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Preface 

The mathematics contained in this book for students of economics and finance has, 
for many years, been given by the authors in two single-semester courses at the 
University of Wales Aberystwyth. These were mathematics courses in an economics 
setting, given by mathematicians based in the Department of Mathematics for 
students in the Faculty of Social Sciences or School of Management. The choice 
of subject matter and arrangement of material reflect this collaboration and are a 
result of the experience thus obtained. 

The majority of students to whom these courses were given were studying for 
degrees in economics or business administration and had not acquired any math-
ematical knowledge beyond pre-calculus mathematics, i.e., elementary algebra. 
Therefore, the first-semester course assumed little more than basic pre-calculus 
mathematics and was based on Chaps. 1–7. This course led on to the more advanced 
second-semester course, which was also suitable for students who had already 
covered basic calculus. The second course contained at most one of the three 
Chaps. 10, 12, and 13. In any particular year, their inclusion or exclusion would 
depend on the requirements of the economics or business studies degree syllabuses. 
An appendix on differentials has been included as an optional addition to an 
advanced course. 

The students taking these courses were chiefly interested in learning the math-
ematics that had applications to economics and were not primarily interested in 
theoretical aspects of the subject per se. The authors have not attempted to write an 
undergraduate text in economics but instead have written a text in mathematics to 
complement those in economics. 

The simplicity of a mathematical theory is sometimes lost or obfuscated by a 
dense covering of applications at too early a stage. For this reason, the aim of 
the authors has been to present the mathematics in its simplest form, highlighting 
threads of common mathematical theory in the various topics of economics. 

Some knowledge of theory is necessary if correct use is to be made of the 
techniques; therefore, the authors have endeavoured to introduce some basic theory 
in the expectation and hope that this will improve understanding and incite a desire 
for a more thorough knowledge. 

Students who master the simpler cases of a theory will find it easier to go on 
to the more difficult cases when required. They will also be in a better position to 
understand and be in control of calculations done by hand or calculator and also

v



vi Preface

to be able to visualise problems graphically or geometrically. It is still true that the 
best way to understand a technique thoroughly is through practice. Mathematical 
techniques are no exception, and for this reason the book illustrates theory through 
many examples and exercises. 

We are grateful to Noreen Davies and Joe Hill for invaluable help in preparing 
the manuscript of this book for publication. 

Above all, we are grateful to our wives, Nesta and Gill, and to our children, 
Nicholas and Christiana, and Rebecca, Christopher, and Emily, for their patience, 
support, and understanding: this book is dedicated to them. 

Aberystwyth, UK Vassilis C. Mavron 
Cardiff, UK Timothy N. Phillips 
March 2006



Preface to the Second Edition 

It is some 17 years since the first edition of this book was published. We have been 
encouraged to produce a second edition by colleagues and others who have adopted 
this book for their courses. They suggested a few additional topics that they wanted 
to see in a second edition, and we were very happy to include new material that 
cover these topics. 

In terms of the layout of the second edition, key learning objectives (KLOs) are 
listed at the start of each chapter and short self-assessment questions that assess 
whether students have achieved the KLOs are provided at the end of each chapter. 
The answers to the self-assessment questions are given in an appendix. 

Chapter 4 now introduces the notion of continuity that follows on from the 
introduction to limits. This concept naturally builds on the discussion of the 
reciprocal function. It is natural here to talk about limits from the right and from 
the left and conditions for a function to be continuous at a point in its domain using 
piecewise polynomials. Some examples in economics of discontinuous functions 
such as a salary schedule with a bonus payment are discussed. 

Chapter 10 generalises the definition of the determinant of a matrix to the . n × n

case in terms of .(n − 1) × (n − 1) cofactors. The cofactor method for determinants 
leads naturally to an extension of Cramer’s Rule for solving n linear equations in 
n unknowns. A completely new section on the eigenvalues and eigenfunctions of a 
matrix has been added. 

Chapter 11 now contains substantial new material and examples on integration 
by substitution, integration using partial fractions and integration by parts. 

Two new sections have been added to Chap. 13, one on the integrating factor 
technique for first order linear differential equations and one on Solow’s differential 
equation for the rate of change of capital stock. In the case of the Cobb-Douglas 
production function, this provides an example of a Bernoulli nonlinear differential 
equation. 

Aberystwyth, UK Vassilis C. Mavron 
Cardiff, UK Timothy N. Phillips 
July 2023
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1Essential Skills

� Key Learning Objectives
On completion of this chapter students should be able to:

• Evaluate arithmetic expressions
• Manipulate and simplify fractions
• Represent real numbers
• Determine the percentage of a quantity
• Simplify expressions involving powers and indices
• Simplify algebraic expressions
• Factorize algebraic expressions

1.1 Introduction 

Many models and problems in modern economics and finance can be expressed 
using the language of mathematics and analysed using mathematical techniques. 
This book introduces, explains, and applies the basic quantitative methods that form 
an essential foundation for many undergraduate courses in economics and finance. 
The aim throughout this book is to show how a range of important mathematical 
techniques work and how they can be used to explore and understand the structure 
of economic models. 

In this introductory chapter, the reader is reacquainted with some of the basic 
principles of arithmetic and algebra that formed part of their previous mathematical 
education. Since economics and finance are quantitative subjects it is vitally 
important that students gain a familiarity with these principles and are confident in 
applying them. Mathematics is a subject that can only be learnt by doing examples, 
and therefore students are urged to work through the examples in this chapter to 
ensure that these key skills are understood and mastered. 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
V. C. Mavron, T. N. Phillips, Elements of Mathematics for Economics and Finance,
Classroom Companion: Economics, https://doi.org/10.1007/978-3-031-43910-0_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43910-0protect T1	extunderscore 1&domain=pdf
https://doi.org/10.1007/978-3-031-43910-0_1
https://doi.org/10.1007/978-3-031-43910-0_1
https://doi.org/10.1007/978-3-031-43910-0_1
https://doi.org/10.1007/978-3-031-43910-0_1
https://doi.org/10.1007/978-3-031-43910-0_1
https://doi.org/10.1007/978-3-031-43910-0_1
https://doi.org/10.1007/978-3-031-43910-0_1
https://doi.org/10.1007/978-3-031-43910-0_1
https://doi.org/10.1007/978-3-031-43910-0_1
https://doi.org/10.1007/978-3-031-43910-0_1
https://doi.org/10.1007/978-3-031-43910-0_1


2 1 Essential Skills

1.2 Numbers 

For most, if not all, of us, our earliest encounter with numbers was when we were 
taught to count as children using the so-called counting numbers .1, 2, 3, 4, . . .. The  
counting numbers are collectively known as the natural numbers. The natural 
numbers can be represented by equally spaced points on a line as shown in Fig. 1.1. 
The direction in which the arrow is pointing in Fig. 1.1 indicates the direction in 
which the numbers are getting larger, i.e., the natural numbers are ordered in the 
sense that if you move along the line to the right, the numbers progressively increase 
in magnitude. 

It is sometimes useful and necessary to talk in terms of numbers less than zero. 
For example, a person with an overdraft on their bank account essentially has a 
negative balance or debt, which needs to be cancelled before the account is in credit 
again. In the physical world, negative numbers are used to report temperatures below 
0. ◦ Centigrade, which is the temperature at which water freezes. So, for example, 
. −5◦C is . 5◦ C below freezing. 

If the line in Fig. 1.1 is extended to the left, we can mark equally spaced points 
that represent zero and the negatives of the natural numbers. The natural numbers, 
their negatives, and the number zero are collectively known as the integers. All these 
numbers can be represented by equally spaced points on a number line as shown in 
Fig. 1.2. If we move along the line to the right, the numbers become progressively 
larger, while if we move along the line to the left, the numbers become smaller. So, 
for example, .−4 is smaller than .−1 and we write .−4 < −1 where the symbol ‘. <’ 
means ‘is less than’ or, equivalently, .−1 is greater than .−4 and we write . −1 > −4
where the symbol ‘. >’ means ‘is greater than’. Note that these symbols should not 
be confused with the symbols ‘. ≤’ and ‘. ≥’, which mean ‘less than or equal to’ and 
‘greater than or equal to’, respectively. Numbers such as . −3, .−48, .−765.32 and 
.−2.783 are all less than zero and are known as negative numbers. An overdraft of 
£500 is larger than an overdraft of £200 and we therefore say that .−500 is more 
negative than .−200. 

1 2 3 4 5 6 7  

Fig. 1.1 The natural numbers

-4 -3 -2 -1 0 1 2 3 4 5 

Fig. 1.2 Integers on the number line
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1.2.1 Addition and Subtraction 

Initially, numerical operations involving negative numbers may seem rather confus-
ing. We give the rules for adding and subtracting numbers and then appeal to the 
number line for some justification. If a and b are any two numbers, then we have 
the following rules 

.a + (−b) = a − b, . (1.1) 

a − (+b) = a − b, . (1.2) 

a − (−b) = a + b. (1.3) 

Thus we can regard .−(−b) as equal to . +b. 
We consider a few examples: 

. 4 + (−1) = 4 − 1 = 3,

and 

. 3 − (−2) = 3 + 2 = 5.

The last example makes sense if we regard .3 − (−2) as the difference between 3 
and .−2 on the number line. Note that .a − b will be negative if and only if .a < b. 
For example, 

. − 2 − (−1) = −2 + 1 = −1 < 0.

1.2.2 Multiplication and Division 

If a and b are any two positive numbers, then we have the following rules for 
multiplying positive and negative numbers: 

.a × (−b) = −(a × b), . (1.4) 

(−a) × b = −(a × b), . (1.5) 

(−a) × (−b) = a × b. (1.6) 

So multiplication of two numbers of the same sign gives a positive number, while 
multiplication of two numbers of different signs gives a negative number. For 
example, to calculate .2 × (−5), we multiply 2 by 5 and then place a minus sign 
before the answer. Thus, 

.2 × (−5) = −10.
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It is usual in mathematics to write ab rather than .a × b to express the multiplication 
of two numbers a and b. We say that ab is the product of a and b. Thus, we can 
write (1.6) in the form 

. (−a)(−b) = ab.

These multiplication rules give, for example, 

. (−2) × (−3) = 6, (−4) × 5 = −20, 7 × (−5) = −35.

The same rules hold for division because it is the same sort of operation as 
multiplication, since 

. 
a

b
= a × 1

b
.

So the division of a number by another of the same sign gives a positive number, 
while division of a number by another of the opposite sign gives a negative number. 
For example, we have 

. (−15) ÷ (−3) = 5, (−16) ÷ 2 = −8, 2 ÷ (−4) = −1/2.

1.2.3 Evaluation of Arithmetical Expressions 

The order in which operations in an arithmetical expression are performed is 
important. Consider the calculation 

. 12 + 8 ÷ 4.

Different answers are obtained depending on the order in which the operations are 
executed. If we first add together 12 and 8 and then divide by 4, the result is 5. 
However, if we first divide 8 by 4 to give 2 and then add this to 12, the result 
is 14. Therefore, the order in which the mathematical operations are performed 
is important and the convention is as follows: brackets, exponents, division, 
multiplication, addition, and subtraction. So that the evaluation of expressions 
within brackets takes precedence over addition and the evaluation of any number 
or expressions raised to a power (an exponential) takes precedence over division, 
for example. This convention has the acronym BEDMAS. However, the main point 
to remember is that if you want a calculation to be done in a particular order, you 
should use brackets to avoid any ambiguity.



1.3 Fractions 5

Problem 1.1 Evaluate the expression .23 × 3 + (5 − 1). 

Solution 1.1 Following the BEDMAS convention, we evaluate the contents of the 
bracket first and then evaluate the exponential. Therefore, 

. 23 × 3 + (5 − 1) = 23 × 3 + 4

= 8 × 3 + 4.

Finally, since multiplication takes precedence over addition, we have 

. 23 × 3 + (5 − 1) = 24 + 4 = 28.

1.3 Fractions 

A fraction is a number that expresses part of a whole. It takes the form .a/b where 
a and b are any integers except that .b �= 0. The integers a and b are known as 
the numerator and denominator of the fraction, respectively. Note that a can be 
greater than b. The formal name for a fraction is a rational number since they are 
formed from the ratio of two numbers. Examples of statements that use fractions 
are .3/5 of students in a lecture may be female or .1/3 of a person’s income may be 
taxed by the government. 

Fractions may be simplified to obtain what is known as a reduced fraction or a 
fraction in its lowest terms. This is achieved by identifying any common factors in 
the numerator and denominator and then cancelling those factors by dividing both 
numerator and denominator by them. For example, consider the simplification of 
the fraction .27/45. Both the numerator and denominator have 9 as a common factor 
since .27 = 9 × 3 and .45 = 9 × 5 and therefore it can be cancelled: 

. 
27

45
= 3 × 9

5 × 9
= 3

5
.

We say that .27/45 and .3/5 are equivalent fractions and that .3/5 is a reduced 
fraction. 

To compare the relative sizes of two fractions and also to add or subtract two 
fractions, we express them in terms of a common denominator. The common 
denominator is a number that each of the denominators of the respective fractions 
divides, i.e., each is a factor of the common denominator. Suppose we wish to 
determine which is the greater of the two fractions .4/9 and .5/11. The common 
denominator is .9 × 11 = 99. Each of the denominators (9 and 11) of the two 
fractions divides 99. The simplest way to compare the relative sizes is to multiply
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the numerator and denominator of each fraction by the denominator of the other, 
i.e., 

. 
4

9
= 4 × 11

9 × 11
= 44

99
, and

5

11
= 5 × 9

11 × 9
= 45

99
.

So .5/11 > 4/9 since .45/99 > 44/99. 
We follow a similar procedure when we want to add two fractions. Consider the 

general case first of all in which we add the fractions .a/b and .c/d with .b �= 0 and 
.d �= 0: 

. 
a

b
+ c

d
= a × d

b × d
+ c × b

d × b

= a × d + b × c

b × d
.

Therefore, we have 

.
a

b
+ c

d
= ad + bc

bd
. (1.7) 

For example, 

. 
2

7
+ 3

5
= 2 × 5 + 3 × 7

7 × 5
= 10 + 21

35
= 31

35
.

The result for the subtraction of two fractions is similar, i.e., 

.
a

b
− c

d
= ad − bc

bd
. (1.8) 

Problem 1.2 Simplify 

. 
13

24
− 5

16
.

Solution 1.2 The idea is to express each of these fractions as equivalent fractions 
having a common denominator. Therefore, we have 

.
13

24
− 5

16
= 13 × 16

24 × 16
− 5 × 24

16 × 24

= 208 − 120

384

= 88

384



1.3 Fractions 7

= 
11 × 8 

48 × 8 

= 
11 

48 
. 

Note that a smaller common denominator, namely 48, could have been used in this 
example since the two denominators, viz. 16 and 24, are both factors of 48. Thus 

. 
13

24
= 2 × 13

2 × 24
= 26

48

and 

. 
5

16
= 3 × 5

3 × 16
= 13

48
.

Therefore, 

. 
13

24
− 5

16
= 26 − 15

48
= 11

48
.

1.3.1 Multiplication and Division 

To multiply together two fractions, we simply multiply the numerators together and 
multiply the denominators together: 

.
a

b
× c

d
= a × c

b × d
= ac

bd
. (1.9) 

To divide one fraction by another, we multiply by the reciprocal of the divisor where 
the reciprocal of the fraction .a/b is defined to be .b/a provided .a, b �= 0. That is 

.
a

b
÷ c

d
= a

b
× d

c
= a × d

b × c
= ad

bc
. (1.10) 

Problem 1.3 Simplify the following fractions 

1. . 
5

8
× 16

27
,

2. .
9

13
÷ 12

25
.
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Solution 1.3 

1. The product is the fraction 

. 
5 × 16

8 × 27
.

To simplify this fraction, we note that 8 is a factor of the numerator and 
denominator (since .16 = 8 × 2) and can be cancelled. Therefore, we have 

. 
5

8
× 16

27
= 5 × 16

8 × 27
= 5 × 8 × 2

8 × 27
= 10

27
.

2. Using the rule (1.10) for the division of two fractions, we have 

. 
9

13
÷ 12

25
= 9

13
× 25

12
= 9 × 25

13 × 12
.

Then noting that 3 is a common factor of the numerator and denominator, we 
have 

. 
5

8
× 16

27
= 3 × 3 × 25

13 × 4 × 3
= 3 × 25

13 × 4
= 75

52
.

1.4 Decimal Representation of Numbers 

A fraction or rational number may be converted to its equivalent decimal repre-
sentation by dividing the numerator by the denominator. For example, the decimal 
representation of .3/4 is found by dividing 3 by 4 to give .0.75. This is an example of 
a terminating decimal since it ends after a finite number of digits. The following 
are examples of rational numbers that have a terminating decimal representation: 

. 
1

8
= 0.125,

and 

.
3

25
= 0.12.
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Some fractions do not possess a finite decimal representation—they go on forever. 
The fraction .1/3 is one such example. Its decimal representation is .0.3333... where 
the dots denote that the 3s are repeated and we write 

. 
1

3
= 0.3̇,

where the dot over the number indicates that it is repeated indefinitely. This is an 
example of a recurring decimal. All rational numbers have a decimal represen-
tation that either terminates or contains an infinitely repeated finite sequence of 
numbers. Another example of a recurring decimal is the decimal representation of 
.1/13: 

. 
1

13
= 0.0769230769230 . . . = 0.07̇69230̇,

where the dots indicate the first and last digits in the repeated sequence. 
All numbers that do not have a terminating or recurring decimal representation 

are known as irrational numbers. Examples of irrational numbers are .
√

2 and 
. π . All the irrational numbers together with all the rational numbers form the real 
numbers. Every point on the number line in Fig. 1.2 corresponds to a real number, 
and the line is known as the real line. 

To convert a decimal to a fraction, you simply have to remember that the first digit 
after the decimal point is a tenth, the second a hundredth, and so on. For example, 

. 0.2 = 2

10
= 1

5
,

and 

. 0.375 = 375

1000
= 3

8
.

Sometimes we are asked to express a number correct to a certain number of 
decimal places or a certain number of significant figures. Suppose that we wish to 
write the number .23.541638 correct to two decimal places. To do this, we truncate 
the part of the number following the second digit after the decimal point: 

. 23.54 | 1638.

Then, since the first neglected digit, 1 in this case, lies between 0 and 4, then 
the truncated number, .23.54, is the required answer. If we wish to write the same 
number correct to three decimal places, the truncated number is 

.23.541 | 638,
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and since the first neglected digit, 6 in this case, lies between 5 and 9, then the last 
digit in the truncated number is rounded up by 1. Therefore, the number . 23.541638
is .23.542 correct to three decimal places or, for short, ‘to three decimal places’. 

To express a number to a certain number of significant figures, we employ the 
same rounding strategy used to express numbers to a certain number of decimal 
places but we start counting from the first non-zero digit rather than from the first 
digit after the decimal point. For example, 

. 72,648 = 70,000 (correct to 1 significant figure)

= 73,000 (correct to 2 significant figures)

= 72,600 (correct to 3 significant figures)

= 72,650 (correct to 4 significant figures),

and 

. 0.004286 = 0.004 (correct to 1 significant figure)

= 0.0043 (correct to 2 significant figures)

= 0.00429 (correct to 3 significant figures).

Note that .497 = 500 correct to 1 significant figure and also correct to 2 significant 
figures. 

1.4.1 Standard Form 

The distance of the Earth from the Sun is approximately .149,500,000 km. The mass 
of an electron is .0.000000000000000000000000000911 g. Numbers such as these 
are displayed on a calculator in standard or scientific form. This is a shorthand 
means of expressing very large or very small numbers. The standard form of a 
number expresses it in terms of a number lying between 1 and 10 multiplied by 10 
raised to some power or exponent. More precisely, the standard form of a number is 

. a × 10b,

where .1 ≤ a < 10, and b is an integer. A practical reason for the use of the standard 
form is that it allows calculators and computers to display more significant figures 
than would otherwise be possible. 

For example, the standard form of .0.000713 is .7.13 × 10−4 and the standard 
form of .459.32 is .4.5932 × 102. The power gives the number of decimal places the 
decimal point needs to be moved to the right in the case of a positive power or the 
number of decimal places the decimal point needs to be moved to the left in the 
case of a negative power. For example, .5.914 × 103 = 5914 and .6.23 × 10−4 =
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0.000623. Returning to the above examples, the Earth is about .1.495×108 km from 
the Sun and the mass of an electron is .9.11 × 10−28 g. Similarly, a budget deficit of 
.257,000,000,000 is .2.57 × 1011 in standard form. 

1.5 Percentages 

To convert a fraction to a percentage, we multiply the fraction by 100%. For 
example, 

. 
3

4
= 3

4
× 100% = 75%,

and 

. 
3

13
= 3

13
× 100% = 23.077% (to three decimal places).

To perform the reverse operation and convert a percentage to a fraction, we divide 
the number by 100. The resulting fraction may then be simplified to obtain a reduced 
fraction. For example, 

. 45% = 45

100
= 9

20
,

where the fraction has been simplified by dividing the numerator and denominator 
by 5 since this is a common factor of 45 and 100. 

To find the percentage of a quantity, we multiply the quantity by the number and 
divide by 100. For example, 

. 25% of 140 is
25

100
× 140 = 35,

and 

. 4% of 5200 is
4

100
× 5200 = 208.

If a quantity is increased by a percentage, then that percentage of the quantity 
is added to the original. Suppose that an investment of $300 increases in value by 
20%. In monetary terms, the investment increases by 

.
20

100
× 300 = $60,
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and the new value of the investment is 

. $300 + $60 = $360.

In general, if the percentage increase is r%, then the new value of the investment 
comprises the original and the increase. The new value can be found by multiplying 
the original value by the factor 

. 1 + r

100
.

It is easy to work in the reverse direction and determine the original value if the 
new value and percentage increase is known. In this case, one simply divides by the 
factor 

. 1 + r

100
.

Problem 1.4 The cost of a refrigerator is £350.15 including sales tax at 17.5%. 
What is the price of the refrigerator without sales tax? 

Solution 1.4 To determine the price of the refrigerator without sales tax, we divide 
£350.15 by the factor 

. 1 + 17.5

100
= 1.175.

So the price of the refrigerator without VAT is 

. 
350.15

1.175
= £298.

Similarly, if a quantity decreases by a certain percentage, then that percentage of 
the original quantity is subtracted from the original to obtain its new value. The new 
value may be determined by multiplying the original value by the quantity 

. 1 − r

100
.

Problem 1.5 A person’s income is e25,000 of which e20,000 is taxable. If the 
rate of income tax is 22%, calculate the person’s net income. 
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Solution 1.5 The person’s net income comprises the part of his salary that is not 
taxable (e5000 ) together with the portion of his taxable income that remains after 
the tax has been taken. The person’s net income is therefore 

5000 +
(

1 − 
22 

100

)
× 20,000 = 5000 + 

78 

100 
× 20,000 

= 5000 + 78 × 200 

= 5000 + 15,600 

= e20,600. 

1.6 Powers and Indices 

Let x be a number and n be a positive integer, then . xn denotes x multiplied by itself 
n times. Here x is known as the base and n is the power or index or exponent. For  
example, 

. x5 = x × x × x × x × x.

There are rules for multiplying and dividing two algebraic expressions or numer-
ical values involving the same base raised to a power. In the case of multiplication, 
we add the indices and raise the expression or value to that new power to obtain the 
product rule 

. xa × xb = xaxb = xa+b.

For example, 

. x2 × x3 = (x × x) × (x × x × x) = x5.

In the case of division, we subtract the indices and raise the expression or value to 
that new power to obtain the quotient rule 

. xa ÷ xb = xa

xb
= xa−b.

For example, 

.x2 ÷ x4 = x × x

x × x × x × x
= 1

x2
,
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and using the quotient rule we have 

. 
x2

x4 = x2−4 = x−2.

More generally, we have 

. 
1

xn
= x−n.

Suppose now that we multiply an expression with a fractional power as many 
times as the denominator of the fraction. For example, multiply .x1/3 by itself three 
times. We have 

. x1/3 × x1/3 × x1/3 = x1/3+1/3+1/3 = x1 = x.

However, the number that when multiplied by itself three times gives x is known 
as the cube root of x, and an alternative notation for .x1/3 is . 3

√
x. The symbol . n

√
x, 

which sometimes appears on a calculator as .x1/n, is known as the nth root of x. In  
the case . n = 2, the  n is omitted in the former symbol. So we write .

√
x rather than 

. 2
√

x for the square root .x1/2 of x. 
Suppose we wish to raise an expression with a power to a power, for example 

.(x2)4. We may rewrite this as 

. (x2)(x2)(x2)(x2) = x2+2+2+2 = x8,

using the product rule. More generally, we have 

. (xm)n = xmn.

These rules for simplifying expressions involving powers may be used to evaluate 
arithmetic expressions without using a calculator. For example, 

. 23 = 2 × 2 × 2 = 8,

34 = 3 × 3 × 3 × 3,√
81 = 9,

3
√

27 = 3,

2−3 = 1

23 = 1

8
.

Note the following two conventions related to the use of powers: 

1. .x1 = x (An exponent of 1 is not expressed.) 
2. .x0 = 1 for .x �= 0 (Any nonzero number raised to the zero power is equal to 1.)
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Every positive number x has two square roots: .
√

x > 0 and .−√
(x) < 0. The  

former is known as the principal square root. We will use the term ‘square root’ to 
refer to the principal square root. 

To summarise, we have the following rules governing indices or powers: 

Rules of Indices 

.xaxb = xa+b
. (1.11) 

xa 

xb = xa−b
. (1.12) 

(xa )b = xab
. (1.13) 

1 

xa = x−a
. (1.14) 

a
√

x = x 
1 
a . (1.15) 

a
√

xb = x 
b 
a (1.16) 

Finally, consider the product of two numbers raised to some power. For example, 
consider . (xy)3. Now  

. (xy)3 = (x × y) × (x × y) × (x × y) = (x × x × x) × (y × y × y) = x3y3,

since it does not matter in which order numbers are multiplied. More generally, we 
have 

. (xy)a = xaya.

Similarly, we have 

. 

(
x

y

)a

= xa

ya
.

Problem 1.6 Simplify the following using the rules of indices: 

1. .
x2

x3/2 , 

2. .
x2y3

x4y
.
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Solution 1.6 

1. Using the quotient rule (1.12), we have 

. 
x2

x3/2
= x2−3/2 = x1/2 = √

x

2. Using the quotient and reciprocal rules, we have 

. 
x2y3

x4y
=

(
x2

x4

) (
y3

y

)

= (x2−4)(y3−1) (using the quotient rule (1.12)) 

= x−2y2 

= 
y2 

x2 (using the reciprocal rule (1.14)) 

=
(y 
x

)2 
. 

Problem 1.7 Write down the values of the following without using a calculator: 

. 
1. 3−3 2. 163/4 3. 16−3/4

4. 27−1/3 5. 43/2 6. 190.

Solution 1.7 

1. .3−3 = 1

33 = 1

27
. 

2. .163/4 = (161/4)3 = (
4
√

16)3 = 23 = 8. 

3. .16−3/4 = 1

163/4 = 1

8
. 

4. .27−1/3 = 1

271/3 = 1
3
√

27
= 1

3
. 

5. .43/2 = (41/2)3 = (
√

4)3 = 23 = 8. 
6. .190 = 1. 

Note that we could also evaluate .43/2 as follows: 

.43/2 = (43)1/2 = 641/2 = √
64 = 8.
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1.7 Simplifying Algebraic Expressions 

In the algebraic expression 

. 7x3,

x is called the variable, and 7 is known as the coefficient of . x3. Note that a sign 
goes with a coefficient e.g the coefficient of x in the expression .3 − 2x is . −2. 
Expressions consisting simply of a coefficient multiplying one or more variables 
raised to the power of a positive integer are called monomials. Monomials can be 
added or subtracted to form polynomials. Each of the monomials comprising a 
polynomial is called a term. For example, the terms in the polynomial . 3x2 +2x +1
are . 3x2, 2x, and 1. The coefficient of . x2 is 3, the coefficient of x is 2, and the 
constant term is 1. 

To add or subtract two polynomials, we collect like terms and add or subtract 
their coefficients. For example, if we wish to add .7x + 2 and .5 − 2x, then we collect 
the terms in x and the constant terms: 

. (7x + 2) + (5 − 2x) = (7 + (−2))x + (2 + 5) = 5x + 7.

Problem 1.8 Simplify the following: 

1. .(3x2 + 2x + 1) + (5x2 − x − 7), 
2. .(9x4 + 12x3 + 6x + 1) − (x4 + 2x2 − 4), 
3. .(x3 + 4x − 5) + (2x2 − x + 8). 

Solution 1.8 

1. .(3 + 5)x2 + (2 − 1)x + (1 − 7) = 8x2 + x − 6. 
2. .(9 − 1)x4 + 12x3 − 2x2 + 6x + (1 + 4) = 8x4 + 12x3 − 2x2 + 6x + 5. 
3. .x3 + 2x2 + (4 − 1)x + (−5 + 8) = x3 + 2x2 + 3x + 3. 

1.7.1 Multiplying Brackets 

There are occasions when mathematical expressions may be simplified by removing 
any brackets present. This process, which is also known as expanding the brackets 
or multiplying out the brackets, culminates in an equivalent expression without 
brackets. The removal of brackets is based on the following basic rule: 

.a(b + c) = ab + ac, (1.17)
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where a, b, and c are any three numbers. Since the order in which multiplication is 
performed is not important, we also have 

.(b + c)a = ba + ca, (1.18) 

The rules (1.17) and (1.18), which are examples of what is known as the distributive 
law, may be generalized to include expressions involving polynomials. For example, 

. 3(x + 2y) = 3x + 6y,

and 

. − 2(3x2 − 5y) = −6x2 + 10y.

It is important to take care multiplying out brackets when there is a negative sign 
outside the brackets. In this case, the sign of each term inside the brackets is changed 
when the brackets are removed. For example, 

. − (2x2 − 3x − 2y + 5) = −2x2 + 3x + 2y − 5.

We also have the following rule for multiplying two brackets: 

.(a + b)(c + d) = ac + bc + ad + bd, (1.19) 

where a, b, c, and d are any three numbers. So to multiply out two brackets we 
simply multiply each term in the second bracket by each term in the first bracket 
and add together all contributions. For example, 

. (x + 2)(2x − 3) = (x)(2x) + (2)(2x) + (x)(−3) + (2)(−3)

= 2x2 + 4x − 3x − 6

= 2x2 + x − 6.

The rule (1.19) extends to brackets containing more than two terms. The important 
thing to remember is that each term in the second bracket is multiplied by each term 
in the first before all contributions are added together. For example, 

.(2x − y + 5)(x − 3) = (2x)(x) + (−y)(x) + (5)(x)

+(2x)(−3) + (−y)(−3) + (5)(−3)

= 2x2 − xy + 5x − 6x + 3y − 15

= 2x2 − xy − x + 3y − 15.
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Problem 1.9 Multiply out the brackets and simplify the following: 

1. .(2x + 3)(7 − 5x), 

2. .
(120 − 24x)

4.8
, 

3. .(x + 3y)(2x − 5y − 1). 

Solution 1.9 

1. Using the rule (1.19), we have 

. (2x + 3)(7 − 5x) = (2x)(7) + (3)(7) + (2x)(−5x) + (3)(−5x)

= 14x + 21 − 10x2 − 15x

= 21 − x − 10x2.

2. In this example, we just note that division of .120 − 24x by .0.48 is the same as 
multiplication of .120 − 24x by .1/(4.8), and therefore we can use the rule (1.17): 

. 
(120 − 24x)

4.8
= 1

4.8
(120 − 24x)

120

4.8
+ −24x

4.8
= 25 − 5x.

3. Using the generalization of rule (1.19), we have 

. (x + 3y)(2x − 5y − 1) = (x)(2x) + (3y)(2x) + (x)(−5y)

+(3y)(−5y) + (x)(−1) + (3y)(−1)

= 2x2 + 6xy − 5xy − 15y2 − x − 3y

= 2x2 + xy − 15y2 − x − 3y.

1.7.2 Factorization 

Factorization is the reverse process to multiplying out the brackets. It involves 
taking a mathematical expression and rewriting it by expressing it in terms of a
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product of factors. There are a number of techniques that can be used to factorize an 
expression: 

1. The simplest technique is to identify a common factor in two or more terms. 
The equivalent factorized expression can then be written in terms of the common 
factor multiplying a bracketed expression. For example, 
(a) .ab − ac = a(b − c), 
(b) .4x2 + 6x = 2x(2x + 3), 
(c) .ax2 − a2x = ax(x − a), 
(d) .−36x2 − 9x = −9x(4x + 1), 

(e) .
5x + 10y

10x − 5y
= 5(x + 2y)

5(2x − y)
= x + 2y

2x − y
. 

2. The second technique is based on the following identity involving the difference 
of two squares: 

. a2 − b2 = (a − b)(a + b).

An identity is a formula valid for all values of the variables; in this case, a and b. 
The following are examples of the application of this identity: 
(a) .x2 − 36 = (x − 6)(x + 6); 
(b) .9a2 − 16x2 = (3a)2 − (4x)2 = (3a − 4x)(3a + 4x); 
(c) .9 − 36x2 = 9(1 − 4x2) = 9(12 − (2x)2) = 9(1 − 2x)(1 + 2x). 

An additional technique that can be used for factorizing quadratic expressions of the 
form .ax2 + bx + c or .ax2 + bxy + cy2 will be discussed in Chap. 3. 

Self-Assessment Questions 

1. Evaluate the arithmetic expression 

. 25 ÷ 8 + 7

2. Simplify the fraction 

. 
15

28
÷ 6

35

3. Represent the number .0.0000826 in standard form. 
4. Determine 15% of £60,000. 
5. Simplify . 27−4/3

6. Simplify the algebraic expression 

.(x − 6)(5 − 2x)
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7. Factorize the algebraic expression 

. 9x2 − 4

Exercises 

1. Evaluate 

. 35 − 8 ÷ 22 + 5 + 23 × 4.

2. Express the following fractions using decimal notation: 

(a) . 
3

10
, 

(b) . 
5

16
, 

(c) . 
3

4
, 

(d) . 
3

13
, 

(e) . 
2

7
, 

(f) . 
1

19
. 

3. Simplify the following fractions: 

(a) .
2

5
+ 3

8
, 

(b) .
5

16
− 3

32
, 

(c) .
15

54
× 18

35
, 

(d) .
32

49
÷ 56

21
. 

4. Find which is the larger of the two fractions: .11/32, .7/24 by expressing the 
numbers as: 

(a) fractions with the same denominator; 
(b) decimals. 

5. Write each of the following numbers correct to two decimal places: 

(a) . 51.2361
(b) . 7.896
(c) .362.275
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6. Write each of the following numbers correct to three significant figures: 

(a) 5889 
(b) . 0.0002817
(c) . 72,961
(d) . 0.09274

7. Write each of the following numbers in standard form: 

(a) . 495,200
(b) . 0.000000837

8. The computing equipment belonging to a company is valued at $45,000. 
Each year, 12% of the value is written off for depreciation. Find the value of 
the equipment at the end of 2 years. 

9. Death duties of 20% are paid on a legacy to three children of £180,000. The 
eldest child is bequeathed 50%, the middle child 30%, and the youngest child 
the remainder. How much does each child receive? What percentage of the 
original legacy does the youngest child receive? 

10. Simplify the following: 

(a) .x2/3x7/3, 

(b) . 
x5

x2 , 

(c) .(x2/3)6, 

(d) .
x3y2

x2y5 . 

11. Write down the values of the following without using a calculator: 

(a) .165/4, 
(b) .811/4, 

(c) .

(
27

125

)2/3

, 

(d) .81−3/4. 

12. Multiply out the brackets and simplify the following: 

(a) .(2x + 9)(3x − 8), 
(b) .(x + 4)(6x + 3), 
(c) .(3x − 2)(11 − 4x), 

(d) .
(15 − 24x + 18y)

0.75
, 

(e) .(x − 4y + 7)(5x − 2y − 3). 

13. Factorize the following expressions: 

(a) .96x − 32, 
(b) .−21x + 49x2, 
(c) .4x2 − 49.



2Linear Equations

� Key Learning Objectives
On completion of this chapter students should be able to:

• Solve linear equations.
• Solve simultaneous linear equations.
• Sketch the graph of a straight line.
• Determine the slope of a straight line.
• Determine the equilibrium price and quantity of a good by solving

simultaneously the demand and supply equations.

2.1 Introduction 

In this book, we will be concerned primarily with the analysis of the relationship 
between two or more variables. For example, we will be interested in the relationship 
between economic entities or variables such as

• total cost and output,
• price and quantity in an analysis of demand and supply,
• production and factors of production such as labour and capital.

If one variable, say y, changes in an entirely predictable way in terms of another 
variable, say x, then, under certain conditions (to be defined precisely in Chap. 4), 
we say that y is a function of x. A function provides a rule for providing values of y 
given values of x. The simplest function that relates two or more variables is a linear 
function. In the case of two variables, the linear function takes the form of the linear 
equation .y = ax + b for .a �= 0. For example, .y = 3x + 5 is an example of a linear 
function. Given a value of x, one can determine the corresponding value of y using 
this functional relationship. For instance, when .x = 2, .y = 3×2+5 = 11 and when 
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.x = −3, .y = 3 × (−3) + 5 = −4. We will say more about functions in Chap. 4. 
Linear equations or functions may be portrayed by a straight line on a graph. In 
this chapter, we introduce graphs and give a number of examples showing how 
linear equations can be used to model situations in economics and how to interpret 
properties of their graphs. 

2.2 Solution of Linear Equations 

A mathematical statement setting two algebraic expressions equal to each other is 
called an equation. The ability to solve equations is one of the most important 
algebraic techniques to master. Equipped with this skill, you will be able to solve a 
range of economic problems. The simplest type of equation is the linear equation 
in a single variable or unknown, which we will denote by x for the moment. In a 
linear equation, the unknown x only occurs raised to the power 1. The following 
are examples of linear equations: 

1. . 5x + 3 = 11,

2. . 1 − 4x = 3x + 7,

3. . 
2 + 3x

5
= 2x − 1

6
.

A linear equation may be solved by rearranging it so that all terms involving x 
appear on one side of the equation and all the constant terms appear on the other 
side. This is achieved by performing a series of algebraic operations. The key is to 
remember that you must perform the same operations to both sides of the equation. 
You must be completely impartial so that each stage of the rearrangement process 
yields an equivalent equation. Two polynomial equations of the same degree in the 
same unknown, x say, are equivalent if the values of x satisfying each are the same. 
It is important that you never multiply or divide through an equation by 0. For 
example, take the equation .1 = 2, which is not valid, and multiply both sides by 
0. Then we obtain the equation .0 = 0, which is true. So the two equations are not 
equivalent. If an equation contains a fraction, then the equation may be simplified 
by multiplying through by the denominator. Remember that the value of a fraction 
.a/b is the same if the numerator and denominator are multiplied (or divided) by the 
same nonzero number. That is, 

. 
a

b
= ta

tb
,

for any number .t �= 0. It is instructive to look at an example. 

Problem 2.1 Solve the equation 

.
7x − 4

2
= 2x + 4.
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Solution 2.1 To determine the value of x that satisfies this equation, we rearrange 
the equation so that all terms involving the unknown x appear on the one side of the 
equation and all the constant terms appear on the other. 

1. Multiply both sides by 2, which is the denominator of the fraction on the left-hand 
side of this equation: 

. 7x − 4 = 2 × (2x + 4)

= (2 × 2)x + (2 × 4)

= 4x + 8.

2. Subtract 4x from both sides so that all terms involving x are on the left-hand side: 

. 7x − 4 − 4x = 4x + 8 − 4x,

. 3x − 4 = 8.

3. Add 4 to both sides so that all the constant terms are on the right-hand side: 

. 3x − 4 + 4 = 8 + 4,

. 3x = 12.

4. Finally divide both sides by 3: 

. 
3x

3
= 12

3
,

. x = 4.

So the solution to this equation is .x = 4. 
We can check to see if this answer is correct by replacing x by 4 in the original 

equation. If .x = 4 is the correct solution, then the left- and right-hand sides of the 
equation should give the same numerical value. 

. LHS = (7 × 4) − 4

2

= 28 − 4

2

= 24

2
= 12
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RHS = 2 × 4 + 4 

= 12. 

Problem 2.2 Solve the equation 

.
x

4
− 3 = x

5
+ 1. (2.1) 

Solution 2.2 Again, we go through the solution step-by-step. The idea is to 
rearrange the equation so that all terms involving x appear on the left-hand side and 
all the constant terms appear on the right-hand side. Once this is done, the terms 
involving fractions are simplified. 

1. Subtract .x/5 from both sides: 

. 
x

4
− x

5
− 3 = 1

2. Add 3 to both sides 

. 
x

4
− x

5
= 1 + 3 = 4

3. Simplify the left-hand side by expressing it as a single fraction. This is achieved 
by expressing each of the fractions in terms of their lowest common denominator, 
20. In the case of the first fraction, both the numerator and denominator are 
multiplied by 5, and in the case of the second fraction they are both multiplied by 
4, i.e., 

. 
x

4
= 5x

5 × 4
= 5x

20
and

x

5
= 4x

4 × 5
= 4x

20
.

Therefore 

. 
5x

20
− 4x

20
= 4

5x − 4x

20
= 4

x

20
= 4.

4. Finally multiply both sides by 20: 

.x = 80.
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The solution to this equation is .x = 80. Again we can check that this is the correct 
solution by substituting .x = 80 into the left- and right-hand sides of (2.1). 

2.3 Solution of Simultaneous Linear Equations 

A number of economic models are built on linear relationships between variables. 
For example, the economic concept of equilibrium requires the solution of a system 
of equations. 

The next degree of difficulty is to solve two linear equations in two unknowns. 
Suppose the two unknowns are denoted by x and y. The most general form of system 
of simultaneous linear equations in the unknowns x and y is 

.a1x + b1y = c1, . (2.2) 

a2x + b2y = c2. (2.3) 

where . a1, . b1, . c1, . a2, . b2, and . c2 are constants. In the first Eq. (2.2), the coefficient 
of x is . a1 and that of y is . b1. We are going to describe the elimination method 
for solving this system of equations. As its name suggests, the method involves 
eliminating one of the variables from the system. This allows us to determine 
the value of the unknown that remains by solving a single linear equation in one 
unknown. The value of the eliminated unknown is then determined by substituting 
the known value into either of the original equations and solving another linear 
equation. 

Suppose we wish to eliminate the variable y from (2.2)–(2.3). To do this, we 
multiply (2.2) by . b2 and (2.3) by . b1 so that the coefficients of y in the equivalent 
equations are the same: 

.b2a1x + b2b1y = b2c1, . (2.4) 

b1a2x + b1b2y = b1c2. (2.5) 

Next we eliminate the variable y by subtracting (2.5) from (2.4): 

.(b2a1 − b1a2)x = b2c1 − b1c2, (2.6) 

from which we deduce 

.x = b2c1 − b1c2

b2a1 − b1a2
. (2.7) 

Note that we can only perform this last step provided that .(b2a1 − b1a2) �= 0. The  
quantity .(b2a1 − b1a2) is known as the determinant (see Chap. 10) of the system 
of Eqs. (2.2)–(2.3). The condition for this system to possess a unique solution is that 
the determinant is nonzero.
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Similarly, we can eliminate x from equations (2.2)–(2.3) to obtain 

.y = c2a1 − c1a2

b2a1 − b1a2
; (2.8) 

or we can obtain y by substituting the value of x we have obtained (2.7) in either 
(2.2) or (2.3) and solving the resulting linear equation. 

There is no guarantee that a system of two or more simultaneous equations will 
possess a unique solution. Consider the system of equations 

. 2x + y = 10,

2x + y = 5.

This system of equations does not have a solution. In fact, the equations are 
inconsistent. They cannot hold simultaneously since .10 �= 5! We shall see later 
in this chapter that the solution of a system of simultaneous linear equations may be 
interpreted as the point of intersection of two straight lines. For the example under 
consideration, the two lines are parallel and therefore never intersect. 

Next consider the system of equations 

. 2x + y = 10,

−6x − 3y = −30.

At first sight this might seem to be an innocuous system of equations. However, 
the second equation is just a multiple of the first; obtained by multiplying the 
first equation by . −3. In this case, the equations are not independent. The second 
equation does not provide any additional information over the first equation. Since 
there are two unknowns to be determined, there is no unique solution—in fact there 
are infinitely many solutions. For the above system one can verify that .x = s and 
.y = 10 − 2s is a solution for any number s. 

To obtain a unique solution to a system of simultaneous linear equations, the 
equations must be consistent and independent and there must be as many equations 
as unknowns (variables). 

Problem 2.3 Solve the system of equations 

. 
3x + 2y = 1

−2x + y = 2.

Solution 2.3 We solve this system of equations using the elimination method in 
which we eliminate the variable x. To do this, we arrange for the coefficients of 
x in both equations to differ only in sign by multiplying the two equations by 
appropriate factors. The variable can then be eliminated by adding or subtracting 
the two equations. For example, suppose we multiply the first equation by 2 and the
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second by 3: 

. 
6x + 4y = 2

−6x + 3y = 6.

The variable x is eliminated by adding the two equations: 

. 7y = 8,

which, after division by 7, gives 

. y = 8

7
.

This value can now be substituted in either of the original two equations to obtain 
the corresponding value of x. Let us use the first equation, then 

. 3x + 2

(
8

7

)
= 1

3x + 16

7
= 1

3x = 1 − 16

7

3x = 7 − 16

7
(since 1 = 7/7)

3x = −9

7

x = 1

3
×

(
−9

7

)

x = −3

7

Therefore, the solution is .x = −3/7, .y = 8/7. Of course, we can check that we 
have the correct solution by substituting it back into the original set of equations 
and checking that the equations are satisfied. 

An alternative but equivalent method for solving simultaneous linear equations 
is known as the substitution method. The idea is to rearrange one of the equations 
in order to isolate one of the variables on the left-hand side. The expression for this 
variable is then substituted into the second equation to yield a linear equation for the 
other variable. We demonstrate the substitution method by means of an example.
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Problem 2.4 At the beginning of the year, an investor had £50,000 in two bank 
accounts, each of which paid interest annually. The interest rates were 4% and 6% 
per annum, respectively. If the investor has made no withdrawals during the year 
and has earned a total of £2750 interest, what was the initial balance in each of the 
two accounts? 

Solution 2.4 Let x and y denote the initial balances in the accounts with interest 
rates 4% and 6%, respectively. Since the total amount invested at the start of the 
year was £50,000, we have 

. x + y = 50,000.

The amount of interest earned on the two bank accounts during the year is given by 

. 0.04x and 0.06y,

respectively. Since the total amount of interest earned during the year is £2750, 

. 0.04x + 0.06y = 2750,

or, after multiplying through by 100 

. 4x + 6y = 275,000.

Therefore, we have two equations with which to determine initial balances in the 
two bank accounts: 

.x + y = 50,000. (2.9) 

4x + 6y = 275,000. (2.10) 

Rearranging (2.9) to express x in terms of y, we have  

.x = 500,000 − y. (2.11) 

Then using (2.11) to eliminate x from (2.10) yields 

. 4(50, 000 − y) + 6y = 275,000,

so that .2y = 75,000 or .y = 37,500. Finally, it follows from (2.9) that .x = 12,500. 
Therefore, the initial balance in each of the two accounts was £12,500 and £37,500, 
respectively.
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2.4 Graphs of Linear Equations 

Consider the linear equation 

. y = 3x − 2.

Given a value of  x, one can use this equation to determine the corresponding value 
of y. For example, when .x = 0, .y = 3 × 0 − 2 = −2, and when .x = 2, . y =
3 × 2 − 2 = 6 − 2 = 4. The collection of all such pairs of values of x and y that 
satisfy this linear equation can be represented on a graph. 

Consider the two perpendicular lines shown in Fig. 2.1. The horizontal line is 
referred to as the x-axis and the vertical line as the y-axis. The point where these 
lines intersect is known as the origin and is denoted by the letter O. At this point, 
both variables take the value zero. Each axis is assigned a numerical scale that is 
chosen appropriately for the situation being considered. On the x-axis, the scale 
takes positive values to the right of the origin and negative values to the left. 
Moreover, the further we move away from the origin, the larger these values become. 
On the y-axis, the scale takes positive values above the origin and negative values 
below. Again, the further we move away from the origin in the vertical direction, 
the larger these values become. These axes enable us to define uniquely any point, 
P , in terms of its coordinates, .(x, y). We write the coordinates .(x, y) alongside the 
point P as in Fig. 2.1. The first number, x, denotes the horizontal distance along the 
x-axis and the second number y denotes the vertical distance along the y-axis. The 
arrows on the axis denote the positive direction. The collection of all points . (x, y)

Fig. 2.1 The coordinate axes 
and the position of a general 
point P 

y 

P:(x,y) 

x 

y 

0 x
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satisfying a linear equation lie on a straight line. That is, any equation of the form 

.y = ax + b, (2.12) 

where a and b are constants is a linear equation and can be represented by a straight 
line graph. We sometimes say that y is a linear function of x since in the equation 
defining y, the variable x only occurs linearly. 

Note also that the equation .x = k, where k is any constant, is also represented 
by a straight line graph: the ‘vertical’ line, parallel to the y-axis, through the point 
.(k, 0). 

Problem 2.5 Plot the following points .A : (−2, 3), .B : (−3,−4), .C : (3, 5), 
.D : (1,−4). 

Solution 2.5 The position of A is determined by the pair of values .x = −2 and 
.y = 3, and therefore it is located 2 units in the negative x-direction and 3 units in 
the positive y-direction as shown in Fig. 2.2. The other points are plotted in a similar 
way. 

x
-3 -2 -1 1 2 3 4

-5

-4

-3

-2

-1 

0 

1 

2 

3 

4 

5 

6y 

A 

B 

C 

D

-4 

Fig. 2.2 The location of the points specified in Problem 2.5
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The general form of a linear equation is 

.cx + dy = e, (2.13) 

where c, d, and e are constants. We assume that c and d are not both zero. This 
equation contains multiples of x and y and a constant. These are the only terms 
involving x that are present in a linear equation; otherwise the equation is said to 
be nonlinear. The values c and d are referred to as the coefficients of x and y, 
respectively. For example, the coefficients of the linear equation 

. 2x − y = −3

are 2 and . −1. More specifically, the coefficient of x is 2 and the coefficient of y is 
. −1. 

Any equation of the form (2.13) can be rearranged into the form (2.12) provided 
.d �= 0. First subtract cx from both sides of (2.13): 

. dy = −cx + e.

Then divide both sides by d provided .d �= 0: 

.y = − c

d
x + e

d
. (2.14) 

If we now compare this equation with (2.12) by comparing the coefficients of x and 
the constant terms in both equations, we see that (2.14) is just (2.12) with 

. a = − c

d
, b = e

d
.

Note that when .d = 0, the linear Eq. (2.13) reduces to 

. cx = e or x = e

c
.

This is represented by a straight line parallel to the y-axis passing through the point 
.(e/c, 0) on the x-axis. 

To sketch the graph of a straight line, it is sufficient to draw a line through any 
two points lying on it. 

Problem 2.6 Sketch the graph of the straight line 

. y = 2x + 3,

for values of x lying between 0 and 4.
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Fig. 2.3 The graph of the equation .y = 2x + 3 for . 0 ≤ x ≤ 4

Solution 2.6 We determine the coordinates of two points on the line. When .x = 0, 
we have that .y = 3 and when . x = 4, we have .y = 11. Therefore, the points . (0, 3)

and .(4, 11) lie on the line. The graph is formed by drawing a straight line through 
these points as shown in Fig. 2.3. 

Problem 2.7 Sketch the straight line 

. 2x + y = 5.

Solution 2.7 Setting .x = 0 gives .y = 5. Hence .(0, 5) lies on the line. Setting . y = 0
gives .2x = 5 or .x = 5/2. Hence .(5/2, 0) lies on the line (see Fig. 2.4). 

2.4.1 Slope of a Straight Line 

The coefficients a and b in the linear equation .y = ax + b of (2.12) have special 
significance and can be related to features of its graph. When .x = 0, .y = b and 
therefore the constant b represents the intercept on the y-axis, i.e., it is the value of 
y corresponding to the point of intersection of the straight line with the y-axis. The
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x
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4 
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0 3 

Fig. 2.4 The graph of the equation . 2x + y = 5

value of x for which .y = 0 is the solution of the linear equation 

. ax + b = 0.

This equation has solution .x = −b/a, provided .a �= 0. 
The coefficient a in the equation .y = ax + b defines the slope or gradient of 

the straight line with that equation. The slope of a straight line provides important 
information about the behaviour of the relationship between the variables x and y. 
Let .A : (x1, y1) and .B : (x2, y2) be any two distinct points lying on a straight line as 
shown in Fig. 2.5. The slope or gradient of the line measures the ratio of the change 
in the vertical direction with respect to the change in the horizontal direction as one 
moves from A to B. We illustrate this with reference to Fig. 2.5. Since . y1 = ax1 +b

and .y2 = ax2 + b, then 

. y2 − y1 = ax2 − ax1 = a(x2 − x1).

Therefore, 

.
BC

AC
= y2 − y1

x2 − x1
= a(x2 − x1)

x2 − x1
= a,
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C 

y 

x0 

A:(x ,y )
1 1  

B:(x ,y )
2 2  

Fig. 2.5 The graph of a linear equation and its slope 

i.e. 

.a = y2 − y1

x2 − x1
= BC

AC
. (2.15) 

The value of a is independent of the choice of points A, B on the line. Positive 
values of a correspond to straight lines where y increases as x increases, while 
negative values of a correspond to straight lines where y decreases as x increases. 
Larger values of a correspond to straight lines with steeper slopes. For example, the 
slope of the straight line .y = 6x − 3 is steeper than that of .y = x + 3. Another way 
of viewing the slope a is that it is the change in y when x increases by one unit, as 
then .x2 − x1 = 1 and therefore .a = y2 − y1. 

Problem 2.8 Determine the slope and intercept of the straight line .9x + 3y = 4.
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Solution 2.8 We need to write this equation in the form .y = ax + b. 

. 9x + 3y = 4

3y = −9x + 4

y = −3x + 4

3

One can say immediately that the slope of this straight line is .−3 and the intercept 
is 4/3. 

