It reports the median (adjusted) coefficients
of determination, R2

. and R̄2
., observed during the LOOCV. Most importantly, the

results show that the constant-quadratic ansatz is a well-chosen approximation for
the ground truth stress-strain curves, which is expressed by a median coefficient
of determination that is very close to 1. Further, we note that both, the PP-model

https://github.com/pwelke/random-nonwoven-fibers
https://github.com/pwelke/random-nonwoven-fibers
https://github.com/pwelke/random-nonwoven-fibers
https://github.com/pwelke/random-nonwoven-fibers
https://github.com/pwelke/random-nonwoven-fibers
https://github.com/pwelke/random-nonwoven-fibers
https://github.com/pwelke/random-nonwoven-fibers
https://codeocean.com/capsule/7514050/tree/v1
https://codeocean.com/capsule/7514050/tree/v1
https://codeocean.com/capsule/7514050/tree/v1
https://codeocean.com/capsule/7514050/tree/v1
https://codeocean.com/capsule/7514050/tree/v1
https://codeocean.com/capsule/7514050/tree/v1
https://codeocean.com/capsule/7514050/tree/v1

4 Predictive Model Hierarchy for Nonwoven Tensile Strength Inference 81

Table 4.5 Regression results for the baseline, the constant-quadratic ansatz, the PP-model and
the FGF-model. Listed are the medians of the R2 . and R̄2 . values observed during the LOOCV as
well as the OTLoss

Model Feature set Median R2 . ↑. Median R̄2 . ↑. OTLoss ↓.

Baseline – 0.3928 – –

Constant-quadratic – 0.999927 – –

PP-model Param 0.7967 0.7958 292.56

FGF-model Stretch 0.9730 0.9714 111.77

FGF-model Graph 0.9737 0.9733 99.65

FGF-model Param + stretch 0.9723 0.9705 85.24

FGF-model Param + graph 0.9717 0.9712 82.62

FGF-model Graph + stretch 0.9760 0.9742 71.44
FGF-model Param + graph + stretch 0.9778 0.9761 85.71

and the FGF-model, outperform the identified baseline by a clear margin. The fiber
graph feature-based approach in particular works surprisingly well and delivers
significant improvements over the simple production parameter-based approach.
With regard to different feature set combinations, it should be emphasized that
a union of topological graph and stretch features already achieves a remarkable
performance with a median coefficient of determination of R2 = 0.9760., calculated
between the mean predicted and the mean ground truth curves (highlighted in bold
in Table 4.5). This indicates that the topological and geometric structure of the fiber
graphs already encodes much of the tensile strength behavior under vertical load.
It should be noted, that we also compared a lasso and ridge regularization for the
parameter estimation, leading to no significant change in results.

A major advantage of using simple regression models for prediction is the
interpretability of the individual regression coefficients. In the following, we
investigate the feature importance exemplarily for the FGF-model (graph + stretch)
that uses the union of graph and stretch features for prediction. The regression
weights observed during the 43-fold LOOCV are displayed in Fig. 4.5. Apparently,
high impact features differ between α . and β . prediction. Generally, stretch features
display a large impact, especially Sc

1 . (mean) and Sc
5 . (sum) for larger values of

the overstretching factor c. Examining the graph feature importance discloses the
following relationships: For the prediction of α . the negative regression coefficient
values with respect to |E|. indicate that as the number of edges increases, the
quadratic behavior of the stress-strain curves sets in earlier (α . is smaller). In line
with that, the positive coefficient values for the prediction of β . indicate that an
increase in |E|. also causes the quadratic incline to grow quicker (β . is bigger). This
underlines the intuition that more fiber connections result in firmer materials (higher
tensile strength). Similar relationships can be observed for the maximum degree
dmax . and the size of the minimum edge cut |C|min ., as higher feature values are
likely to represent a higher fiber structure connectivity. Opposed to that L3(P2)., the
Euclidean length along the weighted shortest path in terms of fiber length, exhibits

82 D. Antweiler et al.

Fig. 4.5 Feature importance values for the FGF-model (graph + stretch) to predict α . (top) and β .
(bottom) with y = (α, β).. Topological graph (left) and stretch features (right). To reduce visual
clutter, we display the five stretch features with biggest and smallest mean values, respectively. For
reasons of comparison, the explanatory variables are scaled before training (min-max scaling)

positive coefficient values for the prediction of α . and negative coefficient values for
the prediction of β . (reversed effect). An explanation is that at high L3(P2). values,
the shortest path has more leeway to be pulled apart during the tensile strength
experiment without contributing to the tensile strength (lower tensile strength).

The same applies to L1(P1)., the length of the shortest path in terms of edge
count. Comparable interpretations cannot be made for all features, since some of
the them exhibit reciprocal relationships. Overall, the coefficients are stable over
different parameter combinations, indicating a robust model fitting.

In comparison to the TSS-model, the regression models achieve a significant
speedup. The time needed to compute a stress-strain curve for a sample generated
by an unseen parameter combination is reduced by the FGF-model by more than
three orders of magnitude, from 24 to 48 hours to two minutes per sample. As
both workflows can be executed in a parallelized fashion, the speedup is of a factor
greater than 1.000..

4.4 Sequential Predictive Regression Model

The prediction quality of the FGF-model is significantly better than that of the PP-
model, but is brought by a costly underlying Monte-Carlo simulation procedure.
Thus, the performance of the FGF-model crucially depends on the fiber graph
generation. The remarkable difference in the prediction quality suggests some
nonlinear relations between production parameters and fiber graph features. Such
relationships are overlooked when using a purely linear model, as is the case with

4 Predictive Model Hierarchy for Nonwoven Tensile Strength Inference 83

the PP-model. To capture the nonlinearities, we propose an intermediate multivariate
polynomial regression model to infer mean topological graph features. This is a
fairly straightforward approach, cf. [22, 25]. Alternatives may include multivariate
adaptive regression splines (MARS) [13] or radial basis functions [32]. However, in
our application, we observe already very good predictive results with polynomials
of a total degree up to 5. To enable the prediction of mean stress-strain curve
parametrizations we couple the intermediate model with an errors-in-variables
model (Sect. 4.4.1). The quality of the resulting predictive pipeline, referred to as
production parameter and mean fiber graph feature-based predictive model (PP-
MGF-model), is investigated in comparison to the previously discussed models
in Sect. 4.4.2. The PP-MGF-model is new, in view of the existing literature, and
represents a good compromise between the efficiency of the PP-model and the
predictive accuracy of the FGF-model.

4.4.1 Coupled Polynomial Regression and Errors-In-Variabels
Model

The underlying assumption of the intermediate multivariate polynomial regression
model is that the production parameters and the individual graph features obey
a perturbed polynomial relation. Let ⎾ g,n . denote the set of n-dimensional multi-
indices up to total degree g ∈ N.with cardinality l, i.e.,

. ⎾ g,n =
⎧
⎨

⎩
γ ∈ Nn

0 : |γ | =
n⎲

j=1

γj ≤ g

⎫
⎬

⎭
, l = |⎾ g,n| =

⎛
n + g

g

⎫

and assume an arbitrary enumeration γ 1, . . . , γ l . of the multi-indices such that
γ 1 = (0, . . . , 0).. Then the multivariate polynomials qj : Rn → R., j = 1, . . . , m.,
are defined through

. qj (u) =
l⎲

i=1

ciju
γi , where uγ i =

nΠ

r=1

u
γir
r

with polynomial coefficients cij ∈ R. and factor interactions between the individual
production parameters uγ i ∈ R.. Given s ∈ N. observation pairs {(ui , vi)}si=1 .,
consisting of production parameters ui ∈ Rn

. and random fiber graph features
vi = M(ui, ωi) ∈ Rm

., the intermediate polynomial regression model assumes
the relation

. vi = q(ui) + εR,i , q(u) = (q1(u), . . . , qm(u))T = CT (uγ 1 , . . . ,uγ l)T

with (unknown) coefficient matrix C ∈ Rl×m
., (C)i,j = cij .. Analogously to

the basic linear regression model, the errors εR,i . are assumed to be i.i.d. with

84 D. Antweiler et al.

E[εR,i] = 0. and Cov[εR,i] = ∑R ., for i = 1, . . . , s .. The task is to identify
C . in order to simultaneously fit a multivariate polynomial of (total) degree g for
each of the m (fiber graph) features. It is convenient to think of the l possible
factor interactions as independent variables. This allows to reformulate the model
as a multiple multivariate linear regression model, since linearity is only required
with respect to the regression coefficients cij .. Thus, let xij = u

γ j

i . be the set of
explanatory variables, then we get

. V = XC + ER

with design matrix X ∈ Rs×l
. ((X)i,j = xij ., containing the factor interactions),

response matrix V ∈ Rs×m
. and error matrix ER ∈ Rs×m

.. Note that no intercept
must be included for setting up the design matrix X ., since xi1 = u

γ 1
i = 1. for

i = 1, . . . , s .. Especially, for the case g = 1. the polynomial regression model
includes the classic multiple multivariate linear regression model with intercept. In
view of the reformulation, an adequate estimator for C . is given by the least-squares
estimator Ĉ = (XT X)−1XT V .which provides a (non-linear) predictor of the mean
fiber graph features for given combinations of production parameters

.̂v(u) = Ĉ
T
(uγ 1 , . . . ,uγ l)T . (4.5)

The objective is now to predict the expected stress-strain curve parametrizations
based on the production parameters and mean fiber graph features. Assuming a
linear relation, which has been shown to be accurate in the case of the FGF-model,
the functional relation is as follows

.yi = b + BT
1 ui + BT

2 v̂(ui) + εi , for i = 1, . . . , k . (4.6)

Here εi : Ω → R
r
. models the deviation from the mean parametrization caused by

the stochastic nature of the simulation framework. To fit the relationship (4.6) to
data, we replace the predictor v̂ . with the variable v̄ . representing the mean features.
In this context, we note that sampling data to fit the model using the TSS-model is
not feasible, because the mean graph features v̄ . are not directly observable. Instead,
we only have access to observations tuples {(ui , vi , yi)}ki=1 . composed of production
parameters ui ∈ Rn

., random features vi = M(ui , ωi) ∈ Rm
. and associated

stress-strain curve parametrizations yi = S(ui , ωi) ∈ Rr
.. However, the fiber graph

features can be thought of as perturbed realizations of v̄ ., i.e., vi = v̄i + δi .. Thereby,
δi ∈ Rm

. represents the error of measuring v̄i .. Thus, in addition to the conventional
errors in the regression equation, we assume errors in the explanatory variables
as well. This results in the usage of the generalized errors-in-variables model [16]
which assumes the relation

.yi = b + BT
1 ui + BT

2 v̄i + εi , . (4.7a)

vi = v̄i + δi . (4.7b)

4 Predictive Model Hierarchy for Nonwoven Tensile Strength Inference 85

In Eq. (4.7) the observable variables are yi ., ui . and vi ., whereas v̄i . is referred to
as latent variable. Analogously to the multivariate linear regression model, the joint
errors ψ i = (δT

i , εT
i)T . are assumed to be i.i.d. with E[ψ i] = 0. and Cov[ψ i] = ∑ .,

for i = 1, . . . , k .. Then the task is to estimate B = [b,BT
1 ,BT

2]T .. By applying
the conventional least-squares estimator B̂ = (W T W)−1W T Y . (cf. Sect. 4.3.1), we
neglect the measurement error described by (4.7b) during estimation. Even though
it is well known that the least-squares estimator is not a consistent estimator for B .

in the errors-in-variables model, it gives good results for prediction [5, 16].
Eventually, the coupling of the feature predictor (4.5) from the polynomial

regression model with the fitted errors-in-variables model yields a mapping from
the production parameters to the mean stress-strain curve parametrizations. It is
determined by the intercept b̂. and the coefficient matrices B̂1, B̂2, Ĉ . according to
the previous explanations and results in the (nonlinear) predictor

.̂y(u) = b̂ + B̂
T
1 u + B̂

T
2 Ĉ

T
(uγ 1, . . . ,uγ l)T , with ŷ : Rn → R

r . (4.8)

A very convenient property of this coupling is that we can use different datasets
for fitting the polynomial regression model and for fitting the errors-in-variables
model, cf. Fig. 4.2. Particularly, since tensile strength simulations (computational
bottleneck) are not necessary, the dataset for fitting the polynomial regression model
can be chosen much larger (s ⪡ k .). This is appropriate in order to account for the
larger number of explanatory variables.

Conclusively, to approximate the input-output behavior of the TSS-model, we
need distributional assumptions for the joint error behavior. Again, we rely on
a multivariate normal distribution (similar to the PP-model) and determine a
covariance estimate ∑̂ . analogously to (4.3). Then, the PP-MGF-model behaves as
S ≈ Ŝ., where Ŝ(u, ·) ∼ N(̂y(u), ∑̂). for all u ∈ Uad .. Predicting the mean stress-
strain curve requires resampling, as it is the case for the PP-model.

4.4.2 Numerical Results

Experimental Setting Using dataset 3 (Table 4.4), we investigate the relation
between production parameters and topological graph features by means of a 5-fold
cross validation. Therefore, the set is randomly divided in 5 subsets, containing 400
samples each. In each run, one of the subsets is used as test set, while the remaining
ones are used for training. We train the multivariate polynomial regression model
for a total degree of g ∈ {1, . . . , 5}., using a least-squares estimator for fitting the
regression coefficients. To assess the model quality, we compare the median adjusted
coefficients of determination, R̄2

., observed throughout the cross-validation.

Subsequently, we investigate the quality of the PP-MGF-model for predicting
the mean stress-strain curves. To achieve a fair comparison with regard to the
PP-model and the FGF-model, we again perform a leave-one-out cross-validation

86 D. Antweiler et al.

Table 4.6 Results of the 5-fold cross-validation: Median of R̄2 . values for the prediction of the
topological graph features and for different polynomial degrees. Highest score per feature is
highlighted in bold

Feature Degree 1 Degree 2 Degree 3 Degree 4 Degree 5

|V |. 0.8526 0.9698 0.9812 0.9809 0.9741

|E|. 0.9552 0.9852 0.9893 0.9892 0.9868

|Vu|. 0.8465 0.9344 0.9460 0.9460 0.9361

|Vl |. 0.8596 0.9416 0.9499 0.9466 0.9350

dmax . 0.4303 0.5861 0.6241 0.6352 0.5567

Lfiber . 0.9551 0.9823 0.9883 0.9880 0.9852

L1(P1). 0.8819 0.9448 0.9469 0.9423 0.9329

L2(P2). 0.8799 0.9403 0.9393 0.9406 0.9261

L3(P2). 0.8761 0.9356 0.9369 0.9358 0.9190

D1 . 0.8776 0.9536 0.9680 0.9687 0.9437

D2 . 0.7835 0.9292 0.9638 0.9652 0.8153

D3 . 0.9460 0.9842 0.9897 0.9891 0.9851

|Cmin|. 0.8494 0.9150 0.9311 0.9395 0.9223

(LOOCV) across the 43 production parameter combinations (dataset 1&2), as
described in Sect. 4.3.2. To train the polynomial regression model, we use all fiber
graphs (labeled and unlabeled) associated to the training set. Thereby, we test
polynomial relations of the degree g ∈ {2, . . . , 6}.. To train the errors-in-variables
model, we use the labeled training data only. For both models, we employ a least-
squares fit. During inference on the test set, the fitted models use the production
parameter combinations as input in order to predict the mean stress-strain curve
parametrizations. To obtain a prediction of the mean stress-strain curve we resample
1.000. stress-strain curve parametrizations, reconstruct the associated curves using
the constant-quadratic ansatz and then average over them (similar to the PP-model).
In comparing the predicted mean stress-strain curves to the ground truth curves, we
follow the descriptions from Sect. 4.3.2.

Results and Discussion The main results of the described 5-fold cross validation
are summarized in Table 4.6. We observe that the adjusted R̄2

. values, acting as a
measure of model fit, peak for a degree of 3 and 4. Further increasing the polynomial
degree for regression leads to a deterioration in terms of the adjusted R̄2

.value. Since
the case of polynomial degree 1 resembles the linear model, an improvement by
moving to a higher polynomial degree is apparent. The high R̄2

. values, which are
even above 0.9. in most cases, are particularly astonishing and justify the use of a
polynomial model for the mean fiber graph feature prediction.

The results regarding the 43-fold LOOCV are summarized in Table 4.7. The
predictive results of the PP-MGF-model outperform that of the PP-model by a clear
margin and almost reach the predictive quality of the FGF-model. We note that this
is achieved without the need of a Monte-Carlo simulation procedure. Particularly,
a polynomial fit of total degree 5 works best for the relation between production

4 Predictive Model Hierarchy for Nonwoven Tensile Strength Inference 87

Table 4.7 Regression results of the LOOCV comparing the PP-model, the FGF-model and the
PP-MGF-model: Median of observed R2 . and R̄2 .values as well as OT loss. Best performing model
is highlighted in bold

Model Approach Median R2 . ↑. Median R̄2 ↑. OTLoss ↓.

PP-model Param 0.7967 0.7958 292.56

PP-MGF-model Degree 2 0.9282 0.9258 125.37

PP-MGF-model Degree 3 0.9428 0.9396 130.01

PP-MGF-model Degree 4 0.9427 0.9372 121.63

PP-MGF-model Degree 5 0.9584 0.9515 93.43
PP-MGF-model Degree 6 0.9572 0.9447 110.16

FGF-model Param + graph 0.9717 0.9712 82.62

Fig. 4.6 Mean stress-strain curve predictions resulting from our predictive model hierarchy. The
exemplarily illustrated instances are observed during the LOOCV for two fully labeled test sets
(belonging to set 1)

parameters and topological graph features. For higher degrees, we observe a
deterioration of the R̄2

. value, which is probably related to overfitting. We note that
we also tested fitting the errors-in-variables model by means of a generalized total-
least-squares estimation. However, this did not improve the prediction quality, for
which the results presented are limited to the use of a conventional least-squares
estimator.

In comparison to the TSS-model, the time needed to compute a stress-strain curve
for a sample generated by an unseen parameter combination is reduced by more
than six orders of magnitude, from 24–48 hours to 10 milliseconds per sample. In
that, the PP-MGF-model is similar to the PP-model and more than three orders of
magnitude better than the FGF-model in terms of computation time. However, note
that the training of the PP-MGF-model is slightly more expensive than that of the
other regression models, since it depends on a large amount of additional graph
samples to fit the nonlinear relations between production parameters and graph
features.

Summing up, the PP-MGF-model is cheap to evaluate and has excellent pre-
dictive quality, making it suitable for nonwoven material design. To conclude our
discussion we refer to Fig. 4.6 which shows the predicted mean stress-strain curves
of all models included in the predictive model hierarchy. Although isolated instances
also led to other predictive gradations, the plots are representative of the observable
results of the models and reflect the results of the numerical experiments performed.

88 D. Antweiler et al.

4.5 Conclusion and Future Work

This chapter demonstrates the power of Informed Machine Learning in predicting
material properties. We developed a regression-based model hierarchy for pre-
dicting the tensile strength behavior of nonwovens. While direct linear regression
on the production parameters lacks accuracy (PP-model) and linear regression
using individual fiber graphs requires time-consuming Monte-Carlo simulations
(FGF-model), a coupling of a polynomial model with a linear (errors-in-variables)
model (PP-MGF-model) has proven to be a good compromise combining the best
of both model variants. By reducing the computation time by several orders of
magnitude, a high accuracy of the prediction results (compared to the ground truth)
is achieved. Thus, the PP-MGF-model promises to be of great benefit as a surrogate
model for nonwoven material design, which is a field for further work. Our approach
incorporates extensive domain knowledge into the modeling process at the points of
training data and hypothesis set via simulation results and algebraic equations from
scientific and expert sources. To our knowledge, our approach is completely new in
the context of nonwoven material design.

Acknowledgments This contribution was supported by the Fraunhofer Cluster of Excellence
“Cognitive Internet Technologies”.

References

1. Abou-Nassif, G.A.: Predicting the tensile and air permeability properties of woven fabrics
using artificial neural network and linear regression models. Journal of Textile Science &
Engineering 5(5) (2015). https://doi.org/10.4172/2165-8064.1000209

2. Antweiler, D., Harmening, M., Marheineke, N., Schmeißer, A., Wegener, R., Welke, P.:
Graph-based tensile strength approximation of random nonwoven materials by interpretable
regression. Machine Learning with Applications 8, 100288 (2022). https://doi.org/10.1016/j.
mlwa.2022.100288

3. Antweiler, D., Harmening, M., Marheineke, N., Schmeißer, A., Wegener, R., Welke, P.:
Machine learning framework to predict nonwoven material properties from fiber graph
representations. Software Impacts 14, 100423 (2022). https://doi.org/10.1016/j.simpa.2022.
100423

4. Chen, T., Li, L., Koehl, L., Vroman, P., Zeng, X.: A soft computing approach to model the
structure–property relations of nonwoven fabrics. Journal of Applied Polymer Science 103(1),
442–450 (2007). https://doi.org/10.1002/app.24909

5. Cheng, C.L., Van Ness, J.W.: Statistical Regression with Measurement Error. John Wiley &
Sons (1999)

6. Cheng, L., Adams, D.L.: Yarn strength prediction using neural networks: Part I: Fiber
properties and yarn strength relationship. Textile Research Journal 65(9), 495–500 (1995).
https://doi.org/10.1177/004051759506500901

7. Das, D., Pourdeyhimi, B.: Composite Nonwoven Materials: Structure, Properties and Applica-
tions. Elsevier Science (2014)

https://doi.org/10.4172/2165-8064.1000209
https://doi.org/10.4172/2165-8064.1000209
https://doi.org/10.4172/2165-8064.1000209
https://doi.org/10.4172/2165-8064.1000209
https://doi.org/10.4172/2165-8064.1000209
https://doi.org/10.4172/2165-8064.1000209
https://doi.org/10.4172/2165-8064.1000209
https://doi.org/10.4172/2165-8064.1000209
https://doi.org/10.1016/j.mlwa.2022.100288
https://doi.org/10.1016/j.mlwa.2022.100288
https://doi.org/10.1016/j.mlwa.2022.100288
https://doi.org/10.1016/j.mlwa.2022.100288
https://doi.org/10.1016/j.mlwa.2022.100288
https://doi.org/10.1016/j.mlwa.2022.100288
https://doi.org/10.1016/j.mlwa.2022.100288
https://doi.org/10.1016/j.mlwa.2022.100288
https://doi.org/10.1016/j.mlwa.2022.100288
https://doi.org/10.1016/j.simpa.2022.100423
https://doi.org/10.1016/j.simpa.2022.100423
https://doi.org/10.1016/j.simpa.2022.100423
https://doi.org/10.1016/j.simpa.2022.100423
https://doi.org/10.1016/j.simpa.2022.100423
https://doi.org/10.1016/j.simpa.2022.100423
https://doi.org/10.1016/j.simpa.2022.100423
https://doi.org/10.1016/j.simpa.2022.100423
https://doi.org/10.1016/j.simpa.2022.100423
https://doi.org/10.1002/app.24909
https://doi.org/10.1002/app.24909
https://doi.org/10.1002/app.24909
https://doi.org/10.1002/app.24909
https://doi.org/10.1002/app.24909
https://doi.org/10.1002/app.24909
https://doi.org/10.1002/app.24909
https://doi.org/10.1177/004051759506500901
https://doi.org/10.1177/004051759506500901
https://doi.org/10.1177/004051759506500901
https://doi.org/10.1177/004051759506500901
https://doi.org/10.1177/004051759506500901
https://doi.org/10.1177/004051759506500901

4 Predictive Model Hierarchy for Nonwoven Tensile Strength Inference 89

8. Demirci, E., Acar, M., Pourdeyhimi, B., Silberschmidt, V.: Finite element modelling of
thermally bonded bicomponent fibre nonwovens: Tensile behaviour. Computational Materials
Science 50(4), 1286–1291 (2011). https://doi.org/10.1016/j.commatsci.2010.02.039

9. Eltayib, H.E., Ali, A.H.M., Ishag, I.A.: The prediction of tear strength of plain weave fabric
using linear regression models. International Journal of Advanced Engineering Research and
Science 3(11), 151–154 (2016). https://doi.org/10.22161/ijaers/3.11.25

10. Faessel, M., Delisée, C., Bos, F., Castéra, P.: 3D modelling of random cellulosic fibrous
networks based on x-ray tomography and image analysis. Composites Science and Technology
65(13), 1931–1940 (2005). https://doi.org/10.1016/j.compscitech.2004.12.038

11. Fan, J., Hunter, L.: A worsted fabric expert system: Part II: An artificial neural network model
for predicting the properties of worsted fabrics. Textile Research Journal 68(10), 763–771
(1998). https://doi.org/10.1177/004051759806801010

12. Farukh, F., Demirci, E., Sabuncuoglu, B., Acar, M., Pourdeyhimi, B., Silberschmidt, V.:
Mechanical analysis of bi-component-fibre nonwovens: Finite-element strategy. Composites
Part B: Engineering 68, 327–335 (2015). https://doi.org/10.1016/j.compositesb.2014.09.003

13. Friedman, J.H.: Multivariate adaptive regression splines. The Annals of Statistics 19(1), 1–67
(1991). https://doi.org/10.1214/aos/1176347963

14. Gramsch, S., Klar, A., Leugering, G., Marheineke, N., Nessler, C., Strohmeyer, C., Wegener,
R.: Aerodynamic web forming: process simulation and material properties. Journal of
Mathematics in Industry 6(1), 1–13 (2016). https://doi.org/10.1186/s13362-016-0034-4

15. Harmening, M., Marheineke, N., Wegener, R.: Efficient graph-based tensile strength simu-
lations of random fiber structures. ZAMM Journal of Applied Mathematics and Mechanics
101(13) (2021). https://doi.org/10.1002/zamm.202000287

16. van Huffel, S., Vandewalle, J.: The Total Least Squares Problem. Society for Industrial and
Applied Mathematics (1991). https://doi.org/10.1137/1.9781611971002

17. Johnson, R.A., Wichern, D.W.: Applied multivariate statistical analysis, 6 edn. Pearson, Upper
Saddle River, NJ (2007)

18. Karpatne, A., Watkins, W., Read, J., Kumar, V.: Physics-guided neural networks (PGNN): An
application in lake temperature modeling. arXiv e-prints 1710.11431 (2017)

19. Kufner, T., Leugering, G., Semmler, J., Stingl, M., Strohmeyer, C.: Simulation and structural
optimization of 3D Timoshenko beam networks. ESAIM: Mathematical Modelling and
Numerical Analysis 52(6), 2409–2431 (2018). https://doi.org/10.1051/m2an/2018065

20. Le Bris, C.: Some numerical approaches for weakly random homogenization. In: Numerical
Mathematics and Advanced Applications 2009, pp. 29–45. Springer (2010). https://doi.org/10.
1007/978-3-642-11795-4_3

21. Lu, Y., Rajora, M., Zou, P., Liang, S.Y.: Physics-embedded machine learning: Case study
with electrochemical micro-machining. Machines 5(1), 4 (2017). https://doi.org/10.3390/
machines5010004

22. Nizam, A., Rosenberg, E., Kleinbaum, D.G., Kupper, L.L.: Applied regression analysis and
other multivariable methods. Brooks/Cole (2013)

23. Ohser, J., Mücklich, F.: Statistical Analysis of Microstructures in Materials Science. John
Wiley, Weinheim (2000)

24. Ohser, J., Schladitz, K.: 3D Images of Materials Structures: Processing and Analysis. Wiley-
VCH, Weinheim (2009)

25. Ostertagová, E.: Modelling using polynomial regression. Procedia Engineering 48, 500–506
(2012). https://doi.org/10.1016/j.proeng.2012.09.545

26. Rahnama, M., Semnani, D., Zarrebini, M.: Measurement of the moisture and heat transfer rate
in light-weight nonwoven fabrics using an intelligent model. Fibres and Textiles in Eastern
Europe 21, 89–94 (2013)

27. Raina, A., Linder, C.: A homogenization approach for nonwoven materials based on fiber
undulations and reorientation. Journal of the Mechanics and Physics of Solids 65, 12–34
(2014). https://doi.org/10.1016/j.jmps.2013.12.011

https://doi.org/10.1016/j.commatsci.2010.02.039
https://doi.org/10.1016/j.commatsci.2010.02.039
https://doi.org/10.1016/j.commatsci.2010.02.039
https://doi.org/10.1016/j.commatsci.2010.02.039
https://doi.org/10.1016/j.commatsci.2010.02.039
https://doi.org/10.1016/j.commatsci.2010.02.039
https://doi.org/10.1016/j.commatsci.2010.02.039
https://doi.org/10.1016/j.commatsci.2010.02.039
https://doi.org/10.1016/j.commatsci.2010.02.039
https://doi.org/10.1016/j.commatsci.2010.02.039
https://doi.org/10.22161/ijaers/3.11.25
https://doi.org/10.22161/ijaers/3.11.25
https://doi.org/10.22161/ijaers/3.11.25
https://doi.org/10.22161/ijaers/3.11.25
https://doi.org/10.22161/ijaers/3.11.25
https://doi.org/10.22161/ijaers/3.11.25
https://doi.org/10.22161/ijaers/3.11.25
https://doi.org/10.22161/ijaers/3.11.25
https://doi.org/10.22161/ijaers/3.11.25
https://doi.org/10.1016/j.compscitech.2004.12.038
https://doi.org/10.1016/j.compscitech.2004.12.038
https://doi.org/10.1016/j.compscitech.2004.12.038
https://doi.org/10.1016/j.compscitech.2004.12.038
https://doi.org/10.1016/j.compscitech.2004.12.038
https://doi.org/10.1016/j.compscitech.2004.12.038
https://doi.org/10.1016/j.compscitech.2004.12.038
https://doi.org/10.1016/j.compscitech.2004.12.038
https://doi.org/10.1016/j.compscitech.2004.12.038
https://doi.org/10.1016/j.compscitech.2004.12.038
https://doi.org/10.1177/004051759806801010
https://doi.org/10.1177/004051759806801010
https://doi.org/10.1177/004051759806801010
https://doi.org/10.1177/004051759806801010
https://doi.org/10.1177/004051759806801010
https://doi.org/10.1177/004051759806801010
https://doi.org/10.1016/j.compositesb.2014.09.003
https://doi.org/10.1016/j.compositesb.2014.09.003
https://doi.org/10.1016/j.compositesb.2014.09.003
https://doi.org/10.1016/j.compositesb.2014.09.003
https://doi.org/10.1016/j.compositesb.2014.09.003
https://doi.org/10.1016/j.compositesb.2014.09.003
https://doi.org/10.1016/j.compositesb.2014.09.003
https://doi.org/10.1016/j.compositesb.2014.09.003
https://doi.org/10.1016/j.compositesb.2014.09.003
https://doi.org/10.1016/j.compositesb.2014.09.003
https://doi.org/10.1214/aos/1176347963
https://doi.org/10.1214/aos/1176347963
https://doi.org/10.1214/aos/1176347963
https://doi.org/10.1214/aos/1176347963
https://doi.org/10.1214/aos/1176347963
https://doi.org/10.1214/aos/1176347963
https://doi.org/10.1214/aos/1176347963
https://doi.org/10.1186/s13362-016-0034-4
https://doi.org/10.1186/s13362-016-0034-4
https://doi.org/10.1186/s13362-016-0034-4
https://doi.org/10.1186/s13362-016-0034-4
https://doi.org/10.1186/s13362-016-0034-4
https://doi.org/10.1186/s13362-016-0034-4
https://doi.org/10.1186/s13362-016-0034-4
https://doi.org/10.1186/s13362-016-0034-4
https://doi.org/10.1186/s13362-016-0034-4
https://doi.org/10.1002/zamm.202000287
https://doi.org/10.1002/zamm.202000287
https://doi.org/10.1002/zamm.202000287
https://doi.org/10.1002/zamm.202000287
https://doi.org/10.1002/zamm.202000287
https://doi.org/10.1002/zamm.202000287
https://doi.org/10.1002/zamm.202000287
https://doi.org/10.1137/1.9781611971002
https://doi.org/10.1137/1.9781611971002
https://doi.org/10.1137/1.9781611971002
https://doi.org/10.1137/1.9781611971002
https://doi.org/10.1137/1.9781611971002
https://doi.org/10.1137/1.9781611971002
https://doi.org/10.1137/1.9781611971002
https://doi.org/10.1051/m2an/2018065
https://doi.org/10.1051/m2an/2018065
https://doi.org/10.1051/m2an/2018065
https://doi.org/10.1051/m2an/2018065
https://doi.org/10.1051/m2an/2018065
https://doi.org/10.1051/m2an/2018065
https://doi.org/10.1051/m2an/2018065
https://doi.org/10.1007/978-3-642-11795-4_3
https://doi.org/10.1007/978-3-642-11795-4_3
https://doi.org/10.1007/978-3-642-11795-4_3
https://doi.org/10.1007/978-3-642-11795-4_3
https://doi.org/10.1007/978-3-642-11795-4_3
https://doi.org/10.1007/978-3-642-11795-4_3
https://doi.org/10.1007/978-3-642-11795-4_3
https://doi.org/10.1007/978-3-642-11795-4_3
https://doi.org/10.1007/978-3-642-11795-4_3
https://doi.org/10.1007/978-3-642-11795-4_3
https://doi.org/10.1007/978-3-642-11795-4_3
https://doi.org/10.3390/machines5010004
https://doi.org/10.3390/machines5010004
https://doi.org/10.3390/machines5010004
https://doi.org/10.3390/machines5010004
https://doi.org/10.3390/machines5010004
https://doi.org/10.3390/machines5010004
https://doi.org/10.1016/j.proeng.2012.09.545
https://doi.org/10.1016/j.proeng.2012.09.545
https://doi.org/10.1016/j.proeng.2012.09.545
https://doi.org/10.1016/j.proeng.2012.09.545
https://doi.org/10.1016/j.proeng.2012.09.545
https://doi.org/10.1016/j.proeng.2012.09.545
https://doi.org/10.1016/j.proeng.2012.09.545
https://doi.org/10.1016/j.proeng.2012.09.545
https://doi.org/10.1016/j.proeng.2012.09.545
https://doi.org/10.1016/j.proeng.2012.09.545
https://doi.org/10.1016/j.jmps.2013.12.011
https://doi.org/10.1016/j.jmps.2013.12.011
https://doi.org/10.1016/j.jmps.2013.12.011
https://doi.org/10.1016/j.jmps.2013.12.011
https://doi.org/10.1016/j.jmps.2013.12.011
https://doi.org/10.1016/j.jmps.2013.12.011
https://doi.org/10.1016/j.jmps.2013.12.011
https://doi.org/10.1016/j.jmps.2013.12.011
https://doi.org/10.1016/j.jmps.2013.12.011
https://doi.org/10.1016/j.jmps.2013.12.011

90 D. Antweiler et al.

28. Ribeiro, R., Pilastri, A., Moura, C., Rodrigues, F., Rocha, R., Morgado, J., Cortez, P.: Predicting
physical properties of woven fabrics via automated machine learning and textile design and
finishing features. In: Artificial Intelligence Applications and Innovations, pp. 244–255.
Springer (2020)

29. von Rüden, L., Mayer, S., Beckh, K., Georgiev, B., Giesselbach, S., Heese, R., Kirsch, B.,
Walczak, M., Pfrommer, J., Pick, A., Ramamurthy, R., Garcke, J., Bauckhage, C., Schuecker,
J.: Informed machine learning – a taxonomy and survey of integrating prior knowledge into
learning systems. IEEE Transactions on Knowledge and Data Engineering (2021). https://doi.
org/10.1109/TKDE.2021.3079836

30. von Rüden, L., Mayer, S., Sifa, R., Bauckhage, C., Garcke, J.: Combining machine learning
and simulation to a hybrid modelling approach: Current and future directions. In: Advances
in Intelligent Data Analysis, Lecture Notes in Computer Science, vol. 12080, pp. 548–560.
Springer (2020). https://doi.org/10.1007/978-3-030-44584-3_43

31. Schladitz, K., Peters, S., Reinel-Bitzer, D., Wiegmann, A., Ohser, J.: Design of acoustic trim
based on geometric modeling and flow simulation for non-woven. Computational Materials
Science 38(1), 56–66 (2006). https://doi.org/10.1016/j.commatsci.2006.01.018

32. Walczak, B., Massart, D.: The radial basis functions — partial least squares approach as a
flexible non-linear regression technique. Analytica Chimica Acta 331(3), 177–185 (1996).
https://doi.org/10.1016/0003-2670(96)00202-4

33. Wegener, R., Marheineke, N., Hietel, D.: Virtual production of filaments and fleeces. In:
Currents in Industrial Mathematics, pp. 103–162. Springer (2015)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.1007/978-3-030-44584-3_43
https://doi.org/10.1007/978-3-030-44584-3_43
https://doi.org/10.1007/978-3-030-44584-3_43
https://doi.org/10.1007/978-3-030-44584-3_43
https://doi.org/10.1007/978-3-030-44584-3_43
https://doi.org/10.1007/978-3-030-44584-3_43
https://doi.org/10.1007/978-3-030-44584-3_43
https://doi.org/10.1007/978-3-030-44584-3_43
https://doi.org/10.1007/978-3-030-44584-3_43
https://doi.org/10.1007/978-3-030-44584-3_43
https://doi.org/10.1007/978-3-030-44584-3_43
https://doi.org/10.1016/j.commatsci.2006.01.018
https://doi.org/10.1016/j.commatsci.2006.01.018
https://doi.org/10.1016/j.commatsci.2006.01.018
https://doi.org/10.1016/j.commatsci.2006.01.018
https://doi.org/10.1016/j.commatsci.2006.01.018
https://doi.org/10.1016/j.commatsci.2006.01.018
https://doi.org/10.1016/j.commatsci.2006.01.018
https://doi.org/10.1016/j.commatsci.2006.01.018
https://doi.org/10.1016/j.commatsci.2006.01.018
https://doi.org/10.1016/j.commatsci.2006.01.018
https://doi.org/10.1016/0003-2670(96)00202-4
https://doi.org/10.1016/0003-2670(96)00202-4
https://doi.org/10.1016/0003-2670(96)00202-4
https://doi.org/10.1016/0003-2670(96)00202-4
https://doi.org/10.1016/0003-2670(96)00202-4
https://doi.org/10.1016/0003-2670(96)00202-4
https://doi.org/10.1016/0003-2670(96)00202-4
https://doi.org/10.1016/0003-2670(96)00202-4
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 5
Machine Learning for Optimizing the
Homogeneity of Spunbond Nonwovens

Viny Saajan Victor, Andre Schmeißer, Heike Leitte, and Simone Gramsch

Abstract According to the Global Nonwoven Markets Report 2020–2025, pub-
lished in 2021 by the two leading trading organisations representing nonwovens
and related industries INDA and EDANA, the average annual growth rate of
nonwoven production was 6.2% (INDA and EDANA Jointly Publish the Global
Nonwoven Markets Report, A Comprehensive Survey and Outlook Assessing
Growth Post-Pandemic, edana, 2021, Published September 29, 2021, from https://
www.edana.org/about-us/news/global-nonwoven-markets-report) during the period
from 2010 to 2020. In 2020 and 2021, nonwoven production has increased even
further due to the huge demand for nonwoven products needed for protectiedanave
clothing such as FFP2 masks to combat the COVID19 pandemic. Optimizing the
production process is still a challenge due to its high nonlinearity. In this chapter,
we present a machine learning-based optimization workflow aimed at improving
the homogeneity of spunbond nonwovens. The optimization workflow is based on
a mathematical model that simulates the microstructures of nonwovens. Based on
training data coming from this simulator, different machine learning algorithms
are trained in order to find a surrogate model for the time-consuming simulator.
Human validation is employed to verify the outputs of machine learning algorithms
by assessing the aesthetics of the nonwovens. We include scientific and expert
knowledge into the training data to reduce the computational costs involved in
the optimization process. We demonstrate the necessity and effectiveness of our
workflow in optimizing the homogeneity of nonwovens.

V. S. Victor (✉) · A. Schmeißer · S. Gramsch
Fraunhofer ITWM, Kaiserslautern, Germany
e-mail: viny.saajan.victor@itwm.fraunhofer.de; andre.schmeisser@itwm.fraunhofer.de;
simone.gramsch@itwm.fraunhofer.de

H. Leitte
RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
e-mail: leitte@cs.uni-kl.de

© The Author(s) 2025
D. Schulz, C. Bauckhage (eds.), Informed Machine Learning,
Cognitive Technologies, https://doi.org/10.1007/978-3-031-83097-6_5

91

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-83097-6protect T1	extunderscore 5&domain=pdf
https://www.edana.org/about-us/news/global-nonwoven-markets-report
https://www.edana.org/about-us/news/global-nonwoven-markets-report
https://www.edana.org/about-us/news/global-nonwoven-markets-report
https://www.edana.org/about-us/news/global-nonwoven-markets-report
https://www.edana.org/about-us/news/global-nonwoven-markets-report
https://www.edana.org/about-us/news/global-nonwoven-markets-report
https://www.edana.org/about-us/news/global-nonwoven-markets-report
https://www.edana.org/about-us/news/global-nonwoven-markets-report
https://www.edana.org/about-us/news/global-nonwoven-markets-report
https://www.edana.org/about-us/news/global-nonwoven-markets-report
https://www.edana.org/about-us/news/global-nonwoven-markets-report

 885 51863 a 885 51863
a

mailto:viny.saajan.victor@itwm.fraunhofer.de
mailto:viny.saajan.victor@itwm.fraunhofer.de
mailto:viny.saajan.victor@itwm.fraunhofer.de
mailto:viny.saajan.victor@itwm.fraunhofer.de
mailto:viny.saajan.victor@itwm.fraunhofer.de

 16075 51863 a 16075 51863 a

mailto:andre.schmeisser@itwm.fraunhofer.de
mailto:andre.schmeisser@itwm.fraunhofer.de
mailto:andre.schmeisser@itwm.fraunhofer.de
mailto:andre.schmeisser@itwm.fraunhofer.de

 -2016 52970 a -2016
52970 a

mailto:simone.gramsch@itwm.fraunhofer.de
mailto:simone.gramsch@itwm.fraunhofer.de
mailto:simone.gramsch@itwm.fraunhofer.de
mailto:simone.gramsch@itwm.fraunhofer.de

 885 56845 a 885 56845 a

mailto:leitte@cs.uni-kl.de
mailto:leitte@cs.uni-kl.de
mailto:leitte@cs.uni-kl.de
mailto:leitte@cs.uni-kl.de
https://doi.org/10.1007/978-3-031-83097-6_5
https://doi.org/10.1007/978-3-031-83097-6_5
https://doi.org/10.1007/978-3-031-83097-6_5
https://doi.org/10.1007/978-3-031-83097-6_5
https://doi.org/10.1007/978-3-031-83097-6_5
https://doi.org/10.1007/978-3-031-83097-6_5
https://doi.org/10.1007/978-3-031-83097-6_5
https://doi.org/10.1007/978-3-031-83097-6_5
https://doi.org/10.1007/978-3-031-83097-6_5
https://doi.org/10.1007/978-3-031-83097-6_5
https://doi.org/10.1007/978-3-031-83097-6_5

92 V. S. Victor et al.

5.1 Introduction

Spunbond processes are highly effective and cost-efficient methods of producing
industrial nonwovens with desirable properties. The resulting nonwovens possess
excellent tensile strength and tear resistance, which makes them ideal for appli-
cations requiring durability. Spunbond fabrics also have a consistent structure
and thickness, thus rendering them highly desirable for applications that demand
uniformity. Due to their ability to allow air and moisture to pass through, these
materials are well-suited for use in filtration. Furthermore, spunbond fabrics are
an economical alternative to woven or knitted fabrics, making them appropriate
for a variety of specialized applications. These applications include liquid and gas
filtration (such as vacuum cleaner bags and water filtration systems), insulation (for
roofs, floors, and walls), automotive applications (such as seat covers, door panels,
and headliners), medical applications (such as surgical gowns, masks, and drapes),
hygiene products (such as diapers, sanitary pads, and wipes), as well as in batteries,
fuel cells, and numerous other areas. It is projected that the market for nonwoven
fabrics on a global scale will experience a compound annual growth rate of 7% [16]
for the period from 2024 to 2032.

Using a spunbond process a nonwoven fabric is produced in several steps (cf.
Fig. 5.1). First, a polymer is melted and pressed through hundreds of nozzles that are
positioned in a spinneret. Thereby, filaments are formed from the molten polymer.
Air coming from the side cools the polymer fibers. A second air stream stretches
the fibers to their final diameter by drawing. After the fibers leave the drawing
unit they are twirled by air until they lay down and form the nonwoven fabric.
Due to the stochastic nature of the spunbond production process, achieving the
desired quality of nonwoven products is a significant challenge for the industry
that requires effective control measures. The complex production lines (>300.

influencing variables) are typically adjusted by experienced line operators through
a trial-and-error process. However, this process fails to reveal the true quality of
the line’s settings, thus preventing the full utilization of its potential for efficient
and sustainable production. As a result, the level of performance, product quality,
and line availability remain low. Additionally, the knowledge of how to operate
production equipment is usually ingrained in the minds of the operators. This
makes it difficult to increase production capacity when demand for certain products
suddenly increases. This problem was exemplified in 2020, when the demand for
FFP2 masks suddenly led to a strong demand for nonwoven products. Despite the
surge in demand, production capacities could not be scaled up quickly enough.

The first approach to overcome this problem is to simulate the nonwoven
production process. Using the simulation, optimal parameter settings for an altered
production process can be searched offline and directly applied when changing
the process. Depending on which production process is to be simulated, we need
different numerical models. Figure 5.1 shows the process steps and lists the
corresponding physical models that are necessary in order to simulate the spunbond
process. These simulations are very accurate and independent of the amount of

5 ML-Based Optimization of the Homogeneity of Spunbond Nonwovens 93

Navier-Stokes equations for the air stream and stationary
Cosserat rod models with viscous material laws for the
fibers; standard solvers for the CFD simulation and
boundary value problem solvers for the spinning
simulation

fiber-geometry collision models with friction;
simulated by FIDYST

non-Newtonian fluid flow with moving geometries;
simulation by finite element methods or gridfree solvers

creep flow described by stationary Stokes equations;
simulation by standard finite element or finite volume
methods and shape optimization for spin pack design

Navier-Stokes equations with turbulence models for the
air stream and instationary Cosserat rod models with
(visco-) elastic material laws for the fibers; standard
solvers for the CFD simulation and the fiber dynamics
simulation tool (FIDYST) for the fiber dynamics

conveyor belt modeled as porous medium according to
Darcy's law; simulation by standard CFD solvers

filtergear pump

spinneret

drawing unit

suction

deposition

compressed air

cool air

MD

Fig. 5.1 Principle of a spunbond process and necessary simulation models (according to [10])

data available. But the long simulation times prevent a timely prediction of quality
when process conditions change as these tools are computationally expensive.
Additionally, the simulation tools cannot easily incorporate human knowledge and
weakly measurable criteria such as aesthetics.

Another approach is using data-driven machine learning (ML) models as they
have gained immense importance in the last two decades. According to a 2018
analysis [7], however, not all potential application industries are developing at the
same pace. Regarding the turnover potential of Machine Learning, the experts rank
“Production and Industry 4.0” in 9th place after marketing, consumer electronics,
banking, mobility, services, agriculture, and telecommunication. The reason for this
is that especially in mechanical engineering often only small amounts of data are
collected. Usually, production operates around the clock, 24 hours a day and 7 days
a week, which restricts the duration of experimental series. Generating target data
at industrial production facilities tends to be expensive and any downtime can result
in production losses, leading to reduced revenue.

The goal of this chapter is therefore to combine simulation models with data-
driven machine learning models along with human validation to improve the
optimization of nonwoven production processes. We design a machine learning
model to accelerate the mapping of process parameters to nonwoven quality. To
address the issue of missing training data, we employed simulation tools. We further
incorporate scientific and expert knowledge into this training data making our ML
model “Informed”. A visualization tool based on the proposed informed ML model
is presented in our work [24]. The tool has been designed to cater to users who are
domain experts, material scientists, and textile engineers. The proposed workflow
is currently being used and tested by academic simulation experts with offline

94 V. S. Victor et al.

human validation. The subsequent phase involves implementing the same process
for industry use.

5.2 Related Work

Recently, data-driven machine learning techniques have produced impressive out-
comes due to their ability to recognize patterns and structures in data, allowing for
real-time prediction and optimization. However, when confronted with systems that
lack sufficient data and demand physical validity, these models are constrained due
to their inherent lack of domain expertise. To address this issue, Informed Machine
Learning is used which involves integrating prior, problem-specific knowledge into
the machine learning pipeline to improve the system’s accuracy and trustworthiness.
As presented in [25], the knowledge can come from various sources and be
represented in different forms and injected at various stages of the ML pipeline.
Our approach involves incorporating the knowledge derived from simulation results
into the training phase of the pipeline. Many previous methods include simulation-
based knowledge integration in the training data by transforming or supplementing
input and output features [5, 6, 13, 14, 18, 19, 22]. Our proposed workflow first
incorporates expert knowledge to select relevant features and establish their accept-
able ranges for the creation of training data. Following this, scientific knowledge is
utilized with the aid of simulators to select and validate the input and output features.
The presented Fig. 5.2 depicts how the pieces of prior knowledge is represented and
integrated into the machine learning workflow.

In the textile industry, ML methods are commonly utilized as a substitute
model to expedite the optimization process. These models forecast the physical
characteristics of the product based on process parameters, allowing for opti-

Scientific
Knowledge

Expert
Knowledge

Simulation
Results

Training Data

Hypothesis Set

Learning Algorithm

Final Hypothesis

Source Representation Integration

Fig. 5.2 Information flow of the knowledge integration in the proposed machine learning method.
Diagram adapted from [25]

5 ML-Based Optimization of the Homogeneity of Spunbond Nonwovens 95

mization. Various machine learning algorithms are employed to successfully solve
classification and regression tasks such as defect detection and quality estimation
[1, 2, 8, 9, 20, 21, 26]. These studies have assessed different ML algorithms to select
the most efficient surrogate model for a particular dataset and application. Our study
involves training a surrogate ML model to predict product quality from process
parameters, which is then utilized to create a visualization tool to assist textile
engineers in optimizing nonwoven quality. Additionally, our approach incorporates
offline human validation of machine learning model results based on product-
specific aesthetics. To the best of our knowledge, no previous study has provided
a comprehensive workflow that covers dataset generation to visual application in
the context of parameter space exploration to optimize nonwoven quality. Our
approach minimizes the time required for optimization, through the utilization of
ML, and reduces the need for domain expertise by providing a visual aid to navigate
the parameter space. This workflow can be generalized to other applications that
seek to optimize product quality by identifying the optimal combination of process
parameters.

5.3 Machine Learning-Based Optimization Workflow Using
Simulation Models

In this section, we propose a workflow for optimizing the quality of spunbond
nonwovens based on Machine Learning. The workflow relies on a numerical tool
that simulates the microstructures of nonwoven products using input parameters.
However, due to the tool’s high computational cost, it is not feasible to utilize it
for real-time analysis of nonwoven product quality. Therefore, we use a machine
learning model as a substitute for the tool. The task of the ML model is to predict
the quality of the product for varying process conditions. We formulated this ML
problem as multi-output regression based on the type of parameters involved in the
production process and product quality. The dataset for the ML model is created
using the numerical simulation tool as seen in Fig. 5.3. We integrate scientific
and expert knowledge into this dataset. Based on the collected dataset, different
regression models are trained and evaluated. The outcomes of the selected ML
model are further verified through human validation. Below is a detailed discussion
of the workflow that consists of five stages: parameter selection (Sect. 5.3.1), data
collection with knowledge integration (Sect. 5.3.2), model selection (Sect. 5.3.3),
training and testing (Sect. 5.3.4), homogeneity optimization with human validation
(Sect. 5.3.5).

96 V. S. Victor et al.

Process
Parameters

Numerical
Simulation

Homogeneity

Training Data
Multi-Output
Regression

Cross
Validation

Informed
Machine

Learning Model

Homogeneity

Domain Expertise

Parameter Selection

Data Collection
with Knowledge

Integration Model Selection

Training and Testing

Homogeneity
Optimization with
Human Validation

Process
Parameters

Numerical
Simulation

Visual
Parameter

Space Analysis

Fig. 5.3 Workflow of machine learning-based optimization of spunbond nonwovens. Different
stages are colored corresponding to the sub-section headings in this chapter

5.3.1 Parameter Selection

We identified six process parameters that control the quality of spunbond nonwo-
vens. A specific combination of these parameters represents a particular condition
involved in the production process. The ranges for the parameters are defined by
the domain experts based on typical application scenarios of the final products (for
example production of manufacturing material, medical protective masks, etc.).

5.3.1.1 Process Parameters

The process parameters correspond to the inputs taken by the numerical simulation
tool. They capture the deterministic and stochastic properties of the production
process. Each parameter corresponds to a characteristic property. They are chosen
such that the characteristic qualities of a real nonwoven and the nonwoven produced
by the tool are identical. The selected process parameters are σ1 ., σ2 ., A, v, n, and ds .:

1. σ1 . is the standard deviation of the 2D normal distribution of the fibers around
the spinning outlet in the direction which is parallel to the running conveyor belt
(machine direction) without belt movement. The feature values vary from 1 mm
to 50 mm.

2. σ2 . is the standard deviation of the 2D normal distribution of the fibers around the
spinning outlet in the direction which is perpendicular to the running conveyor
belt (cross direction) without belt movement. The feature values vary from 1 mm
to 50 mm.

3. A is the noise amplitude of the stochastic process. It is the feature that contains
all random effects of the production process, e.g., the influence of the turbulent
flow during the fiber spinning, the contacts between fibers, and laydown. This

5 ML-Based Optimization of the Homogeneity of Spunbond Nonwovens 97

feature specifies whether the simulated fiber lays down in a deterministic (value
0) or stochastic (value ∞.) manner. The values vary from 1 to 50.

4. v is the ratio of spinning speed and belt speed. The feature values vary from 0.01
to 0. 25.

5. n is the number of spin positions per meter, which can be altered when designing
the machine but is fixed during production. The feature values vary from 200 to
10,000.

6. ds . is the discretization step size which is the distance of discrete points along
the simulated fiber curves. The feature values varies from 2.5 × 10−5

. to
5 × 10−5 mm.

The selected parameters, apart from v and n, do not correspond directly to
machine settings, but rather reflect the stochastic properties of the nonwoven
produced, which are influenced by various factors such as machine geometry,
process parameters (e.g., airflow), process conditions (e.g., air pressure, temper-
ature), and complex interactions (e.g., fiber-fiber, fiber-flow interactions). These
parameters are not constant for a machine, except for n, and are influenced by the
nonwoven material itself. For instance, the density and stiffness of the material
affect the curvature of the fibers, which in turn affects the standard dev iations
σ1 . and σ2 .. Moreover, these parameters may change depending on the desired
application; for instance, producing nonwovens for FFP2 masks requires different
operating conditions compared to those for roof materials, as the former must meet
strict quality standards. However, changing process conditions in real-time can be
challenging because of the down times, such as the time required to clear the old
polymer material, refill with new material, and adjust suction position and velocity.
To address this issue, the fibers are simulated to depict real-world scenarios, and
stochastic properties are assigned to each of them to create virtual nonwoven
materials for quality inspection.

5.3.1.2 Product Quality: Homogeneity

The quality of the virtual nonwoven produced from the simulation tools is measured
using the coefficient of variation (CV). The coefficient of variation is a statistical
measure of the relative dispersion of data points in a data series around the mean μ..
With the standard deviation σ . it is defined as

.CV = σ

μ
. (5.1)

It establishes the nonwoven web’s homogeneity. A more homogeneous nonwoven
typically has a lower CV value, which can have an impact on characteristics like
filter quality and tensile strength. We compute the CV value at multiple grid
resolutions, resulting in an output feature vector (one entry per resolution), to
take into consideration homogeneity at various levels of resolution. We regularly
discretize the data and compute the fiber mass per bin to obtain the different

98 V. S. Victor et al.

resolutions. Seven levels of resolution, according to our experiments, had the best
agreement with the results of manual inspection.

5.3.2 Data Collection with Knowledge Integration

This section explains the process of collecting data points that are used to train the
ML models. We incorporate scientific knowledge and expert knowledge in the data
collection process. This reduces the computational time and memory required in the
process and facilitates feature selection. The knowledge integration into the data is
validated by experimental results. Training on the ‘informed data’ obtained by this
approach makes our ML model ‘informed’. In the following sections, we discuss
knowledge integration at various stages of the data collection process.

5.3.2.1 Sample Size Estimation for Simulation Model Setup

The computation time and memory required by the numerical simulation tool to
simulate virtual nonwoven material increases with the quantity of the material. This
makes it not practical to simulate the entire material during data collection. Hence,
we decided to simulate a smaller sample of the material that is representative of
the whole material in terms of homogeneity. In order to achieve this, we identified
two steps: estimating the size of the sample and simulating only the nonwovens that
overlap with the material within this sample size.

The simulation tool is non-deterministic in nature as it produces slightly different
results each time when run with the same process parameter setting. Hence, we need
to ensure that the selected sample size should have the least statistical uncertainty.
Therefore, we created a dataset with 3125 combinations of process parameters using
uniform sampling. We simulated this dataset five times with a sample material
size of 5 cm × 5 cm.. The statistical uncertainty was quantified as the coefficient
of variation of the simulation results for each process parameter setting across five
simulation runs. The parameter setting with the maximum uncertainty was further
simulated 100 times with three sample sizes: 5 cm × 5 cm., 15 cm × 50 cm. and
25 cm × 50 cm. for detailed analysis. Table 5.1 shows the coefficient of variation
for the three sample sizes. We can observe from the table that uncertainty reduces
with an increase in the sample size. Hence, we decided to choose the sample size
of 25 cm × 50 cm. and further reduced the uncertainty by sampling each process
parameter five times in the data. This averaging of samples reduces the uncertainty
by

√
5. according to the central limit theorem.

After determining the size of the sample material, we simulate the nonwovens
that intersect with this sample material. The laydown of filaments on the conveyor
belt is modeled as a 2D normal distribution with standard deviations σ1 . and σ2 ..
According to the empirical rule in statistics, the nonwovens that are a bit more than
3σ2 . away from the sample in the cross direction and a bit more than 3σ1 . away

5 ML-Based Optimization of the Homogeneity of Spunbond Nonwovens 99

Table 5.1 Table showing coefficient of variation for three sample sizes across seven grid
resolutions

Grid resolutions

Sample size 0.5 mm 1 mm 2 mm 5 mm 10 mm 20 mm 50 mm

5 cm × 5 cm. 0.04 0.05 0.07 0.12 0.21 0.51 0.72

15 cm × 50 cm. 0.01 0.01 0.02 0.03 0.05 0.12 0.30

25 cm × 50 cm. 0.01 0.01 0.01 0.02 0.04 0.09 0.20

3σ
2

2*
3
σ 2

 +
 5

cm

Fig. 5.4 Simulation construction based on σ1 . and σ2 . values for sample size 5 cm × 5 cm.: Orange
area shows the sample extracted for analysis. Green and cyan filaments are simulated in order to
compute the sample, brown filament is part of the nonwoven but not simulated

from the sample in the machine direction do not have the chance of overlapping as
depicted in Fig. 5.4. Hence we do not simulate these filaments.

5.3.2.2 Influence of Discretization Step Size (ds .)

One of the potential parameters that affect the product quality is the discretization
step size of the simulated filaments. Based on the domain expertise, it is expected
that chosen ds . is small enough such that the simulated nonwoven accurately
represents a corresponding real nonwoven and thus this parameter does not affect
the simulated product quality. We wanted to investigate whether this assumption is
correct. Otherwise, the discretization step size would have to be included as an input
parameter in the ML models. For this purpose, we created two small datasets with
two different ds . values and analyzed the effect of the two different ds . values on the
product quality. Figure 5.5 shows the relative deviation in the CV values between
two ds . values. The red color denotes the deviation due to the non deterministic
statistical uncertainty of the simulation tools and the blue color denotes the deviation
due to ds .. We defined a threshold to extract the latter alone (green line). We retrieved

100 V. S. Victor et al.

0 0.1 0.2 0.3 0.4
0

100

200

300

400

500

Disretization Step Size
Statistical Uncertainity

Deviation in CV value

Sa
m

pl
e

Co
un

t

Fig. 5.5 Histogram depicting the relative deviation in CV values due to discretization step size
(blue) and statistical uncertainty (red)

only 0.0025% of the parameter settings that exceeded the threshold. Hence, we
concluded that the influence of discretization step size on the product quality is
not statistically significant and eliminated this parameter from the input feature set.

5.3.2.3 Input Data Sampling

Once the simulation setup is completed, determining which parameter values to
investigate is a crucial question to handle during the data collection. We chose
a sparse sampling strategy since the parameter space is very large. Specifically,
we used two data sampling techniques to effectively capture the behaviour of
the production process for the desired output. The first technique involves the
determination of optimal parameter ranges over various small subsets of the
parameter space based on the specific nonwoven product. This technique uses expert
knowledge to choose the precise parameter ranges. The second technique involves
Latin hypercube sampling, which selects parameter values uniformly random from
the chosen ranges of values. This technique provides unbiased observations from
the numerical simulator.

5 ML-Based Optimization of the Homogeneity of Spunbond Nonwovens 101

5.3.3 Model Selection

We chose multiple-input, multiple-output regression for the machine learning
technique since the input data comprises five continuous features (σ1 ., σ2 ., A, v,
n) and the output has seven continuous values (CV values at seven grid-sizes).
We assessed common regression algorithms such as linear regression, polynomial
regression, Bayesian regression, random forests, and neural networks. A brief
description of these models is listed as follows. In order to simplify the optimization
formulas described in the following sections, we have made the assumption that the
regression problem involves a single output variable.

5.3.3.1 Linear Regression (LR)

Linear Regression [15] is a supervised machine learning algorithm. It is used to
determine the linear relationships between the input parameters and output values.
We evaluated four different flavors of the linear regression model: Vanilla, Ridge,
Lasso, and ElasticNet. Each of the flavors differs in the type of regularization used in
the optimization function. Vanilla regression uses no regularization. Lasso regres-
sion and Ridge regression use L1 . and L2 . regularization respectively. ElasticNet
regression uses both L1 . and L2 . regularization. The minimization problem of the
linear regression algorithm with n data points is defined belo w

. min
w

n∑

i=1

∥∥wT xi − yi

∥∥2
, (5.2)

where w = {w1, w2, ..., wp}. is the coefficient vector and p is the number of input
features. The target value yi . is expected to be the linear combination of the ith input
feature vector xi .. We observed that the linear models are not adequate to fit our data
as their error rate is very high. This implies that the relationship between the input
parameters and the output values is not linear.

5.3.3.2 Support Vector Regression (SVR)

Support Vector Regression [23] is a supervised learning algorithm that is used to
predict continuous values. SVR can efficiently perform a non-linear regression using
the kernel trick by implicitly mapping the input data into high-dimensional feature
spaces. We use the radial basis function as the kernel for our model. The simplest
form of the minimization problem for support vector regression is

. min
1

2
||w||2 (5.3)

102 V. S. Victor et al.

subject to the constraints

.

{
yi − 〈 w, xi 〉 − b ≤ ∈

〈 w, xi 〉 + b − yi ≤ ∈ ,

where yi . is the target value for the ith input feature xi . and 〈 , 〉. denotes the dot
product. The goal is to find a hyperplane with optimal values for the weight vector
w ., and the bias b that maximizes the width of the margin ∈ . between the predicted
outputs and the actual outputs of the training data. SVR uses relatively less memory
compared to random forests (with a large number of trees) and artificial neural
networks (with a complex architecture) and performs better than linear regression
models in high-dimensional spaces. However, it does not scale well with data and is
prone to noisy data.

5.3.3.3 Polynomial Regression (PR)

Polynomial regression [17] is a supervised learning algorithm in which the relation-
ship between the input parameters and the output values is modeled as a polynomial
of degree n. The minimization problem for polynomial regression with n data points
is

. min
n∑

i=1

(
yi − f (xi)

)2
, (5.4)

where yi . and f (xi). are actual and predicted values respectively for the ith input
feature xi .. The polynomial function f (x). can be represented as

.f (x) = β0 + β1x + β2x
2 + . . . + βmxm , (5.5)

where β0 ., β1 ., β2 ., . . . , βn . are the coefficients of the polynomial function to be
estimated. The degree m of the polynomial that is chosen is crucial in polynomial
regression. A very small degree would under-fit the model. As we pursue higher
degrees, the training and validation error initially decreases, as seen in Fig. 5.6. After
degree 11, the training error is still falling while the validation error starts to rise,
indicating that the model is beginning to overfit the data. Therefore, we decided that
degree 11 would be a good fit for our model. Given that it offers a large variety of
functions for data fitting, polynomial regression is well suited to model non-linear
relationships between the data. Nevertheless, they are susceptible to overfitting and
sensitive to outliers, which has an impact on the generalizability of the models.

5 ML-Based Optimization of the Homogeneity of Spunbond Nonwovens 103

1 2 3 4 5 6 7 8 9 10 11 12 13

0

20

40

60

80

100

120

140
Training
Validation

Polynomial Degree

M
ea

n
Sq

ua
re

d
Er

ro
r

Fig. 5.6 Plot showing the mean squared error for different degrees of the polynomial regression

5.3.3.4 Bayesian Regression (BR)

In Bayesian regression [3], problems are formulated using probability distributions
rather than point estimates. This enables us to assess the level of uncertainty and
confidence in model predictions. The goal of Bayesian regression is to ascertain the
posterior distribution for the weight vector w . rather than to identify the one “best”
value. The posterior distribution is the conditional distribution of weight vector w .

given target variable y, hyper-parameter α ., and model noise variance σ 2
. and it is

calculated using Bayesian theorem as given below:

.p(w|y, α, σ 2) ∝ p(w|α)L(w) , (5.6)

where p(w|α). is the prior distribution of the weight vector which is assumed to be
drawn from Gaussian distribution and is given by

.p(w|α) =
(α

2π

)1/2
exp

{
−α

2
||w||2

}
(5.7)

and L(w). is the likelihood function which is the conditional distribution of target
variable y given weight vector and model noise distribution with mean 0 and
variance σ 2

.. It is calculated as

. L(w) = p(y|w, σ 2) =
(

1

2πσ 2

)N/2

exp

{
− 1

2σ 2

N∑

n=1

∣∣f (xn;w) − yn

∣∣2

}
,

(5.8)

104 V. S. Victor et al.

where f (xn;w). is the function that predicts the target variable y for the input feature
vector xn . with weight vector w .. The goal is to find the value of w . that maximizes the
posterior distribution which is equivalent to minimizing its negative log. By taking
the negative log of the right-hand side of (5.6), we get the minimization problem of
the Bayesian regression as

. min
1

2σ 2

N∑

n=1

∣∣f (xn;w) − yn

∣∣2 + α

2
||w||2 . (5.9)

The training phase of the Bayesian approach involves optimizing the posterior
distribution, and the prediction phase requires additional computation for posterior
inference, which involves posterior distribution sampling, log-likelihood computa-
tion, and posterior predictive checks. Hence it requires more time for training and
inference for larger datasets.

5.3.3.5 Random Forests (RF)

Random Forest Regression [4] is a supervised learning algorithm that leverages the
ensemble learning method for regression. This type of learning method combines
predictions from various machine learning algorithms to provide predictions that
are more accurate than those from a single model. Given the set of input-output
pairs ([x, y .]), the goal of random forest regression is to obtain the function f (x). the
accurately predict the output for unseen input. The function f (x). is formulated as
an ensemble of T decision trees, where each decision tree t is trained on a subset
of training data. The predictions of the decision trees are then combined to obtain
final prediction. Each decision tree is built by choosing the feature and threshold
that provides the optimal split as determined by a certain criterion (e.g., mean
squared error). The data is then divided into subsets based on the chosen feature
and threshold. The same steps are repeated for each subset until a stopping criteria
is met (e.g., the maximum depth of the tree has been reached). Finally, a constant
value (e.g., mean or median) is assigned to each leaf node as the predicted output
v alue.

Random Forests typically perform well on problems that include features with
non-linear correlations. This is supported by their capacity for efficient feature
subset selection and rapid decision tree construction, which facilitates faster training
and prediction process. However, random forests can be prone to over-fitting, lack
interpretability, and suffer from imbalanced datasets.

5.3.3.6 Artificial Neural Networks (ANN)

An artificial neural network [12] is a computational model that uses a network of
functions to comprehend and translate a data input of one form into the desired

5 ML-Based Optimization of the Homogeneity of Spunbond Nonwovens 105

Table 5.2 Neural network
architecture chosen from
hyper-parameter tuning

Layer type Number of nodes Activation function

Input layer 5 Linear

Hidden layer 256 Relu

Hidden layer 512 Relu

Hidden layer 512 Relu

Hidden layer 256 Relu

Hidden layer 768 Relu

Output layer 7 Linear

output. The basic building blocks of a conventional neural network are nodes, which
are organized into layers. The input features are passed through these layers (input,
hidden, and output) with a sequence of non-linear operations to obtain the final
prediction. The minimization problem of neural network for regression with n data
points can be formulated as

. min
W ,b

n∑

i=1

L
(
yi, f (xi;W , b)

)
, (5.10)

where W . represents the weights applied to the inputs of a node, while the bias b
represents the value added to the weighted sum of the inputs of the same node. and
L is the loss function. We used Mean Squared Error (MSE) shown in (5.13) as the
loss function for our network. The goal is to find the optimal values for W . and b .

that minimize the loss function. The flexibility of neural networks allows them to
learn complex non-linear correlations between inputs and outputs. They can learn
to smooth out noise and capture underlying patterns in the data, making them robust
to noisy data. However, training neural networks can take a long time, especially if
the dataset is large or the model is complex.

We design a Neural Network to learn the non-linear dependency of our output
values with respect to the input features. The accuracy of the neural network is
determined by the optimal choice of hyper-parameters that decide its architecture.
We performed network parameter tuning to find the optimal hyper-parameters while
keeping the desirable accuracy. The hyper parameters we used for optimization are
the number of hidden layers (from one to five), number of nodes in each layer (from
8 to 1024 with an increment of 8) and the activation functions (‘relu’, ‘sigmoid’
and ‘tanh’). We used a randomized search (1000 samples) over the ranges of hyper
parameters and selected the parameters based on the error on validation data. Adam
optimizer and a learning rate of 1 × 10−3 was used for the analysis. We used
early stopping method to avoid over-fitting of the data. Table 5.2 shows the chosen
network architecture based on the evaluation metrics.

106 V. S. Victor et al.

5.3.4 Training and Testing

We divided the dataset into an 80% training data and a 20% testing set. The training
data is further divided into an 80% training set and a 20% validation set. As
discussed in Sect. 5.3.2.1, we sample each data point five times to account for the
non-deterministic behavior of the simulation tool. Hence, we divided the dataset
into groups of five identical data points and assigned indices to these groups. The
indices are then randomly shuffled and split into training, validation, and testing
sets based on the proportions described above. This makes sure that the identical
data points are assigned entirely to one of the three data sets and the trained ML
models can be evaluated for unseen data. The training set is then used to train the
regression models and the validation set is used to tune the model hyper-parameters.
The testing set is used for unbiased evaluation of the model. Since the input features
are measurements of different units, we also performed feature scaling to tailor the
data for the machine learning models. For each data point xi . of the individual input
feature distribution x. having n data points, mean μ., and standard deviation σ ., we
calculate the re-scaled feature value zi . as

.zi = xi − μ

σ
, i ∈ {1, 2, . . . , n}. (5.11)

The models are evaluated using the metrics defined below. For the equations
used in the following section, we define Y. and Ŷ. as the matrices with m rows
and n columns, where m is the number of test data points and n is the number
of indices corresponding to the seven grid sizes. The individual elements Yi,j . and
Ŷi,j . represent the actual and predicted values respectively for the data point i and
the grid size corresponding to the index j . Ȳ:,j . represents the mean value of the data
points corresponding to the grid size with index j .

1. Mean absolute percentage error (MAPE) is a statistical measure to evaluate the
accuracy of a regression model. The error is independent of the scale of the output
as it measures the accuracy as a percentage. MAPE is calculated as

.MAPE = 100

n

m−1∑

i=1

n−1∑

j=0

∣∣∣∣∣
Yi,j − Ŷi,j

Yi,j

∣∣∣∣∣ . (5.12)

2. Mean squared error (MSE) measures the average of squares of the errors. The
MSE is a good estimate for ensuring that the ML model has no outlier predictions
with huge errors since it puts larger weight on these errors due to the squaring.
MSE is calculated as

.MSE = 1

n

m−1∑

i=1

n−1∑

j=0

(
Yi,j − Ŷi,j

)2
. (5.13)

5 ML-Based Optimization of the Homogeneity of Spunbond Nonwovens 107

Fig. 5.7 Nonwoven materials with same base weight (2.20 g m−2) and similar average homogene-
ity (13.82 and 14.11), but with different aesthetics

3. Coefficient of determination (R2
. Score) is the measure of how close the data

points are to the fitted regression line. It explains how much of the variance of
actual data is explained by the predicted values. R2

. Score is calculated as

.R2(y, ŷ) = 1 −
∑m−1

i=1
∑n−1

j=0(Yi,j − Ŷi,j)
2

∑m−1
i=1

∑n−1
j=0(Yi,j − Ȳ:,j)2

. (5.14)

5.3.5 Homogeneity Optimization with Human Validation

After selecting the best ML model based on the evaluation metrics, it is used
to forecast the homogeneity of the spunbond nonwoven given a set of process
parameters. However, due to the size of the parameter search space, we are unable
to scan the entire parameter space. In order to address this issue, we developed
a visualization tool [24] built on the best ML model that aids textile engineers
in parameter space exploration. This tool provides real-time navigation through
the parameter space. It also supports the identification of promising regions in
the parameter space and the sensitivity of the individual parameter settings. The
tool reduces the domain expertise required in the optimization by visually guiding
the engineers toward local and global minima. The tool is utilized to identify and
choose n potential parameter settings (e.g. n = 10.) based on the optimal CV
values. These settings are subsequently used to generate corresponding nonwoven
images from the simulator, which is an offline process as it demands a considerable
amount of time. Once generated, textile engineers validate the simulated images,
discarding any that do not meet the product requirements in order to determine the
best parameter setting. One such requirement involves applications where specific
aesthetic features (e.g. seat covers for cars, furniture covers) are required. In this
case, the best parameter setting can be chosen based on the generated nonwoven’s
aesthetics. Figure 5.7 shows the images of two virtual nonwoven materials with the
same base weight (2.20 g m−2) and similar average homogeneity (13.82 and 14.11)
with different aesthetics.

108 V. S. Victor et al.

Table 5.3 Performance of machine learning models on the test dataset

MAPE MSE R^2 score

ML algorithm Mean Variance Mean Variance Mean Variance

Linear regression 95.2983 1.9254 93.2949 2.0498 0.595 2.77×10−5 .

Support vector regression 11.0702 0.0038 22.9310 0.4066 0.92 0.00

Polynomial regression 5.9486 0.0093 1.767 1.1715 0.9890 1 × 10−5

Bayesian regression 7.7343 0.0058 1.5080 0.0026 0.99 0.00

Random forests 10.0065 0.0280 1.8280 0.0137 0.98 0.00

Artificial neural networks 3.8214 0.0126 0.358 0.0207 0.99 0.00

The bold values indicate the best values for the corresponding error metric

5.4 Experiments

In this section, we discuss the necessity and effectiveness of our workflow in
optimizing the homogeneity of spunbond nonwovens. For the experiments, we
sampled an input database with 311,740 data points. The dataset included 12,348
discrete and 50,000 Latin hypercube data points, each of which was sampled five
times as discussed in Sect. 5.3.2.1. For each input data point, we simulated the digital
nonwoven image using the numerical tool. This image with a selected sample size of
25 cm × 50 cm. is then used to calculate the CV values at seven different grid-sizes.
For machine learning analysis, we used 199,514 data points for training, 49,878 data
points for validation, and 62,348 data points for testing.

We evaluated execution times on a workstation with a 40 core Intel® Xeon® E5-
2680 v2 (2.80 GHz) CPU. The execution time to produce 311,740 virtual spunbond
nonwoven samples on this machine is approximately 6,479,983 × 103

. ms with an
average time of 20,786.5 ms per sample.

5.4.1 Models Evaluation Based on the Accuracy

For statistical evaluation of the ML models, the training and testing sets are
randomly selected ten times and for each pair, the models are trained on the training
set and evaluated on the testing set. Table 5.3 shows the mean and variance of the
ten testing set errors for different regression models. We can see from the table
that ANNs have the best MAPE, MSE, and R2

. Score compared to other models.
Figure 5.8 shows the CV value predictions versus the actual CV values using ANNs
for grid-sizes 0.5 mm and 50 mm. The grid-size 0.5 mm corresponds to the best case
with least number of predictions (6.4031 × 10−3%. of the testdata) outside the error
tolerance range of 5%. And the grid-size 50 mm corresponds to the worst case with
most number of predictions (1.6712%. of the testdata) outside the error tolerance
range of 5%.

5 ML-Based Optimization of the Homogeneity of Spunbond Nonwovens 109

0 50 100 150

0

50

100

150

200

0 10 20 30

0

5

10

15

20

25

30

35

5% Tolerance

Actual Values Actual Values

Pr
ed

ic
te

d
Va

lu
es

Pr
ed

ic
te

d
Va

lu
es

grid-size = 0.5mm grid-size = 50mm

Fig. 5.8 Predicted vs actual CV values for grid resolutions 0.5 mm and 50 mm

5.4.2 Models Evaluation Based on Computational
Performance

The computational efficiencies of the ML models compared to the numerical
simulator for 10,000 data samples are displayed in Fig. 5.9. The training time in
the figure represents the time required by the model to train on 10,000 samples, the
prediction time shows how long the model requires to forecast 10,000 samples. The
figure shows that Bayesian regression has the shortest training time, and Random
Forests have the shortest prediction time. In general, model training only needs to
be done a single time. However, it is necessary to repeat the procedure of employing
the models to predict numerous times during optimization. Therefore, Random
Forests have a greater advantage relative to other models in terms of computing
performance.

For practical applications, the scalability of the ML models plays a significant
role. Scalability refers to the ability of ML models to handle large amounts of
data and carry out a large number of computations efficiently and quickly. In
order to determine whether the models scale well with the data, we computed
the computational time required by the model for a sizable data set. Figure 5.10
shows the time taken by the ML models to train and test the entire dataset (311,740
samples) in comparison with the numerical simulator. We mainly focus on the
prediction time as the training is done only once. The table shows that, with the
exception of the SVR, all the models scale reasonably well with the data. The results
reveal the effectiveness of using the ML models as a surrogate to the numerical
simulation that significantly reduces the time involved in the optimization process
(from 20,786.5 ms to 0.0588. ms per sample with ANN as a surrogate). We save

110 V. S. Victor et al.

SVR PR BR RF ANN Simulator
0

5

10

15

20
Training Time
Prediction Time
Simulation Time

Machine Learning and Numerical Models

Ex
ec

ut
io

n
Ti

m
e

in
 m

s
(lo

g-
sc

al
e)

Fig. 5.9 Computational performance of ML models compared to the numerical simulator for
10,000 data samples

SVR PR BR RF ANN Simulator
0

5

10

15

20

Training Time
Prediction Time
Simulation Time

Machine Learning and Numerical Models

Ex
ec

ut
io

n
Ti

m
e

in
 m

s
 (l

og
-s

ca
le

)

Fig. 5.10 Computational performance of ML models compared to the numerical simulator for
311,740 data samples

approximately 74 days for the entire dataset using the ANN model (including the
training time).

Based on the evaluation, we chose the artificial neural network as the best
surrogate model for the simulation tool as it provided the best accuracy with
comparable scalability. This chosen model can be used in real-time optimization
of homogeneity of the nonwovens. One successful application of this model is
presented in [24] as discussed before. The proposed visualization tool uses the
ANN model for exploring the space of process parameters in real-time to optimize
the quality of the nonwovens. The tool is currently tested by academic simulation
experts for its efficacy in the optimization process.

5 ML-Based Optimization of the Homogeneity of Spunbond Nonwovens 111

5.5 Conclusion

In this chapter, an ML-based workflow for optimizing the homogeneity of spunbond
nonwovens is proposed and a model based on multi-output regression is established.
During the data collection phase of the training process, we showcased the suc-
cessful integration of scientific and expert knowledge, leading to the establishment
of an Informed ML model. Furthermore, several machine learning algorithms for
process parameter tuning are explored based on the model that is verified by
human validation. Experimental results show that Artificial Neural Networks have
good accuracy and Random Forests have good computational performance across
different sizes of training and testing data. Additionally, experimental findings
demonstrate the efficacy of our strategy for real-time optimization.

Acknowledgments This contribution was supported by the Fraunhofer Cluster of Excellence
“Cognitive Internet Technologies”.

References

1. Abou-Nassif, G. A.: Predicting the tensile and air permeability properties of woven fabrics
using artificial neural network and linear regression models. Textile Sci Eng. 5, 5–209 (2015)

2. Beltran, R. and Wang, L. and Wang, X.: Predicting the pilling propensity of fabrics through
artificial neural network modeling. Textile research journal. 75, 557–561 (2005)

3. Bishop, C. M. and Tipping, M. E. and others: Bayesian regression and classification. Nato
Science Series sub Series III Computer And Systems Sciences. IOS PRESS. 190, 267–288
(2003)

4. Breiman, L.: Random forests. Machine learning. Springer. 45, 5–32 (2001)
5. Daw, A. and Karpatne, A. and Watkins, W. and Read, J. and Kumar, V.: Physics-guided

neural networks (PGNN): An application in lake temperature modeling. arXiv preprint
arXiv:1710.11431. (2017)

6. Deist, T. and Patti, A. and Wang, Z. and Krane, D. and Sorenson, T. and Craft, D.: Simulation
assisted machine learning. Bioinformatics. Oxford, England. (2019)

7. Döbel, I. and others: Maschinelles Lernen. Eine Analyse zu Kompetenzen, Forschung
und Anwendung. https://www.bigdata-ai.fraunhofer.de/content/dam/bigdata/de/documents/
Publikationen/Fraunhofer_Studie_ML_201809.pdf last accessed: 09/05/2022

8. Eltayib, H. E. and Ali, A. HM and Ishag, I. A.: The prediction of tear strength of plain weave
fabric using linear regression models. International Journal of Advanced Engineering Research
and Science. 3, 151–154 (2016)

9. Fan, J. and Hunter, L.: A worsted fabric expert system: Part II: An artificial neural network
model for predicting the properties of worsted fabrics. Textile Research Journal. 68, 763–771
(1998)

10. Gramsch, S. and Sarishvili, A. and Schmeißer, A.: Analysis of the fiber laydown quality
in spunbond processes with simulation experiments evaluated by blocked neural networks.
Advances in Polymer Technology, 2020.

