
Basic Econometrics

Riccardo (Jack) Lucchetti

9th May 2024





Foreword

This is a very basic course in econometrics, in that it only covers basic tech-
niques, although I tried to avoid the scourge of over-simplification, so some may
find it not so basic in style. What makes it perhaps a little different from others
you find on the Net is that I made a few not-so-common choices.

1. Separating clearly the properties OLS has by construction from those it
has when interpreted as an estimator.

2. Using matrix algebra whenever possible.

3. Using asymptotic inference only.

Point number one is modelled after the ideas in the two great masterpieces,
Davidson and MacKinnon (1993) and Davidson and MacKinnon (2004). I have
several reasons for this choice, but it is mainly a pedagogical one. The students I
am writing for are people who often don’t feel at ease with the tools of statistical
inference: they have learned the properties of estimators by heart, they are not
sure they can read a test, find the concept of the distribution of a statistic a little
unclear (never mind asymptotic distributions), get confused between the vari-
ance of an estimator and an estimator of the variance. In the best cases. Never
mind; no big deal.

There’s an awful lot you can say on the base tool in econometrics (OLS) even
without all this, and that’s good to know. Once a student has learned how to
handle OLS properly as a mere computational tool, the issues of its usage and
interpretation as an estimator and of how to read the associated test statistics
can be grasped more correctly. If you mix the two aspects too early, a beginner
is prone to mistake properties of least squares that are true by construction for
properties that depend on some probabilistic assumptions.

Point number two is motivated by laziness. In my teaching career, I have
found that once students get comfortable with matrices, my workload halves. Of
course, it takes some initial sunk cost to convey properly ideas such as projec-
tions and properties of quadratic forms, but the payoff is very handsome. This
book contains no systematic account of matrix algebra; we’re using just the ba-
sics, so anything you find on the Net by googling “matrix algebra lecture notes”
is probably good enough.

As for probability and statistics, I will only assume some familiarity with the
very basics: simple descriptive statistics and basic properties of probability, ran-
dom variables and expectations. Chapter 2 contains a cursory treatment of the
concepts I will use later, but I wouldn’t recommend it as a general reference on
the subject. Its purpose is mainly to make the notation explicit and clarify a few
points. For example, I will avoid any kind of reference to maximum likelihood
methods.
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I don’t think I have to justify point number three. I am writing this in 2024,
when typical data sets have hundreds, if not thousands observations and no-
body would ever dream of running any kind of inferential procedure with less
than 50 data points. Apart from OLS, there is no econometric technique in actual
use that does not depend vitally on asymptotics, so I guess that readers should
get familiar with the associated concepts if there is a remote chance that this
will not be put them off econometrics completely. The t test, the F tests and,
in general, all kinds of degrees-of-freedom corrections are ad-hockeries of the
past; unbiasedness is overrated. Get over it.

I promise I’ll try to be respectful of the readers and don’t treat them like id-
iots. I assume that if you’re reading this, you want to know more than you do
about econometrics, but this doesn’t give me the right to assume that you need
to be taken by the hand and treated like an 11-year-old.

All the examples and scripts in this book are replicable. All the material is in
a zip file you can download from this link. The software I used throughout the
book is gretl, so data and scripts are in gretl format, but if you insist on using
inferior software (;-)), data are in CSV format too.

Finally, a word of gratitude. A book like this is akin to a software project,
and there’s always one more bug to fix. So, I’d like to thank first all my stu-
dents who helped me eradicate quite a few. Then, my colleagues Allin Cottrell,
Stefano Fachin, Francesca Mariani, Giulio Palomba, Luca Pedini, Matteo Pic-
chio, Claudia Pigini, Alessandro Pionati, Alessandro Sterlacchini and Francesco
Valentini for making many valuable suggestions. Needless to say, the remaining
shortcomings are all mine. Claudia also allowed me to grab a few things from
her slides on IV estimation, so thanks for that too. If you want to join the list,
please send me bug reports and feature requests. Also, I’m not an English native
speaker (I suppose it shows). So, Anglophones of the world, please correct me
whenever needed.

The structure of this book is as follows: chapter 1 explores the properties
of OLS as a descriptive statistic. Inference comes into play at chapter 2 with
some general concepts, while their application to OLS is the object of chapter 3,
with some basic ideas on diagnostic testing and heteroskedasticity in Chapter
4. Extension of basic OLS are considered in the subsequent chpater: Chapter
5 deals with dynamic models chapter 6 with instrumental variable estimation
and finally, Chapter 7 considers linear models for panel data. Each chapter has
an appendix, named “Assorted results”, where I discuss some of the material I
use during the chapter in a little more detail.

In some cases, I will use a special format for
short pieces of texts, like this. They contain ex-
tra stuff that I consider interesting, but not in-

dispensable for the overall comprehension of
the main topic.
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Chapter 1

OLS: algebraic and geometric
properties

1.1 Models

I won’t even attempt to give the reader an account of the theory of econometric
modelling. For our present purposes, suffice it to say that we econometricians
like to call a model a mathematical description of something, that doesn’t aim
at being 100% accurate, but still, hopefully, useful.1

We have a quantity of interest, also called the dependent variable, which
we observe more than once: a collection of numbers y1, y2, . . . , yn , where n is the
size of our data set. These numbers can be anything that can be given a coherent
numerical representation; in this course, however, we will confine ourselves to
the case where the i -th observation yi is a real number. So for example, we could
record the income for n individuals, the export share for n firms, the inflation
rate for a given country at n points in time.

Now suppose that, for each data point, we also have a vector of k elements
containing auxiliary data possibly helpful in better understanding the differ-
ences between the yi s; we call these explanatory variables,2 or xi in symbols.3

To continue the previous examples, xi may include a numerical description of
the individuals we recorded the income of (such as age, gender, educational at-
tainment and so on), or characteristics of the firms we want to study the export
propensity for (size, turnover, R&D expenditure and so on), or the conditions of
the economy at the time the inflation rate was recorded (interest rate, level of
output, and so forth).

1“All models are wrong, but some are useful” (G. E. P. Box). In fact, one may argue that, in order
to be useful, a model may have to be inaccurate. More on this in section 1.4.2.

2Terminology is very much field-specific here; statisticians traditionally tend to use the term
covariates, while people from the machine learning community like the word features.

3I will almost always use boldface symbols to indicate vectors.
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2 CHAPTER 1. OLS: ALGEBRAIC AND GEOMETRIC PROPERTIES

What we call a model is a formula like the following:

yi ≃ m(xi )

where we implicitly assume that if xi is not too different from x j , then we should
expect yi to be broadly close to y j : if we pick two people of the same age, with
the same educational level and many other characteristics in common we would
expect that their income should be roughly the same. Of course this won’t be
true in all cases (in fact, chances are that this will never be true exactly), but
hopefully our model won’t lead us to catastrophic mistakes.

The reason why we want to build models is that, once the function m(·) is
known, it becomes possible to ask ourselves interesting questions by inspect-
ing the characteristics of that function. So for example, if it turned out that the
export share of a firm is increasing in the expenditure in R&D, we may make con-
jectures about the reasons why it should be so, look for some economic theory
that could explain the result, and wonder if one could improve export competi-
tiveness by giving the firms incentives to do research.

Moreover, the door is open to forecasting: given the characteristics of a hy-
pothetical firm or individual, the model makes it possible to guess what their
export share or income (respectively) should be. I don’t think I have to convince
the reader of how useful this could be in practice.

Of course, we will want to build our model in the best possible way. In other
words, our aim will be choosing the function m(·) according to some kind of
optimality criterion. This is what the present course is about.

But there’s more: as we will see, building an optimal model is impossible in
general. At most, we may hope to build the best possible model for the data
that we have available. Of course, there is no way of knowing if the model we
built, that perhaps works rather well with our data, will keep working equally
well with new data. Imagine you built a model for the inflation rate in a country
with monthly data from January 2000 to December 2017. It may well be that your
model performs (or, as we say, “fits the data”) very well for that period, but what
guarantee do you have that it will keep doing so in 2018, or in the more distant
future? The answer is: you have none. But still, this is something that we’d like to
do; our mind has a natural tendency to generalise, to infer, to extrapolate. And
yet, there is no logical compelling basis for proving that it’s a good idea to do
so.4 The way out is framing the problem in a probabilistic setting, and this is the
reason why econometrics is so intimately related with probability and statistics.

For the moment, we’ll start with the problem of choosing m(·) in a very sim-
ple case, that is when we have no extra information xi . In this case, the function
becomes a constant:

yi ≃ m(xi ) = m

and the problem is very much simplified, because it means we have to pick a
number m in some optimal way, given the data y1, y2, . . . , yn . In other words, we

4‘The philosophically inclined reader may at this point google for “Bertrand Russel’s turkey”.



1.2. THE AVERAGE 3

have to find a function of the data which returns the number m. Of course, a
function of the data is what we call a statistic. In the next section, I will prove
that the statistic we’re looking for is, in this case, the average of the yi s, that is
Ȳ = 1

n

∑n
i=1 yi .

1.2 The average

What is a descriptive statistic? It is a function of the data which synthesises a
particular feature of interest of the data; of course, the more informative, the
better. The idea behind descriptive statistics is more or less: we have some data
on some real-world phenomenon; our data set, unfortunately, is too “large”, and
we don’t have time/can’t/don’t feel like going through the whole thing. Hence,
we are looking for a function of these data to tell us what we want, without being
bothered with unnecessary details.

The most obvious example of a descriptive statistic is, of course, the sample
average. Let’s stick our observations y1, y2, . . . , yn into a column vector y; the
sample average is nothing but

Ȳ = 1

n

n∑
i=1

yi = 1

n
ι′y, (1.1)

where ι is a column vector full of ones. The “sum” notation is probably more
familiar to most readers; I prefer the matrix-based one not only because I find
it more elegant, but also because it’s far easier to generalise. The nice feature
of the vector ι is that its inner product with any conformable vector x yields the
sum of the elements of x.5

We use averages all the time. Why is the average so popular? As I said, we’re
looking for a descriptive statistic m, as a synthesis of the information contained
in our data set.

OSCAR CHISINI

In 1929, Oscar Chisini (pronounced kee-zee-nee) pro-
posed the following definition: for a function of interest
g (·), the mean of the vector y is the number m that yields
the unique solution to g (y) = g (m ·ι). Powerful idea: for ex-
ample, the average is the solution of the special case when
the g (·) function is the sum of the vector’s elements, and
the reader may want to spend some time with more exotic
cases.

Chisini’s idea may be further generalised: if our aim is
to use m — that we haven’t yet chosen — as an imperfect

5Reminder: the inner products of two vectors a and b is defined as
∑

i ai bi . Mathematicians
like the notation 〈a,b〉 for the inner product, on the grounds of its greater generality (google
“Hilbert space” if you’re curious), but we econometricians are more accustomed to the “matrix”
notation a′b, where the apostrophe means “transposed”.
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but parsimonious description of the whole data set, the question that naturally
arises is: how much information is lost?

If all we knew, for a given data set, was m, what could we say about each
single observation? If we lack any more information, the most sensible thing to
say is that, for a generic i , yi should more or less be m. Consider the case of
A. S. Tudent, who belongs to a class for which the “typical” grade in economet-
rics is 23;6 the most sensible answer we could give to the question “What was the
grade that A. S. Tudent got in econometrics?” would be “Around 23, I guess”. If
the actual grade that A. S. got were in fact 23, OK. Otherwise, we could measure
by how much we were wrong by taking the difference between the actual grade
and our guess, ei = yi −m. We call these quantities the residuals; the vector of
residuals is, of course, e = y−ι ·m.

In the ideal case, using m to summarise the data should entail no informa-
tion loss at all, and the difference between yi and m should be 0 for all i (all stu-
dents got 23). If it weren’t so, we may measure how well m does its job through
the size of the residuals. Let’s define a function, called loss function, which mea-
sures the cost we incur because of the information loss.

L(m) =C [e(m)]

In principle, there are not many properties such a function should be assumed
to have. It seems reasonable that C (0) = 0:7 if all the residuals are 0, no approxi-
mation errors occur and the cost is nil. Another reasonable idea is C (e) ≥ 0: you
can’t gain from a mistake.8 Apart from this, there is not very much you can say:
the L(·) function cannot be assumed to be convex, or symmetric, or anything
else. It depends on the context.

Whatever the shape of this function, however, we’ll want to choose m so that
is L(m) as small as possible. In math-speak: for a given problem, we can write
down the loss function and choose the statistic which minimises it. In formulae:

m̂ = Argmin
m∈R

L(m) = Argmin
m∈R

C (y−ι ·m), (1.2)

where you read the above as: m with a hat on is that number that you find if you
choose, among all real numbers, the one that makes the function L(m) as small
as possible.

In practice, by finding the minimum of the L(·) function for a given prob-
lem, we can be confident that we are using our data in the best possible way. At
this point, the first thing that crosses a reasonable person’s mind is “How do I
choose L(·)? I mean, what should it look like?”. Fair point. Apart from extraordi-
nary cases when the loss function is a natural consequence of the problem itself,

6Note for international readers: in the Italian academic system, which is what I’m used to,
grades go from 18 (barely pass) to 30 (full marks).

7I use a boldface 0 to indicate a vector full of zeros, as in 0 ·ι= 0.
8Warning: the converse is not necessarily true. It’s possible that the cost is nil even with non-

zero errors. For example, in some contexts “small” error may be irrelevant.
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writing down its exact mathematical form may be complicated. What does the
L(m) function look like for the grades in econometrics of our hypothetical class?
Hard to say.

Moreover, we often must come up with a summary statistic without know-
ing in advance what it will be used for. Obviously, in these cases finding a one-
size-fits-all optimal solution is downright impossible. We have to make do with
something that is not too misleading. A possible choice is

L(m) =
n∑

i=1
(yi −m)2 = (y−ι ·m)′(y−ι ·m) = e′e (1.3)

The above criterion is a function of m based on the sum of squared residuals,
that enjoys several desirable properties. Not only it’s simple to manipulate al-
gebraically: it’s symmetric and convex, so that positive and negative residuals
are penalised equally, and large errors are more costly than small ones. It’s not
unreasonable to take this loss function as an acceptable approximation. More-
over, this choice makes it extremely easy to solve the associated minimisation
problem.

Minimising L(m) with respect to m leads to the so-called least squares prob-
lem. All is needed to find the minimum in (1.3) is taking the derivative of L(m)
with respect to m;

dL(m)

dm
=

n∑
i=1

d
(
yi −m

)2

dm
=−2

n∑
i=1

(
yi −m

)
The derivative must be 0 for a minimum, so that

n∑
i=1

(
yi −m̂

)= 0

which in turn implies

n ·m̂ =
n∑

i=1
yi

and therefore m̂ = n−1 ∑n
i=1 yi = Ȳ . The reader is invited to verify that m̂ is

indeed a minimum, by checking that the second derivative d2L(m)
dm2 is positive.

Things are even smoother in matrix notation:

L(m) = (y−ιm)′(y−ιm) = y′y−2m ·ι′y+m2ι′ι,

so the derivative is

dL(m)

dm
=−2ι′y+2m ·ι′ι=−2ι′(y−ιm) = 0

whence
ι′y = (ι′ι) ·m̂ =⇒ m̂ = (ι′ι)−1ι′y = Ȳ
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because of course ι′ι = n. The value of L(m) at the minimum, that is L(m̂) =
e′e = ∑n

i=1(yi − Ȳ )2 is a quantity that in this case we call deviance, but that we
will more often call SSR, as in Sum of Squared Residuals.

The mathematically sophisticated way to say the same, that we used a few
pages back, is

m̂ = Argmin
m∈R

L(m);

where again, the hat ( ˆ ) on m indicates that, among all possible real numbers,
we are choosing the one that minimises our loss function.

The argument above, which leads to choosing the average as an optimal
summary is, in fact, much more general than it may seem: many of the descrip-
tive statistics we routinely use are special cases of the average, where the data
y are subject to some preliminary transformation. In practice: the average of z,
where zi = h(yi ) can be very informative, if we choose the function h(·) wisely.
The variance is the most obvious example: the sample variance9 is just the aver-
age of zi = (yi − Ȳ )2, which measures how far yi is from Ȳ .

Things get even more interesting when we express a frequency as an average:
define the event E = {yi ∈ A}, where A is some subset of the possible values for
yi ; now define the variable zi = I(yi ∈ A), where I(·) is the so-called “indicator
function”, that gives 1 when its argument is true and 0 when false. Evidently, the
average of the zi , Z , is the relative frequency of E :

Z =
∑n

i=1 zi

n
= K /n;

since zi can only be 0 or 1, K = ∑n
i=1 zi is just the number of times the event E

has occurred. I’m sure you can come up with more examples.

1.3 OLS as a descriptive statistic

1.3.1 OLS on a dummy variable

Now let’s bring the explanatory variables xi back in. For the moment, let’s con-
sider the special case where xi is a one-element vector, that is a scalar.

A possible way to check if yi and xi are related to each other is to see if yi is
“large” or “small” when xi is “large” or “small”. Define

zi = (yi − Ȳ )(xi − X̄ )

which is, in practice, a sort of indicator of “matching magnitudes”: zi is positive
when yi > Ȳ and xi > X̄ (both are “large”) or when yi < Ȳ and xi < X̄ (both
are “small”); on the contrary, zi is negative when magnitudes don’t match. As

9I’m not applying the “degrees of freedom correction”; I don’t see why I should, as long I’m
using the variance as a descriptive statistic.
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is well known, the average of zi is known as covariance; but this is just boring
elementary statistics.

The reason why I brought this up is to highlight the main problem with co-
variance (and correlation, that is just covariance rescaled so that it’s guaranteed
to be between -1 and 1): it’s a symmetric concept. The variables yi and xi are
treated equally: the covariance between yi and xi is by construction the same as
between xi and yi . On the contrary, we often like to think in terms of yi = m(xi ),
because what we have in mind is an interpretation where yi “depends” on xi ,
and not the other way around.10 This is why we call yi the dependent variable
and xi the explanatory variable. In this context, it’s rather natural to see what
happens if you split y into several sub-vectors, according to the values that xi

takes. In a probabilistic context, we’d call this conditioning (see section 2.2.2).
Simple example: suppose our vector y includes observations on n people,

with nm males and n f = n−nm females. The information on gender is in a vari-
able xi , that equals 1 for males and 0 for females. As is well known, a 0/1 variable
may be called “binary”, “Boolean”, “dichotomic”, but we econometricians tradi-
tionally call it a dummy variable.11

Common sense suggests that, if we take into account the information we
have on gender, the average by gender will give us a data description which
should be slightly less concise than overall average (since we’re using two num-
bers instead of one), but certainly not less accurate. Evidently, we can define

Ȳm =
∑

xi=1 yi

nm
= Sm

nm
Ȳ f =

∑
xi=0 yi

n f
= S f

n f

where Sm and S f are the sums of yi for males and females, respectively.
Now, everything becomes more elegant and exciting if we formalise the prob-

lem in a similar way to what we did with the average. We would like to use in the
best possible way the information (that we assume we have) on the gender of the
i -th individual. So, instead of summarising the data by a number, we are going
to use a function, that is something like

m(xi ) = mm · xi +m f · (1−xi )

which evidently equals mm for men (since xi = 1) and m f for women (since xi =
0). Our summary will be a rule giving us ‘representative’ values of yi according
to xi .

Let’s go back to our definition of residuals as approximation errors: in this
case, you clearly have that ei ≡ yi −m(xi ), and therefore

yi = mm xi +m f (1−xi )+ei (1.4)

10I’m being deliberately vague here: in everyday speech, saying that A depends on B may mean
many things, not necessarily consistent. For example, “dependence” may not imply a cause-effect
link. This problem is much less trivial than it seems at first sight, and we’ll leave it to professional
epistemologists.

11I am aware that there are people who don’t fit into the tradtional male/female distinction, and
I don’t mean to disrespect them. Treating gender as a binary variable just makes for a nice and
simple example here, ok?
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Equation (1.4) is a simple example of an econometric model. The number
yi is split into two additive components: a systematic part, that depends on the
variable xi (a linear function of xi , to be precise), plus a remainder term, that we
just call the residual for now. In this example, m(xi ) = mm xi +m f (1−xi ).

It is convenient to rewrite (1.4) as

yi = m f + (mm −m f )xi +ei =
[

1 xi
][

m f

mm −m f

]
+ei

so we can use matrix notation, which is much more compact and elegant

y = Xβ+e, (1.5)

where

β =
[

m f

mm −m f

]
=

[
β1

β2

]
and X is a matrix with n rows and 2 columns; the first column is ι and the second
one is x. The i -th row of X is [1,1] if the corresponding individual is male and
[1,0] otherwise. To be explicit:

y1

y2
...

yn−1

yn

=


1 x1

1 x2
...

...
1 xn−1

1 xn


[
β1

β2

]
+


e1

e2
...

en−1

en


Therefore, the problem of choosing mm and m f optimally is transformed

into the problem of finding the vector β that minimises the loss function e′e.
The solution is not difficult: find the solutions to12

d

dβ
e′e = d

dβ
(y−Xβ)′(y−Xβ) = d

dβ
(y′y−2β′X′y+β′X′Xβ) = 0

By using the well-known13 rules for matrix differentiation, you have

X′y = X′X · β̂ (1.6)

What we have to do now is solve equation (1.6) for β̂. The solution is unique
if X′X is invertible (if you need a refresher on matrix inversion, and related mat-
ters, subsection 1.A.3 is for you):

β̂ = (
X′X

)−1 X′y. (1.7)

12Need I remind the reader of the rule for transposing a matrix product, that is (AB)′ = B ′A′?
Obviously not.

13Not so well-known, maybe? Jump to subsection 1.A.1.
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Equation (1.7) is the single most important equation in this book, and this is
why I framed it into a box. The vector β̂ is defined as the vector that minimises
the sum of squared residuals among all vectors with k elements (where k = 2 in
this case):

β̂ = Argmin
β∈Rk

e′e,

and the expression in equation (1.7) turns the implicit definition into an explicit
formula that you can use to calculate β̂.

The coefficients β̂ obtained from (1.7) are known as OLS coefficients, or OLS
statistic, from Ordinary Least Squares.14 A very common idiom that economists
use when referring to the calculation of OLS is “regressing y on X”. The usage of
the word “regression” here might seem odd, but will be justified in chapter 3.

The “hat” symbol has exactly the same meaning as in eq. (1.2): of all the
possible choices for β, we pick the one that makes eq. (1.6) true, and therefore
minimises the associated loss function e′e. The vector

ŷ = Xβ̂

is our approximation to y. The elements of ŷ are customarily called the fitted
values: the closer they are to y, the better we say that the model fits the data.

In this example, a few simple calculations suffice to show that

X′X =
[

n nm

nm nm

]
X′y =

[ ∑n
i=1 yi∑

xi=1 yi

]
=

[
Sm +S f

Sm

]
where Sm = ∑

xi=1 yi and S f = ∑
xi=0 yi : the sums of yi for males and females,

respectively. By using the standard rule for inverting (2× 2) matrices, which I
will also assume known,15

(X′X)−1 = 1

nmn f

[
nm −nm

−nm n

]
so that

β̂ = 1

nmn f

[
nm −nm

−nm n

][
Sm +S f

Sm

]
= 1

nmn f

[
nmS f

n f Sm −nmS f

]
and finally

β̂ =
 S f

n f

Sm
nm

− S f

n f

=
[

Ȳ f

Ȳm − Ȳ f

]
14Why “ordinary”? Well, because there are more sophisticated variants, so we call these “ordi-

nary” as in “not extraordinary”. We’ll see one of those variants in section 4.2.1.
15If you’re in trouble, go to subsection 1.A.4.
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so that our model is:

ŷi = Ȳ f +
(
Ȳm − Ȳ f

)
xi

and it’s easy to see that the fitted value for males (xi = 1) is Ȳm , while the one for
the females (xi = 0) is Ȳ f .

Example 1.1
Let me give you a numerical example of the above: suppose we have 80 individ-
uals (50 males and 30 females) and that we’re interested in their monthly wage.
Moreover, Sm = ∑

xi=1 yi = € 60000 and S f = ∑
xi=0 yi = € 42000: therefore, the

average wage is Ȳm = 1200 = 60000/50 for males and Ȳ f = 1400 = 42000/30 for
females. After ordering observations by putting the data for males first,16 the X
matrix looks like

X =



1 1
1 1
...
1 1
1 0
...
1 0


where the top block of rows has 50 rows and the bottom one has 30. As the reader
may easily verify,

X′X =
[

80 50
50 50

]
X′y =

[
102000
60000

]
By performing the appropriate calculations, one finds that

β̂ = (X′X)−1Xy =
[

1400
−200

]
and the model can be written as:

ŷi = 1400−200xi ,

which reads: for females, xi = 0, so their typical income is €1400; for males, in-
stead, xi = 1, so their income is given by 1400−200 ·1 = €1200.

Once again, opting for a quadratic loss function (and therefore minimising
e′e) delivers a solution consistent with common sense, and our approximate de-
scription of the vector y uses a function whose parameters are the statistics we
are interested in.

16With no loss of generality, as a mathematician would say.
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1.3.2 The general case

In reading the previous subsection, the discerning reader will have noticed that,
in fact, the assumption that x is a dummy variable plays a very marginal role.
There is no reason why the equation m(xi ) = β1 +β2xi should not hold when
xi contains generic numeric data. The solution to the problem remains un-
changed; clearly, the vector β̂ will not contain the averages by sub-samples, but
the fact that the loss function is minimised by β̂ = (X′X)−1X′y keeps being true.

Example 1.2
Suppose that

y =



1
3
2
3
0
1

 x =



4
3
2
5
1
1


The reader is invited to check that17

X′X =
[

6 16
16 56

]
⇒ (X′X)−1 =

[
0.7 −0.2

−0.2 3/40

]
X′y =

[
10
33

]
and therefore

β̂ =
[

0.4
0.475

]
ŷ =



2.3
1.825
1.345
2.775
0.875
0.875

 e =



−1.3
1.175

0.65
0.225

−0.875
0.125


Hence, the function m(xi ) minimising the sum of squared residuals is m(xi ) =

0.4+0.475xi and e′e equals 4.325.

In traditional textbooks, at this point you always get a picture similar to the
one in Figure 1.1, which is supposed to aid intuition; I don’t like it very much, and
will explain why shortly. Nevertheless, let me show it to you: in this example, we
use the same data as in the present example.

In Figure 1.1, each black dot corresponds to a (xi , yi ) pair; the dashed line
plots the m(x) function and the residuals are the vertical differences between the
dots and the dashed line; the least squares criterion makes the line go through
the dots in such a way that the sum of these differences (squared) is minimal.
So, for example, for observation number 1 the observed value of xi is 4 and the

17Before you triumphantly shout “It’s wrong!”, remember to stick ι and x together.
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Figure 1.1: OLS on six data points

x

y

(x1, y1)

(x1, ŷ1)

m(x) = 0.4+0.475x

observed observed value for yi is 1; the approximation yields ŷ1 = 0.4+0.475×4 =
2.3 (observe the position of the white dot). Therefore, e1 = y1 − ŷ1 = −1.3 (the
vertical distance between the black dot and the white dot).

The example above can be generalised by considering the case where we
have more than one explanatory variable, except for the fact that producing a
figure akin to Figure 1.1 becomes difficult, if not impossible. Here, the natural
thing to do is expressing our approximation as a function of the vector xi , that is
m(xi ) = x′iβ, or more explicitly,

ŷi =β0 +β1x1i +β2x2i + . . .+βk xki

For example, suppose we have data on each student in the class A. S. Tudent
belongs to. How many hours each student spent studying econometrics, their
previous grades in related subjects, and so on; these data, for the i -th student,
are contained in the vector x′i , which brings us back to equation (1.5).

The algebraic apparatus we need for dealing with the generalised problem
is, luckily, unchanged; allow me to recap it briefly. If the residual we use for
minimising the loss function is ei (β) = yi −x′iβ, then the vector of residuals is

e(β) = y−Xβ (1.8)

so the function to minimise is L(β) = e(β)′e(β).
Since the derivative of e(β) with respect to β is −X, we can use the chain rule

and write
X′e(β̂) = 0 (1.9)

(a more detailed proof, should you need it, is in subsection 1.A.5). By putting
together (1.8) and (1.9) you get a system of equations sometimes referred to as
normal equations:

X′X · β̂ = X′y (1.10)

and therefore, if X′X is invertible, β̂ = (X′X)−1X′y.
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CARL FRIEDRICH

GAUSS

If you think that all this is very clever, well, you’re right.
The inventor of OLS is arguably the greatest mathemati-
cians of all time: the great Carl Friedrich Gauss, also known
as the princeps mathematicorum.18

Note, again, that the average can be obtained as the
special case when X = ι. Moreover, it’s nice to observe that
the above formulae make it possible to compute all the rel-
evant quantities without necessarily observing the matri-
ces X and y; in fact, all the elements you need are the fol-
lowing:

1. the scalar y′y;

2. the k-element vector X′y and

3. the k ×k matrix X′X (or equivalently, its inverse).

where k is the number of columns of X, the number of unknown coefficients in
our m(·) function. Given these quantities, β̂ is readily computed, but also e′e:

e′e = (y−Xβ̂)′(y−Xβ̂) = y′y−y′Xβ̂− β̂′X′y+ β̂′(X′X)β̂

and using (1.10) you have
e′e = y′y− β̂′(X′y). (1.11)

Equation (1.11) expresses the SSR as the difference between a scalar and the
inner product of two k-element vectors β̂ and (X′y). The number of rows of y,
that is the number of observation n, never comes into play, and could well be
huge.

I guess you now understand my lack of enthusiasm for Figure 1.1: if X has
3 columns, drawing a similar picture is difficult. For 4 or more columns, it be-
comes impossible. Worse, the geometric intuition that it conveys may overlap
with another geometric interpretation of OLS, which I consider more interesting
and more useful, and is the object of section 1.4.

A nice feature of a linear function like (1.5) is that the coefficients β can be
interpreted as marginal effects, or partial derivatives if you prefer. In the previ-
ous example, the coefficient associated to the number of hours that each student
spent studying econometrics may be defined as

∂m(x)

∂x j
=β j (1.12)

and therefore can be read as the partial derivative of the m(·) function with re-
spect to the number of hours. Clearly, you may attempt to interpret these mag-
nitude by their sign (do more hours of study improve your grade?) and by their

18To be fair, the French mathematician Adrien-Marie Legendre rediscovered it independently a
few years later.
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magnitude (if so, by how much?). However, you should resist the temptation to
give the coefficients a counterfactual interpretation (If A. S. Tudent had studied
2 more hours, instead of watching that football game, by how much would their
mark have improved?); this is possible, in some circumstances, but not always
(more on this in Section 3.6).

Focusing on marginal effects is what we do
most often in econometrics, because the ques-
tion of interest is not really approximating y
given x, but rather understanding what the ef-
fect of x on y is (and, possibly, how general and
robust this effect is). In other words, the ob-
ject of interest in econometrics is much more
often β, rather than m(x). The opposite hap-
pens in a broad class of statistical methods that
go, collectively, by the name of machine learn-
ing methods and focus much more on predic-
tion than interpretation. In order to predict cor-
rectly, these models use much more sophisti-
cated ways of handling the data than a simple
linear function, and even writing the rule that
links x to ŷ is impossible.
Machine learning tools have been getting quite

popular at the beginning of the XXI century,
and are the tools that companies like Google
and Amazon use to predict what video you’d
like to see on Youtube or what book you’d like
to buy when you open their website. As we all
know, these models perform surprisingly well
in practice, but nobody would be able to re-
construct how their predictions come about.
The phrase some people use is that machine
learning procedures are “black boxes”: they
work very well, but they don’t provide you with
an explanation of why you like that particular
video. The pros and cons of econometric mod-
els versus machine learning tools are still un-
der scrutiny by the scientific community, and,
if you’re curious, I’ll just give you a pointer to
Mullainathan and Spiess (2017).

1.3.3 Collinearity and the dummy trap

Of course, for solving equation (1.10), X′X must be invertible. Now, you may ask:
what if it’s singular? This is an interesting case. The solution ŷ can still be found,
but there is more than one vector β̂ associated with it. In fact, there are infinitely
many. Let me give you an example. Suppose that X contain only one non-zero
column, x1. The solution is easy to find:

β̂1 =
x′1y

x′1x1
,

so that ŷ =β1x1. Now, add to X a second column, x2, which happens to be equal
to x1, so x2 = x1. Evidently, x2 adds no information to our model, because it con-
tains exactly the same information as x1 so ŷ remains the same. Now, however,
we can write it in infinitely may ways:

ŷ =β1x1 = 0.5β1x1 +0.5β1x2 = 0.01β1x1 +0.99β1x2 = . . .

because obviously β1x2 =β1x1. In other words, there are infinitely many ways to
combine x1 and x2 to obtain ŷ, even though the latter is unique and the objective
function has a well-defined minimum. It is rather easy to generalise the example
above when x2 is a multiple of x1, that is x2 =αx1.
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We call this problem collinearity, or multicollinearity, and it can be solved
quite easily: all you have to do is drop the collinear columns until X has full rank.
Therefore, in the example above, you can choose to leave out x1 or x2; whatever
your choice, problem solved.

In practice, things are not always so easy, because (as is well known) digital
computers work with finite numerical precision, but in the cases we will con-
sider we should have no problems. The interested reader may want to have a
look at section 1.A.6.

A situation where this issue may arise goes commonly under the name of
dummy trap. Suppose that you want to include in your model a qualitative vari-
able, in which we have a conventional coding. For example, the marital status of
an individual, and you conventionally code this information as 1=single, 2=mar-
ried, 3=divorced, 4=it’s complicated, etc.

Clearly, using this variable “as is” makes no sense: a function like ŷi = β1 +
β2xi would consider xi as a proper numerical value, whereas in fact its coding is
purely conventional. The solution is recoding xi as a set of dummy variables, in
which each dummy corresponds to one category: so for example the vector

x =



1
3
2
1
2
3
3


would be substituted by the matrix

Z =



1 0 0
0 0 1
0 1 0
1 0 0
0 1 0
0 0 1
0 0 1


so the first column of Z is a dummy variable for xi = 1, the second one is a
dummy variable for xi = 2, and so on.

However, using the matrix Z unmodified leads to a collinearity problem if
the model contains a constant, since the sum of the columns of the matrix Z is
by construction equal to ι. Hence, the matrix

X = [ι Z]

has not full rank, so X′X doesn’t have full rank either, and consequently is not
invertible.19

19If you have problems following this argument, sections 1.A.3 and 1.A.4 may be of help.
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The remedy you normally adopt is to drop one of the column of Z, and the
corresponding category becomes the so-called “reference” category. For exam-
ple, suppose you have a geographical variable xi conventionally coded from 1 to
3 (1=North, 2=Centre, 3=South). The model m(xi ) = β1 +β2xi is clearly mean-
ingless, but one could think to set up an alternative model like

ŷi =β1 +β2Ni +β3Ci +β4Si ,

where Ni = 1 if the i -th observation pertains to the North, and so on. This would
make more sense, as all the variables in the model have a proper numerical in-
terpretation. However, in this case we would have a collinearity problem for the
reasons given above, that is Ni +Ci +Si = 1 by construction for all observations
i .

The solution is dropping one of the geographical dummies from the model:
for example, let’s say we drop the “South” dummy Si : the model would become

ŷi =β1 +β2Ni +β3Ci ;

observe that with the above formulation the fitted value for a southern observa-
tion would be

ŷi =β1 +β2 ×0+β3 ×0 =β1

whereas for a northern one you would have

ŷi =β1 +β2 ×1+β3 ×0 =β1 +β2,

so β2 indicates the difference between a northern observation and a southern
one, in the same way as β3 indicates the difference between Centre and South.
More in general, after dropping one of the dummies, the coefficient for each of
the remaining ones indicates the difference between that category and the one
you chose as a reference.

1.3.4 Nonlinearity

A further step in enhancing this setup would be allowing for the possibility that
the function m(xi ) is non-linear. In a traditional econometric setting this idea
would take us to consider the so-called NLS (Nonlinear Least Squares) tech-
nique. I won’t go into this either, for two reasons.

First, because minimising a loss function like L(β) = ∑n
i=1

[
yi −m(xi ,β)

]2,
where m(·) is some kind of crazy arbitrary function may be a difficult problem:
it could have more than one solution, or none, or maybe one that cannot be
written in closed form.

Second, the linear model is in fact more general than it seems, since in order
to use OLS it is sufficient that the model be linear in the parameters, not nec-
essarily in the variables. For example, suppose that we have one explanatory
variable; it is perfectly possible to use a model formulation like

m(xi ) =β1 +β2xi +β3x2
i . (1.13)
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The equation above contains a non-linear transformation of xi (the square), but
the function itself is just a linear combination of observable data: in this case,
we use a formulation that implies that the effect of xi on m(xi ) is nonlinear, but
this is still achieved by employing a linear combination of observable variables.
To be more explicit, the X matrix would be, in this case,

X =


1 x1 x2

1
1 x2 x2

2
...

1 xn x2
n


and the algebra would proceed as usual.

This device is very common in applied econometrics, where powers of ob-
servable variables are used to accommodate nonlinear effects in the model with-
out having to give up the computational simplicity of OLS. The parameter β3 is
also quite easy to read: if it’s positive (negative), the m(xi ) function is convex
(concave).

The only caveat we have to be aware of is that, of course, you cannot inter-
pret the β vector as marginal effects, as the right-hand side of equation (1.12)
is no longer a fixed scalar. In fact, the marginal effects for each variable in the
model become functions of the whole parameter vector β and of xi ; in other
terms, marginal effects may be different for each observation in our sample. For
example, for the model in equation (1.13) the marginal effect of xi would be

∂m(xi )

∂xi
=β2 +2β3xi ;

and its sign would depend on the condition xi > − β2

2β3
, so it’s entirely possible

that the marginal effect of xi on yi is positive for some units in our sample and
negative for others.

Example 1.3
Suppose you have the following model:

ŷi = m(xi ) =−1+2xi −0.4x2
i +2

p
xi

A plot of this function is depicted in Figure 1.2. The marginal effect of xi on yi is
easy to find as

∂m(xi )

∂xi
= 2−0.8xi + 1p

xi

by differentiating each term. As you can see, the effect of xi on yi becomes
individual-specific: for two individuals with a different xi , the effect of a rise
in xi on yi would depend on xi , and can even change sign. So, what is a good
thing for someone could be a bad thing for someone else.
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Figure 1.2: m(xi ) and its derivative as functions of xi in example 1.3

x

m(x)

∂m(x)
∂x

More generally, what we can treat via OLS is the class of models that can be
written as

m(xi ) =
k∑

j=1
β j g j (xi ),

where xi are our “base” explanatory variables and g j (·) is a sequence of arbitrary
transformations, no matter how crazy. Each element of this sequence becomes
a column of the X matrix. Clearly, once you have computed the β̂ vector, the
marginal effects are easy to calculate (of course, as long as the g j (·) functions
are differentiable):

∂m(xi )

∂xi
=

k∑
j=1

β̂ j
∂g j (xi )

∂xi
.

1.4 The geometry of OLS

The OLS statistic and associated concepts can be given an interpretation that
has very little to do with statistics; instead, it’s a geometrical interpretation. Given
the typical audience of this book, a few preliminaries may be in order here.

The first concept we’ll want to define is the concept of distance (also known
as metric). Given two objects a and b, their distance is a function that should
enjoy four properties:

1. d(a,b) = d(b, a)

2. d(a,b) ≥ 0

3. d(a,b) = 0 ⇔ a = b

4. d(a,b)+d(b,c) ≥ d(a,c)
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The first three are obvious; as for the last one, called triangle inequality, it just
means that the shortest way is the straight one. The objects in question may be
of various sorts, but we will only consider the case when they are vectors. The
distance of a vector from zero is its norm, written as ∥x∥ = d(x,0).

Many functions d(·) enjoy the four properties above, but the concept of dis-
tance we use in everyday life is the so-called Euclidean distance, defined as

d(x,y) =
√

(x−y)′(x−y)

and the reader may verify that the four properties are satisfied by this definition.
Obviously, the formula for the Euclidean norm is ∥x∥ =p

x′x.

The second concept I will use is the idea of a vector space. If you’re not
familiar with vector spaces, linear combinations and the rank of a matrix, then
sections 1.A.2 and 1.A.3 are for you.20 In brief, I use the expression Sp(X) to
indicate the set of all vectors that can be obtained as a linear combination of the
columns of X.

Consider the space Rn , where you have a vector y and a few vectors x j , with
j = 1. . .k and k < n, all packed in a matrix X. What we want to find is the element
of Sp(X) which is closest to y. In formulae:

ŷ = Argmin
x∈Sp(X)

∥y−x∥;

since the optimal point must belong to Sp(X), the problem can be rephrased as:
find the vector β such that Xβ (that belongs to Sp(X) by construction) is closest
to y:

β̂ = Argmin
β∈Rk

∥y−Xβ∥. (1.14)

If we decide to adopt the Euclidean definition of distance, then the solution
is exactly the same as the one to the statistical problem of Section 1.3.2: since
the “square root” function is monotone, the minimum of ∥y−Xβ∥ is the same as
the minimum of (y−Xβ)′(y−Xβ), and therefore

Argmin
β∈Rk

∥y−Xβ∥ = β̂ = (X′X)−1X′y

from which

ŷ = Xβ̂ = X(X′X)−1X′y.

Note that ŷ is a linear transform of y: you obtain ŷ by premultiplying y by the
matrix X(X′X)−1X′; this kind of transformation is called a “projection”.

20If, on the other hand, you find the topic intriguing and want a rigorous yet very readable book
on this subject, check out Axler (2015).
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1.4.1 Projection matrices

In the previous subsection I pointed out that ŷ is a linear transform of y. The
matrix that operates the transform is said to be a projection matrix.21 To see
why, there’s an example I always use: the fly in the cinema. Imagine you’re sitting
in a cinema, and there’s a fly somewhere in the room. You see a dot on the screen:
the fly’s shadow. The position of the fly is y, the space spanned by X is the screen
and the shadow of the fly is ŷ.

The matrix that turns the position of the fly into the position of its shadow
is X(X′X)−1X′. To be more precise, this matrix projects onto Sp(X) any vector it
premultiplies, and it’s such a handy tool that it has its own abbreviation: PX.

PX ≡ X(X′X)−1X′

and ŷ can be written as ŷ = PXy. The reader may find it amusing that in the
econometrics jargon the PX matrix is sometimes referred to as the “hat” matrix,
because PX “puts a hat on y”.

Figure 1.3: Example: projection of a vector on another one

coordinate 1

coordinate 2

x

y

ŷe

Sp(x)

In this simple example, x = (3,1) and y = (5,3); the reader may want to check that

ŷ = (5.4,1.8) and e = (−0.4,1.2).

The base property of PX is that, by construction, PXX = X, as you can easily
check. Moreover, it’s symmetric and idempotent.

PX = PX
′ PXPX = PX.

We call idempotent something that does not change when multiplied by itself;
for example, the real numbers 0 and 1 are idempotent. A nice way to understand
the meaning of idempotency is by reflecting on its geometrical implication: the

21If I were pedantic, I’d have to say orthogonal projection, because you also get a tool called
oblique projection. We’ll never use it in this book, apart from a passing reference in chapter 6.
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matrix PX takes a vector from wherever it is and moves it onto the closest point of
Sp(X); but if the starting point already belongs to Sp(X), obviously no movement
takes place at all, so applying PX to a vector more than once produces no extra
effects (PXy = PXPXy = PXPX · · ·PXy).

It can also be proven that PX is singular;22 again, this algebraic property can
be given a nice intuitive geometric interpretation: a projection entails a loss
of information, because some of the original coordinates get “squashed” onto
Sp(X): in the fly example, it’s impossible to know the exact position of the fly
from its shadow, because one of the coordinates (the distance from the screen)
is lost. In formulae, the implication of PX being singular is that no matrix A exists
such that A·PX = I, and therefore no matrix exists such that Aŷ = y, which means
that y is impossible to reconstruct from its projection.

In practice, when you regress y on X, you are performing exactly the same
calculations that are necessary to find the projection of y onto Sp(X), and the
vector β̂ contains the coordinates for locating ŷ in that space.

There is another interesting matrix we’ll be using often:

MX = I−PX.

By definition, therefore, MXy = y− ŷ = e. The MX matrix performs a complemen-
tary task to that of PX: when you apply MX to a vector, it returns the difference
between the original point and its projection. We may say that e = MXy contains
the information that is lost in the projection. It is easily checked that MXX = [0]
and as a consequence,

MXPX = PXMX = [0],

where I’m using the notation [0] for “a matrix full of zeros”.
Some more noteworthy properties: MX is symmetric, idempotent and sin-

gular, just like PX.23 As for is rank, it can be proven that its rank equals n − k,
where n is the number of rows of X and r = rk(X).

A fundamental property this matrix enjoys is that every vector of the type
MXy is orthogonal to Sp(X), so it forms a 90° angle with any vector that can be
written as Xλ.24 These properties are very convenient in many cases; a notable
one is the possibility of rewriting the SSR as a quadratic form:25.

e′e = (MXy)′(MXy) = y′MXMXy = y′MXy

22To be specific: it can be proven that rk(PX) = rk(X), so PX is a n ×n matrix with rank k; evi-
dently, in the situation we’re considering here, n > k. Actually, it can be proven that no idempotent
matrix is invertible, the identity matrix being the only exception.

23In fact, MX is itself a projection matrix, but let’s not get into this, ok?
24Let me remind the reader that two vectors are said to be orthogonal if their inner product is

0. In formulae: x ⊥ y ⇔ x′y = 0. A vector is orthogonal to a space if it’s orthogonal to all the points
that belong to that space: y ⊥ Sp(X) ⇔ y′X = 0, so y ⊥ Xλ for any λ.

25A quadratic form is an expression like x′Ax, where x is a vector and A is a square matrix,
usually symmetric. I sometimes use the metaphor of a sandwich and call x the “bread” and A the
“cheese”.
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where the second equality comes from symmetry and the third one from idem-
potency. By the way, the above expression could be further manipulated to re-
obtain equation (1.11):

y′MXy = y′(I−PX)y = y′y−y′PXy = y′y−y′X(X′X)−1X′y = y′y− β̂′(X′y).

Example 1.4
Readers are invited to check (by hand or using a computer program of their
choice) that, with the matrices used in example 1.2, PX equals

PX =



0.3 0.2 0.1 0.4 0 0
0.2 0.175 0.15 0.225 0.125 0.125
0.1 0.15 0.2 0.05 0.25 0.25
0.4 0.225 0.05 0.575 −0.125 −0.125

0 0.125 0.25 −0.125 0.375 0.375
0 0.125 0.25 −0.125 0.375 0.375


and that does in fact satisfy the idempotency property.

In the present context, the advantage of using projection matrices is that the
main quantities that appear in the statistical problem of approximating yi via xi

become easy to represent in a compact and intuitive way:

Magnitude Symbol Formula

OLS Coefficients β̂ (X′X)−1X′y
Fitted values ŷ PXy

Residuals e MXy
Sum of squared residuals SSR e′e = y′MXy

Take for example the special case X = ι. As we now know, the optimal solu-
tion to the statistical problem is using the sample average, so β̂ = Ȳ : the fitted
values are Pιy = ι · Ȳ and the residuals are simply the deviations from the mean:
e = Mιy = y−ι · Ȳ . Finally, deviance can be written as y′Mιy.

1.4.2 Measures of fit

We are now ready to tackle a very important issue. How good is our model? We
know that β̂ is the best we can choose if we want to approximate yi via ŷi =
x′iβ, but nobody guarantees that our best should be particularly good. A natural
way to rephrase this question is: how much information are we losing in the
projection? We know the information loss is minimal, but it could still be quite
large.

In order to answer this question, let us start from the following two inequal-
ities:

0 ≤ ŷ′ŷ = y′PXy ≤ y′y; (1.15)
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the first one is rather obvious, considering that ŷ′ŷ is a sum of squares, and
therefore non-negative. The other one, instead, can be motivated via y′PXy =
y′y−y′MXy = y′y−e′e; since e′e is also a sum of squares, y′PXy ≤ y′y. If we divide
everything by y′y, we get

0 ≤ ŷ′ŷ
y′y

= 1− e′e
y′y

= R2
u ≤ 1. (1.16)

This index bears the name R2
u (“uncentred R-squared”), and, as the above

expression shows, it’s bounded by construction between 0 and 1. It can be given
a very intuitive geometric interpretation: evidently, in Rn the points 0, y and ŷ
form a right triangle (see also Figure 1.3), in which you get a “good” leg, that is ŷ,
and a “bad” one, the segment linking ŷ and y, which is congruent to e: we’d like
the bad leg to be as short as possible. After Pythagoras’ theorem, the R2

u index
gives us (the square of) the ratio between the good leg and the hypotenuse. Of
course, we’d like this ratio to be as close to 1 as possible.

Example 1.5
With the matrices used in example 1.2, you get that y′y = 24 and e′e = 4.325;
therefore,

R2
u = 1− 4.325

24
≃ 81.98%

The R2
u index makes perfect sense geometrically, but hardly any from a sta-

tistical point of view: the quantity y′y has a natural geometrical interpretation,
but statistically it doesn’t mean much, unless we give it the meaning

y′y = (y−0)′(y−0),

that is, the SSR for a model in which ŷ = 0. Such a model would be absolutely
minimal, but rather silly as a model. Instead, we might want to use as a bench-
mark our initial proposal described in section 1.2, where X = ι. In this case,
the SSR is just the deviance of y, that is the sum of squared deviations from the
mean, which can be written as y′Mιy.

If ι ∈ Sp(X) (typically, when the model contains a constant term, but not
necessarily), then a decomposition similar to (1.15) is possible: since y = ŷ+e,
then obviously

y′Mιy = ŷ′Mιŷ+e′Mιe = ŷ′Mιŷ+e′e (1.17)

because if ι ∈ Sp(X), then Mιe = e.26 Therefore,

0 ≤ e′e ≤ y′Mιy,

26Subsection 1.A.8 should help the readers who want this result proven.
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where the second inequality comes from the fact that ŷ′Mιŷ is a sum of squares
and therefore non-negative.27 The modified version of R2 is known as centred
R-square:

R2 = 1− e′e
y′Mιy

. (1.18)

The concept of R2 that we normally use in econometrics is the centred one, and
this is why the index defined at equation (1.16) has the “u” as a footer (from the
word uncentred).

In a way, the definition of R2 is implicitly based on a comparison between
different models: one which uses all the information contained in X and another
(smaller) one, which only uses ι, because y′Mιy is just the SSR of a model in
which we regress y on ι. Therefore, equation (1.18) can be read as a way to com-
pare the loss function for those two models.

In fact, this same idea can be pushed a little bit further: imagine that we
wanted to compare model A and model B, in which B contains the same ex-
planatory variables as A, plus some more. In practice:

Model A y ≃ Xβ

Model B y ≃ Xβ+Zγ = Wθ

where W = [X Z] and θ =
[
β
γ

]
.

The matrix Z contains additional regressors to model A. It is important to
realise that the information contained in Z could be perfectly relevant and le-
gitimate, but also ridiculously useless. For example, a model for the academic
performance of A. S. Tudent could well contain, as an explanatory variable, the
number of pets A. S. Tudent’s neighbours have, or the number of consonants in
A. S. Tudent’s mother’s surname.

It’s easy to prove that the SSR for model B is always smaller than that for A:

SSRA = e′aea SSRB = e′beb

where ea = MXy and eb = MWy. Since X ∈ Sp(W), clearly28 PWX = X and therefore

MWMX = MW,

which implies MWea = eb ; as a consequence,

SSRB = e′beb = e′aMWea = e′aea −e′aPWea ≤ e′aea = SSRA .

More generally, if Sp(W) ⊃ Sp(X), then y′MWy ≤ y′MXy for any vector y.

27Note that, in the rare but not impossible case ι ∉ Sp(X), it is perfectly possible that e′e < y′Mιy,
so the centred version of the R2 index may be negative.

28Some may say: “well, not so clearly”. OK, here goes: X ∈ Sp(W) implies that there is a matrix H
such that X = WH. Hence, PWX = PWWH = WH = X.
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The implication is: if we had to choose between A and B by using the SSR
as a criterion, model B would always be the winner, no matter how absurd the
choice of the variables Z is. The R2 index isn’t any better: proving that

SSRB ≤ SSRA ⇒ R2
B ≥ R2

A .

is a trivial exercise, so if you add any explanatory variable to an existing model,
the R2 index cannot become smaller.

A possible solution could be using a slight variation of the index, which goes
by the name of adjusted R2:

R
2 = 1− e′e

y′Mιy

n −1

n −k
, (1.19)

where n is the size of our dataset and k is the number of explanatory variables. It
is easy to prove that if you add silly variables to a model, so that the SSR changes
only slightly, the n − k in the denominator should offset that effect. However,
as we will see in section 3.3.2, the best way of choosing between models is by
framing the decision in a proper inferential context.

One final thing on the R2 index. Although it’s perfectly legitimate to think
that 0 is “bad” and 1 is “good”, it would be unwise to automatically consider a
number close to 0 (say, 10%) as “rather bad” or, symmetrically, a number close
to 1 (say, 90%) as “pretty good”: a model is an approximate description of the
dependent variable yi , insofar as the explanatory variables xi contain relevant
information. It may well be that the main determinants of yi are unobservable,
and therefore xi only manages to capture a small portion of the overall disper-
sion of yi . In these cases, the R2 index will be very small, but it doesn’t neces-
sarily follow that our model is worthless: the relationship that it reveals between
the dependent variable and the explanatory variables may be extremely valu-
able, even if the fraction of variance we explain is small. But again, this idea is
more properly framed as a statistical inference issue, which is what chapter 3 is
about.

1.4.3 Reparametrisations

Suppose that there are two researchers (Alice and Bob), who have the same
dataset, which contains three variables: yi , xi and zi . Alice performs OLS on
the model

yi ≃β1xi +β2zi

Bob, instead, computes the new variables si = xi + zi and di = xi − zi and com-
putes his coefficients using the transformed regressors as

yi ≃ γ1si +γ2di .

How different will the two models be? Before delving into algebra, it is worth
observing that Alice and Bob are using the same data, and it would be surprising
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if they arrived at different conclusions. Moreover, Alice and Bob’s choices are
simply a matter of taste, and there’s no “right” way to set up a model. One could
compute si and di from xi and zi , or the other way around. In other words,
the set of explanatory variables Alice and Bob are using are invertible transfor-
mations of one another, and therefore must contain the same information, ex-
pressed in a different way.

With this in mind, a relationship between the two sets of parameters is easy
to find: start from Bob’s model

yi ≃ γ1si +γ2di =
= γ1(xi + zi )+γ2(xi − zi ) =
= (γ1 +γ2)xi + (γ1 −γ2)zi ,

soβ1 = (γ1+γ2) andβ2 = (γ1−γ2). Clearly, this entails that Bob’s parameters can

be recovered from Alice’s as γ1 = β1+β2

2 and γ2 = β1−β2

2 . It is perfectly legitimate
to surmise that the two models are in fact equivalent, and should give the same
fit.

More generally, it is possible to show that Alice’s model can be written as
y ≃ Xβ and Bob’s model as y ≃ Zγ, where Z = XA and A is square and invertible.
In the example above,

A =
[

1 1
1 −1

]
This simple fact has a very nice consequence on the respective projection

matrices:

PZ = Z(Z′Z)−1Z′

= XA(A′X′XA)−1 A′X′

= XA(A)−1(X′X)−1(A′)−1 A′X′

= X(X′X)−1X′ = PX,

that is, the two projection matrices are the same.29 Therefore, Sp(X) = Sp(Z): Al-
ice and Bob are projecting y onto the same space. It should be no surprise that
they will get the same fitted values ŷ and the same residuals e. As a further con-
sequence, all the quantities that depend on the projection will be the same, such
as the sum of squared residuals, the R2 index and so on. As a matter of fact, Al-
ice’s and Bob’s models are just the same model written in a different way, by a
different representation choice, which uses different parameters. The relation-
ship between the two sets of parameters is easy to show: since ŷ is the same for
the two models, then it must also hold

ŷ = Zγ̂ = XAγ̂ = Xβ̂.

29If you find some of the passages above unclear, then Section 1.A.4 may be useful.
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and therefore β̂ = Aγ̂ (and of course γ̂ = A−1β̂). The word we use in this con-
text is reparametrisation: Bob’s model is a reparametrisation of Alice’s and vice
versa. The difference between the two is just aesthetic, so to speak: in some
cases, it could be more natural to interpret the coefficients of a model written in
a certain way than another. This is a very common trick in applied economics,
and an egregious example will be given in Section 5.5.

1.4.4 The Frisch-Waugh theorem

Projection matrices are also useful to illustrate a remarkable result, known as the
Frisch-Waugh theorem:30 given a model of the kind y = Xβ̂+e, split X vertically
into two sub-matrices Z and W, and β accordingly

ŷ = [
Z W

][
β̂1

β̂2

]
Applying equation (1.7) we get the following:[

β̂1

β̂2

]
=

[
Z′Z Z′W
W′Z W′W

]−1 [
Z′y
W′y

]
It would seem that finding an analytical closed form for β1 and β2 as func-

tions of Z, W and y is quite difficult; fortunately, it isn’t so: start from

y = ŷ+e = Zβ̂1 +Wβ̂2 +e

and premultiply the equation above by MW:

MWy = MWZβ̂1 +e,

since MWW = 0 (by construction) and MWe = e (because e = MXy, but Sp(W) ⊂
Sp(X), so MWMX = MX).31 Now premultiply by Z′:

Z′MWy = Z′MWZβ̂1

since Z′e = 0, because Z′MX = 0. As a consequence,

β̂1 =
(
Z′MWZ

)−1 Z′MWy (1.20)

Since MW is idempotent, an alternative way to write (1.20) could be

β̂1 =
[
(Z′MW)(MWZ)

]−1 (Z′MW)(MWy);

30In fact, many call this theorem the Frisch-Waugh-Lovell theorem, as it was Micheal Lovell
who, in a paper appeared in 1963, generalised the original result that Frisch and Waugh had ob-
tained 30 years earlier to its present form.

31If you’re getting a bit confused, you may want to take a look at section 1.A.8.
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therefore β̂1 is the vector of the coefficients for a model in which the dependent
variable is the vector of the residuals of y with respect to W and the regressor
matrix is the matrix of residuals of Z with respect to W. For symmetry reasons,
you also obviously get a corresponding expression for β̂2:

β̂2 =
(
W′MZW

)−1 W′MZy

In practice, a perfectly valid algorithm for computing β̂1 could be:

1. regress y on W; take the residuals and call them ỹ;

2. regress each column of Z on W; form a matrix with the residuals and call it
Z̃;

3. regress ỹ on Z̃: the result is β̂1.

This result is not just a mathematical curiosity, nor a computational gim-
mick: it comes in handy in a variety of situations for proving theoretical results.
For example, we’ll use this theorem more than once in chapters 3, 6 and 7.

An interpretation that the Frisch-Waugh theorem can be given is the follow-
ing: the coefficients for a group of regressors measure the response of ŷ having
taken into account the other ones or, as we say, “everything else being equal”.
The phrase normally used in the profession is “controlling for”. For example:
suppose that y contains data on the wages for n employees, that Z is their educa-
tion level and W is a geographical dummy variable (North vs South). The vector
ỹ = MWy will contain the differences between the individual wages and the aver-
age wage of the region where they live, in the same way as Z̃ = MWZ contains the
data on education as deviation from the regional mean. Therefore, regressing ỹ
on Z̃ is a way to implicitly take into account that differences in wages between
regions may depend on different educational levels. Consequently, by regressing
y on both the “education” variable and the regional dummy variable, the coeffi-
cient for education will measure its effect on wages controlling for geographical
effects.

1.5 An example

For this example, I got some data from the 2016 SHIW dataset;32 our dataset
contains 1917 individuals, who are full-time employees.33 We are going to use
four variables, briefly described in Table 1.1. Our dependent variable is going to
be w , the natural logarithm of the hourly wage in Euro. The set of explanatory

32SHIW is the acronym for “Survey on Household Income and Wealth”, provided by the Bank of
Italy, which is a very rich and freely available dataset: see
https://www.bancaditalia.it/statistiche/tematiche/indagini-famiglie-imprese/
bilanci-famiglie/.

33I can send you the details on the construction of the dataset from the raw data, if you’re inter-
ested. Just send me an email.

https://www.bancaditalia.it/statistiche/tematiche/indagini-famiglie-imprese/bilanci-famiglie/
https://www.bancaditalia.it/statistiche/tematiche/indagini-famiglie-imprese/bilanci-famiglie/
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variables was chosen in accordance with some vague and commonsense idea
of the factors that can account for differences in wages. We would expect that
people with higher education and/or longer work experience should command
a higher wage, but we would also use the information on gender, because we are
aware of an effect called “gender gap”, that we might want to take into account.