Problem 2.9 Find the slope of the straight line that passes through the points 
.(2,−1) and .(−2,−11). 

Solution 2.9 The slope of a straight line passing through the points .(x1, y1), 
.(x2, y2) is 

. a = y2 − y1

x2 − x1
.

Therefore the required slope is 

. a = −11 − (−1)

−2 − 2
= −10

−4
= 5

2
.

2.5 Budget Lines 

Suppose that a company or an individual has a given budget, B, that can be used 
to purchase two goods. If the cost or price of each of these goods is known, then 
it is possible to determine the different combinations of the two goods that can be 
bought with the given budget. Suppose that the two goods are denoted by X and Y , 
and their respective prices are .PX and . PY . The quantities purchased of these goods 
is also denoted by X and Y . Then the equation of the budget line is 

.PXX + PY Y = B. (2.16) 

Problem 2.10 An electrical company has a budget of £6000 a week to spend on 
the manufacture of toasters and kettles. It costs £5 to manufacture a toaster and £12 
to manufacture a kettle. Write down the equation of the budget line and sketch its 
graph. 

Solution 2.10 Let T and K denote the number of toasters and kettles that are 
manufactured each week. Then the cost of manufacture and the available budget
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0 100 200 300 400 500 
0 

200 

400 

600 

800 

1000 

1200 

T 

K 

Fig. 2.6 The graph of the budget line . 5T + 12K = 6000

means that the budget line has the equation 

. 5T + 12K = 6000.

To sketch the graph of this budget line, it is sufficient to determine the coordinates 
of two points on the line. When .T = 0, .12K = 6000 and therefore .K = 500. 
Similarly, when .K = 0, .5T = 6000 and therefore .T = 1200. The graph of the 
budget line is given by the straight line joining the points .T = 0, .K = 500 and 
.T = 1200, .K = 0. The graph of the budget line is sketched in Fig. 2.6. 

Problem 2.11 A person has £120 to spend on two goods .(X, Y ) whose respective 
prices are £3 and £5. 

1. Draw a budget line showing all the different combinations of the two goods that 
can be bought with the given budget (B). 

2. What happens to the original budget line if the budget falls by 25%? 
3. What happens to the original budget line if the price of X doubles? 
4. What happens to the original budget line if the price of Y falls to £4? 

Draw the new budget lines in each case.
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Solution 2.11 

1. The general equation of a budget line is 

. PXX + PY Y = B

where .PX is the price of X and .PY is the price of Y . Now if . PX = 3, PY =
5, B = 120, then the equation of the budget line is 

. 3X + 5Y = 120.

We can rearrange this equation to give 

. Y = −3

5
X + 24.

The graph of this budget line is represented by the solid line in Fig. 2.7. 
2. If the budget falls by 25% it is reduced by 25% of £120, i.e., £30. The new budget 

B = £120 . − £30 = £90. The equation for the new budget line is 

. 3X + 5Y = 90,

10 20 30 40 
0 

10 

20 

30 

40 

(1) 
(2) 
(3) 
(4) 

Y 

X 

Fig. 2.7 The graph of the budget lines in Problem 2.11
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which, after rearrangement, can be written in the form 

. Y = −3

5
X + 18.

This line has the same slope as the original budget line but lies to the left of it. 
This is the dashed line in Fig. 2.7. 

3. If .PX = 6 the budget equation becomes 

. 6X + 5Y = 120

or 

. Y = −6

5
X + 24.

This time the intercept remains the same as the original budget line but the slope 
is steeper—the slope is .−6/5 compared with the slope of .−3/5 of the original 
budget line. The graph of this budget line is represented by the long dashed line 
in Fig. 2.7. 

4. If .PY = 4 , then the budget equation is 

. 3X + 4Y = 120,

or 

. Y = −3

4
X + 30.

This time both the slope and the intercept change. See the dash-dot line in 
Fig. 2.7. 

2.6 Supply and Demand Analysis 

Microeconomics is concerned with the analysis of the economic theory and policy 
of individual firms and markets. The mathematics we have introduced so far can 
be used to calculate the market equilibrium in which the demand and supply of a 
particular good balance. 

The quantity demanded, Q, of a particular good depends on the market price, P . 
We shall refer to the way Q depends on P as the demand equation or demand 
function. Functions will be defined in more detail later in the book (Chap. 4). 
Economists normally plot the relationship between price and quantity with Q on
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supply equation 
demand equation 

P 

QQo 

Po 

Fig. 2.8 The graph of typical linear demand and supply equations. The point of intersection 
provides the point of equilibrium for the model 

the horizontal axis and P on the vertical axis. We assume that this relationship is 
linear, i.e., 

. P = aQ + b,

for some appropriate constants (parameters) a and b. A graph of a typical linear 
demand function is the dashed line in Fig. 2.8. Elementary theory shows that demand 
usually falls as the price of the good rises so the slope of the line is negative, i.e., 
.a < 0. We say that P is a decreasing function of Q. 

Similarly, the supply equation or supply function is the relation between the 
quantity, Q, of a good that producers plan to bring to the market and the price, P , of  
the good. A typical linear supply curve is the solid line in Fig. 2.8. Economic theory 
indicates that as the price rises, so does the supply. Mathematically, P is then said 
to be an increasing function of Q. Note that the supply Q is zero when . P = b. It is  
only when the price exceeds this threshold level that the producers decide that it is 
worth supplying any good whatsoever. 

We are interested in the interplay between supply and demand. Of particular 
significance is the point of intersection of the demand and supply curves (see 
Fig. 2.8). At this point, the market is said to be in equilibrium because the quantity
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demanded is equal to the quantity supplied. The corresponding price, . P0, and 
quantity, . Q0, are called the equilibrium price and quantity. It is also of interest to 
observe the effect of a shift of the market price away from its equilibrium price. 

Problem 2.12 The demand and supply equations of a good are given by 

. 4P = −Qd + 240,

5P = Qs + 30.

Determine the equilibrium price and quantity. 

Solution 2.12 At market equilibrium, we have 

. Qd = Qs = Q, say ,

where Q is the equilibrium quantity. In this case, the demand and supply equations 
become 

. 4P = −Q + 240,

5P = Q + 30.

This is a system of two simultaneous equations in the unknowns P and Q. We can 
eliminate Q from the system by adding the two equations. This gives 

. 9P = 270.

Then, dividing both sides by 9 gives the equilibrium price 

. P = 30.

Finally, the equilibrium quantity Q is determined by substituting this value into 
either of the demand or supply equations. The supply equation gives 

. 5 × 30 = Q + 30,

which, after rearrangement yields the equilibrium quantity 

. Q = 120.

Problem 2.13 The demand and supply functions of a good are given by 

.P = −Qd + 125,

2P = 3Qs + 30.
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Determine the equilibrium price and quantity. Determine also the effect on the 
market equilibrium if the government decides to impose a fixed tax of £5 on each 
good. Who pays the tax? 

Solution 2.13 At market equilibrium, we have 

. Qd = Qs = Q, say ,

where Q is the equilibrium quantity. In this case, the demand and supply equations 
become 

.P = −Q + 125, . (2.17) 

2P = 3Q + 30. (2.18) 

This is a system of two simultaneous equations in the unknowns P and Q. We can 
eliminate Q from the system by multiplying the demand equation (Eq. (2.17)) by 3: 

.3P = −3Q + 375, (2.19) 

and adding the resulting Eq. (2.19) to the supply Eq. (2.18). This gives 

. 5P = 405,

which, after dividing both sides by 5 gives the equilibrium price 

. P = 81.

Finally, the equilibrium quantity Q is determined by substituting this value into 
either of the demand or supply equations. The demand equation gives 

. 81 = −Q + 125,

which, after rearrangement yields the equilibrium quantity 

. Q = 125 − 81 = 44.

If the government imposes a fixed tax of £5 on each good, then the original supply 
equation needs to be modified. This is because the amount the supplier receives as 
a result of each sale is the amount that the consumer pays (P ) less the tax (£5), i.e., 
.P − 5. Thus, the new supply equation is obtained by replacing P by .P − 5 in the 
original supply equation: 

.2(P − 5) = 3Qs + 30. (2.20)
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This equation can be simplified by multiplying out the bracket on the left-hand 
side and taking the constant term to the right-hand side. The new supply equation 
becomes 

. 2P − 10 = 3Qs + 30,

or 

.2P = 3Qs + 40. (2.21) 

We then proceed as before to determine the equilibrium price and quantity for the 
new situation. At market equilibrium, we have 

. Qd = Qs = Q, say ,

where Q is the equilibrium quantity. In this case, the demand and supply equations 
become 

.P = −Q + 125, . (2.22) 

2P = 3Q + 40. (2.23) 

We can eliminate Q from the system by multiplying the demand equation 
(Eq. (2.22)) by 3: 

.3P = −3Q + 375, (2.24) 

and adding the resulting Eq. (2.24) to the supply Eq. (2.23). This gives 

. 5P = 415,

which, after dividing both sides by 5 gives the equilibrium price 

. P = 83.

Finally, the equilibrium quantity Q is determined by substituting this value into 
either of the demand or supply equations. The demand equation gives 

. 83 = −Q + 125,

which, after rearrangement yields the equilibrium quantity 

.Q = 125 − 83 = 42.
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The influence of government taxation on the equilibrium price is to increase it 
from £81 to £83. Therefore, not of all of the tax is passed on to the consumer. The 
consumer pays an extra £2 per good after tax has been imposed. The remaining part 
of the tax is borne by the supplier. 

2.6.1 Multicommodity Markets 

At the beginning of this section, we looked at supply and demand analysis for a 
single good. We extend these ideas now to a multicommodity market. Suppose that 
there are two goods in related markets, which we call good 1 and good 2. The 
demand for either good depends on the prices of both good 1 and good 2. If the 
corresponding demand functions are linear, then 

. Qd1 = a1 + b1P1 + c1P2

Qd2 = a2 + b2P2 + c2P1

where . Pi and .Qdi
denote the price and demand for the ith good, and . ai , . bi , and . ci

are constants depending on the model. For the first equation .a1 > 0, because there is 
a positive demand when the prices of both goods are zero. Similarly, . a2 is positive. 
Also .b1 < 0 and .b2 < 0, because the demand of a good falls as its price rises. The 
sign of . c1 depends on the nature of the two goods. If the goods are substitutable, 
then an increase in the price of good 2 would mean that consumers would switch 
from good 2 to good 1, causing .Qd1 to increase. Similarly for . c2. Substitutable 
goods are therefore characterized by positive values of . c1 and . c2. On the other hand, 
if the goods are complementary, then a rise in the price of either good would see 
the demand fall so . c1 and . c2 are negative. 

Problem 2.14 The demand and supply functions for two interdependent commodi-
ties are given by 

. Qd1 = 145 − 2P1 + P2

Qs1 = −45 + P1

Qd2 = 30 + P1 − 2P2

Qs2 = −40 + 5P2

where .Qdi
, . Qsi , and . Pi denote the quantity demanded, quantity supplied, and price 

of good i, respectively. Determine the equilibrium price and quantity for this two-
commodity model. Are these goods substitutable or complementary? Give reasons 
for your answer.
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Solution 2.14 At equilibrium, the quantity supplied is equal to the quantity 
demanded for each good, so that 

. Qd1 = Qs1 and Qd2 = Qs2 .

Let us write these respective common values as .Q1 and . Q2. Then for good 1 we 
have 

. Q1 = 145 − 2P1 + P2

Q1 = −45 + P1

Therefore 

. 145 − 2P1 + P2 = −45 + P1

which simplifies to give 

. 3P1 − P2 = 190.

Similarly for good 2 we have 

. Q2 = 30 + P1 − 2P2

Q2 = −40 + 5P2

Therefore 

. 30 + P1 − 2P2 = −40 + 5P2

which simplifies to give 

. − P1 + 7P2 = 70.

We have therefore shown that the equilibrium prices satisfy the simultaneous 
equations 

.3P1 − P2 = 190. (2.25) 

−P1 + 7P2 = 70 (2.26) 

These equations can be solved by elimination. Multiply (2.26) by 3. This gives the 
system 

.3P1 − P2 = 190

−3P1 + 21P2 = 210
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Adding these two equations yields 

. 20P2 = 400,

and so .P2 = 20. Substituting this value of . P2 back into (2.25): 

. 3P1 = 190 + 20 = 210,

which gives .P1 = 70. Finally, substituting these values of . P1 and . P2 back into the 
original supply equations, we obtain 

. Q1 = 145 − 140 + 20 = 25

and 

. Q2 = −40 + 100 = 60.

On inspection of the demand equation for good 1, we see that the demand for 
this good increases when the price of good 2 increases. This is characterized by a 
positive coefficient of . P2 in this equation. Therefore, the two goods are substitutable. 

Self-Assessment Questions 

1. Solve the linear equation 

. 
5x + 2

3
= 3x − 10

2. Solve the system of linear equations 

. 2x + 5y = 1

x + 7y = −4.

3. Sketch the graph of the straight line .y = 2x + 3 for . −3 ≤ x ≤ 1
4. Find the slope of the straight line passing through the points .(−1, 4) and 

. (3,−2)

5. The demand and supply equations for a good are given by 

. 2P = −Qd + 105,

5P = 4Qs + 35,

where P , . Qd , and .Qs denote the price, quantity demanded, and quantity 
supplied, respectively. Determine the equilibrium price and quantity.
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Exercises 

1. Solve the following linear equations: 
(a) .3x − 4 = 2, 

(b) .

(
2x − 1

3

)
=

(
3x − 1

4

)
+ 1. 

2. Solve the system of equations 

. 3x − 2y = 4

x − 2y = 2.

3. Solve the system of equations 

. 3x + 5y = 19

−5x + 2y = −11.

4. Sketch the graph of the straight line .y = −x + 2 for .−1 ≤ x ≤ 5. 
5. Sketch the graph of the straight line .y = 2x − 3 for .0 ≤ x ≤ 4. 
6. Find the slope of the straight line passing through the points .(−1,−3) and 

.(4, 2). 
7. Find the slope of the straight line passing through the points .(0, 0) and .(2, 1). 
8. A person has e60 to spend on two goods, X and Y , whose respective prices 

are e6 and e4 . 
(a) Draw a budget line showing all the different combinations of the two 

goods that can be bought within the given budget. 
(b) What happens to the original budget line if the budget is increased by 

20%? 
(c) What happens to the original budget line if the price of X is halved? 

9. The demand and supply equations for a good are given by 

. 2P = −Qd + 125,

8P = Qs + 45,

where P , . Qd , and .Qs denote the price, quantity demanded, and quantity 
supplied, respectively. 
(a) Determine the equilibrium price and quantity. 
(b) Determine the effect on the market equilibrium if the government decides 

to impose a fixed tax of £2.50 on each good. Who pays the tax? 
10. The demand and supply functions of a good are given by 

.P + 2Qd = 144

4P − 3Qs = 136
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where .P, Qd , and . Qs , denote the price, quantity demanded, and quantity 
supplied, respectively. 
(a) Determine the equilibrium price and quantity. 
(b) Determine the effect on the market equilibrium if the government decides 

to impose a fixed tax of $11 on each good. Who pays the tax? 
11. The demand and supply functions of a good are given by 

. 
4P = −Qd + 102
5P = Qs + 6

where .P, Qd , and .Qs denote the price, quantity demanded, and quantity 
supplied, respectively. 
(a) Determine the equilibrium price and quantity. 
(b) Determine the effect on the market equilibrium if the government decides 

to impose a fixed tax of £9 on each good. Who pays the tax? 
12. The demand and supply equations for two complementary goods, trousers 

(T) and jackets (J), are given by 

. QdT
= 410 − 5PT − 2PJ

QsT = −60 + 3PT

and 

. QdJ
= 295 − PT − 3PJ

QsJ = −120 + 2PJ

respectively, where .QdT
, .QsT , and .PT denote the quantity demanded, 

quantity supplied, and price of trousers, and .QdJ
, .QsJ , and .PJ denote the 

quantity demanded, quantity supplied, and price of jackets. Determine the 
equilibrium price and quantity for this two-market model.
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� Key Learning Objectives
On completion of this chapter students should be able to:

• Sketch the graph of a quadratic function.
• Solve quadratic equations using factorization.
• Solve quadratic equations using the formula.
• Obtain an expression for the profit function and determine the level of

output that maximizes profit.

3.1 Introduction 

Linear equations and methods for their solution were introduced in the previous 
chapter. As we have seen, the graphs of linear functions are straight lines and 
therefore their slopes are constant. This means that the function changes by a 
constant amount whenever the dependent variable changes by the same fixed value. 
This type of behaviour is not always observed in real-life applications in economics. 
It is, therefore, necessary to introduce an added level of sophistication to the 
mathematical modelling. This is achieved through the introduction of nonlinear 
functions. The simplest nonlinear function is the quadratic function. This function 
takes the general form 

.f (x) = ax2 + bx + c, (3.1) 

where .a �= 0, b and c are constants. The condition .a �= 0 is to prevent the occurrence 
of the degenerate case in which (3.1) reduces to a linear function. 

If the profit function for a firm is given by a quadratic expression, then one can 
determine the level of output for which the firm breaks even by solving a quadratic 
equation. Additionally, one can determine the maximum profit and the level of 
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output for which it is attained by algebraically manipulating the expression for 
the function. For more general nonlinear functions, the maximum and/or minimum 
values of a function can be determined using the techniques of calculus (see 
Chap. 7), but for a quadratic function this can be achieved using algebra. 

Certain total cost and total revenue functions are examples of quadratic functions 
and are defined in terms of a quadratic expression involving the demand. 

3.2 Graphs of Quadratic Functions 

In the case of a linear function of the form .f (x) = dx + e, the parameters d and e 
can be interpreted in terms of properties of the graph of the function. The value of 
d, the coefficient of x, gives the slope or gradient of the function, and the value of 
e, the constant term, tells us where the straight line intercepts the y-axis. A natural 
question to ask is whether the parameters in the expression defining the general 
quadratic function .f (x) = ax2 +bx + c can be interpreted in a similar way in order 
to help us sketch its graph. 

If we evaluate the function .f (x) = ax2 + bx + c when .x = 0 we obtain . f (0) =
c. Therefore, the quadratic function intercepts the y-axis at the location .y = c. 
The values of the other parameters cannot be interpreted in such a simple manner. 
However, the sign of the parameter a tells us something about the shape of the 
graph. If .a > 0, then the graph of .f (x) has a . 

⋃
shape, whereas if .a < 0 the graph 

of .f (x) has a . 
⋂

shape. This information gives us a rough idea of what the graph 
of a quadratic function looks like. An additional aid is to tabulate the function at 
a sequence of integer values of x and to draw a smooth curve through the set of 
points. For example, let us sketch the graph of the quadratic function . f (x) = x2

for .−3 ≤ x ≤ 3. If we compare the coefficients of this function with those of the 
general quadratic function, we find that .a = 1, and .b = c = 0. Therefore, the graph 
of this function intercepts the y-axis at the origin as .c = 0 and has a . 

⋃
shape as 

.a > 0. The values of this function are tabulated in Table 3.1 for integer values of x 
for which .−3 ≤ x ≤ 3, and the graph of the function is shown in Fig. 3.1. 

Now consider the function .f (x) = 2x2 + 3x − 2. Again comparison with the 
general quadratic function (3.1) shows that .a = 2, .b = 3, and .c = −2. The graph is 
again of a . 

⋃
shape since .a > 0 and it intercepts the y-axis at .y = −2. The values of 

this function for integer values of x between .−4 and 2 are shown in Table 3.2, and 
the graph of the function is shown in Fig. 3.2. The graph of this function crosses the 
x-axis in two places, at .x = −2 and .x = 1/2. These values of x satisfy the quadratic 
equation .2x2 + 3x − 2 = 0 since .y = f (x) = 0 at these two points. The values 

Table 3.1 Table of values of the function .f (x) = x2 for integer values of x for which . −3 ≤ x ≤
3. The graph of this function is shown in Fig. 3.1 

x .−3 .−2 .−1 0 1 2 3 

.f (x) 9 4 1 0 1 4 9
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Fig. 3.1 The graph of the function .f (x) = x2 for . −3 ≤ x ≤ 3

Table 3.2 Table of values of the function .f (x) = 2x2 + 3x − 2 for integer values of x for which 
.−4 ≤ x ≤ 2. The graph of this function is shown in Fig. 3.2 

x .−4 .−3 .−2 .−1 0 1 2 

.2x2 32 18 8 2 0 2 8 

3x .−12 .−9 .−6 .−3 0 3 6 

.−2 .−2 .−2 .−2 .−2 .−2 .−2 . −2

.f (x) 18 7 0 .−3 .−2 3 12 

of x that satisfy the equation .f (x) = 0 are known as the roots or solutions of the 
equation. These two terms are used interchangeably. Therefore, we say that . x = −2
and .x = 1/2 are the roots or solutions of the quadratic equation .2x2 + 3x − 2 = 0. 

The next function we consider is .f (x) = 2x − x2. This function has a negative 
coefficient of . x2. In terms of the general quadratic function (3.1), we have .a = −1, 
.b = 2, and .c = 0. Since .a < 0, the graph of the function has a . 

⋂
shape. The graph 

intersects the x-axis at the origin since .y = 2x − x2 = when .x = 0. The other 
intercept (intersection) with the x-axis is the other root of the equation .2x −x2 = 0, 
namely .x = 2. This is evident since .2x −x2 = (2−x)x. Therefore, one of the roots 
of the equation .2x − x2 = 0 is .x = 0. The other root is .x = 2. The values of this
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Fig. 3.2 The graph of the function .f (x) = 2x2 + 3x − 2 for . −4 ≤ x ≤ 2

Table 3.3 Table of values of the function .f (x) = 2x − x2 for integer values of x for which 
.−2 ≤ x ≤ 4. The graph of this function is shown in Fig. 3.3 

x .−2 .−1 0 1 2 3 4 

2x .−4 .−2 0 2 4 6 8 

.−x2 .−4 .−1 0 .−1 .−4 .−9 . −16

.f (x) .−8 .−3 0 1 0 .−3 . −8

function for integer values of x between .−2 and 4 are shown in Table 3.3, and the 
graph of the function is shown in Fig. 3.3. 

Finally, we consider the function .f (x) = x2 − 2x + 2. Comparison with the 
general quadratic function (3.1) gives .a = 1, .b = −2, and .c = 2. The values of this 
function at integer values of x between .−2 and 4 are shown in Table 3.4, and the 
graph of the function is shown in Fig. 3.4. Note that the graph of this function does 
not cross the x-axis. It lies entirely above the x-axis, i.e., .f (x) > 0 for all values of 
x. Therefore, there are no real roots of the corresponding equation .x2 − 2x + 2 = 0. 

The graph of a quadratic function is known as a parabola. On inspection of 
Figs. 3.1, 3.2, 3.3, and 3.4, we observe that a parabola is symmetric about a vertical 
line .x = h, where h is some constant. This line is known as the axis of symmetry 
of the parabola. The point of intersection of a parabola with its axis of symmetry 
is called the vertex. For example, the quadratic function .f (x) = x2 − 3x + 2 has
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Fig. 3.3 The graph of the function .f (x) = 2x − x2 for . −2 ≤ x ≤ 4

Table 3.4 Table of values of the function .f (x) = x2 − 2x + 2 for integer values of x for which 
.−2 ≤ x ≤ 4. The graph of this function is shown in Fig. 3.4 

x .−2 .−1 0 1 2 3 4 

.x2 4 1 0 1 4 9 16 

.−2x 4 2 0 .−2 .−4 .−6 . −8

2 2 2 2 2 2 2 2 

.f (x) 10 5 2 1 2 5 10 

.x = 3/2 as its axis of symmetry and .(3/2,−1/4) as its vertex. If .a > 0, then the 
y component of the vertex provides the minimum value of the quadratic function. 
Similarly, if .a < 0, then the y component of the vertex provides the maximum value 
of the quadratic function. 

If a quadratic function can be expressed in the form 

.f (x) = a(x − h)2 + k, (3.2)
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x
-2 -1 0 1 2 3 4 

2 

4 

6 

8 

10 

y 

Fig. 3.4 The graph of the function .f (x) = x2 − 2x + 2 for . −3 ≤ x ≤ 3

then the axis of symmetry is .x − h = 0 and the vertex is the point with coordinates 
.(h, k). Let us rearrange the expression defining the general quadratic expression so 
that it is in this form. To do this, we use a process known as completing the square. 
First, we extract a factor a from the quadratic expression .ax2 + bx + c, i.e., 

.ax2 + bx + c = a

(

x2 + b

a
x + c

a

)

(3.3) 

Then, we express the first two terms inside the bracket on the right-hand side of 
(3.3), viz. .x2 + (b/a)x as the difference between two squares: 

.x2 + b

a
x =

(

x + b

2a

)2

−
(

b

2a

)2

.
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Therefore, 

.ax2 + bx + c = a

[(

x + b

2a

)2

− b2

4a2 + c

a

]

. (3.4) 

= a

[(

x + 
b 

2a

)2 

+ 
4ac − b2 

4a2

]

, (3.5) 

in which the last two terms in (3.4) have been combined to form a single fraction. 
Finally, we arrive at 

.ax2 + bx + c = a

(

x + b

2a

)2

+ 4ac − b2

4a
. (3.6) 

So comparing (3.6) with (3.2), we have 

. h = − b

2a
, k = 4ac − b2

4a
.

In the above example, rearrangement gives 

. f (x) =
(

x − 3

2

)2

− 9

4
+ 2 =

(

x − 3

2

)2

− 1

4
,

from which we deduce that the axis of symmetry is .x − 3/2 = 0 and the vertex is 
.(3/2,−1/4). Next consider the function .f (x) = 2x − x2. This expression can be 
rearranged as follows to determine the axis of symmetry and vertex: 

. f (x) = 2x − x2

= −(x − 1)2 + 1

Therefore, for this function we have .a = −1, .h = 1, and .k = 1, so the axis of 
symmetry is the line .x = 1 and the vertex is located at the point with coordinates 
.(1, 1). 

Finally, we consider the function .f (x) = 2x2 + 3x − 2. As before we write 

.f (x) = 2x2 + 3x − 2

= 2

[

x2 + 3

2
x − 1

]

= 2

[(

x + 3

4

)2

− 9

16
− 1

]

= 2

(

x + 3

4

)2

− 25

8
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Table 3.5 Axes and vertices 
of some quadratic functions 

.f (x) Axis Vertex 

.x2 .x = 0 . (0, 0)

.2x − x2 .x = 1 . (1, 1)

.2x2 + 3x − 2 .x = −3/4 . (−3/4,−25/8)

.x2 − 2x + 2 .x = 1 . (1, 1)

Therefore, for this function we have .a = 2, .h = −3/4, and .k = −25/8, so the  
axis of symmetry is the line .x = −3/4 and the vertex is located at the point with 
coordinates .(−3/4,−25/8). In Table 3.5, we provide the axes and vertices of the 
four quadratic functions we have investigated in this chapter. 

3.3 Quadratic Equations 

There are a number of techniques for determining the roots of a quadratic equation. 
Knowledge of the roots of a quadratic equation can be an additional aid to sketching 
the graph of a quadratic function. If the expression defining a quadratic function can 
be factorised as a product of linear factors, then equating each of the factors to zero 
and solving the resulting linear equations will provide the roots. 

Problem 3.1 Solve .x2 + 13x + 30 = 0 using factorization. 

Solution 3.1 First, we factorize the quadratic expression .x2 +13x+30 as a product 
of two linear factors .(x + A) and .(x + B), where A and B are two constants that 
need to be determined. Since 

. (x + A)(x + B) = x2 + (A + B)x + AB,

then the constants A and B need to be chosen so that 

. A + B = 13, AB = 30.

The possible combinations of integers whose product is 30 are .30×1, .15×2, .10×3, 
and .6 × 5. Of course, one also has the combinations in which the integers have been 
negated such as .(−30)×(−1), but out of these combinations the only one for which 
the pair of integers sums to 13 is .10 × 3. Therefore, we choose .A = 10 and .B = 3, 
i.e., 

. x2 + 13x + 30 = (x + 10)(x + 3).

We now solve the equation .(x + 3)(x + 10) = 0. For the product of the two 
linear terms .x +3 and .x +10 to be zero, at least one of them must be zero. So either 
.x + 3 = 0 or .x + 10 = 0.
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If .x + 3 = 0 then .x = −3, and if .x + 10 = 0 then .x = −10. Therefore, the roots 
of the equation .x2 + 13x + 30 = 0 are .x = −3 and .x = −10. 

Problem 3.2 Solve the quadratic equation .2x2 − 11x + 12 = 0 using factorization. 

Solution 3.2 As in the previous example, the first step is to factorize the quadratic 
expression .2x2 − 11x + 12 as a product of linear factors. These linear factors must 
be of the form .(2x + A) and .(x + B) in order to retrieve the quadratic factor . 2x2, 
where A and B are two positive constants. Since 

. (2x + A)(x + B) = 2x2 + (A + 2B)x + AB,

then the constants A and B need to be chosen so that 

. A + 2B = −11, AB = 12.

The possible combinations of integers whose product is 12 are .12 × 1, .6 × 2, .4 × 3, 
.−4 × −3, .−6 × −2, and .−12 × −1. The only pair of integers amongst these for 
which .A + 2B = −11 is .A = −3 and .B = −4. Therefore, we have 

. 2x2 − 11x + 12 = (2x − 3)(x − 4).

The problem now is to solve the equation 

. (2x − 3)(x − 4) = 0.

Either .2x − 3 = 0 or .x − 4 = 0. If .2x − 3 = 0 then .2x = 3 and .x = 3/2. If  
.x −4 = 0, then .x = 4. Therefore, the two roots of the equation . 2x2 −11x +12 = 0
are .x = 3/2 and .x = 4. 

Most quadratic expressions, however, do not factorise easily in the sense that they 
cannot be expressed as a product of linear factors with integer coefficients, even if 
the coefficients of the quadratic equation are integers. For example, the quadratic 
equation .3x2 − 9x + 5 = 0 cannot be factored into a product of linear factors with 
integer coefficients. Clearly, a more systematic approach is required. 

There is a formula for finding the solution to a quadratic equation 

.ax2 + bx + c = 0. (3.7) 

The formula may be derived by the process known as completing the square that 
was introduced in Sect. 3.2. We assume that . a �= 0. Using (3.6) we see that (3.7) is  
equivalent to 

.a

(

x + b

2a

)2

+ 4ac − b2

4a
= 0.
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Dividing both sides by a and taking the last term to the right-hand side yields 

. 

(

x + b

2a

)2

= b2 − 4ac

4a2
.

Now taking the square root of both sides gives 

. x + b

2a
= ±

√
b2 − 4ac

4a2
= ±

√
b2 − 4ac

2a
.

Finally, subtracting .b/(2a) from both sides we arrive at the formula for the roots of 
a quadratic equation: 

.x = −b ± √
b2 − 4ac

2a
. (3.8) 

This is an important formula for the roots (that is, solutions) of a quadratic equation, 
which we highlight: 

The solutions of the quadratic equation .ax2 + bx + c = 0 are 

. x = −b ± √
b2 − 4ac

2a
.

The number of solutions of a quadratic equation depends on the sign of the 
expression under the square root sign in this formula. A quadratic equation has two, 
one or no real solutions depending on whether the expression .b2 − 4ac is positive, 
zero, or negative:

• If .b2 − 4ac > 0, there are two solutions 

.x = −b + √
b2 − 4ac

2a
and x = −b − √

b2 − 4ac

2a
.

• If .b2 − 4ac = 0, then there is one solution 

.x = − b

2a
.

• If .b2 −4ac < 0, then there are no real solutions since the square root of . b2 −4ac

does not exist in this case.
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Problem 3.3 Solve the quadratic equation 

. 4x2 − 11x + 6 = 0

using the formula. 

Solution 3.3 Compare the coefficients of this equation with those of the general 
quadratic equation. If we do this, we notice that .a = 4, .b = −11, and .c = 6. 
Inserting these values into the formula (3.8) gives  

. x = −(−11) ± √
(−11)2 − 4 × 4 × 6

2 × 4

= 11 ± √
121 − 96

8

= 11 ± √
25

8

= 11 ± 5

8

Therefore, the two solutions are 

. x = 11 + 5

8
= 16

8
= 2, and x = 11 − 5

8
= 6

8
= 3

4
.

Problem 3.4 Solve the quadratic equation 

. x2 − 2x − 15 = 0

using the formula. 

Solution 3.4 Compare the coefficients of this equation with those of the general 
quadratic equation. If we do this, we notice that .a = 1, .b = −2, and .c = −15. 
Inserting these values into the formula (3.8) gives  

.x = −(−2) ± √
(−2)2 − 4 × 1 × (−15)

2 × 1

= 2 ± √
4 − (−60)

2

= 2 ± √
64

2

= 2 ± 8

2
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Therefore, the two solutions are 

. x = 2 + 8

2
= 10

2
= 5, and x = 2 − 8

2
= −6

2
= −3.

Problem 3.5 Solve the quadratic equation 

. 3x2 − 9x + 5 = 0

using the formula. 

Solution 3.5 Compare the coefficients of this equation with those of the general 
quadratic equation. If we do this, we notice that .a = 3, .b = −9, and .c = 5. 
Inserting these values into the formula (3.8) gives  

. x = −(−9) ± √
(−9)2 − 4 × 3 × 5

2 × 3

= 9 ± √
81 − 60

6

= 9 ± √
21

6

Note that 21 is not a perfect square, and therefore the roots of this equation can only 
be expressed in decimal representation to a specified number of decimal places. 
Therefore, to four decimal places the two solutions of this equation are 

. x = 9 + √
21

6
= 2.2638, and x = 9 − √

21

6
= 0.7362.

Problem 3.6 Solve the quadratic equation .x2 − 18x + 45 = 0 by completing the 
square. 

Solution 3.6 In this example .a = 1, .b = −18, and .c = 45. Therefore, using (3.6) 
we may write the equation in the form 

. (x − 9)2 − 81 + 45 = 0,

or 

. (x − 9)2 = 36.

Then taking the square root of both sides gives 

.x − 9 = ±6.
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Either .x − 9 = 6, which means that . x = 15. Or .x − 9 = −6, which means that 
.x = 3. 

3.4 Applications to Economics 

One function of particular interest in economics is the profit function. We denote 
this function by the Greek symbol . π . The profit function is defined to be the 
difference between total revenue, T R, and the total cost, T C, i.e., 

. π = T R − T C.

The total revenue received from the sale of Q goods at price P is given by the 
product of P and Q, i.e., 

. T R = P × Q.

The total cost function relates the cost of production to the level of output, Q, and is 
the sum of the fixed costs, FC, and variable costs, .V C × Q, where V C  denotes the 
variable cost per unit of output. Fixed costs include, for example, the cost of land, 
rental, equipment, and skilled labour. Variable costs include, for example, the cost 
of raw materials, energy, and unskilled labour. The total cost in producing Q goods 
is given by 

. T C = FC + (V C) × Q.

Thus the profit function is 

. π = P × Q − [FC + (V C) × Q] = PQ − FC − (V C) × Q.

Note that care needs to be exercised in removing the brackets. It is important to 
remember that the negative sign outside the square brackets negates all terms inside 
the brackets when the brackets are moved. 

Problem 3.7 If fixed costs are 18, variable costs per unit are 4, and the demand 
function is 

. P = 24 − 2Q

obtain an expression for . π in terms of Q and hence sketch a graph of . π against Q. 

1. For what values of Q does the firm break even? 
2. What is the maximum profit?
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Solution 3.7 The total revenue function is given by 

. T R = P × Q = (24 − 2Q)Q = 24Q − 2Q2,

where we have used the demand function .P = 24 − 2Q to eliminate P in the 
expression defining T R. We have expressed T R  solely in terms of the level of 
output, Q. The total cost function is given by 

. T C = FC + (V C) × Q = 18 + 4Q,

since .FC = 18 and .V C = 4. We can now obtain an expression for the profit 
function by subtracting the expression for T C  from the expression for T R, i.e., 

. π = T R − T C

= 24Q − 2Q2 − (18 + 4Q)

= 24Q − 2Q2 − 18 − 4Q

= −2Q2 + 20Q − 18,

where we have taken care to change the sign of all terms inside the brackets on their 
removal. 

Since the coefficient of .Q2 in the quadratic expression defining . π is negative, 
the graph of the profit function has a . 

⋂
shape. When .Q = 0, .π = −18. The profit 

function is tabulated in Table 3.6 for .0 ≤ Q ≤ 10. From this information, we are 
able to sketch the graph of the function. This is shown in Fig. 3.5. 

1. The value of the profit function will be zero (i.e., .π = 0) for values of Q that 
satisfy the quadratic equation 

. − 2Q2 + 20Q − 18 = 0.

Table 3.6 Table of values of 
the profit function 
.π = −2Q2 + 20Q − 18 for 
even integer values of Q for 
which . 0 ≤ Q ≤ 10

Q 0 2 4 6 8 10 

.−2Q2 0 .−8 .−32 .−72 .−128 . −200

20Q 0 40 80 120 160 200 

.−18 .−18 .−18 .−18 .−18 .−18 . −18

.π .−18 14 30 30 14 .−18
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Fig. 3.5 The graph of the profit function . π = −2Q2 + 20Q − 18

Solving this equation using the formula with .a = −2, .b = 20, and . c = −18
yields 

. Q = −20 ± √
400 − 144

−4

= −20 ± √
256

−4

= −20 ± 16

−4

Therefore, either 

. Q = −20 + 16

−4
= −4

−4
= 1,

or 

.Q = −20 − 16

−4
= −36

−4
= 9.
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The profit is zero when .Q = 1 and .Q = 9. Therefore, the firm breaks even when 
.Q = 1 and . Q = 9. For .1 < Q < 9, the profit function is positive (see Fig. 3.5) 
and the firm is in profit. For values of Q outside this range, i.e., .Q < 1 and 
.Q > 9, the profit function is negative and therefore the firm makes a loss at these 
levels of output. 

2. To determine the maximum value of the profit function, we complete the square. 

. π = −2
[
Q2 − 10Q + 9

]

= −2
[
(Q − 5)2 − 25 + 9

]

= −2
[
(Q − 5)2 − 16

]

= (−2) × (Q − 5)2 + (−2) × (−16)

= −2(Q − 5)2 + 32

Therefore, the maximum profit is .π = 32 since the term .−2(Q − 5)2 is always 
negative except when .Q = 5 when it is zero. 

Finally, we return to supply and demand analysis. In Chap. 2, we considered 
examples in which both the supply and demand functions were linear and deter-
mined the equilibrium price and quantity. Although linear models are frequently 
used in economics because of the simplicity of their mathematical structure, they 
can also be limiting in the sort of economic behaviour they describe. As we shall 
see in the next example, it is not necessary for the supply and demand functions 
to be linear, and, in the case when they are defined by quadratic expressions, the 
market equilibrium can be determined by solving a quadratic expression. 

Problem 3.8 Given the supply and demand functions 

. P = Q2
s + 12Qs + 32,

P = −Q2
d − 4Qd + 200,

calculate the equilibrium price and quantity. 

Solution 3.8 At equilibrium, the quantity supplied is equal to the quantity 
demanded, so that 

.Qd = Qs = Q, say.
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Then the supply and demand equations become 

. P = Q2 + 12Q + 32,

P = −Q2 − 4Q + 200.

Equating the expressions on the right-hand sides of these equations, we have 

. Q2 + 12Q + 32 = −Q2 − 4Q + 200.

We can do this since both expressions are equal to P . Rearranging this equation and 
collecting like terms yields the quadratic equation 

. 2Q2 + 16Q − 168 = 0.

This equation can be simplified by dividing throughout by 2. We then have the 
quadratic equation 

. Q2 + 8Q − 84 = 0.

Solving this equation using the formula with .a = 1, .b = 8, and .c = −84 yields 

. Q = −8 ± √
82 − 4 × 1 × (−84)

2 × 1

= −8 ± √
64 + 336

2

= −8 ± √
400

2

= −8 ± 20

2

Therefore, either 

. Q = −8 + 20

2
= 12

2
= 6,

or 

. Q = −8 − 20

2
= −28

2
= −14.

So the quadratic equation has solutions .Q = 6 and .Q = −14. The solution 
.Q = −14 can be discarded because a negative quantity does not make sense. 
Therefore, the equilibrium quantity is 6. The corresponding equilibrium price can
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Fig. 3.6 The graph of the supply and demand functions in Example 3.8 

be determined by substituting .Q = 6 into either the supply or demand equation. If 
we substitute this value into the supply equation, we have 

. P = 62 + 12 × 6 + 32 = 36 + 72 + 32 = 140.

Therefore, the equilibrium price is 140. 
The graphs of the supply and demand functions are shown in Fig. 3.6. There are 

two points of intersection. The one for positive Q provides the market equilibrium. 

Self-Assessment Questions 

1. Sketch the graph of the function .f (x) = x2 − 2x − 3 for .−2 ≤ x ≤ 4. 
2. Solve the following quadratic equations using factorization .x2 −4x −12 = 0. 
3. Solve the following quadratic equations using the formula .2x2 + 3x − 5 = 0. 
4. If fixed costs are 10, variable costs per unit are 4, and the demand function is 

.P = 40 − 3Q
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obtain an expression for the profit function . π in terms of Q. What level of 
output Q maximizes profit? 

Exercises 

1. Evaluate the function .f (x) = 2x2 − 9x + 4 when .x = 0, 1, 2, 3, 4, 5. 
Hence, sketch the graph of this function for . 0 ≤ x ≤ 5.

2. Evaluate the function .f (x) = −2x2 − 3x + 3 when .x = −3, . −2, . −1, 0, 1, 2.  
Hence, sketch the graph of this function for . −3 ≤ x ≤ 2.

3. Sketch the graphs of the following functions: 
(a) .f (x) = 4x2 − 7x − 2, for . −2 ≤ x ≤ 4; ,

(b) .f (x) = 9 − 6x − 8x2, for .−3 ≤ x ≤ 3. 
4. Solve the following quadratic equations using the formula: 

(a) . x2 − 4x + 3 = 0,

(b) .3x2 + 5x − 8 = 0, 
(c) .2x2 − 19x − 10 = 0. 

5. Solve the following quadratic equations using factorization: 
(a) .x2 + 7x + 10 = 0, 
(b) .x2 − 4x − 5 = 0, 
(c) .6x2 + 19x + 10 = 0. 

6. Write the quadratic function .f (x) = x2 − 8x + 12 in the form 

. f (x) = a(x − h)2 + k.

What is the equation for the axis of symmetry of this parabola, and what is its 
vertex? Use this information to sketch the graph of this function. 

7. If fixed costs are 6, variable costs per unit are 2, and the demand function is 

. P = 15 − 3Q

obtain an expression for the profit function . π in terms of Q. Hence, sketch a 
graph of . π against Q. 

8. If fixed costs are 4, variable costs per unit are 3, and the demand function is 

. P = 45 − 4Q

obtain an expression for the profit function . π in terms of Q. Hence, sketch a 
graph of . π against Q.
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� Key Learning Objectives
On completion of this chapter students should be able to:

• Evaluate a function given a value of the independent variable.
• Find expressions for the total cost and average cost of producing a good.
• Determine the average cost of production when the number of goods is

very large.
• Find the inverse of a function.
• Determine the inverse of the demand function.

4.1 Introduction 

The concept of a function is fundamental to many of the applications that we 
will encounter in economics. As we have already seen in Chaps. 2 and 3, it is a
convenient way of expressing a relationship between two variables in terms of a 
prescribed mathematical rule. More formally, we have the following definition: 

Definition 4.1 A function f is a rule that assigns to each value of a variable x, 
called the independent variable or argument of the function, one and only one 
value .f (x), referred to as the value of the function at x. The variable . y = f (x)

varies with x and is known as the dependent variable. 

We sometimes write .f (x) to denote the function f if we wish to indicate that 
the variable is x. The function rule defines the dependent variable in terms of 
the independent variable. A function of a single variable enables the value of the 
dependent variable to be determined when the independent variable is specified. A 
function may therefore be interpreted as a process f that takes an input number x 
and converts it into only one output number .f (x). For example, the function defined 
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by the rule .f (x) = 6x + 2 is the rule that takes an input number x, multiplies it by 
6, and then adds 2 to the product to obtain the output number. Given a value of x, 
the corresponding value of .f (x) can be determined using this rule. For example, if 
. x = 3

. f (x) = 6 × 3 + 2 = 18 + 2 = 20.

We write .f (3) = 20 and say ‘the value of f at .x = 3 is 20’ or ‘f of 3 equals 20’. 

Problem 4.1 Evaluate .f (x) = 2x − 5 when .x = −1, .x = 2 and .x = 4. 

Solution 4.1 When .x = −1, 

. f (x) = 2 × (−1) − 5 = −2 − 5 = −7,

so that .f (−1) = −7. When .x = 2, 

. f (x) = 2 × 2 − 5 = 4 − 5 = −1,

so that .f (2) = −1. When .x = 4, 

. f (x) = 2 × 4 − 5 = 8 − 5 = 3,

so that . f (4) = −3.

Functions are generally represented by algebraic formulae that are usually 
expressed in the form 

. y = f (x),

where f defines the precise nature of the functional relationship. We say ‘y equals 
f of x’ or ‘y is a function of x’. In mathematics, we usually denote functions by 
letters such as f , g, and h. Examples of functions are : 

1. the linear function .y = f (x) = ax + b; 
2. the quadratic function .y = f (x) = ax2 + bx + c; 
3. the power function .y = f (x) = axn; 

where a, b, c and n are constants. 

Problem 4.2 Given .f (x) = x2 + 4x − 5, find .f (2) and .f (−3).
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Solution 4.2 

. f (2) = 22 + 4(2) − 5 = 4 + 8 − 5 = 7

. f (−3) = (−3)2 + 4(−3) − 5 = 9 − 12 − 5 = −8

There are occasions when the input number or value of the dependent variable is 
not admissible in the sense that the function fails to process it. For example, take the 
reciprocal function .f (x) = 1/x and consider the input value 0. If we try to evaluate 
.f (0) on a calculator, an error message will be given because we cannot divide by 
zero. Some calculators will even deliver a reprimand and inform you that you cannot 
divide by zero! All the numbers that a function can process are known collectively 
as the domain of the function. 

Sometimes we may wish to restrict the domain to a smaller set of numbers 
than are admissible. In many applications in economics, we are only interested in 
domains that contain nonzero numbers. For example, the profit function is only of 
interest for non-negative values of output even though it may well be defined for 
negative values as well. The smaller set of numbers is called a restricted domain. 
For example, the function defined by 

.f (x) = 2x + 1, −2 ≤ x ≤ 4, (4.1) 

has a domain restricted to all the real numbers lying between .−2 and 4 even though 
this function is defined over all the real numbers. The range of a function is the 
collection of all those values of .f (x) that correspond to each and every number in 
the domain of the function. For example, the function .f (x) = x2 has a domain that 
consists of all the real numbers and a range that contains all the non-negative real 
numbers. The function .f (x) defined by (4.1) has domain .−2 ≤ x ≤ 4 and range 
.−3 ≤ f (x) ≤ 9. 

Note that a function can take the same value for two different values of its 
argument. For example, the function .f (x) = x2 takes the value 4 when . x = −2
and .x = 2. Such functions are said to be many-to-one. Functions that are such that 
each element x of the domain is assigned to a different value .f (x) are said to be 
one-to-one, i.e., the function f is one-to-one if 

. f (x1) = f (x2) implies x1 = x2.

Every linear function 

. f (x) = ax + b, a �= 0,

is one-to-one. Relationships which are one-to-many can occur, but from our 
definition they are not functions. For example, .y2 = 1 − x2 is an example of a 
one-to-many relationship. When .x = 0, .y2 = 1, and so .y = −1 and .y = 1. 
Therefore, there are two values of y that correspond to .x = 0.
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4.2 Limits 

Sometimes it is of interest to know how a function behaves as the value of its 
argument tends to a fixed value. For example, in economics one may wish to 
know how the average cost of producing a certain good decreases as the number of 
goods produced increases. For example, suppose that the total cost to an electronics 
company of producing Q flat screen televisions is 

. T C = 800Q + 1,000,000.

What is the average cost AC of producing Q televisions when Q is very large? We 
can answer questions such as this using the concept of a limit. 

The limiting behaviour of a function when the values in its domain are larger 
than any finite number may be formalised by expressing the limit of a function . f (x)

as x moves increasingly far to the right on the real line as 

. lim
x→∞ f (x).

So .x → ∞ means x increases without bound, and we say x tends to . ∞. Similarly, 
the limit of .f (x) as x moves increasingly far to the left on the real line is expressed 
as 

. lim
x→−∞ f (x).

So .x → −∞ means x decreases without bound, and we say x tends to . −∞. In  
Sect. 4.4, the concept of the limit of a function will be explored and explained for 
the reciprocal function .f (x) = 1/x. 

4.3 Polynomial Functions 

The properties of linear and quadratic functions were described in Chaps. 2 and 3, 
respectively. In this section, we look at other polynomial functions. First of all, 
consider the power functions defined by 

. f (x) = kxn,

where k is a constant and n is a positive integer. These are sometimes known as 
monomials since they comprise only one term. 

If n is even, the graph of .f (x) = xn is similar to that of .f (x) = x2 in terms of 
its shape and its symmetry about the y-axis (see Fig. 4.1). The important difference 
is that, for .n > 2, .f (x) increases more rapidly as x increases away from . x = ±1
in the positive and negative x-directions. Note that all the graphs pass through the 
three points .(0, 0) (where they attain their minimum values), .(1, 1) and .(−1, 1).
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Fig. 4.1 The graphs of the even monomials .f (x) = xn for . n = 2, 4, 6

If n is odd, the graphs of .f (x) = xn are similar, for positive values of x, to those 
for which n is even. However, for negative values of x they are quite different (see 
Fig. 4.2). The portion of the graph for negative values of x may be formed as the  
result of two reflections of the positive portion of the graph, first with respect to the 
y-axis and then with respect to the x-axis, i.e., if the point .(x, y) lies on the graph 
then so also does the point .(−x,−y). All the graphs pass through the points .(0, 0), 
.(1, 1), and .(−1,−1). 

If n is odd, the function .f (x) = xn is an increasing function of x since 

. f (x1) ≤ f (x2) for x1 < x2.

If n is even, the function .f (x) = xn is an increasing function of x for .x ≥ 0. 
However, for .x ≤ 0, the function is decreasing since 

. f (x1) ≥ f (x2) for x1 < x2 ≤ 0.

The general cubic function has the form 

.f (x) = ax3 + bx2 + cx + d,
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Fig. 4.2 The graphs of the odd monomials .f (x) = xn for . n = 1, 3, 5

with .a �= 0. The simplest cubic function is .f (x) = x3. Its graph is the dot-dash 
curve in Fig. 4.2. More generally, the graph of a cubic function has one of the two 
forms shown in Figs. 4.3 and 4.4 depending on the sign of a. If .a > 0, .f (x) tends 
to . ∞ as x tends to . ∞ and tends to .−∞ as x tends to .−∞. The cubic function 
.f (x) = x3 + x2 − 2x has .a = 1 > 0, and its graph is shown in Fig. 4.3. If .a < 0, 
.f (x) tends to .−∞ as x tends to . ∞ and tends to . ∞ as x tends to .−∞. The cubic 
function .f (x) = −x3 + 5x2 − 2x − 15 has .a = −1 < 0, and its graph is shown in 
Fig. 4.4. 

The graph of a cubic function crosses the x-axis at one, two, or three points. 
Therefore, the equation .f (x) = 0 has one, two, or three real roots. For example, 
the graph of the cubic function .f (x) = x3 + x2 − 2x (see Fig. 4.3) crosses the 
x-axis when .x = −2, .x = 0 and .x = 1, and the graph of the cubic function 
.f (x) = −x3 + 5x2 − 2x − 15 (see Fig. 4.4) crosses the x-axis at the single point 
.x = −3/2. The graph of the function .f (x) = x3 − x2 crosses the x-axis at . x = 1
and . x = 0. At .x = 0 the function .f (x) = x3 − x2 has two coincident roots.
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Fig. 4.3 The graph of the function . f (x) = x3 + x2 − 2x

4.4 Continuity 

Consider the graph of a function .y = f (x) on some domain .a ≤ x ≤ b. If the  
graph of the function can be drawn in a continuous motion without lifting the pen 
or pencil from the paper then we say that the function is continuous. In the case of 
a continuous function, for each interior point c of the domain i.e. .a < c < b, the  
function value .f (c) is the limit of the function values as x approaches c on either 
side of c. We write 

. f (c) = lim
x→c

f (x).

At the end points we have 

. f (a) = lim
x→a+ f (x), f (b) = lim

x→b− f (x),

where the limit .x → a+ is interpreted as the limit as x approaches a from the right 
and the limit .x → b− is interpreted as the limit as x approaches b from the left.
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Fig. 4.4 The graph of the function . f (x) = −x3 + 5x2 − 2x − 15

At a point c of discontinuity either 

. lim
x→c

f (x) fails to exist

or 

. lim
x→c

f (x) �= f (c).

For example, consider the function defined as follows: 

.f (x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

3x/2, 0 ≤ x < 1,

1, 1 ≤ x < 2
3, x = 2

x − 1, 2 < x ≤ 3
(13 − 3x)/2, 3 ≤ x ≤ 4

(4.2)
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Fig. 4.5 Graph of the discontinuous function .f (x) given by Eq. (4.2) for . 0 ≤ x ≤ 4

The graph of this function is shown in Fig. 4.5. This function is discontinous at 
.x = 1 since 

. lim
x→1

f (x)

does not exist. More precisely, we have 

. lim
x→1− f (x) = 3/2, and lim

x→1+ f (x) = 1,

and since these limits are different the function .f (x) is not continuous at .x = 1. 
The function .f (x) defined by (4.2) is also discontinuous at .x = 2. Although 

. lim
x→2− f (x) = 1, and lim

x→2+ f (x) = 1,

which means that .limx→2 f (x) exists, it is not equal to .f (2) since .f (2) = 3.
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We consider a couple of examples from economics where discontinuous func-
tions occur: 

1. Salary Payment Scheme which includes a Bonus Component. Consider the 
monthly salary of a car salesperson which comprises several discrete compo-
nents: 
(a) First, a basic salary of £2000 per month. 
(b) Secondly, a commission component which is 10% of sales that are made 

during the month. 
(c) Finally, a bonus component of £500 if the monthly sales exceed £50,000 per 

month. 
Let S denote the value of sales made in a month and let P denote the salary 

payment in that month. This functional relationship between P and S can be 
expressed as follows: 

. P =
{

2000 + 0.1S, 0 ≤ S < 50,000,

2500 + 0.1S, S ≥ 50,000.