11. INDA and EDANA Jointly Publish the Global Nonwoven Markets Report. A Comprehensive
Survey and Outlook Assessing Growth Post-Pandemic (2021). https://www.edana.org/about-
us/news/global-nonwoven-markets-report

12. Jain, A. K. and Mao, J. and Mohiuddin, K. M.: Artificial neural networks: A tutorial. Computer.
IEEE. 29(3), 31–44 (1996)

https://www.bigdata-ai.fraunhofer.de/content/dam/bigdata/de/documents/Publikationen/Fraunhofer_Studie_ML_201809.pdf
https://www.bigdata-ai.fraunhofer.de/content/dam/bigdata/de/documents/Publikationen/Fraunhofer_Studie_ML_201809.pdf
https://www.bigdata-ai.fraunhofer.de/content/dam/bigdata/de/documents/Publikationen/Fraunhofer_Studie_ML_201809.pdf
https://www.bigdata-ai.fraunhofer.de/content/dam/bigdata/de/documents/Publikationen/Fraunhofer_Studie_ML_201809.pdf
https://www.bigdata-ai.fraunhofer.de/content/dam/bigdata/de/documents/Publikationen/Fraunhofer_Studie_ML_201809.pdf
https://www.bigdata-ai.fraunhofer.de/content/dam/bigdata/de/documents/Publikationen/Fraunhofer_Studie_ML_201809.pdf
https://www.bigdata-ai.fraunhofer.de/content/dam/bigdata/de/documents/Publikationen/Fraunhofer_Studie_ML_201809.pdf
https://www.bigdata-ai.fraunhofer.de/content/dam/bigdata/de/documents/Publikationen/Fraunhofer_Studie_ML_201809.pdf
https://www.bigdata-ai.fraunhofer.de/content/dam/bigdata/de/documents/Publikationen/Fraunhofer_Studie_ML_201809.pdf
https://www.bigdata-ai.fraunhofer.de/content/dam/bigdata/de/documents/Publikationen/Fraunhofer_Studie_ML_201809.pdf
https://www.bigdata-ai.fraunhofer.de/content/dam/bigdata/de/documents/Publikationen/Fraunhofer_Studie_ML_201809.pdf
https://www.bigdata-ai.fraunhofer.de/content/dam/bigdata/de/documents/Publikationen/Fraunhofer_Studie_ML_201809.pdf
https://www.bigdata-ai.fraunhofer.de/content/dam/bigdata/de/documents/Publikationen/Fraunhofer_Studie_ML_201809.pdf
https://www.bigdata-ai.fraunhofer.de/content/dam/bigdata/de/documents/Publikationen/Fraunhofer_Studie_ML_201809.pdf
https://www.bigdata-ai.fraunhofer.de/content/dam/bigdata/de/documents/Publikationen/Fraunhofer_Studie_ML_201809.pdf
https://www.bigdata-ai.fraunhofer.de/content/dam/bigdata/de/documents/Publikationen/Fraunhofer_Studie_ML_201809.pdf
https://www.bigdata-ai.fraunhofer.de/content/dam/bigdata/de/documents/Publikationen/Fraunhofer_Studie_ML_201809.pdf
https://www.edana.org/about-us/news/global-nonwoven-markets-report
https://www.edana.org/about-us/news/global-nonwoven-markets-report
https://www.edana.org/about-us/news/global-nonwoven-markets-report
https://www.edana.org/about-us/news/global-nonwoven-markets-report
https://www.edana.org/about-us/news/global-nonwoven-markets-report
https://www.edana.org/about-us/news/global-nonwoven-markets-report
https://www.edana.org/about-us/news/global-nonwoven-markets-report
https://www.edana.org/about-us/news/global-nonwoven-markets-report
https://www.edana.org/about-us/news/global-nonwoven-markets-report
https://www.edana.org/about-us/news/global-nonwoven-markets-report
https://www.edana.org/about-us/news/global-nonwoven-markets-report

112 V. S. Victor et al.

13. Lee, K. and Ros, G. and Li, J. and Gaidon, A. Spigan: Privileged adversarial learning from
simulation. In: Int. Conf. Learning Representations. ICLR. (2018)

14. Lerer, A. and Gross, S. and Fergus, R.: Learning physical intuition of block towers by example.
International conference on machine learning. PMLR. 430–438 (2016)

15. Montgomery, D. C. and Peck, E. A. and Vining, G. G.: Introduction to linear regression
analysis. John Wiley & Sons (2021)

16. Nagrale, P.: Global Non Woven Fabric Market Overview. In: Market Research Future. 2019,
from https://www.marketresearchfuture.com/reports/nonwoven-fabrics-market-7459

17. Ostertagová: Modelling using polynomial regression. Procedia Engineering. Elsevier. 48, 500–
506 (2012)

18. Pfrommer, J. and Zimmerling, C. and Liu, J. and Kärger, L. and Henning, F. and Beyerer, J.:
Optimisation of manufacturing process parameters using deep neural networks as surrogate
models. Procedia CiRP. Elsevier. 72, 426–431 (2018)

19. Rai, A. and Antonova, R. and Meier, F. and Atkeson, C. G.: Using simulation to improve
sample-efficiency of Bayesian optimization for bipedal robots. The Journal of Machine
Learning Research. 20(1), 1844–1867 (2019)

20. Ribeiro, R. and Pilastri, A. and Moura, C. and Rodrigues, F. and Rocha, R. and Cortez, P.:
Predicting the tear strength of woven fabrics via automated machine learning: an application of
the CRISP-DM methodology. Proceedings of the 22th International Conference on Enterprise
Information Systems – ICEIS (2020)

21. Ribeiro, R. and Pilastri, A. and Moura, C. and Rodrigues, F. and Rocha, R. and Morgado, J. and
Cortez, P.: Predicting physical properties of woven fabrics via automated machine learning and
textile design and finishing features. IFIP International Conference on Artificial Intelligence
Applications and Innovations, 244–255 (2020)

22. Shrivastava, A. and Pfister, T. and Tuzel, O. and Susskind, J. and Wang, W. and Webb, R.:
Learning from simulated and unsupervised images through adversarial training. Proceedings
of the IEEE conference on computer vision and pattern recognition. 2107–2116 (2017)

23. Smola, A. J. and Schölkopf, B.: A tutorial on support vector regression. Statistics and
computing. Springer. 14, 199–222 (2004)

24. Victor, V. S. and Schmeißer, A. and Leitte, H. and Gramsch, S.: Visual Parameter Space
Analysis for Optimizing the Quality of Industrial Nonwovens. IEEE Computer Graphics and
Applications. 42(2), 56–67 (2022)

25. Von Rueden, L. and Mayer, S. and Beckh, K. and Georgiev, B. and Giesselbach, S. and Heese,
R. and Kirsch, B. and Pfrommer, J. and Pick, A. and Ramamurthy, R. and others: Informed
Machine Learning–A Taxonomy and Survey of Integrating Knowledge into Learning Systems.
IEEE Transactions on Knowledge and Data Engineering (2023)

26. Yap, P. H. and Wang, X. and Wang, L. and Ong, K.: Prediction of wool knitwear pilling
propensity using support vector machines. Textile research journal. 80, 77–83 (2010)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://www.marketresearchfuture.com/reports/nonwoven-fabrics-market-7459
https://www.marketresearchfuture.com/reports/nonwoven-fabrics-market-7459
https://www.marketresearchfuture.com/reports/nonwoven-fabrics-market-7459
https://www.marketresearchfuture.com/reports/nonwoven-fabrics-market-7459
https://www.marketresearchfuture.com/reports/nonwoven-fabrics-market-7459
https://www.marketresearchfuture.com/reports/nonwoven-fabrics-market-7459
https://www.marketresearchfuture.com/reports/nonwoven-fabrics-market-7459
https://www.marketresearchfuture.com/reports/nonwoven-fabrics-market-7459
https://www.marketresearchfuture.com/reports/nonwoven-fabrics-market-7459
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 6
Bayesian Inference for Fatigue Strength
Estimation

Dorina Weichert, Elena Haedecke, Gunar Ernis, Sebastian Houben,
Alexander Kister, and Stefan Wrobel

Abstract A vital material property of metals is long life fatigue strength. It
describes the maximum load that can be cyclically applied to a defined specimen for
a number of cycles that is thought to represent an infinite lifetime. The experimental
measurement of long life fatigue strength is costly, justifying the need to create a
precise estimate with as few experiments as possible. We propose a new approach
for estimating long life fatigue strength that defines a ready-to-use experimental and
analysis procedure. It relies on probabilistic machine learning methods, efficiently
connecting expert knowledge about the material behavior and the test setup with
historical and newly generated data. A comparison to state-of-the-art standard
experimental procedures shows that our approach requires fewer experiments to
produce an estimate at the same precision—massively reducing experimental costs.

D. Weichert (✉) · E. Haedecke · G. Ernis
Fraunhofer IAIS, Sankt Augustin, Germany
e-mail: dorina.weichert@iais.fraunhofer.de; elena.haedecke@iais.fraunhofer.de;
gunar.ernis@iais.fraunhofer.de

S. Wrobel
Fraunhofer IAIS, Sankt Augustin, Germany
University of Bonn, Bonn, Germany
e-mail: stefan.wrobel@iais.fraunhofer.de

S. Houben
Hochschule Bonn-Rhein-Sieg, Sankt Augustin, Germany
e-mail: sebastian.houben@h-brs.de

A. Kister
Federal Institute for Materials Research and Testing, Berlin, Germany
e-mail: Alexander.Kister@bam.de

© The Author(s) 2025
D. Schulz, C. Bauckhage (eds.), Informed Machine Learning,
Cognitive Technologies, https://doi.org/10.1007/978-3-031-83097-6_6

113

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-83097-6protect T1	extunderscore 6&domain=pdf

 885 43008 a 885 43008
a

mailto:dorina.weichert@iais.fraunhofer.de
mailto:dorina.weichert@iais.fraunhofer.de
mailto:dorina.weichert@iais.fraunhofer.de
mailto:dorina.weichert@iais.fraunhofer.de

 14712 43008 a 14712 43008 a

mailto:elena.haedecke@iais.fraunhofer.de
mailto:elena.haedecke@iais.fraunhofer.de
mailto:elena.haedecke@iais.fraunhofer.de
mailto:elena.haedecke@iais.fraunhofer.de

 -2016 44115 a -2016 44115 a

mailto:gunar.ernis@iais.fraunhofer.de
mailto:gunar.ernis@iais.fraunhofer.de
mailto:gunar.ernis@iais.fraunhofer.de
mailto:gunar.ernis@iais.fraunhofer.de

 885 49096 a 885 49096 a

mailto:stefan.wrobel@iais.fraunhofer.de
mailto:stefan.wrobel@iais.fraunhofer.de
mailto:stefan.wrobel@iais.fraunhofer.de
mailto:stefan.wrobel@iais.fraunhofer.de

 885 52970 a 885 52970 a

mailto:sebastian.houben@h-brs.de
mailto:sebastian.houben@h-brs.de
mailto:sebastian.houben@h-brs.de
mailto:sebastian.houben@h-brs.de

 885 56845
a 885 56845 a

mailto:Alexander.Kister@bam.de
mailto:Alexander.Kister@bam.de
mailto:Alexander.Kister@bam.de
https://doi.org/10.1007/978-3-031-83097-6_6
https://doi.org/10.1007/978-3-031-83097-6_6
https://doi.org/10.1007/978-3-031-83097-6_6
https://doi.org/10.1007/978-3-031-83097-6_6
https://doi.org/10.1007/978-3-031-83097-6_6
https://doi.org/10.1007/978-3-031-83097-6_6
https://doi.org/10.1007/978-3-031-83097-6_6
https://doi.org/10.1007/978-3-031-83097-6_6
https://doi.org/10.1007/978-3-031-83097-6_6
https://doi.org/10.1007/978-3-031-83097-6_6
https://doi.org/10.1007/978-3-031-83097-6_6

114 D. Weichert et al.

Table 6.1 List of symbols, grouped by application type

Long life fatigue strength
L Long life fatigue strength, assumed to follow a log-normal distribution, therefore

logL ∼ N(μL, σ 2
L).

L+ . Fatigue strength of a single specimen

μL . Mean of log-normally distributed long life fatigue strength

σL . Standard deviation of log-normally distributed long life fatigue strength

Loads in experiments
nk . Number a load level k was reached (staircase m ethod)

li . Load in failure experiment i (BI m ethod)

lj . Load in runout experiment j (BI m ethod)

l* . Recommended load for next experiment (BI method)

Quantities in Bayesian Inference method
x Material parameters

m(x). Mean function of Gaussian Process

k(x, x'). Covariance function of Gaussian Process

μ̂LGP
(x). Gaussian Process prediction for some material x,

μ̂LGP
(x) ≈ N (

μGP (x), σ 2
GP (x)

)
.

μGP . Estimated mean of the mean of the long life fatigue strength by Gaussian Process

σ 2
GP . Estimated variance of the mean of the long life fatigue strength by Gaussian

Process

g(μL, σL). Posterior estimate of long life fatigue strength

ϕμL,σL
(l). Value of cumulative fatigue strength distribution at experiment with load l

H(g). Entropy of a distribution g
H(g|l). Predictive entropy of posterior estimate of long life fatigue strength when adding

an experiment at load l
μ̂LMAP

. Maximum a posteriori estimate of the mean fatigue strength μL ., based on actual
posterior distribution g(μL, σL).

Quantities in staircase method
μ̂L0 . Experimenter’s estimate of the mean fatigue strength

μ̂Lstair
. Estimated mean fatigue strength via the staircase method

σ̂Lstair
. Estimated standard deviation of the fatigue strength via the staircase method

dlog . Load increment in staircase method

FT . Sum of all loads lk . in staircase method

AT . Sum of all k · lk . in staircase method

BT . Sum of all k2 · lk . in staircase method

DT . Variance for estimating the standard deviation in staircase method

L0 . Lowest analysable load in staircase method

6 Bayesian Inference for Fatigue Strength Estimation 115

6.1 Introduction

Long life fatigue strength is an important metric of metallic materials. It describes
the maximum load a product can tolerate without breaking for its lifetime, e.g.,
a spring or a gear tooth. To generate a material-specific estimate, defined (fixed)
loads are applied cyclically to specimens of a defined geometry. The long life
fatigue strength (in the following fatigue strength) refers to the maximum load
that can be applied for a defined maximum number of load cycles that is thought
to refer to an infinite lifetime. The fatigue strength of a material is estimated via
testing a collection of specimens of identical characteristics (e.g., geometry). The
fatigue strength of each specimen is unique, so the values of the collection follow a
distribution. To model this distribution, literature assumes that the fatigue strength
L of a specific material follows a log-normal distribution with parameters (μL, σL .)
[4]. Fatigue strength estimation is difficult, as it aims to determine this not directly
observable random variable L. In practice, this means that for a specimen it is only
possible to observe if it breaks at the applied load, indicating that the load was larger
than the specimen’s fatigue strength L+ . (a so-called failure); or if it survives the
procedure, indicating that the load was smaller than the specimen’s fatigue strength
L+ . (a so-called runout). Additionally, the evaluations are specimen-specific and
testing two specimens of the same material at the same load does not necessarily
lead to the same outcome: one may fail, while the other might survive. Hence the
idea of fatigue testing is to create a valid statistic of failures and runouts at different
loads to estimate the mean fatigue strength μL . and the standard deviation of the
fatigue strength σL .with sufficient confidence.

Traditionally, fatigue strength estimation is performed following a standard
procedure [4]. This standard defines multiple analysis methods for test results (i.e.,
the probit method, the maximum likelihood method, the staircase method) and one
experimental procedure specifying which loads to apply to the specimens (e.g., the
staircase method). Disadvantageous about these methods is the high dependency
on the experience of the process engineers, as either no experimental procedure is
defined at all (the experiments fully rely on the experts) or the procedure requires
hyperparameters to be defined by the process engineers.

In this chapter, we define a new hyperparameter-free modular approach for
fatigue strength estimation that connects the expert knowledge of the process
engineers with data. Our approach consists of two modules: in the first module,
a Gaussian Process (GP) Regression Model is used to create a prior estimate of the
mean fatigue strength μ̂LGP

.based on the similarity of different materials. The model
incorporates available historical fatigue data and expert knowledge defined in the
covariance function. The second module builds on traditional Bayesian Inference
(BI) to create a posterior distribution over the parameters (μL, σL)., using actual
experimental data and a knowledge-based likelihood. This posterior offers three
independent options for the experimenter:

1. the derivation of a maximum a posteriori (MAP) estimate for the distribution
parameters

116 D. Weichert et al.

2. the variance of the posterior and therefore an approximation of the confidence of
the parameters found by MAP estimation

3. an acquisition function in line with traditional Active Learning, specifying an
experimental procedure.

We design an acquisition function that trades off the confidence of the experimental
outcome with the predictive entropy of the posterior based on the acquired exper-
iment. We verify our approach by comparison with the staircase method, as it is
the only fatigue strength estimation method that defines an experimental procedure.
The comparison shows the superiority of our modular approach as it yields similar
results to the staircase method at a shorter number of test iterations. This is due to
the expert knowledge being abstractly integrated into the covariance function and
the likelihood, making it robust against misspecification as there are no material-
specific procedural parameters. The approach corresponds to a type of Informed
Machine Learning in which expert knowledge is integrated into the hypothesis set
in the form of probabilistic relations [29].

We structure this chapter as follows: in the first section, we describe the necessary
background on fatigue testing, the state-of-the-art experimental procedures, and
the related work. In the second section, we introduce our modular approach for
fatigue strength estimation and validate it in the third section. The fourth section
summarizes the results and concludes with potential future work. Table 6.1 lists the
symbols used in this chapter.

6.2 Background

The intuition of this section is to give the reader the necessary background of fatigue
strength estimation. Here, we portray standard fatigue testing methods, especially
the staircase method, and give an overview of the related work.

6.2.1 Fatigue Testing

This paragraph gives a short overview of fatigue testing, closely following the
latest valid standard [4]. Fatigue testing determines the tolerable load amplitude
at a predefined number of cycles for a material. Therefore, a defined load is applied
cyclically to a specimen, which will either be fractured or become a so-called runout,
where the (predefined) ultimate number of cycles is reached without breaking.
Fatigue strength is a material property that depends on the applied load type (e.g.,
tension, pressure, torsion, bending), the load amplitude, the applied mean load, and
the number of cycles used to define a long life. We interpret fatigue strength as a
log-normally distributed random variable. At test time, this means that at exactly
the same conditions, one specimen can be a runout while another is fractured. To

6 Bayesian Inference for Fatigue Strength Estimation 117

estimate the fatigue strength, the parameters of the log-normal distribution (μL, σL .)
are determined up to a predefined uncertainty. Using hat-notation for estimated
values, we find (μ̂L, σ̂L .) based on the experiments. Nevertheless, we not only have
to analyze the parameters of the distribution themselves but also quantities like the
standard deviation of the estimated mean Std(μ̂L)..

Following the standard, the fatigue strength properties of different materials are
assumed to be independent [4]. Therefore, the required number of tests is defined by
the chosen uncertainty of the distribution parameters. Different methods are valid
for analyzing test results: the probit method, boundary techniques, the staircase
method, combinations of the probit and the staircase method, and the maximum
likelihood method [4]. In the following, we concentrate on the staircase method, as
it not only defines an analysis method but also an experimental procedure similar to
our approach.

6.2.2 Experimental Procedure and Analysis of the Staircase
Method

The term “staircase method” defines a standardized experimental procedure and a
standardized analysis method for the gained data. In the following, we describe the
method in detail. Afterward, we analyze its drawbacks and derive requirements for
a new experimental procedure and analysis method.

6.2.2.1 Experimental Procedure

The experiments must follow a defined iterative procedure for determining the
fatigue strength by the staircase method.

Before the first test, the experimenter has to define a first estimate for the mean
fatigue strength μ̂L0 . and a logarithmic load increment dlog .. It is recommended to
choose this value based on an estimate for the logarithmic standard deviation of the
fatigue strength slog = log10 σL ., then dlog = 10slog .. Valid loads in the test procedure
are given by μ̂L0 · di

log ., where i ∈ Z.. Given an initial test at a freely chosen load
level, the iterative procedure works as follows:

• after a failure, the load level is reduced by the equidistant load increment;
• after a runout, the load level is raised by the load increment.

This procedure is followed until the required number of tests for the estimation
of the distribution parameters is reached, or it is evident that the test parameters,
especially the load increment dlog ., have to be changed. The number of tests to
take out to reach a given confidence interval of the estimated mean fatigue strength
μ̂Lstair

. is given in a table in [4]; this table relies on simulations of the staircase
procedure.

118 D. Weichert et al.

Figure 6.1a shows an exemplary run by the staircase method. While the load
levels in the first two runs were too high to be reached again, all other runs show
the typical staircase pattern and additionally illustrate the noisiness of fatigue tests:
tests at the same load level can both fail or survive the applied load.

6.2.2.2 Analysis of Test Results by the Staircase Method

For estimating the distribution parameters of the fatigue strength, the test results
have to fulfill several conditions:

1. no interruptions of the load sequence, tests have to follow the test procedure
strictly,

2. test results of the first iterations are only taken into account if the corresponding
load level is reached again within the test series,

3. test series must contain at least two reversal points,
4. test series have to contain load levels where specimens are both failures and

runouts.

If the series is valid, the parameters (μL, σL .) of the fatigue strength are estimated
as follows: Firstly, a fictitious experiment with an unknown outcome is added to the
current test series to statistically enhance the data basis for analysis. Therefore, the
rules of the iterative experimentation procedure are followed: if the last experiment
was a failure, the fictitious experiment is at a lower load level; if it was a runout, the
fictitious experiment is at a higher load level (see Fig. 6.1a). Afterward, the lowest
valid load level L0 . is determined and is indexed by k = 0.. Then, the number lk ., how
often each load level at index k was reached, is counted. Based on these figures,
additional variables are calculated, namely

.

FT =
⎲

k

lk

AT =
⎲

k

k · lk

BT =
⎲

k

k2 · lk

DT = FT · BT − A2
T

F 2
T

,

6 Bayesian Inference for Fatigue Strength Estimation 119

Fig. 6.1 Estimation of fatigue strength by the staircase method. For the analysis, only series parts
that fulfill the analysis conditions (see Sect. 6.2.2.2) are taken into account. (a) Test series by the
staircase method, the logarithmized y-axis shows the non-equidistant load increments. Filled circle:
failure, multiplication symbol: runout, open triangle: fictitious run at end of series. (b) Estimated
fatigue strength distribution p(L) ≈ logN(μ̂Lstair

, σ̂Lstair
). by the staircase method. Plus symbol:

estimated mean fatigue strength μ̂Lstair
.. (c) Estimated standard deviations of the mean of the

fatigue strength

120 D. Weichert et al.

which are then used to find

.

μ̂Lstair
= L0 · d

AT
FT

log

if DT < 0.5 : σ̂Lstair
= 0.5 log dlog

if DT ≥ 0.5 : σ̂Lstair
= log dlog · 104.579494·(FT)−0.889521 · D

7.235548·(FT)−0.405229

T .

(6.1)

Figure 6.1b and c exemplarily show the devolution of the these estimated values
over the test sequence in Fig. 6.1a. While especially the estimated mean of the
fatigue strength μ̂Lstair

. (+ in Fig. 6.1b) oscillates over the test series, the standard
deviation of the mean Std(μ̂Lstair

). continually decreases.

6.2.2.3 Disadvantages of the Staircase Method

From Application Perspective
The staircase method is often used in practice, as it specifies experimentation
guidelines. This contrasts with the other analysis methods for fatigue strength,
which only prescribe how to analyze given test data but do not elaborate on the
experimental procedure and therefore highly rely on the experimenter’s knowledge.

However, the test and analysis procedures by the staircase method are problem-
atic for application in real life, as they are inflexible and rely on the experimenter’s
ability to estimate the necessary parameters. When looking closely at the different
conditions for the analysis, this point becomes obvious:

Condition 1 is only met when the tests strictly follow the defined test procedure. It
indicates that the order of the tests is relevant and that no parallelization is possible.
Additionally, no changes in the load increment to meet conditions 2, 3, and 4 are
permitted. Condition 2 exemplifies how much the efficiency of the test procedure
depends on the experimenter’s knowledge to make a reasonable estimate of the mean
fatigue strength μ̂L0 .. If his estimate is far from the real mean fatigue strength, many
runs are wasted to reach loads of interest, especially as the load increment is fixed.
Conditions 3 and 4 illustrate the dependency on the experimenter’s knowledge to
determine the load increment dlog .. If dlog . is too small, a large number of tests has to
be taken out to generate two reversal points, especially if μ̂L0 . is misspecified. A too
large dlog . causes the series not to meet condition 4.

From a Mathematical Perspective
From a mathematical perspective, the analysis by the staircase method has several
drawbacks: first, the fixed step size hinders an exact determination of the distribution
parameters. A flexible step size facilitates experimentation and allows the experi-
menter to do more experiments at load levels with a high impact on the parameter
estimates.

6 Bayesian Inference for Fatigue Strength Estimation 121

Furthermore, the method only indirectly considers the information if an exper-
iment is a runout or a failure. For a high number of samples, this is plausible.
However, for a lower one (that is the case in practice), this additional information is
expected to improve the quality of the parameter estimates.

6.2.2.4 Requirements for an Alternative Experimental Approach

From the application side, there exists a high interest in developing a more flexible
test and analysis procedure, (ideally) offering the following advantages:

Use of All Existing Data About the Same Material Type A main drawback of the
staircase method is that the load increment dlog .must not be changed during the test
procedure. A false estimate of the load increment results in non-valid test results,
as they do not fulfill the analysis conditions 3 and 4. An improved test and analysis
procedure should consider changes of the load increment and load levels that were
reached only once (condition 2) to include additional historical data, if available.

No Necessity to Estimate the Mean Fatigue Strength by Experts Beforehand
Even for human experts, it is hard to make a good estimate of the mean fatigue
strength μ̂L0 . before conducting experiments. Nevertheless, test efficiency (the
number of tests taken into account for the analysis) relies on the estimate, as initial
experiments might be wasted due to condition 2. Recommending an estimate based
on historical data from similar materials is, therefore, a substantial improvement.

Potential Parallelization of Tests A single experiment run takes up to 12 weeks,
depending on the limiting number of cycles. The staircase method is a purely
iterative approach, prohibiting parallelization. Therefore, an experimental procedure
that allows for conducting two or more experiments in parallel would significantly
reduce experimentation time.

6.2.3 Related Work

Several authors show the high potential of using Machine Learning based methods
in Material Science [14, 24]. As a vast research field, we focus on publications
that either specifically deal with fatigue strength estimation or summarize multiple
relevant publications in terms of a review.

In general, there exist three main potentials of applying Machine Learning
in Material Science: the prediction of material properties, the discovery of new
materials fulfilling specific material properties using Bayesian Optimization [27]
and the efficient data acquisition for modeling material properties via Active
Learning [26]. Especially the two latter methods are essential for fatigue strength
estimation: these sequential methods deeply exploit the information in the available
data, which is advantageous as fatigue strength experiments are costly.

122 D. Weichert et al.

For the first time, Agrawal and Choudhary [1] show how to learn a prediction
model for fatigue strength based on the NIMS fatigue data set [8], a data set
consisting of 400 observations from the Japan National Institute of Materials
Science (NIMS). They were quickly followed by other authors, such as [3, 10,
11, 25, 28, 31, 34]. While these models are based on heuristic models, such as a
Multilayer Perceptron or a Regression Tree, our work uses a probabilistic model: a
GP with an engineered covariance function. By using this method, we are able to
not only predict a point estimate of the fatigue strength but a probability distribution
revealing the uncertainty of the prediction.

Regarding the second potential, Ling et al. [19] introduce a framework named
FUELS for material discovery based on Bayesian Optimization. Their experiments
demonstrate its use for finding a new material composition with a high fatigue
strength using historical data. Our work differs from this approach as we focus not
on material discovery but on designing an efficient test methodology for a given
material.

This relates to the third potential: Active Learning, which is used for surrogate
modeling, e.g., for finding models of a process [16], or material properties [14, 20].
The idea of Active Learning is ideal for formulating new experimental procedures.
Simultaneously to our work, a similar approach aiming for a Bayesian staircase
setting was proposed by Magazzeni et al. [21]. It is comparable to our approach
regarding the definition of the likelihood based on the experimental setup but differs
in the exploitation of the formulated posterior. To be more precise, our contribution
is the maximum a posteriori approach for the distribution parameters and the
derivation of a stopping criterion. Their acquisition function is similar to ours, but
they limit it to fixed step sizes in all their experiments, thus adding an additional
hyperparameter for process engineers.

6.3 Informed Fatigue Strength Estimation

This section describes our new fatigue testing approach. After a short overview of
the basic ideas, we describe the two main modules and their opportunities in detail.
We conclude by giving necessary further information for deploying the derived
procedures.

6.3.1 Overview of Approach

The primary goal of informed fatigue strength estimation is to increase the test
efficiency, thus, reducing the number of tests to determine the fatigue strength.
Therefore, we consider expert knowledge and historical data about material behav-
ior. Loosely speaking, our approach builds on the similarity of the fatigue strength
estimates for similar steels, and of the behavior of the specimens at test time. This

6 Bayesian Inference for Fatigue Strength Estimation 123

Fig. 6.2 An overview of the experimental procedure. Expert knowledge is introduced in the
covariance function of the Gaussian Process regression model and in the definition of the likelihood
for determining the posterior distribution over the fatigue strength L

similarity assumption violates the conservative independence assumption made in
the standard [4]. However, both the state-of-the-art literature (e.g., [1]) and the
statements of the domain experts expect correlations to be plausible.

Our approach consists of two main modules, as shown in Fig. 6.2: a GP
regression model and a module building on BI.

The GP is used to express the similarity of the mean fatigue strength μL . of
different materials. Similar to the expert estimate of μ̂L0 . in the staircase method,
it is used to create a prior estimate of the mean fatigue strength; here, in the form of
a normal distribution μ̂LGP

∼ N(μGP , σGP)..
The BI module creates a posterior distribution over the fatigue strength parame-

ters, following Bayes’ Rule [2]. Necessary ingredients for this approach are a prior
(calculated from the GP’s prediction), a likelihood (derived from expert knowledge),
and experimental data from fatigue testing.

From the posterior distribution of the parameters g(μL, σL)., three quantities can
be derived:

1. the most probable parameters (μ̂LMAP
, σ̂LMAP

). that correspond to both the
experimental data and the assumptions made; derived by a maximum a posteriori
(MAP) estimate,

2. the confidence about the parameters, expressed as the variance Var(g(μL, σL)).,
and

3. the load l* . with the highest impact on the distribution g(μL, σL)., recommended
as the next experiment for data acquisition.

124 D. Weichert et al.

6.3.2 Machine Learning Model

The first module of our approach consists of a GP to predict an estimate of the mean
fatigue strength μ̂LGP

.. In the next subsection, we describe the necessary technical
background and details on the learning procedure of the model, following the well
known CRISP-DM [33].

6.3.2.1 Gaussian Processes

Formally, a GP is defined as a collection of random variables, any finite number
of which have a joint Gaussian distribution [23]. For full specification, a mean
function m(x). and a covariance function k(x, x'). are required, so if we approximate
a function f by a GP, we write f (x) ≈ GP(m(x), k(x, x'))..

The goodness of fit of a GP model depends on the available data and on the GP
prior that is formulated in the mean and covariance function. The GP prior expresses
the expected behavior of the function f (x)., where the mean function m(x). is often
used to describe the extrapolation behavior far from the data, while the covariance
function k(x, x'). carries the information about similarity of the function values f (x).

depending on the covariance of the inputs (x, x').. By definition, the prediction of
a GP at a single new location x*

. is normally distributed with mean μGP (x*). and
variance σ 2

GP (x*).

.

μGP (x*) = K(x*,X)(K(X,X) + σnI)−1(y − m(x*))

σ 2
GP (x*) = K(x*, x*) − K(x*,X)(K(X,X) + σnI)−1K(X, x*) ,

(6.2)

where X is the matrix of the training inputs, y are the function values at the t rain
inputs, K(X, x*). is a matrix containing the covariance function k(x, x'). applied to
the pairs of inputs X and x*

., and σn . is the noise hyperparameter.

6.3.2.2 Gaussian Process for Estimating Fatigue Strength

We use a GP to express the similarity of the mean fatigue strength μL . for different
materials: the label of our data is the mean fatigue strength μL .. Therefore, the
prediction of the resulting GP model for a single new material x*

. will be a normal
distribution μ̂LGP

∼ N(μGP (x*), σGP (x*))., which means it is an estimation of the
mean fatigue strength, with standard deviation σGP .. Please note that this standard
deviation is not the same as the standard deviation of L, but the standard deviation
of the estimated mean μ̂LGP

..
For model definition, we follow CRISP-DM [33]. Our raw data consists of 277

labeled points and four material parameters. The material parameters are the loaded
volume V90/mm3, the load type, the edge hardness of the specimen/HV, and the

6 Bayesian Inference for Fatigue Strength Estimation 125

load ratio R, which expresses the ratio between the maximum and minimum applied
load.

During preprocessing, we rigidly clean the data by excluding outliers in both
input and output space and removing full duplicates resulting in 112 valid data
points. Several duplicates exist in the input space (so identical materials with
identical loads) but different values for the label, which prohibits learning of the
GP. As averaging the labels results in another substantial data reduction, we opted
to add small noise to the duplicated feature values and a lower bound to the noise
hyperparameter σn . of the GP. Then, we perform a train-test split at a ratio of
80/20. Additionally, we take the logarithm of the label as the data distribution
suggests that not only the fatigue strength L for a specific material is log-normally
distributed but also the mean fatigue strength μL . for different materials. Afterwards,
we standardize the train labels to a mean of 0 and a variance of 1.

In our model, we include the following expert knowledge in the GP prior:

• linearity of mean fatigue strength with respect to certain material parameters as
a trend,

• a smooth behavior of the fatigue strength (no jumps when changing the input
parameters),

• a varying similarity of function values depending on the input location but
smooth transitions between these input areas.

The mean and covariance function incorporate this knowledge as follows: We
apply a constant mean function m(x) = 0., so the estimate for the mean fatigue
strength always falls back to the constant mean value at extrapolation regions. The
covariance function is constructed as a sum covariance function [5], in which the
ingredients are a linear covariance function with automatic relevance determination
klin = ∑ D

d=1 σ 2
d xdx'

d . and rational quadratic covariance function kRQ(x, x') =
⎛
1 + (x−x')2

2αl2

⎞−α

.. Here, klin . expresses the linearity with respect to the material

parameters, while kRQ . induces a smooth but varying behavior that fluctuates around
the trend. Overall, this means that we approximate the mean fatigue strength μL .

assuming μL ≈ GP(m(x), k(x, x')). with m(x) = 0, k(x, x') = klin(x, x') +
kRQ(x, x')..

We train the model using a 10-fold cross-validation and determine the values of
the covariance function’s hyperparameters in each fold via maximization of the log
marginal likelihood. Afterwards, we apply the hyperparameters of the best fold in
the model for all train data.

Our implementation uses the state-of-the-art python packages GPy [9] for the GP
and scikit-learn [22] for the cross-validation.

Figure 6.3 shows the prediction quality of our model on the test set in real
space. In most cases, the ground truth value is within one standard deviation of the
model’s predicted mean, confirming that the model captures the overall behavior
of the mean fatigue strength. Please note that the unsymmetric error bars are due
to the preprocessing of the data. Overall, the model reaches a R2 = 0.91. (metric
was chosen by the process engineers) for the mean estimates on the test data. This

126 D. Weichert et al.

Fig. 6.3 Prediction quality of the found GP model for μ̂LGP
. on the test data. Dashed line: ideal

prediction; blue filled circle: predicted mean values μGP .; error bars: one predicted standard
deviation σGP .

performance is slightly lower than the results of recent fatigue strength prediction
models, such as the work of Agrawal and Choudhary [1], who reach a value
of R2 = 0.98. using an ensemble of tree-based models. For our approach, the
GP is nevertheless at an advantage since it provides a suitable and reliable prior
distribution for the BI module by design, is justified by expert knowledge, and was
built from fewer instances (277 instead of 437).

6.3.3 Bayesian Inference on the Distribution Parameters

Traditional Bayesian Inference BI allows us to estimate a distribution over the
parameters (μL, σL). of the log-normally distributed fatigue strength L from expert
knowledge and experimental data. As ingredients, it requires a prior estimate of
these parameters and a likelihood to generate a posterior distribution over them.
Both the accuracy of the prior and the likelihood are critical for the quality of the
posterior—they encode the assumptions (i.e., the expert knowledge) about the data
and the data generating process. In general,

. posterior = prior × likelihood .

In our case, the likelihood e is derived from the experimental setup and is based
on the following chain of arguments: the fatigue strength L for an infinite number
of specimens follows a log-normal distribution with parameters (μL, σL .) and is not
directly observable. Each single specimen has an individual fatigue strength L+ .

and carries information about the fatigue strength distribution of the material. If an

6 Bayesian Inference for Fatigue Strength Estimation 127

experiment at load l is a failure, it means that the (unknown) fatigue strength of
the specimen is smaller or equal to this load, so (failure at l) ⇐⇒ L+ ≤ l .. This
indicates that the probability of a failure at load l for all specimens is

.p(failure|l) = ϕμL,σL
(l) , (6.3)

while the probability of a runout equals

.p(runout|l) = 1 − p(failure|l) = 1 − ϕμL,σL
(l) , (6.4)

where ϕμL,σL
(l). is the cumulative density function of the log-normal distribution

over L. For multiple experiments at different loads with different outcomes, we
multiply the probabilities to gain the likelihood of the experimental outcomes

.e(outcome|μL, σL, l) =
Π

i

ϕμL,σL
(li) ·

Π

j

(
1 − ϕμL,σL

(lj)
)

, (6.5)

where the index i refers to the failures while the index j refers to the runouts.
As a prior for the mean of the fatigue strength distribution μL ., we use the

prediction of the GP regression model, assuming that the mean is normally
distributed (in log space, as the data was scaled to train the model). For the standard
deviation σL ., there exists no prior knowledge or valid assumptions except for
positivity. In the following, we apply a simple flat prior , which can lead to unwanted
artifacts, such as a negative estimate of the standard deviation σL ., in unfavorable
cases. Alternatively, a (flat) positive prior or a gamma prior could be used to suppress
this behavior.

Therefore, we obtain the following equation for the distribution over the param-
eters

.

g(μL,σL|outcome, l)

∝p(μL) · p(σL) · e(outcome|μL, σL, l)

≈ 1
/
2πσ 2

GP

exp

⎛

−1

2

⎛
μL − μGP

σGP

⎞2
⎞

·
⎛

⎝
Π

i

ϕμL,σL
(li) ·

Π

j

(
1 − ϕμL,σL

(lj)
)
⎞

⎠ .

(6.6)

128 D. Weichert et al.

6.3.3.1 Maximum A Posteriori Estimate

In (6.6), we derived an expression for the distribution over the parameters describing
the distribution of the fatigue strength L. The location of the maximum of the
posterior reveals the most probable values for the unknown parameters μL . and
σL . based on the prior knowledge about the specimen and its similarity to other
material probes, the experimental setup, and experimental data about runouts or
failures at different loads. The maximum locations of the posterior distribution are
the maximum a posteriori (MAP) estimates for these parameters:

.μ̂LMAP
, σ̂LMAP

= argmax
μL,σL

g(μL, σL) . (6.7)

6.3.3.2 Active Learning-Inspired Acquisition Function

The data analysis procedure via BI also provides a method for efficient sequential
experiment planning. As in basic Active Learning [26], and Bayesian Optimization
[27], there are multiple possible formulations for the acquisition function—the
function that maps each possible load to apply to the potential of improving the
posterior estimates of the distribution parameters. Traditionally, the formulations
vary from the experiment that mostly change the parameter estimates [6] to
information-based acquisition functions [12, 13, 30], improvement-based methods
[15, 17] and the traditional uncertainty sampling [18].

In our case, the acquisition has to merge two antagonistic requirements: on the
one hand, the predictive entropy, i.e. the entropy H(g|l). of the distribution over L
when adding the next experiment l, is to be minimized. Intuitively, the distribution
is most changed when an unexpected experimental outcome occurs, e.g., a runout
at a high load level. On the other hand, the experimental outcome is random.
Our expectations about each experiment’s results are expressed i n (6.3) and (6.4).
We actively decide to use this uncertainty as a proxy for the probability-weighted
predictive entropy of the future distribution to find the next experiment

.

l* = argmin
l

H(g, outcome = failure|l) · ϕμ̂LMAP
,σ̂LMAP

(l)+
H(g, outcome = runout|l) · (1 − ϕμ̂LMAP

,σ̂LMAP
(l)) ,

(6.8)

where we estimate the real values of the distribution parameters (μL, σL .) by the
actual MAP-estimates. Unfortunately, this expression cannot be solved analytically.
Instead, we discretize the two-dimensional support of the upcoming posterior and
approximate numerically via the Shannon entropy.

6 Bayesian Inference for Fatigue Strength Estimation 129

6.3.3.3 Stopping Criterion

The sharpness of the distribution over (μL, σL). is a measure of the uncertainty about
these parameters. If only μL . is estimated, then the uncertainty about μL . and thus
the estimate μ̂LMAP

. can be expressed as the variance of the distribution

.Var(g(μL, σL)). (6.9)

This variance corresponds to the variance used for calculating the minimum number
of experiments in the other analysis approaches like the staircase method. In the
experimental procedure, it can be used as a stopping criterion: when the variance is
below a specified limit, the experimental sequence is stopped.

6.3.4 Details on the Overall Experimental Procedure

Using the trained GP model and the derived expressions for the acquisition function
and the posterior’s variance, the experimental procedure to estimate the fatigue
strength for a new material x*

.works as follow s:
First, a prediction μ̂LGP

≈ N(μGP (x*), σGP (x*)). for the mean fatigue strength
is created using the GP model. Based on this prediction, the data for one fracture
and one runout are created experimentally. The necessary values are easily obtained
by using the mean prediction of the GP and adding/subtracting some multiples of
the standard deviation σGP (x*)..

Using the two data points and the GP prediction as prior, the posterior g(μL, σL).

is calculated. Then an initial estimate for μ̂LMAP
. is found by maximum a posteriori

estimation. As the posterior may have multiple optima and inferring the posterior for
a specific load value is computationally cheap, a multistart numerical optimization
is performed.

Additionally, the variance of the posterior Var (g (μL, σL)). is calculated using an
equally spaced grid of 100,000 points in the area of interest.

For finding the new experimental load, we apply the acquisition function, as
defined in (6.8) and find the load l* . with maximum impact on the entropy of the
posterior distribution H(g|l).. The entropy is calculated via 1000 integration points
that are distributed corresponding to the current estimate of the posterior.

This procedure of calculating the posterior, finding the MAP estimate, computing
the standard deviation, and executing a new experiment at the value of the MAP
estimate is repeated until the maximum number of iterations is met. In that case, the
found value for μL . is added to the train data of the GP, which is then retrained.

130 D. Weichert et al.

6.4 Validation of Approach

For validation purposes, we compare the BI-based approach with the staircase
method on historical data of a JIS SUS 403 steel; a corrosion-resisting martensitic
stainless steel [7]. The dataset is used because a real-world feasibility study is not
possible due to the immense experimental cost. It consists of 136 measurements of
the steel at different loads.

From the dataset, we derive the fatigue strength parameters via a maximum
likelihood approach and find (μL, log10 σL). = (389N, 0.038 log 10 .N). Using these
values as ground truth, we create a simulator for the experimental outcome for any
given load.

To cope with the randomness of the experimental outcomes, we compare 500
runs of each method, each using the fixed ground truth value for σL .. The initial
prior for BI builds on the prediction of our trained model. The initial load for the
staircase method is drawn at random from a fixed interval, μ̂L0 ∈ [389 ± d]., where
d ∈ {0, 30, 60}..

As mentioned in Sect. 6.2.2.2, an analysis of the test results by the staircase
method is only valid if it fulfills specified requirements. In the following, we assume
the initial value μ̂L0 . to be the fatigue strength estimate of the staircase method
μ̂Lstair ., as long as the requirements are not fulfilled.

Figure 6.4 visualizes the residual of the mean fatigue strength |μL − μ̂L|. for the
BI-based and the staircase approach. As the residuals are non-normally distributed,
we show the median and the 25% and 75% quantiles. We find that after ten
iterations, the BI-based method is comparable to the staircase method when starting
with no or slight misspecification of d = 30. in terms of the residual distribution.

Fig. 6.4 Residuals for the staircase method and the BI method for 30 iterations. Due to the non-
normality of the results at each iteration, we plot the median as line and the 25% and 75% quantiles
as a shaded region

6 Bayesian Inference for Fatigue Strength Estimation 131

Fig. 6.5 Development of the standard deviation Std(μ̂Lstair
). (staircase method) and the standard

deviation of the posterior Std(g(μL)). (BI-based method). Due to the non-normality of the results
at each iteration, we plot the median as a line and the 25% and 75% quantiles as shaded regions

Between 10 and 15 iterations, the slight misspecification in the staircase method
begins to impact the residuals, becoming worse at iteration 15, where it shows a
smaller decrease of the residual and larger quantiles. At the same time, the BI-
based method and the staircase method without misspecification become similar
in both median and quantiles. Further comparison with the staircase method starting
with larger misspecification (d = 60.) leads to the assumption that the higher the
misspecification, the larger the residual.

Figure 6.5 shows the course of the standard deviation of the current mean
estimate Std(μ̂Lstair

). and the standard deviation of the posterior Std (g (μL)). that
is (due to the fixed value of σL .) one-dimensional. Again, we show the median
and quantiles, as the data are non-normally distributed. The standard deviation of
the staircase approaches is very similar, as it depends on a small percentage of
the estimated mean fatigue strength μ̂Lstair

., se e (6.1). For the first iterations, it is
nearly constant and begins to decrease after 12 iterations. As expected, the BI-based
approach shows a smooth decrease of the standard deviation as the mass of the
estimated posterior distribution over μL . decreases with the evidence of every new
data point. After ten iterations, the standard deviation of the posterior is smaller than
the one by the staircase approaches.

Overall, both figures substantiate the advantage of the BI-based approach:
The quality of the estimated mean fatigue strength μ̂LMAP

. is similar to the non-
misspecified staircase method after ten iterations, where the confidence of this value
(measured by the standard deviation of the posterior) is higher. In general, the BI-
based method is favorable to the staircase method in case misspecification of the
load is probable, as the correct mean fatigue strength μL . is estimated faster with a
lower standard deviation.

132 D. Weichert et al.

6.5 Conclusion

This chapter presents a modular approach for fatigue strength estimation that
reduces the number of necessary experiments based on a combination of expert
knowledge and data. It can serve as an example of Informed Machine Learning
by means of Bayesian methods for real-life destructive testing, such as life tests
and stability tests. In our case of fatigue testing, the expert knowledge is injected
in the first module using a tailored covariance function in a GP regression model
for estimating a prior distribution over the mean fatigue strength μL ., while the
second (BI) module exploits the knowledge about the experimental procedure in
the definition of the likelihood.

The formulation as a BI problem to estimate a posterior distribution over
the fatigue strength parameters (μL, σL). offers the full advantages of Bayesian
methods: a MAP estimation of the parameters, an estimation of the confidence
of these estimates and a formulation of an Active Learning-inspired acquisition
function.

A comparison with experiments by the staircase method shows the superiority
of the approach: on the one hand, it estimates the fatigue strength parameters
comparable to the staircase method with higher confidence. On the other hand, the
experimental procedure does not require hyperparameters and is thus robust against
misspecification errors.

For real-life applicability, further studies have to be carried out: In a recent
workshop publication, we examine the robustness of the BI module when facing
a misspecified prior [32]. Additionally, we plan to investigate the behavior of
our approach if the log-normality assumption of the failure probability is not
satisfied. As a further highly practice-relevant expansion, we will explore a multi-
point acquisition function that allows for acquiring more than one experiment per
iteration.

Acknowledgments This contribution was supported by the Fraunhofer Cluster of Excellence
“Cognitive Internet Technologies”.

References

1. Agrawal, A., Choudhary, A.: An online tool for predicting fatigue strength of steel alloys based
on ensemble data mining. International Journal of Fatigue 113, 389–400 (2018)

2. Bayes, T.: LII. An essay towards solving a problem in the doctrine of chances. By the late Rev.
Mr. Bayes, FRS communicated byMr. Price, in a letter to John Canton, AMFR S. Philosophical
transactions of the Royal Society of London (53), 370–418 (1763)

3. Chen, J., Liu, Y.: Fatigue modeling using neural networks: A comprehensive review. Fatigue
& Fracture of Engineering Materials & Structures 45(4), 945–979 (2022)

4. DIN 50100:2016-12: Load controlled fatigue testing – Execution and evaluation of cyclic tests
at constant load amplitudes on metallic specimens and components (2016)

5. Duvenaud, D.K.: Automatic model construction with gaussian processes (2014)

6 Bayesian Inference for Fatigue Strength Estimation 133

6. Frazier, P., Powell, W.B., Dayanik, S.: The knowledge-gradient policy for correlated normal
beliefs. INFORMS J. Comput. 21, 599–613 (2009)

7. Furuya, Y., Nishikawa, H., Hirukawa, H., Nagashima, N.: Data sheets on fatigue properties of
SUS403 (12Cr) stainless steel bars for machine structural use (1982)

8. Furuya, Y., Nishikawa, H., Hirukawa, H., Nagashima, N., Takeuchi, E.: Catalogue of NIMS
fatigue data sheets. Science and Technology of Advanced Materials 20(1), 1055–1072 (2019)

9. GPy: GPy: A gaussian process framework in python. http://github.com/SheffieldML/GPy
(since 2012)

10. He, L., Wang, Z.L., Akebono, H., Sugeta, A.: Machine learning-based predictions of fatigue
life and fatigue limit for steels. Journal of Materials Science & Technology 90, 9–19 (2021)

11. He, N., Ouyang, R., Qian, Q.: Learning interpretable descriptors for the fatigue strength of
steels. AIP Advances 11(3), 035018 (2021)

12. Hennig, P., Schuler, C.J.: Entropy search for information-efficient global optimization. Journal
of Machine Learning Research 13, 1809–1837 (2012)

13. Hernández-Lobato, J.M., Hoffman, M.W., Ghahramani, Z.: Predictive entropy search for effi-
cient global optimization of black-box functions. Advances in neural information processing
systems 27 (2014)

14. Himanen, L., Geurts, A., Foster, A.S., Rinke, P.: Data-driven materials science: status,
challenges, and perspectives. Advanced Science 6 (2019)

15. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box
functions. Journal of Global Optimization 13, 455–492 (1998)

16. Krause, A., Singh, A.P., Guestrin, C.: Near-optimal sensor placements in gaussian processes:
theory, efficient algorithms and empirical studies. Journal of Machine Learning Research 9,
235–284 (2008)

17. Kushner, H.J.: A new method of locating the maximum point of an arbitrary multipeak curve
in the presence of noise. Journal of Basic Engineering 86, 97–106 (1963)

18. Lewis, D.D., Gale, W.A.: A sequential algorithm for training text classifiers. In: SIGIR ’94
(1994)

19. Ling, J., Hutchinson, M., Antono, E., Paradiso, S., Meredig, B.: High-dimensional materials
and process optimization using data-driven experimental design with well-calibrated uncer-
tainty estimates. Integrating Materials and Manufacturing Innovation 6, 207–217 (2017)

20. Lookman, T., Balachandran, P.V., Xue, D., Yuan, R.: Active learning in materials science with
emphasis on adaptive sampling using uncertainties for targeted design. npj Computational
Materials 5, 1–17 (2019)

21. Magazzeni, C.M., Rose, R., Gearhart, C., Gong, J., Wilkinson, A.J.: Bayesian optimized
collection strategies for fatigue strength testing. Fatigue & Fracture of Engineering Materials
& Structures 46(1), 228–243 (2023)

22. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research 12, 2825–2830 (2011)

23. Rasmussen, C.E., Williams, C.K.I.: Gaussian processes for machine learning. In: Adaptive
Computation and Machine Learning (2009)

24. Schmidt, J., Marques, M.R.G., Botti, S., Marques, M.A.L.: Recent advances and applications
of machine learning in solid-state materials science. npj Computational Materials 5, 1–36
(2019)

25. Schneller, W., Leitner, M., Maier, B., Grün, F., Jantschner, O., Leuders, S., Pfeifer, T.: Artificial
intelligence assisted fatigue failure prediction. International Journal of Fatigue 155, 106580
(2022)

26. Settles, B.: Active learning literature survey (2009)
27. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., de Freitas, N.: Taking the human out of the

loop: a review of bayesian optimization. Proceedings of the IEEE 104, 148–175 (2016)

http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy

134 D. Weichert et al.

28. Shiraiwa, T., Briffod, F., Miyazawa, Y., Enoki, M.: Fatigue performance prediction of structural
materials by multi-scale modeling and machine learning. In: Proceedings of the 4th World
Congress on Integrated Computational Materials Engineering (ICME 2017), pp. 317–326.
Springer International Publishing (2017)

29. Von Rueden, L., Mayer, S., Beckh, K., Georgiev, B., Giesselbach, S., Heese, R., Kirsch, B.,
Pfrommer, J., Pick, A., Ramamurthy, R., et al.: Informed machine learning–a taxonomy and
survey of integrating prior knowledge into learning systems. IEEE Transactions on Knowledge
and Data Engineering 35(1), 614–633 (2021)

30. Wang, Z., Jegelka, S.: Max-value entropy search for efficient bayesian optimization. In:
International Conference on Machine Learning (2017)

31. Wei, X., Zhang, C., Han, S., Jia, Z., Wang, C., Xu, W.: High cycle fatigue s-n curve prediction
of steels based on transfer learning guided long short term memory network. International
Journal of Fatigue 163, 107050 (2022)

32. Weichert, D., Kister, A., Houben, S., Ernis, G., Wrobel, S.: Robustness in fatigue strength
estimation. In: 2nd Annual AAAI Workshop on AI to Accelerate Science and Engineering
(AI2ASE) at the 37th AAAI Conference on Artificial Intelligence (AAAI-23) (2023)

33. Wirth, R., Hipp, J.: CRISP-DM: Towards a standard process model for data mining (2000)
34. Xiong, J., Zhang, T., Shi, S.: Machine learning of mechanical properties of steels. Science

China Technological Sciences 63(7), 1247–1255 (2020)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 7
Incorporating Shape Knowledge
into Regression Models

Miltiadis Poursanidis, Patrick Link, Jochen Schmid, and Uwe Teicher

Abstract Informed learning is an emerging field in Machine Learning that aims
at compensating for insufficient data with prior knowledge. Shape knowledge
covers many types of prior knowledge concerning the relationship of a function’s
output with respect to input variables, for example, monotonicity, convexity,
etc. This shape knowledge—when formalized into algebraic inequalities (shape
constraints)—can then be incorporated into the training of regression models
via a constrained optimization problem. The defined shape-constrained regression
problem is, mathematically speaking, a semi-infinite program (SIP). Although off-
the-shelf algorithms can be used at this point to solve the SIP, we recommend
an adaptive feasible-point algorithm that guarantees optimality up to arbitrary
precision and strict fulfillment of the shape constraints. We apply this semi-
infinite approach for shape-constrained regression (SIASCOR) to three application
examples from manufacturing and one artificial example. One application example
has not been considered in a shape-constrained regression setting before, so we
used a methodology (ISI) to capture the shape knowledge and define corresponding
shape constraints. Finally, we compare the SIASCOR method with a purely data-
driven automated machine learning method (AutoML) and another approach for
shape-constrained regression (SIAMOR) that uses a different solution algorithm.

7.1 Introduction

Despite the success of Machine Learning (ML), purely data-driven machine learning
models show limited performance when dealing with insufficient data. This is
especially problematic in scientific and engineering contexts, where simulation or

M. Poursanidis (✉) · J. Schmid
Fraunhofer ITWM, Kaiserslautern, Germany
e-mail: miltiadis.poursanidis@itwm.fraunhofer.de; jochen.schmid@itwm.fraunhofer.de

P. Link · U. Teicher
Fraunhofer IWU, Chemnitz, Germany
e-mail: patrick.link@iwu.fraunhofer.de; uwe.teicher@iwu.fraunhofer.de

© The Author(s) 2025
D. Schulz, C. Bauckhage (eds.), Informed Machine Learning,
Cognitive Technologies, https://doi.org/10.1007/978-3-031-83097-6_7

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-83097-6protect T1	extunderscore 7&domain=pdf

 885 52970 a 885 52970 a

mailto:miltiadis.poursanidis@itwm.fraunhofer.de
mailto:miltiadis.poursanidis@itwm.fraunhofer.de
mailto:miltiadis.poursanidis@itwm.fraunhofer.de
mailto:miltiadis.poursanidis@itwm.fraunhofer.de

 17329 52970 a 17329
52970 a

mailto:jochen.schmid@itwm.fraunhofer.de
mailto:jochen.schmid@itwm.fraunhofer.de
mailto:jochen.schmid@itwm.fraunhofer.de
mailto:jochen.schmid@itwm.fraunhofer.de

 885 56845 a 885 56845
a

mailto:patrick.link@iwu.fraunhofer.de
mailto:patrick.link@iwu.fraunhofer.de
mailto:patrick.link@iwu.fraunhofer.de
mailto:patrick.link@iwu.fraunhofer.de

 13250 56845 a 13250 56845 a

mailto:uwe.teicher@iwu.fraunhofer.de
mailto:uwe.teicher@iwu.fraunhofer.de
mailto:uwe.teicher@iwu.fraunhofer.de
mailto:uwe.teicher@iwu.fraunhofer.de
https://doi.org/10.1007/978-3-031-83097-6_7
https://doi.org/10.1007/978-3-031-83097-6_7
https://doi.org/10.1007/978-3-031-83097-6_7
https://doi.org/10.1007/978-3-031-83097-6_7
https://doi.org/10.1007/978-3-031-83097-6_7
https://doi.org/10.1007/978-3-031-83097-6_7
https://doi.org/10.1007/978-3-031-83097-6_7
https://doi.org/10.1007/978-3-031-83097-6_7
https://doi.org/10.1007/978-3-031-83097-6_7
https://doi.org/10.1007/978-3-031-83097-6_7
https://doi.org/10.1007/978-3-031-83097-6_7

136 M. Poursanidis et al.

experimental data is costly in both time and resources [54]. When the data set is
small, machine learning models have difficulties providing reliable models. The
main issue is that the models do not behave as expected in regions with sparse or
no data. When noise comes into play, this effect is even more severe as the models
tend to learn spurious patterns from the data. In addition to that, it is difficult to
measure the model’s performance at sparse data regions. Also, methods like cross-
validation are often misleading because only the data set is considered for measuring
the performance.

In many machine learning tasks, by contrast, there is additional prior knowledge
available. Informed learning emerged from the need to compensate for short-
comings in the data with supplementary prior knowledge [45]. Machine learning
models benefit from prior knowledge in various ways, but we highlight two in
particular: interpretability and generalization. Informed machine learning models
are interpretable because they behave according to the imposed prior knowledge.
For instance, in production, there are usually high costs involved with wrong
decision-making. Therefore, practitioners rely more on their knowledge than on
the data, especially when the data is sparse and noisy. For this reason, trustworthy
prediction models should incorporate prior knowledge to increase acceptance
among practitioners. In science, interpretable models are key to the accumulation
of scientific knowledge. In contrast to black-box models, theories can be developed
based on these interpretable models that have known properties [23]. The other
aspect is generalization, that is, the model’s ability to achieve low errors on new
data. Informed learning is expected to lead to improved generalization. Imposing
prior knowledge gives control over regions in the domain with sparse data and
makes models less prone to unexpected behavior. This typically leads to models that
generalize better outside the data set. Another aspect is extrapolation. The authors
in [16] show that, in certain cases, shape constraints can lead to an improvement of
the out-of-domain error. However, we do not consider extrapolation here.

In this chapter, we focus on prior knowledge concerning the qualitative shape of
the model function. The definition of shape knowledge is very general and captures
many properties such as boundedness or monotonicity of the model function. In
the terminology of [45], shape knowledge can be categorized as either scientific
knowledge (given in explicit formulas) or expert knowledge (common knowledge
within a scientific field). Such shape knowledge can often be formulated as algebraic
inequalities, so-called shape constraints.

First, we recapitulate the semi-infinite approach to shape-constrained regression
(SIASCOR) from [31]. Shape-constrained regression is a constraint problem for-
mulation of a regression problem with the aim to incorporate shape constraints
into the model function. Mathematically, this results in a so-called semi-infinite
program (SIP) and can be solved, for instance, with adaptive feasible-point methods.
In [31], the authors used the core algorithm from [47] as their adaptive feasible-
point algorithm to compute an approximate solution to the resulting SIP. In the
present chapter, by contrast, we use the simultaneous algorithm from [47] as our
adaptive feasible-point algorithm. In contrast to the core algorithm, it computes an
approximate solution to the SIP of an arbitrary user-specified precision. According

7 Incorporating Shape Knowledge into Regression Models 137

to the taxonomy of [45], SIASCOR integrates shape knowledge—represented
as algebraic inequalities—into the training of the regression model. Second, we
reconsider the methodology from [31]. This methodology helps practitioners to
capture shape knowledge in cooperation with experts in the field, to define shape
constraints, and to incorporate the shape constraints into a regression model. From
now on, we will refer to this methodology as ISI, which stands for its three steps:
inspection, specification, and integration. In terms of the taxonomy of [45], this
can be partly viewed as a method that transforms expert knowledge into algebraic
inequalities. In addition to that, the ISI methodology uses some shape-constrained
regression method, for instance SIASCOR, to integrate these algebraic inequalities
into the machine learning model.

We consider three real-world application examples from quality prediction in
manufacturing: brushing, press hardening, and milling. On the one hand, all three
examples have small and noisy data sets but, on the other hand, they can benefit
from shape knowledge provided by experts. The brushing example was already
considered in [31] and the press hardening example in [25], thus we reuse the
same shape constraints as in these references. The milling case has not been
studied in a shape-constrained regression setting before. Therefore, we use the ISI
method to ensure that all shape knowledge is captured and, if possible, transformed
into shape constraints. After that, we can apply SIASCOR with the obtained
shape constraints. Moreover, and in contrast to [31], we compare SIASCOR to
more sophisticated machine learning methods. We compare it with an automated
machine learning method (AutoML) and another semi-infinite approach to shape-
constrained regression but with a different solution algorithm (SIAMOR) [25].
Another difference to [31] is that here we use different settings of SIASCOR,
such as another solving algorithm of the SIP and anisotropic polynomial regression
functions. We compare the resulting models in terms of shape compliance, training
time, and cross-validated test error.

As an extension to the three real-world application examples, we introduce an
artificial example to examine the generalization error. The generalization error is
the error a model has on data not contained in the training set. Since our real-
world examples have small data sets, we cannot analyze the generalization error
appropriately, especially in scarce data regions. We compare SIASCOR, for the first
time, with AutoML, SIAMOR and with Ridge regression in terms of generalization
error.

We organize this chapter as follows. In Sect. 7.2, we give a basic overview of the
related work. In Sect. 7.3, we introduce the informed machine learning approach
SIASCOR for shape-constrained regression and present the methodology ISI to
capture and integrate expert knowledge. Section 7.4 describes our three application
examples from manufacturing—namely press hardening, brushing, and milling—
and discusses the results of the comparative study. Section 7.5 presents our artificial
application example along with the analysis of the generalization error. Finally, we
give a conclusion and an outlook in Sect. 7.6.

138 M. Poursanidis et al.

7.2 Related Work

In this section, we present some related work on informed learning, shape-
constrained regression, semi-infinite programming, and expert-knowledge-based
quality prediction in manufacturing.

Informed learning describes all approaches that incorporate prior knowledge into
machine learning models. An overview of the field can be found in [45]. In the
present work, we focus on prior knowledge in the form of algebraic inequalities.
According to the taxonomy of [45], algebraic inequalities are included in the class of
algebraic equations. Algebraic inequalities can be integrated into regression models
in four ways: When generating training data [26], by restricting the hypothesis space
[3, 34], during the learning algorithm [8, 10, 21, 25, 37, 48] and by modifying
the final model [24, 37, 46]. Informed learning methods that integrate algebraic
inequalities during training either treat the inequalities as soft constraints by adding
a penalty term to the loss function [8, 10, 21, 48] or as hard constraints by adding
them as constraints to the loss minimization problem [25, 37]. Among the different
constraint types, shape constraints restrict the qualitative shape of the prediction
function [15]. One of the most prominent shape constraints is monotonicity and, in
the literature, there already exist numerous approaches to enforcing monotonicity
constraints during training [1, 6, 14, 27, 44]. Furthermore, the authors of [2]
consider various shape constraints in a kernel regression setting. They enforce
the shape constraints on a finite set of points but sufficiently tighten the problem
to fulfill the constraints on the entire input space. Polynomial shape-constrained
regression is considered in [17], where the authors use SDP relaxations to solve
the shape-constrained regression problem. The authors of [7] and of [25] approach
shape-constrained regression via semi-infinite programming. However, due to new
mathematical results from the SIP community [11], more suitable algorithms can be
used.

SIPs are optimization problems that have a finite number of decision variables
and an infinite number of constraints. For an overview of the theory and how to
handle the infinite constraints numerically, we refer to [11, 22, 43]. Popular methods
for solving SIPs are discretization methods [4, 33] with the attention shifting
to adaptive discretization. Among these, there is also a line of work concerning
adaptive feasible-point methods [36, 53], which guarantee termination at a feasible
point. In [47], the authors leveraged the convexity—a property inherent in most
shape-constrained regression problems—to obtain stronger results such as arbitrary
optimality precision under weaker assumptions.

In manufacturing, quality prediction is used to both monitor product quality
and optimize processes. Quality prediction models are either data-driven or rely on
physical equations. In the context of manufacturing, the use of data-driven models
is a challenging task due to data scarcity. As mentioned in [54], complex models are
applied to describe complex relationships that have few data available. The problem
of data scarcity is also reported in other domains, such as process engineering [39].
In order to handle small data sets, multi-model approaches [5, 29] or polynomial

7 Incorporating Shape Knowledge into Regression Models 139

chaos expansion [51] have been used. Another technique is to generate artificial
data via bootstrapping [39, 52] or mega-trend-diffusion [28, 30]. Besides these
data-driven methods, there are also expert-knowledge-based approaches [17]. In
manufacturing, the most common sources of knowledge are scientific and expert
knowledge, according to [45]. The authors of [20, 32, 55] integrate probabilistic
relationships into the hypothesis sets of Bayesian networks. In addition, [34] and
[38] restrict the hypothesis set of neural networks with algebraic equations and
knowledge graphs, respectively. The authors of [18] incorporate algebraic equations
into the training of Gaussian process models.

7.3 Methods

In the first subsection, we describe a methodology (SIASCOR) that integrates
shape constraints into regression models via semi-infinite programming. In practice,
however, shape knowledge is not always available as algebraic inequalities. Usually,
there is merely the expert’s intuition that needs to be captured and formalized into
shape constraints. Therefore, in the second subsection, we recall a methodology
(ISI) that helps to capture shape knowledge and convert it into algebraic inequalities.
These algebraic inequalities can then be integrated into the regression model using
SIASCOR, for instance.

7.3.1 SIASCOR

The goal of classical regression settings usually boils down to finding a model
function that fits some data. Assume we have additional prior knowledge about
the shape of the input-output relationship to be learned. When shape knowledge
is formalized in terms of inequality constraints, we call them shape constraints.
Common forms of shape knowledge, for instance, are monotonicity or convexity.
The corresponding shape constraints restrict the first or second partial derivative
with respect to some input variable of the model function to be positive. Then, the
goal of shape-constrained regression is to find a model function that both fits the
data and complies with the shape constraints.

Suppose we are given some data set D = {(xk, yk) ∈ X × R : k = 1, . . . , n}.
consisting of input data points xk ∈ Rd

. and output data points yk ∈ R.. We assume
that the (unknown) input-output relationship to be learned can be represented by
model functions ŷw : X → R. of the form ŷw(x) := wTφ(x).. In other words,
we take our hypothesis space to be the set of functions ŷw . with w ∈ W .. In
the above formula, x ∈ X . and w ∈ W . denote the input variables and model
parameters, respectively, and we assume the input-variable and model-parameter
spaces X ⊂ Rd

. and W ⊂ Rm
. to be compact, convex sets. Also, φ : X → R

m
.

is a feature mapping that is sufficiently often differentiable. We further assume

140 M. Poursanidis et al.

that the shape constraints can be expressed by constraining a function gi . that is
given in terms of affine-linear combinations of the partial derivatives of the model
function ŷw .. Clearly, boundedness, monotonicity or convexity constraints can be
cast in this form; for instance, monotonic increasingness w.r.t. xj . is equivalent to
the condition g(w, x) := −wT ∂xj

φ(x) ≤ 0.. Consequently, in mathematical terms,
shape-constrained regression problems take the form

.

min
w∈W

n
⎲

k=1

|yk − ŷw(xk)|2 + λ||w||2

s.t. gi(w, x) ≤ 0 for all x ∈ X and i ∈ I,

(7.1)

where λ > 0. is some regularization parameter, ||w||2
. denotes the squared l2

.-norm
of the model parameter w (ridge regularization) and I is a finite index set indexing
the shape constraints. Note that we restricted ourselves here to the ridge regression
and to model functions that are linear w.r.t. to their model parameters. For more
general cases, s ee [47].

Problem (7.1) is a so-called semi-infinite program (SIP). Assume the problem
is feasible, i.e. there exists a w ∈ W . such that gi(w, x) ≤ 0. for all i ∈ I . and
x ∈ X .. Intuitively, this means that there exists a function from our hypothesis space
that satisfies all shape constraints. Then, problem (7.1) has a unique solution, by
its strict convexity and our continuity assumptions on φ .. See [22, 47] for example.
There exist many approaches for solving SIPs [11] and in particular convex SIPs
[43]. We prefer feasible-point methods because they guarantee termination at a
feasible point. Other methods mostly guarantee feasibility only as the iteration
number tends to infinity. Hence, we use the simultaneous algorithm from [47],
a feasible-point method that leverages the convexity of the problem to provide
guarantees for approximate, feasible solutions, while the only assumption is strict
feasibility of problem (7.1). There are more algorithmic merits of the approach but
we will not detail them here. Note that the algorithm we used in this chapter is
different from [31] where we used the core algorithm from [47]. The core algorithm
also guarantees feasibility but does not guarantee optimality of arbitrary precision.
Besides, it is different from [7] where the authors do not use a feasible-point method
in the first place.

After having defined the method more precisely, we can see how it can be
embedded into the taxonomy of [45]: knowledge, in our context, is given in
the form of shape constraints which, ultimately, are algebraic inequalities. Then,
these algebraic inequalities are integrated during the learning algorithm through a
constrained optimization problem formulation.

In contrast to soft-constraint methods, SIASCOR imposes hard constraints on the
model function. This is suitable for applications where the model function needs to
satisfy the constraints strictly, for instance when the model needs to be in accordance
with physical laws. Despite that, one can relax the constraints by a small value ε > 0.

if the constraints do not need to be fulfilled strictly. This can be done by subtracting

7 Incorporating Shape Knowledge into Regression Models 141

the value ε . from all shape constraint functions gi .. In this case, the resulting model
function complies with the relaxed shape constraints.

7.3.2 ISI

In the previous section, we described how SIASCOR incorporates shape constraints
into the training of machine learning models of the form ŷ(x) = wT φ(x).. In
practice, these shape constraints need to be developed in collaboration with experts
in the field. The ISI methodology supports practitioners in capturing shape expert
knowledge, in formalizing it into shape constraints, and in producing a shape-
compliant model. In this section, we summarize the ISI methodology that was
introduced in [31].

The schematic procedure of ISI is depicted in Fig. 7.1. As its input, the
methodology requires an initial model ŷ0

. that may be purely data-based. Then, the
methodology proceeds in the following three steps:

1. Inspection of the initial model by a process expert
2. Specification of shape expert knowledge by the expert
3. Integration of the specified shape expert knowledge into the training of a new

model

These three steps generate a shape-compliant model. If this model does not
behave as the expert expects, the three steps can be repeated. Note that in the second
iteration one must take the shape-compliant model from the first iteration as the
input for the inspection. This can be repeated as often as necessary while always
taking the current shape-constrained model as the input model for the next iteration.

The initial model is the starting point for the introduced methodology. The initial
model visually supports the expert in analyzing the relationship between the inputs
and outputs. In principle, any type of model function can be used as an initial model.
However, we recommend choosing the initial model from the same hypothesis space

Fig. 7.1 Schematic of the three-step methodology with an initial purely data-based model as its
input and a shape-knowledge-compliant model as its output. Image source: [31]

142 M. Poursanidis et al.

as the SIASCOR model. In other words, the initial model should be of the form
ŷ0(x) = wT

0 φ(x). for some w0 ∈ W .. This way, the expert can get an intuition of
how model functions from this hypothesis space behave when they are not shape-
constrained, especially in regions with sparse data. The parameter w0 ∈ W . can be
computed in any purely data-based regression method, such as ridge regression.

After generating an initial model, the first step of the methodology is to provide
the expert with one- and two-dimensional graphs at multiple points of high- and
low-fidelity. Here, a custom notion of fidelity can be used. For instance, one can
consider points xhigh, xlow ∈ X . with maximal and minimal distance to all data
points, respectively. These one- and two-dimensional graphs at the high- and low-
fidelity points help the expert understand the functional relationships behind the data
by exploring the initial model along the input space. This way, the expert can find
shape behavior that either confirms or contradicts their intuition.

In the second step of the methodology, the process expert specifies the shape
expert knowledge, that is, his intuition about the qualitative functional relationship
of the output along different dimensions of the input space. Then, shape knowledge
is converted into shape constraints. The expert can choose from a variety of
common shape knowledge with associated shape constraints such as monotonicity,
convexity or concavity or upper and lower bounds; see Fig. 7.2 for a selection of
qualitative shape knowledge. Also, multiple shape constraints can be combined. In
case where the shape knowledge cannot be composed by common shape constraints,
practitioners may consider designing a new shape constraint. This, for instance, was
the case in [31] that resulted in defining the rebound constraint.

With the shape constraints at hand, the third step of the procedure is to
find a shape-compliant model. At this point, SIASCOR can be used but can be
interchanged with any shape-constrained regression method. In comparison to the
initial model, the shape-compliant model fits both the data and satisfies the defined
shape constraints.

After the first iteration, the ISI methodology produces a model that is compliant
with the shape constraints imposed in the first iteration. Yet, we can neither
guarantee that the imposed shape constraints are complete nor that they are all
correct. It can happen, for instance, that some shape knowledge has been overlooked
in the first run and, therefore, necessary shape constraints have not been imposed.
We witnessed this when we applied the ISI methodology in a brushing use case in
[31]. Similarly, it can happen that some of the proposed shape constraints are not in
harmony with the data. We witnessed this case in the milling application example
that we detail in Sect. 7.4.3. Therefore, we repeat the ISI procedure by replacing the
initial model with the refined shape-compliant model as often as needed until the
expert detects no more inconsistencies between the shape of the model function and
his shape knowledge.

7 Incorporating Shape Knowledge into Regression Models 143

Fig. 7.2 Sketches of the shape constraints we considered in our applications. The upper- and
lower-bound constraints bound the maximal and minimal values of the function, respectively.
Monotonicity constraints (either increasing or decreasing) restrict the first derivative of the function
to be either positive or negative. Similarly, convexity constraints assume the second derivative to
be positive (or negative if concave). The rebound constraint describes, loosely speaking, how much
a function can increase again after it has witnessed a decrease. For more details, see [31] and for
proofs see [47]

7.4 Application Examples

In this section, we present three real-world application examples for shape-
constrained regression. We apply the SIASCOR method from Sect. 7.3.1 to
incorporate prior knowledge given in the form of shape constraints. For two
application examples, the shape constraints have been already captured in previous
works, using the ISI methodology—either implicitly in the case of [25] or explicitly
in the case of [31]. The other example has not been considered in a shape-
constrained regression setting before, so we did not have any shape constraints
available. Therefore, we used the ISI methodology to capture the prior knowledge
and to define the shape constraints, together with experts in the field. Finally, we
compare SIASCOR with both a data-driven machine learning approach and another
shape-constrained regression approach (SIAMOR) [25].

Every subsection deals with a distinct application example from quality predic-
tion for manufacturing processes. We consider three manufacturing processes: press
hardening, brushing, and milling. Quality prediction for the press hardening case
has already been considered in [25] and for the brushing case in [31]. In these two
cases, the shape constraints have already been identified and we can directly apply
SIASCOR with respect to the shape constraints proposed by the experts. In contrast,
the milling case has not been considered for shape-constrained regression so far.
Hence, we first apply the ISI procedure in collaboration with experts in the field to
capture their shape knowledge and formalize it in terms of shape constraints. With
the shape constraints at hand, we finally apply SIASCOR.

First, we compare SIASCOR with a purely data-driven machine learning
approach to highlight the necessity of imposing shape constraints. Concretely,
we compare it with auto-sklearn [13], an sklearn [41] package for automatic
machine learning (AutoML). We choose an AutoML approach, because this has
become a preferred choice in many fields of machine learning [19] due to its
systematic and automated manner of model and hyperparameter selection. We

144 M. Poursanidis et al.

consider two versions of auto-sklearn in our comparison: one with default settings
and another with handpicked regression models, data- and feature preprocessing
to avoid unphysical behavior through discontinuities in the shape of the model
function. More precisely, we exclude “extra_trees_preproc_for_regression” and
“random_trees_embedding” from the feature preprocessing and “adaboost”,
“decision_tree”, “extra_trees”, “gradient_boosting”, “k_nearest_neighbors” and
“random_forest” from the regressor selection.

Second, we compare SIASCOR with its predecessor SIAMOR—an alternative
method for shape-constrained regression. It was initially developed to enforce
monotonicity of regression models, but it can be easily adapted to general shape
constraints. Both methods consider a SIP formulation of shape-constrained regres-
sion. In contrast to SIASCOR, however, SIAMOR uses a different algorithm to
solve the SIP which does not provide a theoretical guarantee for feasibility. It merely
guarantees feasibility on a reference grid and, generally, only after infinitely many
iterations. In other words, we can only guarantee shape compliance on a grid of
finitely many points in the limit of infinitely many iterations. In all applications,
we chose a reference grid of 20 points per dimension. Besides the theoretical
differences, we compare these two methods in practice.

We consider three criteria in our comparison: shape compliance, training time
and test error. For all three criteria, we conducted a ten-fold cross-validation. First,
we counted how many shape constraints the final models violated in each fold
and then we averaged these numbers over all folds. For every shape constraint we
sampled 10,000 random points in the input space X and tested the shape compliance
on 100 equidistant points along the relevant axis. Besides, we visualize some of the
violations at selected points. During the training of each fold, we also measured the
wall clock time and averaged it across all folds. The training was conducted on a
standard office laptop. Lastly, we measured the root-mean-squared errors RMSE of
the model on all test sets and, again, averaged along all folds.

7.4.1 Press Hardening

Our first application example is press hardening, a forming process for hot sheet
metal [40]. During the forming process, the hot sheet metal is formed and
subsequently quenched to achieve improved hardness of the parts. The goal in
this application is to build a model that predicts the hardness of the metal sheet
as a function of four process parameters, namely the furnace temperature Tf ., the
handling time from furnace to press Δth ., the press force Fp . and the quenching time
tq .. For the informed learning task, we use the 60 data samples that were generated
in an experimental setup and the defined monotonicity constraints, both from [25].

Now we present our parameter settings for SIASCOR. First, we scaled the input
data to the unit cube based on the ranges provided in [25]. This way, we can
consider X = [0, 1]4

. and all the data is contained in that domain D ⊂ X × R..
Moreover, we choose φ . to be an anisotropic polynomial feature map. This means

7 Incorporating Shape Knowledge into Regression Models 145

that the maximal polynomial degree can be different for each of the four dimensions.
Specifically, we chose the maximal degrees to be (4, 1, 3, 4) for (Tf ,Δth, Fp, tq).,
as suggested by the process experts. Accordingly, we set the parameter space to be
W = [−105, 105]54

. and, furthermore, the regularization parameter λ = 0.0001..
The shape constraints from [25] are monotonic increasingness in Tf . and tq . and
monotonic decreasingness in Δth .. The settings above specify the SIP in (7.1).
Afterwards, we apply the main algorithm from [47] to solve the SIP with optimality
precision δ = 0.0001.. We are not going into detail here which parameters values we
chose for the adaptive feasible-point algorithm. For more details on the algorithm
and its parameter settings, see [47].

For both AutoML approaches, we set the strategy that chooses the best model to
be a ten-fold cross-validation and fixed the maximum search time to 600 seconds, as
suggested in [12]. Afterwards, the AutoML models were refit on the entire training
set. For SIAMOR, we set everything as in [25], especially the size of the reference
grid being 20 points per dimension.

Table 7.1 shows that both AutoML versions produce models that are not shape-
compliant. In fact, we observe that all models produced during the cross-validation
violate all three imposed shape constraints. Also the trained SIAMOR models
violate one out of four shape constraints on average. As expected, the SIASCOR
model satisfies all shape constraints. Figure 7.3 juxtaposes one-dimensional graphs
of the SIASCOR and the auto-sklearn model at the same point. We can see
graphically that the SIASCOR model is monotonically decreasing while the auto-
sklearn model is not. However, training the SIASCOR model takes slightly longer
than the other models, which can be traced back to the computationally expensive
global optimization steps that guarantee shape compliance. Furthermore, we infer
from Table 7.1 that the averaged error on the test sets during a cross-validation is
more or less the same, considering the scale of the hardness (roughly between 300
and 500). The AutoML model has slightly lower test errors but considering the
amount of data, this does not imply good generalization outside the data.

Table 7.1 Press hardening case: Comparison of SIASCOR, Auto-Sklearn with default settings,
Auto-Sklearn with custom settings, and SIAMOR. The table lists the average number of shape
constraints that the models violate after being trained on each fold of a ten-fold cross-validation.
We considered three shape constraints in total. Moreover, both training time and test error were
measured in each fold and then averaged over the conducted cross-validation. In addition to the
mean of the cross-validated (CV) test errors we also added the standard deviation. The training
time is given in h:m:s and the error in root mean squared error (RMSE)

Model CV test error Training time Shape violations

SIASCOR 17.92 ±. 5.92 00:03:09 0 out of 3

AutoML1 16.06 ±. 6.26 00:09:56 3 out of 3

AutoML2 15.73 ±. 5.84 00:09:56 3 out of 3

SIAMOR 17.92 ±. 5.92 00:02:14 1 out of 3

146 M. Poursanidis et al.

Fig. 7.3 The left graph depicts the shape of the SIASCOR model and the right graph
the shape of the auto-sklearn model both along the tc . variable fixed at the point x =
(0.998, 0.506, 0.154, 0.334).. The black points represent data points located along the axis and
the orange points are the remaining data points projected onto the Δth . dimension. The darker the
orange points are, the shorter the Euclidean distance is between the data point and its projection.
Both models were trained on 90% of the data that are visible in the graph

7.4.2 Brushing

The brushing process is a metal-cutting process used for machining of surface
structures with the help of brushes. In quality prediction, the goal is to predict the
surface roughness given adjustable process parameters. In our example, we had a
data set consisting of 125 points which were generated in an experimental setup
where the average arithmetic roughness Ra . was measured for various settings of
five process parameters: the diameter of the abrasive grits Dia, the cutting time tc .,
number of revolutions of the brush nb ., number of revolutions of the work piece
nw ., and the cutting depth ae .. Aside from the data, experts have prior knowledge
about the behavior of these machining processes. In [31], we used the ISI method
to formalize shape constraints from the expert knowledge. The shape constraints
that the experts suggested are visualized in Fig. 7.2. In short, we had upper and
lower bounds, monotonicity, convexity, and rebound constraints. For a mathematical
description of the shape constraints, see [31].

Similar to the press hardening case, we scale the input data to the unit cube so
that we can consider X = [0, 1]5

. and set the regularization parameter λ = 0.01..
We choose φ . to be an anisotropic polynomial feature map with maximal degrees (1,
5, 2, 2, 2) for the input dimensions (Dia, tc, nb, nw, ae). and the parameter space to
be W = [−105, 105]136

.. Additionally, we integrated the same shape constraints as
in [31]. With these settings, the SIP in (7.1) is specified for both SIAMOR and
SIASCOR. Afterwards, we apply the algorithm from [47] to solve the SIP and
set the optimality precision to δ = 0.0001., whereas we use the same settings for
SIAMOR as in the press hardening case.