Variable Description Mean Median S. D. Min Max

w Log hourly wage 2.22 2.19 0.364 0.836 4.50
g dummy, male = 1 0.601 1.00 0.490 0.00 1.00
e education (years) 11.7 13.0 3.60 0.00 21.0
a work experience (years) 27.4 29.0 10.9 0.00 58.0

Table 1.1: Wage example

The data that we need to compute β̂ are:

X′X =


1917 1153 22493 52527
1153 1153 13299 32691

22493 13299 288731 594479
52527 32691 594479 1666703



X′y =


4253.3716
2633.5507

51038.9769
116972.6710


y′y = 9690.62

The reader is invited to check that the inverse of X′X is (roughly)

(X′X)−1 = 10−5 ·


1356.9719 −120.7648 −63.9068 −17.6027
−120.7648 220.4901 1.2056 −0.9488
−63.9068 1.2056 4.4094 0.4177
−17.6027 −0.9488 0.4177 0.4844


and therefore we have

β̂ =


1.3289
0.1757
0.0526
0.0061

 e′e = 177.9738 R2 = 29.76%

but it is much more common to see results presented in a table like Table 1.2.
At this point, there are quite a few numbers in the table above that we don’t

know how to read yet, but we have time for this: chapter 3 is devoted entirely to
this purpose. The important thing for now is that we have a reasonably efficient
way to summarise the information on wages via the following model:

ŵi = 1.33+0.176gi +0.053ei +0.006ai
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coefficient std. error t-ratio p-value
----------------------------------------------------------
const 1.32891 0.0355309 37.40 2.86e-230 ***
male 0.175656 0.0143224 12.26 2.42e-33 ***
educ 0.0526218 0.00202539 25.98 1.02e-127 ***
wexp 0.00608615 0.000671303 9.066 2.97e-19 ***

Mean dependent var 2.218765 S.D. dependent var 0.363661
Sum squared resid 177.9738 S.E. of regression 0.305015
R-squared 0.297629 Adjusted R-squared 0.296528

Table 1.2: Wage example — OLS output

where wi is the log wage for individual i , gi is their gender, and the rest follows.
In practice, if we had a guy who studied for 13 years and has worked for 20

years, we would guess that the log of his hourly wage would be

1.33+0.176 ·1+0.052 ·13+0.006 ·20 ≃ 2.31

which is roughly €10 an hour (which sounds reasonable).
The quality of the approximation is not bad: the R2 index is roughly 30%,

which means that if we compare the loss functions for our model and the one
we get if we has just used the average wage, we get

0.298 = 1− e′e
y′Mιy

=⇒ e′e = 0.702 ·y′Mιy;

if you consider the dazzling complexity of the factors that potentially dictate why
two individuals get different wages, the fact that a simple linear rule involving
only three variables manages to describe 30% of the heterogeneity between in-
dividual is surprisingly good.

Of course, nothing is stopping us from interpreting the sign and magnitude
of our OLS coefficients: for example, the coefficient for education is about 5%,
and therefore the best way to use the educational attainment variable for sum-
marising the data we have on wages is by saying that each year of extra edu-
cation gives you a guess which is about 5% higher.34 Does this imply that you
get positive returns to education in the Italian labour market? Strictly speaking,
it doesn’t. This number yields a fairly decent approximation to our dataset of
1917 people. To assume that the same regularity should hold for others is totally
unwarranted. And the same goes for the gender gap: it would seem that being
male shifts your fitted wage by 17.5%. But again, at the risk of being pedantic,
all we can say is that among our 1917 data points, males get (on average) more

34One of the reasons why we economists love logarithms is that they auto-magically turn abso-

lute changes into relative ones: β2 = dw
de = dln(W )

de = 1
W

dW
de ≃ ∆W /W

∆e . In other words, the coeffi-
cient associated with the educational variable gives you a measure of the relative change in wage
in response to a unit increase in education.
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money than females with the same level of experience and education. Coinci-
dence? We should be wary of generalisations, however tempting they may be to
our sociologist self.

And yet, these thoughts are perfectly natural. The key ingredient to give sci-
entific legitimacy to this sort of mental process is to frame it in the context of
statistical inference, which is the object of the next chapter.

1.A Assorted results

This section contains several results on matrix algebra, in the simplest form pos-
sible. If you want an authoritative reference, my advice is to get one of Horn and
Johnson (2012), Abadir and Magnus (2005) or Lütkepohl (1996), which are all ex-
cellent and use a notation and style that is close to what we use in econometrics.

1.A.1 Matrix differentiation rules

The familiar concept of a derivative of a function of a scalar can be generalised
to functions of a vector

y = f (x),

where you have a real number y for every possible vector x. For example, if
y = x + w z , you can define the vector x = [x, w, z]′. The generalisation of the
concept of derivative is what we call the gradient, that is a vector collecting the
partial derivatives with respect to the corresponding elements of x. We adopt the
convention by which the gradient is a row vector; hence, for the example above,
the gradient is

∂y

∂x
=

[
∂y
∂x

∂y
∂w

∂y
∂z

]
= [

1 zw z−1 log(w) ·w z
]

The cases we’ll need are very simple, because they generalise the simple uni-
variate functions y = ax and y = ax2. Let’s begin by

f (x) = a′x =
n∑

i=1
ai xi ;

evidently, the partial derivative of f (x) with respect to xi is just ai ; by stacking all
the partial derivatives into a vector, the result is just the vector a, and therefore

d

dx
a′x = a′

note that the familiar rule d
dx ax = a is just a special case when a and x are

scalars.
As for the quadratic form

f (x) = x′Ax =
n∑

i=1

n∑
j=1

ai j xi x j ;
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it can be proven easily (but it’s rather boring) that

d

dx
x′Ax = x′(A+ A′)

and of course if A is symmetric (as in most cases), then d
dx x′Ax = 2 ·x′A. Again,

note that the scalar case d
dx ax2 = 2ax is easy to spot as a special case.

One last thing: the convention by which differentiation expands “by row”
turns out to be very useful because it makes the chain rule for the derivatives
“just work” automatically. For example, suppose you have y = Ax and z = By;
of course, if you need the derivative of z with respect to x you may proceed by
defining C = B · A and observing that

z = B (Ax) =C x =⇒ ∂z

∂x
=C

but you may also get the same result via the chain rule, as

∂z

∂x
= ∂z

∂y

∂y

∂x
= B · A =C .

1.A.2 Vector spaces

Here we will draw heavily on the fact that a vector with n elements can be thought
of as a point in an n-dimensional space: a scalar is a point on the real line, a vec-
tor with two elements is a point on a plane, and so on. Actually, the notation
x ∈Rn is a concise way of saying that x has n elements.

There are two basic operations we can perform on vectors: (i) multiplying a
vector by a scalar and (ii) summing two vectors. In both cases, the result you get
is another vector. Therefore, if you consider k vectors with n elements each, it
makes sense to define an operation called a linear combination of them:

z =λ1x1 +λ2x2 +·· ·+λk xk =
k∑

j=1
λ j x j ;

note that the above could have been written more compactly in matrix notation
as z = Xλ, where X is a matrix whose columns are the vectors x j and λ is a k-
element vector.

The result is, of course, an n-element vector, that is a point in Rn . But the
k vectors x1, . . . ,xk are also a cloud of k points in Rn ; so we may ask ourselves if
there is any kind of geometrical relationship between z and x1,x2, . . . ,xk .

Begin by considering the special case k = 1. Here z is just a multiple of x1;
longer, if |λ1| > 1, shorter otherwise; mirrored across the origin if λ1 < 0, in the
same quadrant otherwise. Easy, boring. Note that, if you consider the set of all
the vectors z you can obtain by all possible choices for λ1, you get a straight line
going through the origin, and of course x1; this set of points is called the space
spanned, or generated by x1; or, in symbols, Sp(x1). It’s important to note that
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this won’t work if x1 = 0: in this case, Sp(x1) is not a straight line, but rather a
point (the origin).

If you have two vectors, instead, the standard case occurs when they are not
aligned with respect to the origin. In this case, Sp(x1,x2) is a plane and z =λ1x1+
λ2x2 is a point somewhere on that plane. Its exact location depends on λ1 and
λ2, but note that

• by a suitable choice of λ1 and λ2, no point on the plane is unreachable;

• no matter how you choose λ1 and λ2, you can’t end up outside the plane.

However, if x2 is a multiple of x1, then x2 ∈ Sp(x1) and Sp(x1,x2) = Sp(x1), that is
a line, and not a plane. In this case, considering x2 won’t make Sp(x1) “grow” in
dimension, since x2 is already contained in it, so to speak.

In order to fully generalise the point, we use the concept of linear indepen-
dence: a set of k vectors x1, . . . ,xk is said to be linearly independent if none of
them can be expressed as a linear combination of the remaining ones.35 The
case I called “standard” a few lines above happens when x1 and x2 are linearly
independent.

1.A.3 Rank of a matrix

If we take k vectors with n elements each and we arrange them side by side so as
to form an (n ×k) matrix (call it X), the maximum number of linearly indepen-
dent columns of X is the rank of X (rk(X) in formulae). The rank function enjoys
several nice properties:36

1. 0 ≤ rk(X) ≤ k (by definition);

2. rk(X) = rk
(
X′);

3. 0 ≤ rk(X) ≤ min(k,n) (by putting together the previous two); but if rk(X) =
min(k,n), and the rank hits its maximal value, the matrix is said to have
“full rank”;

4. rk(A ·B) ≤ min(rk(A) , rk(B)); but in the special case when A′ = B , then
equality holds, and rk

(
B ′B

)= rk
(
BB ′)= rk(B).

We can use the rank function to measure the dimension of the space spanned
by X. For example, if rk(X) = 1, then Sp(X) is a line, if rk(X) = 2, then Sp(X) is a
plane, and so on. This number may be smaller than the number of columns of
X.

35The usual definition is that x1, . . . ,xk are linearly independent if no linear combination∑k
j=1λ j x j is zero unless all the λ j are zero. The reader is invited to check that the two defini-

tions are equivalent.
36I’m not proving them for the sake of brevity: if you’re curious, have a look at https://en.

wikipedia.org/wiki/Rank_(linear_algebra).

https://en.wikipedia.org/wiki/Rank_(linear_algebra)
https://en.wikipedia.org/wiki/Rank_(linear_algebra)
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A result we will not use very much (only in chapter 6), but is quite useful to
know in more advanced settings is that, if you have a matrix A with n rows, k
columns and rank r , it is always possible to write it as

A =UV ′

where U is (n × r ), V is (k × r ), and both have rank r . For example, the matrix

A =
1 0

0 0
0 0


can be written as

A =
1

0
0

[
1 0

]
where

U =
1

0
0

 and V =
[

1
0

]
.

Note that such decomposition is not unique: there are infinitely many pairs
of matrices that satisfy the decomposition above. The example above would
have worked just as well with

P =
−10

0
0

 and Q =
[−0.1

0

]

and the reader can easily verify that A =UV ′ = PQ ′.

1.A.4 Rank and inversion

A square matrix A is said to be “invertible” if there is another matrix B such that
AB = B A = I , where I is the identity matrix. if B exists, it’s also notated as A−1

and called the inverse of A; otherwise, A is said to be singular.
The mathematically accepted way to say “A is non-singular” is by writing

|A| ̸= 0, where the symbol |A| is used for the determinant of the matrix A, which
is a scalar function such that |A| = 0 if and only if A is singular.37

The concept of matrix inversion becomes quite intuitive if you look at it ge-
ometrically. Take a vector x with n elements. If you pre-multiply it by a square
matrix A you get another vector with n elements:

y = A x;

37You almost never need to compute a determinant by hand, so I’ll spare you its definition. If
you’re curious, there’s always Wikipedia.
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in practice, A defines a displacement that takes you from a point in Rn to a point
in the same space. Is it possible to “undo” this movement? If A takes you from
x to y, is there a matrix B that performs the return trip? If such a matrix exists,
then

x = B y.

The only way to guarantee that this happens for every pair of vectors x and y is
to have

AB = B A = I .

Now, note that y is a linear combination of the columns of A; intuition sug-
gests that all the n separate pieces of information originally contained in x can
get preserved during the trip only if the rank of A is n. In fact, it can be proven
formally that if A is an (n ×n) matrix, then rk(A) = n is a necessary and suffi-
cient condition for A−1 to exist: for square matrices, full rank is the same thing
as invertibility.

The world of matrix algebra is populated with
results that appear unintuitive when you’re
used to the algebra of scalars. A notable one
is: any matrix A (even singular ones; even
non-square ones) admits a matrix B such that
AB A = A and B AB = B ; B is called the “Moore-
Penrose” pseudo-inverse, or “generalised” in-

verse. For example, the matrix A =
[

1 0
0 0

]
is

singular, and therefore has no inverse. How-
ever, it’s got a pseudo-inverse, which is A it-
self. In fact, all projection matrices are their
own pseudo-inverses.

Roger Penrose has been awarded the 2020 No-
bel prize for physics. Not for the generalised in-
verse, but you get the idea of how brilliant the
guy is.

Computing an inverse in practice is very boring: this is one of those tasks
that computers are very good at, while humans are not. The only interesting
cases for which I’m giving you instructions on how to invert a matrix by hand
are:

1. when A is 2×2. In this case, it’s easy to memorise the explicit formula for
the inverse: (

a b
c d

)−1

= 1

ad −bc

(
d −b

−c a

)
;

2. when A is block-diagonal, that is it can be written as

A =


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 . . . Am

 ;

if the inverse exists, it has the same structure:

A−1 =


A−1

1 0 · · · 0
0 A−1

2 · · · 0
...

...
. . .

...
0 0 . . . A−1

m

 .
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There are many nice properties that invertible matrices enjoy. For example:

• the inverse, if it exists, is unique; that is, if AB = I = AC , then B =C ;

• the inverse of a symmetric matrix is also symmetric;

• the transpose of the inverse is the inverse of the transpose ((A′)−1 = (A−1)′);

• if a matrix is positive definite (see section 1.A.7), then its inverse is positive
definite too;

• if A is invertible, then the only solution to Ax = 0 is x = 0; conversely, if A
is singular, then there exists at least one non-zero vector such that Ax = 0.

• if A and B are invertible, then (AB)−1 = B−1 A−1.

1.A.5 Step-by-step derivation of the sum of squares function

The function we have to differentiate with respect to β is

L(β) = e(β)′e(β);

the elegant way to do this is by using the chain rule:

∂L(β)

∂β
= ∂e(β)

∂β

′
e(β)+

[
e(β)′

∂e(β)

∂β

]′
= 2 · ∂e(β)

∂β

′
e(β);

the reason why we have to transpose the second element of the sum in the equa-
tion above is conformability: you can’t sum a row vector and a column vector.

Therefore, since e(β) is defined as e(β) = y−Xβ, we have

∂e(β)

∂β
=−X

and the necessary condition for minimisation is ∂L(β)
∂β = −2X′e = 0, which of

course implies equation 1.9.

1.A.6 Numerical collinearity

Collinearity can sometimes be a problem as a consequence of finite precision of
computer algebra.38 For example, suppose you have the following matrix X:

X =


1 1
2 2
3 3
4 4+ϵ


38If you find this kind of things intriguing I cannot but recommend chapter 1 in Epperson

(2013); actually, the whole book!
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ϵ (X′X)−1(X′X)

0.1

[
1 0

9.09495e −13 1

]
0.01

[
1 −1.16415e −10
0 1

]
0.001

[
1 7.45058e −09

2.23517e −08 1

]
0.0001

[
0.999999 0

9.53674e −07 1

]
1e-05

[
0.999756 0

0 0.999878

]
1e-06

[
0.992188 0

0 0.992188

]
1e-07

[
0.5 0
0.5 1

]
1e-08

[
1 1
1 1

]

Table 1.3: Numerical precision

For ϵ> 0, the rank of X is, clearly, 2; nevertheless, if ϵ is a very small number, a
computer program39 goes berserk; technically, this situation is known as quasi-
collinearity. To give you an example, I used gretl to compute (X′X)−1(X′X) for
decreasing values of ϵ; Table 1.3 contains the results. Ideally, the right-hand side
column in the table should only contain identity matrices. Instead, results are
quite disappointing for ϵ = 1e − 05 or smaller. Note that this is not a problem
specific to gretl (which internally uses the very high quality LAPACK routines),
but a consequence of finite precision of digital computers.

This particular example is easy to follow, because X is a small matrix. But if
that matrix had contained hundreds or thousands of rows, things wouldn’t have
been so obvious.

1.A.7 Definiteness of square matrices

A square matrix B is positive definite (pd for short) if the quadratic form x′Bx
returns a positive number for any choice of x and positive semi-definite (psd for
short) if x′Bx ≥ 0.

If B is positive (semi-)definite, then−B is negative (semi-)definite. Of course,
it is entirely possible that x′Bx can take positive or negative values depending
on x, in which case B is said to be indefinite. If B is semi-definite and invertible,
then it’s also definite. Figure 1.4 may be helpful.40 Ofter, the expressions “posi-
tive definite” and “positive semi-definite” are abbreviated as “pd” and “psd”, re-

39I should say: a computer program not explicitly designed to operate with arbitrary precision.
There are a few, but no statistical package belongs to this category, for very good reasons.

40In fact, figure 1.4 contains a slight inaccuracy. Finding it is left as an exercise to the reader.
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Figure 1.4: Square matrices
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spectively.
There are many interesting facts on psd matrices. A nice one is: if a matrix

H exists such that B = H H ′, then B is psd.41 This, for example, gives you a quick
way to prove that that I is pd and PX is psd.

Some people use a special symbol for the cases when the difference between
two matrices is pd or psd. The expression A ≻ B means that A −B is pd, while
A ⪰ B means that A−B is psd.

1.A.8 A few more results on projection matrices

Consider an n-dimensional space and a matrix X with n rows, k columns and
full rank. Of course, the columns of this matrix define a k-dimensional subspace
that we call Sp(X).

We would like to say something about the space spanned by matrices de-
fined as W = X · A. There are two cases of interest. The first one arises when A
is square and invertible: in this case, Sp(X) = Sp(W), so PX = PW. The result is
easy to prove: for any y ∈ Sp(X), there must be a vector β such that Xβ = y. But
then, by choosing γ = A−1β, it’s easy to see that y can also be written as Wγ and
therefore y ∈ Sp(W); by a similar reasoning, it can also be proven that if y ∈ Sp(W)
then y also belongs to Sp(X), and therefore

y ∈ Sp(X) ⇐⇒ y ∈ Sp(W)

and the two sets are the same.
The equivalence of the two projection matrices can also be proven directly

by using elementary results on matrix inversion (see section 1.A.4):

PW = XA
[

A′X′XA
]−1 A′X′ = XA A−1 [

X′X
]−1 (A′)−1 A′X′ = X

[
X′X

]−1 X′ = PX.

41Easy to prove, too. Try.
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Let’s now consider the case when A is a matrix with rank less than k (for
example, a column vector). Evidently, any linear combination of the columns of
W is also a linear combination of the columns of X, and therefore each column
of W is an element of Sp(X). As a consequence, any vector that belongs to Sp(W)
also belongs to Sp(X).

The converse is not true, however: some elements of Sp(X) do not belong
to Sp(W) (allow me to skip the proof). In short, Sp(W) is a subset of Sp(X); in
formulae, Sp(W) ⊂ Sp(X).

A typical example occurs when W contains some of the columns of X, but
not all. Let’s say, without loss of generality, that W contains the leftmost k − p
columns of X. In this case, the matrix A can be written as

A =
[

I
0

]
where the identity matrix above has k − p rows and columns, and the 0 zero
matrix below has p and k −p columns.

PW MW PX MX

PW PW 0 PW 0
MW 0 MW PX −PW MX

PX PW PX −PW PX 0
MX 0 MX 0 MX

Important: it is assumed that Sp(W) ⊂ Sp(X). All products commute.

Table 1.4: Projection matrices “multiplication table”

In this situation, the property PXW = PXXA = XA = W implies some interest-
ing consequences on the projection matrices for the spaces Sp(W) and Sp(X),
that can be summarised in the “multiplication table” shown in Table 1.4. The
reader is invited to prove them; it shouldn’t take long.
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Chapter 2

Some statistical inference

2.1 Why do we need statistical inference?

So far, we have followed a purely descriptive approach, trying to find the smartest
possible method for compressing as much information as we can from the orig-
inal data into a small, manageable container.

However, we are often tempted to read the evidence we have in a broader
context. Strictly speaking, any statistic we compute on a body of data tells us
something about those data, and nothing else. Thus, the OLS coefficients we
compute are nothing but a clever way to squeeze the relevant information out
of our dataset; however, we would often like to interpret the size and the mag-
nitudes of the coefficients that we get out of our OLS calculations as something
that tells us a more general story. In other words, we would like to perform what
in philosophical language is known as induction.

DAVID HUME

In the 18th century, the Scottish philosopher David
Hume famously argued against induction.

When it is asked, What is the nature of all
our reasonings concerning matter of fact? the
proper answer seems to be, that they are
founded on the relation of cause and effect.
When again it is asked, What is the foundation
of all our reasonings and conclusions concern-
ing that relation? it may be replied in one word, Experience. But if
we still carry on our sifting humour, and ask, What is the founda-
tion of all conclusions from experience? this implies a new question,
which may be of more difficult solution and explication.1

Inductive reasoning can be broadly formalised as follows:

1. Event X has always happened.

1D. Hume, An Enquiry Concerning Human Understanding (1748).

41
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2. The future will be like the past.

3. Therefore, event X will happen in the future.

Even if you could establish statement 1 beyond any doubt, statement 2 is ba-
sically an act of faith. You may believe in it, but there is no rational argument one
could convincingly use to support it. And yet, we routinely act on the premise of
statement 2. Hume considered our natural tendency to rely on it as a biological
feature of the human mind. And it’s a good thing: if we didn’t have this fun-
damental psychological trait, we’d be unable to learn anything at all;2 the only
problem is, it’s logically unfounded.

Statistical inference is a way to make an inductive argument more rigorous
by replacing statement number 2 with some assumptions that translate into for-
mal statements our tendency to generalise, by introducing uncertainty into the
picture. Uncertainty is the concept we use to handle situations in which our
knowledge is partial. So for example we cannot predict which number will show
up when we roll a die, although in principle it would be perfectly predictable,
given initial conditions, using the laws of physics. We simply don’t have the re-
sources to perform such a monster computation, so we represent our imperfect
knowledge through the language of probability, or, more correctly, via a proba-
bilistic model; then, we assume that the same model will keep being valid in the
future. Therefore, if we rolled a die 10 times and obtained something like

x = [1,5,4,6,3,3,2,6,3,4]

we would act on the assumption that if we keep rolling the same die we will
observe something that, in our eyes, looks “just as random” as x. To put it differ-
ently, our aim will not be to predict exactly which side the die will land on, but
rather to make statements on how surprising or unsurprising certain outcomes
will be.

Therefore, we use the idea of a Data Generating Process, or DGP. We assume
that the DGP is the mechanism that Nature (or any divinity of your choice) has
used to produce the data we observe, and will continue doing so for the data
we have not observed yet. By describing the DGP via a mathematical structure
(usually, but not necessarily, via a probability distribution), we try to come up
with statistics T (x) whose aim is not as much to describe the available data x,
but rather to describe the DGP that generated x, and therefore, to provide us
with some insight that goes beyond merely descriptive statistics.

Of course, in order to accomplish such an ambitious task, we need a set of
tools to represent imperfect knowledge in a mathematical way. This is why we
need probability theory.

2To be fair, this only applies to what Immanuel Kant called “synthetic” propositions. But maybe
I’m boring you?
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2.2 A crash course in probability

Disclaimer: in this section, I’ll just go quickly though a few concepts that the
reader should already be familiar with; as a consequence, it is embarrassingly
simplistic and probably quite misleading in many ways. The reader who wants
to go for the real thing might want to read (in increasing order of difficulty): Gal-
lant (1997); Bierens (2011); Davidson (1994); Billingsley (1986). Having said this,
let’s go ahead.

2.2.1 Probability and random variables

ANDREJ

NIKOLAEVIČ

KOLMOGOROV

The concept of probability has been the object of philo-
sophical debate for centuries. The meaning of probability
is still open for discussion,3 but fortunately the syntax of
probability is clear and undisputed since the great Soviet
mathematician Andrej Nikolaevič Kolmogorov made prob-
ability a proper branch of measure theory.

The meaning I give to the word probability here is
largely operational: probability is a number between 0 and
1 that we attach to something called an event. Loosely
speaking, an event is a statement that in our eyes could be
conceivably true or false. Formally, an event is defined as a
subset of an imaginary set, called the state space, and usu-
ally denoted by the letter Ω, whose elements ω are all the
states of the world that our mind can conceive as possible.
Probability is a function of subsets ofΩ, which obeys a few properties the reader
should already know, such as

P (Ω) = 1, P (;) = 0, P (A∪B) = P (A)+P (B)−P (A∩B)

and so forth. Event A can be defined as the subset of Ω including all the states
ω in which a statement A is true, and only those. P (A) is the measure of A,
where the technical word “measure” is a generalisation of our intuitive notion of
“extension” (length, area, volume).4 The familiar laws of probability are simple
consequences of the way usual set operations (complement, union, intersec-
tion) work; let’s waste no time on those.5

Random variables are a convenient way to map events to segments on the
real line. That is, a random variable X is defined as a measurable function from

3The interested reader might want to have a look at Freedman and Stark (2016), section 2. You
can download it from https://www.stat.berkeley.edu/~stark/Preprints/611.pdf.

4Warning: not all subsets can be associated with a corresponding probability: some are “non-
measurable”. Providing a simple example is difficult, this is deep measure theory: google “Vitali
set” if you’re curious.

5In most cases, intuition will suffice. For tricky cases, I should explain what a σ-algebra is, but
I don’t think that this is the right place for this, really.

https://www.stat.berkeley.edu/~stark/Preprints/611.pdf
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Ω to R; or, to put it differently, for any ω inΩ you get a corresponding real num-
ber X (ω). The requisite of measurability is necessary to avoid paradoxical cases,
and simply amounts to requiring that, if we define A as the the subset ofΩ such
that

a < X (ω) ≤ b ⇐⇒ω ∈ A,

then A is a proper event. In practice, it must be possible to define P (a < X ≤ b)
for any a and b. I will sometimes adopt the convention of using the acronym
“rv” for random variables.

There are two objects that a random variable comes equipped with: the first
is its support, which is the subset of R with all the values that X can take; in
formulae, X : Ω 7→ S ⊆ R, and the set S is sometimes indicated as S(X ). For a
six-sided die, S(X ) = {1,2,3,4,5,6}; if X is the time before my car breaks down,
then S(X ) = [0,∞), and so on.

The other one is its distribution function, or cumulative distribution func-
tion (often abbreviated as cdf), defined as

FX (a) = P (X ≤ a),

which of course makes it easy to compute the probability of X being inside an
interval as

P (a < X ≤ b) = FX (b)−FX (a).

By their definition, cdfs enjoy three basic properties:

• lima→−∞ FX (a) = 0;

• lima→∞ FX (a) = 1;

• if b > a, then FX (b) ≥ FX (a); that is, FX (·) is non-decreasing.

Apart from this, there’s very little that can be said in general. However, in many
cases it is assumed that FX (a) has a known functional form, which depends on
a vector of parameters θ.

Two special cases are of interest:

1. The cdf is a function that goes up in steps; the support is a countable set,
and the corresponding rv is said to be discrete; for every member of the
support x it is possible to define p(x) = P (X = x) > 0; the function p(x) is
the so-called probability function.

2. The cdf is everywhere differentiable; the support is an interval on R, (pos-
sibly, the whole real line), and the corresponding rv is said to be continu-
ous; the derivative of Fx (a) is known as the density function of X , or fX (a)
and therefore, by definition,

P (a < X ≤ b) =
∫ b

a
fX (z)dz;



2.2. A CRASH COURSE IN PROBABILITY 45

in most cases, when the meaning is clear from the context, we just write
the density function for X as f (x).6

In the rest of the book, I will mostly use continuous random variables for exam-
ples; hopefully, generalisations to discrete rvs should be straightforward.

Of course, you can collect a bunch of random variables into a vector, so you
have a multivariate random variable, or random vector. The multivariate ex-
tension of the concepts I sketched above is a little tricky from a technical view-
point, but for our present needs intuition will again suffice. I will only mention
that for a multivariate random variable x with k elements you have that

Fx(a) = P [(x1 ≤ a1)∩ (x2 ≤ a2)∩ . . .∩ (xk ≤ ak )]

If all the k elements of x are continuous random variables, then you can define
the joint density as

fx(z) = ∂k Fx(z)

∂z1∂z2 · · ·∂zk
.

The marginal density of the i -th element of x is just the density of xi taken in iso-
lation. For example, suppose you have a trivariate random vector w = [X ,Y , Z ]:
the marginal density for Y is

fY (a) =
∫

S(X )

∫
S(Z )

fw(x, a, z)dz dx

2.2.2 Independence and conditioning

If P (A) is the probabilistic evaluation we give of A, we may ask ourselves if we
would change our mind when additional information becomes available. If we
receive the news that event B has occurred, then we can safely exclude the event
B from Ω.7 In fact, after receiving the message “B is true”, our state space Ω
shrinks to B , because states in which B is false are no longer conceivable as pos-
sible.

The consequence for A is that the subset A∩B is no longer possible; hence,
we must update our probability measure so that P (B) becomes 1, and conse-
quently8 P (A) must be revised as

P (A|B) ≡ P (A∩B)

P (B)
(2.1)

6I imagine the reader doesn’t need reminding that the density at x is not the probability that
X = x; for continuous random variables, the probability is only defined for intervals by the for-
mula in the text, from which it follows that P (X = x) is 0.

7When speaking about sets, I use the bar to indicate the complement.
8Technically, it’s more complicated that this, because P (B) may be 0, in which case the defini-

tion has to be adapted and becomes more technical. If you’re interested, chapter 10 in Davidson
(1994) is absolutely splendid.
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You read the left-hand side of this definition as “the probability of A given B”,
which is of course what we call conditional probability. It should be clear that

P (A) = P (A|B) ⇐⇒ P (A∩B) = P (A) ·P (B)

Which means: “if you don’t need to revise your evaluation of A after having
received some message about B , then A and B have nothing to do with each
other”; in this situation, A and B are said to be independent, and we write A ⊥⊥ B ,
so independence can be thought of as lack of mutual information. Note that in-
dependence is a symmetric concept: if A is independent of B , then B is inde-
pendent of A, and vice versa.

Equation (2.1) has the following implication:

P (A∩B) = P (A|B) ·P (B) = P (B |A) ·P (A),

so that

P (A|B) = P (B |A) ·P (A)

P (B)
.

The expression above is interesting for many
reasons. One is: in general, P (A|B) ̸= P (B |A),
so, for example, the probability of dying from
COVID if you’re not vaccinated is not the same

thing as the probability that someone who died
from COVID was a no-vaxxer (think about it).
Another reason is that this expression is the
cornerstone of an approach to statistics known
as Bayesian, after the English statistician and
clergyman Reverend Thomas Bayes, who lived
in the 18th century; I’m not going to use any-
thing Bayesian in this book, but Bayesian meth-
ods are getting increasingly popular in many
areas of econometrics.

The same concept can be applied to random variables. If

FY (z) = FY (z|a < X ≤ b)

for any a and b, then evidently X carries no information about Y , and we say
that the two random variables are independent: Y ⊥⊥ X . If this is not the case,
it makes sense to consider the conditional distribution of Y on X , which de-
scribes our uncertainty about Y once we have information about X . So for ex-
ample, if Y is the yearly expenditure on food by a household and X is the number
of its components, it seems safe to say that F (Y |X > 6) should be different from
F (Y |X < 3), because more people eat more food.

The case a = b is important9, because it gives us a tool for evaluating proba-
bilities about Y in a situation when X is not uncertain at all, because in fact we
observe its realisation X = x. In this case, we can define the conditional density
as

fY |X=x (z) = fY ,X (z, x)

fX (x)
(2.2)

and when what we mean is clear from the context, we simply write f (y |x).
Therefore, in many cases we will use the intuitive notion of X , the set of

random variables we are conditioning Y on, as being “the relevant information

9Albeit special: a moment’s reflection is enough to convince the reader that if X is continuous,
the event X = x has probability 0, and our naïve definition of conditioning breaks down. But
again, treating the subject rigorously implies using measure theory, σ-algebras and other tools
that I’m not willing to use in this book.
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about Y that we have”; in certain contexts, this idea is expressed by the notion
of an information set. However, a formalised description of this idea is, again,
far beyond the scope of this book and I am contented to leave this to the reader’s
intuition.

2.2.3 Expectation

The expectation of a random variable is a tremendously important concept.
A rigorous definition, valid in all cases, would require a technical tool called
Lebesgue integral, that I’d rather avoid introducing. Luckily, in the two elemen-
tary special cases listed in section 2.2.1, its definition is quite simple:

E[X ] =
∑

x∈S(X )
x ·p(x) for discrete rvs (2.3)

E[X ] =
∫

S(X )
z · fX (z)dz for continuous rvs. (2.4)

The expectation of a function of X , E[h(X )], is defined simply as

E[h(X )] =
∫

S(X )
h(z) · fX (z)dz

for continuous random variables and the parallel definition for the discrete case
is obvious. The extension to multivariate rvs should also be straightforward: the
expectation of a vector is the vector of expectations.

Some care must be taken, since E[X ] may not exist, even in apparently harm-
less cases.

Example 2.1
If X is a uniform continuous random variable between 0 and 1, its density func-
tion is f (x) = 1 for 0 < x ≤ 1. Its expectation is easy to find as

E[X ] =
∫ 1

0
x ·1dx =

[
x2

2

]1

0
= 1/2;

however, it’s not difficult to prove that E[1/X ] does not exist (the corresponding
integral diverges):

E[1/X ] =
∫ 1

0

1

x
·1dx = [

log x
]1

0 =∞.

However, it can be proven that if the support of X is finite, then E[X ] is al-
ways bounded, and therefore exists. To be more specific: if S(X ) = [a,b], where
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a and b are finite, then a < E[X ] < b. The proof is easy and left to the reader as
an exercise.

The expectation operator E[·] is linear, and therefore we have the following
simple rule for affine transforms (A and b must be non-stochastic):

E[Ax+b] = A ·E[x]+b (2.5)

For nonlinear transformation, things are not so easy. As a rule, E
[
g (X )

] ̸= g [E[X ]],
and there’s very little you can say in general.10

The expectation of the k-th power of X is called its k-th moment, so the first
moment is E[X ], the second moment is E

[
X 2

]
and so on. Of course, E[X n] (with

n ≥ 1) may not exist, but if it does then E
[

X n−1
]

is guaranteed to exist too.
The most egregious example of usefulness of moments is the definition of

variance:11 V[X ] = E
[

X 2
]−E[X ]2. The variance is always non-negative, and is

the most widely used indicator of dispersion. Of course, in order to exist, the sec-
ond moment of X must exist. Its multivariate generalisation is the covariance
matrix, defined as

Cov[x] = E
[
xx′

]−E[x]E[x]′ ; (2.6)

The properties of Cov[x] should be well known, but let’s briefly mention the
most important ones: if Σ= Cov[x], then

• Σ is symmetric;

• if xi ⊥⊥ x j , then Σi j = 0 (warning: the converse is not necessarily true);

• Σ is positive semi-definite.12

Definition 2.6 makes it quite easy to calculate the covariance matrix of an
affine transform:13

Cov[Ax+b] = A ·Cov[x] · A′. (2.7)

Note that this result makes it quite easy to prove that if X and Y are independent
rvs, then V[X +Y ] = V[X ]+V[Y ] (hint: put X and Y into a vector and observe
that its covariance matrix is diagonal).

2.2.4 Conditional expectation

The easiest way to see the conditional expectation of Y given X is by defining it
as the expectation of Y with respect to f (Y |X = x), that is

E[Y |X = x] =
∫

S(Y )
z · fY |X=x (z)dz.

10In fact, there is something more general we can say, when the transformation g (X ) is concave
on the whole support of X : it’s called Jensen’s lemma. We will not use this result in this book, but
the result is widely used in economics and econometrics; if you’re interested, the idea is briefly
explained in section 2.A.1.

11An alternative equivalent definition, perhaps more common, is V[X ] = E
[
(X −E[X ])2]

.
12If you’re wondering what “semi-definite” means, you may want to go back to section 1.A.7.
13The proof is an easy exercise, left to the reader.
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If fY |X=x (z) changes with x, the result of the integral (if it exists) should change
with x too, so we may see E

[
y |x] = m(x) as a function of x. This function is

sometimes called the regression function of Y on X .
Does E

[
y |x]

have a closed functional form? Not necessarily, but if it does, it
hopefully depends on a small number of parameters θ.

Example 2.2
Assume that you have a bivariate variable (Y , X ) where Y is 1 if an individual
catches COVID and 0 otherwise, and X is 1 if the same individual is vaccinated.
Suppose that the joint probability is

X = 0 X = 1
Y = 0 0.1 0.3
Y = 1 0.3 0.3

The probability of catching COVID among vaccinated people is 0.3
0.3+0.3 = 50%,

while for unvaccinated people it’s 0.3
0.1+0.3 = 75%. The same statement could have

been stated in formulae as

E[Y |X ] = 0.75−0.25X ,

which gives 0.5 if X = 1 and 0.75 if X = 0. The regression function of Y on X is
linear (E[Y |X ] = θ0 +θ1X ), and it depends on the vector θ = [θ0,θ1].

Of course, if x is a random variable, m(x) is too. Does it have an expectation?
If so,

E
[
E

[
y |x]]= E

[
y
]

. (2.8)

This is called law of iterated expectations, and is in fact more general than
it appears at first sight. For example, it applies to density functions too:

f (y) = E
[

f (y |x)
]

To continue with example 2.2, note that, since E[X ] = 0.6, E[Y ] = E[0.75−0.25 ·X ] =
0.75−0.25 ·E[X ] = 0.7−0.25×0.6 = 0.6.

Example 2.3
As a more elaborate example, suppose that

E[Y |X ] = m(X ) = 4X −0.5X 2

and that E[X ] = V[X ] = 1. It follows that

E[Y ] = E[m(X )] = 4 ·E[X ]−0.5 ·E
[

X 2]= 4−0.5 ·2 = 3

where I used V[X ] = E
[

X 2
]−E[X ]2.
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It must be stressed that expressing the relationship between two random
variables by means of the conditional expectation has no meaning on causal
relationship. Example 2.2 above should not be taken to imply, by itself, that if
you get vaccinated your chances of getting ill are lower, although the idea is very
natural. More on this in Section 3.1.

2.3 Estimation

The best way to define the concept of an estimator is to assume that we observe
some data x, and that the DGP which generated x can be described by means
of a vector of parameters θ. We assume to know nothing about θ, apart from
the fact that it can be thought of as a vector with a certain number of elements
(say, k), and that it belongs to a subset S of of Rk called the parameter space. An
estimator is a statistic θ̂ = T (x) that should be “likely” to yield a value “close to”
the parameters of interest θ.

To state the same idea more formally: since x is random and θ̂ is a function
of x, then θ̂ is a random variable too, and therefore it must have a support and
a distribution function. Clearly, both will depend on those of x, but ideally, we’d
like to choose the function T (·) so that the support S(θ̂) contains at least a neigh-
bourhood of θ, and we’d like the probability of observing a realisation of θ̂ that
is “near” θ, P (θ−ϵ< θ̂ < θ+ϵ) = P (|θ̂−θ| < ϵ), to be as close to 1 as possible.

The indispensable ingredient for evaluating those probabilities would be the
distribution of θ̂ = T (x). However, it is almost always tremendously difficult to
pin it down exactly, either because of the characteristics of x, which could be a
very complex random variable, or because the function T (·) could be very intri-
cate. In fact, the cases when we’re able to work out the exact distribution of θ̂ are
exceptionally few. In very simple cases,14 we may be able to compute E

[
θ̂
]

and
perhaps even V

[
θ̂
]
, which leads us to the well known concepts of unbiasedness

and efficiency:

• the bias of θ̂ is the difference E
[
θ̂
]−θ; therefore θ̂ is said to be unbiased if

E
[
θ̂
]= θ;

• θ̂ is more efficient than θ̀ if V
[
θ̀
]−V

[
θ̂
]> 0 (if both are unbiased).

The problem that makes these concepts not very useful is that, in many cases of
interest, it’s very hard, if not impossible, to compute the moments of θ̂ (in some
cases, θ̂ may even possess no moments at all). So we need to use something else.
Fortunately, asymptotic theory comes to the rescue.

2.3.1 Consistency

The estimator θ̂ is consistent if its probability limit is the parameter we want to
estimate. To explain what this means, let us first define convergence in proba-

14Notably, when θ̂ is an affine function of x.
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bility:

Xn
p−→ X ⇐⇒ lim

n→∞P [|Xn −X | < ϵ] = 1 (2.9)

Also notated as plim(Xn) = X .
A description in words of the definition above is: given a sequence of random

variables X1, X2, . . . , Xn , we define a parallel sequence of events of the kind

|X1 −X | < ϵ, |X2 −X | < ϵ, . . . , |Xn −X | < ϵ;

the sequence above can be read as a sequence of events, where |Xi − X | < ϵ

means “Xi is more or less X ”.15 Convergence in probability means that the se-
quence of probabilities for those events tends to 1; that is, the probability of Xn

and X being “substantially different” becomes negligible if n is large.16

In general, the limit X could be a random variable, but we’ll be mostly in-

terested in the case when the limit is a constant: if Xn
p−→ a, the chances of

Xn being far from a become zero, and therefore the cdf of Xn tends to a step
function which is 0 before a and 1 after it. Or, if Xn is continuous, the density
function f (Xn) collapses to a point.

This is exactly what happens, in many circumstances, when we compute the
sample average in a data set. Imagine you have n observations: you can com-
pute the average of the observations you have as they become available; that
is,

X̄1 = X1, X̄2 = X1 +X2

2
, X̄3 = X1 +X2 +X3

3
, · · · ;

does the sequence X̄n have a limit in probability? Or, in other words, if n is large
enough, do we have good chances that X̄n will be a number arbitrarily near to
something? The question may sound abstract and technical, but in fact this is
something that we implicitly do all the time, when we try something many times
in the hope that our knowledge stabilises with repetition.

The conditions that must occur for this idea to make sense are studied by
the so-called Laws of Large Numbers, or LLNs for short.17 There are many dif-
ferent LLNs, that cover different cases. Basically, there are three dimensions to
the problem that must be considered:

1. How heterogeneous are the Xi variables?

2. Are the Xi variables independent?

3. Can we assume the existence of at least some of the moments?

The simplest version of the LLN is due to the Soviet mathematician Alek-
sandr Khinchin, and sets very strong bounds on the first two conditions and

15Where ϵ> 0 is the mathematically respectable way of saying “more or less”.
16The curious reader might be interested in knowing that there are several other ways to define

a similar concept. A particularly intriguing one is the so-called “almost sure” convergence.
17Technically, these are the weak LLNs. The strong version uses a different concept of limit.
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relaxes the third one as much as possible: if x1, x2, . . . , xn are independent and

identically distributed (iid for short) and E[xi ] = m, then X̄
p−→ m. Other ver-

sions exist: for example, a different version of the LLN can be used if obser-
vations are not independent, but in that case more stringent assumptions are
needed; allow me to skip these complications. For the curious, an example is
provided in section 2.A.3.

Example 2.4
Let’s toss a coin n times. The random variable representing the i -th toss is xi ,
which is assumed to obey the following probability distribution (often referred
to as a Bernoulli distribution):

xi =
{

1 with probability π
0 with probability 1−π

Note that the probability π is assumed to be the same for all xi ; that is, the coin
we toss does not change its physical properties during the experiment. More-
over, it is safe to assume that what happens at the i -th toss has no consequences
on all the other ones. In short, the xi random variables are iid.

Does xi have a mean? Yes: E[xi ] = 1 ·π+0 · (1−π) = π. Together with the iid

property, this is enough for invoking the LLN and establishing that X̄ = p̂
p−→ π.

Therefore, we can take the empirical frequency p̂ as a consistent estimator of
the true probability π.

The LLN becomes enormously powerful when coupled with another won-
derful result, which is a special case of a powerful tool called Slutsky’s Theorem,

that I’m not exposing in full here. If Xn
p−→ a and g (·) is continuous at a, then

g (Xn)
p−→ g (a) (note how much easier this property makes it to work with prob-

ability limits rather than expectations).
In the context of estimation, obviously we will want our estimators to be con-

sistent:
θ̂

p−→ θ⇐⇒ lim
n→∞P

[|θ̂−θ| < ϵ]= 1; (2.10)

that is, we will want to use as estimators statistics that become increasingly un-
likely to be grossly wrong. Fortunately, the combination of the LLN and Slutsky’s
Theorem provides a very nice way to devise estimators that are consistent by
construction. If the average has a probability limit that is a continuous, invert-
ible function of the parameter we want, we just apply a suitable transformation
the the average and we’re done: so for example if E[xi ] = 1/θ, then θ̂ = 1/X̄ ; if

E[xi ] = eθ, then θ̂ = log(X̄ ); if E[xi ] = θ2, then θ̂ =
√

X̄ ; and so on.
More generally, the extension to the case when θ is a vector is technically

messier, but conceptually identical. This is known as the method of moments:
it is by no means the only one used in inferential statistics, but it will suffice for
our purposes. The core intuition that motivates it is relatively straightforward:
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1. express the moments of the observables as continuous functions of the
parameters of interest θ: m = m(θ).

2. Estimate m via the corresponding sample moments m̂, using the LLN, so

that m̂
p−→ m.

3. Estimate θ by inverting the correspondence between parameters and mo-

ments: θ̂ = m−1(m̂). This should guarantee consistency: θ̂
p−→ θ.

Example 2.5
Suppose you have a sample of iid random variables for which you know that

E[X ] = p

α

E
[

X 2] = p(p +1)

α2 ;

and define the two statistics m1 = X̄ = n−1 ∑
i xi and m2 = n−1 ∑

i x2
i . Clearly

m1
p−→ p

α

m2
p−→ p(p +1)

α2 .

Now consider the statistic p̂ = m2
1

m2−m2
1

. Since p̂ is a continuous function of

both m1 and m2,

p̂ = m2
1

m2 −m2
1

p−→ p2/α2

p(p +1)/α2 −p2/α2 = p2

p2 +p −p2 = p,

So p̂ is a consistent estimator of p.
But then, by the same token, by dividing p̂ by m1 you get that

p̂

m1
= m1

m2 −m2
1

p−→ p

p/α
=α,

so you get a second statistic, α̂= m1

m2−m2
1

which estimates α consistently.

From the discussion above, the meaning of an estimator being consistent
should be rather clear: a consistent estimator is a statistic that becomes arbi-
trarily precise if your dataset is large enough, because its distribution tends to
collapse to a single point if n goes to infinity. Interestingly, there are two ways in
which an estimator may not be consistent: one case arises when θ̂ has a prob-

ability limit, but is different from the desired point; in other words, θ̂
p−→ c ̸= θ.

However, it may be the case that θ̂ does not have a probability limit at all. In that
case, lack of consistency is a consequence of the distribution of our statistic not
collapsing to a single point, but rather remaining spread across a set of values
no matter how large n is.
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2.3.2 Asymptotic normality

Consistency is important because we want our estimators to be reasonably pre-
cise for large samples, but this is almost never enough, as we may need to make
more precise statements on the distribution of our estimators.

For example, imagine that we have two consistent estimators for the same
quantity: that is, two different statistics θ̂ and θ̃ that have the same probability
limit θ. How do we choose which one to use? Consistency can’t be used as a
criterion, since they are both consistent: if we define

P̂n = P
[|θ̂−θ| < ϵ]

P̃n = P
[|θ̃−θ| < ϵ]

clearly limn→∞ P̂n = limn→∞ P̃n = 1, so a decision can’t be made on these grounds.
Nevertheless, if we could establish that, for n large enough, P̂n > P̃n , so that our
probability of being grossly wrong is lower if we use θ̂ instead of θ̃, our preferred
course of action would be obvious. Unfortunately, this is not an easy check: P̂n

is defined as

P̂n =
∫ θ+ϵ

θ−ϵ
f̂ (x)dx,

where f̂ (x) is the density function for θ̂ (clearly, a parallel definition holds for
P̃n). In most cases, the analytical form of f̂ (x) is very hard to establish, if not at
all impossible. However, we could try to approximate the actual densities with
something good enough to perform the required check. This is almost invari-
ably achieved by resorting to a property called asymptotic normality, by which
the unknown density f̂ (x) can be approximated via a suitably chosen Gaussian
density.18

At first sight, this sounds like a very ambitious task: how can we hope to
make general statements on the distribution of an arbitrary function of arbitrar-
ily distributed random variables? Besides, why the Gaussian density, rather than
something else? What’s so special about the bell-shaped curve?

And yet, there is a result that applies in a surprisingly large number of cases,
and goes under the name of Central Limit Theorem, or CLT for short. Basically,
the CLT says that, under appropriate conditions, when you observe a random
variable X that can be conceivably thought of as the accumulation of a large
number of random causes that are reasonably independent of each other, with
none of them dominating the others in magnitude, there are very good chances
that the distribution of X should be approximately normal.

The practical effect of this theorem is ubiquitous in nature; most natural
phenomena follow (at least approximately) a Gaussian distribution; the width
of leaves, the length of fish, the height of humans. The French mathematician
Henri Poincaré is credited with the following remark:

18I assume that the reader is reasonably comfortable with the Gaussian distribution, but section
2.A.5 is there, just in case.
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Everyone is sure of this, Mr. Lippman told me one day, since the
experimentalists believe that it is a mathematical theorem, and the
mathematicians that it is an experimentally determined fact.19

HENRI POINCARÉ

In order to illustrate the concept, we have to begin by
defining convergence in distribution:

Xn
d−→ X ⇐⇒ FXn (z) → FX (z) (2.11)

When Xn converges in distribution to X , the difference
between P (a < Xn ≤ b) and P (a < X ≤ b) becomes negli-
gible for large n. So, for large n, we can approximate quite
accurately the probability of events defined for Xn via the
corresponding event defined for X .20

Note the fundamental difference between convergence in probability and in

distribution: if Xn
p−→ X , then for large n each time we observe a realisation of

Xn and X we can be fairly confident that the two numbers will be very close. If

Xn
d−→ X instead, there is no guarantee that |Xn−X | will be small: the only thing

we know is that they come from (nearly) the same probability distribution, and
therefore all we can say is that P (a < Xn ≤ b) should be very close to P (a < X ≤
b). Convergence in distribution is useful because probabilities involving X are
often much easier to compute than probabilities involving Xn .

Convergence in distribution is a much weaker
concept than convergence in probability: for
example, take a sequence X1, X2, . . . Xn of iid
random variable with the same distribution F .
Of course, by the definition we can say that

Xn
d−→ X , where the distribution of X is, again,

F , but there is very little we can say about the
behaviour of the sequence itself.

On the other hand, if Xn
p−→ X , the fact that

limn→∞ P [|Xn −X | < ϵ implies that, when n is
large, P (a < Xn < b) ≃ P (a < X < b) for every

interval (a,b), and therefore Xn
d−→ X . This

result is often spelt “convergence in probabil-
ity implies convergence in distribution, but not

vice versa”, or Xn
p−→ X ⇒ Xn

d−→ X

Now imagine that the LLN holds and X̄
p−→ m. Clearly, X̄ −m

p−→ 0. In many
cases, it can be proven that multiplying that quantity by

p
n gives you something

that doesn’t collapse to 0 but does not diverge to infinity either. The Central
Limit Theorems analyse the conditions under which

p
n(X̄ −m)

d−→N (0, v) , (2.12)

19French original: Tout le monde y croit cependant, me disait un jour M. Lippmann, car les ex-
périmentateurs s’imaginent que c’est un théorème de mathématiques, et les mathématiciens que
c’est un fait expérimental.

20If I had wanted to interrupt the flow of the argument for the sake of accuracy, I should have
said at this point that in many cases we should take into account the fact that the support of Xn
may be discrete, and special care is needed to interpret what happens when FXn (z) “takes a step”.
I thought that would have been rather pedantic, so this remark is confined to a footnote.



56 CHAPTER 2. SOME STATISTICAL INFERENCE

so that we can use a Gaussian density to approximate the distribution of the
average. A multivariate version also exists, which is slightly more intricate from
a technical point of view, but the intuition carries over straightforwardly.21

The approximation provided by the CLT can also be stated by using the sym-
bol a∼ , which means “approximately distributed as” (where the approximation
gets better and better as n grows):

p
n (w−m)

d−→N (0,Σ) =⇒ w a∼ N

(
m,

1

n
Σ

)
If a certain quantity w converges in distribution to a Normal rv with covari-

ance Σ, then we call Σ the asymptotic variance of w, by which we mean that the
distribution of w resembles more and more one of a normal rv whose variance
is Σ so we can take Σ as an approximation of the variance of w.22 This is usually
notated as AV[w] =Σ.

In the same way as the LLN, there are many versions of the CLT, designed
to cover different cases. A simple version, close in spirit to Khinchin’s LLN,
was provided by Lindeberg and Lévy: if x1, x2, . . . , xn are iid, E[xi ] = m, and
V[xi ] = v , then equation (2.12) holds. In practice, the conditions are the same as
in Khinchin’s LLN, with the additional requirement that the variance of xi must
exist.

Example 2.6
Let’s go back to example 2.4 (the coin-tossing experiment). Here not only the
mean exists, but also the variance:

V[xi ] = E
[
x2

i

]−E[xi ]2 =π−π2 =π(1−π)

Therefore, the Lindeberg-Lévy version of the CLT is readily applicable, and we
have p

n(p̂ −π)
d−→N (0,π(1−π)) ,

so the corresponding asymptotic approximation is

p̂ a∼ N

(
π,
π(1−π)

n

)
.

In practice, if you toss a fair coin (π = 0.5) n = 100 times, the distribution
of the relative frequency you get is very well approximated by a Gaussian ran-
dom variable with mean 0.5 and variance 0.0025. Just so you appreciate how
well the approximation works, consider that the event 0.35 < p̂ ≤ 0.45 has a true
probability of 18.234%, while the approximation the CLT gives you is 18.219%. If

21At this point, the inquisitive reader may ask: why the square root of n? Why not n itself, or
the cube root, or some other function of n? Section 2.A.4 offers an intuitive explanation of why it
should be so.

22Note that, from a technical point of view, w may not have a variance for any n, although its
limit distribution does. But let’s not be pedantic.
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you’re interested in reproducing these numbers, Section 2.A.6 contains a small
gretl script with all the necessary steps. Of course, you’re strongly encouraged to
translate it to any other software you like better.

The CLT, by itself, describes the convergence in distribution of averages. How-
ever, we need to see what happens to our estimators, that are usually functions
of those averages. There are two tools that come in especially handy. The first

one is sometimes called Cramér’s theorem: if Xn
p−→ a (where a is a constant)

and Yn
d−→ Y , then

Xn ·Yn
d−→ a ·Y . (2.13)

The second result we will often use is the delta method: if your estimator θ̂ is
defined as a differentiable transformation of a quantity which obeys a LLN and
a CLT, there is a relatively simple rule to obtain the limit in distribution of θ̂;{

X̄
p−→ m

p
n

(
X̄ −m

) d−→N (0,Σ)

}
=⇒

{
θ̂ = g (X̄ )

p−→ θ = g (m)
p

n
(
θ̂−θ) d−→N

(
0, JΣJ ′

) }
(2.14)

where n is the sample size and J is the Jacobian ∂g (x)
∂x

∣∣∣
x=m

.

Example 2.7
Given a sample of iid random variables xi for which E[xi ] = 1/a and V[xi ] =
1/a2, it is straightforward to construct a consistent estimator of the parameter a
as

â = 1

X̄

p−→ 1

1/a
= a.

Its asymptotic distribution is easy to find: start from the CLT:

p
n

(
X̄ −1/a

) d−→N
(
0,1/a2) .

All we need is the Jacobian term, which is

J = plim
dâ

dX̄
=−plim

1

X̄ 2
=− 1

1/a2 =−a2;

therefore, the asymptotic variance of â is given by

AV[â] = (−a2)
1

a2 (−a2) = a2,

and therefore p
n (â −a)

d−→N
(
0, a2)

so we can use the approximation â a∼ N
(
a, a2

n

)
.
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By using these tools, we construct estimators satisfying not only the consis-
tency property, but also asymptotic normality. These estimators are sometimes
termed CAN estimators (Consistent and Asymptotically Normal). Asymptotic
normality is important for three reasons:

1. it can be used to compare two consistent estimators in terms of their rela-
tive asymptotic efficiency. Given two consistent estimators a and b for the
same parameter m, we’ll say that a is asymptotically more efficient than b
if AV[b] ⪰ AV[a] (that is, AV[b]−AV[a] is a positive semi-definite matrix —
see page 38).23

2. It provides a fairly general way to construct statistics for testing hypothe-
ses, which is probably the most useful thing an applied scientist might
want to do with data. The next section is just about this.

3. asymptotic normality makes it quite easy to construct confidence inter-
vals: in order to illustrate the concept, suppose we have a scalar estimator
θ̂, whose asymptotic distribution is

p
n

(
θ̂−θ) d−→N (0,ω) ;

this means that, for a decently large value of n, we can approximate the
distribution of θ̂ as θ̂ a∼ N

(
θ, ωn

)
. This, in turn, implies that

P

[∣∣θ̂−θ∣∣
p
ω/n

< 1.96

]
≃ 95%;

therefore, the chances that the interval

θ̂±1.96×
p
ω/n

contains the true value of θ are roughly 95%. This is what is called a 95%
confidence interval. Of course, a 99% confidence interval would be some-
what larger. Generalising this to a vector of parameters would lead us to
speaking of confidence sets; for example, when θ is a 2-parameter vector,
the confidence set would be an ellipse.

Example 2.8
Consider the same setup as example 2.7, that is tossing a coin n = 100 times,
and suppose we get “heads” 45 times. Therefore, our estimate of π would be
p̂ = 45/100 = 0.45.

23This criterion is easy to understand when a and b are scalars: AV[b] ≥ AV[a]. The vector
case is more subtle: if our object of interest is estimating some scalar function of m (say, g (m)),
then the two natural competing estimators would be g (a) and g (b), respectively, that are both
consistent by Slutsky’s theorem. However, by applying the delta method, it can be proven that
AV

[
g (b)

]≥ AV
[
g (a)

]
in all cases.



2.4. HYPOTHESIS TESTING 59

Of course, this would imply that the asymptotic variance of our estimator
can be itself estimated as

v̂ = p̂(1− p̂)

n
= 0.45 ·0.55

100
= 0.002475

so, since its square root is
p

v̂ = 0.04975, we may say that the interval

A = [0.45−0.04975×1.96,0.045+0.04975×1.96] = 0.45±0.0975 ≃ [0.35,0.55]

has a very good chance (95%) of containing the true value of π.
This example should help the reader steer clear of a common misconcep-

tion: it is often said “the parameter has a 95% chance of being between a and
b” as if the parameter was random and the interval was fixed. It’s the other way
around. The value of the parameter is non-random (and unknown), whereas
the bounds of the interval are random, since they are a function of the estima-
tor. Therefore, a better choice of words would be “the interval between a and b
has a 95% chance of containing the parameter”.

2.4 Hypothesis Testing

The starting point is a tentative conjecture (called the null hypothesis, or H0)
that we make about the parameters of a DGP.24 As I said at the beginning of
Section 2.3, we take it for granted that the DGP parameters belong to a certain
set S (the parameter space), but we may conjecture that in fact there is a certain
subset of S (say, H), that also contains θ. In formulae:

H0 : θ ∈ H ⊂ S.

We would like to check whether our belief is consistent with the observed data.
If what we see is at odds with our hypothesis, then reason dictates we should
drop it in favour of something else.

The coin toss is a classic example. The one parameter in our DGP is π, that
is a probability, so the parameter space is S = [0,1]. However, there is a subset
of S that is of special significance, namely the point H = {0.5}, because if π ∈ H
(which trivially means π= 0.5), then the coin is fair.

We presume that the coin is fair, but it’d be nice if we could check. What we
can do is flip it a number of times, and then decide, on the basis of the results,
if our original conjecture is still tenable. After flipping the coin n times, we ob-
tain a vector x of zeros and ones. What we want is a function T (x) (called a test
statistic) such that we can decide whether to reject H0 or not.

24Disclaimer: this section is horribly simplistic. Any decent statistics textbook is far better than
this. My aim here is just to lay down a few concepts that I will use in subsequent chapters, with no
claim to rigour or completeness. My advice to the interested reader is to get hold of Casella and
Berger (2002) or Gourieroux and Monfort (1995, volume 2). Personally, I adore Spanos’ historical
approach to the matter.
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Figure 2.1: Types of Error

Note: in this case, H0 is that the person is not pregnant.

By fixing beforehand a subset R of the the support of T (x) (called the “rejec-
tion region”), we can follow a simple rule: we reject H0 if and only if T (x) ∈ R.
Since T (x) is a random variable, the probability of rejecting H0 will be between 0
and 1 regardless of the actual truth of H0.25 Therefore, there is a possibility that
we’ll end up rejecting H0 while it’s in fact true, but the opposite case, when we
don’t reject while in fact we should, is also possible. These two errors are known
as type I and type II errors, respectively, and the following 4-way table appears
in all statistics textbooks, but memorising the difference could be easier if you
look at figure 2.1:

Not Reject Reject
H0 true OK Type I error
H0 false Type II error OK

This situation is not unlike the job of a judge in a criminal case. The judge
starts from the premise that the defendant is not guilty, and then evidence is ex-
amined. By the “presumption of innocence” principle, the judge declares the
defendant guilty only if the available evidence is overwhelmingly against H0.
Thus, type I error happens when an innocent person goes to jail; type II error
is when a criminal gets acquitted.