The graph of this function is shown in Fig. 4.6 in which the discontinuity in P at 
.S = 50,000 can be seen clearly. 
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Fig. 4.6 Salary payment scheme for a car salesperson
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Fig. 4.7 Benefit payment schemes 

2. Benefit Payments. Consider different implementations of a system for making 
benefit payments: 
(a) In Scheme A a flat monthly benefit payment of £840 is made to an individual 

provided they do not earn any income. Once any income is earned the benefit 
is withdrawn. The filled circle in Fig. 4.7 indicates this base level of benefit 
payment. 

(b) Scheme B highlights the influence of this policy on an individual in employ-
ment which pays at the rate of £15 per hour. This individual would need to 
work for 56 hours in order to recover the base level of benefit payment £840. 
The intersection of the bold and light solid lines in Fig. 4.7 shows the point at 
which being in work is worthwhile financially. It can be argued that this type 
of scheme can be a disincentive for people to seek work since they may not 
be able to replace the lost benefit income with earned income particularly if 
they have significant outgoings such as child care costs as a result of being in 
employment. 

(c) In Scheme C, the recipient keeps a fraction of the income earned in addition 
to the benefit. Suppose that this is 50% up to the point where the entire 
monthly benefit payment of £840 is paid back and thereafter keeps everything 
else. After working 112 hours in a month the benefit payment of £840 would 
have been paid back in full. The intersection of the dashed and solid lines 
in Fig. 4.7 gives the crossover point. Once the individual works in excess of 
112 hours no further benefit repayments need to be made.
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More precisely, if I denotes monthly income and H the number of hours 
worked per month the functional dependence of I on H is given by 

. I =
{

840 + 7.5H, 0 ≤ H ≤ 112,

15H, H ≥ 112.

The graph of this function is shown in Fig. 4.7. Although this function is 
continuous at .H = 112, we observe that the slope of the function is different 
depending on whether .H ≤ 112 or .H ≥ 112. We say that there is a 
discontinuity in the slope of the function. 

4.5 Reciprocal Functions 

Consider the reciprocal function defined by 

. f (x) = 1

x
,

for .x > 0. All the applications considered in this book are for .x > 0. However, for 
completeness we also sketch the function for .x < 0 in Fig. 4.8. Here we see that the
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Fig. 4.8 The graph of the function .f (x) = 1/x
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part of the graph for .x < 0 is obtained by reflecting the graph for .x > 0 in the line 
.y = −x. As we have already noted, this function is not defined for .x = 0. 

When x is large and positive, .f (x) is small and positive, and as x takes 
increasingly larger values, .f (x) takes values that approach but never reach 0. For 
example, .f (10) = 0.1, .f (100) = 0.01, .f (1,000) = 0.001, etc. As .x → ∞, the  
graph of .f (x) gets arbitrarily close to the x-axis and therefore 

. lim
x→∞

1

x
= 0.

When x is large and negative, .f (x) is small and negative. As .x → −∞, the graph 
of .f (x) gets arbitrarily close to the x-axis approaching it from below and therefore 

. lim
x→−∞

1

x
= 0.

The idea of a limit can also be used to describe the unbounded behaviour of 
functions. For example, consider the limit of the reciprocal function .f (x) = 1/x for 
.x �= 0 as x tends to 0 from the right (see Fig. 4.8), i.e., x takes only positive values. 
As x takes increasingly smaller values, .f (x) takes increasingly larger values. For 
example, .f (1) = 1, .f (0.1) = 10, .f (0.01) = 100, .f (0.001) = 1000, etc. The  
values of f are positive and become arbitrarily large in this limit, i.e., given any 
positive number y we can always find a value of x for which .f (x) > y. We express 
this mathematically as 

. lim
x→0+

1

x
= ∞.

The superscript ‘. +’ on 0 indicates that we are taking the limit as x approaches 0 
from the right through positive values. Similarly, the values of .f (x) as x tends to 0 
from the left are negative and become arbitrarily large in this limit, i.e., given any 
negative number z we can always find a value of x for which .f (x) < z. We express 
this mathematically as 

. lim
x→0−

1

x
= −∞.

The superscript ‘. −’ on 0 indicates that we are taking the limit as x approaches 0 
from the left through negative values. 

Problem 4.3 The fixed costs of producing a good are 10 and the variable costs are 
4 per unit. Find expressions for total cost T C  and average cost AC. Sketch the graph 
of AC as a function of Q.
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Solution 4.3 The total cost function is 

. T C = FC + V C × Q

= 10 + 4Q.

The average cost function, AC, is given by 

. AC = T C

Q
.

Therefore, using the above expression for T C  we have 

. AC = 10 + 4Q

Q

= 10

Q
+ 4Q

Q

= 10

Q
+ 4.

This function is tabulated in Table 4.1 and sketched in Fig. 4.9. The dashed line in 
this figure corresponds to .V C = 4. As  Q tends to . ∞, AC tends to 4, i.e., 

. lim
Q→∞ AC = 4.

In this example, it is no coincidence that AC approaches the value of V C, i.e., 4, 
as Q becomes large. In fact, this result holds whenever V C  is constant. To see this, 
let us examine the expression for AC: 

. AC = T C

Q

= FC + V C × Q

Q

= FC

Q
+ V C.

As Q becomes large, .FC/Q approaches 0. Therefore, AC tends to V C  as Q tends 
to . ∞, i.e., 

. lim
Q→∞ AC = V C.

Table 4.1 Table of values of 
AC in Example 4.3 

Q 0.01 0.1 1 10 100 

AC 1004 104 14 5 4.1
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Fig. 4.9 The graphs of the average cost function .AC = 10
Q

+ 4 and the variable cost per unit 
. V C = 4

Problem 4.4 The fixed costs of producing a good are 8, and the variable costs are 
.3 + 5Q per unit. Find expressions for total cost T C  and average cost AC. Evaluate 
T C  and AC when .Q = 10. Sketch the graph of AC as a function of Q. 

Solution 4.4 The total cost function is 

. T C = FC + V C × Q

= 8 + (3 + 5Q)Q

= 8 + 3Q + 5Q2.

The average cost function, AC, is given by 

.AC = T C

Q
.
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Therefore, using the above expression for T C  we have 

. AC = 8 + 3Q + 5Q2

Q

= 8

Q
+ 3Q

Q
+ 5Q2

Q

= 8

Q
+ 3 + 5Q.

When .Q = 10, 

. T C = 8 + 3 × 10 + 5 × 102 = 8 + 30 + 500 = 538,

and 

. AC = 8

10
+ 3 + 5 × 10 = 0.8 + 3 + 50 = 53.8.

This function is tabulated in Table 4.2 and sketched in Fig. 4.10. The dashed line in 
this figure is the straight line .V C = 3 + 5Q. As  Q tends to . ∞, AC tends to V C. 
This is because the term .8/Q in the equation for AC becomes negligibly small for 
large values of Q. Since V C  tends to . ∞ as Q tends to . ∞, we have  

. lim
Q→∞ AC = ∞.

Problem 4.5 Suppose that the total cost to an electronics company of producing Q 
flat screen televisions is 

. T C = 800Q + 1,000,000.

Obtain an expression for the average cost function. What is the average cost of 
production when Q is very large? 

Solution 4.5 The average cost function is given by 

. AC = T C

Q
= 800Q + 1,000,000

Q
= 800 + 1,000,000

Q
.

Table 4.2 Table of values of 
AC in Example 4.4 

Q 0.01 0.1 1 10 100 

AC 803.05 83.5 16 53.8 503.08
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Fig. 4.10 The graphs of the average cost function .AC = 8
Q

+ 3 + 5Q and the variable cost per 
unit . V C = 3 + 5Q

The second term in this expression for the average cost function tends to 0 as Q 
tends to . ∞. Therefore, in the limit of arbitrarily large Q we have 

. lim
Q→∞ AC = 800.

4.6 Inverse Functions 

Given a function .y = f (x), consider the reverse process in which y becomes the 
input and x the output. This reverse process, under certain conditions, defines what 
is known as the inverse function of f . If we denote the inverse function by, say g, 
then we can write .x = g(y) (see Fig. 4.11). Thus, y is now the independent variable 
and x the dependent variable. For example, consider the determination of the inverse 
of the function .y = f (x) = 6x + 2. This is achieved by reversing the input and 
output processes of the function. The inverse of the function that multiplies the 
input by 6 and then adds 2 to the result is the process that subtracts 2 from the input 
and then divides the result by 6. This process defines the inverse of the function, i.e., 

.x = g(y) = y − 2

6
.
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Fig. 4.11 Graph of .y = f (x) where g is the inverse function of f 

The inverse of a one-to-one function satisfies the definition of a function and 
therefore is itself a function. Therefore, a necessary condition for a given function 
to have an inverse is that it is one-to-one. Thus every linear function . f (x) = ax +
b, a �= 0, has an inverse since it is one-to-one. 

Nonlinear functions may not possess an inverse function. For example, the 
function 

. y = f (x) = x2,

is a many-to-one function, i.e., there are two values of x that correspond to each 
value of y (see Fig. 4.12 where .x = ±2 both correspond to .y = 4). If we tried 
to find the inverse of this many-to-one function, we would obtain a one-to-many 
relationship, which contravenes the definition of a function. Thus, only a one-to-
one function can possess an inverse. However, if the domain of f is restricted to 
positive values of x, say, then f does possess an inverse defined by 

. x = g(y) = √
y.

This situation is shown in Fig. 4.13.



4.6 Inverse Functions 89

-3 -2 -1 0 1 2 3 

2 

4 

6 

8 y=x2 

y 

x 

Fig. 4.12 Graph showing the many-to-one function . y = x2

Problem 4.6 Find the inverses of the functions 

1. .f (x) = 2x − 3, 
2. .f (x) = (x − 2)2, 2 ≤ x. 

Solution 4.6 

1. Let .y = 2x − 3. We rearrange this equation so that x appears by itself on the 
left-hand side. Adding 3 to both sides, we have 

. y + 3 = 2x.

Finally, dividing both sides by 2 yields the inverse function 

.x = g(y) = y + 3

2
.
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Fig. 4.13 Graph showing the inverse function of .f (x) = x2 when the domain of f is restricted 
to positive values of x 

2. Let .y = (x − 2)2. For .x ≥ 2 this function is one-to-one and therefore possesses 
an inverse. Taking the square root of both sides of this equation gives 

. x − 2 = √
y.

Finally, adding 2 to both sides yields the inverse function 

. x = g(y) = √
y + 2.

The motivation for introducing inverse functions in this book is that in eco-
nomics, some functions are plotted with the dependent variable y on the horizontal 
axis and the independent variable x on the vertical axis. The demand function is 
one such example. The demand function expresses the dependence of the quantity 
demanded, Q, of a good on the market price, P . We may write this function as 

. Q = f (P ).

Given a particular rule for f , it is relatively simple to determine the value of Q for 
a given value of  P or to sketch the graph of the function. A mathematician would
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plot this function with the independent variable (P ) on the horizontal axis and the 
dependent variable (Q) on the vertical axis. However, economists prefer to plot them 
the other way round with Q on the horizontal axis and P on the vertical axis. To 
facilitate this, the demand equation is rearranged so that P is expressed in terms of 
Q, i.e., 

. P = g(Q),

for some function g. The functions f and g are said to be  inverse functions. 

Problem 4.7 For the demand function .Q = f (P ), where 

. f (P ) = −P

3
+ 18

determine the value of Q when .P = 30. Express P in terms of Q and hence find 
the value of P when .Q = 9. 

Solution 4.7 

. Q = f (P ) = −P

3
+ 18.

When .P = 30, 

. Q = −30

3
+ 18 = −10 + 18 = 8.

To express P in terms of Q, we rearrange the terms to isolate P on the left-hand 
side of the equation. Multiplying both sides by 3 gives 

. 3Q = −P + 54.

A simple rearrangement of this equation yields the following expression for P in 
terms of Q 

. P = −3Q + 54.

When .Q = 9, 

. P = −3(9) + 54 = −27 + 54 = 27.

In determining P as a function of Q, we have found the inverse function of f . 
We may write 

.P = g(Q), where g(Q) = −3Q + 54.
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Self-Assessment Questions 

1. Evaluate the function .f (x) = x2 − 2x − 3 when .x = −2 and .x = 3. 
2. The fixed costs for producing a good are 24 and the variable costs are 12 per 

unit. Find expressions for T C  and AC and evaluate them when .Q = 8. 
3. Suppose that the total cost to a computer manufacturer of producing Q laptops 

is 

. T C = 75, 000 + 200Q.

Obtain an expression for the average cost function, AC. What value does AC 
approach when Q is very large? 

4. Find the inverse of the function .f (x) = 7 − 4x. 
5. Consider the demand function 

. Q = −3P

5
+ 36.

Express P in terms of Q and hence find the value of P when .Q = 9. 

Exercises 

1. Sketch the graph of the cubic function .f (x) = 6 + 12x + 3x2 − 2x3 for 
.−2 ≤ x ≤ 3. 

2. Sketch the graph of the cubic function .f (x) = 8x3 + 30x2 + 13x − 15 for 
.−4 ≤ x ≤ 2. 

3. The fixed costs of producing a good are 12 and the variable costs are 7 per 
unit. Find expressions for T C  and AC. Evaluate T C  and AC when . Q = 4
and .Q = 12. Sketch the graph of AC as a function of Q. 

4. The fixed costs of producing a good are 9 and the variable costs are . 4 + 3Q

per unit. Find expressions for T C  and AC. Evaluate T C  and AC when . Q = 5
and .Q = 10. Sketch the graph of AC as a function of Q. 

5. Suppose that the total cost to a furniture company of producing Q desks is 

. T C = 50Q + 40,000.

Obtain an expression for the average cost function, AC. What value does AC 
approach when Q is very large? 

6. Find the inverses of the following functions: 
(a) .f (x) = −3x + 2, 
(b) .f (x) = 5x + 3, 
(c) .f (x) = (x − 3)2 + 2, 3 ≤ x.
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7. For the demand function 

. Q = −P

4
+ 25

determine the value of Q when .P = 36. Express P in terms of Q and hence 
find the value of P when .Q = 5.



5The Exponential and Logarithmic Functions

� Key Learning Objectives
On completion of this chapter students should be able to:

• Evaluate expressions involving the logarithmic function using the rules of
logarithms.

• Determine whether a given production function is homogeneous.
• Determine the annual equivalent rate (AER) corresponding to a given

monthly rate.
• Solve problems involving compound interest.
• Investigate economic behaviour using models based on exponential func-

tions.

5.1 Introduction 

An important class of nonlinear functions that is of particular interest in economics 
comprises the exponential and logarithmic functions. These functions are useful for 
investigating problems associated with economic growth and decay and mathemat-
ical problems in finance such as the compounding of interest on an investment or 
the depreciation of an asset. For example, if a person invests £3000 in an investment 
bond for which there is a guaranteed annual rate of interest of 5% for 2 years, the 
evaluation of an exponential function will provide the return at the end of that period. 
If a credit card company charges interest on an outstanding balance, the evaluation 
of an exponential function will provide information on the AER (annual equivalent 
rate). 
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We begin this chapter by sketching the graphs of some exponential functions and 
highlighting some of their important properties. Exponential functions are functions 
in which a constant base a is raised to a variable exponent x. The general form of 
an exponential function is given by 

.y = ax, where a > 0 and a �= 1. (5.1) 

The parameter a is known as the base of the exponential function. The independent 
variable x occurs as the exponent of the base. 

5.2 Exponential Functions 

All exponential functions of the form .f (x) = ax satisfy the following properties: 

Properties 
1. The domain of .f (x) is the set of all real numbers; the range of .f (x) is the set of 

all positive real numbers. 
2. For all .a > 1, .f (x) is increasing; for .0 < a < 1, .f (x) is decreasing. 
3. For all .a > 0 with .a �= 1, .f (0) = 1. 
4. For .a > 1, .f (x) tends to 0 as x tends to . −∞; for .0 < a < 1, .f (x) tends to 0 as 

x tends to .+∞. 
5. For .a > 1, .f (x) tends to .+∞ (i.e., increases without bound) as x tends to .+∞; 

for .0 < a < 1, .f (x) tends to .+∞ as x tends to .−∞. 

In Fig. 5.1, the graphs of .y = 2x and .y = 2−x = ( 1
2 )x are sketched for . −4 ≤ x ≤

4. These graphs illustrate some of the properties of exponential functions. Clearly, 
the domain of both functions is the entire real line, and the range is the set of all 
positive real numbers. The graph of .f (x) = 2x is strictly increasing and .f (x) tends 
to .+∞ as x tends to .+∞. The graph of .f (x) = 2−x is strictly decreasing and . f (x)

tends to 0 as x tends to .+∞. Note also that the graphs of .y = 2x and .y = 2−x are 
reflections of each other in the y-axis under the reflection .(x, y) → (−x, y). 

In Fig. 5.2, the graphs of two exponential functions with bases .a = 2 and . a = 5
are sketched. This figure shows that, for bases . a1, . a2 satisfying .a2 > a1 > 1, . ax

2
increases in value faster than . ax

1 for .x > 0. 
An important base that is useful in many areas of mathematics as well as in 

applications to problems in economics is the irrational number e, whose most 
significant digits are given by 

.e = 2.7182818284 . . . .
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Fig. 5.1 The graph of the functions .f (x) = 2x (continuous curve) and .f (x) = 2−x (dashed 
curve) 

This mathematical constant like the constant . π does not have a finite decimal 
representation and is another example of an irrational number. Its decimal form 
is therefore never ending and is not a repeating decimal. It is interesting to see how 
this number can be defined without going into the mathematical details. Consider 
the function 

. f (x) =
(

1 + 1

x

)x

.

Let us evaluate this function for increasing values of x, for example .x = 1, 10, 100, 
1000, and 10,000.
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Fig. 5.2 The graph of the functions .f (x) = 2x (continuous curve) and .f (x) = 5x (dashed curve) 

. 

x f (x)

1

(
1 + 1

1

)1

= 2

10

(
1 + 1

10

)10

= 2.593742460

100

(
1 + 1

100

)100

= 2.704813829

1000

(
1 + 1

1000

)1000

= 2.716923932

10,000

(
1 + 1

10,000

)10,000

= 2.718145926

These calculations show that as x gets larger, the value of 

.

(
1 + 1

x

)x



5.3 Logarithmic Functions 99

x 
20 40 60 80 100 

0 

0.5 

1 

1.5 

2 

2.5 

3y 

Fig. 5.3 The graph of the function .f (x) =
(

1 + 1
x

)x

. The dashed line corresponds to the constant 

function . f (x) = e

increases and approaches a limiting value of .2.718281828 . . ., which traditionally is 
denoted by the letter e. Mathematically, we write 

. e = lim
x→∞

(
1 + 1

x

)x

,

i.e., as x approaches infinity, the value of the function .f (x) =
(

1 + 1
x

)x

approaches 

the constant e. The graph of this function is plotted in Fig. 5.3 where the dashed line 
corresponds to the straight line .y = e. Note that although it looks as if the graph 
meets the y-axis at some point .(0, c), where .c > 2, in fact it gets arbitrarily close to 
the point .(0, 1) but never reaches it. In this figure we see that, as x increases, . f (x)

gradually approaches the dashed line. 

5.3 Logarithmic Functions 

Logarithms have inspired a feeling of dread in generations of students on their 
first encounter with them. Logarithmic functions are closely related to exponential 
functions and it is this relationship that we will exploit in our description of some
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of their key properties. Logarithms are useful for simplifying calculations involving 
economic functions. If we take the exponential function defined by .y = ax and 
interchange the dependent variable y with the independent variable x, we obtain 

. x = ay.

This defines a new function .y = loga x, known as the logarithmic function with 
base a, which is the exponent to which a must be raised to get x, i.e., 

. x = ay ⇔ y = loga x.

Thus, the logarithmic function .y = loga x is the inverse of the exponential function 
.y = ax . For example, if we wish to evaluate .y = log10 100, then .100 = 10y . Since 
.100 = 102, we find that .y = 2 so that .log10 100 = 2. The restrictions on the base 
are the same as for the exponential functions, i.e. .a > 0, a �= 1. 

There are two important bases:

• .a = 10 gives rise to common logarithms, written simply as .log x.
• .a = e where .e ≈ 2.71828 gives rise to natural logarithms, written as .ln x. 

Common and natural logarithms may be evaluated numerically by pressing either 
the log or ln keys, respectively, on a scientific calculator. For example, to evaluate 
.log 2.5: 

1. Enter 2.5 
2. Press the . log key 

You should obtain the answer 0.397940009 to 9 decimal places, i.e., . log 2.5 =
0.397940009. Note that on some calculators you press the . log key first, then enter 
the number and finally press the . = key. Similarly, to evaluate the natural logarithm 
of 2.5: 

1. Enter 2.5 
2. Press the . ln key 

In this case, you should obtain the answer 0.916290732 to 9 decimal places, i.e., 
.ln 2.5 = 0.916290732. 

Properties of the Function . f (x) = loga x

1. The domain of the function is the set of all positive real numbers; the range is the 
set of all real numbers. 

2. For base .a > 1, .f (x) is increasing. For .0 < a < 1, .f (x) is decreasing. 
3. At .x = 1, .loga 1 = 0 for any base a.
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Fig. 5.4 The graph of the functions .f (x) = log2 x (continuous curve) and . f (x) = log1/2 x

(dashed curve) 

Table 5.1 Table of values of 
.log2 x and .log1/2 x. 

x 1/4 1/2 1 2 4 

.log2 x .−2 .−1 0 1 2 

.log1/2 x 2 1 0 .−1 . −2

The graphs of the logarithmic functions .y = log2 x and .y = log1/2 x are shown 
in Fig. 5.4. These logarithmic functions may be written equivalently as .x = 2y and 
.x = (1/2)y , respectively, and are tabulated in Table 5.1. Note that these graphs are 
reflections of the graphs of .y = 2x and .y = 2−x , respectively, in the line .y = x. 

Problem 5.1 Evaluate the following: 

1. . log8 64,

2. . log3(
1
81 ),

3. . log16 2.

Solution 5.1 

1. Let .y = log8 64, then .8y = 64 = 82 and so .y = 2. 
2. Let .y = log3

1
81 , then .3y = 1

81 = 1
34 = 3−4 and so .y = −4.
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3. Let .y = log16 2, then .16y = 2 or .(24)y = 24y = 2 and so .4y = 1 and therefore 
.y = 1

4 . 

Problem 5.2 Solve the following for x: 

1. .log4 x = 3, 
2. . log81 x = 3

4 .

Solution 5.2 

1. .x = 43 = 64. 
2. . x = 813/4 = (811/4)3 = 33 = 27.

Rules of Logarithms 
For a, x, y positive real numbers, and n a real number, and base .a �= 1: 

. loga(xy) = loga x + loga y, . (5.2) 

loga(x/y) = loga x − loga y, . (5.3) 

loga x
n = n loga x, . (5.4) 

loga 
n
√

x = loga x
1/n = 

1 

n 
loga x. (5.5) 

Note that .loga x2 means the logarithm of . x2 and not the square of .loga x, which is 
written as .log2

a x. 
To prove the first two rules, let .s = loga x and .t = loga y. Using the relationship 

between the logarithmic and exponential functions, we have .x = as and .y = at . 
Then using the product rule for exponents, we obtain 

. xy = asat = as+t .

So .s + t is the power to which the base must be raised to give xy, i.e., 

. s + t = loga x + loga y = loga(xy).

Similarly, using the quotient rule for exponents, we have 

.
x

y
= as

at
= as−t .
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So .s − t is the power to which the base must be raised to give .x/y, i.e., 

. s − t = loga x − loga y = loga(x/y).

Problem 5.3 Solve the equation .ln(x + 4)2 = 3 for x. 

Solution 5.3 

. 2 ln(x + 4) = 3

ln(x + 4) = 3

2

x + 4 = e1.5

x + 4 = 4.48169 to 5 decimal places

x = 0.48169 to 5 decimal places

Problem 5.4 Express .loga 3 + loga 4 − loga 6 as a single logarithm. 

Solution 5.4 

. loga 3 + loga 4 − loga 6 = loga(3 × 4) − loga 6

= loga

(
3 × 4

6

)

= loga 2

Problem 5.5 Find the value of x satisfying 

. loga x = 3 loga 2 + loga 20 − loga 1.6.

Solution 5.5 

. loga x = 3 loga 2 + loga 20 − loga 1.6

= loga 23 + loga 20 − loga 1.6

= loga

(
8 × 20

1.6

)

= loga 100

Therefore .x = 100.
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5.4 Returns to Scale of Production Functions 

The output, Q, of any production process depends on a variety of inputs, known 
as factors of production. These include land, capital, labour, and enterprise. 
For simplicity, here we restrict our attention to capital, K , and labour, L. The  
dependence of Q on K and L is indicated by writing 

. Q = Q(K,L).

Q is called a production function. It is an example of a function of two variables— 
in this case K and L. Functions of two variables are described in more detail in 
Chap. 8. 

If .Q(K,L) = 100K1/3L1/2, then when .K = 27 and .L = 100 the output 
.Q(27, 100) is given by 

. Q = 100(27)1/3(100)1/2

= 100(3)(10)

= 3000

Of particular interest is what happens to the output when the inputs are scaled in 
some way. If capital and labour double, does the production level double, does it 
go up by more than double, or does it go up by less than double? For the above 
production function, we see that when K and L are replaced by 2K and 2L, 
respectively, then using the rules of indices (see Sect. 1.6): 

. Q = 100(2K)1/3(2L)1/2

= 100(21/3K1/3)(21/2L1/2)

= (21/321/2)(100K1/3L1/2)

= 25/6(100K1/3L1/2)

The term in brackets is just the original output. So this is multiplied by . 25/6 ≈ 1.78
so output goes up by just less than double when capital and labour are doubled. 

In general, a function 

. Q = Q(K,L)

is said to be homogeneous if 

.Q(λK, λL) = λnQ(K,L), (5.6)
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for some number n where . λ is a general number. The power, n, is called the degree 
of homogeneity. Let us take the previous example again: 

. Q(λK, λL) = 100(λK)1/3(λL)1/2

= (λ1/3λ1/2)100K1/3L1/2

= λ5/6Q(K,L)

This production function is homogeneous of degree 5/6. 
In general, if the degree of homogeneity, n, satisfies 

1. .n < 1 the function is said to display decreasing returns to scale. 
2. .n = 1 the function is said to display constant returns to scale. 
3. .n > 1 the function is said to display increasing returns to scale. 

5.4.1 Cobb-Douglas Production Functions 

Functions of the form 

. Q = AKαLβ

where A, . α, . β are constants are called Cobb-Douglas production functions. These 
are homogeneous of degree .α + β since if 

. Q(K,L) = AKαLβ

then 

. Q(λK, λL) = A(λK)α(λL)β

= λα+β(AKαLβ)

= λα+βQ(K,L)

Therefore, Cobb-Douglas production functions exhibit 

1. decreasing returns to scale if .α + β < 1. 
2. constant returns to scale if .α + β = 1. 
3. increasing returns to scale if .α + β > 1. 

Problem 5.6 Show that the production function 

. Q = K2 + 3KL,

is homogeneous and comment on its returns to scale.
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Solution 5.6 In this example we are given that 

. Q = Q(K,L) = K2 + 3KL.

If we scale or multiply both K and L by . λ, then the corresponding value of output 
is 

. Q(λK, λL) = (λK)2 + 3(λK)(λL)

= λ2K2 + 3λ2KL

= λ2(K2 + 3KL)

= λ2Q(K,L).

Therefore, we have shown that 

. Q(λK, λL) = λ2Q(K,L),

which on comparison with (5.6) demonstrates that the production function is 
homogeneous of degree 2. Since the degree of homogeneity is greater than one, 
the function displays increasing returns to scale. 

The Cobb-Douglas production function is an example of a nonlinear function. 
However, it may be converted to a linear function through a simple logarithmic 
transformation as follows. Take natural logarithms of both sides of the equation 

. Q = AKαLβ.

Then 

. ln Q = ln(AKαLβ)

= ln A + ln Kα + ln Lβ

= ln A + α ln K + β ln L.

This is what we call a log-linear function. If we define .Q̃ = ln Q, .K̃ = ln K , and 
.L̃ = ln L, then 

. Q̃ = ln A + αK̃ + βL̃,

is a linear function in the variables . K̃ and . L̃.
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5.5 Compounding of Interest 

There is a plethora of investment products and loan facilities available to an 
individual in the financial market place. It is important for both an individual or 
a business to make an informed choice between the financial products on offer in 
order to maximize the return on their capital or to minimize the interest on their loan 
repayments, for example. Suppose that a person wants to borrow some capital and 
is offered two loan products. The first charges interest on the loan at the annual rate 
of 12% while the second charges interest at a monthly rate of 1%. Which product 
should the person go for? In this section, we show how such decisions can be made. 

Suppose that an individual wishes to invest a sum of £10,000 over a period 
of 3 years and that the annual rate of interest is 5%. After 1 year, the interest on 
the investment amounts to 5% of £10,000, which is £500. If the investment is 
subject to simple interest, then the return on the investment would be £500 per 
year for each subsequent year. The total amount of interest earned over the 3-
year period in this case is .3× £500 = £1500. At the end of the third year the 
investment is therefore worth £11,500. However, most financial investment products 
use compound interest as a means of enticing their customers not to withdraw 
the interest earned after the first and subsequent years from the accumulated value 
of their investment. When interest is compounded annually, the amount of interest 
earned in the second year is 5% of £10,500, which is the sum of the initial investment 
(£10,000) and the first year’s interest (£500). The interest earned in the second year 
is therefore £525 and so the value of the investment at the end of the second year 
is £10,500 + £525 = £11,025. Finally, at the end of the third year the investment is 
worth £11,025 plus 5% of £11,025 interest giving a total of £11,571.25. 

There is a formula that can be used to determine the future value of an investment. 
Let . P0 denote the value of the initial investment. This is sometimes known as the 
principal. Let . Pt denote the value of the investment after t years. If the interest on 
the principal is compounded annually, at an interest rate r (written as a decimal or 
fraction), then after 1 year the investment is worth 

.P1 = P0 + rP0 = P0(1 + r). (5.7) 

Similarly, after the second year the investment is worth 

.P2 = P1 + rP1 = P1(1 + r). (5.8) 

Substituting for . P1 in (5.8) using (5.7) we have  

.P2 = [P0(1 + r)](1 + r) = P0(1 + r)2. (5.9) 

In general, one can show that 

.Pt = P0(1 + r)t . (5.10)
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Now suppose that the interest is compounded semi-annually (6 monthly inter-
vals). In this case, (5.10) would have to be modified to 

.Pt = P0

(
1 + r

2

)2t

. (5.11) 

Note that the differences between this formula and the formula (5.10) when the 
interest is compounded annually are that the interest rate is divided by 2 since the 
interest is added twice a year and t is replaced by 2t since this is the number of times 
that the interest is added during t years. Similarly, one can show that if interest is 
added monthly, the value of the investment after t years is 

.Pt = P0

(
1 + r

12

)12t

. (5.12) 

If this argument is continued and interest is compounded n times a year, then we 
have the formula 

.Pt = P0

(
1 + r

n

)nt

. (5.13) 

If n is very large then we are approaching the situation in which interest is added 
continuously (at every instant of time) instead of at discrete moments in time. If we 
make the substitution .m = n/r in (5.13), then we have 

. Pt = P0

(
1 + 1

m

)mrt

= P0

[(
1 + 1

m

)m]rt

(5.14) 

We saw in Sect. 5.2 that 

. 

(
1 + 1

m

)m

→ e as m → ∞.

If we allow .m → ∞ in (5.14) (which is equivalent to allowing .n → ∞ in 
(5.13) since r is held constant), then we obtain the formula for the continuous 
compounding of interest: 

.P(t) = P0e
rt . (5.15) 

In this formula, t need no longer be a positive integer. It can take any positive value.
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For negative growth rates, such as depreciation or deflation, the same formulae 
apply but with t or r negative. 

Problem 5.7 Suppose that the sum of e100 is invested at an annual rate of interest 
of 10%. Calculate the value of the investment in 5 years’ time if the interest is 
compounded (a) annually, (b) semi-annually, (c) continuously. 

Solution 5.7 

1. We apply the formula (5.10) with .P0 = 100, .r = 10% = 0.1 and .t = 5. Inserting 
these values into the formula gives 

P5 = 100(1 + 0.10)5 = e161.05. 

2. We apply the formula (5.11) with .P0 = 100, .r = 10% = 0.1 and .t = 5. Inserting 
these values into the formula gives 

P5 = 100

(
1 + 

0.10 

2

)2×5 

= 100(1.05)10 = e162.89. 

3. We apply the formula (5.15) with .P0 = 100, .r = 10% = 0.1 and .t = 5. Inserting 
these values into the formula gives 

S = 100e0.10×5 = 100e0.2 = e164.87. 

Problem 5.8 The value of an asset, currently priced at $250,000, is expected to 
increase by 12% a year. 

1. Find its value in 10 years’ time. 
2. After how many years will it be worth at least 1.25 million dollars? 

Solution 5.8 

1. We use the formula (5.10) with .P0 = 250, 000, .r = 12% = 0.12, and .t = 10. 
Inserting these values into the formula yields 

. P10 = 250,000(1 + 0.12)10

= 250,000(1.12)10

= $776,462.05

Therefore, after 10 years the asset will be worth $776,462.05. 
2. In this part of the question, we use the formula (5.10) again but this time we 

know .Pt = 1,250,000 and we need to determine the value of t . We need to find
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the value of t for which 

. 1,250,000 = 250,000(1 + 0.12)t

. i.e. 5 = (1.12)t .

Take natural logarithms of both sides: 

. ln 5 = ln(1.12)t = t ln 1.12.

Therefore, 

. t = ln 5/ ln 1.12 = 14.20

So after 15 years, the asset will be worth at least 1.25 million dollars. 

Problem 5.9 A credit card company charges interest at 2% per month. What is the 
annual equivalent rate correct to two decimal places? 

Solution 5.9 Suppose that the balance outstanding on the credit card is B then the 
amount owing (loan plus interest) over 1 year is 

. B

(
1 + 2

100

)12

= B(1.02)12.

Here we have used the formula (5.12) but in which we have not divided r by 12 
since the rate of interest is already a monthly one. Let R be the annual equivalent 
rate. Then if interest is charged annually, the amount owing after a year is 

. B

(
1 + R

100

)
.

Equating these two expressions enables us to find R: 

. B(1.02)12 = B

(
1 + R

100

)
.

Therefore, 

.(1.02)12 = 1 + R

100
.
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Rearranging this equation gives 

. R = [(1.02)12 − 1] × 100 = 0.2682 = 26.82%.

This is the annual equivalent rate. 

5.6 Applications of the Exponential Function in Economic 
Modelling 

Problem 5.10 During a recession, a firm’s revenue declines continuously at an 
annual rate of 10% so that total revenue (measured in millions of pounds) in t years’ 
time is modelled by 

. T R = 8e−0.1t .

1. Calculate the current revenue and also the revenue in 2 years’ time. 
2. Sketch the graph of T R  against t . 
3. Rearrange the formula to get t in terms of T R. 
4. After how many years will revenue decline to below £5 million? 

Solution 5.10 

1. When t = 0, T R  = 8e0 = 8. Therefore, the current revenue is £8 million. When 
t = 2, T R  = 8e−(0.1)(2) = 8e−0.2 = 6.55. Therefore, after 2 years the revenue 
will have declined to £6.55 million. 

2. The graph of the revenue function T R  plotted as a function of time t is shown in 
Fig. 5.5. 

3. The first step in the process of rearranging the formula for T R  is to divide both 
sides by 8: 

. 
T R

8
= e−0.1t .

Then taking natural logarithms of both sides: 

. ln

(
T R

8

)
= ln e−0.1t = −0.1t.

Finally, dividing both sides by −0.1, we obtain the formula for t in terms of T R: 

.t = 1

(−0.1)
ln

(
T R

8

)
= −10 ln

(
T R

8

)
.
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Fig. 5.5 The graph of the function T R  = 8e−0.1t . The dashed line corresponds to T R  = 5 

4. We now use this formula to determine the number of years after which the 
revenue will decline to £5 million. Inserting T R  = 5 in this formula yields 

. t = −10 ln

(
5

8

)
= 4.700 (to 3 decimal places).

Therefore, after 5 years T R  will decline to £5 million. An estimate for this answer 
can be found from the graph in Fig. 5.5. The dashed line in this graph corresponds 
to T R  = 5. The intersection of this straight line with the curve T R  = 8e−0.1t 

provides the answer. 

Problem 5.11 The percentage, y, of Europeans possessing a mobile phone t years 
after it was introduced is modelled by 

. y = 80 − 70e−0.2t .

1. Find the percentage of Europeans that have mobile phones 
(a) at the launch of the product; 
(b) after 3 years; 
(c) after 10 years. 

2. What is the market saturation level?
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3. After how many years will the percentage of Europeans possessing mobile 
phones first reach 75%? 

Solution 5.11 

1. (a) The launch of the product corresponds to t = 0 since t measures the time 
from the introduction of mobile phones into the market place. So putting 
t = 0 into the expression for y gives 

. y = 80 − 70e0 = 80 − 70 = 10%.

(b) After 3 years t = 3, the percentage of Europeans possessing mobile phones 
is given by 

. y = 80 − 70e−0.2×3 = 80 − 70e−0.6 = 41.58%.

(c) After 10 years t = 10, the percentage of Europeans possessing mobile phones 
is given by 

. y = 80 − 70e−0.2×10 = 80 − 70e−2 = 70.53%.

2. The market saturation is the limiting value of y as t tends to ∞. Since 

. e−0.2t → 0 as t → ∞,

we have 

. y → 80 as t → ∞,

and so the market saturation level is 80% (see Fig. 5.6). 
3. To determine the time after which 75% of Europeans possess a mobile phone, we 

rearrange the equation and express t in terms of y and then put y = 75 into the 
resulting formula. A simple rearrangement gives 

. e−0.2t = (80 − y)

70
.

Taking natural logarithms of both sides yields 

. − 0.2t = ln

(
80 − y

70

)
.



114 5 The Exponential and Logarithmic Functions

t 
5 10 15 20 

0 

20 

40 

60 

80 

y 

Fig. 5.6 The graph of the function y = 80 − 70e−0.2t 

Finally, multiplying both sides by 1/(−0.2) = −5 gives  

. t = −5 ln

(
80 − y

70

)

= −5 ln

(
5

70

)

= 13.20

Therefore, after 14 years the percentage of Europeans possessing mobile phones 
will break through the 75% barrier. 

Self-Assessment Questions 

1. Evaluate (a) log2 16, (b) log5(1/125). 
2. Show that the production function Q = 12K1/2L1/3 is homogeneous and 

comment on its returns to scale. 
3. Determine the annual equivalent rate (AER), correct to two decimal places, 

corresponding to a monthly rate of 2.4%.
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4. Determine the annual rate of interest, correct to two decimal places, required 
for a principal of £1000 to produce a value of £1500 after 5 years. 

5. A firm’s turnover, y, measured in millions of dollars, after t years is given by 

. y = 4e0.15t .

What is its turnover in its initial year of trading and after 3 years of trading? 
After how many years will its turnover have doubled since it started trading? 

Exercises 

1. Sketch the functions y = 2x and y = 3x on the same graph for −2 ≤ x ≤ 2. 
2. Evaluate (a) log3 9, (b) log4 2, (c) log7(1/7). 
3. Show that the following production functions are homogeneous and com-

ment on their returns to scale: 
(a) Q = 7KL2, 
(b) Q = 50K1/4L3/4. 

4. Determine the annual rate of interest required for a principal of £2000 to 
produce a value of £10,000 after 8 years. 

5. Determine the annual equivalent rate (AER) corresponding to a monthly rate 
of 1.15%. 

6. An economy is forecast to grow continuously at an annual rate of 3% so 
that the gross national product (GNP ), measured in billions of euros, after t 
years is given by 

. GNP = 60e0.03t .

(a) Calculate the current value of GNP and its future value in 4 years’ time. 
(b) After how many years is GNP forecast to be 90 billion euros? 

7. Determine the rate of interest required for an investment that is currently 
worth $1000 to be worth $4000 after 10 years if the interest is compounded 
continuously. 

8. Determine the annual equivalent rate (AER) corresponding to a monthly rate 
of 1%. 

9. The percentage, y, of households possessing dishwashers t years after they 
have been introduced in a country is modelled by 

. y = 30 − 25e−0.2t .

(a) Find the percentage of households that have dishwashers 
(i) at their launch; 

(ii) after 1 year; 
(iii) after 10 years; 
(iv) after 20 years. 

(b) What is the market saturation level?



116 5 The Exponential and Logarithmic Functions

(c) After how many years will the percentage of households possessing 
dishwashers first reach 15%? 

10. A firm’s turnover, y, measured in millions of pounds, after t years is given 
by 

. y = 8e0.09t .

What is its turnover in its initial year of trading and after 2 years of trading? 
After how many years will its turnover have doubled since it started trading?
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� Key Learning Objectives
On completion of this chapter students should be able to:

• Find the derivatives of functions defined by simple algebraic expressions.
• Find the derivatives of exponential and logarithmic functions.
• Evaluate the first and second order derivatives of a function.
• Find expressions for the total revenue and marginal revenue functions for

a given demand function.
• Calculate the marginal propensities to consume and save for a given

consumption function.
• Determine whether the law of diminishing marginal productivity holds for

a given production function.

6.1 Introduction 

Economists are interested in the effects of change. Therefore, the concept of the 
derivative of a function, which provides information about how a function changes 
in response to changes in the independent variable, is an important one in economic 
analysis. For example, the derivative of a production function provides information 
about the manner in which the output of a production process changes as the number 
of workers employed by the company changes. Differentiation is the mathematical 
tool that allows us to quantify such rates of change. As we will see in Chap. 7, 
differentiation is also an important tool in the determination of the maximum or 
minimum values of economic functions such as profit and cost. 

In Chap. 2, some linear functions in economics such as linear demand and supply 
functions were introduced. These functions are characterized by their graphs being 
lines having a constant slope, i.e., the gradient is constant irrespective of the value 
of the independent variable. We say that the rate of change of the function is 
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Fig. 6.1 The graph of a nonlinear function in which the tangent at the point P is drawn 

independent of the point where it is measured. Furthermore, the slope or gradient 
of a linear function may be determined by taking any two points on the straight line 
and calculating the ratio of the change in the vertical direction with respect to the 
change in the horizontal direction as the value of the independent variable increases. 
The corresponding situation for a nonlinear function is quite different, however, and 
the rate of change of a nonlinear function varies as one moves along the curve given 
by its graph. 

In Fig. 6.1, we show part of the graph of a nonlinear function .y = f (x). On this  
graph, we have drawn the tangent to the curve at the point P . The  tangent to a curve 
at a point P is the straight line that passes through P and that just touches the curve 
at this point. The slope or gradient of a curve .y = f (x) at P is then defined to be 
the gradient of the tangent to the curve at P . It is a measure of the prevailing rate 
of change of y relative to x at P . We can see from Fig. 6.1 that the gradient of a 
nonlinear function varies as we move along the curve. 

In mathematics, we use the notation .f ′(a) (pronounced f primed of a) to  
represent the slope of the tangent to the function f at .x = a. The slope of the 
tangent to a function is called the derivative of the function—corresponding to each 
value of x there is a uniquely defined derivative .f ′(x). Therefore, the derivative of 
a function of x is also a function of x.
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If .y = f (x), then an alternative notation for the derivative of a function is 

. 
dy

dx
.

This is pronounced ‘dee y by dee x’. Note that this is a single entity not to be 
manipulated in any sense and represents the derivative of y with respect to x. If, for 
example, .f (x) = x2, then it is natural to use .f ′(x) to represent the derivative of 
.f (x), whereas if .y = x2 is used then .dy/dx is more appropriate. 

Consider the function .y = f (x). The graph of this function is shown in 
Fig. 6.1. The slope or gradient of the function at the point .P : (x, f (x)) is 
the slope of the tangent to the graph of the function at P (see Fig. 6.1). This 
slope can be approximated by the slope of the chord PQ  where Q is the point 
.(x +�x, f (x +�x)). (A  chord is a straight line joining any two points on a curve.) 
So the horizontal distance from P to Q is . �x. If x is a variable, the notation . �x

will denote a small change in x. Therefore, 

. the slope of PQ = QR

PR

= f (x + �x) − f (x)

(x + �x) − x

= f (x + �x) − f (x)

�x

If Q is allowed to approach P in which case .�x approaches 0, the slope of the chord 
PQ  approaches the slope of the tangent at P , i.e., 

. Slope of the Tangent at P = lim
�x→0

f (x + �x) − f (x)

�x
. (6.1) 

The value of this limit, if it exists, is known as the derivative of the function f at x 
and is written .f ′(x) or .dy/dx. Thus, we have 

.f ′(x) = lim
�x→0

f (x + �x) − f (x)

�x
. (6.2) 

So the derivative of a function at a point is the ratio of the change in y to the change 
in x between the point and a point that is infinitesimally close to it. So the derivative 
measures the instantaneous rate of change of the function. 

If .�y denotes the change y corresponding to the change .�x in x, then 

.�y = f (x + �x) − f (x),
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with .f (x+�x) being the value of .y = f (x) when the value of x changes to .x+�x. 
Therefore, 

.f ′(x)

(
or

dy

dx

)
= lim

�x→0

�y

�x
. (6.3) 

Therefore, for a small change .�x in x and corresponding small change .�y in y, we  
have that 

. 
dy

dx
≈ �y

�x
,

or 

.�y ≈ �x

(
dy

dx

)
. (6.4) 

This makes sense if .dy/dx is regarded as the rate of change of y relative to x. 
In particular, .dy/dx can be regarded as approximately the change in y resulting 
from a 1 unit increase in x (provided the value of x is relatively large so that 1 
unit is relatively small). The approximation (6.4) is known as the small increments 
formula. 

The process of finding the derivative of a function is known as differentiation. 
The definition of a function may be used to determine the derivative of a given 
function. This process is known as differentiation from first principles. For example, 
if .f (x) = x2, then using (6.2) we have  

.f ′(x) = lim
�x→0

(x + �x)2 − x2

�x

= lim
�x→0

(x2 + 2x�x + (�x)2) − x2

�x

= lim
�x→0

2x�x + (�x)2

�x

= lim
�x→0

(
2x�x

�x
+ (�x)2

�x

)

= lim
�x→0

(2x + �x)

= 2x.
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The process of determining the derivative of a function from first principles can be 
quite time consuming and involve lengthy mathematical calculations. Fortunately, 
there is a more rapid route to determining the derivative of the sorts of functions 
that we encounter in economics based on a number of rules, known as rules of 
differentiation. Some of these rules will be derived in the next section using the 
definition of the derivative of a function (6.2), but others will be stated simply 
without justification. 

Problem 6.1 Differentiate .y = f (x) = x2 and use the small increments formula 
to estimate the change in y if x changes from 1 to .1.01. Calculate also the actual 
change in y. 

Solution 6.1 We have already shown that .dy/dx = f ′(x) = 2x and so .f ′(1) = 2. 
If x increases from 1 to 1.01, then .�x = 0.01. Therefore, we can estimate the 
change in y using the small increments formula (6.4) as  

. �y ≈ �x × f ′(1) = 0.01 × 2 = 0.02.

The actual change .�y in y is .f (1.01) − f (1) = 1.0201 − 1 = 0.0201. 

6.2 Rules of Differentiation 

In this section, we show how to differentiate functions without having to use 
the definition (6.2). A few rules are sufficient to differentiate all the functions 
encountered in this book. 

6.2.1 Constant Functions 

Consider the constant function .f (x) = k, where k is a constant. Using the definition 
of a derivative (6.2), we have 

.f ′(x) = lim
�x→0

f (x + �x) − f (x)

�x

= lim
�x→0

k − k

�x

= lim
�x→0

0

�x

= 0.
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Thus, if .f (x) = k then .f ′(x) = 0. For example, if .f (x) = 8, then .f ′(x) = 0. This  
rule is obvious if .f ′(x) is regarded as the rate of change of .f (x) relative to x. In this  
case, .f (x) is constant. 

6.2.2 Linear Functions 

Consider the linear function .f (x) = ax + b, where a and b are constants. Using the 
definition of a derivative (6.2), we have 

. f ′(x) = lim
�x→0

f (x + �x) − f (x)

�x

= lim
�x→0

(a(x + �x) + b) − (ax + b)

�x

= lim
�x→0

a�x

�x

= lim
�x→0

a

= a.

Thus, if .f (x) = ax+b then .f ′(x) = a. This is the linear function rule. For example, 
if .f (x) = 3x + 2, then .f ′(x) = 3, and if .f (x) = 5 − 1

4x, then .f ′(x) = − 1
4 . 

6.2.3 Power Functions 

Consider the power function .f (x) = kxn, where k is a constant and n is any real 
number. The derivative of this power function is given by .f ′(x) = knxn−1. So to  
obtain the derivative of a power function, we multiply it by the power and reduce the 
original power by one. For example, if .f (x) = 4x3, then . f ′(x) = 4 × 3 × x3−1 =
12x2, and if .f (x) = x4, then .f ′(x) = 4x4−1 = 4x3. When .k = 1, an important 
special case of this rule is realized, i.e., if .f (x) = xn, then 

.f ′(x) = nxn−1. (6.5) 

This rule, known as the power function rule, is derived using the definition (6.2). 
Since it involves the expansion of .(x + �x)n and some algebra, we omit the details 
here.
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6.2.4 Sums and Differences of Functions 

The rules we have introduced so far can be used to generate the derivatives of 
polynomials, the terms of which are power functions. Consider the function f , 
which is the sum of two functions g and h, i.e., .f (x) = g(x) + h(x). Using the  
definition of a derivative (6.2) we have  

. f ′(x) = lim
�x→0

f (x + �x) − f (x)

�x

= lim
�x→0

(g(x + �x) + h(x + �x) − (g(x) + h(x))

�x

= lim
�x→0

(g(x + �x) − g(x)) + (h(x + �x) − h(x))

�x

= lim
�x→0

(g(x + �x) − g(x))

�x

+ lim
�x→0

(h(x + �x) − h(x))

�x

= g′(x) + h′(x).

Thus, if .f (x) = g(x) + h(x), then 

. f ′(x) = g′(x) + h′(x).

This is intuitively clear when derivatives are viewed as rates of change: the rate 
of change relative to x of two functions of x is the sum of their rates of change. 
Similarly, we can show that if f is the difference of two functions g and h, i.e., 
.f (x) = g(x) − h(x), then 

. f ′(x) = g′(x) − h′(x).

Thus, the derivative of a sum of two functions is equal to the sum of the 
derivatives of the individual functions. Similarly, the derivative of the difference 
of two functions is equal to the difference of the derivatives of the two functions. 
For example, if .f (x) = 12x5 − 4x4, then .f ′(x) = 60x4 − 16x3, and if . f (x) =
9x2 + 2x − 3, then .f ′(x) = 18x + 2.
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Problem 6.2 Differentiate each of the following functions: 

1. .f (x) = 9x − 6, 
2. .y = −9x−4, 
3. .f (x) = x8 + 8x6 + 11. 

Solution 6.2 

1. This is a linear function (see Sect. 6.2.2) with .a = 9 and .b = −6. Therefore, 
using the linear function rule, we have .f ′(x) = 9. 

2. This is a power function (see Sect. 6.2.3) with .k = −9 and .n = −4. Therefore, 
using the power function rule, we have 

. 
dy

dx
= (−9)(−4)x−4−1 = 36x−5 = 36

x5 .

3. This is an example of a polynomial function comprising two power functions 
and a constant function. Therefore, using the rule for the sum of functions in 
conjunction with the power function and constant function (see Sect. 6.2.1) rules, 
we have 

. f ′(x) = 8x8−1 + 8 × 6x6−1 + 0 = 8x7 + 48x5.

Note that the linear function rule can be deduced from a combination of the rule 
for the differentiation of the sum of two functions and the constant function and 
power function rules. 

6.2.5 Product of Functions 

Suppose that .y = uv where u and v are functions of x. Let . �u, . �v, and .�y denote 
very small changes in u, v, and y, respectively, that correspond to a small change 
.�x in x. Then 

. y + �y = (u + �u)(v + �v)

= uv + u�v + v�u + �u�v.

Since .y = uv, 

.�y = u�v + v�u + �u�v.
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We can ignore the term .�u�v since it is the product of two very small changes and 
therefore negligible. Therefore, 

. 
�y

�x
≈ u

�v

�x
+ v

�u

�x
.

As .�x → 0, 

. 
�y

�x
→ dy

dx
,

and 

. u
�v

�x
+ v

�u

�x
→ u

dv

dx
+ v

du

dx
.

Thus, we obtain the product rule for differentiation: if .y = uv, then 

.
dy

dx
= u

dv

dx
+ v

du

dx
. (6.6) 

6.2.6 Quotient of Functions 

Suppose that .y = u/v where u and v are functions of x. Let . �u, . �v, and .�y denote 
small changes in u, v, and y, respectively, that correspond to a very small change 
.�x in x. Thus .�u → 0 and .�v → 0 as .�x → 0. Then 

. y + �y = u + �u

v + �v
.

Subtracting .y = u/v from both sides of this equation yields 

. �y = u + �u

v + �v
− u

v
.

Simplifying the fraction on the right-hand side of this equation gives 

. �y = v(u + �u) − u(v + �v)

v(v + �v)

= v�u − u�v

v(v + �v)
.

Therefore, 

.
�y

�x
= v �u

�x
− u�v

�x

v(v + �v)
.
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Finally, letting .�x → 0, so .�u and .�v tend to 0, we obtain the quotient rule for 
differentiation: if .y = u/v then 

.
dy

dx
= v du

dx
− udv

dx

v2 . (6.7) 

6.2.7 The Chain Rule 

Suppose that y is a function of u, i.e., .y = f (u), and that u in turn is a function 
of x, i.e., .u = g(x). We say that y is a function of a function and to express y as a 
function of x we write 

. y = f (g(x)).