Table 7.2 shows the results for the brushing case. Again, both AutoML
approaches violate on average 7.8 out of 10 shape constraints. Even the final model
of SIAMOR violates on average 1 out of 10 shape constraints. But, as expected, all

7 Incorporating Shape Knowledge into Regression Models 147

Table 7.2 Brushing case: Comparison of SIASCOR, auto-sklearn with default settings, auto-
sklearn with custom settings, and SIAMOR. The table lists the average number of shape constraints
that the models violate after being trained on each fold of a ten-fold cross-validation. We considered
ten shape constraints in total. Moreover, both training time and test error were measured in each
fold and then averaged over the conducted cross-validation. In addition to the mean of the cross-
validated (CV) test errors we also added the standard deviation. The training time is given in h:m:s
and the error in root mean squared error (RMSE)

Model CV test error Training time Shape violations

SIASCOR 0.0272 ±. 0.008 01:10:51 0 out of 10

AutoML1 0.0216 ±. 0.006 00:09:56 7.8 out of 10

AutoML2 0.0217 ±. 0.006 00:09:56 7.8 out of 10

SIAMOR 0.0267 ±. 0.008 00:44:15 1 out of 10

Fig. 7.4 The left graph depicts the shape of the SIASCOR model and the right graph
the shape of the auto-sklearn model both along the nw . variable fixed at the point x =
(1, 0.5, 0.667, 0.444, 0.334).. The black points represent the data points located along this axis
and the orange points are the projected data points onto the nw . dimension. The darker the orange
points are, the shorter the Euclidean distance is between the data point and its projection. Both
models were trained on 90% of the data that are visible in the graph

SIASCOR models are in accordance with all shape constraints. In Fig. 7.4, we see
one exemplary shape violation of an AutoML model. On the right-hand side, the
AutoML model violates the rebound and the convexity constraint and is, hence, not
in accordance with physical laws. Although there are shape violations, the AutoML
model used for Fig. 7.4 does not perform too badly. Similar to the convexity
constraint in the graph, all other shape constraints were violated only in a very
small region. This suggests an alternative measure for shape compliance that also
takes into account the size of the region where violations occur. However, we do not
go into that here. Anyway, this is also a representative example that AutoML may
sometimes violate shape constraints but, nevertheless, not be entirely catastrophic.
Moreover, the average training time of SIASCOR was higher compared to the other
methods. The averaged test error is notably low for all models considering that the
data ranges from 0.14 to 0.46333.

148 M. Poursanidis et al.

7.4.3 Milling

Milling processes are characterized by high flexibility and productivity, which
is why they are used for precision applications with high performance [49].
Milling is a cutting process in which the tool rotates based on a geometrically
determined definition and is subjected to chip removal from a workpiece due to
the superposition of two effective directions of cutting and feed direction [9]. An
assessment of the process is performed mainly on the basis of the quality with the
help of roughness parameters (mainly Ra .) and the mechanical loads on the basis
of the parameter of the cutting force Fc .. This addresses the decisive economic
parameters for quality and energy consumption, so that their predictive capability is
of high relevance. Technically, this is addressed by means of coating systems, which
represent a central key to improving cutting properties due to the coating tribology
[42]. Aluminum represents a central research field for optimization due to its wide
range of applications and the alloy-dependent variability of technical properties
during milling [50]. Using the example of milling various aluminum alloys with
coated solid carbide tools and varying the technological parameters of cutting speed
vc . and tooth feed fz ., the influence on the arithmetic center-line depth Ra . and cutting
force Fc . is analyzed. In addition, the parameter of the friction coefficient μ. of the
coating system was taken into account, although this parameter is a one-dimensional
quantity and does not fully reflect the tribological properties of the system. In total,
we consider two outputs (Ra . and Fc .) and three materials (“EN-AW5754”, “EN-
AW6082”, and “EN-AW7075”), resulting in six different informed learning tasks.
For each material and each output, we had 80 data points. This milling use case
has not been considered for shape-constrained regression before. Thus, we had no
shape constraints available in the beginning. So, we applied the ISI methodology
in order to gather the shape constraints for every task. In the first iteration of the
methodology, we trained a purely data-driven polynomial model on the data. After
the inspecting step, the expert provided us with an initial set of shape constraints.
Then, we incorporated all these shape constraints into the prediction model using the
SIASCOR method. During the inspection step in the second ISI iteration, however,
we noticed that the model had a different shape than expected along the μ.-axis. After
taking a closer look at the data, we realized that the imposed shape constraints and
the data were in conflict. As said before, the one-dimensional variable μ. does not
fully capture the tribological properties and its influence on the variables Ra . and Fc .

is hard to interpret. We therefore decided to drop the shape constraints along μ. and
left the formation of shape up to the data. In the inspection step of the following—
third—ISI iteration, the expert was satisfied with the overall shape of the prediction
function. And so, the iterative ISI procedure was terminated at that point.

Now we specify the parameter settings for SIASCOR used in the second and final
iteration of ISI. First, we scale the input variables to the unit cube, according to the
ranges μ ∈ [0.07, 0.5]., vc ∈ [100, 1000]., and fz ∈ [0.025, 0.25].. The feature map
is again an anisotropic polynomial with degrees (3, 2, 3) for (μ., vc ., fz .) that induces
the parameter space W = [−105, 105]20

.. In addition, we set the regularization

7 Incorporating Shape Knowledge into Regression Models 149

parameter to λ = 0.00001. for all models. Now let us consider the shape constraints
for the models with output Fc .. We impose a lower bound constraint with value 0
and an upper bound constraint with value 180, a decreasingness constraint along vc .,
and convexity constraints along every dimension. Moreover, the models for material
EN-AW6082 and EN-AW7075 had an additional increase constraint along fz .. For
the output Ra ., we impose a lower bound constraint with value 0, an upper bound
constraint with value 6, and convexity constraints for all dimensions. Moreover, the
models for material EN-AW5754 and EN-AW7075 had an increase constraint along
fz . and the model for material EN-AW7075 a decrease constraint along vc .. These
settings specify the SIP in (7.1). Afterwards, we apply the simultaneous algorithm
from [47] to solve the SIP with optimality precision δ = 0.0001. for the models
predicting Ra . and δ = 1. for the ones predicting Fc .. Furthermore, we used the same
shape constraints as above. Apart from that, the SIAMOR and the AutoML models
were trained with the same settings as in the other two application examples.

Tables 7.3 and 7.4 show the results for all trained models in the milling case.
We see again that the two purely data-driven methods violate most of the expected
shape behavior. Figure 7.5 shows one example of such a shape violation. Here we
can see how severe the shape violations can be when shape constraints are not
explicitly imposed. More specifically, the AutoML1 for material “EN-AW7075”
and output Fc . violates both the monotonicity and the convexity constraint along the
fz . direction. This time, not only the SIASCOR model but also the SIAMOR model
had no violations. Moreover, the training times for both expert-based methods were

Table 7.3 Milling case for output Fc .: Comparison of SIASCOR, auto-sklearn with default
settings, auto-sklearn with custom settings, and SIAMOR for all three materials. The table lists
the average number of shape constraints that the models violate after being trained on each fold of
a ten-fold cross-validation. We considered six to seven shape constraints for the various materials.
Moreover, both training time and test error were measured in each fold and then averaged over the
conducted cross-validation. The training time is given in h:m:s and the error in root mean squared
error (RMSE)

Material Model CV test error Training time Shape violations

AW5754 SIASCOR 6.98 ±. 3.52 00:00:19 0 out of 6

AW5754 AutoML1 6.99 ±. 3.73 00:09:56 4 out of 6

AW5754 AutoML2 7.13 ±. 3.87 00:09:56 4 out of 6

AW5754 SIAMOR 7.01 ±. 3.50 00:00:09 0.2 out of 6

AW6082 SIASCOR 7.86 ±. 1.71 00:00:09 0 out of 7

AW6082 AutoML1 7.60 ±. 4.16 00:09:56 5 out of 7

AW6082 AutoML2 7.57 ±. 2.22 00:09:56 5 out of 7

AW6082 SIAMOR 7.90 ±. 1.69 00:01:45 0.2 out of 7

AW7075 SIASCOR 19.73 ±. 11.08 00:00:12 0 out of 7

AW7075 AutoML1 20.27 ±. 11.22 00:09:56 5 out of 7

AW7075 AutoML2 19.94 ±. 11.40 00:09:56 5 out of 7

AW7075 SIAMOR 19.74 ±. 11.05 00:00:03 0 out of 7

150 M. Poursanidis et al.

Table 7.4 Milling case for output Ra .: Comparison of SIASCOR, auto-sklearn with default
settings, auto-sklearn with custom settings, and SIAMOR for all three materials. The table lists the
average number of shape constraints that the models violate after being trained on each fold of a
ten-fold cross-validation. We considered five to seven shape constraints for the various materials.
Moreover, both training time and test error were measured in each fold and then averaged over
the conducted cross-validation. In addition to the mean of the cross-validated (CV) test errors we
also added the standard deviation. The training time is given in h:m:s and the error in root mean
squared error (RMSE)

Material Models Test error Training time Shape violations

AW5754 SIASCOR 0.3608 ±. 0.1934 00:00:07 0 out of 6

AW5754 AutoML1 0.3163 ±. 0.1498 00:09:58 4 out of 6

AW5754 AutoML2 0.3164 ±. 0.1474 00:09:58 4 out of 6

AW5754 SIAMOR 0.3611 ±. 0.1936 00:00:02 0 out of 6

AW6082 SIASCOR 0.2480 ±. 0.0607 00:00:06 0 out of 5

AW6082 AutoML1 0.2292 ±. 0.0859 00:09:58 2.9 out of 5

AW6082 AutoML2 0.2247 ±. 0.0871 00:09:58 2.6 out of 5

AW6082 SIAMOR 0.2497 ±. 0.0606 00:04:00 0 out of 5

AW7075 SIASCOR 0.7965 ±. 0.1710 00:00:23 0 out of 7

AW7075 AutoML1 0.6071 ±. 0.2291 00:09:58 4.8 out of 7

AW7075 AutoML2 0.6071 ±. 0.2265 00:09:58 4.9 out of 7

AW7075 SIAMOR 0.7967 ±. 0.1711 00:00:03 0 out of 7

Fig. 7.5 The left graph depicts the shape of the SIASCOR model and the right graph the shape
of the auto-sklearn model both along the fz . variable fixed at the point x = (0, 0.11, 1).. The black
points represent the data points located along this axis and the orange points are the projected
data points onto the fz . dimension. The darker the points are, the shorter the Euclidean distance is
between the data point and its projection. We can see that the auto-sklearn model strongly violates
the monotonicity and convexity. Both models were trained on 90% of the data that are visible in
the graph

too low to see a pattern. Both algorithms were fast due to the low dimensionality of
X and W . Again, the test errors were close to each other considering the ranges of
the output.

7 Incorporating Shape Knowledge into Regression Models 151

7.5 Synthetic Example

In the previous section, we have considered real-world use cases of small data
regression. We have seen that purely data-driven models fail to provide reliable
models in terms of shape-compliance. Another indicator for the quality of models
is the generalization error, i.e. the error on data points not contained in the training
set. In this section, we examine the generalization error for SIASCOR and compare
it to AutoML, SIAMOR, and Ridge regression.

One of the challenges with real small data problems is to compute good estimates
of the generalization error with the limited data available. The standard approach
is to conduct a cross-validation on the data set, as we have done in the previous
real-world use cases. However, this approach limits the focus on the data set and
we cannot infer the performance in regions with few or no data. Additionally, the
authors in [35] show that cross-validation can lead to over-optimistic estimates,
which may not be indicative of the actual generalization error.

To better understand the generalization error, we construct an synthetic applica-
tion example where we can sample as many data points as we desire. Specifically,
we construct a separable function given by f toy : [0, 1]5 → R. with

.f toy(x) =
5

⎲

i=1

f
toy
i (xi) + 0.1 , (7.2)

where

.

f
toy
1 (x1) = 0.12(x1 − 0.5)3, f

toy
2 (x2) = 0.002/(x2 + 0.1)2,

f
toy
3 (x3) = 0.1(x3 − 0.6)2(x3 − 2.4)2, f

toy
4 (x4) = 0.02(x4 − 0.6)2(x3 − 2.4)2,

f
toy
5 (x5) = 0.02(x4 − 1.1)2(x3 − 3)2.

(7.3)
The artificial function is polynomial in all but the second dimension and satisfies all
the shape constraints of the brushing example, which can be verified easily.

As in the section before, we compare SIASCOR to SIAMOR and AutoML. The
ansatz functions of SIASCOR and SIAMOR are polynomial, while the AutoML
conducts a model selection over various ansatz function classes, including polyno-
mial functions. In view of the nearly polynomial structure of the artificial function,
we compare the shape-constrained models to unconstrained ridge polynomial
regression. This way, we can demonstrate that it is the shape constraints that lead to
better generalization power and not just the knowledge of the polynomial structure.

To generate the synthetic data set, we sample 30 points uniformly from the
domain X = [0, 1]5

., evaluate f toy
. at these points, and add Gaussian noise with

standard deviation σ = 0.03408. to the outputs. This corresponds to the expected
error in the brushing case. Indeed, experts expect 5–10% error measuring the

152 M. Poursanidis et al.

roughness. Choosing σ . as above implies that 95% of the data have an error below
10%.

Given the data set and the shape constraints, we formulate the shape-constrained
regression problem based on Example 6.1 in [47]. First, we set the maximal
degrees of our anisotropic polynomial as (1, 5, 2, 2, 2). Accordingly, we have
W = [10−5, 105]136

.. Then, we set the regularization parameter as λ = 0.01.

for SIASCOR and ridge and λ = 0.05. for SIAMOR after having conducted a
hyperparameter optimization via a ten-fold cross-validation over the dataset. With
these settings, the SIP is formulated and we can run SIASCOR and SIAMOR to
solve it using the same, remaining settings as in the brushing section. In the case of
SIASCOR, we solve the SIP with optimality precision δ = 10−5

..
With the hyperparamter settings above, we first conduct another ten-fold cross-

validation on the 30 data points. The test errors of the cross-validation are the
predictive power estimates that we would have if we had only the data set available.
For the cross-validation, we measure the RMSE in every fold and then compute
the mean and standard deviation over all folds. Afterwards, we estimate the
generalization error. For this, we retrain the models on the entire data set and
measure the RMSE on 5000 points sampled from the ground truth function without
noise. The results are listed in Table 7.5.

First and above all, we observe in Table 7.5 that the shape-constrained models
achieve a lower generalization error than unconstrained models such as AutoML
or pure ridge regression. Interestingly, the cross-validated test error on the data
set is misleading in the case of SIAMOR because it appears to generalize better
than SIASCOR. The generalization error is, however, lower for SIASCOR. This
is in line with the observations in [35] where the authors have shown that cross-
validation usually slightly underestimates the true generalization error. Nonetheless,
for the unconstrained models the cross-validation error is indicative of the inferior
generalization error.

In conclusion, the use of shape constraints is shown to lead to better generaliza-
tion power in the synthetic data regression problem that we considered. This can
be inferred from the lower generalization errors of SIASCOR and SIAMOR over
AutoML. By considering Ridge regression that has the same ansatz functions, we

Table 7.5 Synthetic Example: Comparison of SIASCOR, auto-sklearn with custom settings,
SIAMOR, and Ridge regression. The models were trained on each fold of a 10-fold cross-
validation. Then, we measured the average cross-validated (CV) test error. Moreover, we retrained
the models on the entire data set and counted the shape violations. Ten shape constraints were
considered. Lastly, we measured the generalization error by sampling 5000 points from the
ground truth and computing the error to the prediction of the models

Model CV test error Shape violations Generalization error

SIASCOR 0.04432 ±. 0.0153 0 0.032

AutoML2 0.05080 ±. 0.0194 8 0.047

SIAMOR 0.04230 ±. 0.0153 0 0.034

Ridge 0.05750 ±. 0.0156 8 0.065

7 Incorporating Shape Knowledge into Regression Models 153

conclude that it is indeed the shape constraints that lead to a better performance and
not the choice of ansatz functions. All in all, the evaluation of the generalization
error on this artificial data set emphasizes another benefit of enforcing shape
constraints.

7.6 Conclusion

Reliable models are important in situations with insufficient data. Take for instance
the quality prediction in manufacturing. Data generation is expensive because it
involves costly experiments. Therefore, data is scarce and, on top of that, noisy
due to measurement errors. During adaptive process control, quality prediction is
crucial to avoid wrong decision-making that comes along with high costs. Therefore,
practitioners rely more on their prior knowledge than on models trained solely on
the available data. Informed learning aims to get the best from both sides: inferring
quantitative information from data while being in accordance with prior knowledge.

In this chapter, we incorporated shape knowledge into the training of machine
learning models. First, we summarized the SIASCOR method from [31] by formu-
lating the shape-constrained regression problem and discussing SIP algorithms for
solving it. We also recalled the ISI methodology as a general method to inspect
models for shape compliance or non-compliance, to elaborate and specify shape
constraints, and to incorporate these shape constraints into the chosen regression
model. We point out that SIASCOR is only one possible way of incorporating
shape constraints. In principle, other methods of integrating shape knowledge
can be used within the ISI methodology. Then, we considered three application
examples from manufacturing: brushing, press hardening, and milling. The latter
has not been applied to shape-constrained regression yet, so we used ISI to
formalize shape constraints. Then, we applied the SIASCOR method with the
simultaneous algorithms from [47] to obtain shape-compliant models that fit the
data. The SIASCOR method was then compared to two purely data-driven AutoML
approaches and another shape-constrained regression method SIAMOR that solves
the corresponding SIP differently. During a ten-fold cross-validation, we created ten
different model functions for each approach and compared their shape compliance
(or more precisely the average number of shape constraints they violated), their
average training time, and their average test error.

In the comparative study with real-world application examples, we have seen
that, in general, purely data-driven models trained on a few data do not infer shape
knowledge just from the data. Even methods like auto-sklearn that choose the best
model out of many do not seem to perform satisfactorily outside the data set. In fact,
the resulting models behave contrary to physical laws repeatedly. Consequently, we
do not recommend using purely data-driven methods to create reliable models when
the available data is limited. Furthermore, just by looking at the test errors computed
with cross-validation, one is tempted to think that AutoML models generalize
slightly better. But as we have seen, low test errors are misleading because the final

154 M. Poursanidis et al.

models violate the shape constraints. In contrast, the final SIASCOR model was, as
expected, shape-compliant.

In the comparative study with the synthetic example, we could also show that
the use of shape constraints lead to more powerful models regarding generalization
error. When trained on a small data set, purely data-driven methods, as AutoML or
Ridge regression, do not perform well outside the data set.

In conclusion, we recommend leveraging shape knowledge when dealing with
insufficient data. However, not all shape-knowledge-based approaches guarantee
definite shape compliance of the final model. For instance, SIAMOR fails to
rigorously impose shape constraints. From a theoretical point of view, this is to
be expected but we have also seen it in practice. Besides, there are no mathematical
guarantees for the termination of the algorithm and inferior properties for optimality.
In contrast to SIAMOR, SIASCOR is a theoretically sound and practically reliable
method to impose hard shape constraints as we have seen in the experiments.
Aside from the shape compliance, we observed in our applications that for a higher
number of inputs and parameters the SIAMOR is slightly faster than SIASCOR.
However, the discrepancy between the training times was not large enough for
proper assessment. Even if there was a significant gain in computation time, it would
only justify using SIAMOR for exploring shape-constrained regression but not for
imposing shape constraints on the final model.

A follow-up study should reconsider the adaptive feasible-point algorithm that
solves the SIP to improve computation time. One theoretical aspect is to analyze the
time complexity of the algorithms. This is crucial for better scalability with respect
to an increasing number of model parameters and input variables. Another, more
applied aspect is, of course, an efficient implementation. It is also interesting to see
how the generalization error of SIASCOR changes with respect to different noise
levels and to different numbers of data. This analysis would help to better estimate
when to use the SIASCOR. An additional line of research can be to develop an
elaborated way to find all regions where shape constraints are violated. This way, we
cannot only visualize all shape violations but, on top of that, accelerate the process
of finding the right shape constraints with ISI. One could also, in a comparative
study, analyze if and to which extent SIASCOR improves extrapolation. Going in a
similar direction, a tool that helps to assess whether some enforced shape constraints
are in too much conflict with the data and should therefore be excluded would be
very handy, as we have seen in the milling example. One further idea is to find a
way to compute the confidence intervals of the SIASCOR model to spot regions of
high and low variance.

Acknowledgments This contribution was supported by the Fraunhofer Cluster of Excellence
“Cognitive Internet Technologies”. Additionally, we gratefully acknowledge financial support from
the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) within the research
unit “FOR 5359: Deep Learning on Sparse Chemical Process Data”.

7 Incorporating Shape Knowledge into Regression Models 155

References

1. Altendorf, E.E., Restificar, A.C., Dietterich, T.G.: Learning from sparse data by exploiting
monotonicity constraints (2012). https://doi.org/10.48550/ARXIV.1207.1364. UR L https://
arxiv.org/abs/1207.1364

2. Aubin-Frankowski, P.C., Szabo, Z.: Handling hard affine SDP shape constraints in RKHSs.
URL https://arxiv.org/pdf/2101.01519

3. Bauckhage, C., Ojeda, C., Schücker, J., Sifa, R., Wrobel, S.: Informed machine learning
through functional composition (2018)

4. Blankenship, J.W., Falk, J.E.: Infinitely constrained optimization problems. Journal of
Optimization Theory and Applications 19(2), 261–281 (1976). https://doi.org/10.1007/
BF00934096

5. Chang, C.J., Dai, W.L., Chen, C.C.: A novel procedure for multimodel development using the
grey silhouette coefficient for small-data-set forecasting. Journal of the Operational Research
Society 66(11), 1887–1894 (2015). https://doi.org/10.1057/jors.2015.17

6. Chuang, H.C., Chen, C.C., Li, S.T.: Incorporating monotonic domain knowledge in support
vector learning for data mining regression problems. Neural Computing and Applications 32
(2020). https://doi.org/10.1007/s00521-019-04661-4

7. Cozad, A., Sahinidis, N.V., Miller, D.C.: A combined first-principles and data-driven approach
to model building. Computers & Chemical Engineering 73, 116–127 (2015). https://doi.org/
10.1016/j.compchemeng.2014.11.010

8. Daw, A., Karpatne, A., Watkins, W., Read, J., Kumar, V.: Physics-guided neural networks
(PGNN): An application in lake temperature modeling. URL https://arxiv.org/pdf/1710.11431

9. Deutsches Institut für Normung: Fertigungsverfahren spanen - teil 3: Fräsen; einordnung,
unterteilung, begriffe. https://doi.org/10.31030/9500667

10. Diligenti, M., Roychowdhury, S., Gori, M.: Integrating prior knowledge into deep learning.
In: 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA
2017), pp. 920–923. IEEE, Piscataway, NJ (2017). https://doi.org/10.1109/ICMLA.2017.00-
37

11. Djelassi, H., Mitsos, A., Stein, O.: Recent advances in nonconvex semi-infinite programming:
Applications and algorithms. EURO Journal on Computational Optimization 9, 100006
(2021). https://doi.org/10.1016/j.ejco.2021.100006. UR L https://www.sciencedirect.com/
science/article/pii/S2192440621000034

12. Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M., Hutter, F.: Auto-sklearn 2.0: Hands-
free AutoML via meta-learning. URL https://arxiv.org/pdf/2007.04074

13. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.: Effi-
cient and robust automated machine learning. In: C. Cortes, N. Lawrence, D. Lee,
M. Sugiyama, R. Garnett (eds.) Advances in Neural Information Processing Systems,
vol. 28. Curran Associates, Inc. (2015). URL https://proceedings.neurips.cc/paper/2015/file/
11d0e6287202fced83f79975ec59a3a6-Paper.pdf

14. Gupta, M., Cotter, A., Pfeifer, J., Voevodski, K., Canini, K., Mangylov, A., Moczydlowski,
W., van Esbroeck, A.: Monotonic calibrated interpolated look-up tables. Journal of Machine
Learning Research 17(109), 1–47 (2016). URL http://jmlr.org/papers/v17/15-243.html

15. Gupta, M.R., Ilan, E.L., Mangylov, O., Morioka, N., Narayan, T., Zhao, S.: Multidimensional
shape constraints. In: ICML (2020)

16. Haider, C., de Franca, F., Burlacu, B., Kronberger, G.: Shape-constrained multi-objective
genetic programming for symbolic regression. Applied Soft Computing 132, 109855
(2023). https://doi.org/10.1016/j.asoc.2022.109855. UR L https://www.sciencedirect.com/
science/article/pii/S1568494622009048

17. Hall, G.: Optimization over nonnegative and convex polynomials with and without semidefinite
programming (2018). https://doi.org/10.48550/ARXIV.1806.06996. URL https://arxiv.org/abs/
1806.06996

https://doi.org/10.48550/ARXIV.1207.1364
https://doi.org/10.48550/ARXIV.1207.1364
https://doi.org/10.48550/ARXIV.1207.1364
https://doi.org/10.48550/ARXIV.1207.1364
https://doi.org/10.48550/ARXIV.1207.1364
https://doi.org/10.48550/ARXIV.1207.1364
https://doi.org/10.48550/ARXIV.1207.1364
https://doi.org/10.48550/ARXIV.1207.1364
https://arxiv.org/abs/1207.1364
https://arxiv.org/abs/1207.1364
https://arxiv.org/abs/1207.1364
https://arxiv.org/abs/1207.1364
https://arxiv.org/abs/1207.1364
https://arxiv.org/abs/1207.1364
https://arxiv.org/pdf/2101.01519
https://arxiv.org/pdf/2101.01519
https://arxiv.org/pdf/2101.01519
https://arxiv.org/pdf/2101.01519
https://arxiv.org/pdf/2101.01519
https://arxiv.org/pdf/2101.01519
https://doi.org/10.1007/BF00934096
https://doi.org/10.1007/BF00934096
https://doi.org/10.1007/BF00934096
https://doi.org/10.1007/BF00934096
https://doi.org/10.1007/BF00934096
https://doi.org/10.1007/BF00934096
https://doi.org/10.1057/jors.2015.17
https://doi.org/10.1057/jors.2015.17
https://doi.org/10.1057/jors.2015.17
https://doi.org/10.1057/jors.2015.17
https://doi.org/10.1057/jors.2015.17
https://doi.org/10.1057/jors.2015.17
https://doi.org/10.1057/jors.2015.17
https://doi.org/10.1057/jors.2015.17
https://doi.org/10.1007/s00521-019-04661-4
https://doi.org/10.1007/s00521-019-04661-4
https://doi.org/10.1007/s00521-019-04661-4
https://doi.org/10.1007/s00521-019-04661-4
https://doi.org/10.1007/s00521-019-04661-4
https://doi.org/10.1007/s00521-019-04661-4
https://doi.org/10.1007/s00521-019-04661-4
https://doi.org/10.1007/s00521-019-04661-4
https://doi.org/10.1007/s00521-019-04661-4
https://doi.org/10.1016/j.compchemeng.2014.11.010
https://doi.org/10.1016/j.compchemeng.2014.11.010
https://doi.org/10.1016/j.compchemeng.2014.11.010
https://doi.org/10.1016/j.compchemeng.2014.11.010
https://doi.org/10.1016/j.compchemeng.2014.11.010
https://doi.org/10.1016/j.compchemeng.2014.11.010
https://doi.org/10.1016/j.compchemeng.2014.11.010
https://doi.org/10.1016/j.compchemeng.2014.11.010
https://doi.org/10.1016/j.compchemeng.2014.11.010
https://doi.org/10.1016/j.compchemeng.2014.11.010
https://arxiv.org/pdf/1710.11431
https://arxiv.org/pdf/1710.11431
https://arxiv.org/pdf/1710.11431
https://arxiv.org/pdf/1710.11431
https://arxiv.org/pdf/1710.11431
https://arxiv.org/pdf/1710.11431
https://doi.org/10.31030/9500667
https://doi.org/10.31030/9500667
https://doi.org/10.31030/9500667
https://doi.org/10.31030/9500667
https://doi.org/10.31030/9500667
https://doi.org/10.31030/9500667
https://doi.org/10.1109/ICMLA.2017.00-37
https://doi.org/10.1109/ICMLA.2017.00-37
https://doi.org/10.1109/ICMLA.2017.00-37
https://doi.org/10.1109/ICMLA.2017.00-37
https://doi.org/10.1109/ICMLA.2017.00-37
https://doi.org/10.1109/ICMLA.2017.00-37
https://doi.org/10.1109/ICMLA.2017.00-37
https://doi.org/10.1109/ICMLA.2017.00-37
https://doi.org/10.1109/ICMLA.2017.00-37
https://doi.org/10.1016/j.ejco.2021.100006
https://doi.org/10.1016/j.ejco.2021.100006
https://doi.org/10.1016/j.ejco.2021.100006
https://doi.org/10.1016/j.ejco.2021.100006
https://doi.org/10.1016/j.ejco.2021.100006
https://doi.org/10.1016/j.ejco.2021.100006
https://doi.org/10.1016/j.ejco.2021.100006
https://doi.org/10.1016/j.ejco.2021.100006
https://doi.org/10.1016/j.ejco.2021.100006
https://www.sciencedirect.com/science/article/pii/S2192440621000034
https://www.sciencedirect.com/science/article/pii/S2192440621000034
https://www.sciencedirect.com/science/article/pii/S2192440621000034
https://www.sciencedirect.com/science/article/pii/S2192440621000034
https://www.sciencedirect.com/science/article/pii/S2192440621000034
https://www.sciencedirect.com/science/article/pii/S2192440621000034
https://www.sciencedirect.com/science/article/pii/S2192440621000034
https://www.sciencedirect.com/science/article/pii/S2192440621000034
https://arxiv.org/pdf/2007.04074
https://arxiv.org/pdf/2007.04074
https://arxiv.org/pdf/2007.04074
https://arxiv.org/pdf/2007.04074
https://arxiv.org/pdf/2007.04074
https://arxiv.org/pdf/2007.04074
https://proceedings.neurips.cc/paper/2015/file/11d0e6287202fced83f79975ec59a3a6-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/11d0e6287202fced83f79975ec59a3a6-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/11d0e6287202fced83f79975ec59a3a6-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/11d0e6287202fced83f79975ec59a3a6-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/11d0e6287202fced83f79975ec59a3a6-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/11d0e6287202fced83f79975ec59a3a6-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/11d0e6287202fced83f79975ec59a3a6-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/11d0e6287202fced83f79975ec59a3a6-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/11d0e6287202fced83f79975ec59a3a6-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/11d0e6287202fced83f79975ec59a3a6-Paper.pdf
http://jmlr.org/papers/v17/15-243.html
http://jmlr.org/papers/v17/15-243.html
http://jmlr.org/papers/v17/15-243.html
http://jmlr.org/papers/v17/15-243.html
http://jmlr.org/papers/v17/15-243.html
http://jmlr.org/papers/v17/15-243.html
http://jmlr.org/papers/v17/15-243.html
http://jmlr.org/papers/v17/15-243.html
https://doi.org/10.1016/j.asoc.2022.109855
https://doi.org/10.1016/j.asoc.2022.109855
https://doi.org/10.1016/j.asoc.2022.109855
https://doi.org/10.1016/j.asoc.2022.109855
https://doi.org/10.1016/j.asoc.2022.109855
https://doi.org/10.1016/j.asoc.2022.109855
https://doi.org/10.1016/j.asoc.2022.109855
https://doi.org/10.1016/j.asoc.2022.109855
https://doi.org/10.1016/j.asoc.2022.109855
https://www.sciencedirect.com/science/article/pii/S1568494622009048
https://www.sciencedirect.com/science/article/pii/S1568494622009048
https://www.sciencedirect.com/science/article/pii/S1568494622009048
https://www.sciencedirect.com/science/article/pii/S1568494622009048
https://www.sciencedirect.com/science/article/pii/S1568494622009048
https://www.sciencedirect.com/science/article/pii/S1568494622009048
https://www.sciencedirect.com/science/article/pii/S1568494622009048
https://www.sciencedirect.com/science/article/pii/S1568494622009048
https://doi.org/10.48550/ARXIV.1806.06996
https://doi.org/10.48550/ARXIV.1806.06996
https://doi.org/10.48550/ARXIV.1806.06996
https://doi.org/10.48550/ARXIV.1806.06996
https://doi.org/10.48550/ARXIV.1806.06996
https://doi.org/10.48550/ARXIV.1806.06996
https://doi.org/10.48550/ARXIV.1806.06996
https://doi.org/10.48550/ARXIV.1806.06996
https://arxiv.org/abs/1806.06996
https://arxiv.org/abs/1806.06996
https://arxiv.org/abs/1806.06996
https://arxiv.org/abs/1806.06996
https://arxiv.org/abs/1806.06996
https://arxiv.org/abs/1806.06996

156 M. Poursanidis et al.

18. Hao, J., Zhou, M., Wang, G., Jia, L., Yan, Y.: Design optimization by integrating limited
simulation data and shape engineering knowledge with bayesian optimization (BO-DK4do).
Journal of Intelligent Manufacturing 31(8), 2049–2067 (2020). https://doi.org/10.1007/
s10845-020-01551-8

19. He, X., Zhao, K., Chu, X.: AutoML: A survey of the state-of-the-art. Knowledge-Based
Systems 212, 106622 (2021). https://doi.org/10.1016/j.knosys.2020.106622

20. He, Z., He, Y., Chen, Z., Zhao, Y., Lian, R.: Functional failure diagnosis approach based
on bayesian network for manufacturing systems. In: 2019 Prognostics and System Health
Management Conference (PHM-Qingdao), pp. 1–6. IEEE (2019). https://doi.org/10.1109/
PHM-Qingdao46334.2019.8942813

21. Heese, R., Walczak, M., Morand, L., Helm, D., Bortz, M.: The good, the bad and the ugly:
Augmenting a black-box model with expert knowledge. In: I.V. Tetko, V. Kůrková, P. Karpov,
F. Theis (eds.) Artificial Neural Networks and Machine Learning – ICANN 2019: Workshop
and Special Sessions, pp. 391–395. Springer International Publishing, Cham (2019)

22. Hettich, R., Kortanek, K.O.: Semi-infinite programming: Theory, methods, and applications.
SIAM Review 35(3), 380–429 (1993). https://doi.org/10.1137/1035089

23. Karpatne, A., Atluri, G., Faghmous, J.H., Steinbach, M., Banerjee, A., Ganguly, A., Shekhar,
S., Samatova, N., Kumar, V.: Theory-guided data science: A new paradigm for scientific
discovery from data. IEEE Transactions on Knowledge and Data Engineering 29(10), 2318–
2331 (2017). https://doi.org/10.1109/TKDE.2017.2720168

24. King, R., Hennigh, O., Mohan, A., Chertkov, M.: From deep to physics-informed learning of
turbulence: Diagnostics (2018). https://doi.org/10.48550/ARXIV.1810.07785. UR L https://
arxiv.org/abs/1810.07785

25. Kurnatowski, M.v., Schmid, J., Link, P., Zache, R., Morand, L., Kraft, T., Schmidt, I.,
Schwientek, J., Stoll, A.: Compensating data shortages in manufacturing with monotonicity
knowledge. Algorithms 14(12) (2021). https://doi.org/10.3390/a14120345. URL https://www.
mdpi.com/1999-4893/14/12/345

26. Ladický, L., Jeong, S., Solenthaler, B., Pollefeys, M., Gross, M.: Data-driven fluid simulations
using regression forests. ACM Transactions on Graphics 34(6), 1–9 (2015). https://doi.org/10.
1145/2816795.2818129

27. Lauer, F., Bloch, G.: Incorporating prior knowledge in support vector regression. Machine
Learning 70 (2008). https://doi.org/10.1007/s10994-007-5035-5

28. Li, D.C., Huang, W.T., Chen, C.C., Chang, C.J.: Employing virtual samples to build early
high-dimensional manufacturing models. International Journal of Production Research 51(11),
3206–3224 (2013). https://doi.org/10.1080/00207543.2012.746795

29. Li, D.C., Liu, C.W., Chen, W.C.: A multi-model approach to determine early manufacturing
parameters for small-data-set prediction. International Journal of Production Research 50(23),
6679–6690 (2012). https://doi.org/10.1080/00207543.2011.613867

30. Li, D.C., Wu, C.S., Tsai, T.I., Lina, Y.S.: Using mega-trend-diffusion and artificial samples
in small data set learning for early flexible manufacturing system scheduling knowledge.
Computers & Operations Research 34(4), 966–982 (2007). https://doi.org/10.1016/j.cor.2005.
05.019

31. Link, P., Poursanidis, M., Schmid, J., Zache, R., von Kurnatowski, M., Teicher, U., Ihlenfeldt,
S.: Capturing and incorporating expert knowledge into machine learning models for quality
prediction in manufacturing. Journal of Intelligent Manufacturing 33(7), 2129–2142 (2022).
https://doi.org/10.1007/s10845-022-01975-4

32. Lokrantz, A., Gustavsson, E., Jirstrand, M.: Root cause analysis of failures and quality
deviations in manufacturing using machine learning. Procedia CIRP 72(4–6), 1057–1062
(2018). https://doi.org/10.1016/j.procir.2018.03.229

33. López, M., Still, G.: Semi-infinite programming. European Journal of Operational Research
180(2), 491–518 (2007). https://doi.org/10.1016/j.ejor.2006.08.045

34. Lu, Y., Rajora, M., Zou, P., Liang, S.: Physics-embedded machine learning: Case study
with electrochemical micro-machining. Machines 5(1), 4 (2017). https://doi.org/10.3390/
machines5010004

https://doi.org/10.1007/s10845-020-01551-8
https://doi.org/10.1007/s10845-020-01551-8
https://doi.org/10.1007/s10845-020-01551-8
https://doi.org/10.1007/s10845-020-01551-8
https://doi.org/10.1007/s10845-020-01551-8
https://doi.org/10.1007/s10845-020-01551-8
https://doi.org/10.1007/s10845-020-01551-8
https://doi.org/10.1007/s10845-020-01551-8
https://doi.org/10.1007/s10845-020-01551-8
https://doi.org/10.1016/j.knosys.2020.106622
https://doi.org/10.1016/j.knosys.2020.106622
https://doi.org/10.1016/j.knosys.2020.106622
https://doi.org/10.1016/j.knosys.2020.106622
https://doi.org/10.1016/j.knosys.2020.106622
https://doi.org/10.1016/j.knosys.2020.106622
https://doi.org/10.1016/j.knosys.2020.106622
https://doi.org/10.1016/j.knosys.2020.106622
https://doi.org/10.1016/j.knosys.2020.106622
https://doi.org/10.1109/PHM-Qingdao46334.2019.8942813
https://doi.org/10.1109/PHM-Qingdao46334.2019.8942813
https://doi.org/10.1109/PHM-Qingdao46334.2019.8942813
https://doi.org/10.1109/PHM-Qingdao46334.2019.8942813
https://doi.org/10.1109/PHM-Qingdao46334.2019.8942813
https://doi.org/10.1109/PHM-Qingdao46334.2019.8942813
https://doi.org/10.1109/PHM-Qingdao46334.2019.8942813
https://doi.org/10.1109/PHM-Qingdao46334.2019.8942813
https://doi.org/10.1109/PHM-Qingdao46334.2019.8942813
https://doi.org/10.1137/1035089
https://doi.org/10.1137/1035089
https://doi.org/10.1137/1035089
https://doi.org/10.1137/1035089
https://doi.org/10.1137/1035089
https://doi.org/10.1137/1035089
https://doi.org/10.1109/TKDE.2017.2720168
https://doi.org/10.1109/TKDE.2017.2720168
https://doi.org/10.1109/TKDE.2017.2720168
https://doi.org/10.1109/TKDE.2017.2720168
https://doi.org/10.1109/TKDE.2017.2720168
https://doi.org/10.1109/TKDE.2017.2720168
https://doi.org/10.1109/TKDE.2017.2720168
https://doi.org/10.1109/TKDE.2017.2720168
https://doi.org/10.48550/ARXIV.1810.07785
https://doi.org/10.48550/ARXIV.1810.07785
https://doi.org/10.48550/ARXIV.1810.07785
https://doi.org/10.48550/ARXIV.1810.07785
https://doi.org/10.48550/ARXIV.1810.07785
https://doi.org/10.48550/ARXIV.1810.07785
https://doi.org/10.48550/ARXIV.1810.07785
https://doi.org/10.48550/ARXIV.1810.07785
https://arxiv.org/abs/1810.07785
https://arxiv.org/abs/1810.07785
https://arxiv.org/abs/1810.07785
https://arxiv.org/abs/1810.07785
https://arxiv.org/abs/1810.07785
https://arxiv.org/abs/1810.07785
https://doi.org/10.3390/a14120345
https://doi.org/10.3390/a14120345
https://doi.org/10.3390/a14120345
https://doi.org/10.3390/a14120345
https://doi.org/10.3390/a14120345
https://doi.org/10.3390/a14120345
https://www.mdpi.com/1999-4893/14/12/345
https://www.mdpi.com/1999-4893/14/12/345
https://www.mdpi.com/1999-4893/14/12/345
https://www.mdpi.com/1999-4893/14/12/345
https://www.mdpi.com/1999-4893/14/12/345
https://www.mdpi.com/1999-4893/14/12/345
https://www.mdpi.com/1999-4893/14/12/345
https://www.mdpi.com/1999-4893/14/12/345
https://www.mdpi.com/1999-4893/14/12/345
https://doi.org/10.1145/2816795.2818129
https://doi.org/10.1145/2816795.2818129
https://doi.org/10.1145/2816795.2818129
https://doi.org/10.1145/2816795.2818129
https://doi.org/10.1145/2816795.2818129
https://doi.org/10.1145/2816795.2818129
https://doi.org/10.1145/2816795.2818129
https://doi.org/10.1007/s10994-007-5035-5
https://doi.org/10.1007/s10994-007-5035-5
https://doi.org/10.1007/s10994-007-5035-5
https://doi.org/10.1007/s10994-007-5035-5
https://doi.org/10.1007/s10994-007-5035-5
https://doi.org/10.1007/s10994-007-5035-5
https://doi.org/10.1007/s10994-007-5035-5
https://doi.org/10.1007/s10994-007-5035-5
https://doi.org/10.1007/s10994-007-5035-5
https://doi.org/10.1080/00207543.2012.746795
https://doi.org/10.1080/00207543.2012.746795
https://doi.org/10.1080/00207543.2012.746795
https://doi.org/10.1080/00207543.2012.746795
https://doi.org/10.1080/00207543.2012.746795
https://doi.org/10.1080/00207543.2012.746795
https://doi.org/10.1080/00207543.2012.746795
https://doi.org/10.1080/00207543.2012.746795
https://doi.org/10.1080/00207543.2011.613867
https://doi.org/10.1080/00207543.2011.613867
https://doi.org/10.1080/00207543.2011.613867
https://doi.org/10.1080/00207543.2011.613867
https://doi.org/10.1080/00207543.2011.613867
https://doi.org/10.1080/00207543.2011.613867
https://doi.org/10.1080/00207543.2011.613867
https://doi.org/10.1080/00207543.2011.613867
https://doi.org/10.1016/j.cor.2005.05.019
https://doi.org/10.1016/j.cor.2005.05.019
https://doi.org/10.1016/j.cor.2005.05.019
https://doi.org/10.1016/j.cor.2005.05.019
https://doi.org/10.1016/j.cor.2005.05.019
https://doi.org/10.1016/j.cor.2005.05.019
https://doi.org/10.1016/j.cor.2005.05.019
https://doi.org/10.1016/j.cor.2005.05.019
https://doi.org/10.1016/j.cor.2005.05.019
https://doi.org/10.1016/j.cor.2005.05.019
https://doi.org/10.1007/s10845-022-01975-4
https://doi.org/10.1007/s10845-022-01975-4
https://doi.org/10.1007/s10845-022-01975-4
https://doi.org/10.1007/s10845-022-01975-4
https://doi.org/10.1007/s10845-022-01975-4
https://doi.org/10.1007/s10845-022-01975-4
https://doi.org/10.1007/s10845-022-01975-4
https://doi.org/10.1007/s10845-022-01975-4
https://doi.org/10.1007/s10845-022-01975-4
https://doi.org/10.1016/j.procir.2018.03.229
https://doi.org/10.1016/j.procir.2018.03.229
https://doi.org/10.1016/j.procir.2018.03.229
https://doi.org/10.1016/j.procir.2018.03.229
https://doi.org/10.1016/j.procir.2018.03.229
https://doi.org/10.1016/j.procir.2018.03.229
https://doi.org/10.1016/j.procir.2018.03.229
https://doi.org/10.1016/j.procir.2018.03.229
https://doi.org/10.1016/j.procir.2018.03.229
https://doi.org/10.1016/j.procir.2018.03.229
https://doi.org/10.1016/j.ejor.2006.08.045
https://doi.org/10.1016/j.ejor.2006.08.045
https://doi.org/10.1016/j.ejor.2006.08.045
https://doi.org/10.1016/j.ejor.2006.08.045
https://doi.org/10.1016/j.ejor.2006.08.045
https://doi.org/10.1016/j.ejor.2006.08.045
https://doi.org/10.1016/j.ejor.2006.08.045
https://doi.org/10.1016/j.ejor.2006.08.045
https://doi.org/10.1016/j.ejor.2006.08.045
https://doi.org/10.1016/j.ejor.2006.08.045
https://doi.org/10.3390/machines5010004
https://doi.org/10.3390/machines5010004
https://doi.org/10.3390/machines5010004
https://doi.org/10.3390/machines5010004
https://doi.org/10.3390/machines5010004
https://doi.org/10.3390/machines5010004

7 Incorporating Shape Knowledge into Regression Models 157

35. Martens, H.A., Dardenne, P.: Validation and verification of regression in small data sets.
Chemometrics and Intelligent Laboratory Systems 44(1), 99–121 (1998). https://doi.org/
10.1016/S0169-7439(98)00167-1. UR L https://www.sciencedirect.com/science/article/pii/
S0169743998001671

36. Mitsos, A.: Global optimization of semi-infinite programs via restriction of the right-hand side.
Optimization 60(10–11), 1291–1308 (2011). https://doi.org/10.1080/02331934.2010.527970

37. Muralidhar, N., Islam, M.R., Marwah, M., Karpatne, A., Ramakrishnan, N.: Incorporating prior
domain knowledge into deep neural networks. In: 2018 IEEE International Conference on Big
Data (Big Data), pp. 36–45. IEEE (122018). https://doi.org/10.1109/BigData.2018.8621955

38. Nagarajan, H.P.N., Mokhtarian, H., Jafarian, H., Dimassi, S., Bakrani-Balani, S., Hamedi, A.,
Coatanéa, E., Gary Wang, G., Haapala, K.R.: Knowledge-based design of artificial neural
network topology for additive manufacturing process modeling: A new approach and case
study for fused deposition modeling. Journal of Mechanical Design 141(2), 442 (2019). https://
doi.org/10.1115/1.4042084

39. Napoli, G., Xibilia, M.G.: Soft sensor design for a topping process in the case of small datasets.
Computers & Chemical Engineering 35(11), 2447–2456 (2011). https://doi.org/10.1016/j.
compchemeng.2010.12.009

40. Neugebauer, R., Schieck, F., Polster, S., Mosel, A., Rautenstrauch, A., Schönherr, J., Pierschel,
N.: Press hardening — an innovative and challenging technology. Archives of Civil and
Mechanical Engineering 12(2), 113–118 (2012). https://doi.org/10.1016/j.acme.2012.04.013

41. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research 12, 2825–2830 (2011)

42. Prengel, H., Pfouts, W., Santhanam, A.: State of the art in hard coatings for carbide
cutting tools. Surface and Coatings Technology 102(3), 183–190 (1998). https://doi.
org/10.1016/S0257-8972(96)03061-7. UR L https://www.sciencedirect.com/science/article/
pii/S0257897296030617

43. Rembert Reemtsen, Jan-J. Rückmann: Semi-infinite programming (1998)
44. Riihimäki, J., Vehtari, A.: Gaussian processes with monotonicity information. Journal of

Machine Learning Research - Proceedings Track 9, 645–652 (2010)
45. Rueden, L.v., Mayer, S., Beckh, K., Georgiev, B., Giesselbach, S., Heese, R., Kirsch, B.,

Walczak, M., Pfrommer, J., Pick, A., Ramamurthy, R., Garcke, J., Bauckhage, C., Schuecker,
J.: Informed machine learning - a taxonomy and survey of integrating prior knowledge into
learning systems. IEEE Transactions on Knowledge and Data Engineering p. 1 (2021). https://
doi.org/10.1109/TKDE.2021.3079836

46. Schmid, J.: Approximation, characterization, and continuity of multivariate monotonic
regression functions. Analysis and Applications 20(4) (2021). https://doi.org/10.1142/
S0219530521500299

47. Schmid, J., Poursanidis, M.: Approximate solutions of convex semi-infinite optimization
problems in finitely many iterations (2021). URL https://arxiv.org/abs/2105.08417

48. Stewart, R., Ermon, S.: Label-free supervision of neural networks with physics and domain
knowledge. Proceedings of the AAAI Conference on Artificial Intelligence 31(1) (2017).
https://doi.org/10.1609/aaai.v31i1.10934. UR L https://ojs.aaai.org/index.php/AAAI/article/
view/10934

49. Teicher, U., Pirl, S., Nestler, A., Hellmich, A., Ihlenfeldt, S.: A novel hybrid clamping system
for sheet metals and thin walled structures. Procedia Manufacturing 40, 51–55 (2019). https://
doi.org/10.1016/j.promfg.2020.02.010. UR L https://www.sciencedirect.com/science/article/
pii/S2351978920305412. 19th Machining Innovations Conference for Aerospace Industry
2019 (MIC 2019), 27–28 November 2019, Garbsen, Germany

50. Teicher, U., Pirl, S., Nestler, A., Hellmich, A., Ihlenfeldt, S.: Surface roughness and its
prediction in high speed milling of aluminum alloys with pcd and cemented carbide tools. MM
Science Journal 2019, 3136–3141 (2019). https://doi.org/10.17973/MMSJ.2019_11_2019062

https://doi.org/10.1016/S0169-7439(98)00167-1
https://doi.org/10.1016/S0169-7439(98)00167-1
https://doi.org/10.1016/S0169-7439(98)00167-1
https://doi.org/10.1016/S0169-7439(98)00167-1
https://doi.org/10.1016/S0169-7439(98)00167-1
https://doi.org/10.1016/S0169-7439(98)00167-1
https://doi.org/10.1016/S0169-7439(98)00167-1
https://doi.org/10.1016/S0169-7439(98)00167-1
https://www.sciencedirect.com/science/article/pii/S0169743998001671
https://www.sciencedirect.com/science/article/pii/S0169743998001671
https://www.sciencedirect.com/science/article/pii/S0169743998001671
https://www.sciencedirect.com/science/article/pii/S0169743998001671
https://www.sciencedirect.com/science/article/pii/S0169743998001671
https://www.sciencedirect.com/science/article/pii/S0169743998001671
https://www.sciencedirect.com/science/article/pii/S0169743998001671
https://www.sciencedirect.com/science/article/pii/S0169743998001671
https://doi.org/10.1080/02331934.2010.527970
https://doi.org/10.1080/02331934.2010.527970
https://doi.org/10.1080/02331934.2010.527970
https://doi.org/10.1080/02331934.2010.527970
https://doi.org/10.1080/02331934.2010.527970
https://doi.org/10.1080/02331934.2010.527970
https://doi.org/10.1080/02331934.2010.527970
https://doi.org/10.1080/02331934.2010.527970
https://doi.org/10.1109/BigData.2018.8621955
https://doi.org/10.1109/BigData.2018.8621955
https://doi.org/10.1109/BigData.2018.8621955
https://doi.org/10.1109/BigData.2018.8621955
https://doi.org/10.1109/BigData.2018.8621955
https://doi.org/10.1109/BigData.2018.8621955
https://doi.org/10.1109/BigData.2018.8621955
https://doi.org/10.1109/BigData.2018.8621955
https://doi.org/10.1115/1.4042084
https://doi.org/10.1115/1.4042084
https://doi.org/10.1115/1.4042084
https://doi.org/10.1115/1.4042084
https://doi.org/10.1115/1.4042084
https://doi.org/10.1115/1.4042084
https://doi.org/10.1115/1.4042084
https://doi.org/10.1016/j.compchemeng.2010.12.009
https://doi.org/10.1016/j.compchemeng.2010.12.009
https://doi.org/10.1016/j.compchemeng.2010.12.009
https://doi.org/10.1016/j.compchemeng.2010.12.009
https://doi.org/10.1016/j.compchemeng.2010.12.009
https://doi.org/10.1016/j.compchemeng.2010.12.009
https://doi.org/10.1016/j.compchemeng.2010.12.009
https://doi.org/10.1016/j.compchemeng.2010.12.009
https://doi.org/10.1016/j.compchemeng.2010.12.009
https://doi.org/10.1016/j.compchemeng.2010.12.009
https://doi.org/10.1016/j.acme.2012.04.013
https://doi.org/10.1016/j.acme.2012.04.013
https://doi.org/10.1016/j.acme.2012.04.013
https://doi.org/10.1016/j.acme.2012.04.013
https://doi.org/10.1016/j.acme.2012.04.013
https://doi.org/10.1016/j.acme.2012.04.013
https://doi.org/10.1016/j.acme.2012.04.013
https://doi.org/10.1016/j.acme.2012.04.013
https://doi.org/10.1016/j.acme.2012.04.013
https://doi.org/10.1016/j.acme.2012.04.013
https://doi.org/10.1016/S0257-8972(96)03061-7
https://doi.org/10.1016/S0257-8972(96)03061-7
https://doi.org/10.1016/S0257-8972(96)03061-7
https://doi.org/10.1016/S0257-8972(96)03061-7
https://doi.org/10.1016/S0257-8972(96)03061-7
https://doi.org/10.1016/S0257-8972(96)03061-7
https://doi.org/10.1016/S0257-8972(96)03061-7
https://doi.org/10.1016/S0257-8972(96)03061-7
https://www.sciencedirect.com/science/article/pii/S0257897296030617
https://www.sciencedirect.com/science/article/pii/S0257897296030617
https://www.sciencedirect.com/science/article/pii/S0257897296030617
https://www.sciencedirect.com/science/article/pii/S0257897296030617
https://www.sciencedirect.com/science/article/pii/S0257897296030617
https://www.sciencedirect.com/science/article/pii/S0257897296030617
https://www.sciencedirect.com/science/article/pii/S0257897296030617
https://www.sciencedirect.com/science/article/pii/S0257897296030617
https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.1142/S0219530521500299
https://doi.org/10.1142/S0219530521500299
https://doi.org/10.1142/S0219530521500299
https://doi.org/10.1142/S0219530521500299
https://doi.org/10.1142/S0219530521500299
https://doi.org/10.1142/S0219530521500299
https://arxiv.org/abs/2105.08417
https://arxiv.org/abs/2105.08417
https://arxiv.org/abs/2105.08417
https://arxiv.org/abs/2105.08417
https://arxiv.org/abs/2105.08417
https://arxiv.org/abs/2105.08417
https://doi.org/10.1609/aaai.v31i1.10934
https://doi.org/10.1609/aaai.v31i1.10934
https://doi.org/10.1609/aaai.v31i1.10934
https://doi.org/10.1609/aaai.v31i1.10934
https://doi.org/10.1609/aaai.v31i1.10934
https://doi.org/10.1609/aaai.v31i1.10934
https://doi.org/10.1609/aaai.v31i1.10934
https://doi.org/10.1609/aaai.v31i1.10934
https://ojs.aaai.org/index.php/AAAI/article/view/10934
https://ojs.aaai.org/index.php/AAAI/article/view/10934
https://ojs.aaai.org/index.php/AAAI/article/view/10934
https://ojs.aaai.org/index.php/AAAI/article/view/10934
https://ojs.aaai.org/index.php/AAAI/article/view/10934
https://ojs.aaai.org/index.php/AAAI/article/view/10934
https://ojs.aaai.org/index.php/AAAI/article/view/10934
https://ojs.aaai.org/index.php/AAAI/article/view/10934
https://ojs.aaai.org/index.php/AAAI/article/view/10934
https://ojs.aaai.org/index.php/AAAI/article/view/10934
https://doi.org/10.1016/j.promfg.2020.02.010
https://doi.org/10.1016/j.promfg.2020.02.010
https://doi.org/10.1016/j.promfg.2020.02.010
https://doi.org/10.1016/j.promfg.2020.02.010
https://doi.org/10.1016/j.promfg.2020.02.010
https://doi.org/10.1016/j.promfg.2020.02.010
https://doi.org/10.1016/j.promfg.2020.02.010
https://doi.org/10.1016/j.promfg.2020.02.010
https://doi.org/10.1016/j.promfg.2020.02.010
https://doi.org/10.1016/j.promfg.2020.02.010
https://www.sciencedirect.com/science/article/pii/S2351978920305412
https://www.sciencedirect.com/science/article/pii/S2351978920305412
https://www.sciencedirect.com/science/article/pii/S2351978920305412
https://www.sciencedirect.com/science/article/pii/S2351978920305412
https://www.sciencedirect.com/science/article/pii/S2351978920305412
https://www.sciencedirect.com/science/article/pii/S2351978920305412
https://www.sciencedirect.com/science/article/pii/S2351978920305412
https://www.sciencedirect.com/science/article/pii/S2351978920305412
https://doi.org/10.17973/MMSJ.2019_11_2019062
https://doi.org/10.17973/MMSJ.2019_11_2019062
https://doi.org/10.17973/MMSJ.2019_11_2019062
https://doi.org/10.17973/MMSJ.2019_11_2019062
https://doi.org/10.17973/MMSJ.2019_11_2019062
https://doi.org/10.17973/MMSJ.2019_11_2019062
https://doi.org/10.17973/MMSJ.2019_11_2019062
https://doi.org/10.17973/MMSJ.2019_11_2019062
https://doi.org/10.17973/MMSJ.2019_11_2019062

158 M. Poursanidis et al.

51. Torre, E., Marelli, S., Embrechts, P., Sudret, B.: Data-driven polynomial chaos expansion
for machine learning regression. Journal of Computational Physics 388(4), 601–623 (2019).
https://doi.org/10.1016/j.jcp.2019.03.039

52. Tsai, T.I., Li, D.C.: Utilize bootstrap in small data set learning for pilot run modeling of
manufacturing systems. Expert Systems with Applications 35(3), 1293–1300 (2008). https://
doi.org/10.1016/j.eswa.2007.08.043

53. Tsoukalas, A., Rustem, B.: A feasible point adaptation of the blankenship and falk algorithm
for semi-infinite programming. Optimization Letters 5(4), 705–716 (2011). https://doi.org/10.
1007/s11590-010-0236-4

54. Weichert, D., Link, P., Stoll, A., Rüping, S., Ihlenfeldt, S., Wrobel, S.: A review of machine
learning for the optimization of production processes. The International Journal of Advanced
Manufacturing Technology 104(5–8), 1889–1902 (2019). https://doi.org/10.1007/s00170-019-
03988-5

55. Zhang, H., Roy, U., Tina Lee, Y.T.: Enriching analytics models with domain knowledge for
smart manufacturing data analysis. International Journal of Production Research 58 (2020).
https://doi.org/10.1080/00207543.2019.1680895

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1016/j.jcp.2019.03.039
https://doi.org/10.1016/j.jcp.2019.03.039
https://doi.org/10.1016/j.jcp.2019.03.039
https://doi.org/10.1016/j.jcp.2019.03.039
https://doi.org/10.1016/j.jcp.2019.03.039
https://doi.org/10.1016/j.jcp.2019.03.039
https://doi.org/10.1016/j.jcp.2019.03.039
https://doi.org/10.1016/j.jcp.2019.03.039
https://doi.org/10.1016/j.jcp.2019.03.039
https://doi.org/10.1016/j.jcp.2019.03.039
https://doi.org/10.1016/j.eswa.2007.08.043
https://doi.org/10.1016/j.eswa.2007.08.043
https://doi.org/10.1016/j.eswa.2007.08.043
https://doi.org/10.1016/j.eswa.2007.08.043
https://doi.org/10.1016/j.eswa.2007.08.043
https://doi.org/10.1016/j.eswa.2007.08.043
https://doi.org/10.1016/j.eswa.2007.08.043
https://doi.org/10.1016/j.eswa.2007.08.043
https://doi.org/10.1016/j.eswa.2007.08.043
https://doi.org/10.1016/j.eswa.2007.08.043
https://doi.org/10.1007/s11590-010-0236-4
https://doi.org/10.1007/s11590-010-0236-4
https://doi.org/10.1007/s11590-010-0236-4
https://doi.org/10.1007/s11590-010-0236-4
https://doi.org/10.1007/s11590-010-0236-4
https://doi.org/10.1007/s11590-010-0236-4
https://doi.org/10.1007/s11590-010-0236-4
https://doi.org/10.1007/s11590-010-0236-4
https://doi.org/10.1007/s11590-010-0236-4
https://doi.org/10.1007/s00170-019-03988-5
https://doi.org/10.1007/s00170-019-03988-5
https://doi.org/10.1007/s00170-019-03988-5
https://doi.org/10.1007/s00170-019-03988-5
https://doi.org/10.1007/s00170-019-03988-5
https://doi.org/10.1007/s00170-019-03988-5
https://doi.org/10.1007/s00170-019-03988-5
https://doi.org/10.1007/s00170-019-03988-5
https://doi.org/10.1007/s00170-019-03988-5
https://doi.org/10.1080/00207543.2019.1680895
https://doi.org/10.1080/00207543.2019.1680895
https://doi.org/10.1080/00207543.2019.1680895
https://doi.org/10.1080/00207543.2019.1680895
https://doi.org/10.1080/00207543.2019.1680895
https://doi.org/10.1080/00207543.2019.1680895
https://doi.org/10.1080/00207543.2019.1680895
https://doi.org/10.1080/00207543.2019.1680895
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Part III
Neural Networks

Chapter 8
Predicting Properties of Oxide Glasses
Using Informed Neural Networks

Gregor Maier, Jan Hamaekers, Dominik-Sergio Martilotti,
and Benedikt Ziebarth

Abstract Many modern-day applications require the development of new materials
with specific properties. In particular, the design of new glass compositions is
of great industrial interest. Current machine learning methods for learning the
composition-property relationship of glasses promise to save on expensive trial-and-
error approaches. Even though quite large datasets on the composition of glasses
and their properties already exist (i.e., with more than 350,000 samples), they cover
only a very small fraction of the space of all possible glass compositions. This limits
the applicability of purely data-driven models for property prediction purposes and
necessitates the development of models with high extrapolation power.

In this chapter, we propose a neural network model which incorporates prior
scientific and expert knowledge in its learning pipeline. This informed learning
approach leads to an improved extrapolation power compared to blind (uninformed)
neural network models. To demonstrate this, we train our models to predict three
different material properties (glass transition temperature, Young’s modulus (at
room temperature) and shear modulus) of binary oxide glasses which do not contain
sodium. As representatives for conventional blind neural network approaches we use
five different feed-forward neural networks of varying widths and depths.

For each property, we set up model ensembles of multiple trained models
and show that, on average, our proposed informed model performs better in
extrapolating the three properties of previously unseen sodium borate glass samples
than all five conventional blind models.

G. Maier (✉)
Fraunhofer SCAI, Sankt Augustin, Germany

University of Bonn, Bonn, Germany
e-mail: gregor.maier@scai.fraunhofer.de

J. Hamaekers · D.-S. Martilotti
Fraunhofer SCAI, Sankt Augustin, Germany
e-mail: jan.hamaekers@scai.fraunhofer.de; dominik-sergio.martilotti@scai.fraunhofer.de

B. Ziebarth
Schott AG, Mainz, Germany
e-mail: benedikt.ziebarth@schott.com

© The Author(s) 2025
D. Schulz, C. Bauckhage (eds.), Informed Machine Learning,
Cognitive Technologies, https://doi.org/10.1007/978-3-031-83097-6_8

161

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-83097-6protect T1	extunderscore 8&domain=pdf

 885 49096 a 885 49096 a

mailto:gregor.maier@scai.fraunhofer.de
mailto:gregor.maier@scai.fraunhofer.de
mailto:gregor.maier@scai.fraunhofer.de
mailto:gregor.maier@scai.fraunhofer.de

 885 52970 a 885 52970 a

mailto:jan.hamaekers@scai.fraunhofer.de
mailto:jan.hamaekers@scai.fraunhofer.de
mailto:jan.hamaekers@scai.fraunhofer.de
mailto:jan.hamaekers@scai.fraunhofer.de

 14388 52970 a 14388
52970 a

mailto:dominik-sergio.martilotti@scai.fraunhofer.de
mailto:dominik-sergio.martilotti@scai.fraunhofer.de
mailto:dominik-sergio.martilotti@scai.fraunhofer.de
mailto:dominik-sergio.martilotti@scai.fraunhofer.de
mailto:dominik-sergio.martilotti@scai.fraunhofer.de

 885 56845 a 885 56845 a

mailto:benedikt.ziebarth@schott.com
mailto:benedikt.ziebarth@schott.com
mailto:benedikt.ziebarth@schott.com
https://doi.org/10.1007/978-3-031-83097-6_8
https://doi.org/10.1007/978-3-031-83097-6_8
https://doi.org/10.1007/978-3-031-83097-6_8
https://doi.org/10.1007/978-3-031-83097-6_8
https://doi.org/10.1007/978-3-031-83097-6_8
https://doi.org/10.1007/978-3-031-83097-6_8
https://doi.org/10.1007/978-3-031-83097-6_8
https://doi.org/10.1007/978-3-031-83097-6_8
https://doi.org/10.1007/978-3-031-83097-6_8
https://doi.org/10.1007/978-3-031-83097-6_8
https://doi.org/10.1007/978-3-031-83097-6_8

162 G. Maier et al.

8.1 Introduction

The development of new materials is essential for the modern-day progress in
engineering applications and future-oriented technologies. Aside from ever new
demands on physical and chemical materials properties, ecological issues, such as
sustainability, long service life, environmental compatibility, and recyclability, are
of great importance for product development in a variety of different fields. How-
ever, the common materials design process is still majorly based on the application
of suitable empirical models, on past experiences and educated guesses, and on
an extensive subsequent testing phase. The development of new glassy materials, in
particular, would benefit to a large extent from a more resource-efficient, systematic,
data-driven approach in contrast to the Edisonian trial-and-error approach which is
still often used in traditional research and development [23].

The space of all possible glass compositions is very large as a glass can be made
from the combination of 80 chemical elements, which leads to 1052 possible glass
compositions [41]. Moreover, since the influencing parameters are usually known
only qualitatively or not at all, the optimization of glass material properties is
inherently challenging. A trial-and-error approach to find a glass composition with
specific properties for a certain application is time-consuming and often not feasible
in practice. An expert-guided approach with integrating experiences from the past
is usually not sufficient as well since there are interesting glass properties that
are extremely difficult to predict. Especially when properties show nonlinearities,
caused, for example, by the so-called borate anomaly in alkali borate glasses
[14], conventional exploration and exploitation strategies quickly reach their limits.
Therefore, going beyond the area of known materials requires new approaches based
on new and innovative methods. The field of Machine Learning (ML) provides such
methods which allow to generate accurate models based on existing data in order to
predict the properties of yet unseen materials.

8.1.1 Related Work

In recent years, ML techniques have been widely used for accelerating materials
design [28, 36, 39]. In glass science, there have been several successful attempts to
use ML to predict, i.a., optical, physical, and mechanical properties of glasses [1,
3, 8–10, 31]. Most ML models perform exceptionally well in interpolating the
training data. However, given the high-dimensional search space of all possible
glass compositions and its sparse coverage by experimental data, the search for new
glass materials is majorly a question of designing models which possess a high
extrapolation power. We refer to [21, 30] and references therein for reviews of the
current status of ML in glass science and future challenges.

To address the lack of extrapolation power, ordinary ML methods can be
extended by integrating prior knowledge which exists independently of the learning

8 Predicting Properties of Oxide Glasses Using Informed Neural Networks 163

task. This idea is termed Informed Machine Learning and we refer to the recent
survey [37] for a taxonomy and thorough overview of its application in current ML
state-of-the-art use cases. For glass design, this idea is utilized, e.g., in [34] where
the empirical MYEGA formula is integrated into a neural network architecture to
predict the viscosity of a glass based on its compound fractions and temperature.
In [7], this approach is developed further by additionally integrating prior chemical
and physical knowledge of the glasses’ elements into the training data. Similarly,
in [2, 33], the authors use external chemical and physical knowledge to carefully
design enriched descriptors of glass compositions which are used as inputs for
ML models to predict properties of oxide glasses. In [20] and [22], the authors
predict the dissolution kinetics of silicate glasses in an informed manner by suitably
splitting the training data and using a descriptor which encodes the glasses’ network
structure, respectively. They demonstrate the superior performance of the informed
approach compared to the uninformed approach. This superiority is also shown
in [4], where the authors design a neural network model which is informed by
statistical mechanics in order to predict structural properties of oxide glasses.

8.1.2 Contributions

In this chapter, we propose a new ML model based on neural networks for the
property prediction of oxide glasses which integrates prior knowledge in order to
achieve a high degree of extrapolation of the training data. We modify the ideas
from [7] in order to predict three material properties, that is, the glass transition
temperature Tg ., the Young’s modulus E (at room temperature), and the shear
modulus G. We focus our analysis on binary oxide glasses, that is, oxide glasses
which consist of exactly two compounds. Our model is informed in the sense that
we explicitly integrate prior knowledge into the design of our training data, the
hypothesis set, and the final hypothesis at four major points in our learning pipeline.
We place emphasis on explaining how this is done in detail in terms of the taxonomy
in [37]. Especially the design of the network architecture to realize permutation
invariance with respect to the input features seems, to the best of our knowledge, to
be new in the field of glass materials modeling.

To examine the extrapolation power of our models, we train and validate them
on glass samples which do not contain sodium in their compositions. The trained
models are then used to predict the properties of sodium borate glass compositions
with varying compound fractions. For each property, we train multiple models
and study the average performance of the model ensemble. To demonstrate the
superiority of the informed model ensemble compared to blind (uninformed)
approaches, we perform the same experiments with five standard fully connected
feed-forward neural networks of varying widths and depths without integration
of any prior knowledge. We compare the results quantitatively in terms of error
metrics and qualitatively in terms of a meaningful approximation of the respective
composition-property curves.

164 G. Maier et al.

Outline The remainder of this chapter is organized as follows: In Sect. 8.2, we
explain our methodology. That is, in Sect. 8.2.1, we present our automated pipeline
for collecting and preparing data for model training, validation, and testing. In
Sect. 8.2.2, we describe the different model setups in the blind and the informed
setting. In Sect. 8.2.3, we explain how we train and evaluate our models. We discuss
the results of our experiments in Sect. 8.3 and conclude our findings in Sect. 8.4.

Notation For notational convenience, we use the letter P whenever we refer to one
of the three properties Tg ., E, or G. Moreover, for all entities which exist for every
property P, we use the prefix “P-” to specify the respective entity. For example,
given P, we refer to the dataset that is used to train a model for predicting P by “P-
training set”. Moreover, we use the symbols N. and R. to denote the set of positive
integers and the set of real numbers, respectively.

8.2 Methodology

The prediction quality of any data-driven machine learning algorithm in the context
of supervised learning is strongly dependent on the quantity and quality of the
training data. Before presenting our neural network approach to the problem of glass
property prediction in detail in Sects. 8.2.2 and 8.2.3, we therefore describe in the
following Sect. 8.2.1 how we collect and prepare our data.

8.2.1 Data Collection and Preparation

We use data from the INTERGLAD Ver. 8 database [26] and the SciGlass database
[12] and merge them together into a common glassmodel database. For the
identification of oxide glasses we follow the same definition as in [1] and only
consider glasses whose mole atomic fraction of oxygen is at least 0.3 and whose
compounds do not contain the chemical elements S, H, C, Pt, Au, F, Cl, N,
Br, and I, which could affect the balance of oxygen. The resulting glassmodel
database of oxide glasses consists of 420,973 glass samples in total. It lists the
mole atomic fractions of 118 chemical elements and the mole fractions of 439
compounds, i.e., the oxides that a glass composition consists of, together with
the values of 87 material properties. However, among the 118 elements, only 66
elements appear with non-vanishing fraction in at least one glass sample. Among
the 439 compounds, only 183 compounds appear with non-vanishing fraction in at
least one glass s ample.

To obtain clean data for training, validating, and testing our models, we apply
a sequence of preprocessing steps which follows in parts the procedure described
in [1, 10]. For each glass property P, we extract clean data from the “dirty”
glassmodel database in an automated fashion in form of a preprocessing pipeline

8 Predicting Properties of Oxide Glasses Using Informed Neural Networks 165

Fig. 8.1 Steps in the
preprocessing pipeline as
described in Sect. 8.2.1

whose steps are schematically depicted in Fig. 8.1. The number of samples which
are dropped in each step is shown in Table 8.1.

We begin with all samples from the entire glassmodel database. As a first step,
we make sure that all glass samples have numerically valid entries. That is, we first
remove glass samples which have a Not-a-Number (NaN) entry for at least one
compound fraction. Moreover, we drop all glasses which have NaN entries for P .1

Next, we make sure that all glass samples are physically valid binary glass
compositions. For this, we first discard glasses whose compound fractions do not

1 At the end of this and all the following preprocessing steps, we always drop all compounds
which do not appear in any of the glass samples that are present in the dataset at the respective
preprocessing stage.

166 G. Maier et al.

Table 8.1 Data reduction in each step of the preprocessing pipeline. The first and last row show
the number of samples (#S) and number of compounds (#C) which are present in the dirty and
cleaned dataset, respectively. The rows in between show the number of samples and compounds
which are dropped in the respective preprocessing steps. We remark that in the cleaned datasets,
the number of elements appearing with non-vanishing fraction in at least one glass sample is 32 for
Tg ., 23 for E, and 24 for G (and therefore coincides with #C)

Tg . E G
P #S #C #S #C #S #C

Dirty dataset 420,973 439 420,973 439 420,973 439

Drop NaNs 344,247 283 396,460 329 410,589 356

Check compound fractions 17,483 1 5482 0 1867 0

Filter binary glasses 50,681 83 16,651 57 6386 38

Min-max filter 16 0 21 0 15 0

Drop extreme values 10 0 4 0 4 0

Duplicate filter 5902 0 1577 0 1253 2

Drop rare compounds 229 40 79 30 67 19

One-class SVM 22 0 5 0 10 0

GP regression 205 0 62 0 63 0

Cleaned dataset 2178 32 632 23 719 24

Table 8.2 Minimum and maximum cut-off values and duplicate thresholds used in the prepro-
cessing pipeline

P Min. cut-off Max. cut-off Duplicate threshold

Tg . (°C) 50 1.8 × 103 5.0

E (GPa) 5.0 2.0 × 102 1.5

G (GPa) 0.10 2.0 × 102 0.75

add up to a value in the closed range between 0.9999. and 1.0001.. Then, we exclude
all samples which do not consist of exactly two compounds.

To ensure physically valid property values, we fix a closed range of values
between a minimum and maximum cut-off value for each property P (see Table 8.2).
We determine these values by investigating the distribution of the glass samples with
respect to their P-values in the datasets that result from the preprocessing pipeline
up to this point. Property values outside of this range are considered non-physical
but may be present in the database due to typos or other mistakes. Hence, we drop
each glass sample with a P-value outside of the respective range.

As the minimum and maximum values are rather crude bounds, in a further
step, we remove glasses with extreme P-values, which have a high chance of still
appearing in the datasets again because of typos or other mistakes. To do so, we
compute the 0.05.th percentile and the 99.95.th percentile of P-values among all
remaining glass samples and subsequently discard all glasses with P-values below
the lower percentile or above the upper percentile.

A lot of glass samples appear in both the INTERGLAD and the SciGlass
database. Consequently, there may be many duplicates among the remaining data

8 Predicting Properties of Oxide Glasses Using Informed Neural Networks 167

points at this stage of the preprocessing pipeline. We therefore apply a duplicate
filter which consists of the following steps:

1. We group all glasses with the same (up to the fifth decimal place) compound
fractions.

2. For each such group we do the following:

2.1 We drop all but the first sample which agree exactly in their values of P.
2.2 We compute the midpoint of the range of values of P among all remaining

samples.
2.3 If the P-value of every sample has a distance to the midpoint smaller than

a certain P-dependent threshold (see Table 8.2), then, as a representative of
the group of duplicates, we select the first sample in the group, assign to it
the median of the P-values of the samples in the group, and drop all other
samples. Otherwise, we discard the whole group of glass samples.

The values for the duplicate thresholds are determined by using domain
knowledge and investigating the average spread of P-values in a group of
duplicates.

In the next step, we deal with compounds of low representability and iteratively
drop compounds which appear in less than one percent of all remaining glass
samples. This allows us to reduce the dimension of the compound space and leaves
us only with glasses whose compounds are present in sufficiently many samples in
order to use them for robust model training.2

As a final step, we apply an outlier detection based on a one-class support vector
machine (SVM) followed by an outlier detection based on Gaussian process (GP)
regression.3

The resulting cleaned datasets encompass all problem-specific information which
is available for each glass property P. Given P, we denote the elements and
compounds which are present (with non-vanishing value in at least one glass
sample) in the corresponding cleaned dataset as P-elements and P-compounds,
respectively. The cleaned datasets are subsequently split into training, validation,
and test sets as described in Sect. 8.2.3.

8.2.2 Model Setups

We use neural networks for the approximation of the composition-property relation-
ship of binary oxide glasses. The target quantity is given by one of the respective

2 At the end of each iteration, we again drop those samples whose compound fractions do not add
up to a value in the closed range between 0.9999. and 1.0001..
3 We fit a Gaussian process to the data and drop samples with a too large deviation in their P-value
from the respective mean curve.

168 G. Maier et al.

properties P. The composition of a glass can be represented in various ways.
Designing a representation in form of a feature vector that encodes a given glass
composition in a way that is suitable as input for a neural network is an essential
part of the modeling process and is one of the key differences between the blind
(uninformed) and our informed learning approach. A second difference lies in
the design of the model architecture where the black-box modeling approach of
standard blind feed-forward neural networks can be leveraged in the informed
setting by integrating prior scientific knowledge.

In the following Sects. 8.2.2.1 and 8.2.2.2, we describe in detail the choice of the
feature vectors and the network architectures for the blind and informed models,
respectively, and highlight their differences.

8.2.2.1 Blind Models

In the blind approach, only the available problem-specific data is used to design a
suitable ML model for the composition-property relationship of oxide glasses. This
approach is blind or uninformed in the sense that no prior knowledge that exists
independently of the learning task is integrated into the model setup.

Feature Vectors

Each glass composition is, by definition, uniquely determined by its compound
fractions. It is therefore natural to use the compound fractions, grouped together in
a feature vector for a given glass composition, as input for a neural network model
to predict one of the glass’s properties.

Network Architectures

If no further information is available, the standard architectural design of a neural
network is given by a (fully connected) feed-forward neural network (FFNN) [15].
This class of models satisfies the universal approximation theorem, that is, for any
continuous function on a compact domain there exists a FFNN which approximates
the function within a given arbitrary tolerance [11, 17, 29]. This result justifies the
usage of the set of FFNNs as hypothesis space. In the context of glass materials
research, this approach is followed for example in [8, 31] to model several different
properties of oxide glasses.

A fully connected FFNN is characterized by (i) its input and output dimensions,
i.e., the number of units in its input and output layer, respectively, (ii) its depth, i.e.,
the number of layers (without counting the input layer), and (iii) the width, i.e., the
number of units, of each hidden layer. An example architecture of a fully connected
FFNN is shown in Fig. 8.2.

8 Predicting Properties of Oxide Glasses Using Informed Neural Networks 169

Input
layer

Hidden
layer 1

Hidden
layer 2

Hidden
layer 3

Output
layer

Fig. 8.2 Schematic architecture of a fully connected FFNN with input dimension 3, output
dimension 2, depth 4, and constant width 4. Each layer represents an affine linear function. The
additive bias nodes are not shown. In case of the blind models, the input nodes store the compound
fractions of a given glass sample and the output node provides the predicted value for P. Image
adapted from [25]

We use a variety of different FFNNs as benchmark models which we compare our
informed model to. To capture the main architectural trends of designing a FFNN
and their effects on the prediction quality, we consider five different FFNNs with
depths L = 2, 4, 8, 16, 32. for each property P. The input dimensions are determined
by the number of respective P-compounds and the output dimension is always one
as we predict scalar-valued properties. For each P-model, we choose the width to
be constant for all hidden layers such that the total number of trainable parameters
is roughly the same among all P-models including the informed model which we
describe in Sect. 8.2.2.2. Each hidden layer is a linear layer with an additive bias
term. In accordance to the universal approximation theorem, the output layer is
a linear layer with no additive bias term. The exact dimensions of all models are
summarized in Table 8.3. In all models, we use the rectified linear unit (ReLU) as
activation function.

8.2.2.2 Informed Model

Rather than just using the compound fractions as input features for a neural network,
we can increase the informational capacity of a glass sample’s representation by
utilizing characteristic chemical and physical quantities of each element which is
present in the given glass sample and provide them as additional inputs to a neural
network. Features which are carefully engineered in such an informed manner
can lead to an improved prediction quality of the model, given that the model’s
expressive power is large enough. The latter issue is a question of the model’s
architecture. If there are too few parameters, the model will underfit the training

170 G. Maier et al.

Table 8.3 Model hyperparameters

Informed

Blind Former Non-former Down

Tg .

Input dim. 32 32 32 32 32 28 28 32

Length L 2 4 8 16 32 4 4 4

Width W 304 63 38 26 18 32 32 32

Output dim. 1 1 1 1 1 14 18 1

#Parameters 10,336 10,206 10,184 10,712 10,872 10,336

E
Input dim. 23 23 23 23 23 26 26 23

Length L 2 4 8 16 32 4 4 4

Width W 385 63 38 25 17 32 32 32

Output dim. 1 1 1 1 1 10 13 1

#Parameters 9625 9639 9842 9725 9605 9623

G
Input dim. 24 24 24 24 24 26 26 24

Length L 2 4 8 16 32 4 4 4

Width W 372 63 38 25 17 32 32 32

Output dim. 1 1 1 1 1 10 14 1

#Parameters 9672 9702 9880 9750 9622 9688

data no matter how carefully we designed the input features. If there are too many
parameters, however, the model might overfit the training data and pick up on
spurious patterns and noise in the input features. In general, by building as much
prior information as possible into the model’s architecture we expect to obtain a
more robust inference behavior, especially in the extrapolation regime.

Feature Vectors

Compared to the uninformed approach, we change our viewpoint and identify a
given glass composition not by the fractions of its compounds but by the mole
atomic fractions of its elements. For each element, there is additional extensive
scientific knowledge about its chemical and physical properties, which exists
independently of our learning problem. According to the taxonomy in [37] this
knowledge is represented as a weighted graph. Its nodes are given by elements
and properties and each element node is connected with a property node via an
edge which is weighted by the element’s respective property value. We integrate
this knowledge into our training data by designing feature vectors in a hybrid
fashion. We partially follow the approach used in [7], where, for each element,
the authors extract physical and chemical properties, i.a., from the Python library
mendeleev [24]. They design and select feature vectors for a neural network model

8 Predicting Properties of Oxide Glasses Using Informed Neural Networks 171

in a way that allows them to complement information from the space of chemical
compositions with information from the space of chemical and physical properties.