This line of thought is very much in line with the idea philosophers call fal-
sificationism, whose most notable exponent was the Austrian-British philoso-
pher Karl Popper (see eg Popper (1968)). According to the falsificationist point
of view, scientific progress happens via a series of rejections of previously made
conjectures.

25Unless, of course, we do something silly such as deciding to always reject, or never. But in that
case, what’s the point of performing the experiment at all?
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KARL POPPER

The hallmark of science (as opposed to other kinds of
perfectly respectable mental endeavours, such as literary
criticism, musical composition or political analysis) is that
a conjecture can be falsified: we don’t use evidence to verify
a theory, but we can use it to prove that it’s wrong.

Scientific theories always sound like: “when A, then
B”. Clearly, you can never verify a theory, because you can
never rule out the possibility of observing A and not B ;
at most, you can say “the theory holds so far”. But once
you’ve observed one single case that disproves it, you need
no more evidence to decide on the theory. When a theory is proved to be in-
consistent with the available evidence, we move on to something better, and
progress is made; but until a conjecture is not rejected, we adopt it as a tentative
(and possibly wrong) explanation.

I am fully aware that the debate on philoso-
phy of science has long established that fal-
sificationism is untenable, as a description of
scientific progress, on several accounts. What
I’m saying is just that the statistical theory of

hypothesis testing borrows quite a few ideas
from the falsificationist approach. For a fuller
account, check out Andersen and Hepburn
(2016).

Therefore, strictly speaking, “not rejecting” doesn’t mean “accepting”. Rejec-
tion is always final; failure to reject is always provisional. That said, it is quite
common (although incorrect) to use the word “accept” instead of “not reject”,
and I will do the same here. However, the reader should bear in mind is that
“accepting” really means “accepting for now”.26

The recipe we are going to use for constructing test statistics is simple: first,
we will formulate our hypothesis of interest as H0 : g (θ) = 0, where θ are the DGP
parameters and g (·) is a differentiable function. Then, given a CAN estimator θ̂,
we evaluate the function at that point. Given consistency, we would expect g (θ̂)

to be “small” if H0 is true, since under H0, g (θ̂)
p−→ 0.

In order to build a rejection region, we need some criterion for deciding
when g (θ̂) is large enough to force us to abandon H0; we do so by exploiting
asymptotic normality. By using the delta method, we can find an asymptotic
approximation to the distribution of g (θ̂) as

g (θ̂) a∼ N
(
g (θ),Σ

)
;

under consistency, Σ should tend to a zero matrix; as for g (θ), that should be
0 if and only if H0 is true. These two statements imply that the quadratic form
g (θ̂)′Σ−1g (θ̂) should behave very differently in the two cases: if H0 is false, it

26Some people use the word “retain” instead of “accept”, which is certainly more correct, but
unfortunately not very common.



62 CHAPTER 2. SOME STATISTICAL INFERENCE

should diverge to infinity, since plim
[
g (θ̂)

] ̸= 0; if H0 is true, instead, approxi-
mate normality implies that27.

W = g (θ̂)′Σ−1g (θ̂) a∼ χ2
p

where p = rk(Σ). Hence, under H0, the W statistic should take values typical of
a χ2 random variable.28 Therefore, we should expect to see “small” values of W
when H0 is true and large values when it’s false. The natural course of action is,
therefore, to set the rejection region as R = (c,∞), where c, the critical value,
is some number to be determined. Granted, there is always the possibility that
W > c even if H0 is true. In that case, our decision to reject would imply a type
I error. But since we can calculate the distribution function for W , we can set
c to a prudentially large value. What is normally done is to set c such that the
probability of a type I error (called the size of the test, and usually denoted by
the Greek letter α) is a small number, typically 5%.

What people do in most cases is deciding whichα they want to use and then
set c accordingly, so that in many cases you see c expressed as a function if α
(and written cα), rather than the other way around.

But, I hear you say, what about type II error? Well, if W in fact diverges when
H0 is false, the the probability of rejection (also known as the power of the test)
should approach 1, and we should be OK, at least when our dataset is reasonably
large.29 There are many interesting things that could and should be said about
the power of tests, especially a truly marvellous result known as the Neyman-
Pearson lemma, but I’m afraid this is not the place for this. See the literature
cited at footnote 24.

Example 2.9
Let’s continue example 2.6 here. So we have that the relative frequency is a CAN
estimator for the probability of a coin showing “heads”.

p
n(p̂ −π)

d−→N (0,π(1−π)) .

Let’s use this result for building a test for the “fair coin” hypothesis, H0 : π= 0.5.
We need a differentiable function g (x) such that g (x) = 0 if and only if x = 0.5.
One possible choice is

g (π) = 2π−1

What we have to find is the asymptotic variance of g (p̂), which is AV
[
g (p̂)

]=
J ·π(1−π) · J ′ =ω, where J = plim

(
∂g (x)
∂x

)
= 2, so

p
n(g (p̂)− g (π))

d−→N (0,ω) .

27To see why, see section 2.A.5
28The reason why I’m using the letter W to indicate the test is that, in a less cursory treatment

of the matter, the test statistic constructed in this way could be classified as a “Wald-type” test.
29When the power of a test goes to 1 asymptotically, the test is said to be consistent. I know, it’s

confusing.
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Under the null, g (π) = 0 and ω = 1; therefore, the approximate distribution for
g (p̂) is

g (p̂) a∼ N
(
0,n−1)

and our test statistic is easy to build as

W = g (p̂)

[
1

n

]−1

g (p̂) = n · (2p̂ −1)2

A simple numerical example: suppose n = 100 and p̂ = 46%. The value of
W equals W = 100 ·0.082 = 0.64. Is the number 0.64 incompatible with the pre-
sumption that the coin is fair? Not at all: if the coin is in fact fair W should come
from a random variable that in 95% of the cases takes values below 3.84. There-
fore, there is no reason to change our mind about H0. The reader may want to
check what happens if the sample size of our experiment is set to n = 1000.

The reader may be a bit perplexed about my vagueness about the nature of
the g (θ) function that we use to build the test. In order for the above to work,
besides the obvious requisite g (θ) = 0 under the null, we only need this function
to be continuous and differentiable; therefore, there is a considerable degree of
arbitrariness in the way the function can be chosen. In the example above, for
the hypothesis H0 : p = 0.5 I employed g (p) = 2p − 1, but I could have chosen
several alternatives, such as

g (p) = 1/2−p or g (p) = log(2p) or g (p) = 3−9p .

Are they all equivalent? To cut a long story short, asymptotically, yes. In finite
samples, no, but there is no rule to tell which choice is the “best”. As a conse-
quence, one normally goes for the one that implies the least computational ef-

fort. In example 2.9 I used g (p) = 2p −1 simply because its Jacobian is ∂g (p)
∂p = 2

and everything becomes nice and simple.

2.4.1 The p-value

The way to make decisions on H0 that I illustrated in the previous section is per-
fectly legitimate, but what people do in practice is slightly different, and involves
a quantity known as the p-value.

The traditional method of checking the null hypothesis is based on the con-
struction of a test statistic with a known distribution under H0; once the size of
the test (most often, 5%) is decided, the corresponding critical value c is found
and then the realised statistic W is compared to c. If W > c, reject; otherwise,
don’t. This method makes perfect sense if finding the critical value for a given
size α is complicated: you compile a table of critical values for a given α once
and for all, and then every time you perform a test you just check your realised
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value of W against the number in the table. All 20th century statistics textbooks
contained an appendix with tables of critical values for a variety of distributions.

With the advent of cheap computing, it has become easy to compute c as
a function of α, as well as performing the inverse calculation, since algorithms
for computing the cdf of a χ2 random variable are fast, precise and efficient.
Thus, an equivalent route is often followed: after computing W , you calculate
the probability that a χ2 variable should take values greater than W .

RONALD FISHER

That number is called the p-value for the test statistic
W . Clearly, if W > c, the p-value must be smaller thanα, so
the decision rule can be more readily stated as “reject H0 if
the p-value is smaller than α”.

In fact, according to its inventor, Sir Ronald Aylmer
Fisher (arguably, the greatest statistician of all time), the p-
value can be seen as a continuous (or monotonous) sum-
mary statistic of how well the data are compatible with the
hypothesis;30 in Fisher’s own words, when we see a small
p-value, “[e]ither an exceptionally rare chance has occurred or the theory [...] is
not true”.31

Figure 2.2 shows an example in which W = 9, and is compared against a χ2
3

distribution. The corresponding 95% percentile is 7.815, so with α = 0.05 the
null should be rejected. Alternatively, we could compute the area to the right of
the number 9 (shaded in the Figure), which is 2.92%; obviously, 2.92% < 5%, so
we reject.

Figure 2.2: p-value example

critical value at 5%

realised W

p-value area

To make results even quicker to read, most statistical packages adopt a graph-

30Thanks to Sven Schreiber for putting it so clearly and concisely.
31Fisher RA. Statistical Methods and Scientific Inference. Ed 2, 1959. On this subject, if you’re

into the history of statistics, you might like Biau et al. (2009).
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ical convention, based on ornating the test statistic with a variable number of ’*’
characters, usually called “stars”. Their meaning is as follows:

Stars Meaning
(none) p-value greater than 10%

* p-value between 5% and 10%
** p-value between 1% and 5%
*** p-value under 1%

Therefore, when you see 3 stars you “strongly” reject the null, but you don’t
reject Ho where no stars are printed. One star means “use your common sense”.

In fact, I’d like add a few words on “using your common sense”: relying on
the p-value for making decisions is OK; after all, that’s what it was invented for.
However, you should avoid blindly following the rule “above 5% → yes, below
5% → no”. You should always be aware of the many limitations of this kind of
approach: for example,

• even if all the statistical assumption of your model are met, the χ2 distri-
bution is just an approximation to the actual density of the test. Therefore,
the quantiles of the χ2 density may be (slightly) misleading, especially so
when your sample is not very large;

• even if the test was in fact exactly distributed as a χ2 variable, type I and
type II errors are always possible; actually, if you choose 5% as your signif-
icance level (like everybody does), you will make a mistake in rejecting H0

one time out of twenty;

• and besides, why 5%? Why not 6%? Or 1%? In fact, someone once said:

Q: Why do so many colleges and grad schools teach p = 0.05?

A: Because that’s still what the scientific community and jour-
nal editors use.

Q: Why do so many people still use p = 0.05?

A: Because that’s what they were taught in college or grad school.

(for more details, see Wasserstein and Lazar (2016)).

That said, I don’t want you to think “OK, the p-value is rubbish”: it isn’t. Ac-
tually, it’s the best tool we have for the purpose. But like any other tool (be it a
screwdriver, a microwave oven or a nuclear reactor), in order to use it effectively,
you must be aware of its shortcomings.

2.5 Identification

A common problem in econometrics is identification of a model. The issue is
quite complex, and I cannot do justice to it in an introductory book such as this,
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so I’ll just sketch the main ideas with no pretence to rigour or completeness.
Basically, a model is said to be identified with reference to a question of interest
if the model’s probabilistic structure is informative on that question.

A statistical model is, essentially, a probabilistic description of the data that
we observe. When we perform inference on a dataset we assume that

• our available dataset is a realisation of some probabilistic mechanism (the
DGP — see section 2.1);

• the salient features of the DGP can be described by a parameter vector θ;

• the data we observe are such that asymptotic theory is applicable (for ex-
ample, n is large and the data are iid) and we can define statistics that we
can use as estimators or tests;

• our question of interest can be phrased as a statement on the vector θ.

The importance of the first three items in the list should be clear to the reader
from the past sections of this chapter. In this section, we will discuss the fourth
one.

The vector θ contains parameters that describe the probability distribution
of our data, but in principle the empirical problem we are ultimately interested
in is expressed as a vector of parameters of interest ψ. That is, the parameters
θ characterise the DGP, while ψ is a formalised description of the aspect of re-
ality we are trying to analyse. For example, in a typical econometric model, ψ
may contain quantities such as the elasticity of demand for a certain good to
its own price, the causal effect of a policy on a target variable, the risk aversion
parameter for the representative individual in a macroeconomic model, and so
on.

What is the relationship between ψ and θ? If we take ψ as being a stylised
description of reality, and θ as a stylised description of what we observe, then θ

should be a known function of ψ, that we assume known:

θ = M(ψ).

In some cases, the relationship is trivial; often, M(·) is just the identity function,
θ =ψ, but sometimes this is not the case.

Statistics gives us the tools to estimate θ; is this enough to estimate ψ? It
depends on the function M(·); if the function is invertible, and we have a CAN
estimator θ̂, a possible estimator for ψ is

ψ̂= M−1(θ̂).

If M(·) is continuous and differentiable, then its inverse will share these prop-
erties, so we can use Slutsky’s theorem and the delta method and ψ̂ is a CAN
estimator too. In this case, we say that the model is identified.
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In some cases, however, the function M(·) is not invertible, typically when
different values of ψ give rise to the same θ.32 In other terms, two alternative
descriptions of the world give rise to the same observable consequences: if

M(ψ1) = M(ψ2)

forψ1 ̸=ψ2, we would observe data from the same DGP (described by θ) in both
cases; this situation is known as observational equivalence, and ψ1 and ψ2 are
said to be observationally equivalent. In these cases, being able to estimate θ,
even in an arbitrarily precise way, doesn’t tell us if the “true” description of the
world is ψ1 or ψ2. This unfortunate case is known in econometrics as under-
identification.

Example 2.10
Suppose you have an urn full of balls, some white and some red. Call w the
number of white balls and r the number of red balls. We want to estimate both
w and r .

Suppose also that the only experiment we can perform works as follows: we
can extract one ball from the urn as many times as we want, but we must put it
back after extraction (statisticians call this “sampling with replacement”). De-
fine the random variable xi as 1 if the ball is red. Clearly

xi =
{

1 with probability π= r
w+r

0 with probability (1−πi ) = w
w+r

In this case, the probability distribution of our data is completely characterised
by the parameter π; as we know, we have a perfectly good way to estimate π;
since the data are iid, X̄ is a CAN estimator of π and testing hypotheses on π is
easy.

If, however, the parameters of interest are ψ = [r, w], there is no way to es-
timate them separately, because the function θ = M(ψ) is not invertible, for the
very simple reason that the relationship between the DGP parameter π and our
parameters of interest w and r

π= r

w + r

is one equation in two unknowns. Therefore, in the absence of extra information
we are able to estimateπ (the proportion of red balls) as precisely as wanted, but
there is no way to estimate r (the number of red balls).

Even if we knew the true value of π, there would still be an infinite array of
observationally equivalent descriptions of the urn. If, say, π = 0.3 the alterna-
tives ψ1 = [3,10], ψ2 = [15,50], ψ3 = [3000,10000], etc would all be observation-
ally equivalent.

32The technical way to say this would be “the M(·) function is not injective”.
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Identification of a model can be a very serious concern in some settings:
if a model is under-identified, we may be able to estimate consistently the pa-
rameters that describe the data, but this wouldn’t be helpful for the economic
question we are ultimately after. In this book, we will not encounter any of these
cases, except for the models I will describe in chapter 6, but you should be aware
of the potential importance of the problem.

2.A Assorted results

2.A.1 Jensen’s lemma

As we argued in Section 2.2.3, if g (·) is not a linear function, generally E
[
g (X )

] ̸=
g [E[X ]]. However, when g (·) is concave, we have a usable result that comes as
an inequality:

E
[
g (X )

]≤ g (E[X ])

For example, if E[X ] = 1, we can be sure that E
[
log(X )

]
is negative, just because

the logarithm is a concave function (provided, of course, that E
[
log(X )

]
exists),

since E
[
log(X )

]≤ log(1) = 0.

This remarkable result is easy to prove if g (·) is also differentiable, since in
this case g (·) is said to be concave between a and b if

g (x) ≤ g (x∗)+ g ′(x∗)(x −x∗) (2.15)

for each x∗ ∈ (a,b). Now assume that the interval (a,b) is the support of the rv
X , which possesses an expectation. Clearly, a < µ = E[X ] < b; this implies that
equation (2.15) holds when x∗ =µ, and therefore

E
[
g (X )

]≤ E
[
g (µ)+ g ′(µ)(X −µ)

]= g (µ)+ g ′(µ) ·E
[
(X −µ)

]
Since obviously E

[
X −µ]= 0, it follows that

E
[
g (X )

]≤ g (µ) = g [E[X ]],

as required. Note that

• by linearity, E[−X ] = −E[X ], so if the function is convex instead of con-
cave, you can flip the inequality, because the negative of a concave func-
tion is convex: E

[
g (X )

]≥ g (E[X ]);

• it is possible to prove Jensen’s lemma in the more general case when g (·) is
not everywhere differentiable in (a,b), but that’s a bit more intricate (see
for example Williams (1991), page 61).
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2.A.2 Markov’s and Chebyshev’s inequalities

These two inequalities are nice because they provide a link between the mo-
ments of a random variable and its distribution. Apparently, one may think that
pieces of information like E[X ] = 3 or V[X ] = 1 say nothing on the distribution
of X , but in fact they do, up to a point.

Let’s begin by Markov’s inequality. It states that if W is a random variable
with positive support and expectation E[W ] = m, then

P [W ≥ a] ≤ m

a
. (2.16)

for any a. The proof is surprisingly easy:33

m =
∫ ∞

0
w f (w)dw =

∫ a

0
w f (w)dw +

∫ ∞

a
w f (w)dw ≥

∫ ∞

a
w f (w)dw ≥

≥
∫ ∞

a
a f (w)dw = a

∫ ∞

a
f (w)dw = a ·P [W ≥ a].

So for example if you knew that the expectation of a non-negative random vari-
able W was 4, you could safely say that P [W > 8] ≤ 1/2 without knowing any-
thing on the distribution of X . Cool.

Now take a random variable X , with arbitrary support and E[X ] = m. Pro-
vided the second moment exists, define S = (X −m)2, so E[S] is the variance
of X . Clearly, S cannot be negative (it’s a square), so Markov’s inequality (2.16)
applies directly and

P [S ≥ a] ≤ V[X ]

a
.

The left-hand side of this inequality can be rewritten as P [|X −m| ≥p
a], so

P [|X −m| ≥p
a] ≤ V[X ]

a
,

and obviously

P
[|X −m| ≤p

a
]≥ 1− V[X ]

a
; (2.17)

this special case of Markov’s inequality is known as Chebyshev’s inequality. To
give you an idea of how remarkable this result is, imagine that all we knew about
X is that

E[X ] = 10 and V[X ] = 1.

Applying the formula above with a = 4 yields

P [|X −10| ≤ 2] = P [8 < X < 12] ≥ 1− 1

4
= 3/4, (2.18)

so, at least 75% of the distribution of X is between 8 and 12. Considering how
little we know about the distribution of X (is it discrete? is it symmetric? does
it have one maximum? two? none at all?), I consider this a rather impressive
result.

33Here I’m using integrals as if W was necessarily continuous, but the theorem in fact holds for
any kind of random variable.
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2.A.3 More on consistency

We stated in section 2.3.1 that if x1, x2, . . . , xn are independent and identically

distributed (iid for short) and E[xi ] = m, then X̄
p−→ m. However, this is only a

sufficient condition, and is by no means necessary.
In this subsection, I will provide an example of an alternative scenario under

which X̄
p−→ m even though the xi variables may not be iid: let’s just say that

E[xi ] = m, although nothing is said about heterogeneity or independence. In
this example, however, it is crucial that they all possess a variance vi = V[xi ].

Suppose we have a vector x of size n containing our observations, that are
not necessarily independent nor identical. However, we do require that they
possess second moments and use Σ to indicate the covariance matrix of x:

V[x] =Σ=


V[x1] Cov[x1, x2] . . . Cov[x1, xn]

Cov[x1, x2] V[x2] . . . Cov[x2, xn]
...

...
. . .

...
Cov[x1, xn] Cov[x2, xx ] . . . V[xn]


First, let’s have a look at the moments of X̄ ; its first moment is trivial to find,

since

E
[

X̄
]= E

[
1

n

∑
xi

]
= 1

n

∑
E[xi ] = nm

n
= m.

Now note that the average X̄ can be written as X̄ = 1
n ι

′x, and therefore its vari-
ance can be easily calculated by the rule (2.7). Therefore,

V
[

X̄
]= 1

n2 ·ι′Σι

What can we say about ι′Σι? First, given the properties of ι, this is simply
the sum of all the elements of Σ; second, since Σ is positive semi-definite by
construction, this cannot be a negative number, but it may be a large positive
one. Especially so, considering that the size of Σ grows with n.

We must now examine what happens to ι′Σι as n → ∞. When the xi rvs
are iid, this is easy, since in this special case Σ is just a multiple of the identity
matrix; hence, in the iid case, Σ= v ·I and ι′Σι= n ·v . In a more general case, the
non-diagonal elements may be non-zero (which could happen for dependent
observations), or the elements on the diagonal may be heterogeneous (which
could happen in the non-identical case). However, it may still be that, despite
these complications, ι′Σι behaves asymptotically as a linear function of n. To be
more precise, it may happen that

lim
n→∞

ι′Σι
n

= K ,

where K is some constant. For example, in the iid case, K would just be equal to
v . In all these cases, you have that, for large n,

V
[

X̄
]≃ K

n
.
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The most immediate consequence of the equation above is that V
[

X̄
]

tends
to 0 for large n, and therefore the desired result is a simple consequence of
Chebyshev’s inequality (2.18) applied to X̄ , where ε is any positive real:

lim
n→∞P [|X̄ −m| < ε] ≥ 1− K

nε2 → 1 ⇐⇒ X̄
p−→ m.

Note that this case is nearly useless in more elaborate (and realistic) cases
than the average, because being able to compute the moments of our quantities
of interest is extremely rare, but still gives you a nice idea of the kind of condi-
tions can be used to prove consistency.

2.A.4 Why
p

n ?

Here I’ll give you an intuitive account of the reason why, in the standard cases,
the Central Limit Theorem works by using

p
n as the normalising transformation

instead of some other power of n.

Let’s use the same scenario described in Section 2.A.3, that is a vector of ob-
servations x of size n, with common mean E[xi ] = m and covariance matrix

V[x] =Σ=


V[x1] Cov[x1, x2] . . . Cov[x1, xn]

Cov[x1, x2] V[x2] . . . Cov[x2, xn]
...

...
. . .

...
Cov[x1, xn] Cov[x2, xx ] . . . V[xn]

 .

As I proved in section 2.A.3, we can approximate V
[

X̄
]

as

V
[

X̄
]≃ K

n
,

where K is some positive real number. Thus,

V
[
nα

(
X̄ −m

)]≃ K n2α−1.

Therefore, the only way to multiply
(
X̄ −m

)
by a power of n and have that the

variance of the result is a constant is to choose that α = 1/2, which of course
gives you

p
n.

When observations are not iid, there may be cases when ι′Σι grows at a rate
that is different from n. In these cases, the normalising factor needed to achieve
convergence in distribution is actually different from the square root. This typ-
ically happens when the xi rvs come from a time-series sample, and the degree
of dependence between nearby observations can be substantial. The beginning
of chapter 5 contains a brief discussion of “persistence” in time series.



72 CHAPTER 2. SOME STATISTICAL INFERENCE

2.A.5 The normal and χ2 distributions

A continuous random variable X is a standard normal random variable when
its support is R, and its density function is

ϕ(x) = 1p
2π

exp

{
−x2

2

}
as depicted in figure 2.3.
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ϕ
(x

)

Figure 2.3: Standard normal density function

As is well known, ϕ(x) has no closed-form in-
definite integral: that is, it can be proven that
the function Φ(x), whose derivative is ϕ(x),
does exist, but cannot be written as a combi-
nation of “simple” functions (the proof is very
technical). Nevertheless, it’s quite easy to ap-

proximate numerically, so every statistical pro-
gram (heck, even spreadsheets) will give you
excellent approximations via clever numeri-
cal methods. If you’re into this kind of stuff,
Marsaglia (2004) is highly recommended.

As the reader certainly knows, this object was discovered34 by C. F. Gauss
(the guy on page 13), so it’s also also known as a Gaussian random variable. By
playing with integrals a little35, it can be proven that E[X ] = 0 and V[X ] = 1. One
of the many nice properties of Gaussian rvs is that an affine transformation of a
normal rv is also normal. Therefore, by the rules for expected values (see section
2.2.3), if X is a standard normal rv, then Y = m + s · X is a normal rv with mean
m and variance s2. Its density function is

f (y) = 1p
2πs2

exp

{
− (y −m)2

2s2

}
34Or invented? Interesting point.
35If you want to have some fun with the moments of the standard normal distribution, you’ll

find the result
dϕ(x)

dx =−xϕ(x) very useful, because it implies that
∫

xϕ(x)dx =−ϕ(x).
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A compact way to say this is Y ∼N
(
m, s2

)
.

In fact, one can define a multivariate normal random variable as a random
vector x with density

f (x) = (2π)−n/2|Σ|−1/2 exp
{
(x−m)′Σ−1(x−m)

}
,

or, in short, x ∼N (m,Σ), where n is the dimension of x, m is its expectation and
Σ its covariance matrix. The multivariate version of this random variable also
enjoys the linearity property, so if x ∼N (m,Σ), then

y = Ax+b ∼N
(

Am+b, AΣA′) . (2.19)

It is easy to overlook how amazing this result is: the fact that E[Ax+b] =
AE[x]+b is true for any distribution and does not depend on Gaussianity; and
the same holds for the parallel property of the variance. The special thing about
the Gaussian distribution is that a linear transformation of a Gaussian rv is itself
Gaussian. And this is a very special property, that is only shared by a few distri-
butions (for example: if you take a linear combination of two Bernoulli rvs, the
result is not Bernoulli-distributed).

The Gaussian distribution has a very convenient feature: contrary to what
happens in general, if X and Y have a joint normal distribution (that is, the vec-
tor x = [Y , X ] is a bivariate normal rv), absence of correlation implies indepen-
dence (again, this can be proven quite easily: nice exercise left to the reader).
Together with the linearity property, this also implies another very important
result: if y and x are jointly Gaussian, then the conditional density f (y|x) is Gaus-
sian as well. In formulae:

f (y|x) = (2π)−n/2|Σ|−1/2 exp
{
(y−m)′Σ−1(x−m)

}
,

where

m = E
[
y|x]= E

[
y
]+B ′ (x−E[x])

B = Σ−1
x Σx,y

Σ = V
[
y|x]=Σy −Σ′

x,yΣ
−1
x Σx,y

where Σy is the covariance matrix of y, Σx is the covariance matrix of x and Σx,y

is the matrix of covariances between x and y.

Example 2.11
For example, suppose that the joint distribution of y and x = [x1, x2] is normal,
with

E

 y
x1

x2

 =
 1

2
3


V

 y
x1

x2

 =
 3 0 1

0 1 1
1 1 2
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then you have

E
[

y
]= 1 E[x] = [2,3]′ Σy = 3 Σx =

[
1 1
1 2

]
Σx,y = [0,1]′

and therefore

B =
[

1 1
1 2

]−1 [
0
1

]
=

[−1
1

]
Σ = 3− [

0 1
][

1 1
1 2

]−1 [
0
1

]
= 3−1 = 2,

since

[
1 1
1 2

]−1

=
[

2 −1
−1 1

]
. Thus, the conditional expectation of y given x equals

E
[
y|x]= 1+ [−1,1]′

[
x1 −2
x3 −3

]
=−x1 +x2

and in conclusion
y |x ∼ N [x2 −x1,2] .

Note that:

• the conditional mean is a linear function of the x; this needn’t happen in
general: it’s a miraculous property of Gaussian random variables;

• the conditional variance is not a function of the x variables (it’s a con-
stant); again, this doesn’t happen in general, but with Gaussian random
variables, it does;

• if you apply the Law of Iterated Expectations (eq. (2.8)) you get

E
[
E

[
y |x]]=−E[x1]+E[x2] =−2+3 = 1 = E

[
y
]

;

which is, in fact, unsurprising, but it’s nice and reassuring.

If one instead needs to investigate the distribution of quadratic forms of
Gaussian rvs, then another distribution arises, namely the chi-square distribu-
tion (χ2 in symbols). The general result is that, if x ∼N (0,Σ), then x′Σ−1x ∼ χ2

n ,
where n is the number of elements of x, commonly known as the “degrees of
freedom” parameter.

The support of the χ2 density is over the non-negative reals; its shape de-
pends on n (the degrees of freedom) in the following way:

f (x) = 0.5n/2

Γ(n/2)
xn/2−1e−x/2.
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Figure 2.4: Density function of χ2
p , for p = 1. . .4
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The most common cases, where n ranges from 1 to 4, are shown in Figure 2.4.36

Like the normal density, there is no way to write down the distribution function
ofχ2 random variables, but numerical approximations work very well, so critical
values are easy to compute via appropriate software. The 95% critical values for
the cases n = 1. . .4 are

degrees of freedom 1 2 3 4
critical value at 95% 3.84 5.99 7.81 9.49

For example, a χ2
1 random variable takes values from 0 to 3.84 with probabil-

ity 95%. Memorising them may turn out to be handy from time to time.

2.A.6 Gretl script to reproduce example 2.6

Input:

set verbose o f f
clear

# c h a r a c t e r i s t i c s of the event

scalar p = 0.5
scalar n = 100
scalar lo = 36
scalar hi = 45

36In case you’re wondering what Γ(n/2) is, just google for “gamma function”; it’s a wonderful
object, you won’t be disappointed. Suffice it to say that, if x is a positive integer, thenΓ(x) = (x+1)!,
but the gamma function is defined for all real numbers, except non-positive integers.
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# true p r ob a bi l i t y via the binomial d i s t r i b u t i o n

matrix bin = pdf (B, p , n , seq ( lo , hi ) ’ ) # Binomial p r o b a b i l i t i e s
scalar true = sumc( bin )

# approximation via the Central Limit Theorem

scalar m = p*n # mean
scalar s = sqrt (p*(1 −p) *n) # standard err or
scalar z0 = ( lo − 0.5 − m)/ s # subtract 0.5 to compensate f o r continuity
scalar z1 = ( hi + 0.5 − m)/ s # add 0.5 to compensate f o r continuity

# "cnorm" = Normal d i s t r i b u t i o n function

scalar appr = cnorm( z1 ) − cnorm( z0 )

# printout

printf " probabi l i ty of \"heads\" = %g\n" , p
printf "number of tosses = %g\n" , n
printf " probabi l i ty of heads between %d and %d : \ n" , lo , hi
printf " true = %g , approximate via CLT = %g\n" , true , appr

Output:

probability of "heads" = 0.5
number of tosses = 100
probability of heads between 36 and 45:
true = 0.182342, approximate via CLT = 0.182194



Chapter 3

Using OLS as an inferential tool

3.1 The regression function

In this chapter, we well revisit the OLS statistic and give it an inferential interpre-
tation. As we will see, under many circumstances OLS is a consistent and asymp-
totically normal estimator. The first question that springs to mind is: what is OLS
an estimator of, exactly?

Generally speaking, statistical inference can be a very useful tool when an
observable variable y can be thought of as being influenced by a vector of ob-
servables x, but only via a complicated causal chain, that possibly includes sev-
eral other unobservable factors. Thus, we represent y as a random variable, so
as to acknowledge our uncertainty about it; however, we have reasons to be-
lieve that y may not be independent from x, so further insight can be gained by
studying the conditional distribution f (y |x).

Figure 3.1: Conditional distribution of the stature of children given their parents’
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Figure 3.1 is my rendition of a celebrated dataset, that was studied by Galton
(1886). Galton assembled data on the body height of 928 individuals (y), and

77
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matched them against the average height of their parents (x). Data are in inches.

FRANCIS GALTON

It is natural to think that somebody’s stature is the re-
sult of a multiplicity of causes, but surely the hereditary
component cannot be negligible. Therefore, the interest
in f (y |x). For each observed value in of x in the sample,
Figure 3.1 shows the corresponding boxplot.

Maybe not all readers are familiar with boxplots, so al-
low me to explain how to read the “candlesticks” in the fig-
ure: each vertical object consists of a central “box”, from
which two “whiskers” depart, upwards and downwards.
The central box encloses the middle 50% of the data, i.e.
it is bounded by the first and third quartiles. The “whiskers” extend from each
end of the box for a range equal at most to 1.5 times the interquartile range. Ob-
servations outside that range are considered outliers1 and represented via dots.
A line is drawn across the box at the median. Additionally, a black dot indicates
the average.

The most notable feature of Figure 3.1 is that the boxes seem to go up to-
gether with x; that is, the distribution of y shifts towards higher values as x grows.
However, even considering the subset of observations defined as the children
whose parents were of a certain height, some dispersion remains. For example,
if we focus on x = 65.5, you see from the third candlestick from the left that the
minimum height is about 62 and the maximum is about 72, while the mean is
between 66 and 68 (in fact, the precise figure is 67.059).

Historical curiosity: if you use OLS to go
through those points such as to minimise the
SSR, you will find that the fitted line is ĉi =
23.9+0.646pi , where ci stands for “child” and
pi for “parent”. The fact that the slope of the
fitted line is less than 1 prompted Galton to ob-
serve that the tendency for taller parents was to

have children who were taller than the average,
but not as much as themselves (and of course
the same, in reverse, happened to shorter par-
ents). Galton described this state of things as
“Regression towards Mediocrity”, and the term
stuck.

This method of inquiry is certainly interesting, but also very demanding: if
x had been a vector of characteristics, rather than a simple scalar, the analysis
would have been too complex to undertake. However, we may focus on a more
limited problem, that is hopefully amenable to a neat and tidy solution.

Instead of studying f (y |x), we could focus on the conditional expectation
E

[
y |x]

(assuming it exists): this object contains the information on how the cen-
tre of the distribution of y varies across different values of x, and in most cases is
just what we want. If you join the dots in figure 3.1, you get an upward-sloping
line like in Figure 3.2, that suits very well our belief that taller parents should
have, as a rule, taller children.

1An “outlier” is a data point that is far away from the rest.
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Figure 3.2: Regression function of the stature of children given their parents’
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The first step for making this intuition operational is to define the random
variable ε ≡ y −E

[
y |x]

, so that y can be written (by definition) as E
[

y |x]+ ε.
For historical reasons, the random variable ε is called the disturbance (see also
section 3.A.2). A very important property of the random variable ε is that it’s
orthogonal to x by construction:2

E[x ·ε] = 0 (3.1)

The proof is simple: call E
[

y |x]= m(x). Since ε= y −m(x), clearly

E[ε|x] = E
[

y |x]−E[m(x)|x] = m(x)−m(x) = 0;

therefore, by the law of iterated expectations (see Section 2.2.4),

E[x ·ε] = E[x ·E[ε|x]] = E[x ·0] = 0.

Finally, assume that m(x) is a simple function, whose shape is governed by a
few parameters.3 The choice that is nearly universally made is that of a linear4

function: E
[

y |x] = x′β. If we observe multiple realisations of y and x, then we
can write

yi = x′iβ+εi (3.2)

or, in matrix form,
y = Xβ+ε (3.3)

Note the difference between equation (3.3) and the parallel OLS decompo-
sition y = Xβ̂+e, where everything on the right-hand side of the equation is an

2Warning: as shown in the text, E[ε|x] = 0 =⇒ E[x ·ε] = 0, but the converse is not necessarily
true.

3In fact, there are techniques for estimating the regression function directly, without resorting
to assumptions on its functional form. These techniques are grouped under the term nonpara-
metric regression. Their usage in econometrics is rather limited, however, chiefly because of their
greater computational complexity and of the difficulty of computing marginal effects.

4As for what we mean exactly by “linear”, see 1.3.2.
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observable statistic. Instead, the only observable item in the right-hand side of
(3.3) is X: β is an unobservable vector of parameters and ε is an unobservable
vector of random variables. Still, the similarity is striking; it should be no sur-
prise that, under appropriate conditions, β̂ is a CAN estimator of β, which we
prove in the next section.

3.2 Main statistical properties of OLS

A handy consequence of equation (3.3) is that the OLS statistic can be written as

β̂ = (X′X)−1X′y =β+ (X′X)−1X′ε (3.4)

As any estimator, β̂ has a distribution, and its finite-sample properties can be
studied, in some cases. For example, its unbiasedness is very easy to prove: if
E[ε|X] = 0, then

E
[
β̂|X]=β+E

[
(X′X)−1X′ε|X]=β+ (X′X)−1X′E[ε|X] =β.

And therefore, by the law of iterated expectations,

E
[
β̂

]= E
[
E

[
β̂|X]]= E

[
β

]=β.

However, nobody cares about unbiasedness nowadays. Moreover, in order
to say something on the distribution of β̂ we’d need assumptions on the distri-
bution of ε, which is something we’d rather avoid doing. Therefore, we’ll use
asymptotic results. Of course, we will assume that the data are such that limit
theorems apply (iid being but an example).

3.2.1 Consistency

In order to prove consistency, start from equation (3.4) and rewrite matrix prod-
ucts as sums:

β̂ =β+
[∑

i
xi x′i

]−1 ∑
i

xiεi =β+
[

1

n

∑
i

xi x′i

]−1
1

n

∑
i

xiεi . (3.5)

Let’s analyse the two terms on the right-hand side separately: in order to do so,
it will be convenient to define the vector

zi = xiεi ; (3.6)

given equation (3.1), E[z] = 0, so a straightforward application of the LLN gives

1

n

∑
i

xiεi
p−→ 0. (3.7)
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As for the limit of the first term, assume that n−1X′X has one, and call it Q:5

1

n

∑
i

xi x′i
p−→Q; (3.8)

if Q is invertible, then we can exploit the fact that inversion is a continuous trans-
formation as follows [

1

n

∑
i

xi x′i

]−1
p−→Q−1,

so, after putting the two pieces together,

β̂
p−→β+Q−1 ·0 =β.

The OLS statistic, therefore, is a consistent estimator of the parameters of
the conditional mean, or to be more technical, of the derivative of E

[
y |x]

with
respect to x, which is constant by the linearity hypothesis.

One may think that the whole argument would
break down if the assumption of linearity were
violated. This is not completely true: even in
many cases when E

[
y |x]

is non linear, it may
be proven that β̂ is a consistent estimator of the

parameters of an object called Optimal Linear
Predictor, which includes the linearity as a spe-
cial case. But this is far too advanced for a book
like this.

It’s important here to ensure that 1
n

∑
i xi x′i converges to an invertible matrix;

there are two main reasons while this requirement may fail to hold:

1. it may not converge to any limit; this would be the case if, for example, the
vector x possessed no second moments;6

2. it may converge to a singular matrix; this, for example, would happen in
cases such as xt =φt , where |φ| < 1.

However, in ordinary circumstances, such problems should not arise.

3.2.2 Asymptotic normality

From equation (3.5),

p
n

(
β̂−β

)= [
1

n

∑
i

xi x′i

]−1
1p
n

∑
i

xiεi

5Ordinarily, Q will be equal to E(xi x′i ). It may be interesting to know that the proeprties of
OLS can be worked out in more exotic cases, where Q is more complicated or may even not exist.
These, cases, however, are far too complicated to be analysed here.

6In fact, there are cases when this situation may be handled by using a scaling factor other than
n−1; but let’s ignore such acrobatics.
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we already know from the previous subsection that
[ 1

n

∑
i xi x′i

]−1 p−→ Q−1, but
what happens to the second term as n grows to infinity? Define zi as in equation
(3.6). Therefore, by the CLT,

1p
n

∑
i

xiεi =
p

n Z̄
d−→N (0,Ω) ,

where Ω≡ V[zi ] = E
[
zi z′i

]
. Therefore, we can use Cramér’s theorem (see (2.13))

as follows: since

p
n

(
β̂−β

) =
[

1

n

∑
i

xi x′i

]−1
1p
n

∑
i

xiεi[
1

n

∑
i

xi x′i

]−1
p−→ Q−1

1p
n

∑
i

xiεi
d−→ N (0,Ω)

the quantity
p

n
(
β̂−β

)
converges to a normal rv multiplied by the nonstochas-

tic matrix Q−1; therefore, the linearity property for Gaussian rvs applies (see eq.
(2.19)), and as a consequence

p
n

(
β̂−β

) d−→N
(
0,Q−1ΩQ−1) . (3.9)

In order to say something on Ω, we can use the law of iterated expectations
(see section 2.2.4) to re-write it as follows:

Ω= E
[
zi z′i

]= E
[
ε2

i ·xi x′i
]= E

[
E

[
ε2

i |xi
] ·xi x′i

]
.

The quantity E
[
ε2

i |xi
]

is a bit of a problem here. We proved quite easily that
E[ε|x] = 0 as a natural consequence of the way ε is defined (see section 3.1, page
79) . However, we know nothing about its conditional second moment (the con-
ditional variance of y , if you like). For all we know, it may even not exist; or if it
does, it could be an arbitrary (and possibly quite weird) function of x. The only
thing we can be sure of is that the function h(x) = E

[
ε2|x]

(sometimes called the
skedastic function) must be positive, since it’s the expectation of a square and
of course the support of ε2 is the positive real line, or possibly a subset.

In some cases, one could be tempted to set up
a model in which we assume a functional form
for the skedastic function in the same way as
we do for the regression function. This, how-
ever, is very seldom done: the computational
complexity is greater than OLS and there is lit-
tle interest in the parameters of the conditional
variance.

That said, there are certain situations where the
main object of interest is the conditional vari-
ance instead of the conditional mean, like for
example in certain models used in finance. A
fuller discussion of this topic would lead to a
concept called heteroskedasticity, which is the
object of section 4.2.
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In the present chapter, we will assume that E
[
ε2|x]

is a positive constant,
traditionally labelled σ2:

E
[
ε2|x]=σ2; (3.10)

the most important implication of this assumption is that the conditional vari-
ance V

[
yi |xi

]
is constant for all observations i = 1. . .n; this idea is known as

homoskedasticity.7 This assumption can be visualised in terms of Figure 3.1 as
the idea that all the boxplots look roughly the same, and all you get by moving
along the horizontal axis is that they may go up and down as an effect of E

[
y |x]

not being constant, but never change their shape and size. How realistic this
assumption is in practice remains to be seen, and a sizeable part of chapter 4
will be devoted to this issue, but for the moment let’s just pretend this is not a
problem.

Therefore, under the homoskedasticity assumption,

Ω= E
[
zi z′i

]= E
[
σ2 ·xi x′i

]=σ2 ·E
[
xi x′i

]=σ2Q

and equation (3.9) simplifies to

p
n

(
β̂−β

) d−→N
(
0,σ2Q−1) . (3.11)

This result is also important because it provides the basis for justifying the usage
of OLS as an estimator of β on the grounds of its efficiency. Traditionally, this is
proven via the so-called Gauss-Markov theorem, which, however, relies quite
heavily on small-sample results that I don’t like very much.8 In fact, there is
a much more satisfactory proof that OLS is asymptotically semiparametrically
efficient, but it’s considerably technical, so it’s way out of scope here.9 Suffice it
to say that, under homoskedasticity, OLS is hard to beat in terms of efficiency.

We can estimate consistently Q via n−1X′X and σ2 via10

σ̂2 = e′e
n

p−→σ2 (3.12)

so the approximate distribution for OLS that we use is

β̂
a∼ N

[
β,V̂

]
where V̂ = σ̂2(X′X)−1.

A word of warning: the expression above V̂ is not the one used by the major-
ity of econometrics textbooks, and by none of the major econometric software

7From the Greek prefix “homo” (same); “skedastic”, in an econometric context, means “that
has to do with variance”.

8If you really really care, a proof is given in section 3.A.3, but I don’t care about it very much
myself.

9See Hansen (2019), sections 7.20 and 7.21 if you’re interested.
10Proof of this is unnecessary, but if you insist, go to subsection 3.A.1.
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packages. Instead, in the more popular variant an alternative estimator of σ2 is
used:

s2 = e′e
n −k

,

where k is the number of elements of β; the number n −k is commonly known
as degrees of freedom. It’s easy to prove that s2 is also consistent, but (as can be
proven via some neat algebra trick that I’m sparing you here) it’s also unbiased:
E

[
s2

]=σ2.
The difference between the two variants is negligible if the sample size n is

reasonably large, so you can use either; or to put it otherwise, if using s2 instead
of σ̂2 makes a substantial difference, then n is probably so small that in my opin-
ion you shouldn’t be using statistical inference in the first place. And besides, I
see no convincing reason why unbiasedness should be considered a virtue in
this context. The usage of σ̂2, instead, makes many things easier and is con-
sistent with all the rest of procedures that econometricians use beyond OLS, in
which asymptotic results are uniformly used. Having said this, let’s move on.

3.2.3 In short

To summarise: a set of conditions that are necessary for OLS to be interpreted
as a CAN estimator of something meaningful are:

1. we have a sample of n observations on yi (our dependent variable) and
xi (our explanatory variables) that satisfies some basic requirements so
that asymptotic theory is applicable as a reasonable approximation of the
behaviour of sample statistics. For example, the observation are iid and
all moments exist.

2. The conditional expectation of y on x exists and is linear: E
[

y |x]= x′β.

3. The matrix n−1X′X converges in probability to an invertible matrix Q.

4. The conditional variance V
[

y |x]
is a constant, that we call σ2.

If the above is true, then β̂ can be regarded as a CAN estimator of the parameters
of the conditional mean, that can be used, in turn, to compute marginal effects
or, as we shall see in the next section, to perform hypothesis tests. Note that
the above hypotheses are sufficient, but some of them may be relaxed to some
degree, and we will do so in the next chapters.

The reader may also find it interesting that an alternative set of assumptions
customarily known as the classical assumptions was traditionally made when
teaching econometrics in the twentieth century. In my opinion, using the clas-
sical assumptions for justifying the usage of OLS as an estimator is a relic of the
past, but if you’re into the history of econometric thought, I wrote a brief de-
scription in section 3.A.2.
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3.3 Specification testing

3.3.1 Tests on a single coefficients

Sometimes, we would like to test hypotheses on elements of β, so that we can
decide optimally on which explanatory variables we must include in our regres-
sion function. This is often called “specification testing”.

Let’s begin by testing a very simple hypothesis: H0 : βi = 0. The practical
implication of H0 in a model like

E
[

y |x]= x1β1 +x2β2 +·· ·+xkβk =
k∑

j=1
x jβ j

is that the impact of xi on E
[

y |x]
is 0, and therefore that the i -th explanatory

variable is irrelevant, since it has no effect on the regression function.
Note that under H0 there are two equally valid representations of the regres-

sion function; one that includes xi , the other one that doesn’t. For example, for
i = 2 and k = 3,

Model A yi = x1iβ1 +x2iβ2 +x3iβ3 +εi (3.13)

Model B yi = x1iβ1 +x3iβ3 +εi (3.14)

Clearly, if H0 was true, model B would be preferable, chiefly on the grounds of
parsimony;11 however, if H0 was false, only model A would be a valid represen-
tation of the regression function.

As I explained in section 2.4, in order to test H0 we need to find a differen-
tiable function of β such that g (β) = 0 if and only if H0 is true. In this case, this is
very easy: define ui as the “extraction vector”, that is a vector of zeros, except for
the i -th element, which is 1.12 The extraction vector takes its name by the fact
that the inner product of u j by any vector a returns the j -element of a. More
generally, the product A ·u j yields the j -th column of A, while u′

i A yields its i -th
row.13 Evidently, u′

i Au j = Ai j , the element of A on row i and column j .
By defining g (β) = u′

iβ, the hypothesis H0 : βi = 0 can be written as H0 :
u′

iβ = 0, and the Jacobian term is simply u′
i . Hence

p
n

[
u′

i β̂−u′
iβ

] d−→ N
[
0,u′

i V ui
]

so our test statistic is

W = β̂′ui
(
u′

i V̂ ui
)−1

u′
i β̂ = β̂2

i

vi i
= t 2

i (3.15)

11In fact, we will argue in section 3.5 that OLS on model B would produce a more efficient esti-
mator of the remaining coefficients.

12Some call the vector ui a basis vector. Others simply say “the i -th column of the identity
matrix”.

13As always, the reader should verify the claim, instead of trusting me blindly.
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where ti = β̂i

sei
, vi i is the i -th element on the diagonal of V̂ and sei =p

vi i . The

quantity sei is usually referred to as the standard error of β̂i . Of course, the null
hypothesis would be rejected if W > 3.84 (the 5% critical value for a χ2

1 distribu-
tion). Of course, this implies that we’d reject when |t | >p

3.84 = 1.96.
In fact, it’s rather easy to prove that we could use a slight generalisation of

the above for constructing a test for H0 : βi = a, where a is any real number you
want, and that such a test takes the form

tβi=a = β̂i −a

sei
(3.16)

Clearly, we can use the t statistic to decide whether a certain explanatory vari-
able is irrelevant or not, and therefore choose between model A and model B. In
the next subsection, I will show how this idea can be nicely generalised so as to
frame the decision on the best specification via hypothesis testing.

Note, also, that the t statistic can also be used “in reverse” to construct confi-
dence intervals in the same way as discussed at the end of Section 2.3.2: instead
of asking ourselves what the decision on H0 would be for a given a, we may look
for the values of a that would lead us to a given decision. A hypothesis of the
kind H0 :β j = a is not rejected whenever

−1.96 < β̂i −a

sei
< 1.96;

therefore, the range of values for a that would lead to accepting H0 is

β̂ j −1.96 · sei < a < β̂ j +1.96 · sei .

In other words, the interval β̂ j ±1.96·sei contains all the values of a that we may
consider not contradictory to the observed data.

3.3.2 More general tests

The general idea I will pursue here can be stated as follows: we assume we have
a true representation of the conditional mean, that I will call the unrestricted
model; in the previous subsection, that was called “model A”. Additionally, we
conjecture that the parameters β may obey some restrictions (also known as
constraints); by incorporating those into our unrestricted model, we would ob-
tain a more compact representation of the regression function. This, however,
would be valid only if our conjecture was true. This model is known as the re-
stricted model, and was labelled “model B” in the previous subsection. We make
our decision on the model to adopt by testing if our conjecture via a standard hy-
pothesis test.

In order to exemplify this idea, I will use the following unrestricted model:

yi = x1iβ1 +x2iβ2 +x3iβ3 +εi ; (3.17)
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in the previous subsection, we saw the the restricted model corresponding to
the constraint β2 = 0 is

yi = x1iβ1 +x3iβ3 +εi .

Suppose now that instead of β2 = 0, our conjecture was β1 = 1; by inserting this
equality into (3.17) we obtain

yi = x1i +x2iβ2 +x3iβ3 +εi

and therefore the restricted version of (3.17) would become

yi −x1i = x2iβ2 +x3iβ3 +εi ,

so that, in fact, we would be studying the regression function of the observable
variable ỹi = yi − x1i on x2i and x3i . Note that in this case we would have to
redefine the dependent variable of our model.

One more example: suppose we combine (3.17) with the restrictionβ2+β3 =
0: in this case, the constrained model turns out to be

yi = x1iβ1 + (x2i −x3i )β2 +εi .

Of course you can combine more than one restriction into a system:{
β1 = 1
β2 +β3 = 0,

and if you applied these to (3.17), the constrained model would turn into

yi −x1i = (x2i −x3i )β2 +εi .

The best way to represent constraints of the kind we just analysed is via the ma-
trix equation

Rβ = d,

where the matrix R and the vector d are chosen so as to express the constraints
we want to test. The examples above on model (3.17) are translated into the
Rβ = d form in the following table:

Constraint R d Restricted model

β3 = 0
[
0 0 1

]
0 E

[
yi |xi

]= x1iβ1 +x2iβ2

β1 = 1
[
1 0 0

]
1 E

[
yi −x1i |xi

]= x2iβ2 +x3iβ3

β2 +β3 = 0
[
0 1 1

]
0 E

[
yi |xi

]= x1iβ1 + (x2i −x3i )β2{
β1 = 1
β2 =β3

[
1 0 0
0 1 −1

] [
1
0

]
E

[
yi −x1i |xi

]= (x2i −x3i )β2
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Since the Jacobian of Rβ−d with respect to β is just the matrix R, we can
adapt the apparatus of Section 3.3.1 to the present case and decide on the ap-
propriateness of the restriction by computing the statistic

W = (Rβ̂−d)′
[
RV̂ R ′]−1

(Rβ̂−d) (3.18)

and matching it to the χ2 distribution with p degrees of freedom, p being the
number of constraints (the number of rows of the R matrix, if you prefer).

It should be noted, at this point, that checking for the compatibility of a con-
jecture such as Rβ = d may be a good idea for several reasons that go beyond the
simple task of choosing the most parsimonious representation for the regression
function. The hypothesis itself could be of interest: for example, the coefficient
β j could measure the response of the incidence of autism to the percentage of
vaccinated children. From a policy perspective, it would be extremely important
if H0 :β j = 0 were rejected (I’d be very surprised if it were).

Additionally, econometric models are often written in terms of parameters
that can be given a direct interpretation in terms of economic theory. As an
example, take a Cobb-Douglas production function: Q = AKα1 Lα2 . The reader
is doubtlessly familiar enough with microeconomics to need no reminder that
scale economies are constant if and only if α+α2 = 1. The production function,
in logs, reads

q = a +α1k +α2l ,

where k = log(K ) and l = log(L). If we could perform an experiment in which we
vary k and l to our liking and observe the resulting q , it would be very natural to
estimate the parameter vector

β =
 a
α1

α2


by means of an OLS regression, and the hypothesis “constant returns to scale”
would simply amount to Rβ = d, with

R = [0 1 1] d = 1.

Nevertheless, if we knew for certain (by some supernatural revelation) that
our production function displays in fact constant returns to scale, we would like
our estimate of β to incorporate the information α1 +α2 = 1, and there is no
reason why β̂ should.

In section 3.5, we will develop an alternative estimator, known as the Re-
stricted Least Squares estimator (or RLS for short), which integrates sample
data with one or more a priori constraints on the parameter vector. As we will
see, this will have the additional advantage of providing us with to calculate the
W test statistic, by comparing the SSRs for the two versions of the model.
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3.4 Example: reading the output of a software package

Now it’s time for a hands-on example:14 Table 3.1 contains a regression on a
dataset containing data about 2610 home sales in Stockton, CA from Oct 1, 1996
to Nov 30, 1998;15 the dependent variable is the natural logarithm of their sale
price. For this example, the software package I used is gretl, but the output is
more or less the same with every other program.

The model we’re going to estimate can be written as follows:

pi =β0 +β1si +β2bi +β3ai +β4xi +εi (3.19)

where pi is the log price of the i -th house and the explanatory variables are:

Legend
lsize si log of living area, hundreds of square feet
baths bi number of baths

age ai age of home at time of sale, years
pool xi = 1 if home has pool, 0 otherwise

Models of this type, where the dependent variable is the price of a good and
the explanatory variables are its features, are commonly called hedonic models.
In this case (like in most hedonic models), the dependent variable is in loga-
rithm; therefore, the effect of all coefficients must be interpreted as the impact
on that variable on the relative change in the house price (see footnote 34 in
Chapter 1).

As you can see, the output is divided into two tables; the most interesting is
the top one, which contains β̂ and some more statistics. I’ll describe the con-
tents of the bottom table in section 3.4.2.

3.4.1 The top table: the coefficients

The top table contains one row for each regressor. In the five columns you have:

1. the regressor name

2. the corresponding element of β̂, that is β̂i ;

3. the corresponding standard error, that is sei =
√

s2 · (X′X)−1
i i ;

4. the ratio of those two numbers, that is the t-ratio (see eq. 3.15)

14After reading this section, the reader might want to go back to section 1.5 and read it again
from a different perspective.

15Data are taken from Hill et al. (2018); if you use gretl, you can find the data in gdt format
at http://www.learneconometrics.com/gretl/poe5/data/stockton5.gdt. This is part of
the rich offering you find on Lee Adkins’ excellent website http://www.learneconometrics.
com/gretl/, which also contains Lee’s book. Highly recommended.

http://www.learneconometrics.com/gretl/poe5/data/stockton5.gdt
http://www.learneconometrics.com/gretl/
http://www.learneconometrics.com/gretl/
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Dependent variable: lprice

coefficient std. error t-ratio p-value
----------------------------------------------------------
const 8.85359 0.0483007 183.3 0.0000 ***
lsize 1.03696 0.0232121 44.67 0.0000 ***
baths -0.00515142 0.0130688 -0.3942 0.6935
age -0.00238675 0.000270997 -8.807 2.29e-18 ***
pool 0.106793 0.0226757 4.710 2.61e-06 ***

Mean dependent var 11.60193 S.D. dependent var 0.438325
Sum squared resid 157.8844 S.E. of regression 0.246187
R-squared 0.685027 Adjusted R-squared 0.684544
F(4, 2605) 1416.389 P-value(F) 0.000000
Log-likelihood -42.58860 Akaike criterion 95.17721
Schwarz criterion 124.5127 Hannan-Quinn 105.8041

Table 3.1: Example: house prices in the US

5. the corresponding p-value, possibly with the little stars on the right (see
section 2.4.1).

Note that gretl, like all econometric packages I know, gives you the “finite-
sample” version of the standard errors, that is those computed by using s2 as
a variance estimator instead of σ̂2, which is what I personally prefer, but the
difference would be minimal.

For the interpretation of each row, let’s begin by the lsize variable:16 the
coefficient is positive, so that in our dataset bigger houses sell for higher prices,
which of course stands to reason. However, the magnitude of the coefficient is
also interesting: 1.037 is quite close to one. Since the house size is also expressed
in logs, we could say that the relative response of the house price to a relative
variation in the house size is 1.037. For example, if we compared two houses
where house A is bigger than house B by 10% (and all other characteristics were
the same), we would expect the value of house A to be 10.37% higher than that
of house B.

As the reader knows, this is what in economics we call an elasticity: for a
continuous function you have that

η= dy

dx
· x

y
= dlog y

dlog x

because dlog y
dy = 1

y and therefore dlog y = dy
y . So, any time you see something

like log(y) = a +b log(x), you can safely interpret b as the elasticity of y to x.
From an economic point of view, therefore, we would say that the elasticity

of the house price to its size is about 1. What is more interesting, the standard

16“Why not the constant?” you may ask. Nobody cares about the constant.
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error for that coefficient is about 0.023, which gives a t-ratio of 44.67, and the
corresponding p-value is such an infinitesimal number that the software just
gives you 0.17 If we conjectured that there was no effect of size on price, that
hypothesis would be strongly rejected on the grounds of empirical evidence. In
the jargon of applied economists, we would say that size is significant (in this
case, very significant).

If, instead, we wanted to test the more meaningful hypotheses H0 :β1 = 1, it
would be quite easy to compute the appropriate t statistic as per equation (3.16):

t = β̂1 −1

se1
= 1.03696−1

0.0232121
= 1.592

and the corresponding p-value would be about 11.1%, so we wouldn’t reject H0.
On the other hand, we get a slightly negative effect for the number of baths

(−0.00515142). At first sight, this does not make much sense, since you would
expect that the more baths you have in the house, the more valuable your prop-
erty is. How come we observe a negative effect?

There are two answers to this question: first, the p-value associated to the
coefficient is 0.6935, which is way over the customary 0.05 level. In other words,
an applied economist would say that the baths variable is not significant. This
does not mean that we can conclusively deduce that there is no effect. It means
that, if there is one, it’s too weak for us to detect (and, for all we know, it might as
well be positive instead, albeit quite limited). Moreover, this is the effect of the
number of baths other things being equal, as we know from the Frisch-Waugh
theorem (see section 1.4.4). In this light, the result is perhaps less surprising:
why should the number of baths matter, given the size of the house? Actually, a
small house filled with baths wouldn’t seem such a great idea, at least to me.

On the contrary, the two variables age and pool are highly significant. The
coefficient for age, for example, is about -0.002: each year of age decreases the
house value by about 0.2%, which makes sense. The coefficient for the dummy
variable pool is about 0.107, so it would seem that having a pool increases the
house value by a little over 10%, which, again, makes sense.

3.4.2 The bottom table: other statistics

Let’s begin with the easy bits; the first line of the bottom table contains descrip-
tive statistics for the dependent variable: mean (about 11.6) and standard de-
viation (about 0.43). The next line contains the sum of squared residuals e′e
(157.88) and the square root of s2 = e′e/(n−k), which is in this case about 0.246.
Since our dependent variable is in logs, this means that the “typical” size of the
approximation errors for our model is roughly 25%. The line below contains
the R2 index and its adjusted variant (see eq. 1.19). Both versions are around
68.5%, so that our model, all in all, does a fair job at describing price differen-
tials between houses, especially given how little information on each properties

17In case you’re curious: I can’t compute the number exactly, but it’s smaller than 10−310.
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we have. However, since our estimate ofσ2 is quite sizeable, we shouldn’t expect
our model to give us a detailed description of individual house prices.

The line below contains a test18 commonly called “overall specification test”:
it is a joint test for all coefficient being zero apart from the constant. The null
hypothesis is, basically, that none of your regressors make any sense and your
model is utter rubbish. Luckily, in our case the p-value is infinitesimal, so we
reject.

On the next line, you get the log-likelihood for the model:

L =−n

2

[
1+ ln(2π)+ ln(σ̂2)

]
.

This number is of very little use by itself;19 in this book, it’s only important be-
cause it provides the essential ingredient for calculating the so-called Informa-
tion Criteria (IC), that are widely used tools for comparing non-nested models.