If .�y and .�u denote changes in y and u, respectively, that correspond to a small 
change .�x in x, then 

. 
�y

�x
= �y

�u

�u

�x
.

Then, as .�x → 0, we obtain the so-called chain rule: 

.
dy

dx
= dy

du

du

dx
= f ′(u)g′(x). (6.8) 

We may also write this in terms of derivatives of f and g and then express the result 
solely in terms of a function of x, i.e., 

.
dy

dx
= f ′(g(x))g′(x). (6.9) 

As an illustration of the use of the chain rule to obtain the derivative of a function, 
consider .y = (x2 +3x +2)5. If we let .u = x2 +3x +2, then .y = u5. Differentiating 
u with respect to x and y with respect to u, we obtain 

. 
dy

du
= 5u4,

du

dx
= 2x + 3.

Then using the chain rule yields 

.
dy

dx
= dy

du

du

dx

= 5u4(2x + 3)

= 5(x2 + 3x + 2)4(2x + 3).
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If we put .x = y in (6.8), we obtain 

. 
dy

dy
= 1 = dy

du

du

dy
.

It follows that 

.
du

dy
= 1

dy
du

. (6.10) 

Problem 6.3 Find the derivative of each of the following functions: 

1. .f (x) = (2x3 + 1)(x2 − 3x) and evaluate .f ′(1), 

2. .f (x) = 5x2 + 3

x2 + 1
and evaluate .f ′(0), 

3. .y = (7x4 + 2)6 and evaluate .dy/dx when .x = 0. 

Solution 6.3 

1. To differentiate this function, we use the product rule with .u = 2x3 + 1 and 
.v = x2 − 3x. Now .du/dx = 6x2 and .dv/dx = 2x − 3. Therefore, using the 
product rule (6.6), we have 

. f ′(x) = (2x3 + 1)(2x − 3) + 6x2(x2 − 3x),

which, after some simplification, gives 

. f ′(x) = 10x4 − 24x3 + 2x − 3.

Finally, .f ′(1) = 10 − 24 + 2 − 3 = −15. 
2. To differentiate this function, we use the quotient rule with .u = 5x2 + 3 and 

.v = x2 + 1. Now .du/dx = 10x and .dv/dx = 2x. Therefore, using the quotient 
rule (6.7), we have 

. f ′(x) = (10x)(x2 + 1) − (5x2 + 3)(2x)

(x2 + 1)2

= 10x3 + 10x − 10x3 − 6x

(x2 + 1)2

= 4x

(x2 + 1)2
.

Evaluating this derivative when .x = 0 gives .f ′(0) = 0.
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3. To differentiate .y = (7x4 + 2)6, we use the chain rule (6.8). Let . u = 7x4 + 2
then . y = u6. Now  

. 
dy

du
= 6u5,

du

dx
= 28x3.

Therefore, 

. 
dy

dx
= (6u5)(28x3) = 168(7x4 + 2)5x3.

When .x = 0, .dy/dx = 0. 

6.3 Exponential and Logarithmic Functions 

Let f be the exponential function .f (x) = eg(x), where .g(x) is some function of x. 
Then the derivative of f is 

.f ′(x) = g′(x) eg(x). (6.11) 

For example, if .f (x) = ex2
, then .f ′(x) = 2xex2

since .g(x) = x2 and .g′(x) = 2x. 
When .g(x) = 1, we have the important result that the derivative of the exponential 
function . ex is itself, i.e., . ex , since .g′(x) = 1. More generally, if .f (x) = ekx , where 
k is a constant, then 

. f ′(x) = kekx.

For example, if .f (x) = e−2x , then .f ′(x) = −2e−2x . 
Let f be the natural logarithmic function .f (x) = ln g(x), then the derivative 

of f is 

.f ′(x) = g′(x)

g(x)
. (6.12) 

For example, if .f (x) = ln 6x2 then 

. f ′(x) = 12x

6x2 = 2

x

since .g(x) = 6x2 and .g′(x) = 12x. When .g(x) = x we have the result that the 
derivative of .ln x is .1/x since .g′(x) = 1. 

It is an easy exercise to derive (6.11) and (6.12) using the chain rule (6.8).
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Table 6.1 Derivatives of the 
exponential and logarithmic 
functions 

.f (x) . f ′(x)

.eg(x) . g′(x)eg(x)

.ex . ex

. ln g(x)
. 
g′(x)

g(x)

. ln x
. 
1

x

We display these rules in Table 6.1. 

Problem 6.4 Find the derivative of each of the following functions: 

1. .f (x) = 3e7−2x , 
2. .f (x) = ln(x2 + 6x + 2). 

Solution 6.4 

1. If .f (x) = 3e7−2x , then .g(x) = 7 − 2x. Since .g′(x) = −2, then 

. f ′(x) = 3g′(x)eg(x) = −6e7−2x.

2. If .f (x) = ln(x2 + 6x + 2), then .g(x) = x2 + 6x + 2. Since .g′(x) = 2x + 6, then 

. f ′(x) = g′(x)

g(x)
= 2x + 6

x2 + 6x + 2
.

6.4 Marginal Functions in Economics 

6.4.1 Marginal Revenue and Marginal Cost 

Sometimes in economics, we are interested in the effect on total revenue, T R, of a  
change in the value of Q. To do this, the concept of marginal revenue is introduced. 
The marginal revenue of a good, MR, is defined by 

. MR = d(T R)

dQ
.

The marginal revenue function measures the instantaneous rate of change in total 
revenue, T R, compared with demand, Q. For example, the marginal revenue 
function, MR, corresponding to 

.T R = 100Q − 2Q2
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is given by 

. MR = d(T R)

dQ
= 100 − 4Q.

If the current demand is 15, say, then 

. MR = 100 − 4 × 15 = 40.

This means that when demand is changed slightly from its current value of 15, the 
corresponding change in total revenue is 40 times as large. However, if the demand 
is 20, then 

. MR = 100 − 4 × 20 = 20,

which means that when demand is changed slightly from .Q = 20, the corresponding 
change in total revenue is only 20 times as large. 

Economists say that MR is approximately the change in T R  resulting from a one 
unit increase in demand Q. In general, 

. �(T R) ≈ MR × �Q.

(This is just a consequence of the small increments formula (6.4).) This approxi-
mation is a good one provided the quantities of Q involved are very large so that 
one unit is relatively very small. An analogous statement can be made regarding 
marginal cost, MC. 

The marginal cost function, MC, is defined by 

.MC = d(T C)

dQ
. (6.13) 

The average cost function, AC, is defined by 

.AC = T C

Q
. (6.14) 

Problem 6.5 If the average cost function for a good is 

. AC = 24

Q
+ 15 + 3Q,

find an expression for the total cost function. What are the fixed costs in this case? 
Write down an expression for the marginal cost function.
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Solution 6.5 To find an expression for T C, we use the formula for AC given by 
(6.14). Hence 

. T C = AC × Q

=
(

24

Q
+ 15 + 3Q

)
Q

= 24 + 15Q + 3Q2.

Since .T C = FC + (V C)Q, the fixed cost element of the total cost function is 
independent of Q. Therefore, in this example the fixed costs are 24. Finally, an 
expression for the marginal cost function is obtained by differentiating T C  with 
respect to Q. Therefore, 

. MC = d(T C)

dQ

= 15 + 6Q.

Note that the fixed costs have no influence on the marginal cost function since the 
derivative of a constant is zero. 

6.4.2 Marginal Propensities 

The relationship between consumption C and national income Y is sometimes of 
the form 

. C = f (Y ),

where f is some appropriate consumption function. Of interest is the effect on C 
due to variations in Y , i.e., if national income rises by a certain amount what effect 
does this have on the spending patterns of the population. This is analyzed using the 
concept of marginal propensity to consume, MPC, defined by 

. MPC = dC

dY
,

i.e., the marginal propensity to consume is the derivative of consumption with 
respect to income. For example, if the consumption function is 

.C = 0.01Y 2 + 0.2Y + 50
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to calculate MPC when .Y = 30, we have  

. MPC = dC

dY
= 0.02Y + 0.2.

When .Y = 30, . MPC = (0.02)(30) + 0.2 = 0.8.

Economists say that MPC is approximately the change in consumption due to a 
one unit increase in national income Y . More generally, if national income increases 
by a small amount .�Y , then the corresponding small change .�C in consumption is 
approximately .MPC × �Y , i.e., 

. �C ≈ MPC × �Y.

If national income is used up only in consumption and savings, then 

. Y = C + S.

If we differentiate both sides of this equation with respect to Y : 

. 
dY

dY
= dC

dY
+ dS

dY
,

i.e., 

. 1 = MPC + MPS,

where 

. MPS = dS

dY

is the marginal propensity to save. Economists say that MPS is approximately the 
change in savings due to a one unit increase in national income Y . More generally, 
we can show, using the small increments formula again, that if national income 
increases by a small amount .�Y , then the corresponding small change .�S in 
savings is given by 

. �S ≈ MPS × �Y.

Thus if we know MPC, we can easily determine MPS. In the above example 
the value of MPS when .Y = 30 is given by 

.1 = 0.8 + MPS
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i.e., 

. MPS = 0.2.

This indicates that when income increases by one unit (from its current level 
of 30), consumption rises by approximately 0.8 units, whereas savings rise by 
approximately 0.2 units. At this level of income, the nation has a greater propensity 
to consume than it has to save. 

Problem 6.6 If the consumption function is 

. C = 0.005Y 2 + 0.3Y + 20,

calculate the marginal propensities to consume and save when .Y = 10 and give an 
interpretation of the results. 

Solution 6.6 The marginal propensity to consume is defined by 

. MPC = dC

dY
= 0.01Y + 0.3.

When .Y = 10, 

. MPC = 0.01 × 10 + 0.3 = 0.1 + 0.3 = 0.4.

If national income is used up in consumption and savings only, then 

. MPC + MPS = 1.

When .Y = 10, the marginal propensity to save is 

. MPS = 1 − MPC = 1 − 0.4 = 0.6.

Therefore, at this level of national income, the nation has a greater propensity to 
save than it has to consume. 

6.5 Approximation to Marginal Functions 

The exact value of MR when .Q = Q0 is 

.
d(T R)

dQ
,
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TR 

Q 

A 
B 

tangent 

Q Q  +  Qo o Δ 

ΔQ 
(TR)Δ 

Fig. 6.2 Approximation to marginal revenue 

evaluated at .Q = Q0 and so is given by the slope of the tangent to the total revenue 
function at A (see Fig. 6.2). The point B also lies on the curve—it corresponds to a 
one unit increase in Q, i.e., .�Q = 1. The vertical distance from A to B therefore 
equals the change in T R  when Q increases by one unit. The slope of the chord 
joining A to B is 

. 
�(T R)

�Q
= �(T R)

1
= �(T R).

Note that the slope of the tangent is approximately the same as that of the chord 
joining A and B. Therefore, the latter produces a reasonable approximation to MR 
in many cases when Q is very large. 

This approximation holds for any value of .�Q. Therefore, as we have seen in 
Sect. 6.4.1 

.MR ≈ �(T R)

�Q
, (6.15) 

or 

.�(T R) ≈ MR × �Q, (6.16) 

i.e., change in total revenue . ≈ marginal revenue . × change in demand. Note that if 
the total revenue function is linear, then we have equality: .�(T R) = MR × �Q. 

Problem 6.7 If the total revenue function of a good is given by 

.100Q − Q2,
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write down an expression for the marginal revenue function. If the current demand 
is 60, estimate the change in the value of T R  due to a two unit increase in Q. 

Solution 6.7 To determine the marginal revenue function, we differentiate the total 
revenue function. Therefore, 

. MR = d(T R)

dQ
= 100 − 2Q.

When .Q = 60, 

. MR = 100 − 2 × 60 = 100 − 120 = −20.

When there is a two unit increase in Q, i.e., .�Q = 2, then the estimated change in 
T R  is given by 

. �(T R) ≈ MR × �Q = −20 × 2 = −40,

i.e., there is an estimated 40 unit reduction in T R. 
A similar approximation to (6.15), using the small increments formula (6.4), 

holds for the marginal cost function: 

.MC ≈ �(T C)

�Q
, (6.17) 

or 

.�(T C) ≈ MC × �Q, (6.18) 

i.e., change in total cost . ≈ marginal cost . × change in demand. Note that we have 
equality if the total cost function is linear, then .�(T C) = MC × �Q. 

Problem 6.8 Find the marginal cost function given the average cost function 

. AC = 100

Q
+ 2.

Deduce that a one unit increase in Q will always result in a two unit increase in T C, 
irrespective of the current level of output. 

Solution 6.8 To determine the marginal cost function, it is first necessary to find an 
expression for the total cost function, T C. Now  T C  and AC are related by 

.AC = T C

Q
,
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and therefore 

. T C = AC × Q =
(

100

Q
+ 2

)
Q = 100 + 2Q.

The corresponding marginal cost function is 

. MC = d(T C)

dQ
= 2.

Since T C  is a linear function, we have .�(T C) = MC × �Q. Therefore, if output 
increases by one unit, i.e., .�Q = 1, then 

. �(T C) = 2,

irrespective of the current level of output. 

6.6 Higher Order Derivatives 

We have already seen that the derivative of a function of x is itself a function of 
x. This suggests the possibility of differentiating a second time to get the ‘slope 
of the slope of a function’. This is written as .f ′′(x) or .d2y/dx2. This function is 
known as the second order derivative of .f (x). Higher order derivatives are found 
by applying the rules of differentiation to lower order derivatives. The third order 
derivative .f ′′′(x) or .d3y/dx3 measures the slope and rate of change of the second 
order derivative, etc. For derivatives of order greater than three, a superscript is used 
to denote the order of the derivative e.g. .f (4) denotes the fourth order derivative of 
f . Thus, if 

. f (x) = 2x4 + 5x3 + 3x2,

we have 

. f ′(x) = 8x3 + 15x2 + 6x

. f ′′(x) = 24x2 + 30x + 6

. f ′′′(x) = 48x + 30

. f (4)(x) = 48

.f (5)(x) = 0
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Problem 6.9 For each of the following functions, find the second derivative and 
evaluate it at .x = 2. 

1. .f (x) = x6 + 3x4 + x, 
2. .y = 2x2 + 38x − 6, 
3. .y = (8x − 4)6. 

Solution 6.9 

1. To differentiate this polynomial function, we use a combination of the rule for 
the sum of functions and the power function rule. So 

. f ′(x) = 6x6−1 + 3 × 4x4−1 + 1

= 6x5 + 12x3 + 1.

Differentiating a second time gives 

. f ′′(x) = 6 × 5x5−1 + 12 × 3x2−1 + 0

= 30x4 + 36x2

Evaluating the second derivative when . x = 2, we have  

. f ′′(2) = 30(24) + 36(22) = 624

2. To differentiate this quadratic function, we use a combination of the rule for the 
sum of functions and the power function rule. So 

. 
dy

dx
= 2 × 2x2−1 + 38

= 4x + 38.

Differentiating a second time gives 

. 
d2y

dx2
= 4

At .x = 2, . d
2y

dx2 = 4. 

3. To differentiate this function, we use the chain rule. Let .u = 8x −4, then .y = u6. 
Since 

.
dy

du
= 6u5, and

du

dx
= 8,
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we have, using the chain rule 

. 
dy

dx
= dy

du

du

dx
= 6u5 × 8 = 48(8x − 4)5.

Applying the chain rule a second time gives 

. 
d2y

dx2 = 48 × 5u4 × 8 = 1920(8x − 4)4.

Evaluating the second derivative when .x = 2 gives 

. 
d2y

dx2
= 39813120.

6.7 Production Functions 

In one of the simplest models for production, the quantity of output produced, Q, is  
assumed to be a function of capital, K , and labour, L. However, in the short run K 
can be assumed to be fixed and so Q is then a function of L alone. In this instance, 
Q is referred to as the short run production function. The independent variable L is 
usually measured in terms of the number of workers or the number of worker hours. 
The derivative of the production function with respect to L, known as the marginal 
product of labour (.MPL), measures the rate at which output changes as the number 
of workers increases. Thus, we have 

.MPL = dQ

dL
. (6.19) 

Economists say that .MPL is approximately the change in output resulting from a 
one unit increase in labour. 

Problem 6.10 For the production function 

. Q = 8
√

L,

find the marginal product of labour. Determine the output and the marginal product 
of labour when 

1. .L = 1, 
2. .L = 4, 
3. .L = 100.
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Fig. 6.3 Graph of the production function . Q = 8L1/2

Solution 6.10 The marginal product of labour is found by differentiating . Q =
8L1/2. This gives, using the power function rule, 

. MPL = dQ

dL
= 8 × 1

2
L1/2−1 = 4L−1/2 = 4

L1/2 .

1. When .L = 1, .Q = 8 and .MPL = 4. 
2. When .L = 4, .Q = 16 and .MPL = 2. 
3. When .L = 100, .Q = 80 and .MPL = 0.4. 

As L increases from 0, so does output (see Fig. 6.3). However, .MPL decreases and 
therefore although output increases, it does so at a decreasing rate. In this situation, 
we say that there are diminishing returns to labour. 

Problem 6.11 Consider the production function is 

. Q = 120
√

L − 5L,

where Q denotes output and L denotes the size of the workforce. Calculate the value 
of .MPL when 

1. .L = 1, 
2. .L = 16, 
3. .L = 100, 
4. .L = 900, 

and discuss the implication of these results.
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Solution 6.11 The marginal product of labour, .MPL, is found by differentiating 
the production function with respect to L. This gives 

. MPL = dQ

dL
= 120 × 1

2
L1/2−1 − 5 = 60L−1/2 − 5 = 60

L1/2 − 5.

1. When .L = 1, .MPL = 55. 
2. When .L = 16, .MPL = 10. 
3. When .L = 100, .MPL = 1, 
4. When .L = 900, .MPL = −3. 

In the last part of this problem, we see that a size of workforce is reached that, if 
exceeded, actually results in a decrease in output. This may seem counterintuitive 
at first sight. However, this situation can occur in production processes where 
productivity is diminished due to problems of overcrowding on the shop floor or 
the need to create an elaborate administration to organize the larger workforce. The 
graph of this production function is sketched in Fig. 6.4. 

The production function in the last problem satisfies what is known as the 
law of diminishing marginal productivity. This law, also known as the law of 
diminishing returns, states that the increase in output due to a one unit increase in 
labour will eventually decline. A typical production function that satisfies this law 
is shown in Fig. 6.5. The graph of the corresponding marginal product of labour, 
.MPL, is shown in Fig. 6.6. Note that the maximum value of .MPL is attained when 
.L = L0 and .MPL = 0 at the value of L corresponding to maximum production. 
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Fig. 6.4 Graph of the production function .Q = 60
√

L − 5L



6.7 Production Functions 141

A 

B 

C 
D 

Q 

LLo 

Fig. 6.5 Graph illustrating a production function that satisfies the law of diminishing marginal 
productivity 

MP 

LLo 

L 

Fig. 6.6 Graph of marginal product of labour corresponding to the production function shown in 
Fig. 6.5 

Between .L = 0 and .L = L0, the curve bends upwards, becoming progressively 
steeper and so the slope, .MPL, of the production function increases. Mathematically 
speaking, 

. 
d(MPL)

dL
> 0,

or, since .MPL = dQ/dL, 

.
d2Q

dL2 > 0,
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i.e., if we take any two points A: .(L1,Q(L1)) and B: .(L2,Q(L2)) on the curve 
between the points .(0, 0) and .(L0,Q(L0)) with .L1 < L2, then the slope of the 
tangent at B is greater than that at A (see Fig. 6.5). Similarly, for .L > L0 the curve 
of the production function bends downwards and the slope of the slope function 
decreases and is negative, i.e., 

. 
d2Q

dL2 < 0,

i.e., if we take any two points C: .(L3,Q(L3)) and D: .(L4,Q(L4)) on the curve 
beyond the point .(L0,Q(L0)) with .L3 < L4, then the slope of the tangent at C is 
greater than that at D (see Fig. 6.5). The law of diminishing returns states that this 
must happen eventually, i.e., 

. 
d2Q

dL2 < 0,

for .L > L0. 

Problem 6.12 Show that the law of diminishing marginal productivity holds for the 
production function 

. Q = 15L2 − 0.2L3.

Solution 6.12 Differentiating the production function gives 

. MPL = dQ

dL
= 30L − 0.6L2.

Differentiating a second times gives 

. 
d2Q

dL2 = 30 − 1.2L.

The expression defining the second derivative, i.e., .30 − 1.2L becomes negative 
when .30 − 1.2L < 0, i.e., when 

. L >
30

1.2
= 25.

Therefore, the law of diminishing marginal productivity holds for this production 
function for .L > 25, i.e., .L0 = 25.
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Self-Assessment Questions 

1. Find the derivatives of the following functions: 
(a) . f (x) = 4x3 − 3x + 5,

(b) . f (x) = x7/3 + 7x.

2. Find the derivatives of the following functions: 
(a) . y = 6e−3x,

(b) . y = 3 ln 6x.

3. Evaluate the first and second derivative of the function .y = 3 ln 5x. Evaluate 
these derivatives when .x = 1. 

4. Find expressions for the total revenue and marginal revenue functions for the 
demand function .Q = 65 − 5P, and evaluate them when .Q = 5 and .Q = 10. 

5. Calculate the marginal propensities to consume and save for the consumption 
function 

. C = 0.08Y 2 + 0.15Y + 43

and evaluate them when .Y = 2 and .Y = 4, 
6. Determine whether the law of diminishing marginal productivity holds for a 

given production function 

. Q = 42L2 − L3.

Exercises 

1. Find the derivatives of the following functions: 
(a) . f (x) = 4,

(b) . f (x) = 4x3,

(c) . f (x) = x8,

(d) . f (x) = 2x3/2,

(e) . f (x) = 3x + 7.

2. Find .dy/dx for each of the following: 
(a) . y = 5 + 2x − 3x2,

(b) . y = x3 + 3x2 + 5,

(c) . y = x2 + 5,

(d) . y = x4 − 3x2 + 1.

3. Find the first and second derivatives of the following functions: 
(a) . y = e4x,

(b) . y = 3e−2x.

Evaluate these derivatives when .x = 0. 
4. Find the first and second derivatives of the following functions: 

(a) . y = ln 4x,

(b) . y = 2 ln 7x.

Evaluate these derivatives when .x = 1.
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5. If .T C = 3Q2 + 7Q+ 12, find expressions for the marginal and average cost 
functions. Evaluate them when .Q = 3 and .Q = 5. 

6. For each of the following demand functions, find expressions for T R  and 
MR and evaluate them when .Q = 4 and .Q = 10. 
(a) . Q = 36 − 2P,

(b) . 44 − 4P − Q = 0.

7. Find the first and second derivatives of the function 

. y = 6x3 − 20x2 − 9x + 12.

Evaluate these derivatives when . x = 1.

8. Find the marginal cost function for the average cost function given by 

. AC = 3
2Q + 4 + 46

Q
.

9. The fixed costs of producing a good are 50 and the variable costs are . 2+ 1
4Q

per unit. 
(a) Find expressions for T C  and MC. 
(b) Evaluate T C  and MC when .Q = 20. Hence estimate the change in T C  

brought about by a 2 unit increase in output from the current level of 20 
units. 

10. If the consumption function is 

. C = 0.03Y 2 + 0.1Y + 30

calculate MPC and MPS when .Y = 4 and give an interpretation of the 
results. 

11. Show that the law of diminishing marginal productivity holds for the 
production function 

.Q = 18L2 − 0.6L3.
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� Key Learning Objectives
On completion of this chapter students should be able to:

• Determine if a function is increasing or decreasing and whether its graph
is convex or concave, for a given domain of the function.

• Find any local maxima and minima of a function.
• Optimize simple examples of production and profit functions.

7.1 Introduction 

In this book, the concept of the derivative of a function has been introduced, 
and its application in economics has been described. However, the primary use 
of the derivative in economic analysis is related to the process of optimization. 
Optimization is defined to be the process of determining the local or relative 
maximum or minimum of a function. 

In this chapter, the process of determining and classifying the relative or local 
extrema of a given function is described from a mathematical perspective by 
appealing to the local properties of the function near the extrema. The application of 
this theory to a range of functions that arise in economics is described in some detail 
together with an interpretation of the results. Optimization is important and useful 
for solving a range of problems in micro and macro economics. For example, in the 
theory of production, the firm wishes to maximize the output. In microeconomics, 
a business wishes to maximize profit. In macroeconomics, a government may wish 
to maximize revenue from taxation. The determination of the maxima and minima 
of a function also provides invaluable information for the purpose of sketching its 
graph. 
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7.2 Local Properties of Functions 

In this section, some local properties of functions are introduced that will be useful 
in identifying and characterising the local maxima and minima of a given function. 

7.2.1 Increasing and Decreasing Functions 

A function .f (x) is said to be increasing on the domain .a ≤ x ≤ b if, for any 
two points .x1, x2, where .a ≤ x1 < x2 ≤ b, then .f (x1) < f (x2) (see Fig. 7.1a). 
That is, f increases as x increases. A function .f (x) is said to be decreasing on the 
domain .a ≤ x ≤ b if, for any two points .x1, x2, where .a ≤ x1 < x2 ≤ b, then 
.f (x1) > f (x2) (see Fig. 7.1b). 

Since the first derivative of a function measures the slope of a function, a function 
that is increasing on some domain is characterised by a positive first derivative. That 
is, .f (x) increases as x takes increasing values in the domain. More precisely, if 
.f ′(x) > 0 for all x belonging to some domain .a ≤ x ≤ b, then the function f is 
said to be increasing for values of x satisfying .a ≤ x ≤ b. Similarly, a function 
that is decreasing over some domain is characterised by a negative first derivative. 
More precisely, if .f ′(x) < 0 for all x belonging to some domain .a ≤ x ≤ b, then 
the function f is said to be decreasing for values of x satisfying .a ≤ x ≤ b. For  
example, the function .f (x) = x2 (see Fig. 7.2) is a decreasing function for . x < 0
since .f ′(x) = 2x < 0 for .x < 0 and an increasing function for .x > 0 since 
.f ′(x) > 0 for .x > 0. The function .f (x) = 4x − x2 (see Fig. 7.3) is an increasing 
function for .−1 ≤ x ≤ 2 since .f ′(x) = 4 − 2x > 0 for .−1 ≤ x ≤ 2 and a 
decreasing function for .2 ≤ x ≤ 5 since .f ′(x) < 0 for .2 ≤ x ≤ 5. 

x 

y 

x x1 2  

(a) 
x 

y 

x x1 2  

(b) 

Fig. 7.1 Examples of graphs of (a) an increasing function; (b) a decreasing function
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Fig. 7.2 The graph of the function . f (x) = x2

7.2.2 Concave and Convex Functions 

Consider a function .f (x) defined on some domain. If the tangents to the graph of 
this function at each point on this domain are such that the graph lies above them, 
then the function is said to be convex on the domain. If the tangents to the graph of 
this function at each point on this domain are such that the curve lies below them, 
then the function is said to be concave on the domain. These two situations are 
shown in Fig. 7.4. In the case of the convex function shown in Fig. 7.4a, we observe 
that the slope of the function increases as one moves from the point . x1 to the point 
. x2. In this particular example, the slope of the function is negative at .x = x1 and 
gradually increases to take a positive value at .x = x2. Thus, a function that is convex 
on a domain is characterised by the condition .f ′′(x) > 0 on the domain. Similarly, 
a function that is concave on a domain is characterised by the condition . f ′′(x) < 0
on the domain (see Fig.7.4b). 

For example, the function .f (x) = x2 (see Fig. 7.2) is convex on the domain 
.−2 ≤ x ≤ 2. In fact, it is convex on any domain .a ≤ x ≤ b since .f ′′(x) = 2 > 0.
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Fig. 7.3 The graph of the function . f (x) = 4x − x2

y 

(a) (b) 

y 

xx x1 2 x 
x x1 2  

Fig. 7.4 Examples of graphs of (a) a convex function; (b) a concave function
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The function .f (x) = 4x − x2 (see Fig. 7.3) is concave on the domain .−1 ≤ x ≤ 5. 
In fact, it is concave on any domain .a ≤ x ≤ b since .f ′′(x) = −2 < 0. 

7.3 Local or Relative Extrema 

A function of x possesses a local maximum or minimum at .x = a if the function is 
neither increasing nor decreasing at .x = a. That is, the rate of change of y relative 
to x is 0 when . x = a. A local or relative extremum of a function is a point at which 
the function attains a local maximum or minimum. This means that the tangent to 
the curve .y = f (x) is ‘horizontal’ at a local or relative extremum and therefore 
has zero slope. Equivalently, since the slope is given by the first derivative of the 
function, that derivative must be zero at .x = a. A point where .f ′(x) = 0 is known 
as a critical point or value. It is also known as a stationary point or a turning 
point. 

So the stationary or critical points of a function .f (x) are the values of x for 
which .f ′(x) = 0. It remains to classify them as maxima or minima. This is done by 
calculating the second derivative of the function and evaluating it at .x = a. 

To distinguish between a relative maximum and a relative minimum, it is 
necessary to inspect the behaviour of the second derivative and, in particular, to 
determine the sign of .f ′′(a) where .f ′(a) = 0. For points just to the left of a local 
maxima at .x = a, the slope of the tangent is positive, and for points just to the right, 
the slope of the tangent is negative. So in the neighbourhood of a local maximum, 
the first derivative of .f (x) is a decreasing function of x, i.e., .f ′′(x) < 0 and, in 
particular, .f ′′(a) < 0. Therefore, if .f ′′(a) < 0, which means that the function is 
concave and the curve lies below the tangent at .x = a, then the function has a local 
maximum at .x = a. For points just to the left of a local minimum at .x = a, the slope 
of the tangent is negative, and for points just to the right, the slope of the tangent is 
positive. So in the neighbourhood of a local minimum, the first derivative of . f (x)

is an increasing function of x (i.e., .f ′′(x) > 0) and, in particular, .f ′′(a) > 0. 
Therefore, if .f ′′(a) > 0, which means that the function is convex and the curve lies 
above the tangent at .x = a, then the function has a local minimum at .x = a. 

We now summarize the steps involved in finding and classifying the stationary 
points of a function .f (x): 

Second Derivative Test 
Step 1. 

Solve the equation 

. f ′(x) = 0

to find the stationary point(s).
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Step 2. 
Suppose .x = a gives a stationary point (i.e., .f ′(a) = 0). 

. 

If f ′′(a) > 0 then the function has a local minimum at x = a.

If f ′′(a) < 0 then the function has a local maximum at x = a.

If f ′′(a) = 0 then the test is inconclusive.

A knowledge of the stationary points of a function is essential when sketching 
the graph of a nonlinear function since it provides information about its general 
shape. The graph of a function can be sketched using a similar process to that used 
to determine and classify the stationary points of a function. Once the stationary 
points of a function have been determined and classified, the graph of the function 
can be sketched by drawing a smooth curve through these points. A more accurate 
representation of the graph may be obtained by evaluating the function at a greater 
number of points and drawing a smooth curve through them. 

Problem 7.1 Find and classify the stationary points of the following functions: 

1. .f (x) = x2 − 4x + 5, 
2. . f (x) = 2x3 + 3x2 − 12x + 4.

Solution 7.1 

1. We need to calculate the first and second order derivatives of .f (x) = x2 −4x+5. 

. f ′(x) = 2x − 4

. f ′′(x) = 2

Step 1. The stationary points are the solutions of the equation 

. f ′(x) = 0,

i.e., 

. 2x − 4 = 0.

Therefore .x = 2 is a stationary point. 
Step 2. To classify this point, we need to evaluate .f ′′(2). In this case, . f ′′(2) =
2 > 0 so the function has a minimum at .x = 2. The graph of this function is 
shown in Fig. 7.5.
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Fig. 7.5 The graph of the function .f (x) = x2 − 4x + 5 plotted for values of x lying between . −1
and 5 

2. In this problem, we have . f (x) = 2x3 + 3x2 − 12x + 4

. f ′(x) = 6x2 + 6x − 12

. f ′′(x) = 12x + 6

Step 1. The stationary points are the solutions of the equation .f ′(x) = 0, i.e., 

. 6(x2 + x − 2) = 0

. 6(x + 2)(x − 1) = 0

Therefore, the stationary points are .x = −2 and .x = 1. 
Step 2. To classify these points, we need to evaluate .f ′′(x) at .x = −2 and .x = 1. 
Now, 

.f ′′(−2) = −24 + 6 = −18 < 0,
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Fig. 7.6 The graph of the function .f (x) = 2x3 + 3x2 − 12x + 4 plotted for values of x lying 
between .−4 and 3 

and so the function has a maximum at .x = −2, and 

. f ′′(1) = 12 + 6 = 18 > 0,

so the function has a minimum at .x = 1. The graph of this function is shown in 
Fig. 7.6. 

7.4 Global or Absolute Extrema 

The functions we have investigated so far have either possessed a single stationary 
point (see Figs. 7.2 and 7.3) or two stationary points (see Fig. 7.6). However, 
in general, we may encounter functions that possess several local extrema. For 
example, the polynomial function 

. y = f (x) = 2

5
x5 + 3

4
x4 − 8x3 − 13

2
x2 + 12x

(see Fig. 7.7) has local maxima at .x = −4 and .x = 1/2 and local minima at . x =
−1 and .x = 3. The higher of the two local maxima occurs at .x = −4, where
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Fig. 7.7 The graph of the function .f (x) = 2
5 x5 + 3

4 x4 − 8x3 − 13
2 x2 + 12x plotted for values of 

x lying between .−5 and 4 

.y = f (−4) = 142.40. The lower of the two minima occurs at .x = 3, where 

.y = f (3) = −80.55. 
If the domain of the function .f (x) is the closed interval .−5 ≤ x ≤ 5 (the interval 

is closed means that its end points .−5 and 5 are included), then the maximum value 
of .f (x) in its domain occurs at its end point .x = 5, where .y = f (5) = 616.25. The  
minimum value of .f (x) is still at the stationary point where .x = 3 and . y = f (3) =
−80.55. We say that .f (x) has a global maximum at .x = 5 and a global minimum 
at .x = 3. 

More generally, we have the following. If .g(x) is a continuous function whose 
domain is a closed interval .a ≤ x ≤ b, then .g(x) has a global maximum 
(minimum) at .x = c, where .a ≤ c ≤ b if .g(c) is the greatest (least) value of 
.g(x) for x in the domain of .g(x) i.e. .a ≤ x ≤ b. 

The following is true for any continuous function whose domain is a closed 
interval. A continuous function over a closed interval has both a global maximum 
and a global minimum. Each occurs at either an end point of the domain or at a 
stationary point. Thus, to find the global extrema of the function .g(x), first find the 
local extrema in its domain. Then evaluate .g(x) at each end point of its domain and 
at the local extrema. The global maximum and minimum can then be determined 
from these values.
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For most examples in economics that we shall consider, the global extrema will 
be local extrema. 

7.5 Points of Inflection 

The local extrema of a function .f (x) have been characterised by the solutions . x = a

of the equation .f ′(x) = 0 and classified as being local maxima or local minima 
depending on whether .f ′′(a) < 0 or .f ′′(a) > 0, respectively. So far, we have 
not asked what happens if .f ′′(a) = 0. In this situation, the second derivative test 
is inconclusive and the stationary point .x = a is either a local maximum, a local 
minimum, or a point of inflection. At a stationary point of inflection, the function 
is neither convex nor concave. The function crosses its tangent at this point and 
changes from concave to convex or vice versa. For example, the function . f (x) = x3

(see Fig. 7.8) has a stationary point of inflection at .x = 0. For this function, we have 
.f ′(0) = f ′′(0) = 0. In addition, the function is increasing for all values of x, 
convex for .x < 0 and concave for .x > 0. The function changes from being convex 
to concave at the point .x = 0. 
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Fig. 7.8 The graph of the function .f (x) = x3 plotted for values of x lying between .−2 and 2
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Fig. 7.9 The graph of the function .f (x) = x3 − 3x2 + 2x plotted for values of x lying between 
.−1 and 3 

It is possible to have a point of inflection that is not a stationary point. For 
example, the function .f (x) = x3 − 3x2 + 2x (see Fig. 7.9) has a point of inflection 
at .x = 1. At this point, we have .f ′′(1) = 0 but .f ′(1) = −1 �= 0. 

7.6 Optimization of Production Functions 

Production functions were introduced in Chap. 5. Production depends on a number 
of factors including capital and labour. However, in the short run we can assume that 
a firm’s production depends solely on labour with all other factors of production, 
including capital, constant. We can express this symbolically by writing 

. Q = Q(L).

The marginal product of labour, .MPL, is the derivative of the output with respect to 
labour and is defined by 

.MPL = dQ

dL
= Q′(L). (7.1)
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Under the assumption that production depends on labour alone, it is possible 
to calculate the size of the workforce that maximizes production. The following 
example illustrates this process. 

Problem 7.2 A firm’s short run production function is given by 

. Q = 6L2 − 0.2L3

where L denotes the number of workers. 

1. Find the size of the workforce that maximizes output and hence sketch a graph of 
this production function. 

2. Find the size of the workforce that maximizes the average product of labour. 
Calculate .MPL and .APL at this value of L. What do you observe? 

Solution 7.2 

1. To solve the first part of this problem, it is necessary to determine and classify 
the stationary points of the production function. 
Step 1. At a stationary point of the production function 

. 
dQ

dL
= 12L − 0.6L2 = 0.

Therefore 

. L(12 − 0.6L) = 0

and so .L = 0 or .L = 12/0.6 = 20. 
Step 2. It is obvious on economic grounds that .L = 0 gives the minimum .Q = 0. 
We can, of course, check this by differentiating a second time to get 

. 
d2Q

dL2
= 12 − 1.2L.

When .L = 0, 

. 
d2Q

dL2 = 12 > 0,

which confirms that .L = 0 gives a minimum for Q.
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When .L = 20, 

. 
d2Q

dL2 = 12 − 24 = −12 < 0,

thus .L = 20 gives a maximum for Q. 
The firm should therefore employ 20 workers to achieve a maximum output 

. Q = 6(20)2 − 0.2(20)3 = 800.

The graph of this production function is sketched in Fig. 7.10. 
2. To solve the second part of the problem, it is necessary to determine and classify 

the stationary point of the average product of labour, .APL, which is defined by 

.APL = Q

L
. (7.2) 

L 
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Fig. 7.10 The graph of the production function .Q = 6L2 − 0.2L3
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This is sometimes called labour productivity since it measures the average 
output per worker. In this problem, 

. APL = 6L2 − 0.2L3

L
= 6L − 0.2L2.

Step 1. At a stationary point 

. 
d(APL)

dL
= 0,

i.e., 

. 6 − 0.4L = 0,

and therefore . L = 6/0.4 = 15.

Step 2. To classify this stationary point, we differentiate a second time to get 

. 
d2(APL)

dL2 = −0.4 < 0

which shows that it is a maximum. The labour productivity is therefore greatest 
when the firm employs 15 workers. The corresponding labour productivity is 

. APL = 6(15) − 0.2(15)2 = 45.

So the largest number of goods produced per worker is 45. 
To find an expression for .MPL, we need to differentiate Q with respect to L, 
which we have already done in the first part of the problem. We have 

. MPL = dQ

dL
= 12L − 0.6L2.

When .L = 15, 

. MPL = 12(15) − 0.6(15)2 = 45.

We observe that at .L = 15, the values of .MPL and .APL are equal.
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In this problem, we have discovered that: 

At the point of maximum average product of labour, 
marginal product of labour = average product of labour, 

i.e., . MPL = APL.

In fact, this result holds for any production function .Q = Q(L) as we shall 
demonstrate. If we differentiate the expression (7.2) defining the average product of 
labour using the quotient rule, we obtain 

. 
d(APL)

dL
= d(Q/L)

dL

= L
dQ
dL

− QdL
dL

L2

=
dQ
dL

− Q/L

L

= MPL − APL

L
. (7.3) 

At a stationary point for the average product of labour, we have 

.
d(APL)

dL
= 0. (7.4) 

This means that .MPL = APL, as required. This result shows that at a stationary 
point of the average product of labour, the marginal product of labour is equal to the 
marginal product of labour. The analysis has shown that this result is true for any 
function .APL and is not restricted to certain choices. 

At a stationary point of the average product of labour, we can obtain a simple 
expression for the second derivative of .APL with respect to L as follows: 

.
d2(APL)

dL2
= d

dL

(
MPL − APL

L

)

=
L

(
d(MPL)

dL
− d(APL)

dL

)
− (MPL − APL)dL

dL

L2
.
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At a stationary point, we know .MPL = APL and also .d(APL)/dL = 0. Therefore, 

. 
d2(APL)

dL2 = 1

L

d(MPL)

dL

= 1

L

d2Q

dL2
,

since .MPL = dQ/dL. So at a stationary point of the average product of labour 

. 
d2(APL)

dL2 = Q′′(L)

L
.

7.7 Optimization of Profit Functions 

We turn our attention to the problem of determining the maximum profit for a given 
firm. The profit function, . π , which is the difference between the total revenue and 
total cost functions, is expressed as a function of the output Q. The function is then 
optimized with respect to Q. 

Problem 7.3 Maximize the profit for a firm, given that its total revenue function is 
given by .T R = 4000Q − 33Q2 and its total cost function by . T C = 2Q3 −
3Q2 + 400Q + 5000, assuming .Q > 0. 

Solution 7.3 The profit function is given by 

. π = T R − T C

= 4000Q − 33Q2 − (2Q3 − 3Q2 + 400Q + 5000)

= −2Q3 − 30Q2 + 3600Q − 5000

Step 1. At a stationary point of the profit function, 

.
dπ

dQ
= 0.



7.7 Optimization of Profit Functions 161

Now 

. 
dπ

dQ
= −6Q2 − 60Q + 3600

= −6(Q2 + 10Q − 600)

= −6(Q + 30)(Q − 20).

Therefore, the stationary points of the profit function are .Q = −30 or .Q = 20. (As  
an alternative to factorization, the equation 

. 
dπ

dQ
= 0

can also be solved using the quadratic formula (3.8).) 
Step 2. The stationary point .Q = −30 has no economic significance since . π is only 
defined for .Q > 0. Therefore, we can ignore it. To classify the second stationary 
point, we differentiate a second time 

. 
d2π

dQ2 = −12Q − 60.

When .Q = 20, 

. 
d2π

dQ2 = −240 − 60 = −300 < 0,

which shows that . π has a local maximum when .Q = 20. Therefore, the profit is 
maximized when .Q = 20 and the maximum profit is given by 

. π = −2(20)3 − 30(20)2 + 3600(20) − 5000

= −16,000 − 12,000 + 72,000 − 5000

= 39,000.

Problem 7.4 The demand equation for a good is 

. P + Q = 30

and the total cost function is 

.T C = 1

2
Q2 + 6Q + 7.



162 7 Maxima and Minima

1. Find the level of output that maximizes total revenue. 
2. Find the level of output that maximizes profit. Calculate MR and MC at this 

value of Q. What do you observe? 

Solution 7.4 

1. The total revenue function is defined by .T R = P × Q. Now .P = 30 − Q by 
rearranging the demand equation. Therefore, 

. T R = (30 − Q)Q = 30Q − Q2.

Therefore, 

. 
d(T R)

dQ
= 30 − 2Q.

Step 1. At a stationary point of the total revenue function 

. 
d(T R)

dQ
= 0,

so 

. 30 − 2Q = 0.

Therefore .Q = 15. 
Step 2. To classify this point, we differentiate a second time to get 

. 
d2(T R)

dQ2
= −2 < 0,

so T R  has a local maximum when .Q = 15. 
2. The profit function is defined by 

. π = T R − T C

= (30Q − Q2) −
(

1

2
Q2 + 6Q + 7

)

= −3

2
Q2 + 24Q − 7.

Therefore, 

.
dπ

dQ
= −3Q + 24.
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Step 1. At a stationary point of the profit function 

. 
dπ

dQ
= 0,

so 

. − 3Q + 24 = 0,

which has the solution .Q = 8. 
Step 2. To classify the stationary point, we differentiate the profit function a 
second time to get 

. 
d2π

dQ2
= −3 < 0,

so . π has a local maximum at . Q = 8. Now  

. MR = d(T R)

dQ
= 30 − 2Q,

and 

. MC = d(T C)

dQ
= Q + 6.

Therefore, when .Q = 8, then .MR = 14 and .MC = 14. So then 

At the value of Q that maximizes profit, 
marginal revenue = marginal cost 

This result is true for any profit function irrespective of the market conditions 
under which the firm operates since at a stationary point for the profit function, we 
have 

. 
dπ

dQ
= d(T R)

dQ
− d(T C)

dQ
= MR − MC = 0.

Therefore, .MR = MC at a stationary point for the profit function.
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7.8 Other Examples 

Problem 7.5 The cost of building an office block, x floors high, comprises three 
components: 

1. £18 million for the land, 
2. £200,000 per floor, 
3. specialized costs of £20,000x per floor. (Thus if there are to be 4 floors, the 

specialized cost per floor will be £80,000.) 

How many floors should the block contain if the average cost per floor is to be 
minimized? 

Solution 7.5 First of all, we need to derive an expression for the total cost of 
construction of the office block. Suppose that the building has x floors. Then the 
£18 million is a fixed cost because it is independent of the number of floors. The 
total cost involved in the second component is £200,000x. In addition, there are 
specialized costs of £20,000x per floor. So if there are x floors, the specialized costs 
will be 

. (20,000x)x = 20,000x2.

The total cost of construction in terms of monetary units of £1000 is therefore 

. T C = 18,000 + 200x + 20x2.

The average cost per floor, AC, is formed by dividing the total cost by the number 
of floors, i.e., 

. AC = T C

x

= 18,000 + 200x + 20x2

x

= 18,000

x
+ 200 + 20x

Step 1. At a stationary point 

. 
d(AC)

dx
= 0.

Now 

.
d(AC)

dx
= −18,000x−2 + 20.
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So we need to solve the equation 

. − 18,000x−2 + 20 = 0.

Therefore, 

. 20 = 18,000x−2 = 1800

x2

1 = 900

x2 (Divide both sides by 20.)

x2 = 900

x2 x2 (Multiply both sides by x2.)

x2 = 900

Therefore x2 = 900 and so x = ±√
900 = ±30. 

Step 2. To confirm that x = 30 yields a minimum, we need to differentiate a second 
time. 

. 
d2(AC)

dx2 = 36,000x−3

So obviously when x = 30, 

. 
d2(AC)

dx2 > 0.

Thus x = 30 gives a minimum for AC. 
Therefore an office block 30 floors high produces the lowest average cost per 

floor. 

Problem 7.6 The supply and demand equations of a good are 

. P = Qs + 8,

P = −3Qd + 80,

respectively. The government decides to impose a tax, et , per unit of good. Find the 
value of t that maximizes the government’s total tax revenue on the assumption that 
equilibrium conditions prevail in the market. 

Solution 7.6 To account for the imposition of tax, we replace P by P − t in the 
supply equation. This is because the price that the supplier actually receives is the 
price P that the consumer pays, less the tax t deducted by the government. The new
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supply equation is then 

. P − t = Qs + 8,

so that 

. P = Qs + 8 + t.

In equilibrium, 

. Qs = Qd.

If this common value is denoted by Q then the demand and supply equations are 

. P = −3Q + 80,

P = Q + 8 + t.

Hence, 

. Q + 8 + t = −3Q + 80.

Therefore 

. 4Q = 72 − t,

and so 

. Q = 18 − 1

4
t.

Now if the number of goods sold is Q and the government raises t per good, then 
the total tax revenue is given by 

. T = tQ

= t (18 − 1

4
t)

= 18t − 1

4
t2.

This is the function we wish to maximize. 
Step 1. At a stationary point, 

.
dT

dt
= 0,
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so 

. 
dT

dt
= 18 − 1

2
t = 0,

which has the solution t = 36. 
Step 2. To classify the stationary point, we differentiate a second time to get 

. 
d2T

dt2
= −1

2
< 0,

which confirms that it is a maximum. Hence the government should impose a tax of 
e36 on each good. 

Self-Assessment Questions 

1. Determine whether the function f (x)  is increasing or decreasing in the domain 
0 < x  <  1 if: (i)f (x)  = 3x2 − 6x + 4; (ii) f (x)  = xe−x . 

2. Find any local maxima and minima of the function f (x)  = x3 − 12x. 
3. A firm’s short run production function is 

. Q = 9L2 − 1.5L3,

where Q denotes output and L is labour units. 
(a) Find expressions for APL and MPL. 
(b) Determine the value of L that maximizes output. 
(c) Determine the value of L that maximizes APL. For this value of L, 

evaluate APL and MPL and comment on the values. 
4. Maximize the profit for a firm, given that the total revenue function is 

. T R = 2040Q − 13Q2

and the total cost function is 

. T C = Q3 − Q2 + 1500Q + 2000,

where Q >  0. 

Exercises 

1. For the following functions, determine the stationary point(s) and classify 
them. Use this information to sketch graphs of these functions. 
(a) f (x)  = 2x2 − x + 6. 
(b) f (x)  = x2 − 4x + 3. 
(c) f (x)  = x3 − 3x + 3. 
(d) f (x)  = 1 − 9x − 6x2 − x3.
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2. The demand equation for a good is given by 

. P + 4Q = 96,

and the total cost function T C  is 

. T C = Q3 − 13Q2 + 48Q + 17.

(a) Find the level of output that maximizes total revenue. 
(b) Find the maximum profit and the level of output for which it is achieved. 
(c) Sketch the graph of profit against Q, for  Q ≥ 0. 

3. The demand equation for a good is given by 

. P + 2Q = 20,

and the total cost function T C  is 

. T C = Q3 − 8Q2 + 20Q + 2.

(a) Find the level of output that maximizes total revenue. 
(b) Find the maximum profit and the level of output for which it is achieved. 

Verify that, for this value of Q, MR = MC. 
4. The prevailing market price for a good is 30. The total cost function is 

. T C = 100 + 44Q − 5Q2 + 1

2
Q3.

What is the level of output that maximizes the profit? 
5. Find the first and second order derivatives, with respect to L, of the short run 

production function 

. Q = 15L2 − 2L3.

Hence, determine and classify the stationary points of this function. 
6. A firm’s short run production function is given by 

. Q = 12L2 − 1

2
L3,

where L denotes the number of workers. 
(a) Find the size of the workforce that maximizes output and hence sketch a 

graph of this production function. 
(b) Find the size of the workforce that maximizes the average product of 

labour, APL. Calculate MPL and APL at this value of L. What do you 
observe?
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7. The cost of building an office block, x floors high, is made up of three 
components: 
(a) $20.16 million for the land, 
(b) $175,000 per floor, 
(c) specialized costs of $35,000x per floor. 
How many floors should the block contain if the average cost per floor is to be 
minimized? 

8. The supply and demand equations for a good are 

. Qd = 500 − 9P,

and 

. Qs = −100 + 6P,

respectively. The government decides to impose a tax, t per unit of good. 
Find the value of t that maximizes the government’s total tax revenue on the 
assumption that equilibrium conditions prevail in the market. For this level of 
tax find: 
(a) the equilibrium price, 
(b) the equilibrium quantity, 
(c) the total tax raised.
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� Key Learning Outcomes 
On completion of this chapter students should be able to: 

• Determine the first and second order partial derivatives of a given function 
of two variables

• Use the small increments formula to estimate the change in a function due 
to small changes to its variables

• Compute the total derivative of a function of two variables
• Estimate the elasticities of demand for a given demand function
• Evaluate the marginal utilities for a given utility function 

8.1 Introduction 

Economic models that we have encountered so far have assumed that a quantity 
under consideration depends only on the value of one variable; i.e., the quantity is 
a function of one variable. For example, .Q = 100 − 5P, the demand equation (or 
demand function) for some good describes a model where the demand Q depends 
only on the price P of the good. In practice, Q will depend on other variables such 
as consumer income or the price of a substitutable good. To take into account all 
variables affecting the value of Q would make an economic model too difficult to 
analyse or use. Useful models should lend themselves readily to analysis, perhaps 
with the aid of computers, while at the same time give a reasonably accurate model 
of the real situation. 

The profit function of a firm producing only one good is of the form .y = f (x), 
where x is the output of the good. The derivative .dy/dx gives a measure of the rate 
of change of profit y relative to output and is itself a function of . x. The function f 
can be visualised geometrically as a graph and the slope of the tangent at any point 
on the graph is the value of .dy/dx at that point. 
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Suppose now that the firm produces two goods .G1 and .G2 with outputs . x1 and 
.x2, respectively. We expect the profit function f now to depend on . x1 and . x2. This 
is an example of a function of two variables. The analysis of the rate of change of f 
relative to . x1 and . x2 is done by considering the rate of change of f relative to one 
variable while the other is assumed constant and vice versa. This is the concept of a 
partial derivative. 

The utility of a consumer of the two goods . G1 and . G2 will also be a function of 
. x1 and .x2. Partial derivatives enable us to analyse the marginal effects of keeping, 
say, the output . x1 of . G1 at some fixed level while changing slightly the output . x2 of 
. G2.

8.2 Functions of Two or More Variables 

An expression such as .f (x, y) = 3x2 +xy +y +1 is a function of the two variables 
x and y. The function notation is a natural extension of that for functions of one 
variable. Thus, .f (α, β) denotes the value of the function when .x = α and . y = β.

For example, for the function defined above: 

. f (1, 1) = 3 + 1 + 1 + 1 = 6, f (0, 0) = 0 + 0 + 0 + 1 = 1

and 

. f (2,−1) = 3 × 4 + 2 × (−1) + (−1) + 1 = 10.

We can simply write f for .f (x, y) if there is no need to mention x and y. 
These ideas extend in a natural way to functions of more than two variables. For 

example, .g(x, y, z) = x2+yz−2z2+8 is a function of the three variables x, y, and . z.

The value of g when say .x = 5, .y = −2 and .z = 3 is . 52 + (−2)× 3 − 2 × 32 + 8 =
25 − 6 − 18 + 8 = 9. This is more succinctly expressed in function notation by 
. g(5,−2, 3) = 9.

If we let .z = f (x, y), then the two variables . x, y are said to be the  independent 
variables and z is the dependent variable as its value depends on the values of x 
and y. Thus z may be the value of some measurement or observation depending on 
the values of x and y; for instance, production Q depends on the values of capital 
K and labour L in a simple production model (though in more advanced models, Q 
will depend on additional input variables). 