In our case, we first extract for each glass property P and each P-element a
list of characteristic chemical and physical properties from mendeleev. We drop
properties with non-numeric values and only keep those which are available for
all P-elements. We also drop properties which we consider to be unrelated to
the elements’ influence on the glass material properties, namely, the elements’
abundances in the earth crust and the elements’ dipole polarizability uncertainties.
We refer to [24] and references therein for a detailed explanation of all the available
properties in the mendeleev library .

Among the remaining properties, we drop those which are highly correlated.
More specifically, we compute the standard pairwise Pearson correlation coeffi-
cients and iteratively, for each pair of properties whose coefficient is larger than
0.95., we only keep one of the two properties. The resulting list of properties is
given in Table 8.4.

For each glass property P and each P-element, we group the resulting element
properties into vectors, which we call P-element-vectors. These element-vectors
represent all prior knowledge about the elements which exists independently of the
learning problem.

In the next step, we complement this information with our given problem-
specific data. For each glass property P and a given glass sample, we consider
the collection of P-element-vectors corresponding to the sample’s elements and
extend each of them by one more component which lists the mole atomic fraction
of the respective element in the glass sample. Eventually, we obtain for each glass
sample a collection of feature vectors (v1, . . . , vM) ∈ (Rd)M ., where we arrange
the tuple in lexicographical order of the elements’ symbols. Here, M = M(P). is
the number of P-elements and d = d(P). is the number of properties resulting from
the property extraction process described above (including the entry with the mole
atomic fraction). Each glass sample can thus be represented as a point in a subspace
Ω = Ω (P) ⊂ (Rd)M ..

Network Architecture

For each glass property P, we want to design a neural network which approximates
the functional relationship f : Ω → R,V |→ P(V)., where P(V). is the value of
property P for the glass sample with representation V = (v1, . . . , vM).. We design
the architecture of the network by two leading principles in the spirit of informed
learning.

First, we observe that the order in which the feature vectors are passed to the
function f actually does not matter. That is, the function f is permutation invariant
with respect to the order of the input vectors. More specifically, f is a function on
sets of the form {v1, . . . , vM }.. In terms of the taxonomy in [37] we use this scientific
knowledge, which is represented as a spatial invariance, and directly integrate it into
the architecture of the network which we use to approximate f . It is shown in [40]

172 G. Maier et al.

Table 8.4 Chemical and physical properties extracted from the mendeleev library which are
used for the correlation study described in Sect. 8.2.2.2. Properties that are marked with ✗ are
dropped before the correlation study as they are not available for all respective P-elements.
Properties that are marked with ✓ are not highly correlated among each other and are used as final
features. All unmarked properties are dropped due to too high correlation with other properties.
We refer t o [24] and the references therein for detailed explanations of the properties

Properties from mendeleev Tg . E G
Atomic number ✓ ✓ ✓
Atomic radius ✓ ✓ ✓
Atomic radius by Rahm et al. ✓ ✓ ✓
Atomic volume ✓ ✓ ✓
Atomic weight

Boiling temperature ✓ ✓ ✓
C6 . dispersion coefficient by Gould and Bučko ✓ ✓ ✓
Covalent radius by Cordero et al. ✓
Single bond covalent radius by Pyykko et al.

Double bond covalent radius by Pyykko et al.

Density ✓ ✓ ✓
Dipole polarizability

Electron affinity ✓ ✓ ✓
Electron affinity in the Allen scale ✗ ✓ ✓
Electron affinity in the Ghosh scale ✓ ✓ ✓
Electron affinity in the Pauling scale ✓
Glawe’s number ✓ ✓ ✓
Group in periodic table ✓ ✓ ✓
Heat of formation ✓ ✓ ✓
First ionization energy ✓ ✓ ✓
Lattice constant ✓ ✓ ✓
Maximum coordination number ✓ ✓ ✓
Maximum oxidation state ✓ ✓ ✓
Melting temperature ✓
Mendeleev’s number

Minimum coordination number ✓ ✓ ✓
Minimum oxidation state ✓ ✓ ✓
Period in periodic table ✓ ✓ ✓
Pettifor scale

Index to chemical series ✓ ✓ ✓
Number of valence electrons ✓ ✓ ✓
Van der Waals radius ✓ ✓ ✓
Van der Waals radius according to Alvarez ✓ ✓ ✓
Van der Waals radius according to Batsanov

Van der Waals radius from the MM3 FF

Van der Waals radius from the UFF ✓ ✓ ✓
Number d of all features (including mole atomic fractions) 28 26 26

8 Predicting Properties of Oxide Glasses Using Informed Neural Networks 173

that such a function f on sets can be written a s

.f ({v1, . . . , vM }) = ψ

⎛
M⎲
i=1

φ(vi)

⎛
, (8.1)

where φ : Rd → R
N

. denotes an inner embedding function with N ∈ N. being an
appropriately chosen embedding dimension, and ψ : RN → R. denotes an outer
(downstream) function. Here, φ . and ψ . can be approximated by neural networks.
Using the universal approximation theorem of neural networks, the right-hand-side
of (8.1) yields architectures of neural networks which, in principal, can approximate
f arbitrarily well.

In our specific use case, we can refine the network’s architecture even further
by integrating prior chemical knowledge. Glass oxides can be categorized in three
groups [5]. Glass formers are oxides that can readily form a glassy material and
build the backbone of a glass’s network structure. Glass modifiers are oxides that
cannot form a glassy material by themselves but influence its material properties
when mixed with a glass former. Glass intermediates are oxides which can act both
as a glass former as well as a glass modifier depending on the respective cation’s
oxidation number. For our purposes, we only differentiate between oxides which
are glass formers and oxides which are not glass formers. We refer to the latter
group as glass non-formers. We use the classification proposed in [5] to determine
for every element whether its oxide is a glass former or a glass non-former. The
classification is shown in Table 8.5.

The scientific knowledge whether an element’s oxide has glass-forming or glass-
non-forming ability is naturally represented as a simple knowledge graph, where
each element is represented by a node. There is also a glass former node and a glass

Table 8.5 Classification of elements based on the glass-forming and glass-non-forming proper-
ties of their oxides. The last row shows all elements whose oxides are glass formers according to
the classification in [5]. The second column lists, for given P, the respective P-elements whose
oxides are glass formers and which are a subset of the elements in the last row. The fourth column
lists all respective P-elements whose oxides are glass non-formers. We classify oxygen as a glass
non-former

P Formers #Formers Non-formers #Non-formers

Tg . As, B, Bi, Ge, Mo, P, Pb,
Sb, Si, Sn, Te, Tl, V, W

14 Ag, Al, Ba, Ca, Cs, Cu, Fe,
Ga, K, La, Li, Mg, Na, O,
Rb, Sr, Ti, Zn

18

E B, Bi, Ge, Mo, Nb, P, Pb, Si,
Te, V

10 Al, Ba, Ca, Co, Cs, K, Li,
Mg, Na, O, Sr, Ti, Zn

13

G B, Bi, Ge, Mo, Nb, P, Pb, Si,
Te, V

10 Al, Ba, Ca, Co, Cs, K, Li,
Mg, Na, O, Rb, Sr, Ti, Zn

14

All As, B, Bi, Ge, Mo, Nb, P,
Pb, Sb, Se, Si, Sn, Ta, Te,
Tl, V, W

17

174 G. Maier et al.

non-former node. Each element node is connected via an edge with the glass former
node or the glass non-former node depending on whether the element’s oxide is a
glass former or a glass non-former. Due to the largely different influence on a glass’s
properties, we integrate this prior knowledge additionally into our hypothesis set by
using two functions to treat glass formers and non-formers separately. The glass
former network receives as input only feature vectors of elements whose oxides are
glass formers. The glass non-former network receives as input all other elements
whose oxides, by definition, are glass non-formers. The outputs of the glass former
network are added together, as are the outputs of the glass non-former network. The
results are concatenated and then used as input for the downstream network which
yields the final prediction for the respective property P.

More specifically, let Ω = Ω f ∪ Ω nf . be the decomposition of Ω . into the space
Ω f . of representations of glass formers and the space Ω nf . of representations of glass
non-formers. We then replace the inner function φ . in (8.1) by two separate functions,
φf : Ω f → R

Nf ., Nf ∈ N., for the glass former network and φnf : Ω nf → R
Nnf .,

Nnf ∈ N., for the glass non-former network. Permutation invariance then holds only
within the feature vectors v1, . . . , vMf

. corresponding to the Mf . glass formers and
within the Mnf := M − Mf . feature vectors vMf +1, . . . , vM . corresponding to the
glass non-formers. The resulting representation of f then has the following form,

.f ({v1, . . . , vM }) = ψ

⎛
⎝Mf⎲

i=1

φf (vi),

M⎲
i=Mf +1

φnf (vi)

⎞
⎠ , (8.2)

where, under slight abuse of notation, we used the same notation ψ . for the down-
stream function as in (8.1). As glass former network, glass non-former network,
and downstream network we use three separate ReLU-FFNNs to approximate the
functions φf , φnf ., and ψ . in (8.2), respectively. Their widths and depths are listed in
Table 8.3. The overall network architecture of our informed model is illustrated in
Fig. 8.3.

The embedding dimensions Nf . and Nnf . are hyperparameters of the glass former
and non-former network, respectively. It is shown in [38] that in the scalar case,
d = 1., the choice N = M . in (8.1) is a sufficient and necessary condition in order to
approximate the function f arbitrarily well by a neural network whose architecture
is given by the right-hand side in (8.1). In the vector-valued case, d > 1., to the best
of our knowledge, no non-trivial necessary condition on the embedding dimension
is known so far. In [16], the authors prove a sufficient condition in form of an upper
bound on the embedding dimension, which, however, is very pessimistic. Based on
the results in the one-dimensional case, we choose Nf = Mf . and Nnf = Mnf . in
(8.2).

8 Predicting Properties of Oxide Glasses Using Informed Neural Networks 175

Fig. 8.3 Architecture of the informed model. The feature vectors of the elements are split
according to whether the elements’ oxides are glass formers or glass non-formers and input
to separate neural networks. The results of the latter are first summed individually and then
concatenated to a vector which is used as input for the final downstream neural network that
predicts a value for property P

8.2.3 Model Training and Evaluation

Recall that we consider three different glass material properties: glass transition
temperature Tg ., Young’s modulus E at room temperature, and shear modulus G.
For each of these properties P, we split the cleaned datasets from Sect. 8.2.1 further
into datasets for training, validation, and testing. We then apply the blind models
and the informed model discussed in Sects. 8.2.2.1 and 8.2.2.2.

For data management and visualization, we use the Python libraries pandas [35],
Scikit-learn [27], and Matplotlib [18], respectively. The neural network
models are built using the PyTorch-Lightning [13] module.

We describe the data splitting in a bit more detail. For each property P, we
apply the following steps. First, we apply the preprocessing pipeline described in
Sect. 8.2.1. Then, we apply the feature design and selection processes for the blind
and the informed models as described in Sects. 8.2.2.1 and 8.2.2.2, respectively.
Next, we split up the resulting cleaned dataset into those glass samples which
contain sodium and those which do not contain sodium. From the samples which
contain sodium we extract only those binary oxides which consist of B 2 .O 3 . as glass
former and Na 2 .O as glass non-former. The resulting dataset is our P-test set. The
other glass samples, which do not contain sodium, are randomly split for each model
into a P-training set and a P-validation set using a 80%/20%. ratio. The dimensions
of the resulting datasets are shown in Table 8.6. We emphasize that sodium as an
element is totally absent in the training and validation sets and only present in the
test sets. Examining the performance of the trained models on the test sets therefore
allows us to properly evaluate their extrapolation power.

176 G. Maier et al.

Table 8.6 Dimensions of the training, validation, and test sets

P #Training samples #Validation samples #Test samples

Tg . 1385 347 125

E 415 104 42

G 477 120 73

We use the bagging method from the field of ensemble learning [6]. For each
model setup and each property P, we train 50 models. Their architectures and weight
initializations are the same, but each model is trained and validated on a different
random 80%/20%.-split into training set and validation set. We therefore end up
with a model ensemble of 50 different models.

For training, we use the ADAM optimizer with default settings [19] and weight
decay of 10−5 and train for a maximum of 1000 epochs with a batch size of 8. We
start with a learning rate of 0.001 and multiply it by a factor of 0.5 if the model’s
performance on the validation set in terms of the mean squared error (MSE) does
not improve over the course of 50 epochs. Moreover, to avoid overfitting, we use the
early stopping criterion and stop training if the model’s MSE on the validation set
does not improve over the course of 100 epochs.

After training, we apply a post-processing step. For each property P, we discard
those models whose predictions for P on the whole test set can be considered to
be constant. More specifically, we first compute for each sample in the test set the
mean value of the models’ predictions for P. Then, we drop those models where
the deviation of the predicted property values for all samples in the test set from
the respective mean value is less than or equal to the P-duplicate threshold from
Table 8.2. This is in alignment with informed learning since we know a priori that for
each property P, not all Na 2 .O-B 2 .O 3 . glass samples have the same P-value. In terms
of the taxonomy in [37], we thus use this expert knowledge, which is represented as
algebraic equations, i.e., being of non-constant value, and integrate it into our final
hypothesis.

Among the remaining models we compute the mean and the 95%.-confidence
interval of the predictions. This yields the final prediction of the model ensemble and
quantifies its uncertainty. We compare the ensembles’ performances quantitatively
in terms of their root mean squared errors (RMSE), mean absolute errors (MAE),
and maximum errors (MAX) on the respective P-test sets, which are summarized
in Table 8.7. All blind 32-layer networks yield constant predictions for all three
properties and are therefore discarded as non-physical in the post-processing step.
Nevertheless, we still record their respective ensemble errors in Table 8.7 to get
a more conclusive picture. However, when talking about the best and worst error
values, we only consider the ensembles of blind models with depths L = 2, 4, 8, 16.

and neglect the values of the models with 32 layers.
To also get a qualitative picture of the ensembles’ extrapolation performances,

we plot the composition-property curves of the ensembles’ averaged predictions
on the P-test sets in Figs. 8.4, 8.5, and 8.6. Recall that the test sets consist of the

8 Predicting Properties of Oxide Glasses Using Informed Neural Networks 177

Table 8.7 Results and errors of the model ensembles’ averaged predictions on the test sets.
Among the blind ensembles with depths L = 2, 4, 8, 16., bold blue numbers denote the lowest
error values, bold red numbers the highest ones. Bold black numbers denote the lowest error values
among all model ensembles. The last column shows the relative improvement in the error when
comparing the error value of the informed ensemble to the lowest error value (blue) among the
blind ensembles. The blind models with 32 layers are not considered in the error analysis as these
models only yield constant predictions and are therefore discarded as non-physical

Blind

Depth 2 4 8 16 32 Informed Rel. improv.

Tg (°C)

RMSE 86.2 111 112 109 86.5 62.5 27%

MAE 63.0 77.2 81.7 84.4 73.6 44.4 30%

MAX 265 341 338 311 205 186 30%

#Non-const.
predictions

50 50 50 48 0 24

E (GPa)

RMSE 9.88 10.7 12.0 11.6 15.6 4.67 53%

MAE 8.58 9.44 10.7 10.3 12.5 3.50 59%

MAX 16.8 18.2 19.5 19.8 33.7 12.5 26%

#Non-const.
predictions

50 50 50 43 0 48

G (GPa)

RMSE 2.92 3.65 4.02 3.81 5.94 1.39 52%

MAE 2.43 3.09 3.39 3.13 5.08 1.12 54%

MAX 6.10 7.24 7.89 8.37 12.2 2.95 52%

#Non-const.
predictions

50 50 50 39 0 48

Na 2 .O-B 2 .O 3 . glass samples together with their respective P-values. We also plot the
predictions of the best and worst performing model of each P-ensemble in terms
of the RMSE on the test set. Moreover, we plot the property values of all available
alkali borate glasses, that is, binary glasses which consist of B 2 .O 3 . as glass former
and Na 2 .O, Li 2 .O, and Rb 2 .O as glass non-former, respectively. It is known that these
glass compositions have similar material properties [14].

Concerning Figs. 8.4, 8.5, and 8.6, a few remarks are in order. First, there are no
Rb 2 .O-B 2 .O 3 . glass samples available for E. Next, since we only consider binary
oxide glasses, knowing the compound fraction of B 2 .O 3 . completely determines
the compound fraction of the respective alkali oxide as glass non-former as well.
Finally, since the blind 32-layer networks are discarded, their predictions are not
shown.

178 G. Maier et al.

Fig. 8.4 Tg .-values of binary alkali borate glasses. Scattered points represent Tg .-values given in the
cleaned Tg .-dataset. Solid lines show the predictions for the Tg .-value of Na 2 .O-B 2 .O 3 . glass samples
of the blind and informed models, respectively. The model ensembles’ mean curves are shown as
blue solid lines with the shaded blue area depicting the 95% confidence band. The predictions of
the best and worst performing models in the ensembles are shown as green and red solid lines,
respectively

8 Predicting Properties of Oxide Glasses Using Informed Neural Networks 179

Fig. 8.5 E-values of binary alkali borate glasses. Scattered points represent E-values given in the
cleaned E-dataset. Solid lines show the predictions for the E-value of Na 2 .O-B 2 .O 3 . glass samples
of the blind and informed models, respectively. The model ensembles’ mean curves are shown as
blue solid lines with the shaded blue area depicting the 95% confidence band. The predictions of
the best and worst performing models in the ensembles are shown as green and red solid lines,
respectively

180 G. Maier et al.

Fig. 8.6 G-values of binary alkali borate glasses. Scattered points represent G-values given in the
cleaned G-dataset. Solid lines show the predictions for the G-value of Na 2 .O-B 2 .O 3 . glass samples
of the blind and informed models, respectively. The model ensembles’ mean curves are shown as
blue solid lines with the shaded blue area depicting the 95% confidence band. The predictions of
the best and worst performing models in the ensembles are shown as green and red solid lines,
respectively

8 Predicting Properties of Oxide Glasses Using Informed Neural Networks 181

8.3 Results and Discussion

We first compare the models’ performances quantitatively in terms of their average
errors in Table 8.7. Among the blind models, we note that the ensembles of shallow
two-layer networks perform best for all three properties in terms of RMSE, MAE,
and MAX. Considering the worst performing ensembles, we note that the deeper
networks with 8 and 16 layers perform worst, on average, in terms of almost all
three error metrics for all three properties. Only for Tg . in the case of MAX, the
ensemble of models with only four layers performs worst. We note that in this case,
the ensemble of models with 32 layers actually performs best in terms of MAX. In
all other cases, however, the 32-layer network ensembles perform worst for all three
properties when compared to the other blind models. We conclude that, in general,
increasing network complexity in terms of increasing depth tends to lead to worse
performing models.

The number of models with non-constant predictions clearly decays with increas-
ing network depth for all three properties. Whereas the networks with 2, 4., and 8
layers lead to no constant predictions, the 16-layer networks lead to some constant
predictions. There is a steep decay when increasing the number of layers from 16 to
32, where all models for all properties lead to only constant predictions. A possible
explanation for this phenomenon could be that the models’ loss landscapes become
more and more rugged with increasing network depth yielding constant predictions
to be local minima which are hard to escape during the optimization routine. This
matches the observation from above that increasing network depth generally tends
to lead to worse performing models.

Invoking now the errors of the informed models, we see that they perform best,
on average, in terms of all three error metrics for all three properties. They lead to a
relative improvement in the errors between 26% up to 59%. For E and G, only two
models yield constant predictions, whereas for Tg . more than half of all models do.
Again, this could indicate that the loss landscape of the informed networks is much
more rugged for Tg . than for the other two properties.

To get a more conclusive qualitative picture of the extrapolation behavior of
all models, we take a closer look at Figs. 8.4, 8.5, and 8.6. We observe that the
blind networks in terms of the ensembles’ means as well as the best and worst
performing models are not able to qualitatively capture the trend of the Na 2 .O-B 2 .O 3 .

curves correctly and instead generally deviate from the test points to a large extent.
However, the ensembles’ predictions for all blind networks seem to be quite close
to each other for all three properties. This is reflected by the small width of the
confidence band around the mean curves as well as the similar shape of the mean
curves and the curves of the best and worst performing models. This indicates that
the blind models are robust with respect to training.

The mean curves of the informed model ensembles qualitatively capture the trend
of the Na 2 .O-B 2 .O 3 . curves to a more acceptable degree. This is most noticeable in
the cases of Tg . and G where — in contrast to the blind networks — the mean curves
capture the nonlinearity of the respective N a2 .O-B 2 .O 3 . curve. For E, the informed

182 G. Maier et al.

model ensemble yields more accurate trajectories than the blind ensembles in the
linear regime with B 2 .O 3 .-fractions between 0.7 and 1.0, but the kink in the Na 2 .O-
B 2 .O 3 . curve at a B 2 .O 3 .-fraction of around 0.7 is not captured. This could, in parts, be
due to the small training and validation sets which are available for E (see Table 8.6)
and, in particular, to the lack of Rb 2 .O-B 2 .O 3 . glass samples which the models
could base their predictions on. We explain the latter point in more detail below.
Nevertheless, whereas the mean curve for E shows at least a physically reasonable
trajectory in the region of low B2 .O 3 .-fractions, where there are no data points of
alkali borate glasses available, the mean curves for Tg . and G show a non-physical
incline for glasses of B2 .O 3 .-fractions of less than 0.2 and 0.4, respectively. As a
further observation, we note that, in general, for all three properties, the uncertainty
of the model ensembles’ predictions in terms of the width of the confidence band
around the mean curve is much higher than in the blind settings, especially in the
regions of low B 2 .O 3 .-fractions where there are only few or no alkali borate glass
samples available. This indicates less robustness with respect to training the models
and is also most noticeably reflected by the large deviation of the worst performing
model’s curve from the mean curve for all three properties.

As most probable explanation, we suspect these observations to be caused by the
choice of our training and test sets. As already indicated in Sect. 8.2.3, we note that
the curves of all alkali borate glasses show a similar trajectory for all three properties
since these glasses have similar material properties. We also note that only Na 2 .O-
B 2 .O 3 . glasses are not present in the training and validation sets. In regions where
the other alkali borate glasses are available in the training and validation sets, the
models are thus, in principal, able to learn the properties of the Na 2 .O-B 2 .O 3 . glasses
based on the other alkali borate glass samples. In regions where there are many of
these samples available and where their property curves are very close to the Na 2 .O-
B 2 .O 3 . curve, the informed models’ predictions thus tend to be quite accurate. In
regions where only few or no alkali borate glasses are available in the training and
validation sets, the models are prone to base their predictions on other spurious or
noisy features. This leads to non-physical predictions with a high uncertainty. This
phenomenon is amplified by a large feature set and is therefore pronounced to a
much higher degree in the informed setting than in the blind one.

In summary, the informed model shows, on average in the ensemble setting, clear
superior performance to all considered blind (uninformed) models in extrapolating
the property curves of Na 2 .O-B 2 .O 3 . binary glasses for all three properties Tg ., E, and
G. This is in terms of quantitative error measurements on the test sets as well as in
the qualitative approximation of the property curves.

Finally, we emphasize the importance of the ensemble setting. Whereas single
models might yield bad predictions, averaging multiple trained models, as we
observe in our specific use case, often yields good approximations of the target
quantities [32].

8 Predicting Properties of Oxide Glasses Using Informed Neural Networks 183

8.4 Conclusion and Outlook

In this chapter, we presented an informed neural network approach for the prediction
of three material properties of binary oxide glasses, that is, glass transition
temperature Tg ., Young’s modulus E (at room temperature), and shear modulus
G. We compared this approach to five different blind (uninformed) models for all
three properties and demonstrated its superior average extrapolation power when
applied in an ensemble setting to alkali borate glass samples which contain sodium
as previously unseen element.

In terms of the taxonomy of Informed Machine Learning introduced in [37],
we integrated prior knowledge into our learning pipeline at four major points. We
integrated scientific knowledge, represented as a weighted graph, knowledge graph,
and spatial invariance in the training data and in the hypothesis set, respectively.
Moreover, we integrated expert knowledge, represented as algebraic equations, into
the final hypothesis.

Our informed neural network model could be improved in various ways. First,
the list of chemical and physical element features could be extended. Second,
instead of classifying glass oxides into formers and non-formers, we could follow
the refined classification into formers, modifiers, and intermediates and treat these
three classes by three separate neural networks. Third, in this chapter, we did
not tune any of the models’ hyperparameters. A thorough hyperparameter study
probably leads to improved model performance. Finally, by relying on further expert
knowledge, we could potentially filter out even more predicted property curves in
the post-processing step than just constant predictions. This might improve the final
predictions even further.

Our results show that our informed neural network model is capable of mean-
ingfully extrapolating various properties of binary glass samples with previously
unseen compounds. As a next step, we plan to scale up our approach in order to
make it applicable to oxide glass samples with three or more compounds. We also
plan to make it more universal such that it can accurately predict more material
properties (Table 8.4).

Acknowledgments This work was supported in part by the BMBF-project 05M2AAA MaGriDo
(Mathematics for Machine Learning Methods for Graph-Based Data with Integrated Domain
Knowledge), by the Fraunhofer Cluster of Excellence “Cognitive Internet Technologies”, and
by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) via project
390685813 - GZ 2047/1 - Hausdorff Center for Mathematics (HCM).

References

1. Alcobaca, E., Mastelini, S.M., Botari, T., Pimentel, B.A., Cassar, D.R., de Leon Ferreira,
A.C.P., Zanotto, E.D., et al.: Explainable machine learning algorithms for predicting glass
transition temperatures. Acta Materialia 188, 92–100 (2020)

2. Bishnoi, S., Badge, S., Krishnan, N.A., et al.: Predicting oxide glass properties with low
complexity neural network and physical and chemical descriptors. Journal of Non-Crystalline
Solids 616, 122488 (2023)

184 G. Maier et al.

3. Bishnoi, S., Singh, S., Ravinder, R., Bauchy, M., Gosvami, N.N., Kodamana, H., Krishnan,
N.A.: Predicting Young’s modulus of oxide glasses with sparse datasets using machine
learning. Journal of Non-Crystalline Solids 524, 119643 (2019)

4. Bødker, M.L., Bauchy, M., Du, T., Mauro, J.C., Smedskjaer, M.M.: Predicting glass structure
by physics-informed machine learning. npj Computational Materials 8(1), 192 (2022)

5. Boubata, N., Roula, A., Moussaoui, I.: Thermodynamic and relative approach to compute
glass-forming ability of oxides. Bulletin of Materials Science 36, 457–460 (2013)

6. Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)
7. Cassar, D.R.: ViscNet: Neural network for predicting the fragility index and the temperature-

dependency of viscosity. Acta Materialia 206, 116602 (2021)
8. Cassar, D.R., de Carvalho, A.C., Zanotto, E.D.: Predicting glass transition temperatures using

neural networks. Acta Materialia 159, 249–256 (2018)
9. Cassar, D.R., Mastelini, S.M., Botari, T., Alcobaca, E., de Carvalho, A.C., Zanotto, E.D.:

Predicting and interpreting oxide glass properties by machine learning using large datasets.
Ceramics International 47(17), 23958–23972 (2021)

10. Cassar, D.R., Santos, G.G., Zanotto, E.D.: Designing optical glasses by machine learning
coupled with a genetic algorithm. Ceramics International 47(8), 10555–10564 (2021)

11. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Mathematics of
Control, Signals and Systems 2(4), 303–314 (1989)

12. EPAM Systems: epam/SciGlass. https://github.com/epam/SciGlass (2019). License: MIT
License

13. Falcon, W., The PyTorch Lightning team: PyTorch Lightning (Version 1.4). https://github.com/
Lightning-AI/lightning (2019). License: Apache-2.0

14. Feller, S.: Borate glasses. In: Springer Handbook of Glass, pp. 505–524. Springer (2019)
15. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT Press (2016). http://www.

deeplearningbook.org
16. Han, J., Li, Y., Lin, L., Lu, J., Zhang, J., Zhang, L.: Universal approximation of symmetric

and anti-symmetric functions. Communications in Mathematical Sciences 20(5), 1397–1408
(2022)

17. Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural Networks
4(2), 251–257 (1991)

18. Hunter, J.D.: Matplotlib: A 2D graphics environment. Computing in Science & Engineering
9(3), 90–95 (2007)

19. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7–9, 2015,
Conference Track Proceedings (2015)

20. Krishnan, N.A., Mangalathu, S., Smedskjaer, M.M., Tandia, A., Burton, H., Bauchy, M.:
Predicting the dissolution kinetics of silicate glasses using machine learning. Journal of Non-
Crystalline Solids 487, 37–45 (2018)

21. Liu, H., Fu, Z., Yang, K., Xu, X., Bauchy, M.: Machine learning for glass science and
engineering: A review. Journal of Non-Crystalline Solids 557, 119419 (2021)

22. Liu, H., Zhang, T., Krishnan, N.A., Smedskjaer, M.M., Ryan, J.V., Gin, S., Bauchy, M.:
Predicting the dissolution kinetics of silicate glasses by topology-informed machine learning.
npj Materials Degradation 3(1), 32 (2019)

23. Mauro, J.C.: Decoding the glass genome. Current Opinion in Solid State and Materials Science
22(2), 58–64 (2018)

24. Mentel, Ł.: mendeleev – A Python resource for properties of chemical elements, ions and
isotopes (Version 0.12.1). https://github.com/lmmentel/mendeleev (2014–). License: MIT
License

25. Neutelings, I.: Neural networks. https://tikz.net/neural_networks. License: Attribution-
ShareAlike 4.0 International (CC BY-SA 4.0), Accessed: 2023-04-05

26. New Glass Forum: International Glass Database System INTERGLAD Ver. 8. https://www.
newglass.jp/interglad_n/gaiyo/info_e.html

https://github.com/epam/SciGlass
https://github.com/epam/SciGlass
https://github.com/epam/SciGlass
https://github.com/epam/SciGlass
https://github.com/epam/SciGlass
https://github.com/Lightning-AI/lightning
https://github.com/Lightning-AI/lightning
https://github.com/Lightning-AI/lightning
https://github.com/Lightning-AI/lightning
https://github.com/Lightning-AI/lightning
https://github.com/Lightning-AI/lightning
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://github.com/lmmentel/mendeleev
https://github.com/lmmentel/mendeleev
https://github.com/lmmentel/mendeleev
https://github.com/lmmentel/mendeleev
https://github.com/lmmentel/mendeleev
https://tikz.net/neural_networks
https://tikz.net/neural_networks
https://tikz.net/neural_networks
https://tikz.net/neural_networks
https://tikz.net/neural_networks
https://www.newglass.jp/interglad_n/gaiyo/info_e.html
https://www.newglass.jp/interglad_n/gaiyo/info_e.html
https://www.newglass.jp/interglad_n/gaiyo/info_e.html
https://www.newglass.jp/interglad_n/gaiyo/info_e.html
https://www.newglass.jp/interglad_n/gaiyo/info_e.html
https://www.newglass.jp/interglad_n/gaiyo/info_e.html
https://www.newglass.jp/interglad_n/gaiyo/info_e.html
https://www.newglass.jp/interglad_n/gaiyo/info_e.html
https://www.newglass.jp/interglad_n/gaiyo/info_e.html
https://www.newglass.jp/interglad_n/gaiyo/info_e.html

8 Predicting Properties of Oxide Glasses Using Informed Neural Networks 185

27. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research 12, 2825–2830 (2011)

28. Pilania, G.: Machine learning in materials science: From explainable predictions to
autonomous design. Computational Materials Science 193, 110360 (2021)

29. Pinkus, A.: Approximation theory of the MLP model in neural networks. Acta Numerica 8,
143–195 (1999)

30. Ravinder, Venugopal, V., Bishnoi, S., Singh, S., Zaki, M., Grover, H.S., Bauchy, M., Agarwal,
M., Krishnan, N.A.: Artificial intelligence and machine learning in glass science and technol-
ogy: 21 challenges for the 21st century. International Journal of Applied Glass Science 12(3),
277–292 (2021)

31. Ravinder, R., Sridhara, K.H., Bishnoi, S., Grover, H.S., Bauchy, M., Jayadeva, Kodamana, H.,
Krishnan, N.A.: Deep learning aided rational design of oxide glasses. Materials Horizons 7(7),
1819–1827 (2020)

32. Rokach, L.: Ensemble-based classifiers. Artificial Intelligence Review 33, 1–39 (2010)
33. Shih, Y.T., Shi, Y., Huang, L.: Predicting glass properties by using physics- and chemistry-

informed machine learning models. Journal of Non-Crystalline Solids 584, 121511 (2022)
34. Tandia, A., Onbasli, M.C., Mauro, J.C.: Machine learning for glass modeling. In: Springer

Handbook of Glass, pp. 1157–1192. Springer (2019)
35. The pandas development team: pandas-dev/pandas: Pandas. https://github.com/pandas-dev/

pandas. License: BSD-3-Clause
36. Vasudevan, R.K., Choudhary, K., Mehta, A., Smith, R., Kusne, G., Tavazza, F., Vlcek, L.,

Ziatdinov, M., Kalinin, S.V., Hattrick-Simpers, J.: Materials science in the artificial intelligence
age: high-throughput library generation, machine learning, and a pathway from correlations to
the underpinning physics. MRS communications 9(3), 821–838 (2019)

37. Von Rueden, L., Mayer, S., Beckh, K., Georgiev, B., Giesselbach, S., Heese, R., Kirsch, B.,
Pfrommer, J., Pick, A., Ramamurthy, R., et al.: Informed machine learning–A taxonomy and
survey of integrating prior knowledge into learning systems. IEEE Transactions on Knowledge
and Data Engineering 35(1), 614–633 (2021)

38. Wagstaff, E., Fuchs, F.B., Engelcke, M., Osborne, M.A., Posner, I.: Universal approximation
of functions on sets. Journal of Machine Learning Research 23(151), 1–56 (2022)

39. Wang, A.Y.T., Murdock, R.J., Kauwe, S.K., Oliynyk, A.O., Gurlo, A., Brgoch, J., Persson,
K.A., Sparks, T.D.: Machine learning for materials scientists: An introductory guide toward
best practices. Chemistry of Materials 32(12), 4954–4965 (2020)

40. Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R.R., Smola, A.J.: Deep
sets. Advances in Neural Information Processing Systems 30 (2017)

41. Zanotto, E., Coutinho, F.: How many non-crystalline solids can be made from all the elements
of the periodic table? Journal of Non-Crystalline Solids 347(1–3), 285–288 (2004)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://github.com/pandas-dev/pandas
https://github.com/pandas-dev/pandas
https://github.com/pandas-dev/pandas
https://github.com/pandas-dev/pandas
https://github.com/pandas-dev/pandas
https://github.com/pandas-dev/pandas
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 9
Graph Neural Networks for Predicting
Side Effects and New Indications of
Drugs Using Electronic Health Records

Jayant Sharma, Manuel Lentzen, Sophia Krix, Thomas Linden,
Sumit Madan, Van Dinh Tran, and Holger Fröhlich

Abstract Drug development is a costly and time-intensive process. However,
promising strategies such as drug repositioning and side effect prediction can help
to overcome these challenges. Repurposing approved drugs can significantly reduce
the time and resources required for preclinical and clinical trials. Furthermore, early
detection of potential safety issues is crucial for both drug development programs
and the wider healthcare system. For both goals, drug repositioning and side
effect prediction, existing machine learning (ML) approaches mainly rely on data
collected in preclinical phases, which is not necessarily representative of the real-
world situation faced by patients. In this chapter, we construct a knowledge graph
based on diagnoses, prescriptions and diagnostic procedures found in large-scale
electronic health records, as well as secondary information from different databases,
such as drug side effects and chemical compound structure. We show that modern
Graph Neural Networks (GNNs) allow for an accurate and interpretable prediction
of novel drug-indication and drug-side effect associations in the knowledge graph.

J. Sharma
Fraunhofer SCAI, Sankt Augustin, Germany
e-mail: jayant.sharma@scai.fraunhofer.de

M. Lentzen · S. Krix · T. Linden · H. Fröhlich (✉)
Fraunhofer SCAI, Sankt Augustin, Germany

b-it University of Bonn, Bonn, Germany
e-mail: manuel.lentzen@scai.fraunhofer.de; sophia.krix@scai.fraunhofer.de;
thomas.linden@scai.fraunhofer.de; holger.froehlich@scai.fraunhofer.de

S. Madan
Fraunhofer SCAI, Sankt Augustin, Germany

Computer Science, University of Bonn, Bonn, Germany
e-mail: sumit.madan@scai.fraunhofer.de

V. D. Tran
Computer Science, University of Freiburg, Freiburg, Germany
e-mail: dinh@informatik.uni-freiburg.de

© The Author(s) 2025
D. Schulz, C. Bauckhage (eds.), Informed Machine Learning,
Cognitive Technologies, https://doi.org/10.1007/978-3-031-83097-6_9

187

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-83097-6protect T1	extunderscore 9&domain=pdf

 885 40794 a 885 40794 a

mailto:jayant.sharma@scai.fraunhofer.de
mailto:jayant.sharma@scai.fraunhofer.de
mailto:jayant.sharma@scai.fraunhofer.de
mailto:jayant.sharma@scai.fraunhofer.de

 885 46329 a 885 46329 a

mailto:manuel.lentzen@scai.fraunhofer.de
mailto:manuel.lentzen@scai.fraunhofer.de
mailto:manuel.lentzen@scai.fraunhofer.de
mailto:manuel.lentzen@scai.fraunhofer.de

 14712 46329 a 14712
46329 a

mailto:sophia.krix@scai.fraunhofer.de
mailto:sophia.krix@scai.fraunhofer.de
mailto:sophia.krix@scai.fraunhofer.de
mailto:sophia.krix@scai.fraunhofer.de

 -2016 47436 a -2016 47436 a

mailto:thomas.linden@scai.fraunhofer.de
mailto:thomas.linden@scai.fraunhofer.de
mailto:thomas.linden@scai.fraunhofer.de
mailto:thomas.linden@scai.fraunhofer.de

 11394 47436 a 11394
47436 a

mailto:holger.froehlich@scai.fraunhofer.de
mailto:holger.froehlich@scai.fraunhofer.de
mailto:holger.froehlich@scai.fraunhofer.de
mailto:holger.froehlich@scai.fraunhofer.de

 885 52970 a 885 52970 a

mailto:sumit.madan@scai.fraunhofer.de
mailto:sumit.madan@scai.fraunhofer.de
mailto:sumit.madan@scai.fraunhofer.de
mailto:sumit.madan@scai.fraunhofer.de

 885 56845 a 885 56845 a

mailto:dinh@informatik.uni-freiburg.de
mailto:dinh@informatik.uni-freiburg.de
mailto:dinh@informatik.uni-freiburg.de
mailto:dinh@informatik.uni-freiburg.de
https://doi.org/10.1007/978-3-031-83097-6_9
https://doi.org/10.1007/978-3-031-83097-6_9
https://doi.org/10.1007/978-3-031-83097-6_9
https://doi.org/10.1007/978-3-031-83097-6_9
https://doi.org/10.1007/978-3-031-83097-6_9
https://doi.org/10.1007/978-3-031-83097-6_9
https://doi.org/10.1007/978-3-031-83097-6_9
https://doi.org/10.1007/978-3-031-83097-6_9
https://doi.org/10.1007/978-3-031-83097-6_9
https://doi.org/10.1007/978-3-031-83097-6_9
https://doi.org/10.1007/978-3-031-83097-6_9

188 J. Sharma et al.

Altogether, our work demonstrates the potential of GNNs for knowledge-informed
ML in healthcare.

9.1 Introduction

In recent years, there has been a growing trend in utilizing large-scale, structured
electronic health records (EHRs), including administrative claims data, to gain
insights into real-world patient trajectories and to develop predictive machine
learning models for various health-related outcomes. These outcomes include drug
resistance [3], heart failure [16], COVID-19 risk factors [20], risk factors of
epilepsy-related comorbidities [23], dementia risk [32], Parkinson’s Disease [56]
and many more. In addition to demographic information, administrative claims
data consists of time-stamped codes for diagnoses, prescriptions and diagnostic
procedures.

The main advantage of this type of data is that it is collected routinely in
large quantities in many healthcare systems worldwide. However, some significant
challenges are associated with this type of data, including bias in diagnosis coding
due to economic reasons. Since there is no unique mapping of a diagnosis to
a coding scheme such as International Statistical Classification of Diseases and
Related Health Problems (ICD),1 physicians may select codes that provide the
highest economic benefit rather than the most accurate diagnosis code. Moreover,
medications are often coded on a product and not on a chemical substance level,
which can lead to inconsistencies as several drugs might have the same chemical
substance. Further challenges arise due to the irregular nature of the time series
data, as the length of medical history and the time intervals between doctor visits
differ between patients. Despite these challenges, EHRs remain a valuable source
of information to gain insights into real-world patient trajectories and develop
predictive machine learning models for various health-related outcomes.

One promising use of EHR data is to construct knowledge graphs that can
subsequently be used for a variety of predictive machine learning models. These
graphs can be based on an individual patient’s medical history or constructed from
aggregated data from a large number of patients. A couple of studies have explored
the latter approach. For instance, a study by Rotmensch et al. utilized machine
learning techniques to automatically generate a knowledge graph linking diseases to
symptoms from aggregated EHR data [35]. The resulting graph was then compared
to the Google Health knowledge graph. Another example is the study from Cho
et al. in which a knowledge graph was derived from EHRs and used for knowledge
graph embedding with the graph convolutional HinSAGE network [14]. The learned
embeddings were then used to predict the onset of cardiovascular disease.

1 https://www.who.int/standards/classifications/classification-of-diseases.

https://www.who.int/standards/classifications/classification-of-diseases
https://www.who.int/standards/classifications/classification-of-diseases
https://www.who.int/standards/classifications/classification-of-diseases
https://www.who.int/standards/classifications/classification-of-diseases
https://www.who.int/standards/classifications/classification-of-diseases
https://www.who.int/standards/classifications/classification-of-diseases
https://www.who.int/standards/classifications/classification-of-diseases
https://www.who.int/standards/classifications/classification-of-diseases
https://www.who.int/standards/classifications/classification-of-diseases

9 Knowledge Informed Machine Learning in Healthcare 189

Generally, knowledge graph embedding has been increasingly applied through-
out recent years and multiple approaches exist. One of the earliest models for this
purpose was introduced by Bordes et al. and is called TransE [9]. TransE learns
low-dimensional embeddings for entities and relations in a knowledge graph, such
that the embedding of a head entity plus the embedding of a relation is close to
the embedding of a tail entity. Another model proposed by Zhang et al. is CrossE,
which incorporates an interaction matrix to model the interactions between entities
and relations [57]. The Graph Convolutional Network [21], introduced by Kipf and
Welling, is another method for generating knowledge graph embeddings. GCNs use
a convolution operation, applied to a node and its neighbors, to compute a new node
representation. The authors have shown that GCNs can be used for semi-supervised
node classification on several benchmark datasets. To handle multi-relational
graphs, Schlichtkrull et al. proposed an extension of GCNs named Relational Graph
Convolutional Network (R-GCN) [37]. In R-GCNs, each relation type in the graph
is treated as a distinct edge type, and the model learns separate weight matrices
for each relation type. The performance of R-GCNs was demonstrated on link
prediction and entity classification tasks.

The Graph Attention Network (GAT) [42], introduced by Velickovic et al., is
another approach that uses attention mechanisms to learn node representations.
GATs learn separate attention weights for each neighbor of a node, allowing the
model to focus on the most relevant neighbors for each node. The authors have
demonstrated that GATs outperform GCNs on several benchmark datasets. Most
recently, Liu et al. extended this approach by proposing a Relation-Aware Graph
ATtention network (RAGAT) [25]. Compared to the standard GAT, the attention
mechanism is extended to consider relations between nodes in addition to their
features and edge connections. To accomplish this, a relation matrix is incorporated
into the attention mechanism, which encodes the relationships between pairs of
nodes in the graph. This matrix is learned during training, and the attention weights
are then computed based on the features, edge connections, and relations between
the nodes.

In this chapter, we aim to perform Informed Machine Learning [44] by inte-
grating existing scientific knowledge and administrative claims data to develop
a machine learning (ML) framework based on the RAGAT model for predicting
(a) novel indication areas of existing drugs and (b) potential safety issues of
drugs. To our knowledge, this idea has not been well explored so far. Paik et al.
manually engineered similarity measures between drugs and disease to repurpose
the drug terbutaline sulfate for amyotrophic lateral sclerosis [31]. Other authors
have used traditional statistical/pharmaco-epidemiological methods for the same
purpose [11, 53], see [54] for an overview. The contribution of this chapter is to
show that (a) it is possible to construct a knowledge graph based on EHR data plus
additional information obtained from databases and (b) to integrate this knowledge
graph via modern Graph Neural Networks (GNN) into a learning algorithm,
which allows for predicting novel links with high accuracy, hence opening new
opportunities to leverage administrative claims data for drug repurposing and drug
safety monitoring.

190 J. Sharma et al.

9.2 Methods

In this section, we first provide an overview of the data utilized in our study and the
process of normalizing and mapping diagnosis and medication codes. Following
this, we describe the construction of our knowledge graphs and the integration of
existing scientific knowledge. Finally, we will provide information on the models
and evaluation methods employed in this study.

9.2.1 Overview About Data

For this study, we utilized data from the IBM Explorys® Therapeutic Dataset. The
dataset available to us comprises over 700 million records of 4.5 million patients
from all over the USA from 2010 until mid of 2021. It includes records of time-
stamped codes of prescribed drugs, noted diagnoses and performed procedures.
To avoid potential biases, we only focused on patients with one year of medical
history in this chapter. In the case of patients tested later on as COVID positive,
we only considered encounters one year prior to their first COVID diagnosis to
avoid unwanted bias induced by the pandemic outbreak in the healthcare setting.
Altogether, we ended up with more than 44 million records of 3.8 million patients.

9.2.2 Code Normalization and Mapping

The raw data includes different versions of ICD codes to represent diagnoses that are
not compatible with each other. Furthermore, individual ICD codes typically appear
rather rarely across patients, partially because the mapping of observed diagnoses
to ICD codes is non-unique. To address these aspects, we decided to normalize
diagnosis codes by mapping them to the PheWAS ontology [43], which has a far
lower number of terms compared to ICD.

Medications were mapped from RXNorm [30] to the widely employed
Anatomical-Chemical-Classification (ATC)2 system (5th level) scheme the World
Health Organisation provided, which pools chemically related substances together.

2 https://www.whocc.no/atc_ddd_index_and_guidelines/atc_ddd_index/.

https://www.whocc.no/atc_ddd_index_and_guidelines/atc_ddd_index/
https://www.whocc.no/atc_ddd_index_and_guidelines/atc_ddd_index/
https://www.whocc.no/atc_ddd_index_and_guidelines/atc_ddd_index/
https://www.whocc.no/atc_ddd_index_and_guidelines/atc_ddd_index/
https://www.whocc.no/atc_ddd_index_and_guidelines/atc_ddd_index/
https://www.whocc.no/atc_ddd_index_and_guidelines/atc_ddd_index/
https://www.whocc.no/atc_ddd_index_and_guidelines/atc_ddd_index/
https://www.whocc.no/atc_ddd_index_and_guidelines/atc_ddd_index/
https://www.whocc.no/atc_ddd_index_and_guidelines/atc_ddd_index/
https://www.whocc.no/atc_ddd_index_and_guidelines/atc_ddd_index/
https://www.whocc.no/atc_ddd_index_and_guidelines/atc_ddd_index/
https://www.whocc.no/atc_ddd_index_and_guidelines/atc_ddd_index/

9 Knowledge Informed Machine Learning in Healthcare 191

9.2.3 Initial Knowledge Graph Construction

Next to the code normalized data we described before, we integrated prior scientific
knowledge from the MEDI [48] and SIDER [22] databases to construct an initial
knowledge graph G = (V ,R,E). comprising entities V connected via relations R
and edges E as follows:

• Two diagnoses d, f were connected via an undirected edge of relation type co-
occurrence, if they were observed together within the same visit/encounter more
often than expected by chance (p-value ≤ 0.05., as explained below).

• A drug a was connected via a directed edge of relation type treated with to
diagnosis d, if (i) the prescription of a was observed together within the same
visit as the diagnosis d more often than expected by chance, and (ii) d has been
reported as indication area for a in the MEDI database.

• A drug a was connected via a directed edge of relation type causes to side effect
s, if s has been reported as side effect for a in the SIDER database.

• A medical procedure p was connected with a directed edge of relation type finds
out to diagnosis d, if the procedure and diagnosis were observed together within
the same visit more often than expected by chance (p-value ≤ 0.05.).

Figure 9.1 exemplifies this knowledge graph construction. Importantly, several
relation types were constructed based on two entities being observed within the
same visit more often than expected by chance to avoid spurious or false positive
edges. This was done by performing a hyper-geometric or one-sided Fisher’s exact
test: Let A,B . be two entities in the graph. Then a contingency table can be
constructed based on relative frequencies observed in the data:

A co-occurs with B A occurs, but not B

B occurs, but not A neither A nor B occurs

Based on this table, we can reject the null hypothesis that A and B occur
statistically independently of each other. We corrected resulting p-values for mul-
tiple testing using Holm’s method, which controls the family-wise error rate [18].
Only edges with a multiple testing corrected p-value below 0.05 were considered
for further analysis. In total, the resulting knowledge graph had 30,736 triples,
connecting 3087 nodes. Among these, 952 were diagnosis nodes, 858 drug nodes,
631 side effect nodes, and 646 procedure nodes. There were 8573 drug-indication
and 5239 drug-side effect relationships.

9.2.4 Extended Knowledge Graph Construction

In addition to the initial knowledge graph construction, we explored whether
adding more prior knowledge would enhance the link prediction performance. In

192 J. Sharma et al.

Fig. 9.1 Example about initial knowledge graph construction based on EHR data. Apart from
diagnosis-diagnosis, all other relations are unidirectional. The non-directional diagnosis co-
occurrence is established by training the model with flipped diagnosis relations and observing
the similarity in predictions performance metrics

particular, we used information on chemical compound similarity between drugs
and information on disease categories to enrich the existing knowledge graph. The
details are described below.

9.2.4.1 Chemical Compound Similarities

Based on the mapping of drugs to ATC codes, we retrieved SMILES string
representations of chemical compounds from DrugBank [50]. Subsequently, we
calculated Extended and Functional Connectivity Fingerprints (ECFP4, FCFP)
describing the pharmacophore and topological graph structure of each compound
[34], respectively. Both of these fingerprints result in a 1024 dimensional binary
vector representation of each compound. The similarity between each pair of
fingerprints C1, C2 . was then assessed via the Tanimoto-Jaccard coefficient

.T (C1, C2) = |C1 ∩ C2|
|C1 ∪ C2| , (9.1)

where C1 ∩ C2 . is the intersection between C1 . and C2 . and C1 ∪ C2 . their union.
Following common convention in the chemoinformatics literature, we considered

two compounds as highly similar if T (C1, C2) > 0.85. for either class of
fingerprint.3 In such a case we connected C1 . and C2 . with an edge of relation

3 https://chem.libretexts.org/Courses/Intercollegiate_Courses/Cheminformatics_OLCC_(2019)/6
%3A_Molecular_Similarity/6.2%3A_Similarity_Coefficients.

https://chem.libretexts.org/Courses/Intercollegiate_Courses/Cheminformatics_OLCC_(2019)/6%3A_Molecular_Similarity/6.2%3A_Similarity_Coefficients
https://chem.libretexts.org/Courses/Intercollegiate_Courses/Cheminformatics_OLCC_(2019)/6%3A_Molecular_Similarity/6.2%3A_Similarity_Coefficients
https://chem.libretexts.org/Courses/Intercollegiate_Courses/Cheminformatics_OLCC_(2019)/6%3A_Molecular_Similarity/6.2%3A_Similarity_Coefficients
https://chem.libretexts.org/Courses/Intercollegiate_Courses/Cheminformatics_OLCC_(2019)/6%3A_Molecular_Similarity/6.2%3A_Similarity_Coefficients
https://chem.libretexts.org/Courses/Intercollegiate_Courses/Cheminformatics_OLCC_(2019)/6%3A_Molecular_Similarity/6.2%3A_Similarity_Coefficients
https://chem.libretexts.org/Courses/Intercollegiate_Courses/Cheminformatics_OLCC_(2019)/6%3A_Molecular_Similarity/6.2%3A_Similarity_Coefficients
https://chem.libretexts.org/Courses/Intercollegiate_Courses/Cheminformatics_OLCC_(2019)/6%3A_Molecular_Similarity/6.2%3A_Similarity_Coefficients
https://chem.libretexts.org/Courses/Intercollegiate_Courses/Cheminformatics_OLCC_(2019)/6%3A_Molecular_Similarity/6.2%3A_Similarity_Coefficients
https://chem.libretexts.org/Courses/Intercollegiate_Courses/Cheminformatics_OLCC_(2019)/6%3A_Molecular_Similarity/6.2%3A_Similarity_Coefficients
https://chem.libretexts.org/Courses/Intercollegiate_Courses/Cheminformatics_OLCC_(2019)/6%3A_Molecular_Similarity/6.2%3A_Similarity_Coefficients
https://chem.libretexts.org/Courses/Intercollegiate_Courses/Cheminformatics_OLCC_(2019)/6%3A_Molecular_Similarity/6.2%3A_Similarity_Coefficients
https://chem.libretexts.org/Courses/Intercollegiate_Courses/Cheminformatics_OLCC_(2019)/6%3A_Molecular_Similarity/6.2%3A_Similarity_Coefficients
https://chem.libretexts.org/Courses/Intercollegiate_Courses/Cheminformatics_OLCC_(2019)/6%3A_Molecular_Similarity/6.2%3A_Similarity_Coefficients
https://chem.libretexts.org/Courses/Intercollegiate_Courses/Cheminformatics_OLCC_(2019)/6%3A_Molecular_Similarity/6.2%3A_Similarity_Coefficients
https://chem.libretexts.org/Courses/Intercollegiate_Courses/Cheminformatics_OLCC_(2019)/6%3A_Molecular_Similarity/6.2%3A_Similarity_Coefficients
https://chem.libretexts.org/Courses/Intercollegiate_Courses/Cheminformatics_OLCC_(2019)/6%3A_Molecular_Similarity/6.2%3A_Similarity_Coefficients
https://chem.libretexts.org/Courses/Intercollegiate_Courses/Cheminformatics_OLCC_(2019)/6%3A_Molecular_Similarity/6.2%3A_Similarity_Coefficients
https://chem.libretexts.org/Courses/Intercollegiate_Courses/Cheminformatics_OLCC_(2019)/6%3A_Molecular_Similarity/6.2%3A_Similarity_Coefficients
https://chem.libretexts.org/Courses/Intercollegiate_Courses/Cheminformatics_OLCC_(2019)/6%3A_Molecular_Similarity/6.2%3A_Similarity_Coefficients

9 Knowledge Informed Machine Learning in Healthcare 193

type chemically similar in the knowledge graph. Altogether, 1095 drug-drug
relationships were added to the knowledge graph in this manner.

9.2.4.2 Use of Diagnosis-Diagnosis Relationships

To encode relationships between diagnoses, we introduced a further relation type
same disease class. That means we set an edge between two diagnoses d1, d2 ., if they
shared the same parent in the PheWAS ontology. For example, “bacterial enteritis”
and “viral enteritis” share the parent “intestinal infection”. 1272 diagnosis-diagnosis
relationships were added to the knowledge graph in this manner.

9.2.5 Relation Aware Graph Attention Networks

In this study, we aimed to reposition drugs and predict adverse drug events
using a graph-based approach. To achieve this, we utilized a heterogeneous graph
representation with different relations and node types, on which we performed link
prediction.

We utilized a neural network architecture called Relation Aware Graph Attention
Networks (RAGATs) [25], which were recently introduced as an extension of Graph
Attention Networks (GATs) [42]. GATs are neural networks designed to analyze and
interpret graph-structured data by focusing on the graph’s most relevant nodes and
edges. This approach enables the network to generate more accurate and expressive
representations of the underlying graph structure. RAGATs take the GAT approach
one step further by considering the different relationships between nodes in a
graph, which the original GAT architecture did not account for. RAGATs do this
by using relation-aware message functions that calculate relation-specific attention
coefficients for each node in the graph. These coefficients are then combined with
the node’s feature to generate a new and more informative node representation. It is
worth noting that to the best of our knowledge, RAGATs have not been used before
for analyzing healthcare data. In the following paragraphs, we provide more details
on how we employed RAGATs to analyze the graph-structured data in our study.

For each relation type r , a learnable weight matrix Wr . is initiated to capture
common features associated with specific relations. Additionally, we augment the
knowledge graph by adding the inverse of each relationship and self-loops as
separate directions. To encode a triple (u, r, v). into a vector cr

(u,r,v) ., we use

.cr
(u,r,v) = Wreu + Wr(eu ◦ ev), (9.2)

where eu, ev ∈ Rd
. are the embeddings of entities u and v, and ◦. denotes the

Hadamard product.

194 J. Sharma et al.

Next, we calculate the message m(u,r,v) . using the relation-type specific weight
Wdir(r) . for either the original, inverse, or self-loop directions as

.m(u,r,v) = Wdir(r)c
r
(u,r,v). (9.3)

To compute the absolute attention coefficients bu,r . for each message eu→v ., we
use a learnable weight matrix Watt .and the LeakyReLU activation function, as shown
in (9.4). Then, we calculate the relative attention values using (9.5).

.b(u,r) = LeakyReLU(Wattm(u,r,v)). (9.4)

α(u,r) = exp(b(u,r))
 ∑

(i∈Nv)

 ∑
r∈Ri,u

exp(b(i,r))
(9.5)

Here, Nv . is the set of neighbor nodes of v, and Ri,u . is the set of relation types from
node i to node u .

We use a multi-head attention mechanism to generate node representations. For
a given node v, we compute the node embedding e'

v . by computing a weighted sum
of the messages passed from its neighbors using the attention coefficients αh

u,r . and
message embeddings mh

(u,r,v) . across H attention heads, as shown in (9.6) where
tanh. is the hyperbolic tangent

.e'
v = tanh

⎛

⎝ 1

H

H⎲

h=1

⎲

(u,r)∈Nv

αh
u,rm

h
(u,r,v)

⎞

⎠ . (9.6)

We also linearly project each relation embedding er . to have the same dimension
as the updated node embedding e'

v . using a trainable weight matrix Wrel . and

.e'
r = Wreler . (9.7)

For decoding, we use InteractE [41], which employs random feature permu-
tations, reshaping of permuted features, and circular convolution. The decoder
produces a probability p(u,r,v) . for each triple. During the training of the RAGAT
model, we employ the binary cross entropy loss function given by

.L = − 1

N

⎲

i

(
ti · log(pi) + (1 − ti) · log(1 − pi)

)
, (9.8)

where i runs over all triples, pi . is the corresponding probability predicted by the
model, and ti . corresponds to the true class label indicating the existence or non-
existence of the triple in the training data.

9 Knowledge Informed Machine Learning in Healthcare 195

9.2.6 Evaluation against Alternative Methods

We compared RAGAT’s against TransE [10], DistMult [55] and ComplEx [40],
which are well-known shallow, geometric knowledge graph embedding approaches.
TransE regards relations as translations from subject to object entities. The intuition
is that the embedding of an object o should be close to that of the subject s plus that
of the relation type r , if (s, r, o). holds

.f (s, r, o) = ||es + er − eo||. (9.9)

DistMult relies on the following scoring function:

.f (s, r, o) = ||es ◦ er ◦ eo||1. (9.10)

ComplEx is an extension of DistMult, which employs an embedding of s, r, o. into
the complex space and then uses

.f (s, r, o) = Re(es ◦ er ◦ ēo) (9.11)

as scoring function.
We trained and tested RAGAT and competing methods all on the same data:

We performed a stratified split of the overall set of triples into 64% for training,
16% for validation and 20% for testing. We performed Bayesian hyperparameter
optimization using Optuna [1] (version 2.10.0) on the validation set. During the
tuning process, the values of hyperparameters were sampled by Tree-structured
Parzen Estimator (TPE) [7, 8] from a user-defined search space. We used the Mean
Reciprocal Rank (MRR) as objective function for hyperparameter optimization.
Table 9.1 provides the list of hyperparameters and their search space. A total of
65 trials were run.

9.2.7 Performance Measures

The evaluation of RAGAT relies on an “open world” assumption, meaning that
non-existing relations may not necessarily be considered negatives. In this study,

Table 9.1 RAGAT
hyper-parameters and their
ranges, in which they were
optimized during Bayesian
hyperparameter optimization

Hyperparameter Range

Learning rate [10−5 ., 10−1 .]

Mini batch size [56, 1024]

Label smoothing [0.04, 0.4]

Attention heads 1, 2, 3

Drop-out ratio [0, 0.5]

196 J. Sharma et al.

we evaluate the performance of the compared models on an unseen test set using
common rank-based measures used in positive-unlabeled learning: Hits@K, mean
reciprocal rank, and the area under the precision-recall curve. These metrics are
particularly useful for large and sparse knowledge graphs, where numerous negative
triples are unobserved. Hits@K and MRR are well-established evaluation metrics
for knowledge graph completion models, making them ideal for models trained
using positive-unlabeled learning, where only positive triples are labeled, and the
aim is to predict the missing links in the knowledge graph.

• Hits@k Hits@k measures the proportion of correct entities that are included in
the top k predictions generated by the model. Specifically, for a given set of test
triples (u, r, v), where the model predicts the probability of each triple being true,
the entities are ranked based on their predicted probabilities. If the correct entity
is among the top k predicted entities, we count it as a hit. The Hits@k metric
is defined as the proportion of test triples for which at least one of the correct
entities appears in the top k predicted entities.

• Mean Reciprocal Rank (MRR) MRR is calculated by taking the average of the
reciprocal ranks of the correct entities. For each test triple (u, r, v), we rank the
entities based on their predicted probabilities and calculate the reciprocal rank
of the correct entity, i.e., 1 if the correct entity is ranked first, 1/2 if it is ranked
second, 1/3 if it is ranked third, and so on. The MRR metric is defined as the
average of the reciprocal ranks over all test triples. Let ri . indicate the rank for
triple i. Then the MRR ∈ (0, 1]. is defined as

.MRR = 1

n

⎲

i

1

ri
. (9.12)

• Area under Precision Recall Curve (AUPRC) To determine the AUPRC, we
rank the test triples based on their predicted probabilities and gradually increase
the classification threshold from 0 to 1. We compute the precision and recall
values based on the top-ranked triples at each threshold. Precision is the ratio of
correct predictions to the total number of positive predictions, while recall is the
ratio of correct predictions to the total number of positive instances in the test
set. We can create a precision-recall curve by plotting precision against recall at
each threshold and calculating the AUPRC as the area under this curve. A perfect
classifier would have an AUPRC of 1, while a random classifier would have an
AUPRC of 0.5. The AUPRC score ranges from 0 to 1.

9.3 Results

This section presents the outcomes of our experiments. We first describe the
performance of various models in predicting drug-side effects and drug-indication

9 Knowledge Informed Machine Learning in Healthcare 197

relations. Subsequently, we examine a newly predicted indication and adverse
effects in light of existing literature.

9.3.1 Performance Comparison

We compare the performance of our RAGAT model with baseline models TransE,
DistMult, and ComplEx. RAGAT was trained on both the initial and the extended
knowledge graphs, and the following sections highlight these comparisons.

9.3.1.1 Initial Knowledge Graph

Comparing our RAGAT model against TransE, DistMult, and ComplEx demon-
strated an apparent increase in prediction performance for all performance measures
(Fig. 9.2). This impression was confirmed when focusing on the prediction perfor-
mances for drug–side effect and drug–indication relations separately (Table 9.2).
Notably, the prediction performance for drug–side effect links was lower than for
drug–indication relationships because of the comparably smaller number of side
effect links in our dataset.

9.3.1.2 Extended Knowledge Graph

We compared the prediction performance of our RAGAT model trained on the initial
knowledge graph with the one trained on the extended knowledge graph. Only a

(a) (b)

Fig. 9.2 Overall performance evaluation of tested models. (a) Rank-based evaluation metrics:
MRR and Hits@k. (b) Precision recall curve

198 J. Sharma et al.

Table 9.2 Relation-type specific prediction performance for side effects and novel indications

Relation type Model MRR Hits@10 Hits@3 Hits@1 AUPR

Drug-indication RAGAT (initial KG) 0.61 0.8 0.65 0.52 0.96

RAGAT (extended KG) 0.61 0.8 0.67 0.51 0.96

TransE 0.42 0.66 0.46 0.3 0.94

DistMult 0.40 0.68 0.45 0.27 0.93

ComplEx 0.53 0.77 0.58 0.41 0.95

Drug-side effect RAGAT (initial KG) 0.32 0.56 0.36 0.21 0.91

RAGAT (extended KG) 0.34 0.58 0.4 0.23 0.87

TransE 0.25 0.46 0.26 0.15 0.84

DistMult 0.28 0.46 0.29 0.20 0.88

ComplEx 0.36 0.56 0.39 0.27 0.89

(a) (b)

Fig. 9.3 Overall performance evaluation of RAGAT models trained on the initial and the extended
knowledge graphs, respectively. (a) Rank-based evaluation metrics: MRR and Hits@k. (b)
Precision recall curve

marginal improvement of link prediction performance could be observed in general
(Fig. 9.3) and also more specifically on the level of drug-indication and drug-side
effect relations (Table 9.2). The reason might be that comparably few edges were
added via the knowledge graph extension.

9.3.2 Use Case: Trazodone in the Treatment of Bipolar
Disorder

Due to the limited enhancement of prediction performance by the extended knowl-
edge graph for the following use case, we employed the RAGAT model trained
on the initial knowledge graph. The model predicted a new link between bipolar

9 Knowledge Informed Machine Learning in Healthcare 199

disorder and the drug Trazodone, a triazolopyridine compound with antidepressant,
anxiolytic, sedative, and hypnotic properties. Figure 9.4 shows the corresponding
subgraph of our knowledge graph with the predicted link in orange. The inferred
edge establishes an association between Trazodone to bipolar disorder due to the
path

. Bipolar Disorder
co-occurence−−−−−−−→ Anxiety Disorder

treated with−−−−−−−→ Trazodone.

That means this path is one possible explanation of the newly predicted triple
(Bipolar Disorder, treated with, Trazodone). Further paths supporting this triple are

. Bipolar Disorder
co-occurence−−−−−−−→ Alcoholism

treated with−−−−−−−→ Trazodone

and

. Bipolar Disorder
co-occurence−−−−−−−→ Essential Hypertension

treated with−−−−−−−→ Trazodone.

Figure 9.5 visualizes the weights learned by the model in the last attention layer.
The figure shows that the model puts strong attention (dark blue hues) on the direct
neighbors of the node “Bipolar Disorder” that are directly connected to Trazodone.

In the literature, Trazodone has been found to reduce acute psychomotor
activation in patients with bipolar disorder [5]. Furthermore, low doses of Trazodone

Fig. 9.4 Repositioning of Trazodone for treatment of bipolar disorder: The figure shows a zoom
into the knowledge graph. The predicted association is shown as a thick yellow edge. Known
associations between drugs and side effects are colored red; known associations between drugs
and indications are colored green. Associations between diagnoses are depicted in blue

200 J. Sharma et al.

Fig. 9.5 Attention weights learned by RAGAT model. A darker color indicates a higher attention
weight

in combination with a mood stabilizer have been reported as a safe treatment of
insomnia in patients with bipolar disorder [49].

9.3.3 Predicted Side Effects of Marketed Drugs

In addition to investigating newly predicted indications, we examined the adverse
effects predicted by our RAGAT model. One of the RAGAT model’s most confident
side effects links involves the previously mentioned drug Trazodone. It was
predicted to cause headaches, and we confirmed this relationship using NSIDES
[39], another drug-side effect database. In addition, migraines induced by Trazodone
have been reported in the literature [51]. Additionally, the model predicts asthenia
and nausea, consistent with official British National Health Service reports.4

Carboplatin is another drug that was predicted to cause headaches by our model.
In recent decades, this platinum compound has been used to treat ovarian and small-
cell lung cancer, among others [13, 17, 45]. Although headache is a well-known
side effect, it was previously unaccounted for in the SIDER database but could be
predicted using our RAGAT model.

Further examples are side effects related to the drugs tolcapone and eltrombopag.
Tolcapone, which was predicted to induce orthostatic hypotension, is a medication

4 https://www.nhs.uk/medicines/trazodone/side-effects-of-trazodone/, https://www.medicines.org.
uk/emc/product/4976.

https://www.nhs.uk/medicines/trazodone/side-effects-of-trazodone/
https://www.nhs.uk/medicines/trazodone/side-effects-of-trazodone/
https://www.nhs.uk/medicines/trazodone/side-effects-of-trazodone/
https://www.nhs.uk/medicines/trazodone/side-effects-of-trazodone/
https://www.nhs.uk/medicines/trazodone/side-effects-of-trazodone/
https://www.nhs.uk/medicines/trazodone/side-effects-of-trazodone/
https://www.nhs.uk/medicines/trazodone/side-effects-of-trazodone/
https://www.nhs.uk/medicines/trazodone/side-effects-of-trazodone/
https://www.nhs.uk/medicines/trazodone/side-effects-of-trazodone/
https://www.nhs.uk/medicines/trazodone/side-effects-of-trazodone/
https://www.medicines.org.uk/emc/product/4976
https://www.medicines.org.uk/emc/product/4976
https://www.medicines.org.uk/emc/product/4976
https://www.medicines.org.uk/emc/product/4976
https://www.medicines.org.uk/emc/product/4976
https://www.medicines.org.uk/emc/product/4976
https://www.medicines.org.uk/emc/product/4976
https://www.medicines.org.uk/emc/product/4976

9 Knowledge Informed Machine Learning in Healthcare 201

used alongside levodopa to treat Parkinson’s disease [4]. However, several adverse
effects, including orthostatic hypotension, are now known in literature, and the drug
is no longer used [27]. The last example of successful side effect prediction by our
RAGAT model is the link between eltrombopag and muscle cramps. The drug is
used, for instance, to treat Thrombocytopenia, but several side effects, including the
predicted muscle cramps, have been reported [19].

9.4 Discussion

Our study demonstrates one possible strategy of Informed Machine Learning [44]
by utilizing large-scale EHR data and existing knowledge from MEDI, SIDER,
DrugBank, and PheWAS to construct a rich knowledge graph that incorporates
diagnoses, drugs, their indications, known side effects, and chemical compound
similarities. We showed that a recently published GNN variant (RAGAT) can
be trained on such a graph to predict new links between drugs and indications
as well as between drugs and side effects. Our RAGAT model outperformed
classical geometric knowledge embedding techniques, such as TransE, DistMult and
ComplEx, demonstrating the potential of such an approach for optimizing resource
use by suggesting novel indications for existing drugs and detecting potential side
effects in a timely manner.

The idea of repositioning existing drugs for new indications has recently gained
a lot of attention in the context of the ongoing COVID-19 pandemic [24, 36]. In
general, the approach is motivated by the fact that the development of a new drug
typically lasts 10 to 15 years and can cost over a billion dollars [12, 52]. Moreover,
serious side effects do not only impose a strong risk for failure of drug development
programs (with respective financial consequences) but can later on also result in
elevated public health costs [58]. Indeed, unwanted side effects of drugs have been
estimated to be responsible for almost 5% of all hospital admissions worldwide [6].

While there is a large body of literature on various ML approaches for drug
repositioning [2, 26, 28, 29, 33, 38, 46], these techniques typically rely on data
that is very different from the one studied in this chapter because it is collected
in a preclinical stage via biological assays (e.g., expression of genes in a cell
line). However, the question lies in how far such research data is representative
of the real-world situation in a patient. Routinely collected EHR data can provide
valuable insights into real-world patient trajectories, but using such data for ML
and in particular for drug repositioning and side effect prediction is not trivial. Our
work showcases the potential of EHR data for GNN-based drug repositioning and
safety assessment and clearly distinguishes itself from recently published studies,
which use GNNs for different applications such as predicting disease outcomes of
an individual patient [15, 47].

202 J. Sharma et al.

9.5 Conclusion

The present work demonstrates the potential of GNNs for integrating a knowledge
graph into a learning algorithm, which is one possible strategy of Informed Machine
Learning [44]. In particular, we showed that in this way it is possible to use modern
GNNs for predicting side effects and new indications of existing drugs on the basis
of EHRs.

In future work, a comparison of GNN/ML based predictions with findings
obtained via conventional statistical/pharmaco-epidemiological techniques would
be interesting. Finally, there is the important open question, of how far our models
and the insights derived from these models would generalize to other healthcare
systems outside the USA. Here, the clear limiting factor is currently the availability
and accessibility of corresponding data.

Acknowledgments This contribution was partially supported by the Fraunhofer Cluster of
Excellence “Cognitive Internet Technologies”.