We say that a model nests another one when the latter is a special case of
the former. For example, the two models (3.13) and (3.14) are nested, because
model (3.14) is just model (3.13) in the special case β2 = 0. If model B is nested
in model A, choosing between A and B is rather easy: all you need is a proper
test statistic; I will provide a detailed exposition in Section 3.5. However, we may
have to choose between the two alternatives in which nesting is impossible:

yi ≃ x′iβ
yi ≃ z′iγ

Information criteria start from the value of the log-likelihood (multiplied by -2)
and add a penalty function, which is increasing in the number of parameters.
The gretl package, that I’m using here, reports three criteria: the Akaike IC (AIC),
the Schwartz IC (BIC, where B is for “Bayesian”) and the one by Hannan and
Quinn (HQC), which differ by the choice of penalty function:

AIC = −2L+2k (3.20)

BIC = −2L+k logn (3.21)

HQC = −2L+2k loglogn (3.22)

The rule is to pick the model that minimises information criteria. It may be
interesting to know that, for the case of linear model that we are examining in
the present context, the quantity −2L equals

−2L = n
[
K − log(σ̂2)

]
,

18This test, technically, is of the F variety — see section 3.5.1 for its definition.
19If the data are iid and f (y |x) is Gaussian, then β̂ and σ̂2 are the maximum likelihood estima-

tors of β andσ2. I chose not to include this topic into this book, but the interested reader will find
a nice and compact exposition in Verbeek (2017), chapter 6. Other excellent treatments abound,
but the curious reader may want to check out chapters 14–15 of Ruud (2000). If you want to go for
the real thing, grab Gourieroux and Monfort (1995), volume 1, chapter 7.
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where K is a not particularly interesting constant. Therefore, minimising the in-
formation criteria amounts to choosing a model that fits the data “well” without
using “too many” parameters.

At times, it may happen that this algorithm gives conflicting results depend-
ing on which IC you choose. There is a huge literature on this, but my advice in
these cases is “don’t trust the AIC much”.20 An alternative to information criteria
that has become very popular in recent years (especially because the machine
learning people are crazy about it) is the so-called cross-validation criterion:
you’ll find more about it in Section 3.A.4.21

3.5 Restricted Least Squares and hypothesis testing

The Restricted Least Squares statistic (or RLS for short) is an estimator of the
parameter vector that, like OLS, uses the available data in the most effective way
but at the same time, unlike OLS, satisfies by construction a set of p restrictions
of the type Rβ = d. In other words, we are looking for a vector β̃ that minimises
the SSR under the condition that a certain set of linear constraints are satisfied:

β̃ = Argmin
Rβ=d

∥y−Xβ∥; (3.23)

compare (3.23) with equation (1.14): OLS is defined as the unconstrained SSR
minimiser (we can choose β̂ among all k-element vectors); RLS, instead, can
only be chosen among those vectorsβ that satisfy Rβ = d. Figure 3.3 exemplifies
the situation for k = 2.

Define the restricted residuals as ẽ = y−Xβ̃; we will be interested in com-
paring them with the OLS residuals, so in this section we will denote them as
ê = y−Xβ̂ = MXy to make the distinction typographically evident.

A couple of remarks can already be made even without knowing what the
solution to the problem in (3.23) is. First, since β̂ is an unrestricted minimiser,
ê′ê cannot be larger than the constrained minimum ẽ′ẽ. However, the inequality
ê′ê ≤ ẽ′ẽ can be made more explicit by noting that

MXẽ = MX
[
y−Xβ̃

]= MXy = ê

and therefore
ê′ê = ẽ′MXẽ = ẽ′ẽ− ẽ′PXẽ

so that

ẽ′ẽ− ê′ê = ẽ′PXẽ (3.24)

20If you want some more detail, see section 15.4 in Davidson and MacKinnon (2004) or section
3.2.2 in Verbeek (2017). However, the literature on statistical methods for selecting the “best”
model (whatever that may mean) is truly massive; see for example the “model selection” entry in
(Durlauf and Blume, 2008).

21In fact, the cross validation criterion can be shown to be roughly equivalent to the AIC.
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Figure 3.3: Example: two-parameter vector

β2

β1

β̂2

β̂1

β1 = 3β2

β̃2

β̃1

The ellipses are the contour lines of the function e′e. The constraint is β1 = 3β2. The

number of parameters k is 2 and the number of constraint p is 1. The unconstrained

minimum is β̂1, β̂2; the constrained minimum is β̃1, β̃2.

where the right-hand side of the equation is non-negative, since ẽ′PXẽ can be
written as (PXẽ)′(PXẽ), which is a sum of squares.22

In order to solve (3.23) for β̃, we need to solve a constrained optimisation
problem, which is not complicated once you know how to set up a Lagrangean.
The details, however, are not important here and I’ll give you the solution straight
away:

β̃ = β̂− (X′X)−1R ′ [R(X′X)−1R ′]−1
(Rβ̂−d); (3.25)

derivation of this result is provided in the separate subsection 3.A.5, so you can
skip it if you want.

The statistical properties of β̃ are proven in section 3.A.6, but the most im-
portant point to make here are: if Rβ̂ = d, then β̃ is consistent just like the OLS
estimator β̂, but has the additional advantage of being more efficient. If, on the
contrary, Rβ̂ ̸= d, then β̂ is inconsistent. The practical consequence of this fact
is that, if we were certain that the equation Rβ̂ = d holds, we would be much
better off by using an estimator that incorporates this information; but if our
conjecture is wrong, our inference would be invalid.

It’s also worth noting that nobody uses expression (3.25) as a computational
device. The simplest way to compute β̃ is to run OLS on the restricted model and
then “undo” the restrictions: for example, if you take model (3.17), reproduced

22In fact, the same claim follows more elegantly by the fact that PX is, by construction, positive
semi-definite.
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here for your convenience

yi = x1iβ1 +x2iβ2 +x3iβ3 +εi

and want to impose the set of restrictions β1 = 1 and β2 = β3, what you would
do is estimating the constrained version

yi −x1i = (x2i +x3i )β2 +εi , (3.26)

that can be “unravelled” as

yi = x1i ·1+x2iβ2 +x3iβ2 +εi

and then forming β̂ as [1, β̃2, β̃2], where β̃2 is the OLS estimate of equation (3.26).
Nevertheless, equation (3.25) is useful for proving an important result. Let’s

define the vector λ as

λ= [
R(X′X)−1R ′]−1

(Rβ̂−d);

by premultiplying (3.25) by X we get:

Xβ̃ = ỹ = ŷ−X(X′X)−1R ′λ

which in turn implies
ẽ = ê+X(X′X)−1R ′λ

By using ê = MXy =⇒ ê′X = 0, we can use the above equation to get

ẽ′ẽ = ê′ê+λ′R(X′X)−1R ′λ

but by the definition of λ,

λ′R(X′X)−1R ′λ= (Rβ̂−d)′
[
R(X′X)−1R ′]−1

(Rβ̂−d)

so finally

ẽ′ẽ− ê′ê = (Rβ̂−d)′
[
R(X′X)−1R ′]−1

(Rβ̂−d). (3.27)

Note that the right-hand side of equation (3.27) is very similar to (3.18). In
fact, if our estimator forσ2 is σ̂2 = ê′ê/n, we can combine equations (3.18), (3.24)
and (3.27) to write the W statistic as:

W = (Rβ̂−d)′
[
R(X′X)−1R ′]−1

(Rβ̂−d)

σ̂2 = n
ẽ′ẽ− ê′ê

ê′ê
. (3.28)

Therefore, we can compute the same number in two different ways: one im-
plies a rather boring sequence of matrix operations, using only ingredients that
are available after the estimation of the unrestricted model. The other one, in-
stead, requires estimating both models, but at that point 3 scalars (the SSRs and
the number of observations) are sufficient for computing W .
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3.5.1 Two alternative test statistics

There are two other statistics that can be used to perform a test on H0 instead of
the W test. One is the so-called F test, which is the traditional statistic taught in
all elementary econometric courses, treated with reverence in all introductory
econometrics books and the one that all software packages report. It can be
written as

F = ẽ′ẽ− ê′ê
s2

1

p
= ẽ′ẽ− ê′ê

ê′ê
· n −k

p
; (3.29)

it can be easily seen that there are two differences between F and W : F uses
s2, the unbiased estimator of σ2 that I showed you at the end of section 3.2.2,
instead of σ̂2; moreover, you also have the number of restrictions p in the de-
nominator. Of course, it’s easy to compute them from one another:

W = p ·F
n

n −k
⇐⇒ F = n −k

n
(W /p)

so in the standard case, when n is much larger than k, you have that W ≃ p ·F .
Since their p-values are always practically the same, there is no statistical ground
for preferring either. The reason why the econometricians of yore were attached
to the F test was because its distribution is known even for small samples if εi is
normal, so you don’t need asymptotics. In my opinion, however, small samples
are something you should steer clear of anyway, and postulating normality of εi

is, as a rule, just wishful thinking. So, my advice is: use W .
The other statistic we can use is more interesting: if H0 is true, the restricted

model is just as correct as the unrestricted one. Therefore, one could conceiv-
ably estimate σ2 by using ẽ instead of ê:

σ̃2 = ẽ′ẽ
n

(3.30)

It can be proven that intuition is right, and if H0 is true σ̃2 is indeed consistent
for σ2. If we use σ̃2 instead of σ̂2 in equation (3.28), we obtain the so-called LM
statistic:23

LM = n
ẽ′ẽ− ê′ê

ẽ′ẽ
= n

ẽ′PXẽ

ẽ′ẽ
, (3.31)

where equality comes from (3.24). Since ẽ′ẽ cannot be less than ê′ê, in finite
samples LM will always be smaller than W . However, under H0 they tend to the
same probability limit, and therefore under the null LM will also by asymptoti-
cally distributed as χ2

p .24

The nice feature of the LM statistic is that it can be computed via a neat trick,
known as auxiliary regression:

23The reason for the name is that this test statistic can be shown to be a “Lagrange Multiplier”
test if normality of εi was assumed. Its validity, however, does not depend on this assumption. A
fuller discussion of this point would imply showing that OLS is a maximum likelihood estimator
under normality, which is something I’m not willing to do. See also footnote 19 in Section 3.4.2.

24The reader may want to verify that alternative formulations of the W and LM statistics are
possible using σ̂2 and σ̃2, or the R2 indices from the two models.
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1. run OLS on the constrained model and compute the residuals ẽ;

2. run OLS on a model where the dependent variable is ẽ and the regressors
are the same as in the unconstrained model;

3. take R2 from this regression and multiply it by n. What you get is the LM
statistic.

The last step is motivated by the fact that you can write R2 as y′PXy
y′y , so in the

present case ẽ′PXẽ
ẽ′ẽ is R2 from the auxiliary regression.

Example 3.1
As an example, let’s go back to the house pricing model we used as an example
in Section 3.4. In Section 3.4.1 we already discussed two hypotheses of interest,
namely:

• The price elasticity is 1, and

• the number of baths has no effect.

Testing for these two hypotheses separately is easy, via t-tests, which is just what
we did a few pages back. As for the joint hypothesis, the easiest thing to do is
setting up the resticted model as follows: combine equation (3.19) with β1 = 1
and β2 = 0. The restricted model becomes

pi − si =β0 +β3ai +β4xi +εi . (3.32)

Note the redefinition of the dependent variable: if pi is the log of the house
price and si is its size in square feet, then pi − si is the log of is price per square
foot, or unit price if you prefer. In fact, the hypothesis β1 = 1 implies that if
you have two houses (A and B) that are identical on all counts, except that A is
twice as big as B, then the price of A should be twice that for B. Therefore, this
hypothesis says implicitly that you can take into account appropriately the size
of the property simply by focusing on its price per square foot, which is what we
do in model (3.32). Estimating (3.32) via OLS gives

Dependent variable: lup

coefficient std. error t-ratio p-value
----------------------------------------------------------
const 8.94603 0.00833147 1074 0.0000 ***
age -0.00247396 0.000232353 -10.65 6.07e-26 ***
pool 0.115810 0.0221914 5.219 1.94e-07 ***

Mean dependent var 8.881042 S.D. dependent var 0.253030
Sum squared resid 158.1204 S.E. of regression 0.246277
R-squared 0.053395 Adjusted R-squared 0.052669
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Superficially, one may think that our restricted model is much worse than
the unrestricted one, as the R2 drops from 68.5% to 5.3%. However, this is not a
fair comparison, because in the restricted model the dependent variable is rede-
fined and the denominator of the two R2 indices is not the same. The SSRs are,
instead, perfectly comparable, and the change you have between the full model
and the unrestricted one is 157.88 → 158.12, which looks far less impressive, so
we are drawn to think that the restricted model is not much worse in terms of
fit. We could take this as an indication that our maintained hypothesis is not
particularly at odds with the data.

This argument can be made rigorous by computing the W statistic:

W = 2610 · 158.1204−157.8844

157.8844
= 3.9014

you get a statistic that is smaller than the critical value at 5% of χ2
2 = 5.99, so we

accept both hypotheses again (the p-value is about 0.124). This time, however,
the test was performed on the joint hypothesis. It may well happen (examples
are not hard to construct) that you may accept two hypotheses separately but
reject them jointly (the converse should never happen, though).

The LM test, instead, can be computed via an auxiliary regression as follows:
take the residuals form model (3.32) and regress them against the explanatory
variables of the unrestricted model (3.19). In this case, you get

coefficient std. error t-ratio p-value
---------------------------------------------------------
const -0.0924377 0.0483007 -1.914 0.0558 *
lsize 0.0369564 0.0232121 1.592 0.1115
baths -0.00515142 0.0130688 -0.3942 0.6935
age 8.72115e-05 0.000270997 0.3218 0.7476
pool -0.00901706 0.0226757 -0.3977 0.6909

SSR = 157.884, R-squared = 0.001493

The auxiliary regression per se is not particularly interesting: its parameters
don’t have any meaningful interpretation.25. For us, it’s just a computational
device we use to compute the LM test statistic: take R2 = 0.001493 and multiply
it by the number of observations (2610); you get

LM = 0.001493×2610 = 3.89558,

which is practically identical to W , hence the conclusion is the same.

3.6 Exogeneity and causal effects

This section is short, but very important: The 2021 Nobel Prize for Economics
was awarded to David Card, Joshua Angrist and Guido Imbens, precisely for

25For curiosity: the SSR is the same as in the restricted model. Can you prove why analytically?
It’s not difficult.
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their work on causal effects, which has been enormously influential, especially
in labour economics. The issue here is not about the statistical properties of β̂,
but rather on its interpretation as an estimator of β, so it fits in well at this point
of the book, although the point we pursue here will be discussed in much greater
detail in Chapter 6.

What does β measure? If E
[

y |x]= x′β, then β is simply defined as

β = ∂E
[

y |x]
∂x

;

therefore, in a wage equation, the coefficient for education tells us simply by
how much, on average, wage varies across different education levels.

It would be tempting to say “by how much your wage would change if you
got one extra year of education”, but unfortunately this statement would be un-
warranted.26 There are many reasons why the conditional mean may not be a
good indicator of causality: for example, people may just stop attending school,
or university, the moment they are able to earn a decent wage. If that were the
case, the regression function of wage with respect to education would be flat, if
not negative (because the smartest people would spend a shorter time in edu-
cation). But this wouldn’t mean that education has a negative effect on wages.
In fact, quite the contrary: people who get more education would do so to com-
pensate for their lesser ability. Of course, this example is a bit of a stretch, but
should give you a hint as to why inferring causality from a regression coefficient
may be a very bad idea.

More in general, there are situations when the causal relationship between
y and x works in such a way that the conditional mean does not capture causal-
ity, but only the outcome of the process, which can be quite different, as in the
example I just made.

In these cases, the traditional phrase that we use in the economics commu-
nity is “x is endogenous” (as opposed to exogenous). If regressors are endoge-
nous, then the regression parameters have nothing to do with causal effects;
put another way, the parameters of interest β are not those that describe the
conditional mean, and therefore, if you define εi as yi − x′iβ, the first conse-
quence is that the property E[εi |xi ] = 0 doesn’t hold anymore, and so E[εi xi ] =
Cov[εi ,xi ] ̸= 0. This is why in many cursory treatment of the subject, endogene-
ity is described as an “illness” that happens when the regressors are correlated
with the disturbance term. Of course, that is an oversimplification: a more rig-
orous statement would be that in some cases the causal effects can be different
from the conditional mean; if you define the disturbances as deviations from
the causal effects, non-zero correlation between regressors and disturbances
follows by construction.

26The ongoing debate in contemporary econometrics on the issue of differentiating between
correlation and causation is truly massive. For a quick account, read chapter 3 in the latest best-
seller in econometrics, that is Angrist and Pischke (2008), or simply google for “Exogeneity”.
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Note that this problem is not a shortcoming of OLS per se: the job of OLS is

to estimate consistently the parameters of the conditional expectation
∂E[y |x]
∂x . If

the nature of the problem is such that our parameters of interestβ are a different
object and we insist on equating them with what OLS returns (thereby giving
OLS a misleading interpretation), it’s a hermeneutical problem, not a statistical
one.

The preferred tool in the econometric tradition for estimating causal effects
is an estimator called Instrumental Variable estimator (or IV for short), but
you’ll have to wait until chapter 6 for it.

3.7 Prediction

Once a model is estimated and we have CAN estimators of β and σ2, we may
want to answer to the following question: if we were given a new datapoint for
which the vector of covariates is known and equal to x̌, what could we say about
the value of the dependent variable y̌ for that new observation?

In order to give a sensible answer, let’s begin by noting a few obvious facts:
of course, y is a random variable, so we cannot predict it exactly. If we knew the
true DGP parameters β and σ2 we could say, however, that

E
[

y̌ |x̌]= x̌′β V
[

y̌ |x̌]=σ2.

With this in hand, we could even build a confidence interval.27 We have two
ways we can follow here:

1. make no assumption on the distribution of ε. In this case, we need to
use tools such as Chebyshev’s inequality (see Section 2.A.2); this would be
commendable, but is very rarely done.

2. Make some claim on the distribution of ε: everyone’s favourite is the nor-
mal distribution, which leads to

P (|y̌ −m| < 1.96σ) ≃ 95% (3.33)

where m = x̌′β.

Unfortunately, we don’t observe β; instead, we observe β̂, so, assuming that
the best way to make a point prediction of a random variable is to take its expec-
tation,28 the best we can do to predict y is computing

ŷ = x̌′β̂.

27If you need to refresh the notion of confidence interval, go back to the end of section 2.3.2.
28This may seem obvious, but actually isn’t: this choice is optimal if the loss function we employ

for evaluating prediction is quadratic (see section 1.2). If the loss function was linear, for example,
we’d have to use the median. But let’s just stick to what everybody does.
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Note, however, that β̂ is a random variable, with its own variance, so the confi-
dence interval around ŷ has to take this into account. Formally, let us define the
prediction error as

e∗ = y̌ − ŷ = (x̌′β+ ε̌)− x̌′β̂ = ε̌+ x̌′(β− β̂);

the expression above reveals that our prediction can be wrong for two reasons:
(a) because ε̌ is inherently unpredictable: our model does not contain all the
feaures that describe the dependent variable and its variance is a measure of
how bad our model is and (b) our sample is not infinite, and therefore we don’t
observe the DGP parameter β, but only its estimate β̂.

If ε̌ can be assumed independent of β̂ (as is normally safe to do), then the
variance of the difference is the sum of the variances:

V
[
e∗

]= V
[
(y̌ − ŷ)|x̌]= V[ε̌]+V

[
x̌′(β− β̂)

]=σ2 + x̌′V x̌.

Of course, when computing this quantity with real data, we replace variances
with their estimates, so we use σ̂2 (or s2) in place of σ2, and V̂ for V .

Example 3.2
Suppose we use the model shown in section 3.4.1 to predict the price for a house
built 5 years ago, with 1500 square feet of living area, 2 baths and no pool. In this
case,

x̌′ = [1 2.708 2 5 0] ;

(the number 2.708 is just log(1500/100); since

β̂′ = [8.8536 1.037 −0.00515 −0.00239 0.107]

simple multiplication yields ŷ = 11.6395. Therefore the predicted price is about
US$ 113491 (that is, exp(11.6395)).29

As for the variance,30 we need V̂ , that is s2(X′X)−1:

V̂ = 0.0001×


23.330 −9.914 2.288 −0.025 1.724
−9.914 5.388 −2.245 −0.010 −0.705

2.288 −2.245 1.708 0.016 −0.021
−0.025 −0.010 0.016 0.001 −0.001

1.724 −0.705 −0.021 −0.001 5.142


It turns out that

V
[

ŷ |x]= σ̂2 + x̌′V̂ x̌ = 0.0606082+6.28845 ·10−05 = 0.0606711;

29Actually, the expectation of the exponential is not the exponential of the expectation, since
the exponential function is everywhere convex (see Section 2.A.1), but details are not important
here.

30Of course, we could have used the asymptotic version σ̂2(X′X)−1 and very little would have
changed.
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since
p

0.0606711 ≃ 0.2463, by assuming normality we can even calculate a 95%
confidence interval around our prediction as

ŷ ±1.96
√

V
[

ŷ
]= 11.6395±1.96×0.2463

so we could expect that, with a probability of 0.95, the log price of our hypothet-
ical house would be between 11.157 and 12.122, and therefore the price itself
between $ 70000 and $ 180000 (roughly). You may feel unimpressed by such a
wide range, and I wouldn’t disagree. But on the other hand, consider that this
is a very basic model, which only takes into account very few features of the
property, so it would be foolish to expect it to be razor-sharp when it comes to
prediction.

One last thing: you may have noticed, in the example above, that the vari-
ance of the predictor depends almost entirely on the “model uncertainty” com-
ponent σ̂2 and very little on the “parameter uncertainty” component x̌′V̂ x̌. This
is not surprising, in the light of the fact that, as n → ∞, the latter component
should vanish, since β̂ is consistent. Therefore, in many settings (notably, in
time-series models, that we’ll deal with in Chapter 5), the uncertainty on the
prediction is tacitly assumed to come only from σ2.

3.8 The so-called “omitted-variable bias”

In many econometrics textbooks, you can find an argument that goes more or
less like this: assume that the true model is

yi = xiβ1 + ziβ2 +εi ; (3.34)

if you try to estimate β1 via a regression of yi on xi alone, you’re going to end up
with a bad estimate. The proof is rather easy:31

β̂1 =
∑n

i=1 xi yi∑n
i=1 x2

i

=
∑n

i=1 xi
(
xiβ1 + ziβ2 +εi

)∑n
i=1 x2

i

= (3.35)

= β1 +β2

∑n
i=1 xi zi∑n

i=1 x2
i

+
∑n

i=1 xiεi∑n
i=1 x2

i

If you take probability limits, you’ll find that, even if E[εi |xi ] = 0,

β̂1
p−→β1 +β2

E[xi zi ]

E
[
x2

i

]
and the estimator would be inconsistent unless β2 = 0 and/or E[xi zi ] = 0. The
solemn maxim the student receives at this point is “if you omit a relevant regres-
sor (zi in our case, that is relevant ifβ2 ̸= 0) then your estimates will be incorrect,

31I could extend this example to matrices, but it would be totally unnecessary to grasp my point.
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unless the omitted variable miraculously happens to be uncorrelated with xi ”.
The phenomenon is usually called omitted variable bias.

I’ve always considered this remark quite useless, if not outright misleading,
and seeing econometricians, who are far better than myself, repeating it over
and over to generations of students is a constant source of wonder to me. I’ll try
to illustrate why, and convince you of my point.

The parameter β1 in (3.34) is defined as the partial effect of xi on the condi-
tional mean of yi on both xi and zi ; that is, the effect of x on y given z. It would
be silly to think that this quantity could be estimated consistently without us-
ing any information on zi .32 The statistic β̂1, as defined in (3.35) (which does
ignore zi ), is nevertheless a consistent estimator of a different quantity, namely
the partial effect of xi on the conditional mean of yi on xi alone, that is

E
[

yi |xi
]=β1xi +β2E[zi |xi ] .

The objection that some put forward, at this point, is: “OK; but assume that
equation (3.34) is my object of interest, and zi is unobservable, or unavailable.
Surely, you must be aware that the estimate you get by using xi only is bogus.”
Granted. But then, I may reply, do you ever get a real-life case when you observe
all the variables you would like to have in your conditioning set? I don’t think
so; take for example the model presented in section 3.4: in order to set up a truly
complete model, you would have to have data on the state of the building, on
the quality of life in the neighbourhood, on the pleasantness of the view, and
so on. You should always keep in mind that the parameters of your model only
make sense in the context of the observable explanatory variable that you use
for conditioning.33

This doesn’t mean that you should not worry about omitted variable bias at
all. The message to remember is: the quantity we would like to measure (ideally)
is “the effect of x on y all else being equal”; but what we measure by OLS is the
effect of x on y conditional on z. Clearly, in order to interpret our estimate the
way we would like to, z should be as close to “all else” as possible, and if you omit
relevant factors from your analysis (by choice, or impossibility) you have to be
extra careful in interpreting your results.

Example 3.3
I downloaded some data from the World Development Indicators34 website. The
variables I’m using for this example are

32I should add that if we had an observable variable wi , which we knew for certain to be uncor-
related with zi , you could estimate β1 consistently via a technique called instrumental variable
estimation, which is the object of Chapter 6.

33In fact, there is an interesting link the bias you get from variable omission and the one you get
from endogeneity (see section 3.6). Maybe I’ll write it down at some point.

34The World Development Indicator (or WDI for short) is a wonderful database, maintained
by the World Bank, that collects a wide variety of variables for over 200 countries over a large
time span. It is one of the most widely used resources in development economics and is publicly
available at http://wdi.worldbank.org or through DBnomics https://db.nomics.world/.

http://wdi.worldbank.org
https://db.nomics.world/


104 CHAPTER 3. USING OLS AS AN INFERENTIAL TOOL

Variable name Description
NY.GDP.PCAP.PP.KD GDP per capita based on purchasing

power parity (PPP).
SH.MED.BEDS.ZS Hospital beds (per 1,000 people)
NV.AGR.TOTL.ZS Agriculture, value added (% of GDP)

For each country, I computed the logarithm of the average (between 2014
and 2018) of the available data, which left me with data for 69 countries. The
three resulting variables are called l_gdp, l_hbeds and l_agri. Now consider
Table 3.2, which reports two OLS regressions. In the first one, we regress the
number of hospital beds on the share of GDP from agriculture. As you can see,
the parameter is negative and significant. However, when we add GDP to the
equation, the coefficient of l_agri becomes insignificant (and besides, its sign
changes). On the contrary, you find that GDP matters a lot.

Dependent variable: l_hbeds

(1) (2)
const 1.090∗∗ −4.876∗∗

(0.1168) (1.231)

l_agri −0.2916∗∗ 0.08467
(0.05794) (0.09217)

l_gdp 0.5655∗∗

(0.1163)

R̄2 0.2635 0.4496
(standard error in parentheses)

Table 3.2: Two regressions on WDI data

The correct interpretation for this result is: there is a significant link between
medical quality (as measured by the number of hospital beds per 1000 inhabi-
tants) and the share of GDP from agriculture. In other words, if you travel to a
country where everybody works in the fields, you’d better not get ill. However,
this fact is simply a by-product of differences between countries in terms of eco-
nomic development.

Once you consider the conditional expectation of l_hbeds on a wider infor-
mation set, which includes GDP per capita,35 the effect disappears. That is, for
a given level of economic development36 there is no visible link between hospi-
tal beds and agriculture. To put it more explicitly: if you compare two countries

35In the applied economic jargon: “once you control for GDP”.
36OK, GDP per capita is not a perfect measure of economic development, nor of happiness, nor

of well-being. I know. I know about the Human Development Index. I know about that Latouche
guy. I know about all these things. Just give me a break, will you?
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where the agricultural sectors have a different size (say, Singapore and Burundi),
you’re likely to find differences in their health system quality. However, if you
compare two countries with the same per capita GDP (say, Croatia vs Greece, or
Vietnam vs Bolivia) you shouldn’t expect to find any association between agri-
culture and hospital beds.

Does this mean that model (1) is “wrong”? No: it simply means that the two
coefficients in the two models measure two different things: a “gross” effect in
equation (1) and a “net” effect in equation (2).37 Does this mean that model (2)
is preferable? Yes: model (2) gives you a richer picture (see how much larger R̄2

is) because it’s based on a larger information set.

3.A Assorted results

3.A.1 Consistency of σ̂2

From (3.3), e = MXy = MXε. Therefore, the sum of squared residuals can be writ-
ten as

e′e = ε′MXε= ε′ε−ε′X(X′X)−1X′ε;

now, given the definition of σ̂2,

σ̂2 = e′e
n

,

divide everything by n and take probability limits; the first bit is easy:

ε′ε
n

= 1

n

n∑
i=1

ε2
i

p−→ E
[
ε2

i

]=σ2.

On the other hand, equations (3.7) and (3.8) say that

ε′X
n

p−→ 0
X′X
n

p−→Q

and therefore

σ̂2 = ε′MXε

n
= ε′ε

n
− ε′X

n

(
X′X
n

)−1 X′ε
n

p−→ σ2 −0′Q−1 ·0 =σ2.

3.A.2 The classical assumptions

The classical assumptions were used in the infancy of econometrics to justify
OLS as an inferential method. They reflect a point of view that was quite natural
in those days, that is the idea that statistical methods could be borrowed from

37The discerning reader will doubtlessly spot the parallel with the discussion we had on the
Frisch-Waugh theorem in section 1.4.4.
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other sciences and be employed on economic data with little or no modification.
The starting point is the linear model in matrix form

y = Xβ+ε

which of course implies yi = x′iβ+εi . The classical assumptions are:

1. X is a n ×k non-stochastic matrix, with n > k and rk(X) = k;

2. ε∼N
(
0,σ2I

)
In this context, x′iβ is interpreted as a “law of nature”, which describes what
happens to yi under certain conditions, described by xi ; this idea is borrowed
directly from experimental science, where yi is the outcome of the i -th experi-
ment and xi are the conditions under which the i -th experiment took place.

The disturbance term εi is just “random noise”, coming from experimental
errors, bad measurement or some other factor that is impossible to control fully;
the idea here is that if εi was 0, by observing yi we would observe the “law of
Nature” x′iβ in its “uncontaminated” form.

In a controlled experiment, these hypotheses are perfectly natural: the xi are
obviously non-random (because are decided by the experimenter); to surmise
that εi is Gaussian is also quite natural, since it is the outcome of a multitude
of a large number of small imperfections and some faith in the Central Limit
Theorem is not totally unjustified.

In the adaptation to economic data, the “fixed-X” assumption was recog-
nised as untenable, so a second version of the classical assumptions allows for
the possibility that X may be random, In that case, assumption 2 is replaced by

ε|X ∼N
(
0,σ2I

)
,

which in turn implies E[εi |X] = E[εi |xi ] = 0, and as a consequence E
[

yi |xi
] =

x′iβ.
Finally, note that in the classical world ε is assumed to be Gaussian, while

no assumption of that kind was made in Section 3.3. Normality is necessary to
derive the distribution of hypothesis tests such as the t test or the F test when
the sample size is small; needless to say, this is neither necessary nor desirable
in modern econometrics, where datasets are almost always rather large and the
normality assumption is, at best, questionable. This is why in contemporary
econometrics (and, as a result, in this book) we mainly rely on asymptotic infer-
ence, where Gaussianity is nearly useless.

3.A.3 The Gauss-Markov theorem

The Gauss-Markov theorem states that, under homoskedasticity, OLS is the most
efficient estimator among all those that are (a) unbiased and (b) linear. Unbi-
asedness means that E

[
β̂

]=β; linearity means that β̂ can be written as β̂ = L′y.
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The OLS statistic enjoys both properties (L′ being equal to (X′X)−1X′ for OLS), but
other statistics may too. This property is often condensed in the phrase “OLS is
BLUE”, where BLUE stands for “Best Linear Unbiased Estimator”.

The proof is simple if we concentrate on the case when X is a matrix of fixed
constants and does not contain random variables, because in this case we can
shuffle X in and out of the expectation operator E[·] any way we want. Consider-
ing the case when X contains random variables makes the proof more involved.

Here goes: take a linear estimator β̃ defined as β̃ = L′y. In order for it to be
unbiased, the following must hold

E
[
β̃

]= E
[
L′ (Xβ+ε

)]= L′Xβ+L′E[ε] =β;

it is safe to assume that E[ε] = 0, so the unbiasedness requirement amounts to
L′X = I . Note that, in the standard case, there are infinitely many matrices that
satisfy this requirement, since n > k and X is a “tall” matrix. In the OLS case,
L′ = (X′X)−1X′, and the requirement is met. Therefore, under unbiasedness, β̃
can be written as β̃ =β+L′ε.

Now consider the variance of β̃:

V
[
β̃

]= E
[
(β̃−β)(β̃−β)′

]= E
[
L′εε′L

]= L′E
[
εε′

]
L = L V[ε] L′;

under homoskedasticity, V[ε] =σ2I , so

V
[
β̃

]=σ2L′L; (3.36)

again, OLS is just a special case, so the variance of β̂ is easy to compute as V
[
β̂

]=
σ2

[
(X′X)−1X′][

X(X′X)−1
]=σ2(X′X)−1.

The gist of the theorem lies in proving that the difference

V
[
β̃

]−V
[
β̂

]=σ2L′L−σ2(X′X)−1 =σ2 [
L′L− (X′X)−1]

is positive semidefinite any time L ̸= (X′X)−1X′, and therefore OLS is more effi-
cient than β̃. This is relatively easy: define D ≡ L′− (X′X)−1X′, which has to be
nonzero unless β̂ = β̃. Therefore, D′D must be positive semidefinite (see section
1.A.7).

D′D = [
L′− (X′X)−1X′][

L−X(X′X)−1]= L′L− (X′X)−1X′L−L′X(X′X)−1 + (X′X)−1;

under unbiasedness, L′X = X′L = I , so the expression above becomes

D′D = L′L− (X′X)−1 (3.37)

and the claim is proven.
Having said this, let me add that the relevance of the Gauss-Markov theorem

in modern econometrics is quite limited: the assumption that X is a fixed matrix
makes sense in the context of a randomised experiment, but the data we have
in economics are rarely compatible with this idea; the same goes, perhaps even
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more strongly, for homoskedasticity. Moreover, one does not see why the linear-
ity requirement should be important, aside from computational convenience;
and a similar remark holds for unbiasedness, that is nice to have but not really
important if our dataset is of a decent size and we can rely on consistency.

One may see why people insisted so much on the Gauss-Markov theorem
in the early days of econometrics, when samples were small, computers were
rare and statistical methods were borrowed from other disciplines with very few
adjustments. Nowadays, it’s just a nice exercise in matrix algebra.

3.A.4 Cross-validation and leverage

Given our usual regression model

y = Xβ+ε, (3.38)

we may indulge in the following thought exercise: “We have n datapoints, and
we use all the available information to compute all the OLS-related statistics.
But what if we had only n − 1? We could pretend that the value of yn was un-
available. What happens if we compute β̂ only using the first n −1 datapoints?
How different would it be from its full-sample equivalent? And if we used β̂ and
xn to predict yn , what should we expect?”. As we will see, pursuing this idea will
lead us to developing useful tools for identifying influential observations and
testing the specification of our model.

Suppose we have n observations but we leave the i -th one aside, and in-
troduce the following convention: the “(−i )” index means “excluding the i -th
observation”; hence, X(−i ) is a (n − 1)× k matrix, equal to X with the i -th row
dropped, and the same interpretation holds for y(−i ).38 The reason why we may
want to do this is to check what happens to our model if a certain observation
had not been available. There are several insights we can gain from doing so.

In order to perform the necessary calculations, it is useful to consider a model
where you add to X a dummy variable identifying the i -th observation, that is an
additional column d, containing all zeros save for the i -th row, that contains 1.
In pratice, our model becomes

yi = x′iβ+diλ+εi = w′
iγ+εi . (3.39)

For example, if i = n, d would be a vector of zeros with one 1 at the bottom and
in matrix form the model would look like this:

y =
[

y(−i )

yi

]
W =

[
X(−i ) 0

x′i 1

]
γ =

[
β
λ

]
.

Clearly, our original model 3.38 is just the special case λ= 0. Here are a few

38Note: this is not standard notation. I adopted it just for this section.
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results that will be useful later on:39

X′Md =
[

X′
(−i ) 0

]
X′MdX = X′

(−i )X(−i ) =
∑
j ̸=i

x j x′j

X′Mdy = X′
(−i )y(−i ) =

∑
j ̸=i

x j y j

d′MXd = mi

d′MXy = d′ẽ = ẽi

where ẽ are the OLS residuals for the full-sample model, that is equation (3.38);
mi is the i -th element on the diagonal of MX, that is 1− x′i (X′X)−1xi . Let’s also
define hi = 1−mi = x′i (X′X)−1xi , the i -th element on the diagonal of PX. It can
be proven that 0 ≤ mi ≤ 1, so that the same holds for hi too.40

Some readers may find the choice of symbols
surprising: if the mi values are the diagonal of
MX, then it would have been natural to use pi

for the diagonal of PX. The reason for using hi
instead comes from calling PX the “hat matrix”
(see section 1.4.1).

The Frisch-Waugh theorem (see section 1.4.4) makes it easy to compute the
OLS estimates for model (3.39):

β̂ = [
X′MdX

]−1 X′Mdy =
[

X′
(−i )X(−i )

]−1
X′

(−i )y(−i )

λ̂ = (d′MXd)−1d′MXy = ẽi

mi

The β̂ vector is nothing but the OLS statistic you would have found after
dropping the i -th observation. The λ̂ parameter is more interesting: let’s begin
by considering the residuals of (3.39): ê = MWy. Its i -th element, êi , is defined as

êi = yi −x′i β̂− λ̂.

This quantity is identically 0; to see why, note that d is an extraction vector (see
section 3.3.1), so you can write

êi = d′ê = d′MWy = 0;

since d ∈ Sp(W), then d′MW = 0′, and therefore d′ê = êi = 0. By putting the two
equations above together, you get

λ̂= yi −x′i β̂.

39These are easy to prove, and provide a nice exercise on matrix algebra. Hint: start by comput-
ing d′d and dd′.

40The proof is surprisingly easy: mi lies on the diagonal of MX; since MX is positive semi-
definite, the diagonal elements cannot be negative. But the same holds for hi and PX. Since
hi +mi = 1, the proof is complete.
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which, in turn, means that λ̂ is the prediction error you get if you try to pre-
dict the i -th observation by using all the other ones. Or, put another way, if you
want to compute what the prediction error for yi would be (based on the re-
maining observations) all you have to do is stick an appropriate dummy into
your model and take its coefficient. Note that in fact there is an even easier way:
since λ̂= ẽi

mi
, you may just as well run OLS on the full-sample model (3.38), save

its residuals and the mi series, and divide one by the other.
The cross-validation criterion is a model selection tool that is based on just

that: you simulate the out-of-sample performance of your model by adding the
squares of the n prediction errors you find by omitting each observation in turn:

CV =
n∑

i=1
e2

(−i ) =
n∑

i=1

(
ẽi

mi

)2

When you compare two models (say, A and B), it may well happen that model A
yields a smaller sum of squared residuals than B, but B outperforms A in terms of
the cross-validation criterion. Usually, this happens when A has a richer struc-
ture than B (in the OLS context, more regressors); in these cases, the canonical
interpretation is that A is only apparently a better model than B: some of the
apparently significant regressors catch in fact spurious regularities than cannot
be expected to hold in general. In these cases, the term we customarily use is
overfitting.

Data scientists are inordinately fond of the
cross-validation concept, and in many cases
they use sophisticated variations of this idea
to pick the best forecasting model for a given
problem.
The variant of the cross-validation method I
just illustrated, where you exclude one obser-
vation at a time, has a lot in common with an
old and established statistical technique called

jackknifing, which in turn is a close relative of
boostrapping (see Section 4.A.4).

In statistical learning and similar disciplines,
the approach presented here is often gener-
alised by excluding entire subsets of the entire
dataset instead of one observation only, possi-
bly choosing them in very elaborate ways. They
call this folding.

In the light of the discussion above, there is something interesting we can say
on the interpretation of the magnitude mi and its complement to 1, hi = 1−mi :
from the definition of ê we have

y = Xβ̂+dλ̂+ ê;

by premultiplying the above by MX, you get

MXy = ẽ = MXdλ̂+ ê.

Therefore, since MXê = 0,
ẽ′ẽ = d′MXdλ2 + ê′ê

so, finally,
ẽ2

i /mi = ẽ′ẽ− ê′ê.
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Which means: if you compare the SSR for the two models you get by using the
full sample or omitting the i -th observation, you get that their difference is al-
ways non-negative, and equals ẽ2

i /mi . Clearly, if the difference is large, the re-
sults you get by adding/removing the i -th observation are dramatically different,
so that data point deserves special attention.

The quantity ẽ2
i /mi may be large either because (a) ẽi is large in absolute

value and/or (b) mi is close to 0 (which implies that hi is close to 1). This is why
the hi values are sometimes used as descriptive statistics to check for “influen-
tial observations”, and are sometimes referred to as leverage values. Note that
hi only depends on the regressors X, and not on y. Therefore, large values of
hi indicate observations for which the combination of explanatory variables we
have is uncommon enough to exert a substantial effect on the final estimates.

3.A.5 Derivation of RLS

As the reader doubtlessly already knows, the standard method for finding the
extrema of a function subject to constraints is the so called “Lagrange multipliers
method”. For a full description of the method, the reader had better refer to one
of the many existing texts of mathematics for economists41, but here I’ll give you
a super-simplified account for your convenience.

JOSEPH LOUIS

LAGRANGE

If you have to find maxima and/or minima of a func-
tion f (x) subject to a system of constraints g (x) = 0, you
set up a function, called the Lagrangean, in which you sum
the objective function to a linear combination of the con-
straints, like this:

L (x,λ) = f (x)+λ′g (x).

The elements of the vector λ are known as “Lagrange mul-
tipliers”.

For example, the classic microeconomic problem of a utility-maximising con-
sumer is represented as

L (x,λ) =U (x)+λ · (Y −p′x
)

where x is the bundle of goods, U (·) is the utility function, Y is disposable in-
come and p is the vector of prices. In this example, the only constraint you have
is the budget constraint, so λ is a scalar.

The solution has to obey two conditions, known as the “first order condi-
tions”:

∂L

∂x
= 0

∂L

∂λ
= 0, (3.40)

so in practice you differentiate the Lagrangean with respect to your variables
and λ, and then check if there are any solutions to the system of equations you

41One I especially like is Dixit (1990), but for a nice introductory treatment I find Dadkhah (2011)
hard to beat.
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get by setting the partial derivatives to 0. If the solution is unique, you’re all
set. In the utility function example, applying equations (3.40) gives the standard
microeconomic textbook solution to the problem:

∂U (x)

∂x
=λp Y = p′x.

in words: at the maximum, (a) marginal utilities are proportional to prices (or
∂U
∂xi

/
∂U
∂x j

= pi

p j
if you prefer) and (b) you should spend all your income.

In the case of RLS, the Lagrangean is42

L (β,λ) = 1

2
e′e+λ′(Rβ−d).

where of course e = y − Xβ. The derivative of L with respect to λ is just the
constraint; as for the other one, since the derivative of e with respect to β is −X,
we can use the chain rule like in section 1.A.5, arranging all the products in an
appropriate way so as to obtain column vectors, which gives

∂L

∂β
=−X′e+R ′λ

so the first order condition with respect to β can be written as

X′ẽ = R ′λ, (3.41)

where ẽ is the vector that satisfies equation (3.41), defined as y−Xβ̃. By premul-
tiplying (3.41) by (X′X)−1 we get

(X′X)−1X′(y−Xβ̃) = β̂− β̃ = (X′X)−1R ′λ,

which of course implies

β̃ = β̂− (X′X)−1R ′λ (3.42)

So the constrained solution β̃ can be expressed as the OLS vector β̂, plus a “cor-
rection factor”, proportional to λ. If we premultiply (3.42) by R we get

λ= [
R(X′X)−1R ′]−1

(Rβ̂−d) (3.43)

because Rβ̃ = d by construction. Interestingly,λ itself is proportional to (Rβ̂−d),
that is precisely the quantity we use for the construction of the W statistic in
(3.18). Finally, equation (3.25) is obtained by combining (3.42) and (3.43):

β̃ = β̂− (X′X)−1R ′ [R(X′X)−1R ′]−1
(Rβ̂−d).

42Note that I divided the objective function by 2. Clearly, the solution is the same, but the alge-
bra is somewhat simplified.
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3.A.6 Asymptotic properties of the RLS estimator

Begin by (3.25)

β̃ = β̂− (X′X)−1R ′ [R(X′X)−1R ′]−1
(Rβ̂−d);

from this equation, it is quite easy to see that β̃ is an affine function of β̂; this
will be quite useful. Now define H as

H = plim
(
(X′X)−1R ′ [R(X′X)−1R ′]−1

)
=Q−1R ′ [RQ−1R ′]−1

(3.44)

normally, this is a (k ×p) matrix with rank p; also note that HR is idempotent.
If β̂ is consistent, then

β̃
p−→β−H · (Rβ−d)

so if Rβ = d, consistency is guaranteed; otherwise, it isn’t.
As for efficiency, let me briefly remind you what we mean by “efficiency”:43

an estimator a is more efficient than a competing estimator b if the difference
V (b)−V (a) is positive. If the two estimators are vectors, then the criterion gener-
alises to the requirement that V (b)−V (a) is a positive semi-definite matrix (psd
for short — see section 1.A.7, especially figure 1.4).

There are a few matrix algebra results that we are going to need here:44

1. if A is pd, then A−1 is pd too;

2. if A is psd, then B ′AB is also psd for any matrix B .

Using these, we will prove that the asymptotic variance of β̃ is smaller (in a ma-
trix sense) than that of β̂:

AV
[
β̃

]= (I −HR) ·AV
[
β̂

] · (I −R ′H ′)

if AV
[
β̃

]=σ2Q−1, then note that

HRQ−1 =Q−1R ′ [RQ−1R ′]−1
RQ−1, (3.45)

which is evidently symmetric, so HRQ−1 = Q−1R ′H ′; furthermore, by using the
fact that HR is idempotent, you get

HRQ−1 = HRHRQ−1 = HRQ−1R ′H ′.

As a consequence, the asymptotic variance of β̃ can be written as

AV
[
β̃

] = σ2 {
Q−1 −HRQ−1 −Q−1R ′H ′+HRQ−1R ′H ′}=

= σ2 [
Q−1 −HRQ−1]=

= AV
[
β̂

]−σ2HRQ−1

43A slightly fuller discussion is at the end of section 2.3.2.
44They’re both easy to prove; try!
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the last thing we need do prove is that HRQ−1 is also positive semi-definite: for
this, we’ll use the right-hand side of (3.45).

Since Q is pd, then Q−1 is pd as well (property 1); therefore, RQ−1R ′ is also
pd (property 2), and so is

[
RQ−1R ′]−1

(property 1). Finally, by using property

1 again, we find that Q−1R ′ [RQ−1R ′]−1
RQ−1 is positive semi-definite and the

result follows.



Chapter 4

Diagnostic testing in
cross-sections

In order to justify the usage of OLS as an estimator, we made some assumptions
in section 3.2. Roughly:

1. the data we observe are realisations of random variables such that it makes
sense to assume that we are observing the same DGP in all the n cases
in our dataset; or, more succinctly, there are no structural breaks in our
dataset.

2. We can trust asymptotic results as a reliable guide to the distribution of
our estimators, as the n observations we have are sufficiently homoge-
neous and sufficiently independent, so that the LLN and the CLT can be
taken as valid;

3. the conditional expectation E
[

y |x]
exists and is linear: E

[
y |x]= x′β;

4. the conditional variance V
[

y |x]
exists and does not depend on x at all, so

it’s a positive constant: V
[

y |x]=σ2.

Assumption number 2 may be inappropriate for two reasons: one is that our
sample size is too small to justify asymptotic results as a reasonable approxima-
tion to the actual properties of our statistics; the other one is that our observa-
tion may not be identical, nor independent. The first case cannot really be tested
formally; in most cases, the data we have are given and economists almost never
enjoy the privileges of experimenters, who can have as many data points as they
want (of course, given sufficient resources). Therefore, we just assume that our
dataset is good enough for our purposes, and hope for the best. Certainly, intel-
lectual honesty dictates that we should be quite wary of drawing conclusions on
the basis of few data points, but there is not much more we can do. As for the
second problem, we will defer the possible lack of independence to chapter 5,
since the issue is most likely to arise with time-series data.

115
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In the next section, we will consider a way of testing assumptions 1 (to some
extent) and 3. If they fail, consistency of β̂ may be at risk. Conversely, assump-
tion number 4 is crucial for our hypothesis testing apparatus, and will need
some extra tools; this will be the object of section 4.2.

4.1 Diagnostics for the conditional mean

Our main tool in proving that β̂
p−→ β was that E

[
y |x] = x′β (see section 3.2.1).

But this statement may be false. We will not explore the problem in its full gen-
erality: we’ll just focus on two possible issues that often arise in practice.

1. the regression function is nonlinear, but can be approximated via a lin-
ear function (see the discussion in section 1.3.2). In the case of a scalar
regressor,

E
[

yi |xi
]= m(xi ) ≃β0 +β1xi +β2x2

i +·· ·βq xq
i =

q∑
j=0

β j x j
i .

2. Our data comprise observations for which the DGP is partly different. That
is, we have j = 1. . .m separate sub-populations, for which

E
[

yi |xi
]= x′iβ j

where j is the class that observation i belongs to. For example, we have
data on European and American firms, and the vector β is different on the
two sides of the Atlantic (in this case, m = 2).

4.1.1 The RESET test

As I repeatedly said earlier, the hypothesis of linearity simply means that E
[

yi |xi
]

can be written as a linear combination of observable variables. The short phrase
we use is: the model has to be linear in the parameters, not necessarily in the
variables (see Section 1.3.4 for a fuller discussion).

For example, suppose xi is a scalar; it is perfectly possible to accommodate
something like

E
[

yi |xi
]=β1xi +β2x2

i ;

(to ease exposition, I am assuming here that the conditional mean has no con-
stant term). Suppose that the expression above holds, but in the model we esti-
mate the quadratic term x2

i is dropped. That is, we estimate a model like

yi = γxi +ui ;

by OLS, so that we would obtain a statistic γ̂ defined as

γ̂= (x′x)−1x′y =
∑n

i=1 xi yi∑n
i=1 x2

i

.
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Clearly, there is no value of γ that can make ui the difference between yi and
E

[
yi |xi

]
, so we can’t expect γ̂ to have all the nice asymptotic properties that OLS

has. In fact, it can be proven that (in standard cases) the statistic γ̂ does have a
limit in probability, but the number it tends to is neitherβ1 nor a simple function
of it, so technically there is no way we can use γ̂ to estimate β1 consistently.

The limit in probability of γ̂ is technically
known as a pseudo-true value, which is far too
complex a concept for me to attempt an expo-
sition here. The inquisitive reader may want

to have a look at Cameron and Trivedi (2005),
section 4.7 or (more technical) Gourieroux and
Monfort (1995). The ultimate bible on this is
White (1994).

In the present case, the remedy is elementary: add x2
i to the list of your re-

gressors and, voilà, you get perfectly good CAN estimates of β1 and β2.1 How-
ever, in a real-life case, where you have a vector of explanatory variables xi ,
things are not so simple. In order to have quadratic effects, you should include
all possible cross-products between regressors. For example, a model like

yi =β0 +β1xi +β2zi +εi

would become

yi =β0 +β1xi +β2zi︸ ︷︷ ︸
linear part

+β3x2
i +β4xi · zi +β5z2

i︸ ︷︷ ︸
quadratic part

+εi

and it’s very easy to show that the number of quadratic terms becomes rapidly
unmanageable for a realistic model: if the original model has k regressors the
quadratic one can have up to k(k+1)

2 additional terms.2. I don’t think I have to
warn the reader on how much of a headache it would be to incorporate cubic or
quartic terms.

The RESET test (stands for REgression Specification Error Test) is a way to
check whether a given specification needs additional nonlinear effects or not.
The intuition is simple and powerful: instead of augmenting our model with all
the possible order 2 terms (squares and cross-products), we just use the square
of the fitted values, that is instead of x2

i , xi · zi and z2
i in the example above, we

would use
ŷ2

i = (
β̂1xi + β̂2zi

)2
.

Clearly, a similar strategy could be extended to cubic terms; in the example
above, we would replace the linear combination of x3

i , x2
i · zi , xi · z2

i and z3
i with

the simple scalar term ŷ3
i . Then, we just check if the added terms are significant;

since this is a test for addition of variables to a pre-existing model, the most con-
venient way to perform the test is by using the LM statistic (see section 3.5.1).

The procedure is then:

1Of course, you’d have to be careful in computing your marginal effects, but if you have read
section 1.3.4, you know that, don’t you?

2The reader is invited to work out what happens for various values of k.
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1. Run OLS, save the residuals ei and the fitted values ŷi ;

2. generate squares and cubes ŷ2
i , ŷ3

i ;

3. run the auxiliary regression

ei = γ′xi +δ1 ŷ2
i +δ2 ŷ3

i +ui ;

4. compute LM = n ·R2 a∼ χ2
2

Example 4.1
Let us compute the RESET test to check the hedonic model used as an exam-
ple in Section 3.4 for possible neglected nonlinearities; the auxiliary regression
yields

Dependent variable: ehat

coefficient std. error t-ratio p-value
-------------------------------------------------------
const 195.825 81.6622 2.398 0.0166 **
lsize 38.9198 17.1107 2.275 0.0230 **
baths -0.205739 0.0861412 -2.388 0.0170 **
age -0.0900385 0.0393760 -2.287 0.0223 **
pool 3.97729 1.76245 2.257 0.0241 **
yh2 -3.42319 1.40727 -2.433 0.0151 **
yh3 0.103615 0.0399778 2.592 0.0096 ***

Mean dependent var 0.000000 S.D. dependent var 0.245999
Sum squared resid 152.9225 S.E. of regression 0.242381
R-squared 0.031428 Adjusted R-squared 0.029195

In this case, the LM statistic equals n ·R2 = 2610×0.031 = 82.0263, which is much
bigger than 5.99 (the 5% critical value for the χ2

2 density); in fact, the p-value is
a puny 1.54243 · 10−18. Therefore, we reject the null and we conclude that the
model has a specification problem.

One final note: the usage of powers to model nonlinearity is widespread
in applied econometrics, but it is by no means the only available choice. If
you’re interested, you may want to spend some time googling for “cubic splines”
or “fractional polynomials”, the former being hugely popular among data sci-
entists; these techniques are useful for approximating arbitrary smooth func-
tion via linear combinations of observable variables, and are therefore perfectly
suited for OLS estimation. If you’re into even more exotic stuff, try “loess” or
“Nadaraya-Watson”.
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4.1.2 Interactions and the Chow test

The problem of possible differences in the parameters between sub-samples is
best illustrated in a simple setting: we have a scalar regressor xi and two sub-
populations. A dummy variable di tells us which group observation i belongs
to. Suppose that the DGP could be described as follows:

Subsample 1 yi =β0 +β1xi +εi

Subsample 2 yi =β0 +β2xi +εi

with di = 0 in subsample 1 and di = 1 in subsample 2. Note that the model could
be rewritten as

yi = β0 +
[
β1 + (β2 −β1)di

]
xi +εi = (4.1)

= β0 +β1xi +γdi · xi +εi =β0 +β1xi +γzi +εi

where γ=β2−β1. Again, note that model (4.1) is perfectly fit for OLS estimation,
since the product zi = di · xi is just another observable variable, which happens
to be equal to xi when di = 1 and 0 otherwise.

If the effect of xi on yi is in fact homogeneous across the two categories,
then γ= 0; therefore, testing for the equality of β1 and β2 is easy: all you need to
do is check whether the regressor zi is significant. Explanatory variables of this
kind, that you obtain by multiplying a regressor by a dummy variable, are of-
ten called interactions in the applied economics jargon. If the interaction term
turns out to be significant, then the effect of x on y is different across the two
subcategories, since the interaction term in your model measures how different
the effect is across the two subgroups.

Clearly, you can interact as many regressors as you want: in the example
above, you could also imagine that the intercept could be different across the
two subpopulations as well, so the model would become something like

yi =β0 +β1xi +γ0di +γ1di · xi +εi ,

because interacting the constant by di just gives you di .
It should be noted that interactions can be viewed as including a peculiar

form of nonlinearity, so you should keep this in mind when computing marginal
effects. The marginal effect for xi in equation (4.1), for example, would be

∂E
[

yi |xi
]

∂xi
=β+γdi ,

that is, β if di = 0 and β+γ if di = 1.
When you interact all the parameters by a dummy, then the test for equality

of coefficients across the two subsamples is particularly simple, and amounts to
what is known as the Chow test, since the SSR for the unrestricted model (that is,
the one with all the interactions) is just the sum of the two separate regressions:
if you have two subgroups, you can compute
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1. the SSR for the OLS model on the whole sample (call it ST );

2. the SSR for the OLS model using only the data in subsample 1 (call it S1);

3. the SSR for the OLS model using only the data in subsample 2 (call it S2).

Then, the Chow test is simply

W = n · ST − (S1 +S2)

S1 +S2
(4.2)

because the SSR for the model with all the interactions is equal to the sum of the
SSRs for the separate submodels. Of course, the appropriate number of degrees
of freedom to use for the p-value would be k, the difference between the number
of parameters in the unrestricted model (k +k) and those in the restricted one
(k). The proof is contained in section 4.A.1, where I also generalise this idea to
the case when you have more than 2 subsamples.

Example 4.2 (bike sharing and the weather)
Figure 4.1 comes from a dataset on bike sharing provided in Fanaee-T and Gama
(2014) and depicts the relationship between the temperature on a given day (in
Celsius, xi in formulae) and the number of bikes rented (in thousands, yi in
formulae).

Figure 4.1: Relationship between temperature and bikes rented
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Once you fit a quadratic model to the data, things appear to be basically OK:
R2 is not at all bad, and the estimated regression lines makes perfect sense, with
the negative concavity indicating that most people want to ride a bike when the
weather is warm, but not too hot.
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Table 4.1: Various models for bike rentals

Full sample Sunny days Cloudy/rainy Full + interactions
const −1.902∗∗∗ −2.659∗∗∗ −0.6698 −0.6698

(−4.974) (−6.281) (−0.9444) (−1.009)

x 0.5221∗∗∗ 0.6563∗∗∗ 0.3165∗∗∗ 0.3165∗∗∗

(12.70) (14.54) (4.005) (4.279)

x2 −0.008956∗∗∗ −0.01243∗∗∗ −0.003717∗ −0.003717∗

(−8.895) (−11.41) (−1.835) (−1.960)

d −1.989∗∗

(−2.494)

d · x 0.3398∗∗∗

(3.876)

d · x2 −0.008712∗∗∗

(−3.940)

n 731 463 268 731
R2 0.4532 0.5222 0.3965 0.5115
SSR 1498.035 779.7312 558.5052 1338.2364

Note: t-statistics in parenthesis.

However, we may surmise that what happens on sunny days may be differ-
ent from rainy days. Fortunately, we also have the dummy variable di , which
equals 1 if the weather on that day was sunny and 0 if it was cloudy or rainy.
Splitting the sample in two gives the estimates in Table 4.1: the first column
gives the estimates on the full sample (the same as in Figure 4.1). Column 2, in-
stead, contains the estimates obtained using only the sunny days and column 3
only the ones for the bad weather days.

As you can see, the estimates for sunny days are numerically different from
the ones for cloudy days. For example, the quadratic effect in column 3 seems to
be much less significant than the one in column 2. However, the real question
is: are they statistically different? Or, in other words: is there a reason to believe
that the relationship between the number of rented bikes and air temperature
depends on the weather?

In order to do so, we can run a Chow test. The mechanical way to do this
would be adding to the base model all the interactions with the “sunny” dummy.
The corresponding estimates are found in column 4 of Table 4.1. Note that the
first three coefficients in column 4 are exactly equal to those in column 3,3 and
that the coefficients in column 2 can be obtained by summing the correspon-

3The standard errors are not: this is a side effect of the fact that model 3 and model 4 use
different estimators for σ2 and hence the two coefficient covariance matrices are different.
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dent coefficients in column 4 to its “interacted” counterpart. For example, the
coefficient for xi reported in column 2 (0.6563) can be calculated as the two en-
tries in column 4 for x and its interaction with d (0.3165 + 0.3398). Put differently,
the interaction terms contain the differences between the “good weather” and
“bad weather” coefficients. Another point worth noting is that the SSR for col-
umn 4 is exactly the sum for those in columns 2 and 3, as dictated by equation
(4.2).

Of course, the fact that those interaction terms are individually significant
would be enough to conclude that the null hypothesis of homogeneity between
the two regimes has to be rejected. However, the Chow test is easy to compute
using the SSRs:

W = 731× 1498.035− (779.7312+558.5052)

779.7312+558.5052
= 87.2888,

where W is a rather astronomical value for a χ2
3 distribution (the correspond-

ing p value is 8.37114e-19), so we have to reject the null: we conclude that the
regression function for sunny days is different from the one for rainy days.

Historically, the Chow test has mostly been used with time-series data, where
each row of the dataset refers to a certain time period and the rows are consec-
utive. For example, data on the economy of a certain country (GDP, interest rate
etc.) in which each row refers to a quarter, so for example the dataset starts
in 1980q1, the next row is 1980q2, and so on. Regressions on data of this kind
present the user with special issues, that have to be analysed separately, and we
will do so in Chapter 5. However, it can be seen rather easily that the Chow test
lends itself very naturally to testing whether a model remains stable before and
after a certain event: just imagine that in equation (4.1) di equals 0 up to a cer-
tain point in time and di = 1 after that. It is for this reason that the Chow test
is sometimes referred to as the structural stability test. Rejection of the Chow
test would in this case point to something we economists often call structural
break or regime change, obvious examples being the introduction of the single
currency in the Euro Area, the COVID pandemic, etc.