A useful notational device is the short-hand way of expressing, for example, 
that ‘Q is regarded as a function of K and L’ by writing simply: ‘. Q(K,L)’ for  

.Q. Then if say .Q = 5K
1
2 L

1
3 , writing .Q(9, 8) = 30 is a quick way of saying 

‘.Q = 30 when .K = 9 and .L = 8’. In this notation, for instance, we have: . Q(4, 1) =
10, Q(4, 27) = 30 and so on.
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8.3 Partial Derivatives 

Let .f (x, y) be any function of the two variables x and y. Then f may be regarded 
as a function of one variable x if we were to treat y as a constant. In this case, its 
derivative with respect to x is called the partial derivative of f with respect to . x,

denoted by 

. 
∂f

∂x
or fx.

Similarly the partial derivative 

. 
∂f

∂y
or fy

is obtained by differentiating f with respect to y, treating x as constant. 
More generally, if f is a function of two or more variables and x is any one of 

these variables, then the partial derivative . fx is obtained by differentiating f with 
respect to x, treating all the other variables as constants. 

Problem 8.1 Determine the partial derivatives of the following functions: 

1. .f (x, y) = 2x + 5y − 3, 
2. .g(u, v) = 3u2v, 
3. .z = x2 + 3xy2 + 5, 

4. .Q = 4K
1
2 L

1
3 , 

5. .f (x, y, z) = xy2 − 3x2 + 4yz − 5z2 + 8, 
6. .z = xe2y . 

Solution 8.1 

1. The partial derivatives of the function .f (x, y) = 2x + 5y − 3 are 

. 
∂f

∂x
= 2 and

∂f

∂y
= 5.

To see why, for example, .
∂f

∂y
= 5, note that when we partially differentiate with 

respect to . y, then 2x and . −3 are both constants and therefore their derivatives are 
zero. 

2. For this problem, recall that constant factors can be taken outside the differentia-
tion operator. For instance, if y is a function of x, then 

.
d

dx
(ky) = k

dy

dx
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if k is a constant. In particular, 

. 
d

dx
(kx) = k

dx

dx
= k.

Thus 

. 
∂g

∂u
= 3v × ∂u2

∂u
= 3v × 2u = 6vu

since when we differentiate partially with respect to . u, the factor 3v in .3u2v is 

constant and .
∂u2

∂u
= 2u. Partially differentiating with respect to . v, we have 

. 
∂g

∂v
= 3u2 × 1 = 3u2

since now .3u2 is constant and . 
∂v

∂v
= 1.

Note that we could write . gu for .
∂g

∂u
and . gv for .

∂g

∂v
in this example. The 

advantage with writing . gu is that it allows us to use function notation. For 
instance, .gu(2, 5) = 60 expresses succinctly that the value of . gu is 60 when 
.u = 2 and . v = 5.

3. Here 

. zx = 2x + 3y2 × 1 + 0 = 2x + 3y2

and 

. zy = 0 + 3x × 2y + 0 = 6xy.

4. The production model described by this Cobb-Douglas function gives the output 
Q as a function of only K (capital input) and L (labour input). 

. 
∂Q

∂K
= 4L

1
3 × 1

2
K

1
2 −1 = 2K− 1

2 L
1
3

and 

. 
∂Q

∂L
= 4K

1
2 × 1

3
L

1
3 −1 = 4

3
K

1
2 L− 2

3 .

In this problem, we could also have used the alternative notation .QK for . 
∂Q

∂K
for instance. If we wish to use function notation, then for the output Q, we can 
write .Q(K,L) initially and then replace this simply by Q whenever there’s no
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need to specify K or . L. This also extends to the partial derivatives .QK and . QL, 
so for instance, 

. QK(9, 8) = 2 × 9− 1
2 × 8

1
3 = 2 × 1

3
× 2 = 4

3
.

5. The function in this problem is an example of a function of three variables. 
. fx = y2 − 3 × 2x + 0 − 0 + 0 = y2 − 6x

. fy = x × 2y − 0 + 4z − 0 + 0 = 2xy + 4z

. fz = 0 − 0 + 4y − 5 × 2z + 0 = 4y − 10z

6. .zx = e2y (since .e2y is treated as constant here) and 
. zy = x × 2e2y = 2xe2y.

(Recall that the derivative of .eky with respect to y is .keky for any constant . k.) 

8.4 Higher Order Partial Derivatives 

The discussion that follows is for functions of two variables. This is for the sake of 
simplicity as the ideas extend to functions of more than two variables in a natural 
way. 

Consider any function .f (x, y) in the variables x and . y. The partial derivatives 
. fx and . fy are themselves functions of x and . y.

We say that . fx and . fy are the first order partial derivatives of . f. Their partial 
derivatives are the second order partial derivatives of . f. They are 

. 
∂

∂x
(fx) = ∂

∂x

(
∂f

∂x

)
denoted by

∂2f

∂x2 or fxx

∂

∂x
(fy) = ∂

∂x

(
∂f

∂y

)
denoted by

∂2f

∂x∂y
or fxy

∂

∂y
(fy) = ∂

∂y

(
∂f

∂y

)
denoted by

∂2f

∂y2 or fyy

∂

∂y
(fx) = ∂

∂y

(
∂f

∂x

)
denoted by

∂2f

∂y∂x
or fyx

The second order partial derivatives .fxy and .fyx of f are known as cross-
derivatives. 

For all functions of two variables that we shall consider, these two cross-
derivatives are always equal. That is 

.fxy = fyx.
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Problem 8.2 Determine the first and second order partial derivatives of . z = x2 +
3xy2 + 5 (see Problem 8.1.3). 

Solution 8.2 In Problem 8.1.3, we determined 

. zx = ∂z

∂x
= 2x + 3y2 and zy = ∂z

∂y
= 6xy.

Therefore 

. zxx = ∂

∂x
(zx) = ∂

∂x
(2x + 3y2) = 2

zxy = ∂

∂x
(zy) = ∂

∂x
(6xy) = 6y

zyy = ∂

∂y
(zy) = ∂

∂y
(6xy) = 6x

zyx = ∂

∂y
(zx) = ∂

∂y
(2x + 3y2) = 3 × 2y = 6y

Observe that the cross-derivatives .zxy and .zyx are equal. 

Problem 8.3 Determine the first and second order partial derivatives of . f (x, y) =
8x2y3. 

Solution 8.3 The first and second order partial derivatives are 

. fx = 8 × 2x × y3 = 16xy3,

fy = 8x2 × 3y2 = 24x2y2,

fxx = 16y3,

fyy = 24x2 × 2y = 48x2y,

fyx = 48x × y2 = 48xy2 = fxy.

Problem 8.4 A firm’s profit is given by the function 

. π = 800 − 4Q2 − 5Q + 3QY − 5Y 2 + 40Y

where Q denotes output and Y advertising expenditure. Determine the first and 
second order partial derivatives of . π .
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Solution 8.4 The first and second order partial derivatives of . π , considered as 
functions of Q and Y , are  

. πQ = −8Q − 5 + 3Y, πY = 3Q − 10Y + 40,

πQQ = −8, πYY = −10, πYQ = 3 = πQY .

8.5 Partial Rate of Change 

In the case of a function .y = f (x) of one variable . x, the derivative .dy/dx or . f ′(x)

can be thought of as the rate of change of y relative to . x. (This rate of change is 
itself a function of x and therefore can vary with . x.) Therefore, if x changes by a 
small increment .�x, then the corresponding change .�y in y is, approximately, 

. 
dy

dx
× �x.

There is an analogous situation for partial derivatives. We consider the case of a 
function of two variables as this extends to more variables in an obvious way. 

Suppose a quantity z is a function of two variables x and . y. Then .
∂z

∂x
can be 

regarded as the rate of change of z relative to . x. That is, if x changes by a small 
increment .�x and we assume all the other variables remain fixed, then the resulting 

change . �z in z is approximately .
∂z

∂x
× �x. So . �z

�x
is close to .

∂z

∂x
and gets closer to 

this partial derivative the smaller that .�x becomes. 

Similarly, .
∂z

∂y
×�y is the approximate change in z caused by a small change . �y

in . y.

If x and y change by small increments .�x and . �y, respectively, the resulting 
change in z can be estimated by the following formula. 

The Small Increments Formula (SIF) 

. �z = ∂z

∂x
× �x + ∂z

∂y
× �y

. = zx�x + zy�y

Notes 
1. Although we have written an equals sign in the SIF, the formula is in fact an 

approximation. The reason is that as x changes so will .
∂z

∂x
, in general. Similarly
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for . y. That is, .
∂z

∂x
and .

∂z

∂y
are functions of x and y and therefore, in general, they 

vary as .x, y vary. 
2. An increment, say .�x, is negative if x decreases. So for example . �x = −0.05

means that the current value of x is reduced by 0.05. 

Problem 8.5 Evaluate .z = x2 +3y when .x = 5 and .y = 8. Using the SIF, estimate 
the change in z if x increases to .5.01 and y decreases to . 7.98.

Solution 8.5 Since .z = x2 + 3y, then 

. zx = 2x and zy = 3.

When .x = 5 and .y = 8 the value of z is . 25 + 24 = 49.

Now suppose x increases to .5.01 and y decreases to .7.98. That is, . �x = 0.01
and .�y = −0.02. The SIF gives an estimate for the change in z as 

. �z = zx × (0.01) + zy × (−0.02).

Here the partial derivatives . zx and . zy are evaluated at the initial values .x = 5 and 
.y = 8. So .zx = 2x = 10 and . zy = 3.

Therefore 

. �z = 10 × (0.01) − 3 × (0.02) = 0.04.

This means z increases from its initial value of 49 to approximately the value . 49 +
0.04 = 49.04 when x and y change as described. (The actual new value of z is 
49.041, which is quite close to the estimate.) 

Problem 8.6 The profit of a company producing two goods is given by 

. Y = 80A − (0.2)A2 + 150B − (0.1)B2 − 200

where Y is profit, A is the output of good 1, and B is the output of good 2. Evaluate 
the profit when .A = 10 and .B = 6. Estimate the profit when the output of good 1 
increases by .2% and that of good 2 by . 3%.

Solution 8.6 

.
∂Y

∂A
= 80 − (0.2) × 2A = 80 − (0.4)A

∂Y

∂B
= 150 − (0.1) × 2B = 150 − (0.2)B
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When .A = 10 and .B = 6 units of product, we have, after substituting these 
values and simplifying, that 

. Y = 1476.4,
∂Y

∂A
= 76 and

∂Y

∂B
= 148.8.

If we increase production of good 1 by .2% and production of good 2 by . 3%, then 
.�A = 2

100 × 10 = 0.2 and .�B = 3
100 × 6 = 0.18. Using the SIF, we can estimate 

.�Y by 

. �Y = ∂Y

∂A
× �A + ∂Y

∂B
× �B.

That is 

. �Y = 76 × 0.2 + 148.8 × 0.18.

Therefore 

. �Y = 41.984.

So Y increases by about 2.8%. (The actual change in Y is 41.973 to 3 decimal 
places.) 

Problem 8.7 In a production model, output .Q(K,L) is given by 

. Q = 5K
1
2 L

2
3

where K denotes labour and L labour costs. Evaluate output Q and the marginal 
costs of capital and labour when .K = 4 and .L = 8. Estimate output if K increases 
to .4.1 and L decreases to . 7.95.

Solution 8.7 The first order partial derivatives of Q are 

. 
∂Q

∂K
= 5

2
K− 1

2 L
2
3

∂Q

∂L
= 5K

1
2 × 2

3
L− 1

3 = 10

3
K

1
2 L− 1

3 .

When .K = 4 and .L = 8, the output .Q = 5 × 2 × 4 = 40, and 

.
∂Q

∂K
= 5

2
× 1

2
× 4 = 5 and

∂Q

∂L
= 10

3
× 2 × 1

2
= 10

3
.
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To estimate Q when .K = 4.1 and .L = 7.95, use the SIF with .�K = 0.1 and 
.�L = −0.05 to compute 

. �Q = QK × �K + QL × �L = 5 × (0.1) + 10

3
× (−0.05) = 1

3
.

Therefore, .Q(4.1, 7.95) is approximately .40.333. (To see how close an approxima-

tion this is, computing .Q(4.1, 7.95) = 5 × (4.1)
1
2 (7.95)

2
3 using a calculator gives 

40.328 to 3 decimal places.) 

8.6 The Chain Rule and Total Derivatives 

Suppose y is a function of a single variable x and that x is a function of a single 
variable . t. Then y may be regarded as a function of the single variable t since any 
value to t determines x, which in turn determines . y. The chain rule for functions of 
one variable (see (6.8)) is 

. 
dy

dt
= dy

dx

dx

dt
.

For example, let .y = x3 and .x = t2. Then 

. 
dy

dt
= dy

dx
.
dx

dt
= 3x2 × 2t = 6x2t.

In this case, one could have easily substituted for x in y to get . y = (t2)3 = t6

giving y explicitly as a function of . t. Then .
dy

dt
= 6t5, which is the same as . 6x2t,

noting that .x2 = t4. There is an analogous formula for functions of two variables. 
Suppose z is a function of two variables x and . y. Further, suppose that each of x 

and y is a function of a single variable . t. Then z can be regarded as a function of the 

single variable . t. The derivative .
dz

dt
is given by 

Total Derivative Formula 

. 
dz

dt
= ∂z

∂x
.
dx

dt
+ ∂z

∂y
.
dy

dt

(Notice that when we write .
dx

dt
and not .

∂x

∂t
, x is being regarded as a function of just 

one variable, t . Similarly for y and . z.) 

The derivative .
dz

dt
is known as the total derivative of . z with respect to .t.
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The total derivative formula follows from the SIF quite easily. We have 

. �z = ∂z

∂x
. �x + ∂z

∂y
. �y

for the incremental changes . �x, . �y, . �z caused by a change . �t in . t. Therefore 

. 
�z

�t
= ∂z

∂x
.
�x

�t
+ ∂z

∂y
.
�y

�t
.

As . �t tends to 0, the ratios .
�x

�t
, .
�y

�t
, and .

�z

�t
tend, respectively to . 

dx

dt
, . 
dy

dt
, and . 

dz

dt
to give the total derivative formula. 

A special case of the total derivative equation is when .t = x. Then putting . t = x

in the total derivative formula and noting that .
dx

dx
= 1, we have  

The Total Derivative when z is a function of y and y is a function of x 

. 
dz

dx
= ∂z

∂x
+ ∂z

∂y
.
dy

dx

Note the appearance of both .
dz

dx
and .

∂z

∂x
in the equation. The partial derivative 

.
∂z

∂x
is the rate of change of z relative to x when z is considered a function of two 

variables x and . y; so it is implicit that . y is constant when computing this partial 

derivative. Thus .
∂z

∂x
is the direct contribution of x to this rate of change, while 

.
∂z

∂y
.
dy

dx
is the indirect contribution of x through y (which is a function of x). 

Problem 8.8 Given that 

. z = xy + 3y − 7x + 5

where .x = t2 and .y = 2t + 3, find 

1. . 
dz

dt
, 

2. the value of .
dz

dt
when .t = 5.
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Solution 8.8 

1. Substituting for x and y in terms of . t, we can express z explicitly as a function of t 
only. Then .dz/dt is easily computed. However, it is not always easy to substitute. 
The total derivative equation allows us to compute .dz/dt without substitution. 

We have 

. 
∂z

∂x
= y − 7,

∂z

∂y
= x + 3,

dx

dt
= 2t and

dy

dt
= 2.

Therefore 

. 
dz

dt
= ∂z

∂x
.
dx

dt
+ ∂z

∂y
.
dy

dt
= (y − 7) × 2t + (x + 3) × 2.

Finally, we obtain 

. 
dz

dt
= 2ty − 14t + 2x + 6.

2. When .t = 5, then .x = 25 and .y = 13. Then 

. 
dz

dt
= 2 × 5 × 13 − 14 × 5 + 2 × 25 + 6 ≡ 116.

Problem 8.9 Find .dz/dx and the values of x for which .dz/dx = 0, given that 
.z = 4x2y3, where .y = x2 + 3. 

Solution 8.9 Here .
∂z

∂x
= 4y3 × 2x = 8xy3, .

∂z

∂y
= 4x2 × 3y2 = 12x2y2, and 

.
dy

dx
= 2x. Therefore, 

. 
dz

dx
= ∂z

∂x
+ ∂z

∂y
.
dy

dx

= 8xy3 + 12x2y2 × 2x

= 8xy3 + 24x3y2 = 8xy2(y + 3x2).

Now .
dz

dx
= 0 when .x = 0, y = 0, or . y = −3x2.

Since .y = x2 + 3, the last two cases are, respectively, equivalent to . x2 + 3 = 0
and .4x2 + 3 = 0, neither of which is possible since each of .x2 + 3 and .4x2 + 3 is 
at least 3 for any value of x.
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Problem 8.10 A monopolist’s total revenue T R  is given by the formula . T R =
PQ, where P is the price of the good being supplied and Q the quantity supplied. 
Determine the marginal revenue MR if .P = 120 − 6Q is the demand function. 

Solution 8.10 The total derivative formula gives 

. MR = d(T R)

dQ
= ∂(T R)

∂Q
+ ∂(T R)

∂P
.

dP

dQ
.

Since .T R = PQ, we have .
∂(T R)

∂Q
= P and .

∂(T R)

∂P
= Q, and since .P = 120−6Q, 

we have . 
dP

dQ
= −6.

Substituting in the expression for MR gives 

. MR = P + Q(−6) = P − 6Q.

Of course we could in this problem easily express T R  solely in terms of Q by 
substituting .P = 120 − 6Q in .T R = PQ to get 

. T R = (120 − 6Q)Q = 120Q − 6Q2.

Then .MR = d(T R)

dQ
= 120 − 6 × 2Q = 120 − 12Q. This is the same answer as 

before since . P − 6Q = (120 − 6Q) − 6Q = 120 − 12Q.

8.7 Some Applications of Partial Derivatives 

8.7.1 Implicit Differentiation 

The equation .y = x2 + 3x − 5 gives y explicitly as a function of . x. That is, y is 
presented as an expression in terms of . x. However, an equation of the form 

. x2y3 − xy + 3x3 = 5

relates x and y but not explicitly as it is not possible by rearranging the equation to 
express y just in terms of . x. In this case, we say that y is implicitly a function of . x.

In the first equation when y is explicitly given in terms of x, it is easy to determine 

the derivative of y with respect to x and it is given by .
dy

dx
= 2x + 3; but not in the 

second equation where y is implicitly given in terms of . x. The second equation is 
of the form 

.f (x, y) = K
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where .f (x, y) is a function of .x, y and K is a constant. Using the total derivative 
formula, we have 

. 
df

dx
= ∂f

∂x
.
dx

dx
+ ∂f

∂y
.
dy

dx

= ∂f

∂x
+ ∂f

∂y
.
dy

dx

= fx + fy .
dy

dx
.

Since the value of f is constant .(= K), then .
df

dx
= 0 and so . fx + fy

dy

dx
= 0.

Therefore 

. 
dy

dx
= −fx

fy

This is the implicit differentiation formula. Observe that .
dy

dx
is independent of 

the value of the constant K . 

Problem 8.11 Use implicit differentiation to find .dy/dx for the following: 

1. .x2y = 3, 
2. .x2y3 − xy + 3x3 = 5, 
3. .xy = y2 + 3x2 + 1. 

Solution 8.11 

1. Here .f (x, y) = x2y, .fx = 2xy, and .fy = x2, so 

. 
dy

dx
= −2xy

x2 = −2y

x
.

In this case, y could have been expressed explicitly in terms of x, since . y =
3/x2 = 3x−2.

Therefore .
dy

dx
= 3 × (−2)x−3 = −6x−3, which is equal to .−2y/x, since 

.y = 3x−2.
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2. In this case, .f (x, y) = x2y3 − xy + 3x3, .fx = 2xy3 − y + 9x2, and . fy =
3x2y2 − x. So 

. 
dy

dx
= − (2xy3 − y + 9x2)

(3x2y2 − x)
.

3. Write this as .f (x, y) = y2+3x2−xy = −1. Then .fx = 6x−y and . fy = 2y−x.

Therefore 

. 
dy

dx
= − (6x − y)

2y − x
= y − 6x

2y − x
.

8.7.2 Elasticity of Demand 

This is an economic model for one good and an alternative (or related) good: 
the demand Q for a particular good depends on its price . P, the price .PA of the 
alternative good, and the income Y of consumers. Thus Q is regarded as a function 
of the variables P , . PA, and Y . 

Examples are 

1. The price of new cars is related to the price of fuel and the income of the driving 
population. 

2. The price of domestic gas and the price of domestic electricity are related. 
3. The price of printers and printer ink are related. 
4. The prices of solar panels and batteries are related. 

The own price (or direct price) elasticity of demand .EP measures the relative 
percentage changes of Q and P (with . PA and Y assumed fixed). 

If .�Q is the change in Q following a change .�P in . P, the relative percentage 
change of Q to that of P is 

. 

�Q
Q

× 100
�P
P

× 100
= P

Q

�Q

�P
.

As .�P approaches . 0, then .
�Q

�P
approaches .

∂Q

∂P
; so the relative percentage change 

approaches .
P

Q
. 
∂Q

∂P
.

This is therefore approximately the percentage change in Q resulting from a one 

percent increase in . P. Since .
∂Q

∂P
will, in practice, be negative (demand normally 

decreases with increases in price), then in order to have a positive number for the
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own price elasticity of demand, we define: 

. EP = −P

Q

∂Q

∂P
.

Therefore: 

The elasticity E. P is approximately the percentage change in the demand Q 
resulting from a 1% decrease in P . 

The elasticity .EP measures the sensitivity of the good to its own price. 
Similarly, we can define the cross-price elasticity of demand .EPA

by 

. EPA
= PA

Q
.

∂Q

∂PA

.

The elasticity .EPA
is approximately the percentage change in the demand Q 

for the good following a 1% increase in the price . PA of the alternative good. 

The elasticity .EPA
measures the sensitivity of the good to the price of the 

alternative good (all else fixed). 
Finally, the income elasticity of demand .EY is defined by 

. EY = Y

Q
.
∂Q

∂Y
.

The elasticity .EY is approximately the percentage change in the demand Q 
following a 1% increase in the income Y of consumers. 

The elasticity .EY measures the sensitivity of demand for the good to changes in 
the income of consumers (assuming .P,PA are fixed). 

If Q increases as .PA increases, the alternative good is substitutable (e.g., 

bananas and apples). Equivalently, .
∂Q

∂PA

> 0 or .EPA
> 0. (Think of partial 

derivatives as rates of change.)
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If Q decreases as .PA increases (equivalently .
∂Q

∂PA

< 0 or .EPA
< 0), the 

alternative good is complementary. 

If .
∂Q

∂PA

= 0, the goods are unrelated (essentially Q is constant relative to . PA).

For example, computers and printers are complementary. This is because con-
sumers who buy one will also buy the other. Therefore, the price of the pair, 
as a whole, becomes more expensive. It is reasonable to consider cars and 
pharmaceuticals as unrelated goods. 

If Q increases when Y increases (equivalently .
∂Q

∂Y
> 0 or .EY > 0), the good is 

superior (to the alternative good). 

If Q decreases when Y increases, the good is inferior. (Equivalently, . 
∂Q

∂Y
< 0

or .EY < 0.) 
In the two problems below, the alternative good is substitutable but the good is 

superior to the alternative good. 

Problem 8.12 Given the demand function .Q = 220 − 4P + 2PA + Y

50
, find the 

own price, cross-price, and income elasticities of demand. Evaluate these elasticities 
when .P = 5, PA = 6, Y = 1900. What happens to demand when: 

1. P decreases by . 0.25%
2. . PA increases by . 2%
3. Y increases by .10%? 

Solution 8.12 The first order partial derivatives of Q are 

. 
∂Q

∂P
= −4,

∂Q

∂PA

= 2,
∂Q

∂Y
= 1

50
.

Therefore, the elasticities of demand are given by 

. EP = 4P

Q
, EPA

= 2PA

Q
, EY = Y

50Q
.

Consider the case .P = 5, .PA = 6, .Y = 1900. Then .Q = 250 and . EP = 0.08,

.EPA
= 0.048, and . EY = 0.152.

1. If price P drops by 0.25%, then demand Q rises by 

.EP × 0.25% = 0.08 × 0.25% = 0.02%.
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2. If . PA increases by 8%, then Q rises by 

. EPA
× 8 = 0.048 × 8 = 0.384%.

3. If Y increases by 10%, then Q increases by 

. EY × 10 = 1.52%

(assuming the other variables, in this case P , .PA, are fixed—similarly for the 
previous two cases). 

Problem 8.13 For the demand function .Q = 100−4P 2+3PA+0.04Y 1/2, find the 
own price, cross-price and income elasticities of demand and evaluate them when 
.P = 3, .PA = 1, and .Y = 2500. What happens to demand when: 

1. P falls or rises by . 3%
2. . PA rises by . 2%
3. Y rises by . 10%.

Solution 8.13 We have 

. 
∂Q

∂P
= −8P,

∂Q

∂PA

= 3,
∂Q

∂Y
= 0.02Y−1/2

and therefore 

. EP = 8P 2

Q
, EPA

= 3PA

Q
, EY = 0.02Y 1/2

Q
.

When .P = 3, .PA = 1, .Y = 2500, then .Q = 69. Therefore 

. EP = 24

23
, EPA

= 1

23
, EY = 1

69
.

1. If P falls or rises by 3%, then Q rises or falls by about .3 × 24

23
= 3.130 (correct 

to 3 decimal places). 

2. If . PA rises by 2%, then Q rises by about (in fact exactly) .
2

23
= 0.087 (correct to 

3 decimal places). 

3. If Y rises by 10%, then Q rises by about .
10

69
= 0.145 (correct to 3 decimal 

places). 

Note that in, for example, (1), the other variables, in this case .PA and . Y, have 
not changed and are at their initial values. Also note that the percentage change
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in Q in (2) is actually (not approximately) .
2

23
%. The other two cases are good 

approximations. For instance, the reader can easily verify that in (1) and (3) the 
actual percentage changes in Q are, respectively, 3.1774% and 0.1415% (correct to 
4 decimal places). 

8.7.3 Utility 

Utility attempts to model a consumer’s satisfaction or benefit when buying various 
combinations of quantities of two goods .GX and .GY . A utility function . U(x, y)

measures a consumer’s satisfaction if x units of .GX and y of .GY are consumed. 
Consider the utility function: 

. U(x, y) = 3x1/2y1/3.

We have 

. U(4, 8) = 3 × 2 × 2 = 12

U(9, 3) = 3 × 3 × 31/3
≈ 12.9803

U(8, 4) = 3 × 81/2 × 41/3
≈ 13.4695

The consumer is more satisfied buying 8 units of .GX and 4 of .GY than buying 9 of 
. GX and 3 of .GY ; or 4 of .GX and 8 of . GY .

The marginal utility of good .GX is .
∂U

∂x
(or .Ux). It is the rate of change of U 

relative to x (y fixed). The marginal utility .
∂U

∂x
is approximately the change in U 

when x is increased by 1 unit and y is constant. It is a measure of the additional 
utility that results due to the consumer buying one more unit of the good . GX. 

Similarly, we may define the marginal utility .
∂U

∂y
of good . GY .

The SIF gives the approximate change .�U in U if x and y both change, by 
amounts .�x, .�y, respectively, as 

. �U = ∂U

∂x
�x + ∂U

∂y
�y.

Suppose we wish to keep the utility value U at some constant value, say k. Then 
.x, y satisfy the equation 

.U(x, y) = k.
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This defines y implicitly as a function of . x. Then by using implicit differentiation, 

we can compute the derivative .
dy

dx
, the rate of change of y relative to . x. Specifically 

. 
dy

dx
= −∂U

∂x
/

∂U

∂y

if .U(x, y) = k, where k is any constant. (Observe that . dy
dx

does not depend on the 
value of . k.) 

The marginal rate of commodity substitution (MRCS) is defined by 

. MRCS = −dy

dx
= ∂U

∂x
/

∂U

∂y
.

The minus sign is introduced to ensure that, in general, MRCS is positive. 
Therefore 

. MRCS = Marginal utility of x

Marginal utility of y

Since .MRCS = −dy

dx
, where .U(x, y) = k, where k is some constant, it follows 

that, approximately 

MRCS is the change in y that maintains the 
value of .U(x, y) following a unit decrease in x. 

The MRCS reflects how much a consumer is willing to give up of good .GX in 
exchange for more of .GY and be as satisfied as before. 

Problem 8.14 For the utility function 

. U(x, y) = 3x1/2y1/3

find the marginal utilities and a simplified expression for MRCS in terms of x and 
. y. Evaluate U and MRCS when .x = 100 and .y = 27. Hence estimate the increase 
in y required to maintain the current level of utility when x decreases by .1.5 units.
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Solution 8.14 The marginal utilities are 

. 
∂U

∂x
= 3 × 1

2
x−1/2y1/3 = (1.5)x−1/2y1/3

and 

. 
∂U

∂y
= 3x1/2 × 1

3
y−2/3 = x1/2y−2/3.

Therefore, 

. MRCS = (1.5)x−1/2y1/3

x1/2y−2/3

= (1.5)x−1y

using the quotient rule for indices (1.12). 
When for example .x = 100 and .y = 27, then . U = U(100, 27) = 3×10×3 = 90

and . MRCS = 1.5 × 100−1 × 27 = 0.405.

If x decreases by 1.5 (so the ‘new’ x is 98.5), then, to maintain the value of U at 
90, y must change approximately by .1.5 ×MRCS = 1.5 × 0.405 = 0.6075. So the 
‘new’ .y = 27.6075 to maintain . U = 90.

The reader is left to check how accurate this is by computing .U(98.5, 27.6075), 
which equals 90.0558 (correct to 4 decimal places). 

The law of diminishing marginal utility states that eventually the marginal 
utility of a good .GX decreases as x increases. This means that for .GX, for instance, 

eventually .
∂2U

∂x2 < 0, as x increases (since .
∂2U

∂x2 is the rate of change of .
∂U

∂x
relative 

to x). 

In the above problem, for the good .GX we have: .
∂U

∂x
= (1.5)x−1/2y1/3 and so 

. 
∂2U

∂x2 = (1.5) × (− 1
2 )x−3/2y1/3 = −(0.75)x−3/2y1/3

which is negative for all positive x and y. 

8.7.4 Production 

In an economic model for production, the output .Q(K,L) is considered a function 
only of capital K (buildings, tools, machinery, etc.) and labour . L (paid work for the 
production process) costs. The function Q is known as the production function. The 
mathematical analysis of Q is similar to that for utility.
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The marginal product of capital .MPK is defined as .
∂Q

∂K
, while the marginal 

product of labour .MPL is defined as .
∂Q

∂L
. Thus .MPK may be regarded as the 

rate of change of output relative to capital, assuming labour costs remain constant. 
Approximately, .MPK is the change of output Q if K increases by 1 unit and L is 
fixed. (The bigger K is relative to one unit of capital, the better the approximation.) 
Similarly for . MPL.

Suppose output Q is required to remain fixed at a constant level . c. Then the 
equation .Q(K,L) = c defines K as an implicit function of . L. As in the analysis of 
utility, using implicit differentiation we have 

. 
dK

dL
= −∂Q

∂L
/

∂Q

∂K
= − MPL

MPK

.

This gives the rate of change of K relative to . L. That is, if L changes by a small 
amount . �L, the corresponding change in K is 

. �K ≈

dK

dL
× �L.

In practice for the type of function Q used to model productivity, a decrease in 
labour ( .�L < 0) requires an increase in capital . ( .�K > 0) to maintain the value 

of Q at a constant level. Therefore .
dK

dL
is normally negative. The marginal rate 

of technical substitution (MRT S) is defined as .−dK

dL
, so that it is, in general, 

positive. 
To sum up 

The marginal rate of technical substitution, 

. MRT S = −dK

dL
= ∂Q

∂L
/

∂Q

∂K
= MPL / MPK,

is the approximate change in K needed to 
maintain the value of Q if L decreases by one unit. 

Problem 8.15 Given the production function .Q(K,L) = K2+2K+3L2, evaluate 
.MPK and .MPL for .K = 3, .L = 1.5. Hence, 

1. Write down the value of . MRT S;
2. Estimate the increase in capital needed to maintain the current level of output 

given a .0.08 of a unit decrease (or increase) in labour.
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Solution 8.15 

1. We have 

. MPL = ∂Q

∂L
= 6L,

MPK = ∂Q

∂K
= 2K + 2,

MRT S = MPL

MPK

= 6L

2K + 2
= 3L

K + 1
.

When .K = 3 and .L = 1.5, then .Q(3, 1.5) = 9 + 6 + 3 × 2.25 = 21.75 and 
.MPL = 9, .MPK = 8, .MRT S = 9/8. 

2. If L is decreased (increased) by 0.08 units, then, to maintain value of Q at 21.75, 
K must increase (decrease) by .0.08×MRT S = 0.09, approximately. The reader 
is left to evaluate the values .Q(3.09, 1.42) and .Q(2.92, 1.58) to see how close 
they are to . 21.75.

(Note that if L increases by .0.08 units and the value of K stays at 3, then Q 
would increase in value by approximately .MPL × �L = 9 × 0.08 = 0.72. The 
decrease of .0.09 for K computed using the MRT S is approximately that needed 
to decrease Q by the same amount .0.72. That is, . MPK × �K = 8 × (−0.09) =
−0.72 = �Q.) 

Problem 8.16 Given the production function .Q(K,L) = 5K1/3L1/2, evaluate . Q,

.MPK, .MPL, and MRT S for the case .K = 8, .L = 9. Estimate the value of K that 
will maintain the current output if L is decreased by 1 unit. 

Solution 8.16 We have 

. MPL = ∂Q

∂L
= 5K1/3 × 1

2
L−1/2 = 5

2
K1/3L−1/2

MPK = ∂Q

∂K
= 5 × 1

3
K−2/3L1/2 = 5

3
K−2/3L1/2

MRT S = MPL / MPK = 3

2
KL−1

When .K = 8 and .L = 9, then .Q = 30, .MPL = 5/3, .MPK = 5/4, and . MRT S =
MPL / MPK = 4/3.

If L is decreased by 1 unit so that .L = 8, then to maintain .Q = 30, the value 
of K must increase by .1 × MRT S = 4/3 units. That is, .K = 9 1

3 , approximately. 
(Of course, we could calculate the exact K from the equation . 30 = 5K1/3L1/2

with .L = 8. That is .30 = 5K1/3 × 81/2, so that .K1/3 = 6 ÷ 81/2 and therefore 
.K = 638−3/2 ≈ 9.5459.)
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8.7.5 Graphical Representations 

If .z = f (x, y) is a function of two variables x and . y, then as in the case of functions 
of one variable, we can plot the graph in three dimensions using three axes Ox, Oy, 
Oz at right angles to each other. The result in general is a surface. 

Drawing or visualising such surfaces is not always easy. A simpler approach is to 
consider the plane sections of this surface perpendicular to the Oz axis. To explain 
this, consider a fixed particular value of . z, say . k. That is, .f (x, y) = k. This equation 
defines y implicitly as a function of . x.

We can plot in two dimensions the graph of this function, consisting of all points 
.(x, y) satisfying .f (x, y) = k. As k varies, the curves .f (x, y) = k give a series 
of parallel nested curves as in Fig. 8.1 for a production function. Each curve has an 
equation of the form .Q = k, where k is constant (for that curve). 

In the case of utility functions, these curves are called indifference curves 
because all combinations of x and y on a particular curve .U = k result in the same 
value for . U, namely . k. If for example .U(x, y) = 2x1/2y1/3, then the points (9,8), 
(36,1) lie on the same indifference curve .U = 12. So the consumer is indifferent 
whether he or she were to buy 9 units of good .Gx and 8 of good . Gy , or 36 units 
of good .Gx and 1 unit of good . Gy . That is, it is assumed the consumer is satisfied 
with either combination of goods, or indeed with any combination on the same 
indifference curve. 

For a given indifference curve with equation .U = k, implicit differentiation, as 
we saw earlier, gives .dy/dx = −Ux/Uy = −MRCS. This gives the slope of the 
tangent at any point on the indifference curve. Note that the MRCS is minus .dy/dx. 
The minus is to make MRCS positive, since normally the tangent slope is negative 
for utility functions. 

For a production function .Q(K,L), the curves .Q = k for different values of k 
are called isoquants. At a point .(x, y) of an isoquant .Q = k, the tangent slope gives 
.−MRT S for those value of x and . y. In Figs. 8.1 and 8.2, we show isoquants for the 
production functions of Problems 8.15 and 8.16, respectively. 

Graphical representations are discussed further in Sect. 9.4. 

Self-Assessment Questions 

1. Find all first and second order partial derivatives of the function 

. f (x, y) = x3 + +xey

2. Let .z = xy2 + 3x2y − 2. Evaluate z when .x = 2, .y = 1. Estimate the 
percentage change in z if x is decreased by 5% and y increased by 3%. 

3. Find the total derivative .
dz

dt
when .z = x2y3, .x = t3 + 1 , .y = 5t and evaluate 

it when .t = 1.
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L 

K 

Fig. 8.1 Isoquants of the production function .Q = K2 + 2K + 3L2 of Problem 8.15 

4. For the demand function 

. Q = 200 − 8P + 5PA + 0.2Y.

find the price, cross-price, and income elasticities of demand when . P = 12,

.PA = 10, and . Y = 500.

What is the percentage increase in demand if 
(a) income rises by 5%; 
(b) the price P drops by 10%? 

5. Determine the marginal utilities and MRCS of the utility function . U =
2x1/3y3/4.

(a) Evaluate: . U, the marginal utilities and MRCS, when .x = 27, . y = 16.

(b) Estimate U when .x = 27.2 and .y = 16.1 using the small increments 
formula. 

(c) Estimate the value of y that would maintain the value of U computed in 
(a) if x is decreased to 25. Evaluate U for this value of y and .x = 25 to 
check your answer.
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L 

K 

Fig. 8.2 Isoquants of the production function .Q = 5K1/3L1/2 of Example 8.16 

Exercises 

1. Find all first and second order partial derivatives of the functions 
(a) . 2x + y

(b) . 
x

y

(c) . 3x2 + y

(d) . 
√

xy

(e) . 3x2 + y2

(f) . xy2

(g) . xey

(h) . ex+y

(i) . ex + ey

(j) . y ln(2x)

(k) .ln(5xy). 
2. Let . f (x, y) = 10x2/5y1/2.

(a) Find . fx and . fy.

(b) Evaluate .f (32, 9), .fx(32, 9), . fy(32, 9).

(c) Estimate the value of . f (32.1, 8.95).

(d) Compute the actual value of .f (32.1, 8.95).
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3. Let . z = x2 − 4xy + 5.

Evaluate z when .x = 1.5, . y = 1.

Estimate the percentage change in z if x is increased by 10% and y decreased 
by 5%. 

4. If .f (x, y) = x2 − 4xy + 3y2 − y + 8, determine x and y if . fx = fy = 0.

5. Given that .3x2 − 2y2 + 4xy + 7y + 2 = 0, use implicit differentiation to find 

. 
dy

dx
.

6. 

(a) Find the total derivative .
dz

dt
when .z = xy2, .y = 3t2, .x = t2 + 3. Evaluate 

.
dz

dt
when . t = 2.

(b) Find .
dz

dx
if .z = x2 + 2xy + 3y + 5 and .y = x2. Evaluate .

dz

dx
when . x = 1.

7. Find the price, cross-price, and income elasticities of demand when . P = 10,

.PA = 15, and .Y = 2000, given the demand function is 

. Q = 80 − 3P + 2PA + (0.2)Y.

What is the percentage increase in demand if 
(a) income rises by 10%; 
(b) the price P drops by 20%? 

8. Determine (as functions of .x, y) the marginal utilities and MRCS of the utility 
function . U = 5x1/4y2/3.

(a) Evaluate: . U, the marginal utilities and MRCS, when .x = 16, . y = 8.

(b) Estimate U when .x = 16.1 and .y = 7.5 using the small increments 
formula. 

(c) Estimate the value of y that would maintain the value of U computed in 
(a) if x is decreased to 14. Evaluate U for this value of y and .x = 14 to 
check your answer.



9Optimization

� Key Learning Objectives
On completion of this chapter students should be able to:

• Find the stationary points of a function of two variables and determine
their nature.

• Find the combination of labour costs and capital invested that will
minimize a firm’s total costs.

• Optimize a function of two variables subject to a given constraint.
• Optimize a firm’s output subject to a constraint on total costs and estimate

the maximum output if there is a small change in the total costs.

9.1 Introduction 

Optimization is a concept of prime importance in economic analysis. Companies 
endeavour to maximize profit and minimize costs. Governments hope to minimize 
unemployment and inflation while maximizing tax revenue. Consumers are assumed 
to want to obtain maximum utility (satisfaction or benefit) from their consumption 
of particular products. 

In simplified models, the optimization is unconstrained. This can be of theoretical 
interest, but, in practice, optimization is constrained. For instance, a firm tries to 
maximize profit subject to constraints on costs. A government may try to minimize 
interest rates while trying to keep inflation at a certain level. A pilot may fly an 
aircraft so as to cover the maximum possible air miles when the total fuel cost is 
stipulated. Consumers try to maximize utility subject to a given budget. 

In this chapter, we will describe techniques of optimization when there are 
no constraints specified (unconstrained optimization) and subject to a constraint 
(constrained optimization). 
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9.2 Unconstrained Optimization 

The optimization of functions of one variable was discussed in Chap. 7. Optimiza-
tion there meant finding the stationary (or critical or turning) points of the function 
and then testing to see whether they were maxima or minima. Maxima (or minima) 
are points where the function changes from being increasing to decreasing (or vice 
versa). 

For functions of two or more variables, the tests are more complicated, but the 
case of two variables is the easiest to handle. It is mostly with this case that we shall 
be concerned in this chapter. 

A function .f (x, y) of two variables .x, y is said to have a stationary (or critical) 
point where .x = x0 and .y = y0 if the first order partial derivatives of f are both 
zero for these values. That is 

. fx(x0, y0) = fy(x0, y0) = 0.

More generally, a function of two or more variables has a stationary point where all 
its first order partial derivatives are zero. 

Problem 9.1 Find the stationary point(s) of the following function: 

. f (x, y) = 3x2 + y2 + 4x − 4y + 7.

Solution 9.1 The first order partial derivatives of f are 

. fx = 6x + 4, fy = 2y − 4.

The stationary points are where .fx = fy = 0. That is, .x = − 4
6 = − 2

3 and .y = 2. 
There is therefore only one stationary point: it is given by .x = − 2

3 , y = 2. 

The use of the word ‘point’ as in ‘stationary point’ suggests that this concept 
can be viewed geometrically. We can think of the function f as represented by its 
three-dimensional graph consisting of all the points .(x, y, z), where .z = f (x, y). 
The graph is, in general, a surface at each point of which there is a tangent plane, 
which is ‘horizontal’ at a stationary point. That is, it is at right angles to the z-axis 
and is therefore parallel to the plane containing the x and y axes. 

Our main interest is in the local maximum and minimum points. These are 
collectively known as extrema and occur where the geometric surface representing 
f is, respectively, the top or the bottom of a bowl-like section of the surface (see 
Figs. 9.1 and 9.2, respectively). At such points, all first order partial derivatives 
(.fx, fy) are necessarily zero (This is an extension of the case of a function of one 
variable where the requirement is that its first order derivative is zero).
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Fig. 9.1 The graph of the function .z = 1 − x2 − y2. The function has a local maximum at the 
point .x = y = 0, . z = 1
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Fig. 9.2 The graph of the function .z = x2 + y2. The function has a local minimum at the origin 
.x = y = z = 0
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Fig. 9.3 The graph of the function .z = y2 − x2. The function has a saddle point at the origin 
. x = y = z = 0

Thus the extrema of f are stationary points. However, not all stationary points 
are extrema (i.e., maximum or minimum points). Any stationary point that is not an 
extremum is called a saddle point (see Fig. 9.3). 

To test whether a stationary point is a maximum or a minimum, we need the idea 
of the discriminant of a function. The discriminant D of a function .f (x, y) of two 
variables .x, y is the function: 

.D = fxxfyy − (fxy)
2.
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For example, consider the function .f (x, y) = x3 + 5xy + y3 + 4. Then 

. fx = 3x2 + 5y, fy = 5x + 3y2, fxx = 6x, fyy = 6y and fxy = 5.

Therefore, the discriminant of f is the function 

. (6x)(6y) − 52 = 36xy − 25.

To find the stationary points of a function .f (x, y) and to determine their nature 
(whether a maximum, minimum or a saddle point), follow these steps: 

1. Find the stationary points of f . That is, find the pairs of values .x0, y0 for .x, y for 
which simultaneously .fx(x0, y0) = 0 and .fy(x0, y0) = 0. 

The remaining steps are to determine the nature of each stationary point. 
2. Determine all second order partial derivatives .fxx, fyy, fxy of f . 
3. Now consider a particular stationary point: say .x = x0, y = y0. 

Evaluate the second order partial derivatives for .x = x0, y = y0 and then 
evaluate the discriminant .D = fxxfyy − (fxy)

2. 
4. 

(a) If .D < 0, the stationary point is a saddle point. 
(b) If .D = 0, the test is inconclusive. 
(c) If .D > 0, the stationary point is an extremum of f . It is a  

. maximum point if fxx < 0 and fyy < 0

and a 

. minimum point if fxx > 0 and fyy > 0.

(If the discriminant D is zero, the nature of the stationary point can be determined 
by more advanced techniques, but this will not concern us here.) 

If .fxx and .fyy have different signs (one positive, the other negative), then it is 
easy to see that .D < 0 and the stationary point must be a saddle point. It follows 
that when .D > 0, the partial derivatives .fxx, fyy must have the same sign. 

Problem 9.2 Determine and classify the stationary point(s) of the function 

. f (x, y) = x2 + 3y2 − 2xy + 1.

Solution 9.2 Here .fx = 2x −2y, fy = 6y −2x, fxx = 2, fyy = 6, and .fxy = −2. 
The stationary points occur where .fx = fy = 0. That is, when .2x − 2y = 0 and 

.6y − 2x = 0. The first equation gives .x = y while the second gives .3y = x. Since 
both equations hold, then .3y = x = y and therefore .3y = y. This means .y = 0 and 
so .x = 3y = 0. Therefore, there is only one stationary point: namely .x = 0, y = 0.
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To test whether this is a maximum or a minimum point for f , note that the 
discriminant .D = fxxfyy − (fxy)

2 = 2×6− (−2)2 = 12−4 = 8 is positive. Since 
.fxx and .fyy are both positive, the stationary point is a minimum. The value of f is 
.f (0, 0) = 1 at this point. 

Problem 9.3 Determine and classify the stationary point(s) of the function 

. g(x, y) = x3 + 2y2 − 3x − 8y.

Solution 9.3 We have 

. gx = 3x2 − 3, gy = 4y − 8,

. gxx = 6x, gyy = 4, gxy = 0.

To find the stationary points, solve the simultaneous equations: 

. gx = 0, gy = 0.

That is, solve .3x2 − 3 = 0 and .4y − 8 = 0. Equivalently, .x2 = 1 and .y = 2. 
Therefore, g has two stationary points: 

1. .x = 1, y = 2; 
2. .x = −1, y = 2. 

In case (1), .gxx = 6, gyy = 4, gxy = 0, so that the discriminant is 

. 6 × 4 − 0 = 24 > 0.

Since .gxx > 0 and .gyy > 0, this stationary point is a minimum. Then . g(1, 2) = −10
is a minimum value for g. 

In case (2), .gxx = −6, gyy = 4. Since .gxx, gyy have different signs, the 
stationary point is a saddle point. 

Problem 9.4 X and Y represent the outputs of two goods. The total cost function 
is 

.T C = 2 + 3X2 + 2Y 2 − (0.5)XY. (9.1) 

The market prices for X and Y are 10 and 15 per unit of good, respectively. 
Determine the outputs that give the maximum profit.
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Solution 9.4 The total revenue is .T R = 10X +15Y and the profit . π is this amount 
less T C. Therefore 

.π = 10X + 15Y − 2 − 3X2 − 2Y 2 + (0.5)XY, (9.2) 

which is a function of X and Y . 
Now, .πX = 10−6X+(0.5)Y, πY = 15−4Y +(0.5)X, πXX = −6, πYY = −4, 

and .πXY = 0.5. 
Stationary points are determined by solving .πX = 0, πY = 0; that is, the 

simultaneous equations 

.10 − 6X + (0.5)Y = 0, . (9.3) 

15 + (0.5)X − 4Y = 0. (9.4) 

Multiplying Eq. (9.3) by 8 gives  

. 80 − 48X + 4Y = 0

and adding this to Eq. (9.4) gives  

. 95 − (47.5)X = 0.

Therefore, .X = 2, and then substituting into Eq. (9.4) gives . Y = 4. So . X = 2, Y =
4 is the only stationary point of . π . Since the discriminant is . (−6)×(−4)−(0.5)2 > 0
and .πXX, πYY are both negative, then . π has a maximum when .X = 2, Y = 4. Then 
the maximum profit 38 is obtained by substituting .X = 2, Y = 4 into the expression 
(9.2) for . π . 

Problem 9.5 A company wins a contract to produce rectangular open top boxes. 
The material to be used is priced per square metre. The contract stipulates that the 
boxes must all have volume 0.5 cubic metres. What dimensions should each box 
have so that the cost of the material used is a minimum? 

Solution 9.5 Suppose the base of the box is an x by y metres rectangle and its 
height is z. Then the volume of the box is .xyz = 0.5. The surface area of the base 
of the box is xy, and the total surface area of the 4 sides is .2xz + 2yz. So the total 
area A of material used to make one box is 

. A = xy + 2xz + 2yz.

This appears to be a function of three variables, but because .xyz = 0.5, we can 
express A as a function of only x and y, as .xz = (0.5)

y
and .yz = (0.5)

x
. Therefore 

.A = xy + 2
(0.5)

y
+ 2

(0.5)

x
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or 

. A = xy + 1

y
+ 1

x
.

Next, find the first and second order partial derivatives of A: 

. 
∂A

∂x
= y − x−2,

∂A

∂y
= x − y−2,

. 
∂2A

∂x2 = 2x−3,
∂2A

∂y2 = 2y−3,
∂2A

∂x∂y
= 1.

For a stationary point of A, we require . ∂A
∂x

= ∂A
∂y

= 0. That is, .y = x−2 and 

.x = y−2. This means .y = x−2 = (y−2)−2 = y(−2)×(−2) = y4. Therefore, either 

.y = 0 or .1 = y3. Clearly .y �= 0 (otherwise we would have a flat box). So .y3 = 1, 
which means .y = 1 and also .x = y−2 = 1. Since .xyz = 0.5, then .z = 0.5 in this 
case. 

Now check whether this gives a minimum for A. At .x = 1, y = 1, 

. 
∂2A

∂x2 = 2 > 0 and
∂2A

∂y2 = 2 > 0,

while the discriminant of A is given by 

. D = 2 × 2 − 12 = 3 > 0.

So we have a minimum. Therefore .x = y = 1, z = 0.5 are the dimensions of a box 
that is cheapest to produce with respect to the material used. 

Notes 
1. The test we described to determine the nature of a stationary point is for functions 

of two variables. In the case of a function of more than two variables, the situation 
is more complicated. However in this case, it is still true that any maximum or 
minimum of the function will occur at a stationary point. 

2. It is important to note that we have used the terms maximum or minimum for a 
function rather loosely. Strictly, we should say a local (or relative) maximum or 
minimum: for they may not give the overall maximum or minimum of a function. 
Within the locality of a maximum point .x = x0, .y = y0 (that is, for any x and 
y sufficiently close to these values), the value .f (x, y) of f attains a maximum 
when .x = x0 and .y = y0. Similarly for a minimum point. 

3. The problem stated in Problem 9.5 above was initially a constrained optimization 
problem in three variables. But, upon substitution for z, it became an uncon-
strained optimization problem in the remaining two variables, x and y.



9.3 Constrained Optimization 207

9.3 Constrained Optimization 

Optimization of a quantity in economic models, or indeed in many practical 
situations, is rarely unconstrained. Usually there are constraints involving some or 
all of the variables. For instance, in considering ways to maximize, say, output, there 
will be constraints due to costs or of the available labour. 

In this section, we shall look at two methods for optimizing subject to constraints. 
We will restrict the discussion to functions of two variables, though in both cases 
there is a generalization to functions of more than two variables. 

The general problem is this. We have a function .f (x, y) and want to find its 
maximum or minimum values subject to a constraint. That is, we want to optimize 
.f (x, y) subject to a constraint expressed in the form of an equation .g(x, y) = k, 
where k is a constant and g is a function of x and y. We call f the objective 
function, g the constraint function, k the constraint constant, and . g(x, y) = k

the constraint equation (or simply the constraint). 
There are various methods used for constrained optimization. We will consider 

two important techniques: the substitution method and the Lagrange Multiplier 
method. 

9.3.1 Substitution Method 

If the constraint equation allows one of the variables, say x, to be expressed 
explicitly as a function of the other variables, then substitute for x in the objective 
function. The optimization with constraint problem now reduces to unconstrained 
optimization of a function of the other variables. Consider the following simple 
illustrative examples. 

Problem 9.6 A developer wants to protect as much of his land as possible and has 
only one kilometre of fencing available. What is the largest rectangular area that can 
be enclosed? 

Solution 9.6 Here the objective function is 

. A = xy,

where x and y are the length and breadth of the paddock in kilometres. The 
constraint equation is 

. 2x + 2y = 1,

since the perimeter of the fence is 1 km. Therefore .x + y = 0.5 and so .x = 0.5 − y, 
giving x explicitly as a function of y. Substitute for x in A to obtain 

.A = (0.5 − y)y = 0.5y − y2.
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So A is now a function of one variable, namely y. Then 

. 
dA

dy
= 0.5 − 2y and

d2A

dy2 = −2.

Since .dA/dy = 0 when .y = 0.25 and since .d2A/dy2 < 0, then .y = 0.25 gives 
a maximum. In this case, .x = 0.5 − y = 0.5 − 0.25 = 0.25, and . A = (0.25)2 =
0.0625 square kilometres (.= 62,500 square metres) is the maximum rectangular 
area that can be enclosed. 