References

1. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperpa-
rameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (2019)

2. Aliper, A., Plis, S., Artemov, A., Ulloa, A., Mamoshina, P., Zhavoronkov, A.: Deep Learning
Applications for Predicting Pharmacological Properties of Drugs and Drug Repurposing Using
Transcriptomic Data. Molecular Pharmaceutics 13(7), 2524–2530 (2016). https://doi.org/10.
1021/acs.molpharmaceut.6b00248

3. An, S., Malhotra, K., Dilley, C., Han-Burgess, E., Valdez, J.N., Robertson, J., Clark, C.,
Westover, M.B., Sun, J.: Predicting drug-resistant epilepsy — A machine learning approach
based on administrative claims data. Epilepsy & Behavior 89, 118–125 (2018). https://doi.org/
10.1016/j.yebeh.2018.10.013

4. Aronson, J.: Meyler’s Side Effects of Drugs: The International Encyclopedia of Adverse Drug
Reactions and Interactions. ISSN. Elsevier Science. URL https://books.google.de/books?id=
NOKoBAAAQBAJ

5. Ballerio, M., Politi, P., Crapanzano, C., Emanuele, E., Cuomo, A., Goracci, A., Fagiolini, A.:
Clinical effectiveness of parenteral trazodone for the management of psychomotor activation
in patients with bipolar disorder. Neuro endocrinology letters 39(3), 205–208 (2018)

6. Beijer, H., de Blaey, C.: Hospitalisations caused by adverse drug reactions (ADR): A meta-
analysis of observational studies. Pharmacy World and Science 24(2), 46–54 (2002). https://
doi.org/10.1023/A:1015570104121

7. Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter optimization.
In: Proceedings of the 24th International Conference on Neural Information Processing
Systems, NIPS’11, p. 2546–2554. Curran Associates Inc., Red Hook, NY, USA (2011)

8. Bergstra, J., Yamins, D., Cox, D.: Making a Science of Model Search: Hyperparameter
Optimization in Hundreds of Dimensions for Vision Architectures. In: Proceedings of the
30th International Conference on Machine Learning, pp. 115–123. PMLR (2013)

9. Bordes, A., Usunier, N., Garcia-Durán, A., Weston, J., Yakhnenko, O.: Translating embeddings
for modeling multi-relational data. In: Proceedings of the 26th International Conference

https://doi.org/10.1021/acs.molpharmaceut.6b00248
https://doi.org/10.1021/acs.molpharmaceut.6b00248
https://doi.org/10.1021/acs.molpharmaceut.6b00248
https://doi.org/10.1021/acs.molpharmaceut.6b00248
https://doi.org/10.1021/acs.molpharmaceut.6b00248
https://doi.org/10.1021/acs.molpharmaceut.6b00248
https://doi.org/10.1021/acs.molpharmaceut.6b00248
https://doi.org/10.1021/acs.molpharmaceut.6b00248
https://doi.org/10.1016/j.yebeh.2018.10.013
https://doi.org/10.1016/j.yebeh.2018.10.013
https://doi.org/10.1016/j.yebeh.2018.10.013
https://doi.org/10.1016/j.yebeh.2018.10.013
https://doi.org/10.1016/j.yebeh.2018.10.013
https://doi.org/10.1016/j.yebeh.2018.10.013
https://doi.org/10.1016/j.yebeh.2018.10.013
https://doi.org/10.1016/j.yebeh.2018.10.013
https://doi.org/10.1016/j.yebeh.2018.10.013
https://doi.org/10.1016/j.yebeh.2018.10.013
https://books.google.de/books?id=NOKoBAAAQBAJ
https://books.google.de/books?id=NOKoBAAAQBAJ
https://books.google.de/books?id=NOKoBAAAQBAJ
https://books.google.de/books?id=NOKoBAAAQBAJ
https://books.google.de/books?id=NOKoBAAAQBAJ
https://books.google.de/books?id=NOKoBAAAQBAJ
https://books.google.de/books?id=NOKoBAAAQBAJ
https://doi.org/10.1023/A:1015570104121
https://doi.org/10.1023/A:1015570104121
https://doi.org/10.1023/A:1015570104121
https://doi.org/10.1023/A:1015570104121
https://doi.org/10.1023/A:1015570104121
https://doi.org/10.1023/A:1015570104121
https://doi.org/10.1023/A:1015570104121

9 Knowledge Informed Machine Learning in Healthcare 203

on Neural Information Processing Systems - Volume 2, NIPS’13, p. 2787–2795. Curran
Associates Inc., Red Hook, NY, USA (2013)

10. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating Embeddings
for Modeling Multi-relational Data. In: Advances in Neural Information Processing Systems,
vol. 26. Curran Associates, Inc. (2013)

11. Brilliant, M.H., Vaziri, K., Connor, T.B., Schwartz, S.G., Carroll, J.J., McCarty, C.A., Schrodi,
S.J., Hebbring, S.J., Kishor, K.S., Flynn, H.W., Moshfeghi, A.A., Moshfeghi, D.M., Fini, M.E.,
McKay, B.S.: Mining Retrospective Data for Virtual Prospective Drug Repurposing: L-DOPA
and Age-related Macular Degeneration. The American Journal of Medicine 129(3), 292–298
(2016). https://doi.org/10.1016/j.amjmed.2015.10.015

12. Brown, D.G., Wobst, H.J., Kapoor, A., Kenna, L.A., Southall, N.: Clinical development times
for innovative drugs. Nature Reviews Drug Discovery (2021). https://doi.org/10.1038/d41573-
021-00190-9

13. Buckingham, R., Fitt, J., Sitziaz, J.: Patients’ experiences of chemotherapy: side-effects of
carboplatin in the treatment of carcinoma of the ovary 6(1), 59–71. https://doi.org/10.1111/
j.1365-2354.1997.tb00270.x. UR L https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-
2354.1997.tb00270.x. _eprint : https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2354.
1997.tb00270.x

14. Cho, H.N., Ahn, I., Gwon, H., Kang, H.J., Kim, Y., Seo, H., Choi, H., Kim, M., Han, J., Kee, G.,
Jun, T.J., Kim, Y.H.: Heterogeneous graph construction and hinsage learning from electronic
medical records 12(1), 21152. https://doi.org/10.1038/s41598-022-25693-2

15. Choi, E., Xu, Z., Li, Y., Dusenberry, M.W., Flores, G., Xue, Y., Dai, A.M.: Learning the
Graphical Structure of Electronic Health Records with Graph Convolutional Transformer.
arXiv:1906.04716 [cs, stat] (2020)

16. Desai, R.J., Wang, S.V., Vaduganathan, M., Evers, T., Schneeweiss, S.: Comparison of Machine
Learning Methods With Traditional Models for Use of Administrative Claims With Electronic
Medical Records to Predict Heart Failure Outcomes. JAMA Network Open 3(1), e1918962
(2020). https://doi.org/10.1001/jamanetworkopen.2019.18962

17. Ford, J., Osborn, C., Barton, T., Bleehen, N.M.: A phase i study of intravenous RMP-7 with
carboplatin in patients with progression of malignant glioma 34(11), 1807–1811. https://doi.
org/10.1016/S0959-8049(98)00155-5. UR L https://www.sciencedirect.com/science/article/
pii/S0959804998001555

18. Holm, S.: A Simple Sequentially Rejective Multiple Test Procedure. Scandinavian Journal of
Statistics 6(2), 65–70 (1979)

19. Hong, Y., Li, X., Wan, B., Li, N., Chen, Y.: Efficacy and safety of eltrombopag for aplastic
anemia: A systematic review and meta-analysis 39(2), 141–156. https://doi.org/10.1007/
s40261-018-0725-2

20. Jucknewitz, R., Weidinger, O., Schramm, A.: Covid-19 risk factors: Statistical learning from
German healthcare claims data. Infectious Diseases (London, England) 54(2), 110–119 (2022).
https://doi.org/10.1080/23744235.2021.1982141

21. Kipf, T.N., Welling, M.: Semi-Supervised Classification with Graph Convolutional Networks.
arXiv:1609.02907 [cs, stat] (2017)

22. Kuhn, M., Letunic, I., Jensen, L.J., Bork, P.: The SIDER database of drugs and side effects.
Nucleic Acids Research 44(Database issue), D1075–D1079 (2016). https://doi.org/10.1093/
nar/gkv1075

23. Linden, T., De Jong, J., Lu, C., Kiri, V., Haeffs, K., Fröhlich, H.: An Explainable Multimodal
Neural Network Architecture for Predicting Epilepsy Comorbidities Based on Administrative
Claims Data. Frontiers in Artificial Intelligence 4, 58 (2021). https://doi.org/10.3389/frai.2021.
610197

24. Linden, T., Hanses, F., Domingo-Fernández, D., DeLong, L.N., Kodamullil, A.T., Schneider, J.,
Vehreschild, M.J.G.T., Lanznaster, J., Ruethrich, M.M., Borgmann, S., Hower, M., Wille, K.,
Feldt, T., Rieg, S., Hertenstein, B., Wyen, C., Roemmele, C., Vehreschild, J.J., Jakob, C.E.M.,
Stecher, M., Kuzikov, M., Zaliani, A., Fröhlich, H.: Machine Learning Based Prediction of
COVID-19 Mortality Suggests Repositioning of Anticancer Drug for Treating Severe Cases.

https://doi.org/10.1016/j.amjmed.2015.10.015
https://doi.org/10.1016/j.amjmed.2015.10.015
https://doi.org/10.1016/j.amjmed.2015.10.015
https://doi.org/10.1016/j.amjmed.2015.10.015
https://doi.org/10.1016/j.amjmed.2015.10.015
https://doi.org/10.1016/j.amjmed.2015.10.015
https://doi.org/10.1016/j.amjmed.2015.10.015
https://doi.org/10.1016/j.amjmed.2015.10.015
https://doi.org/10.1016/j.amjmed.2015.10.015
https://doi.org/10.1016/j.amjmed.2015.10.015
https://doi.org/10.1038/d41573-021-00190-9
https://doi.org/10.1038/d41573-021-00190-9
https://doi.org/10.1038/d41573-021-00190-9
https://doi.org/10.1038/d41573-021-00190-9
https://doi.org/10.1038/d41573-021-00190-9
https://doi.org/10.1038/d41573-021-00190-9
https://doi.org/10.1038/d41573-021-00190-9
https://doi.org/10.1038/d41573-021-00190-9
https://doi.org/10.1038/d41573-021-00190-9
https://doi.org/10.1111/j.1365-2354.1997.tb00270.x
https://doi.org/10.1111/j.1365-2354.1997.tb00270.x
https://doi.org/10.1111/j.1365-2354.1997.tb00270.x
https://doi.org/10.1111/j.1365-2354.1997.tb00270.x
https://doi.org/10.1111/j.1365-2354.1997.tb00270.x
https://doi.org/10.1111/j.1365-2354.1997.tb00270.x
https://doi.org/10.1111/j.1365-2354.1997.tb00270.x
https://doi.org/10.1111/j.1365-2354.1997.tb00270.x
https://doi.org/10.1111/j.1365-2354.1997.tb00270.x
https://doi.org/10.1111/j.1365-2354.1997.tb00270.x
https://doi.org/10.1111/j.1365-2354.1997.tb00270.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2354.1997.tb00270.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2354.1997.tb00270.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2354.1997.tb00270.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2354.1997.tb00270.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2354.1997.tb00270.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2354.1997.tb00270.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2354.1997.tb00270.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2354.1997.tb00270.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2354.1997.tb00270.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2354.1997.tb00270.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2354.1997.tb00270.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2354.1997.tb00270.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2354.1997.tb00270.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2354.1997.tb00270.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2354.1997.tb00270.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2354.1997.tb00270.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2354.1997.tb00270.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2354.1997.tb00270.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2354.1997.tb00270.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2354.1997.tb00270.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2354.1997.tb00270.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2354.1997.tb00270.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2354.1997.tb00270.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2354.1997.tb00270.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2354.1997.tb00270.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2354.1997.tb00270.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2354.1997.tb00270.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2354.1997.tb00270.x
https://doi.org/10.1038/s41598-022-25693-2
https://doi.org/10.1038/s41598-022-25693-2
https://doi.org/10.1038/s41598-022-25693-2
https://doi.org/10.1038/s41598-022-25693-2
https://doi.org/10.1038/s41598-022-25693-2
https://doi.org/10.1038/s41598-022-25693-2
https://doi.org/10.1038/s41598-022-25693-2
https://doi.org/10.1038/s41598-022-25693-2
https://doi.org/10.1038/s41598-022-25693-2
https://doi.org/10.1001/jamanetworkopen.2019.18962
https://doi.org/10.1001/jamanetworkopen.2019.18962
https://doi.org/10.1001/jamanetworkopen.2019.18962
https://doi.org/10.1001/jamanetworkopen.2019.18962
https://doi.org/10.1001/jamanetworkopen.2019.18962
https://doi.org/10.1001/jamanetworkopen.2019.18962
https://doi.org/10.1001/jamanetworkopen.2019.18962
https://doi.org/10.1001/jamanetworkopen.2019.18962
https://doi.org/10.1016/S0959-8049(98)00155-5
https://doi.org/10.1016/S0959-8049(98)00155-5
https://doi.org/10.1016/S0959-8049(98)00155-5
https://doi.org/10.1016/S0959-8049(98)00155-5
https://doi.org/10.1016/S0959-8049(98)00155-5
https://doi.org/10.1016/S0959-8049(98)00155-5
https://doi.org/10.1016/S0959-8049(98)00155-5
https://doi.org/10.1016/S0959-8049(98)00155-5
https://www.sciencedirect.com/science/article/pii/S0959804998001555
https://www.sciencedirect.com/science/article/pii/S0959804998001555
https://www.sciencedirect.com/science/article/pii/S0959804998001555
https://www.sciencedirect.com/science/article/pii/S0959804998001555
https://www.sciencedirect.com/science/article/pii/S0959804998001555
https://www.sciencedirect.com/science/article/pii/S0959804998001555
https://www.sciencedirect.com/science/article/pii/S0959804998001555
https://www.sciencedirect.com/science/article/pii/S0959804998001555
https://doi.org/10.1007/s40261-018-0725-2
https://doi.org/10.1007/s40261-018-0725-2
https://doi.org/10.1007/s40261-018-0725-2
https://doi.org/10.1007/s40261-018-0725-2
https://doi.org/10.1007/s40261-018-0725-2
https://doi.org/10.1007/s40261-018-0725-2
https://doi.org/10.1007/s40261-018-0725-2
https://doi.org/10.1007/s40261-018-0725-2
https://doi.org/10.1007/s40261-018-0725-2
https://doi.org/10.1080/23744235.2021.1982141
https://doi.org/10.1080/23744235.2021.1982141
https://doi.org/10.1080/23744235.2021.1982141
https://doi.org/10.1080/23744235.2021.1982141
https://doi.org/10.1080/23744235.2021.1982141
https://doi.org/10.1080/23744235.2021.1982141
https://doi.org/10.1080/23744235.2021.1982141
https://doi.org/10.1080/23744235.2021.1982141
https://doi.org/10.1093/nar/gkv1075
https://doi.org/10.1093/nar/gkv1075
https://doi.org/10.1093/nar/gkv1075
https://doi.org/10.1093/nar/gkv1075
https://doi.org/10.1093/nar/gkv1075
https://doi.org/10.1093/nar/gkv1075
https://doi.org/10.1093/nar/gkv1075
https://doi.org/10.3389/frai.2021.610197
https://doi.org/10.3389/frai.2021.610197
https://doi.org/10.3389/frai.2021.610197
https://doi.org/10.3389/frai.2021.610197
https://doi.org/10.3389/frai.2021.610197
https://doi.org/10.3389/frai.2021.610197
https://doi.org/10.3389/frai.2021.610197
https://doi.org/10.3389/frai.2021.610197

204 J. Sharma et al.

Artificial Intelligence in the Life Sciences p. 100020 (2021). https://doi.org/10.1016/j.ailsci.
2021.100020

25. Liu, X., Tan, H., Chen, Q., Lin, G.: RAGAT: Relation Aware Graph Attention Network for
Knowledge Graph Completion. IEEE Access 9, 20840–20849 (2021). https://doi.org/10.1109/
ACCESS.2021.3055529

26. Lotfi Shahreza, M., Ghadiri, N., Mousavi, S.R., Varshosaz, J., Green, J.R.: Heter-LP: A
heterogeneous label propagation algorithm and its application in drug repositioning. Journal
of Biomedical Informatics 68, 167–183 (2017). https://doi.org/10.1016/j.jbi.2017.03.006

27. Micek, S.T., Ernst, M.E.: Tolcapone: a novel approach to parkinson’s disease 56(21), 2195–
2205. https://doi.org/10.1093/ajhp/56.21.2195

28. Moridi, M., Ghadirinia, M., Sharifi-Zarchi, A., Zare-Mirakabad, F.: The assessment of
efficient representation of drug features using deep learning for drug repositioning. BMC
Bioinformatics 20(1), 577 (2019). https://doi.org/10.1186/s12859-019-3165-y

29. Napolitano, F., Zhao, Y., Moreira, V.M., Tagliaferri, R., Kere, J., D’Amato, M., Greco,
D.: Drug repositioning: A machine-learning approach through data integration. Journal of
Cheminformatics 5, 30 (2013). https://doi.org/10.1186/1758-2946-5-30

30. Nelson, S.J., Zeng, K., Kilbourne, J., Powell, T., Moore, R.: Normalized names for clinical
drugs: RxNorm at 6 years. Journal of the American Medical Informatics Association 18(4),
441–448 (2011). https://doi.org/10.1136/amiajnl-2011-000116

31. Paik, H., Chung, A.Y., Park, H.C., Park, R.W., Suk, K., Kim, J., Kim, H., Lee, K., Butte,
A.J.: Repurpose terbutaline sulfate for amyotrophic lateral sclerosis using electronic medical
records. Scientific Reports 5(1), 8580 (2015). https://doi.org/10.1038/srep08580

32. Park, J.H., Cho, H.E., Kim, J.H., Wall, M.M., Stern, Y., Lim, H., Yoo, S., Kim, H.S.,
Cha, J.: Machine learning prediction of incidence of Alzheimer’s disease using large-scale
administrative health data. npj Digital Medicine 3(1), 1–7 (2020). https://doi.org/10.1038/
s41746-020-0256-0

33. Pham, T.H., Qiu, Y., Zeng, J., Xie, L., Zhang, P.: A deep learning framework for high-
throughput mechanism-driven phenotype compound screening and its application to COVID-
19 drug repurposing. Nature Machine Intelligence 3(3), 247–257 (2021). https://doi.org/10.
1038/s42256-020-00285-9

34. Rogers, D., Hahn, M.: Extended-Connectivity Fingerprints. Journal of Chemical Information
and Modeling 50(5), 742–754 (2010). https://doi.org/10.1021/ci100050t

35. Rotmensch, M., Halpern, Y., Tlimat, A., Horng, S., Sontag, D.: Learning a health knowledge
graph from electronic medical records. 7, 5994

36. Santos, S.d.S., Torres, M., Galeano, D., Sánchez, M.d.M., Cernuzzi, L., Paccanaro, A.:
Machine learning and network medicine approaches for drug repositioning for COVID-19.
Patterns 3(1), 100396 (2022). https://doi.org/10.1016/j.patter.2021.100396

37. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling
Relational Data with Graph Convolutional Networks. arXiv:1703.06103 [cs, stat] (2017)

38. Schultz, B., Zaliani, A., Ebeling, C., Reinshagen, J., Bojkova, D., Lage-Rupprecht, V., Karki,
R., Lukassen, S., Gadiya, Y., Ravindra, N.G., Das, S., Baksi, S., Domingo-Fernández, D.,
Lentzen, M., Strivens, M., Raschka, T., Cinatl, J., DeLong, L.N., Gribbon, P., Geisslinger,
G., Ciesek, S., van Dijk, D., Gardner, S., Kodamullil, A.T., Fröhlich, H., Peitsch, M., Jacobs,
M., Hoeng, J., Eils, R., Claussen, C., Hofmann-Apitius, M.: A method for the rational selection
of drug repurposing candidates from multimodal knowledge harmonization. Scientific Reports
11(1), 11049 (2021). https://doi.org/10.1038/s41598-021-90296-2

39. Tatonetti, N.P., Ye, P.P., Daneshjou, R., Altman, R.B.: Data-Driven Prediction of Drug Effects
and Interactions. Science Translational Medicine 4(125), 125ra31–125ra31 (2012). https://doi.
org/10.1126/scitranslmed.3003377

40. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for
simple link prediction. In: Proceedings of the 33rd International Conference on International
Conference on Machine Learning - Volume 48, ICML’16, pp. 2071–2080. JMLR.org, New
York, NY, USA (2016)

https://doi.org/10.1016/j.ailsci.2021.100020
https://doi.org/10.1016/j.ailsci.2021.100020
https://doi.org/10.1016/j.ailsci.2021.100020
https://doi.org/10.1016/j.ailsci.2021.100020
https://doi.org/10.1016/j.ailsci.2021.100020
https://doi.org/10.1016/j.ailsci.2021.100020
https://doi.org/10.1016/j.ailsci.2021.100020
https://doi.org/10.1016/j.ailsci.2021.100020
https://doi.org/10.1016/j.ailsci.2021.100020
https://doi.org/10.1109/ACCESS.2021.3055529
https://doi.org/10.1109/ACCESS.2021.3055529
https://doi.org/10.1109/ACCESS.2021.3055529
https://doi.org/10.1109/ACCESS.2021.3055529
https://doi.org/10.1109/ACCESS.2021.3055529
https://doi.org/10.1109/ACCESS.2021.3055529
https://doi.org/10.1109/ACCESS.2021.3055529
https://doi.org/10.1109/ACCESS.2021.3055529
https://doi.org/10.1016/j.jbi.2017.03.006
https://doi.org/10.1016/j.jbi.2017.03.006
https://doi.org/10.1016/j.jbi.2017.03.006
https://doi.org/10.1016/j.jbi.2017.03.006
https://doi.org/10.1016/j.jbi.2017.03.006
https://doi.org/10.1016/j.jbi.2017.03.006
https://doi.org/10.1016/j.jbi.2017.03.006
https://doi.org/10.1016/j.jbi.2017.03.006
https://doi.org/10.1016/j.jbi.2017.03.006
https://doi.org/10.1016/j.jbi.2017.03.006
https://doi.org/10.1093/ajhp/56.21.2195
https://doi.org/10.1093/ajhp/56.21.2195
https://doi.org/10.1093/ajhp/56.21.2195
https://doi.org/10.1093/ajhp/56.21.2195
https://doi.org/10.1093/ajhp/56.21.2195
https://doi.org/10.1093/ajhp/56.21.2195
https://doi.org/10.1093/ajhp/56.21.2195
https://doi.org/10.1093/ajhp/56.21.2195
https://doi.org/10.1093/ajhp/56.21.2195
https://doi.org/10.1186/s12859-019-3165-y
https://doi.org/10.1186/s12859-019-3165-y
https://doi.org/10.1186/s12859-019-3165-y
https://doi.org/10.1186/s12859-019-3165-y
https://doi.org/10.1186/s12859-019-3165-y
https://doi.org/10.1186/s12859-019-3165-y
https://doi.org/10.1186/s12859-019-3165-y
https://doi.org/10.1186/s12859-019-3165-y
https://doi.org/10.1186/s12859-019-3165-y
https://doi.org/10.1186/1758-2946-5-30
https://doi.org/10.1186/1758-2946-5-30
https://doi.org/10.1186/1758-2946-5-30
https://doi.org/10.1186/1758-2946-5-30
https://doi.org/10.1186/1758-2946-5-30
https://doi.org/10.1186/1758-2946-5-30
https://doi.org/10.1186/1758-2946-5-30
https://doi.org/10.1186/1758-2946-5-30
https://doi.org/10.1186/1758-2946-5-30
https://doi.org/10.1136/amiajnl-2011-000116
https://doi.org/10.1136/amiajnl-2011-000116
https://doi.org/10.1136/amiajnl-2011-000116
https://doi.org/10.1136/amiajnl-2011-000116
https://doi.org/10.1136/amiajnl-2011-000116
https://doi.org/10.1136/amiajnl-2011-000116
https://doi.org/10.1136/amiajnl-2011-000116
https://doi.org/10.1136/amiajnl-2011-000116
https://doi.org/10.1038/srep08580
https://doi.org/10.1038/srep08580
https://doi.org/10.1038/srep08580
https://doi.org/10.1038/srep08580
https://doi.org/10.1038/srep08580
https://doi.org/10.1038/srep08580
https://doi.org/10.1038/s41746-020-0256-0
https://doi.org/10.1038/s41746-020-0256-0
https://doi.org/10.1038/s41746-020-0256-0
https://doi.org/10.1038/s41746-020-0256-0
https://doi.org/10.1038/s41746-020-0256-0
https://doi.org/10.1038/s41746-020-0256-0
https://doi.org/10.1038/s41746-020-0256-0
https://doi.org/10.1038/s41746-020-0256-0
https://doi.org/10.1038/s41746-020-0256-0
https://doi.org/10.1038/s42256-020-00285-9
https://doi.org/10.1038/s42256-020-00285-9
https://doi.org/10.1038/s42256-020-00285-9
https://doi.org/10.1038/s42256-020-00285-9
https://doi.org/10.1038/s42256-020-00285-9
https://doi.org/10.1038/s42256-020-00285-9
https://doi.org/10.1038/s42256-020-00285-9
https://doi.org/10.1038/s42256-020-00285-9
https://doi.org/10.1038/s42256-020-00285-9
https://doi.org/10.1021/ci100050t
https://doi.org/10.1021/ci100050t
https://doi.org/10.1021/ci100050t
https://doi.org/10.1021/ci100050t
https://doi.org/10.1021/ci100050t
https://doi.org/10.1021/ci100050t
https://doi.org/10.1016/j.patter.2021.100396
https://doi.org/10.1016/j.patter.2021.100396
https://doi.org/10.1016/j.patter.2021.100396
https://doi.org/10.1016/j.patter.2021.100396
https://doi.org/10.1016/j.patter.2021.100396
https://doi.org/10.1016/j.patter.2021.100396
https://doi.org/10.1016/j.patter.2021.100396
https://doi.org/10.1016/j.patter.2021.100396
https://doi.org/10.1016/j.patter.2021.100396
https://doi.org/10.1038/s41598-021-90296-2
https://doi.org/10.1038/s41598-021-90296-2
https://doi.org/10.1038/s41598-021-90296-2
https://doi.org/10.1038/s41598-021-90296-2
https://doi.org/10.1038/s41598-021-90296-2
https://doi.org/10.1038/s41598-021-90296-2
https://doi.org/10.1038/s41598-021-90296-2
https://doi.org/10.1038/s41598-021-90296-2
https://doi.org/10.1038/s41598-021-90296-2
https://doi.org/10.1126/scitranslmed.3003377
https://doi.org/10.1126/scitranslmed.3003377
https://doi.org/10.1126/scitranslmed.3003377
https://doi.org/10.1126/scitranslmed.3003377
https://doi.org/10.1126/scitranslmed.3003377
https://doi.org/10.1126/scitranslmed.3003377
https://doi.org/10.1126/scitranslmed.3003377

9 Knowledge Informed Machine Learning in Healthcare 205

41. Vashishth, S., Sanyal, S., Nitin, V., Agrawal, N., Talukdar, P.: InteractE: Improving
Convolution-based Knowledge Graph Embeddings by Increasing Feature Interactions (2020).
https://doi.org/10.48550/arXiv.1911.00219

42. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph Attention
Networks (2018). https://doi.org/10.48550/arXiv.1710.10903

43. Verma, A., Bang, L., Miller, J.E., Zhang, Y., Lee, M.T.M., Zhang, Y., Byrska-Bishop, M.,
Carey, D.J., Ritchie, M.D., Pendergrass, S.A., Kim, D.: Human-Disease Phenotype Map
Derived from PheWAS across 38,682 Individuals. American Journal of Human Genetics
104(1), 55–64 (2019). https://doi.org/10.1016/j.ajhg.2018.11.006

44. von Rueden, L., Mayer, S., Beckh, K., Georgiev, B., Giesselbach, S., Heese, R., Kirsch, B.,
Walczak, M., Pfrommer, J., Pick, A., Ramamurthy, R., Garcke, J., Bauckhage, C., Schuecker,
J.: Informed Machine Learning - A Taxonomy and Survey of Integrating Prior Knowledge into
Learning Systems. IEEE Transactions on Knowledge and Data Engineering pp. 1–1 (2021).
https://doi.org/10.1109/TKDE.2021.3079836

45. Wagstaff, A.J., Ward, A., Benfield, P., Heel, R.C.: Carboplatin 37(2), 162–190. https://doi.org/
10.2165/00003495-198937020-00005

46. Wang, X., Ji, H., Shi, C., Wang, B., Cui, P., Yu, P., Ye, Y.: Heterogeneous Graph Attention
Network. arXiv:1903.07293 [cs] (2021)

47. Wanyan, T., Honarvar, H., Azad, A., Ding, Y., Glicksberg, B.S.: Deep Learning with Hetero-
geneous Graph Embeddings for Mortality Prediction from Electronic Health Records. Data
Intelligence 3(3), 329–339 (2021). https://doi.org/10.1162/dint_a_00097

48. Wei, W.Q., Cronin, R.M., Xu, H., Lasko, T.A., Bastarache, L., Denny, J.C.: Development and
evaluation of an ensemble resource linking medications to their indications. Journal of the
American Medical Informatics Association: JAMIA 20(5), 954–961 (2013 Sep-Oct). https://
doi.org/10.1136/amiajnl-2012-001431

49. Wichniak, A., Jarkiewicz, M., Okruszek, Ł., Wierzbicka, A., Holka-Pokorska, J., Rybakowski,
J.K.: Low Risk for Switch to Mania during Treatment with Sleep Promoting Antidepressants.
Pharmacopsychiatry 48(3), 83–88 (2015). https://doi.org/10.1055/s-0034-1396802

50. Wishart, D.S., Knox, C., Guo, A.C., Shrivastava, S., Hassanali, M., Stothard, P., Chang, Z.,
Woolsey, J.: DrugBank: A comprehensive resource for in silico drug discovery and exploration.
Nucleic Acids Research 34(Database issue), D668–672 (2006). https://doi.org/10.1093/nar/
gkj067

51. Workman, E.A., Tellian, F., Short, D.: Trazodone induction of migraine headache through
mCPP. The American Journal of Psychiatry 149(5), 712 (1992). https://doi.org/10.1176/ajp.
149.5.712b

52. Wouters, O.J., McKee, M., Luyten, J.: Estimated Research and Development Investment
Needed to Bring a New Medicine to Market, 2009-2018. JAMA 323(9), 844–853 (2020).
https://doi.org/10.1001/jama.2020.1166

53. Wu, Y., Warner, J.L., Wang, L., Jiang, M., Xu, J., Chen, Q., Nian, H., Dai, Q., Du, X., Yang, P.,
Denny, J.C., Liu, H., Xu, H.: Discovery of Noncancer Drug Effects on Survival in Electronic
Health Records of Patients With Cancer: A New Paradigm for Drug Repurposing. JCO clinical
cancer informatics 3, 1–9 (2019). https://doi.org/10.1200/CCI.19.00001

54. Xu, H., Li, J., Jiang, X., Chen, Q.: Electronic Health Records for Drug Repurposing: Current
Status, Challenges, and Future Directions. Clinical Pharmacology & Therapeutics 107(4),
712–714 (2020). https://doi.org/10.1002/cpt.1769

55. Yang, B., Yih, W.t., He, X., Gao, J., Deng, L.: Embedding Entities and Relations for Learning
and Inference in Knowledge Bases (2015). https://doi.org/10.48550/arXiv.1412.6575

56. Yuan, W., Beaulieu-Jones, B., Krolewski, R., Palmer, N., Veyrat-Follet, C., Frau, F., Cohen,
C., Bozzi, S., Cogswell, M., Kumar, D., Coulouvrat, C., Leroy, B., Fischer, T.Z., Sardi, S.P.,
Chandross, K.J., Rubin, L.L., Wills, A.M., Kohane, I., Lipnick, S.L.: Accelerating diagnosis of
Parkinson’s disease through risk prediction. BMC Neurology 21(1), 201 (2021). https://doi.
org/10.1186/s12883-021-02226-4

57. Zhang, W., Paudel, B., Zhang, W., Bernstein, A., Chen, H.: Interaction embeddings for
prediction and explanation in knowledge graphs. In: Proceedings of the Twelfth ACM

https://doi.org/10.48550/arXiv.1911.00219
https://doi.org/10.48550/arXiv.1911.00219
https://doi.org/10.48550/arXiv.1911.00219
https://doi.org/10.48550/arXiv.1911.00219
https://doi.org/10.48550/arXiv.1911.00219
https://doi.org/10.48550/arXiv.1911.00219
https://doi.org/10.48550/arXiv.1911.00219
https://doi.org/10.48550/arXiv.1911.00219
https://doi.org/10.48550/arXiv.1710.10903
https://doi.org/10.48550/arXiv.1710.10903
https://doi.org/10.48550/arXiv.1710.10903
https://doi.org/10.48550/arXiv.1710.10903
https://doi.org/10.48550/arXiv.1710.10903
https://doi.org/10.48550/arXiv.1710.10903
https://doi.org/10.48550/arXiv.1710.10903
https://doi.org/10.48550/arXiv.1710.10903
https://doi.org/10.1016/j.ajhg.2018.11.006
https://doi.org/10.1016/j.ajhg.2018.11.006
https://doi.org/10.1016/j.ajhg.2018.11.006
https://doi.org/10.1016/j.ajhg.2018.11.006
https://doi.org/10.1016/j.ajhg.2018.11.006
https://doi.org/10.1016/j.ajhg.2018.11.006
https://doi.org/10.1016/j.ajhg.2018.11.006
https://doi.org/10.1016/j.ajhg.2018.11.006
https://doi.org/10.1016/j.ajhg.2018.11.006
https://doi.org/10.1016/j.ajhg.2018.11.006
https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.2165/00003495-198937020-00005
https://doi.org/10.2165/00003495-198937020-00005
https://doi.org/10.2165/00003495-198937020-00005
https://doi.org/10.2165/00003495-198937020-00005
https://doi.org/10.2165/00003495-198937020-00005
https://doi.org/10.2165/00003495-198937020-00005
https://doi.org/10.2165/00003495-198937020-00005
https://doi.org/10.2165/00003495-198937020-00005
https://doi.org/10.1162/dint_a_00097
https://doi.org/10.1162/dint_a_00097
https://doi.org/10.1162/dint_a_00097
https://doi.org/10.1162/dint_a_00097
https://doi.org/10.1162/dint_a_00097
https://doi.org/10.1162/dint_a_00097
https://doi.org/10.1162/dint_a_00097
https://doi.org/10.1162/dint_a_00097
https://doi.org/10.1136/amiajnl-2012-001431
https://doi.org/10.1136/amiajnl-2012-001431
https://doi.org/10.1136/amiajnl-2012-001431
https://doi.org/10.1136/amiajnl-2012-001431
https://doi.org/10.1136/amiajnl-2012-001431
https://doi.org/10.1136/amiajnl-2012-001431
https://doi.org/10.1136/amiajnl-2012-001431
https://doi.org/10.1136/amiajnl-2012-001431
https://doi.org/10.1055/s-0034-1396802
https://doi.org/10.1055/s-0034-1396802
https://doi.org/10.1055/s-0034-1396802
https://doi.org/10.1055/s-0034-1396802
https://doi.org/10.1055/s-0034-1396802
https://doi.org/10.1055/s-0034-1396802
https://doi.org/10.1055/s-0034-1396802
https://doi.org/10.1055/s-0034-1396802
https://doi.org/10.1093/nar/gkj067
https://doi.org/10.1093/nar/gkj067
https://doi.org/10.1093/nar/gkj067
https://doi.org/10.1093/nar/gkj067
https://doi.org/10.1093/nar/gkj067
https://doi.org/10.1093/nar/gkj067
https://doi.org/10.1093/nar/gkj067
https://doi.org/10.1176/ajp.149.5.712b
https://doi.org/10.1176/ajp.149.5.712b
https://doi.org/10.1176/ajp.149.5.712b
https://doi.org/10.1176/ajp.149.5.712b
https://doi.org/10.1176/ajp.149.5.712b
https://doi.org/10.1176/ajp.149.5.712b
https://doi.org/10.1176/ajp.149.5.712b
https://doi.org/10.1176/ajp.149.5.712b
https://doi.org/10.1176/ajp.149.5.712b
https://doi.org/10.1001/jama.2020.1166
https://doi.org/10.1001/jama.2020.1166
https://doi.org/10.1001/jama.2020.1166
https://doi.org/10.1001/jama.2020.1166
https://doi.org/10.1001/jama.2020.1166
https://doi.org/10.1001/jama.2020.1166
https://doi.org/10.1001/jama.2020.1166
https://doi.org/10.1001/jama.2020.1166
https://doi.org/10.1200/CCI.19.00001
https://doi.org/10.1200/CCI.19.00001
https://doi.org/10.1200/CCI.19.00001
https://doi.org/10.1200/CCI.19.00001
https://doi.org/10.1200/CCI.19.00001
https://doi.org/10.1200/CCI.19.00001
https://doi.org/10.1200/CCI.19.00001
https://doi.org/10.1200/CCI.19.00001
https://doi.org/10.1002/cpt.1769
https://doi.org/10.1002/cpt.1769
https://doi.org/10.1002/cpt.1769
https://doi.org/10.1002/cpt.1769
https://doi.org/10.1002/cpt.1769
https://doi.org/10.1002/cpt.1769
https://doi.org/10.1002/cpt.1769
https://doi.org/10.48550/arXiv.1412.6575
https://doi.org/10.48550/arXiv.1412.6575
https://doi.org/10.48550/arXiv.1412.6575
https://doi.org/10.48550/arXiv.1412.6575
https://doi.org/10.48550/arXiv.1412.6575
https://doi.org/10.48550/arXiv.1412.6575
https://doi.org/10.48550/arXiv.1412.6575
https://doi.org/10.48550/arXiv.1412.6575
https://doi.org/10.1186/s12883-021-02226-4
https://doi.org/10.1186/s12883-021-02226-4
https://doi.org/10.1186/s12883-021-02226-4
https://doi.org/10.1186/s12883-021-02226-4
https://doi.org/10.1186/s12883-021-02226-4
https://doi.org/10.1186/s12883-021-02226-4
https://doi.org/10.1186/s12883-021-02226-4
https://doi.org/10.1186/s12883-021-02226-4
https://doi.org/10.1186/s12883-021-02226-4

206 J. Sharma et al.

International Conference on Web Search and Data Mining, WSDM ’19, p. 96–104. Association
for Computing Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3289600.
3291014

58. Zhao, J., Henriksson, A., Asker, L., Boström, H.: Predictive modeling of structured electronic
health records for adverse drug event detection. BMC Medical Informatics and Decision
Making 15(Suppl 4), S1 (2015). https://doi.org/10.1186/1472-6947-15-S4-S1

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1145/3289600.3291014
https://doi.org/10.1145/3289600.3291014
https://doi.org/10.1145/3289600.3291014
https://doi.org/10.1145/3289600.3291014
https://doi.org/10.1145/3289600.3291014
https://doi.org/10.1145/3289600.3291014
https://doi.org/10.1145/3289600.3291014
https://doi.org/10.1186/1472-6947-15-S4-S1
https://doi.org/10.1186/1472-6947-15-S4-S1
https://doi.org/10.1186/1472-6947-15-S4-S1
https://doi.org/10.1186/1472-6947-15-S4-S1
https://doi.org/10.1186/1472-6947-15-S4-S1
https://doi.org/10.1186/1472-6947-15-S4-S1
https://doi.org/10.1186/1472-6947-15-S4-S1
https://doi.org/10.1186/1472-6947-15-S4-S1
https://doi.org/10.1186/1472-6947-15-S4-S1
https://doi.org/10.1186/1472-6947-15-S4-S1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 10
On the Interplay of Subset Selection
and Informed Graph Neural Networks

Niklas Breustedt, Paolo Climaco, Jochen Garcke, Jan Hamaekers,
Gitta Kutyniok, Dirk A. Lorenz, Rick Oerder, and Chirag Varun Shukla

Abstract Machine learning techniques paired with the availability of massive
datasets dramatically enhance our ability to explore the chemical compound space
by providing fast and accurate predictions of molecular properties. However,
learning on large datasets is strongly limited by the availability of computational
resources and can be infeasible in some scenarios. Moreover, the instances in the
datasets may not yet be labelled and generating the labels can be costly, as in
the case of quantum chemistry computations. Thus, there is a need to select small
training subsets from large pools of unlabeled data points and to develop reliable ML

N. Breustedt
IAA, Technical University Braunschweig, Braunschweig, Germany
e-mail: n.breustedt@tu-braunschweig.de

P. Climaco
INS, University of Bonn, Bonn, Germany
e-mail: climaco@ins.uni-bonn.de

J. Garcke (✉)
Fraunhofer SCAI, Sankt Augustin, Germany
INS, University of Bonn, Bonn, Germany
e-mail: jochen.garcke@scai.fraunhofer.de

J. Hamaekers · R. Oerder
Fraunhofer SCAI, Sankt Augustin, Germany
e-mail: jan.hamaekers@scai.fraunhofer.de; rick.oerder@scai.fraunhofer.de

G. Kutyniok
LMU Munich, Munich, Germany
University of Tromsø, Tromsø, Norway
DLR - German Aerospace Center, Wessling, Germany
e-mail: kutyniok@math.lmu.de

D. A. Lorenz
Center for Industrial Mathematics, Faculty 3, Universität Bremen, Bremen, Germany
e-mail: d.lorenz@uni-bremen.de

C. V. Shukla
LMU Munich, Munich, Germany
e-mail: shukla@math.lmu.de

© The Author(s) 2025
D. Schulz, C. Bauckhage (eds.), Informed Machine Learning,
Cognitive Technologies, https://doi.org/10.1007/978-3-031-83097-6_10

207

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-83097-6protect T1	extunderscore 10&domain=pdf

 885 30278 a 885 30278
a

mailto:n.breustedt@tu-braunschweig.de
mailto:n.breustedt@tu-braunschweig.de
mailto:n.breustedt@tu-braunschweig.de
mailto:n.breustedt@tu-braunschweig.de

 885
34152 a 885 34152 a

mailto:climaco@ins.uni-bonn.de
mailto:climaco@ins.uni-bonn.de
mailto:climaco@ins.uni-bonn.de
mailto:climaco@ins.uni-bonn.de

 885
39133 a 885 39133 a

mailto:jochen.garcke@scai.fraunhofer.de
mailto:jochen.garcke@scai.fraunhofer.de
mailto:jochen.garcke@scai.fraunhofer.de
mailto:jochen.garcke@scai.fraunhofer.de

 885 43008 a 885 43008 a

mailto:jan.hamaekers@scai.fraunhofer.de
mailto:jan.hamaekers@scai.fraunhofer.de
mailto:jan.hamaekers@scai.fraunhofer.de
mailto:jan.hamaekers@scai.fraunhofer.de

 14388 43008 a 14388
43008 a

mailto:rick.oerder@scai.fraunhofer.de
mailto:rick.oerder@scai.fraunhofer.de
mailto:rick.oerder@scai.fraunhofer.de
mailto:rick.oerder@scai.fraunhofer.de

 885 49096 a 885 49096
a

mailto:kutyniok@math.lmu.de
mailto:kutyniok@math.lmu.de
mailto:kutyniok@math.lmu.de

 885 52970 a 885 52970 a

mailto:d.lorenz@uni-bremen.de
mailto:d.lorenz@uni-bremen.de
mailto:d.lorenz@uni-bremen.de
mailto:d.lorenz@uni-bremen.de

 885
56845 a 885 56845 a

mailto:shukla@math.lmu.de
mailto:shukla@math.lmu.de
mailto:shukla@math.lmu.de
https://doi.org/10.1007/978-3-031-83097-6_10
https://doi.org/10.1007/978-3-031-83097-6_10
https://doi.org/10.1007/978-3-031-83097-6_10
https://doi.org/10.1007/978-3-031-83097-6_10
https://doi.org/10.1007/978-3-031-83097-6_10
https://doi.org/10.1007/978-3-031-83097-6_10
https://doi.org/10.1007/978-3-031-83097-6_10
https://doi.org/10.1007/978-3-031-83097-6_10
https://doi.org/10.1007/978-3-031-83097-6_10
https://doi.org/10.1007/978-3-031-83097-6_10
https://doi.org/10.1007/978-3-031-83097-6_10

208 N. Breustedt et al.

methods that can effectively learn from small training sets. This chapter focuses on
predicting the molecules’ atomization energy in the QM9 dataset. We investigate the
advantages of employing domain knowledge-based data sampling methods for an
efficient training set selection combined with informed ML techniques. In particular,
we show how maximizing molecular diversity in the training set selection process
increases the robustness of linear and nonlinear regression techniques such as kernel
methods and graph neural networks. We also check the reliability of the predictions
made by the graph neural network with a model-agnostic explainer based on the
rate-distortion explanation framework.

10.1 Introduction

Modelling the relationship between molecules and their properties is of great
interest in several research areas, such as computational drug design [37], material
discovery [43] and battery development [3]. The field of computational chemistry
offers powerful ab initio methods to compute physical and chemical properties of
atomic systems.

Unfortunately, these approaches are often limited by their high computational
complexity, which restricts their practical applicability to only small sets of
molecules. Therefore, machine learning (ML) methods for molecular property pre-
diction have recently gained increased attention in molecular and material science
because of their computational efficiency and accuracy on par with established first
principle methods [4, 5, 11]. However, to effectively employ ML in real-world
problems, there is a need for labelled datasets that can effectively represent the
chemical space of interest, i.e., sets of molecules for which the target properties have
already been computed using ab initio methods. Thus, on the one hand, accurately
choosing which data points to label in the analyzed chemical space is crucial to avoid
creating a dataset with redundant information and limiting the required amount of
ab initio calculations. On the other hand, it is critical to develop data-efficient ML
methods that perform accurate predictions.

Integrating domain knowledge of physical and chemical principles into the
dataset selection process and the development of ML techniques is a primary
goal of the chemical and material science ML community [31]. Physical and
chemical principles, such as spatial invariances, symmetries, algebraic equations
and chemical properties, can increase the robustness, reliability and effectiveness of
ML methods while reducing the required training data [6, 50].

This chapter focuses on predicting the atomization energies of molecules in the
QM9 dataset [47, 49] and shows how to exploit domain knowledge to select training
sets according to specific criteria and how different ML methods may benefit from
training on sets selected through such criteria. Specifically, by using Mordred [42],
a publicly available library, we generate knowledge-based vector representations
of molecules based on their SMILES representation [59] without requiring any ab
initio computations. Further, based on such a molecular vector-based representation,

10 On the Interplay of Subset Selection and Informed Graph Neural Networks 209

we define a training set selection process and can observe that a diversity in
the selected subset can increase the reliability of ML methods, indicated by the
reduction of the maximum absolute error of the prediction. The maximum absolute
error can be interpreted as a measure of robustness, and it is a helpful metric
to evaluate ML methods in chemical and material science [65] since the average
error alone gives an incomplete impression [19, 56]. Furthermore, this chapter
shows how diversity reduces the gap between the predictive robustness of linear
regression-based approaches relying only on the molecular topological information,
such as kernel ridge regression (KRR) [32], and non-linear approaches relying
on molecular geometric representations obtained through ab initio computations,
such as graph neural networks (GNN) [17, 24, 26]. We compare the effectiveness
of a diversity-based selection with that of random sampling and of an alternative
selection approach based on domain knowledge that focuses on representativeness,
i.e., the distribution of chosen properties of the dataset should be present with the
same amount in the selected training sets.

Finally, we note that our GNNs are inherently opaque (i.e. the logic flow to the
decision-making process of the neural network is obscured). This inherently opaque
nature of common deep neural network architectures has led to a rise in demand for
trustworthy explanation techniques, which vary in their meaning and validity [48].
Unlike other modalities in computer vision and natural language processing, the
non-Euclidean nature of graph-structured data poses a significant challenge to trust-
worthy and interpretable explanation generation. To this end, there exist a variety
of explanation techniques and explanation types [12, 21, 36, 46, 52, 60, 62, 64], the
most popular of which are subgraph explanation techniques.

We probe the domain knowledge learned/retained by our GNNs for different
sampling strategies through the application of a novel post-hoc model-agnostic
explanation technique, graph rate-distortion explainer (GRDE). GRDE builds on the
existing rate-distortion explanation (RDE) framework [27, 38] to generate instance-
level subgraph explanations on the input graphs, which highlight the substructures
and features in the graph that are most relevant towards the GNNs’ predictions.

After describing related work, we give in the following first an overview on
three ML models that are designed for the prediction of molecular properties but
are based on different underlying working principles. In this way, we hope that our
results yield insights for a variety of methods that are used in practical applications.
Following that, we discuss two ways of sampling subsets from a larger dataset,
one aiming to maximize the diversity of the selected samples and the other seeking
to choose a collection of points representative of the set from which we sample.
Afterwards, we test the introduced methods, namely the SchNet, KRR and the
spatial 3-hop convolution network which is proposed in this chapter, by performing
numerical experiments on the QM9 dataset while putting special emphasis on the
effects of the sampling strategies. After a discussion of the numerical results and a
comparison between the different ML models, we seek explanations of the model
predictions by applying GRDE to one of the employed graph neural networks.

210 N. Breustedt et al.

10.2 Related Work

In recent years, there has been growing interest in incorporating domain-specific
knowledge into the selection of training data and the development of learning
algorithms, which is referred to as Informed Machine Learning [50]. Ideally, the
training data selection process should be based purely on the data’s features, as
labels may be expensive to compute, and should be model-independent so that the
selected training data is beneficial for multiple learning models rather than just
one. This allows for greater flexibility in model selection and avoids the need for
repeating the dataset selection process for each model. Considering these practical
aspects, it is clear that a feature-based and model-independent selection process is
desirable for efficient and effective Machine Learning. This section reviews some
of the relevant work in this area. Coreset approaches [14] are among the most
popular strategies for feature-based and model-independent selection of training
datasets. Several of these approaches involve incorporating domain-knowledge into
the selection of training data by selecting data points that are representative of
the distribution of the target points for which we want to predict the new labels.
The simplest and yet one of the most common coreset approaches is uniform
sampling, which involves selecting a random subset of data points from the larger
dataset. Uniform sampling is also considered a benchmark for every other selection
approach. Unfortunately, uniform sampling does not exploit domain knowledge and
can lead to biased results if the dataset is imbalanced or if certain data points are
more important than others. To address this issue, importance sampling [7] is an
approach that exploits domain knowledge to assign weights to each data point based
on its importance or relevance to the problem at hand. The weights are then used
for a nonuniform selection of the training set that privileges more important data
points. Another class of methods are the grid-based approaches [2], which involve
dividing the feature space into a grid and selecting one or more representative points
from each grid’s cell. This can be useful for problems with a high-dimensional
feature space or when there is a need for a more structured selection of data
points. Greedy constructions are coreset approaches that iteratively select the
most informative data points based on a pre-defined criterion. For instance, well-
known greedy selection methods are submodular function maximization algorithms
[30]. Greedy approaches can be effective for selecting a small subset of highly
informative data points, but they may be computationally expensive for large
datasets. Overall, the choice of coreset approach depends on the specific problem
and dataset characteristics, as well as computational constraints. See [14] for a more
detailed review of coreset approaches. Finally, the field of experimental design [61]
offers additional sampling strategies to perform a feature-based selection of the
training set that can benefit specific regression model classes, e.g., linear models.

In this chapter, incorporating domain knowledge in the learning of algorithms
refers to methods which are known as informed graph neural networks. While graph
neural networks recently gained increasing attention by the works from Gori et
al. [18] and Scarselli et al. [51], the question of how to use domain knowledge

10 On the Interplay of Subset Selection and Informed Graph Neural Networks 211

to improve the performance of learning methods dates back to the last century
(e.g. see [23] or [29]). More recently, physics informed neural networks, which
address supervised learning tasks complying with the known laws from physics,
are a hot topic in several applications, e.g. to find surface breaking cracks in a
metal plate [54] or to solve inverse heat transfer problems [8]. For graph neural
networks, based on the message passing principle, i.e. the process of updating so
called states or representations attached to each node of a graph using the node’s
neighbourhood, many different models were proposed (e.g. ChebNet [10], Gated
Graph Neural Networks [34], Graph Attention Networks [58]), the most popular
being the graph convolutional model by Kipf and Welling [26] which is motivated
by an approximation of spectral graph convolutions. Combining incorporating
domain knowledge with graph neural networks leads to the very recent informed
graph neural networks. In [20] the authors combine theory from thermodynamics
with graph neural networks to predict the behaviour of dynamical systems and
in [25] combine physical properties of molecules are combined with graph neural
networks to predict the cetane number of possible alternative fuels. For more
detailed overviews on GNNs or informed neural networks we refer to the book [35]
and a recent review [9].

We further build upon the interpretability of graph neural networks in this chapter
by introducing a method akin to perturbation techniques on image data to graph-
structured data. The main goal of interpretability is to invoke transparency in the
otherwise opaque prediction process of neural networks, and is further applicable in
the detection of bias as well as to explain incorrect classifications in the predictive
model. Previous work in interpretability for other modalities such as audio and
images [27, 38] has shown great success in identifying a neural network’s sensitivity
to specific subsets of the input data. More specifically, among the variety of local
and global interpretability techniques, perturbation [27, 28] and gradient-based [55]
techniques have been shown to accurately capture a predictive model’s sensitivityto
some concepts in the input data. These techniques generally seek to optimize a
heatmap over the input data such that high-intensity zones are the most relevant
to the model’s prediction for the given data point. We further discuss this in detail
with respect to graphs in Sect. 10.3.4.

Inspired by the exhaustive work on interpretability for other modalities, several
methods [36, 46, 52, 60] have also been proposed for graph-structured data,
with perturbation techniques such as GNNExplainer [60] being the baseline for
comparison. For a detailed overview of GNN interpretability, we refer to [63]. These
techniques, however, have been shown to suffer from unfaithfulness on large graphs
since they optimise masks only for small graphs as well as manually threshold their
relevance scores. See [1] for a detailed review on the current issues with graph
interpretability.

212 N. Breustedt et al.

10.3 Methods and Sampling Strategies

This section introduces the approaches we use for predicting the atomization energy,
explaining the GNN output and sampling the training data. Section 10.3.1 introduces
the benchmark regression model SchNet, a GNN that uses 3-dimensional positional
information to predict chemical properties. Next, Sects. 10.3.2 and 10.3.3 describe
KRR and the spatial 3-hop convolution network, respectively. Both these approaches
only exploit topological information encoded in the SMILES to perform the energy
prediction task. Section 10.3.4 presents the rate-distortion explanation framework
for graph data that we use to showcase the domain knowledge learned by the 3-hop
convolution network. Finally, Sect. 10.3.5 introduces the approaches we use for the
selection of training sets.

10.3.1 SchNet

SchNet is a symmetry-informed neural network model, designed for the prediction
of chemical properties by Schütt et al. [53]. In contrast to the methods presented
in Sects. 10.3.2 and 10.3.3, it is trained and evaluated on 3-dimensional structural
information describing the atomic systems of interest. Usually, the positional
information is obtained from computational methods such as density functional
theory (DFT).

More formally, for an atomic system with N atoms, SchNet can be used to predict
scalar properties as a function f of 3N atomic coordinates (nuclear positions) and
on N atomic numbers of t he corresponding atoms

.f : R3N × NN −→ R. (10.1)

Internally, SchNet operates on a distance-based neighborhood graph, defined
by a cutoff radius rcut ., in which nodes correspond to the atoms in the atomic
system. In this scenario, edges do not necessarily correspond to chemical bonds
but merely indicate whether two atoms are closer than the chosen cutoff radius.
Hence, the chosen cutoff radius has a direct influence on the graph shown to the
model. Similar to other GNNs [17, 26], SchNet operates in a layer-wise fashion
by iteratively updating feature representations. At the l-th layer each atom, indexed
by i ∈ {1, 2, ..., N}., is represented by a feature vector xl

i ∈ RF
. where F is a

hyperparameter. The main layer introduced by Schütt et al. is the continuous-filter
convolutional layer: Denoting the atomic positions by r i ∈ R3

., this layer updates
the atomic features as follows

.xl+1
i =

⎲

j∈N(i)

xl
j ◦ Wl

(
r i − rj

)
, (10.2)

10 On the Interplay of Subset Selection and Informed Graph Neural Networks 213

where Wl : R3 −→ R
F

. is a trainable filter-generating function and ◦. denotes
element-wise multiplication. In detail, Wl

. is given as the composition Wl = W̃ l ◦ϕ .

of a distance-based radial basis expansion

.ϕ : r i − rj |→
Nradial⊕

k=1

exp
⎞
−γ

(||r i − rj||2 − μk

)2
⎞

(10.3)

and a trainable neural network W̃ l
., where 0 Å ≤ μk ≤ 30 Å. are equidistributed

centers and γ = 10 Å.. Here,
⊕

. denotes the direct sum that concatenates the scalar
outputs of the radial basis functions to a feature vector in RNradial . which is then
passed into W̃ l

.. Note that ϕ . is invariant with respect to actions of the orthogonal
group O(3). which assures that the predictions of SchNet are invariant with respect
to translations, rotations and reflections of the input structure as well. Depending
on the atomic species, initial embeddings x0

i . are sampled from an F -dimensional
standard normal distribution and optimized during the training process. In addition,
non-linear layers such as dense feed-forward neural networks can be applied to the
node features in order to increase the expressiveness of the model.

By summing over the images of a trainable readout function R : RF −→ R., the
final node features in the last layer L are transformed into a prediction of the target
property ŷ .:

.ŷ =
N⎲

j=1

R
⎞
xL

j

⎞
(10.4)

Involving only permutation-invariant operations such as the summation over
adjacent atoms, the output is invariant with respect to mutual permutations of the
atomic positions and atomic species. For more details on the model architecture see
[53].

10.3.2 Kernel Ridge Regression

In kernel ridge regression, a vector-based representation of the molecules is mapped
into a high-dimensional space using a non-linear map that is implicitly determined
by defining a kernel function, which provides a measure of similarity between the
molecular representations. The structure-energy relationship is learned in the high-
dimensional space. In this chapter, we use the so-called Gaussian kernel

.k(xi , xj) := e
− ||xi−xj ||2

2
2ν2 , (10.5)

214 N. Breustedt et al.

where ||·||2 . is the L2 .-norm and ν ∈ R.a kernel hyperparameter to be selected through
an optimization process. The kernel ridge regression model is constructed using the
selected training set {xi , y(xi)}pi=1 ., where {xi}pi=1 .are the Mordred [42] based vector
representations of the molecules and {y(xi)}pi=1 . the associated atomization energies.
Once the regression model has been constructed, the predicted energies are given by
the scalar values ỹ(x). defined as follows

.ỹ(x) :=
p⎲

i=1

αik(x, xi) , (10.6)

where the vector α = [α1, α2, . . . , αp]T ∈ Rp
. is the solution of the following

minimization problem

.α = argmin
ᾱ

p⎲

i=1

(ỹ(xi) − y(xi))
2 + λᾱT Kᾱ. (10.7)

Here, K . is the kernel matrix, i.e., K i,j = k(xi , xj)., and the parameter λ ∈ R. is
the so-called regularization parameter that penalizes larger weights. The analytic
solution to the minimization problem in (10.7) is given by

.α = (K + λI)−1ỹ , (10.8)

where ỹ = [ỹ(x1), ỹ(x2), . . . , ỹ(xp)]T .. Once the training process has been
concluded and the regression parameters {αi}pi=1 . have been learned, the energy
predictions for molecules not included in the training set can be computed using
(10.6).

10.3.3 Spatial 3-Hop Convolution Network

In addition to the two previous approaches, we propose a third approach which
builds on a newly developed spatial graph convolution structure. We call this
approach spatial 3-hop convolution network. This approach exploits the graph struc-
ture, the node features and optionally edge features for regression or classification
but does not need 3-dimensional structural information as is the case for SchNet.

A commonly used graph convolutional network by Kipf and Welling [26] is
motivated by an approximation of a spectral convolution. Thereby, they consider
spectral convolutions as

.w * x = UwUTx, (10.9)

10 On the Interplay of Subset Selection and Informed Graph Neural Networks 215

where w = diag(θ) ∈ Rn×n
. is a filter, x ∈ Rn

. is a graph signal on a graph with
n nodes, *. denotes the spectral graph convolution operator and U . is the matrix
of eigenvectors from the eigendecomposition of the normalized graph Laplacian

In − D
− 1

2 AD
− 1

2 .. Moreover, A. is the adjacency matrix of the underlying graph,
D. is the corresponding degree matrix and In . is the n × n. identity matrix. This
convolution is approximated and generalized to matrix-valued graph signals which
leads to the update of the graph convolutional network

.H (l+1) = σ(H (l)W 0 + D
− 1

2 AD
− 1

2 H (l)W 1), (10.10)

where H (l)
. is the matrix of hidden representations of the l-th layer, W 0 . and W 1 .

are learnable parameters and σ . denotes the elementwise ReLU function. For the
spatial 3-hop convolution layer we do not consider spectral graph convolutions but
an intuitive spatial convolution using powers of the graphs adjacency matrix to
calculate so called path matrices. Within these, for each node the number of paths of
a certain length to every other node is stored. By defining a spatial convolution with
path matrices and building a layer of the graph neural network using the convolution,
we consider the number of paths of a given length from node v to node u as a
measure for the impact of node v on node u. Thus, nodes with more paths to the
considered node will be taken into account more during the update.

For a graph G with n nodes a path is defined as a sequence of nodes (1, . . . , k).

with k < n. such that for any i, j ∈ (1, . . . , k). it is i /= j ., i.e. no node appears twice.
With that, we define a spatial k-hop graph convolution of a graph signal x ∈ Rn

.

with a filter w ∈ Rk
. on an undirected graph G with n nodes as

. w *k x :=
k⎲

i=0

wiT
(i)x,

where T (i)
. is a path matrix such that T

(i)
vu . is the number of paths of length i from

node v to node u.
An approach to computing the needed path matrices is a recursion that starts with

the adjacency matrix. Since the adjacency matrix equals the path matrix for paths
of length one it is T (1) = A.. For every node i and u a neighbor of it, the number
of paths of length two from node i to node j equals the number of paths of length
one from u to j in which i is not a part of. More generally, the number of paths of
length k from a node i to a different node j equals the sum of all paths from node
u to j of length k − 1. over all u ∈ N(i). in which i does not appear. Using this, it
can be shown that T (2) = A2 − D . and T (3) = A3 − ∑ ◦ A., where A. and D . are as
above and ∑ . is an n × n. matrix with ∑ij = Dii + Djj .. This shows that the 3-hop
spatial graph convolution is given by

.w *3 x = (w0In + w1A + w2(A
2 − D) + w3(A

3 − ∑ ◦ A))x.

216 N. Breustedt et al.

Note that the wk .’s can be seen as weights for the k-hop neighborhoods. A
generalization of the former discussion to a signal X ∈ Rn×d

. with c node features
for each node (analogously to Kipf and Welling [26]) leads to

. H = XW 0 + AXW 1 + (A2 − D)XW 2 + (A3 − ∑ ◦ A)XW 3

which results in the spatial 3-hop convolution layer, the message passing layer of
the spatial 3-hop convolution network,

. H (l+1) = σ(H (l)W 0 + AH (l)W 1 + (A2 − D)H (l)W 2 + (A3 − ∑ ◦ A)H (l)W 3),

where σ . is, again, the element-wise ReLU function.

10.3.4 Graph Rate-Distortion Explanations

We now present a formulation for the rate-distortion explanation framework [27, 38]
for graph data. Given a pre-trained GNN model, θ : Rn×c −→ R

m
. and a set

of attributed graphs G = {G1,G2, ...,Gp}. such that Gi = (Vi, Ei,Xi). for all
i ∈ [1, p]., our task is to explain the model decision over the set G, or more
locally, θ(Gi).. This leads us to the two general branches of explanation techniques:
global and local explanations. Global explanation techniques focus on explaining
the underlying function learned by the model, θ.. This can be done in a multitude
of ways, such as testing the model’s sensitivity to a concept [40] or reconstructing
graphs from the embedding space learned by the model to reveal important motifs
[62]. In general, global explanation techniques, while useful, are hard to construct
and are unable to detect finer details on local data points. On the other hand, local
explanation techniques, which are the more popular alternative, focus on explaining
θ. for local instances, i.e. θ(Gi).. Similar to global explanations, there exist a
variety of approaches, such as perturbation-based methods [36, 52, 60], surrogate
methods [21], gradient-based methods [46], and additive methods [12, 64], each
with their benefits and limitations. These techniques aim to extract information
from Gi . that is most relevant to the local prediction θ(Gi).. More concretely,
given a graph Gi = (Ai,Xi)., local explanation techniques commonly attempt to
extract a subgraph Ĝi = (Âi , X̂i) ⊆ Gi . that is most relevant to the model for its
prediction θ(Gi).. The rate-distortion framework for explaining graphs is a local,
post-hoc, model-agnostic explanation technique that comes under the umbrella of
perturbation-based graph explainers. Given the pre-trained model θ. and graph Gi .,
GRDE optimizes a binary deletion mask S = (SA, SX). over Gi . to obtain a subgraph
Ĝi . such that θ(Ĝi). approximates θ(Gi).. Mask S thus retains only the edges and
features that are most relevant to the model’s prediction on Gi .. Given Ai ∈ Rn×n

.

and Xi ∈ Rn×f
., where n is the number of nodes and f is the number of node

features, our goal is to optimize masks SA ∈ [0, 1]n×n
. and SX ∈ [0, 1]n×f

.. Let
VS = (VSA

., VSX
). be probability distributions that can either be chosen manually

10 On the Interplay of Subset Selection and Informed Graph Neural Networks 217

or learned from the graph dataset. Then the obfuscation on Gi ., i.e. the subgraph Ĝi .,
can be defined as

.Ĝi = (Âi , X̂i) = (Ai ⊙SA+(1−SA)⊙νSA
,Xi ⊙SX+(1−SX)⊙νSX

), (10.11)

where νSA
∈ VSA

., νSX
∈ VSX

., and ⊙. denotes element-wise multiplication.
Intuitively, this implies that the masks S keep some of the elements in Gi . while the
elements that are not selected by S are replaced with values from the probability
distribution VS . as ‘noise’. In general, the choice of VS . should be such that
the resulting subgraph Ĝi . remains within the data manifold, provided that the
data manifold is known. Depending on the information in Gi ., we can use a
variety of probability distributions for (VSA

., VSX
).. For example, in the case of

a binary adjacency matrix, VSA
. can be the Gumbel-Softmax distribution, whereas

for real-valued adjacency matrices and node feature matrices, VS . can be Gaussian
distributions. We can also learn the probability distributions VS . from the data
manifold itself, as previous attempts have shown success with inpainting GANs
[27] for this strategy on other data modalities.

Furthermore, we define the expected distortion on Gi . with respect to the masks
S and perturbation distributionsVS . as

.D(Gi, S,VS,θ) = E
νSA

∈VSA
,νSX

∈VSX

⏋
d(θ(Gi),θ(Ĝi))

⏋
, (10.12)

where d : Rm × Rm −→ R+ . is the measure of distortion between the two model
outputs. Commonly, we can set d as the L2

. distance or the KL-divergence between
the two model outputs. Thus, we can define the rate-distortion explanation on Gi . as
the optimal subgraph Ĝi . that solves the minimization problem

. min
S=(SA,SX)

D(Gi, S,VS,θ) s.t. ||SA||0 ≤ j, ||SX||0 ≤ k, (10.13)

where j, k . are the desired levels of sparsity for SA, SX . respectively.
Note that solving (10.13) is NP.-hard [38]. Thus, we use an l1 . relaxation on

(10.13) to get the relaxed optimization problem given by

. min
S=(SA,SX)

D(Gi, S,VS,θ) + λA||SA||1 + λX||SX||1, (10.14)

where λA, λX > 0. are hyperparameters to control the sparsity level of the masks.
We can further relax the binary masks S by sampling them from the concrete
distribution [39] or Gumbel Softmax distribution [22]. This allows us to solve the
optimization problem in (10.14) with differentiable techniques such as stochastic
gradient descent.

218 N. Breustedt et al.

10.3.5 Sampling Strategies

We now introduce two approaches for sampling a set of points from a large dataset.
The first method focuses on maximising the diversity of the selected set, while the
second aims to select a set that is representative of the whole dataset.

10.3.5.1 Diversity

In short, diverse subsets are iteratively selected from Ω ⊂ Rd
. using the farthest

point sampling (FPS) algorithm [13], where the resulting subset is a sub-optimal
minimizer of the fill distance. We denote this approach by FPS.

To maximize diversity of the selection we consider the concept of fill distance.
Given a dataset Ω ⊂ Rd

. consisting of a finite amount of unique points, and X =
{x1, x2, . . . , xp} ⊂ Ω. a subset of cardinality p = |X| ∈ N. we define the fill
distance of X in Ω. as

.hX,Ω := max
x∈Ω

min
xj ∈X

||x − xj||2. (10.15)

Put differently, we have that any point x ∈ Ω. has a point xj ∈ X . not farther away
than hX,Ω .. Notice that, if X, X̄ ⊂ Ω. with p = |X| = |X̄|. and hX,Ω < hX̄,Ω . then
X consists of data points that are more widely distributed in Ω., thus more diverse,
than those in X̄ ..

Fixing the number of points p ∈ N. we want to select from Ω., we aim to find
X ⊂ Ω. such that

.X = argmin
X̄⊂Ω,|X̄|=p

hX̄,Ω. (10.16)

The naive approach to solve the minimization problem in (10.16) would first require
computing the fill distance for all possible sets X ⊂ Ω. with |X| = p . and then
choosing one of those sets where the minimum of the fill distance is attained.
Unfortunately, such an approach is very time consuming and computationally
intractable. Therefore, as an alternative approach we use the FPS algorithm [13].
FPS is a greedy selection method, which means that the points are progressively
selected starting from an initial a-priori chosen point, i.e., given a set of selected
points Xs = {x1, x2, . . . , xs} ⊂ Ω. with cardinality |Xs | = s < p ., the next chosen
point is

.xs+1 = arg max
x∈Ω

min
xj ∈Xs

||x − xj||. (10.17)

10 On the Interplay of Subset Selection and Informed Graph Neural Networks 219

xs+1 . is the point which is farthest away from the points in Xs
. and it is the point

where the fill distance hXs,Ω . is attained. In other words, the next selected sample is
the center of the largest empty ball in the dataset.

10.3.5.2 Representativeness

We say that data points are representatively selected for the entire dataset, when
the distribution of properties in the selected subset are as close as possible to the
corresponding distribution in the whole dataset. To this aim, we divide Ω. into
clusters and select data points from them so that the distribution of the clusters in
the subset resembles that of the whole dataset. For example, if we divide Ω. into two
clusters, each containing 50% of the data points, we aim to select a subset consisting
of data points which are also equidistributed in the two clusters. The clustering
can be performed by clustering algorithms or be based on properties and criteria
stemming from domain knowledge, i.e., in the sense of [50] the training data is
selected based on scientific knowledge. Furthermore, data points within each cluster
are selected using the farthest point sampling, which ensures that in the various
clusters a set of diverse data points is chosen. We call this approach cluster-based
farthest point sampling (C-FPS).

10.4 Numerical Experiments

10.4.1 QM9 Dataset

In this chapter, we analyze the publicly available QM9 dataset [47, 49] containing a
diverse set of organic molecules. Precisely, the QM9 consists of 133,885 organic
molecules in equilibrium with up to 9 heavy atoms of four different types: C,
O, N and F. The dataset provides the SMILES [59] representation of the relaxed
molecules, their geometric configurations and 19 physical and chemical properties.
To guarantee a consistent dataset, we remove all 3054 molecules that failed the con-
sistency test proposed by [47]. Moreover, we remove the 612 compounds for which
the RDKit package [33] can not interpret the SMILES. After this preprocessing
procedure, we obtain at a smaller version of the QM9 dataset consisting of 130,219
molecules.

10.4.1.1 Knowledge Based Molecular Representation

The domain knowledge based molecular representation we employ is based on
Mordred [42], a publicly available library that exploits the molecules’ topological
information encoded in the SMILES strings to provide 1826 physical and chemical

220 N. Breustedt et al.

features. Such molecular features are defined as the “final result of a logical and
mathematical procedure, which transforms chemical information encoded within a
symbolic representation of a molecule into a useful number or the result of some
standardized experiment” [57] and encode scientific knowledge reflecting algebraic
equations, logic rules, or invariances [50]. Using the Mordred library, we represent
each molecule in the QM9 dataset with a high-dimensional vector where each
vector’s entry is associated with a distinct feature.

To work with a more compact representation, after generating the Mordred
vectors, we use the CUR [41] approach to select a subset of relevant features.
The CUR algorithm takes as input the Mordred vector representation of each of
the molecules in the analyzed dataset and ranks the significance of the features by
associating them with an importance score. We select the first 59 top-ranked features
and normalize their values in the range (0,1) using the “MinMaxScaler" function
provided by the scikit-learn python library [44]. Moreover, to ensure the uniqueness
of the representation, we consider an additional set of features representing the
atom type distribution within each molecule. Specifically, for each data point, we
add five features, each expressing the amount of atoms of a particular type within
the molecule, in percentage. The possible atom types are H, C, O, N and F. In
conclusion, the Mordred based representation we employ to sample the QM9 dataset
consists of 64-dimensional vectors.

10.4.1.2 Diverse and Representative Sets of Molecules

The knowledge related to the molecules in the QM9 enables us to employ the data
sampling strategies introduced in Sect. 10.3.5 to create diverse and representative
sets.

Diverse sets are constructed using the FPS algorithm on the Mordred-based
vector representations of the molecules in the QM9. The Mordred vectors allow
the representation molecules as points in Rd

., d ∈ N., and the definition of a distance
between the molecules, the Euclidean distance. Thus, we represent the QM9 as a
finite set Ω ⊂ Rd

. and use the FPS to sample from Ω. a sub-optimal minimizer of the
fill distance.

Representative sets are constructed using the procedure introduced in Sect. 10.3.5
consisting of segmenting the QM9 in clusters and then sampling from each cluster
so that the distribution of the chosen molecules resembles that of the whole dataset.
The segmentation procedure is based on the molecules’ topological information
and considers their size, atom types and bond types, which following [50], reflects
scientific knowledge in the selection of training data so that selected molecular
properties are invariant per cluster. Specifically, we define the clusters through a
process consisting of three main steps. In the first step, we split the molecules
according to their sizes. As a result of this first step, we divided the QM9 dataset into
26 sets. After that, we separate each cluster obtained in the first step into subclusters
defined by the different heavy atom types within the molecules. Overall, molecules
in the QM9 consist of 4 heavy atom types. Thus, each molecule could consist of 15

10 On the Interplay of Subset Selection and Informed Graph Neural Networks 221

different combinations of such atom types, e.g., a molecule can contain up to four
distinct heavy atoms, and for each amount of distinct heavy atom types, various
combinations are possible. After this second step, each of the initial 26 clusters is
divided into 15 subclusters. The third and final step is further splitting the data points
in each subcluster into different sets according to the various bond types present in
each molecule. We consider four different bond types: single, double, triple and
aromatic bonds. Thus, each of the subclusters is further divided into 15 distinct sets.
As a result of this clustering procedure, we divide the QM9 in 5850 different clusters
that account for molecular size, atom types and bond types. Molecules within the
clusters are selected using the farthest point sampling, which ensures that in the
various clusters, a set of diverse molecules is chosen.

10.4.1.3 Sampling the QM9 Dataset

For the experiments, we select training sets of different sizes and according to
different strategies from the entire preprocessed QM9 dataset. After that, we
test each trained model’s predictive accuracy on all the molecules that have not
been selected to train it. We construct training sets consisting of 100, 250, 500,
1000 and 5000 samples. Such sets are created following three different selection
criteria: random sampling (RDM), as a benchmark, and the two selection strategies
introduced in Sect. 10.3.5, namely, diversity sampling (FPS) and representative
sampling (C-FPS). For each sampling strategy and training set size, we run the
training set selection process independently five times. For RDM, at each run the
points are independently and uniformly selected, while in the case of FPS and C-
FPS the initial point to initialize the FPS algorithm is independently selected at
random at each run. Thus, for each selection strategy and training set size, each of
the analyzed models is trained and tested five times, independently. The test results
that follow are averaged over the five runs.

We want to point out that sampling the training data non-randomly will lead to a
shift between the training and test distribution, as showcased in Fig. 10.1, where we
compare FPS with a random selection. It is not obvious how such a bias effects
the different models. Note that for Fig. 10.1 we performed the selection twice,
with different initialization for FPS and different seeds for the random selection,
respectively. We find that changing the initialization for FPS does not lead to a
significant change in the distribution, for different seeds in the random selection we
make the same observation.

10.4.1.4 Measuring the Error

We evaluate the performances of the employed machine learning methods using
three different metrics. Specifically, we consider the mean absolute error (MAE),
the root mean squared error (RMSE) and the worst-case error. The mean absolute

222 N. Breustedt et al.

Fig. 10.1 The distributions of pairwise interatomic distances within a molecule for 5000
molecules sampled with either FPS or randomly (two different splits each) differ

error (MAE) computes the arithmetic average of the absolute errors between the
predicted values {ỹi}Ni=1 . and the ground truths {yi}Ni=1 ., that is,

.MAE :=
N⎲

i=1

|yi − ỹi |, (10.18)

where N ∈ N. is the number of data points in the test set used to evaluate the models.
The root mean squared error (RMSE) computes the root of the mean squared error,
which is the arithmetic average of the squared errors. It is a measure of how spread
out the errors are and it is represented by the formula

.RMSE :=
⏋|||

N⎲

i=1

(yi − ỹi)2. (10.19)

The worst-case error calculates the maximum absolute error between the predicted
values and the ground truths. It is an indicator of the robustness of a model’s
predictions, and it is defined as

.worst-case error := max
1≤i≤N

|yi − ỹi |. (10.20)

10 On the Interplay of Subset Selection and Informed Graph Neural Networks 223

10.4.2 SchNet

In order to get experimental insights on FPS also for a different class of informed
predictive models, we train the publicly available implementation of SchNet from
Pytorch Geometric [15] on the defined subsets. In this chapter, we choose a cutoff
radius of 4 Å. while keeping the other hyperparameters to be the default ones
suggested by the Pytorch Geometric implementation (version 2.0.4). Besides the
test set that is used for final evaluation, we use random 20% from the training set for
evaluation during training and refer to it as validation set. We minimize the L2-loss
function with respect to the model parameters with the Adam optimizer using mini-
batches of 32 molecules per iteration and a learning rate of 7 · 10−4

.. The learning
rate is decayed by a factor of 0.8 if the validation error has not improved for 50
epochs. After each epoch a checkpoint is saved if the model has achieved a smaller
validation loss than the current best model. The training process is stopped after the
model has not improved for 200 epochs (early stopping). The best model is then
used for assessing the model performance on the test set.

The first thing we observe is that SchNet does not seem to profit from FPS-
based sampling strategies when examining the MAE and RMSE (Fig. 10.2a, b)
alone. Random sampling consistently leads to approximately equal or smaller
measurements for the MAE and RMSE for all investigated training set sizes.
However, for 100, 250 and 500 training samples, the worst case error is reduced
by at least 0.5 eV when employing FPS for the training set selection (Fig. 10.2b).

(a) (b)

(c)

Fig. 10.2 Results for SchNet. (a) MAE. (b) RMSE. (c) Worst-case error

224 N. Breustedt et al.

Considering the comparatively small error bars, we expect FPS to be a reliable
technique to reduce the worst case error for small (i.e. ≤500. data points) training
sets of QM9. For larger training sets however, this effect vanishes and FPS leads
to worse results in the sense of larger worst-case errors. This is possibly due to the
fact that FPS is based on Mordred features which yield a rather global description
of a molecule. In this sense, FPS selects samples that are maximally far away
with respect to those global features. On the contrary, GNNs strongly exploit local
information and we believe this discrepancy to be a possible explanation for the
merely small effect induced by FPS. However, in absolute numbers, SchNet yields
the lowest error metrics of all tested methods. This meets our expectations since it is
the only method incorporating geometric information. In fact, the nuclear positions
were obtained through DFT calculations and hence the coordinates already encode
highly relevant information for predicting the atomization energy. One could argue
that SchNet’s input is already part of the solution to the problem and view the use
of features derived by ab initio methods as some form of information leakage [16],
thus making the learning problem easier.

10.4.3 Kernel Ridge Regression

The kernel and regression hyperparameters were optimized in a grid search for each
of the randomly selected training sets of 1000 points. Specifically, we varied the
kernel parameter ‘ ν .’ in the set {10−1, 100, 10, 102, . . . , 107}. and the regularization
parameter ‘ λ.’ in the set {10−12, 10−10, 10−8, 10−6, . . . , 100}.. We selected ν =
105

. and λ = 10−12
., which is the parameter combination that provides the best

performance in terms of the MAE on a randomly chosen test set consisting of 10,000
points not considered during training.

Of all predictive models that we investigated, Gaussian kernel regression appears
to benefit the most from FPS-based sampling strategies in comparison to random
sampling. In particular, FPS and C-FPS improve the obtained RMSE on the test set
for all training set sizes as seen in Fig. 10.3b. However, it is noteworthy that random
sampling leads to an increasing RMSE when going from 500 to 1000 or even 5000
training samples. For a possible explanation, we consider the MAE (Fig. 10.3a) and
the worst case error (Fig. 10.3c). Even though we observe a decreasing MAE with
an increasing training set size the worst case error becomes larger with more training
samples as well, leading to a stagnating RMSE as it gives a higher weight to outliers
than the MAE. FPS appears to alleviate this problem as becomes apparent when
considering the comparatively small worst case errors.

At this point, we can compare the worst case errors of the SMILES-based Kernel
ridge regression (KRR) with the worst case error of SchNet. From Fig. 10.3c it is
apparent that FPS significantly reduces the worst-case error of KRR by one order of
magnitude compared to random sampling. In order to contextualize this effect better
we consider Fig. 10.4 that shows the worst-case errors of SchNet and KRR side by
side for different numbers of training samples. We find KRR to approach the values

10 On the Interplay of Subset Selection and Informed Graph Neural Networks 225

(a) (b)

(c)

Fig. 10.3 Results for Gaussian kernel regression. (a) MAE. (b) RMSE. (c) Worst-case error

Fig. 10.4 The worst-case
error of KRR can be reduced
by FPS such that the order of
magnitude is comparable to
SchNet

of SchNet with an increasing number of training samples. In particular, we observe
the errors to have the same order of magnitude. This is noteworthy as the KRR
only exploits topological information while SchNet requires the atom coordinates
obtained from DFT as input.

226 N. Breustedt et al.

10.4.4 Spatial 3-Hop Convolution Network

In accordance with the previous sections, we train the method presented in
Sect. 10.3.3 on subsets of QM9. The network consists of several updates by the
spatial 3-hop convolution layer, followed by an aggregation layer to obtain graph
features which are further processed by linear layers. During training we minimize
the L1-loss function with respect to the models parameters with the Adam optimizer,
use a learning rate of 2 ·10−4

. and a batch size of 32 molecules per iteration. We train
each model for 500 epochs and choose the best model with respect to a validation
set (20% of the training set) for measuring the model performance on a test set.

Apart from the model trained on 250 samples, we do not observe significant
differences among the different sampling strategies when considering only the MAE
(Fig. 10.5a). When training on 250 samples, the FPS-based methods appear to lead
to an advantage and reduce the MAE in comparison to random sampling. For larger
training sets random sampling seems to catch up and perform on par with FPS-
based sampling. Considering the RMSE (Fig. 10.5b), our observations are somewhat
different. In particular, we find FPS and C-FPS to outperform random sampling for
most sizes of the training set. In line with the other methods, FPS reduces the worst-
case error in comparison to random sampling (Fig. 10.5c).

(a) (b)

(c)

Fig. 10.5 Results for spatial 3-hop convolution network. (a) MAE. (b) RMSE. (c) Worst-case
error

10 On the Interplay of Subset Selection and Informed Graph Neural Networks 227

We observe comparatively large values for all metrics, especially for small
training set sizes. For example, the MAE for 100 training samples obtained with
FPS amounts to approximately 5 eV. This is around 4 times larger than what we
measure for KRR and more than 10 times larger than the value of SchNet. This was
to be expected, since both KRR and SchNet are relatively data efficient. We note that
the good performance of SchNet is to be expected as it uses more features than the
spatial 3-hop convolution network and especially uses the positions of the atoms (a
powerful information which allows to compute the atomization energy explicitely).
The KRR has the advantage of being a kernel method which has empirically shown
to be effective in the realm of small datasets [45]. However, for larger training
sets the relative difference between the methods becomes smaller: For 500 training
samples, KRR yields only a two times smaller and SchNet only a 5 times smaller
MAE. Moreover, the spatial 3-hop convolution network can benefit the most from
larger datasets, i.e. we observe a significant improvement in performance whenever
the size of the dataset is increased.

10.4.5 Explanation

With GRDE framework from Sect. 10.3.4 we now investigate the domain knowledge
learned by the spatial 3-hop convolution network from Sect. 10.3.3 using the
sampling strategies from Sect. 10.3.5.

10.4.5.1 Setup of the Experiments

For the experiments, we utilize the spatial 3-hop convolution network from
Sect. 10.3.3 that has been pre-trained using the sampling strategies from
Sect. 10.3.5. More specifically, we compare explanations on the pre-trained model
for the cases of random sampling (RDM) and diversity sampling (FPS) of 5000
samples as the training dataset. We fix the distortion measure d as the L2

. distance
for a regression task, and randomly initialize masks S. Furthermore, given the
sparsity of the data, we also set a low value on λA, λX = 20. (which corresponds
to choosing 10–15% of the non-zero elements in the respective masks) and set
(νSA

, νSX
). to null. Since the QM9 dataset possesses edge features, we optimize

SA = [SA1 , SA2 , ..., SAh
]. where Ai . is the adjacency matrix with respect to the

edge feature i ∀i ∈ {1, 2, ..., h}.; h being the number of edge features. The results
that follow are obtained as an average over 3 independent runs on 100 graphs
randomly sampled from the respective test datasets. Since the setup produces
positive relevance masks, i.e., the masks only obfuscate features that exist for each
node/edge, and do not show the relevance of the lack of a feature for a node/edge),
we aggregate and average the node- and edge-wise scores to obtain feature-wise
scores. Furthermore, we offset the imbalance in the scores by weighting them with
respect to the frequency of their occurrence over the sampled data. Our explanation

228 N. Breustedt et al.

(b)

Fig. 10.6 Results for feature-level GRDE. (a) Node feature explanations. (b) Edge feature
explanations

query is as follows: For a randomly selected graph unseen by the pre-trained model,
which features does the model consider important for its prediction?

10.4.5.2 Results

From Fig. 10.6a, b, we see that the model trained using FPS places a stronger
importance in both edge and node features than in the case of RDM, especially
in the case of atomic numbers (Z), double bonds and aromatic rings. In comparison,
single bonds, though the most frequent of the bond types in the sampled data are
not considered as important. Furthermore, Fig. 10.6a shows that the model requires
certain nodes to be specific atom types and have a certain type of neighborhood for
its predictions, as can be seen from the atomic number (Z) as well as the importance
of carbon (C) and the number of hydrogen atoms (#H) surrounding the node in the
case of FPS. In the case of RDM, we also have a clear indication that edge features
are not as important as the node features, whereas this is significantly more balanced
in the case of FPS. Finally, we find that, though there exist non-zero values for some
node features in the sampled graphs such as in the case of Nitrogen (N) and Oxygen
(O), GRDE does not attribute any importance to them. This implies that the model
treats these features as noise and ignores them regardless of the sampling strategy
used.

10.5 Conclusion

In this chapter, we employed three informed ML models to predict the atomization
energy of molecules in the QM9 dataset. We used KRR with a kernel obtained from
molecular topological features, a geometry-based GNN (SchNet) and a topology-
based GNN. We saw that maximizing molecular diversity in the training set
selection process improves the accuracy and robustness of those methods. Our main

10 On the Interplay of Subset Selection and Informed Graph Neural Networks 229

finding is that by training topology-based ML models with sets of diverse molecules,
we can significantly reduce their test maximum absolute error, thus increasing their
robustness to distribution shifts. For SchNet, this effect was still observable but
only for small training sets. Moreover, by maximizing diversity in the training sets,
we could substantially reduce the gap between the maximum absolute errors of a
topology-based regression method as KRR and the SchNet, which is a geometry-
based GNN. This chapter proposes only an empirical investigation, in the field of
molecular property prediction, on the effects of maximizing molecular diversity in
the training set selection. Ongoing research seeks to provide a theoretical foundation
for the observed empirical results.

We believe that reducing the worst-case error is of great importance for appli-
cations that require a high degree of robustness but have limited budget for data
generation. One example would be the application of Machine Learning Interatomic
Potentials (MLIPs) for molecular dynamics simulations. In this scenario, the
predictions of the model are used to integrate the equations of motion and to
compute particle trajectories. Thus, large errors in the predictions could potentially
lead to a failure of the simulation and techniques to prevent this are needed.
Investigating this scenario in particular, could be a direction of future research.

Acknowledgments This work was supported in part by the BMBF-project 05M20 MaGriDo
(Mathematics for Machine Learning Methods for Graph-Based Data with Integrated Domain
Knowledge) and in part by the Fraunhofer Cluster of Excellence “Cognitive Internet Technolo-
gies”.