In a time series context, assuming that the pu-
tative date for the break is known a priori may
be unwarranted. In some case, we may sup-
pose that a structural break has occurred at
some point, without knowing exactly when.
For these situations, some clever test pro-

cedures are available (one is the so-called
CUSUM test), as well as methods for estimat-
ing the timing of the break. These, however, are
too advanced for this book, since they require a
fairly sophisticated inferential apparatus.
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4.2 Heteroskedasticity and its consequences

As the reader might recall, the homoskedasticity assumption was a fundamen-
tal ingredient in the derivation of the asymptotic covariance matrix of the OLS
estimator (see 3.2). While the linearity assumption E

[
y |x] = x′β makes consis-

tency almost automatic (E[ε ·x] = 0 implies β̂
p−→ β if some kind of LLN can be

invoked), it’s impossible to derive the parallel result for asymptotic normality

p
n

(
β̂−β

) p−→N
(
0,σ2Q−1)

without assuming homoskedasticity, that is E
[
ε2|x]=σ2.

Like all assumptions, homoskedasticity is easier to justify in certain circum-
stances than others. If data come from controlled experiments, εi can often be
interpreted as the disturbance term that contaminated the i -th experiment; it
is normally safe to think that εi should be independent from xi , the conditions
under which the experiment was performed. Therefore, if εi ⊥⊥ xi , no moments
of εi can depend on xi , and homoskedasticity follows.

This is almost never the case in economics, where virtually all data come
from non-experimental settings. This is particularly true for cross-sectional data,
where we collect data about individuals who did not take part in an experiment
at all. When we estimate a wage equation, our dependent variable yi (typically,
the log wage for individual i ) will be matched against a vector of explanatory
variables xi that contain a description of that individual (education, age, work
experience and so on), and εi is simply defined as the deviation of yi from its
conditional expectation, so in principle there is no reason to think that it should
enjoy any special properties except E[εi |xi ] = 0, which holds by construction
under the linearity hypothesis.

Therefore, assuming that εi has a finite second moment, in general all we
can say is that E

[
ε2

i |xi
]

is some function of xi :

E
[
ε2

i |xi
]= h(xi ) =σ2

i , (4.3)

where the function h(·) is of unknown form (but certainly non-linear, since σ2
i

can never be negative). Since the variances σ2
i may be different across observa-

tions, we use the term heteroskedasticity.
The reader may recall (see page 82) that this function is known as the “skedas-

tic” function, and in principle one could try to carry out an inferential analysis of
the h(xi ) function very much like we do with the regression function. However,
in this section we will keep to the highest level of generality and simply allow
for the possibility that the sequence σ2

1,σ2
2 · · · ,σ2

n contains potentially different
numbers, without committing to a specific formula for h(xi ).
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Contrary to what many people think, het-
eroskedasticity is not a property of the data, but
only of the model we use, since it depends on
the conditioning set you use. For example, as-
sume that E

[
yi |xi

]
is a constant, so the linear

model we would use is

yi =β0 +εi ,

but the variance of εi depends on xi (for exam-
ple, σ2

i = x2
i ). If you estimate a model in which

the only regressor is the constant, the model is
homoskedastic.

If, however, you estimate the model

yi =β0 +β1xi +εi ,

that is a perfectly valid representation of the
data, since the true value of β1 is 0, then the
model becomes heteroskedastic, since the vari-
ance of εi is a function of the explanatory vari-
ables.
Having said this, it is very common for applied
economists to say “the data are heteroskedas-
tic”, when you can’t get rid of heteroskedasticity
in any meaningful model you may think of.

To simplify notation, in this section all expectation operators will be implic-
itly understood as conditional on X. In other words, we will treat X as if it were a
matrix of constants. Therefore,

y = Xβ+ε V[ε] = E
[
εε′

]=Σ
If our model is heteroskedastic, then Σ is a diagonal matrix, where elements
along the main diagonal need not be equal to each other, and it would look like
this:4 

σ2
1

σ2
2

. . .

σ2
n


The variance of β̂ can be simply computed as

V
[
β̂

]= V
[
β+ (X′X)−1X′ε

]= (X′X)−1 X′ΣX (X′X)−1 (4.4)

and clearly if Σ = σ2I we go back to σ2(X′X)−1. But under heteroskedasticity
the V̂ = σ̂2(X′X)−1 matrix may be very far from the actual asymptotic covariance
matrix of β̂ (shown in equation (4.4)), even asymptotically; therefore, our test
statistics are very unlikely to be χ2-distributed under H0, which makes our p-
values all wrong and inference impossible.

In order to see how the situation can be remedied, it’s instructive to consider
a case of limited practical relevance, but that provides a few insights that may
help later: the case when Σ is known.

4In fact, some of our considerations carry over to more general cases, in which Σ is a generic
symmetric, positive semi-definite matrix, but let’s not complicate matters.
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4.2.1 If Σwere known

If the matrix Σwere observable, then theσ2
i variances would be known (they are

just the diagonal elements of Σ), and getting rid of heteroskedasticity would be
easy: define

ẏi = yi

σi
ẋi = 1

σi
xi ui = εi

σi

and the model becomes
ẏi = ẋ′iβ+ui (4.5)

but clearly V[ui ] = 1 by construction,5 so you can happily run OLS on the trans-
formed variables, since ẏi and ẋi would both be observable. The resulting esti-
mator

β̃ =
[

n∑
i=1

ẋi ẋ′i

]−1 n∑
i=1

ẋi ẏi = (Ẋ′Ẋ)−1Ẋ′ẏ

could also be written as

β̃ =
[

n∑
i=1

1

σ2
i

xi x′i

]−1 n∑
i=1

1

σ2
i

xi yi = (X′Σ−1X)−1X′Σ−1y (4.6)

and is called GLS. It can be proven that GLS is more efficient than OLS (the proof
is in subsection 4.A.2), and that its covariance matrix equals

V
[
β̃

]= (X′Σ−1X)−1

Since GLS is just OLS on suitably transformed variables, all standard properties
of OLS in the homoskedastic case remain valid, so for example you could test
hypotheses by the usual techniques.6

Some readers may find it intriguing to know
that GLS has more or less the geometrical inter-
pretation of OLS that I described in Section 1.4,
once a more general definition of “distance” is
adopted. GLS arises if ordinary Euclidean dis-
tance is generalised to

d(x1,x2) =
√

(x1 −x2)′Σ−1(x1 −x2)

which obviously becomes Euclidean distance if
Σ = I . (The fact that OLS equals GLS if Σ is a
scalar multiple of I is a trivial consequence.)
You can apply all the usual concepts of projec-
tions etc, with the only difference that the space
you’re considering is somewhat “distorted”.

It is interesting to note that, in the case we are considering here, Σ is di-
agonal, and therefore the operation that makes GLS equivalent to OLS on the
transformed data can be written very simply as in equation (4.5). However, it
can easily be proven that the formula (4.6) applies far more generally: all that is

5Readers would hopefully not feel offended if I reminded them that a straightforward applica-
tion of equation (2.7) yields V[X /b] = V[X ]/b2.

6In fact, we wouldn’t even have to observe Σ, as long as we had a matrix which is proportional
to Σ by a (possibly unknown) scalar factor. If we had Ω = c ·Σ, where c is an unknown positive
scalar, we could useΩ instead of Σ in equation (4.6), since the scalar c would cancel out.



126 CHAPTER 4. DIAGNOSTIC TESTING IN CROSS-SECTIONS

required is that Σ is a proper covariance matrix, that is, symmetric and positive
definite.

Of course, in ordinary circumstances Σ is unknown, but we could use this
idea to explore alternative avenues:

1. In some cases, you may have reason to believe that σ2
i should be roughly

proportional to some observable variable. For example, if yi is an average
from some sampled values and ni is the size of the i -th sample, it would
be rather natural to conjecture that σ2

i ≃ K n−1
i , where K is some constant.

Therefore, by dividing all the observables by
p

ni you get an equivalent
representation of the model, in which heteroskedasticity is less likely to be
a problem, since in the transformed model all variances should be roughly
equal to K . The resulting estimator is sometimes called WLS (for Weighted
Least Squares), because you “weight” each observation by an observable
quantity wi . In our example, wi =

p
1/ni .

2. The idea above can be generalised: one could try to reformulate the model
in such a way that the heteroskedasticity problem might be attenuated.
For example, it is often the case that, rather than a model like

Yi =α0 +α1Xi +ui ,

a formulation in natural logs, like

lnYi =β0 +β1 ln Xi +εi

not only leads to a more natural interpretation of the parameters (since β1

can be read as an elasticity), but also alleviates heteroskedasticity prob-
lems.

3. Even more generally, it can be proven that, if we have Σ̂
p−→ Σ, we can use

it in the so-called “feasible” version of GLS, or FGLS for short:

β̃ = (X′Σ̂−1X)−1X′Σ̂−1y;

in principle, this can be accomplished by setting an explicit functional
form for the conditional variance (the function h(·) in 4.3). It can be done,
but in most cases it’s much more difficult computationally: the resulting
estimator cannot be written in closed form as an explicit function of the
observables, but only in implicit form as the minimiser of the least squares
function. This in turn, involves computational techniques that are stan-
dard nowadays, but are far beyond the scope of an introductory treatment
like this one.

In some cases, however,Σ can be assumed to be a function of a small set of
parameters, which can be consistently estimated separately. In that case,
FGLS is a perfectly sensible option. One example will be provided in sec-
tion 7.4.
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In many cases, however, neither strategy is possible, so we may have to do
with OLS; the next section illustrates how you can make good use of OLS even
under heteroskedasticity.

4.2.2 Robust estimation

As the previous section should have made clear, heteroskedasticity doesn’t af-
fect consistency of OLS, which therefore remains a perfectly valid estimator (it
wouldn’t be as efficient as GLS, but this is something we can live with). The real
problem is that using the “regular” estimator for V

[
β̂

]
, that is

V̂ = σ̂2(X′X)−1

for hypothesis testing yields statistics that are not asymptotically χ2-distributed,
so all our p-values would be wrong. On the other hand, if we could use the
correct variance for OLS (given in equation (4.4) that I’m reporting here for your
convenience)

V
[
β̂

]= (X′X)−1(X′ΣX)(X′X)−1,

or anything asymptotically equivalent, inference would be perfectly standard.
This seems impossible, given that Σ is unobservable: the middle matrix in the
equation above could be written as

X′ΣX = [x1 x2 . . . xn]


σ2

1
σ2

2
. . .

σ2
n




x′1
x′2
...

x′n

=
n∑

i=1
σ2

i xi x′i (4.7)

and it would seem that in order to compute an asymptotically equivalent expres-
sion we would need the σ2

i variances (or at the very least consistent estimates).
However, although Σ does in fact contain n distinct unknown elements, the

size of X′ΣX is k ×k,7 a fixed number of elements about which, in principle, we
may hope to say something as n →∞. In other words, even if we can’t estimate
consistently the individual variancesσ2

i , we may be able to estimate consistently
the individual elements of the matrix X′ΣX.

This is the basic idea that was put forward in White (1980): first, observe that
under heteroskedasticity, OLS is still consistent, so

β̂
p−→ β =⇒

ei −εi = (yi −x′i β̂)− (yi −x′iβ) = x′i (β− β̂)
p−→ x′i 0 = 0 =⇒

ei
p−→ εi =⇒ e2

i
p−→ ε2

i :

the difference between the OLS residuals ei and the disturbances εi should be
“small” in large samples, and likewise for their squares.

7In fact, it’s a symmetric matrix, so the number of its distinct elements is k(k +1)/2.
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Next, define a random variable ηi as

ηi = ε2
i −E

[
ε2

i |xi
]

and by a similar argument to that used in Section 3.1, you get that

ε2
i =σ2

i +ηi

where E
[
ηi |xi

] = 0 by definition. Therefore, in large samples, you can approxi-
mate σ2

i by e2
i −ηi .

HAL WHITE

If you substitute this into (4.7), you get

X′ΣX ≃
n∑

i=1
e2

i xi x′i −
n∑

i=1
ηi xi x′i .

The two elements of the right-hand side are interesting,
because the former is observable, while the latter can be
easily proven8 to be a sum of zero-mean variables, which
should converge in probability to [0] if divided by n, where
I’m using the [0] notation for “a matrix full of zeros”.

As a consequence, we’d expect that the average of e2
i −

σ2
i should be a small quantity, so that

1

n

n∑
i=1

(e2
i −σ2

i )xi x′i
p−→ [0].

Now rewrite (4.4) as

V
[
β̂

]= (X′X)−1

(
n∑

i=1
σ2

i xi x′i

)
(X′X)−1

Therefore, asymptotically you can estimate V
[
β̂

]
via

Ṽ = (X′X)−1

(
n∑

i=1
e2

i xi x′i

)
(X′X)−1 (4.8)

In fact, many variants have been proposed since White’s 1980 paper, that
seem to have better performance in finite samples, and most packages use one
of the later solutions. The principle they are based on, however, is the original
one.

A clever variation on the same principle that goes under the name of cluster-
robust estimation has become very fashiobnable in recent years. I’m not going
to describe it in this book, but you should be aware that in some circles you will

8It’s easy, really: E
[
ηi |xi

]= 0 means that E
[
ηi xi x′i

]
= E

[
E

[
ηi |xi

]
xi x′i

]
= [0].
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be treated like the village idiot if you don’t use “clustering”. In some cases, peo-
ple do this just because it’s cool and trendy. In some contexts, however, cluster-
robust inference is quite appropriate and should be considered as a very use-
ful tool; for example, with panel datasets, which I’ll describe in Chapter 7, giv-
ing a summary treatment of clustering in Section 7.3.4. For more details, read
Cameron and Miller (2010), Cameron and Miller (2015) and MacKinnon et al.
(2023).

An even more radical solution for dealing with heteroskedasticity has be-
come quite popular over the recent past because of the enormous advancement
of our computing capabilities: it’s called the bootstrap. In many respects, the
bootstrap is a very ingenious solution for performing inference with estimators
whose covariance matrix could be unreliable, for various reasons. In a book like
this, giving a full account of the bootstrap is far too ambitious a task, and I’ll just
give you a cursory description in section 4.A.4. Nevertheless, the reader ought
to be aware that “bootstrapped standard errors” are becoming more and more
widely used in the applied literature.

Heteroskedasticity-robust standard errors, variant HC0

coefficient std. error t-ratio p-value
-----------------------------------------------------------
const 8.85359 0.0557726 158.7 0.0000 ***
lsize 1.03696 0.0270429 38.34 1.85e-255 ***
baths -0.00515142 0.0150608 -0.3420 0.7323
age -0.00238675 0.000300502 -7.943 2.92e-15 ***
pool 0.106793 0.0239646 4.456 8.69e-06 ***

Mean dependent var 11.60193 S.D. dependent var 0.438325
Sum squared resid 157.8844 S.E. of regression 0.246187
R-squared 0.685027 Adjusted R-squared 0.684544
F(4, 2605) 929.7044 P-value(F) 0.000000
Log-likelihood -42.58860 Akaike criterion 95.17721
Schwarz criterion 124.5127 Hannan-Quinn 105.8041

Table 4.2: Example: houses prices in the US (with robust standard errors)

Example 4.3
The hedonic model presented in section 3.4 was re-estimated with robust stan-
dard errors, and the results are shown in Table 4.2.

As the reader can check, all the figures in Table 4.2 are exactly the same as
those in Table 3.1, except for those that depend on the covariance matrix of
the parameters: the standard errors (and therefore, the t-statistics and their p
values) and the overall specification test. In this case, I instructed gretl to use
White’s original formula, but this is not the software’s default choice (although
results would change but marginally).
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4.2.3 White’s test

Is it possible to test for homoskedasticity? Yes. In fact, many tests exist, and
they all have in common the fact that, under H0, σ2

1 = σ2
2 = . . . = σ2

n (that is,
homoskedasticity). In this section, I will focus on one of the mostly widely used,
also due to Hal White: other similar tests (that I will not describe here) go after
the name of Breusch-Pagan and Koenker test.

White’s idea is both simple and powerful: if εi is homoskedastic, then both
estimators of the parameters covariance matrix are consistent, so V̂ = σ̂2(X′X)−1

and its robust counterpart Ṽ should be similar in large samples. Otherwise, the
two matrices should diverge from one another. Therefore, one can indirectly
spot the problem by comparing the two matrices.9

If we re-write V̂ as

V̂ = (X′X)−1 (
σ̂2X′X

)
(X′X)−1 = (X′X)−1

(
n∑

i=1
σ̂2xi x′i

)
(X′X)−1,

and compare this expression to (4.8), it’s clear to see that any difference between
the two variance estimators comes from the matrix in the middle, which equals∑n

i=1 σ̂
2xi x′i for V̂ and

∑n
i=1 e2

i xi x′i for Ṽ . Therefore, the difference between them

1

n

n∑
i=1

(e2
i − σ̂2)xi x′i

is the quantity of interest. We need a test for the hypothesis that the proba-
bility limit of the expression above is a matrix of zeros. If it were so, then the
two estimators would converge to the same limit, and therefore the two esti-
mators would coincide asymptotically; this, of course, wouldn’t happen under
heteroskedasticity. Therefore, the null hypothesis of White’s test is homoskedas-
ticity.

Note that the alternative hypothesis is left unspecified: that is, the alterna-
tive hypothesis is simply the there is at least one variance σ2

i that differs from
the other ones. This has two implications, one good and one bad. The good
one is that this is a fairly general test and is not specific to any assumption we
may make on the skedastic function h(xi ). The bad one is that the test is “non-
constructive”: if the null is rejected the test gives us no indication on what to
do.

It would seem that performing such a test is difficult; fortunately, an asymp-
totically equivalent test is easy to compute by means of an auxiliary regression:

e2
i = γ0 +z′iγ+ui ;

the vector zi can be defined, technically, as

zi = vech
(
xi x′i

)
.

9A generalisation of the same principle is known among econometricians as the Hausman test,
after the great Jerry Hausman. More on this in Section 6.4.
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The definition of the vech(·) operator is given in Subsection 4.A.3, but in prac-
tice, zi contains the non-duplicated cross-products of xi , that is all combina-
tions of the kind xl i ·xmi (with l ,m = 1. . .k); some of them could cause collinear-
ity, so they must be dropped from the auxiliary regression (see below for an ex-
ample). Of course, if xi contains a constant term, then zi would contain all the
elements of xi , as the products 1 · xmi .

Like in all auxiliary regression, we don’t really care about its results; running
it is just a computationally convenient way to calculate the test statistic we need,
namely

LM = n ·R2.

Under the null of homoskedasticity, this statistic will be asymptotically distributed
as χ2

p , where p is the size of the vector zi .
For example: suppose that xi contains:

1. the constant;

2. two continuous variables xi and wi ;

3. a dummy variable di

The cross products could be written as per the following “multiplication ta-
ble”

1 xi wi di

1 1 xi wi di

xi xi x2
i xi ·wi xi ·di

wi wi xi ·wi w2
i wi ·di

di di xi ·di wi ·di di

where I indicated the elements to keep by shading the corresponding cell in grey.
Of course the lower triangle is redundant, because it reproduces the upper one,
but the element in the South-East corner must be dropped too: since di is a
dummy variable, it only contains zeros and ones, so its square d 2

i contains the
same entries as di itself; clearly, inserting both di and d 2

i into zi would make the
auxiliary regression collinear.

Therefore, the vector zi would contain

z′i = [xi , wi , di , x2
i , xi ·wi , xi ·di , w2

i , wi ·di ]

so the auxiliary regression would read

e2
i = γ0 +γ1xi +γ2wi +γ3di +

+ γ4x2
i +γ5xi wi +γ6xi di +

+ γ7w2
i +γ8wi di +ui

where ui is the error term of the auxiliary regression. In this case, p = 8.10

10It’s easy to prove that, if you have k regressors, then p ≤ k(k+1)
2 −1.
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Example 4.4
Running White’s heteroskedasticity test on the hedonic model for houses (see
section 3.4) yields:

White’s test for heteroskedasticity
OLS, using observations 1-2610
Dependent variable: uhat^2

coefficient std. error t-ratio p-value
------------------------------------------------------------
const 0.806236 0.160351 5.028 5.30e-07 ***
lsize -0.710993 0.134434 -5.289 1.33e-07 ***
baths 0.0936181 0.0514158 1.821 0.0688 *
age 0.00464135 0.00119047 3.899 9.91e-05 ***
pool 0.267089 0.110699 2.413 0.0159 **
sq_lsize 0.159277 0.0307527 5.179 2.40e-07 ***
X2_X3 -0.0409056 0.0240448 -1.701 0.0890 *
X2_X4 -0.00163418 0.000527404 -3.099 0.0020 ***
X2_X5 -0.164525 0.0498979 -3.297 0.0010 ***
sq_baths 0.00360873 0.00513648 0.7026 0.4824
X3_X4 0.000204179 0.000252621 0.8082 0.4190
X3_X5 0.0653657 0.0290985 2.246 0.0248 **
sq_age -4.93515e-08 4.95338e-06 -0.009963 0.9921
X4_X5 0.00245662 0.000753929 3.258 0.0011 ***

Unadjusted R-squared = 0.054056

Test statistic: TR^2 = 141.085963,
with p-value = P(Chi-square(13) > 141.085963) = 0.000000

The cross-products are: (a) the original regressors first (because the original
model has a constant) and (b) all the cross-products, except for the square of
pool, which is a dummy variable. The total number of regressors in the auxiliary
model is 14 including the constant, so the degrees of freedom for our test statistic
is 14−1 = 13.

Since the LM statistic is 141.1 (which is a huge number, compared to the
χ2

13 distribution), the null hypothesis of homoskedasticity is strongly rejected.
Therefore, the standard errors presented in Table 4.2 are a much better choice
than those in Table 3.1.

4.2.4 So, in practice. . .

In practice, when you estimate a model in which heteroskedasticity is a possi-
ble problem (in practice, every time you have cross-sectional data), you should
in principle strive for maximal efficiency, and you can do so by employing the
following algorithm, graphically depicted in Figure 4.2.

1. Start with OLS on a tentative model
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2. Perform White’s test; if it doesn’t reject H0, fine. Otherwise

3. can you reformulate the model so as to achieve homoskedasticity? If you
can, try a different formulation and start back from the top. Otherwise,

4. see if you can use FGLS. If you can, do it; otherwise

5. stick to OLS with robust standard errors.

estimate
model by OLS

does
White

test
reject

H0?

keep your model

can you
reformu-

late?
update model

is GLS
feasible?

use FGLS

use robust covariance matrix

No

Yes

Yes

No

Yes

No

Figure 4.2: Heteroskedasticity flowchart

The things you can do at points 3 and 4 are many: for example, you can try
transforming your dependent variable and/or use weighting; for more details,
go back to section 4.2.1.

Note, however, that this algorithm often ends at point 5; this is so com-
mon that many people, in the applied economics community, don’t even bother
checking for heteroskedasticity and start directly from there.11 This is especially
true in some cases, where you know from the outset what the situation is. The

11In fact, some researchers show sometimes an inclination to disregard specification issues in
hope that robust inference will magically take care of everything, which is of course not the case.
For an insightful analysis, see King and Roberts (2015).
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so-called linear probability model (often abbreviated as LPM) is a notable ex-
ample.

The LPM is what you get when your dependent variable is a dummy. So for
example you may want to set up a model where yi is the employment status of an
individual, so yi = 1 if the i -th person has a job and yi = 0 otherwise. Contrary
to what happens in most cases, we know exactly what the distribution of the
dependent variable is: it’s a Bernoulli random variable:

yi =
{

1 with probability πi

0 with probability 1−πi
(4.9)

The linearity hypothesis implies that E
[

yi |xi
]=πi = x′iβ, since the expected

value of a Bernoulli rv is, by construction, the probability of success. This is quite
weird already, because π is a probability, and therefore has to be between 0 and
1, whereas if it really was a linear function of the x variables, you could always
imagine to find an observation for which the predicted probability is outside
the [0,1] interval. Many applied econometricians are OK with that: they con-
cede that the linearity assumption is inappropriate after all, but assume that it
shouldn’t be a problem in practice, and use it as a convenient approximation.12

But then, you also have that for a Bernoulli rv V
[

yi
]=πi · (1−πi ), and there-

fore
V

[
yi |xi

]=πi = x′iβ · (1−x′iβi )

so the conditional variance cannot be constant unless the conditional mean is
constant too. The vector of parameters β enjoys a special nature, being the vec-
tor of parameters that determine both the conditional mean and the conditional
variance. In theory, it is possible to estimateβ by an elaborate FGLS strategy, but
in these cases practitioners always just use OLS with robust standard errors.

4.A Assorted results

4.A.1 Proof that full interactions are equivalent to split-sample esti-
mation

Suppose you have m categories in which you can split your sample and that all
the parameters in your model are liable to be different between the m subsam-
ples.13 Then, you can write the model as

yi =
m∑

j=1
(d j i ·xi )′β j +εi (4.10)

12Models that overcome this questionable approach have existed for a long time: you’ll find a
thorough description of logit and probit models in any decent econometrics textbook, but for
some bizarre reason they are going out of fashion.

13The classic Chow test occurs when m = 2; in order to study the argument below, I suggest you
to start with the special case m = 2 and generalise later.
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where d j i = 1 if observation i belongs to sub-population j , and 0 otherwise.

This model can be written in matrix notation as
y1

y2
...

ym

=


X1 0 . . . 0
0 X2 . . . 0
...

...
. . .

...
0 0 . . . Xm

 ·


β1

β2
...

βm

+


ε1

ε2
...

εm

 (4.11)

where y j is the segment of the y vector containing the observations for the j -th
subsample, and so forth. If you apply the OLS formula to equation (4.11), you
get


β̂1
β̂2

...
β̂m

 =




X′
1 0 . . . 0

0 X′
2 . . . 0

...
...

. . .
...

0 0 . . . X′
m

 ·


X1 0 . . . 0
0 X2 . . . 0
...

...
. . .

...
0 0 . . . Xm



−1

×

×


X′

1 0 . . . 0
0 X′

2 . . . 0
...

...
. . .

...
0 0 . . . X′

m

 ·


y1
y2
...

ym

=

=


X′

1X1 0 . . . 0
0 X′

2X2 . . . 0
...

...
. . .

...
0 0 . . . X′

m Xm


−1

·


X′

1y1
X′

2y2
...

X′
m ym



=


(X′

1X1)−1X′
1y1

(X′
2X2)−1X′

2y2
...

(X′
m Xm )−1X′

m ym


So clearly each β̂ j coefficient can be calculated by an OLS regression using the

data for subsample j only. Therefore, the residuals for subsample j are e j =
y j −X j β̂ j . As a consequence,

e′e =
m∑

j=1
e j

′e j ,

which in words reads: the SSR for model (4.10) is the same as the sum of the
SSRs you get for the m separate submodels. Equation (4.2) is a simple special
case when m = 2; the corresponding generalisation for a generic m is

W = n ·
ST −∑m

j=1 S j∑m
j=1 S j

(4.12)

and the degrees of freedom for the test equals k · (m −1).
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Now note that if you take q to be the “reference” category14, you can rewrite
equation (4.10) as

yi = x′iβ+ ∑
j ̸=q

(d j i x′iγ j )+εi

where γ j = β j −βq by a simple generalisation of the argument at the start of
section 4.1.2. As a consequence, you can compare the model above with the
model where all the γ j vectors are 0 by comparing the SSR for the restricted
model yi = x′iβ+ εi (call it e′e) against the sum of the SSRs of the m separate
submodels (call them e′e j , with j = 1. . .m), and they corresponding Wald-type
statistic would be exactly equation (4.12).

4.A.2 Proof that GLS is more efficient than OLS

In order to prove that V
[
β̂

]−V
[
β̃

]
is psd, I’ll use the properties on psd matrices

that I listed in section 3.A.6, plus a few more

1. if A and B are invertible and A−B is psd, then B−1 − A−1 is also psd;

2. if A is psd, there always exists a matrix H such that A = H H ′;15

3. all idempotent matrices are psd.

Therefore, to check the relative efficiency of β̂ and β̃, we’ll perform an equiv-

alent check on∆≡ V
[
β̃

]−1−V
[
β̂

]−1
(by property 1 above). To prove that∆ is psd,

start from its definition:

∆≡ V
[
β̃

]−1 −V
[
β̂

]−1 = X′Σ−1X− (X′X)(X′ΣX)−1(X′X);

sinceΣ is pd, we can write it asΣ= H H ′ (by property 2), so thatΣ−1 = (H ′)−1H−1:

∆ = X′(H ′)−1H−1X− (X′X)(X′H H ′X)−1(X′X) =
= (H−1X)′

[
I −H ′X(X′H H ′X)−1X′H

]
(H−1X).

Now define W = H ′X and re-express ∆ as:

∆ = (H−1X)′
[
I −W(W′W)−1W′] (H−1X) = (H−1X)′MW(H−1X),

since MW is idempotent, it is psd (property 3); but then, the same is true of
(H−1X)′MW(H−1X); therefore, the claim follows.

Note that under heteroskedasticityΣ is assumed to be diagonal, but the above
proof holds for any non-singular covariance matrix Σ.

14I will not offend the reader’s intelligence by writing the obvious double inequality 1 ≤ q ≤ m.
15Note: H is not unique, but that doesn’t matter here. By the way, it is also true that if a matrix

H exists such that A = H H ′, then A is psd, but we won’t use this result here.
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4.A.3 The “vec” and “vech” operators

In some cases, it can be useful to reshape the contents of a matrix so as to trans-
form it into a vector. The “vec” operator does just that: it stacks the columns of
a matrix below one another. For example,

vec

([
a c
b d

])
=


a
b
c
d


or more generally

vec
([

x1 x2 . . . xk
])=


x1

x2
...

xk

 .

The “vech” operator works in a similar way, but is generally applied to sym-
metric matrices: the difference from “vec” is that the redundant elements are
not considered. For example:

vech

([
x y
y z

])
=

x
y
z

 .

More generally, if A is an n×n symmetric matrix, vech(A) is a vector holding the
n(n+1)

2 elements on and below its diagonal.

4.A.4 The bootstrap

For a reliable account, get hold of Efron and Hastie (2016) (Bradley Efron is
none other than the inventor of the technique), or MacKinnon (2006) for a more
econometrics-oriented approach. Here, I’m just giving you a basic intuition on
what the bootstrap is. Suppose you have an estimator

θ̂ = T (X),

where X is a data matrix with n rows. Clearly, in order to perform inference,
you need to have an idea of what the distribution of the random variable θ̂ is.
Asymptotically, the CLT may be of help, but perhaps your sample size is not
large enough to trust the asymptotic approximation given by the CLT; and even
if you’re willing to take the asymptotic distribution as an acceptable approxima-
tion, the covariance matrix of θ̂ may be unknown, or difficult to compute.

Of course, given your data X you can compute θ̂ just once, but if you could
observe many different datasets with the same distribution, then you could com-
pute your estimator many times and get an idea of the distribution of your statis-
tic by looking at the different values of θ̂ you get each time.
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The idea is to use your observed data X to produce, with the aid of computer-
generated pseudo random numbers, H alternative datasets Xh , with h = 1. . . H ,
and compute your estimator for each of them, so you end up with a collection
θ̂1, θ̂2, . . . , θ̂H . This procedure is what we call bootstrapping,16 and the H realisa-
tions you get of your statistic are meant to give you an idea of the actual, finite-
sample distribution of the statistic itself.

Then, one possible way of computing V (θ̂) is just to take the sample variance
of the bootstrap estimates:

θ̄ = 1

H

H∑
h=1

θ̂h

Ṽ (θ̂) = 1

H

H∑
h=1

(
θ̂h − θ̄)2

How do you generate your artificial datasets Xh? There is a myriad of ways
to do this, but when the observations are iid,17 the simplest solution is just to
resample from the rows of X with replacement, as exemplified in Table 4.3; the
example uses the scripting language of gretl, but it should be relatively easy to
translate this into any language that you like better.18 Note that the rows are
picked with replacement, which means that you have near-certainty that some
of the rows of X will be present in your “fake” dataset Xh more than once and
some others won’t be there at all.

You may find it puzzling, but a simple argument should give you an idea of
why this is done. Suppose you have only 3 data points; x1, x2 and x3. If your
data are iid, then each of your observations is equally likely, so you could have
observed, with the same probability, each of the following 27 datasets:

X1 = (x1, x1, x1)

X2 = (x1, x1, x2)

X3 = (x1, x1, x3)

X4 = (x1, x2, x1)

X5 = (x1, x2, x2)

X6 = (x1, x2, x3)
...

X26 = (x3, x3, x2)

X27 = (x3, x3, x3)

16According to Efron, “[i]ts name celebrates Baron Munchausen’s success in pulling himself up
by his own bootstraps from the bottom of a lake” (Efron and Hastie, 2016, p. 177), although the
story is reportedly a little different. However, the name was chosen to convey the idea of the
accomplishment of something apparently impossible without external help.

17When data are not independent, things get a bit more involved.
18Warning: the algorithm in Table 4.3 wouldn’t be a computationally efficient way to get the job

done. It’s just meant to illustrate the procedure in the most transparent way possible.
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ad it’s only by chance that you observed X6 instead of any of the others. The
number 27 comes from the fact that the number of possible datasets is nn , so in
this case 33 = 27. Clearly, the estimator θ̂h can be computed for each of the 27
cases and various descriptive statistics can be computed easily. In realistic cases,
computing θ̂h for each possible sample is impossible, since nn is astronomical:
therefore, we just randomly extract H samples and use those.

# a l l o c a t e space f o r H estimates (H i s the number of bootstrap r e p l i c a t i o n s )
matrix thetas = zeros (H, 1)

# generate H simulated datasets and corresponding estimators
loop h = 1 . . H

Xh = zeros (n , k ) # s t a r t with a matrix of zeros

loop i = 1 . . n # f o r each row of our dataset
k = randgen1 ( i , 1 , n) # pick a random number between 1 and n
# put the k−th row of the true data into the i −th row of
# the simulated data
Xh[ i , ] = X[ k , ]

endloop

# now compute the estimator on the generated data Xh and s t o r e i t
thetas [h] = estimator (Xh) # t h i s would be the T(X) function

endloop

# compute the variance of the simulated thetas
V = mcov( thetas )

Note: this is not meant to run “out of the box”. The script above assumes that a
few objects, such as the scalars n or H, or the function estimator() have already
been defined.

Table 4.3: Elementary example of bootstrap
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Chapter 5

Dynamic Models

5.1 Dynamic regression

In cross sectional datasets, it is quite natural to assume that the most useful in-
formation set on which to condition the distribution of yi is xi . Why should we
consider, for the conditional distribution of yi , the information available for in-
dividual j as relevant (with i ̸= j )? In some cases, there could be something to
this; perhaps individuals i and j have some unobservable feature in common,
but in most cross-sectional datasets this shouldn’t be something to worry about.

This argument does not apply to time-series datasets. Here, we have two
fundamental differences from cross-sectional datasets:

1. Data have a natural ordering.

2. At any given point in time, we can take as known what happened in the
past (and, possibly, at present time), but the future remains unknown.

This means that, if we want to condition yt to something1, we may proceed
as in chapter 3 and consider E

[
yt |xt

]
, but this is unlikely to be a good idea, es-

pecially in the light of a feature that most economics time series display, that is,
they are very persistent.

Persistence is a loose term we use for describing the quality, that time se-
ries often possess, whereby contiguous observations look more like each other
than distant ones. In other words, persistence is the observable consequence of
the fact that most phenomena evolve gradually through time.2 In fact, you may
think of time series as something with “memory” of the past. The information
embodied in a time series dataset is not only in the numbers it contains, but

1Attention: for this chapter, I’m going to switch to a slightly different notation convention than
what I used in the previous chapters. Since we’re dealing with time series, I will use the symbols t
and T instead of i and n, so for example the dependent variable has values y1, . . . , yt , . . . , yT .

2In fact, the econometric treatment of time series data has become, since the 1980s, such a
vast and complex subject that we may legitimately treat time-series econometrics as a relatively
autonomous scientific field (with financial econometrics as a notable sub-field).

141
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also in the sequence in which they come, as if the data told you a story. If you
scramble the ordering of the rows in a cross-sectional dataset, the information
remains intact; in a time series dataset, most of it is gone.

For example: figure 5.1 shows log of real GDP and log of private consump-
tion in the Euro area between 1995 and 2019 (y and c, respectively).3 By looking
at the plot, it just makes sense to surmise that ct−1 may contain valuable infor-
mation about ct , even more than yt does.

 13.7
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 14.3

 14.4
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 14.6
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 14.8

 1995  2000  2005  2010  2015  2020

y
c

Figure 5.1: Consumption and income in the Euro area (in logs)

Therefore:

• the choice of xt as the conditioning set for E
[

yt |xt
]

says implicitly that
information on what happened before time t is not of our interest (which
is silly);

• since observations are very unlikely to be independent, there is no ground
for assuming that covariance matrix of yt −E

[
yt |xt

]
is diagonal.

In the early days of econometrics, this situation was treated in pretty much
the same way as we did with heteroskedasticity in section 4.2, that is, by consid-
ering a model like

yt = x′tβ+εt (5.1)

and working out solutions to deal with the fact that E
[
εε′

]=Σ is not a diagonal
matrix (although the elements on the diagonal might well be constant).

The presence of non-zero entries outside the diagonal was commonly called
the “autocorrelation” or “serial correlation” problem. In order to define this con-
cept,4 let us begin by defining what the autocovariance of a sequence of random

3Source: Eurostat.
4You may also want to take a look at Section 5.A.2.
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variables is: suppose you have T random variables observed through time

z1, z2, . . . , zt , . . . , zT .

The covariance between zt and zs is an autocovariance, since it’s the covariance
of a random variable “with itself at a different time”, so to speak. Clearly, if this
quantity is different from 0, the two random variables zt and zs cannot be inde-
pendent. If we standardise this covariance as

ρt ,s = Cov[zs , zt ]p
V[zt ]V[zs]

we have something called autocorrelation. In most cases, it makes sense to as-
sume that the correlation between zs and zt is only a function of how far they
are from each other; that is, assume that ρt ,s is just a function of |t − s|; if this is
the case, the quantity Corr[zt−1, zt ] = Corr[zt , zt+1] = . . . is called first-order au-
tocorrelation or autocorrelation of order 1. Generalisation is straightforward.
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Figure 5.2: Sample autocorrelation for the log consumption series

Example 5.1
Figure 5.2 displays the sample autocorrelations for the log consumption series
shown in Figure 5.1. As you can see, the numbers are very different from 0. For
example, the first 3 sample correlations equal

ρ̂1 = Corr[zt , zt−1] = 0.9627

ρ̂2 = Corr[zt , zt−2] = 0.9259

ρ̂3 = Corr[zt , zt−3] = 0.8881

and it would be hard to argue that the random variables contained in this time
series are independent.

Clearly, if the autocorrelation between εt and εs is nonzero for some t and s,
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Σ cannot be diagonal, so GLS solutions have been devised5, and a clever general-
isation of White’s robust estimator (due to Whitney Newey and Kenneth West) is
also available, but instead of “fixing” OLS, a much better strategy is to rethink our
conditioning strategy. That is, instead of employing clever methods to perform
acceptable inference on equation (5.1), we’d be much better off if we redefined
our object of interest altogether.

What we want to do is using all the possibly relevant available information
as our conditioning set; to this end, define the information set at time t as6

ℑt =
{

x1,x2, . . .xt , y1, y2, . . . , yt−1
}

;

(note that ℑt includes xt ). For example, in order to build a model where con-
sumption is the dependent variable and the only explanatory variable is income
(a dynamic consumption function, if you will), it may make sense to condition
consumption on the whole information set ℑt .

Therefore, the conditioning operation will be done by using all the variables
relevant for the distribution of yt that can be assumed to be known at that time.
Clearly, that includes the current value of xt , but also the past of both yt and xt .
Possibly, even future variables that are known with certainty at time t ; variables
such as these are normally said to be deterministic. Apart from the constant
term (xt = 1), popular examples include time trends (eg xt = t ), seasonal dummy
variables (eg xt = 1 if t is the month of May), or more exotic choices, such as the
number of days in a given month, that is known in advance. Note that (this will
be very important) ℑt is an element of a sequence where ℑt−1 ⊆ ℑt ⊆ ℑt+1; in
other words, the sequence of information sets is increasing.7

Now consider the conditional expectation E
[

yt |ℑt
]
; even under the linearity

assumption, this object may have two potentially troublesome characteristics:

1. since the sequence ℑt is increasing, E
[

yt |ℑt
]

may contain information
that goes indefinitely back into the past, and

2. E
[

yt |ℑt
]

could be different for each t .

If none of the above is true, things are much simplified; under the additional
assumption of linearity of the conditional mean,

E
[

yt |ℑt
]= p∑

i=1
αi yt−i +

q∑
i=0

β′
i xt−i ,

5For the readers who are into the history of econometrics: the so-called Cochrane-Orcutt es-
timator and its refinements are totally forgotten today, but they were a big thing back in the 1960s
and 1970s.

6To be rigorous, we should define the information set by using a technical tool called a σ-
field. This ensures that ℑt contains all possible functions of the elements listed above (∆yt−1, for
example). But in an introductory treatment such as this, I’ll just use the reader’s intuition and use
ℑt as “all the things we knows at time t”.

7Or, if you will, we are assuming that we always learn and never forget.
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where p and q are finite numbers. Although in principle ℑt contains all the past,
no matter how remote, only the most recent elements of ℑt actually enter the
conditional expectation. A slightly more technical way of expressing the same
concept is: we are assuming that there is a subset of ℑt (call it Ft ), that contains
only recent information, such that conditioning on ℑt or Ft makes no differ-
ence:

E
[

yt |ℑt
]= E

[
yt |Ft

]
, (5.2)

where ℑt ⊃Ft . In practice, Ft is the relevant information at time t .
The linearity assumption makes the regression function of yt on ℑt a differ-

ence equation, that is, a relationship in which an element of a sequence yt is
determined by a linear combination of its own past and the present and past of
another sequence xt ;8 if we proceed in a similar way as in chapter 3, and define
εt ≡ yt −E

[
yt |ℑt

]
, we can write the so-called ADL model:

yt =
p∑

i=1
αi yt−i +

q∑
i=0

β′
i xt−i +εt . (5.3)

The ADL acronym is for Autoregressive Distributed Lags (some people prefer the
ARDL acronym): in many cases, we call the above an ADL(p, q) model, to make
it explicit that the conditional mean contains p lags of the dependent variable
and q lags of the explanatory variables.

Of course, it would be very nice if we could estimate the above parameters
via OLS. Clearly, the first few observations would have to be discarded, but once
this is done, we may construct our y and X matrices as9


yp+1
yp+2
yp+3

...

 =


yp yp−1 . . . y1 x′p+1 x′p . . . x′p−q+1

yp+1 yp . . . y2 x′p+2 x′p+1 . . . x′p−q+2
yp+2 yp+1 . . . y3 x′p+3 x′p+2 . . . x′p−q+3

...





α1
α2

...
αp
β0
β1

...
βq


+


εp+1
εp+2
εp+3

...

=

y = Wγ+ε

where wt is defined as

w′
t = [yt−1, yt−2, . . . , yt−p ,x′t ,x′t−1, . . . ,x′t−q ],

and
γ ′ = [α1,α2, . . . ,αp ,β′

0,β′
1, . . . ,β′

q ].

8Note: this definition works for our present purposes, but in some cases you may want to con-
sider non-linear relationships, or cases which involve future values.

9I assumed for simplicity that p ≥ q ; of course, potentially collinear deterministic terms would
have to be dropped.
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Given this setup, clearly the OLS statistic can be readily computed with the
usual formula (W′W)−1W′y, but given the nature of the conditioning, one may
wonder if OLS is a CAN estimator of the α and β parameters. As we will see in
section 5.3, the answer is positive, under certain conditions.

Before we focus on the possible inferential difficulties, however, it is instruc-
tive to consider another problem. Even if the parameters of the conditional ex-
pectation E

[
yt |ℑt

]
were known and didn’t have to be estimated, how do we in-

terpret them?

5.2 Manipulating difference equations

Given the difference equation

yt =
p∑

i=1
αi yt−i +

q∑
i=0

β′
i xt−i

we may ask ourselves: what is the effect of x on y after a given period? That is:
how does xt affect yt+h? Since the coefficients αi and βi do not depend on t ,
we may rephrase the question as: what is the impact on yt of something that
happened h periods ago, that is xt−h? Clearly, if h = 0 we have a quantity that
is straightforward to interpret, that is the instantaneous impact of xt in yt , but
much is to be gained by considering magnitudes like

dh = ∂yt

∂xt−h
= ∂yt+h

∂xt
; (5.4)

the dh parameters take the name of dynamic multipliers, or just multipliers for
short. In order to find a practical and general way to compute them, we will need
a few extra tools. Read on.

5.2.1 The lag operator

Time series are nothing but sequences of numbers, with a natural ordering given
by time. In many cases, we may want to manipulate sequences by means of
appropriate operators. The lag operator is generally denoted by the letter L by
econometricians (statisticians prefer B — savages!); it’s an operator that turns
a sequence xt into another sequence, that contains the same objects as xt , but
shifted back by one period.10 If you apply L to a constant, the result is the same
constant. In formulae,

Lxt = xt−1

Repeated application of the L operator n times is indicated by Ln , and therefore
Ln xt = xt−n . By convention, L0 = 1. The L operator is linear, which means that,

10In certain cases, you might want to use the lead operator, usually notated as F , which is de-
fined as the inverse to the lag operator (F xt = xt+1, or F = L−1). I’m not using it in this book, but
its usage is very common in economic models with rational expectations.
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if a and b are constant, then L(axt + b) = aLxt + b = axt−1 + b. These simple
properties have the nice consequence that, in many cases, we can manipulate
the L operator algebraically as if it was a number. This trick is especially useful
when dealing with polynomials in L. Allow me to exemplify:

Example 5.2
Call bt the money you have at time t , and st the difference between the money
you earn and the money you spend between t − 1 and t (in other words, your
savings). Of course,

bt = bt−1 + st .

Now the same thing with the lag operator::

bt = Lbt + st → bt −Lbt = (1−L)bt =∆bt = st

The∆ operator, which I suppose not unknown to the reader, is defined as (1−L),
that is a polynomial in L of degree 1. The above expression simply says that the
variation in the money you have is your net saving.

Example 5.3
Call qt the GDP for the Kingdom of Verduria in quarter t . Obviously, yearly GDP
is given by

yt = qt +qt−1 +qt−2 +qt−3 = (1+L+L2 +L3)qt

Since (1+x +x2 +x3)(1−x) = (1−x4), if you “multiply” the equation above11 by
(1−L) you get

∆yt = (1−L4)qt = qt −qt−4;

The variation in yearly GDP between quarters is just the difference between the
quarterly figures a year apart from each other.

A polynomial P (x) may be evaluated at any value, but two cases are of special
interest. Obviously, if you evaluate P (x) for x = 0 you get the “constant” coeffi-
cient of the polynomial, since P (0) = p0 +p1 ·0+p2 ·0+·· · = p0; instead, if you
evaluate P (1) you get the sum of the polynomial coefficients:

P (1) =
n∑

j=0
p j 1 j =

n∑
j=0

p j .

This turns out to be quite handy when you apply a lag polynomial to a constant,
since

P (L)µ=
n∑

j=0
p jµ=µ

n∑
j=0

p j = P (1)µ.

11To be precise, we should say: ‘if you apply the (1−L) operator to the expression above’.
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There are two more routine results that come in very handy: the first one has
to do with inverting polynomials of order 1. It can be proven that, if |α| < 1,

(1−αL)−1 = (1+αL+α2L2 +·· · ) =
∞∑

i=0
αi Li ; (5.5)

the other one is that a polynomial P (x) is invertible if and only if all its roots are
greater than one in absolute value:

1

P (x)
exists iff P (x) = 0 ⇒|x| > 1. (5.6)

The proofs are in subsection 5.A.1.

Example 5.4 (The Keynesian multiplier)
Let me illustrate a possible use of polynomial manipulation by a very old-school
macro example: the simplest possible version of the Keynesian multiplier idea.
Suppose that

Yt = Ct + It ; (5.7)

Ct = αYt−1; (5.8)

where Yt is GDP, Ct is aggregate consumption and It is investment; 0 < α< 1 is
the marginal propensity to consume.

By combining the two equations,

Yt =αYt−1 + It → (1−αL)Yt = It .

therefore, by applying the first degree polynomial A(L) = (1−αL) to the Yt se-
quence (national income), you get the time series for investments, simply be-
cause It = Yt −Ct = Yt −αYt−1.

If you now invert the A(L) = (1−αL) operator,

Yt = (1+αL+α2L2 +·· · )It =
∞∑

i=0
αi It−i :

aggregate demand at time t can be seen as a weighted sum of past and present
investment. Suppose that investment goes from 0 to 1 at time 0. This brings
about a unit increase in GDP via equation (5.7); but then, at time 1 consumption
goes up by α, by force of equation (5.8), so at time 2 it increases byα2 and so on.
Since 0 <α< 1, the effect dies out eventually.

If investments were constant through time, then It = Ī ; therefore, A(L)Yt = Ī
becomes

Yt = 1

A(L)
Ī = 1

A(1)
Ī = Ī

1−α
where the second equality comes from the fact that Ī is constant. The rightmost
expression is nothing but the familiar “Keynesian multiplier” formula.
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A word of caution: in many cases, it’s OK to manipulate L algebraically as if
it was a number, but sometimes it’s not: the reader should always keep in mind
that the expression Lxt does not mean ‘L times xt ’, but ‘L applied to xt ’. The
following example should, hopefully, convince you.

Example 5.5
Given two sequence xt and yt , define the sequence zt as zt = xt · yt . Obviously,
zt−1 = xt−1 yt−1; however, one may be tempted to argue that

zt−1 = xt−1 yt−1 = Lxt Lyt = L2xt yt = L2zt = zt−2

which is obviously absurd.

5.2.2 Dynamic multipliers

When considering an ADL model, the problem that we are ultimately after is:
how do we interpret its parameters? Let’s start from a difference equation like
the following:

A(L)yt = B(L)xt

where the degrees of the A(L) and B(L) polynomials are p and q , respectively.
If the polynomial A(L) is invertible, the difference equation is said to be stable.
In this case, we may define D(L) = A(L)−1B(L) = B(L)/A(L); as a rule, D(L) is of
infinite order (although not necessarily so):

yt = D(L)xt =
∞∑

i=0
di xt−i .

This is all we need for dealing with our problem, if you consider that the dynamic
multipliers as defined in equation (5.4),

di = ∂yt

∂xt−i
= ∂yt+i

∂xt
,

are simply the coefficients of the D(L) polynomial.12 It is possible to calculate
them analytically by inverting the A(L) polynomial, but doing so is neither in-
structive nor enjoyable. On the contrary, the same effect can be achieved by
using a nice recursive algorithm.

The impact multiplier d0 is easy to find, since d0 = D(0) = B(0)/A(0), which
simply equals β0 (since A(0) = 1). All other multipliers can be found by means of
(5.4), which can be used to express di in terms of di−1,di−2 etc. Once you have
d0, the rest of the sequence follows.

12As we will see in section 5.3.1, invertibility of A(L) is not only required for the calculation of
the multipliers, but also for the CAN property of OLS.
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Let me show you a practical example. For an ADL(1,1) model,

yt =αyt−1 +β0xt +β1xt−1, (5.9)

use the definition of a multiplier as a derivative and write

d0 = ∂yt

∂xt
= ∂

∂xt

(
αyt−1 +β0xt +β1xt−1

)=β0

d1 = ∂yt

∂xt−1
= ∂

∂xt−1

(
αyt−1 +β0xt +β1xt−1

)=α∂yt−1

∂xt−1
+β1 =αd0 +β1,

where we used the property

∂yt−1

∂xt−1
= ∂yt

∂xt
= d0

in such a way that d1 is expressed as a function of d0; similarly,

d2 = ∂yt

∂xt−2
= ∂

∂xt−2

(
αyt−1 +β0xt +β1xt−1

)=α∂yt−1

∂xt−2
=αd1

and so on, recursively.
A nice and cool way to express the above is by saying that the multipliers can

be calculated through a difference equation with the same polynomials as the
original one; the sequence of multipliers obeys the relationship

A(L)di = B(L)ui , (5.10)

where ui is a sequence that contains 1 for u0, and 0 everywhere else. This makes
it easy to calculate the multipliers numerically, given the polynomial coefficients,
via appropriate software.

Example 5.6 (Multiplier calculation)
Take for example the following difference equation:

yt = 0.2yt−1 +0.4xt +0.3xt−2.

In this case, A(L) = 1−0.2L and B(L) = 0.4+0.3L2. The inverse of A(L) is

A(L)−1 = 1+0.2L+0.04L2 +0.008L3 +·· · =
∞∑

i=0
0.2i Li ;

therefore,

B(L)

A(L)
= (0.4+0.3L2)× (1+0.2L+0.04L2 +0.008L3 +·· · ).
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The two polynomials can be multiplied directly, as in

B(L)

A(L)
= 0.4× (1+0.2L+0.04L2 +0.008L3 +·· · )+

+0.3L2 × (1+0.2L+0.04L2 +0.008L3 +·· · ) =
= 0.4+0.08L+0.016L2 +0.0032L3 +·· ·+

+0.3L2 +0.06L3 +0.012L4 +0.0024L5 · · · =
= 0.4+0.08L+0.316L2 +0.0632L3 +·· ·

but it’s really boring. The recursive approach is much quicker:

d0 = B(0)/A(0) = 0.4/1 = 0.4

d1 = 0.2 ·d0 = 0.08

d2 = 0.2 ·d1 +0.03 = 0.016+0.3 = 0.316

d3 = 0.2 ·d2 = 0.0632

and so on.

In certain cases, the multipliers di may all have

the same sign. If so, the sequence πi = di
c

has all the characteristics of a discrete probabil-
ity distribution: all the πi coefficients are non-
negative and sum to 1.
Therefore, it makes sense to compute quanti-
ties such as the mean lag or the median lag.
For example, the mean lag can be defined as

m = ∑∞
i=0 i ·πi , and can be given a nice inter-

pretation as the “average” time span it takes xt
to affect yt .

Note, however, that in general the sequence di
may well include positive and negative num-
bers, and the long-run multiplier c could even
be 0; in those cases, the notion itself of mean
lag is meaningless.

5.2.3 Interim and long-run multipliers

If you go back to the definition of the multipliers, (5.4), that is di = ∂yt

∂xt−i
= ∂yt+i

∂xt
,

it is quite natural to interpret the magnitude dh as the effect of something that
happened h periods ago on what we see today. The implicit idea in this defini-
tion is that the source of the dynamic behaviour in our system is a one-off event.

In many cases, instead, we could be interested in computing the effect on
yt of a permanent change in xt . Clearly, at time 0 the effect will be equal to the
impact multiplier d0, but after one period the instantaneous effect will overlap
with the lagged one, so the effect will be equal to d0 +d1. By induction, we may
define a new sequence of multipliers as

c j = d0 +d1 +·· ·+d j =
j∑

i=0
di . (5.11)
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These are called interim multipliers and measure the effect on yt of a perma-
nent change in xt that took place j periods ago. In order to see what happens in
the long run after a permanent change, we may also want to consider the long-
run multiplier c = lim j→∞ c j . Calculating c is much easier than what may seem,
since

c j =
∞∑

i=0
di = D(1);

that is: c is the number you get by evaluating the polynomial D(z) in z = 1; since
D(z) = B(z)/A(z), c can be easily computed as c = D(1) = B(1)

A(1) .

Example 5.7 (interim multipliers)
Let’s go back to the difference equation we used in example 5.6:

yt = 0.2yt−1 +0.4xt +0.3xt−2.

Interim multipliers are easily computed:

c0 = d0 = 0.4

c1 = d0 +d1 = c0 +d1 = 0.48

c2 = d0 +d1 +d2 = c1 +d2 = 0.796

and so on. The limit of this sequence (the long-run multiplier) is also easy to
compute:

c = D(1) = B(1)

A(1)
= 0.7/0.8 = 0.875

Et voilà.

The long-run multiplier c is very important, because it describes the rela-
tionship between yt and xt in steady state. The concept of steady state is of
paramount importance in econometrics, because is the closest you get to what
you refer to as “equilibrium” in theoretical economics: by “equilibrium”, we usu-
ally mean that there is no internal force that pushes the state of the system away
from where it currently is. Therefore, if a system is in equilibrium, all the vari-
ables that describe it will remain stable through time until an external shock
occurs.

When the dynamic behaviour of a system is described by a difference equa-
tion, the concept of steady state can be explained as follows: suppose we fix xt

at a certain value that stays the same forever. Is there a limit value for yt ? It
can be shown that the limit exists as long as the difference equation is stable; if
this condition is met, then the system admits a steady state. The steady state is
a long-run equilibrium: in steady state, neither yt nor xt change until external
shocks come from outside the system to perturb it.



5.3. INFERENCE ON OLS WITH TIME-SERIES DATA 153

Mathematically, if the system is in steady state, both variables are invariant
through time, so in steady state yt = Y and xt = X (note that Y and X bear no
subscript); as a consequence,

A(L)yt = B(L)xt ⇒ A(L)Y = B(L)X ⇒ A(1)Y = B(1)X ⇒ Y = B(1)

A(1)
X = c X ,

where we used the property that, if X is a constant sequence, Ln X = X . There-
fore, the system is not in equilibrium any time yt ̸= cxt . As we will see, this trivial
observation will become important later.

5.3 Inference on OLS with time-series data

At this point, we know how to interpret the coefficients of a difference equation.
An ADL model (equation (5.3), reproduced here for the reader’s convenience in
lag-polynomial notation)

A(L)yt = B(L)xt +εt (5.12)

is basically a difference equation plus an error term; therefore, the coefficients
of the two polynomials A(L) and B(L) are unobservable, but perhaps we could
find a CAN estimator.

We showed in section 5.1 how OLS can be applied to a dynamic model by
defining the X matrix and the y vector appropriately. The question now is: is
OLS a CAN estimator of the ADL parameters? The answer is positive, if certain
conditions are satisfied.

5.3.1 Martingale differences

Define wt like at the end of section 5.1, as

w′
t = [yt−1, yt−2, . . . , yt−p ,x′t ,x′t−1, . . . ,x′t−q ],

so that we can write our dynamic model as

yt = w′
tγ+εt

where of course γ ′ = [α1,α2, . . . ,αp ,β′
0,β′

1, . . . ,β′
q ].

The first important requirement is that the second moments of wt exist and
that

T −1
T∑

t=1
wt w′

t
p−→Q

where Q is invertible. The conditions under which we can expect this to happen
are quite tricky to lay down formally. Here, I’ll just say that in order for every-
thing to work as expected, it is sufficient that our observed data are realisations
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of covariance-stationary and ergodic stochastic processes.13 For a summary de-
scription of what this means, I have written subsection 5.A.2 at the end of this
chapter. If you can’t be bothered, just take this to mean that all moments up to
the fourth order of all the observables exist and are stable through time.

On top of this, a fundamental ingredient for OLS being a CAN estimator of
the parameters in equation (5.12) is that εt be a martingale difference sequence
(or MDS for short).14

Roughly speaking, a MDS is a sequence of random variables whose expected
value (conditional to a certain information set) meets certain requirements:

• a martingale with respect to ℑt−1 is a sequence of random variables X t

such that E[X t |ℑt−1] = X t−1;

• If X t is a martingale, then ∆X t is a MDS: E[∆X t |ℑt−1] = 0

Of course, if we could condition yt on ℑt then εt would be a MDS by con-
struction:

E[εt |ℑt ] = E
[

yt −E
[

yt |ℑt
] |ℑt

]= E
[

yt |ℑt
]−E

[
yt |ℑt

]= 0

(this is essentially the same argument we used in section 3.1). But of course we
can’t use ℑt in practice; however, we’re assuming (see equation 5.2) that there
exists a subset Ft ⊂ ℑt such that E

[
yt |ℑt

] = E
[

yt |Ft
]
, so Ft (which is usable,

because it’s finite) is just as good. So if you condition yt on Ft , the quantity
εt = yt −E

[
yt |Ft

]
is a MDS and all is well.

However, what happens if you use a conditioning set Gt that is “too small”?
That is, that doesn’t contain Ft ? In that case, the difference ut = yt −E

[
yt |Gt

]
is

not a MDS with respect to ℑt : if E
[

yt |Gt
] ̸= E

[
yt |Ft

]
, then

E[ut |ℑt ] = E
[

yt −E
[

yt |Gt
] |ℑt

]= E
[

yt |Ft
]−E

[
yt |Gt

] ̸= 0.

On the contrary, it is easy to prove that in the opposite case, when you condition
on a subset of ℑt that is larger than Ft , no problems arise.

This remark is extremely important in practice because the order of the poly-
nomials A(L) and B(L) (p and q , respectively) are not known: what happens if
we get them wrong? Well, if they are larger than the “true” ones, then our con-
ditioning set contains Ft , and all is well. But if they’re smaller, the disturbance
term of our model is not a MDS, and all inference collapses. For example, if
p = 2 and q = 3, then Ft contains yt−1, yt−2, xt , xt−1, xt−2 and xt−3. Any set of
regressors that doesn’t include at least these renders inference invalid.