Problem 9.7 A firm’s production function is .Q = 8K
1
4 L

1
2 , where K and L are 

respectively, capital and labour costs. Unit capital and labour costs are 2 and 1, 
respectively. What is the minimum total of input costs (that is, costs due to capital 
and labour) if output Q is to be 240 units? 

Solution 9.7 Denote the total input costs T C  by C (fixed costs are not important 
here because they are fixed). Then .C = 2 × K + 1 × L = 2K + L. This is,  
the objective function. So C is a function of K and L. The constraint equation is 

.Q = 240. That is, .8K
1
4 L

1
2 = 240 or .K

1
4 L

1
2 = 30. Therefore 

. L
1
2 = 30

K
1
4

= 30K− 1
4 .

Then 

. L = (L
1
2 )2 = 302(K− 1

4 )2 = 900K− 1
2

(using the rule (1.13)). Therefore 

. C = 2K + 900K− 1
2 .

This expresses C as a function of the single variable K . Its derivatives are 

. 
dC

dK
= 2 + 900

(
−1

2

)
K− 1

2 −1 = 2 − 450K− 3
2 ,

d2C

dK2 = −450

(
−3

2

)
K− 3

2 −1 = 675K− 5
2 .

We have .dC/dK = 0 when .2 = 450K− 3
2 = 450/K

3
2 . Therefore, . K

3
2 = 450/2 =

225 and so .(K
3
2 )

2
3 = 225

2
3 . That is, .K1 = K = 225

2
3 , which is approximately 37. 

Since .d2C/dK2 is positive in this case, then .K = 37 gives a minimum for C. 

When .K = 37, .L = 900K− 1
2 , which is approximately 148, and .C = 2K + L is 

approximately 222.
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In the previous example, we optimized total input costs while constraining 
output. The next problem optimizes output while restraining input costs. 

Problem 9.8 A firm’s unit capital and labour costs are respectively 2 and 4. The 
production function is .Q = 6KL + 2L2. 

1. If the total input costs are 200 units, what is the maximum possible output Q? 
2. If the output is fixed at 1200, what are the minimum input costs? 

Solution 9.8 

1. The objective function is 

. Q = 6KL + 2L2

and the constraint is 

. 2K + 4L = 200

which simplifies to 

. K + 2L = 100.

Therefore, .K = 100 − 2L and we can express Q as a function of the single 
variable L by substituting for K in the formula for Q. Therefore, 

. Q = 6(100 − 2L)L + 2L2 = 600L − 12L2 + 2L2 = 600L − 10L2.

Then .dQ/dL = 600−20L and .d2Q/dL2 = −20. Since .dQ/dL = 0 when . L =
30 and since the second derivative is negative, then .L = 30 gives a maximum for 
Q. In this case, .K = 100 − 2L = 100 − 60 = 40. Then .Q = 9000 is the 
maximum output when total input costs are 200 units. 

2. The objective function is now the total input costs 

. C = 2K + 4L,

while the constraint is 

. Q = 6KL + 2L2 = 1200,

which implies .6KL = 1200 − 2L2 and so 

.K = 1200 − 2L2

6L
= 1200

6L
− 2L2

6L
.
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Therefore, 

. K = 200L−1 − L

3

and so we can express .C = 2K + 4L as a function of the single variable L thus: 

. C = 400L−1 − 2L

3
+ 4L = 400L−1 + 10L

3
.

Then 

. 
dC

dL
= −400L−2 + 10

3

and 

. 
d2C

dL2
= −400 × (−2L−3) = 800L−3.

The stationary points of C (as a function of L) are given by solving 

. 
dC

dL
= 0.

Equivalently, 

. 
10

3
= 400L−2 = 400

L2
.

Therefore 

. L2 = 3 × 400

10
= 120

which means .L = ±√
120. Ignore the negative labour costs (this would mean 

the labour force pays to work!) then .L = √
120 = 10.95 (to 2 decimal places) 

gives a minimum for C since the second derivative is positive. In this case, . K =
200L−1 − L

3 = 14.61 and .C = 2K + 4L = 73.03 are the minimum total input 
costs when production is constant at 1200 units.
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9.3.2 Lagrange Multipliers 

The method of Lagrange multipliers for constrained optimization can be applied 
generally; unlike the substitution method. The latter requires that one variable can 
be expressed explicitly in terms of the others, using the constraint equation. 

For simplicity, we consider functions of only two variables, although the 
Lagrange multiplier method easily extends to more general situations. 

As before, we wish to optimize the objective function .f (x, y), subject to a 
constraint equation .k = g(x, y). Here  k is the constraint constant (constant relative 
to x and y), known also as the constraint limitation. 

The Lagrangian multiplier method introduces a new variable . λ and introduces a 
new function F , known as the Lagrangian, defined by: 

. F(x, y, λ) = f (x, y) + λ(k − g(x, y)).

The parameter . λ is known as the Lagrange multiplier. 
It may appear that by turning a two variable problem into a three variable 

one makes the problem harder. However, the method transforms a problem of 
constrained optimization to one of unconstrained optimization. We state this as 
follows: 

The pairs of values of .x, y that optimize the function .f (x, y), subject to the 
constraint .k = g(x, y), occur where the Lagrangian function 

. F = f (x, y) + λ(k − g(x, y))

in the three variables x, y, . λ has its stationary points. 

In other words, suppose f has an optimum value when, say, .x = x0, y = y0. 
Then the function F has a stationary point for .x = x0, y = y0 and some value 
. λ0 of . λ. So, by finding the stationary points of F , we obtain all the possible pairs 
.x, y that optimize f subject to the given constraint. However, the methods covered 
in this book do not allow us to determine which of these pairs give maxima or 
minima. Unlike the substitution method, for the Lagrange multiplier method we 
rely on intuition or the particular nature of the problem to say whether a stationary 
point gives a maximum or minimum. 

Note The Lagrange multiplier . λ multiplies the expression .k − g(x, y). This  
expression is clearly 0 when the constraint equation holds, and then . F = f . This  
gives an intuitive idea why it is that, when the constraint holds, the optimum values 
(maxima or minima) of f are those of F .
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To sum up, here is how to apply the Lagrange multiplier method to optimize a 
function .f (x, y) subject to a constraint .k = g(x, y). 

1. Form the Lagrangian . F(x, y, λ) = f (x, y) + λ(k − g(x, y)).

2. Find the three first order partial derivatives . ∂F
∂x

, ∂F
∂y

and . ∂F
∂λ

of F . 
3. Solve the simultaneous equations 

. 
∂F

∂x
= 0,

∂F

∂y
= 0,

∂F

∂λ
= 0.

(The last equation is just .k − g(x, y) = 0, which is the constraint.) 

This determines the stationary points of F and hence the possible maxima or minima 
of f subject to the constraint .k = g(x, y). 

Problem 9.9 A firm produces two goods .G1 and . G2. The output of .G1 is denoted 
by by .Q1 and its price by . P1. Similarly for good . G2. The production functions are 

. P1 = 20 − Q1 + 2Q2

and 

. P2 = 10 + Q1 − Q2.

The total costs are given as 

.T C = 12Q1 + Q1Q2 + 6Q2. (9.5) 

The firm is contracted to produce a total of 20 units of goods of either type. What is 
the maximum profit possible? 

Solution 9.9 Essentially, we are to find the values of .Q1 and .Q2 that maximize 
profit subject to the constraint .Q1 + Q2 = 20. First we need to compute the profit 
.π = T R − T C. This is the objective function. 

Since total revenue .T R = P1Q1 + P2Q2, then 

. T R = (20 − Q1 + 2Q2)Q1 + (10 + Q1 − Q2)Q2.

After simplifying, we get that 

.T R = 20Q1 + 10Q2 + 3Q1Q2 − Q2
1 − Q2

2. (9.6)
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The profit is given by .π = T R − T C. Using Eqs. (9.5) and (9.6) and simplifying 
gives 

.π = 8Q1 + 4Q2 + 2Q1Q2 − Q2
1 − Q2

2. (9.7) 

This is our objective function. The constraint equation is 

. 20 − Q1 − Q2 = 0.

Therefore the Lagrangian is 

. F = 8Q1 + 4Q2 + 2Q1Q2 − Q2
1 − Q2

2 + λ(20 − Q1 − Q2).

For stationary points we need: 

.0 = FQ1 = 8 + 2Q2 − 2Q1 − λ. (9.8) 

0 = FQ2 = 4 + 2Q1 − 2Q2 − λ. (9.9) 

0 = Fλ = 20 − Q1 − Q2. (9.10) 

From (9.8) and (9.9) we have  

. 8 + 2Q2 − 2Q1 = 4 + 2Q1 − 2Q2 = λ.

Therefore .4Q1 − 4Q2 = 4, which simplifies to 

.Q1 − Q2 = 1. (9.11) 

From the constraint Eq. (9.10), we have 

. Q1 + Q2 = 20

which when added to (9.11) gives  

. 2Q1 = 21.

Therefore .Q1 = 10.5, and then from (9.11) we have .Q2 = Q1 − 1 = 9.5. With 
these values of .Q1, Q2 we compute from (9.7) the maximum profit to be 121. 

Problem 9.10 Solve Problem 9.8 using Lagrange multipliers.
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Solution 9.10 1. Here, we are to find the values of K and L that maximize 
production subject to the constraint .2K + 4L = 200. 

. Objective function: Q

Constraint equation: 200 = 2K + 4L

Lagrangian: F = Q + λ(200 − 2K − 4L)

Therefore .F = 6KL + 2L2 + 200λ − 2λK − 4λL and so 

. FK = 6L − 2λ,

FL = 6K + 4L − 4λ,

Fλ = 200 − 2K − 4L.

The stationary points of F occur where all of these three first order partial 
derivatives are zero. That is 

.6L − 2λ = 0 or λ = 3L; . (9.12) 

6K + 4L − 4λ = 0 or 2λ = 3K + 2L; . (9.13) 

200 − 2K − 4L = 0 or 2K + 4L = 200. (9.14) 

Notice that Eq. (9.14) is just the constraint equation. 
Eliminating . λ between (9.12) and (9.13) gives .3K + 2L = 2 × 3L = 6L, 

which implies .3K = 4L. Putting this in (9.14) gives .200 = 2K + 3K = 5K . 
Therefore .K = 40. Since .3K = 4L, then .L = 3

4K = 30. We also have the  
corresponding Lagrange multiplier .λ = 3L = 90, using (9.12). We substitute 
.K = 40, L = 30 into the production function Q in order to obtain the optimal 
value: 

. Q(40, 30) = 6 × 40 × 30 + 2 × 302 = 9000.

This is the maximum production Q subject to the constraint .2K + 4L = 200. 
(It’s obviously not the minimum production since .K = 100, L = 0 satisfy the 
constraint and give zero production.) 

2. Here we are to minimize input costs subject to the constraint 

. 6KL + 2L2 = 1200.

.Objective function: C = 2K + 4L

Constraint equation: 1200 = 6KL + 2L2

Lagrangian: F = 2K + 4L + λ(1200 − 6KL − 2L2)
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To find the stationary points of F , we equate all its first order partial derivatives 
to zero. That is 

.0 = FK = 2 − 6λL, . (9.15) 

0 = FL = 4 − 6Kλ − 4Lλ, . (9.16) 

0 = Fλ = 1200 − 6KL − 2L2. (9.17) 

First we eliminate . λ between Eqs. (9.15) and (9.16). From (9.15) and (9.16) we  
have .λ = 1

3L
and .λ = 2

3K+2L
, respectively. Equating these values of . λ and 

simplifying gives .3K = 4L, whence .K = 4
3L. Substituting for K in (9.17), the 

constraint, gives .1200 = 6KL + 2L2 = 6( 4
3L)L + 2L2 = 10L2. Therefore 

.L2 = 120. Then .L = √
120 and so .L = 10.95, correct to 2 decimal places. 

(We’ve ignored the negative solution .L = −√
120.) Then, since .K = 4

3L, we  
have .K = 14.61 and .C = 2K + 4L = 73.03. We also have from (9.15) that 
.λ = 1

3L
= 0.03. This information about . λ is not needed to optimise C but is 

nevertheless useful to know, as we shall see. 

9.3.3 The Lagrange Multiplier λ: An Interpretation 

The Lagrange multiplier . λ used in constrained optimization appears at first glance 
to have no use as it is eliminated from the equations determining a stationary point 
and does not appear in the optimum value of the objective function or in the values 
of the variables giving the optimum value. However, . λ does have an important and 
useful interpretation. 

Consider the problem of optimizing a function .f (x, y) subject to a constraint 
.k = g(x, y), where k is the constraint constant. (Here ‘constant’ means that k is 
independent of the value of x or y.) The Lagrangian function 

. F = f (x, y) + λ(k − g(x, y))

is a function of .x, y and . λ. 
For given f and g, the value  M of any optimum (maximum or minimum) of f 

depends only on the constraint constant k. So M can be considered as a function of 
k. It can be shown that . dM

dk
= λ; that is, . λ is the rate of change of M relative to k. 

This means that: 

The Lagrange multiplier . λ is approximately the change in an optimum value 
of the objective function resulting from a one unit increase in the constraint 
constant.
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In Example 9.10, if the total input costs were fixed at 201, the maximum 
production would increase approximately by .λ = 90 to 9090. If we were to carry out 
the computation with the new constraint constant of 201, we would find the actual 
new maximum production to be 9090.225, which is close to the approximation. 

If the input costs were fixed at 199, the maximum production would decrease by 
approximately .λ = 90 to 8910. 

For non-unit changes in the constraint constant, the computations are pro rata. 
For instance, if the input costs are fixed at 205, the maximum production would 
increase by about .5 × 90 = 450–9450. (The actual figure is 9455.625.) 

Problem 9.11 A company allocates £600,000 to spend on advertising and research. 
The company estimates that by spending x thousand pounds on advertising and y 
thousand pounds on research, they will sell a total of approximately .30x4/5y1/3 units 
of its product. How much should the company spend on research and advertising in 
order to maximize sales? 

Solution 9.11 We work in units of £1000. Then the objective function is 

. f (x, y) = 30x4/5y1/3

and the constraint equation is 

. x + y = 600 or 600 − x − y = 0.

The problem can be solved by the substitution method, but the Lagrange multiplier 
method is used here: The Lagrangian is 

. F = 30x4/5y1/3 + λ(600 − x − y).

For stationary points: 

.0 = Fx = 24x−1/5y1/3 − λ, . (9.18) 

0 = Fy = 10x4/5y−2/3 − λ, . (9.19) 

0 = Fλ = 600 − x − y. (9.20) 

Equations (9.18) and (9.19) give  

.λ = 24x−1/5y1/3 = 10x4/5y−2/3. (9.21) 

Therefore .x = 2.4y. Substituting in (9.20) gives .600 − 2.4y − y = 0 or . y = 600
3.4 =

176.47 (to 2 decimal places). Then .x = 423.53 and using (9.21) gives .λ = 40.15. 
The maximum sales total is therefore .f (423.53, 176.47) = 21,257.83.
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If in this example we change the advertising and research budget, we can use the 
Lagrange multiplier . λ to estimate the resulting maximum sales total. For instance, 
suppose the budget is increased by 1% to £606,000: an increase of 6 in the constraint 
constant, since we are working in units of £1000. Therefore the maximum sales total 
will increase by about .6λ = 6×40.15 = 240.90. This is an increase of about 1.13% 
on the previous sales maximum. (If you were to work through the problem again, 
with the new budget of £606,000, the actual increase would be 241.08.) 

If now the budget decreases by 1.5% to £591,000, the maximum sales total would 
decrease by approximately .9λ = 9 × 40.15 = 361.35 (because the constraint 
constant decrease by 9). This is about a 1.7% decrease in the maximum sales. (The 
actual decrease in maximum sales is 361.02 to 2 decimal places.) 

Problem 9.12 A consumer’s utility function .U(x, y) is given by .U = 30x2/5y1/3, 
where x is the number of units of good .GX and y the number of units of good . GY . 
Each unit of .GX costs e1 and each of .GY costs e2. If the consumer’s total income 
.Y =e.1100, find the maximum utility .Umax for the consumer. 

Solution 9.12 The objective function is U and the constraint is .x + 2y = 1100. 
The Lagrangian is therefore: 

. F = 30x2/5y1/3 + λ(1100 − x − 2y).

Its stationary points occur where 

.0 = Fx = 30 × 2

5
x2/5−1y1/3 − λ; i.e., λ = 12x−3/5y1/3

. (9.22) 

0 = Fy = 30x2/5 × 
1 

3 
y1/3−1 − 2λ; i.e., λ = 5x2/5y−2/3

. (9.23) 

and 0 = Fλ = 1100 − x − 2y. (Constraint Equation) (9.24) 

From Eqs. (9.22) and (9.23), we eliminate . λ to obtain: 

. 5x2/5y−2/3 = 12x−3/5y1/3,

which simplifies to .x = 2.4y. Substituting for x in the constraint Eq. (9.24) gives  
.(2.4 + 2)y = 1100 and therefore 

. y = 1100

4.4
= 250.

Then .x = 2.4y = 600. Thus .Umax = U(600, 250) = 2441.72 (correct to 2 decimal 
places). From (9.22) we obtain .λ = 1.63 in this case. 

If, for instance, the total income Y increases to e.1101, the maximum utility 
increases by approximately .1 × λ = 1.63. If  Y decreases to e.1050, the maximum
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utility decreases, approximately, by .50 × 1.63 = 81.50. (The actual figures, correct 
to 2 decimal places, are 1.63 and 81.89, respectively.) 

9.4 Iso Curves 

If we have a function .f (x, y) of two variables x and y, then (see Sect. 8.7.5) we can 
visualise the function as a family of nested curves, each with equation of the form: 

. f (x, y) = c,

where c is a constant. The curves are known generally as iso curves or iso lines. 
(The word iso comes from the Greek for equal.) 

The combinations of values for x and y that give the same value c for the function 
f are all the coordinate pairs x, y of the points on the iso curve .f (x, y) = c. Each 
point on this iso curve corresponds to such a combination. 

Iso curves may have specific names depending on what the function f represents. 
If f is a utility function, then, as noted in Sect. 8.7.5, the iso curves are called 
indifference curves. 

Other examples are when f is a production, profit, or cost function. Then the iso 
curves are known respectively, as isoquants, isoprofit, or isocost curves. 

Using iso curves we can visualize constrained optimization. We illustrate this 
using the utility function .U = 30x2/5y1/3 of Problem 9.12. The constraint is the 
budget of e.1100 which requires .x+2y = 1100. This equation represents the budget 
line. Its graph is given in Fig. 9.4. 

x 
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300 

400 

500 

600y 

x+2y=1100 

Fig. 9.4 The graph of the budget line .x + 2y = 1100
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x 

y 

U=c 

Fig. 9.5 An iso curve (or indifference curve) of the utility function .U = 30x2/5y1/3 for . U = c

where c is some constant 

For any given positive number c, the points .(x, y) of the indifference curve . U =
30x2/5y1/3 = c provide all combinations x, y that give the same utility c (see 
Fig. 9.5). The bigger c is, the further the curve is away from the origin. For example, 
the indifference curve .U = 2 lies between the indifference curves .U = 1 and . U = 3
(see Fig. 9.6). 

Every point .(x, y), with .x, y > 0, is on exactly one indifference curve. If c is 
large enough, an indifference curve .U = c will not meet the constraint/budget line 
.x + 2y = 1100. As  c decreases, the indifference curve approaches the budget line 
and for one value .c = c0 the indifference curve .U = c0 will touch the budget line 
at one point P (see Fig. 9.7). 

The coordinates of P satisfy the constraint .x + 2y = 1100 since P is on the 
budget line. The indifference curve .U = c0 on P has maximum utility. We have 
already computed .c0 = 2441.72 and found the coordinates of P to be .x = 600, 
.y = 250. 

Any indifference curve .U = a with .a > c0 misses the budget line; so no point 
on the curve has coordinates satisfying the budget constraint. An indifference curve 
.U = b, with .b < c0, meets the budget line in two points whose coordinates satisfy 
the budget constraint (since the points are on the budget line) but the corresponding 
utility b is less than . c0 (see Fig. 9.8).
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x 

y 

U=3 

U=2 

U=1 

Fig. 9.6 Iso curves of the utility function .U = 30x2/5y1/3 corresponding to .U = 1, . U = 2, and  
. U = 3

x 
200 400 600 800 1000 1200 

0 

200 

400 

600 

800y 

U=co 

P 

(600,250) 

Budget Line 

Fig. 9.7 The graphs of the budget line .x + 2y = 1100 and the indifference curve . U = c0

Self=Assessment Questions 

1. Find and classify the stationary point of the function . f (x, y) = x2 + 4y2 −
xy + 5. 

2. Maximize xy subject to the constraint .x + 2y = 1.
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Fig. 9.8 The graphs of the budget line .x+2y = 1100 and the indifference curves .U = c0, .U = a, 
and .U = b for . b < c0 < a

3. The total cost function for the production of two goods whose outputs are 
represented by X and Y is 

. T C = 3 + 2X2 + 3Y 2 − XY.

The market prices for X and Y are 11 and 26, respectively, per unit of good. 
Find the outputs that give a maximum profit. 

4. A firm’s unit capital K and unit labour L input costs are 5 and 6, respectively. 
The production function is .Q = 15KL + 6L2. 
(a) If the total input costs are 240 units, find the maximum possible output Q 

by 
(i) using the substitution method; 

(ii) using Lagrange multipliers; 
(b) Estimate the maximum output if the total input were to increase by 2 units 

in (a). 
(c) Estimate what input costs should be to increase the maximum output in 

(a) by 270. 

Exercises 

1. Find the stationary points and their nature of the following functions 
(a) .z = x2 + y2 − 8, 
(b) .f (x, y) = 3x3 − 4x + xy2.
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2. A firm’s total costs are given by 

. T C = 10L2 + 10K2 − 25L − 50K − 5KL + 1500

where L is the total labour costs (in thousands of dollars) and K is the total 
capital invested (in thousands of dollars). 
Find the combination of labour costs and capital invested that will minimize 
T C. 

3. Optimize xy subject to the constraint .x2 + y2 = 2 using the Lagrange 
multiplier method. 

4. A firm’s production function is given by 

. Q = 12K
1
2 L

1
4

where K is capital and L is labour. Unit capital and labour costs are 6 and 4, 
respectively. If the firm must produce a quota of 120 units of output, find the 
minimum total cost of production using 
(a) the substitution method; 
(b) the method of Lagrange multipliers. In this case, estimate the minimum 

total cost of production if the production quota is changed to (1) .121.5, 
(2) .118.5. 

5. Use the Lagrange multiplier method to maximize output 

. Q = 4KL + L2

subject to the constraint . T C = K + 2L = 175.

(a) Estimate the maximum output if T C  is fixed at 174.5. 
(b) Estimate at what value T C  should be fixed if the maximum output is to be 

17,600. 
6. A small independent digital media company has a budget of e.120,000 to 

spend on producing and promoting a new video game. 
The company estimates that if it spends x thousand euros on production and y 
thousand euros on promotion, it will sell approximately .6yx2/3 games. 
(a) Use the Lagrange multiplier method to show how the company should 

allocate its budget to maximize sales. 
Evaluate the maximum sales. 

(b) Estimate the maximum sales if the budget is 
(i) increased by e1000; 

(ii) decreased by e500.
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� Key Learning Outcomes
On completion of this chapter students should be able to:

• Add, subtract and multiply matrices; and to understand the conditions
under which these operations may be performed.

• Evaluate .2 × 2 and .3 × 3 determinants.
• Understand the concept of invertibility for square matrices and the condi-

tion of non-zero determinant for the existence of a matrix inverse.
• Evaluate the inverse of a .2 × 2 or .3 × 3 matrix; and be able to use the

adjoint method for the .3 × 3 case.
• Apply Cramer’s Rule to solve a system of linear equations and to apply it,

for example, to find equilibrium prices.
• Understand the meaning of eigenvalue and eigenvector for square matrices

and determine them for a .2 × 2 or .3 × 3 matrix.

10.1 Introduction 

Matrix theory is a powerful mathematical tool for dealing with data as a whole 
rather than the individual items of data. Matrices are especially useful in the theory 
of equations. They can be used to solve systems of simultaneous linear equations. 
Determinants are related to matrices and are useful for determining whether or not 
a unique solution exists. In some cases, using determinants, the solution for each 
unknown can be expressed explicitly in terms of the coefficients of the equations by 
applying what is known as Cramer’s rule. Systems of simultaneous linear equations 
occur, for example, when optimizing a function using Lagrange multipliers or when 
trying to find the equilibrium prices of interdependent commodities. As we shall 
see, matrices can be added and in some cases multiplied together. In economics, 
business, and finance, many basic theoretical models are linear in that they are 
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described in some way by linear functions. Analyzing these models is made simpler 
by matrix algebra. 

10.2 Matrix Operations 

A rectangular array of mn numbers in m rows and n columns is called a matrix 
of size .m × n (‘m by n’). The array is enclosed in square or, sometimes, curved 
brackets. The .(i, j)-entry of a matrix M is the entry in the ith row and j th column 
of M . This entry can be denoted simply by .Mij . For example: 

. M =
[

3 −1 0
0 2 −5

]
is a 2 × 3 matrix

and 

. N =
[

5 1
2 −1

]
is a 2 × 2 matrix.

For the matrix M , we have .M11 = 3, .M13 = 0, .M23 = −5, and so on. 
An .n×n matrix, that is one that has as many rows as columns, is called a square 

matrix. The matrix N is square. A .1 × n matrix is called a row matrix or row 
vector of length n. An .n× 1 matrix is called a column matrix or column vector of 

height n. For example: .

[
4
1

]
is a column matrix of height 2 and .

[
0 1 −3

]
is a row 

matrix of length 3. 
The transpose of an .m × n matrix M is the .n × m matrix whose ith row is 

the ith column of M (.i = 1, 2, . . . n). The matrix is denoted by .Mt and called ‘M 
transpose’. Another way to define .Mt is as the .n × m matrix whose .(i, j)-entry is 
.Mji . It is immediately clear that the transpose of .Mt is M . That is, .

(
Mt

)t = M . For  
example, 

. 
[

3 5 −1
]t =

⎡
⎣ 3

5
−1

⎤
⎦ ,

[
4 3
0 −2

]t

=
[

4 0
3 −2

]
,

.

[
1 4 −1
2 0 −3

]t

=
⎡
⎣ 1 2

4 0
−1 −3

⎤
⎦ .
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A matrix  M that is its own transpose, so that .Mt = M , is said to be symmetric. 
Obviously, only square matrices can be symmetric. 

. 

⎡
⎣ 3 1 0

1 −2 6
0 6 2

⎤
⎦

is a symmetric matrix. 
We shall introduce some operations that can be performed on matrices. The three 

basic ones are: scalar multiplication, matrix addition, and matrix multiplication. 

10.2.1 Scalar Multiplication 

The term ‘scalar’ in this context simply means a number as opposed to a matrix. 
The reasons for use of this term are historical. It is still a useful term if we wish to 
distinguish scalar from matrix multiplication of matrices. 

If . λ is any number and M any matrix, the scalar multiple of M by . λ is the matrix, 
denoted by .λM , obtained by multiplying each entry of M by . λ, so the .(i, j)-entry 
of .λM is .λMij . Obviously, .λM and M have the same size. The following are some 
examples: 

. 

[
36 −16
0 24

]
= 4

[
9 −4
0 6

]
,

. − 2

[
4 1 −2

−3 0 1

]
=

[−8 −2 4
6 0 −2

]
.

We write .−M rather than .(−1) M . So, for instance 

. −
[

1 −3
−4 0

]
=

[−1 3
4 0

]
.

Suppose that two firms A and B each produce two goods .G1, G2. A consumer 
is supplied with both goods by both firms. The quantities supplied over a particular 
period can be represented by a matrix 

. Q =
[

Q11 Q12

Q21 Q22

]
,

which we shall call the supply matrix, where the first row gives the quantity supplied 
of goods .G1 and . G2, respectively, by firm A and the second row that by firm B. If  
the consumer increases all the quantities bought from each firm by .20%, the new 
supply matrix would be .(1.2)Q.
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In theoretical discussions, it is sometimes useful to distinguish scalars from 
matrices by denoting scalars by lowercase Greek letters and matrices by uppercase 
latin letters. For instance, the following easy to see matrix rule 

. λ (μM) = (λμ)M

says that multiplying a matrix M by a scalar . μ and then by a scalar . λ is the same as 
multiplying M by . λμ. For example, .3 (5M) = 15M . 

10.2.2 Matrix Addition 

Matrices of the same size can be added. If M and N are matrices of the same size, 
then their sum .M + N is the matrix whose .(i, j)-entry is .Mij + Nij . That is . M + N

is obtained by adding corresponding entries of M and N . Clearly .M + N will have 
the same size as M and N . For example, 

. 

[
5 −4
3 2

]
+

[−2 4
1 −1

]
=

[
3 0
4 1

]
,

⎡
⎣ 5

−2
1

⎤
⎦ +

⎡
⎣ 3

−4
−2

⎤
⎦ =

⎡
⎣ 8

−6
−1

⎤
⎦ .

Suppose 

. Q =
[

10 35
15 18

]
, and Q′ =

[
25 10
40 5

]

are the supply matrices (see Sect. 10.2.1) for two successive periods of a year. Then 
their sum 

. Q + Q′ =
[

35 45
55 23

]

is the supply matrix for the combined 2-year period. 
We can also define a matrix .M − N in an obvious way by subtracting 

corresponding entries: 

. 

[
5 −4
3 2

]
−

[−2 4
1 −1

]
=

[
7 −8
2 3

]
.

It is clear that .M − N = M + (−N).
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Matrix addition is commutative. This is the formal way of saying that the order 
in which addition is performed is unimportant. That is, .M + N = N + M for any 
two matrices M , N of the same size. 

The .m × n zero matrix is the .m × n matrix with all zero entries. It is denoted 
simply by 0, the size .m × n being clear usually from the context. Clearly . M + 0 =
0 + M = M for any matrix M . We have also .M − M = 0 = −M + M . 

10.2.3 Matrix Multiplication 

If .A = [
a1 a2 . . . am

]
is a .1 × m row matrix and .B =

⎡
⎢⎢⎢⎣

b1

b2
...

bm

⎤
⎥⎥⎥⎦ is an .m × 1 column 

matrix , then we define the product AB to be the number .a1b1 +a2b2 + . . .+ambm. 
More generally, if M , N are matrices, then we can define their product MN if the 

number of columns in M is the number of rows in N ; say  M is .m×p and N is .p×n. 
Then MN is the .m × n matrix whose .(i, j)-entry is the number .MiNj , where . Mi

is the ith row of M and . Nj the j th column of N . The following example illustrates 
this operation for some particular matrices. Note that a .1 × 1 matrix consists of just 
one entry. In this case, the matrix brackets are omitted, as in Problem 10.1(1). 

Problem 10.1 

1. If .M = [
3 4 −1

]
and .N =

⎡
⎣ 2

1
7

⎤
⎦, then 

. MN = 3 × 2 + 4 × 1 + (−1) × 7 = 6 + 4 − 7 = 3.

If .M = [
2 −3 1

]
and .N =

⎡
⎣ 4

1
−5

⎤
⎦, then 

. MN = 2 × 4 + (−3) × 1 + 1 × (−5) = 8 − 3 − 5 = 0.

2. If .M =
⎡
⎣ 2 −1 4

1 0 2
2 3 −8

⎤
⎦ and .N =

⎡
⎣ 5 2

4 −3
1 0

⎤
⎦, then 

.MN =
⎡
⎣ 10 7

7 2
14 −5

⎤
⎦ ,
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since 

. M1N1 = 2 × 5 + (−1) × 4 + 4 × 1 = 10,

M1N2 = 2 × 2 + (−1) × (−3) + 4 × 0 = 7,

M2N1 = 1 × 5 + 0 × 4 + 2 × 1 = 7,

M2N2 = 1 × 2 + 0 × (−3) + 2 × 0 = 2,

M3N1 = 2 × 5 + 3 × 4 + (−8) × 1 = 14,

M3N2 = 2 × 2 + 3 × (−3) + (−8) × 0 = −5.

3. If .A =
[

2 4
1 0

]
and B =

[
1 −1
2 1

]
, then 

. AB =
[

2 4
1 0

] [
1 −1
2 1

]

=
[

2 × 1 + 4 × 2 2 × (−1) + 4 × 1
1 × 1 + 0 × 2 1 × (−1) + 0 × 1

]

=
[

10 2
1 −1

]

and 

. BA =
[

1 −1
2 1

] [
2 4
1 0

]

=
[

1 × 2 + (−1) × 1 1 × 4 + (−1) × 0
2 × 2 + 1 × 1 2 × 4 + 1 × 0

]

=
[

1 4
5 8

]
.

4. If .A = [
5 1

]
and .B =

[
3 1 2

−2 0 4

]
, then 

.AB = [
5 × 3 + 1 × (−2) 5 × 1 + 1 × 0 5 × 2 + 1 × 4

]
= [

13 5 14
]
.
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5. If .A =
⎡
⎣ 3 1 −4

0 2 1
5 −2 −3

⎤
⎦ and .B =

⎡
⎣ 2

−1
1

⎤
⎦, then 

. AB =
⎡
⎣ 3 1 −4

0 2 1
5 −2 −3

⎤
⎦

⎡
⎣ 2

−1
1

⎤
⎦

=
⎡
⎣ 3 × 2 + 1 × (−1) + (−4) × 1

0 × 2 + 2 × (−1) + 1 × 1
5 × 2 + (−2) × (−1) + (−3) × 1

⎤
⎦

=
⎡
⎣ 1

−1
9

⎤
⎦ .

6. If .A =
[

1 1
−1 −1

]
and .B =

[
1 −1

−1 1

]
, then 

. AB =
[

1 1
−1 −1

] [
1 −1

−1 1

]

=
[

1 × 1 + 1 × (−1) 1 × (−1) + 1 × 1
(−1) × 1 + (−1) × (−1) (−1) × (−1) + (−1) × 1

]

=
[

0 0
0 0

]
.

Problem 10.2 Two firms A and B each produce three goods . G1, . G2, and . G3. The  
prices per unit for each good from the two firms are represented by the matrix . P =[

PA1 PA2 PA3

PB1 PB2 PB3

]
, where the first row gives the prices per unit for goods . G1, . G2, 

. G3, respectively, supplied by firm A and the second row gives those supplied by 
firm B. 

A consumer wishes to buy quantities . Q1, . Q2, . Q3, respectively, from one of the 

firms. The matrix .Q =
⎡
⎣Q1

Q2

Q3

⎤
⎦ represents the quantities. Then PQ  is the . 2 × 1

column matrix .

[
PA1Q1 + PA2Q2 + PA3Q3

PB1Q1 + PB2Q2 + PB3Q3

]
, where the top entry in the column 

is the cost of buying the goods from firm A and the bottom entry the cost from 
firm B.
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Notes 
1. To get the first row entries of the product MN of two matrices M and N , multiply 

the first row of M in turn by each column of N . Do this for the second row and 
so on. This constructs MN row by row. So for instance, in Problem 10.1.2, 

. 
[

2 −1 4
] ⎡
⎣ 5

4
1

⎤
⎦ = 10 − 4 + 4 = 10

and 

. 
[

2 −1 4
] ⎡
⎣ 2

−3
0

⎤
⎦ = 4 + (−1)(−3) + 0 = 7

are the entries of the first row of MN . 
2. If M and N are matrices, it is easy to see that the matrix products MN and NM  

are both defined when and only when M , N are square matrices of the same 
size. However, MN and NM  are not in general the same. See Problem 10.1.3 for 
instance where .AB �= BA. Thus, unlike matrix addition, matrix multiplication is 
not commutative. 

Note that in Problem 10.1.2, we cannot define the product NM . 
In Problem 10.1.3, the matrices A, B can be multiplied in two ways to give the 

products AB and BA. To specify AB, for instance, we can say this is the product 
of A multiplied by B on the right or B multiplied on the left by A. 

The diagonal of a matrix M consists of all the entries of the form . Mii . For  
instance, the diagonal entries of the .3 × 4 matrix 

. M =
⎡
⎣ 3 4 1 1

0 1 2 0
0 0 −5 1

⎤
⎦

are 3, 1, . −5. For any matrix M , it is easy to see that .Mt and M will have the same 
diagonal. 

The square .n × n matrix in which every diagonal entry is 1 and every entry off 
the diagonal is 0 is called the identity .n × n matrix. This matrix is denoted by . In; 
or simply by I if its size is clear from the context. 

.I2 =
[

1 0
0 1

]
, I3 =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ .
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Identity matrices act like ‘ones’ in the sense that .AIn = ImA = A if A is any . m × n

matrix. 
A useful matrix rule is 

. (λM)N = M (λN) = λ (MN) .

Essentially, this means that when multiplying matrices together, any scalar factor, 
such as . λ, can be taken ‘outside’ the multiplication process. For example, if A and 
B are as in Problem 10.1.3, then 

. 

(
1

3
A

)
(6B) =

(
1

3

)
(6) AB

= 2AB =
[

20 4
2 −2

]
.

Two more rules, known as the distributive laws, allows us to ‘open’ brackets: 

. A (B + C) = AB + AC

and 

. (A + B) C = AC + BC.

Conversely, the rules can be regarded as one of factorization. For instance, if A, 
B, C are matrices then: 

(a) .2AB − AC = A (2B − C); 
(b) .BA − A = (B − I )A. 

(Here, I is the .m × m identity matrix, where m is the number of rows in A.) This is 
true because .ImA = A. (If B is an .m × m matrix, why would it be wrong to write 
.B − 1 instead of .B − I?) 

If M is a square .m × m matrix, we can define powers of M: .M2 = MM , . M3 =
M2M = MMM , and so on. In general, for any integer . n ≥ 1, we have . Mn =
Mn−1M , where we take .M0 = Im, the identity .m × m matrix. It is easy to see 
that .Mn is just M multiplied by itself n times. This defines the nth power .Mn of a 
square matrix for any integer .n ≥ 0, similar to the way in which . xn is defined for a 
number x. 

Problem 10.3 If A is the matrix defined by 

. A =
[

1 3
2 0

]

compute . A2 and . A3.
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Solution 10.3 

. A2 =
[

1 3
2 0

] [
1 3
2 0

]
=

[
7 3
2 6

]

A3 = AA2 =
[

1 3
2 0

] [
7 3
2 6

]
=

[
13 21
14 6

]

The question that naturally arises is whether this analogy of powers of matrices 
with powers of numbers extends to negative integer exponents. In particular, can we 
assign any meaning to .M−1? It turns out that we can define .M−1 in certain cases 
and we can test whether or not .M−1 exists. 

We shall say that a square matrix M is invertible if there is a matrix N such 
that .MN = NM = I . If  N exists, we write .M−1 for N . We call .M−1 the inverse 
matrix of M . (For short, we can say ‘M inverse’ for the matrix .M−1.) It is easy to 

see that .
(
M−1

)−1 = M . 
It is important to note that not all square matrices are invertible. To determine 

whether or not a matrix is invertible, we need the concept of the determinant of a 
square matrix. 

First we consider a .2 × 2 matrix 

. M =
[

a b

c d

]
.

The determinant of M denoted by .|M| or 

. 

∣∣∣∣ a b

c d

∣∣∣∣ ,

is the number .ad − bc. For example: 

. 

∣∣∣∣ 2 −1
3 5

∣∣∣∣ = 10 − (−3) = 13,

∣∣∣∣ 6 3
4 2

∣∣∣∣ = 12 − 12 = 0.

It can be shown that a .2 × 2 matrix is invertible if, and only if, its determinant is 
not zero. If M is invertible, its inverse is obtained in the following way. 

If .M =
[

a b

c d

]
and .|M| = ad − bc �= 0, then .M−1 = 1

ad − bc

[
d −b

−c a

]
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The matrix .M−1 is therefore a scalar multiple of the matrix 

. 

[
d −b

−c a

]
;

the scalar being .1/|M|. To illustrate this, perform the matrix multiplication 

. 
1

|M|
[

d −b

−c a

] [
a b

c d

]
= 1

ad − bc

[
ad − bc 0

0 ad − bc

]

=
[

1 0
0 1

]

= I.

For example, 

. 

∣∣∣∣ 6 3
4 2

∣∣∣∣ = 0,

so the matrix 

. 

[
6 3
4 2

]

is not invertible. 
Since 

. 

∣∣∣∣ 3 5
2 4

∣∣∣∣ = 12 − 10 = 2,

the matrix 

. M =
[

3 5
2 4

]

is invertible and 

. M−1 = 1

2

[
4 −5

−2 3

]
.

Problem 10.4 Given that 

.A =
[

1 −2
3 4

]
and B =

[
4 1
0 −3

]
,
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determine the .2 × 2 matrices X and Y satisfying 

1. .AX = B; 
2. .YA = B. 

Solution 10.4 Since .|A| = 4 − (−6) = 10 �= 0, then .A−1 exists and 

. A−1 = 1

10

[
4 2

−3 1

]
.

1. Multiply both sides of the equation .AX = B on the left by .A−1 to get . A−1AX =
A−1B. That is, .IX = A−1B and so .X = A−1B. Therefore, 

. X = 1

10

[
4 2

−3 1

] [
4 1
0 −3

]
= 1

10

[
16 −2

−12 −6

]
.

(Here we used the fact that .A−1A = I , the identity .2 × 2 matrix, and that . IX =
X.) 

2. Multiply both sides of the equation on the right by .A−1 to get .YAA−1 = BA−1, 
which gives .Y = BA−1. Therefore, 

. Y = 1

10

[
4 1
0 −3

] [
4 2

−3 1

]
= 1

10

[
13 9
9 −3

]
.

10.3 Solutions of Linear Systems of Equations 

Two simultaneous equations in two unknowns can be solved uniquely if the matrix 
of coefficients is invertible. Specifically, if 

. ax + by = c

. px + qy = r

are the equations in the unknowns x, y, the  matrix of coefficients is 

. M =
[

a b

p q

]
.

Then 

.M

[
x

y

]
=

[
ax + by

px + qy

]
=

[
c

r

]
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so that the two given simultaneous equations are equivalent to one matrix equation: 

. M

[
x

y

]
=

[
c

r

]
.

If M is invertible, then multiplying both sides on the left by .M−1 gives the unique 
solution 

. 

[
x

y

]
= M−1

[
c

r

]
.

Problem 10.5 Solve the linear system of equations 

.
7x + 3y = 41
3x + 2y = 19

(10.1) 

Solution 10.5 The matrix form of (10.1) is  

. 

[
7 3
3 2

] [
x

y

]
=

[
41
19

]
.

Since 

. 

∣∣∣∣ 7 3
3 2

∣∣∣∣ = 14 − 9 = 5 �= 0,

the matrix of coefficients .M =
[

7 3
3 2

]
is invertible and .M−1 = 1

5

[
2 −3

−3 7

]
. The  

solution is 

. 

[
x

y

]
= M−1

[
41
19

]
= 1

5

[
2 −3

−3 7

] [
41
19

]
= 1

5

[
25
10

]
.

So .x = 25
5 = 5 and .y = 10

5 = 2. 

Problem 10.6 The demand and supply equations for a good are given by . P +
4QD = 70 and .P − QS = 5. Determine the equilibrium price and quantity. 

Solution 10.6 To find the equilibrium price P and quantity .Q = QD = QS , we  
solve the equations 

.P + 4Q = 70

P − Q = 5.
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In matrix form, this is equivalent to 

. 

[
1 4
1 −1

] [
P

Q

]
=

[
70
5

]
.

There is a unique solution: 

. 

[
P

Q

]
=

[
1 4
1 −1

]−1 [
70
5

]

= −1

5

[−1 −4
−1 1

] [
70
5

]

= −1

5

[−90
−65

]

=
[

18
13

]
.

The equilibrium values are therefore .P = 18, .Q = 13. 

10.4 Cramer’s Rule 

This simple rule allows us to express the solution of two simultaneous equations in 
two unknowns explicitly, assuming there is a unique solution. Given the equations 

. ax + by = c

px + qy = r

then Cramer’s rule states that if .

∣∣∣∣ a b

p q

∣∣∣∣ �= 0 (equivalently, if the matrix of coefficients 

is invertible), then 

. x =

∣∣∣∣ c b

r q

∣∣∣∣∣∣∣∣ a b

p q

∣∣∣∣
and y =

∣∣∣∣ a c

p r

∣∣∣∣∣∣∣∣ a b

p q

∣∣∣∣
.

Observe that the determinant .

∣∣∣∣ c b

r q

∣∣∣∣ in the equation for x is obtained by replacing 

the column of coefficients of x in the determinant of the matrix of coefficients by 
the column of constants on the right-hand side of the equation; and similarly for y.
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Problem 10.7 Solve the simultaneous equations 

. 6x + 7y = 10

4x + 5y = 8

using Cramer’s rule. 

Solution 10.7 Using Cramer’s rule, we have 

. x =

∣∣∣∣ 10 7
8 5

∣∣∣∣∣∣∣∣ 6 7
4 5

∣∣∣∣
= 50 − 56

30 − 28
= −3

and 

. y =

∣∣∣∣ 6 10
4 8

∣∣∣∣∣∣∣∣ 6 7
4 5

∣∣∣∣
= 48 − 40

2
= 4.

(In geometric terms, x and y are the coordinates of the point of intersection of the 
two lines with equations .6x + 7y = 10 and .4x + 5y = 8.) 

10.5 More Determinants 

In Sect. 10.2, we introduced for .2 × 2 matrices the idea of a determinant. Now we 
consider .3 × 3 matrices. The determinant of a .3 × 3 matrix 

. M =
⎡
⎣ a b c

d e f

g h i

⎤
⎦

is the number 

. a

∣∣∣∣ e f

h i

∣∣∣∣ − b

∣∣∣∣ d f

g i

∣∣∣∣ + c

∣∣∣∣ d e

g h

∣∣∣∣

which we denote by .|M| or .

∣∣∣∣∣∣
a b c

d e f

g h i

∣∣∣∣∣∣.
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Problem 10.8 Evaluate the determinant 

. 

∣∣∣∣∣∣
2 3 5
3 1 2
1 4 3

∣∣∣∣∣∣ .

Solution 10.8 Using the definition of a determinant of a .3 × 3 matrix 

. 

∣∣∣∣∣∣
2 3 5
3 1 2
1 4 3

∣∣∣∣∣∣ = 2

∣∣∣∣ 1 2
4 3

∣∣∣∣ − 3

∣∣∣∣ 3 2
1 3

∣∣∣∣ + 5

∣∣∣∣ 3 1
1 4

∣∣∣∣
= 2(3 − 8) − 3(9 − 2) + 5(12 − 1)

= −10 − 21 + 55

= 24.

As in the .2 × 2 case, it is true that a .3 × 3 matrix M is invertible if, and only if, 
its determinant .|M| �= 0; but it is not as easy to describe .M−1 in the .3 × 3 case. A 
method for constructing .M−1 (when it exists) is known as the adjoint method. To  
describe this, we need the concept of a cofactor. 

The .(i, j)-cofactor of a .3 × 3 matrix M is the determinant of the .2 × 2 matrix 
obtained by deleting the ith row and j th column of M , multiplied by .(−1)i+j . 

Note that .(−1)i+j is .+1 or .−1 according to whether .i + j is even or odd, 
respectively. The pattern 

. 

+ − +
− + −
+ − +

gives the .(i, j) positions corresponding to .+1 and . −1. For example, the .(3, 1)-
cofactor of the matrix 

. M =
⎡
⎣ 3 2 −4

1 3 2
4 1 −1

⎤
⎦

is 

. +
∣∣∣∣ 2 −4
3 2

∣∣∣∣ = 4 + 12 = 16.
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Similarly, the .(2, 3)-cofactor is 

. −
∣∣∣∣ 3 2
4 1

∣∣∣∣ = −(3 − 8) = 5.

Note The value of the .(i, j)-cofactor does not depend on the value of the 
.(i, j)−entry. 

The cofactor matrix of a .3 × 3 matrix M is the .3 × 3 matrix whose .(i, j)-entry 
is the .(i, j)-cofactor of M . For example, the cofactor matrix of the matrix M in the 
previous problem is 

. 

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∣∣∣∣ 3 2
1 −1

∣∣∣∣ −
∣∣∣∣ 1 2
4 −1

∣∣∣∣
∣∣∣∣ 1 3
4 1

∣∣∣∣
−

∣∣∣∣ 2 −4
1 −1

∣∣∣∣
∣∣∣∣ 3 −4
4 −1

∣∣∣∣ −
∣∣∣∣ 3 2
4 1

∣∣∣∣
∣∣∣∣ 2 −4
3 2

∣∣∣∣ −
∣∣∣∣ 3 −4
1 2

∣∣∣∣
∣∣∣∣ 3 2
1 3

∣∣∣∣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡
⎣−5 9 −11

−2 13 5
16 −10 7

⎤
⎦ .

The transpose of the cofactor matrix of a .3×3 matrix M is known as the adjoint 
matrix, denoted by adjM . 

The following statement describes how .M−1 may be computed by the method 
known as the adjoint method. 

If M is a .3 × 3 matrix and .|M| �= 0, then .M−1 = 1

|M|adjM . 

Thus .M−1 is a scalar multiple of adjM; the scalar being the number . 1
|M| . 

Problem 10.9 Find the inverse of the matrix 

. M =
⎡
⎣ 3 2 −4

1 3 2
4 1 −1

⎤
⎦ .

Solution 10.9 The determinant of M is 

.

∣∣∣∣∣∣
3 2 −4
1 3 2
4 1 −1

∣∣∣∣∣∣ = 3

∣∣∣∣ 3 2
1 −1

∣∣∣∣ − 2

∣∣∣∣ 1 2
4 −1

∣∣∣∣ + (−4)

∣∣∣∣ 1 3
4 1

∣∣∣∣
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= 3(−5) − 2(−9) − 4(−11) 

= −15 + 18 + 44 

= 47. 

Since .|M| = 47 �= 0, then .M−1 exists and .M−1 = 1
|M|adjM , where adjM is the 

transpose of the cofactor matrix of M (see above). Therefore 

. M−1 = 1

47

⎡
⎣ −5 −2 16

9 13 −10
−11 5 7

⎤
⎦ .

If we look again at the definition of the determinant of a .3 × 3 matrix M , we see  
that .|M|, the determinant of M , is obtained by multiplying each entry in the first 
row of M by the corresponding cofactor and adding. 

An interesting fact is that there is nothing special about the first row of M . 
Multiplying each term in any row (or column) by the corresponding cofactor and 
adding gives the same number; namely .|M|. (This is a useful check that the cofactor 
matrix has been computed correctly.) 

For example, for the matrix 

. M =
⎡
⎣ 3 2 −4

1 3 2
4 1 −1

⎤
⎦ ,

the cofactor matrix is 

. 

⎡
⎣−5 9 −11

−2 13 5
16 −10 7

⎤
⎦ .

The determinant of M is .|M| = 3(−5)+2(9)+(−4)(−11) = −15+18+44 = 47. 
This is the expansion of the determinant of M by its first row. Expanding by, say, 
the third column gives .(−4)(−11) + 2(5) + (−1)(7) = 44 + 10 − 7 = 47 again. 

Incidentally, if we expand a row using the cofactors of another row, we will 
always get 0. For example, expanding along the first row of M using the cofactors of 
the third row gives .3(16)+2(−10)+(−4)(7) = 48−20−28 = 0. These expansion 
properties of determinants form the basis of the adjoint method for finding inverses 
and of Cramer’s rule.
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Problem 10.10 Determine the inverse of the matrix M , where 

. M =
⎡
⎣ 1 −3 −2

4 1 2
0 6 5

⎤
⎦ .

Solution 10.10 The cofactor matrix of M is 

. C =
⎡
⎣−7 −20 24

3 5 −6
−4 −10 13

⎤
⎦ .

The determinant is 

. |M| = 1(−7) − (−3)(20) + (−2)(24) = −7 + 60 − 48 = 5.

Therefore 

.M−1 = 1

|M|adjM = 1

5
Ct = 1

5

⎡
⎣ −7 3 −4

−20 5 −10
24 −6 13

⎤
⎦ . (10.2) 

Solving a system of two simultaneous equations in two unknowns using inverse 
matrices or Cramer’s rule extends naturally to the case of three equations in three 
unknowns. If the matrix 

. M =
⎡
⎣ a1 a2 a3

b1 b2 b3

c1 c2 c3

⎤
⎦

of coefficients of a system of three equations 

. a1x + a2y + a3z = p

b1x + b2y + b3z = q

c1x + c2y + c3z = r

has non-zero determinant and so is invertible, then the simultaneous equations have 
a unique solution given by: 

.

⎡
⎣x

y

z

⎤
⎦ = M−1

⎡
⎣p

q

r

⎤
⎦ .
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Alternatively, we can use Cramer’s rule, extended from Sect. 10.4 in an obvious 
way to three equations in three unknowns. This gives 

. x = |Mx |
|M| , y = |My |

|M| , z = |Mz|
|M| ,

where .Mx is the matrix obtained by replacing the column .

⎡
⎣a1

b1

c1

⎤
⎦ of coefficients of 

x in M by the column of constants .

⎡
⎣p

q

r

⎤
⎦. Similarly for .My and . Mz. 

Problem 10.11 Solve the system of three simultaneous equations 

. x − 3y − 2z = 5,

4x + y + 2z = 116,

6y + 5z = 47.

Solution 10.11 In matrix form, the system can be written as one equation: 

. M

⎡
⎣ x

y

z

⎤
⎦ =

⎡
⎣ 5

116
47

⎤
⎦ ,

where 

. M =
⎡
⎣ 1 −3 −2

4 1 2
0 6 5

⎤
⎦

is the matrix of coefficients. 
From Problem 10.10, we know that M is invertible and .M−1 is given in (10.2). 

Therefore 

. 

⎡
⎣ x

y

z

⎤
⎦ = M−1

⎡
⎣ 5

116
47

⎤
⎦ = 1

5

⎡
⎣ −7 3 −4

−20 5 −10
24 −6 13

⎤
⎦

⎡
⎣ 5

116
47

⎤
⎦

= 1

5

⎡
⎣ −35 + 348 − 188

−100 + 580 − 470
120 − 696 + 611

⎤
⎦ = 1

5

⎡
⎣ 125

10
35

⎤
⎦ =

⎡
⎣ 25

2
7

⎤
⎦ .