References

1. Agarwal, C., Queen, O., Lakkaraju, H., Zitnik, M.: Evaluating explainability for graph neural
networks. Scientific Data 10(1), 144 (2023)

2. Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Geometric approximation via coresets. In:
Combinatorial and Computational Geometry, vol. 52, pp. 1–30. Cambridge University Press
(2005)

3. Barker, J., Berg, L.S., Hamaekers, J., Maass, A.: Rapid prescreening of organic compounds
for redox flow batteries: A graph convolutional network for predicting reaction enthalpies
from SMILES. Batteries & Supercaps 4(9), 1482–1490 (2021). https://doi.org/10.1002/batt.
202100059

4. Batzner, S., Musaelian, A., Sun, L., Geiger, M., Mailoa, J.P., Kornbluth, M., Molinari, N.,
Smidt, T.E., Kozinsky, B.: E(3)-equivariant graph neural networks for data-efficient and
accurate interatomic potentials. Nature Communications 13(1) (2022). https://doi.org/10.1038/
s41467-022-29939-5

5. Bochkarev, A., Lysogorskiy, Y., Menon, S., Qamar, M., Mrovec, M., Drautz, R.: Efficient
parametrization of the atomic cluster expansion. Phys. Rev. Materials 6, 013804 (2022). https://
doi.org/10.1103/PhysRevMaterials.6.013804

6. Brandstetter, J., Hesselink, R., van der Pol, E., Bekkers, E.J., Welling, M.: Geometric and
physical quantities improve e(3) equivariant message passing. In: International Conference on
Learning Representations (2022)

7. Braverman, V., Feldman, D., Lang, H.: New frameworks for offline and streaming coreset
constructions. ArXiv abs/1612.00889 (2016)

https://doi.org/10.1002/batt.202100059
https://doi.org/10.1002/batt.202100059
https://doi.org/10.1002/batt.202100059
https://doi.org/10.1002/batt.202100059
https://doi.org/10.1002/batt.202100059
https://doi.org/10.1002/batt.202100059
https://doi.org/10.1002/batt.202100059
https://doi.org/10.1038/s41467-022-29939-5
https://doi.org/10.1038/s41467-022-29939-5
https://doi.org/10.1038/s41467-022-29939-5
https://doi.org/10.1038/s41467-022-29939-5
https://doi.org/10.1038/s41467-022-29939-5
https://doi.org/10.1038/s41467-022-29939-5
https://doi.org/10.1038/s41467-022-29939-5
https://doi.org/10.1038/s41467-022-29939-5
https://doi.org/10.1038/s41467-022-29939-5
https://doi.org/10.1103/PhysRevMaterials.6.013804
https://doi.org/10.1103/PhysRevMaterials.6.013804
https://doi.org/10.1103/PhysRevMaterials.6.013804
https://doi.org/10.1103/PhysRevMaterials.6.013804
https://doi.org/10.1103/PhysRevMaterials.6.013804
https://doi.org/10.1103/PhysRevMaterials.6.013804
https://doi.org/10.1103/PhysRevMaterials.6.013804
https://doi.org/10.1103/PhysRevMaterials.6.013804

230 N. Breustedt et al.

8. Cai, S., Wang, Z., Wang, S., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural
networks for heat transfer problems. Journal of Heat Transfer 143(6) (2021)

9. Cuomo, S., Di Cola, V.S., Giampaolo, F., Rozza, G., Raissi, M., Piccialli, F.: Scientific machine
learning through physics–informed neural networks: where we are and what’s next. Journal of
Scientific Computing 92(3), 88 (2022)

10. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with
fast localized spectral filtering. In: Proceedings of the 30th International Conference on Neural
Information Processing Systems, NIPS’16, p. 3844–3852. Curran Associates Inc., Red Hook,
NY, USA (2016)

11. Deringer, V.L., Bartók, A.P., Bernstein, N., Wilkins, D.M., Ceriotti, M., Csányi, G.: Gaussian
process regression for materials and molecules. Chemical Reviews 121(16), 10073–10141
(2021). https://doi.org/10.1021/acs.chemrev.1c00022

12. Duval, A., Malliaros, F.D.: Graphsvx: Shapley value explanations for graph neural networks.
In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases,
pp. 302–318. Springer (2021)

13. Eldar, Y., Lindenbaum, M., Porat, M., Zeevi, Y.: The farthest point strategy for progressive
image sampling. IEEE Transactions on Image Processing 6(9), 1305–1315 (1997). https://doi.
org/10.1109/83.623193

14. Feldman, D.: Core-sets: Updated survey. In: Sampling Techniques for Supervised or
Unsupervised Tasks, pp. 23–44. Springer International Publishing (2019). https://doi.org/10.
1007/978-3-030-29349-9_2

15. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch Geometric. In: ICLR
Workshop on Representation Learning on Graphs and Manifolds (2019). URL https://github.
com/pyg-team/pytorch_geometric

16. Gasteiger, J., Yeshwanth, C., Günnemann, S.: Directional message passing on molecular
graphs via synthetic coordinates. In: Conference on Neural Information Processing Systems
(NeurIPS) (2021)

17. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for
quantum chemistry. In: Proceedings of the 34th International Conference on Machine Learning
- Volume 70, ICML’17, p. 1263–1272. JMLR.org (2017)

18. Gori, M., Monfardini, G., Scarselli, F.: A new model for learning in graph domains. In:
Proceedings. 2005 IEEE International Joint Conference on Neural Networks, vol. 2, pp. 729–
734 vol. 2 (2005). https://doi.org/10.1109/IJCNN.2005.1555942

19. Gould, T., Dale, S.G.: Poisoning density functional theory with benchmark sets of difficult sys-
tems. Phys. Chem. Chem. Phys. 24, 6398–6403 (2022). https://doi.org/10.1039/D2CP00268J

20. Hernández, Q., Badías, A., Chinesta, F., Cueto, E.: Thermodynamics-informed graph neural
networks. arXiv preprint arXiv:2203.01874 (2022)

21. Huang, Q., Yamada, M., Tian, Y., Singh, D., Chang, Y.: Graphlime: Local interpretable
model explanations for graph neural networks. IEEE Transactions on Knowledge and Data
Engineering (2022)

22. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with Gumbel-softmax. In:
International Conference on Learning Representations (2017)

23. Joerding, W.H., Meador, J.L.: Encoding a priori information in feedforward networks. Neural
Networks 4(6), 847–856 (1991)

24. Jørgensen, P., Jacobsen, K., Schmidt, M.: Neural message passing with edge updates for
predicting properties of molecules and materials. In: 32nd Conference on Neural Information
Processing Systems, NIPS 2018 (2018)

25. Kim, Y., Cho, J., Naser, N., Kumar, S., Jeong, K., McCormick, R.L., John, P.C.S., Kim, S.:
Physics-informed graph neural networks for predicting cetane number with systematic data
quality analysis. Proceedings of the Combustion Institute (2022)

26. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks.
In: 5th International Conference on Learning Representations, ICLR 2017. OpenReview.net
(2017). https://openreview.net/forum?id=SJU4ayYgl

https://doi.org/10.1021/acs.chemrev.1c00022
https://doi.org/10.1021/acs.chemrev.1c00022
https://doi.org/10.1021/acs.chemrev.1c00022
https://doi.org/10.1021/acs.chemrev.1c00022
https://doi.org/10.1021/acs.chemrev.1c00022
https://doi.org/10.1021/acs.chemrev.1c00022
https://doi.org/10.1021/acs.chemrev.1c00022
https://doi.org/10.1021/acs.chemrev.1c00022
https://doi.org/10.1109/83.623193
https://doi.org/10.1109/83.623193
https://doi.org/10.1109/83.623193
https://doi.org/10.1109/83.623193
https://doi.org/10.1109/83.623193
https://doi.org/10.1109/83.623193
https://doi.org/10.1109/83.623193
https://doi.org/10.1007/978-3-030-29349-9_2
https://doi.org/10.1007/978-3-030-29349-9_2
https://doi.org/10.1007/978-3-030-29349-9_2
https://doi.org/10.1007/978-3-030-29349-9_2
https://doi.org/10.1007/978-3-030-29349-9_2
https://doi.org/10.1007/978-3-030-29349-9_2
https://doi.org/10.1007/978-3-030-29349-9_2
https://doi.org/10.1007/978-3-030-29349-9_2
https://doi.org/10.1007/978-3-030-29349-9_2
https://doi.org/10.1007/978-3-030-29349-9_2
https://doi.org/10.1007/978-3-030-29349-9_2
https://github.com/pyg-team/pytorch_geometric
https://github.com/pyg-team/pytorch_geometric
https://github.com/pyg-team/pytorch_geometric
https://github.com/pyg-team/pytorch_geometric
https://github.com/pyg-team/pytorch_geometric
https://github.com/pyg-team/pytorch_geometric
https://github.com/pyg-team/pytorch_geometric
https://doi.org/10.1109/IJCNN.2005.1555942
https://doi.org/10.1109/IJCNN.2005.1555942
https://doi.org/10.1109/IJCNN.2005.1555942
https://doi.org/10.1109/IJCNN.2005.1555942
https://doi.org/10.1109/IJCNN.2005.1555942
https://doi.org/10.1109/IJCNN.2005.1555942
https://doi.org/10.1109/IJCNN.2005.1555942
https://doi.org/10.1109/IJCNN.2005.1555942
https://doi.org/10.1039/D2CP00268J
https://doi.org/10.1039/D2CP00268J
https://doi.org/10.1039/D2CP00268J
https://doi.org/10.1039/D2CP00268J
https://doi.org/10.1039/D2CP00268J
https://doi.org/10.1039/D2CP00268J
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl

10 On the Interplay of Subset Selection and Informed Graph Neural Networks 231

27. Kolek, S., Nguyen, D.A., Levie, R., Bruna, J., Kutyniok, G.: A rate-distortion framework for
explaining black-box model decisions. xxAI - Beyond Explainable AI p. 91–115 (2022).
https://doi.org/10.1007/978-3-031-04083-2_6

28. Kolek, S., Windesheim, R., Loarca, H.A., Kutyniok, G., Levie, R.: Explaining image classifiers
with multiscale directional image representation. arXiv preprint arXiv:2211.12857 (2022)

29. Kramer, M.A., Thompson, M.L., Bhagat, P.M.: Embedding theoretical models in neural
networks. In: 1992 American Control Conference, pp. 475–479. IEEE (1992)

30. Krause, A., Golovin, D.: Submodular function maximization. Tractability 3, 71–104 (2014)
31. Kulik, H.J., Hammerschmidt, T., Schmidt, J., Botti, S., Marques, M.A.L., Boley, M., Scheffler,

M., Todorović, M., Rinke, P., Oses, C., Smolyanyuk, A., Curtarolo, S., Tkatchenko, A., Bartók,
A.P., Manzhos, S., Ihara, M., Carrington, T., Behler, J., Isayev, O., Veit, M., Grisafi, A., Nigam,
J., Ceriotti, M., Schütt, K.T., Westermayr, J., Gastegger, M., Maurer, R.J., Kalita, B., Burke,
K., Nagai, R., Akashi, R., Sugino, O., Hermann, J., Noé, F., Pilati, S., Draxl, C., Kuban, M.,
Rigamonti, S., Scheidgen, M., Esters, M., Hicks, D., Toher, C., Balachandran, P.V., Tamblyn,
I., Whitelam, S., Bellinger, C., Ghiringhelli, L.M.: Roadmap on machine learning in electronic
structure. Electronic Structure 4(2), 023004 (2022). https://doi.org/10.1088/2516-1075/ac572f

32. Kung, S.Y.: Kernel Methods and Machine Learning. Cambridge University Press (2014).
https://doi.org/10.1017/cbo9781139176224

33. Landrum, G.: Rdkit:. Open-source cheminformatics (2012). URL http://www.rdkit.org
34. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.: Gated graph sequence neural networks.

In: Y. Bengio, Y. LeCun (eds.) 4th International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2–4, 2016, Conference Track Proceedings (2016).
URL http://arxiv.org/abs/1511.05493

35. Liu, Z., Zhou, J.: Introduction to graph neural networks. Synthesis Lectures on Artificial
Intelligence and Machine Learning 14(2), 1–127 (2020)

36. Luo, D., Cheng, W., Xu, D., Yu, W., Zong, B., Chen, H., Zhang, X.: Parameterized explainer for
graph neural network. Advances in neural information processing systems 33, 19620–19631
(2020)

37. Ma, J., Sheridan, R.P., Liaw, A., Dahl, G.E., Svetnik, V.: Deep neural nets as a method for
quantitative structure–activity relationships. Journal of Chemical Information and Modeling
55(2), 263–274 (2015). https://doi.org/10.1021/ci500747n

38. MacDonald, J., Wäldchen, S., Hauch, S., Kutyniok, G.: A rate-distortion framework for
explaining neural network decisions. arXiv preprint arXiv:1905.11092 (2019)

39. Maddison, C.J., Mnih, A., Teh, Y.W.: The concrete distribution: A continuous relaxation of
discrete random variables. In: International Conference on Learning Representations (2017)

40. Magister, L.C., Kazhdan, D., Singh, V., Liò, P.: GCExplainer: Human-in-the-loop concept-
based explanations for graph neural networks. In: 3rd ICML Workshop on Human in the Loop
Learning (2021). ArXiv preprint arXiv:2107.11889

41. Mahoney, M.W., Drineas, P.: CUR matrix decompositions for improved data analysis. Pro-
ceedings of the National Academy of Sciences 106(3), 697–702 (2009). https://doi.org/10.
1073/pnas.0803205106

42. Moriwaki, H., Tian, Y.S., Kawashita, N., Takagi, T.: Mordred: A molecular descriptor
calculator. Journal of Cheminformatics 10(1) (2018). https://doi.org/10.1186/s13321-018-
0258-y

43. Mueller, T., Kusne, A.G., Ramprasad, R.: Machine learning in materials science. In: Reviews
in Computational Chemistry, pp. 186–273. John Wiley & Sons, Inc (2016). https://doi.org/10.
1002/9781119148739.ch4

44. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python.
Journal of Machine Learning Research 12(Oct), 2825–2830 (2011)

45. Pinheiro, M., Ge, F., Ferré, N., Dral, P.O., Barbatti, M.: Choosing the right molecular machine
learning potential. Chem. Sci. 12, 14396–14413 (2021). https://doi.org/10.1039/D1SC03564A

46. Pope, P.E., Kolouri, S., Rostami, M., Martin, C.E., Hoffmann, H.: Explainability methods for
graph convolutional neural networks. In: 2019 IEEE/CVF Conference on Computer Vision and

https://doi.org/10.1007/978-3-031-04083-2_6
https://doi.org/10.1007/978-3-031-04083-2_6
https://doi.org/10.1007/978-3-031-04083-2_6
https://doi.org/10.1007/978-3-031-04083-2_6
https://doi.org/10.1007/978-3-031-04083-2_6
https://doi.org/10.1007/978-3-031-04083-2_6
https://doi.org/10.1007/978-3-031-04083-2_6
https://doi.org/10.1007/978-3-031-04083-2_6
https://doi.org/10.1007/978-3-031-04083-2_6
https://doi.org/10.1007/978-3-031-04083-2_6
https://doi.org/10.1007/978-3-031-04083-2_6
https://doi.org/10.1088/2516-1075/ac572f
https://doi.org/10.1088/2516-1075/ac572f
https://doi.org/10.1088/2516-1075/ac572f
https://doi.org/10.1088/2516-1075/ac572f
https://doi.org/10.1088/2516-1075/ac572f
https://doi.org/10.1088/2516-1075/ac572f
https://doi.org/10.1088/2516-1075/ac572f
https://doi.org/10.1088/2516-1075/ac572f
https://doi.org/10.1017/cbo9781139176224
https://doi.org/10.1017/cbo9781139176224
https://doi.org/10.1017/cbo9781139176224
https://doi.org/10.1017/cbo9781139176224
https://doi.org/10.1017/cbo9781139176224
https://doi.org/10.1017/cbo9781139176224
http://www.rdkit.org
http://www.rdkit.org
http://www.rdkit.org
http://www.rdkit.org
http://arxiv.org/abs/1511.05493
http://arxiv.org/abs/1511.05493
http://arxiv.org/abs/1511.05493
http://arxiv.org/abs/1511.05493
http://arxiv.org/abs/1511.05493
http://arxiv.org/abs/1511.05493
https://doi.org/10.1021/ci500747n
https://doi.org/10.1021/ci500747n
https://doi.org/10.1021/ci500747n
https://doi.org/10.1021/ci500747n
https://doi.org/10.1021/ci500747n
https://doi.org/10.1021/ci500747n
https://doi.org/10.1073/pnas.0803205106
https://doi.org/10.1073/pnas.0803205106
https://doi.org/10.1073/pnas.0803205106
https://doi.org/10.1073/pnas.0803205106
https://doi.org/10.1073/pnas.0803205106
https://doi.org/10.1073/pnas.0803205106
https://doi.org/10.1073/pnas.0803205106
https://doi.org/10.1186/s13321-018-0258-y
https://doi.org/10.1186/s13321-018-0258-y
https://doi.org/10.1186/s13321-018-0258-y
https://doi.org/10.1186/s13321-018-0258-y
https://doi.org/10.1186/s13321-018-0258-y
https://doi.org/10.1186/s13321-018-0258-y
https://doi.org/10.1186/s13321-018-0258-y
https://doi.org/10.1186/s13321-018-0258-y
https://doi.org/10.1186/s13321-018-0258-y
https://doi.org/10.1002/9781119148739.ch4
https://doi.org/10.1002/9781119148739.ch4
https://doi.org/10.1002/9781119148739.ch4
https://doi.org/10.1002/9781119148739.ch4
https://doi.org/10.1002/9781119148739.ch4
https://doi.org/10.1002/9781119148739.ch4
https://doi.org/10.1002/9781119148739.ch4
https://doi.org/10.1039/D1SC03564A
https://doi.org/10.1039/D1SC03564A
https://doi.org/10.1039/D1SC03564A
https://doi.org/10.1039/D1SC03564A
https://doi.org/10.1039/D1SC03564A
https://doi.org/10.1039/D1SC03564A

232 N. Breustedt et al.

Pattern Recognition (CVPR), pp. 10764–10773 (2019). https://doi.org/10.1109/CVPR.2019.
01103

47. Ramakrishnan, R., Dral, P.O., Rupp, M., von Lilienfeld, O.A.: Quantum chemistry structures
and properties of 134 kilo molecules. Scientific Data 1 (2014)

48. Roscher, R., Bohn, B., Duarte, M.F., Garcke, J.: Explainable Machine Learning for Scientific
Insights and Discoveries. IEEE Access 8(1), 42200–42216 (2020). https://doi.org/10.1109/
ACCESS.2020.2976199

49. Ruddigkeit, L., van Deursen, R., Blum, L.C., Reymond, J.L.: Enumeration of 166 billion
organic small molecules in the chemical universe database gdb-17. Journal of Chemical
Information and Modeling 52(11), 2864–2875 (2012). https://doi.org/10.1021/ci300415d.
PMID: 23088335

50. von Rueden, L., Mayer, S., Beckh, K., Georgiev, B., Giesselbach, S., Heese, R., Kirsch, B.,
Pfrommer, J., Pick, A., Ramamurthy, R., Walczak, M., Garcke, J., Bauckhage, C., Schuecker,
J.: Informed Machine Learning - A Taxonomy and Survey of Integrating Knowledge into
Learning Systems. IEEE Transactions on Knowledge and Data Engineering 35(1), 614–633
(2023). https://doi.org/10.1109/TKDE.2021.3079836

51. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural
network model. IEEE Transactions on Neural Networks 20(1), 61–80 (2009). https://doi.
org/10.1109/TNN.2008.2005605

52. Schlichtkrull, M.S., Cao, N.D., Titov, I.: Interpreting graph neural networks for {nlp} with
differentiable edge masking. In: International Conference on Learning Representations (2021)

53. Schütt, K.T., Kindermans, P.J., Sauceda, H.E., Chmiela, S., Tkatchenko, A., Müller, K.R.:
Schnet: A continuous-filter convolutional neural network for modeling quantum interactions.
In: Proceedings of the 31st International Conference on Neural Information Processing
Systems, NIPS’17, p. 992–1002. Curran Associates Inc., Red Hook, NY, USA (2017)

54. Shukla, K., Di Leoni, P.C., Blackshire, J., Sparkman, D., Karniadakis, G.E.: Physics-informed
neural network for ultrasound nondestructive quantification of surface breaking cracks. Journal
of Nondestructive Evaluation 39, 1–20 (2020)

55. Smilkov, D., Thorat, N., Kim, B., Viégas, F., Wattenberg, M.: Smoothgrad: removing noise by
adding noise. arXiv preprint arXiv:1706.03825 (2017)

56. Sutton, C., Boley, M., Ghiringhelli, L.M., Rupp, M., Vreeken, J., Scheffler, M.: Identifying
domains of applicability of machine learning models for materials science. Nature Communi-
cations 11(1), 4428 (2020). https://doi.org/10.1038/s41467-020-17112-9

57. Todeschini, R., Consonni, V.: Molecular Descriptors for Chemoinformatics. Wiley-VCH
(2009)

58. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention
networks. In: International Conference on Learning Representations (2018)

59. Weininger, D.: SMILES, a chemical language and information system. 1. Introduction to
methodology and encoding rules. Journal of Chemical Information and Modeling 28(1), 31–36
(1988). https://doi.org/10.1021/ci00057a005

60. Ying, Z., Bourgeois, D., You, J., Zitnik, M., Leskovec, J.: Gnnexplainer: Generating explana-
tions for graph neural networks. Advances in neural information processing systems 32 (2019)

61. Yu, K., Bi, J., Tresp, V.: Active learning via transductive experimental design. In: Proceedings
of the 23rd International Conference on Machine Learning, ICML ’06, p. 1081–1088.
Association for Computing Machinery, New York, NY, USA (2006). https://doi.org/10.1145/
1143844.1143980

62. Yuan, H., Tang, J., Hu, X., Ji, S.: Xgnn: Towards model-level explanations of graph neural
networks. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 430–438 (2020)

63. Yuan, H., Yu, H., Gui, S., Ji, S.: Explainability in graph neural networks: A taxonomic survey.
IEEE Transactions on Pattern Analysis and Machine Intelligence (2022)

https://doi.org/10.1109/CVPR.2019.01103
https://doi.org/10.1109/CVPR.2019.01103
https://doi.org/10.1109/CVPR.2019.01103
https://doi.org/10.1109/CVPR.2019.01103
https://doi.org/10.1109/CVPR.2019.01103
https://doi.org/10.1109/CVPR.2019.01103
https://doi.org/10.1109/CVPR.2019.01103
https://doi.org/10.1109/CVPR.2019.01103
https://doi.org/10.1109/ACCESS.2020.2976199
https://doi.org/10.1109/ACCESS.2020.2976199
https://doi.org/10.1109/ACCESS.2020.2976199
https://doi.org/10.1109/ACCESS.2020.2976199
https://doi.org/10.1109/ACCESS.2020.2976199
https://doi.org/10.1109/ACCESS.2020.2976199
https://doi.org/10.1109/ACCESS.2020.2976199
https://doi.org/10.1109/ACCESS.2020.2976199
https://doi.org/10.1021/ci300415d
https://doi.org/10.1021/ci300415d
https://doi.org/10.1021/ci300415d
https://doi.org/10.1021/ci300415d
https://doi.org/10.1021/ci300415d
https://doi.org/10.1021/ci300415d
https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1038/s41467-020-17112-9
https://doi.org/10.1038/s41467-020-17112-9
https://doi.org/10.1038/s41467-020-17112-9
https://doi.org/10.1038/s41467-020-17112-9
https://doi.org/10.1038/s41467-020-17112-9
https://doi.org/10.1038/s41467-020-17112-9
https://doi.org/10.1038/s41467-020-17112-9
https://doi.org/10.1038/s41467-020-17112-9
https://doi.org/10.1038/s41467-020-17112-9
https://doi.org/10.1021/ci00057a005
https://doi.org/10.1021/ci00057a005
https://doi.org/10.1021/ci00057a005
https://doi.org/10.1021/ci00057a005
https://doi.org/10.1021/ci00057a005
https://doi.org/10.1021/ci00057a005
https://doi.org/10.1145/1143844.1143980
https://doi.org/10.1145/1143844.1143980
https://doi.org/10.1145/1143844.1143980
https://doi.org/10.1145/1143844.1143980
https://doi.org/10.1145/1143844.1143980
https://doi.org/10.1145/1143844.1143980
https://doi.org/10.1145/1143844.1143980

10 On the Interplay of Subset Selection and Informed Graph Neural Networks 233

64. Yuan, H., Yu, H., Wang, J., Li, K., Ji, S.: On explainability of graph neural networks via
subgraph explorations. In: International Conference on Machine Learning, pp. 12241–12252.
PMLR (2021)

65. Zaverkin, V., Holzmüller, D., Steinwart, I., Kästner, J.: Exploring chemical and conformational
spaces by batch mode deep active learning. Digital Discovery (2022). https://doi.org/10.1039/
D2DD00034B

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1039/D2DD00034B
https://doi.org/10.1039/D2DD00034B
https://doi.org/10.1039/D2DD00034B
https://doi.org/10.1039/D2DD00034B
https://doi.org/10.1039/D2DD00034B
https://doi.org/10.1039/D2DD00034B
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 11
Informed Machine Learning Aspects
for the Multi-Agent Neural Rewriter

Nathalie Paul, Tim Wirtz, Stefan Wrobel, and Alexander Kister

Abstract We regard the multi-vehicle routing problem as a cooperative multi-
agent system where agents (vehicles) seek to determine the team-optimal agent
routes with minimal total cost. Each agent can hereby observe solely its own
cost information. Our multi-agent reinforcement learning approach builds on an
existing method for solving a single-vehicle routing problem by iteratively rewriting
solutions. We define new rewriting rules to enable agents to act and interact in
a parallel conflict-free manner. We use a form of Informed Machine Learning to
integrate knowledge about the underlying cost distribution into the learning process
of the agent policy. It enables the (solely own cost observing) agent to act globally
optimal within a representative team. Empirical results on simulated data of small
problem sizes show that our approach competes with a well-performing heuristic
which has also only imperfect cost knowledge.

11.1 Introduction

The logistics market is mostly dominated by competing players. Yet in the view of
environmental as well as economical benefits, there exists the ambition to promote
cooperation [18]. We consider the setup of collaborating logistics companies which
want to jointly serve a given set of customers in a globally optimal way, i.e.,
with minimal total cost. Each company, however, has a justified interest in not
revealing its cost structure to its collaborators as it represents business-internal and
-sensitive information. Yet knowing solely its own costs, a company cannot behave
optimally for the consortium: Assume it has only one collaborator and there is a

N. Paul (✉) · T. Wirtz · S. Wrobel
Fraunhofer IAIS, Sankt Augustin, Germany
e-mail: nathalie.paul@iais.fraunhofer.de; tim.wirtz@iais.fraunhofer.de;
stefan.wrobel@iais.fraunhofer.de

A. Kister
Federal Institute for Materials Research and Testing, Berlin, Germany
e-mail: alexander.kister@bam.de

© The Author(s) 2025
D. Schulz, C. Bauckhage (eds.), Informed Machine Learning,
Cognitive Technologies, https://doi.org/10.1007/978-3-031-83097-6_11

235

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-83097-6protect T1	extunderscore 11&domain=pdf

 885 51863 a 885 51863 a

mailto:nathalie.paul@iais.fraunhofer.de
mailto:nathalie.paul@iais.fraunhofer.de
mailto:nathalie.paul@iais.fraunhofer.de
mailto:nathalie.paul@iais.fraunhofer.de

 13667 51863 a 13667
51863 a

mailto:tim.wirtz@iais.fraunhofer.de
mailto:tim.wirtz@iais.fraunhofer.de
mailto:tim.wirtz@iais.fraunhofer.de
mailto:tim.wirtz@iais.fraunhofer.de

 -2016 52970 a -2016 52970 a

mailto:stefan.wrobel@iais.fraunhofer.de
mailto:stefan.wrobel@iais.fraunhofer.de
mailto:stefan.wrobel@iais.fraunhofer.de
mailto:stefan.wrobel@iais.fraunhofer.de

 885 56845
a 885 56845 a

mailto:alexander.kister@bam.de
mailto:alexander.kister@bam.de
mailto:alexander.kister@bam.de
https://doi.org/10.1007/978-3-031-83097-6_11
https://doi.org/10.1007/978-3-031-83097-6_11
https://doi.org/10.1007/978-3-031-83097-6_11
https://doi.org/10.1007/978-3-031-83097-6_11
https://doi.org/10.1007/978-3-031-83097-6_11
https://doi.org/10.1007/978-3-031-83097-6_11
https://doi.org/10.1007/978-3-031-83097-6_11
https://doi.org/10.1007/978-3-031-83097-6_11
https://doi.org/10.1007/978-3-031-83097-6_11
https://doi.org/10.1007/978-3-031-83097-6_11
https://doi.org/10.1007/978-3-031-83097-6_11

236 N. Paul et al.

Fig. 11.1 Exemplifying solution of a multi-vehicle routing problem with 10 customers and 3
vehicles (agents): An agent’s route is given by a sequence of visited customer nodes, starting and
ending at its depot. Each customer node must be visited exactly once in total. Each edge induces
an agent-specific cost

single customer to serve. It is impossible for the company to decide whether it
should serve the customer or leave it for its collaborator. The company’s optimal
decision depends on the collaborator’s cost. Some sort of global cost knowledge is
thus indispensable for a company’s optimal behaviour.

We view the setup as a cooperative multi-agent system with companies corre-
sponding to agents. The team task is given by a multi-vehicle routing problem [12]:
It consists of determining which agent visits which customers and in which order
such that the total cost is minimized (cf. Fig. 11.1). The agents hereby seek to keep
their own cost information as private as possible.

Throughout this chapter, we take on the perspective of a single agent: The agent is
a team player without any self-interested goals. It must be aware that in a (feasible)
solution all customer nodes have to be visited, i.e., it needs an understanding of the
problem. Moreover, it has only limited access to its teammates’ costs. In particular,
we ultimately require the agent to make decisions while observing solely its own
cost information. This raises the following questions: How to inform the agent
about the problem formulation? And given limited teammate cost knowledge, how
to inform the agent about how to behave as a team player?

The limited cost observability excludes classic routing solvers as a possible solu-
tion approach since they require complete knowledge about all cost information. We
use reinforcement learning (RL) to tackle the problem which has lately become very
attractive for learning heuristics for combinatorial optimization problems [1]. In RL,
an agent learns to solve a sequential decision problem by repeatedly interacting with
an environment: It chooses an action in the current state, transitions to a subsequent
state and observes a corresponding reward. The concept is formalized by a Markov
decision process [20]. It can be extended to multiple cooperative agents in terms of
a team Markov game [25] which consists of a (global) state space, a joint action
space defined by the agent’s own possible actions and a single common reward
signal. To design a team Markov game for our multi-agent setup, we build on an
existing RL based approach for solving a routing problem with a single agent: The

11 Informed Machine Learning Aspects for the Multi-Agent Neural Rewriter 237

so-called neural rewriter [2] takes a given routing solution and iteratively rewrites it
by swapping two nodes in the visit order.

The proposed multi-agent neural rewriter (MANR) extends the concept of
rewriting routing solutions to the setup of multiple agents. Preliminary results
were presented on a workshop [17]. The multi-agent setup requires to define new
rewriting rules for the game which guarantee that the self-determined agents cannot
directly interfere in a teammate’s route but at the same time allow for exchanging
customers within the team. A key aspect in the game design is the introduction of
a pool set which serves as a temporary storage for customer nodes where an agent
can drop-off and integrate customers from. Teaching the agent team that all nodes
from the pool must be ultimately reintegrated in some agent’s route is realized in
the reward definition and can be viewed as a form of Informed Machine Learning
(ML) [24].

For implementing our game, we make the assumption that the individual agent
costs originate from the same underlying distribution. This allows to learn a
single agent policy, used by each agent individually. The agent policy is only
allowed to process the agent’s own cost explicitly, but as the introductory example
demonstrates, it needs to incorporate some kind of global cost knowledge. In the
spirit of centralized-learning-decentralized execution [27] we allow the agent costs
to be revealed during training to build up global cost knowledge in the shape of
a modelled action value function Q which can assess the team benefit in terms
of the expected cumulative future reward when executing a joint agent action in a
given state. We employ an actor-critic approach [10] to pass the knowledge of Q
(critic) on to the agent policy (actor), i.e., the policy’s decisions are judged by the
cost-omniscient Q model. It enables the agent to learn about the underlying cost
distribution and thus how to act globally optimal in a representative team. Note that
sharing costs during training is a valid assumption since training can be performed
based on realistic but fictitious agent costs. The key is that during execution, the
agent acts solely based on its own cost information.

As an additional investigation in relation to informed ML, we analyze the
potential of transferring knowledge between models with different sized agent
teams. In particular, we aim at transferring the skill of finding the best visiting order
given a set of assigned customers. This skill must be always learned by the agent
policy independent of the given team constellation.

We give an overview of the related work in Sect. 11.2. In particular, we put
our approach into context of the informed ML taxonomy presented in [24]. In
Sect. 11.3 we define the considered vehicle routing problem and discuss our solution
approach in terms of the problem’s design as a team Markov game and its imple-
mentation using variants of informed ML. Empirical evaluations of our approach
are performed on simulated data in Sect. 11.4. We compare the performance of
our MANR to a heuristic which has also imperfect cost knowledge as well as to
a cost-omniscient classic routing solver. Finally, the section discusses the potential
for further informed ML in terms of applying two transfer learning approaches.
Section 11.5 summarizes the results and outlines plans for future work.

238 N. Paul et al.

11.2 Related Work

RL has become popular for learning heuristics to solve NP-hard combinatorial opti-
mization problems like vehicle routing problems. It has the potential to outperform
expert-designed heuristics and generate solutions faster compared to mathematical
optimization methods [1]. There are only few RL approaches for solving vehicle
routing problems with multiple vehicles. In order to avoid conflicting agent actions
there, the agents typically choose actions sequentially [3, 26]. We aim for a multi-
agent system which allows agents to execute actions in parallel. The case of a
single vehicle is on the other hand considered in a variety of RL approaches.
The typical RL design there is to build the routing solution step by step, i.e., to
visit one customer more in each state of the episode [11, 16]. Instead, we follow
the idea of [2] and model the solution process as a rewriting procedure of given
routing solutions. It implements the concept of local search, a widely used heuristic
for solving combinatorial optimization problems [8], as a RL task. The rewriting
problem design avoids the challenge of a sparse reward function as the success of
a rewriting action can be directly evaluated in the subsequent state (by computing
the total team cost). It also allows us to easier avoid conflicts between agents when
extending to a multi-agent setup.

Producing optimal solutions in multi-agent systems while minimizing the
amount of shared agent information is an active research topic for both competitive
and collaborative setups. The extreme case of independent learning, where no agent
information is revealed at all, is challenging and for cooperative tasks known to be
outperformed by methods involving some sort of information exchange [21]. An
interesting direction is to share only implicit agent information, e.g., their model
parameters, which is pursued in the field of distributed machine learning [15, 28].
As a first step, we employ the well-established scheme of centralized-learning-
decentralized-execution [27]. It allows agent information to be disclosed during
training to build up knowledge which during execution enables an agent to act
decentrally on its own observing solely its local information [5, 14].

To the best of our knowledge, the work we initiated in [17] is the first RL
based approach to solve a multi-vehicle routing problem with simultaneously
acting cooperating agents which can observe solely their own cost information.
We continue the work by modifying and extending our approach: E.g., we use
a more realistic and at the same time more challenging model for simulating
individual agent costs. We also make technical adaptions by introducing new model
components and enable a better evaluation of our approach by developing a new
benchmark which has also imperfect cost knowledge. Moreover, we investigate
transfer learning approaches for improving our model.

11 Informed Machine Learning Aspects for the Multi-Agent Neural Rewriter 239

11.2.1 Informed Machine Learning

Integrating knowledge in RL algorithms is typically achieved by the means of
human feedback. For example, actions are assessed by an expert instead of a reward
signal or expert demonstrations are used instead of on-the-fly simulated data [24].
In this chapter, we widen the perspective on informed ML as presented in [24]:
We take on the view of a single agent which is part of a collaborative multi-
agent system and has only limited knowledge about its teammates and thus about
the overall optimization problem. How can the agent locally learn to act globally
good for the team? What kind of mechanisms can we employ during learning to
inform the agent about its teammates? On the one hand, we apply expert knowledge
for formulating multi-vehicle routing as a problem that can be solved by RL. On
the other hand, we employ an actor-critic approach where a cost-omniscient critic
passes on its knowledge to the (initially) cost unknowing actor by criticizing its
actions. Integrating these two pieces of knowledge is essential for our setup to
allow the agents to solve the team task in a globally optimal way. We additionally
investigate two transfer learning approaches where the knowledge of a trained agent
policy is leveraged for learning in a new environment. Most importantly, we widen
the understanding of informed ML by considering learned knowledge as a valid
source of knowledge. In this extended view, the above aspects can be put into context
of the informed ML taxonomy presented in [24] as follows:

• Informing the agent about the problem formulation: We use expert knowledge to
design our team Markov game in such a way, that it allows an individual agent
to learn how to collaborate and solve the optimization problem. For each step
in this formulation process, we provide a detailed description of the used expert
knowledge and also of the way how it was used in Sect. 11.3. To give an example,
the agent must know that all customers have to be visited to yield a feasible
solution. The introduction of the pool set to the game leads to the fact that not all
nodes are visited in each state of the system, as will be explained in more detail in
Sect. 11.3.2. The agent must understand that, potentially against first actual plans,
has to react by visiting a customer if none of its teammates does. We integrate
this expert knowledge about the game design in form of an algebraic equation
into the definition of the reward, i.e., into the learning algorithm: The agent team
gets penalized if nodes stay unvisited for a too long time.

• Informing the agent about the global cost distribution: The agent must be able to
assess its teammates’ costs for optimal behaviour, as it cannot explicitly observe
these due to the limited cost disclosure requirement. We integrate knowledge in
terms of a modelled action value function Q which can evaluate a team action
with respect to the profit for the team. In the context of informed ML this is
a special kind of knowledge, namely learned knowledge. Q is defined by an
algebraic equation and inserted into the learning algorithm of the agent policy:
Inside the agent policy’s loss, Q criticizes the policy’s decisions, making it learn
about the underlying cost distribution (cf. Sect. 11.3.4.1). In contrast to the classic
idea of informed ML, we build up the knowledge Q only during learning, i.e., at

240 N. Paul et al.

the same time while learning the agent policy of interest. However, Q could have
been also a priori learned on simulated data.

• Informing the agent policy about useful sub-strategies: We study an additional
way of how the agent policy could profit from integrating knowledge via transfer
learning. The idea is to use the learned knowledge of an already trained policy in
terms of a learned (sub-)strategy which is necessary to be acquired independent
of the specific agent team environment. The knowledge in terms of algebraic
equations is integrated into the policy’s learning algorithm by modified loss
functions (cf. Sect. 11.4.3).

11.3 Multi-Agent Neural Rewriter (MANR)

The agent team members have to solve the conflict between finding a routing
solution with minimal total team cost and not sharing cost information between
each other. Since we assume the agent costs to originate from the same underlying
distribution, we can learn a single agent policy (for optimal agent behaviour in
the team). In this way, we counteract the non-stationarity problem in multi-agent
RL: Learning becomes easily unstable if agents learn their own policies, since
from one agent’s perspective the environment changes dynamically then [7]. Our
learned agent policy is used by each agent individually, processing the accessible
information out of the respective agent’s perspective. The desired game concept
needs to fulfill the following requirements:

• An agent action can solely modify the agent’s own route and not the ones of its
teammates. This is to ensure independence and self-determinedness of each team
member.

• An agent action cannot be in conflict with another teammate’s action. This
requirement allows agents to act in parallel in the multi-agent system.

• The agent policy processes solely the agent’s own cost information and not the
one of its teammates. This guarantees the limited cost disclosure requirement.

The first two points are realized via the game design, which will be discussed in
Sect. 11.3.2. The third point is a matter of the game implementation, cf. Sect. 11.3.4.
The desired agent policy will be used by each agent for decentral decision-making
during execution. As the policy does not explicitly process the teammates’ costs,
we have to impart global cost knowledge to it during learning. This knowledge
is built up simultaneously during training. To facilitate its learning process, the
game workflow during training differs from the one during execution as described
in Sect. 11.3.3. The integration of the global cost knowledge into the learning
algorithm of the agent policy is discussed in Sect. 11.3.4.1. In Sect. 11.3.1, we start
by formalizing the problem definition.

11 Informed Machine Learning Aspects for the Multi-Agent Neural Rewriter 241

11.3.1 Problem Definition

We consider a multi-vehicle routing problem in which n vehicles (agents) cooperate
to serve a set of customers V . Each agent is characterised by an individual cost
function and depot. We call a solution a feasible solution if each agent’s route starts
and ends at its depot and each customer node v ∈ V . is visited exactly once in
total by any of the agents. The quality of a feasible solution is assessed with the
team average cost, i.e., the average over all agent route costs. The goal is to find an
optimal solution which is a feasible solution and has minimal team average costs.

11.3.2 Game Design

For designing our game we build on the rewriting approach of the neural rewriter [2].
It regards the solution process of a vehicle routing problem with a single agent as a
Markov decision process: States represent feasible routing solutions, actions rewrite
a solution by swapping two nodes and rewards express the resulting improvements
in the solution quality. We extend this concept to a collaborative multi-agent
setup where agents perform rewriting actions on their routes simultaneously. Our
extension, the multi-agent neural rewriter (MANR), has already been introduced
in our previous work [17]. An important novelty in the multi-agent setup is that the
initial assignment of nodes to agents might not be optimal and hence the agents have
to exchange nodes and not just rewrite their own routes. Enabling node exchange by
allowing an agent to directly swap any nodes in the routing problem would however
contradict its teammates’ self-determinedness and also create room for conflicts.
Thus, we need to define new rewriting rules for our game. We introduce a so-called
pool set to the system where an agent can drop-off and pick-up customer nodes. The
pool is the only possibility for an agent to (indirectly) interact with its teammates
and exchange nodes. In this way we guarantee self-determined team members and
conflict-free agent actions. Yet the pool introduction comes with its own challenge:
An agent giving a customer node to the pool produces an infeasible solution in the
resulting state as not all customers are visited by some agent then. The agent team
must understand and act accordingly that nodes in the pool must be reintegrated into
some agent’s route. We use a form of informed ML to insert this expert knowledge
into the learning algorithm: We shape the reward function such that the team gets
penalized if nodes stay in the pool for a too long time. In the following, we formalize
the rewriting approach to multi-vehicle routing as a team Markov game.

Team State A team state st = (s1
t , s2

t , ..., sn
t ,Pt). at time t is given by the agent

states (si
t)i . and the corresponding current state of the pool set Pt .. The state si

t . of
agent i at time t is defined by the agent’s route, i.e., the sequence of its visited nodes
starting and ending at the agent’s depot. The pool state Pt . is the set of unvisited
nodes at time t . Only if the pool state is empty, the team state represents a feasible
solution. See Fig. 11.2 for exemplary team states.

242 N. Paul et al.

Fig. 11.2 Exemplifying rewriting sequence of three team states with corresponding semantic
agent actions (left, right, bottom)

Team Action A team action at = (a1
t , a

2
t , ..., a

n
t). at time t is given by all agent

actions at time t . An agent’s action consists of either giving one of its visited nodes
to the pool, integrating a new node from the pool in its route, reorder a node within
its route or do nothing. The set of allowed agent actions is hereby dependent on the
pool state: If the pool is empty, an agent can either reorder its route locally, give a
node to the pool or do nothing. If the pool is filled, an agent is only allowed to either
integrate a node from the pool or do nothing. This shall encourage the frequent
generation of feasible solutions. Technically, the action ai

t = (wi
t , u

i
t). of agent i

at time t consists of making two consecutive decisions: First, a region node wi
t . is

selected which will be placed after the subsequently selected rule node ui
t . to invoke

a rewriting step. If the pool is empty, the region is a node from the agent’s state
wi

t ∈ {si
t }.. It can be locally reordered by choosing the rule also from its state or given

to the pool by choosing an artificially introduced pool node p, i.e., ui
t ∈ {si

t } ∪ {p}..
The action of doing nothing simply translates to choosing the region’s predecessor
node in the agent’s state as a rule. For a filled pool, the region node wi

t ∈ Pt . is from
the pool. An agent can integrate it by choosing a rule node from its state or keep

11 Informed Machine Learning Aspects for the Multi-Agent Neural Rewriter 243

its route unchanged by choosing the artificial pool node (and thus deny the offer
of integrating it), i.e., as above, ui

t ∈ {si
t } ∪ {p}.. See Fig. 11.2 for exemplary agent

actions.

Team Reward In order to learn the team behaviour via RL, we have to define
a reward function that expresses how beneficial it is to perform a team action in
any possible team state: If the system is in a feasible solution, we compute the
improvement in the team average cost in comparison to the last feasible solution.
In case of an infeasible solution, we penalize the team if infeasible solutions were
created consecutively for a too long time, and until then assess an infeasible state
neutrally with a reward of 0. The designed team reward thus informs each agent
about the problem formulation.

.rt =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c(sprevf (t)) − c(st) if st is feasible,

−10 if st is infeasible and the last m team
states were infeasible,

0 otherwise,

(11.1)

where c(st) = 1
n

⎲n
i=1 ci(si

t).denotes the team average cost of the team state st .given
the agent-individual costs of their current routes ci(si

t). and sprevf (t) . the last feasible
team state before time t . Choosing the hyperparameter m > 1. results in a non-
Markovian reward which could be explicitly handled in the team state representation
but is currently left to the agents to learn about.

Episode The game’s rewriting episode is given by a sequence of team states, team
actions and team rewards and is observed by each agent. It requires an initial feasible
team state s0 . to start with and is limited by a fixed number of rewriting steps T :

. (s0, a0, r1, s1, a1, r2, s2, ..., sT −1, aT −1, rT , sT).

The result of our game is defined as the last feasible team state in the episode.

11.3.3 Game Workflow

As described above, the game consists of agents performing rewriting actions on
their routes to find a team-optimal solution. The procedure to yield a team action
is set up differently during training than during execution since the focus in these
phases is a different one: During training we must build up global cost knowledge
and pass it on to the agent policy. During execution we have an informed agent
policy ready to be used by each agent for decision making. In the following, we
describe how a team action is determined in the respective phase.

244 N. Paul et al.

Fig. 11.3 Team action determination during execution (left) and during training (right). During
execution each agent acts decentrally via the agent policy. During training agent actions are
centrally coordinated by choosing a team action out of a produced candidate set with the team
action scorer Q. The setup follows the common approach of centralized-learning-decentralized-
execution

During Execution Each agent acts decentrally and chooses its own action via the
learned agent policy observing solely its own cost. The agents’ chosen actions then
together automatically determine the team action, cf. Fig. 11.3.

During Training A central decision is made about which team action to choose out
of some candidates. To generate Z candidate team actions, each agent individually
produces Z actions with the agent policy which are centrally zipped together. A
team action then gets chosen with the so-called team action scorer, an action value
function model Q which learns to judge a team action with respect to its expected
team benefit, cf. Fig. 11.3. In the light of informed ML it represents the knowledge
about the global cost distribution each agent must get informed about. To facilitate
the learning process of Q we explicitly involve it in decision-making instead of a
posteriori showing it decentrally determined team actions. Q is hereby used in an
epsilon-greedy strategy which allows for a good trade-off between exploration and
exploitation. This is critical given the high-dimensional team action space.

11.3.4 Game Implementation

In the following, we describe the models used to implement our game design and
workflow.1 We discuss the different models for encoding nodes of the routing
problem (node encoders), which produce node representations that are processed
by the remaining models: The agent policy which determines one agent’s action as
well as the team action scorer which during training builds up global cost knowledge
and passes it on to the agent policy.

Node Encoders Each agent makes use of three node encoder models for repre-
senting different types of nodes: Nodes in its own state, nodes in a teammate’s
state and nodes in the pool state. The multiple encoders are necessary due to the
different semantic structure of the states as well as the different kind of information
availability.

1 https://github.com/fraunhofer-iais/MANR.

https://github.com/fraunhofer-iais/MANR
https://github.com/fraunhofer-iais/MANR
https://github.com/fraunhofer-iais/MANR
https://github.com/fraunhofer-iais/MANR
https://github.com/fraunhofer-iais/MANR
https://github.com/fraunhofer-iais/MANR

11 Informed Machine Learning Aspects for the Multi-Agent Neural Rewriter 245

• Agent state encoder: An LSTM-based model encodes nodes in the agent’s
own route to incorporate the sequential relation between the visited nodes. It
generally processes the nodes’ coordinates as well as the agent’s travelling cost
information. More precisely, the model is given by a bidirectional LSTM with
one hidden layer of dimension 256. It processes each node v in the agent’s state
as a 5-dimensional vector (vx, vy, v

p
x , v

p
y , ci(v, vp)). containing x,y coordinates

of the node itself and of its current predecessor vp
. as well as the agent’s cost to

travel between them. The resulting node encoding is of size 512 as the LSTM
outputs from both directions are concatenated.

• Teammate state encoder: Analogously to the agent state encoder, an LSTM-
based model encodes the nodes in a teammate’s state. It is also given by a
bidirectional LSTM with one hidden layer of size 256. It only differs from the
agent state encoder that it does not process the teammate’s cost information
since it is not accessible by the agent. I.e., each node v in a teammate’s
state is processed as a 4-dimensional vector (vx, vy, v

p
x , v

p
y). containing the x,y

coordinates of the node itself and of its current predecessor vp
..

• Pool state encoder: Since there is no semantic sequential order in the pool state,
a node is encoded by an attention-based model. It processes each node v in the
pool as a 2-dimensional vector (vx, vy). solely containing its coordinates. More
precisely, the model consists of three MLPs for generating a query, keys and
values respectively [23]. The query and keys networks have the same architecture
and are defined by two hidden layers of size 256 and an (attention) output size
of 16. They are used to compute the compatibility of a node in the pool with the
other nodes in the pool (self-attention). Based on the compatibilities, the values
produced by the values network are aggregated to determine the node encoding.
The values network is given by two hidden layers of size 1024 and outputs a
vector of size 512. All networks use ReLU activation in the hidden layers.

Agent Policy The agent policy chooses an agent action. By game design, it involves
selecting a region and a corresponding rule node. Defining the policy over the tuples
of region and rule nodes would lead to a sample space which is quadratic in the
problem size. Following [2], we reduce the modelling complexity by handling the
selection process of a region and a rule separately. In the current implementation,
only the rule selection is learned while the region selection is performed randomly
considering some rules.

• Region selector: By game design, the allowed choices for a region node depend
on the pool state. If the pool is empty, the region node to be moved is one of the
agent’s currently visited nodes. The agent chooses it by sampling from a uniform
distribution over its nodes in the current state. If the pool is filled, the region
node must be from the pool state. To avoid conflicts, the pool is equipped with
an automatic mechanism which distributes all nodes in the pool to agents. An
agent is thus automatically provided with a region node in case of a filled pool.
The distribution mechanism of the pool does not operate completely random
but respects some rules for smarter behaviour: A node is always first offered

246 N. Paul et al.

to an agent which did not drop the node there. Moreover, an agent’s denial of
integrating a node is respected in the sense of not giving it the same node as a
region again as long as there are other teammates which haven’t declined the
integration yet. Note that the randomness in the region node selection cannot
harm the course of the game in terms of the overall solution quality since an
agent can always decide to do nothing via the subsequently chosen rule node. It
can only harm the game in terms of slowing the solution process down.

• Rule selector: Given a region node, the agent selects a rule node with an
attention-based model πu . which predicts a probability distribution over all
potential rule nodes. The model bases its prediction on information about the
current agent state and pool state as well as some context information which
aggregates the info about which teammate visits which node and in which order
in the current team state. Technically, the model consists of two MLPs with two
hidden layers of size 256 with ReLU activation and an output size of 16 for
producing a query and keys. The query network processes the node encoding of
the selected region node and the average of the teammates’ nodes encodings as
context info. The keys network processes the information about the possible rule
nodes in terms of their node encodings as well as how the choice of a respective
rule would affect the agent state. The compatibilities between the (region) query
and (rule) keys are used to define a probability distribution via the softmax
function. During training, the rule is sampled from this distribution while during
inference we choose the rule with the highest probability. Note that through the
described inputted node encodings, the model processes solely the cost of the
agent itself and not of its teammates.

Team Action Scorer The team action scorer Q is given by a MLP and quantifies
the expected team benefit when rewriting a team state with a team action. It
processes the node encodings of the involved region and rule nodes produced by the
respective agent state encoder and thus observes the cost information of all agents.
The employed architecture depends on the number of agents. Since an agent action
(choosing region and rule) is two-dimensional, the network’s input is of size 2 ·512·.
number of agents. The output is one-dimensional. We successively introduce hidden
layers with ReLU activation by halving the hidden dimension as long as the current
size is bigger than 200.

Combining the discussed models with the above presented game workflow, we
obtain the following summarized procedure for generating a rewriting episode for a
given routing instance:

11 Informed Machine Learning Aspects for the Multi-Agent Neural Rewriter 247

Algorithm 1 Rewriting episode of one routing problem
Data: Number of rewriting steps T , number of candidate actions Z, probability e for choosing a

random team action, Boolean training_flag to indicate training (or inference) process.

generate initial solution for the routing problem; /* Discussed in Sect. 11.4.1 */
rewriting step = 0
while rewriting step < T do

each agent updates its node encodings using the agent, teammate and pool state encoder
if training_flag then

each agent perceives Z candidate regions from the region selector
each agent samples Z corresponding rules from the rule selector
all agents’ candidate actions are centrally zipped together to Z team actions
a team action is e-greedily determined with the team action scorer Q

else
each agent perceives a region from the region selector
each agent selects the corresponding best rule from the rule selector

end
each agent executes its action and perceives the resulting team state
rewriting step = rew riting step + 1

end

11.3.4.1 Loss Functions

As discussed above, the agent uses only the agent policy for making a rewriting
decision during execution. The policy processes solely the own agent’s cost
information. To allow for globally optimal team behaviour, it must be provided with
some sort of knowledge about its teammates’ costs during training.

In the spirit of centralized-learning-decentralized execution [27] we allow the
teammates’ costs to be revealed during training. It allows to compute the team
reward within observed rewriting episodes and use it to learn the team action scorer
Q as

. La(θ, ψ̃) = 1

T

T −1⎲

t=0

⎧ T −1⎲

t '=t

γ t '−t rt '+1 − Q(st , at ; θ, ψ̃)

⎧2

,

where θ . denote the parameters of the Q-model, ψ̃ = [ψ1, ψ2]. the parameters of the
agent state and pool state encoder and γ < 1. the discount factor. Unlike [2], we fit
Q to the cumulative discounted observed team reward within the rewriting episode
instead of the maximal one. This is necessary to guarantee the limited disclosure
requirement during execution: We cannot evaluate all generated team states within
the rewriting rollout to identify the best one. Our final result has to be the last
(feasible) team state within the rollout, requiring it to be the optimized one.

We integrate the knowledge of the team action scorer Q into the learning process
of the agent policy in the form of an actor-critic approach: The agent policy’s
(actor’s) decisions are criticized by the cost-omniscient Q-model (critic). It enables
the agent policy to learn about the underlying team member cost distribution and

248 N. Paul et al.

thus how to behave in a representative team. More precisely, the rule selector πu . of
the agent policy is fitted as

. Lu(φ,ψ) = 1

n

n⎲

i=1

⎧

−
T −1⎲

t=0

A(st , u
i
t , a

−i
t , wi

t) log πu(u
i
t |wi

t , s
i
t ,Pt ;φ,ψ)

⎧

,

where φ . denote the parameters of the rule selector, ψ = [ψ̃, ψ3] = [ψ1, ψ2, ψ3].
the parameters of the agent state encoder, the pool state encoder and the teammate
state encoder and A(st , u

i
t , a

−i
t , wi

t). the advantage of choosing rule node ui
t . in the

team state st . given the agent’s region node wi
t . and all other teammates’ actions

a−i
t = (a1

t , ..., a
i−1
t , ai+1

t , ..., an
t).. The advantage of an agent’s rule node choice is

defined as

. A(st , u
i
t , a

−i
t , wi

t)

= Q(st , u
i
t , a

−i
t , wi

t ; θ, ψ̃)

−
⎲

all candidate
rules ũi

π(ũi |wi
t , s

i
t ,Pt ;φ,ψ)Q(st , ũ

i , a−i
t , wi

t ; θ, ψ̃).

It compares the by Q predicted team benefit when choosing the agent’s rule node to
the expected one over all possible rule nodes under the agent policy (while keeping
the teammates’ actions fixed). In this way, Q informs and guides the learning
process of the agent policy. Note that it is arguably correct to evaluate the advantage
of an agent action in the context of fixed teammate actions since the optimal decision
of the agent at a time step is independent of its teammates’ actions at the same time
step.

The presented models (agent state encoder, teammate state encoder, pool state
encoder, agent policy and the team action scorer) are trained centrally and simulta-
neously with a combined loss function as

.L(θ, φ,ψ) = La(θ, ψ̃) + α Lu(φ,ψ), (11.2)

where α ∈ (0, 1). downscales the loss of the agent policy’s rule selector. This gives
the team action scorer Q a head start to perform well first to be a good critic
when assessing the agent policy’s decisions. We use the Adam optimizer [9] for
minimizing the combined loss.

11 Informed Machine Learning Aspects for the Multi-Agent Neural Rewriter 249

11.4 Empirical Evaluation

We empirically evaluate the presented MANR on simulated data for the setups of
10 and 20 customers with team sizes of 2, 3 and 5 agents respectively. We outline
the procedure for data simulation in Sect. 11.4.1 and assess the performance of our
approach by comparing it to two benchmarks in the subsequent Sect. 11.4.2. The
potential for additional informed ML is discussed in Sect. 11.4.3 by introducing and
evaluating two transfer learning approaches.

11.4.1 Data Generation

In the following we describe our method to generate vehicle routing instances in
terms of node topologies and individual agent costs. We also discuss the way of
creating an initial feasible team state which is needed to start the rewriting episode.

Vehicle Routing Topologies We are interested in scenarios in which it is optimal
that all agents contribute to the solution. Therefore we design the random assign-
ment of depot and customer locations such that it is very unlikely that one agent
serving all customers is optimal. Depot nodes as well as a random fraction of
customer nodes are sampled uniformly in the unit square [0, 1]2

.. The remaining
customer nodes are assigned as equally as possible to the agents and are drawn
close to the respective agent’s depot. This complex sampling procedure is necessary
to encourage the participation of multiple agents since we observed that when
distributing all nodes uniformly, it is often cheapest if a single agent visits them all.
To accomplish the closeness of the remaining customers to the respective agent’s
depot, they are drawn from a bivariate truncated normal distribution in the unit
square N(di, 0.12). centered at the corresponding agent’s depot di

. with a standard
deviation of 0.1.. Exemplary topologies are shown in Fig. 11.4.

Agent Cost Model We use the Euclidean distance to compute the distance
between two nodes v, z ∈ [0, 1]2

.. Agent-specific travel costs are then achieved
by introducing an agent-specific speed for each edge. To obtain agents that are
generally faster or generally slower we model the final speeds as the product of
the agent-edge-specific velocities and a general velocity. More precisely, for agent
i we draw its general velocity ηi

. uniformly from [0.5, 1]. allowing an agent to be
at most 50%. faster in general than its teammates. Moreover, we make the actual
agent’s speed also dependent on the specific travelling edge by sampling its edge-
specific velocity ηi

v,z . for the edge between node v and z uniformly from [0.5, 1.5]..
An agent’s speed can thus be decreased or increased on an edge by at most 50%.. In
summary, the cost of agent i to travel between two nodes v, z ∈ [0, 1]2

. is given as

.ci(v, z) = 1
ηi∗ηi

v,z
||v − z||2.

250 N. Paul et al.

Fig. 11.4 Exemplary generated routing instances with corresponding initial solutions for 10
customer nodes and a varying amount of agents

11 Informed Machine Learning Aspects for the Multi-Agent Neural Rewriter 251

Initial Solution The rewriting procedure of our game requires an initial feasible
solution as a starting point. We generate it by randomly and as equally as possible
assigning customer nodes to agents. Each agent then uses the nearest-neighbour-
heuristic [19] to create a route through its assigned nodes. Exemplary initial
solutions are depicted in Fig. 11.4.

11.4.2 Experiment Results for the MANR

For empirical evaluation we consider the vehicle routing setups of 10 and 20
customer nodes with 2 ,3 and 5 agents respectively. For each setup we generate 6250
routing instances split into three parts of 80%–10%–10% for training, validating
and testing. In the training set we include the same topologies multiple times with
different cost matrix samples to better enable an agent to learn about the underlying
cost distribution. More precisely, the training set with 5000 routing instances
contains 100 different topologies with 50 cost matrices each. In the validation and
test set all topologies are different. In the following, we give details on our model’s
training as well as inference process. We describe the employed benchmarks and the
considered performance metric. Based thereon, we discuss the evaluation results of
our approach.

Hyperparameters Hyperparameter tuning was performed on the validation set
with Tune [13]. Some values could be set equally throughout setups with a fixed
amount of customers k ∈ {10, 20}. or a fixed agent team size n ∈ {2, 3, 5}., see
Table 11.1 for a detailed overview. To mention those which are most essential for the

Table 11.1 Overview of selected hyperparameter values for all experiments. The first seven
rows contain the hyperparameters which were set equally throughout all setups

10 nodes 10 nodes 10 nodes 20 nodes 20 nodes 20 nodes

Hyperparameter 2 agents 3 agents 5 agents 2 agents 3 agents 5 agents

Num trained epochs 30 30 30 30 30 30

Discount factor γ . 0.5 0.5 0.5 0.5 0.5 0.5

Q learning rate 5e −.04 5e −.04 5e −.04 5e −.04 5e −.04 5e −.04

Learning rate decay
rate

0.9 0.9 0.9 0.9 0.9 0.9

Learning rate decay
steps

200 200 200 200 200 200

Epsilon-greedy e . 0.15 0.15 0.15 0.15 0.15 0.15

Gradient clip 0.05 0.05 0.05 0.05 0.05 0.05

Rewriting steps T 30 30 30 40 40 40

Num candidates actions
Z

5 5 5 10 10 10

Max num pool filled m 3 4 6 3 4 6

Policy learning rate
factor α .

1e −.06 1e −.06 1e −.05 5e −.07 5e −.07 1e −.06

252 N. Paul et al.

game workflow: For a fixed agent team size, we set the value of m which regulates
the time a penalty is assigned to the team (cf. (11.1)) to m = n + 1.. The idea is that
all team members, which are asked in turn for integrating a specific node from the
pool, are allowed to deny once. The team is penalized as soon as an agent declines
for the second time. For a fixed amount of 10 resp. 20 customers, we set the number
of rewriting steps in an episode to T = 30., resp. T = 40. and the number of centrally
produced candidate team actions during training to Z = 5., resp. Z = 10..

Inference While the generation of multiple candidate actions has to some extent
compensated the stochasticity in the region selection during training (since the
actions most probably contained different region nodes), this is not given anymore
during execution. For execution, the agent policy is used once decentrally by each
agent to determine the final agent action. Thus to counteract the region stochasticity
during inference, we increase the rewriting steps to T = 100. for all considered
vehicle routing setups. Moreover, we execute the MANR multiple times to assess its
performance: We make 20 inference runs and report the results when considering

• the best run for each routing instance (“MANR best"),
• the average performance over all runs for each routing instance (“MANR").

Benchmarks We compare our model to two benchmarks: A cost-omniscient one
given by a classic routing solver and a self-developed heuristic which has also
imperfect knowledge regarding the agent costs. The cost-omniscient benchmark is
an upper bound on the performance, it can not be surpassed by any approach that
respects our assumptions on the limited disclosure of the agent costs. The heuristic
with imperfect cost knowledge is a lower bound on the performance which we aim
to surpass or at least compete with.

More precisely, we consider the routing solver from OR-Tools which is based on
local search and specifically tuned for vehicle routing.2 The solver is configured
with the default search parameters and starts from the same initial solutions as
our model. It needs to be provided with the cost information of all agents for
optimization. Note that by using OR-Tools we might only find an approximation
to the optimal solution, but for our purposes this one will usually be good enough to
still serve as an upper bound.

Our imperfect cost knowledge benchmark PrivAssign relies on the idea that we
make a decision about which agent visits which nodes without knowing the true
agent costs. Instead, we only use knowledge about the cost distribution built up
from observed cost matrix samples. After the decision is made, we access the true
costs and use a routing solver to find the best visiting order of the assigned nodes
for each agent to evaluate the solution. To be exact, for a given routing instance
we generate 100 random agent-node-assignments as possible solutions. To assess
one node assignment, we sample costs for all agents in total 50 times. For each

2 https://developers.google.com/optimization/routing/vrp.

https://developers.google.com/optimization/routing/vrp
https://developers.google.com/optimization/routing/vrp
https://developers.google.com/optimization/routing/vrp
https://developers.google.com/optimization/routing/vrp
https://developers.google.com/optimization/routing/vrp
https://developers.google.com/optimization/routing/vrp
https://developers.google.com/optimization/routing/vrp

11 Informed Machine Learning Aspects for the Multi-Agent Neural Rewriter 253

cost-setup we compute optimized agent routes with a routing solver,3 i.e., we solve
one travelling salesman problem per agent, and evaluate the whole solution with
the team average cost. One node assignment is then assessed by the median team
average cost (over the 50 cost setups). For the given routing instance we choose the
node assignment with the minimal median team average cost out of the 100 options
as the final one. For this node assignment we consider the true agent costs and,
analogously to above, compute optimized agent routes yielding the final result.

Performance Metric The solution of a routing instance r generated by model m
is evaluated with the team average cost cm

team,r = 1
n

⎲n
i=1 c

i,m
r ., where c

i,m
r . denotes

the cost of the route of agent i. We denote the mean test set performance for model
m by cm

team = 1
R

⎲R
r=1 cm

team,r .. For all models we report the final performances in
terms of percentage cost reductions relative to the initial solution which is given by

.cgap = cinit
team − cm

team

cinit
team

(11.3)

with cinit
team . denoting the mean test set team average costs of the initial solutions and

model m ∈ {MANR, MANR best, OR-Tools, PrivAssign}.. We note that PrivAssign
is the only model which does not start from an initial solution for optimization.
Nevertheless we can take the quality of the initial solutions used in the other models
as a reference for evaluating the performance of PrivAssign.

Results The performance gaps in Tables 11.2 and 11.3 show that the MANR
significantly improves over the initial solutions for all considered setups of 10 and
20 customer nodes with 2, 3 and 5 agents respectively. The more agents, the higher
the gap which can be explained with the fact that the generated initial solutions get
naturally worse with an increasing amount of agents: The more agents, the higher
the probability that a node gets assigned to the wrong agent initially. We see a
pronounced difference in the performance gaps of MANR and MANR best. This
is not only related to the stochasticity in the region selection, but also to the nature

Table 11.2 Experimental
results for 10 customer nodes
in terms of cgap .

10 nodes PrivAssign MANR MANR best OR-Tools

2 agents 43% 31% 43% 52%

3 agents 55% 48% 60% 65%

5 agents 67% 60% 72% 76%

Table 11.3 Experimental
results for 20 customer nodes
in terms of cgap .

20 nodes PrivAssign MANR MANR best OR-Tools

2 agents 43% 28% 43% 50%

3 agents 56% 40% 57% 63%

5 agents 67% 50% 65% 75%

3 https://developers.google.com/optimization/routing/tsp.

https://developers.google.com/optimization/routing/tsp
https://developers.google.com/optimization/routing/tsp
https://developers.google.com/optimization/routing/tsp
https://developers.google.com/optimization/routing/tsp
https://developers.google.com/optimization/routing/tsp
https://developers.google.com/optimization/routing/tsp
https://developers.google.com/optimization/routing/tsp

254 N. Paul et al.

Table 11.4 Execution times in seconds for solving one routing instance on average, reported for
the models with imperfect cost knowledge. Note that MANR is exactly 20 times faster as MANR
best as MANR evaluates a problem instance once and MANR best 20 times

10 nodes PrivAssign MANR MANR best

2 agents 33.15 0.48 9.61

3 agents 41.50 0.55 10.92

5 agents 46.51 0.77 15.4

20 nodes PrivAssign MANR MANR best

2 agents 109.2 0.57 11.43

3 agents 108.92 0.67 13.48

5 agents 132.29 0.81 16.28

of the modelled local search procedure which happens to get stuck in local minima.
It can also indicate that some team states in the large state space have not been well
explored and that there is thus room for improvement during training.

As expected, the results of the cost-omniscient OR-Tools benchmark cannot be
reached by our approach. Yet taken into the account the limited cost observability,
MANR best gets reasonably close. Comparing our model results to the one of the
PrivAssign benchmark which also uses solely knowledge about the underlying cost
distribution instead of the actual costs, we see that MANR best indeed manages
to compete. In the setups of 10 nodes with 3 and 5 agents the performance of
PrivAssign is even notably surpassed. Only in case of 20 nodes and 5 agents
MANR best is outperformed by PrivAssign. It illustrates that learning becomes
more difficult for larger problem and team sizes. Yet our approach gives the better
trade-off between solution quality and execution time: For the setup of 10 customers,
MANR best is three times faster than PrivAssign and in case of 20 customer nodes
even eight times, cf. Table 11.4.

11.4.3 Transfer Learning Investigations

Learning in setups with larger teams becomes more challenging: The team action
scorer Q has to learn about the joint action space whose dimension scales with the
number of agents. Can we further improve our models by integrating additional
information during t raining?

We note that the agent policy must acquire two different skills during training.
On the one hand, it needs to be aware of the best visiting order given a set of
assigned nodes and on the other hand, it has to know how and when to use the pool
for exchanging nodes. The latter pool usage skill greatly depends on the number
of teammates: Whether the agent should exclude or integrate a node depends on
the given team constellation. Yet the local reordering skill is basically independent
of the team, it affects solely the agent itself. Only the typical agent route length
will vary for different team sizes. What if we could transfer the skill of local
reordering between different models of varying team sizes to facilitate learning?
An agent already having an idea about how to locally reorder could then focus on
the interaction with the pool, the part it must always newly learn about given a new
team setup.

11 Informed Machine Learning Aspects for the Multi-Agent Neural Rewriter 255

Fig. 11.5 Distribution of the
local reordering performance,
i.e., the cost gap to the TSP
solver, over the 5ag-test set
instances for the 5ag- and
2ag-model

On that account we analyzed the local reordering skill of the above presented
two-agent (2ag) and five-agent (5ag) model trained for 10 nodes. Both models were
evaluated on the 5ag-test set. Note that as the agent policy does technically not
depend on the team size, it can be directly used for execution in all team setups.
To assess the local reordering performance of a model, we compare each generated
agent route in the final results to the corresponding one optimized by a TSP solver
(given the respective same node assignment). More precisely, for each agent route
we quantitatively measure the skill as the cost gap to the TSP solver, normalized by
the respective route length

.gapi,TSP
k = c

i,tsp
k − c

i,MANR
k

agent i’s route length in test instance k
, (11.4)

where c
i,MANR
k .denotes the cost of agent i in the final routing solution of test instance

k produced by MANR best and c
i,tsp
k . the resulting agent cost when computing the

route through agent i’s nodes by a TSP solver. The higher the gap, the better our
model: A positive gap indicates that the model outperforms the TSP solver at local
reordering. Figure 11.5 shows the distribution of the computed gap over the 5ag-test
set for the 5ag- and 2ag-model. We see that the 2ag-model is clearly better at local
reordering than the 5ag-model as it has the higher mean and median values. Also
the distribution is more concentrated indicating that the skill was acquired in a more
stable and reliable way.

This raises the question: Can we use the 2ag-model skill of local reordering as
prior knowledge when learning in the more challenging 5-agent environment?

To this end we evaluate two transfer learning approaches. The first approach
transfers the local reordering skill by initializing the agent policy with a pre-trained
one [22]. The second approach is a policy distillation technique [4] which distills
the local reordering skill from a knowledgeable teacher during learning. In both

256 N. Paul et al.

approaches we adapt the loss term of the agent policy in the combined loss in (11.2)
to focus on learning the interactions with the pool after the local reordering skill was
transferred.

Policy Initialization The approach reuses pre-trained model components and fine-
tunes them in the new setup. More precisely, it implements three changes compared
to the original model:

• Initialization: We don’t initialize all model components randomly, but use the
trained agent policy as well as all the three trained encoders from the 2ag-setup
as a starting point.

• Temperature scaling: We scale the logits of the agent policy with a temperature
value T > 1. before applying the softmax function. This pushes the distribution
towards a more uniform distribution [6]. This is necessary as the initial policy
is already too decided about which action to choose which prevents the policy
from learning. We adaptively decrease the temperature over time such that the
mechanism loses its effect (with T = 1.) after 500 model updates.

• Agent policy loss: We modify the loss term of the agent policy’s rule selector
by introducing a weighing factor λ.. It puts more weight on actions involving the
pool, i.e., actions which give a node to the pool or take a node out of the pool.
More precisely, we define the new loss term as

. Lu,new(φ,ψ) = 1

n

n⎲

i=1

⎧

−
T −1⎲

t=0

λ(ai
t) A(st , u

i
t , a

−i
t , wi

t)

log πu(u
i
t |wi

t , s
i
t , Pt ;φ,ψ)

⎧

with

.

⎧
λ(ai

t) ⪡ 1 if ai
t contains pool usage,

λ(ai
t) = 1 else.

Policy Distillation The idea of policy distillation is to train a so-called student pol-
icy by transferring knowledge from a given teacher policy. We use a student-driven
distillation approach called expected entropy regularised distillation presented in
[4]. The idea is to align the student policy ~πu . (5ag-policy) with the teacher policy
~πteacher . (2ag-policy) by minimizing the cross entropy between their distributions and
additionally maximizing the agreement of the teacher with the student’s ultimately
chosen actions. We restrict these mechanisms to solely local reordering actions to

11 Informed Machine Learning Aspects for the Multi-Agent Neural Rewriter 257

transfer the local reordering skill. We integrate the policy distillation loss as an
additional weighted term in the agent policy loss as follows:

. Lu,new(φ,ψ) = Lu(φ,ψ) + β Lu,transfer(φ, πteacher)

with

. Lu,transfer(φ, πteacher)

= 1

n

n⎲

i=1

⎧

−
T −1⎲

t=0

R̂i
t log ~πu(u

i
t |wi

t , s
i
t , Pt ;φ,ψ)1(wi

t ,u
i
t)=locReord

+H
⎧
~πu(s

i
t , w

i
t ;φ)||~πteacher(s

i
t , w

i
t)

⎧
1(wi

t ,u
i
t)=locReord

⎧

,

where ~πm . with m ∈ {u, teacher}. is the respective conditional policy distribution
defined over all nodes except the pool node p:

. ~π(·|si
t , w

i
t) = π(·|ui

t /= p, si
t , w

i
t),

as we only want to align the behaviour regarding local reordering actions.

In the first term of the transfer loss the teacher assesses the student’s decision
regarding a chosen local reordering action at time t by an aggregated agreement
regarding the student’s chosen local reordering actions after time t :

. R̂i
t =

T⎲

k=t

log ~πteacher(u
i
k+1|wi

k+1, s
i
k+1, Pk+1)1(wi

k+1,u
i
k+1)=locReord .

In the second term, the similarity of the teacher’s and student’s distribution over
potential local reordering actions at time t is computed in terms of their entropy as

. H
⎧
~πu(s

i
t , w

i
t ;φ)||~πteacher(s

i
t , w

i
t)

⎧

= −
⎲

v∈V :v /=p

~πu(u
i
t = v|si

t , w
i
t ;φ) log ~πteacher(u

i
t = v|si

t , w
i
t).

Benchmarks For the considered setup of 5 agents and 10 nodes, we compare the
presented transfer learning approaches to two baselines. First, to the 5ag-model
itself which we ultimately want to improve. Second, to the 2ag-model which is used
as the teacher for transferring the local reordering skill and can be directly applied
in the 5ag-setup.

258 N. Paul et al.

Table 11.5 Transfer learning results (TL distill, TL init) for 10 customer nodes in terms of cgap .,
i.e., the improvement over the initial solutions. For interpreting the scale of the values, we recall
that PrivAssign reached a gap of 67% and OR-Tools of 76%

10 nodes 5ag TL distill TL init 2ag

MANR 60% 61% 62% 63%

MANR best 72% 73% 73% 74%

Fig. 11.6 Number of participating agents in the respective model solutions for the 5ag-test set

Results Both transfer learning approaches lead to an improvement over the 5ag-
model (cf. Table 11.5). While considering the best found solution per routing
instance (MANR best) leads to the same performance of the policy initialization
(TL init) and the distillation (TL distill) approach, TL init leads to better results
more consequently throughout multiple inference runs (MANR). However, the
direct application of the 2ag-model which is the only model not trained in the 5ag-
environment actually outperforms the other approaches. We trace it back to the fact
that the 2ag-model prefers solutions in which only one or two agents participate
(cf. Fig. 11.6), as it has learned it during training. Such solutions represent a local
minimum. The amount of collaboration in the OR-Tools solution (cf. black line
in Fig. 11.6) shows that generally more collaboration leads to even better results.
Even though all models trained in the 5ag-setup learned to collaborate more, they
didn’t learn to do it in a proper way. Since the blind transfer of the 2ag-model works
better than the elaborated approaches, the experiments demonstrate the necessity
for additional and different kind of knowledge integration during training. More
knowledge about the problem structure must be incorporated to improve learning in
larger teams.

11 Informed Machine Learning Aspects for the Multi-Agent Neural Rewriter 259

11.5 Conclusion

The presented multi-agent neural rewriter (MANR) models and implements collab-
orative vehicle routing as a team Markov game with partially observable costs. The
learned agent policy chooses an agent action solely based on the own’s agent cost.
The idea of rewriting solutions has been extended from the (single-agent) neural
rewriter by introducing new rewriting rules. Most importantly, they allow agents
to exchange customer nodes without causing conflicts and thus act simultaneously
in the multi-agent system. We use variants of informed ML to enable an agent to
behave optimally within and for its team: First, the agent is informed about the
necessity to create feasible solutions by shaping the reward function appropriately.
To produce not only feasible solutions but such with minimal total team cost, the
solely local cost observing agent is provided with global knowledge about the
underlying cost distribution. This knowledge is represented in terms of a modelled
Q function and is acquired during training by processing exemplary cost samples.
It is inserted into the agent policy’s learning algorithm through an actor-critic
approach. It enables the agent to assess its teammates’ costs and thus to act for the
sake of its team. This is confirmed by first empirical evaluations on small problem
sizes: The MANR competes with a well-performing heuristic with the same limited
cost knowledge. In particular, our approach yields a significantly better trade-off
between solution quality and execution time. We have observed the further potential
of informed ML through transfer learning (TL), specifically for models trained in
larger team setups. Yet the TL experiments have also demonstrated that there is
room for improving our modelling approach. In the future, we want to investigate
the integration of additional and different kind of knowledge about the problem
structure.

Acknowledgments This contribution was supported by the Fraunhofer Cluster of Excellence
“Cognitive Internet Technologies”.

References

1. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimization: a
methodological tour d’horizon. European Journal of Operational Research. 290, 405–421
(2021)

2. Chen, X., Tian, Y.: Learning to Perform Local Rewriting for Combinatorial Optimization.
Advances in Neural Information Processing Systems. 32, 6281–6292 (2019)

3. Correll, R., Weinberg, S. J., Sanches, F., Ide, T., Suzuki, T.: Reinforcement Learning for Multi-
Truck Vehicle Routing Problems. arXiv preprint arXiv:2211.17078 (2022)

4. Czarnecki, W., Pascanu, R., Osindero, S., Jayakumar, S., Swirszcz, G., Jaderberg, M.: Distilling
policy distillation. The 22nd International Conference on Artificial Intelligence and Statistics.
1331–1340 (2019)

260 N. Paul et al.

5. Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., Whiteson, S.: Counterfactual multi-agent
policy gradients. Proceedings of the AAAI conference on artificial intelligence. 32 (2018)

6. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.: On calibration of modern neural networks.
International conference on machine learning. 1321–1330 (2017)

7. Gupta, J. K., Egorov, M., Kochenderfer, M.: Cooperative multi-agent control using deep rein-
forcement learning. International conference on autonomous agents and multiagent systems.
66–83 (2017)

8. Hromkovič, J.: Algorithmics for hard problems: introduction to combinatorial optimization,
randomization, approximation, and heuristics. Springer Science & Business Media (2013)

9. Kingma, D. P., Ba, J.: Adam: A method for stochastic optimization. International Conference
on Learning Representations (2015)

10. Konda, V., Tsitsiklis, J.: Actor-critic algorithms. Advances in neural information processing
systems. 12 (1999)

11. Kool, W., van Hoof, H., Welling, M.: Attention! learn to solve routing problems! International
Conference on Learning Representations. (2019)

12. Laporte, G.: The vehicle routing problem: An overview of exact and approximate algorithms.
European journal of operational research. 59, 345–358 (1992)

13. Liaw, R., Liang, E., Nishihara, R., Moritz, P., Gonzalez, J. E., Stoica, I.: Tune: A Research
Platform for Distributed Model Selection and Training. arXiv preprint arXiv:1807.05118
(2018)

14. Lowe, R., Wu, Y., Tamar, A., Harb, J., Pieter, A., Mordatch, I.: Multi-agent actor-critic
for mixed cooperative-competitive environments. Advances in neural information processing
systems. 30 (2017)

15. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B. A.: Communication-efficient
learning of deep networks from decentralized data. Artificial intelligence and statistics. 1273–
1282 (2017)

16. Nazari, M., Oroojlooy, A., Snyder, L., Takác, M.: Reinforcement learning for solving the
vehicle routing problem. Advances in neural information processing systems. 31 (2018)

17. Paul, N., Wirtz, T., Wrobel, S., Kister, A.: Multi-Agent Neural Rewriter for Vehicle Routing
with Limited Disclosure of Costs. Presented at the Gamification and Multiagent Solutions
Workshop within Tenth International Conference on Learning Representations, ICLR. (2022)

18. Pomponi, F., Fratocchi, L., Tafuri, S., Palumbo, M.: Horizontal collaboration in logistics: a
comprehensive framework. Research in Logistics & Production. 3 (2013)

19. Rosenkrantz, D. J., Stearns, R. E., Lewis, II, P. M.: An analysis of several heuristics for the
traveling salesman problem. SIAM journal on computing. 6, 563–581 (1977)

20. Sutton, R. S., Barto, A. G.: Reinforcement learning: An introduction. MIT press. (2018)
21. Tan, M.: Multi-agent reinforcement learning: Independent vs. cooperative agents. Proceedings

of the tenth international conference on machine learning. 330–337 (1993)
22. Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., Liu, C.: A survey on deep transfer learning.

International conference on artificial neural networks. 270–279 (2018)
23. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł.,

Polosukhin, I.: Attention is all you need. Advances in neural information processing systems.
30 (2017)

24. von Rueden, L., Mayer, S., Beckh, K., Georgiev, B., Giesselbach, S., Heese, R., Kirsch, B.,
Walczak, M., Pfrommer, J., Pick, A., Ramamurthy, R., Garcke, J., Bauckhage, C., Schuecker,
J.: Informed machine learning - a taxonomy and survey of integrating prior knowledge into
learning systems. IEEE Transactions on Knowledge and Data Engineering. 35, 614–633 (2021)

25. Wang, X., Sandholm, T.: Reinforcement learning to play an optimal Nash equilibrium in team
Markov games. Advances in neural information processing systems. 15 (2002)

26. Zhang, K., He, F., Zhang, Z., Lin, X., Li, M.: Multi-vehicle routing problems with soft time
windows: A multi-agent reinforcement learning approach. Transportation Research Part C:
Emerging Technologies. 121 (2020)

11 Informed Machine Learning Aspects for the Multi-Agent Neural Rewriter 261

27. Zhang, K., Yang, Z., Başar, T.: Multi-agent reinforcement learning: A selective overview of
theories and algorithms. Handbook of Reinforcement Learning and Control. 321–384 (2021)

28. Zhang, K., Yang, Z., Liu, H., Zhang, T., Basar, T.: Fully decentralized multi-agent rein-
forcement learning with networked agents. International Conference on Machine Learning.
5872–5881 (2018)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Part IV
Hybrid Methods

Chapter 12
Training Support Vector Machines
by Solving Differential Equations

Christian Bauckhage and Rafet Sifa

Abstract The increasingly popular idea of Physics Informed Machine Learning
uses trained machine learning models as tools for differential equation solving.
Here, we turn this idea upside down and consider differential equation solving
as a tool for training machine learning models. We focus on support vector
machines for binary classification and explore the merits of training them by means
of solving gradient flows. We thus assume a continuous time perspective on a
fundamental machine learning problem which, in the mid- to long term, may inform
implementations on (re)emerging hardware platforms such as analog- or quantum
computers.

12.1 Introduction

The term Informed Machine Learning refers to the idea of designing computational
intelligence systems which combine data- and knowledge-driven models and algo-
rithms [35]. Reasons for pursuing this idea are manifold and we briefly review some
of them.

For instance, modern end-to-end learning with deep neural networks of up to
several hundred billion parameters is undeniably successful across a wide variety
of tasks. Yet, in order to generalize well, such models must typically be trained
with vast amounts of training data. With respect to practical use cases in industry,
this may not be a problem for fully digitized businesses, however, even in the
age of big data, more traditional industries still struggle with acquiring sufficient
amounts of appropriate training data. Here, incorporating business- or process
specific prior knowledge into model building and learning algorithms may reduce
model complexity (measured, say, in terms of the number of adjustable model
parameters) and can thus circumvent the need for massive data [34, 49].

C. Bauckhage (✉) · R. Sifa
Fraunhofer IAIS, Sankt Augustin, German y
e-mail: christian.bauckhage@iais.fraunhofer.de; rafet.sifa@iais.fraunhofer.de

© The Author(s) 2025
D. Schulz, C. Bauckhage (eds.), Informed Machine Learning,
Cognitive Technologies, https://doi.org/10.1007/978-3-031-83097-6_12

265

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-83097-6protect T1	extunderscore 12&domain=pdf

 885 56845
a 885 56845 a

mailto:christian.bauckhage@iais.fraunhofer.de
mailto:christian.bauckhage@iais.fraunhofer.de
mailto:christian.bauckhage@iais.fraunhofer.de
mailto:christian.bauckhage@iais.fraunhofer.de

 16332 56845 a 16332
56845 a

mailto:rafet.sifa@iais.fraunhofer.de
mailto:rafet.sifa@iais.fraunhofer.de
mailto:rafet.sifa@iais.fraunhofer.de
mailto:rafet.sifa@iais.fraunhofer.de
https://doi.org/10.1007/978-3-031-83097-6_12
https://doi.org/10.1007/978-3-031-83097-6_12
https://doi.org/10.1007/978-3-031-83097-6_12
https://doi.org/10.1007/978-3-031-83097-6_12
https://doi.org/10.1007/978-3-031-83097-6_12
https://doi.org/10.1007/978-3-031-83097-6_12
https://doi.org/10.1007/978-3-031-83097-6_12
https://doi.org/10.1007/978-3-031-83097-6_12
https://doi.org/10.1007/978-3-031-83097-6_12
https://doi.org/10.1007/978-3-031-83097-6_12
https://doi.org/10.1007/978-3-031-83097-6_12

266 C. Bauckhage and R. Sifa

Other reasons for informed learning are improved explainability or accountabil-
ity. If the structure or parameter ranges of a model reflect known facts about its
intended application domain, training processes are less likely to overfit or to learn
spurious correlations. Outputs of such models better hold up to scrutiny and are
easier to understand or retrace by human experts. Exemplary approaches include
knowledge-based restrictions on model parameters or on learning objectives [2, 25],
problem specific neural network topologies [27, 28], and physics informed learning.
The latter recently rose to prominence and works with models that reflect physical
background knowledge, usually in form of differential equations, and uses this
knowledge to guide training processes [19, 32].

The methods we introduce below can be seen as a variant of physics informed
approaches in that we apply differential equations as a tool for model training.
However, what distinguishes our approach is that the models we are training do not
represent specific physical phenomena or processes but are general purpose machine
learning models.