13I’m being very vague and unspecific here: if you want an authoritative source on the asymp-
totics for dynamic models, you’ll want to check chapters 6 and 7 in Davidson (2000).

14MDSs arise quite naturally in inter-temporal optimisation problems, so their usage in eco-
nomic and finance models with uncertainty is very common. In this contexts, an MDS is, so to
speak, something that cannot be predicted in any way from the past. For a thorough discussion,
see Hansen and Sargent (2013), chapter 2.
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Therefore, εt is a MDS, if we pick p and q large enough. The obvious impli-
cation is that E[εt |wt ] = 0 (since wt is contained in ℑt−1). If we also add a ho-
moskedasticity assumption E

[
ε2

t |wt
]=σ2, then we have a set of results that par-

allel completely those in section 3.2. To put it simply, everything works exactly
the same way as in cross-sectional models: the martingale property ensures that

E[wt ·εt |ℑt ] = 0, and therefore γ̂
p−→γ; additionally,

p
T (γ̂−γ)

d−→N
(
0,σ2Q−1) .

In practice, the whole testing apparatus we set up for cross sectional datasets
remains valid; the t statistic, the W statistic, everything. Nice, isn’t it? In addi-
tion, since the dynamic multipliers are continuous and differentiable functions
of the ADL parameters γ, we can simply compute the multipliers from the esti-
mated parameters γ̂ and get automatically CAN estimators of the multipliers.15

The homoskedasticity assumption is not nor-
mally a problem, except for financial data at
high frequencies (eg daily); for those cases, you
get a separate class of models, the most no-
table example of which is the so-called GARCH

model, which I will not consider here, but are
extremely important in the field of financial
econometrics. In case we want to stick with
OLS, robust estimation is perfectly viable.

5.3.2 Testing for autocorrelation and the general-to-specific approach

Basically, we need a test for deciding, on the basis of the OLS residuals, whether
εt is a MDS or not. Because if it were not, the OLS estimator would not be con-
sistent for the ADL parameters, let alone have the asymptotic distribution we
require for carrying out tests. As I argued in the previous section, εt cannot be a
MDS if we estimate a model in which the orders p and q that we use for the two
polynomials A(L) and B(L) are too small.

Most tests hinge on the fact that a MDS cannot be autocorrelated:16 for the
sake of brevity, I don’t prove this here, but the issue is discussed in section 5.A.3
if you’re interested. Therefore, in practice, the most important diagnostic check
on a dynamic regression model is checking for autocorrelation: if we reject the
null of no autocorrelation, then εt cannot be a MDS.

All econometric software pays tribute to tradition by reporting a statistic in-
vented by James Durbin and Geoffrey Watson in 1950, called DW statistic in their
honour. Its support is, by construction, the interval between 0 and 4, and ide-
ally it should be close to 2. It is practically useless, because it only checks for
autocorrelation of order 1, and there are several cases in which it doesn’t work

15Unfortunately, the function linking multipliers and parameters is nonlinear, so you need the
delta method to compute their asymptotic variance. See section 2.3.2.

16If I were insufferably pedantic, I would say “a MDS with finite second moments”.
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(notably, when lags of the dependent variable are among the regressors); there-
fore, nobody uses it anymore, although all software packages routinely print it
out as a homage to tradition.

The Godfrey test (also known as the Breusch-Godfrey test, or the LM test for
autocorrelation) is much better:

A(L)yt = B(L)xt +γ1et−1 +γ2et−2 +·· ·+γhet−h +εt

where et is the t-th OLS residual and h is known as the order of the test.
A intuitive and totally non-rigorous motivation can be given for the Godfrey

test: if our choice for the polynomial orders p and q is adequate, then estimates
are consistent and the OLS residuals et should resemble the true disturbances
εt . Of course they won’t be exactly the same, but one would expect that the
sequence et shoud be essentially unprecditable given Ft , and as a consequence
one would expect all the γi parameters to be 0.

There is no precise rule for choosing h; the most important aspect to con-
sider is “how long is the time span that we can reasonably expect to consider
long enough for dynamic effects to show up?”. When dealing with macro time
series, a common choice is 2 years. That is, it is tacitly assumed that nothing
can happen now, provoke no effects for two years, and then suddenly do some-
thing.17 Therefore, you would use h = 2 for yearly data, h = 8 for quarterly data,
and so on. But clearly, this is a very subjective criterion, so take it with a pinch
of salt and be ready to adjust it to your particular dataset.

This test, being a variable addition test, is typically implemented as an LM
test (see section 3.5.1) and is asymptotically distributed (under H0) as χ2

h . In
practice, you carry out an auxiliary regression of the OLS residuals et against wt

and h lags of et ; you multiply R2 by T and you’re done.
The Godfrey test is the cornerstone of the so-called general-to-specific esti-

mation strategy: since the polynomial orders p and q are not known in practice,
one has to make a guess. There are three possible situations:

1. your guess is exactly right; you’re a lucky bastard.

2. Your guess is wrong because you overestimated p and/or q : in this case,
your model contains the “true” one and the disturbance term will still be a
MDS; hence, the probability of the Godfrey test rejecting the null hypoth-
esis is 5%. The only slight inconvenience is that you’re using too many pa-
rameters. This is not a problem, however, because asymptotic inference is
valid and you can trim your model down by using ordinary specification
tests (see section 3.3).

3. Your guess is wrong because you underestimated one of p and q : your
model does not contain the “true” one and the disturbance term will not
be a MDS. In this case, the Godfrey test should reject the null.

17“Mi ha detto mio cuggino che sa un colpo segreto. . . ”, EELST.
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So the idea of the general-to-specific approach is: start from a large model,
possibly ridiculously oversized. Then you can start refining it by ordinary hy-
pothesis tests, running diagnostics18 at each step to make sure your reduction
was not too aggressive.

5.4 An example, perhaps?

If we were to ignore the points I raised at the beginning of this chapter, we could
simply use the data depicted in Figure 5.1 to estimate the parameters of what an
economist in the 1970s would have called a “consumption function” and regress
consumption at time t on a time trend and DGP at time t . If we did, we’d obtain
a “static model”

ct =β0 +β1t +β2 yt +εt ,

whose output is in Table 5.1.

OLS, using observations 1995:1-2019:4 (T = 100)
Dependent variable: c

coefficient std. error t-ratio p-value
----------------------------------------------------------
const -0.372424 0.391519 -0.9512 0.3439
time -0.000436889 0.000107381 -4.069 9.64e-05 ***
y 0.986243 0.0272713 36.16 4.18e-58 ***

Mean dependent var 13.95257 S.D. dependent var 0.100926
Sum squared resid 0.007333 S.E. of regression 0.008695
R-squared 0.992728 Adjusted R-squared 0.992578
F(2, 97) 6621.001 P-value(F) 1.9e-104
Log-likelihood 334.1324 Akaike criterion -662.2647
Schwarz criterion -654.4492 Hannan-Quinn -659.1016
rho 0.866455 Durbin-Watson 0.254935

Breusch-Godfrey test for autocorrelation up to order 4
TR^2 = 78.249011, with p-value = 4.08e-16

Table 5.1: Static regression example

Superficially, it would look as if the static model is a rather good one: R2

looks great, but this is common with trending data (as macro time series typi-
cally are). The important thing is that ρ̂ = 0.866 and the Godfrey test rejects the
null hypothesis with a vengeance. In an equation like the one above, there is no
way the disturbance term εt can be thought of as an MDS. Therefore, not only
inference is invalid. There’s much more than can be said about income affects
consumption through time.

18The most important test to run at this stage is of course the Godfrey test, but other diagnostics,
such as the RESET test for example, won’t hurt.
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Model 2: OLS, using observations 1995:3-2019:4 (T = 98)
Dependent variable: c

coefficient std. error t-ratio p-value
--------------------------------------------------------
const 0.220191 0.0643345 3.423 0.0009 ***
c_1 0.893634 0.0378199 23.63 4.39e-41 ***
y 0.588653 0.0648987 9.070 1.90e-14 ***
y_1 -0.612108 0.109440 -5.593 2.23e-07 ***
y_2 0.110455 0.0655676 1.685 0.0954 *

Mean dependent var 13.95702 S.D. dependent var 0.096924
Sum squared resid 0.001048 S.E. of regression 0.003357
R-squared 0.998850 Adjusted R-squared 0.998800
F(4, 93) 20190.32 P-value(F) 1.0e-135
Log-likelihood 421.7841 Akaike criterion -833.5681
Schwarz criterion -820.6433 Hannan-Quinn -828.3403
rho 0.079847 Durbin’s h 0.852445

Breusch-Godfrey test for autocorrelation up to order 4:
TR^2 = 3.484938, with p-value = 0.48

Table 5.2: Dynamic regression example

If instead we enlarge the information set to ℑt , the model we come up with
is an ADL(1,2) model. In practice:

ct ≃ k +αct−1 +β0 yt +β1 yt−1 +β2 yt−2;

table 5.2 contains the OLS estimates, that is α̂ = 0.894, β̂0 = 0.589, and so on.
Also note that the time trend, which appeared to be highly significant in the
static model, drops out in the dynamic model.

In this case the Godfrey test cannot reject the null, so we may be confident
that inference is correct. The next thing we want to do now is interpreting the
output from an economic point of view.

Example 5.8 (Multipliers for the Euro consumption function)
The calculation of the sequence of multipliers for the model in Table 5.2 can be
undertaken by using equation (5.10); the estimates of two polynomials we need
are

�A(L) = 1−0.893634L�B(L) = 0.588653−0.612108L+0.110455L2,

so in this case we have

di = 0.893634di−1 +0.588653ui −0.612108ui−1 +0.110455ui−2,

where u0 = 1 and ui = 0 for i ̸= 0. Therefore, d0 equals

d0 = 0.588653
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while for d1 and d2 we have

d1 = 0.893634 ·d0 −0.612108 =−0.0860674

d2 = 0.893634 ·d1 +0.110455 = 0.0335424,

and so on. With a little effort (and appropriate software), you get the following
results:

i di ci

0 0.588653 0.588653
1 -0.0860674 0.502585
2 0.0335424 0.536128
3 0.0299747 0.566103
4 0.0267864 0.592889
5 0.0239372 0.616826
6 0.0213911 0.638217
...

...
...

Where I also added a column for the interim (cumulated) multipliers. Moreover,
you have that A(1) = 1− 0.893634 = 0.106366, B(1) = 0.087, and therefore the
long-run multiplier equals c = 0.87/0.106366 = 0.81793.

5.5 The ECM representation

As I argued in section 5.2.2, the best way to interpret the parameters of an ADL
model is by computing the dynamic multipliers (and possibly cumulating them).
The multipliers that are presumably of most interest from an economic view-
point are (a) the impact multiplier d0 (because it measures what happens in-
stantaneously) and (b) the long run-multiplier (because it measures what hap-
pens when all adjustment has taken place).

Both are easy to compute, since d0 = B(0)/A(0) and c = B(1)/A(1). Neverthe-
less, there is a way to rewrite an ADL model in such a way that these quantities
are even more evident: the so-called ECM representation. This device amounts,
essentially, to expressing a difference equation in a slightly modified form, so
that certain quantities appear more clearly. In fact, this is an example of the “re-
parametrisation” trick I described in section 1.4.3: since the difference equation
that underlies the statistical model is exactly the same, just written in a different
way.

As for what the acronym means. . . it’s a long story. Sir David Hendry, who
is considered the father of ECM (or at least, one of the fathers) is adamant on
Equilibrium Correction Mechanism, which is probably the most precise way to
express the concept. Unfortunately, this is not the original choice. Back in the
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day, when the phrase was introduced in the deservedly famous article by David-
son et al. (1978), the original expansion was Error Correction Model, and most
people I know (including myself) keep using the old name.

DAVID HENDRY

To illustrate how the ECM representation works, let’s
start from the simple case of an ADL(1,1) (here xt is a vec-
tor):

yt =αyt−1 +β′
0xt +β′

1xt−1;

from the definition of the ∆ operator, evidently yt = yt−1 +
∆yt and xt = xt−1 +∆xt . After substitution,

∆yt = (α−1)yt−1 +β′
0∆xt + (β0 +β1)′xt−1

which, after rearranging terms, yields

∆yt =β′
0∆xt + (α−1)

[
yt−1 − (β0 +β1)′

1−α xt−1

]
(5.13)

Which means: the time variation in yt (on the left-hand side) may come
from variation in xt , with response β0 (the impact multiplier); however, even if
∆xt = 0 there may be some variation in yt if the term in square brackets is non-
zero. This term can also be written as

yt−1 −c′xt−1

where c = β0+β1
1−α , that is the long-run multiplier vector. In practice, the above

expression, commonly referred to as ECM term, gives you the difference (at t −
1) between the actual value yt−1 and the value that (given xt−1) the dependent
variable should have taken if the system had been in equilibrium.

If |α| < 1, then (α− 1) is negative: if the ECM term is positive (so yt−1 was
larger than its equilibrium value), then ∆yt will be negative, so yt would tend
to get closer to equilibrium. Evidently, this situation is reversed when the ECM
term is negative, so if (α−1) < 0, the dynamic system has an inherent tendency
to go back to a steady state. To be more precise, the number 1−α can be seen
as the fraction of disequilibrium that get re-absorbed in one period, so that the
closer α is to 0, the faster adjustment occurs.

You can always go from the ADL representation to the ECM representation
(and back), for polynomials A(L) e B(L) of any order: for the algebra-loving
reader, the formal proof is in section 5.A.4. In general, however, if

A(L)yt = mt +B(L)xt +εt

where the order of A(L) is p and the order of B(L) is q , then the ECM represen-
tation is

H(L)∆yt = mt +K (L)∆xt − A(1)yt−1 +B(1)xt−1 +εt ,

where the orders of H(L) and K (L) are q −1 and p−1, respectively. For example:
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Example 5.9 (ECM Representation)
Let’s take another look at the difference equation I used in example 5.7:

yt = 0.2yt−1 +0.4xt +0.3xt−2

and compute the ECM representation. The quickest way to do this is to re-
express all the terms relative to time t −1:

yt = yt−1 +∆yt

xt = xt−1 +∆xt

xt−2 = xt−1 −∆xt−1;

now substitute

yt−1 +∆yt = 0.2yt−1 +0.4(xt−1 +∆xt )+0.3(xt−1 −∆xt−1)

and collect
∆yt =−0.8yt−1 +0.7xt−1 +0.4∆xt −0.3∆xt−1

so finally
∆yt = 0.4∆xt −0.3∆xt−1 −0.8

[
yt−1 −0.875xt−1

]
;

the impact multiplier is 0.4, the long-run multiplier is 0.875; the fraction of dis-
equilibrium that re-adjusts each period is 0.8.

Note that the ADL model and the ECM are not two different models, but are
simply two ways of expressing the same difference equation. As a consequence,
you can use OLS on either and get the same residuals. The only difference be-
tween them is that the ECM forms makes it more immediate for the human eye
to calculate the parameters that are most likely to be important for the dynamic
properties of the model: that is the long-run multipliers and the convergence
speed. On the other hand, the ADL form allows for simple (and, most impor-
tantly, mechanical) calculation of the whole sequence of dynamic multipliers.

Example 5.10 (ECM on real data)
The ECM representation of the model shown in table 5.2 is easily computed after
performing the following substitutions:

ct = ct−1 +∆ct

yt = yt−1 +∆yt

yt−2 = yt−1 −∆yt−1

Hence,

∆ct = k + (α−1)ct−1 +β0∆yt +
(
β0 +β1 +β2

)
yt−1 −β2∆yt−1 +εt ,
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OLS, using observations 1995:3-2019:4 (T = 98)
Dependent variable: dc

coefficient std. error t-ratio p-value
--------------------------------------------------------
const 0.220191 0.0643345 3.423 0.0009 ***
dy 0.588653 0.0648987 9.070 1.90e-14 ***
dy_1 -0.110455 0.0655676 -1.685 0.0954 *
c_1 -0.106366 0.0378199 -2.812 0.0060 ***
y_1 0.0870005 0.0333187 2.611 0.0105 **

Mean dependent var 0.003681 S.D. dependent var 0.004886
Sum squared resid 0.001048 S.E. of regression 0.003357
R-squared 0.547335 Adjusted R-squared 0.527866
F(4, 93) 28.11251 P-value(F) 2.61e-15
Log-likelihood 421.7841 Akaike criterion -833.5681
Schwarz criterion -820.6433 Hannan-Quinn -828.3403

Table 5.3: Dynamic regression in ECM form

that is

∆ct = k +β0∆yt − A(1)
[
ct−1 −cyt−1

]−β2∆yt−1 +εt ;

so, after substituting the estimated numerical values (and rounding results a lit-
tle),

∆ct = 0.220+0.589∆yt −0.110∆yt−1 −0.106
[
ct−1 −0.818yt−1

]+εt .

Note, however, that this representation could have been calculated directly by
applying OLS to the model in ECM form: it is quite clear from Table 5.3 that what
gets estimated is the same model in a different form. Not only the parameters for
each representation can be calculated from the other one: the objective function
(the SSR) is identical for both models (and equals 0.001048); clearly, the same
happens for all the statistics based on the SSR. The only differences (eg the R2

index) come from the fact that the model is transformed in such a way that the
dependent variable is not the same (it’s ct in the ADL form and ∆ct in the ECM
form).

5.6 Hypothesis tests on the long-run multiplier

In some cases, it may be of interest to test hypotheses on c, such as H0 : c =
k. One way to do this could be to use the estimator of c provided by the OLS
estimates

ĉ = B̂(1)

Â(1)
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and then working out its asymptotic distribution, but this is complicated by the
fact that ĉ is a nonlinear function of the estimated parameters,19 so the delta
method (see section 2.3.2, particularly equation (2.14)) would be required. A
much simpler way comes from observing that

c = k ⇐⇒ B(1)−k · A(1) = 0

which is a linear test and, as such, falls under the Rβ = d jurisdiction.

It may be worth mentioning here that tests of
this type behave in the ordinary way only if the
assumptions we made in section 5.3.1 are valid.

There are some important cases when this may
not be true, notably when the data we are work-
ing with are generated by non-stationary DGPs.

The test is particularly easy when k = 1, which is a common hypothesis to
test, since it implies, if true, that the two variables under considerations are pro-
portional to each other in the long run. In this case, the hypothesis becomes

H0 :α1 +·· ·+αp +β0 +·· ·+βq = 1

that can be tested quite easily.
The test is even easier if you start from the estimates of the model in ECM

form: all you have to do is set up a test that involves just 2 parameters, since the
parameter for yt−1 is just −Â(1) (note the minus sign) and the parameter for xt−1

is B̂(1).

Example 5.11
Suppose that we have the following estimates:

ŷt = 0.75yt−1 +0.53xt −0.24xt−1

with the following covariance matrix:

V̂ADL = 0.001×
5 0.5 −2

5 4
5


The hypothesis c = 1 implies α+β0+β1 = 1. Therefore, a Wald test can be set up
with R = [1 1 1] and d = 1 (see section 3.3.2 for details). Therefore

Rβ̂−d = [1 1 1]

 0.75
0.53

−0.24

−1 = 0.04

R · V̂ADL ·R ′ = 0.001×20 = 0.02

W = 0.042

0.02
= 0.08

19You have Â(1) in the denominator, so for example in an ADL(1,1) c = β0+β1
1−α , and the Jacobian

term would be J = 1
1−α [1 1 c].
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which leads of course to accepting H0, since its p-value is way larger than 5%
(P (χ2

1 > 0.08) = 0.777)). The same test could have been performed even more
easily from the ECM representation:

∆̂y t = 0.53∆xt −0.25yt−1 +0.29xt−1

with the associated covariance matrix

V̂EC M = 0.001×
5 0.5 9

5 −1.5
18


In this case the hypothesis can be written as H0 : B(1)− A(1) = 0, so for the ECM
form

Rβ̂−d = [0 1 1]

 0.53
−0.25

0.29

= 0.04

R · V̂EC M ·R ′ = 0.001×20 = 0.02

and of course the W statistic is the same as above.

5.7 Forecasting and Granger causality

One of the cool things you can do with an ADL model is forecasting. Here’s how
it works: suppose we have data that goes from t = 1 to t = T , and that our model
of choice is an ADL(1,1). What we can say, on these premises, about yT+1, that
we haven’t yet observed? The random variable yT+1 can be represented as

yT+1 =αyT +β0xT+1 +β1xT +εT+1; (5.14)

of all the objects that appear on the right-hand side of the equation, the only
ones that are known with certainty at time T are yT and xT . Suppose we also
know for certain what the future value xT+1 will be, and call it xT+1 = x̌T+1.
Therefore, since εt is a martingale difference sequence, its conditional expec-
tation with respect to ℑT+1 is 0,20 so

E
[

yT+1|ℑT
] = αyT +β0x̌T+1 +β1xT

V
[

yT+1|ℑT
] = σ2

Following the same logic as in Section 3.7, we can use the conditional expecta-
tion as predictor and the estimated values for the parameters instead of the true
ones. Therefore, our prediction will be

ŷT+1 = α̂yT + β̂0x̌T+1 + β̂1xT

20We’re sticking to the definition of ℑT+1 I introduced in Section 5, so ℑT+1 includes xT+1 but
not yT+1; later in this section, we’ll use a different convention.
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and a 95% confidence interval can be constructed as

ŷT+1 ±1.96× σ̂
where it is implicitly assumed that εt is normal and uncertainty about the pa-
rameters is ignored.

Now, there are two points I’d like to draw your attention on. First: in order to
predict yT+1 we need xT+1; but then, we could generalise this idea and imagine
that we could make guesses about xT+2, xT+3, . . . as well. What keeps us from
predicting yt farther into the future? To cut a long story short, performing multi-
step forecasts is rather easy if you use your own predictions in lieu of the future
values of yt and proceed recursively. In other words, once you have ŷT+1 you
can push equation (5.14) one step ahead in time and write

yT+2 =αyT+1 +β0xT+2 +β1xT+1 +εT+2;

next, we operate in a similar way as we just did, using the conditional expecta-
tion as predictor

ŷT+2 = α̂ŷT+1 + β̂0x̌T+2 + β̂1x̌T+1,

repeating the process with the obvious adjustments for T +3, T +4 etc. It can be
proven (nice exercise for the reader) that the variance you should use for con-
structing confidence interval for multi-step forecasts would be in this case

V
[

ŷT+k
]= 1− (α2)k

1−α2 σ2.

Extending the formulae above to the general ADL(p, q) case is trivial but boring,
and I’ll just skip it.

The second point I want to make comes by considering the possibility that
the β0 and β1 coefficients were 0 in equation (5.14). In this case, there would be
no need to conjecture anything about xt , in order to forecast yt . In other words,
xt has no predicting power for yt . This is a hypothesis we may want to test.

As a general rule, in the context of dynamic regression models, it is diffi-
cult to formulate hypotheses of economic interest that can be tested through
restrictions on coefficients, since the coefficients of the A(L) and B(L) polyno-
mials normally don’t have a natural economic interpretation per se, and this is
why we compute multipliers.

However, there are exceptions: we just saw one of them in the previous sec-
tion. Another one is the so-called Granger-causality test, after the great Clive
Granger, Nobel Prize winner in 2003.21 The idea on which the test is built is that,
whenever A causes B , the cause should come, in time, before the effect. There-
fore, if A does not cause B , it should have no effect on the quantity we normally
use for prediction, i. e. the conditional expectation.

21C. W. Granger is one of the founding fathers of modern time series econometrics; his most fa-
mous brainchild, that earned him the Nobel Prize, is a concept called cointegration, that I will skip
in this book, but is absolutely indispensable if you want to engage in applied macroeconomics.
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CLIVE GRANGER

The only difference with the ADL models we’ve con-
sidered so far is that, since we’re dealing with predictions
about the future, we will want to base our inference on an
information set that collects everything that is known at
time t −1, namely

ℑ∗
t−1 =

{
yt−1, yt−2, . . . ,xt−1,xt−2, . . .

}
;

note that, contrary to the concept of information set ℑt we
used so far (defined in section 5.1), ℑ∗

t does not include
xt+1; in practice, it collects all information on yt and xt that
is available up to time t . Forecasting, therefore, amounts to
finding

ŷT+1|T = E
[

yT+1|ℑ∗
T

]
.

The subscript “T +1|T ” is customarily read as “at time T +1, based on the infor-
mation available at time T ”.

There is no doubt that the discerning reader
has spotted, by now, a fundamental difference
between the information set ℑ∗

T−1 that we are
using here and the information set ℑT we use
in the rest of this chapter: the latter includes xt ,
while the former does not.
Sinceℑ∗

T−1 ⊂ℑT , predictions on yt made using
ℑ∗

T−1are obviously going to be less accurate,
but have the advantage of being possible one
period earlier. Moreover, this makes also pos-

sible to forecast x̂T+1|T = E
[

xT+1|T |ℑ∗
T

]
. This

seemingly innocent remark paves the way to
multi-step forecasts, where we use the predic-
tions for T to forecast T + 1, which in turn we
use for forecasting T +2, and so on.

This is the principle used in the so-called VAR
model, which is probably the main empirical
tool in modern macroeconometrics. If you’re
curious, check out Lütkepohl (2005).

As a consequence, our ADL model

A(L)yt = B(L)xt +εt

will not include xt , but only its lags:

yt =α1 yt−1 +α2 yt−2 +·· ·+β′
1xt−1 +β′

2xt−2 +·· ·+ε∗t
where ε∗t is defined as yt −E

[
yT+1|ℑ∗

T

]
. Clearly, this can also be written as an

ordinary ADL model in which B(0) = 0. The idea that xt does not cause yt is
equivalent to the idea B(L) = 0; since a polynomial is 0 if and only if all its coef-
ficients are, it is easy to formulate the hypothesis of no-Granger-causality as

H0 :β1 =β2 = . . . =βq = 0

which is of course a system of linear restrictions, that we can handle just fine via
the Rβ = d machine we described in Section 3.3.2.

In the late 1960s, when this idea was introduced, it was hailed as a break-
through in economic theory, because for a while this seemed to provide a data-
based way to ascertain causal links. For example, a hotly debated point among
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macroeconomists in the 1970 and 80s was: is there a causality direction between
the quantity of money and GDP in an economy? If there is, the repercussions on
economic policy (notably, on the effectiveness of monetary policy) are huge. In
those days, the concept of Granger-causality seemed to provide a convincing
answer.22
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Figure 5.3: Thurman & Fisher data on chickens and eggs

Example 5.12
In a humorous article, Thurman and Fisher (1988) collected data on the produc-
tion of chickens and eggs from 1930 to 2004, that are depicted in Figure 5.3.

After taking logs, we estimate by OLS the following 2 equations:

ct = m1 +α1ct−1 +α2ct−2 +β1et−1 +β2et−2 +εt (5.15)

et =µ1 +γ1ct−1 +γ2ct−2 +λ1et−1 +λ2et−2 +ηt (5.16)

where ct is the log of chickens at time t and et is the log of eggs.
The hypothesis that chickens don’t Granger-cause eggs is H0 : γ1 = γ2 = 0;

the opposite hypothesis, that eggs don’t Granger-cause chickens is H1 :β1 =β2 =
0. The results are in Table 5.4. As can be seen, the hypothesis of absence of
Granger-causality is rejected in the egg → chicken direction, but not the other
way round; hence, the perennial question “what comes first?” has finally found
an answer: it’s the egg that comes first.

There are a few issues that may be raised here: one is statistical, and pertains
to the fact that the test is relative to a certain conditioning set. You may see this

22Readers who are into the history of economics and econometrics might want to take a look at
Sims (1972).
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Dependent variable: l_chicken

Coefficient Std. Error t-ratio p-value
const 2.1437 0.7715 2.7788 0.0070
l_chicken_1 0.4037 0.1389 2.9054 0.0049
l_chicken_2 0.4362 0.1320 3.3037 0.0015
l_egg_1 0.8627 0.2011 4.2906 0.0001
l_egg_2 −0.8724 0.1999 −4.3642 0.0000

Mean dependent var 12.92290 S.D. dependent var 0.100867
Sum squared resid 0.125953 S.E. of regression 0.043038
R2 0.828060 Adjusted R2 0.817946

Granger-causality test egg → chicken: F (2,68) = 9.57089, p-value = 0.000217573

Dependent variable: l_egg

Coefficient Std. Error t-ratio p-value
const 0.8816 0.5292 1.6660 0.1003
l_chicken_1 −0.1196 0.0953 −1.2548 0.2139
l_chicken_2 0.0695 0.0906 0.7673 0.4456
l_egg_1 1.5302 0.1379 11.0961 0.0000
l_egg_2 −0.5570 0.1371 −4.0624 0.0001

Mean dependent var 8.577181 S.D. dependent var 0.204279
Sum squared resid 0.059259 S.E. of regression 0.029520
R2 0.980277 Adjusted R2 0.979117

Granger-causality test chicken → egg: F (2,68) = 1.28907, p-value = 0.282174

Table 5.4: Granger causality tests between chickens and eggs
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as a variation on the same theme I discussed in Section 3.8, especially example
3.3. It may well be that A turns out to be Granger-causal for B in a model, and the
reverse happens in another model, in which some other variables are included
or excluded. This is why, in some cases, people perform Granger-causality tests
on models in which the only variables considered are the ones that come directly
into play. I’ll leave it to the reader to judge whether this approach leads to results
that have a sensible statistical interpretation.

Another one is more substantial in nature, and has to do with the fact that
in economics it may well be that the cause comes after the effect, because ex-
pectations play a major role in human behaviour; people may do something at
a certain time in view of something that they expect to happen in the future. In
fact, standard economic theory assumes that agents are rational and forward-
looking: they base all their choices on the expectations they have about the fu-
ture.

There are many examples I could give you, but I’ll simply hint at a widely
used one: if people anticipate that a company is going to go bust, everyone who
owns that stock will sell, causing its price to drop. If one should mechanically
assess causality from time precedence, we’d be forced to say that the drop in the
stock price drove the company bankrupt, rather than the other way around. The
problem here is that in this case the statistical concept of Granger causality does
not agree very much with the notion of causality we use in everyday life (and is
arguably what we care about in economics). In fact, it is much more accurate
to consider the Granger-causality test as a device for assessing predictive power;
whether predictive power can be considered a sign of a causal chain depends on
the nature of the problem.

5.A Assorted results

5.A.1 Inverting polynomials

Let us begin by noting that, for any a ̸= 1,

n∑
i=0

ai = 1−an+1

1−a
, (5.17)

which is easy to prove: call

S =
n∑

i=0
ai = 1+a +a2 +·· ·+an ; (5.18)

of course
a ·S = a +a2 +·· ·+an+1 (5.19)

and therefore, by subtracting (5.19) from (5.18), S(1− a) = 1− an+1, and hence
equation (5.17).
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If a is a small number (|a| < 1), then an → 0, and therefore
∑∞

i=0 ai = 1
1−a . By

setting a = αL, you may say that, for |α| < 1, the inverse of (1−αL) is (1+αL +
α2L2 +·· · ), that is

(1−αL)(1+αL+α2L2 +·· · ) = 1,

or, alternatively,
1

1−αL
=

∞∑
i=0

αi Li

provided that |α| < 1. Now consider a n-th degree polynomial P (x):

P (x) =
n∑

j=0
p j x j

If P (0) = p0 = 1, then P (x) can be written as the product of n first-degree poly-
nomials as follows:23

P (x) =
n∏

j=1

(
1− 1

λ j
x

)
(5.20)

where the numbers λ j are the roots of P (x): if x = λ j , then 1− 1
λ j

x = 0 and con-

sequently P (x) = 0. Therefore, if P (x)−1 exists, it must satisfy

1

P (x)
=

n∏
j=1

(
1− 1

λ j
x

)−1

;

but if at least one of the roots λ j is smaller than 1 in modulus,24 then 1/|λ j | is

larger than 1 and, as a consequence,
(
1− 1

λ j
x
)−1

does not exist, and neither does

P (x)−1.

Example 5.13
Consider the polynomial A(x) = 1−1.2x +0.32x2; is it invertible? Let’s check its
roots:

A(x) = 0 ⇐⇒ x = 1.2±p
1.44−1.28

0.64
= (1.2±0.4)/0.64

so λ1 = 2.5 and λ2 = 1.25. Both are larger than 1 in modulus, so the polynomial
is invertible. Specifically,

A(x) = (1−λ−1
1 x)(1−λ−1

2 x) = (1−0.4x)(1−0.8x)

and

1

A(x)
= (1−0.4x)−1(1−0.8x)−1 = (1+0.4x +0.16x2 +·· · )(1+0.8x +0.64x2 +·· · )
= 1+1.2x +1.12x2 +0.96x3 +0.7936x4 +·· ·

23If you don’t believe me, google for “Fundamental theorem of algebra”.
24Warning: the roots may be complex, but this is not particularly important. If z is a complex

number of the form z = a +bi (where i =p−1), then |z| =
√

a2 +b2.
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In practice: if the sequence at is defined as the result of the application of
the operator P (L) to the sequence ut , that is at = P (L)ut , then reconstructing
the sequence ut from at is only possible if P (L) is invertible. In this case,

ut = P (L)−1at = 1

P (L)
at .

5.A.2 Basic concepts on stochastic processes

This section is just meant to give you a rough idea of some of the concept I hinted
at in section 5.3.1; if you want the real thing, go for Brockwell and Davis (1991).

Suppose you have an infinitely long sequence of random variables

. . . , xt−1, xt , xt+1, . . .

where the index t is normally taken to mean “time” (although not necessarily).
This sequence is a stochastic process.25 When we observe a time series, we ob-
serve a part of the realisation of a stochastic process (also called a trajectory
of the process). Just in the same way as the DGP for the toss of a coin can be
thought of as the machine that nature uses for giving us a binary number that
we cannot predict, a stochastic process is a machine that nature uses for giving
us an infinitely long trajectory through time, and what we observe is just a short
segment of it. This idea may be unintuitive at start (it certainly was for me, back
in the day), but I find it very useful.

If we take two different elements of the sequence, say xs and xt (with s ̸= t ),
we could wonder what their joint distribution is. The two fundamental proper-
ties of the joint distribution that we are interested in are:

1. is the joint distribution stable through time? That is, is the joint distribu-
tion of (xs , xt ) the same as (xs+1, xt+1) ?

2. Is it likely that xs and xt become independent (or nearly so) if |t − s| is
large?

Property number 1 refers to the idea that the point in time when we ob-
serve the process should be irrelevant: the probability distribution of the data
we see today (xs , xt ) should be the same as the one for an observer in the past
(xs−100, xt−100) or in the future (xs+100, xt+100). This gives rise to the concept of
stationarity. A stochastic process is said to be weakly stationary, or covariance
stationary, or second-order stationary if the covariance between xs and xt (also
known as autocovariance) exists and is independent of time. In formulae:

γh = Cov[xt , xt+h]

25It’s not inappropriate to think of stochastic processes as infinite-dimensional random
variables. Using the same terminology as in section 2.2.1, we may think of the sequence
. . . , xt−1(ω), xt (ω), xt+1(ω), . . . as the infinite-dimensional outcome of one point in the state space
ω ∈Ω.
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note that γh , the autocovariance of order h, is a function of h only, not of t ; of
course, γ0 is just V[xt ]. If this is the case, the internal structure of correlation
between points in time is often described via the autocorrelation sequence (or
autocorrelation function, often abbreviated as ACF), defined as

ρh = γh

γ0
.

Property number 2, instead, is what we realistically imagine should happen
when we observe many phenomena through time: if s and t are very far apart,
what happened at time s one should contain little or no information on what
happened at time t . For example: the temperature at Cape North on May 29th,
1453 at 12am should contain no useful information on the temperature at Cape
North right now. This intuition can be translated into maths in a number of dif-
ferent ways. A common one is ergodicity. While a formal definition of ergodicity
would require a hefty investment in measure theory, if a process is covariance
stationary, ergodicity amounts to absolute summability of its autocovariances.
The property

∞∑
i=0

|γi | = M <∞

ensures that limh→∞ |γh | = 0 (so correlation between distant events should be
negligible), but most importantly, that the sample mean of an observed stochas-
tic process is a consistent estimator of the true mean of the process:

1

T

T∑
t=1

xt
p−→ E[xt ] .

Note that the above expression can be considered as one of the many versions
of the Law of Large Numbers, applicable when observations are not necessarily
independent.

It goes without saying that, in the same way as we can define multivariate
random variables, it is perfectly possible to define multivariate stochastic pro-
cesses, that is, sequences of random vectors: modern macroeconometrics is pri-
marily built upon these objects. A large part of the statistical analysis of time
series is based on the idea that the time series we observe are realisations of sta-
tionary and ergodic processes (or can be transformed to this effect).

How do you adapt statistical inference to such a context? The main idea un-
derlying most approaches is to describe the a DGP in such a way that the whole
autocovariance structure of a stochastic process (the sequence γ0,γ1,γ2, ...) can
be expressed as a function of a finite set of parameters θ; if the process is sta-
tionary and ergodic, then maybe the available data x1, . . . , xT can be used to
construct CAN estimators of θ. ARIMA models are one of the most celebrated
instances of this approach, and the literature that has developed after their in-
troduction in the late 1960s is truly gigantic. If you’re interested, Brockwell and
Davis (1991) is an excellent starting point.
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5.A.3 Why martingale difference sequences are serially uncorrelated

Here’s a rapid proof: if εt is a MDS with respect to ℑt , then

E[εt |ℑt ] = E
[
εt |xt ,xt−1, . . . , yt−1, yt−2, . . .

]= 0.

Now, observe that εt−1 is defined as εt−1 = yt−1 −E
[

yt−1|ℑt−1
]
; since both ele-

ments of the right-hand side of the equation are contained in ℑt , then εt−1 ∈ℑt ;
moreover, ℑt ⊇ℑt−1 ⊇ℑt−2 . . ., so clearly all lags of εt are all contained in ℑt (see
footnote 6 in this chapter). As a consequence, we can use the law of iterated
expectations (2.8) as follows:

Cov[εt ,εt−k ] = E[εt ·εt−k ] = E[E[εt ·εt−k ] |ℑt ] =
= E[E[εt |ℑt ] ·εt−k ] = E[0 ·εt−k ] =
= 0

A second argument, perhaps more intuitive, rests directly on the definition
of a MDS: if εt is a MDS with respect to ℑt , then its expectation conditional on
ℑt−k (for k > 0) must also be 0, because ℑt−k is a subset of ℑt . But that means
that the expectation of any future element εt+k conditional on the present infor-
mation set ℑt is 0. In formulae:

E[εt |ℑt ] = 0
ℑt−k ⊆ℑt for k > 0

}
=⇒ E[εt |ℑt−k ] = E[εt+k |ℑt ] = 0

This is tantamount to saying that εt is effectively unpredictable. But then, if
Cov[εt ,εt−k ] ̸= 0, εt wouldn’t be totally unpredictable, because there would be
some information in the past about the future. Therefore, the autocorrelations
of a MDS must be 0 for any k.

5.A.4 From ADL to ECM

Let’s begin with a preliminary result (which I’m not going to prove):

If P (x) is a polynomial whose degree is n > 0 and a is a scalar, you can always find
a polynomial Q(x), whose degree is (n −1), such that

P (x) = P (a)+Q(x)(a −x);

if n = 0, obviously Q(x) = 0.

For example, the reader is invited to check that, if we choose a = 1, the poly-
nomial P (x) = 0.8x2 −1.8x +1.4 can be written as

P (x) = 0.4+ (1−0.8x)(1−x)

where P (1) = 0.4 and Q(x) = 1−0.8x.
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Now consider P (L), a polynomial in the lag operator of degree n ≥ 1, and
apply the result above twice in a row, once with a = 0 and then with a = 1:

P (L) = P (0)−Q(L) ·L (5.21)

Q(L) = Q(1)+P∗(L)(1−L) (5.22)

If n = 1, evidently P∗(L) = 0. Otherwise, the order of Q(L) is (n − 1) and the
order of P∗(L) is (n−2). If you evaluate equation (5.21) in L = 1, you have P (1) =
P (0)−Q(1), so that equation (5.22) becomes

Q(L) = P (0)−P (1)+P∗(L)(1−L)

and therefore, using equation (5.21) again,

P (L) = P (0)− [
P (0)−P (1)+P∗(L)(1−L)

] ·L = P (0)∆+P (1)L−P∗(L)∆ ·L.

The actual form of the P∗(L) polynomial is not important: all we need is know-
ing that it exists, so that the decomposition of P (L) we just performed is always
possible. As a consequence, every sequence P (L)zt can be written as:

P (L)zt = P (0)∆zt +P (1)zt−1 −P∗(L)∆zt−1.

Now apply this result to both sides of the ADL model A(L)yt = B(L)xt +εt :

∆yt + A(1)yt−1 − A∗(L)∆yt−1 = B(0)∆xt +B∗(L)∆xt−1 +B(1)xt−1 +εt ;

(note that A(0) = 1 by construction). After rearranging terms, you obtain the
ECM representation proper:

∆yt = B(0)∆xt + A∗(L)∆yt−1 +B∗(L)∆xt−1 − A(1)
[

yt−1 −c′xt−1
]+εt

where c′ = B(1)
A(1) contains the long-run multipliers. In other words, the variation

of yt over time is expressed as the sum of three components:

1. the external unpredictable shock εt ;

2. a short-run transitory component: B(0)∆xt+A∗(L)∆yt−1+B∗(L)∆xt−1; the
first coefficient, B(0), gives you the instantaneous effect of xt on yt ;

3. a long-run component whose base ingredient is the long-run multiplier c.



Chapter 6

Instrumental Variables

The arguments I presented in chapter 3 should have convinced the reader that
OLS is an excellent solution to the problem of estimating linear models of the
kind

y = Xβ+ε,

where ε is defined as y−E
[
y|X]

, with the appropriate adjustments for dynamic
models; the derived property E[ε|X] = 0 is the key ingredient for guaranteeing
consistency of OLS as an estimator of β. With some extra effort, we can also
derive asymptotic normality and have all the hypothesis testing apparatus at
our disposal.

In some cases, however, this is not what we need. What we have implicitly
assumed so far is that the parameters of economic interest are the same as the
statistical parameters that describe the conditional expectation (or functions
thereof, like for example marginal effects or multipliers in dynamic models).

Sometimes, this might not be the case. As anticipated in section 3.6, this
happens when the model we have in mind contains explanatory variables that,
in common economics parlance, are said to be endogenous. In the next section,
I will give you a few examples where the quantities of interpretative interest are
not computable from the regression parameters. Hence, it should come as no
surprise that OLS is not a usable tool for this purpose: this is why we’ll want to
use a different estimator, known as instrumental variables estimator, or IV for
short.

6.1 Examples

6.1.1 Measurement error

Measurement error is what you get when one or more of your explanatory vari-
able are measured imperfectly. Suppose you have the simplest version of a linear
model, where everything is a scalar:

yi = x∗
i β+εi (6.1)

175
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where E
[

yi |x∗
i

]= x∗
i β and β is our parameter of interest. The problem is that we

do not observe x∗
i directly; instead, all we have is a version of x∗

i that is contam-
inated by some measurement error:

xi = x∗
i +ηi (6.2)

where ηi is a zero-mean random variable, independent of x∗
i and εi , with vari-

ance σ2
η > 0; clearly, the larger σ2

η > 0 is, the worse is the quality of our measure-
ment for the variable of interest x∗

i . One may think that, since ηi is, so to speak,
“neutral”, setting up a model using xi instead of x∗

i would do no harm. Instead,
this is not the case: unfortunately, OLS regression yi on xi won’t give you a con-
sistent estimator of β. This is quite easy to prove: combine the two equations
above to get

yi = xiβ+ (
εi −βηi

)= xiβ+ui (6.3)

so

β̂=
∑n

i=1 xi yi∑n
i=1 x2

i

=
∑n

i=1 xi (xiβ+ui )∑n
i=1 x2

i

=β+
∑n

i=1 xi ui∑n
i=1 x2

i

From the assumptions above, you get

E[xi ui ] = E
[
(x∗

i +ηi )(εi −βηi )
]= E

[
x∗

i εi
]−βE

[
x∗

i ηi
]+E

[
ηiεi

]−βE
[
η2

i

]=
= −βσ2

η

If we define Q = E
[
x2

i

]
, clearly

β̂
p−→β−

βσ2
η

Q
=β

(
1−

σ2
η

Q

)
̸=β

It can be proven that 0 < σ2
η < Q,1 so two main conclusions can be drawn from

the equation above: first, the degree of inconsistency of OLS is proportional to
the size of measurement error σ2

η relative to Q; second, the asymptotic bias is

such that |plim
(
β̂
) | < |β|; that is, the estimated effect is smaller than the true

one. This is often called attenuation.

As the rest of this chapter should hopefully make clear, the reason why OLS
doesn’t work as we’d like it to work lies in the fact that equation (6.3) does not
split yi into a conditional expectation and a disturbance term. It can be shown
that the regression function E

[
yi |xi

]
is not equal to xiβ: if it were, E[xi ui ] would

be zero, but we just showed it isn’t. Since OLS is programmed to estimate the
parameters of a conditional expectation, you can’t expect it to come up with
anything else.

1Come on, it’s easy, do it by yourself.
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JOHN MAYNARD

KEYNES

This argument came out as important in an economic
theory controversy in the 1950s about the consumption
function. In those days, orthodoxy was Keynes’ idea that

[T]he fundamental psychological law [. . . ] is
that men are disposed, as a rule and on the av-
erage, to increase their consumption as their
income increases but not by as much as the in-
crease in the income.2

In formulae, this was translated as

C =C0 + cY .

with 0 < c < 1. As the reader knows, c is the “marginal propensity to consume”,
that is a key ingredient in mainstream Keynesian macroeconomics.

In the 1950s, few people would dissent from the received wisdom: one of
them was Milton Friedman, who would argue that c should not be less than 1 (at
least in the long run), since the only thing income is good for is buying things.
Over the span of your life, it would be silly to save money unconditionally: a
rational individual with perfect foresight should die penniless.3

Back in the day, economists thought of measuring c by running regressions
on the consumption function, and regularly found estimates that were signif-
icantly smaller than 1. Friedman, however, put forward a counter-argument,
based on the “permanent income” concept: consumption is not based on cur-
rent income, but rather on a concept of income that takes into account your ex-
pectations about the future. For example, if you knew with certainty that you’re
going to inherit a disgustingly large sum from a moribund distant uncle, you
would probably start squandering money today (provided, of course, you find
somebody willing to lend you money), far beyond your level of current income.

In this case, your observed actual income xi does not coincide with your
permanent income x∗

i (which is unobservable), and estimated values of c lower
than 1 could well be the product of attenuation.

6.1.2 Simultaneous equation systems

Simultaneous equation systems make for another nice example. Inclined as I
am to put econometric concepts in a historical context, I would love to inflict on
the reader a long, nostalgic account about the early days of econometrics, the
great Norwegian pioneer Trygve Haavelmo and Lawrence Klein4 and the Cowles
Commission, but this is not the place for it. Suffice it to say that estimation of

2Keynes, J.M. (1936) The General Theory of Employment, Interest and Money
3“Avaritia vero senilis quid sibi velit, non intellego; potest enim quicquam esse absurdius

quam, quo viae minus restet, eo plus viatici quaerere?” Marcus Tullius Cicero, De senectute.
4Klein and Haavelmo got the Nobel Prize for their work in 1980 and 1989, respectively.
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systems of equations is the first autonomous contribution of econometrics to
the general arsenal of statistical tools.

TRYGVE

HAAVELMO

The reason why the estimation of parameters in simul-
taneous systems may be tricky is relatively easy to see by
focusing on the distinction between parameters of interest
and parameters of the conditional mean.

Consider one of the simplest examples of simultane-
ous equation system in economics: a two-equation linear
model of supply and demand for a good.

qt = α0 −α1pt +ut (6.4)

pt = β0 +β1qt + vt , (6.5)

equation (6.4) is the demand equation (quantity at time t
as a function of price at time t ), (6.5) is supply (price as a function of quan-
tity); the two disturbance terms ut and vt represent random shocks to the two
curves. For example, ut could incorporate random fluctuations in demand
due to shifting customer preferences, fluctuations in disposable income and so
forth; vt , instead could be non-zero because of productivity shifts due to ran-
dom events (think for example weather for agricultural produce). Assume that
E[ut ] = E[vt ] = 0.

If you considered the two equations separately, one may think of estimat-
ing their parameters by using OLS, but this would be a big mistake, since the
“systematic part” of each of the two equations is not a conditional expectation.

An easy way to convince yourself is simply to consider that if E
[
qt |pt

]
is

upward (downward) sloping, the correlation between qt and pt must be posi-
tive (negative), and therefore there’s no way the reverse conditional expectation
E

[
pt |qi

]
can be downward (upward) sloping. Since the demand function goes

down and the supply function goes up, at least one of them cannot be a condi-
tional expectation.

However, a more rigorous proof can be given: take the demand curve (6.4):
if the expression (α0 −α1pt ) were in fact the conditional expectation of qt to pt ,
then E

[
ut |pt

]
should be 0. Now substitute (6.4) into equation (6.5):

pt = β0 +β1(α0 −α1pt +ut )+ vt

= (β0 +β1α0)− (β1α1)pt + (vt +β1ut ) ⇒
(1+β1α1)pt = (β0 +β1α0)+ (vt +β1ut ) ⇒ (6.6)

pt = π1 +ηt , (6.7)

where the constant π1 is β0+β1α0

1+β1α1
and ηt = vt+β1ut

1+β1α1
is a zero-mean random vari-

able. The covariance between pt and ut is easy to compute:

Cov
[
pt ,ut

] = E
[
pt ·ut

]= E
[
utπ1 +utηt

]= 0+E
[
ut · (vt +β1ut )

]=
= Cov[vt ,ut ]+β1V (ut )
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Now, unless the covariance between vt and ut happens to be exactly equal to
−β1V (ut ) (and there is no reason why it should), Cov

[
pt ,ut

] ̸= 0. Borrowing on
the definition I gave in Section 3.6, the variable pt is clearly endogenous.

But if Cov
[
pt ,ut

] ̸= 0, then E
[
ut |pt

]
can’t be 0 either; therefore, (α0 −α1pt )

can’t be E
[
qt |pt

]
, and as a consequence there’s no way that OLS applied to equa-

tion (6.4) (that is, regressing quantity on a constant and price) could be a con-
sistent estimator of α0 and α1.

To be more specific: even assuming that E
[
qt |pt

]
is a linear function like

E
[
qt |pt

]= γ0 +γ1pt ,

OLS gives you an excellent estimate of the coefficients γ0 and γ1; unfortunately,
they are not the same thing as α0 and α1.

Of course, the same argument in reverse could be applied to the supply
equation so regressing pt on qt won’t give you good estimates of β0 and β1, ei-
ther. This example will be generalised in section 6.6.2.

6.2 The IV estimator

In a standard linear model yi = x′iβ+εi . As we argued in chapter 3, the assump-
tion x′β = E

[
y |x]

is crucial for the consistency of the OLS statistic as an estimator
of β; in fact, you could see this assumption as a definition of β, in that β is the
only vector for which the following equation is true:

E
[
X′(y−Xβ)

]= 0. (6.8)

The OLS statistic β̂, instead, is implicitly defined by the relationship

X′(y−Xβ̂) = 0. (6.9)

which corresponds to the first-order conditions for the minimisation of the sum
of squared residuals (see section 1.3.2, especially equation (1.10)); note that equa-
tion (6.9) can be seen as the sample equivalent of equations (6.8). The fact that
the OLS statistic β̂ works quite nicely as an estimator of its counterpart β just
agrees with common sense.

If, on the contrary, the parameter of interest β satisfies an equation other
than (6.8), then we may proceed by analogy and use, as an estimator, a statistic
β̃ that satisfies the corresponding sample property. In this chapter, we assume
we have a certain number of observable variables W for which

E
[
W′(y−Xβ)

]= 0. (6.10)

The corresponding statistic will then be implicitly defined by

W′(y−Xβ̃) = 0. (6.11)
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The variables W are known as instrumental variables, or, more concisely, in-
struments. The so-called “simple” IV estimator can then be defined as follows:
if we had a matrix W, of the same size as X, satisfying (6.10), then we may define
a statistic β̃ such that (6.11) holds:

W′(y−Xβ̃) = 0 =⇒ W′X · β̃ = W′y.

In a parallel fashion, the difference ε = y−Xβ is not defined as the difference
between y and it conditional mean, but rather as a zero-mean random variable
which describes how much y deviates from its “standard” value, as described by
the “structural” relationship Xβ. A term that we use in this context is structural
disturbance, or just “disturbance” when no confusion arises. Given this defini-
tion, there is no guarantee that the structural disturbance should be orthogonal
to the regressors.

Since W has as many columns as X, then the matrix W′X is square; if it’s also
invertible, then β̃ is

β̃ = (W′X)−1W′y; (6.12)

this is sometimes called the “simple” IV estimator.
The actual availability of the variables W may be a problem, sometimes. In

fact, collecting observable data that can be used as instrument is a bit of an art,
although in many cases the choice of instruments is dictated by economic in-
tuition. In Section 6.6, we will look at the examples provided in Section 6.1 and
suggest possible solutions. However, before doing so, it is convenient to con-
sider a generalisation.

6.2.1 The generalised IV estimator

What if the number of columns of W (call it m) was different from number of
columns from X (call it k)? Of course, the matrix W′X wouldn’t be square and
therefore not invertible. While there’s no remedy for the case m < k, one may
argue that in the opposite case we could just drop m −k columns from W and
proceed as above. While this makes sense, the reader will probably feel uneasy
at the thought of dumping information deliberately. And besides, how do we
choose which columns to drop from W?

Fortunately, there is a solution: assume, for simplicity, that the covariance
matrix of the structural disturbances is a multiple of the identity matrix:5

E
[
εε′|W]=σ2I.

By hypothesis, E[ε|W] = 0; therefore,

E
[
W′εε′W|W]=σ2W′W =σ2Ω.

5In fact, this assumption is not strictly necessary, but makes for a cleaner exposition.
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Now define v , C and e as

v
m×1

= W′y C
m×k

= W′X e
m×k

= W′ε;

so the following equality holds:

v =Cβ+e, (6.13)

Equation (6.13) may be seen as a linear model where the disturbance term has
zero mean and covariance matrix σ2Ω. The number of explanatory variables is
k (the column size of X) but the peculiar feature of this model is that the number
of “observations” is m (the column size of W).

Since Ω is observable (up to a constant), we may apply the GLS estimator
(see 4.2.1) to (6.13) and write

β̃ = [
C ′Ω−1C

]−1
C ′Ω−1v = [

X′W(W′W)−1W′X
]−1

X′W(W′W)−1W′y =
= (X′PWX)−1X′PWy. (6.14)

DENIS SARGAN

This clever idea is due to the English econometrician
Denis Sargan,6 whose name will also crop up later, in sec-
tion 6.7.1.

The estimator β̃ in the equation above is technically
called the Generalised IV Estimator, or GIVE for short.
However, proving that (6.12) is just a special case of (6.14)
when m = k is a simple exercise in matrix algebra, left to
the reader as an exercise, so when I speak of the IV estima-
tor, what I mean is (6.14).

When m = k, the model is said to be exactly identified,
as the estimator is based on solving (6.11), which is a sys-
tem of m equations in m unknowns; if W′X is invertible, it has one solution.

On the contrary, if m > k, (6.11) becomes a system with more equations than
unknowns, so a solution does not ordinarily exist. The statistic we use is not a
solution of (6.11), but is rather defined by re-casting the problem as a sui generis
OLS model as in (6.13).

In this case, we say the model is over-identified and the difference (m −k)
is referred to as over-identification rank. The opposite case, when m < k, is a
textbook case of under-identification, which I described in section 2.5. In short,
one may say that a necessary condition for the existence of the IV estimator is
that m ≥ k; this is known as the order condition.

6For historical accuracy, it must be said that the idea of IV estimation was first put forward
as early as 1953 by the Dutch genius Henri Theil. But it was Sargan who created the modern
approach, in an article appeared in 1958.
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As a by-product from estimating β, you also get a residual vector ε̃= y−Xβ̃,
so that an estimator of σ2 is readily available:

σ̃2 = ε̃′ε̃
n

.

As shown in section 6.A.1, it can be proven that, under the set of assumptions I
just made, the statistics β̃ and σ̃2 are CAN estimators. Therefore, the whole test-
ing apparatus we developed in Chapter 3 can be applied without modifications
since p

n(β̃−β)
d−→N (0,V ) .

The precise form of the asymptotic covariance matrix V is not important here;
see 6.A.1. What is important in practice is that, under homoskedasticity, we have
an asymptotically valid matrix we can use for hypothesis testing, which is

V̂ = σ̃2(X′PWX)−1.

In more general cases, robust alternatives (see section 4.2.2) are available.

Just like OLS, the IV estimator may be defined
as the solution of an optimisation problem:

β̃ =Argmin
β∈Rk

ε(β)′PWε(β)

(compare the above expression with equation
(1.14)).
In this book, we will not make much use of
this property. However, defining β̃ in this way

would be the first step towards seeing it as a
member of a very general category of estima-
tors known as GMM (Generalised Method of
Moments) estimators, which includes practi-
cally all estimators used in modern economet-
rics. The theory of GMM is beautiful: as a
starting point, I heartily recommend Hayashi
(2000).

6.2.2 The instruments

I will not distract the reader here with technicalities on the asymptotics of the IV
estimator; you’ll find those in Section 6.A.1. Here, I’m going to focus on two nec-
essary conditions for consistency of β̃ and explore what requisites they imply
for the variables we choose as instruments. The two conditions are:

1. 1
n

∑
wiεi

p−→ 0

2. 1
n

∑
xi w′

i
p−→ A, where A is a k ×m matrix with rank k.

Condition 1 is more or less guaranteed by (6.10), that is by wi being exoge-
nous, which basically means “uncorrelated with the structural disturbance” εi ;
if this requirement isn’t met, the limit in probability of β̃ is not β. End of story.

The implications of condition 2 are more subtle. The first one is: since the
rank of A cannot be k if m < k, you need to have at least as many instruments
as regressors. The good news is, this condition is not as stringent as it may seem
at first sight: the fact that E[xi ·εi ] is not a vector of zeros does not necessarily
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mean that all its elements are nonzero. Some of the explanatory variables may
be exogenous; in fact, in empirical models the subset of explanatory variables
that may be suspected of endogeneity is typically rather small. Therefore, the
exogenous subset of xi is perfectly adequate to serve as an instrument, obvious
examples being deterministic variables such as the constant. What the order
condition really means is that, for each endogenous explanatory variable, we
need at least one instrument not also used as a regressor.

Clearly, m ≥ k is not a sufficient condition for A to have rank k. For exam-
ple, A may be square but have a column full of zeros. This would happen, for
example, if the corresponding instrument was independent of all regressors x.
The generalisation of this idea leads to the concept of relevance.7 The instru-
ments must not only be exogenous, but must also be related to the explanatory
variables.8

Note a fundamental difference between the order condition and the rele-
vance condition: the order condition can be checked quite easily (all you have
to do is count the variables); and even if you can’t be bothered with checking, if
the order condition fails the IV estimator β̃ is not computable, since (X′PWX) is
singular and your software will complain about this.

The relevance condition, instead, is much trickier to spot, since (with prob-
ability 1) 1

n

∑
xi w′

i will have rank k even if A doesn’t. Hence, if rk(A) < k, you will
be able to compute β̃, but unfortunately it will be completely useless as an esti-
mator. It can be proven that, in such an unfortunate case, the limit in probability
of β̃ is not a constant, but rather a random variable, so there’s no way it can be a
consistent estimator for any parameter.

In order to make this point clearer, let me give you an example. Suppose
that the three random variables yi , xi and wi were continuous and scalar and
imagine that that wi is not relevant. The IV estimator would simply be

β̃ = n−1 ∑n
i=1 xi yi

n−1 ∑n
i=1 wi xi

;

now focus on the denominator of the expression above: clearly, the probability
that n−1 ∑n

i=1 wi xi = 0 is 0, so the probability that β̃ exists is 1 for any finite n.
However, if you compute its probability limit, you see the problem very quickly:

if wi is not relevant, then n−1 ∑n
i=1 wi xi

p−→ A = 0 (which has, of course, rank 0
instead of 1, as we would require). Therefore the denominator will be a nonzero
number which becomes smaller and smaller as n →∞. The reader should easily
see that in this case we can’t expect the asymptotic distribution of β̃ to collapse
to a point. In this case the estimator is not inconsistent because it converges to
the wrong value, but rather because it doesn’t converge at all.

7In other contexts, what I call the relevance condition is known as the rank condition.
8It should be noted that these properties are, to some extent, contradictory: if X and ε are

correlated, any variable perfectly correlated to X could not be orthogonal to ε. The trick here is
that W is not perfectly correlated to X.
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Finally, instruments should be as “strong” as possible. The precise mean-
ing of this phrase is the object of Section 6.7.2: here, I’ll just mention the fact
that inference with IV models could be quite problematic in finite samples, since
the asymptotic approximations that we ordinarily use may work quite poorly. A
common source of problems is the case of weak instruments: variables that are
relevant, but whose connection with the regressors is so feeble that you need an
inordinately large data set to use them for your purposes. This point will (hope-
fully) become clearer later, in the context of “two-stage” estimation (Section 6.5).