Therefore .x = 25, .y = 2, and .z = 7.
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Alternatively, we can use Cramer’s rule. Here, 

. Mx =
⎡
⎣ 5 −3 −2

116 1 2
47 6 5

⎤
⎦ ,

so 

. |Mx | = 5(5 − 12) − (−3)(580 − 94) − 2(696 − 47) = 125.

Therefore 

. x = |Mx |
|M| = 125

5
= 25,

and then y, z are obtained in a similar way, noting that 

. My =
⎡
⎣ 1 5 −2

4 116 2
0 47 5

⎤
⎦

and 

. Mz =
⎡
⎣ 1 −3 5

4 1 116
0 6 47

⎤
⎦ .

Problem 10.12 A consumer’s utility function is .U(x, y) = xy + x + 2y, where x 
is the number of units of good .Gx and y the number of units of good . Gy . The price 
per unit of .Gx is 2 (units of money), and the price per unit of .Gy is 5. What is the 
maximum utility if the consumer’s budget is 91? 

Solution 10.12 The objective function is U and the constraint is .2x + 5y = 91. 
Form the Lagrangian function 

. F = xy + x + 2y + λ(91 − 2x − 5y).

The stationary points of F occur where 

.0 = Fx = y + 1 − 2λ,

0 = Fy = x + 2 − 5λ

and 0 = Fλ = 91 − 2x − 5y.
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We therefore have the following three equations in the three unknowns x, y, and 
. λ: 

. − y + 2λ = 1,

x − 5λ = −2,

2x + 5y = 91.

We can easily solve these as before by eliminating . λ between the first two 
equations and then using the constraint equation to solve for x and y. 

Another method is to use matrix inversion. The matrix of coefficients is 

. M =
⎡
⎣ 0 −1 2

1 0 −5
2 5 0

⎤
⎦ ,

so that 

. M

⎡
⎣x

y

λ

⎤
⎦ =

⎡
⎣ 1

−2
91

⎤
⎦ .

Using the adjoint method, we can compute 

. M−1 = 1

20

⎡
⎣ 25 10 5

−10 −4 2
5 −2 1

⎤
⎦ .

Then 

. 

⎡
⎣ x

y

λ

⎤
⎦ = M−1

⎡
⎣ 1

−2
91

⎤
⎦ = 1

20

⎡
⎣ 25 − 20 + 455

−10 + 8 + 182
5 + 4 + 91

⎤
⎦ = 1

20

⎡
⎣ 460

180
100

⎤
⎦ .

Therefore, .x = 23, .y = 9, and .λ = 5. So the maximum utility is .U(23, 9) = 248. 

Cramer’s rule could also have been used to solve the previous problem. We use 
it for the next problem.
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Problem 10.13 Find the equilibrium prices of three interdependent commodities 
whose prices . P1, . P2, . P3 satisfy: 

. P1 + P2 + 3P3 = 37,

3P1 + 2P2 + 4P3 = 79,

2P1 + 3P2 + 5P3 = 76.

Solution 10.13 The determinant of the matrix of coefficients is 

. 

∣∣∣∣∣∣
1 1 3
3 2 4
2 3 5

∣∣∣∣∣∣ = (10 − 12) − (15 − 8) + 3(9 − 4) = 6.

Therefore by Cramer’s rule 

. P1 =
∣∣∣∣∣∣
37 1 3
79 2 4
76 3 5

∣∣∣∣∣∣ ÷ 6 = 90 ÷ 6 = 15,

P2 =
∣∣∣∣∣∣
1 37 3
3 79 4
2 76 5

∣∣∣∣∣∣ ÷ 6 = 42 ÷ 6 = 7,

P3 =
∣∣∣∣∣∣
1 1 37
3 2 79
2 3 76

∣∣∣∣∣∣ ÷ 6 = 30 ÷ 6 = 5.

The method for finding the determinant of an .n × n matrix for the case . n = 3
extends in a natural way to the case of .n×n matrices for general n. Then the method 
for finding the inverse of an .n×n matrix by the adjoint method can also be extended 
naturally to general n. 

We leave it as an exercise to check that the matrix below has determinant 72: 

.

⎡
⎢⎢⎣

−1 3 1 −1
2 1 3 6
3 −1 2 0
0 3 1 4

⎤
⎥⎥⎦ .
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Its inverse matrix is 

. 
1

72

⎡
⎢⎢⎣

−22 −35 40 47
2 −23 16 35

34 41 −16 −53
−10 7 −8 5

⎤
⎥⎥⎦ .

which can be checked. However, though finding the determinant is fairly straight-
foward, finding the inverse of the matrix by the adjoint method by hand is laborious. 

Cramer’s Rule extends easily in theory to n equations in n unknowns for . n ≥ 4
if the matrix of coefficients is invertible. However, even the case .n = 4 would, by 
hand, involve much computation: the evaluation of five .4 × 4 determinants. Each 
.4 × 4 determinant means evaluating up to four .3 × 3 determinants; so potentially up 
to twenty .3 × 3 determinants need to be evaluated. 

10.6 Special Cases 

The solutions of systems of simultaneous equations considered in this chapter have 
been for the case when there are as many unknowns as equations and also the matrix 
of coefficients is invertible (or, equivalently, has non-zero determinant). In this case, 
the solution is unique. What happens if the matrix of coefficients is not invertible; 
that is, if its determinant is zero? In this case, the system is either inconsistent and 
has no simultaneous solution or else it has infinitely many solutions. 

To illustrate this point with a very simple example, consider the two systems of 
equations 

. (a) x + 3y = 4 (b) x + 3y = 5

2x + 6y = 8 2x + 6y = 9

In both cases, the matrix of coefficients is 

. 

[
1 3
2 6

]

and its determinant is 

. 

∣∣∣∣ 1 3
2 6

∣∣∣∣ = 0.

In case (a), the second equation is twice the first equation. (The second equation 
is therefore redundant.) Therefore, any solution of the equation 

.x + 3y = 4
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will satisfy both equations simultaneously. So there are infinitely many solutions 
because for any choice of value . α for y, the equation .x + 3y = 4 is satisfied by 
.x = 4 − 3α, .y = α. 

In case (b), multiplying the first equation by 2 gives .2x + 6y = 10, which is 
inconsistent with the second equation. So the two given equations cannot have any 
simultaneous solution. 

For the case of three equations in three unknowns, a similar conclusion holds. 
If the matrix of coefficients has zero determinant, then the equations have either 
no simultaneous solutions or infinitely many. A method known as Gauss-Jordan 
elimination can be applied to a system of equations to reduce it to a simple form 
that eliminates redundant equations. The reduction is akin to the usual process 
of simplifying equations; subtracting multiples of one equation from another to 
eliminate variables between them. We shall say no more about this in this book. 

10.7 Eigenvalues and Eigenvectors 

In more advanced mathematical economics, eigenvalues and eigenvectors have 
applications in economics using statistical methods, such as Markov chains and 
processes. We shall not pursue these applications here; instead we will introduce 
the basic concepts in an algebraic setting. 

Recall that an n-dimensional row (or column) vector is simply a .1 × n (or . n ×
1) matrix. Row and column vectors simply display n numbers in either a row or 
column, respectively. We shall write . u to denote a general column vector i.e. 

. u =

⎡
⎢⎢⎢⎣

u1

u2
...

un

⎤
⎥⎥⎥⎦ .

Its transpose is .[u1 u2 · · · un] = ut . 
An n-dimensional vector can be a column or row vector. Unless otherwise stated, 

‘vector’ will mean ‘column vector’. The zero vector is denoted by . 0, its dimension 
being understood from the context. Recall that if A is a matrix and . λ any number, 
then . λA is the matrix obtained by multiplying each entry of A by the scalar (number) 
. λ. We say that the matrix .λA is a scalar multiple of A. The zero matrix has all zero 
entries. 

Let A be a square .n × n matrix. We define a non-zero vector . u to be an 
eigenvector of the matrix A if .Au is a scalar multiple of . u, i.e. 

. Au = λu

for some number . λ. We then say that . λ is an eigenvalue of the matrix A, 
corresponding to (or for) the eigenvector . u. Note that . u here is an n-dimensional
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column vector and .u �= 0. Observe that an eigenvector has only one corresponding 
eigenvalue but an eigenvalue may correspond to more than one eigenvector. 

Our examples of eigenvectors and eigenvalues will be for square .n × n matrices, 
where .n = 2 or .n = 3. This is to keep computations as simple as possible. 

Let A be an .n×n matrix and . u an eigenvector of A with corresponding eigenvalue 
. λ. Then any scalar multiple . αu of . u is also an eigenvector of A corresponding to . λ. 
For we have 

. A(αu) = αAu = α(λu) = λ(αu).

(Remember that . α and . λ are numbers.) 
If . u and . v are both eigenvectors of A corresponding to the eigenvalue . λ, then so 

is .u + v, as long as .u �= −v, since 

. A(u + v) = Au + Av = λu + λv = λ(u + v).

A linear combination of vectors . u and . v is any vector of the form .αu + βv, 
where .α, β are numbers. 

One can easily verify that if . u and . v are eigenvectors of A corresponding to 
the same eigenvalue . λ, then any non-zero linear combination of . u and . v is also an 
eigenvector of A corresponding to the eigenvalue . λ. 

Next we show how the eigenvalues and eigenvectors of an .n × n matrix A may 
be found. 

Recall that the zero n-dimensional vector is simply denoted by . 0. The identity 
.n × n matrix (which has ones on its diagonal and zeros elsewhere) will be denoted 
simply by I . Then .Iu = u for any n-dimensional vector . u. 

By definition, a non-zero vector . u is an eigenvector of the matrix A if . Au = λu
for some number . λ. Since .Iu = u we can write this equation as 

. Au = λIu

Now A and . λI are matrices, so we can write this as 

.(A − λI)u = 0, (10.3) 

where .u �= 0. 
If .A − λI were invertible, we could multiply both sides of the equation by . (A −

λI)−1 to obtain 

. (A − λI)−1(A − λI)u = (A − λI)−10 = 0.

That is .Iu = u = 0, which is not true since .u �= 0. Therefore, .A − λI is not 
invertible. 

Earlier in this chapter we showed that a .2×2 or .3×3 matrix is invertible as long 
as its determinant is not zero. In fact this is true for any square matrix. Therefore if
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. λ is an eigenvalue of A, then 

.|A − λI | = 0. (10.4) 

This is known as the characteristic equation of the matrix A. The left-hand side 
.|A − λI | is the characteristic polynomial of A. The roots . λ of the characteristic 
equation are the eigenvalues of A. Note that A is not invertible if 0 is an eigenvalue, 
for then .|A| = 0. 

Problem 10.14 Find the eigenvalues and eigenvectors of the matrix 

. A =
[

3 0
−1 1

]
.

Solution 10.14 

. A − λI =
[

3 0
−1 1

]
−

[
λ 0
0 λ

]
=

[
3 − λ 0
−1 1 − λ

]

Therefore 

. |A − λI | = (3 − λ)(1 − λ) − 0 × (−1)

= (3 − λ)(1 − λ)

So the characteristic equation is 

. (3 − λ)(1 − λ) = 0

with roots .λ = 3 and .λ = 1. These are the eigenvalues of A. 
To find the corresponding eigenvectors, we solve Eq. (10.3) to find the eigenvec-

tors 

. u =
[

x

y

]

for each eigenvalue. That is, we solve 

.(A − λI)u =
[

3 − λ 0
−1 1 − λ

] [
x

y

]
=

[
0
0

]
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which means solving 

.
(3 − λ)x + 0y = 0
−x + (1 − λ)y = 0

(10.5) 

for x and y. 

Case 1 .λ = 3. In this case Eq. (10.5) reduces to 

. 
0x + 0y = 0
−x − 2y = 0

Thus .x = −2y, where y can be any non-zero number. So the general eigenvector 
for the eigenvalue .λ = 3 is any non-zero multiple of 

. 

[−2
1

]

Case 2 .λ = 1. In this case Eq. (10.5) becomes 

.
2x + 0y = 0
−x + 0y = 0

(10.6) 

So .x = 0 and y can be any non-zero number. Therefore, the eigenvectors for the 
eigenvalue .λ = 1 are non-zero multiples of 

. 

[
0
1

]

Multiplicity 
The characteristic equation of an .n × n matrix M is of the form .f (λ) = 0, where 
.f (λ) = |M − λI | is the characteristic polynomial. It is of degree n and so has at 
most n distinct roots. Therefore, M has at most n distinct eigenvalues. 

If .λ = a is a root of the equation, then a is an eigenvalue of M , .f (a) = 0 and 
.(λ − a) is a factor of .f (λ). We say that a root .λ = a of .f (λ) = 0 is of multiplicity 
m if .(λ − a)m is the highest power of .(λ − a) dividing .f (λ). 

For example consider the equations: 

1. .(x − 3)(x + 1) = 0; 
2. .(x − 5)2 = 0; 
3. .(x − 1)(x − 3)2 = 0; 
4. .(x − 2)(x + 3)(x − 4) = 0; 
5. .(x − 2)3 = 0.
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We make the following observations about the multiplicity of the roots of these 
equations: 

1. The roots 3 and .−1 have multiplicity 1 each. 
2. The one root 5 has multiplicity 2. 
3. The root 1 has multiplicity 1 and the root 3 has multiplicity 2. 
4. The three roots 2, -3, 4 each have multiplicity 1. 
5. The one root 2 has multiplicity 3. 

Problem 10.15 Find the eigenvalues and eigenvectors of the matrix 

. A =
[

2 1
−1 4

]
.

Solution 10.15 The characteristic equation of A is 

. (2 − λ)(4 − λ) − (−1) = 0,

which simplifies to give the quadratic equation 

. λ2 − 6λ + 9 = (λ − 3)2 = 0.

So A has only one distinct eigenvalue 3 of multiplicity 2. A corresponding 
eigenvector 

. u =
[

x

y

]

must satisfy (see Eq. (10.3)) 

. (A − 3I )u = 0

That is 

. 

[−1 1
−1 1

] [
x

y

]
=

[
0
0

]

which reduces to .−x + y = 0 and therefore .x = y. Therefore the eigenvectors 
corresponding to the eigenvalue 3 are 

. x

[
1
1

]

where x is any non-zero number.
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Problem 10.16 Find the eigenvalues and eigenvectors of the matrix 

. M =
[

4 3
2 −1

]
.

Solution 10.16 The characteristic equation of M is 

. 

∣∣∣∣ 4 − λ 3
2 −1 − λ

∣∣∣∣ = 0.

Evaluating the determinant gives 

. (4 − λ)(−1 − λ) − 6 = −4 − 4λ + λ + λ2 − 6 = 0,

which simplifies to give the quadratic equation 

. λ2 − 3λ − 10 = 0.

This equation can be solved using the formula for the roots of a quadratic equation 
or noting that .λ2 − 3λ − 10 factorises as .(λ − 5)(λ + 2). Therefore the eigenvalues 
. λ of M are 5 and . −2. 

Consider .λ = 5. A corresponding eigenvector . u must satisfy 

. 

[
0
0

]
= (M − 5I )u =

[−1 3
2 −6

] [
x

y

]
=

[−x + 3y

2x − 6y

]

i.e. .−x + 3y = 0 and .2x − 6y = 0. The second equation is just .(−2) times the 
first. So the only condition on x and y is that .x = 3y, where y can be any non-zero 
number. Therefore, 

. 

[
3
1

]

or any non-zero multiple is an eigenvector of M corresponding to the eigenvalue 
.λ = 5. 

Consider .λ = −2. A corresponding eigenvector . u must satisfy 

.

[
0
0

]
= (M + 2I )u =

[
6 3
2 1

] [
x

y

]
=

[
6x + 3y

2x + y

]
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i.e. .6x +3y = 0 and .2x +y = 0. The second equation is just 3 times the first. So the 
only condition on x and y is that .y = −2x, where x can be any non-zero number. 
Therefore, 

. 

[
1

−2

]

or any non-zero multiple is an eigenvector of M corresponding to the eigenvalue 
.λ = −2. 

Properties of Determinants and Eigenvalues 
We state some facts regarding determinants and eigenvalues since they can be useful 
checks as well as being of intrinsic interest. 

We define the trace, .TrM , of a matrix M to be the sum of its diagonal entries. 
Thus the traces of the matrices 

. 

[
5 −1
2 −3

]
and

⎡
⎣−1 2 0

3 4 −1
0 1 −6

⎤
⎦

are .5 + (−3) = 2 and .−1 + 4 − 6 = −3, respectively. 

Fact 1 The sum of the eigenvalues of a square matrix equals the trace of the matrix. 

Fact 2 The product of all the eigenvalues of a square matrix equals the determinant 
of the matrix. 

Note An eigenvalue must be counted according to its multiplicity. For example, the 
matrix 

. A =
[

2 1
−1 4

]

has only one eigenvalue 3 of multiplicity 2 (see Problem 10.15). For this matrix we  
have 

. TrA = 2 + 4 = 6 = 3 + 3 and |A| = 8 − (−1) = 9 = 3 × 3.

The matrix 

.B =
[

4 3
2 −1

]
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has eigenvalues 5 and . −2. For this matrix we have 

. TrB = 4 + (−1) = 3 = 5 + (−2) and |B| = −4 − 6 = −10 = 5 × (−2).

Fact 3 Any square matrix M and its transpose .Mt have the same determinant, the 
same characteristic equation and the same eigenvalues (though the corresponding 
eigenvectors may be different). 

For example, if M is as given in Problem 10.16, then 

. Mt =
[

4 2
3 −1

]

which has characteristic equation 

. 

∣∣∣∣ 4 − λ 2
3 −1 − λ

∣∣∣∣ = 0

which gives the same characteristic equation as M . So they have the same  
eigenvalues 5, -2. 

An eigenvector 

. u =
[

x

y

]

for the eigenvalue 5 of .Mt must satisfy 

. 

[
0
0

]
=

[
4 − 5 2

3 −1 − 5

] [
x

y

]
=

[−1 2
3 −6

] [
x

y

]
=

[−x + 2y

3x − 6y

]

Therefore .−x + 2y = 0 = 3x − 6y; i.e. .x = 2y. So the eigenvectors corresponding 
to the eigenvalue 5 of .Mt are the non-zero multiples of the vector 

. 

[
2
1

]
,

whereas for M it is 

. 

[
3
1

]

The Case . n = 3
Next we consider examples for .3×3 matrices. In this case the characteristic equation 
is a cubic; i.e. of the form .x3 + ax2 + bx + c = 0 where a, b, c are numbers. Such 
equations are not easy to solve, so we will only consider simple examples.
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Problem 10.17 Find the eigenvalues and eigenvectors of the matrix 

. A =
⎡
⎣ 4 0 0

0 −1 1
0 5 3

⎤
⎦ .

Solution 10.17 The matrix A has characteristic equation 

. 0 =
∣∣∣∣∣∣
4 − λ 0 0

0 −1 − λ 1
0 5 3 − λ

∣∣∣∣∣∣ = (4 − λ)[(−1 − λ)(3 − λ) − 5].

= (4 − λ)(−3 + λ − 3λ + λ2 − 5) = (4 − λ)(λ2 − 2λ − 8)

= (4 − λ)(λ − 4)(λ + 2)

Therefore the eigenvalues of A are 4, 4, -2.  
Check: . TrA = 4 + (−1) + 3 = 6 = 4 + 4 + (−2).

Consider .λ = 4. A corresponding eigenvector 

. u =
⎡
⎣x

y

z

⎤
⎦

must satisfy 

. 

⎡
⎣ 0

0
0

⎤
⎦ = (A − 4I )u =

⎡
⎣ 0 0 0

0 −5 1
0 5 −1

⎤
⎦

⎡
⎣x

y

z

⎤
⎦ =

⎡
⎣ 0

−5y + z

5y − z

⎤
⎦

Therefore .−5y +z = 0 and .5y −z = 0; so we only require .z = 5y and x can be any 
number. Therefore the general eigenvector for the eigenvalue .λ = 4 is of the form 

. 

⎡
⎣ x

y

5y

⎤
⎦

where x and y are any numbers, but not both 0. This vector can be written as 

.x

⎡
⎣ 1

0
0

⎤
⎦ + y

⎡
⎣ 0

1
5

⎤
⎦
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so the eigenvectors of .λ = 4 are just the non-zero linear combinations of the vectors 

. 

⎡
⎣ 1

0
0

⎤
⎦ and

⎡
⎣ 0

1
5

⎤
⎦

Consider .λ = −2. In this case . u must satisfy 

. 

⎡
⎣ 0

0
0

⎤
⎦ = (A − 4I )u =

⎡
⎣ 6 0 0

0 1 1
0 5 5

⎤
⎦

⎡
⎣ x

y

z

⎤
⎦ =

⎡
⎣ 6x

y + z

5y + 5z

⎤
⎦

Therefore .x = 0 and .y = −z. So the eigenvectors for the eigenvalue .λ = −2 are all 
non-zero multiples of 

. 

⎡
⎣ 0

1
−1

⎤
⎦ .

(Just as a verification of Fact 2, it is easy to see that . |A| = 4(−3 − 5) = −32 =
4 × 4 × (−2).) 

A square matrix A is said to be upper (or lower) triangular if its entries below 
(or above) its diagonal are all zero. A square matrix A is a diagonal matrix if all 
entries not on its diagonal are zero. Thus A is then both upper and lower triangular. 
For example, the matrices 

. 

⎡
⎣a d e

0 b f

0 0 c

⎤
⎦ ,

⎡
⎣ a 0 0

d b 0
e f c

⎤
⎦ ,

⎡
⎣a 0 0

0 b 0
0 0 c

⎤
⎦ ,

are, respectively, upper triangular, lower triangular and diagonal .3 × 3 matrices. 
It is not difficult to see that the determinant of an upper or lower triangular matrix 

is the product of its diagonal entries. The determinant of each of the above matrices 
is abc. 

It is also easy to see that if M is a square upper or lower triangular matrix, then 
so is .M − λI and the diagonal entries of .M − λI are simply the diagonal entries of 
M , each with . λ subtracted. So, for example, if the matrix M is a .3 × 3 matrix with 
diagonal entries a, b, c, then .M − λI has diagonal entries .a − λ, .b − λ, . c − λ, so  

. |M − λI | = (a − λ)(b − λ)(c − λ).

It follows that the eigenvalues of M are a, b, c.
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In general, the following statement is true: the eigenvalues of an upper or lower 
triangular square matrix are its diagonal entries. 

Problem 10.18 Find the eigenvalues and their corresponding eigenvectors of the 
matrix 

. 

⎡
⎣ 1 0 1

0 2 0
6 0 0

⎤
⎦ .

Solution 10.18 The characteristic equation of this matrix is 

. 0 =
∣∣∣∣∣∣
1 − λ 0 1

0 2 − λ 0
6 0 −λ

∣∣∣∣∣∣ = (2 − λ)[−λ(1 − λ) − 6]

in which we have expanded by the second row. So, 

. 0 = (2 − λ)(λ2 − λ − 6) = (2 − λ)(λ − 3)(λ + 2).

Therefore the eigenvalues are 2, 3, -2. Next we find the eigenvectors 

. 

⎡
⎣ x

y

z

⎤
⎦

for each eigenvalue. 
Consider .λ = 2. The eigenvectors must satisfy 

. 

⎡
⎣ 0

0
0

⎤
⎦ =

⎡
⎣ 1 − 2 0 1

0 2 − 2 0
6 0 −2

⎤
⎦

⎡
⎣x

y

z

⎤
⎦

That is 

. 

⎡
⎣−1 0 1

0 0 0
6 0 −2

⎤
⎦

⎡
⎣x

y

z

⎤
⎦ =

⎡
⎣ 0

0
0

⎤
⎦

which means .−x + z = 0 and .6x − 2z = 0, while y can be any number.
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Clearly .x = z = 0 is the only solution to the first two equations, so the 

eigenvectors for the eigenvalue 2 are .

⎡
⎣ 0

y

0

⎤
⎦ for any .y �= 0. That is, the non-zero 

multiples of the vector .

⎡
⎣ 0

1
0

⎤
⎦. 

Next, the eigenvectors corresponding to the eigenvalue .λ = 3 satisfy 

. 

⎡
⎣ 1 − 3 0 1

0 2 − 3 0
6 0 −3

⎤
⎦

⎡
⎣x

y

z

⎤
⎦ =

⎡
⎣−2 0 1

0 −1 0
6 0 −3

⎤
⎦

⎡
⎣x

y

z

⎤
⎦ =

⎡
⎣ 0

0
0

⎤
⎦

Therefore .0 = −2x + z = −y = 6x − 3z. So .y = 0 and .z = 2x. Therefore 

the corresponding eigenvectors for .λ = 3 are .

⎡
⎣ x

0
2x

⎤
⎦ for any .x �= 0. That is, the 

non-zero multiples of the vector .

⎡
⎣ 1

0
2

⎤
⎦. 

Finally, the eigenvectors for the eigenvalue .λ = −2 must satisfy 

. 

⎡
⎣ 3 0 1

0 4 0
6 0 2

⎤
⎦

⎡
⎣x

y

z

⎤
⎦ =

⎡
⎣ 0

0
0

⎤
⎦

That is, .3x + z = 4y = 6x + 2z = 0. Therefore .y = 0 and .z = −3x. So the  

eigenvectors are the non-zero multiples of the vector .

⎡
⎣ 1

0
−3

⎤
⎦. 

Problem 10.19 Find the eigenvalues and corresponding eigenvectors of the matrix 

. 

⎡
⎣ 1 3 −1

0 2 4
0 0 5

⎤
⎦ .

Solution 10.19 The eigenvalues are 1, 2 and 5. We find the corresponding eigen-
vectors for each eigenvalue.
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Consider .λ = 1. An eigenvector 

. 

⎡
⎣ x

y

z

⎤
⎦

must satisfy 

. 

⎡
⎣ 0

0
0

⎤
⎦ =

⎡
⎣ 0 3 −1

0 1 4
0 0 4

⎤
⎦

⎡
⎣x

y

z

⎤
⎦ =

⎡
⎣ 3y − z

y + 4z

4z

⎤
⎦

Therefore, .y = z = 0 and x can be any non-zero number. So 

. 

⎡
⎣ 1

0
0

⎤
⎦

and any non-zero multiple is an eigenvector corresponding to .λ = 1. 
Consider .λ = 2. The corresponding eigenvectors must satisfy 

. 

⎡
⎣ 0

0
0

⎤
⎦ =

⎡
⎣−1 3 −1

0 0 4
0 0 3

⎤
⎦

⎡
⎣x

y

z

⎤
⎦ =

⎡
⎣−x + 3y − z

4z

3z

⎤
⎦

Therefore, .z = 0 and .x = 3y, where y is any non-zero number. So 

. 

⎡
⎣ 3

1
0

⎤
⎦

and any non-zero multiple is an eigenvector corresponding to .λ = 2. 
Finally, consider .λ = 5. An eigenvector 

. 

⎡
⎣ x

y

z

⎤
⎦

must satisfy 

.

⎡
⎣ 0

0
0

⎤
⎦ =

⎡
⎣−4 3 −1

0 −3 4
0 0 0

⎤
⎦

⎡
⎣x

y

z

⎤
⎦ =

⎡
⎣−4x + 3y − z

−3y + 4z

0

⎤
⎦
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Therefore, .3y = 4z and .−4x + 3y − z = −4x + 4z − z = 0. That is .4x = 3z and 
.3y = 4z, where z can be any non-zero number. Take .z = 12 then 

. 

⎡
⎣ 9

16
12

⎤
⎦

and any non-zero multiple is an eigenvector corresponding to .λ = 5. 

Problem 10.20 Find the eigenvalues and corresponding eigenvectors of the matrix 

. 

⎡
⎣ 1 3 0

1 1 −1
0 2 1

⎤
⎦ .

Solution 10.20 The characteristic equation is 

. 0 =
∣∣∣∣∣∣
1 − λ 3 0

1 1 − λ −1
0 2 1 − λ

∣∣∣∣∣∣ = (1 − λ)[(1 − λ)2 + 2] − 3(1 − λ))

So, 

. 0 = (1 − λ)(1 − 2λ + λ2 + 2 − 3) = (1 − λ)(λ − 2)λ.

Therefore the eigenvalues are 0, 1, 2. 
The eigenvectors corresponding to the eigenvalue .λ = 0 satisfy 

. 

⎡
⎣ 0

0
0

⎤
⎦ =

⎡
⎣ 1 3 0

1 1 −1
0 2 1

⎤
⎦

⎡
⎣x

y

z

⎤
⎦ =

⎡
⎣ x + y

x + y − z

2y + z

⎤
⎦

That is .x + 3y = 0, .x + y − z = 0 and .2y + z = 0 which simplify to .z = −2y and 

.x = −3y. Therefore the corresponding eigenvectors for .λ = 0 are .

⎡
⎣−3y

y

−2y

⎤
⎦ for any 

.y �= 0. That is, the non-zero multiples of the vector .

⎡
⎣ 3

−1
2

⎤
⎦.
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The eigenvectors corresponding to the eigenvalue .λ = 1 satisfy 

. 

⎡
⎣ 0

0
0

⎤
⎦ =

⎡
⎣ 0 3 0

1 0 −1
0 2 0

⎤
⎦

⎡
⎣x

y

z

⎤
⎦ =

⎡
⎣ 3y

x − z

2y

⎤
⎦

So .y = 0 and .x = z. Therefore .

⎡
⎣ 1

0
1

⎤
⎦ and its non=zero multiples are the 

eigenvectors. 
Finally, the eigenvectors corresponding to the eigenvalue .λ = 2 satisfy 

. 

⎡
⎣ 0

0
0

⎤
⎦ =

⎡
⎣−1 3 0

1 −1 −1
0 2 −1

⎤
⎦

⎡
⎣x

y

z

⎤
⎦ =

⎡
⎣ −x + 3y

x − y − z

2y − z

⎤
⎦

which is satisfied for .x = 3y and .z = 2y for any .y �= 0. Therefore the corresponding 

eigenvectors for .λ = 2 are the non-zero multiples of .

⎡
⎣ 3

1
2

⎤
⎦. 

Problem 10.21 Find the eigenvalues and corresponding eigenvectors of the matrix 

. A =
⎡
⎣ 2 0 0

4 1 0
1 3 2

⎤
⎦ .

Solution 10.21 The eigenvalues are 1, 2, 2 (the matrix is lower triangular). An 
eigenvector 

. u =
⎡
⎣x

y

z

⎤
⎦

for the eigenvalue .λ = 1 must satisfy 

.

⎡
⎣ 0

0
0

⎤
⎦ = (A − I )u =

⎡
⎣ 1 0 0

4 0 0
1 3 1

⎤
⎦

⎡
⎣x

y

z

⎤
⎦ =

⎡
⎣ x

4x

x + 3y + z

⎤
⎦
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Therefore .x = 0 and .z = −3y. So  

. u =
⎡
⎣ 0

y

−3y

⎤
⎦ = y

⎡
⎣ 0

1
−3

⎤
⎦ ,

where .y �= 0, Therefore, any non-zero multiple of .

⎡
⎣ 0

1
−3

⎤
⎦ is an eigenvector 

corresponding to .λ = 1. 
For the eigenvalue .λ = 2 (which has multiplicity 2) an eigenvector . u must satisfy 

. 

⎡
⎣ 0

0
0

⎤
⎦ =

⎡
⎣ 0 0 0

4 −1 0
1 3 0

⎤
⎦

⎡
⎣x

y

z

⎤
⎦ =

⎡
⎣ 0

4x − y

x + 3y

⎤
⎦

Therefore .x = y = 0 and z can be any non-zero number. That is 

. u =
⎡
⎣ 0

0
z

⎤
⎦ = z

⎡
⎣ 0

0
1

⎤
⎦ ,

where .z �= 0, Therefore, any non-zero multiple of .

⎡
⎣ 0

0
1

⎤
⎦ is an eigenvector 

corresponding to .λ = 2. 

Self-Assessment Questions 

1. Let .A =
[

0 1
2 −1

]
and .B =

[
1 0
2 3

]
. Determine the matrices: AB, BA, .A + B, 

.A − B, . A2, . At and .A(A + B). 

2. Let .A =
⎡
⎣ 2 1 −1

−2 4 1
1 3 1

⎤
⎦, .B =

[
2 0 −1
0 −1 4

]
and .C =

⎡
⎣ 1

0
−1

⎤
⎦. Determine 

the matrices BA, AC and BC. 
3. Evaluate the determinant 

.

∣∣∣∣∣∣
3 1 1
2 1 −1
0 2 0

∣∣∣∣∣∣
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4. For what value of c is the matrix .

[
3 c

2 1

]
not invertible? 

5. For what value of b is the matrix .

⎡
⎣ 3 0 0

1 2 1
−1 b 2

⎤
⎦ not invertible? 

6. Find the inverse matrix of . 

[
3 1
1 4

]

7. Find the eigenvalues and the corresponding eigenvectors of each of the 

matrices: (i) .

[
1 2

−3 6

]
; (ii) .

[
2 3
4 6

]
; (iii) . 

[
4 1

−1 2

]

8. Find the eigenvalues and the corresponding eigenvectors of each of the 

matrices: (i) .

⎡
⎣ 3 0 0

4 1 0
−1 1 −2

⎤
⎦; (ii) .

⎡
⎣ 1 0 −1

2 2 0
−1 0 1

⎤
⎦; (iii) . 

⎡
⎣ 0 0 2

−1 1 2
0 0 1

⎤
⎦

Exercises 

1. Find the inverse, where it exists, of each of the matrices 

. 

[
5 2
6 3

]
,

[
3 −1

−15 5

]
,

[
3 −2

−4 3

]
,

[−2 2
4 −3

]
,

[
3 0
0 5

]
,

[
0 1
1 0

]
.

2. The equilibrium prices . P1, . P2 for two goods satisfy the equations 

. 4P1 − 3P2 = 11

−6P1 + 7P2 = 8.

Express these equations in matrix form. Hence, by inverting the matrix, solve 
for . P1, . P2. Also solve these equations by Cramer’s rule. 

3. Let . B =
[

3 2
0 −1

]
, C =

[
2 2

−1 −2

]
, D =

[
1 1
0 2

]
.

If .B = ED, B = DF , and .AB = AC + D, determine .E, F , and . A.

4. If .XB = X + C, where B and C are as in the previous exercise, find the . 2 × 2
matrix X.
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5. Determine which of the matrices 

. 

⎡
⎣ 1 1 1

1 1 0
1 1 1

⎤
⎦ ,

⎡
⎣ 1 1 1

1 1 0
1 0 0

⎤
⎦ ,

⎡
⎣ 2 2 3

3 1 5
1 −7 3

⎤
⎦

are invertible. 
(You do not have to find inverses.) 

6. Find (i) .|A|; (ii) the cofactor matrix of . A; (iii) adj . A, where A is the matrix 

. 

⎡
⎣ 2 5 3

4 5 2
7 7 1

⎤
⎦ .

Hence find . A−1.

7. Determine the equilibrium prices .P1, P2, P3 of three interdependent com-
modities that satisfy 

. 

2P1 + 5P2 + 3P3 = 136
4P1 + 5P2 + 2P3 = 132
7P1 + 7P2 + P3 = 160

using matrices or Cramer’s rule. 
8. Find the eigenvalues and corresponding eigenvectors of each of the following 

matrices: 

. (i)

[
5 −2
0 4

]
; (ii)

[
3 1
3 5

]
; (iii)

[
2 −1
1 4

]
; (iv)

[
3 1
6 2

]
; (v)

[
2 5
2 −1

]

9. Find the eigenvalues and corresponding eigenvectors of each of the following 
matrices: 

. (i)

⎡
⎣ 1 0 1

0 2 0
6 0 0

⎤
⎦ ; (ii)

⎡
⎣ 0 1 3

3 1 0
−1 0 1

⎤
⎦ ; (iii)

⎡
⎣ 1 0 −1

1 2 1
2 2 3

⎤
⎦ ;

.(iv)

⎡
⎣ 1 3 0

1 1 −1
0 2 1

⎤
⎦ ; (v)

⎡
⎣ 1 5 0

2 4 0
0 −5 1

⎤
⎦
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� Key Learning Outcomes
On completion of this chapter students should be able to:

• Integrate simple functions of a single variable.
• Evaluate definite integrals.
• Find the area under a graph.
• Evaluate the consumer’s surplus (CS) and producer’s surplus (PS).
• Calculate the extra cost in increasing production of a good, given the

marginal cost function (MC).
• Calculate the total revenue (TR) for a given output, given the marginal

revenue function (MR).
• Integrate functions using integration by substitution, integration by parts

or using partial fractions.

11.1 Introduction 

Differentiating a function .f (x) gives its derivative .f ′(x), which is also a function of 
x. Geometrically, we can view .f ′(x) as giving the slope of the tangent at any point
on the graph of .y = f (x) or, equivalently, the rate of change of .f (x) with respect
to x at that point.

Integrating a function .f (x) also gives a function .F(x) of x whose derivative 
.F ′(x) = f (x). For this reason, integration can be used to recover an economic 
function from its corresponding marginal. For instance, it can be used to find the 
total revenue function T R  given the marginal revenue MR. 

A useful geometric interpretation of .F(x) is as a measure of the area under the 
graph of .y = f (x). This can be used to compute either the consumer’s or producer’s 
surplus. Another application is to compute the extra cost to a company for increasing 
production, given the company’s marginal cost function. 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
V. C. Mavron, T. N. Phillips, Elements of Mathematics for Economics and Finance,
Classroom Companion: Economics, https://doi.org/10.1007/978-3-031-43910-0_11

265

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43910-0protect T1	extunderscore 11&domain=pdf
https://doi.org/10.1007/978-3-031-43910-0_11
https://doi.org/10.1007/978-3-031-43910-0_11
https://doi.org/10.1007/978-3-031-43910-0_11
https://doi.org/10.1007/978-3-031-43910-0_11
https://doi.org/10.1007/978-3-031-43910-0_11
https://doi.org/10.1007/978-3-031-43910-0_11
https://doi.org/10.1007/978-3-031-43910-0_11
https://doi.org/10.1007/978-3-031-43910-0_11
https://doi.org/10.1007/978-3-031-43910-0_11
https://doi.org/10.1007/978-3-031-43910-0_11
https://doi.org/10.1007/978-3-031-43910-0_11


266 11 Integration

Integration can be regarded as the inverse operation to differentiation in that it 
operates on a function .f (x) to produce a function .F(x) whose derivative . F ′(x) =
f (x). The function .F(x) is the integral of .f (x) with respect to the variable x. 
Symbolically, we write 

. F(x) =
∫

f (x)dx

to mean 

. F ′(x) = f (x).

Integrating a function .f (x) means finding its integral; that is, finding a function 
whose derivative is .f (x). 

For example, to integrate the function .f (x) = x, with respect to x, means to find 
a function whose derivative is x. We know that 

. 
d

dx
(x2) = 2x;

so 

. 
d

dx

(
1

2
x2

)
= 1

2

d

dx
(x2) = x.

Therefore, 

. x2 =
∫

2xdx

and 

. 
1

2
x2 =

∫
xdx.

However, note that if k is any constant, then also 

. 
d

dx
(x2 + k) = 2x,

since the derivative of k is 0. Therefore, we should really write 

. 

∫
2xdx = x2 + k,

where k is an arbitrary constant, known as a constant of integration.
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More generally, if 

. 

∫
f (x)dx = F(x),

then .F(x) is unique only to within the addition of an arbitrary constant. That is, 

. 

∫
f (x)dx = F(x) + k,

where k is any constant. As we shall see later, in certain circumstances we can 
determine k. 

In the integration examples that follow, we shall tacitly assume that an arbitrary 
constant may be added. 

To sum up, if u, v are functions of x, then 

. u =
∫

vdx means
du

dx
= v.

Problem 11.1 Determine u given that .
du

dx
= 2x and that .u = 5 when .x = 1. 

Solution 11.1 Since . du
dx

= 2x, then .u = ∫
2xdx = x2 + k, where k is some 

constant. When .x = 1, then .5 = u = 12 + k = 1 + k. Therefore, .k = 4 and so 
.u = x2 + 4. 

Our aim now is to see how to integrate polynomials in general. We have noted 
already that . 12x2 = ∫

xdx. More generally, we know from (6.5) that 

. 
d

dx
(xn) = nxn−1.

Therefore if .n �= 0, then 

. 
d

dx

(
1

n
xn

)
= 1

n

d

dx
(xn) = xn−1.

It follows that . 1
n
xn = ∫

xn−1dx. If we write m for .n − 1, so that .n = m + 1, then 
we can rewrite this as 

.
1

m + 1
xm+1 =

∫
xmdx (m �= −1)
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Thus we can now integrate any power of x, except .x−1. However, from (6.12) 
we know that 

. 
d

dx
(ln x) = 1

x
= x−1.

Therefore 

. ln x =
∫

x−1dx

Problem 11.2 Integrate each of the following functions with respect to x 

1. . x5

2. . x−2

3. . x
1
2

4. 1. 

Solution 11.2 

1. .
∫

x5dx = 1

5 + 1
x5+1 = 1

6
x6. 

2. .
∫

x−2dx = 1

−2 + 1
x−2+1 = −x−1. 

3. .
∫

x
1
2 dx = 1

1
2 + 1

x
1
2 +1 = 2

3
x

3
2 . 

4. .
∫

1dx =
∫

x0dx = 1

0 + 1
x0+1 = x. 

Note that it is customary to write .
∫

dx rather than .
∫

1dx. 
We can check each of these integrations by differentiating the right-hand side to 

see if we get what is under the integral sign. For instance 

. 
d

dx

(
2

3
x

3
2

)
= 2

3

d

dx
(x

3
2 ) = 2

3
× 3

2
x

3
2 −1 = x

1
2

in the third problem and 

. 
dx

dx
= 1

in the last.
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11.2 Rules of Integration 

1. If f (x)  is a function of x and α is any constant, then 

. 

∫
αf (x)dx = α

∫
f (x)dx.

(Thus a constant factor may be taken outside the integral sign.) 
2. If u, v are functions of x, then 

. 

∫
(u + v)dx =

∫
udx +

∫
vdx.

That is, to integrate the sum of two functions, integrate each function and add the 
two integrals. Similarly for differences: 

. 

∫
(u − v)dx =

∫
udx −

∫
vdx.

These two rules combined give the rule that if u, v, . . . are functions of x and if 
α, β, . . . are constants, then 

. 

∫
(αu + βv + . . .)dx = α

∫
udx + β

∫
vdx + . . .

Problem 11.3 Integrate each of the following functions with respect to x 

1. 4x2 

2. 4x2 − 3x + 5 
3. (3x − 1)x 
4. 

2x − 3 

x 
5. 8 − √

x. 

Solution 11.3 

1.
∫

4x2dx = 4
∫

x2dx = 4 × 1 
2+1x2+1 = 4 

3x3. Strictly, the answer is 4 
3x3 + k 

where k is any constant. However, as has already been mentioned, the arbitrary 
constant is tacitly understood when evaluating indefinite integrals and only noted 
if required. 

2.
∫
(4x2 −3x +5)dx = 4

∫
x2dx −3

∫
xdx +5

∫
dx = 4× 1 

3x3 −3× 1 
2x2 +5x = 

4 
3x3 − 3 

2x2 + 5x. (Recall that
∫

dx = ∫
1dx = x.) 

3.
∫
(3x−1)xdx = ∫

(3x2−x)dx = 3
∫

x2dx−∫
xdx = 3× 1 

3x3− 1 
2x2 = x3− 1 

2x2.
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4.
∫

2x − 3 

x 
dx =

∫ (
2 − 

3 

x

)
dx = 2

∫
dx − 3

∫
x−1dx = 2x − 3 ln  x. 

5.
∫
(8−√

x)dx = ∫
(8−x 

1 
2 )dx = 8

∫
dx−∫

x 
1 
2 dx = 8x− 1 

1 
2 +1 

x 
1 
2 +1 = 8x− 2 

3x 
3 
2 . 

In the next three problems, integration is used to determine a standard function 
in economics when the corresponding marginal function is given. 

Problem 11.4 A firm’s marginal cost function is MC = Q2 + 3Q + 8. Find the 
total cost function T C  if the fixed costs are 250 units of money. 

Solution 11.4 By definition, 

. 
d

dQ
(T C) = MC = Q2 + 3Q + 8.

Therefore, 

. T C =
∫

(Q2 + 3Q + 8)dQ.

(Here the variable is now Q rather than x.) Therefore, 

. T C =
∫

Q2dQ + 3
∫

QdQ + 8
∫

dQ = 1

3
Q3 + 3

(
1

2
Q2

)
+ 8Q + k,

where k is some constant. When the output Q is 0, the only costs are the fixed costs. 
So T C  = 250 when Q = 0. This means that 250 = k. Therefore, 

. T C = 1

3
Q3 + 3

2
Q2 + 8Q + 250.

Problem 11.5 Given that the marginal propensity to consume 

. MPC = 0.15 + 0.2√
Y

,

where Y denotes income, find the consumption function C and savings function S 
if consumption is 135 units when Y = 100 money units. 

Solution 11.5 Since, by definition, 

.MPC = dC

dY
,
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then 

. 
dC

dY
= 0.15 + 0.2√

Y
= 0.15 + 0.2Y− 1

2 .

Therefore, 

. C =
∫

(0.15 + 0.2Y− 1
2 )dY

= 0.15
∫

dY + 0.2
∫

Y− 1
2 dY

= 0.15Y + 0.2 × 1

(− 1
2 ) + 1

Y (− 1
2 )+1 + k,

where k is some constant. Therefore, 

. C = 0.15Y + 0.4Y
1
2 + k.

Since C = 135 when Y = 100, then 

. 135 = 0.15 × 100 + 0.4 × 100
1
2 + k = 19 + k.

So k = 116 and therefore 

. C = 0.15Y + 0.4
√

Y + 116.

Since Y = C + S, then S = Y − C. Therefore, 

. S = 0.85Y − 0.4
√

Y − 116.

Problem 11.6 If the marginal revenue function MR = 15 − 6Q, determine the 
total revenue function T R  and the demand function. 

Solution 11.6 Since, by definition, 

. 
d

dQ
(T R) = MR = 15 − 6Q,

then 

.T R =
∫

(15 − 6Q)dQ = 15
∫

dQ − 6
∫

QdQ = 15Q − 6

(
1

2
Q2

)
+ k,
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where k is some constant. Therefore, 

. T R = 15Q − 3Q2 + k.

Obviously T R  = 0 when demand Q = 0. So k = 0 and therefore 

. T R = 15Q − 3Q2.

Since T R  = PQ, where P is the unit price of the good, then 

. P = T R

Q
= 15Q − 3Q2

Q
= 15 − 3Q.

The demand function is therefore P = 15 − 3Q. 

Before ending this section, we mention one more standard integral. We saw in 
(6.11) that 

. 
d

dx
(eax) = aeax

if a is a constant. It follows that if a �= 0, then 

. 
d

dx

(
1

a
eax

)
= 1

a

d

dx
(eax) = eax.

Therefore, 

1 

a 
eax =

∫
eax dx. 

Problem 11.7 Integrate the function 5e−2x with respect to x. 

Solution 11.7 

.

∫
5e−2xdx = 5

∫
e−2xdx = 5

(
1

−2

)
e−2x = −5

2
e−2x.
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Problem 11.8 A model for the population N (in millions) of a certain country over 
10 years, from the beginning of the year 2000 until the end of 2010, assumes the 
population will decrease exponentially and that the rate of decrease is given by 

. 
dN

dt
= −15e−0.5t

where t is the number of years since the beginning of the year 2000. 
Express N as a function of t , given that at the start of 2000, the population is 

100 million. 
What will the population be at the end of 2010? In what year will the population 

fall to 75 million? If we assume this model is valid indefinitely, what population is 
predicted in the long run? 

Solution 11.8 From the given expression for dN 
dt we deduce 

. N =
∫

(−15e−0.5t )dt = −15
∫

e−0.5t dt.

Therefore, 

. N = −15

(
1

−0.5

)
e−0.5t + k = 30e−0.5t + k,

where k is a constant. Since we are given that N = 100 when t = 0, then 100 = 
30e0 + k = 30 + k. So k = 70. Therefore 

. N = 30e−0.5t + 70.

At the end of 2010, t = 10. This means N = 30e−5 + 70 = 70.2 (to 1 decimal 
place). 

The population reaches 75 million when 

. 75 = 30e−0.5t + 70.

That is 

. e−0.5t = 5

30
,

or 

.e0.5t = 30

5
= 6
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Fig. 11.1 The graph of N(t)  = 30e−0.5t + 70. The dashed line corresponds to N = 70 

(since e−x = 1 
ex ). Therefore 0.5t = ln 6 and so 

. t = ln 6

0.5
= 3.6 (to 1 decimal place).

The population is therefore 75 million in 2004. 
In the long run, the term e−0.5t approaches 0 and so N will approach the value 

70 million (see Fig. 11.1). 

11.3 Definite Integrals 

The integral of a function of a variable x, as discussed previously, is itself a function 
of x. More precisely, it is called an indefinite integral. A  definite integral has, as 
the name might suggest, a definite numerical value. 

To be more specific, let .F(x) = ∫
f (x)dx. Then the function .F(x) is the 

indefinite integral of .f (x) with respect to x. The definite integral of .f (x) between 
.x = a and .x = b is denoted by .

∫ b

a
f (x)dx and defined to be the number 

.F(b) − F(a). The numbers a and b are the limits of the integration. For short, 
we can write .[F(x)]ba for .F(b) − F(a).
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Notice that although .F(x) can have an arbitrary constant added to it, the constant 
will disappear when evaluating .F(b) − F(a). To sum up 

The definite integral 

. 

∫ b

a

f (x)dx = [F(x)]ba = F(b) − F(a),

where .F(x) =
∫

f (x)dx is the indefinite integral. 

Thus to evaluate a definite integral, one needs first to find the indefinite integral, 
evaluate it at the two limits of integration, and then take the difference of these 
values. 

Problem 11.9 Evaluate the following 

1. .
∫ 2

0 x2dx, 

2. .
∫ 1

0 e4xdx, 

3. .
∫ 3

1
1
x
dx, 

4. .
∫ 2

1 (6x2 − 3x + 5)dx. 

Solution 11.9 

1. .
∫ 2

0 x2dx =
[

1
3x3

]2

0
(since . 13x3 = ∫

x2dx). 

Therefore .
∫ 2

0 x2dx =
[

1
3x3

]2

0
= 1

3 (8 − 0) = 8
3 . 

2. .
∫ 1

0 e4xdx =
[

1
4e4x

]1

0
= 1

4 (e4 − e0) = 1
4 (e4 − 1) = 13.400 (correct to 3 decimal 

places). 
3. .

∫ 3
1

1
x
dx (sometimes written as .

∫ 3
1

dx
x

) . = [ln x]3
1 = ln 3 − ln 1 = ln 3 = 1.099

(correct to 3 decimal places). 

4. .
∫ 2

1 (6x2−3x+5)dx =
[
2x3 − 3

2x2 + 5x
]2

1
= (16−6+10)−(2− 3

2 +5) = 14.5.
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11.4 Definite Integration: Area and Summation 

The integral sign . 
∫

originated in the seventeenth century as an elongated S, 
suggestive of the aspect of integration as a summation process, leading to a method 
for calculating areas under graphs. 

Given a function .y = f (x), let  A, B be two points on the x-axis with coordinates 
.(a, 0), .(b, 0) respectively, where .a ≤ b (see Fig. 11.2). We refer to the area enclosed 
by the graph of .y = f (x), the  x-axis and the vertical lines .x = a and . x = b, simply  
as the area under the graph between A and B (or between .x = a and .x = b). 

(For the following discussions, we assume that the function .f (x) is continuous 
between .x = a and .x = b, which essentially means that the graph of .y = f (x) for 
this range of x is continuous, that is has no breaks.) 

It can be shown that the area under the graph of .y = f (x) between .x = a and 
.x = b is the value of the definite integral .

∫ b

a
f (x)dx. Here is a rough outline why 

this is so. Let P with coordinates .(x, 0) be a general point on the x-axis between A 
and B. Let .S(x) be the area under the graph of .y = f (x) between A and P . 

A very small vertical strip of width .�x of this area can be regarded as rectangular 
of width .�x and height .y (= f (x)). If .�S denotes the area of this strip, then . �S =
y�x so that . �S

�x
= y. As .�x gets smaller and smaller (approaches 0), the ratio 

A B 
x  x+  xΔ x 

y 

(x,y) 
y=f(x) 

S SΔ 

0 
P 

Fig. 11.2 An illustration of the definite integral as the area under a graph
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.
�S
�x

approaches, by definition, the derivative . dS
dx

. Therefore . dS
dx

= y = f (x). So  
.S(x) = F(x) + k, where .F(x) is the (indefinite) integral .

∫
f (x)dx and k is some 

constant. 
Obviously .S(a) = 0, since .S(a) is just the area under the graph between A and 

A (the case .P = A). Therefore .0 = S(a) = F(a)+k and so .k = −F(a). Therefore 
.S(x) = F(x) + k = F(x) − F(a). 

In particular the area under the graph between .x = a and .x = b (the case 
. P = B) is .S(b) = F(b) − F(a), which, by definition, is .

∫ b

a
f (x)dx, since .F(x) is 

the indefinite integral .
∫

f (x)dx. To sum up: 

The area under the graph of .y = f (x) between .x = a and .x = b is the 
definite integral 

. 

∫ b

a

f (x)dx.

Here are some rules for definite integrals. They follow easily from the defini-
tion. 

1. .
∫ b

a

f (x)dx = −
∫ a

b

f (x)dx; 

2. .
∫ a

a

f (x)dx = 0; 

3. .
∫ b

a

f (x)dx +
∫ c

b

f (x)dx =
∫ c

a

f (x)dx. 

To see why these rules hold, let the indefinite integral .
∫

f (x)dx = F(x). Then, by 

definition, .
∫ b

a
f (x)dx = F(b) − F(a) = −(F (a) − F(b)) = − ∫ a

b
f (x)dx. This  

proves Rule 1. Since .F(a) − F(a) = 0, Rule 2 follows immediately. Finally, Rule 
3 follows easily from the fact that .F(b) − F(a) + F(c) − F(b) = F(c) − F(a). 

A brief word of warning. The mathematics involved treats areas below the x-
axis as negative (since y is negative there). Therefore, more precisely, .

∫ b

a
f (x)dx is 

the difference of the total area above the x-axis and that under the x-axis, between 
.x = a and .x = b. 