To be more specific, we show how to train support vector machines (SVMs)
for binary classification by means of solving systems of ordinary differential
equations.To accomplish this, we devise continuous time gradient flows over the
feasible sets of corresponding dual training problems. These flows are known to
converge to asymptotically stable stationary points from which we can compute the
parameters of the sought after classifier.

Our motivations for considering continuous time models for SVM training are
at least fourfold: First of all, there is renewed interest in SVMs because their
underlying theory has recently been connected to deep neural networks [4, 9, 18].
Gradient flows play an important role in establishing this connection and, since the
kind of flows we consider below differ from those considered before, they may
inform further analysis.

Second of all, systems of ordinary differential equations (ODEs) occur in all of
the hard sciences. Since they often do not have closed form solutions, numerical
ODE solving has a long and venerable history and there exists a plethora of
methods and corresponding software packages. Hence, by setting up the SVM
training problem as a problem of solving continuous time gradient flows, we gain
access to domain-agnostic learning algorithms as well as to versatile computational
paradigms which can be implemented on various kinds of hardware platforms.

Speaking of hardware platforms, there is, third of all, growing concern as to the
environmental sustainability of (deep) learning on modern GPU or TPU clusters
[43, 46]. The enormous energy demands of operating such high performance infras-
tructures have prompted researchers to (re)consider more energy efficient analog
computing [16, 37]. Indeed, analog circuits composed of resistors, capacitors,
inductors, and operational amplifiers are known to allow for differential equation
solving [44]. This, in turn, suggests that it may be possible to train SVMs on low
cost, low power hardware.

Forth of all and somewhat orthogonal to our previous point, there also is
increasing interest in Quantum Machine Learning. Since it has recently been shown
that quantum computing algorithms can solve differential equations [23, 24, 40, 48],

12 Training Support Vector Machines by Solving Differential Equations 267

our continuous time perspective on SVM training could therefore also lead to novel
quantum learning solutions.

12.1.1 Overview

In what follows, we particularly focus on the problem of training L2 . SVMs. This
choice is admittedly informed by personal preferences but does not constitute any
loss of generality. Seen from the point of view of mathematical intricacy, our focus
rather marks a middle ground: On the one hand, gradient flows for L2 .SVM training
are easier to set up than those for conventional SVMs. On the other hand, they are
not as trivial as those for least squares SVMs.

Since L2 .SVMs seem to be less well known than other kinds of SVMs, Sect. 12.2
briefly summarizes the underlying concepts. In Sect. 12.3, we then discuss L2 . SVM
training via solving gradient flows. Section 12.4 presents and discusses several
didactic baseline experiments which allow for illustrating practical performances.
Finally, in Sect. 12.5, we summarize our contributions and findings and provide an
outlook to auspicious future work.

12.1.2 Mathematical Notation

Throughout, we will be working with vectors and matrices over the field of real
numbers. Vectors will be written using bold lower case letters (v.) and matrices using
bold upper case letters (M.).

The operator “ T .” denotes vector- and matrix transposition. Using this operator,
inner- and outer products of two vectors will be written as uTv.and uvT ., respectively.

The symbol “ ⊙.” denotes the Hadamard or element-wise product of vectors or of
matrices. That is, u = v ⊙ w ⇔ ui = vi · wi . and M = N ⊙ O ⇔ Mij = Nij · Oij ..

12.2 Setting the Stage

This section briefly recalls the basic theory behind L2 .SVM training and application.
Readers familiar with this topic may safely skip ahead.

Since we address the problem of binary classifier training, we assume that we
have access to labeled samples of training data

{
(xi , yi)

}n

i=1 .where the data vectors
xi ∈ Rm

. represent entities from two classes and the label values yi ∈ {−1,+1}.
indicate class membership.

268 C. Bauckhage and R. Sifa

Below, we will write very compact mathematical expressions. To be able to do
so, we gather the given training data points in an m × n.matrix and their labels in an
n vector, namely

.X =
⎡

⎣
| | |
x1 x2 · · · xn

| | |

⎤

⎦ . (12.1)

y = ⎤
y1 y2 · · · yn

⎤T
. (12.2)

Training a binary classifier for data like these means to estimate the parameters
of a function y : Rm → {−1,+1}.. A common, simple, and generic ansatz for such
a function is a linear classifier

.y(x) = sign
(
xTw − θ

)
(12.3)

whose parameters are a weight vector w ∈ Rm
. and a threshold value θ ∈ R..

What turns the generic model in (12.3) into an SVM is the idea of estimating its
weight vector w. such that projections xTi w. of the training data from both classes
are maximally separated or, equivalently, such that the margin ρ ∈ R. between the
projected training data is as large as possible.

As there exist various loss functions for formalizing max-margin criteria, SVMs
come in many different flavors. Well known variants are the standard SVMs
introduced in pioneering work by Cortes and Vapnik [11]. Other popular flavors
include least squares SVMs due to Suykens and Vanderwalle [42] o r ν .-SVMs as
proposed by Schölkopf et al. [36].

Another variant are the so called L2 . SVMs whose origins can be traced back
to work by Frieß and Harrison [13] or by Mangasarian and Musicant [26]. These
are of practical interest as they are surprisingly easy to train [3, 39, 47]. Next, we
corroborate this claim and sketch how L2 . SVM training can be accomplished.

12.2.1 L2 . Support Vector Machines

A (linear) support vector machine for binary classification determines the max-
margin hyperplane between the training data for two given classes. Should these
classes not be linearly separable, one typically incorporates additional slack vari-
ables ξi ≥ 0 ∈ R. gathered in a vector ξ ∈ Rn

. whose influence on the training
procedure is controlled by a parameter C ≥ 0 ∈ R..

When training an L2 . SVM, slack variables enter the primal objective in form
of a sum of squares which differs from conventional SVMs where they appear in
a simple sum. Similar to conventional SVMs, the primal problem of training an
L2 . SVM comes with inequality constraints which differs from least squares SVMs
where there are none.

12 Training Support Vector Machines by Solving Differential Equations 269

In short, one can show [3, 39] that the primal problem of training an L2 . SVM
consists in solving the following constrained optimization problem

.

argmin
w, θ,ρ,ξ

1
2w

Tw + 1
2 θ2 − ρ + C

2 ξTξ

s.t.
⎤
ZTw − θ · y⎤ − ρ · 1 + ξ ≥ 0 ,

(12.4)

where 0, 1 ∈ Rn
. denote the vectors of all zeros and all ones, respectively and matrix

. Z =
⎡

⎣
| | |
z1 z2 · · · zn

| | |

⎤

⎦

is a matrix of size m × n.whose individual columns are given by

. zi = yi · xi .

In the appendix, we show that evaluating the Karush-Kuhn-Tucker conditions of
optimality leads to the following dual problem of training an L2 . SVM

.

argmin
μ∈Rn

1
2 μT

⎤
XTX ⊙ yyT + yyT + 1

C
I
⎤
μ

s.t.
1Tμ = 1

μ ≥ 0.

(12.5)

Here, I. denotes the n × n. identity matrix, μ ∈ Rn
. is a vector of n Lagrange

multipliers μi ., and ⊙. denotes the Hadamard product, i.e. the element-wise product
of vectors or matrices.

Once the minimizer μ. of the problem in (12.5) has been found, those entries μs .

of μ.which exceed zero identify which training data points support the sought after
hyperplane. This, in turn, allows for computing the model parameters

.w = X
⎤
y ⊙ μ

⎤
. (12.6)

θ = −1T
⎤
y ⊙ μ

⎤
. (12.7)

Given these, the sought after classifier in (12.3) becomes

.y(x) = sign
⎛
xTX

⎤
y ⊙ μ

⎤ + 1T
⎤
y ⊙ μ

⎤ ⎞
. (12.8)

= sign
⎛ ⎤
xTX + 1T

⎤⎤
y ⊙ μ

⎤ ⎞
. (12.9)

270 C. Bauckhage and R. Sifa

12.2.2 Invoking the Kernel Trick

Note that, during training (12.5) as well as during application (12.9) of an L2 .

SVM, data vectors exclusively occur within inner products, namely XTX. and xTX.,
respectively. This allows for invoking the kernel trick and therefore for dealing with
non-linear settings.

In other words, considering a Mercer kernel k : Rm × Rm → R., a non-linear
binary classifier can be trained by replacing the Gram matrix XTX. in (12.5) with an
n × n. kernel matrix K.whose elements are given by

.Kij = k
(
xi , xj

)
. (12.10)

By the same token, the trained classifier in (12.9) can be rewritten as

.y
(
x
) = sign

⎛ ⎤
k(x) + 1

⎤T⎤
y ⊙ μ

⎤ ⎞
, (12.11)

where the elements of the n-dimensional kernel vector k(x). amount to

.ki

(
x
) = k

(
x, xi

)
. (12.12)

12.2.3 A Baseline Training Algorithm

Observing that the feasible set of the dual L2 .-SVM training problem in (12.5) is the
standard simplex

.Δ n−1 = {
μ ∈ Rn

|| μ ≥ 0 ∧ 1Tμ = 1
}

(12.13)

and, introducing the following two shorthands for brevity

.H ≡ K ⊙ yyT + yyT + 1
C
I. (12.14)

f
(
μ

) ≡ 1 2 μ
TH μ, (12.15)

we find that the parameter estimation problem in (12.5) can be written more
succinctly, namely

. argmin
μ∈Δ n−1

f
(
μ

)
. (12.16)

Written like this, our classifier training problem is now clearly revealed as a
quadratic minimization problem over a compact convex set. Since it can therefore
rather easily be solved using the Frank-Wolfe algorithm [12], our practical examples

12 Training Support Vector Machines by Solving Differential Equations 271

presented and discussed below will consider iterative Frank-Wolfe optimization as
baseline method for L2 . SVM training; the algorithm’s favorable characteristics for
this purpose have previously been discussed in [3, 39].

12.3 Gradient Flows for L2 . SVM Training

In this section, we devise a gradient flow tuned to the peculiarities of the optimiza-
tion problem in (12.16). Solutions to this flow represent parameter space trajectories
which approach an optimal choice of the Lagrange multipliers which constitute our
decision variables. Given the optimized Lagrange multipliers, we can then compute
L2 . SVM weight and bias parameters.

Since the term gradient flow is now often re-appropriated to mean the backward
flow of gradient information during neural network training, we emphasize that we
understand it in its classical sense, namely

Definition Given a finite dimensional Euclidean vector space Rn
. and a smooth

function f : Rn → R., a gradient flow is a smooth curve μ : R → R
n
., t |→ μ(t).

such that μ̇(t) = −∇f
(
μ(t)

)
..

Given the wide range of possible behaviors of dynamical systems in general, the
dynamics of finite dimensional gradient flows are rather simple. One can show [50]
that they either converge to a stationary point μ∗ .of f where ∇f (μ∗) = 0.or diverge
as t → ∞.. One can further show [1, 17] the following: if μ∗ . is an isolated stationary
point and a local minimum of f , then μ∗ . is an asymptotically stable equilibrium of
the system μ̇(t) = −∇f

(
μ(t)

)
..

Dropping the dependence on time t for readability, the Euclidean gradient of the
objective function of the optimization problem in (12.16) is given by

.∇f (μ) = Hμ. (12.17)

However, a crucial difference between the gradient flow in the above definition and
the L2 . SVM training problem in (12.16) is that the former consider flows in Rn

.

whereas solutions to the latter are confined to the standard simplex Δ n−1
..

We therefore note that the standard simplex Δ n−1
. is but a specific instance of a

convex polytope

.P = {
μ ∈ Rn

|| μ ≥ 0,Aμ = b
}

(12.18)

and resort to a crucial result by Helmke and Moore [17]. They have shown that and
how an open convex polytope

.̊P = {
μ ∈ Rn

|| μ ≻ 0,Aμ = b
}

(12.19)

272 C. Bauckhage and R. Sifa

can be endowed with a Riemannian metric. Gradients with respect to this metric,
i.e. Riemannian gradients on an open convex polytope, are written as “ grad.” and
the gradient flow

.μ̇ = − grad f (μ) (12.20)

of a function f : P̊→ R.with respect to this Riemannian metric is given by

.μ̇ = −⎤
I − DAT[ADAT]−1A

⎤
D∇f (μ) , (12.21)

where ∇ .again denotes the conventional Euclidean gradient and matrixD = diag(μ).

is an n × n. diagonal matrix.
Comparing the definition of the standard simplex Δ n−1

. in (12.13) to the
definition of a general polytope P. in (12.18), we note the following: For the standard
simplex, we have A = 1T .. Regarding the problem in (12.16), we further note that
D1 = μ. as well as 1Tμ = 1. so that 1TD1 = 1.. Restricted to the open simplex Δ̊ n−1

.

and using ∇f (μ) = Hμ., a gradient flow for (12.16) is therefore given by

.μ̇ = −⎤
I − D1[1TD1]−11T

⎤
DHμ. (12.22)

= −⎤
I − μ1T

⎤
DH μ. (12.23)

= −DH μ + μμTH μ. (12.24)

With respect to practical implementations of numerical computing code, we further
note that it can be more efficient to work with the equivalent expression

.μ̇ = −⎤
Hμ − μTHμ · 1⎤ ⊙ μ. (12.25)

Using software for numerical integration, this ordinary dynamical system can be
practically solved for μ(t)..

For instance, in our practical performance evaluations which we discuss below,
we worked with the odeint functionalities provided in the Python scientific
computing libraries NumPy/SciPy [29].

A general introduction to numerical differential equation solving and its exten-
sive underlying theory is far beyond the scope of this chapter but respective details
can, for instance, be found in a comprehensive textbook by Stuart and Humphries
[41].

12.4 Practical Examples

In this section, we present and discuss practical examples which illustrate how L2 .

SVM training by means of solving the gradient flow in (12.25) compares to L2 .SVM
training by using the Frank-Wolfe algorithm to solve the problem in (12.16).

12 Training Support Vector Machines by Solving Differential Equations 273

(a) (b) (c)

Fig. 12.1 Didactic training sets of 2D data points on which to train L2 . SVMs for binary
classification. While the two classes represented by the data in (a) are linearly separable, the classes
in (b) and (c) are not. For the setting in (a) we may thus simply train a linear SVM; for the settings
in (b) and (c), however, we should work with non-linear kernel SVMs. (a) Two Gaussian blobs.
(b) Two moons. (c) Two nested circles

For ease of visualization as well as for ease of discussion, we consider three
simple and deliberately didactic binary classification scenarios. Each of these
scenarios only involves two-dimensional data points and the corresponding training
data sets are shown in Fig. 12.1. Looking at the three panels in this figure, we
realize that the two classes in Fig. 12.1a are linearly separable whereas the classes
in Fig. 12.1b and c are not.

For the former, we therefore trained linear SVMs or, equivalently, kernel SVMs
with linear kernels of the form

.k
(
xi , xj

) = xTi xj . (12.26)

For the two latter cases, on the other hand, we trained kernel SVMs with non-
linear kernels. To be specific, we considered the following 3rd order polynomial
kernel

.k
(
xi , xj

) = (
xTi xj + 1

)3 (12.27)

for the “two moons” data in Fig. 12.1b and the following Gaussian kernel function

.k
(
xi , xj

) = exp
⎛
− 1

2·0.752
||||xi − xj

||||2
 ⎞

(12.28)

for the “two nested circles” data in Fig. 12.1c.
The SVM slack parameters were determined manually and set to C = 500., C =

1., and C = 500. for the settings in Fig. 12.1a, b, and c, respectively.
Figure 12.2 illustrates training processes and results for the “two Gaussian blobs”

data in Fig. 12.1a.
The panels in the upper row show the situation when using the Frank-Wolfe

algorithm for iteratively solving the dual L2 .SVM training problem in (12.16). Here,
we started the process with an initial value of μ0 = 1

n
1. and considered a total of

274 C. Bauckhage and R. Sifa

Fig. 12.2 Examples of training kernel L2 . SVM classifiers on the “two Gaussian blobs” data in
Fig. 12.1a. The upper row visualizes the training process and its result when using Frank-Wolfe
optimization; the lower row visualizes the training process and its result when solving the gradient
flow in (12.25). The kernel function in both cases is a simple linear kernel. From a practical point
of view, the resulting classifiers are virtually indistinguishable; yet, the (feature space) separating
hyperplane found via the Frank-Wolfe algorithm is supported by notably different support vectors
than the hyperplane that results from solving (12.25). (a) Discrete Frank-Wolfe iterates μt .. (b)
Discrete Frank-Wolfe iterates μt .. (c) Resulting classifier. (d) Continuous gradient flow μ(t).. (e)
Continuous gradient flow μ(t).. (f) Resulting classifier

6000 iterations. For visual clarity, the evolution of the Lagrange multipliers over the
first 300 of these iterations is shown in Fig. 12.2a and their evolution over the whole
iterative process can be seen in Fig. 12.2b.

In Fig. 12.2a we clearly recognize the typical jittering behavior of the Frank-
Wolfe iterates μt .which occurs when running plain vanilla versions of the algorithm
[14]. Figure 12.2b illustrates the convergence behavior of the overall optimization
process. Figure 12.2c visualizes the decision boundary of the resulting classifier and
highlights those training data points which support the (feature space) separating
hyperplane by means of black squares.

The panels in the lower row of Fig. 12.2 show the situation when numerically
solving the continuous time gradient flow in (12.25). Here, we considered an initial
value of μ(0) = 1

n
1. and solved the dynamical systems on an equally spaced grid

of time points t = 0.0, 0.5, 1.0, . . . , 600.0.. Again for visual clarity, the evolution of
the Lagrange multipliers from time t = 0. to time t = 300. is shown in Fig. 12.2d
and their evolution over the whole period can be seen in Fig. 12.2e.

Both these panels reveal the values μ(t). to vary smoothly; Fig. 12.2b illustrates
the convergence behavior of the underlying gradient flow. Figure 12.2f visualizes the
decision boundary of the resulting classifier and highlights those training data points
which support the (feature space) separating hyperplane by means of black squares.
Note that, to obtain the latter, we rounded the entries of μ(600). to five decimal
places and then renormalized them (to sum to unity) because the flow in (12.25)

12 Training Support Vector Machines by Solving Differential Equations 275

Fig. 12.3 Examples of training kernel L2 .SVM classifiers on the “two moons” data in Fig. 12.1b.
The upper row visualizes the training process and its result when using Frank-Wolfe optimization;
the lower row visualizes the training process and its result when solving the gradient flow
in (12.25). The kernel function in both cases is a third order polynomial. The resulting classifiers
are virtually indistinguishable; yet, the (feature space) separating hyperplane found via Frank-
Wolfe iterations is supported by fewer and different support vectors than the one found from
solving (12.25). (a) Discrete Frank-Wolfe iterates μt .. (b) Discrete Frank-Wolfe iterates μt .. (c)
Resulting classifier. (d) Continuous gradient flow μ(t).. (e) Continuous gradient flow μ(t).. (f)
Resulting c lassifier

evolves in the open simplex Δ̊ n−1
. so that no entry of μ(t). can ever truly drop to

zero.
Looking at Fig. 12.2c and f, it appears that, from a practitioners point of view,

the decision boundaries of both L2 . SVM classifiers are virtually indistinguishable.
However, we note that the Frank-Wolfe- and the gradient flow solutions for μ. lead
to quite different support vectors. We further point out that, in this example, the
gradient flow converged faster (in terms of fewer overall iterations or computational
steps) than the Frank-Wolfe algorithm.

Figure 12.3 illustrates training processes and results for the “two moons” data in
Fig. 12.1b. The panels in the upper row again reflect the situation when using Frank-
Wolfe optimization and the panels in the lower row show the situation when solving
the corresponding gradient flow. In both settings, we again considered feasible initial
values of μ0 = μ(0) = 1

n
1.. Frank-Wolfe optimization was run for a total of 3000

iterations and the gradient flow was numerically solved on a grid of time points
t = 0.0, 0.5, 1.0, . . . , 12.0..

Looking at this figure, it appears that all the above observations apply again:
whereas the Frank-Wolfe iterates jitter considerably, the flow evolves smoothly. It
also converges faster than the Frank-Wolfe algorithm, and the decision boundaries
of the resulting classifiers are again virtually indistinguishable although the corre-
sponding (feature space) separating hyperplanes are supported by different support

276 C. Bauckhage and R. Sifa

Fig. 12.4 Examples of training kernel L2 . SVM classifiers on the “two nested circles” data
in Fig. 12.1c. The upper row visualizes the training process and its result when using Frank-
Wolfe optimization; the lower row visualizes the training process and its result when solving the
gradient flow in (12.25). The kernel function in both cases is a Gaussian. The resulting classifiers
are virtually indistinguishable; yet, the (feature space) separating hyperplane found via Frank-
Wolfe iterations is supported by fewer and different support vectors than the one found from
solving (12.25). (a) Discrete Frank-Wolfe iterates μt .. (b) Discrete Frank-Wolfe iterates μt .. (c)
Resulting classifier. (d) Continuous gradient flow μ(t).. (e) Continuous gradient flow μ(t).. (f)
Resulting c lassifier

vectors. However, we also note that training via Frank-Wolfe optimization resulted
in a solution with slightly fewer support vectors.

Figure 12.4 illustrates training processes and results for the “two nested circles”
in Fig. 12.1c. Again, the content of this figure is structured as in the previous two
examples. Moreover, we once again set the starting points of the two training
processes to μ0 = μ(0) = 1

n
1.. Frank-Wolfe optimization was again run for a

total of 3000 iterations and the gradient flow was numerically solved at time points
t = 0.0, 0.5, 1.0, . . . , 600.0..

Looking at this figure, it appears that all the observation we made above apply
once more. Most notably, the decision boundaries of the two L2 . SVM classifiers
resulting from the two training methods are again virtually indistinguishable
although the corresponding (feature space) separating hyperplanes are supported
by different support vectors. Regarding the latter, the solution produced by Frank-
Wolfe optimization is a gain sparser than the one resulting from solving the
corresponding gradient flow; in other words, the L2 . SVM trained via Frank-Wolfe
optimization comes with fewer support vectors than the one trained via solving a
gradient flow.

12 Training Support Vector Machines by Solving Differential Equations 277

Overall, these three examples empirically corroborate the theoretical expectation
that the training of SVMs for binary classification can be accomplished via solving
gradient flows, i.e. via solving systems of ordinary differential equations.

Practical results and performance characteristics observed for the above exam-
ples are typical. This is to say that we also observed the above behavior of gradient
flows for SVM training when working with other kinds of data sets and different
types of kernel functions. An interesting empirical observation in this regard is that
polynomial kernels seem to always entail rapidly converging gradient flows whereas
the arguably more popular Gaussian kernels seem to cause rather slow convergence
to an equilibrium of the corresponding flow. This points out an auspicious direction
for future work: a rigorous mathematical analysis of the convergence behavior of
SVM gradient flows under different kernels is currently under way and results will
be reported soon.

Another open question at this point pertains to our empirical observation that
SVMs trained via Frank-Wolfe optimization tend to require fewer support vectors
than those trained via solving gradient flows. Again, a mathematical analysis of this
phenomenon is currently under way.

12.5 Conclusion

In this contribution, we turned the idea of physics informed learning where machine
learning models are used for differential equation solving on its head and considered
differential equation solving as a tool for training machine learning models.

Focusing on the basic but fundamental learning task of binary classifier training,
we considered the use of L2 . SVMs which are nowadays commonly trained by
means of running the Frank-Wolfe algorithm to iteratively solve the Lagrangian
dual of the primal training problem. Our main and novel contribution in this chapter
was to show that L2 . SVM training can also be accomplished in terms of solving
continuous time gradient flows or, equivalently, in terms of solving systems of
ordinary differential equations. This required us to consider Riemannian gradients
on the open simplex but, using a result due to Helmke and Moore, corresponding
expressions we easily formulated.

Since the problem of differential equation solving arises in all of the hard sci-
ences, numerous mathematical techniques and software tools have been developed
for its solution. Hence, using our formulation of the model training problem, we
gain access to a wide variety of domain-agnostic learning algorithms or versatile
computational paradigms. This ties in with the idea of Informed Machine Learning
as it allows for the (re-)use of well established procedural knowledge when training
complex machine learning models. Moreover, applying these methods to the task
of training machine learning models may be of interest for sustainable computing
because they can, in principle, be implemented on various kinds of hardware
platforms.

278 C. Bauckhage and R. Sifa

Indeed, the methods and results reported here are part of ongoing research
efforts in which we investigate what kind of (classical) machine learning techniques
lend themselves to implementations on energy efficient platforms or on low power
and low cost hardware. A crucial observation in this regard is that gradient flow
formulations of machine learning tasks are not restricted to the (L2 .) SVM classifiers
we considered in this chapter. Similar continuous time dynamical systems for least
squares classifiers or linear discriminant classifiers are easy to come by and can
also be devised for applications in the context of regression and forecasting [7].
The classic textbook by Helmke and Moore [17] provides a detailed account of the
underlying theory and may serve as a source of inspiration for further developments
in this direction.

Important practical goals behind our efforts are to develop light weight solutions
for more sustainable Machine Learning on the one hand and for robust edge
computing or on-sensor data analysis and decision making on the other. The latter
are in high demand, for instance, in environmental- or agricultural applications
which address sustainability challenges in food production [6, 15, 21]. In settings
such as these, continuous time gradient flow formulations of machine learning
objectives appear to be auspicious because simple analog circuits can, again in
principle, solve differential equations while only requiringMilliwatts of energy [44].

However, implementations on corresponding hardware still face practical chal-
lenges such as, say, limited reliable numerical resolution on off-the-shelve analog
devices. In other words, the challenges with respect to practical applications on
transistor-less edge devices are first and foremost technical rather than theoretical.
Nevertheless, in line with currently increasing engineering efforts towards designing
analog circuitry specifically for Machine Learning [16, 37], we recently began more
long-term efforts to investigate possible analog implementations of the framework
presented here.

Finally, we recall yet another motivation for Machine Learning based on gradient
flow formulations mentioned in the introduction, namely quantum computing.
Given that working quantum computers have by now become a technical reality,
research efforts on their use at different stages of the machine learning pipeline
are noticeably increasing [8, 45]. Indeed, there already exist proposals for quantum
support vector machines [33] and prototype implementations on existing quantum
gate computers have been successfully realized [31].

In this context, it is therefore interesting to see that classical SVM training can be
accomplished by means of solving continuous time gradient flows. This is because,
recently, several quantum algorithms for differential equation solving have been
proposed [23, 24, 40, 48] which therefore suggests that further novel approaches
towards quantum SVMs or quantum SVM training might be possible.

12 Training Support Vector Machines by Solving Differential Equations 279

Appendix

In the main text of this contribution, we stated that the primal problem of training
an L2 . support vector machine consist in solving

.

argmin
w, θ,ρ,ξ

1
2w

Tw + 1
2θ

2 − ρ + C
2 ξTξ

s.t.
⎤
ZTw − θ · y⎤ − ρ · 1 + ξ ≥ 0

(12.29)

and also presented the corresponding dual problem of training an L2 . support vector
machine, namely

.

argmax
μ

− 1
2μ

T
⎤
ZTZ + yyT + 1

C
I
⎤
μ

s.t.
1Tμ = 1

μ ≥ 0.

(12.30)

Note While the dual problem in (12.30) seems to subtly differ from the one we
presented in (12.5), we note that ZTZ = XTX ⊙ yyT . so that (12.5) and (12.30) are
actually in perfect agreement.

In order for this contribution to be more self-contained, this appendix will show
how to obtain the L2 . SVM training problem in (12.30) from the one in (12.29).

To derive the dual problem from the primal one, we first of all note that (12.29)
constitutes a quadratic minimization problem with a total of n greater-than-or-equal-
to zero constraints which are subsumed in a single matrix-vector expression. Hence,
we may introduce n Lagrange multipliers μj . which we may gather in a vector μ ∈
R

n
., to obtain the following Lagrangian

.

L
(
w, θ, ξ , ρ,μ

) = 1
2w

Tw + 1
2θ

2 − ρ + C
2 ξTξ

− μT⎤
ZTw − θ · y − ρ · 1 + ξ

⎤
.

(12.31)

Next, we recall that the Karush-Kuhn-Tucker (KKT) conditions [20, 22] provide
us with a set of criteria any valid solution to our inequality constrained problem must
fulfill. For instance, the KKT 1 condition (stationarity) demands that, at a solution,
we must have ∇L = 0..

We therefore partially derive the Lagrangian in (12.31) with respect to its
parameters and equate the resulting expressions to zero. Recalling basic rules from
multivariate calculus [30], this is easily done and we find

.
∂L
∂w

= w − Zμ
!= 0 ⇒ w = Zμ. (12.32)

280 C. Bauckhage and R. Sifa

∂L
∂θ

= θ + yTμ != 0 ⇒ θ = −yTμ. (12.33)

∂L
∂ξ

= C ξ + μ != 0 ⇒ ξ = − 1

C
μ. (12.34)

∂L
∂ρ

= −1 + 1Tμ != 0 ⇒ 1 = 1Tμ. (12.35)

Plugging the three results in (12.32), (12.33), and (12.34) back into (12.31)
eliminates the parameters w., θ ., and ξ . and the Lagrangian becomes

.

L
(
μ

) = 1
2μ

TZTZμ + 1
2μ

TyyTμ − ρ + 1
2C

μTμ

− μTZTZμ − μTyyTμ + ρ · μT1 − 1
C

μTμ.

(12.36)

Further simplification and another application of the result in (12.35) leads to an
even cleaner expression

. L
(
ρ,μ

) = − 1
2μ

TZTZμ − 1
2μ

TyyTμ − 1
2C

μTμ

= − 1
2μ

T
⎤
ZTZ + yyT + 1

C
I
⎤
μ

≡ D(
μ

)
. (12.37)

The functionD
(
μ

)
.we just introduced is called the Lagrangian dual and we note

that it only depends on the Lagrange multipliers μj . gathered in vector μ.. We also
note that D

(
μ

)
. is a (definite) quadratic form in μ. or, more specifically, a concave

function (due to the scaling factor of − 1/2.) so that it has a unique maximum.
However, if we set out to maximize D

(
μ

)
. with respect to μ. we must be

careful and actually incorporate two constraints. The first of these constraints is
a consequence of (12.35) which demands that 1Tμ = 1.. The second one is due to
the KKT 3 condition (dual feasibility) which demands that μ ≥ 0..

Because of Lagrange duality and of the two constraints we just pointed out, we
therefore find that the dual problem of training an L2 . SVM consists in solving

.

argmax
μ

− 1
2μ

T
⎤
ZTZ + yyT + 1

C
I
⎤
μ

s.t.
1Tμ = 1

μ ≥ 0

(12.38)

which is exactly the problem we stated in (12.30).

12 Training Support Vector Machines by Solving Differential Equations 281

Finally, to conclude our discussion we note the following: First of all, if we could
solve the problem in (12.30) for the optimal vector of Lagrange multipliers μ∗ ., we
can also determine the actually sought after SVM parametersw. and θ .. This is thanks
to (12.32) and (12.33) which provide us with

.w = Zμ∗. (12.39)

θ = −yTμ∗. (12.40)

Second of all, although we are dealing with a constrained optimization problem,
the feasible set in which the optimal solution must reside is just the standard simplex
Δ n−1

.. Moreover, since our objective function is quadratic and concave, maximizing
D

(
μ

)
. is the same as minimizing −D(

μ
)
.. These two observation then imply that

we could also write the dual L2 . SVM training problem as

. argmin
μ∈Δ n−1

1
2 μT

⎤
ZTZ + yyT + 1

C
I
⎤
μ. (12.41)

This latter observation clearly reveals the dual L2 . SVM training problem to be
a convex minimization problem over a compact convex set. These are the kind of
problems the Frank-Wolfe algorithm was designed for [12] and excels at [3, 10, 38].
Interestingly, while it is also known that problems as in (12.41) can just as well be
solved using comparatively simple recurrent neural networks [5, 39], the gradient
flowmethodology we discussed in the main text seems, to the best of our knowledge,
not to have been considered before.

Acknowledgments This contribution was supported by the Fraunhofer Cluster of Excellence
“Cognitive Internet Technologies”.

References

1. Absil, P.A., Kurdyka, K.: On the Stable Equilibrium Points of Gradient Systems. Systems &
Control Letters 55(7), 573–577 (2006)

2. Agombar, R., Bauckhage, C., Lübbering, M., Sifa, R.: An Optimization for Convolutional
Network Layers Using the Viola-Jones Framework and Ternary Weight Networks. In: Proc.
LION (2021)

3. Alaiz, C., Suykens, J.: Modified Frank-Wolfe Algorithm for Enhanced Sparsity in Support
Vector Machine Classifiers. Neurocomputing 320(Dec), 47–59 (2018)

4. Arora, S., Du, S., Hu, W., Li, Z., Salakhutdinov, R., Wang, R.: On Exact Computation with an
Infinitely Wide Neural Net. In: Proc. NeurIPS (2019)

5. Bauckhage, C.: A Neural Network Implementation of Frank-Wolfe Optimization. In: Proc.
ICANN (2017)

6. Bauckhage, C., Kersting, K., Schmidt, A.: Agriculture’s Technological Makeover. IEEE
Pervasive Computing 11(2), 4–7 (2012)

7. Bauckhage, C., Sifa, R.: Gradient Flows for Linear Discriminant Analysis. In: Proc. LION
(2022)

282 C. Bauckhage and R. Sifa

8. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum Machine
Learning. Nature 549(7671), 195–202 (2017)

9. Chen, Y., Huang, W., Nguyen, L., Weng, T.W.: On the Equivalence between Neural Network
and Support Vector Machine. In: Proc. NeurIPS (2021)

10. Clarkson, K.: Coresets, Sparse Greedy Approximation, and the Frank-Wolfe Algorithm. ACM
Trans. on Algorithms 6(4), 63:1–63:30 (2010)

11. Cortes, C., Vapnik, V.: Support Vector Networks. Machine Learning 20(3), 273–297 (1995)
12. Frank, M., Wolfe, P.: An Algorithm for Quadratic Programming. Naval Research Logistics

Quarterly 3(1–2), 95–110 (1956)
13. Frieß, T., Harrison, R.: The Kernel Adatron With Bias Unit: Analysis of the Algorithm (Part 1).

Tech. Rep. ACSE Research Report 729, Dept. of Automatic Control and Systems Engineering,
University of Sheffield (1998)

14. GueLat, J., Marcotte, P.: Some Comments on Wolfe’s “Away Step”. Mathematical Program-
ming 35, 110–119 (1986)

15. Günder, M., Ispizua Yamati, F., Kierdorf, J., Roscher, R., Mahlein, A.K., Bauckhage, C.:
Agricultural Plant Cataloging and Establishment of a Data Framework from UAV-based Crop
Images by Computer Vision. GigaScience 11 (2022)

16. Haensch, W., Gokmen, T., Puri, R.: The Next Generation of Deep Learning Hardware: Analog
Computing. Proceedings of the IEEE 107(1), 108–122 (2019)

17. Helmke, U., Moore, J.: Optimization and Dynamical Systems, 4th edn. Springer (1994)
18. Jacot, A., Gabriel, F., Hongler, C.: Neural Tangent Kernel: Convergence and Generalization in

Neural Networks. In: Proc. NeurIPS (2018)
19. Karniadakis, G., Kevrekidis, I., Lu, L., Perdikaris, P., Wang, S., Yang, L.: Physics-informed

Machine Learning. Nature Reviews Physics 3, 422–440 (2021)
20. Karush, W.: Minima of Functions of Several Variables with Inqualities as Side Constraints.

Master’s thesis, University of Chicago (1939)
21. Krause, J., Günder, M., Schulz, D., Gruna, R.: New Active Learning Algorithms for Near-

infrared Spectroscopy in Agricultural Applications. at – Automatisierungstechnik 69(4), 297–
306 (2021)

22. Kuhn, H., Tucker, A.: Nonlinear Programming. In: Proc. 2nd Berkley Symposium (1951)
23. Liu, J.P., Kolden, H., Krovi, H., Loureiro, N., Trivisa, K., Childs, A.: Efficient Quantum

Algorithm for Dissipative Nonlinear Ddifferential Equations. PNAS 118(35), e2026805118
(2021)

24. Lloyd, S., De Palma, G., Gokler, C., Kiani, B., Liu, Z.W., Marvian, M., Tennie, F., Palmer,
T.: Quantum Algorithm for Nonlinear Differential Equations. arXiv:2011.06571 [quant-ph]
(2020)

25. Lübbering, M., Ramamurthy, R., Gebauer, M., Bell, T., Sifa, R., Bauckhage, C.: From
Imbalanced Classification to Supervised Outlier Detection. In: Proc. ICANN (2020)

26. Mangasarian, O., Musicant, D.: Lagrangian Support Vector Machines. J. of Machine Learning
Research 1, 161–177 (2001)

27. Ojeda, C., Cvejoski, K., Schuecker, J., Georgiev, B., Bauckhage, C., Sanchez, R.: Learning
Deep Generative Models for Queuing Systems. In: Proc. AAAI (2021)

28. Ojeda, C., Georgiev, B., Cvejoski, K., Schuecker, J., Bauckhage, C., Sanchez, R.: Switching
Dynamical Systems with Deep Neural Networks. In: Proc. ICPR (2021)

29. Oliphant, T.: Python for Scientific Computing. Computing in Science & Engineering 9(3),
10–20 (2007)

30. Petersen, K.B., Pedersen, M.S.: The Matrix Cookbook. Technical University of Denmark
(2012)

31. Piatkowski, N., Gerlach, T., Hugues, R., Sifa, R., Bauckhage, C., Barbaresco, F.: Towards
Bundle Adjustment for Satellite Imaging via Quantum Machine Learning. In: Proc. FUSION
(2022)

32. Raissi, M., Perdikaris, P., Karniadakis, G.: Physics-informed Neural Networks: A Deep
Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial
Differential Equations. Journal of Computational Physics 378, 686–707 (2019)

12 Training Support Vector Machines by Solving Differential Equations 283

33. Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum Support Vector Machine for Big Data
Classification. Physical Reviev Letters 113, 130503 (2014)

34. von Rueden, L., Houben, S., Cvejoski, K., Bauckhage, C., Piatkowski, N.: Informed Pre-
Training on Prior Knowledge. arXiv:2205.11433 [cs.LG] (2022)

35. von Rueden, L., Mayer, S., Beckh, K., Georgiev, B., Giesselbach, S., Heese, R., Kirsch, B.,
Walczak, M., Pfrommer, J., Pick, A., Ramamurthy, R., Garcke, J., Bauckhage, C., Schuecker,
J.: Informed Machine Learning – A Taxonomy and Survey of Integrating Prior Knowledge into
Learning Systems. IEEE Trans. on Knowledge and Data Engineering 35(1), 614–633 (2023)

36. Schölkopf, B., Smola, A., Williamson, R., Bartlett, P.: New Support Vector Algorithms. Neural
Computation 12(5), 1207–1245 (2000)

37. Schuman, C., Potok, T., Patton, R., Birdwell, J., Dean, M., Rose, G., Plank, J.: A Survey
of Neuromorphic Computing and Neural Networks in Hardware. arXiv:1705.06963 [cs.NE]
(2017)

38. Sifa, R.: An Overview of Frank-Wolfe Optimization for Stochasticity Constrained Interpretable
Matrix and Tensor Factorization. In: Proc. ICANN (2018)

39. Sifa, R., Paurat, D., Trabold, D., Bauckhage, C.: Simple Recurrent Neural Networks for
Support Vector Machine Training. In: Proc. ICANN (2018)

40. Srivastava, S., Sundararaghavan, V.: Box Algorithm for the Solution of Differential Equations
on a Quantum Annealer. Physical Review A 99(5), 052355 (2019)

41. Stuart, A., Humphries, A.: Dynamical Systems and Numerical Analysis. Cambridge University
Press (1998)

42. Suykens, J., Venderwalle, J.: Least Squares Support Vector Machine Classifiers. Neural
Processing Letters 9(3), 293–300 (1999)

43. Thompson, N., Greenewald, K., Lee, K., Manso, G.: Deep Learning’s Diminishing Returns:
The Cost of Improvement is Becoming Unsustainable. IEEE Spectrum 58(10), 50–55 (2021)

44. Ulmann, B.: Analog Computing. De Gruyter Oldenbourg (2013)
45. Wittek, P.: Quantum Machine Learning. Academic Press (2014)
46. Wolff Anthony, L., Kanding, B., Selvan, R.: Carbontracker: Tracking and Predicting the

Carbon Footprint of Training Deep Learning Models. arXiv:2007.03051 [cs.CY] (2020)
47. Wu, Y., Thurau, C., Bauckhage, C.: The Good, the Bad, and the Ugly: Predicting Aesthetic

Image Labels. In: Proc. ICPR (2010)
48. Zanger, B., Mendl, C., Schulz, M., Schreiber, M.: Quantum Algorithms for Solving Ordinary

Differential Equations via Classical Integration Methods. Quantum 5(502) (2021)
49. Zhang, S., Bauckhage, C., Cremers, A.: Informed Haar-like Features Improve Pedestrian

Detection. In: Proc. CVPR (2014)
50. Zinsl, J.: Systems of Evolution Equations with Gradient Flow Structure. Ph.D. thesis, Technical

University Munich (2015)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 13
Informed Machine Learning to Maximize
Robustness and Computational
Performance of Linear Solvers

Sebastian Gries

Abstract It is crucial for the efficiency and robustness of numerical simulations
that the linear solver strategy therein is adjusted to the type of simulation in a grey-
box manner (Stüben et al., Algebraic multigrid - from academia to industry. In:
Scientific computing and algorithms in industrial simulations, 2017). Sophisticated
solver methods can then provide a remarkable computational performance along
with the required precision in various fields of simulation.

And they still comprise a lot of options for a fine-grained control, where an
optimal parameter setting is a highly individual and rather volatile trade-off between
robustness and computational efficiency—depending on properties of a particular
simulation, computing environment and accuracy requirements.

We apply methods of evolutionary and surrogate machine learning for these
remaining optimizations. With the hundreds and thousands of different control
options, an uninformed learning approach was practically impossible within a
simulation. Instead, along with the general application-tailored solver strategy, a
parameter optimization space is provided for the learning methods. These also
evaluate data within the simulations.

A deep integration into the solver method allows for accessing all relevant data
for decision and learning processes and helps to reduce overhead costs. It also allows
for reducing the number of solver setups within a simulation run and guarantees
robustness by quickly reacting to convergence break-downs.

We will demonstrate the benefits for simulations from different industrial use
cases from fluid dynamics and geological simulations towards structural mechanics
and battery aging simulations.

S. Gries (✉)
Fraunhofer SCAI, Sankt Augustin, Germany
e-mail: sebastian.gries@scai.fraunhofer.de

© The Author(s) 2025
D. Schulz, C. Bauckhage (eds.), Informed Machine Learning,
Cognitive Technologies, https://doi.org/10.1007/978-3-031-83097-6_13

285

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-83097-6protect T1	extunderscore 13&domain=pdf

 885 56845 a 885 56845 a

mailto:sebastian.gries@scai.fraunhofer.de
mailto:sebastian.gries@scai.fraunhofer.de
mailto:sebastian.gries@scai.fraunhofer.de
mailto:sebastian.gries@scai.fraunhofer.de
https://doi.org/10.1007/978-3-031-83097-6_13
https://doi.org/10.1007/978-3-031-83097-6_13
https://doi.org/10.1007/978-3-031-83097-6_13
https://doi.org/10.1007/978-3-031-83097-6_13
https://doi.org/10.1007/978-3-031-83097-6_13
https://doi.org/10.1007/978-3-031-83097-6_13
https://doi.org/10.1007/978-3-031-83097-6_13
https://doi.org/10.1007/978-3-031-83097-6_13
https://doi.org/10.1007/978-3-031-83097-6_13
https://doi.org/10.1007/978-3-031-83097-6_13
https://doi.org/10.1007/978-3-031-83097-6_13

286 S. Gries

13.1 Introduction

Finding optimal parameter sets for linear solvers is crucial with respect to both
computational performance and numerical robustness of numerical simulations in
various fields of engineering. We will see how machine learning techniques can
provide a significant improvement of such settings over manually adjusted ones.
Especially the ability of providing a simulation-specific fine-tuning will allow to
get the best performance for a certain simulation. This is important not only in
order to speed up engineering workflows but also to reduce the consumption of
computational resources therein.

As use cases, we focus on simulations of diffusion-based processes in this
chapter. This allows to demonstrate the potential of machine learning techniques
in a broad range of industrial applications - from fluid flow to structural mechanics.
But with battery aging, we will also consider simulations beyond diffusion-based
cases.

In either case, the partial differential equation(s) that describe the physical model
can hardly be solved analytically. Instead, they are discretized, for instance, based on
some mesh, in order to limit the problem to a finite number of degrees of freedom. In
the case of non-linear models, an additional linearization, for instance, via Newton’s
method, is included. We do not describe the setup of numerical simulations in details
here. We rather focus on the linear systems of equations that are to be solved to
some pre-defined, application-dependent accuracy as the ‘numerical kernel’ of the
simulations. This linear solution process is required frequently during a simulation:
For each time step and, in non-linear cases, each linearization step. Thus, the linear
solution process typically accounts for the major portion of computational efforts
and covers between 40 and up to even 90% of the computational time. Hence, any
optimization of this part of the simulation has a high overall impact.

Before allowing for a machine learning-based control of the concrete parameter
settings, however, certain decisions still have to be made in the initial design of
the solver strategy. This includes the decision on the basic solver strategy: In
applications that are based on diffusion(-like) processes, algebraic multigrid (AMG)
approaches [1, 29, 35] are the methods of choice. They provide an almost optimal
numerical behavior for the respective linear systems and, thus, are also suited
for problems with many degrees of freedom in the order of several millions or
even billions. They gain their numerical efficiency from exploiting a hierarchy of
linear operators that are constructed completely automatically in a so-called setup
phase, independent of any geometric information. Thus, complex underlying grid
structures and huge material heterogeneities or jumps in coefficients can be handled.

However, AMG can hardly be applied in a black-box manner in many sophisti-
cated numerical simulations. It exploits certain properties of linear systems that are
fully fulfilled in prototypical problems, but may be violated to some extent in many
practical applications.

Instead, an application-tailored solution strategy needs to be created, where
AMG is combined with further techniques that make it applicable in an overall

13 Informed ML for Linear Solver Control 287

solution approach for a certain type of application. Limitations of textbook AMG
for challenging applications are overcome by specific adjustments of the method,
bespoke to the type of application. The problem may also be transferred into an
equivalent formulation that is better suited for the application of AMG. However,
AMG will still automatically adjust its hierarchy to different underlying grids,
material parameters and further environmental settings. Examples for such gray-box
AMG approaches are in the fields of material design [14] and reservoir simulations
[9]. We refer to [36] for a further overview and more applications.

All linear solver approaches have in common that they still provide several
parameters to further adjust the method. This in particular holds for AMG methods,
as they in fact combine different other iterative methods with their hierarchy. Most
of such control options have in common that one can either turn a solver method
to be more robust, at the expense of computational costs—or vice versa. Whether
and which adjusted parameter setting is beneficial for a certain simulation is hardly
predictable beforehand in many cases. A rather cheap setting may be well-suited
for some well-conditioned cases, but not robust enough for more challenging ones.
Changes on which parameters to prefer can even occur within a simulation run, as
certain environmental settings change, time steps increase or physical settings differ.

Therefore, a manual fine-tuning of linear solver parameters is extremely time-
consuming and can be rather difficult. This is where we will apply machine learning
techniques to take over the fine-grained control. This will follow an informed
machine learning approach [28]: the general solver strategy, i.e., the gray-box
solver, will be pre-defined for a certain application. Also the search space where the
Machine Learning shall find optimal parameters in will be pre-defined. This allows
for a priori excluding parameter combinations that are mathematically meaningless.
And it allows for ensuring certain parameter settings that may be required from
the gray-box approach. However, within the search space, the setting is found
automatically, based on machine learning techniques.

That is, for our approach to Machine Learning for controlling the linear solver,
we’re mainly exploiting information from a combination of simulation results
and human feedback (Secs. 5.3 and 5.8 in [28], respectively). The main source
of information is the solver behavior that it evaluates itself within simulations,
along with intermediate simulation results. However, to guide the machine learning
process, some initial parameter search space is necessary, based on knowledge from
experts for a certain type of simulation.

In addition, to some extent, our overall approach will also involve information
from algebraic equations (cf. [28]). This concerns the transfer learning with the
surrogate model with algebraically evaluated matrix properties from Sect. 13.4 that
will enhance our main machine learning approach.

There have been earlier approaches to provide an automatic control of solver
methods, also with ideas from the field of Machine Learning. Genetic algorithms
have been used in an encompassing parameter optimization feature for the linear
solver in reservoir simulations [22]. Another approach in this direction is α .SAMG
[4] that can adaptively decide between AMG and an ILU-ish method. It has mainly
been applied to groundwater simulations.

288 S. Gries

The approach that we are going to present will be more versatile and tied deep
into the linear solution process. Moreover, it will not use mere evolutionary learning
but will be enhanced by further mechanisms.

In fact, the problem of finding optimal (hyper) parameters applies in various
applications. In general, this can be seen as optimizing the parameters of some
function with respect to some objective. In our case, we want to optimize linear
solver parameters with respect to runtime, where the parameter settings result in a
robust, well-converging solver method.

Genetic algorithms are considerable options for automated parameter optimiza-
tions [6]. They typically provide reasonable results much faster than randomly
testing all imaginable variants [27]. The process can be further improved by
combining it with tree-based optimization so that the genetic optimization more
quickly focuses on promising sets of parameters [7, 16].

Other options for self-adapting parameter optimization comprise regression-
based approaches, such as Bayesian optimization [18, 34]. However, we will not
follow the latter approaches for our linear solver control. Our parameters are not
necessarily set to values of a continuous interval and parameter effects on the
execution time may be highly discontinuous. Identifying a probabilistic model, thus,
is not straight-forward with the vast range of possible parameters. Moreover, we
will typically measure execution time with a timer function and will be subject to
noise. Therefore, we need to fully evaluate the computational performance of each
considered parameter setting in any case.

Any standardized control mechanism for parameter optimization can only be
placed around the linear solver and consider it as a kind of black-box operation that
results in a certain runtime result with a given set of parameters. In contrast, we will
tie the parameter optimization deeply into the linear solver. While the main decision
machinery of our approach still is located around the linear solver’s kernel, it can
evaluate more detailed information for its decision and learning process. This allows
for exploiting synergies on the one hand, in order to minimize computational work
and overhead. On the other hand, it easily allows for a continuous monitoring of the
numerical solver behavior in order to interfere as soon as any robustness issues may
be observed.

Thus, we can well accept that our parameter optimization may also decide for
parameters that yield computational efficiency, but, by themselves, may carry some
risk for the robustness. As long as the linear system allows for such less robust
settings to be applied without problems, we can exploit the efficiency. Whereas, as
soon as robustness is at risk, our optimization approach can reconsider its decision
immediately, without ever computing questionable results.

An additional synergy of this integrated monitoring mechanism is that we can
also use our control mechanism to handle the reusage of solver setups. This could
be multigrid hierarchies as well as incomplete factorizations: as long as they are
found to be well-applicable in subsequent Newton and time steps, they will not be
recomputed. However, our mechanism ensures to have them recomputed as soon
as this is either required or simply beneficial for robustness. This further reduces
computational efforts as far as this is possible under the objective of providing robust

13 Informed ML for Linear Solver Control 289

results from the linear solver. In addition, a surrogate learning model helps to further
guide this process and attempts to pre-estimate when to recalculate a solver setup.

The parameter optimization itself for the linear solver will be based on a classical
genetic algorithm [6], accelerated with a decision tree [16]. In order to further
accelerate the either online or offline training, a surrogate learning model will allow
for adjusting the initial likelihoods of search directions based on previous simulation
runs.

The search directions themselves result from a user-defined set of parameters and
possible values or ranges. This informed machine learning approach [28] allows
for exploiting knowledge about promising parameters for optimization. And for
excluding parameter sets that are meaningless for a particular application.

This chapter will set up on the recent work on autonomous control of solver
parameters in reservoir simulation applications [10]. The initial development
was performed with the application of battery aging simulations in mind (cf.
Sect. 13.8.7). However, this initial development has been extended further and here
we will provide more details on the machine learning-based decisions and we will
provide results with further applications. The structure of this chapter is as follows:
We will give a very brief overview on linear solvers in numerical simulations. This
will be followed by a description of the tree-based genetic optimization approach
and the complementing surrogate learning model that we will use for controlling
the solver parameters. We will then briefly discuss aspects of reproducibility with
respect to decisions based on runtimes and transfer the control ideas to the handling
of reusing solver setups. Finally, we will present results of our approach with
industrial simulation applications from different fields of engineering.

13.2 Short Overview on Linear Solvers in Numerical
Simulations

Linear solvers can be seen as the computational kernel of numerical simulations.
In the numerical simulations under consideration here, some physical problem is
discretized in order to make a simulation possible by only considering a finite
number of degrees of freedom. If the problem was non-linear in some way, a
linearization process, such as Newton’s method, is applied in addition. While the
linearization can also be applied before discretizing the problem, or no linearization
may be required, the process always results in some system of linear equations

.Ax = f. (13.1)

Here, A is an n × n.matrix that is typically sparse, i.e., only a much smaller number
of row entries than n is non-zero. f is a right-hand-side vector of dimension n and x
needs to be computed. The problem size n results from the number of discretization
cells.

290 S. Gries

A direct solver could be applied to solve this linear system. While, except for
round-off impacts, this was exact, both the computational efforts and the memory
requirements do grow cubically with the degrees of freedom n. This drastic increase
does make it practically impossible to apply direct solvers in numerical simulations,
where nowadays millions and hundreds of millions of discretization cells are
considered.

Iterative solvers are the methods of choice then. These do not solve the problem
in one computationally expensive step. But rather step-wise attempt to further and
further improve the solution vector per iteration, based on the previous iteration’s
result. This proceeds until some given, application-specific accuracy is achieved.
That is, while the problem (13.1) does not necessarily need to be solved exactly, each
iteration step needs to improve the solution sufficiently enough to reach the target
accuracy within a maximal number of iterations. We refer to a robust convergence
then.

Typically, Krylov solver methods, such as CG [12] and GMRes [31], are applied
in numerical simulations. These solve the linear system by mapping it into a very
low-dimensional so-called Krylov subspace. This process can be implemented via
basic linear algebra operations that are very well-suited also for application in
parallel with HPC architectures.

These Krylov methods are further complemented by iterative methods that serve
as preconditioner. Their effect is to build up the Krylov subspace more suited for the
particular problem. The better a preconditioning method fits for a certain problem,
the better each iteration of the Krylov method does converge in the end. We refer to
[30] for an extensive description.

Preconditioning methods range from rather simple relaxation methods over
incomplete factorizations [21] or sparse approximate inverses [11] towards hier-
archical solver methods. While the other methods do work with the initial linear
system, hierarchical methods exploit some sort of hierarchy to further accelerate the
solution process.

Multigrid [2, 38] is a wide-spread method of choice for such hierarchical linear
systems, at least in applications where the simulated process is diffusion-dominated.
The idea is to exploit a hierarchy of coarser and coarser levels. These represent
the same problem as the initial linear system does, just at different resolutions.
This allows to efficiently solve different Fourier-modes of a current overall solution
iterate by exploiting certain assumptions on properties of the linear system that hold
in diffusion-based cases. It then leads to an optimal numerical efficiency in the sense
that the computational efforts and memory requirements do only increase linearly
with the degrees of freedom. A special variant is algebraic multigrid: It computes its
hierarchy itself, solely based on the linear system and the coefficients therein. This
makes it well-suited for problems that are discretized in complicated geometries in
unstructured ways as well as for problems that have strong material heterogeneities
and, thus, jumps in coefficients.

Which solver method to choose highly depends on the type of application.
The underlying physics lead to different properties of the linear systems. Also the
problem size has an impact: for very small cases, a direct solver may be efficient

13 Informed ML for Linear Solver Control 291

enough to outweigh the setup costs of sophisticated iterative solvers. For large
cases, however, only iterative methods can be applied on a given hardware resource.
While single-level methods may be sufficient in rather well-conditioned cases, these
methods are typically outperformed by multigrid methods in more challenging
cases, especially in large ones.

However, textbook multigrid may often enough not be applicable, especially not
in a black-box manner. Certain requirements that are to be exploited by multigrid
may not be (fully) fulfilled in several applications with complex physics behind
them. For instance, diagonal dominance may suffer from constraint-like conditions,
or discretization aspects may lead to some lack of symmetry or mixed-sign
off-diagonal matrix coefficients. Some adjustments, pre-processings and special
multigrid approaches may be required in order to make multigrid exploitable then.
Examples for such gray-box AMG applications [36] can be found in reservoir
simulations [9] and material design [14].

While certain settings are required for the successful application of AMG in some
type of application, the solver methods still offer various other control options that
can be used for tuning in a specific simulation. Which, and which ranges, depends
on the outer requirements from gray-box AMG and, thus, are pre-defined.

13.3 Genetic Optimization of Parameters with Tree
Hierarchy

Our objective is to find those values of solver parameters p1, . . . , pm . that lead to
the lowest runtime of the solver within an application. But that still ensure a robust
solution of the linear system, meaning that the iterative solution process properly
reaches the target accuracy in the solution of (13.1). In the following, we will simply
identify non-robust sets of parameters with an infinite runtime. Thus, runtime is our
only target function.

Parameters of linear solvers can be either integer, floating numbers or booleans.
Values can be from a list of options (e.g., variant A, B or C) or from a continuous
range interval of possible values (e.g., control thresholds). In the latter case, we
separate the interval into a finite number of chunks, loosely following the idea
of kriging [17]. Hence, each parameter has a finite number of possible states.
This simplifies comparisons between sets of parameters in the decisions of the
optimization method.

We will employ genetic optimization, as this can deal with both the possibly non-
continuous range of parameter options as well as the fact that measured runtime
as a target function is subject of statistical noise. Genetic optimization is a well-
established method for parameter optimization and we can refer to the literature for
a detailed description of such methods [6, 27].

Essentially, the method starts with some initial, typically random state for the
parameters p. Based on this initial generation, the next generation is created, where

292 S. Gries

5 1 3 2 5 3
Obtain next
generation

3 5 2If timeimproved

5 7 4Else

Proceed based on
2nd generation

Proceed based on
1st generation

Fig. 13.1 Visualization of the principle behind genetic optimization algorithms. Parameters are
depicted with boxes and their setting by the respective number. Parameter changes are illustrated
in gray color

some parameters “mutate” to a different setting. Promising new generations will
serve as a base for further generations. Those with no potential for improvement
will not be considered further. In this sense, we have an evolutionary process, where
the different parameters represent genes that may vary. Which parameters will vary
is a randomized decision among those that shall be further considered. Figure 13.1
visualizes this proceeding exemplarily.

The method continues until either no improvement is found any longer or until a
pre-described number of generations is reached. The selection of the next generation
is limited to those parameter settings that have not yet been considered. Thus,
because we have a finite list of options for all parameters, we can safely limit
the number of generations to the number of possible parameter combinations.
The method stops much earlier in the vast majority of cases because the best set
of parameters has already been found, though. More precisely, the method stops
because no further options remain within the parameter search space that have the
potential for further improvements. That is, the advantage of the genetic algorithm
is to rather quickly focus on promising search directions for next test candidates.
This drastically reduces the number of evaluations compared to simply testing all
possible variants.

We will further strengthen this aspect of finding an optimal setting more quickly
with two modifications.

The first is to combine the genetic algorithm with a decision tree [7, 16]. This fol-
lows the idea that linear solver methods can be classified into different approaches at
high level, such as direct methods, single-level incomplete factorizations, algebraic
multigrid, etc. Within each class of approaches, we can further distinguish different
types of the respective approaches. Each of them in turn can be controlled by further
parameters, some of which may induce the consideration of further options, etc.
Our decision tree will represent this rather natural hierarchy of parameter options
and categorize the different parameters into different branches and leafs of that tree.
Moreover, some parameter settings may only make sense in a certain branch of the
higher-level options.

This is more than a mere design advantage: As soon as a higher-level parameter
option turns out to be rather non-promising, the entire respective further branch of
the decision tree can be either turned to be less likely to be considered further, or to
be even completely discarded from the further consideration.

13 Informed ML for Linear Solver Control 293

5

3 1 7

5 28

5

3 6 7

4 28

Next generation
within one branch

only.
Here: the center one

Fig. 13.2 Visualization of the tree-based genetic algorithm with exemplary settings for parameters
(depicted as boxes). Changes in parameter depicted by gray color

Clearly, such decisions should not be based on a single evaluation of a parameter
setting from a certain branch. Instead, we require a minimum amount of evaluations
of that branch, relative to the possible number of combinations from that branch,
in order for such decisions to be taken. If, however, for instance, the direct solver
options in the parameter search space have turned out to be significantly slower
than multigrid at some stage of the evaluation process, all direct solver options
will no longer be considered. This reduces the number of remaining possible
parameter combinations and, thus, remaining evaluations. Figure 13.2 visualizes
this proceeding.

The second modification of the genetic algorithm changes the likelihood for
different parameters to be selected for the next generation. Different linear solver
parameters may have different strengths-of-effect on the runtime in different
applications. As soon as a parameter has shown to have a rather low impact on
the runtime in either direction, we decrease the likelihood for further considering
it—independent of the tree-branch it is in. We do so by computing the global Sobol
sensitivity indices [33] for each parameter after each evaluation, independent of
tree-branches. These are rather cheap to compute and allow to identify parameters
with a low impact quickly.

13.4 Pre-evolution via Surrogate Learning Model

Linear systems from different simulations, or at later stages of a simulation, in
one type of application do often enough feature somewhat comparable properties.
Therefore, we intent not to start the genetic optimization process from scratch for
each simulation, or when rechecking within the same simulation. We would like to
consider, or transfer, the previous results instead and adjust the initial likelihoods
for different parameters and settings to be considered.

We use a surrogate learning model for this purpose. While virtually all properties
of a linear system do have some impact on the linear solver behavior, some have
a more outstanding impact than others. Properties like the number of equations,

294 S. Gries

the number of non-zero coefficients per equation,1 the amount of unsymmetry2

and the diagonal dominance3 are known to have a strong impact. This also holds
for the required accuracy, as a less strict target accuracy may allow for different
methods than strict ones, and the amount of parallelization, as this may come at
the expense of algorithmic compromises in the way a solver is parallelized. All of
these information are either directly available, user-defined or cheap to compute,
for instance, as average or maximum over the system. These serve as algebraically
computed information for guiding the machine learning process (cf. Sec. 5.1 in
[28]).

This rather small number of properties is used to characterize a surrogate for a
full linear system. Together with the selected parameter settings they are stored in
a simple database. Before starting a genetic optimization for a new linear system,
the initialization of the genetic process can be taken from this database, based on
how close the new linear system is to the previous ones in terms of the surrogate
characterizations.

This transfer learning requires computing the comparability of different surro-
gates. We do so by computing the difference of each surrogate dimension of two
data sets. This difference is then expressed relatively to the standard deviation of that
dimension across all data sets. Thus, differences of different surrogate dimensions
become comparable, although the initial data may be of rather different scales (e.g.,
solution tolerance vs. size of the linear system compares a value between 0 and 1
vs. a value of millions).

With the result, we can adjust the likelihoods of different parameters and
settings to be considered, according to previous results from the same or also other
simulations. It is important to note that we are only adjusting likelihoods in most
cases and, thus, help the genetic process to focus on promising search directions
more quickly. However, we do still consider all search directions in most cases. The
thresholds for fully withdrawing search directions are rather high: The surrogate
model is a simplification of the huge number of linear system properties to just a
few outstanding properties. While this provides some representativity to speed up
the genetic optimization, it can hardly be seen as a prediction with certainty.

1 Also referred to as sparsity.
2 Computed as the difference of two corresponding matrix entries aij .and aji . relative to the average
of the respective diagonals aii . and ajj ..
3 Computed as the relation of the sum of off-diagonal matrix entries of a matrix row related to
the respective diagonal. Values less than one indicate diagonal dominance, one indicates weak
diagonal dominance.

13 Informed ML for Linear Solver Control 295

13.5 Online vs. Offline Training

The genetic optimization will take place during a training phase that can either be in
an online or offline mode. In an offline training phase, the optimization is performed
for a certain, e.g., the first, linear system. Parameter settings are evaluated for this
particular linear system. While this comes at some overhead costs for executing the
training phase, results are perfectly comparable.

In contrast, during an online training, the first generation of the genetic optimiza-
tion is evaluated with the first linear system to solve, the evaluation of the second
linear system is performed for the second linear system, etc. This has the advantage
that no computed results are wasted: apart from the runtime, each evaluation of the
linear solver results in a solution vector for the linear system (13.1) to be solved.
During an online training, all of these results will be used to proceed with the actual
simulation. The convergence monitoring mechanism that we employ in the linear
solver kernel ensures that this only happens if the computed solution vector fulfills
the given target accuracy. Otherwise the solver is restarted with another generation
of parameters, i.e., two (or more) evaluations are then based on the same system
“offline-like”.

The monitoring mechanism also stops an online evaluation run if it detects that
the convergence is too bad for this parameter set to have a chance to provide a
solution with the required accuracy. This is simply done by estimating the final
accuracy after reaching the maximal number of iterations, based on the so-far
convergence history at the current iteration step.

While it is the advantage of an online training to consider different linear systems
to avoid wasting computed results, it has the drawback that solver runtimes for
different linear systems need to be compared.

A simple step to improve comparability of different evaluations in an online
training is not to compare and store full runtimes but to distinguish between the
runtimes for setup and solution phase of a linear solver. Regarding the solution
phase, more precisely, we store the runtime per iteration along with the average
convergence rate per iteration. This allows to compare results of different solver
generations for different linear systems: we can extrapolate how many iterations
another parameter setting would have resulted in and how long the solution would
have taken then.

This still requires linear systems to be somewhat comparable regarding their
properties. If two linear systems differ too drastically, for instance, if we compare
results for a really well- and a really ill-conditioned one, the convergence rates of
a solver setting for one problem were no longer representative also for the other
system.

This, however, is typically not the case in most numerical simulations: The
underlying physics, the discretization and even essential material properties remain
the same, or at least nearly the same, between different linearization and time steps
of a simulation. Therefore, comparability remains to an acceptable level. If not, for

296 S. Gries

instance, due to sudden changes of materials or changes to the physics in certain
time steps,4 falling back to an offline training still is perfectly possible.

We can employ the surrogate model from the pre-evolution for this purpose: As
soon as the surrogate representation of the next linear system in the proceeding
of a simulation differs too much from the previous ones, the online training
automatically falls back to the offline mode.

During an offline training phase, we employ the convergence monitoring mech-
anism to avoid as much of unnecessary evaluation work as possible. Because we
evaluate all parameter generations with the same linear system, we are ensured to
obtain a solution vector as long as there is at least one possible parameter setting that
results in a robust solver method. Thus, we can safely stop any further evaluation
as soon as it is clear that this will not lead to a better runtime than the so-far best
parameter setting. Independent of whether the solution has already been achieved
with the current parameter generation then, the evolution can be stopped early and
the corresponding parameter setting will be discarded. This avoids unnecessary
further solver iterations with that setting.

Finally, in the unlikely event that all possible parameter combinations should
fail in providing a robust solver method, we will select the method with the best
convergence properties. Or one with almost the same convergence properties if it
was substantially faster.

This is the best we can do with the provided parameter search space then. In fact,
it would be the user’s task to provide better information for the machine learning
method.

13.6 Reproducibility

Our objective is to minimize the runtime of the linear solver that we evaluate with
classical timer functions. These are subject of noise due to different workloads on
computers, due to timer resolution, memory effects, etc. That is, two runs with
the same settings can be expected to have somewhat comparable runtimes. They
will hardly have exactly the same runtime, though. Hence, decisions of the genetic
algorithm may become different where runtime results are close between two sets
of parameters. Generally, this is not a problem in production runs. The convergence
monitoring ensures that the solver provides results of the demanded accuracy.
Deviations beyond, especially at round-off level can often enough be well-accepted.

In cases where analysis or research purposes require full reproducibility, how-
ever, we cannot (solely) base optimization decisions on measured runtimes. We
make use of artificial times then (as in the approach in [37]), which are pre-defined
for the setup and iterations of different types of solver methods, respectively. This is

4 For instance, switching on and off well-bores in reservoir simulations, cracks in material
simulations, sudden changes in boundary conditions, etc.

13 Informed ML for Linear Solver Control 297

based on experiences and benchmarks. However, while it still allows for evaluating
numerical impacts from parameter changes, e.g. changes of iteration counts,
it hardly allows for evaluating fine-grained performance impacts of parameter
changes.

Instead, we use a mixed approach for comparing two runtimes t1 . and t2 ., namely

. Δtf orDecision =
 ⎞

Δtmeasured , ifΔtmeasured

t1+t2
≥ thres

ξΔtmeasured + (1 − ξ)Δtartif icial, else
(13.2)

where

.ξ =
 ⎞

Δtmeasured

(t1 + t2)thres

 ⎞2

. (13.3)

The choice of ξ . in (13.3) ensures that it remains between zero and one if the else-
condition in (13.2) applies. It also ensures that ξ = 1., where the threshold is exactly
met. Thus, if and else condition match continuously at the transition. Using the
square puts more emphasis on the measured runtime, if the threshold is only slightly
undershot, while the artificial times are emphasized where the measured runtimes t1 .
and t2 . are very close.

While this approach does not exactly guarantee full reproducibility, it drastically
reduces non-determinism with small runtime differences but still evaluates mea-
sured performances. We call it semi-reproducible.

Another aspect of reproducibility concerns the randomized selection of gener-
ations in the genetic optimization process. We make use of the pseudo-random
generator of the Fortran runtime environment here. It is initialized with the same
seed in each simulation. Thus, reproducibility is guaranteed.

Finally, there may be impacts on the computational performance of a simulation
if it does not run exclusively on a computer, but shares the hardware resources
with other tasks. This may result in different runtimes, as the simulation process
occasionally—and virtually randomly—may need to wait for these other tasks. If
a simulation process runs in an environment with other tasks being active, this
interference and the resulting limitations for reproducibility are unavoidable. The
optimization process can react by re-doing the online training during different stages
of the simulation, though. Moreover, the convergence monitoring, based on the
runtime per solver iteration, can estimate when such a re-training may be promising.
Last but not least, the semi-reproducible approach damps impacts from varying
measured runtimes where runtimes of different solver methods are close—and, thus,
impacts from process-interference are less likely to lead to different decisions.

298 S. Gries

13.7 Controlling Solver Setup Reusage

Solver methods like incomplete factorizations or AMG do require a setup phase
where factorizations and operators are computed that will be applied in the solution
iterations. As long as the linear systemmatrix remains identical, this setup can safely
be reused with different linear systems—i.e., different right-hand-sides.

Reusing solver setups, or at least parts thereof, is possible even where the linear
system matrix changes. Strictly speaking, the iterative method then is no longer
applied to the correct linear system. However, as long as the iterative method is only
applied as a preconditioner within a surrounding Krylov method, this may still be
acceptable. The Krylov method, as the actual solver method, still is applied to the
correct linear system. It is only the preconditioner that may degrade. That is, more
iterations of the Krylov method may result, but this increase in iterations may be
small enough to be outweighed by avoiding the costs of computing a new solver
setup. If, however, the matrix changed too much, reusing the setup can result in
the preconditioning quality becoming too bad for the Krylov method to compute an
accurate solution within the maximal number of iterations.

Whether the linear system matrix is comparable enough to the one where a setup
has initially been computed with is hard to predict before-hand. However, we can
use our control mechanisms from the parameter optimization to also control the
setup reusage.

The straight-forward transfer is to use the convergence monitoring mechanism to
stop the solution process and restart with a fresh setup, as soon as it expects the setup
to be beneficial. Just as with the early stops of evaluation runs during training phases,
this works with the current convergence speed that is used to estimate the number
of iterations to achieve the required solution accuracy. As soon as the additional
iterations from a non-fitting reused setup are expected to exceed the costs of a new
setup, this will be triggered.

We should note that this can even occur while computing the solution of one
linear system: this process can be stopped then and restarted with a fresh setup,
based on the so-far computed results.

In addition, we transfer the idea of the surrogate learning model from Sect. 13.4
to easily evaluate changes of linear systems. We compare the current linear system
with the one where the initial setup was based on by means of the surrogate
model. If the difference exceeds the threshold that was learned from previous setup
decisions within this or other simulations, a fresh setup will be computed before
even attempting to further reuse the current setup. This does not only avoid the
rather small overhead of starting the solution process with an unsuited setup and
then stopping it. In the case of setups only being partly reused, this avoids the
unnecessary computation of the remaining parts of the setups. In the context of
AMG, for instance, instead of reusing the entire setup, also all but the fine-level
smoother or all but the AMG operators can be reused. Computing the remainder
comes at computational expenses that can be avoided if it is very likely for a full
fresh setup to be computed anyway.

13 Informed ML for Linear Solver Control 299

13.8 Results: Informed Machine Learning for Linear Solver
Parameters in Various Practical Applications

We will consider results of the ML-based parameter optimization and setup control
with several test cases and simulations from industrial applications in various fields
of engineering.

We will consider both full simulations as well as representative single linear
systems. With single linear systems, or small sequences, we can demonstrate certain
aspects of the parameter optimization. The full simulation results, however, are what
matters in the end.

All benchmarks have been performed with Fraunhofer’s linear solver library
SAMG and the control extension SAMG-ASC both of Release 2022 on compute
nodes with two Intel Xeon Gold 6130@2.10 GHz and 192 GB RAM. Nodes had
been used exclusively for the performance benchmarks here in order to ensure
reproducibility. This also allows to reasonably consider single simulation runs rather
than repeated series of simulations. This is the use cases in industrial simulations.

13.8.1 Mere Parameter Optimization: Single Reservoir
Simulation Problems

We are first considering the achievements of the evolutionary learning for the
optimization of solver parameters. We will do so with an offline training for two
problems from petroleum reservoir simulation. The underlying SPE10 problem [3]
is a well-established reference benchmark in petroleum reservoir simulations that
is commonly used to compare simulators and where the input data is publicly
available. It is a 3D Black-Oil simulation, i.e., oil, gas and water phases are
considered, discretized with 1.1 million grid cells. We are using two linear systems
from different time step sizes. They feature different matrix conditions, as they
typically arise in different steps of a simulation. While the first is rather easy to
solve, the other one is more challenging and requires more solver iterations.

In our informed machine learning approach, we are considering a set of linear
solver parameters that, by experience, have a potential for optimizations.5 At the
same time, those parameters that are crucial for a successful AMG application in
reservoir simulations remain fixed (cf. [9]).

Figure 13.3 shows the performance results for the optimized parameters with
both linear systems. We are not including the training time here, as we are looking
for initially optimized parameters with a single linear system. Since we have used

5 Aggressiveness of coarsening, threshold for coupling strength, target coarse level size of the
AMG hierarchy (cf. [35] for details) and the floating precision of the incomplete factorization
fine-level smoother.

300 S. Gries

SPE10 well-conditioned SPE10 ill-conditioned

5

10

15

20

8.76

23.16

6.83

21.16

5.22

20.41

se
co

n
d

s

Default Parameters (Reservoir) Manually Optimized Parameters

Automatically Optimized Parameters

Fig. 13.3 System-AMG runtimes for single representative linear systems from Black-Oil simula-
tions. Compared are different sets of parameters: Conservative defaults, manually and automati-
cally optimized ones—for each of the two problems. Time of the training phases for both manual
and automatic tuning is excluded here

human experience in the definition of the parameter search space, we are also
including results of the outcome of a manual optimization of the respective param-
eters, based on that experience. While this already is a significant improvement
towards the standard AMG parameters, the evolutionary learning process can further
improve the settings. It saves 40% and 23% of the runtime compared to the default
settings for the well-conditioned and the challenging linear system, respectively.
And still saves 23% and 4% compared to the manually optimized parameters.

In both cases, the tree-based evolutionary learning approach drastically reduced
the number of required evaluations compared to evaluating all combinations. With
the provided parameter search space, about 600 parameter combinations would have
been possible. Continuous intervals like for thresholds have been discretized using
a kriging approach [17] here. However, instead of evaluating all possible options,
only about 30 runs have been necessary in the offline training phase.

The comparable background of both linear systems from the same physical
model allows to further reduce this. With the proposed surrogate model, we can
guide the parameter optimization of the second linear system from a later step of
the simulation with results from the first one.

Table 13.1 shows that the surrogate-based initialization of the evolutionary
process can significantly help to further reduce the number of evaluations.

The obtained parameter sets for the two linear systems both with and without
surrogate learning do target in comparable directions. This indicates that we can

13 Informed ML for Linear Solver Control 301

Table 13.1 Performance of the offline training for two SPE10 linear systems. Either independent
training or with the second one being initialized via the surrogate learning approach based on the
first one

Surrogate learning Independent training,

in second training no surrogate learning

First training #eval 30 30

(well-cond. problem) Time 87.39 sec 87.39 sec

Second training #eval 11 31

(ill-cond. problem) Time 207.10 sec 570.95 sec

safely use parameter sets for several time steps and that the surrogate-based
initialization does not impose risks for robustness. We still had the convergence
monitoring to handle such cases, though.

The parameter sets not being absolutely identical for both linear systems, more-
over, indicates that individual properties of the linear systems do have some impact
on the optimal parameter set and that the evolutionary optimization method does
properly reflect this. However, we need to outweigh the differences of parameter
sets versus the costs of training phases.

13.8.2 Parameter Optimization: Linear Elasticity Problem

In continuummechanics, linear elasticity formulations describe deformation of solid
materials under external stresses. We refer to the literature for an extensive overview
about such models [19, 32]. These problems are also described by elliptic PDEs
and, thus, algebraic multigrid is a considerable option. However, the complexity
of the underlying problems typically require specialized AMG approaches [8, 14].
These construct the multigrid hierarchy based on aggregation [39] and, this way,
can ensure to properly handle so-called rigid-body-modes. This is crucial in order
to obtain robust convergence. A variety of parameter choices still remains regarding
the construction of these aggregates, where our optimization approach based on
evolutionary strategies is well-suited to find a good set of parameters. Again, this
follows the idea of Informed Machine Learning, where the basic strategy is set based
on experience but the fine-tuning therein is subject of the ML-based optimization.

Figure 13.4 shows results of the parameter optimization that has been performed
for the more challenging but much smaller case of the thin beam and then has been
applied to an either thick or thin steel beam. The smaller problem size in the thin
case explains the faster times compared to the thick case.

Compared to default SAMG parameters for elasticity problems, about 13% and
21% of the runtime could have been saved with the optimization of the aggregative
setup. It essentially became more aggressive here, leading to coarse level problems
with less degrees of freedom.

302 S. Gries

Thick beam Thin beam
0

20

40

60

80

100

120
123.54

12.5

108.08

9.86

se
co
nd
s

Default Parameters (Elasticity) Automatically Optimized Parameters

Fig. 13.4 Results for single linear systems from the simulation of a thick and thin steel beam with
default parameters for elasticity problems and optimized settings from an offline training. The
problem has about 2.2 million and 140 thousand DOF in the thick and thin case, respectively. As
in Fig. 13.3, the training time is excluded

The parameter optimization considered different minimal and maximal aggregate
sizes for the aggregative AMG coarsening approach, along with different modes and
thresholds for strength-of-connection. This results in a rather large number of almost
45,000 possible combinations. The offline training here took 5,000 evaluations. Here
we intended to demonstrate the ability of the optimization methods to identify a
good parameter setting. This comprehensive optimization has been applied once in
an offline-mode. The result is equally well-applicable to further such simulations
with different material thicknesses. Thus, in the end, the training time is irrelevant
for the gain in the simulation time. Due to the large amount of possible settings, no
manual tuning has been considered here.

Because the simulation requires setups within each step, as the rigid-body-modes
evolve with the deformation of the material, these savings carry over to the entire
simulation. But an additional setup reusage was hardly applicable here.

13.8.3 Setup Reusage: Sequence of Reservoir Simulation
Problems

We will demonstrate the potential of reusing linear solver setups with a sequence
of five linear systems from one time step of a Black-Oil reservoir simulation with
788,000 discretization cells.

13 Informed ML for Linear Solver Control 303

Iterations

40

60

80

100

44

106

93

48 49

Solver Time

12

14

16

18

20

22

13.17

22.14

17.95

13.02

11.8

se
co
nd
s

No Reuse Reuse Coarsening,
Recompute Operators

Reuse Entire
Setup

Automatic Control,
Always Recompute Operators

Automatic Control,
Reuse as Much as Possible

Fig. 13.5 Iteration counts and solver runtimes for the set of five pressure problems from one time
step of an industrial simulation with 788,742 cells. Different setup reusage approaches applied

Clearly, in cases where a rather trivial reusage of setups is possible, our control
mechanism can easily do so. However, in this particular case, the control mechanism
is actually necessary in order to gain performance benefits from reusing setups
without robustness issues. On the one hand, the systems all are from different
Newton iterations of the same time step of the simulation and, thus, some setup
reusage is expected to be beneficial. On the other hand, trivially reusing full or
partial setups within all Newton iterations results in severe robustness issues in this
case.

Figure 13.5 illustrates the numerical issues and the performance of different setup
reusage approaches. It compares the computation of a fresh setup as a reference (left
bar) with trivially reusing6 or partly reusing setups in all systems with the results of
the automatic control mechanism.

The autonomous control properly handles the challenging sequence of linear
systems and ensures that a robust solution is provided in all cases. Moreover, by
reusing setups as often as possible, it allows for saving about 11% of the runtime.

Clearly, the potential for savings is higher in cases where more parts of the setups
can be reused for a larger number of linear systems. The control will still ensure that

6 The lower iteration count for reusing entire compared to partially reusing setups is due to round-
off impacts that make SAMG stop early with fully reusing setups here.

304 S. Gries

setups are recomputed as soon as beneficial for the performance or necessary for the
robustness, as in this exemplary case.

13.8.4 Full Simulation Result: Reservoir Application (SPE10)

Above we have demonstrated the effects of machine learning techniques with two
exemplary linear systems from reservoir simulations of the SPE10 benchmark case
[3]. We are now going to apply our control mechanism to the full simulation run
and see the effect in the overall application. We use Stanford’s ADGPRS simulator
[13, 41] for that purpose and simulate 500 days of the SPE10 reservoir.

Figure 13.6 shows that about 29 minutes of overall simulation time had been
saved. Including the overhead costs from the control mechanism. The number of
Newton iterations and time steps remained the same in all the three linear solver
configurations. Only the linear solver iterations changed moderately.

Of the overall saving, about 16 minutes are mere linear solver time. The
remainder results from better memory utilization with the reused setups and, in
addition, the processing of the linear solutions within the simulator: The adjusted
linear solver strategy may lead to different results at round-off level beyond the
required solution accuracy. This is inherent to any parameter adjustment with any

Full Simulation Time

10.3

10.4

10.5

10.6

10.7

10.74

10.51

10.26

ho
ur
s

Linear Solver Time

1.3

1.4

1.5
1.5

1.37

1.23

ho
ur
s

Classical SAMG SAMG w/ Parameter Control
SAMG w/ Parameter and Setup Control

Fig. 13.6 Full simulation time (left) and linear solver runtimes (right) in the SPE10 simulation
with classical SAMG (fixed parameters), SAMG with auto-controlled parameters and SAMG with
both auto-controlled parameters and setups. All timings do include the control mechanism

13 Informed ML for Linear Solver Control 305

solver method and, thus, has not been investigated further. Of the linear solver
savings, 7.75 minutes had been due to parameter optimization and 8.25 minutes
due to setup reusage.