6.3 An example with real data

For this example, we are going to use a great classic from applied labour eco-
nomics: the “Mincer wage equation”; the idea is roughly to have a model like
the following:

yi = z′iβ0 +eiβ1 +εi (6.15)

where yi is the log wage for an individual, ei is their education level and the
vector zi contains other characteristics we want to control for (gender, work ex-
perience, etc). The parameter of interest is β1, which measures the returns to
education and that we would expect to be positive.

The reader, at this point, may dimly recall that we already estimated an equa-
tion like this, in section 1.5. Back then, we did not have the tools yet for interpret-
ing the results from an inferential perspective, but the results were in agreement
with commons sense. Why would we want to go back to a wage equation here?

The literature has long recognised that education may be endogenous, be-
cause the amount of education individuals receive is (ordinarily) decided by the
individuals themselves. In practice, if the only reason to get an education is to
have access to more lucrative jobs, individuals solve an optimisation problem
where they decide, among other things, their own education level. This gives
rise to a an endogeneity problem.9

For the reader’s convenience, I’ll reproduce here OLS estimates in Table 6.1.
If education is endogenous, as economic theory suggests may be, then the “re-
turns to education” parameter we find in the OLS output (about 5.3%) is a valid
estimate of the marginal effect of education on the conditional expectation of
wage, but is not a valid measure of the causal effect of education on wages, that
is the increment in wage that an individual would have had if they had received
an extra year of education.

I will now estimate the same equation via IV: the instruments I chose for
this purpose are (apart from the three regressors other than education, which
I take as exogenous) two variables that I will assume, for the moment, as valid
instruments:

9The literature on this topic is truly massive. A good starting point is Card (1999).
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OLS, using observations 1-1917
Dependent variable: lw

coefficient std. error t-ratio p-value
----------------------------------------------------------
const 1.32891 0.0355309 37.40 2.86e-230 ***
male 0.175656 0.0143224 12.26 2.42e-33 ***
wexp 0.00608615 0.000671303 9.066 2.97e-19 ***
educ 0.0526218 0.00202539 25.98 1.02e-127 ***

Mean dependent var 2.218765 S.D. dependent var 0.363661
Sum squared resid 177.9738 S.E. of regression 0.305015
R-squared 0.297629 Adjusted R-squared 0.296528
F(3, 1913) 270.2107 P-value(F) 3.3e-146
Log-likelihood -441.8652 Akaike criterion 891.7304
Schwarz criterion 913.9645 Hannan-Quinn 899.9118

Table 6.1: Wage equation on the SHIW dataset — OLS estimates

• the individual’s age: the motivation for this is that you don’t choose when
you’re born, and therefore age can be safely considered exogenous; at the
same time, regulations on compulsory education have changed over time,
so it is legitimate to think that older people may have spent less time in
education, so there are good chances age may be relevant.

• Parents’ education level (measured as the higher between mother’s and
father’s): it is a known fact that family environment is a powerful factor in
educational choice. Yet, individuals can’t decide on the educational level
of their parents, so we may conjecture that this variable is both exogenous
and relevant.

Table 6.2 shows the output from IV estimation; in fact, gretl (that is what I
used) gives you richer output than this, but I’ll focus on the part of immediate
interest.

As you can see from the output, you get substantially different coefficients:
not only you get that the returns from education appear to be quite stronger
(7.9% versus 5.3%), but the other coefficients become larger too. Clearly, the
question at this point becomes: OK, the two methods give different numbers.
But are they significantly different? The tool we use to answer this question is
the so-called Hausman test, which is the object of the next section.

6.4 The Hausman test

So far, we have taken as given that some of the variables in the regressor matrix
X were endogenous, and that, as a consequence, OLS wouldn’t yield consistent
estimates of the parameters of interest. But of course, we don’t know with cer-
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TSLS, using observations 1-1917
Dependent variable: lw
Instrumented: educ
Instruments: const male wexp age peduc

coefficient std. error t-ratio p-value
---------------------------------------------------------
const 0.943553 0.0684539 13.78 2.80e-41 ***
male 0.182926 0.0149929 12.20 5.02e-33 ***
wexp 0.00860475 0.000795375 10.82 1.62e-26 ***
educ 0.0792106 0.00449758 17.61 1.85e-64 ***

Mean dependent var 2.218765 S.D. dependent var 0.363661
Sum squared resid 194.0070 S.E. of regression 0.318457
R-squared 0.292476 Adjusted R-squared 0.291366
F(3, 1913) 144.8624 P-value(F) 1.38e-84

Table 6.2: Wage equation on the SHIW dataset — IV estimates

tainty. One may argue that, if we have instruments whose quality we’re confi-
dent about, we might as well stay on the safe side and use IV anyway. If we do,
however, we may be using an inefficient estimator: it can be proven that, if X is
exogenous, OLS is more efficient that IV under standard conditions.10

JERRY HAUSMAN

The Hausman test is based on the idea of comparing
the two estimators and checking if their difference is sta-
tistically significant.11 If it is, we conclude that OLS and
IV have different probability limits, and therefore OLS can’t
be consistent, so our estimator of choice has to be IV. Oth-
erwise, there is no ground for considering X endogenous,
and we may well opt for OLS, which is more efficient.12

This idea can be generalised: if you have two estima-
tors, one of which (θ̃) is robust to some problem and the
other one isn’t (θ̂), the difference δ= θ̂− θ̃ should converge
to a non-zero value if the problem is there, and to 0 otherwise. Therefore, we
could set up a Wald-like statistic

H = δ′
[�V (δ)

]−1
δ; (6.16)

where �V (δ) is a consistent estimator of AV[δ], and, under some standard reg-
ularity conditions, it can be proven that H is asymptotically χ2 under the null

10If you’re curious, the proof is in section 6.A.2.
11As always, there is some paternity debate: some people call this the Wu-Hausman test; some

others, the Durbin-Wu-Hausman test. While it is technically true that the same test statistic had
been independently derived before (by Durbin in 1954 and by Wu in 1973), the idea became main-
stream only after the publication of Hausman (1978).

12I know what you’re thinking: this is the same logic we used in section 4.2.3 for the White test
for heteroskedasticity. You’re right.
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(H0 : plim(δ) = 0).13

The problem is, how do you compute �V (δ)? For the special case when the
non-robust estimator is also efficient, we have a very nice result: the variance of
the difference is the difference of the variances. A general proof is quite involved,
but a for a sketch in the scalar case you can jump to section 6.A.3. In practice, if
you have two estimators, and the situation is the one described in Table 6.3, an
asymptotically valid procedure is just to compute H as

H = [
θ̂− θ̃]′ (

AV
[
θ̃
]−AV

[
θ̂
])−1 [

θ̂− θ̃]
.

Table 6.3: Hausman Test — special case

if H0 is true if H0 is false

θ̂ CAN and efficient Inconsistent

θ̃ CAN but not efficient

In our case, the two estimators to compare are β̂ and β̃, so δ = β̂− β̃. If we
assume that OLS is efficient (which would be under homoskedasticity), then

V[δ] = V
[
β̃

]−V
[
β̂

]
.

Since under H0 OLS is consistent, then σ̂2 is a consistent estimator of σ2 and we
can use the matrix

σ̂2 [
(X′PWX)−1 − (X′X)−1] ;

therefore,

H =
(
β̃− β̂

)′ [
(X′PWX)−1 − (

X′X
)−1

]−1 (
β̃− β̂

)
σ̂2 . (6.17)

In practice, actual computation of the test is performed even more simply,
via an auxiliary regression: consider the model

y = Xβ+ X̂γ+ residuals. (6.18)

where X̂ ≡ PWX. By the Frisch–Waugh theorem (see section 1.4.4)

γ̂ = [
X̂′MXX̂

]−1
X̂′MXy;

now rewrite the two matrices on the right-hand side of the equation above as

X̂′MXX̂ = X̂′X̂− X̂′PXX̂ = X̂′X̂− X̂′X
(
X′X

)−1 X′X̂ =
= (

X̂′X̂
)[(

X̂′X̂
)−1 − (

X′X
)−1

](
X̂′X̂

)
(6.19)

X̂′MXy = X̂′y− X̂′X
(
X′X

)−1 X′y = (
X̂′X̂

)(
β̃− β̂

)
(6.20)

13The number of degrees of freedom for the test is not as straightforward to figure out as it may
seem. See below.
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where we repeatedly used the equality X̂′X = X′PWX = X̂′X̂; therefore,

γ̂ = (
X̂′X̂

)−1
[(

X̂′X̂
)−1 − (

X′X
)−1

]−1 (
β̃− β̂

)
. (6.21)

A Wald test for γ = 0 is

W = γ̂ ′ [X̂′MXX̂
]
γ̂

σ̂2 ,

so, after performing a few substitutions, you get

W =
(
β̃− β̂

)′ [(
X̂′X̂

)−1 − (
X′X

)−1
]−1 (

β̃− β̂
)

σ̂2 = H .

Of course, the possibility of X and W having some columns in common com-
plicates slightly the setup above, and X̂ should only contain the projection on W
of the endogenous regressors, because if a regressor is also contained in W its
projection is obviously identical to the original. This means that the degrees of
freedom for the Hausman test is equal to the number of explanatory variables
that are effectively treated as endogenous (that is, are not present in the instru-
ment matrix W).

Example 6.1
Let us go back to the wage equation example illustrated in Section 6.3. While
commenting Table 6.2, I mentioned the fact that my software of choice (gretl)
offers richer output than what I reported. Part of it is the outcome of the Haus-
man test, that compares IV vs OLS:

Hausman test -
Null hypothesis: OLS estimates are consistent
Asymptotic test statistic: Chi-square(1) = 50.2987
with p-value = 1.32036e-12

As you can see, our original impression that the two sets of coefficients were
substantially different was definitely right. The p-value for the test leads to re-
jecting the null hypothesis very strongly. Therefore, IV and OLS have different
limits in probability, which we take as a sign that education is, in fact, endoge-
nous.

Note that the test statistic is matched against a χ2 distribution with 1 degree
of freedom, because there is one endogenous variable in the regressors list (that
is, education).

6.5 Two-stage estimation

The IV estimator is also called two-stage estimator (hence the acronyms TSLS,
for Two-Stage Least Squares or 2SLS, for 2-Stage Least Squares).
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The reason is that the β̃ statistic may be computed by two successive ap-
plications of OLS, called the two “stages”.14 In the era when computation was
expensive, this was a nice trick to calculate β̃ without the need for other soft-
ware than OLS, but seeing IV as the product of a two-stage procedure has other
advantages too.

In order to see what the two stages are, define X̂ = PWX and rewrite (6.14) as
follows:

β̃ = (X̂′X̂)−1X̂′y, (6.22)

The matrix X̂ contains, in the j -th column, the fitted value of a regression of the
j -th column of X on W; the regression

xi =Πwi +ui (6.23)

is what we call the first stage regression. In the second stage, you just regress y
on X̂: the OLS coefficient equals β̃. Note: this is a numerically valid procedure
for computing β̃, but the standard errors you get are not valid for inference. This
is because second stage residuals are e = y− X̂β̃, which is a different vector from
the IV residuals ε̃= y−Xβ̃. Consequently, the statistic e′e

n does not provide a valid
estimator of σ2, which in turn makes the estimated covariance matrix invalid.

Readers who liked the geometrical interpreta-
tion of OLS as a projection might like to con-
sider a different way of writing equation (6.22),
that is

β̃ = (X̂′X)−1X̂′y,

from which you have that the fitted values from

the GIVE estimator can be written as

ỹ = Xβ̃ = X(X̂′X)−1X̂′y = QX̂,Xy

The matrix QX̂,X is square and idempotent (but
not necessarily symmetric) and performs what
is called an oblique projection.

So, if the only computing facility you have is OLS (which was often the case
in the 1950s and 1960s), you can compute the IV estimator via a repeated appli-
cation of OLS. Moreover, you don’t really have to run as many first-stage regres-
sions as the number of regressors. You just have to run one first-stage regression
for each endogenous element of X (recall the discussion in subsection 6.4 on the
degrees of freedom for the Hausman test).

Example 6.2
Let’s estimate the same model we used in section 6.3 via the two-stage method:
the output from the first stage regression is in Table 6.4: as you can see, the de-
pendent variable here is education, while the explanatory variables are the full
instrument matrix W. There is not much to say about the first stage regression,
except noting that the two “real” instruments (age and parents’ education) are
both highly significant. This will be important in the context of weak instru-
ments (see section 6.7.2).

14In fact, the word Henri Theil used when he invented this method was “rounds”, but subse-
quent literature has settled on “stages”.
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OLS, using observations 1-1917
Dependent variable: educ

coefficient std. error t-ratio p-value
---------------------------------------------------------
const 5.43051 0.491957 11.04 1.65e-27 ***
male -0.137838 0.142828 -0.9651 0.3346
wexp -0.205149 0.0129572 -15.83 3.78e-53 ***
age 0.192950 0.0146614 13.16 6.26e-38 ***
peduc 0.386233 0.0207287 18.63 2.47e-71 ***

Mean dependent var 11.73344 S.D. dependent var 3.598508
Sum squared resid 17665.37 S.E. of regression 3.039607
R-squared 0.287996 Adjusted R-squared 0.286507
F(4, 1912) 193.3448 P-value(F) 2.6e-139
Log-likelihood -4848.785 Akaike criterion 9707.570
Schwarz criterion 9735.363 Hannan-Quinn 9717.797

Table 6.4: Wage equation on the SHIW dataset — first stage

OLS, using observations 1-1917
Dependent variable: lw

coefficient std. error t-ratio p-value
---------------------------------------------------------
const 0.943553 0.0711035 13.27 1.64e-38 ***
male 0.182926 0.0155733 11.75 8.22e-31 ***
wexp 0.00860475 0.000826161 10.42 9.55e-25 ***
hat_educ 0.0792106 0.00467166 16.96 3.48e-60 ***

SSR = 209.316, R-squared = 0.173936

Table 6.5: Wage equation on the SHIW dataset — second stage
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Once the first stage regression is computed, we save the fitted values into
a new variable called hat_educ. Then, we replace the original education educ
variable with hat_educ in the list of regressors and perform the second stage.
Results are in Table 6.5; a comparison of these results with those reported in
Table 6.2 reveals that:

1. the coefficients are identical;

2. the standard error are not, because the statistic you obtain by dividing the
SSR from the second-stage regression (209.316) by the number of obser-
vations (1917) is not a consistent estimator for σ2; therefore, the standard
errors reported in table 6.5 differ from the correct ones by a constant scale
factor (1.0387 in this case).

6.5.1 The control function approach

The method I described in the previous subsection to compute the IV estimator
via two successive stages is the traditional one. A slight variation on that proce-
dure gives rise to what is sometimes called the control function approach.

The main idea can be grasped by considering a minimal model such as

yi = xi ·β+εi (6.24)

xi = wi ·π+ui , (6.25)

where equation (6.25) is a “proper” linear model, and Cov[ui ,εi ] is some real
number, not necessarily 0. If wi is exogenous, the only way xi can be correlated
with εi is if Cov[ui ,εi ] ̸= 0. It is easy to show that OLS will overestimate β if
Cov[ui ,εi ] > 0 and underestimate it if Cov[ui ,εi ] < 0. If, however, we defined

νi = εi −E[εi |ui ]

and assumed linearity of E[εi |ui ], we could write εi = ui ·θ+νi and recast (6.24)
as

yi = xi ·β+ui ·θ+νi (6.26)

If we could observe ui , we wouldn’t need the IV estimator at all, because νi is
orthogonal to both xi and ui ,15 so OLS would be our tool of choice to estimate
β and θ at the same time.

Unfortunately, we don’t observe ui directly, but once we’ve run the first stage
regression (6.25), we have the first-stage residuals ûi , which hopefully shouldn’t
be too different: after all, (6.25) is a perfectly valid regression model, and the OLS
estimate of π is consistent. Therefore, the difference

ui − ûi = (xi −wiπ)− (xi −wi π̂) = (π̂−π) wi

15Lazy writers like myself love the sentence: “the proof is left to the reader as an exercise”.
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should go to 0 asymptotically, since π̂
p−→π; on these premises, the possibility of

using ûi in place of the “true” ui is tempting.
From a computational point of view, hence, the control function approach

differs from the traditional two-stage method only in the second stage. Once you
have performed the first stage, you use, in the second stage, the residuals from
the first stage and add them as extra explanatory variables to the main equation.
Call E the first-stage residuals and perform an OLS regression of y on X and E
together:

y = Xβ+Eθ+ν; (6.27)

the estimates we get have a very nice interpretation.
Let’s begin with β: by the Frisch-Waugh theorem (see section 1.4.4), the OLS

estimate of β is
(X′MEX)−1X′MEy;

now focus on the matrix X′ME:

X′ME = X′−X′PE = X′−X′E(E′E)−1E′.

Since, by definition, E = MWX, by substitution we have

X′ME = X′−X′MWX(X′MWX)−1X′MW = X′−X′MW = X′PW;

therefore, the coefficient vector becomes

(X′MEX)−1X′MEy = (X′PWX)−1X′PWy = β̃

So the OLS estimate of the coefficients associated with X in equation (6.27)
is exactly equal to the IV estimator β̃. Warning: just like the two-stage proce-
dure, the control function approach does not yield correct standard errors for β̃;
explaining precisely why is far beyond the scope of this book, and readers will
have to content themselves with knowing that this is a consequence of using the
first-stage residuals ûi in place of the true ui series.16

Moreover, the control function regression gives you, as a nice by-product,
the Hausman test, as an exclusion test for the first-stage residuals: by applying
the Frisch-Waugh theorem again, the OLS estimate of θ in (6.27) is

θ̂ = [
E′MXE

]−1 E′MXy;

of course ê = MXy are the OLS residuals. Now use the definition of E as E = MWX
again:

E′MXy = E′ê = X′MWê = X′ê−X′PWê =−X′PWê;

16If you really want to know, the problem arises because we are using π̂ to compute ûi by treat-
ing it as if it was the true π, and hence ignoring the fact that π̂ is an estimate with a non-zero
variance. This is a case of generated regressors; section 6.1 of Wooldridge (2010) is where you
want to start from. Besides, Section 6.2 of the same book contains a much more accurate and
thorough treatment of the control function approach than what I’m giving you here.
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where the last equality comes from the OLS residuals ê being orthogonal to X;
therefore

E′MXy =−X′PWy+X′PWX · β̂ = [
X′PWX

]
(β̂− β̃),

and as a consequence θ̂ is just

θ̂ = [
E′MXE

]−1 [
X′PWX

]
(β̂− β̃);

since the matrix
[
E′MXE

]−1 [
X′PWX

]
is invertible, θ̂ it can be zero if and only if

β̂ = β̃. Therefore, the hypothesis h0 : θ = 0 is logically equivalent to the null
hypothesis of the Hausman test, and the test can be performed by a simple zero
restriction on θ̂. If (as often happens) θ is a scalar, the result of the Hausman test
is immediately visible as the significance t-test associated with that coefficient.

A very nice feature of the control function approach is that this approach is
very natural to generalise to settings where our estimator of choice is not a least
squares estimator, which happens quite often in applied work. But this book is
entitled “basic econometrics”, and I think I’ll just stop here.

OLS, using observations 1-1917
Dependent variable: lw

coefficient std. error t-ratio p-value
---------------------------------------------------------
const 0.943553 0.0647377 14.58 1.04e-45 ***
male 0.182926 0.0141790 12.90 1.42e-36 ***
wexp 0.00860475 0.000752195 11.44 2.34e-29 ***
educ 0.0792106 0.00425341 18.62 2.89e-71 ***
resid -0.0341349 0.00481934 -7.083 1.98e-12 ***

SSR = 173.423, R-squared = 0.315587

Table 6.6: Wage equation on the SHIW dataset — control function

Example 6.3
Using the SHIW data again, after storing the residuals from the first-stage regres-
sion (see Table 6.4) under the name resid, you can run an OLS regression like
the one in Table 6.1, with resid added to the list of regressors. The results are in
Table 6.6. Again, the coefficients for the original regressors are β̃ and again, the
standard errors are not to be trusted (they’re a bit smaller than the correct ones,
listed in Table 6.2). The t-test for the resid variable, instead, is interpretable as
a perfectly valid Hausman test, and the fact that we strongly reject the null again
is no coincidence.



194 CHAPTER 6. INSTRUMENTAL VARIABLES

6.6 The examples, revisited

6.6.1 Measurement error

A typical way to use IV techniques to overcome measurement error is the usage
of a second measurement of the latent variable, whose contamination error is
independent of the first one. In formulae: together with the two equations (6.1)
and (6.2)

yi = x∗
i β+εi

xi = x∗
i +ηi

suppose you have a third observable variable wi such that

wi = x∗
i +νi

If ηi and νi are uncorrelated, then wi is a valid instrument and the statistic

β̃=
∑

wi yi∑
wi xi

is a consistent estimator of β.
One famous application of this principle is provided in Griliches (1976), a

landmark article in labour economics, where the author has two measurements
of individual ability and uses one for instrumenting the other.

6.6.2 Simultaneous equation systems

Consider again equations (6.4)–(6.5):

qt = α0 −α1pt +ut

pt = β0 +β1qt + vt .

As we proved in section 6.1.2, the systematic part of these two equations are not
conditional means, so there’s no way we can estimate their parameters consis-
tently via OLS.

On the other hand, we can use (6.7) to deduce that E
[
pt

] = π1; clearly, the
parameter π1 can be estimated consistently very simply by taking the average of
pt (or regressing pt on a constant, if you will). The same holds for E

[
qt

]=π0.
Can we use these two parameters to estimate the structural ones? The an-

swer is no: the relationship between the (π0,π1) pair and the structural parame-
ters is

π0 = α0 −β0α1

1+β1α1
π1 = β0 +β1α0

1+β1α1
,

which is a system of 2 equations in 4 unknowns; as such, it has infinitely many
solutions. This is exactly the under-identification scenario we analysed in sec-
tion 2.5.
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Let us now consider this example in greater generality: a system of linear
equations can be written as

Γyt = Bxt +εt ; (6.28)

the yt vector contains the q endogenous variables, while xt is an m-vector hold-
ing the exogenous variables. The matrix Γ (assumed non-singular) is q ×q and
B is a q ×m matrix. In the demand-supply example,

Γ=
[

1 α1

−β1 1

]
B =

[
α0

β0

]
.

Equation (6.28) is known as the structural form of the system, because its pa-
rameters have a behavioural interpretation and are our parameters of interest.

By pre-multiplying (6.28) by Γ−1, you get the so-called reduced form:

yt =Πxt +ut , (6.29)

whereΠ= Γ−1B and ut = Γ−1εt . In our example, the matrixΠ is a column vector,
containing π0 and π1.

If xt is exogenous, then Cov[xt ,εt ], so the correlation between xt and ut is
zero; hence, OLS is a consistent estimator for the parameters of the reduced
form. However, by postmultiplying (6.29) by x′t you get:

yt x′t =Πxt x′t +ut x′t ,

which implies E
[
yt x′t

] = ΠE
[
xt x′t

]
. Ordinarily, this matrix should not contain

zeros; if variables were centred in mean, it would be the covariance matrix be-
tween the vector yt and the vector xt . Therefore, each element of xt is correlated
with each yt despite being uncorrelated with εt . In other words, xt is both rele-
vant and exogenous and, as such, is a perfect instrument.

In the example above, xt contains only the constant term, and the reduced
form looks like: [

qt

pt

]
=

[
π0

π1

]
·1+ut ;

it should be clear where under-identification comes from: in the demand equa-
tion you have 2 regressors (the constant and pt ) but only one instrument (the
constant), and the same goes, mutatis mutandis, for the supply equation.

Consider now a different formulation, where:

qt = α0 −α1pt +α2 yt +ut (6.30)

pt = β0 +β1qt +β2mt + vt , (6.31)

where we use the two new variables yt , the per-capita income at time t and mt ,
the price of raw materials at time t ; assume both are exogenous.

In this case, both equations are estimable via IV, because we have three re-
gressors and three instruments for each (the same for both: constant, yt and
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mt ). In the context of simultaneous systems, the order condition I stated in sec-
tion 6.2.2 is often translated as: for each equation in the system the number of
included endogenous variables cannot be greater than the number of excluded
exogenous variables. I’ll leave it to the reader to work out the equivalence.

6.7 Are my instruments OK?

A fundamental requirement for the whole IV strategy is that the variables that
we choose to use as instruments are (i) exogenous and (ii) relevant. Of course,
we cannot assume that they are just because we say so, and it’d be nice to have
some way of testing these assumptions. It turns out that neither property can be
verified directly, but we do have statistics that we can interpret in a useful way.

6.7.1 The Sargan test

The Sargan test is often interpreted as a test for exogeneity of the instruments,
but in fact things are a bit more subtle.

Exogeneity, in our context, means uncorrelatedness between the instruments
wi and the structural disturbances εi . Assume we are in the simplest case, where

V[ε] =σ2I and 1
n W′W

p−→ B . If the structural disturbances εi were observable, a
test would be straightforward to construct: under H0,

1p
n

W′ε d−→N
(
0, σ2B

)
and it can be proven that, under H0,

ε′PWε

σ2
d−→χ2

m , (6.32)

where m is the size of wi . Unfortunately, ε is unobservable, and therefore the
quantity above is not a statistic and cannot be used as a test.

The idea of substituting disturbances with residuals like we did in section
6.5.1 takes us to the Sargan test. Its most important feature is that this test has
a different asymptotic distribution than (6.32), since the degrees of freedom of
the limit χ2 is not m (the number of instruments), but rather m −k, where k is
the number of elements in β: in other terms, the over-identification rank (see
section 6.2.1). In formulae,

S = ε̃′PWε̃

σ̂2
d−→χ2

m−k . (6.33)

This result may appear surprising at first. Consider, however, that under ex-
act identification the numerator of S is identically zero,17 so, in turn, the S statis-
tic is identically 0, not a χ2

m variable. Can this result be generalised?

17Blitz proof: if m = k, then β̃ = (W′X)−1W′y. Therefore, PWε̃ = PW(y−Xβ̃); however, observe
that PWXβ̃ = W′(W′W)−1W′X(W′X)−1W′y = PWy. As a consequence, PWε̃= PWy−PWy = 0.
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Take the conditional expectation E
[

yi |wi
]
; assuming linearity, if wi is exoge-

nous we could estimate its parameters via OLS in a model like

yi = w′
iπ+ui ; (6.34)

in the simultaneous system jargon, equation (6.34) would be the reduced-form
equation for yi . To see how the parameters π relate to β, write the first-stage
equation (6.25) in matrix form as

X = WΠ+E

so that the i -th row of X can be written as x′i = w′
iΠ+ e′i ; now substitute in the

structural equation:

yi = x′iβ+εi = w′
iΠβ+ (εi +e′iβ); (6.35)

clearly, the two models (6.34) and (6.35) become equivalent only if π =Πβ; in
fact, the expressionΠβ can be seen as a restricted version of π, where the con-
straint is that π must be a linear combination of the columns of Π (or, more
concisely, that π ∈ Sp(Π)).

The Sargan test is precisely a test for those restrictions: this begs three ques-
tions:

1. how do we compute the test statistic?

2. What is its limit distribution?

3. Which interpretation must be given to a rejection?

Number 1 is quite easy: the IV residuals ε̃ are the residuals from the restricted
model. All we have to do is apply the LM principle (see Section 3.5.1) and regress
those on the explanatory variables from the unrestricted model. Compute nR2,
and your job is done. If you do, you end up exactly with the statistic I called S in
equation (6.33).

As for its limit distribution, the fact that the number of degrees of freedom of
the χ2 limit distribution is m−k can be intuitively traced back to the fact that the
number of parameters of the unrestricted model (6.34) is m, while the number
of the restricted parameters is k. Therefore, the number of constraints is m−k.18

Now we can tackle point 3: the null hypothesis in the Sargan test is that the
m relationships implicit in the equation π =Πβ are non-contradictory; if they
were, it would mean that at least one element of the vector E[wiεi ] is non-zero,

18A more rigorous argument goes as follows: if the restriction is true, then PΠπ =π, or, equiva-
lently, MΠπ = 0. Since the rank of MΠ is m −k, we can write

MΠπ =UV ′π = 0

where V and U are matrices with k rows and m − k columns (see section 1.A.3). So, the null
hypothesis implicit in the restriction is H0 : V ′π = 0, which is a system of m − r constraints.
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and therefore at least one instrument in not exogenous. Unfortunately, the test
cannot identify the culprit.

To clarify the matter, take for example a simple DGP where yi = xiβ+εi and
we have two potential instruments, w1,i and w2,i . We can choose among three
possible IV estimators for β:

1. a simple IV estimator using w1,i only (call it β1);

2. a simple IV estimator using w2,i only (call it β2);

3. the GIVE estimator using both w1,i and w2,i (call it β12).

Suppose β1 turns out to be positive (and very significant), and β2 turns out to
be negative (and very significant); clearly, there must be something wrong. At
least one between β1 and β2 cannot be consistent. The Sargan test, applied to
the third model, would reject the null hypothesis and inform us that at least one
of our two instruments is probably not exogenous. Hence, β12 would be cer-
tainly inconsistent, and we’d have to decide which one to keep between β1 and
β2 (usually, on the basis of some economic reasoning). If, on the other hand, we
were unable to reject the null, then we would probably want to use β12 for effi-
ciency reasons, since it’s the one that incorporates all the information available
from the data.

In view of these features, the Sargan test is often labelled overidentification
test, since what it can do is, at most, finding whether there is a contradiction
between the m assumptions we make when we say “I believe instrument i is
exogenous”.

Sargan over-identification test -
Null hypothesis: all instruments are valid
Test statistic: LM = 0.138522
with p-value = P(Chi-square(1) > 0.138522) = 0.709755

Table 6.7: Wage equation — Sargan test

Example 6.4
Table 6.7 is, again, an excerpt from the full output that gretl gives you after IV
estimation (the main table is 6.2) and shows the Sargan test for the wage equa-
tion we’ve been using as an example; in this case, we have 1 endogenous vari-
able (education) and two instruments (age and parents’ education), so the over-
identification rank is 2−1 = 1. The p-value for the test is over 70%, so the null
hypothesis cannot be rejected. Hence, we conclude that our instruments form a
coherent set and the estimates that we would have obtained by using age alone
or parents’ education alone would not have been statistically different from one
another. Either our instruments are all exogenous or they are all endogenous,
but in the latter case they would all be wrong in exactly the same way, which
seems quite unlikely.
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6.7.2 Weak instruments

The relevance condition for instruments looks deceptively simple to check: in-
struments are relevant if the matrix A = E

[
xi w′

i

]
is full-rank. Of course, this ma-

trix is quite easy to estimate consistently, so in principle testing for relevance is
straightforward.

In fact, the point above is subtler than it looks:
estimating the rank of a matrix is not exactly
trivial, because the rank is an integer, so most
of our intuitive ideas on the relationship be-
tween an estimator and the unknown param-
eter (that make perfect sense when the latter is

a real number) break down. Constructing a test
for the hypothesis rk(A) = m is possible, but re-
quires some mathematical tools I chose not to
include in this book. The interested reader may
want to google for “canonical correlations”.

The practical problem we are often confronted with is that, although an in-
strument is technically relevant, its correlation with the regressors could be so
small that finite-sample effects may become important. In this case, that instru-
ment is said to be weak.19

The problem is best exemplified by a little simulation study: consider the
same model we used in section 6.5.1:

yi = xi ·β+εi (6.36)

xi = wi ·π+ui (6.37)[
εi

ui

]
∼ N

(
0,

[
1 0.75

0.75 1

])
with the added stipulation that wi ∼ U (0,1). Of course, equation (6.36) is our
equation of interest, while (6.37) is the “first stage” equation. Since εi and ui

are correlated, then xi is itself correlated with εi , and therefore endogenous;
however, we have the variable wi , which meets all the requirements for being
a perfectly valid instrument: it is exogenous (uncorrelated with εi ) and relevant
(correlated with xi ), as long as the parameter π is nonzero.

However, if π is a small number the correlation between xi and wi is very
faint, so wi is weak, despite being relevant. In this experiment, the IV estimator
is simply

β̃ = (W′X)−1W′y =
∑n

i=1 wi yi∑n
i=1 wi xi

:

if you scale the denominator by 1
n , it’s easy to see that its probability limit is

non-zero; however, its finite-sample distribution could well be spread out over
a wide interval of the real axis, so you can end up dividing the numerator by

19Compared to the rest of the material contained in this book, inference under weak instru-
ments is a fairly recent strand in econometric research. A recent review article I heartily recom-
mend is Andrews et al. (2019), but a fairly accessible introductory treatment can also be found
in Hill et al. (2018), Chapter 10. Chapter 12 of Hansen (2019) is considerably more technical, but
highly recommended.
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an infinitesimally small number and have an inordinately large statistic (not to
mention the possibility of getting a wrong sign). Let me stress that this is a finite-
sample issue: asymptotically, there are no problems at all; but since all we ever
have are finite samples, the problem deserves consideration.

In order to show you what the consequences are, I generated 10000 artifi-
cial samples with 400 observations each and ran OLS and IV on equation (6.36),
setting β= 1 and π= 1.

The results of the experiment are plotted in the left picture in Figure 6.1. If
you want to repeat the experiment on your PC, the gretl code is at subsection
6.A.4. As you can see, everything works as expected: OLS has a smaller vari-
ance, but is inconsistent (none of the simulated β̂ gets anywhere near the true
value β = 1); IV, on the other hand, shows larger dispersion, but its distribution
is nicely centred around the true value.
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Figure 6.1: Weak instruments: simulation study

If instead you set π= 1/3, the simulation gives you the results plotted in the
right-hand panel. Asymptotically, nothing changes: however, the finite-sample
distribution of β̃ is worrying. Not only its dispersion is rather large (and there are
quite a few cases when the estimated value for β is negative): its distribution is
very far from being symmetric, which makes it questionable to use asymptotic
normality for hypothesis testing. I’ll leave it to the reader to figure out what
happens if the instrumental variable wi becomes very weak, which is what you
would get by setting π to a very small value, such as π= 0.1.

More generally, the most troublesome finite-sample consequences of weak
instruments are:

• the IV estimator is severely biased; that is, the expected value of its finite
sample distribution may be very far from the true value β;20

• even more worryingly, the asymptotic approximations we use for our test
statistics may be very misleading.

20I should add “provided it exists”; there are cases when the distribution of the IV estimator has
no finite moments.
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How do we spot the problem? Since this is a small-sample problem, it is not
easy to construct a test for weak instruments: what should its null hypothesis be,
precisely? What we can do, at most, is using some kind of descriptive statistic
telling us if the potential defects of the IV estimator are likely to be an actual
problem for the data we have.

For the simplest case, where you only have one endogenous variable in your
model, the tool everybody uses is the so-called “first-stage F test”, also labelled
partial F statistic. You compute it as follows: take the first-stage regression
(6.23) and perform an F -test (see Section 3.5.1) for the exclusion of the “true”
instruments (that is, the elements of wi not contained in xi ). The suggestion
contained in Staiger and Stock (1997) was that a value less than 10 could be taken
as an indication of problems related to weak instruments.

Example 6.5
The weak instrument test for the example on the SHIW data we’ve been using in
this chapter gives:

Weak instrument test -
First-stage F-statistic (2, 1912) = 271.319
Critical values for desired TSLS maximal size, when running
tests at a nominal 5% significance level:

size 10% 15% 20% 25%
value 19.93 11.59 8.75 7.25

Maximal size is probably less than 10%

The first-stage F statistic for the wage equation, as reported by gretl is 271.319,
which is way above 10, so we don’t have to worry.

The generalisation of this statistic is the so-called Cragg-Donald statistic,
whose description and interpretation is somewhat more involved, and I’ll just
point you to the bibliographic references I made at the start of this section.

Finally, a warning: problems similar to weak instruments may also arise
when the overidentification rank becomes large: the over-identification range
is usually a rather small number, but in some contexts it could happen that we
have an abundance of instruments. Common sense dictates that we should use
as much information as we have available, but in finite samples things may not
be so straightforward. A thorough analysis of the problem quickly becomes very
technical, so I’ll just quote Hall (2005), which contains an excellent treatment of
the issue.

There is a far more complex relationship between the behaviour of
the [IV] estimator and the properties of the instrument vector in fi-
nite samples than is predicted by asymptotic theory.
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6.A Assorted results

6.A.1 Asymptotic properties of the IV estimator

The limit in probability of the IV estimator (see 6.2.1 for its derivation)

β̃ = (X′PWX)−1X′PWy,

can be calculated by rewriting the equation above as a function of statistics for
which the probability limits can be computed easily. Clearly, some regularity
conditions (such as the observations being iid, for example) are assumed to hold
so that convergence occurs; we’ll take these as given and assume that sample
moments converge in probability to the relevant moments.

Given the linear model yi = x′iβ+εi , we assume that:

1. 1
n

∑T
t=1 xt w′

t = X′W
n

p−→ A, where rk(A) = k;

2. 1
n

∑T
t=1 wt w′

t = W′W
n

p−→ B , where B is invertible;

3. 1
n

∑T
t=1 wt ut = W′ε

n
p−→ 0;

then β̃ = (X′PWX)−1X′PWy
p−→ β. The proof is a simple application of Slutsky’s

theorem:

β̃ = β+ (X′PWX)−1X′PWε=

= β+
[(

X′W
n

)(
W′W

n

)−1 (
W′X

n

)]−1 (
X′W

n

)(
W′W

n

)−1 (
W′ε

n

)
so that

β̃
p−→β+ [

AB−1 A′]−1
AB−1 ·0 =β. (6.38)

It is instructive to consider the role played by the ranks of A and B ; the matrix
B must be invertible, because otherwise AB−1 A′ wouldn’t exist. Since B is the
probability limit of the second moments of the instruments, this requirement is
equivalent to saying that all instruments must carry separate information, and
cannot be collinear.

Note that the requisite is only that the instru-
ments shouldn’t be collinear: the stronger req-
uisite of independence is not needed. As a
consequence, it is perfectly OK to use nonlin-
ear transformations of one instrument to create
additional ones.
For example, if you have a variable wi that
you assume independent of εi , you can use
as instruments wi , w2

i , log(wi ), . . . (provided of

course that the transformed variables have fi-
nite moments).
This strategy is a special case of something
called identification through nonlinearity; al-
though it feels a bit like cheating (and is
frowned upon by some), it is perfectly legiti-
mate, at least asymptotically, as long as each
transformation carries some extra amount of
information.
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The rank of A, instead, must be k for
[

AB−1 A′] to be invertible. This means
that instruments wi must be relevant (see Section 6.2.2) for all the regressors
xi . If

[
AB−1 A′] is not invertible, then the probability limit in (6.38) does not

exist. If, instead, it’s invertible, but very close to being singular (as in the case
of weak instruments — see Section 6.7.2), then its inverse will be a matrix with
inordinately large values. This is mainly a problem for the distribution of β̃: if
we also assume

4. 1p
n

∑T
t=1 wt ut = W′εp

n

d−→N (0,Q) ;

then
p

n(β̃−β)
d−→N (0,Σ), where

Σ= [
AB−1 A′]−1

AB−1QB−1 A′ [AB−1 A′]−1
.

In the standard case Q =σ2B (from the homoskedasticity assumption E
[
εε′|W]=

σ2I), and therefore

p
n(β̃−β)

d−→N
(
0,σ2 [

AB−1 A′]−1
)

. (6.39)

So the precision of the IV estimator is severely impaired any time the matrix[
AB−1 A′] is close to being singular.

The last thing is proving that σ̃2 is consistent: from

ε̃= X
(
β− β̃

)+ε,

you get

ε̃′ε̃= (
β− β̃

)′
X′X

(
β− β̃

)+2
(
β− β̃

)′
X′ε+ε′ε

and therefore

1

n
ε̃′ε̃= (

β− β̃
)′ (X′X

n

)(
β− β̃

)+2
(
β− β̃

)′ (X′ε
n

)
+

(
ε′ε
n

)
.

By taking probability limits,

σ̃2 = 1

n
ε̃′ε̃

p−→ 0′ (Q)0+2 ·0′λ+σ2 =σ2,

where Q = plim
(

X′X
n

)
and λ= plim

(
X′ε
n

)
. Note that σ̃2 is consistent even though

λ ̸= 0. Consistency of σ̃2 is important because it implies that we can use the
empirical counterparts of the asymptotic covariance matrix in equation (6.39)
and use σ̃2(X′PWX)−1 as a valid covariance matrix for Wald tests.
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6.A.2 Proof that OLS is more efficient than IV

In the OLS vs IV case, the proof that OLS is more efficient than IV if X is exoge-
nous can be given as follows: given the model yi = x′iβ+εi , define the following
quantities:

Q = plim

(
X′X
n

)
A = plim

(
W′X

n

)
B = plim

(
W′W

n

)
;

under homoskedasticity, we have that AV
[
β̂

] = σ2Q−1 (see section 3.2.2) and

AV
[
β̃

] = σ2
[

A′B−1 A
]−1

(see 6.A.1), where σ2 = V[εi ]. In order to prove that
AV

[
β̃

]−AV
[
β̂

]
is positive semi-definite, we re-use two of the results on positive

definite matrices that we employed in section 4.A.2:

1. if Q and P are invertible and Q −P is psd, then P−1 −Q−1 is also psd;

2. if Q is psd, then P ′QP is also psd for any matrix P .

Begin by applying property 1 above and define

∆≡σ2 ·
[

AV
[
β̃

]−1 −AV
[
β̂

]−1
]
=Q − A′B−1 A;

Since σ2 > 0, it is sufficient to prove that ∆ is psd. Now define the vector z′i =
[x′i w′

i ] and consider the probability limit of its second moments:

C = plim

(
Z′Z
n

)
=

[
Q A′

A B

]
where C is clearly psd; now define H as

H = [
I −A′B−1

]
so, by property 2, the product HC H ′ is also psd; but

HC H ′ = [
I −A′B−1

][
Q A′

A B

][
I

−B−1 A

]
=Q − A′B−1 A =∆,

and the proof is complete.

6.A.3 Covariance matrix for the Hausman test (scalar case)

Suppose we have two consistent estimators of a scalar parameter θ; call them θ̂

and θ̃; assume also that the joint asymptotic distribution of θ̂ and θ̃ is normal.
Then,

AV

[
θ̂

θ̃

]
=

[
a b
b c

]
.
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Consider now the statistic θ̀(λ) = λθ̂+ (1−λ)θ̃, where λ ∈ R. Obviously, θ̀(λ) is
also a consistent estimator for any λ:

θ̀(λ)
p−→λθ+ (1−λ)θ = θ.

Its asymptotic variance is

AV
[
θ̀(λ)

]= (
λ 1−λ ) ·[ a b

b c

]
·
(

λ

1−λ
)
=λ2a +2λ(1−λ)b + (1−λ)2c.

If you choose λ so that AV
[
θ̀(λ)

]
is minimised, you get

λ∗ = c −b

a −2b + c
;

Now, if θ̂ is efficient, the optimal value of λ∗ must be 1, because θ̀(λ∗) cannot
be more efficient than θ̂, so the two statistics must coincide. But if λ∗ = 1, then
a = b. Therefore, if θ̂ is efficient, the joint asymptotic covariance matrix is

AV

[
θ̂

θ̃

]
=

[
a a
a c

]
.

so

AV
[
θ̂− θ̃]= (

1 −1
)[ a a

a c

]
.

(
1

−1

)
= c −a = AV

[
θ̃
]−AV

[
θ̂
]

.

6.A.4 Hansl script for the weak instrument simulation study

function matrix run_experiment ( scalar pi )
# function to generate the simulations

scalar rho = 0.75 # c o r r e l a t i o n betweeen u and eps
s e r i e s w = uniform ( ) # generate the instrument
scalar H = 10000 # number of r e p l i c a t i o n s
matrix b = zeros (H, 2) # a l l o c a t e space f o r the s t a t i s t i c s

loop h = 1 . . H −−quiet
# the s t r u c t u r a l disturbances ( unit variance )
s e r i e s eps = normal ( )
# the reduced form disturbances ( unit variance ,
# c o r r e l a t e d with eps by construction )
s e r i e s u = rho * eps + sqrt (1−rho^2) * normal ( )
# generate x via the f i r s t −stage equation
s e r i e s x = pi *w + u
# generate y via the s t r u c t u r a l equation
s e r i e s y = x + eps
# estimate beta by OLS
ols y x −−quiet
# s t o r e OLS estimate into the 1 s t column of b
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b[h , 1 ] = $coeff
# estimate beta by IV
t s l s y x ; w −−quiet
# s t o r e IV estimate into the 2nd column of b
b[h , 2 ] = $coeff

endloop

cnameset (b , s t r s p l i t ( "OLS IV " ) ) # s e t column names f o r matrix b
return b

end function

###
### main
###

set verbose o f f
nulldata 400
set seed 1234 # s e t random seed f o r r e p l i c a b i l i t y

# run experiment with pi = 1.0 and plot r e s u l t s
b10 = run_experiment ( 1 . 0 )
boxplot −−matrix=b10 −−output=display
# run experiment with pi = 0.333 and plot r e s u l t s
b03 = run_experiment (1/3)
boxplot −−matrix=b03 −−output=display



Chapter 7

Panel data

7.1 Introduction

So far, we have made a sharp distinction between cross-sectional and time-
series datasets. In a cross-section, you observe a “screenshot” of many individ-
uals at a certain time; a time series, instead, observes one thing through time.

In panel datasets, you observe multiple individuals (that we will generally
call units) through time. Therefore, the typical element of a variable y will bear
a double subscript: yi ,t is the value for unit i at time t . In a parallel fashion,
the explanatory variables will be indexed similarly, as xi ,t . As a consequence, we
merge the two conventions used earlier and assume that i = 1. . .n and t = 1. . .T
so, for example, a typical excerpt of a panel dataset looks more or less like this:

id year y x z
...

451 2015 12 1 1
451 2016 14 1 0
451 2017 11 3 0
452 2010 12 5 0
452 2011 12 2 1

...

In this example, the “id” column identifies the different units, and the “year”
column identifies time, so the first row shown says that the value of y for unit
451 in the year 2015 is 12, or, in formulae, y451,2015 = 12, x452,2010 = 5, and so on.

In this chapter I will use the symbol N for the total number of observations.
From a practical point of view, a panel dataset may be balanced or unbalanced:
in the former case, you observe data over a common time range for each unit,
so you get valid data for each (i , t ) combination and N = n ·T . Otherwise, some
rows may be missing, and not all time periods are available for all units, so N <
nT . This is the most common case in practice.

207
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Typically, most panel datasets will contain data for many units for short time
periods: this situation is normally referred to as the “large n, small T ” case,
but other cases are possible. For example, macroeconomists regularly deal with
datasets where units are countries and the amount of data can be considerable
in the time dimension. In most microeconomic applications, however, you have
many individuals observed for short time spans. As we will see, this aspect be-
comes important for the asymptotic analysis of the estimators we have for panel
datasets.

In some cases, it makes sense to consider the
factors that provoke the appearance or disap-
pearance of a certain unit in the dataset. A clas-
sic example is firms going bankrupt. Of course,
these random factors may interact with the
Data Generating Process is very subtle ways.
This phenomenon is known as sample attri-

tion and in some cases may be very relevant to
the empirical analysis.
In the elementary treatment we give here, how-
ever, we assume that this issue is moot, as the
factors that determine whether a unit is observ-
able or not are completely independent from
the DGP we want to study.

The importance of panel datasets has grown exponentially since the IT rev-
olution of the 1980s-1990s: more and more datasets of this type are available,
simply as a consequence of the mechanisation of databases. For example: I
have been doing my weekly shopping for more than thirty years always at the
same supermarket chain, and I regularly swipe my customer card each time I
go. Those guys, potentially, know everything about my habits: what I like, what
I dislike, how much I spend each week, what I buy only during a discount pro-
motion, and so on. And they have the same information about millions of cus-
tomers. Just imagine the kind of datasets giants like Amazon possess. It should
be no surprise that econometricians have devoted a lot of energy into methods
for panel datasets and, as always, this book will only scratch the surface. If you
want to go deeper, Wooldridge (2010) is what everybody considers the ultimate
reference, but in my opinion Hsiao (2022) is also a must-have.

A mechanical application of the line of thought we followed in chapter 3
would disregard the panel nature of the dataset entirely and just focus on the
regression function E

[
yi ,t |xi ,t

]
. Of course this approach is possible, and leads to

our usual OLS statistic, which in this context is often called the pooled estimator
of the conditional mean parameters. While this is a technically valid procedure,
it is almost never a good idea, because we can do something smarter with the
information contained in the panel structure of the dataset and redefine the ob-
ject of our interest (from E

[
yi ,t |xi ,t

]
to something else), like we did in chapter 5,

so as to give a much more meaningful description of the DGP.

7.2 Individual effects

Consider the balanced panel dataset displayed in Table 7.1, where you have N =
18 observations, pertaining to n = 3 different units, with T = 6. The application
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Table 7.1: Small example panel dataset

id time y x
1 1 1.6 1.6
1 2 1.0 1.8
1 3 2.2 1.0
1 4 2.0 1.0
1 5 1.8 1.0
1 6 2.2 0.8
2 1 3.2 4.2
2 2 3.4 3.2
2 3 3.0 4.2
2 4 3.6 2.4
2 5 3.8 3.2
2 6 3.2 3.6
3 1 3.8 6.8
3 2 5.0 4.8
3 3 5.2 5.4
3 4 4.6 5.8
3 5 4.4 6.0
3 6 3.6 7.0

of OLS to these data gives the “pooled” estimate of E
[

y |x]
, which is

ŷ =1.62
(4.41)

+ 0.45
(4.97)

x,

where you have t-ratios bewteen parentheses and an R2 index of 60.7%. The
slope parameter, our customary indicator of the relationship between x and y ,
equals 0.45 and is very significant (its t-ratio is 4.97). What you see is a strong,
significant positive link between x and y .

Figure 7.1: Example data with OLS line

x

y ŷ = 1.62+0.45x

Figure 7.1 displays the data together with the fitted line, using different sym-
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bols to identify different units. In this context, the model we’re fitting is

yi ,t = x′i ,tβ+εi ,t (7.1)

and we’re not using the information we have on the different units at all.
How can we improve on the above? The idea is to introduce heterogeneity

between units into the picture, and generalise the DGP by allowing for the pos-
sibility of each units having its own set of parameters. A fully general application
of this principle would entail considering an object like

mi (x) = E
[

yi ,t |xi ,t
]

(note that the regression function m has a subscript i ). In principle, this ap-
proach would lead us to estimating a different regression function for each unit,
which is undesirable for various reasons: first, in the typical “large n, small T ”
scenario, it is quite possible that T , the number of observations you have for
one unit, is smaller than k, the number of parameters in your model, which
would make estimation impossible. Moreover, that level of generality is not even
needed. In most contexts, it is perfectly reasonable to assume that heterogene-
ity between units does not affect the marginal effects of x on y . In other words,
even if individuals are different, it’s often likely that the way they respond to vari-
ations in the observables is the same. If this is the case, then β is the same for all
units and we may settle for

yi ,t = x′i ,tβ+αi +εi ,t , (7.2)

where the αi term is commonly known as the individual effect. We can use
vectors and matrices for writing (7.2) more compactly, expressing all the obser-
vations for unit i as

yi = Xiβ+αi ι+εi (7.3)

where of course y is a T ×1 vector, X is a T ×k matrix, and ι is, as usual, a con-
formable vector of ones.1 The presence of the individual effects in equation (7.2)
means that each unit is potentially different from all the others because there is
a term αi , constant through time, that shifts the level of yi ,t by some amount.
The β vector, instead, is homogeneous across units.

In the simplest cases, it is customary to assume that, once heterogeneity is
taken into account, the disturbances are well-behaved, so the covariance matrix
for the whole ε vector isσ2

εI , whereσ2
ε is a positive scalar and I is a N×N identity

matrix. More general scenarios will be considered in section 7.3.4.
There are two main points to note about individual effects:

1. individual effects are unobservable (anything observable can be part of
the set of explanatory variables);

1If the panel were unbalanced, each unit would have its own time span, and we should say Ti
rather than T . But we’ll avoid this complication.
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2. individual effects are time invariant.

For example, imagine that yi ,t is the percentage of malnourished popula-
tion in country i at time t . There could be many factors that explain differences
between observations, the most obvious one being GDP per capita; this is ob-
servable, so it goes into xi ,t . Another one could be the fertility of soil; for the
sake of the example, assume that fertility is unobservable. Clearly, the soil of
each country is typical of that country. If we also assume that its characteristics
don’t change through time, soil fertility is one of the many possible factors that
may contribute to αi .

At this stage, we’re making no assumptions on the relationship between ob-
servables and individual effects. For all we know, soil quality and per capita GDP
could be related or not. Another example, close to the one I used in section 6.3,
is the Mincer wage equation: if you have a panel dataset with individuals’ wage
and education, the individual effect could be rightfully interpreted as “unob-
servable ability”. Is it independent of education? Maybe it is, maybe not. In the
toy dataset depicted in Figure 7.1, the average value of x seems to be different
across units, so one could think that observable and unobservable factors are
unlikely to be independent of one another.

For the estimation of β in equation (7.2), there are two ways to take individ-
ual effects into account:

fixed-effects approach: treat the individual effects as parameters to estimate
and make no assumptions about them.2 This approach is described in
Section 7.3.

random-effects approach: make some assumptions on the individual effects
and treat them as random variables. This leads to more efficient esti-
mators, provided certain conditions are met (but if they aren’t the con-
sequences could be catastrophic). Section 7.4 is about this.

7.3 Fixed effects

7.3.1 Using dummy variables

In this section, we treat individual effects as parameters. Therefore, a very crude
way to estimate equation (7.2) is to add individual dummies, that is

yi ,t = x′i ,tβ+α1d 1
i ,t +α2d 2

i ,t +·· ·+αnd n
i ,t +εi ,t (7.4)

2This approach, in principle, may lead to some complications because, apart from β, you have
n different αi parameters to estimate. In general, when the number of parameters to estimate is
not fixed, but is a function of the sample size, we may not be able to estimate consistently any
of them. In the statistical literature, this is known as the incidental parameters problem, but
fortunately in linear models (the only ones we consider here) we don’t have to worry about this
issue: more on this at the end of section 7.3.3.
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where d 1
i ,t ,d 2

i ,t etc are a set of dummies for unit 1, 2 and so on, respectively (so
no, the number near the letter d is not an exponent). Therefore, the model for
unit k would simply reduce to (7.2), since for that unit d k

i ,t = 1 and all the other
dummies are 0. If units differ on account of some unobserved factor that shifts
the level of y for each one of them but keeps the marginal effects β equal across
units, then we have an ordinary linear model in which each unit has its own
intercept.

In matrix notation, eq. (7.4) would read

y = Xβ+Dα+ε, (7.5)

where, with the vector notation used in equation (7.3), the relevant matrices look
like this:

y =


y1

y2
...

yn

 X =


X1

X2
...

Xn

 D =


ι 0 . . . 0
0 ι . . . 0
...

...
. . .

...
0 0 . . . ι

 ε=


ε1

ε2
...
εn

 ;

note that X is an N ×k matrix, whereas D is N ×n.3

As usual, the parameters we’re interested in are the β vector, and the esti-
mate you get by applying OLS to (7.4) is known as the LSDV (Least Squares with
Dummy Variables) estimator. In principle, one could also consider the estimates
of the individual effectsαi , but this is less interesting and is not done very often.

What is the interpretation of β in this context, and how different is it from
its “pooled” counterpart? The estimate we get of β from equation (7.4) is the
marginal effect of x on y once heterogeneity between units has been taken into
account.

For example, the estimates you’d get by applying model (7.4) to the example
dataset in Table 7.1 are

ŷi ,t =−0.62
(−6.24)

xi ,t+ 2.54
(16.0)

d 1
i ,t+ 5.53

(15.3)
d 2

i ,t+ 8.15
(13.5)

d 3
i ,t

where, again, the numbers in round brackets are t-ratios and the fitted value
lines are displayed in Figure 7.2. Not only R2 jumps to 92.8% here, but the slope
coefficient changes sign (also: it’s even more significant)! Do we have a con-
tradiction here? Not really: if we look at what happens if we follow each unit
through time, we have a negative association between y and x. In each indi-
vidual’s experience, when x goes up, y goes down (on average). However, in
our example units with larger values of x generally have larger values of y , so
the overall conditional mean of y on x has a positive slope, because it doesn’t
take into account unobservable differences between individuals. By explicitly

3For you linear algebra addicts: if the panel is balanced, the structure of the D matrix could
be handled in a very elegant and effective way using a cool tool called Kronecker product: those
interested may jump to Section 7.A.1.
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Figure 7.2: Example data with FE estimate

x

y

considering individual effects, we eliminate heterogeneity and shed light on the
negative relationship that each individual observes.

From a practical point of view, the insertion of the unit dummies creates a
few issues. First, the regressor matrix would have k +n columns, so if n is large
OLS estimation involves the inversion of a disproportionately large matrix, but
even that wouldn’t be a serious problem for modern computers unless n is in the
thousands or so. In addition, to carry out estimation you can’t have a constant
in your model unless you drop one of the unit dummies to avoid the collinearity
problem known as the “dummy trap” (see Section 1.3.3), but apart from this, es-
timation is a straightforward application of OLS. In the example above, inserting
a constant and dropping the dummy for unit 1 would give

ŷi ,t = 2.54−0.62xi ,t +2.98d 2
i ,t +5.60d 3

i ,t ,

which is clearly equivalent (apart from rounding errors).
Finally, the possibility of time-invariant regressors raises a somewhat more

delicate point: these cannot coexist with the unit dummies for collinearity rea-
sons. The classic example is gender: if units are persons, the possibility of ob-
serving an individual changing their gender in our sample is usually very low.
Therefore, one of the columns of the X matrix will contain, for each unit, the
same value repeated from t = 1 to T . It is a simple exercise to prove that such a
column would be a linear combination of the columns of D, and therefore OLS
would be unfeasible. However, this issue can be circumvented by using a slightly
different estimation technique, that I’ll illustrate in Section 7.4.2.

One nice thing about this setup is that it makes heterogeneity testable rather
easily. Assuming (without loss of generality) that we drop the individual dummy
for the first unit, the the null hypothesis for the test is H0 :α2 =α3 = . . . =αn = 0,
which would be equivalent to homogeneity across units. Under H0 the preferred
model would be the pooled one, so this kind of test is often termed a poolability
test. The details of the test are unimportant: this is just a linear test on param-



214 CHAPTER 7. PANEL DATA

eters if the Rβ = d form, so you have the choice of using any of the procedures
described in section 3.5; of course, this is a joint test where the number of hy-
potheses is n −1.

In the simple example above the F -form of the test would yield a p-value of
7.55615e-08, so the visual impression that units 1, 2 and 3 are indeed different
from each other would be strongly confirmed.

7.3.2 The “within” transformation

The LSDV approach is computationally very inefficient if you’re in the typical
“large n, small T ” case, because of the column size of the regressor matrix.4 For-
tunately, there is a very handy approach for obtaining the same statistic in a
different way. This approach also has the virtue of highlighting a few features of
the estimator, and is based on the so-called within transformation.

The within transformation for a variable essentially amounts to subtracting
the per-unit averages. For example, the within transformation for yi is

ỹi ,t ≡ yi ,t − ȳi ,

where ȳi is the average of the observations for unit i . Following most of the
literature, I will use the tilde as a decoration for within-transformed variables.

The reason why this is called the “within” transfromation is motivated by a
traditional decomposition of the variance of a variable. A precise definition of
the decomposition of variance in “within” and “between” components is one
of those pedantic things that make descriptive statistics one of the most bor-
ing things on Earth. Let’s just say that the transformation above annihilates all
the differences between units (the per-unit average of ỹi ,t is 0 by construction)
and all the information that is left comes from variability within units through
time (hence the name). Therefore, the within tranformation of a time-invariant
variable, such as gender in the example above, gives you a vector of zeros.

The matrix representation of the within transformation is very useful: at the
very beginning of this book (see Section 1.2) I showed that the average of yi can
be written as

ȳi = (ι′ι)−1ι′yi .

Therefore, we can easily compute the vector of the deviations of yi from its own
mean as

ỹi = yi −ιȳi = yi −ι(ι′ι)−1ι′yi = yi −Pyi =Qyi ;

where I used P and Q as synonyms for Pι and Mι, respectively (we’ll use these
matrices quite often in Section 7.4, so it’s good to have a quick alternative nota-
tion; besides, I’m trying to stay consistent with the notation traditionally used in

4On the other hand, nothing prevents you from also adding “time dummies” for t = 1, t = 2
etc. if T really is a small number. This is actually quite common practice. Section 7.A.4 shows how
this works in practice.
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most textbooks).5 The reader is invited to check that applying the within trans-
formation to the toy example in Table 7.1 gives the data shown in Table 7.2.