13.8.5 Full Simulation Result: Groundwater Application

Groundwater simulations are a promising field of application for our autonomous
solver control: with small time steps and accordingly rather well-conditioned linear
systems, single level incomplete factorization are a sufficiently suited preconditioner
in some cases and time steps. Whereas algebraic multigrid is the method of choice
in many cases with larger time steps sizes. Typically, simulations do feature both
situations and, thus, an automatic control is required to select the appropriate solver
setting within different time steps.

We will demonstrate groundwater simulations with Modflow USG 1.8 that
is provided by the USGS [23] and consider one single-phase simulation with
only water and one two-phase simulation with water and solid particles. In the
single-phase case, the linear systems are too ill-conditioned in some time steps
for standard-AMG to be applicable robustly. At least without further stabilization
techniques applied. In the two-phase case, it is the other way round: the linear
systems are well-conditioned enough for ILU to be sufficiently fast in some time
steps.

We include α .SAMG [4] in the comparison in Fig. 13.7, as it can also switch
between different solver methods, based on statistical evaluations. Indeed, it
performs better than either plain ILU or plain AMG. However, the more versatile
machine learning-based solver control provides the most robust approach with the
best performance.

13.8.6 Full Simulation Result: Computational Fluid Dynamics
Application

The OpenFOAM package [40] is widely used for computational fluid dynamics
(CFD) applications, also among industrial users. The simulation that we consider
here uses the PIMPLE method, an OpenFOAM-included combination of SIMPLE
[24] and PISO [15], where SAMG is used as a pressure solver within the solution
scheme. The considered problem consists of about 14 million cells and is simulated
for twenty thousand time steps. It is run on 240 cores with MPI.

The specialty of the AMG application in OpenFOAM is that only a very few
setup calculations are actually necessary. This is already controlled by the AMG
integration in the OpenFOAM package. That is, our autonomous solver control will
only be used to further optimize the solver parameters, not to further control the

306 S. Gries

Modflow’s
md

Classical
SAMG

SAMG ML-based
Setup and Solver

Control

0

20

40

60

80
72

0

75

33

0 0

45

25

m
in
ut
es

Modflow’s
md

Classical
SAMG

SAMG ML-based
Setup and Solver

Control

0

50

100

150

200

167

199

163

119

0

110
94

72m
in
ut
es

1 Thread 8 Threads

Convergence
failure in
some time
steps of this
ill-conditioned
case

Fig. 13.7 Full simulation runtime with different linear solvers and control approaches for a
Modflow USG 1.8 single-phase simulation with 737,191 cells (left) and a two-phase simulation
with 552,600 cells (right). χ .md is Modflow’s non-parallel single-level solver that serves as
reference benchmark here

setup here. Moreover, the parameters have already been tuned manually. Thus, the
machine leaning optimization will only be used for some remaining fine-grained
tuning: Both again follows the approach of Informed Machine Learning, where all
available knowledge already has been applied. It also explains why the potential
performance gain is smaller than in cases where less tuned default parameters have
been the reference.

The application of our solver control is two-fold. We do first apply an offline
training to find a good parameter setting for the setup parameters of AMG. Due
to only very few setups being computed within the actual simulation run, an
online training would cause a significant overhead, as a fresh setup was calculated
with a new setting of parameters within each evaluation. Therefore, we apply
the offline training beforehand and not actually as part of the simulation. The
outcome of this comprehensive training that took about two hours can be used
for all comparable simulations and serves as one-time-optimization. A manual
optimization via trial-and-error could hardly be comparably exhaustive. This offline
training has emphasized the solution phase of AMG according to the expected
amount of setup-reusage, though.

The resulting settings concerned the target size of the coarse-level problem, the
strength-of-connection threshold of AMG and the multigrid level where SAMG
switches from classical (aggressive) coarsening [35] to sparsified variants [5, 20]
that particularly target at distributed memory parallelism, at the expense of a

13 Informed ML for Linear Solver Control 307

GAMG SAMG
Manually Optimized

Without ML

SAMG
Manually Optimized
With ML in Addition

10.5

11

11.5

12

12.5 12.42

10.76

10.5

ho
ur
s

Fig. 13.8 Full simulation runtime with OpenFOAM with the manually optimized SAMG and
SAMG with ML-based control in addition. The OpenFOAM built-in GAMG solver is used as
a reference

slightly decreased robustness. In this offline training, the runtime of the solver for
a single linear system had been reduced from 1.914 to 0.877 seconds. Most of this
performance gain applies to the setup phase and, thus, will not fully carry over in
this application. The iteration count was 19 for the original parameters and 21 for
the optimized ones.

These parameters had been applied for the full simulation run now. And an online
training phase has been used to further optimize the parameters in the solution phase.
It decided between the CG and GCR Krylov method and between Gauss-Seidel and
Jacobi smoothing. Moreover, it controlled how to evaluate residuals for convergence
checks. The evaluation of this rather small number of possible combinations has
been well-feasible in an online training, despite the outer setup reusage: the AMG
setup is not at all affected by these settings.

As seen in Fig. 13.8, compared to the already optimized settings another 2.5%
of runtime, 15 minutes, could have been saved. The relative saving is less than
in the offline training, because only eight setups have been made throughout the
simulation. In these, the savings had been the highest. Moreover, some efforts had
already been applied in the manual tuning of parameters in this application.

308 S. Gries

25 100 625

0

5

10

15

20

25

0.95

3.8

23.88

0.23 0.95

5.75

m
in
ut
es

25 100 625

0

50

100

4.95

19.7

122.9

0.5 2.1 6.25

m
in
ut
es

Direct Solver Iterative Solver
with ML-Based Control

Medium Accuracy High Accuracy
Number of Battery Cells

Fig. 13.9 Runtime to simulate 100 seconds of battery aging at different accuracies. The direct
solver serves as robust reference. The ML-based control allows for exploiting iterative schemes

13.8.7 Full Simulation Result: Battery Aging Simulation

The simulation of battery aging [25, 26] plays an important role in the efficient
usage of batteries in electrical vehicles as well as in energy storage. The challenge
for the linear solver is that the properties of the linear systems highly depend
on the type of battery cell and the underlying model. Thus, the solver can be
confronted with very different types of linear systems within the same simulator.
This makes selecting iterative methods in a robust manner rather difficult and direct
solvers had been the only considerable option so far. With our autonomous control,
however, iterative methods can safely replace the direct solver. The control ensures
the appropriate iterative method to be used for an individual type of battery cell.
Thus, the better efficiency of iterative methods can be exploited, as seen in Fig. 13.9
(for compatibility reasons, these benchmarks have been performed on an Intel Core
i7-4790 and 16 GB RAM). Especially for problems with a higher model resolution
and more connected battery cells, with correspondingly larger linear systems.

13 Informed ML for Linear Solver Control 309

13.9 Conclusions and Future Research

We have used a mechanism based on evolutionary and surrogate machine learning
techniques to optimize the usage of linear solvers in different kinds of simulation
applications. Internal monitoring mechanisms at the same time ensure robustness of
the solver to be maintained in all cases.

The approach follows the idea of Informed Machine Learning: the basic linear
solver strategy is defined based on human knowledge for a certain type of
simulation. The huge variety of options and aspects to consider with several
constraints would make an automated approach for defining the overall solver
strategy virtually impossible to realize for production use. The automated approach,
however, has turned out to be efficient in further optimizing those parameters
where variation is possible within a certain base-strategy of the linear solver.
Here it is superior over human experience, as it can exploit also information that
are evaluated during a simulation or learned from previous runs. Moreover, the
presented approach that exploits tree-based evolutionary learning and surrogate
methods requires significantly less evaluations than trivially evaluating all possible
parameter combinations.

Significant savings in runtime and, thus, computational resources have been
possible for a vast range of simulation applications. We have to keep in mind that
this only results from optimizing solver parameters automatically. The underlying
solver strategy remains the same.

Future research will focus on further improving the surrogate models both in
terms of the surrogate dimensions as well as in comparing different systems based
on their surrogate representation.

The idea of Informed Machine Learning can be exploited further by defining
different initial sets of parameter search spaces, where the appropriate one can be
selected automatically by the method, for instance, based on the surrogate models.
This would maintain the exploitation of human knowledge while reducing the need
for user interaction. Last but not least, also the consideration of and combination
with further optimization methods would be a promising field of further research.

Acknowledgments The author gratefully acknowledges that large parts of this development has
been funded by the Fraunhofer Cluster of Excellence “Cognitive Internet Technologies”. The
General Purpose Research Simulator (GPRS) developed by the Reservoir Simulation Research
Group (SUPRI-B) at Stanford University was used in this work.

References

1. Brandt, A.: Algebraic Multigrid Theory: the Symmetric Case. Applied Mathematics and
Computation 19(1–4), 23–56 (1986)

2. Brandt, A., Livne, O.: Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics.
SIAM Classics in Applied Mathematics (2011)

310 S. Gries

3. Christie, M., Blunt, M.: Tenth SPE Comparative Solution Project: A Comparison of Upscaling
Techniques. SPE Reservoir Evaluation and Engineering p. 308–317 (2001)

4. Clees, T., Ganzer, L.: An Efficient Algebraic Multi-Grid Solver Strategy for Adaptive Implicit
Methods in Oil Reservoir Simulation (2007)

5. De Sterck, H., Falgout, R., Nolting, J., Yang, U.: Distance-two Interpolation for Parallel
Algebraic Multigrid. Numerical Linear Algebra with Applications 15(2–3), 115–139 (2007)

6. Feurer, M., Hutter, F.: Hyperparameter Optimization. In: Automated Machine Learning.
Springer (2019)

7. Ghojogh, B., Sharifian, S., Mohammadzade, H.: Tree-based Optimization: A Meta-Algorithm
for Metaheuristic Optimization (2018)

8. Griebel, M., Oeltz, D., Schweitzer, M.: An Algebraic Multigrid Method For Linear Elasticity.
SIAM Journal on Scientific Computing 25(2) (2002)

9. Gries, S.: System-AMG Approaches for Industrial Fully and Adaptive Implicit Oil Reservoir
Simulations. PhD thesis, University of Cologne (2015)

10. Gries, S.: Autonomous Linear Solver Control to Improve Performance of Simulations. In:
European Conference on the Mathematics of Oil Recovery (ECMOR) (2022)

11. Grote, M., Huckle, T.: Parallel Preconditioning with Sparse Approximate Inverses. SIAM
Journal on Scientific Computing 18(3), 838–853 (1997)

12. Hestenes, M., Stiefel, E.: Methods of Conjugate Gradients for SOlving Linear Systems. Journal
of Research of the National Bureau of Standards 49(6) (1952)

13. Hui, C.: Development of Techniques for General Purpose Simulators. PhD thesis, Stanford
University (2002)

14. Hülsmann, G., Krechel, A., Plum, H.J., Schweitzer, M., Hu, W., Wu, C., Koishi, M.: Scalable
Linear Solvers for Computational Material Design of Filled Rubbers. In: NWC 2019,
NAFEMS World Congress. Summary of Proceedings : A world of engineering simulation
(2019)

15. Issa, R.: Solution of the Implicitly Discretized Fluid Flow Equations by Operator-Splitting.
Journal of Computational Physics 62, 40–65 (1985)

16. Jankowski, D., Jackowski, K.: Evolutionary Algorithm for Decision Tree Induction. In:
International Conference on Computer Information Systems and Industrial Management
(2014)

17. Jeong, S., Murayama, M., Yamamoto, K.: Efficient Optimization Design Method Using
Kriging Model. Journal of Aircraft 42(2), 413–420 (2005)

18. Lindauer, M., Eggensperger, K., Feurer, M., Biedenknapp, A., Deng, D., Benjamins, C.,
Ruhkopf, T., Sass, R., Hutter, F.: SMAC3: A Versatile Bayesian Optimization Package for
Hyperparameter Optimization (2021)

19. Marsden, J., Hughes, T.: Mathematical Foundations of Elasticiy. Dover Publications (1983)
20. Meier-Yang, U.: Parallel Algebraic Multigrid Methods - High Performance Preconditioners.

In: Numerical Solutions of Partial Differential Equations on Parallel Computers (2006)
21. Meijerink, J., van der Vorst, H.: An Iterative Solution Method for Linear Systems of which the

Coefficient Matrix is a Symmetric M-Matrix. Mathematics of Computation 31(137), 14–162
(1977)

22. Mishev, I., Fedorova, B., Terekhov, S.: Linear Solver Performance Optimization in Reservoir
Simulation Studies (2009)

23. Panday, S., Langevin, C., Niswonger, R., Ibaraki, M., Hughes, J.: MODFLOW-USG version
1: An unstructured grid version of MODFLOW for simulating groundwater flow and tightly
coupled processes using a control volume finite-difference formulation. U.S. Geological
Survey Techniques and Methods, Book 6, Chapter A45 (2013)

24. Patankar, S., Spalding, D.: A Calculation Procedure for Heat Mass and Momentum Transfer
in Three Dimensional Parabolic Flows. International Journal on Heat and Mass Transfer 15,
1787 (1972)

25. Puchta, M., Schledde, D.: Virtuelle Batterien in der Entwicklung von Elektrofahrzeugen.
Digital Engineering Magazine (2011)

13 Informed ML for Linear Solver Control 311

26. Puchta, M., Schwalm, M., Dengler, F.: High-precision, High-dynamic Emulation of Lithium-
Ion Cells for the Entire Life Cycle. In: The 30th International Electric Vehicle Symposium and
Exhibition (2017)

27. Rainville, F.M., Fortin, F.A., Gardner, M.A., Parizeau, M., Gagné, C.: DEAP: A Python
Framework for Evolutionary Algorithms (2012)

28. von Rueden, L., Mayer, S., Beckh, K., Giesselbach, G., Heese, R., Kirsch, B., Pfrommer, J.,
Pick, A., Ramamurthy, R., Walczak, G., Bauckhage, C., Schuecker, J.: Informed Machine
Learning - A Taxonomy and Survey of Integrated Prior Knowledge into Learning Systems
(2021)

29. Ruge, J., Stüben, K.: Algebraic Multigrid (AMG). In: Multigrid Methods, SIAM Frontiers in
Applied Mathematics, vol. 5 (1986)

30. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publishing Company, Boston
(1996)

31. Saad, Y., Schultz, M.: GMRES: A Generalized Minimal Residual Algorithm for Solving
Nonsymmetric Linear Systems. SIAM Journal on Scientific and Statistical Computing 7, 856–
869 (1986)

32. Slaughter, W.: The Linearized Theory of Elasticity. Birkhäuser (2002)
33. Sobol, I.: Global Sensitivity Indices for Nonlinear Mathematical Models and their Monte Carlo

Estimates. Mathematics and Computers in Simulation 55, 1–3, 271–280 (2001)
34. Souza, A., Nardi, L., Oliveira, L., Olukotun, K., Lindauer, M., Hutter, F.: Prior-Guided

Bayesian Optimization (2020)
35. Stüben, K.: A Review of Algebraic Multigrid. Journal of Computational and Applied

Mathematics (2001)
36. Stüben, K., Ruge, J., Clees, T., Gries, S., Plum, H.J.: Algebraic Multigrid - From Academia to

Industry. In: Scientific Computing and Algorithms in Industrial Simulations. Springer (2017)
37. Thum, P., Stüben, K.: Advanced Algebraic Multigrid Application for the Acceleration of

Groundwater Simulations. In: XIX International Conference on Water Resources (2012)
38. Trottenberg, U., Oosterlee, C., Schüller, A.: Multigrid. Elsevier Academic Press (2001)
39. Vanek, P., Mandel, J., Brezina, M.: Algebraic Multigrid by Smoothed Aggregation for Second

and Fourth Order Elliptic Problems. Computing 56, 179–196 (1996)
40. Weller, H., Tabor, G., Jasak, H., Fureby, C.: A Tensorial Approach to Computational Contin-

uum Mechanics using Object-Oriented Techniques. Computers in Physics 12(6) (1998)
41. Zhou, Y.: Parallel General-Purpose Reservoir Simulation with Coupled Reservoir Models and

Multisegment Wells. PhD thesis, Stanford University (2012)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 14
Anomaly Detection in Multivariate Time
Series Using Uncertainty Estimation

Moritz Müller, Gunar Ernis, and Michael Mock

Abstract Today’s industrial machines are equipped with several sensors that
detect environmental changes and generate time series. One challenging task is
the detection of anomalies in multivariate time series to proactively schedule
machine maintenance and prevent failures during cost intense processes. Recent
deep learning-based anomaly detectors demonstrate remarkable results as they can
process large datasets of raw data. A common unsupervised method is to measure
the discrepancy or anomaly score between observation and the expected behaviour
approximated by a neural network. No approach incorporates multivariate uncer-
tainties quantified by a Bayesian neural network and expert knowledge in the form
of probabilistic relations into the anomaly score to enhance anomaly detection. We
propose a Bayesian neural network that estimates uncertainty and multivariate time
series forecasts. In this chapter, we introduce an anomaly score function based on
Hotelling’s T 2

. statistic and the quantile function to estimate appropriate thresholds
for the anomaly scores. Our experimental results show that anomaly scores are
specifically separable into normal and anomalous regions when the discrepancies
exploit probabilistic relations between multivariate features. Moreover, we compare
the anomaly score separability and the anomaly detection accuracy against recent
state-of-the-art methods. The evaluation shows that uncertainty-driven anomaly
scores are competitive in both terms.

14.1 Introduction

As more data [29] becomes available through ongoing efforts to optimise and
automate traditional manufacturing, machine learning (ML) algorithms [27] begin
to play a more significant role in analysing the data to enhance industrial processes
and product quality. A crucial challenge in this field is detecting anomalous events

M. Müller · G. Ernis (✉) · M. Mock
Fraunhofer IAIS, Sankt Augustin, Germany
e-mail: moritz.mueller@iais.fraunhofer.de; gunar.ernis@iais.fraunhofer.de;
michael.mock@iais.fraunhofer.de

© The Author(s) 2025
D. Schulz, C. Bauckhage (eds.), Informed Machine Learning,
Cognitive Technologies, https://doi.org/10.1007/978-3-031-83097-6_14

313

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-83097-6protect T1	extunderscore 14&domain=pdf

 885 55738 a 885 55738
a

mailto:moritz.mueller@iais.fraunhofer.de
mailto:moritz.mueller@iais.fraunhofer.de
mailto:moritz.mueller@iais.fraunhofer.de
mailto:moritz.mueller@iais.fraunhofer.de

 14399 55738 a 14399 55738 a

mailto:gunar.ernis@iais.fraunhofer.de
mailto:gunar.ernis@iais.fraunhofer.de
mailto:gunar.ernis@iais.fraunhofer.de
mailto:gunar.ernis@iais.fraunhofer.de

 -2016 56845 a -2016 56845 a

mailto:michael.mock@iais.fraunhofer.de
mailto:michael.mock@iais.fraunhofer.de
mailto:michael.mock@iais.fraunhofer.de
mailto:michael.mock@iais.fraunhofer.de
https://doi.org/10.1007/978-3-031-83097-6_14
https://doi.org/10.1007/978-3-031-83097-6_14
https://doi.org/10.1007/978-3-031-83097-6_14
https://doi.org/10.1007/978-3-031-83097-6_14
https://doi.org/10.1007/978-3-031-83097-6_14
https://doi.org/10.1007/978-3-031-83097-6_14
https://doi.org/10.1007/978-3-031-83097-6_14
https://doi.org/10.1007/978-3-031-83097-6_14
https://doi.org/10.1007/978-3-031-83097-6_14
https://doi.org/10.1007/978-3-031-83097-6_14
https://doi.org/10.1007/978-3-031-83097-6_14

314 M. Müller et al.

and behaviours in observed multivariate time series. A multivariate time series
consists of multiple variables—for example, sensor measurements—varying over
time. Anomaly detection (AD) describes the challenge of finding patterns in data
such as time series that do not conform to the expected behaviour [5]. Such
algorithms encounter sensitive irregularities in early production stages to proactively
schedule machine maintenance and prevent failures during cost-intensive processes
[14]. The research field addressing AD in time series shows various strategies. Many
approaches are limited to univariate data streams and cannot identify anomalies
across different feature domains [3, 4]. A straightforward approach for addressing
multivariate AD is to apply a unique univariate anomaly detector for every variable
in a multivariate time series. Nevertheless, it yields many disadvantages:

First, it is inefficient and requires several costly anomaly detectors to maintain
and synchronise in practical scenarios. In contrast, a multivariate anomaly detector
consists of one algorithm that requires no synchronisation and the maintenance of
only one model.

Second, this procedure assumes that the variables are not correlated and analyses
each variable separately. These methods fail, particularly in detecting the anomalous
relationship between variables that do not conform with relationships observed on
normal time segments.

Third, expert knowledge in the form of correlations or known behaviour of
different variables is not considered. Hence, there are several multivariate AD
approaches [12, 18, 22, 26] based on deep neural networks (DNNs) to detect
anomalous sequences in multivariate time series.

The last point can be addressed by including knowledge sources in the algorithm,
thus transforming it into an informed machine learning algorithm [24]. In the
approach presented in this chapter, we make use of several assumptions about cer-
tain distributions and correlation matrices based on statistical relations attributable
to scientific knowledge sources (as described in [24]). We represent these sources
as probabilistic relations through assumptions about our prior distributions and
correlation matrices. Finally, we integrate our knowledge by choosing how the
discrepancy between data points is calculated, which corresponds to narrowing
down the given hypothesis set.

One can observe that a considerable amount of AD proposals rely heavily
on the prediction itself without using any uncertainty estimation. The uncertainty
estimation casts light on the trustworthiness of the prediction in DNN and impacts
the AD as well. Bayesian neural networks (BNNs) belong to the group of DNNs,
enabling us to quantify a given prediction’s uncertainties. A simple approach to
estimating such a network’s uncertainties is to measure the variability of predictions
for the same input sequence.

A recent work of [30] proposed a BNN that exploits the model’s uncertainty
for AD in univariate time series. In particular, the authors approximate the model’s
uncertainty estimation using Monte Carlo dropout (MC dropout) as suggested by
[9]. Furthermore, upon the uncertainty estimation, a predictive region is constructed
and used to classify each observation: Every observation outside the region is classi-

14 Anomaly Detection in Multivariate Time Series Using Uncertainty Estimation 315

fied as an anomaly. Their experiments demonstrate that their network considerably
enhances the accuracy for univariate AD when high uncertainties occur.

Inspired by these works, this chapter aims to build a BNN that can detect
anomalies in multivariate time series based on uncertainty estimation. In particular,
we use a BNN that forecasts the time steps of a multivariate time series. Then,
we compute an anomaly score that measures the discrepancy between predictions
and observations based on the Hotelling’s T 2

. statistic. We then employ the quantile
function of the cumulative distribution of the anomaly score distribution to derive
an appropriate threshold to determine if observations are normal/anomalous. The
first contribution of this chapter is that it examines how uncertainty estimates can
be incorporated into the anomaly score. Our experimental results demonstrate that
the uncertainty estimates enhance specifically the AD accuracy when the correlation
within the uncertainty estimates is considered.

This chapter’s second contribution compares the proposed approach against
state-of-the-art methods [1, 26, 31] for multivariate AD. In our experiments,
we observe that uncertainty-driven methods are indeed competitive with recent
works. This is the first work addressing multivariate AD based on the uncertainty
estimations across multiple variables.

14.2 Background and Related Work

This section describes the background and related work of AD in time series. First,
we describe the general problem of detecting anomalies in time series. Then we
explain the term unsupervised AD and the concept of BNNs. Finally, we provide an
overview of state-of-the-art methods that detect anomalies in time series using an
unsupervised learning approach.

14.2.1 Problem Formulation and Anomaly Categorization

A time series is a collection of data points taken at successive (equally) spaced
points in time. Moreover, it can be decomposed in the following terms:

The trend describes the long-term average movement of a time series. Seasonality
describes cyclical fluctuations that occur at regular intervals such as hourly, daily,
and so forth in a time series. Finally, a crucial component of time series is inherent
noise that describes random fluctuations that are not predictable. Univariate time
series consists of one variable that varies over time. In contrast, a multivariate time
series comprises a sequence X = (x1, x2, . . . , xt) ∈ RN×T

. with T time steps and N
continuous features. A feature vector xi ∈ RN

. of timestamp i is considered to be an
anomaly when its corresponding anomaly score hŷ(xi).exceeds a specified threshold
e ∈ R.. The anomaly score function hŷ(xi). is a distance measurement that describes
the deviation between the expected characteristic and the observation. Univariate

316 M. Müller et al.

AD is already a challenging task as it requires the analysis of the seasonable
pattern for one variable. The detection of multivariate-based anomalies is even more
complex as we consider several variables of distinctive feature domains.

In general, anomalies can be interpreted as instances of data collections that
deviate from the expected values. Hence, a prerequisite for identifying anomalies
is to analyse how critical components such as trend, seasonality, and noise appear
in regular time series. In the following, we categorise the term anomaly into point,
context and collective anomalies as defined by [5]. This anomaly categorisation is
crucial for choosing the AD algorithm as they rely on different data characteristics.

14.2.1.1 Point Anomalies

The simplest form of anomalies are point anomalies that deviate significantly
from most samples and occur without requiring any further context. Since point
anomalies are independent of other contextual attributes, such as time, the analysis
of point anomalies is usually less extensive than detecting other time series
anomalies. For example, consider a time series representing the hourly utilisation
of public transport in a city. A sudden drop or rise in utilisation at a single time
stamp would be considered a point anomaly.

14.2.1.2 Context Anomalies

In [25], context anomalies are identified by analysing behavioural and contextual
attributes of instances. Behavioural attributes describe non-contextual character-
istics of an instance, whereas contextual attributes such as time or location put
the sample features into a context. The traffic at any time stamp describes the
behavioural characteristics where the corresponding time stamp contextualises this
observation. Seasonal morning or late afternoon traffic peaks are not necessarily
considered contextual anomalies. High public transport utilisation is common at
rush-hour traffic times. In contrast, increased occupancy of public transportation
during the typically low-traffic hours would represent a typical example of a context
anomaly as the behavioural characteristic does not fit in the context.

14.2.1.3 Collective Anomalies

Collective anomalies appear as a sequence of instances that deviate from the usual
sequence pattern. Any other attributes are unnecessary for the detection of this class.
Each example of a collective anomaly group is not necessarily a point anomaly.
However, their occurrence together as a group is anomalous. A collective anomaly
example could be when the traffic utilisation within a specific time window has
constantly high values and deviates significantly from the load. High occupancy
in public transport frequently occurs during the day. Nevertheless, the demand for

14 Anomaly Detection in Multivariate Time Series Using Uncertainty Estimation 317

such services is changing dynamically. The constant and high occupancy within the
context of this window is a clear indicator of a collective anomaly.

14.2.2 Unsupervised Anomaly Detection

As the availability of data and computing resources increases, deep learning (DL)
approaches outperform traditional ML algorithms in many areas, such as AD [4].
For instance, support vector machines (SVMs) require manual feature selection and
extraction techniques. Manual feature selection techniques increase the expenditure
of time for data preprocessing as the number of available features grow. In contrast,
DL can deal directly with raw input data as the DL model learns which features
are relevant to solve the given prediction problem. Further expert knowledge in the
form of probabilistic relations can be incorporated to enhance the AD.

In the typical AD-scenario, it is assumed that most data instances are normal and
each instance’s class is unknown, corresponding to an unsupervised learning task.
The goal in AD is to capture the data’s main characteristics, which can be carried out
in several ways. We follow a common method in DL: First, we learn a synthetical
reconstruction of the original input followed by forecasting future values of the
given training data. The fundamental assumption is that the optimised DL model
maps instances that resemble the majority of samples from the training set to similar
regions. Hence, a popular method to reveal anomalies is to measure the discrepancy
between the predicted and observed outcomes. This discrepancy measurement is
usually referred to as the anomaly score.

14.2.3 Bayesian Neural Networks

In the following subsection, we describe the general concept of BNNs and the
related types of uncertainties. Traditional neural networks (NNs) are a popular
predictive tool nowadays because they can learn non-linear abstractions from the
input. However, NNs are often miscalibrated because its corresponding prediction
tends to be overconfident [28]. BNNs are a framework to quantify the underlying
model uncertainty by encoding the degrees of beliefs along with the prediction. In
contrast to a typical NN that assigns point estimates to weights, the weights w in
a BNN represent a prior distribution. The prior captures the belief of the weight
representation without having any data sample observed before. It is commonly
assumed to follow a Gaussian distribution p(w) ∼ N(0, 1)..

The posterior distribution over the weights w

.p(w|X, Y) = p(X, Y |w)p(w)

p(X, Y)
(14.1)

318 M. Müller et al.

are determined using the Bayes theorem. It expresses the epistemic uncertainty for
the given data samples X and Y . The core idea is to quantify the uncertainty of
the NN predictions to understand how trustworthy the predictions are. Uncertainty
estimation is crucial in the sense as it measures the level of confidence for a
prediction. For example, an autonomous vehicle can decide to pass the control to
a human driver when the detected objects are associated with high uncertainties. In
[8], the term uncertainty is split into epistemic, aleatoric and predictive uncertainty:

14.2.3.1 Epistemic Uncertainty

Epistemic uncertainty is usually associated with knowledge uncertainty [8], and the
lack of available training data causes it. Hence, epistemic uncertainty is reducible
as the number of available observations in X, Y . increase. Moreover, the likelihood
p(X, Y |w). tells us how well the given weight parameter w describes the observed
data X, Y .. One can apply marginalisation to retrieve the unknown evidence

.p(X, Y) =
⌠

w

p(X, Y,w)dw =
⌠

w

p(X, Y |w)p(w)dw. (14.2)

One key concept of Bayesian inference is integrating unnecessary variables out
[2]. The exact calculation of the posterior distribution p(w|X, Y). involves the
marginalisation for the whole parameter space. In practice, the complete posterior
distribution is intractable, especially with state-of-the-art networks that contain
millions of weight parameters.

14.2.3.2 Aleatoric Uncertainty

Aleatoric uncertainty describes the inherent noise of the data. In particular, the data
distribution characterises the variability of the underlying variables. Even though
this uncertainty is irreducible, the range of possible outcomes can be estimated.

14.2.3.3 Predictive Uncertainty

The predictive uncertainty

.p(y∗|x∗) =
⌠

w

p(y∗|x∗, w)ˆ ˆˆ ˆ
likelihood

p(w|X, Y)ˆ ˆˆ ˆ
posterior

dw (14.3)

represents the network uncertainty about its output y∗
. given a new input x∗

.. It con-
sists of the product between the posterior distribution p(w|X, Y). and the likelihood
p(y∗|x∗, w). given the model weight w and the new input x∗

.. However, due to the

14 Anomaly Detection in Multivariate Time Series Using Uncertainty Estimation 319

aforementioned posterior intractability problem, the predictive distribution has to
be approximated. An efficient method to perform the approximation is Monte Carlo
dropout [9]

.q(y∗|x∗)(y∗) =
⌠

w

p(y∗|x∗, w)q(w|X, Y)

ˆ ˆˆ ˆ
≈p(y∗|x∗)

dw , (14.4)

where w = {Wi}Li=1 . is a set of random variables for a model with L layers.
Moreover, the expectation value can be estimated to be [9]

.Eq(y∗|x∗) ≈ 1

T

T ⎲
t=1

p(y∗|x∗, wt), s.t. wt ∼ q(w|X, Y) (14.5)

by averaging T stochastic forward passes through the network while simultaneously
applying dropout. The main idea is that each dropout operation corresponds to
a sample wt ∼ q(w|X, Y). from an approximate posterior distribution. A Monte
Carlo integration with a sufficiently large sample size T provides an approximate
predictive uncertainty .

14.2.4 Related Work

Traditional multivariate AD approaches mostly rely on autoencoders (AEs) [20, 23,
31] variational autoencoders (VAEs) [22, 26] or generative adversarial networks
(GANs) [1, 18, 21] and show remarkable performances. However, the research field
addressing AD in time series in uncertainty estimation has hardly been explored.
BNNs can express uncertainties about their reconstruction or prediction for a given
input. The BNN proposed by [30] benefits from uncertainty estimates as the valid
prediction interval increases proportionally to the model uncertainty observed in
univariate time series predictions. Thus this framework reduces the false alarm rate
of anomalies as model uncertainty increases at high-variance events. However, the
proposed framework exhibits some limitations:

It lacks empirical evidence of its eligibility for AD by using publicly available
univariate time series benchmarks. Moreover, the forecast model focuses primarily
on predicting univariate time series.

Furthermore, uncertainty estimation and its corresponding predictive interval
ignore possible relations [24] (like correlations) between variables.

320 M. Müller et al.

14.3 Detecting Anomalies in Time Series Using Uncertainty
Estimation

To explain our proposed method, we introduce the central processing units of the
AD pipeline using Fig. 14.1. For each unit, we provide a detailed description in
the following sections. The first unit represents the data source that contains a time
series Xsource ∈ RN×T

. including T feature vectors of size N .

14.3.1 Window Processing and Forecast Modelling

Since the available computing resources restrict deep learning models, we process
the data source using a small sliding window Xin = (

xj , xj+1, . . . , xj+Tin

)
. of

length Tin < T . as highlighted in Fig. 14.2.
Moreover, the observation Y = (xj+Tin+1, . . . , xj+Tint+Tout). represents the

corresponding feature sequence of length Tout < T . we are aiming to forecast using
the desired model

.gθ : RN×Tin |→ R
N×B×Tout , . (14.6)

gθ (Xin) |→ Ŷ. (14.7)

The model parameters θ . are optimised on a training set that we assume contains
mainly normal instances.

During inference, we generate B predictions Ŷb,j . while applying MC or vari-
ational dropout [10] with probability p ∈ [0, 1]. to all L layers of the netwo rk
gθ .. Each sampled prediction Ŷb . corresponds to the sampled model configuration
θb = {θi}Li=1 .. In our BNN architecture, we apply variational dropout on as long
short-term memory (LSTM)-layers and Monte Carlo dropout on non-recurrent
layer structures such as multilayer perceptrons (MLPs). Here, we make the same

Fig. 14.1 The multivariate anomaly detection pipeline consists of a data source, data processing
unit, a multivariate forecasting model, anomaly score function hŷ . and a binarisation operation
using a threshold e .

14 Anomaly Detection in Multivariate Time Series Using Uncertainty Estimation 321

Fig. 14.2 Time series processing using a sliding window consisting of the input Tin . and output
sequence length Tout .

assumption as made in [30] that parameters follow an isotropic Gaussian prior
θ ∼ N(0, 1).. Considering the given prediction ensemble Ŷi ∈ RN×B

. at time step i,
where ŷ(j)

i . denotes the vector of feature j . We are assuming that the model output
follows a Gaussian distribution

.Yi |θ ∼ N(μi , ∑ i) (14.8)

with mean μi ∈ RN
. and a covariance matrix ∑ i ∈ RN×N

.. We approximate the
expected value of time i and feature j as

.E(y(j)
i |θ, x

(j)
i) ≈ μ̂

(j)
i = 1

B

B ⎲
b=1

ŷ
(j)
ib , (14.9)

where μ̂i = (μ̂
(1)
i , . . . , μ̂

(N)
i). represents the prediction mean vector of all features.

The expected covariance of two given feature predictions ŷ(j)
i . and ŷ(k)

i . is
approximated by the sample covariance matrix ̂∑ i ∈ RN×N

. with entries

.Êi,jk = 1

B − 1

B ⎲
b=1

⎞
ŷ

(j)
ib − μ̂i

(j)
⎞ ⎞

ŷ
(k)
ib − μ̂i

(k)
⎞

(14.10)

and B − 1. degrees of freedom. Furthermore, we utilise the scoring function

.hŷ : RN×B×Tout × RN×Tout |→ R, . (14.11)

hŷ(Ŷ,Y) |→ aj+Tin+Tout (14.12)

that measures the dissimilarity between the prediction Ŷ. and observation Y.. The
larger the anomaly score hŷ . is, the higher the probability that time step j +Tin+Tout .

322 M. Müller et al.

is anomalous. One fundamental assumption in our approach is that each computed
anomaly score aj+Tin+Tout . of time step j + Tin + Tout . can be separated by one
predefined scalar threshold value e ∈ R.:

.De(ai) =
⎞

0 if aj+Tin+Tout < e (normal instance)

1 else (anomalous instance).
(14.13)

14.3.2 Formalization of Multivariate Anomaly Detection

We can formulate the problem of multivariate AD as finding a configuration
(gθ , hŷ, e). that distinguishes normal from abnormal instances as accurately as
possible. To differentiate between normal and abnormal patterns in time series
in an unsupervised fashion, we require a model gθ . that needs to capture the
standard representation of multivariate time series. Solely reconstruction-based
approaches such as VAEs [22, 26] require strong knowledge about the structure of
the latent space and model optimisation for different AD problems. Furthermore,
these approaches focus heavily on the task of AD itself and are inapplicable to
other applications such as forecasting. In contrast, BNN forecast models are more
versatile as they learn a compressed latent space, forecast future values, quantify
the uncertainty along with the prediction and detect anomalies. We propose to use
multi-step predictions with a window size Tout > 1. to capture point and collective
anomalies.

The proposed architecture is highlighted in Fig. 14.3, which uses a combination
of AEs and LSTMs. The purpose of the AE is to learn a compact embedding z. of
the original input X.. In particular, the decoder gθdec

. forces the encoder gθenc . to learn
only those embeddings that the decoder can correctly reconstruct. Since our AD
solely relies on the forecasted prediction ensemble from the LSTMs, the decoder
gθdec

. is deactivated during inference.

14.3.3 Anomaly Scoring

We investigate anomaly score functions hŷ . based on epistemic uncertainty. Epis-
temic uncertainty usually arises from examples that have never or rarely been
observed during model optimisation. However, the uncertainty is reduced as the
number of training examples increases. Hence, we incorporate epistemic uncertain-
ties into the discrepancy measurement between forecasted and observed instances.
The core idea is that low quantified uncertainties penalise discrepancies by a more
significant weight, while large uncertainties suppress discrepancies. The intuition of
the anomaly score function hŷ . is to measure the differences between Yi . and Ŷi . that
reveals whether the time step i is likely to be an anomaly or not. We present two

14 Anomaly Detection in Multivariate Time Series Using Uncertainty Estimation 323

Fig. 14.3 Multivariate
forecasting model based on
LSTM-based auto-encoder
architecture

ways to measure these discrepancies: In the first case, where we suggest the χ2
.-

distance Dχ2 . is used as anomaly score, no correlations between the input variables
are taken into account and in the second case, where the Hotelling’s T 2

.-distance DT 2 .

is used as anomaly score, the full correlation matrix ̂∑ . is considered. The larger the
anomaly score hŷ . is, the higher the probability that time step i is anomalous. This
is why we employ hypothesis tests [7, 17] to construct appropriate anomaly score
functions, where we define our null hypothesis as

.H0 : μ̂i = Yi , (14.14)

where the prediction ensemble mean μ̂i . is likely to resemble the observation Yi . if
the time step is normal. Vice versa, the alternative hypothesis

.H1 : μ̂i /= Yi (14.15)

states that the prediction ensemble μ̂i . distinguishes significantly from the observa-
tion Yi . and is therefore likely to be an anomaly. A naïve construction is to assume
that each of the N features is independently Gaussian distributed random variables
with known means μi ∈ RN

. and variances σ i ∈ RN
.. In this scenario, the distance

Dχ2(μi ,Yi)
2
.

.Dχ2(μi ,Yi)
2 =

N ⎲
j=1

⎞
μ

(j)
i − y

(j)
i

σ
(j)
i

⎞2

(14.16)

324 M. Müller et al.

follows a χ2
.-distribution [7] with N degrees of freedom and we reject the null

hypothesis H0 . when the computed statistic

.Reject H0 if χ2
N,1−α < Dχ2(μi ,Yi)

2 (anomaly) (14.17)

exceeds the quantile function χ2
N,1−α . with N degrees of freedom. The Chi-Squared

Dχ2 . distance is particularly sensitive to strongly mean-shifted statistics. This test is
likely to fail in a situation where the variables of the observation Yi . resemble the
one represented by the predicted mean. Still, the features differ in the relationship
of the variables established in the off-diagonal entries Ei,jk . within (j /= k). the
covariance matrix. In this case, anomalous observations will likely fall below the
χ2

N,1−α . control limit, and Yi . would be considered normal observation erroneously.
This can be addressed by extending the Chi-Squared Dχ2 . distance by the non-
diagonal entries of the covariance matrix. This extension of the χ2

.-statistic is called
the Hotelling’s T 2

. [11] statistic

.T 2
i = (

μ̂i − Yi
)T

 ̂∑
−1 (

μ̂i − Yi
)
, (14.18)

where the scaled

.DT 2(μi , ̂∑ ,Yi)
2 = T 2

i,N,B−N = (B − N)

N(B − 1)
T 2

i ∼ FN,B−N (14.19)

statistic (anomaly score) follows the FN,B−N . distribution with B − N . degrees of
freedom. We reject the null hypothesis H0 . when DT 2 . exceeds the corresponding
tabulated threshold FN,B−N,1−α . of the significance level α .:

.Reject H0 if FN,B−N,1−α < T 2
B,B−N (anomaly). (14.20)

Hence, the Hotelling’s T 2
. test addresses this problem by being sensitive to mean-

shift and counter-relationship anomalies. Vice versa, the Chi-Squared Dχ2 . distance
is likely to perform better than the Hotelling’s T 2

. when the observation Yi . includes
solely mean-shift anomalies.

14.3.4 Anomaly Threshold Fitting

After transforming uncertainty estimates into an anomaly score, the final binari-
sation function De . depends on the threshold e . as well and needs to be specified
along with the configuration parameters gθ . and hŷ .. Figure 14.4 is a rough orien-
tation example that visualises how the score collection is distributed. Our central
assumption is that the output of the anomaly score function hŷ . can be distinguished
by a threshold e . in two regions: The left region (low anomaly scores) corresponds

14 Anomaly Detection in Multivariate Time Series Using Uncertainty Estimation 325

Fig. 14.4 Anomaly score
distribution generated on an
independent validation set
D(val) = (Xval ,Yval).: The
quantile function
e = Q(1 − α). selects the
1 − α . quantile of the
collected anomaly scores
Aval .. The vertical dashed line
e . corresponds to the
1 − α = 0.9. quantile

to normal instances and the right section (high anomaly scores) to anomalous cases.
Determining an appropriate threshold e . in an unsupervised setting with unlabelled
data is a non-trivial task due to the unknown anomaly score distribution. An effective
strategy to specify the threshold is to collect all the anomaly scores Aval . using an
independent validation set D(val) = (Xval,Yval). where we assume that it consists
mainly of normal examples. In the following, we consider a cumulative distribution
of normal anomaly scores Aval .:

. CDFAval
: R |→ [0, 1], . (14.21)

CDFAval (e) = P(Aval ≤ e) = 1 − α (14.22)

The quantile function

.Q : [0, 1] |→ R, . (14.23)

Q(1 − α) = inf
{
e ∈ R : 1 − α ≤ CDFAval

(e)
}

(14.24)

returns a threshold e . where the probability that random draws of normal scores
fall below the control limit is 1 − α .. Here, α . serves as well as a hyperparameter
and represents the probability that a normal instance is considered as anomaly
(De(ai)) = 1)., given the instance, is normal. A naïve approach for choosing a
threshold candidate e . is to set e = max (Aval). as the transition between the scoring
area of anomalous and normal instances are usually overlapping. In practice, we
suspect that the discrepancies between the observation Yi . and prediction mean μ̂i .

are relatively large when dealing with high inherent noise. The calculated χ2
. and

Hotelling’s T 2
. statistics associated with normal instances are likely to exceed the

upper quantiles, respectively. Hence, we suggest computing an upper control limit
e . using the quantile function in (14.24) for both statistics.

326 M. Müller et al.

Table 14.1 SKAB benchmark summarised into three categories

Number of instances

Category Cause Normal Anomaly Total

valve1 Partly closed water valve1 11,853 6309 18,162

valve2 Partly closed water valve2 2795 1517 4312

valve1 and valve2 mixed Both valves partly closed 24,398 7826 22,474

14.4 Experimental Setup and Evaluation

In this section, we describe the experimental setup that we use to compare our
proposed uncertainty driven method against the state-of-the-art methods such as
USAD [1], OmniAnomaly [26] and DAGMM [31].

14.4.1 Skoltech Anomaly Benchmark Data Set

We perform our experiments on the publicly available benchmark1 Skoltech
Anomaly Benchmark (SKAB) ver.0.9 data set provided by [15, 16]. It is specifically
designed for evaluating multivariate AD algorithms in the field of faults and failures
of technical systems. The test platform is a simple water circulation platform that
captures eight sensor time series measurements. We summarised the benchmark into
three main experiment categories as shown in Table 14.1 and trained a new model
for each category.

Figure 14.5a illustrates a normalised time series of the training set describing the
healthy state of the water platform, where the test set shown in Fig. 14.5b contains
measurements that are associated with collective anomalies or normal instances. The
root cause of the anomaly is that specific controls, such as water valves, are modified
for a short duration, and it simulates unhealthy states during sensor recordings. For
any further technical details, we refer to the website of this project.1 We split the
data of each experiment category into a train, validation, and test set. Based on
the SKAB publisher’s suggestions, we utilise the first ∼33%. of data points for the
model training and anomaly calibration. Moreover, we further split the optimisation
set into a training set D = (Xtrain,Ytrain). and a validation set D = (Xval,Yval)..
The training set contains 85% and the validation set 15% consecutive samples of
the optimisation set. Each experiment is normalised separately by min-max feature
scaling. Afterwards, we determine the parameters μtrain . and σ train . to standardise
all train, validation and test sets.

1 https://github.com/waico/SkAB.

https://github.com/waico/SkAB
https://github.com/waico/SkAB
https://github.com/waico/SkAB
https://github.com/waico/SkAB
https://github.com/waico/SkAB

14 Anomaly Detection in Multivariate Time Series Using Uncertainty Estimation 327

Fig. 14.5 Multivariate time series of the SKAB anomaly detection benchmark: The time series
illustrates the healthy characteristics of the water circulation platform shown in (a), taking into
account that the water valve valve1 is open. This time series consists solely of sensor measurements
(red), and the control states, such as the water valves that cause anomalies, are not represented. In
contrast, (b) illustrates time intervals with anomalous sensor measurements caused by partially
closed water valves. The intervals are indicated by the orange bars and the anomaly label in the
last row. (a) Train set: Describes the healthy state of the water circulation platform. The BNN gθ .

uses sliding input windows Xin ∈ R8×Tin . to learn to forecast normal feature windows Ŷ ∈ R8×Tout ..
(b) Test set: Consists of healthy and unhealthy feature characteristics. We solely utilise this subset
in our experiments to assess the AD performances

14.4.2 Experimental Hyperparameters

The following experimental results are based on the configuration (gθ , hŷ, e .) of
hyperparameters shown in Table 14.2. The first two segments represent the hyper-
parameter of the model gθ . that impacts the forecasting accuracy, the third segment
impacts the anomaly score function hŷ ., and the last line affects the threshold
parameter e .. For the model gθ ., we select the best hyperparameter combination

328 M. Müller et al.

Table 14.2 Overview of utilised model hyperparameters during evaluation

Component Hyperparameters Symbols Value

gθ . Batch size b 40

Learning rate η. 0.001

Decay rate γ . 0.96

Loss function L. MSE

gθenc . Number of encoder hidden units Henc . 128, 64

gθdec
. Number of decoder hidden units Hdec . 64, 128

gθpred
. Number of forecast-net hidden units Hpred . 64, 128

hŷ . Dropout probability p 0.2

Monte Carlo sample size B 100

e . Significance level α . 0.05

corresponding to the lowest mean absolute error (MAE). The epistemic-driven
anomaly scores depend highly on the Monte Carlo sample size B and the dropout
probability p. For instance, a too-small sample size B deteriorates the accuracy
of the sample mean μ̂. and covariance Ê .. In contrast, a large sample size of B
enhances the accuracy of those components. However, the computational effort
increases proportionally with the sample size B. As a result, the sample size B
should yield a desirable balance between accuracy and computational efficiency.
We experienced a stable sample mean μ̂. and covariance ̂∑ . when using a Monte
Carlo sample size of B ≥ 100.. The initialisation of the dropout probability
has another crucial impact on the accuracy of the sample mean and covariance
matrix. A relatively small probability (e.g.,p < 0.01.) corresponds to a sample
covariance matrix where the diagonal entries are close to zero. This is undesirable
as the covariance matrix is prone to have not the full rank and is therefore not
invertible. On the contrary, the variance increases and the prediction sample mean
is vulnerable to becoming inaccurate the larger we set the dropout probability p.
We experienced that the dropout probability in the range between p ∈ {0.1, 0.3}.
provides an accurate prediction and a stable covariance matrix in most experiments.
As a result, we utilise the median (p = 0.2.) of that range. The significance level α .

substantially impacts AD as the selected threshold is based on the quantile function
e = Q(1−α).. This function determines the 1−α . quantile of the collected anomaly
scores from the independent dataset Dval = (Xval,Yval). . The inverse probability
1−α .denotes our confidence that a true normal instance will fall below the threshold.
A confidence level of 100% in the context of AD means that we assume that there
is no intersection between the anomaly scores of normal and anomalous instances.
Nevertheless, time series often occur continuously, and the transition from normal
to anomalous observation is usually seamless. Hence, an intersection of the anomaly
scores between those classes is unavoidable. For the following experiments, we
utilise a 95% confidence level (α = 0.05.) as proposed by [30].

14 Anomaly Detection in Multivariate Time Series Using Uncertainty Estimation 329

14.4.3 Evaluation Metrics

We evaluate the performance of our AD-approaches regarding various metrics, each
covering different aspects. Further, we utilise binary classification metrics such as
the false alarm rate (FAR)

.FAR = FP

FP + TN
(lower is better) (↓) (14.25)

which is also known as the false positive rate (FPR) and represents the expectancy
of the false positive (FP) ratio. The missing alarm rate (MAR)

.MAR = FN

TP + FNˆ ˆˆ ˆ
1−recall

(lower is better) (↓) (14.26)

describes the inverse of the recall as the expectancy of the false negative (FN) ratio.
In addition, we report the precision, recall and the F1 .-score that are crucial to assess
the AD algorithm performances. As the final AD heavily relies on the unsupervised
selected threshold, we additionally access the separability of the anomaly score by
analysing the area under the curve (AUC) of the receiver operating characteristics
(ROC). A good balance between relatively low FAR and MAR is desirable as AD
algorithms are used as an early warning system in industrial applications. End-users
distrust the warning systems and ignore reported alerts when the FAR is relatively
large. Vice versa, an AD detector with low sensitivity is unlikely to provide early
warnings of unhealthy or atypical events that could lead to a disaster.

14.4.4 Discussion of Utilized Anomaly Detection Metrics

The AD performance depends heavily on the BNN gθ ., the discriminator function hŷ .

and the threshold e . determined in an unsupervised manner. The selected evaluation
metrics are mainly inspired by works that address multivariate AD. Su et al. [26]
argue that the AD is already correct if an alert for anomalies is triggered within
any subset of a ground truth anomaly segment. In their evaluation, they propose a
so-called point adjustment of their anomaly detection. It overwrites the predictions
of an entire sequence with the ground truth anomaly information when an arbitrary
sample and the corresponding ground truth label are associated with an anomaly
alert. Based on the prediction adjustment, they determine the precision, recall, and
F1 . as AD metrics. The key problem with this evaluation technique is that the ground
truth information for unseen samples is usually unknown in practical applications.

330 M. Müller et al.

Furthermore, their modifications distort the evaluation results as the ground truth
information overwrites many samples. Hence, in our entire evaluation, we turned
off the point adjustment for their VAE called OmniAnomaly.

14.4.5 Experimental Results and Analysis

This section shows experimental results on the forecasting and AD performances
on multivariate time series. We assess the AD performance of the BNN and the
proposed anomaly score hŷ . on the SKAB dataset and contrast our AD performance
against recent state-of-the art methods such as DAGMM2 (AE + Gaussian Mixture
model (GMM)) [31], USAD3 (GAN inspired AE network) [1] and Omni-Anomaly4

(VAE) [26]. The anomaly score distribution of DAGMM represents the density
estimation under the framework of GMM, and considerable energies correspond to
anomalies while USAD outputs an anomaly score. It is based on the reconstruction
errors of a GAN inspired network that incorporates two AE. OmniAnomaly outputs
a reconstruction probability that indicates how likely a given input can be decoded.
Therefore, high reconstruction probabilities correspond to normal instances and low
probabilities to anomalies. Figure 14.6 illustrates the anomaly score distribution of
the mixed categories valve1 and valve2, respectively. Here we utilise each experi-
ment’s first ∼33%. time steps for both categories as a training set, and the rest ∼.

66% as an evaluation set described in Sect. 14.4.1. We observe that epistemic-driven
uncertainty methods such as Hotelling’s T 2

. (Fig. 14.6a) that incorporate the full
covariance matrix and its correlation leads to a desirable separability. In particular,
it shows the highest separability between the normal and anomalous bell curves with
an AUC score of 0.899, followed by the Chi-Squared Dχ2 . (Fig. 14.6b) yielding an
AUC score of 0.759. We can explain this result by the fact that the Hotelling’s T 2

.

considers the relationship between variables, whereas, in contrast, the Chi-Squared
Dχ2 . approach assumes that the variables are independently distributed.

In the following, we analyse the anomaly scores and the separability of DAGMM
(Fig. 14.7a), USAD (Fig. 14.7b) and OmniAnomaly (Fig. 14.7c). OmniAnomaly
shows poor separability by yielding an AUC of 0.341 that is worse compared to
the AUC = 0.5 of a random classifier. The anomaly and the normal bell curves
mostly overlap; hence, an accurate separation between those classes is impossible.
On the other hand, USAD anomaly scores turn out to be robust as its reconstruction
errors are separable by showing a large AUC of 0.878. Nevertheless, the BNN,
in combination with the Hotelling’s T 2

. method, outperforms all evaluated AD
algorithms in terms of separability.

2 https://github.com/danieltan07/dagmm.
3 https://github.com/manigalati/usad.
4 https://github.com/NetManAIOps/OmniAnomaly.

https://github.com/danieltan07/dagmm
https://github.com/danieltan07/dagmm
https://github.com/danieltan07/dagmm
https://github.com/danieltan07/dagmm
https://github.com/danieltan07/dagmm
https://github.com/manigalati/usad
https://github.com/manigalati/usad
https://github.com/manigalati/usad
https://github.com/manigalati/usad
https://github.com/manigalati/usad
https://github.com/NetManAIOps/OmniAnomaly
https://github.com/NetManAIOps/OmniAnomaly
https://github.com/NetManAIOps/OmniAnomaly
https://github.com/NetManAIOps/OmniAnomaly
https://github.com/NetManAIOps/OmniAnomaly

14 Anomaly Detection in Multivariate Time Series Using Uncertainty Estimation 331

Fig. 14.6 SKAB category valve1 and valve2 mixed: This visualisation shows the anomaly score
distributions of the SKAB time series considering valve1 and valve2 mixed. The first score in
the headings (e/greedye). corresponds to the fitted threshold e . with significance level α = 0.05.
represented by the black dashed line. The second score is associated with the threshold (red dashed
line) that yields the highest possible F1 . considering all threshold candidates. (a) Hotelling’s T 2 .,
AUC = 0.899 . (b) Chi-Squared Dχ2 ., AUC = 0.759

332 M. Müller et al.

Fig. 14.7 SKAB category
valve1 and valve2 mixed:
Illustration of the anomaly
score distribution of
DAGMM, USAD, and
OmniAnomaly: For a better
comparability, we mirror the
reconstruction probability
scores as well as the
corresponding thresholds of
the VAE from OmniAnomaly.
(a) DAGMM [31], AUC:
0.652. (b) USAD [1], AUC:
0.878. (c) OmniAnomaly
[26], AUC: 0.341

14 Anomaly Detection in Multivariate Time Series Using Uncertainty Estimation 333

Table 14.3 Multivariate AD results based on the SKAB categories valve1 and valve2 mixed

Metric Prec. (↑.) Rec. (↑.) FAR (↓.) MAR (↓.) F1 . (↑.) AUC (↑.)

Hotelling’s T 2 . + Q [13] 0.999 0.468 0.000 0.532 0.637 0.882

Isolation Forest [19] 0.793 0.006 0.002 0.994 0.012 \.
AutoEncoder [6] 0.995 0.214 0.001 0.786 0.353 0.155

Omni-Anomaly [26] 0.430 0.084 0.132 0.916 0.141 0.341

USAD [1] 0.942 0.598 0.050 0.402 0.732 0.878

DAGMM [31] 0.726 0.334 0.173 0.666 0.457 0.652

BNN + Hotelling’s T 2 . 0.942 0.756 0.067 0.244 0.839 0.899
BNN + Chi-Squared Dχ2 . 0.884 0.437 0.082 0.563 0.585 0.759

The bold values should highlight the relevant best values in the respective category

14.4.5.1 Anomaly Detection Analysis

Table 14.3 summarizes the AD results evaluated on the combined SKAB valve1
and valve2 dataset. In addition to the mentioned AD algorithms, we evaluate AD
implementations like AE [6], Isolation Forest [19] and Hotelling’s T 2

. + Q [13]
proposed for the SKAB benchmark. Moreover, the other results correspond to
DAGMM, USAD, OmniAnomaly and the BNN with its anomaly scoring functions.
The Hotelling’s T 2

. +Q. method demonstrates the lowest FAR and largest precision.
Nevertheless, it turns out that it ignores more than half of all anomalous time steps.
The reason for the imbalanced precision and recall values is that the algorithm
selects too large thresholds and therefore ignores a high proportion of anomalies.

As OmniAnomaly and DAGMM show low separability for their anomaly scores,
their corresponding AD results in undesirably low F1 . scores. Furthermore, the
anomaly alerts of USAD are relatively reliable due to its low FAR. However, it
ignores ∼.40% of all anomalies. On the contrary, the BNN in combination with
the Hotelling’s T 2

. outperforms all other methods concerning the recall, MAR,
FAR, F1 . and AUC metric. Another significant observation is that AUC of the BNN
driven methods increase proportionally to the F1 . score. In particular, the visualised
anomaly score distribution in Fig. 14.6 illustrates that the unsupervised selected
threshold is especially close to the best possible threshold when the distribution
yields a high separability. Hence, further enhancements in the separability of the
anomaly score functions are likely to correspond to an improvement in AD.

14.5 Discussion of Experimental Results

The following sections discuss the proposed anomaly scores and threshold
approaches. We start by reasoning why the proposed quantile-based threshold
method is more appropriate than the tabulated control limits from the χ2

N . and
FN,B−N . distribution, the AD performance achieved on the SKAB dataset in

334 M. Müller et al.

greater detail. Compared to the state-of-the-art, we contextualise the observed
AD performance of the BNN.

14.5.1 Quantile Based Threshold Versus Tabulated Control
Limits

The threshold selection method significantly impacts the AD accuracy as it separates
anomaly scores into two classes. In our concept, we hypothesised that thresholds
which solely depend on the tabulated control limits are likely to correspond to
unfavourable AD accuracy. For instance, the control limits generated from the
FN,B−N .distribution depend on the degree of freedom B−N ., the number of features
N , and the significance level α .. One problem with this threshold selection method is
the assumption that the difference between μ̂i − Yi . is approximately zero for each
normal time step. We argue that time series include components with irreducible
inherent noise that also occurs in normal data; hence, the residuals can be large even
for non-anomalous instances. However, the generated control limits are independent
of such factors. Consequently, we suggest collecting the uncertainty-driven anomaly
scores on an independent validation set where we assume it contains mostly normal
instances. Afterwards, we determine the threshold e = Q(1 − α). corresponding to
the 1 − α . quantile. To validate our described concerns, we contrast in Fig. 14.8 the
F8,92 . distribution against the scaled Hotelling’s T 2

8,92 . distribution generated on the
SKAB validations set (N = 8, B = 100., α = 0.05.).

We recognise that the shape of both bell curves illustrated in Fig. 14.8a and
b are similar. Nevertheless, both distributions do not share a common scale.
Consequently, most Hotelling’s T 2

8,92 . anomaly scores exceed the tabulated control
limit F8,92,0.95 ≈ 2. of the F8,92 . distribution. It confirms our concerns that the
tabulated control limit F8,92,0.95 . is unsuitable for being used as a threshold in AD.
In the following, we consider the χ2

8,92 . probability density function and the Chi-
Squared Dχ2 . anomaly score distribution as illustrated in Fig. 14.9. Notably, neither
the shape of the bell curves nor the scale of both distributions resembles. In this
example, most Chi-Squared Dχ2 . anomaly scores corresponding to normal instances
exceed the control limit χ2

8,0.95 ≈ 15.. Similar to the control limits generated from

the F8,92,0.95 . distribution, we can conclude that the threshold χ2
8,0.95 . is not suitable

for separating Chi-Squared Dχ2 . anomaly scores into normal and anomalous regions
accurately. In contrast, the threshold selection method that is based on the quantile
function e = Q(0.95). is close to the best possible threshold and corresponds to
accurate AD results as shown in Fig. 14.6.

14 Anomaly Detection in Multivariate Time Series Using Uncertainty Estimation 335

Fig. 14.8 Comparison between the probability density function F8,92 . (left) and the Hotelling’s
T 2

8,92 . distribution (right): (a) illustrates the control limit F8,92,0.95 . and (b) the quantile based
threshold e = Q(0.95). as a vertical dashed line. Both values correspond to the 1 − α = 0.95.
confidence level. (a) Probability density function of F8,92 .. (b) Hotelling’s T 2

8,92 . distribution

336 M. Müller et al.

Fig. 14.9 Comparison between the probability density function χ2
8 . (left) and the Chi-Squared

Dχ2 . anomaly score distribution (right): (a) shows the control limit χ2
8,0.95 . and (b) the quantile

based threshold e = Q(0.95).. Both values correspond to the 1 − α = 0.95. confidence level. (a)
Probability density function of χ2

8 . . (b) Chi-Squared Dχ2 . distribution

14 Anomaly Detection in Multivariate Time Series Using Uncertainty Estimation 337

14.5.2 Competitiveness to Recent Work

The estimated densities of DAGMM demonstrate high separability on the SKAB
dataset. A possible explanation is that DAGMM ignores the temporal relationship
between the inputs. With OmniAnomaly, we observe that the resulting recon-
struction probabilities are not sufficiently distinguishable and are consequently
associated with a low AD accuracy. We suspect that OmniAnomaly achieves its
superior AD accuracy mainly when the point-adjustment method is applied as
described in Sect. 14.4.4. Moreover, the GAN-inspired AE architecture USAD
outputs a reconstruction error that demonstrates high separability on the SKAB
dataset. Furthermore, USAD outperforms DAGMM and OmniAnomaly at AD in
our experiments by yielding larger F1 . scores. The BNN in combination with the
epistemic driven Hotelling’s T 2

. score surpasses DAGMM and USAD in terms of
separability of the anomaly scores and AD. After this evaluation, we confirm that
uncertainty-driven methods are competitive to existing AEs and VAEs to detect
anomalies in multivariate time series.

14.6 Conclusion

This is the first study that addresses anomaly detection in multivariate time
series and incorporates time series prediction and uncertainty estimation. This
chapter examines how epistemic uncertainties, quantified using a Bayesian neural
network, can be exploited to detect multivariate anomalies when combined with
informed machine learning techniques, like incorporating knowledge sources.
We demonstrate a Chi-Squared Dχ2 . and Hotelling’s T 2

. approach that translates
those epistemic uncertainties into an anomaly score. We propose a quantile-based
threshold selection to separate anomaly scores into normal and anomalous regions.
Our evaluation results show that the pairwise probabilistic relationship between
variables in the Hotelling’s T 2

.corresponds to a better separability of anomaly scores
and detection accuracy. Furthermore, the evaluation outlines the competitiveness of
our method on multivariate sensor recordings captured from a water platform by
comparing it against recent state-of-the-art approaches.

Acknowledgments This contribution was supported by the Fraunhofer Cluster of Excellence
“Cognitive Internet Technologies”.

References

1. Audibert, J., Michiardi, P., Guyard, F., Marti, S., Zuluaga, M.A.: USAD: Unsupervised
anomaly detection on multivariate time series. In: Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 3395–3404 (2020)

338 M. Müller et al.

2. Bishop, C.M.: Bayesian neural networks. Journal of the Brazilian Computer Society 4(1)
(1997)

3. Braei, M., Wagner, S.: Anomaly detection in univariate time-series: A survey on the state-of-
the-art. arXiv preprint arXiv:2004.00433 (2020)

4. Chalapathy, R., Chawla, S.: Deep learning for anomaly detection: A survey. arXiv preprint
arXiv:1901.03407 (2019)

5. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM computing surveys
(CSUR) 41(3), 1–58 (2009)

6. Chen, J., Sathe, S., Aggarwal, C., Turaga, D.: Outlier detection with autoencoder ensembles.
In: Proceedings of the 2017 SIAM international conference on data mining, pp. 90–98. SIAM
(2017)

7. Cowan, G.: Statistical data analysis. Oxford University Press (1998)
8. Gal, Y.: Uncertainty in deep learning. University of Cambridge 1(3), 4 (2016)
9. Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: Representing model uncer-

tainty in deep learning. In: international conference on machine learning, pp. 1050–1059
(2016)

10. Gal, Y., Ghahramani, Z.: A theoretically grounded application of dropout in recurrent neural
networks. Advances in neural information processing systems 29, 1019–1027 (2016)

11. Hotelling, H.: The generalization of student’s ratio. In: Breakthroughs in statistics, pp. 54–65.
Springer (1992)

12. Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft
anomalies using LSTMs and nonparametric dynamic thresholding. In: Proceedings of the 24th
ACM SIGKDD international conference on knowledge discovery & data mining, pp. 387–395
(2018)

13. Joe Qin, S.: Statistical process monitoring: basics and beyond. Journal of Chemometrics: A
Journal of the Chemometrics Society 17(8–9), 480–502 (2003)

14. Kamat, P., Sugandhi, R.: Anomaly detection for predictive maintenance in industry 4.0-a
survey. In: E3S Web of Conferences, vol. 170, p. 02007. EDP Sciences (2020)

15. Katser, I., Kozitsin, V., Lobachev, V., Maksimov, I.: Unsupervised offline changepoint detection
ensembles. Applied Sciences 11(9), 4280 (2021)

16. Katser, I.D., Kozitsin, V.O.: Skoltech anomaly benchmark (SKAB). https://www.kaggle.com/
dsv/1693952 (2020). https://doi.org/10.34740/KAGGLE/DSV/1693952. [Online; accessed
14-April-2021]

17. Lehmann, E., Romano, J.: Testing Statistical Hypotheses. Springer Texts in Statistics. Springer
New York (2006). URL https://books.google.de/books?id=K6t5qn-SEp8C

18. Li, D., Chen, D., Jin, B., Shi, L., Goh, J., Ng, S.K.: MAD-GAN: Multivariate anomaly detection
for time series data with generative adversarial networks. In: International Conference on
Artificial Neural Networks, pp. 703–716. Springer (2019)

19. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 eighth IEEE international
conference on data mining, pp. 413–422. IEEE (2008)

20. Malhotra, P., Ramakrishnan, A., Anand, G., Vig, L., Agarwal, P., Shroff, G.: LSTM-based
encoder-decoder for multi-sensor anomaly detection. arXiv preprint arXiv:1607.00148 (2016)

21. Niu, Z., Yu, K., Wu, X.: LSTM-based VAE-GAN for time-series anomaly detection. Sensors
20(13), 3738 (2020)

22. Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding
using an LSTM-based variational autoencoder. IEEE Robotics and Automation Letters 3(3),
1544–1551 (2018)

23. Provotar, O.I., Linder, Y.M., Veres, M.M.: Unsupervised anomaly detection in time series using
LSTM-based autoencoders. In: 2019 IEEE International Conference on Advanced Trends in
Information Theory (ATIT), pp. 513–517. IEEE (2019)

24. von Rueden, L., Mayer, S., Beckh, K., Georgiev, B., Giesselbach, S., Heese, R., Kirsch, B.,
Walczak, M., Pfrommer, J., Pick, A., Ramamurthy, R., Garcke, J., Bauckhage, C., Schuecker,
J.: Informed machine learning - a taxonomy and survey of integrating prior knowledge into
learning systems. IEEE Transactions on Knowledge and Data Engineering pp. 1–1 (2021).
https://doi.org/10.1109/tkde.2021.3079836

https://www.kaggle.com/dsv/1693952
https://www.kaggle.com/dsv/1693952
https://www.kaggle.com/dsv/1693952
https://www.kaggle.com/dsv/1693952
https://www.kaggle.com/dsv/1693952
https://www.kaggle.com/dsv/1693952
https://doi.org/10.34740/KAGGLE/DSV/1693952
https://doi.org/10.34740/KAGGLE/DSV/1693952
https://doi.org/10.34740/KAGGLE/DSV/1693952
https://doi.org/10.34740/KAGGLE/DSV/1693952
https://doi.org/10.34740/KAGGLE/DSV/1693952
https://doi.org/10.34740/KAGGLE/DSV/1693952
https://doi.org/10.34740/KAGGLE/DSV/1693952
https://doi.org/10.34740/KAGGLE/DSV/1693952
https://books.google.de/books?id=K6t5qn-SEp8C
https://books.google.de/books?id=K6t5qn-SEp8C
https://books.google.de/books?id=K6t5qn-SEp8C
https://books.google.de/books?id=K6t5qn-SEp8C
https://books.google.de/books?id=K6t5qn-SEp8C
https://books.google.de/books?id=K6t5qn-SEp8C
https://books.google.de/books?id=K6t5qn-SEp8C
https://books.google.de/books?id=K6t5qn-SEp8C
https://doi.org/10.1109/tkde.2021.3079836
https://doi.org/10.1109/tkde.2021.3079836
https://doi.org/10.1109/tkde.2021.3079836
https://doi.org/10.1109/tkde.2021.3079836
https://doi.org/10.1109/tkde.2021.3079836
https://doi.org/10.1109/tkde.2021.3079836
https://doi.org/10.1109/tkde.2021.3079836
https://doi.org/10.1109/tkde.2021.3079836

14 Anomaly Detection in Multivariate Time Series Using Uncertainty Estimation 339

25. Song, X., Wu, M., Jermaine, C., Ranka, S.: Conditional anomaly detection. IEEE Transactions
on knowledge and Data Engineering 19(5), 631–645 (2007)

26. Su, Y., Zhao, Y., Niu, C., Liu, R., Sun, W., Pei, D.: Robust anomaly detection for multivariate
time series through stochastic recurrent neural network. In: Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2828–2837
(2019)

27. Weichert, D., Link, P., Stoll, A., Rüping, S., Ihlenfeldt, S., Wrobel, S.: A review of machine
learning for the optimization of production processes. The International Journal of Advanced
Manufacturing Technology 104(5), 1889–1902 (2019). https://doi.org/10.1007/s00170-019-
03988-5

28. Wilson, A.G., Izmailov, P.: Bayesian deep learning and a probabilistic perspective of general-
ization. arXiv preprint arXiv:2002.08791 (2020)

29. Wuest, T., Weimer, D., Irgens, C., Thoben, K.D.: Machine learning in manufacturing:
advantages, challenges, and applications. Production & Manufacturing Research 4(1), 23–45
(2016)

30. Zhu, L., Laptev, N.: Deep and confident prediction for time series at uber. In: 2017 IEEE
International Conference on Data Mining Workshops (ICDMW), pp. 103–110. IEEE (2017)

31. Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep
autoencoding gaussian mixture model for unsupervised anomaly detection. In: International
conference on learning representations (2018)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1007/s00170-019-03988-5
https://doi.org/10.1007/s00170-019-03988-5
https://doi.org/10.1007/s00170-019-03988-5
https://doi.org/10.1007/s00170-019-03988-5
https://doi.org/10.1007/s00170-019-03988-5
https://doi.org/10.1007/s00170-019-03988-5
https://doi.org/10.1007/s00170-019-03988-5
https://doi.org/10.1007/s00170-019-03988-5
https://doi.org/10.1007/s00170-019-03988-5
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Preface
	Contents
	1 Introduction and Overview
	1.1 Introduction to Informed Machine Learning
	1.1.1 Historical Context and Motivation
	1.1.2 Concept and Taxonomy
	1.1.3 Benefits

	1.2 Overview
	1.3 Summary
	References

	Part I Digital Twins
	2 Optimizing Cooling System Operations with Informed ML and a Digital Twin
	2.1 Introduction
	2.1.1 Related Work
	2.1.2 Informed Machine Learning for Cooling System Optimization
	2.1.3 Structure

	2.2 Cooling System Description and Plant Operation
	2.2.1 Components of the Cooling System
	2.2.2 Sensors of the Cooling System
	2.2.3 Analysis of the Operation Strategy
	2.2.4 Cooling Reserve

	2.3 Modeling of the Plant Using Machine Learning
	2.3.1 Submodels of the Cooling System
	2.3.2 Data Processing
	2.3.3 Training and Plausibility
	2.3.4 Recalculation of the Entire Cooling System

	2.4 Optimization Concept
	2.4.1 Variable Switchpoint Temperature
	2.4.2 Forecast Horizon
	2.4.3 Software Implementation as Assistance System

	2.5 Conclusion and Outlook
	References

	3 AITwin: A Uniform Digital Twin Interface for Artificial Intelligence Applications
	3.1 Introduction
	3.1.1 Related Work

	3.2 ML/AI and the Digital Twin
	3.3 AI Reference Model
	3.3.1 Synchronized Data
	3.3.2 Prediction-Enabled Models
	3.3.3 Causalities
	3.3.3.1 System and Product State Causalities

	3.3.4 The AITwin Reference Model

	3.4 Evaluation
	3.4.1 Applying AITwin to a Four Tank Model
	3.4.2 Applying AITwin to Tennessee Eastman Process
	3.4.3 Applying AITwin to a Quality Assurance Example
	3.4.4 Applying AITwin to a Sensor-Based Sorting System

	3.5 Discussion and Future Work
	References

	Part II Optimization
	4 A Regression-Based Predictive Model Hierarchy for Nonwoven Tensile Strength Inference
	4.1 Introduction
	4.1.1 Literature Overview
	4.1.2 New Regression-Based Predictive Model Hierarchy
	4.1.3 Structure

	4.2 First Principle Oriented Model Chain for Dataset Generation
	4.2.1 Fiber Graph Generation and Tensile Strength Simulation
	4.2.2 Production Process Class
	4.2.3 Stress-Strain Curve Class
	4.2.4 Fiber Graph Features
	4.2.5 Dataset

	4.3 Linear Regression-Based Predictive Models
	4.3.1 Linear Regression and Monte Carlo Simulations
	4.3.2 Numerical Results

	4.4 Sequential Predictive Regression Model
	4.4.1 Coupled Polynomial Regression and Errors-In-Variabels Model
	4.4.2 Numerical Results

	4.5 Conclusion and Future Work
	References

	5 Machine Learning for Optimizing the Homogeneity of Spunbond Nonwovens
	5.1 Introduction
	5.2 Related Work
	5.3 Machine Learning-Based Optimization Workflow Using Simulation Models
	5.3.1 Parameter Selection
	5.3.1.1 Process Parameters
	5.3.1.2 Product Quality: Homogeneity

	5.3.2 Data Collection with Knowledge Integration
	5.3.2.1 Sample Size Estimation for Simulation Model Setup
	5.3.2.2 Influence of Discretization Step Size (ds)
	5.3.2.3 Input Data Sampling

	5.3.3 Model Selection
	5.3.3.1 Linear Regression (LR)
	5.3.3.2 Support Vector Regression (SVR)
	5.3.3.3 Polynomial Regression (PR)
	5.3.3.4 Bayesian Regression (BR)
	5.3.3.5 Random Forests (RF)
	5.3.3.6 Artificial Neural Networks (ANN)

	5.3.4 Training and Testing
	5.3.5 Homogeneity Optimization with Human Validation

	5.4 Experiments
	5.4.1 Models Evaluation Based on the Accuracy
	5.4.2 Models Evaluation Based on Computational Performance

	5.5 Conclusion
	References

	6 Bayesian Inference for Fatigue Strength Estimation
	6.1 Introduction
	6.2 Background
	6.2.1 Fatigue Testing
	6.2.2 Experimental Procedure and Analysis of the Staircase Method
	6.2.2.1 Experimental Procedure
	6.2.2.2 Analysis of Test Results by the Staircase Method
	6.2.2.3 Disadvantages of the Staircase Method
	6.2.2.4 Requirements for an Alternative Experimental Approach

	6.2.3 Related Work

	6.3 Informed Fatigue Strength Estimation
	6.3.1 Overview of Approach
	6.3.2 Machine Learning Model
	6.3.2.1 Gaussian Processes
	6.3.2.2 Gaussian Process for Estimating Fatigue Strength

	6.3.3 Bayesian Inference on the Distribution Parameters
	6.3.3.1 Maximum A Posteriori Estimate
	6.3.3.2 Active Learning-Inspired Acquisition Function
	6.3.3.3 Stopping Criterion

	6.3.4 Details on the Overall Experimental Procedure

	6.4 Validation of Approach
	6.5 Conclusion
	References

	7 Incorporating Shape Knowledge into Regression Models
	7.1 Introduction
	7.2 Related Work
	7.3 Methods
	7.3.1 SIASCOR
	7.3.2 ISI

	7.4 Application Examples
	7.4.1 Press Hardening
	7.4.2 Brushing
	7.4.3 Milling

	7.5 Synthetic Example
	7.6 Conclusion
	References

	Part III Neural Networks
	8 Predicting Properties of Oxide Glasses Using Informed Neural Networks
	8.1 Introduction
	8.1.1 Related Work
	8.1.2 Contributions

	8.2 Methodology
	8.2.1 Data Collection and Preparation
	8.2.2 Model Setups
	8.2.2.1 Blind Models
	8.2.2.2 Informed Model

	8.2.3 Model Training and Evaluation

	8.3 Results and Discussion
	8.4 Conclusion and Outlook
	References

	9 Graph Neural Networks for Predicting Side Effects and New Indications of Drugs Using Electronic Health Records
	9.1 Introduction
	9.2 Methods
	9.2.1 Overview About Data
	9.2.2 Code Normalization and Mapping
	9.2.3 Initial Knowledge Graph Construction
	9.2.4 Extended Knowledge Graph Construction
	9.2.4.1 Chemical Compound Similarities
	9.2.4.2 Use of Diagnosis-Diagnosis Relationships

	9.2.5 Relation Aware Graph Attention Networks
	9.2.6 Evaluation against Alternative Methods
	9.2.7 Performance Measures

	9.3 Results
	9.3.1 Performance Comparison
	9.3.1.1 Initial Knowledge Graph
	9.3.1.2 Extended Knowledge Graph

	9.3.2 Use Case: Trazodone in the Treatment of Bipolar Disorder
	9.3.3 Predicted Side Effects of Marketed Drugs

	9.4 Discussion
	9.5 Conclusion
	References

	10 On the Interplay of Subset Selection and Informed Graph Neural Networks
	10.1 Introduction
	10.2 Related Work
	10.3 Methods and Sampling Strategies
	10.3.1 SchNet
	10.3.2 Kernel Ridge Regression
	10.3.3 Spatial 3-Hop Convolution Network
	10.3.4 Graph Rate-Distortion Explanations
	10.3.5 Sampling Strategies
	10.3.5.1 Diversity
	10.3.5.2 Representativeness

	10.4 Numerical Experiments
	10.4.1 QM9 Dataset
	10.4.1.1 Knowledge Based Molecular Representation
	10.4.1.2 Diverse and Representative Sets of Molecules
	10.4.1.3 Sampling the QM9 Dataset
	10.4.1.4 Measuring the Error

	10.4.2 SchNet
	10.4.3 Kernel Ridge Regression
	10.4.4 Spatial 3-Hop Convolution Network
	10.4.5 Explanation
	10.4.5.1 Setup of the Experiments
	10.4.5.2 Results

	10.5 Conclusion
	References

	11 Informed Machine Learning Aspects for the Multi-Agent Neural Rewriter
	11.1 Introduction
	11.2 Related Work
	11.2.1 Informed Machine Learning

	11.3 Multi-Agent Neural Rewriter (MANR)
	11.3.1 Problem Definition
	11.3.2 Game Design
	11.3.3 Game Workflow
	11.3.4 Game Implementation
	11.3.4.1 Loss Functions

	11.4 Empirical Evaluation
	11.4.1 Data Generation
	11.4.2 Experiment Results for the MANR
	11.4.3 Transfer Learning Investigations

	11.5 Conclusion
	References

	Part IV Hybrid Methods
	12 Training Support Vector Machines by Solving DifferentialEquations
	12.1 Introduction
	12.1.1 Overview
	12.1.2 Mathematical Notation

	12.2 Setting the Stage
	12.2.1 L2 Support Vector Machines
	12.2.2 Invoking the Kernel Trick
	12.2.3 A Baseline Training Algorithm

	12.3 Gradient Flows for L2 SVM Training
	12.4 Practical Examples
	12.5 Conclusion
	Appendix
	References

	13 Informed Machine Learning to Maximize Robustness and Computational Performance of Linear Solvers
	13.1 Introduction
	13.2 Short Overview on Linear Solvers in Numerical Simulations
	13.3 Genetic Optimization of Parameters with Tree Hierarchy
	13.4 Pre-evolution via Surrogate Learning Model
	13.5 Online vs. Offline Training
	13.6 Reproducibility
	13.7 Controlling Solver Setup Reusage
	13.8 Results: Informed Machine Learning for Linear Solver Parameters in Various Practical Applications
	13.8.1 Mere Parameter Optimization: Single Reservoir Simulation Problems
	13.8.2 Parameter Optimization: Linear Elasticity Problem
	13.8.3 Setup Reusage: Sequence of Reservoir Simulation Problems
	13.8.4 Full Simulation Result: Reservoir Application(SPE10)
	13.8.5 Full Simulation Result: Groundwater Application
	13.8.6 Full Simulation Result: Computational Fluid Dynamics Application
	13.8.7 Full Simulation Result: Battery Aging Simulation

	13.9 Conclusions and Future Research
	References

	14 Anomaly Detection in Multivariate Time Series Using Uncertainty Estimation
	14.1 Introduction
	14.2 Background and Related Work
	14.2.1 Problem Formulation and Anomaly Categorization
	14.2.1.1 Point Anomalies
	14.2.1.2 Context Anomalies
	14.2.1.3 Collective Anomalies

	14.2.2 Unsupervised Anomaly Detection
	14.2.3 Bayesian Neural Networks
	14.2.3.1 Epistemic Uncertainty
	14.2.3.2 Aleatoric Uncertainty
	14.2.3.3 Predictive Uncertainty

	14.2.4 Related Work

	14.3 Detecting Anomalies in Time Series Using Uncertainty Estimation
	14.3.1 Window Processing and Forecast Modelling
	14.3.2 Formalization of Multivariate Anomaly Detection
	14.3.3 Anomaly Scoring
	14.3.4 Anomaly Threshold Fitting

	14.4 Experimental Setup and Evaluation
	14.4.1 Skoltech Anomaly Benchmark Data Set
	14.4.2 Experimental Hyperparameters
	14.4.3 Evaluation Metrics
	14.4.4 Discussion of Utilized Anomaly Detection Metrics
	14.4.5 Experimental Results and Analysis
	14.4.5.1 Anomaly Detection Analysis

	14.5 Discussion of Experimental Results
	14.5.1 Quantile Based Threshold Versus Tabulated Control Limits
	14.5.2 Competitiveness to Recent Work

	14.6 Conclusion
	References