Table 7.2: Within tranformation

y x ȳ x̄ ỹ x̃

1.6 1.6 1.8 1.2 -0.2 0.4
1 1.8 1.8 1.2 -0.8 0.6

2.2 1 1.8 1.2 0.4 -0.2
2 1 1.8 1.2 0.2 -0.2

1.8 1 1.8 1.2 0 -0.2
2.2 0.8 1.8 1.2 0.4 -0.4
3.2 4.2 3.367 3.467 -0.167 0.733
3.4 3.2 3.367 3.467 0.033 -0.267

3 4.2 3.367 3.467 -0.367 0.733
3.6 2.4 3.367 3.467 0.233 -1.067
3.8 3.2 3.367 3.467 0.433 -0.267
3.2 3.6 3.367 3.467 -0.167 0.133
3.8 6.8 4.433 5.967 -0.633 0.833

5 4.8 4.433 5.967 0.567 -1.167
5.2 5.4 4.433 5.967 0.767 -0.567
4.6 5.8 4.433 5.967 0.167 -0.167
4.4 6 4.433 5.967 -0.033 0.033
3.6 7 4.433 5.967 -0.833 1.033

With the help of the within transformation, we’ll rewrite equation (7.2) so
as to eliminate the individual effects.6 If you average observations for unit i
through time, you get

ȳi ≡ 1

T

T∑
t=1

yi ,t = 1

T

T∑
t=1

[
x′i ,tβ+αi +εi ,t

]
= x̄′i ,tβ+αi + ε̄i ,t , (7.6)

in obvious notation. Now subtract equation (7.6) from (7.2):

ỹi ,t = x̃′i ,tβ+ ε̃i ,t (7.7)

and the αi terms have disappeared. In vector form, the above would read

ỹi =Qyi =QXiβ+Qιαi +Qεi = X̃iβ+ ε̃i , (7.8)

where the main simplification trivially comes from Qι = 0. Naturally, we are
assuming that X constains no time-invariant regressors, which would become
columns of zeros, for the reasons given above.

5Here we’re assuming the panel is balanced to minimise the fuss, but the extension to un-
balanced panels is straighforward, as long as you admit that the P and Q matrices could have
different size for different individuals.

6The within transofrmation is a convenient way to sweep out theαi terms, but it’s by no means
the only one: considering first differences, that is∆yi ,t , would work just the same, with a few slight
adjustments.
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Intuition suggests that, having removed the individual effect by means of the
within transformation, you can estimate β by applying OLS to (7.7). This is in-
deed the case, and the result is known, unsurprisingly, as the “within” estimator.

The amazing result is that this statistic is exactly the same as you’d get from
using OLS on (7.4). The proof is quite simple if we consider the within trans-
formation as a matrix operation: the within transformation can be expressed in
matrix terms as the premultiplication of the original data by an N × N square
and singular matrix that we call Q:

ỹ = Qy X̃ = QX.

The Q matrix is a block-diagonal matrix, where all elements on the diagonal are
the Q matrices defined above, so it looks like this:

Q ≡


Q 0 . . . 0
0 Q . . . 0
...

...
. . .

...
0 0 . . . Q

 . (7.9)

Clearly, it is also possible to define P = PD analogously:

P ≡


P 0 . . . 0
0 P . . . 0
...

...
. . .

...
0 0 . . . P

 .

We won’t need P now, but we’ll use it later in Section 7.4. Therefore,

Qy =


Q 0 . . . 0
0 Q . . . 0
...

...
. . .

...
0 0 . . . Q




y1

y2
...

yn

=


Qy1

Qy2
...

Qyn

=


ỹ1

ỹ2
...

ỹn


and the algebra for X̃ is just the same. As a consequence, the within estimator,
which is just OLS on (7.7), can be written in matrix notation as7

β̂ = (X′QX)−1X′Qy = (X̃′X̃)−1X̃ỹ, (7.10)

and the corresponding model is called the within regression.
To prove that (7.10) is just the LSDV estimator, note that Q = MD, where D

is the N ×n matrix with all the unit dummies I used in equation (7.5) (the proof
is in section 7.A.5). Therefore, equivalence between the LSDV and within esti-
mators follows from the Frisch-Waugh theorem: the OLS estimate for equation
(7.5) satisfies

y = Xβ̂+Dα̂+e, (7.11)

7Quite evidently, Q is idempotent: I’ll leave the proof to the reader.
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so

MDy = MDXβ̂+e =⇒ X′MDy = X′MDXβ̂,

which implies (7.10) (you may need to go back to Section 1.4.4 for the different
passages).

In practice, then, the LSDV and within estimators are exactly the same thing,
so they have the same interpretation. For example, if you regress ỹ on x̃ in Table
7.2, the OLS coefficient you get is -0.62, exactly equal to the one we found for
model (7.4). You may use either term for them, or even a third alternative, pos-
sibly even more popular: the fixed-effects estimator, or FE for short, which I’ll
indicate by β̂F E .

Some readers may be troubled by the fact that
the disturbances in equation (7.7) are corre-
lated. This is easily seen by considering the vec-
tor representation (7.8): since ε̃i = Qεi , it fol-
lows that

V
[
ε̃i

]=QV
[
εi

]
Q ′.

Even in the ideal case, where V
[
εi

] = σ2
ε I ,

the covariance matrix of ε̃i would be V
[
ε̃i

] =
σ2
εQ, which is obviously non-diagonal (keep

in mind that Q is symmetric and idempotent).

This, however, is not a problem, since it can
be proven that in this case OLS coincides with
GLS, so OLS takes care of the problem quite ef-
fectively.

I’m not proving this because we’d need a
slightly more sophisticated definition of GLS
than I gave in chapter 4.2.1, on account of the
fact that Q is singular and I’d have to use the
“Moore-Penrose” inverse I hinted at in Section
1.A.4. Just trust me, OK?

With the LSDV approach, the estimates for the individual effects α̂i are ob-
tained directly. However, calculating them via the within estimator is also rather
easy: rewrite equation (7.11) as

y−Xβ̂F E = Dα̂+e.

If you pick a single unit, this implies

yi −x′i β̂F E = ια̂i +ei ;

now premultiply by 1
T ι

′ and use the fact ι′ei = 0: the result is

α̂i = 1

T
ι′(yi −x′i β̂F E ) = 1

T

T∑
t=1

ui ,t , (7.12)

where

ui ,t = yi ,t −x′i ,t β̂F E . (7.13)

So, all you have to do is compute the residuals you’d get by using the within
estimate on the untransformed data and take means by unit.
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7.3.3 Asymptotics for the FE estimator

While the meaning of the word “asymptotic” is straightforward in cross-sectional
or time-series datasets, it is not so for panel data. The number of rows in our
dataset N can go to infinity if either n or T do so, or both. In this book, we’ll
concentrate on the case when T is fixed and n →∞; the reader, however, should
be aware that in more sophisticated scenarios the case T →∞ may have be con-
sidered too.

The best starting point to analyse the asymptotic behaviour of the fixed-
effect estimator is to consider its LSDV representation: under the hypothesis
that no heteroskedasticity or serial correlation issues arise, standard OLS infer-
ence applies to equation (7.5), and therefore β̂F E is consistent and asymptoti-
cally normal, with a limit covariance matrix given by

V =σ2
εE

[
x̃i ,t · x̃′i ,t

]−1

Assuming we have a consistent estimator for σ2
ε, then a consistent estimate of

V
[
β̂F E

]
is

V̂ = σ̂2
ε(X̃′X̃)−1,

where we’re keeping T fixed here, as usual. The questions of interest are:

1. Do we have a consistent estimator for σ2
ε?

2. Is E
[
x̃ · x̃′

]
nonsingular, for n →∞?

For devising an estimator of the variance, the customary ingredient we’ve
been using all along is the sum of squared residuals. So far, the SSR divided
by the number of observations has always done the trick. In the context of FE
estimation, however, things are not so simple, and the appropriate estimator to
use is

σ̂2
ε =

SSR

N −n
. (7.14)

The reason why the denominator is different from the total number of observa-
tions is very interesting, but a bit too distracting at this point, so the interested
reader should jump to Section 7.A.6.8

As for the asymptotic behaviour of 1
N X̃′X̃, we must assume that there is suf-

ficient time-variability in the regressors not only to compute the estimator, but
also to allow E

[
x̃x̃′

]
to have full rank. Of course this excludes time-invariant re-

gressors, since the within transformation turns them into columns of zeros, but
also explanatory variables for which the within variation cannot be assumed to
increase for n → ∞. This is in fact a rather general point: consistency of β̂F E

depends on its variance going to 0: this happens only if the within variation in
regressors grows without bounds (the X̃′X̃ matrix goes to infinity). Therefore,

8Most textbooks, and all the software I’m aware of, use in fact a slightly different formula, where
SSN is divided by N −n −k rather than N −n; asymptotically, it makes no difference.
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if we have one or more regressors whose variation through time is limited, we
shouldn’t expect our estimates to have nice properties in terms of precision.

For example: suppose you have a dataset with 1000 individuals and you ob-
serve two of them changing their gender. In this case, the gender dummy be-
comes technically time-varying, so you can use it for fixed-effect estimation.
However, you can’t expect your estimates to be particularly precise, as your X̃′X̃
matrix will be near-singular. Moreover, in order to consider your estimator as
consistent, you must be willing to assume that, in principle, the number of trans-
gender people in your sample would increase as n grows (which could be rea-
sonable or not).

Therefore, as long as our object of interest is inference on β, we can just
happily use the within regression, provided we make the necessary adjustment
to our estimator of σ2

ε. If we wanted to make inference on the individual effects,
instead, things are not so simple, since in the usual “large n, small T ” scenario,
the estimates of αi you get from LSDV are not consistent for n →∞. This is easy
to see by considering equation (7.12): the statistic α̂i , is calculated on the T ob-
servations we have the i -th individual, so its variance is not a function of n at all,
and n going to infinity has no effect on the distribution of α̂i . Fortunately, this
is not a problem for estimating β, because our estimator β̂F E doesn’t depend on
the estimated individual effects. Nevertheless, the reader should be aware that
in statistical models where the object of interest is not a linear regression func-
tion, it may be impossible to estimate the parameters of interest separately from
the individual effects, and inconsistency may be a very serious problems. This
is the so-called “incidental parameters” problem I hinted at a few pages back.

7.3.4 Heteroskedasticity and dependence between observations

In fact, we could allow for greater generality by considering several extensions:
the first one that comes to mind is heteroskedasticity, with unit-specific vari-
ances for εi ,t . This is not a particularly serious problem, since appropriate adap-
tations of the robust estimators à la White (see Section 4.2.2) are quite simple
and effective.

More worryingly: if we consider equation (7.2), it is clear that the hypothesis
V (ε) = σ2

εI implies that, apart from the individual effects, all observations are
incorrelated with each other. This includes observations pertaining to the same
unit at different times. In many cases, this could be unrealistic.

In fact, time persistence can be a very likely possibility, since model (7.2) is
almost certain to neglect some time-varying unobservable factors that evolve
gradually through time. By applying the sample logic as in chapter 5, we could
allow for some kind of ADL structure in equation (7.2). The kind of models you’d
get are normally called dynamic panel models, and have become increasingly
popular since the late 1980s. However, inference is considerably more complex
than in the static models we consider here: the tool that is almost invariably
used is the Generalised Method of Moments (GMM), which you can think of
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as a generalisation of the IV technique that chapter 6 is about. The obligatory
reference for these cases is again Wooldridge (2010), but Biørn (2017) is also very
good.

A different possibility for dealing with the persistence issue is to stick with
the static formulation (7.2) and assume that any kind of time-dependence be-
tween observations can be accommodated via correlation between disturbances.
It turns out that, if this is the case, the fixed-effects estimator β̂F E is consistent
under a fairly large spectrum of conditions. The only problem is, like in static
models with heteroskedasticity, that in order to perform inference correctly, the
covariance matrix for β̂F E needs an appropriate adjustment. This leads us to the
idea of clustered covariance matrix.

A full description of cluster-robust inference has no place in this book; suf-
fice it to say that you divide your observations in observable groups called clus-
ters, and you allow the εi ,t random variable to be arbitrarily correlated inside
the group. The variable which tells you which group an observation belongs to
is called the “clustering” variable.

Of course, the most obvious choice for clustering is the variable indexing
units (the “id” variable in Table 7.1). In this case, equation (7.3) would be gener-
alised so as to allow the covariance matrix to be pretty much anything, instead
of a scalar matrix:

V[εi ] = E
[
εiε

′
i

]=Σi .

Note that the covariance matrix bears the subscript i , so we’re also implicitly
allowing for arbitrary forms of heteroskedasticity. Other choices, however, are
possible. For example, it may be not unrealistic to imagine that some correlation
may exist across different units: the classic example is a panel where units are
geographical entities, where units are regions and clusters are countries, but one
could also think of individuals belonging to the same household, firms in the
same sector, etc. Let me just say that the literature on this topic has exploded
in the past 15 years, and that Cameron and Miller (2010) or Cameron and Miller
(2015) provide excellent surveys.

7.4 Random effects

The basic idea that gives rise to the random effects estimator (abbreviated as
RE) is that in some cases we may be willing to put some structure on the in-
dividual effects, rather than being completely agnostic about them as we do in
fixed-effects estimation.

Since individual effects are taken to represent a heap of time invariant, un-
observed, and possibly very diverse factors that describe how units differ from
one another, it’d be natural to describe the αi terms as random variables. If we
assume the existence of moments, then the assumption E[αi ] = 0 implies no
loss of generality, and V[αi ] = σ2

α is nothing more than a mild regularity condi-
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tion. With these assumptions, then equation (7.2) can be rewritten as

yi ,t = x′i ,tβ+ωi ,t (7.15)

where ωi ,t =αi +εi ,t . The same equation for unit i can be written as

yi = Xiβ+ωi (7.16)

where ωi ≡ αi ι+εi . By making the harmless assumption that E
[
αiεi ,t

] = 0 for
all i and t , the covariance matrix of ωi equals

Σ= V[ωi ] = E
[
ωiω

′
i

]= V[εi ]+σ2
αιι

′ =σ2
εI +σ2

αιι
′, (7.17)

where the last equality comes from the assumption that the disturbances are
well-behaved. If we also assume independence between units, equation (7.15)
for the whole sample would therefore become

y = Xβ+ω (7.18)

where

V[ω] =Ω=


Σ 0 . . . 0
0 Σ . . . 0
...

...
. . .

...
0 0 . . . Σ

 (7.19)

is a block-diagonal matrix.
We are now in the position to substantiate the claim I made at the end of

Section 7.1, when I said that using the pooled OLS estimator is almost never a
good idea with a panel dataset: for a start, the covariance matrix of the distur-
bance term is not scalar, which suggests that even though OLS on (7.15) was
consistent, valid inference requires at least with some form of robust covariance
matrix estimation (see Section 4.2.2). Besides, consistency itself may be at risk:
even if E[αi ] = 0, there is no guarantee that αi and xi should be independent, or
at least incorrelated (see the discussion at the end of Section 7.2). If E[αi |xi ] ̸= 0,
if follows that E

[
ωi ,t |xi

] ̸= 0 and therefore E
[

yi ,t |xi ,t
] ̸= x′i ,tβ: the classic endo-

geneity problem we analysed in Chapter 6, that renders the pooled estimator
inconsistent.

In the light of these two possible problems, what could an effective strategy
be? Let’s put the endogeneity issue aside for the moment (we’ll come back to it
in section 7.4.2). If E[αi |xi ] = 0, one may conjecture that OLS should be more
efficient than the FE estimator, since the FE estimator uses only the “within”
variation in the data, but we could use the “between” information (that is, dif-
ferences between units) to gain some efficiency.

In fact, we can do even better than OLS: from equation (7.17), the structure
of the covariance matrix of Σ is known, bar two scalars, σ2

ε and σ2
α. Therefore,



222 CHAPTER 7. PANEL DATA

if these two scalars were known, we could use the GLS estimator, described in
Section 4.2.1), which I’m reproducing here for your convenience:

β̃ = [
X′Ω−1X

]−1
X′Ω−1y.

This solution would take care of two problems at once: we’d be using the most
efficient estimator possible, and we wouldn’t have to worry about robust infer-
ence. In practice, the two variances we need to get the job done are unknown,
but asymptotically consistent estimators would be just as good, so a FGLS esti-
mator would be available. This is what we call the RE estimator.

It turns out that, as often happens, once the original data are suitably mod-
ified, the RE estimator can be rewritten as OLS on the transformed data. The
transformation we need is known as “quasi-differencing”: for each observation,
we subtract a fraction of the per-unit average from the original data:

y̆i ,t = yi ,t −θ ȳi ,

where 0 ≤ θ ≤ 1. In vector form,

y̆i = yi −θιȳi = (I −θP )yi ,

where, again, P is an alias for Pι. Quasi-differencing for the whole sample can
be written as

y̆ = (I −θP)y,

where P was defined in section 7.3.2 or, equivalently, as

y̆ = [Q+ (1−θ)P]y, (7.20)

given that Q = I −P
For a given value of θ, the RE estimator is just OLS on the quasi-differenced

data, that is
β̀(θ) = [

X̆′X̆
]−1

X̆′y̆. (7.21)

As is easy to check, quasi-differencing with θ = 1 is just the within transfor-
mation, so β̀(1) = β̂F E . At the other end of the spectrum, where θ = 0, the orig-
inal data are unmodified, so β̀(0) is the just pooled OLS estimator. Note that,
for θ < 1, time-invariant variables do not become zero, and so they are perfectly
useable.

Derivation of the optimal choice of θ for GLS estimation is a bit techincal,
and is in Section 7.A.7 for those interested. Here, I’m just giving you the solution
straight away, which is

θ = 1−
√

σ2
ε

σ2
ε+Tσ2

α

. (7.22)

Note that, when σ2
ε is large compared to σ2

α, θ will be near 0: heterogeneity
between units is negliglible and the optimal estimator is practically OLS. Con-
versely, if σ2

ε is very small compared to σ2
α, then θ is close to 1 and the within
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estimator is optimal, since all the variance inωi ,t comes from individual effects,
which are eliminated by the within transformation.

As I said earlier, the two variances σ2
ε and σ2

α are unknown in practice, so
they must be estimated. The almost universal solution is to use FE for σ2

ε; as
for σ2

α, there are various alternatives and it is not clear if the “best” one even
exists. Shortly after the RE estimator was invented, in the late 1960s, quite a lot
of work was devoted to this issue, and the method most software uses is the one
by Swamy and Arora (1972), but you should be aware that you may get different
results form different programs because different (equally defensible) methods
are adopted.

Anyway: once we have consistent estimates of σ2
ε and σ2

α, to compute FGLS
we just plug them into equation (7.22) and obtain

θ̂ = 1−
√

σ̂2
ε

σ̂2
ε+T σ̂2

α

, (7.23)

a consistent estimate of θ. By using θ̂, we can compute the quasi-differenced
data y̆ and X̆ and, finally, compute β̂RE as OLS on the quasi-differenced data.
And that is what we call the RE estimator:9

β̂RE = β̀(θ̂). (7.24)

7.4.1 The Hausman test

Having dealt with the particular covariance structure of ωi ,t , we now turn to the
other issue I mentioned above, that is the possibility of the observables xi ,t being
correlated with the individual effect αi . In many cases, this is a very real possi-
bility: think about the example I used on page 211, where GDP per capita is one
of the regressors xi ,t and soil fertility is one of the things that go into the indi-
vidual effectαi : who says that GDP per capita and soil fertility are independent?
More generally, it’s easy to imagine other examples, such as unobserved ability
and schooling in a Mincer wage equation.

As I argued above, this is not a problem for the FE estimator, since the within
transformation just sweeps the individual effect away, but it would make OLS
and the RE estimator inconsistent. Therefore, we could compare the FE and RE
estimators to see if they are similar, much in the same way as we did in Section
6.4 when we compared the OLS and IV estimators. This comparison gave rise
to the “Hausman test”, and this case is just the same. In fact, the original article
(Hausman, 1978) uses exactly the two examples we have in this book, that is OLS
vs IV and RE vs FE.

9As the reader might imagine, robust versions of the RE estimator exists, but I’ll refrain from
illustrating the details, and I’ll just say that there is no additional worry compared to the FE case,
and they work as one would expect.
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What should we expect from the comparison? β̂F E is robust but inefficient;
β̂RE is efficient but potentially inconsistent.10 Under the null hypothesis of no
correlation between xi ,t and αi , the difference

δ = β̂F E − β̂RE

should converge to 0 in probability, because both statistics share the same limit.
Conversely, large values of δ should be taken as an indicator of endogeneity of
xi ,t .

The Hausman test can be carried out in a variety of ways, some numerically
equivalent, some only asymptotically. A choice that is used by several software
packages is to perform an auxiliary regression of the form

y̆i = X̆iβ+ X̃iγ+ui , (7.25)

and then a Wald test for the hypothesis H0 :γ = 0. With a bit of algebra, it can be

proven that this is equivalent to β̂F E − β̂RE
p−→ 0.

Therefore, the course of action to take is straightforward: after RE estima-
tion, look at the Hausman test. If the null is rejected, β̂RE is probably inconsis-
tent, and β̂F E is preferable. Otherwise, we may happily use β̂RE , which is better
than β̂F E because it’s more efficient. As simple as that.

7.4.2 Correlated Random Effects, aka “the Mundlak trick”

An alternative strategy for dealing with the possible correlation between the re-
gressors xi ,t and the individual effect αi comes from modelling explicitly the
correlation between them. This gives rise to an estimator sometimes called the
correlated random effects estimator, or CRE for short, proposed first by Mund-
lak (1978). As we will see shortly, however, the result will be less exciting than
one may hope, but side benefits will be substantial.

The key intuition is to consider the conditional expectation of αi to x̄i and
assume it is a linear function,

E[αi |x̄i ] = x̄′iγ; (7.26)

note that the conditioning variable we’re using here is not xi ,t , but rather its av-
erage through time. Since αi is time-invariant, it is quite natural to assume that
a time average of the xi ,t should capture the effect we’re after.

Therefore, if you define ui =αi − x̄′iγ you can re-write (7.2) as

yi ,t = x′i ,tβ+ x̄′iγ+ui +εi ,t = yi ,t = x′i ,tβ+ x̄′iγ+ηi ,t , (7.27)

where, by construction, none of the two error terms ui and εi ,t is correlated with
the explanatory variables. In vector form,

yi = Xiβ+PXiγ+ηi = Xiβ+ X̄iγ+ηi .

10Naturally, we have both parameters only for time-varying regressors, so the comparison is
limited to the subset of β̂RE that matches β̂F E .
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If you substitute αi with ui , and therefore ωi ,t in equation (7.15) with ηi ,t

in equation (7.27), you see that the structure of the covariance matrix of ηi is
absolutely identical, so nothing stops you from using FGLS on equation (7.27).
Therefore, in practice, Mundlak’s CRE estimator is just the RE estimator with the
time averages of Xi as additional regressors.

The fist thing to say is that the estimate of β you get is nothing new. With a
little bit of matrix algebra, it can be proven (I do it in Section 7.A.8) that the esti-
mated β vector is numerically equal to the within estimator β̂F E . Therefore, one
may think that the Mundlak procedure is just a tortuous avenue to get some-
thing we already had. Not quite: one nice thing of the CRE estimator is that it
provides us with a nice way to use time-invariant explanatory variables, which
is impossible with the LSDV or the within approaches.

Moreover, testing the hypothesis H0 : γ = 0 is very interesting: under the
null, the endogeneity problem just goes away. Therefore, rejection of the null
would imply we have to stick with FE, but otherwise we could gain efficiency and
go with RE. It should come as no surprise that testing this hypothesis is equiva-
lent to the Hausman test I described in the previous subsection.

7.5 An example with real data

7.5.1 The Kuznets curve

SIMON KUZNETS

The American economist Simon Kuznets (Nobel prize win-
ner in 1971) is credited with an idea that has become
known as the “Kuznets curve”. In short, the basic intuition
is that developing economies go through several structural
changes that provoke an increase in inequality in the early
stages, and a decrease later. Clearly, this idea is too me-
chanical and simplistic to paint an accurate picture, but if
there is something to it, we should observe that inequality
is highest in middle-income economies.

I collected some data from the World Bank’s WDI
database: per capita income and the Gini index (the stan-
dard measure of income inequality) for the years between 2008 and 2022.11

As often happens in these cases, the panel is heavily unbalanced. We have
lots of data for some economies, but for some countries we only have one or
two datapoints. Having said this, our dataset comprises 1044 observations for
157 countries. A scatterplot of the Gini index versus log GDP per capita is shown
in Figure 7.3.

The curve you see in the figure is the fitted line from a pooled OLS regres-
sion of the Gini index versus GDP per capita (in logs) and its square. I added to

11In the interest of replicability: the measure of GDP per capita I used is GDP per capita in con-
stant 2015 US$ (WDI code: NY.GDP.PCAP.KD.) The WDI code for the Gini index is SI.POV.GINI.
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Figure 7.3: The Kuznets curve

this model a dummy for European countries, since these countries have had a
historical and cultural preference for social equality that some people consider
a dangerous socialist drift. The results are shown in Table 7.3.

Pooled OLS, using 1044 observations
Included 157 cross-sectional units
Time-series length: minimum 1, maximum 15
Dependent variable: Gini

coefficient std. error t-ratio p-value
--------------------------------------------------------
const -15.2335 7.78943 -1.956 0.0508 *
y 12.7708 1.74755 7.308 5.40e-13 ***
y2 -0.712896 0.0969748 -7.351 3.97e-13 ***
Europe -9.35281 0.426650 -21.92 7.23e-88 ***

Mean dependent var 36.39588 S.D. dependent var 7.629774
Sum squared resid 35233.57 S.E. of regression 5.820518
R-squared 0.419705 Adjusted R-squared 0.418031
F(3, 1040) 250.7304 P-value(F) 2.1e-122

Table 7.3: The Kuznets curve: OLS estimates

Here we seem to have a confirmation of Kuznets’ hypothesis: the curvature
is negative (the coefficient for y2 is negative and significant) and the distribu-
tion of income for European countries is confirmed to be more even than other
countries with similar levels of GDP per capita.

However, this is a pooled estimate, conceptually similar to the plot I showed
you earlier, in Figure 7.1. Is it possible that the results we are seeing neglect the
effect of unobserved heterogeneity between countries. Therefore, we turn to FE
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estimates.

7.5.2 Fixed-effects estimates

A word of warning on the presence of a constant in the FE estimate. Strictly
speaking, the intercept is a time-invariant regressor, so it should not appear in
the FE output. However, most econometric software (including gretl, which is
what I’m using) adopt a slightly different convention on the definition of the
matrix D in (7.5), so that an intercept is in fact calculated.12

Fixed-effects, using 1044 observations
Included 157 cross-sectional units
Time-series length: minimum 1, maximum 15
Dependent variable: Gini
Omitted due to exact collinearity: Europe

coefficient std. error t-ratio p-value
-------------------------------------------------------
const 69.4905 20.2572 3.430 0.0006 ***
y -0.546958 4.60603 -0.1187 0.9055
y2 -0.331499 0.260585 -1.272 0.2037

Mean dependent var 36.39588 S.D. dependent var 7.629774
Sum squared resid 2687.375 S.E. of regression 1.742579
LSDV R-squared 0.955739 Within R-squared 0.129623
LSDV F(158, 885) 120.9498 P-value(F) 0.000000
Log-likelihood -1974.926 Akaike criterion 4267.851
Schwarz criterion 5055.031 Hannan-Quinn 4566.408
rho 0.615823 Durbin-Watson 0.582907

Test for differing group intercepts -
Null hypothesis: The groups have a common intercept
Test statistic: F(155, 885) = 69.1486
with p-value = P(F(155, 885) > 69.1486) = 0

Table 7.4: The Kuznets curve: fixed-effects estimates

Having said this, Table 7.4 is relatively straightforward to comment: the “Eu-
rope” dummy drops out of the equation on account of it being time-invariant, as
explained in Section 7.3.1. Moreover, the the poolability test rejects the null very
strongly (the p-value is so small that the software just prints 0). This means that
heterogeneity between units (countries in this case) is substantial and a pooled
model may yield misleading results, as long as we’re interested in the effect of
GDP on inequality. In fact, the Kuznets curve simply disappears: the coefficients
on per capita GDP and its square are not significant.

Nevertheless, it can be verified that the joint hypothesis of both coefficients
being zero delivers a very small p-value (2.09218e-27): dropping the quadratic

12The difference amounts to modifying the withing transformation by adding back, for each
observation, the overall mean: ỹi ,t = yi ,t − ȳi + ȳ .
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term gives a marginal effect of -6.36334, with a t-statistic of -11.41:13 it seems
we do have a uniformly inverse relationship, instead of a concave curve.

Therefore, having eliminated the variation between countries, what we ob-
serve is the relationship between GDP and inequality through time: if we con-
centrate on the individual history of each country, we observe that on average
inequality decreases with economic growth, instead of the “inverted-U” rela-
tionship described by Kuznets.

One last thing to note is that the estimated value for the first-order autocor-
relation of residuals ρ̂ is 0.6158, so we have a substantial autocorrelation prob-
lem. In principle, we should go for a dynamic model, but here we’re following
the easier route of just using cluster-robust standard errors, by unit. That is,
we employ a different estimator for the variance of β̂F E , that permits (a) arbi-
trary correlation through time between observations for the same country and
(b) heteroskedasticity between countries.

coefficient std. error t-ratio p-value
-------------------------------------------------------
const 69.4905 40.3405 1.723 0.0869 *
y -0.546958 8.90973 -0.06139 0.9511
y2 -0.331499 0.491751 -0.6741 0.5012

Table 7.5: The Kuznets curve: fixed-effects estimates with robust standard errors

As can be seen in table 7.5, the estimated standard errors are quite different
from Table 7.4. This is in fact a very common phenomenon: while it is very rare
in cross-sectional models that robust inference delivers substantially divergent
results from plain estimation, it panel dataset clustering by unit almost always
inflates standard errors by a great deal, and the interpretation of results may
have be adjusted, even radically.

In this case, however, the meaning conveyed by the model stays the same:
the Kuznets curve vanishes, although the joint test still rejects the null (the p-
value is 1.14766e-06) and the conclusions are the same.

7.5.3 Random-effects estimates

Having established that heterogeneity between countries is something we can-
not ignore, maybe we could gain efficiency by using the RE estimator (Section
7.4); to be on the safe side, I’ll use cluster-robust inference.

Note that in this case the quasi-differencing operation I described in section
7.4 is a little bit more complicated, because the panel is heavily unbalanced and
you have different numbers of observations for different countries. Equation
(7.22) contains the symbol T , so what should we use here? The solution is to
adopt a different θ for countries with different numbers of observations, so data

13I’m not reporting the whole restricted regression for the sake of brevity. This chapter is already
long enough. You can try it yourself if you want.
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for each unit are quasi-differenced using

θ̂i = 1−
√

σ̂2
ε

σ̂2
ε+Ti σ̂

2
α

;

(note the “i ” subscript). Clearly, (7.22) is just a special case of the equation
above, that applies to balanced panels where Ti = T for all units. Gretl reports
the average value of θ used, which is 0.85298.

Random-effects (GLS), using 1044 observations
Included 157 cross-sectional units
Time-series length: minimum 1, maximum 15
Dependent variable: Gini
Standard errors clustered by unit

coefficient std. error z p-value
------------------------------------------------------
const 18.7662 17.9769 1.044 0.2965
y 7.38777 4.16427 1.774 0.0760 *
y2 -0.579803 0.237245 -2.444 0.0145 **
Europe -3.53635 1.32306 -2.673 0.0075 ***

Mean dependent var 36.39588 S.D. dependent var 7.629774
Sum squared resid 48078.17 S.E. of regression 6.795925
Log-likelihood -3480.511 Akaike criterion 6969.022
Schwarz criterion 6988.825 Hannan-Quinn 6976.533
rho 0.615823 Durbin-Watson 0.582907

’Between’ variance = 39.864
’Within’ variance = 3.03658
mean theta = 0.85298
corr(y,yhat)^2 = 0.256021

Breusch-Pagan test -
Null hypothesis: Variance of the unit-specific error = 0
Asymptotic test statistic: Chi-square(1) = 3065.99
with p-value = 0

Hausman test -
Null hypothesis: GLS estimates are consistent
Asymptotic test statistic: Chi-square(2) = 22.3276
with p-value = 1.4178e-05

Table 7.6: The Kuznets curve: random-effects estimates

Comparing β̂F E with β̂RE , we observe a striking difference:

variable FE RE
y -0.547 7.388

y2 -0.331 -0.588

It looks as if the two estimates should come out as significantly unlike one
another, and this is indeed the case: the Hausman test rejects quite strongly (p-
value = 1.4178e-05), so it’s unlikely that the two estimators converge to the same
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probability limit. This is what happens when one or more of the explanatory
variables (presumably GDP per capita, in our case) is correlated with the indi-
vidual effect αi , on account of the endogeneity problem that this provokes. In
cases like these, the RE estimator is inconsistent, so we’d better stay with FE.

Finally, note that gretl (like all other software packages do) reports a test as
the Breusch-Pagan test. This is a test for the hypothesis H0 : σ2

α = 0: under the
null, the individual effects are in fact not even random variables at all, because
they have zero mean and zero variance, so αi = 0 for all units. Therefore, it can
be seen as the random-effects equivalent to the poolability test I described ear-
lier. In this case, the null is strongly rejected (the p-value is so small that the soft-
ware just says 0), so we see that heterogeneity is substantial, again. Note that this
is an entirely different test from the BP test for heteroskedasticity I mentioned
earlier in Section 4.2.3. The two tests share the same authors, but the similarity
stops there.

7.5.4 Correlated random effects

Random-effects (GLS), using 1044 observations
Included 157 cross-sectional units
Time-series length: minimum 1, maximum 15
Dependent variable: Gini
Standard errors clustered by unit

coefficient std. error z p-value
---------------------------------------------------------
const 8.96061 16.6681 0.5376 0.5909
y -0.546958 8.92260 -0.06130 0.9511
y2 -0.331499 0.492462 -0.6731 0.5009
Europe -7.90436 1.20454 -6.562 5.30e-11 ***
Py 8.10053 10.4543 0.7748 0.4384
Py2 -0.118126 0.575871 -0.2051 0.8375

Table 7.7: The Kuznets curve: CRE estimates

The final estimate we see is the CRE estimate (see Section 7.4.2). There’s
hardly anything to see here: the coefficients for the time-varying variables yi ,t

and y2
i ,t are absolutely identical to those in Table 7.5, as they should; their stan-

dard errors are not exactly the same, but that’s a consequence of using robust
SEs. If we had used plain GLS standard errors, they would have been identical
too; the difference is minor anyway. So, for the time-varying variables we have
nothing more than the FE estimate, and the interpretation is obviously the same.
On the contrary, the CRE technique allows us to keep the time-invariant dummy
for Europe in the model, which is (unsurprisingly) negative and significant.

Finally, note the insertion of the two “Mundlak” extra regressors, labelled
Py and Py2 in the table, which contain the per-unit averages of yi ,t and y2

i ,t ,
respectively. Although they are not significant individually, an F test for joint
significance of the two “Mundlak” extra regressors yields 11.1638, with a p-value
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of 1.59597e-05, which is (unsurprisingly) nearly identical to the Hausman test
shown in table 7.6.

7.A Assorted results

In this chapter, I used several matrix algebra concepts and results that had not
been necessary before. Therefore, this section starts with a quick and rudimen-
tary treatment of a few linear algebra topics. For more details, see Lütkepohl
(1996), Abadir and Magnus (2005) or Horn and Johnson (2012).

7.A.1 The Kronecker product

The usual way of multiplying two matrices, where C = AB comes from taking all
possible inner products of the rows of A and the columns of B is not the only
way to define a way of multiplying two matrices.

An alternative is provided by the so-called Kronecker product, also known
as tensor product, which is defined as follows. Take two matrices A and B , and
sat that A is r ×c and B is m×n. Then their Kronecker product A⊗B is a matrix
with r ·m rows and c ·n columns, in which each element of A is multiplied by
the whole matrix B.

A⊗B =


a1,1B a1,2B . . . a1,c B
a2,1B a2,2B . . . a2,c B

...
...

. . .
...

ar,1B ar,2B . . . ar,c B.


Note that, as a consequence of its definition, with the Kronecker product no con-
formability issues arise. On the other hand, like with ordinary matrix product,
Kronecker product is not commutative: A⊗B ̸= B ⊗ A.

The Kronecker product has many nice properties, but the only ones we will
need concern their combination with transposition, inversion and the ordinary
matrix product. It can be proven that

(A⊗B)′ = A′⊗B ′ (A⊗B)−1 = A−1 ⊗B−1 (A⊗B)(C ⊗D) = (AC ⊗BD)

Note: the last equality assumes that the matrices are conformable.
In many cases, the Kronecker product makes it much easier to work with

“large matrices with a structure”. For example, if the panel is balanced the D
matrix defined in equation (7.5) can be written as D = I ⊗ ι and the variance of
ω in equation (7.19) is V[ω] = I ⊗Σ, where I is n ×n; unfortunately, with unbal-
anced panels such elegance is unattainable.

Finally: the “vec” operator I illustrated in Section 4.A.3 and the Kronecker
product play together very nicely. The basic property you need to know is that

vec(ABC ) = (
C ′⊗ A

)
vec(B) ,
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so for example if

A =
[

1 2
3 4

]
B =

[
1

−1

]
C = [

3 6 9
]

you may verify that

ABC =
[−3 −6 −9
−3 −6 −9

]
so

vec(ABC ) =



−3
−3
−6
−6
−3
−9
−9


which is equal to

(
C ′⊗ A

)
vec(B) =



3 6
9 12
6 12

18 24
9 18

27 36


[

1
−1

]

7.A.2 The trace operator

Given a square matrix C with n rows and columns, the trace operator is defined
simply as

tr(C ) =
n∑

i=1
Ci ,i ,

that is, the sum of all the elements on the diagonal. Clearly, the trace of a scalar
is the scalar itself.

This operator is useful in many contexts, mostly related to the fact that, for
any given r × c matrix A (possibly, with r ̸= c),

tr
(

A′A
)= r∑

i=1

c∑
j=1

A2
i , j .

The two notable properties of the trace operator we use in our context are:

Linearity : tr (A+B) = tr(A)+ tr(B), and it is also true that tr(λC ) = λ · tr(C ),
where λ is a scalar. Note that linearity implies that the trace and expecta-
tion operators can be interchanged: if C is a random matrix,

E[tr(C )] = tr(E[C ]) .
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Commutation : tr (AB) = tr(B A), which implies the amusing property I like to
call the “train” property:

tr(ABC ) = tr(C AB) = tr(BC A) ;

that is: the argument of the trace operator is like a train, where you can
detach a wagon from one end and stick it to the other end. For example,
of x is a vector, the trace of the xx′ matrix can be computed very easily as

tr
(
xx′

)= tr
(
x′x

)= x′x,

with the second equality coming from x′x being a scalar.

7.A.3 A neat matrix inversion trick

Suppose P is idempotent and Q = I −P ; therefore Q is idempotent too and PQ =
QP = [0]. Assume that a matrix A can be written as

A =αP +βQ,

where α and β are nonzero scalars. Then, there is an amazingly simple way to
write the inverse of A:

A−1 = 1

α
P + 1

β
Q.

The proof is by direct multiplication:(
αP +βQ

)( 1

α
P + 1

β
Q

)
= α

α
P + β

β
Q = P +Q = I

because PQ =QP = [0] by construction and the cross-products drop out.
Note that, by the same logic, it’s also possible to compute the “inverse square

root” of A, that is a matrix that gives A−1 when multiplied by itself:

A−1/2 = 1p
α

P + 1√
β

Q,

and again, the proof is by direct multiplication. In fact, the result could be gen-
eralised to any exponent k:

Ak =αk P +βkQ.

7.A.4 Time dummies

The addition of time dummies to a fixed-effect model is straightforward, and
amounts to adding to the dataset a set of T dummies identifying time periods;
actually, you normally add T −1 to avoid the dummy trap.

Therefore, equation (7.4) would become, after dropping the dummies for
unit 1 and time 1,

yi ,t = x′i ,tβ+α2d 2
i ,t +·· ·+αnd n

i ,t +γ2t 2
i ,t +·· ·+γT t T

i ,t +εi ,t ;

this model is often called the two-way fixed-effects model. In the toy dataset in
Table 7.1, this would give:
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id time y x t2 t3 . . . t6

1 1 1.6 1.6 0 0 . . . 0
1 2 1 1.8 1 0 . . . 0
1 3 2.2 1 0 1 . . . 0
1 4 2 1 0 0 . . . 0
1 5 1.8 1 0 0 . . . 0
1 6 2.2 0.8 0 0 . . . 1
2 1 3.2 4.2 0 0 . . . 0
2 2 3.4 3.2 1 0 . . . 0
2 3 3 4.2 0 1 . . . 0
2 4 3.6 2.4 0 0 . . . 0
2 5 3.8 3.2 0 0 . . . 0
2 6 3.2 3.6 0 0 . . . 1
3 1 3.8 6.8 0 0 . . . 0
3 2 5 4.8 1 0 . . . 0
3 3 5.2 5.4 0 1 . . . 0
3 4 4.6 5.8 0 0 . . . 0
3 5 4.4 6 0 0 . . . 0
3 6 3.6 7 0 0 . . . 1

Note that in the “large n, small T ” scenario the number of dummies you use is
in fact relatively small, and does not create any computational problem. From
the viewpoint of the interpretation of results, the effect you have is that in your
estimate you not only get rid of heterogeneity across units, but also across time
periods. This is especially useful when some unobserved factor affects all units
in a given period. For example, imagine your dataset describes turnover by firms
and includes year 2020: surely you’ll want to control for the COVID pandemic,
since it’s reasonable to assume that it affected most, if not all, the units you ob-
serve.

Alternatively, you may want to economise on the number of regressors used
to clean unobservable time effects by using a time trend, and possibly its square.
How advisable this is depends on the data you have.

7.A.5 Proof that Q = MD

Here we assume that the panel is balanced for simplicity, although the unbal-
anced case would be completely analogous and the conclusion would be the
same, but the algebra would be somewhat messier. The Q matrix, defined in
equation (7.9) and repeated here for convenience, is:

Q ≡


Q 0 . . . 0
0 Q . . . 0
...

...
. . .

...
0 0 . . . Q

 .
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Now we prove that Q is in fact MD: first, note that D′D = T · I:
ι′ 0 . . . 0
0 ι′ . . . 0
...

...
. . .

...
0 0 . . . ι′




ι 0 . . . 0
0 ι . . . 0
...

...
. . .

...
0 0 . . . ι

=


ι′ι 0 . . . 0
0 ι′ι . . . 0
...

...
. . .

...
0 0 . . . ι′ι

= T · I

Therefore, (D′D)−1 = 1
T I. As a consequence,

PD = 1

T
DD′ = 1

T


ι 0 . . . 0
0 ι . . . 0
...

...
. . .

...
0 0 . . . ι




ι′ 0 . . . 0
0 ι′ . . . 0
...

...
. . .

...
0 0 . . . ι′

=


P 0 . . . 0
0 P . . . 0
...

...
. . .

...
0 0 . . . P

 .

and so

MD = I−PD =


I −P 0 . . . 0

0 I −P . . . 0
...

...
. . .

...
0 0 . . . I −P

=


Q 0 . . . 0
0 Q . . . 0
...

...
. . .

...
0 0 . . . Q

= Q.

A more compact proof can be given by using the Kronecker product, de-
scribed in Section 7.A.1: with a balanced panel dataset one can write D as I ⊗ ι,
where I is n ×n and ι is T ×1, and therefore

PD = (I ⊗ι)
[
(I ⊗ι)′(I ⊗ι)

]−1 (I ⊗ι′) = (I ⊗ι) [T · I ]−1 I ⊗ι′ = 1

T
(I ⊗ιι′) = I ⊗P ;

as a consequence,
MD = I ⊗ (I −P ) = I ⊗Q = Q,

as claimed.

7.A.6 The estimator of the variance in the within regression

In order to derive equation (7.14), we need to proceed in steps. Again, I’ll as-
sume that our panel is balanced for simplicity, but this restriction could be easily
dropped at the cost of more cumbersome notation.

First, let’s define the residuals from the within regression as

ui ,t = ỹi ,t − x̃i ,t β̂F E .

Now note that the SSR from the within regression can be written as

SSRW =
n∑

i=1

T∑
t=1

u2
i ,t =

n∑
i=1

u′
i ui ;

if we maintain independence between units, the rightmost expression is the sum
of n independent rv, and the probability limit of

1

n
SSRW = 1

n

n∑
i=1

u′
i ui
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should just equal E
[
u′

i ui
]
.

On the other hand, consistency of β̂F E implies that the within residuals ui ,t

converge to the centred disturbances ε̃i ,t as n →∞, ans so, by extension, does
the whole vector for a single unit

ui
p−→ ε̃i .

Therefore, one may say that, for n →∞, E
[
u′

i ui
]

should converge to E
[
ε′iεi

]
and

therefore
1

n
SSRW = p−→ E

[
ε′iεi

]
This limit can be computed by noting that ε̃i = Qεi , and so, by using the

properties of the trace operator (if you’re not 100% confident on the trace oper-
ator, section 7.A.2 is for you):

ε̃′i ε̃i = tr
(
ε̃′i ε̃i

)= tr
(
ε̃i ε̃

′
i

)= tr
(
Qεiε

′
i Q

)
.

The expected value of the above is

E
[
tr

(
Qεiε

′
i Q

)]= tr
(
E

[
Qεiε

′
i Q

])= tr
(
QE

[
εiε

′
i

]
Q

)= tr
(
σ2
εQQ

)=σ2
εtr(Q)

As for the trace of Q, note that Q = Mι, so

tr(Q) = tr(I )− tr
(
ι(ι′ι)−1ι′

)= T − tr
(
(ι′ι)−1ι′ι

)= T −1

so, finally
E

[
ε′iεi

]= (T −1)σ2
ε.

By combining results, it’s easy to see that

SSRW

n

p−→ (T −1)σ2
ε

and therefore a consistent estimator of σ2
ε is provided by

σ̂2
ε =

SSRW

n(T −1)
= SSRW

N −n
.

7.A.7 The RE estimator as FGLS

Let’s begin with a brief restatement of what a GLS estimator is: suppose we have
a model of the form

y = Xβ+ε V[ε] =Ω;

we need a matrix H such that
HΩH ′ = kI , (7.28)

where k is some arbitrary positive scalar, then we could transform the model
above by premultiplying everything by H :

Hy = HXβ+Hε= y̆+ X̆β+ ε̆.
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It’s easy to check that the covariance matrix of ε̆ is HV[ε] H ′ = kI , so the trans-
formed model is homoskedastic and OLS on the transformed data is efficient
and standard inference applies. The GLS estimator is therefore

β̃ = (X̆′X̆)−1X̆′y̆ = (X′Ω−1X)−1X′Ω−1y,

where the second equality comes from

Ω−1 = (1/k)H ′H ,

which I’m not proving, but it’s easy enough for the reader to demonstrate as an
exercise.

The matrix Ω is in our case given in equation (7.19), but in fact the peculiar
structure of the matrix implies that all we need to do is find a transformation for
the model for each individual, that is equation (7.16) (reported here for conve-
nience):

yi = Xiβ+ωi ;

As argued above (see equation (7.17)), the covariance matrix of ωi is14

Σ=σ2
εI +σ2

αιι
′

therefore, a simple solution to the GLS problem lies in finding a matrix H such
that HΣH ′ is a scalar multiple of the identity matrix or, equivalently, a matrix H
such that H ′H is a scalar multiple of Σ−1.

In order to do so, it is useful to rewrite Σ in terms of the idempotent matrices
P and Q:

Σ=σ2
εI +σ2

αιι
′ =σ2

εQ + (σ2
ε+Tσ2

α)P =σ2
ε

[
Q + σ2

ε+Tσ2
α

σ2
ε

P

]
Therefore, via the result shown in Section 7.A.3, it’s easy to see that the ap-

propriate matrix H is the “inverse square root of Σ”, H =Σ−1/2, that can be writ-
ten (apart from the σ2

ε scalar) as

H = Q +
√

σ2
ε

σ2
ε+Tσ2

α

P =

= (I −P )+
√

σ2
ε

σ2
ε+Tσ2

α

P =

= I +
(√

σ2
ε

σ2
ε+Tσ2

α

−1

)
P = I −θP

where

θ ≡ 1−
√

σ2
ε

σ2
ε+Tσ2

α

.

14As usual, I’m using the convenient simplification of assuming that the dataset is balanced and
you have T observations for each unit. Again, generalisation to unbalanced panels is possible but
somewhat messier.
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7.A.8 Proof that CRE yields FE

As noted in Section 7.4 (equation (7.20)), the quasi-differenced version of y can
be written as

y̆ = [Q+ (1−θ)P]y = ỹ+ (1−θ)ȳ.

It also follows that

Qy̆ = Q [Q+ (1−θ)P]y = Qy = ỹ (7.29)

Py̆ = P [Q+ (1−θ)P]y = (1−θ)Py = (1−θ)ȳ (7.30)

and analogous expressions trivially apply to X. Now write the augmented model
as

y = Xβ+ X̄γ+ε

and apply quasi-differencing so that GLS is just OLS on the transformed model

y̆ = X̆β+ X̄[(1−θ) ·γ]+ ε̆.

To find the estimate of β, use the Frisch-Waugh theorem:

β̂ = [
X̆′MX̄X̆

]−1
X̆′MX̄y̆.

From equation (7.30), it follows that

X̆′X̄ = X′ [Q+ (1−θ)P]PX = (1−θ)X̄′X̄.

and therefore

X̆′MX̄ = X̆′− X̆′X̄(X̄′X̄)−1X̄′ = [
X̃′+ (1−θ)X̄′]− (1−θ)X̄′ = X̃′

so
β̂ = [

X̃′X̃
]−1

X̃′y̆ = β̂F E

where the last equality comes from writing X̃′y̆ as X′Qy̆ and applying (7.29).



Bibliography

ABADIR, K. AND J. MAGNUS (2005): Matrix Algebra, Cambridge University Press.

ANDERSEN, H. AND B. HEPBURN (2016): “Scientific Method,” in The Stanford En-
cyclopedia of Philosophy, ed. by E. N. Zalta, Metaphysics Research Lab, Stan-
ford University, summer 2016 ed.

ANDREWS, I., J. H. STOCK, AND L. SUN (2019): “Weak instruments in instrumen-
tal variables regression: Theory and practice,” Annual Review of Economics,
11.

ANGRIST, J. D. AND J.-S. PISCHKE (2008): Mostly harmless econometrics: An em-
piricist’s companion, Princeton University Press.

AXLER, S. (2015): Linear algebra done right, Springer, 2nd ed.

BIAU, D. J., B. M. JOLLES, AND R. PORCHER (2009): “P value and the theory of
hypothesis testing: an explanation for new researchers,” Clinical orthopaedics
and related research, 468, 885–892.

BIERENS, H. J. (2011): Introduction to the Mathematical and Statistical Founda-
tions of Econometrics, Cambridge University Press.

BILLINGSLEY, P. (1986): Probability and Measure, Wiley series in probability and
mathematical statistics, John Wiley and Sons, 2nd ed.

BIØRN, E. (2017): Econometrics of panel data: Methods and applications, Oxford
University Press.

BROCKWELL, P. AND R. DAVIS (1991): Time Series: Theory and Methods, Springer
Series in Statistics, Springer.

CAMERON, A. C. AND D. L. MILLER (2010): “Robust inference with clustered
data,” Tech. rep., Working paper.

——— (2015): “A practitioner’s guide to cluster-robust inference,” Journal of hu-
man resources, 50, 317–372.

CAMERON, A. C. AND P. K. TRIVEDI (2005): Microeconometrics, Cambridge Uni-
versity Press.

239



240 BIBLIOGRAPHY

CARD, D. (1999): “The causal effect of education on earnings,” in Handbook of
Labor Economics, ed. by O. Ashenfelter and D. Card, Elsevier, vol. 3, Part A,
chap. 30, 1801–1863, 1 ed.

CASELLA, G. AND R. L. BERGER (2002): Statistical inference, Duxbury Pacific
Grove, CA, 2nd ed.

DADKHAH, K. (2011): Foundations of mathematical and computational eco-
nomics. 2nd ed., Berlin: Springer, 2nd ed. ed.

DAVIDSON, J. (1994): Stochastic limit theory: An introduction for econometri-
cians, Oxford University Press.

——— (2000): Econometric Theory, Wiley-Blackwell.

DAVIDSON, J., D. HENDRY, F. SRBA, AND S. YEO (1978): “Econometric Modelling
of the Aggregate Time-Series Relationship between Consumers’ Expenditure
and Income in the United Kingdom,” Economic Journal, 88, 661–92.

DAVIDSON, R. AND J. G. MACKINNON (1993): Estimation and inference in econo-
metrics, Oxford University Press.

——— (2004): Econometric theory and methods, Oxford University Press New
York.

DIXIT, A. K. (1990): Optimization in economic theory, Oxford University Press.

DURLAUF, S. AND L. BLUME (2008): The New Palgrave Dictionary of Economics,
Palgrave Macmillan UK.

EFRON, B. AND T. HASTIE (2016): Computer Age Statistical Inference: Algorithms,
Evidence, and Data Science, Cambridge University Press, 1st ed.

EPPERSON, J. F. (2013): An Introduction to Numerical Methods and Analysis, Wi-
ley Publishing, 2nd ed.

FANAEE-T, H. AND J. GAMA (2014): “Event labeling combining ensemble detec-
tors and background knowledge,” Progress in Artificial Intelligence, 2, 113–
127.

FREEDMAN, D. AND P. STARK (2016): “What is the chance of an earthquake?”
Tech. Rep. 611, Department of Statistics, University of California, Berkeley.

GALLANT, R. A. (1997): An Introduction to Econometric Theory, Princeton Uni-
versity Press.

GALTON, F. (1886): “Regression Towards Mediocrity in Hereditary Stature,” Jour-
nal of the Anthropological Institute of Great Britain and Ireland, 15, 246–263.



BIBLIOGRAPHY 241

GOURIEROUX, C. AND A. MONFORT (1995): Statistics and Econometric Models,
Cambridge University Press.

GRILICHES, Z. (1976): “Wages of Very Young Men,” Journal of Political Economy,
84, 69–85.

HALL, A. (2005): Generalized Method of Moments, Advanced texts in economet-
rics, Oxford University Press.

HANSEN, B. E. (2019): “Econometrics,” https://www.ssc.wisc.edu/
~bhansen/econometrics/.

HANSEN, L. P. AND T. J. SARGENT (2013): Recursive Models of Dynamic Linear
Economies, no. 10141 in Economics Books, Princeton University Press.

HAUSMAN, J. A. (1978): “Specification Tests in Econometrics,” Econometrica, 46,
1251–1271.

HAYASHI, F. (2000): Econometrics, Princeton: Princeton Univ. Press.

HILL, R., W. CARTER, E. GRIFFITHS, AND G. LIM (2018): Principles of Economet-
rics, John Wiley and Sons, 5th ed.

HORN, R. A. AND C. R. JOHNSON (2012): Matrix Analysis, Cambridge University
Press, 2nd ed.

HSIAO, C. (2022): Analysis of Panel Data, Econometric Society Monographs,
Cambridge University Press, 4 ed.

KING, G. AND M. E. ROBERTS (2015): “How robust standard errors expose
methodological problems they do not fix, and what to do about it,” Political
Analysis, 23, 159–179.

LÜTKEPOHL, H. (1996): Handbook of matrices, John Wiley and Sons.

LÜTKEPOHL, H. (2005): New introduction to multiple time series analysis,
Springer.

MACKINNON, J. G. (2006): “Bootstrap Methods in Econometrics,” Economic
Record, 82, S2–S18.

MACKINNON, J. G., M. Ø. NIELSEN, AND M. D. WEBB (2023): “Cluster-robust
inference: A guide to empirical practice,” Journal of Econometrics, 232, 272–
299.

MARSAGLIA, G. (2004): “Evaluating the Normal Distribution,” Journal of Statisti-
cal Software, 11, 1–11.

MULLAINATHAN, S. AND J. SPIESS (2017): “Machine Learning: An Applied
Econometric Approach,” Journal of Economic Perspectives, 31, 87–106.

https://www.ssc.wisc.edu/~bhansen/econometrics/
https://www.ssc.wisc.edu/~bhansen/econometrics/


242 BIBLIOGRAPHY

MUNDLAK, Y. (1978): “On the pooling of time series and cross section data,”
Econometrica, 69–85.

POPPER, K. R. (1968): Conjectures and Refutations: The Growth of Scientific
Knowledge., New York: Harper & Row.

RUUD, P. A. (2000): An introduction to classical econometric theory, Oxford Uni-
versity Press.

SIMS, C. A. (1972): “Money, Income, and Causality,” American Economic Review,
62, 540–552.

SPANOS, A. (1999): Probability theory and statistical inference: econometric mod-
eling with observational data, Cambridge University Press.

STAIGER, D. AND J. STOCK (1997): “Instrumental Variables Regression with Weak
Instruments,” Econometrica, 65, 557–586.

SWAMY, P. A. V. B. AND S. S. ARORA (1972): “The Exact Finite Sample Properties
of the Estimators of Coefficients in the Error Components Regression Mod-
els,” Econometrica, 40, 261–275.

THURMAN, W. N. AND M. E. FISHER (1988): “Chickens, Eggs, and Causality, or
Which Came First?” American Journal of Agricultural Economics, 70, 237–238.

VERBEEK, M. (2017): A Guide to Modern Econometrics, John Wiley and Sons, 5th
ed.

WASSERSTEIN, R. L. AND N. A. LAZAR (2016): “Editorial,” The American Statisti-
cian, 70, 129–133.

WHITE, H. (1980): “A heteroskedasticity-consistent covariance matrix estimator
and a direct test for heteroskedasticity,” Econometrica, 817–838.

——— (1994): Estimation, Inference and Specification Analysis, Cambridge Uni-
versity Press.

WILLIAMS, D. (1991): Probability with Martingales, Cambridge University Press.

WOOLDRIDGE, J. M. (2010): Econometric Analysis of Cross Section and Panel
Data, The MIT Press, 2nd ed.


	Foreword
	OLS: algebraic and geometric properties
	Models
	The average
	OLS as a descriptive statistic
	OLS on a dummy variable
	The general case
	Collinearity and the dummy trap
	Nonlinearity

	The geometry of OLS
	Projection matrices
	Measures of fit
	Reparametrisations
	The Frisch-Waugh theorem

	An example
	Assorted results
	Matrix differentiation rules
	Vector spaces
	Rank of a matrix
	Rank and inversion
	Step-by-step derivation of the sum of squares function
	Numerical collinearity
	Definiteness of square matrices
	A few more results on projection matrices


	Some statistical inference
	Why do we need statistical inference?
	A crash course in probability
	Probability and random variables
	Independence and conditioning
	Expectation
	Conditional expectation

	Estimation
	Consistency
	Asymptotic normality

	Hypothesis Testing
	The p-value

	Identification
	Assorted results
	Jensen's lemma
	Markov's and Chebyshev's inequalities
	More on consistency
	Why n ?
	The normal and 2 distributions
	Gretl script to reproduce example 2.6


	Using OLS as an inferential tool
	The regression function
	Main statistical properties of OLS
	Consistency
	Asymptotic normality
	In short

	Specification testing
	Tests on a single coefficients
	More general tests

	Example: reading the output of a software package
	The top table: the coefficients
	The bottom table: other statistics

	Restricted Least Squares and hypothesis testing
	Two alternative test statistics

	Exogeneity and causal effects
	Prediction
	The so-called ``omitted-variable bias''
	Assorted results
	Consistency of 2
	The classical assumptions
	The Gauss-Markov theorem
	Cross-validation and leverage
	Derivation of RLS
	Asymptotic properties of the RLS estimator


	Diagnostic testing in cross-sections
	Diagnostics for the conditional mean
	The RESET test
	Interactions and the Chow test

	Heteroskedasticity and its consequences
	If  were known
	Robust estimation
	White's test
	So, in practice…

	Assorted results
	Proof that full interactions are equivalent to split-sample estimation
	Proof that GLS is more efficient than OLS
	The ``vec'' and ``vech'' operators
	The bootstrap


	Dynamic Models
	Dynamic regression
	Manipulating difference equations
	The lag operator
	Dynamic multipliers
	Interim and long-run multipliers

	Inference on OLS with time-series data
	Martingale differences
	Testing for autocorrelation and the general-to-specific approach

	An example, perhaps?
	The ECM representation
	Hypothesis tests on the long-run multiplier
	Forecasting and Granger causality
	Assorted results
	Inverting polynomials
	Basic concepts on stochastic processes
	Why martingale difference sequences are serially uncorrelated
	From ADL to ECM


	Instrumental Variables
	Examples
	Measurement error
	Simultaneous equation systems

	The IV estimator
	The generalised IV estimator
	The instruments

	An example with real data
	The Hausman test
	Two-stage estimation
	The control function approach

	The examples, revisited
	Measurement error
	Simultaneous equation systems

	Are my instruments OK?
	The Sargan test
	Weak instruments

	Assorted results
	Asymptotic properties of the IV estimator
	Proof that OLS is more efficient than IV
	Covariance matrix for the Hausman test (scalar case)
	Hansl script for the weak instrument simulation study


	Panel data
	Introduction
	Individual effects
	Fixed effects
	Using dummy variables
	The ``within'' transformation
	Asymptotics for the FE estimator
	 Heteroskedasticity and dependence between observations

	Random effects
	The Hausman test
	Correlated Random Effects, aka ``the Mundlak trick''

	An example with real data
	The Kuznets curve
	Fixed-effects estimates
	Random-effects estimates
	Correlated random effects

	Assorted results
	The Kronecker product
	The trace operator
	A neat matrix inversion trick
	Time dummies
	Proof that Q= MD
	The estimator of the variance in the within regression
	The RE estimator as FGLS
	Proof that CRE yields FE


	Bibliography