Problem 11.10 Find the area under the graph of .y = x2 + 5: 

1. between .x = 0 and .x = 1; 
2. between .x = 1 and .x = 2; 
3. between .x = 0 and .x = 2. 

(See Fig. 11.3.)
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Fig. 11.3 The graph of . y = x2 + 5

Solution 11.10 

1. .
∫ 1

0 (x2 + 5)dx =
[

1
3x3 + 5x

]1

0
= ( 1

3 + 5) − 0 = 5 1
3 ; 

2. .
∫ 2

1 (x2 + 5)dx =
[

1
3x3 + 5x

]2

1
= ( 8

3 + 10) − ( 1
3 + 5) = 7 1

3 ; 

3. .
∫ 2

0 (x2 + 5)dx =
[

1
3x3 + 5x

]2

0
= ( 8

3 + 10) − 0 = 12 2
3 . 

This illustrates Rule 3 for definite integrals since the value of the integral in 
Problem 11.10.3 is the sum of the values of those in Problems 11.10.1 and 11.10.2. 

Problem 11.11 Find the area in the first quadrant enclosed by the graph of . y = 4x2

and the y-axis and the line .y = 1 (the shaded area in Fig. 11.4).
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Fig. 11.4 The graph of . y = 4x2

Solution 11.11 Note that when .y = 1 then .x2 = 1
4 and so .x = 1

2 in the first 
quadrant. We want the area of the rectangle ABCO (see Fig. 11.4) less the area 
under the graph between .x = 0 and .x = 1

2 . That is 

. 1 × 1

2
−

∫ 1
2

0
4x2dx = 1

2
− 4

∫ 1
2

0
x2dx = 1

2
− 4

[
1

3
x3

] 1
2

0

= 1

2
− 4

(
1

24
− 0

)
= 1

2
− 1

6
= 1

3
.

Problem 11.12 Find the area under the graph of .y = e2x between .x = 0 and . x = 1
(the shaded area in Fig. 11.5). 

Solution 11.12 

.

∫ 1

0
e2xdx =

[
1

2
e2x

]1

0
= 1

2
(e2 − e0)

= 1

2
(e2 − 1) = 3.19 (correct to 2decimal places)
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Fig. 11.5 The graph of . y = e2x

Problem 11.13 Find the area under the graph of .y = 1
x

between .x = 1 and .x = 2. 

Solution 11.13 Since .
∫ 1

x
dx = ln x, then . 

∫ 2
1

1
x
dx = [ln x]2

1 = ln 2 − ln 1 = ln 2 −
0 = ln 2 = 0.69 (to 2 decimal places). 

Problem 11.14 Find the area that is enclosed completely between the graphs of 
.y = x2 and .y = 8x − x2 (see Fig. 11.6). 

Solution 11.14 The graphs meet at .(x, y) where .x2 = y = 8x − x2. That is, 
.2x2 − 8x = 0, or .2x(x − 4) = 0. The only solutions to this equation are .x = 0 and 
.x = 4. So the graphs meet at the origin and at the point .(4, 16). The required area 
is 

.

∫ 4

0
(8x − x2)dx −

∫ 4

0
x2dx =

∫ 4

0
(8x − 2x2)dx = 2

∫ 4

0
(4x − x2)dx

= 2

[
2x2 − 1

3
x3

]4

0
= 2

(
32 − 64

3
− 0

)

= 64

3
= 21

1

3
.



11.4 Definite Integration: Area and Summation 281

2 4 6 8 
0 

5 

10 

15 

20 

25 

30 

y=x2 

y=8x-x2 

(4,16) 

y 

x 

Fig. 11.6 The graphs of the functions .y = x2 and . y = 8x − x2

The summation aspect of definite integration can be seen from the sketched proof 
that .

∫ b

a
f (x)dx is the area under the graph of .y = f (x) between .x = a and .x = b. 

In Fig. 11.2, each small strip has area .y�x. Integrating gives the sum of all these 
small areas in the limiting case as strip widths .�x tend to 0. Put another way, if 
for each value of x between a and b we evaluate .f (x) and multiply it by a small 
increment of x and sum, the total is the definite integral .

∫ b

a
f (x)dx in the limit as 

the increments approach 0. 
(If we abuse notation and regard dx as an infinitesimal increment of x, then 

.
∫ b

a
f (x)dx ‘sums’ all the products .f (x)dx as x ranges between a and b. We have  

touched here on the subject of differentials that is discussed in Appendix A.) 
To illustrate this way of thinking, consider a good where the price P per unit 

charged by the supplier is a function of Q, the quantity supplied. If P is constant, 
say .P = P0, the revenue from supplying .Q0 units of the good is just . P0Q0. This  
is the area of the rectangle in Fig. 11.7 or equivalently the area under the graph of 
.P = P0 between .Q = 0 and .Q = Q0. 

Consider the more general situation when the price P varies with Q, the supply 
curve. If a quantity .Q0 is supplied at the prevailing price . P0, the revenue is .P0Q0. 
However, in practice, the quantity . Q0 may be supplied in smaller quantities totalling 
. Q0. As each small quantity .�Q is supplied, the price P per unit changes. If . �Q

is very small we can assume the price per unit does not change as Q increases to
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Fig. 11.7 The graph of the supply curve .P = P0, where . P0 is constant. The area of the rectangle 
provides the revenue 

.Q+�Q, so that the revenue for supplying the quantity .�Q is .P ×�Q (the shaded 
area in Fig. 11.8). 

The revenue for supplying a total quantity .Q0 in small quantities .�Q is the sum 
of all these small areas which, as .�Q gets smaller and smaller (i.e., tends to 0), 
approaches in value the area under the supply curve between .Q = 0 and .Q = Q0. 
This area is 

. 

∫ Q0

0
PdQ.

This number can be regarded as, theoretically, the total revenue obtained for 
supplying .Q0 units of the good in a continuous supply flow. More generally, 

. 

∫ B

A

PdQ,

is the revenue produced as the quantity supplied, in this way, increases from A to B.
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Fig. 11.8 Graph illustrating the supplier’s revenue as the area under the supply curve 

11.5 Producer’s Surplus 

This is a measure of the producer’s satisfaction or of willingness to supply a good. 
We assume the price P is a function of quantity Q. 

If the prevailing price for a quantity .Q0 of the good is . P0, then at that price 
the producer’s revenue is .P0Q0, the area of the rectangle .OP0AQ0 in Fig. 11.9. 
However, the producer was willing to supply the .Q0 units of the good at lower 
prices in smaller quantities. The area under the supply curve .

∫ Q0
0 PdQ between 

.Q = 0 and .Q = Q0 represents the producer’s revenue for supplying .Q0 units in a 
continuous supply flow. 

The difference between these two revenues, represented by the shaded area in 
Fig. 11.9, is  

. P0Q0 −
∫ Q0

0
PdQ

and is known as the producer’s surplus. It measures the benefit to the producer of 
supplying all .Q0 units at the prevailing price . P0.
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Fig. 11.9 Graph showing the producer’s surplus 

11.6 Consumer’s Surplus 

This is a measure of consumer utility: benefit, satisfaction, or willingness to buy a 
particular good at the prevailing price. Again we assume that the price P per unit of 
the good is a function of the demand Q. 

The following account is analogous to that for the producer’s surplus. If the 
prevailing price for a quantity .Q0 is . P0, the consumer would pay .P0Q0 for the 
goods, which is the area of the rectangle .OP0BQ0 in Fig. 11.10. 

However, if the consumer were to buy the same quantity .Q0 in a continuous 
purchase flow, the cost would be .

∫ Q0
0 PdQ, the area under the demand graph 

between .Q = 0 and .Q = Q0. 
Therefore by buying at the prevailing price, the consumer benefits by the 

difference of these two costs 

. 

∫ Q0

0
PdQ − P0Q0

which is known as the consumer’s surplus. It is represented by the shaded area in 
Fig. 11.10.
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Fig. 11.10 Graph showing the consumer’s surplus 

Problem 11.15 Find the consumer’s surplus if the demand function is . P = 17 −
5Q, when the demand Q is 2. 

Solution 11.15 Here . Q0 = 2, so .P0 = 17 − 5Q0 = 17 − 10 = 7. Therefore 
.P0Q0 = 14 and 

. 

∫ 2

0
PdQ =

∫ 2

0
(17 − 5Q)dQ =

[
17Q − 5

2
Q2

]2

0
= (34 − 10) − 0 = 24.

Therefore the consumer’s surplus is .
∫ 2

0 PdQ − P0Q0 = 24 − 14 = 10. 

Problem 11.16 If the demand equation is 

. P = 8√
Q

,

find the consumer’s surplus when .P = 4.
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Solution 11.16 We have .P0 = 4, and .Q0 is found from the equation . 4 = P0 =
8√
Q0

. Therefore .
√

Q0 = 8
4 = 2, and so .Q0 = 4, .P0Q0 = 4 × 4 = 16, and 

. 

∫ 4

0
PdQ =

∫ 4

0

8√
Q

dQ

= 8
∫ 4

0
Q− 1

2 dQ

= 8

[
1

− 1
2 + 1

Q− 1
2 +1

]4

0

= 8
[
2Q

1
2

]4

0

= 8[2 × 2 − 0]
= 32.

Therefore, the consumer’s surplus is 

. 

∫ 4

0
PdQ − P0Q0 = 32 − 16 = 16.

Problem 11.17 Find the producer’s surplus at .Q = 5 if the supply function is 
.P = 7 + 4Q. 

Solution 11.17 Since .Q0 = 5, then .P0 = 7 + 4 × 5 = 27, so .P0Q0 = 135 and 

. 

∫ 5

0
PdQ =

∫ 5

0
(7 + 4Q)dQ = [7Q + 2Q2]5

0 = 35 + 50 − 0 = 85.

The producer’s surplus is 

. P0Q0 −
∫ Q0

0
PdQ = 135 − 85 = 50.

Figure 11.11 illustrates this problem. The shaded area represents the producer’s 
surplus. 

Problem 11.18 Given the demand function .P = 70−4Qd and the supply function 
.P = 5 + Qs , evaluate the consumer’s surplus and the producer’s surplus, assuming 
equilibrium.
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Fig. 11.11 Producer’s surplus for Problem 11.17 

Solution 11.18 In equilibrium, .Qd = Qs . Let  Q be this common value. Then the 
equilibrium price is given by 

. 70 − 4Q = P = 5 + Q.

Therefore .70 − 5 = Q + 4Q and so .65 = 5Q and .Q = 13. The equilibrium price 
is then .P = 5 + Q = 18. 

To calculate the consumer’s surplus, we use the consumer’s demand function in 
equilibrium: .P = 70 − 4Q. The consumer’s surplus is therefore: 

.

∫ 13

0
PdQ − 13 × 18 =

∫ 13

0
(70 − 4Q)dQ − 234

=
[
70Q − 2Q2

]13

0
− 234

= (910 − 338 − 0) − 234 = 338.
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For the producer’s surplus, use the producer’s supply function in equilibrium: . P =
5 + Q. The producer’s surplus is therefore: 

. 13 × 18 −
∫ 13

0
PdQ = 234 −

∫ 13

0
(5 + Q)dQ

= 234 −
[

5Q + 1

2
Q2

]13

0

= 234 − (65 + 84.5 − 0) = 84.5

Problem 11.19 Given the demand function .P = 25 − Q − 0.3Q2, by how much 
does the consumer’s surplus change if Q increases from 5 to 6 units? 

Solution 11.19 If .Q0 = 5, then .P0 = 12.5 and the consumer’s surplus is 

. 

∫ 5

0
PdQ − 5 × 12.5 =

∫ 5

0
(25 − Q − 0.3Q2)dQ − 62.5

=
[

25Q − 1

2
Q2 − 0.1Q3

]5

0
− 62.5

= 125 − 12.5 − 12.5 − 62.5

= 37.5

When .Q0 = 6, then .P0 = 8.2 and the consumer’s surplus is 

. 

∫ 6

0
PdQ − 6 × 8.2 =

∫ 6

0
(25 − Q − 0.3Q2)dQ − 49.2

=
[

25Q − 1

2
Q2 − 0.1Q3

]6

0
− 49.2

= 150 − 18 − 21.6 − 49.2

= 61.2

The consumer’s surplus therefore increases by .23.7 units. 

Integration may be used to reconstruct a function from its corresponding 
marginal function. Put another way, given .f ′(x), the rate of change relative to x 
of a function .f (x) of x, then integration can be used to determine .f (x). 

For instance, given a marginal cost function .MC = d
dQ

(T C), the total cost 
function T C  is given by .T C = ∫

MCdQ. This indefinite integral is in general 
a function of Q.
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The extra costs as a result of raising production from .Q = A to .Q = B units 
is the difference of the values of this indefinite integral evaluated at .Q = A and 
.Q = B. From the definition of a definite integral, this difference is .

∫ B

A
MCdQ. 

This is a special case of the more general equation 

.

∫ b

a

f ′(x)dx = f (b) − f (a) (11.1) 

which is obvious because the integral of the derivative .f ′(x) of .f (x) is . f (x)

(since differentiation and integration are inverse operations). Then (11.1) follows 
by definition of the definite integral. 

Problem 11.20 A company’s marginal cost function is given by . MC = 100−2Q+
0.6Q2. Calculate the extra cost in increasing production from: 

1. 5–10 units, 
2. 10–15 units. 

Solution 11.20 

1. 

. 

∫ 10

5
MCdQ =

∫ 10

5
(100 − 2Q + 0.6Q2)dQ

=
[

100Q − Q2 + 0.6 × 1

3
Q3

]10

5

= 1000 − 100 + 200 − (500 − 25 + 25)

= 600

2. 

.

∫ 15

10
MCdQ =

∫ 10

5
(100 − 2Q + 0.6Q2)dQ

=
[
100Q − Q2 + 0.2Q3

]15

10

= 1500 − 225 + 675 − (1000 − 100 + 200)

= 850
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Notes 
1. The cost of raising production from 5 to 15 units is . 

∫ 15
5 MCdQ = ∫ 10

5 MCdQ+∫ 15
10 MCdQ = 600 + 850 = 1450. Here we used property 3 of definite integrals 

in Sect. 11.4. 
2. We have implicitly found the total cost function T C. For as mentioned before, 

T C  is the indefinite integral .
∫

MCdQ. Therefore 

. T C = 100Q − Q2 + 0.2Q3 + k

where k is some constant. 
Clearly when .Q = 0, total costs .T C = fixed costs FC. Therefore .k = FC. 

So we can determine T C  exactly if the fixed costs are given. 

The total revenue T R  of a company may be regarded as a function of time t . If  
we know the revenue the company receives each day, the total revenue over t days 
is simply the sum of the revenues for each of these days. In this case, we implicitly 
assume that t is a discrete variable. 

If the company’s revenue is in continuous flow and we are given the marginal 
revenue MR as a function of t , then to calculate the total revenue we use the 
continuous analogue of discrete summation: integration. 

Problem 11.21 Find T R  when output .Q = 4 for each of the following MR 
functions: 

1. .MR = 15 − 0.6Q, 
2. . MR = 40Q−0.5.

In each case, compute the increase in T R  as Q is raised from 4 to 9 units. 

Solution 11.21 1. When .Q = 4, 

. T R =
∫ 4

0
MR dQ =

∫ 4

0
(15 − 0.6Q)dQ

=
[
15Q − 0.3Q2

]4

0
= 60 − 4.8 = 55.2.

The change in T R  as Q increases from 4 to 9 is 

.

∫ 9

4
MR dQ =

[
15Q − 0.3Q2

]9

4

= (135 − 24.3) − 55.2 = 55.5
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2. When .Q = 4, 

. T R =
∫ 4

0
40Q−0.5dQ = 40

∫ 4

0
Q−0.5dQ

= 40

[
1

−0.5 + 1
Q−0.5+1

]4

0

= 80
[
Q0.5

]4

0

= 80(40.5 − 0) = 80 × 2 = 160.

The change in T R  as Q increases from 4 to 9 is 

. 

∫ 9

4
MRdQ = 80

[
Q0.5

]9

4
= 80(90.5 − 40.5)

= 80(3 − 2) = 80.

The techniques of integration that will be described in the sections that follow 
assume a basic knowledge of differentials as described in Appendix A. 

11.7 Integration by Substitution 

Differentials have a useful role in a technique of integration known as integration by 
substitution. The basic idea is to change the variable x of an integral . I = ∫

f (x) dx

to an integral in another variable, say y, where y is a function of x. Then . I =∫
g(y) dy, where .g(y) is some function of y. Assuming that we can determine this 

integral, we can then back-substitute for y in terms of x. 
We illustrate this technique by means of examples. The choice of substitution is 

the key. It is sometimes worth trying a substitution that involves a function of x that 
is contained in a bracket, or under a radical sign, or in an exponent. 

Problem 11.22 Evaluate the following integrals: 

1. . 
∫

x(2 + 3x2) dx;

2. . 
∫

x

3 + x2 dx;

3. . 
∫

ex

2 + ex
dx;

4. .
∫

x2

√
3 − x3

dx;



292 11 Integration

5. .
∫

(5x − 3)7 dx; 

6. .
∫

(4x + 3)(2x2 + 3x − 5)3 dx. 

Solution 11.22 

1. Try .y = 2+3x2. Then .dy = 0+3(2x) dx = 6x dx. So, .x dx = 1
6 dy. Therefore 

. I =
∫

x(2 + 3x2) dx =
∫

y

(
1

6
dy

)
= 1

6

∫
y dy = 1

6

(
1

2
y2

)
= 1

12
y2.

Since .y = 2 + 3x2, then 

. I = 1

12
(2 + 3x2)2.

2. Let .y = 3 + x2. Then .dy = 2x dx. Therefore 

. I =
∫

x

3 + x2 dx =
∫

1

y

(
1

2
dy

)
= 1

2

∫
dy

y
= 1

2
ln y,

which gives 

. I = 1

2
ln(3 + x2)

after back-substitution. 
3. Let .y = 2 + ex . Then .dy = ex dx. So .ex dx = dy. Therefore, 

. I =
∫

ex

2 + ex
dx =

∫
dy

y
= ln y = ln(2 + ex).

4. Let .y = 3 − x3. Then .dy = −3x2 dx. So .x2 dx = − 1
3dy and therefore 

.I =
∫

x2

√
3 − x3

dx = −1

3

∫
dy√

y
= −1

3

∫
y− 1

2 dy

=
(

−1

3

)
2y

1
2 = −2

3
y

1
2 = −2

3

√
3 − x3.



11.7 Integration by Substitution 293

5. Let .y = 5x − 3. Then .dy = 5 dx and so .dx = 1
5dy. Therefore 

. I =
∫

(5x − 3)7dx = 1

5

∫
y7 dy = 1

5
· 1

8
y8

= 1

40
y8 = 1

40
(5x − 3)8

6. Let .y = 2x2 + 3x − 5. Then .dy = (4x + 3)dx. Therefore 

. I =
∫

(4x + 3)(2x2 + 3x − 5)3 dx

=
∫

y3 dy = 1

4
y4 = 1

4
(2x2 + 3x − 5)4.

It may have been noticed that in the above problems the function .f (x) to be 
integrated may look like the result of an application of the chain rule. For example, 
if we want to differentiate .(5x − 3)8 with respect to x, let .u = 5x − 3. Then 

. 
du8

dx
= du8

du

du

dx
= 8u7(5) = 40u7.

Observe that 

. 
1

40
(5x − 3)8 = u8

40

is the solution to Problem 11.22.5. Therefore, in a sense, integration by substitution 
is the reverse operation to differentiation by the chain rule. 

Sometimes one might see how to integrate a given integral without using a 
substitution, though substitution can offer an easier solution by reducing the integral 
to one in standard form. For example, consider the integral 

. 

∫
eax+b dx,

where a, b are constants, .a �= 0. We know that (see Table 6.1) 

. 
d

dx
ef (x) = f ′(x)ef (x)

so we may deduce that since 

.
d

dx
eax+b = aeax+b,
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then 

. 

∫
eax+b dx = 1

a
eax+b.

This result could be derived using the substitution .y = ax + b. Then .dy = a dx, so  
.dx = 1

a
dy and 

. 

∫
eax+b dx = 1

a

∫
ey dy = 1

a
ey = 1

a
eax+b.

Similarly, since (see Table 6.1) 

. 
d

dx
ln g(x) = g′(x)

g(x)

for any function .g(x), then 

. 
d

dx
ln(ax + b) = a

ax + b
,

where a, b are constants. Then we can show by integrating this last equation that 

. 

∫
dx

ax + b
= 1

a
ln(ax + b),

if .a �= 0. 
We can regard the following integrals as standard: 

. 

∫
eax+b dx = 1

a
eax+b,

∫
dx

ax + b
= 1

a
ln(ax + b),

where a, b are constants and .a �= 0. 
More generally, since 

. 
d

dx
(ax + b)n = na(ax + b)n−1

then 

.

∫
(ax + b)n dx = 1

a
· 1

n + 1
(ax + b)n+1, if a �= 0, n �= −1.
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In particular, 

. 

∫
1

(ax + b)2
dx = −1

a

1

(ax + b)
, if a �= 0,

a fact we shall use later in this chapter but which may be easily derived by the 
substitution method. When .n = −1 we have already noted that 

. 

∫
(ax + b)−1 dx = 1

a
ln(ax + b), if a �= 0.

Another observation is that for in the solution of Problem 11.22.1, we showed 
that 

. I = 1

12
(2 + 3x2)2.

It is easy to see that .x(2 + 3x2) = 2x + 3x3. Therefore, 

. I =
∫

x(2 + 3x2) dx =
∫

(2x + 3x3) dx = 2
∫

x dx + 3
∫

x3 dx

= 2

(
x2

2

)
+ 3

(
x4

4

)
= x2 + 3

4
x4,

seems a different answer to that obtained earlier; namely 

. I = 1

12
(2 + 3x2)2.

However .(2 + 3x2)2 = 4 + 12x2 + 9x4, therefore 

. 
1

12
(2 + 3x2)2 = 1

12
(4 + 12x2 + 9x4) = 1

3
+ x2 + 9

12
x4 = x2 + 3

4
x4 + 1

3
.

So the two answers differ only by the constant . 13 . We recall that the value of an 
integral is unique only to within a constant; so this provides the explanation for the 
apparent difference. 

To evaluate a definite integral .
∫ b

a
f (x) dx by substitution, first apply the 

substitution method, if possible, to the indefinite integral. Once the indefinite 
integral is determined in terms of x after back-substitution, the definite integral can 
be evaluated in the usual way. That is, the limits in the definite integral refer only to 
the original variable in the integral and not to the substituted variable that was used 
to determine the indefinite integral.
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11.8 Partial Fractions in Integration 

Polynomials were introduced in Chap. 1. A polynomial 

. f (x) = anx
n + an−1x

n−1 + · · · + a1x + a0

is said to be of degree n if .an �= 0. The number . a0 is called the constant term 
of .f (x). Linear polynomials .ax + b, where .a �= 0 have degree 1. Polynomials 
of degree 0 are simply numbers. It is easily seen that multiplying a polynomial of 
degree n with one of degree m gives a polynomial of degree .m + n. 

A rational function is any function of the form 

.f (x) = g(x)

h(x)
, (11.2) 

where .g(x) and .h(x) are polynomials with .h(x) �= 0. That is, .f (x), is the ratio of 
two polynomials. We say .f (x) is a proper rational function if the degree of .g(x) is 
strictly less than that of .h(x). For example, 

. 
x2 + 3

x3 + 1
,

1

x2 − 4
and

2x − 1

x2 + 3x + 1

are proper rational functions; but 

. 
3 + x2

2 + x
,

2x2 − 1

x2 + x + 3
and

x3

2x − 1

are not. 
In this section we shall be concerned with proper rational functions. Consider 

a proper rational function (11.2). The denominator .h(x), in certain cases, factors 
into linear factors. First we consider the case when .h(x) factors into distinct linear 
factors. Expressing, or decomposing, .f (x) given by (11.2) into  partial fractions 
means expressing .f (x) as the sum of rational functions of the form 

. 
A

ax + b
,

where A is a constant and .ax + b is a linear factor of the denominator .h(x) of .f (x). 
We provide a few examples that demonstrate how .f (x) can be decomposed into 
partial fractions and hence how .

∫
f (x) dx can be determined.
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Problem 11.23 Find the integrals of the following functions by expressing them in 
terms of partial fractions: 

1. 

. 
x

x2 − 1
;

2. 

. 
4

9 − x2 ;

3. 

. 
2x − 5

x2 − 5x + 6
;

4. 

. 
3x + 1

x(2x − 3)
;

5. 

. 
x2 + 1

(x − 1)(x − 2)(x + 3)
.

Solution 11.23 

1. Let 

. f (x) = x

x2 − 1
.

Then 

. f (x) = x

(x − 1)(x + 1)
.

We want to find constants A and B such that 

. 
x

(x − 1)(x + 1)
= A

x − 1
+ B

x + 1
.

Multiply this equation throughout by .(x − 1)(x + 1) to obtain 

.x = A(x + 1) + B(x − 1). (11.3)
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Note This is what is called an identity in that it is an equation valid for all values 
of x. In particular, when .x = 1 we have 

. 1 = A(1 + 1) + 0 = 2A.

Therefore .A = 1
2 . 

When .x = −1, we have  

. − 1 = 0 + B(−1 − 1) = −2B

so . B = 1
2 .

Therefore 

. f (x) = 1

2

(
1

x − 1

)
+ 1

2

(
1

x + 1

)
.

It follows that 

. 

∫
f (x) dx = 1

2

∫ (
1

x − 1

)
dx + 1

2

∫ (
1

x + 1

)
dx.

= 1

2
ln(x − 1) + 1

2
ln(x + 1)

= 1

2
ln(x − 1)(x + 1)

= 1

2
ln(x2 − 1)

As already mentioned, Eq. (11.3) is an identity valid for all values of x. This  
means, in particular, that the coefficients of x and the constants on both sides of 
the equation must be the same. Rewrite (11.3) as  

. x = (A + B)x + (A − B).

Comparing coefficients of x, we have .A + B = 1 and comparing constants gives 
.A − B = 0. So .A = B = 1

2 , as before. 
The method of comparing coefficients is not necessarily quicker than that of 

taking particular values of x but it has its uses, as we shall see. 

2. First we factorize the denominator 

.
1

4x2 − 9
= 1

(2x − 3)(2x + 3)
.
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Then we find constants A and B so that 

. 
1

(2x − 3)(2x + 3)
= A

2x − 3
+ B

2x + 3
.

Multiply throughout by .(2x − 3)(2x + 3) to obtain the identity 

. 1 = A(2x + 3) + B(2x − 3).

Putting .x = 3
2 gives .1 = A(3 + 3) + 0 = 6A. Putting .x = − 3

2 gives . 1 =
0 + B(−3 − 3) = −6B. Therefore, .A = 1

6 and .B = − 1
6 , and 

. 
1

(2x − 3)(2x + 3)
= 1

6

[
1

2x − 3
− 1

2x + 3

]
.

It follows that 

. 

∫
dx

4x2 − 9
= 1

6

[∫
dx

2x − 3
−

∫
dx

2x + 3

]

= 1

6

[
1

2
ln(2x − 3) − 1

2
ln(2x + 3)

]

= 1

12
ln

(
2x − 3

2x + 3

)

3. First we factorize the denominator 

. 
2x − 5

x2 − 5x + 6
= 2x − 5

(x − 2)(x − 3)
.

Then we find constants A and B so that 

. 
2x − 5

(x − 2)(x − 3)
= A

x − 2
+ B

x − 3
.

Multiply both sides by .(x − 2)(x − 3). This gives 

. 2x − 5 = A(x − 3) + B(x − 2).

Putting .x = 2 gives .4 − 5 = A(2 − 3). So .A = 1. Putting .x = 3 gives . 6 − 5 =
B(3 − 2). So .B = 1. Therefore, if we let 

.f (x) = 2x − 5

x2 − 5x + 6
,
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we have 

. f (x) = 1

x − 2
+ 1

x − 3
.

Therefore 

. 

∫
f (x) =

∫
dx

x − 2
+

∫
dx

x − 3

= ln(x − 2) + ln(x − 3) = ln(x − 2)(x − 3) = ln(x2 − 5x + 6).

4. Let 

. f (x) = 3x + 1

x(2x − 3)
.

We need to find constants A and B such that 

. 
3x + 1

x(2x − 3)
= A

x
+ B

2x − 3
.

Multiplying both sides by .x(2x − 3) gives 

. 3x + 1 = A(2x − 3) + Bx.

When . x = 0, we have .0 + 1 = A(0 − 3), so .1 = −3A and therefore .A = − 1
3 . 

When . x = 3
2 , we have .

9
2 + 1 = 3

2B, so .
11
2 = 3

2B which gives .B = 11
3 . Therefore 

. f (x) = 3x + 1

x(2x − 3)
= 1

3

(
11

2x − 3
− 1

x

)
.

Then 

. 

∫
f (x) = 1

3

[
11

∫
dx

2x − 3
−

∫
dx

x

]
= 1

3

[
11

2
ln(2x − 3) − ln x

]
.

Consider now a proper rational function .g(x)/h(x), where .h(x) has a quadratic 
factor of the form .(ax + b)2. We shall consider only some straightforward cases. 

Consider the function 

.f (x) = x

(x − 1)2(x + 2)
.
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Suppose we just wrote 

. f (x) = A

(x − 1)2 + B

(x + 2)
,

and, as before, solve for A and B after multiplying throughout by the product of the 
denominators, then putting .x = 1 and .x = −2 in turn and then compare coefficients. 
This would result in inconsistent equations for A and B. Without going into further 
details, we state that the way to decompose .f (x) into partial fractions in such a case 
is to write 

. f (x) = A

(x − 1)
+ B

(x − 1)2 + C

(x + 2)
.

Then multiplying both sides by .(x − 1)2(x + 2) we get 

. (x−1)2(x+2)f (x) = A(x − 1)2(x + 2)

(x − 1)
+B(x − 1)2(x + 2)

(x − 1)2 +C(x − 1)2(x + 2)

(x + 2)
.

That is 

. x = A(x − 1)(x + 2) + B(x + 2) + C(x − 1)2.

Putting .x = 1 in this identity gives .1 = 3B. Therefore . B = 1
3 . Now let .x = −2 in 

the identity, to obtain .−2 = C(−2 − 1)2. That is .C = − 2
9 . To find A compare the 

coefficients of . x2 on each side: .0 = A + C. So .A = −C = 2
9 . Therefore 

. f (x) = 2

9(x − 1)
+ 1

3(x − 1)2
− 2

9(x + 2)
.

The integral of .f (x) is therefore given by 

. 

∫
f (x)dx = 2

9

∫
dx

(x − 1)
+ 1

3

∫
dx

(x − 1)2 − 2

9

∫
dx

(x + 2)

= 2

9
[ln(x − 1) − ln(x + 2)] + 1

3

∫
dx

(x − 1)2

To determine the remaining integral, we use the substitution .y = x − 1, then . dy =
dx and the integral becomes .

∫
y−2dy = −y−1 = −(x − 1)−1. Finally, we obtain 

.

∫
f (x)dx = 2

9
ln

(
x − 1

x + 2

)
− 1

3(x − 1)
.



302 11 Integration

Problem 11.24 Determine the integral 

. 

∫
2x + 1

(x − 1)2
dx

in two ways: (i) by substitution; (ii) using partial fractions. 

Solution 11.24 

(i) Let .y = x − 1. Then .x = y + 1 and .dx = dy, then 

. 
2x + 1

(x − 1)2 = 2(y + 1) + 1

y2 = 2y + 3

y2 = 2

y
+ 3

y2 .

Therefore, 

. 

∫
2x + 1

(x − 1)2 dx = 2
∫

dy

y
+ 3

∫
dy

y2 = 2 ln y − 3y−1 = 2 ln(x − 1) − 3

x − 1
.

(ii) Let 

. 
2x + 1

(x − 1)2 = A

x − 1
+ B

(x − 1)2 .

Multiplying both sides by .(x − 1)2 gives 

. 2x + 1 = A(x − 1) + B.

Putting . x = 1, we have .3 = B. Then putting, say . x = 0, gives .1 = −A + B, 
.A = B − 1 = 2. (Or, comparing coefficients of x, we have .2 = A.) Therefore 

. 
2x + 1

(x − 1)2 = 2

x − 1
+ 3

(x − 1)2 ,

and so 

.

∫
2x + 1

(x − 1)2
dx = 2

∫
dx

x − 1
+ 3

∫
dx

(x − 1)2

= 2 ln(x − 1) + 3(−1)(x − 1)−1

= 2 ln(x − 1) − 3

x − 1
.
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Note that another way to obtain the partial fraction decomposition is to express 
the numerator in the form 

. 2x + 1 = 2(x − 1) + 3.

Therefore 

. 
2x + 1

(x − 1)2 = 2(x − 1)

(x − 1)2 + 3

(x − 1)2 = 2

x − 1
+ 3

(x − 1)2 .

Problem 11.25 Express the function .f (x) in partial fractions, where .f (x) is one 
of the following functions, and determine .

∫
f (x) dx (substitution may be needed 

to integrate some partial fractions): 

1. .
5

(2x + 1)(x + 1)2 ; 

2. .
49x

(5x − 1)(2x + 1)2 ; 

3. .
19x − 8x2

(3x − 1)(2x − 3)2 ; 

4. .
10x2 + 4x + 9

(2x − 1)(x + 1)2 . 

Solution 11.25 

1. 

. f (x) = 5

(2x + 1)(x + 1)2 = A

2x + 1
+ B

(x + 1)
+ C

(x + 1)2 .

Multiplying throughout by .(2x + 1)(x + 1)2, we obtain 

. 5 = A(x + 1)2 + B(2x + 1)(x + 1) + C(2x + 1).

Putting .x = −1 gives .5 = C(−2 + 1). So .C = −5. Putting .x = − 1
2 , we have  

.5 = A/4. So .A = 20. Now putting .x = 0, we obtain .5 = A + B + C. So  

.B = 5 − A − C = 5 − 20 + 5 = −10. Therefore, 

.f (x) = 20

2x + 1
− 10

(x + 1)
− 5

(x + 1)2
,
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and so 

. 

∫
f (x) = 20

∫
dx

2x + 1
− 10

∫
dx

(x + 1)
− 5

∫
dx

(x + 1)2

= 20

(
1

2

)
ln(2x + 1) − 10 ln(x + 1) − 5(−1)(x + 1)−1

= 10 ln(2x + 1) − 10 ln(x + 1) + 5(x + 1)−1

= 10 ln

(
2x + 1

x + 1

)
+ 5

x + 1
.

2. 

. f (x) = 49x

(5x − 1)(2x + 1)2
= A

5x − 1
+ B

2x + 1
+ C

(2x + 1)2
.

Multiplying throughout by .(5x − 1)(2x + 1)2, we obtain 

. 49x = A(2x + 1)2 + B(5x − 1)(2x + 1) + C(5x − 1).

Putting .x = − 1
2 , gives .49(− 1

2 ) = C(− 5
2 − 1). That is .− 49

2 = − 7
2C. So .C = 7. 

Next, put .x = 1
5 . Then . 49

5 = A( 2
5 + 1)2. That is, . 49

5 = A( 49
25 ); so . A = 5. Now  

put, say .x = 0. Then .0 = A − B − C. So .B = A − C = 5 − 7 = −2. Therefore, 

. f (x) = 5

5x − 1
− 2

2x + 1
+ 7

(2x + 1)2 .

Therefore 

. 

∫
f (x) = 5

∫
dx

5x − 1
− 2

∫
dx

2x + 1
+ 7

∫
dx

(2x + 1)2

= ln(5x − 1) − ln(2x + 1) − 7

(
1

2

)
(2x + 1)−1

= ln

(
5x − 1

2x + 1

)
− 7

2(2x + 1)

3. Let 

. f (x) = A

3x − 1
+ B

2x − 3
+ C

(2x − 3)2 .

Multiply both sides of the equation by .(3x − 1)(2x − 3)2, gives the identity 

.19x − 8x2 = A(2x − 3)2 + B(3x − 1)(2x − 3) + C(3x − 1).
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Putting . x = 3
2 , gives .

19×3
2 − 8×9

4 = C( 9
2 − 1). From which it follows that .C = 3. 

Now let .x = 1
3 in the identity. Then . 19

3 − 8
9 = A( 2

3 − 3)2. Therefore .A = 1. 
Finally, putting .x = 0 gives .0 = 9A + 3B − C. Therefore . B = 1

3 (C − 9A) =
1
3 (−6) = −2. Therefore, 

. f (x) = 1

3x − 1
− 2

2x − 3
+ 3

(2x − 3)2
.

Then 

. 

∫
f (x) =

∫
dx

3x − 1
− 2

∫
dx

2x − 3
+ 3

∫
dx

(2x − 3)2

= 1

3
ln(3x − 1) − ln(2x − 3) −

(
3

2

)
(2x − 3)−1.

4. Let 

. f (x) = A

2x − 1
+ B

x + 1
+ C

(x + 1)2 .

Multiplying both sides of the equation by .(2x − 1)(x + 1)2, we have the identity 

. 10x2 + 4x + 9 = A(x + 1)2 + B(2x − 1)(x + 1) + C(2x − 1).

Letting .x = −1, gives .10 − 4 + 9 = C(−2 − 1). That is .15 = −3C, so .C = −5. 
Now let .x = 1

2 in the identity. Then . 10
4 + 4

2 + 9 = A( 1
2 + 1)2 so . 27

2 = 9A
4 . 

Therefore .A = 6. 
Finally, equating coefficients of, say . x2, on each side of the identity, . 10 =

A + 2B = 6 + 2B so . B = 2. (Or, take .x = 0 to get .9 = A − B − C, so  
.B = A − C − 9 = 6 + 5 − 9 = 2, a useful check.) Therefore, 

. f (x) = 6

2x − 1
+ 2

x + 1
− 5

(x + 1)2 ;

so 

.

∫
f (x) = 6

∫
dx

2x − 1
+ 2

∫
dx

x + 1
− 5

∫
dx

(x + 1)2

= 6

2
ln(2x − 1) + 2 ln(x + 1) +

(
5

2

)
(x + 1)−1

= 3 ln(2x − 1) + 2 ln(x + 1) + 5

2(x + 1)
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11.9 Integration by Parts 

The differential formula 

.d(uv) = u dv + v du (11.4) 

comes from the rule for differentiating the product of two functions u, v of x; 
namely, 

. 
d

dx
(uv) = u

dv

dx
+ v

du

dx

This was introduced in Chap. 6. 
If we integrate both sides of the Eq. (11.4), we obtain 

. 

∫
d(uv) =

∫
u dv +

∫
v du.

Since .
∫

d(uv) = uv (in general, .
∫

dx = ∫
1 dx = x), then 

. uv =
∫

u dv +
∫

v du.

Therefore 

. 

∫
u dv = uv −

∫
v du.

This is the integration by parts formula. To see how this is applied, consider the 
following problems. 

Problem 11.26 Evaluate the following integrals: 

.

(i)
∫

ln x dx; (ii)
∫

x ln x dx;
(iii)

∫
xe2x dx; (iv)

∫
x
√

2 + x dx;
(v)

∫
x2e2x dx.
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Solution 11.26 

(i) If we take .u = ln x and .v = x in the integration by parts formula, then 

. 

∫
ln x dx = x ln x −

∫
xd(ln x) = x ln x −

∫
x

(
1

x

)
dx

= x ln x −
∫

dx = x ln x − x,

since .d(ln x) = 1
x
dx. 

(ii) 

. 

∫
x ln x dx = 1

2

∫
ln x d(x2) (since d(x2) = 2x dx)

By the integration by parts formula 

. 

∫
ln x d(x2) = x2 ln x −

∫
x2 d(ln x)

= x2 ln x −
∫

x2 1

x
dx = x2 ln x −

∫
x dx = x2 ln x − 1

2
x2.

Therefore, 

. 

∫
x ln x dx = x2

2

(
ln x − 1

2

)
.

(iii) 

. 

∫
xe2x dx = 1

2

∫
x d(e2x) (since d(e2x) = 2e2x dx)

Then 

. 

∫
x d(e2x) = xe2x −

∫
e2x dx = xe2x − 1

2
e2x.

Therefore, 

.

∫
x e2x dx = 1

2

(
xe2x − 1

2
e2x

)
= 1

2
e2x

(
x − 1

2

)
= 1

4
e2x(2x − 1).
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(iv) 

. 

∫
x
√

2 + x dx =
∫

x(2 + x)
1
2 dx =

∫
x

2

3
d(2 + x)

3
2 dx

(since .d(2 + x)
3
2 = 3

2 (2 + x)
1
2 dx). Therefore, 

. 

∫
x
√

2 + x dx =
∫

x
2

3
d(2 + x)

3
2

= 2

3

[
x(2 + x)

3
2 −

∫
(2 + x)

3
2 dx

]

= 2

3

[
x(2 + x)

3
2 − 2

5
(2 + x)

5
2

]

= 2

3
(2 + x)

3
2

[
x − 2

5
(2 + x)

]

= 2

3
(2 + x)

3
2

(
3

5
x − 4

5

)

= 2

15
(2 + x)

3
2 (3x − 4).

This integral could also have been determined by the substitution method 
putting .y = 2 + x. 

(v) 

. 

∫
x2e2x dx = 1

2

∫
x2 d(e2x) = 1

2

[
x2e2x −

∫
e2x d(x2)

]

= 1

2

[
x2e2x − 2

∫
xe2x dx)

]

From (iii), .
∫

xe2x dx = 1
2xe2x − 1

4e2x . Therefore, 

. 

∫
x2e2x dx = 1

2
x2e2x − 1

2
xe2x + 1

4
e2x

= e2x

4
(2x2 − 2x + 1)

This problem shows that for this integral, integration by parts had to be applied 
twice.
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Self-Assessment Questions 

1. Evaluate the following integrals: 

. 

(i)
∫

(x3 − 6x2 + 4x − 5) dx; (ii)
∫

2e3x−4 dx;
(iii)

∫
2

6x − 5
dx; (iv)

∫
x2(4x − 6) dx.

2. Evaluate the integral 

. 

∫ 2

1
(x2 + 4x − 5) dx.

3. Find the area between the graph of .y = 4x − x2 and the x-axis from .x = 0 to 
.x = 4. 

4. Find the producer’s surplus PS  at .Q = 6 if the supply function is . P = 10 +
4Q. 

5. Find the consumer’s surplus CS when .Q = 2 if the demand function is . P =
16 − 6Q. 

6. The marginal cost function MC of a company is .MC = 120 − 4Q + 0.3Q2. 
Calculate the extra cost in increasing output Q from 10 to 20 units. 

7. Find the total revenue function T R  when output .Q = 4, given that the 
marginal revenue function .MR = 20 − 0.5Q. What is the increase in T R  
if Q increases by 8 units? 

Exercises 

1. Integrate each of the following functions with respect to x: 

(a) . x7, 
(b) .x−4, 
(c) .3x2 + 2x + 1, 

(d) .16x4 − 2

x2
, 

(e) .e−4x , 
(f) .e2x + 4x − 7, 

(g) .
x2 + 4x + 2

2x
, 

(h) .x(x + 2)2, 
(i) .x3 + x − 3. 

2. Evaluate: 

(a) .
∫ 1

0
x4dx,
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(b) .
∫ 4

2
(3x + 2)dx, 

(c) .
∫ 2

0
e−3xdx, 

(d) .
∫ 1

0
(3x4 + 2x3 − x + 3)dx, 

(e) .
∫ 2

1

(
3x + 2

x

)
dx. 

3. Find the total revenue T R  and demand functions corresponding to each of 
the marginal revenue functions: 

(a) .MR = 15 − 4Q, 

(b) .MR = 9√
Q

. 

4. Determine the total cost function T C  if the marginal cost function . MC =
25 + 8Q and fixed costs are 12 units. 

5. If the marginal propensity to consume 

. MPC = 0.75 + 0.1√
Y

and consumption is 15 when income is 16, determine the consumption 
function and hence the corresponding savings function. 

6. Evaluate the consumer’s surplus CS at .Q = 1 for the demand function . P =
5 − Q − 2Q2. 

7. Evaluate the producer’s surplus PS  at .Q = 3 for the supply function . P =
40 + 3Q2. Find the change in PS  if Q increases to 4. 

8. Net investment .I (t) is defined to be the rate of change of capital stock . K(t)

relative to time t . 
If .I (t) = 240t

3
5 and the initial stock of capital is 100, determine the function 

.K(t). 
9. Evaluate the following integrals using a suitable substitution: 

. 

(i)
∫

ln x

x
dx; (ii)

∫
ex

2 + 3ex
dx;

(iii)
∫

2x + 1

x + 3
dx.

10. Evaluate the integral 

.

∫
x2 + ln x

x
dx.



12Linear Difference Equations

� Key Learning Objectives
On completion of this chapter students should be able to:

• Solve first order linear difference equations
• Solve second order linear difference equations by finding the complemen-

tary solution and a particular solution
• Comment on the stability of solutions to linear difference equations

12.1 Introduction 

Problems encountered so far have mostly been static in that the quantities and 
equations involved are for a particular period of time. For instance, the current price 
of a good depends on the current demand of consumers. 

However, it may be that this year’s price for a good, such as a car, depends on 
last year’s demand; or a manufacturing quota for a particular month depends on the 
demand in that month in the previous year (or years). This is the concept of a lagged 
response. These examples are not static but dynamic situations in which economic 
models are viewed as a sequence of discrete periods. The value of an economic 
quantity in one period may depend on data from the previous period, or previous n 
periods for some integer .n > 0. 

Difference equations are used to analyse dynamic models. An nth order differ-
ence equation, for instance, might express the price of a good as a function of the 
demands in the previous n years. 
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12.2 Difference Equations 

Consider a sequence .X0, X1, . . . of quantities, which we denote simply by .{Xt }. 
By a sequence we mean a list in a specific order. In the economic situations that will 
concern us, t denotes time measured in discrete units .0, 1, 2, . . .. In this case, the 
period before time .t + 1 starting at time t is referred to as period t . 

Thus, period 0 is the initial period. The sequence .{Xt } can be regarded as the 
values of a ‘step’ function X of a continuous time variable i, where . X(i) = Xt

for all i in period t . Thus, X has constant value . Xt in period t (see, for example, 
Fig. 12.1). 

One way of generating a sequence .{Xt } is by using an nth order difference 
equation, which relates the general term of the sequence to the previous n terms. 
We shall only be concerned with the linear difference equations (LDEs). They are 
of the form: 

. Xt + at−1Xt−1 + at−2Xt−2 + . . . + at−nXt−n = b,

where the coefficients . ai and b are constants (independent of t). If . b = 0, the  
difference equation is said to be homogeneous; otherwise it is inhomogeneous. 

t 
1 2 3 4 5  

0 

2 

4 

6 

8 

10X 

Fig. 12.1 Graph representing the solution of the difference equation .Xt = 2Xt−1−1 with .X0 = 2
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By ‘solving’ a difference equation, we mean expressing the function X men-
tioned earlier explicitly as a function of t or, equivalently, expressing . Xt explicitly as 
a function of t . An nth order difference equation determines the sequence uniquely 
if the first n terms of the sequence are specified. 

For example, consider the first order difference equation 

. Xt − 3Xt−1 = −1,

(or .Xt = 3Xt−1 −1) where .X0 = 2. Using the difference equation, we can generate 
successively the terms of the corresponding sequence .{Xt }: 

. X1 = 3X0 − 1 = 3 × 2 − 1 = 5,

X2 = 3X1 − 1 = 3 × 5 − 1 = 14,

and so on. To compute the term .X100 in this way would mean explicitly evaluating 
.X1, X2, . . . , X99 successively. This is laborious, but if we solve the linear differ-
ence equation, the computation is simple. Accept for the moment (for reasons that 
will be explained later) that the solution of this difference equation is 

. Xt = 1

2
(1 + 3t+1).

Substituting .t = 0 gives .X0 = 1
2 (1 + 31) = 2 (as it should be); .t = 1 gives 

.X1 = 1
2 (1 + 32) = 5, and .t = 2 gives .X2 = 1

2 (1 + 33) = 14, agreeing with 
our previous computations. The term .X100 is simply . 12 (1 + 3101), which is a huge 
number and best left expressed in this form. 

Difference equations are sometimes known as time series (if t denotes time) 
or recurrence relations. The sequence .{Xt } is also known as the time path of the 
function X being measured, giving the successive values in time of X. 

A sequence .{Xt } may be visualised by plotting the graph of the corresponding 
step function X. For instance, the sequence .{Xt } given by the linear difference 
equation 

. Xt = 2Xt−1 − 1,

where .X0 = 2, has first four terms: .2, 3, 5, 9. This can be represented graphically 
as in Fig. 12.1. (On a line segment, the heavy dot represents the end point that 
belongs to the graph.) 

The values of X change only at discrete values of t . So for instance, 

.Xt = X0 = 2 for 0 ≤ t < 1,

Xt = X1 = 3 for 1 ≤ t < 2,
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Xt = X2 = 5 for  2 ≤ t <  3, 

Xt = X3 = 9 for  3 ≤ t <  4, 

and so on. 

12.3 First Order Linear Difference Equations 

First order linear difference equations can be dealt with as a special case of second 
order linear difference equations. However, it is instructive to see them analysed 
from basics. 

Consider a general first order linear difference equation written in the form 

.Xt = aXt−1 + b. (12.1) 

This means that each term is a times the previous term and then b is added to this 
product. Therefore, .Xt−1 = aXt−2 + b, .Xt−2 = aXt−3 + b, and so on. It follows 
that 

. Xt = a(aXt−2 + b) + b

= a2Xt−2 + (a + 1)b

= a2(aXt−3 + b) + (a + 1)b

= a3Xt−3 + (a2 + a + 1)b.

Eventually, we have 

. Xt = atXt−t + (at−1 + at−2 + . . . + a + 1)b.

The term 

. at−1 + at−2 + . . . + a + 1

is the sum of a geometric series and is equal to 

. 
(1 − at )

(1 − a)
if a �= 1;

otherwise the sum is equal to 

.1 + 1 + . . . + 1 + 1(t terms ) = t.
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Therefore, 

. Xt =
⎧
⎨

⎩

atX0 +
(

1 − at

1 − a

)

b if a �= 1,

X0 + bt if a = 1.

If .a �= 1, we can rewrite the solution (collecting together the terms involving . at ) in  
the form: 

.Xt = Aat + b

1 − a
, (12.2) 

where A is a constant that can be determined from . X0. (The example given earlier 
in Sect. 12.2 had .a = 3 and .b = −1.) 

Problem 12.1 A bank customer borrows $15,000. Interest is .9.6% per annum 
on the outstanding balance. The customer can afford to repay at most $400 each 
month. 

1. How long will it take to repay the loan? 
2. How much does the customer owe after 1 year? 

Solution 12.1 

1. Let . Xt be the amount owed after t months. Then .X0 = 15,000. At the end of t 
months, interest of . 9.6

12 % = 0.8% of the current balance of .Xt−1 is added and a 
repayment made of $400, therefore 

. Xt =
(

1 + 0.096

12

)

Xt−1 − 400

= 1.008Xt−1 − 400.

From (12.2) we have (with .a = 1.008 and .b = −400): 

. Xt = A(1.008)t − 400

1 − 1.008
= A(1.008)t + 50,000,

where A is a constant. 
Since .X0 = 15,000, then putting .t = 0 in this equation gives (as .1.0080 = 1) 

. 15,000 = A + 50,000.

Therefore .A = −35,000 and so 

.Xt = −35,000(1.008)t + 50,000.
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This is explicitly the balance owing after t months. The balance is 0 at time t if 

. 35,000(1.008)t = 50,000,

that is 

. (1.008)t = 50,000

35,000
= 10

7
.

Taking natural logarithms of both sides: 

. t ln(1.008) = ln

(
10

7

)

.

Therefore 

. t =
ln

(
10
7

)

ln(1.008)
,

which is approximately .44.76 months. Therefore, the loan will be paid off at the 
end of the 45th month. 

2. .X12 = −35,000(1.008)12 + 50,000 ≈ $11,488.15. 

Problem 12.2 A bank savings account pays .5% per annum interest. Initially, a 
saver deposits £1000. After 10 years, what will be the value of this customer’s 
savings account if 

1. no further deposits are made; 
2. .$100 is deposited at the end of each year? 

Solution 12.2 Let . Xt be the value of the savings account after t years. 

1. In this case 

. Xt = (1 + 0.05)Xt−1 = 1.05Xt−1.

Then from (12.2), with .a = 1.05 and . b = 0, we have  

. Xt = A(1.05)t ,

where A is a constant. 
Since .X0 = 1000, then .1000 = X0 = A(1.05)0 = A. Therefore, 

.Xt = 1000(1.05)t .
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We want 

. X10 = 1000(1.05)10 ≈ $1628.89.

2. The difference equation is now 

. Xt = (1.05)Xt−1 + 100.

Then from (12.2), with .a = 1.05 and .b = 100, we have  

. Xt = A(1.05)t + 100

1 − 1.05
= A(1.05)t − 2000.

Since .1000 = X0, then 

. 1000 = X0 = A(1.05)0 − 2000 = A − 2000.

Consequently, .A = 3000 and 

. Xt = 3000(1.05)t − 2000.

The value after 10 years is 

. X10 = 3000(1.05)10 − 2000 ≈ $2886.68.

12.4 Stability 

Suppose an economic model has associated with it the first order linear difference 
equation 

. Xt = aXt−1 + b (a �= 1).

We showed that this has solution: 

. Xt = Aat + b

1 − a
,

where A is a constant (independent of time t). 

1. If .−1 < a < 1, then . at tends to 0 as t tends to infinity (i.e., t increases 
indefinitely). Then . Xt converges to the value . b

1−a
, called the equilibrium value.
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t 
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0.6X 

Fig. 12.2 Graph of the solution of Problem 12.3.1 showing oscillatory convergence to the 
equilibrium value 

The convergence is oscillatory if a is negative and is uniform if a is positive. 
The model or difference equation in this case is said to be stable. See Figs. 12.2 
and 12.3, respectively. 

2. If .a < −1 or .a > 1, then . Xt diverges in that, numerically, . Xt increases without 
bound. If a is negative, the divergence is oscillatory, whereas if a is positive, 
the divergence is uniform. See Figs. 12.4 and 12.5, respectively. The model or 
difference equation is unstable in this case. 

Problem 12.3 Solve the following linear difference equations: 

1. .Xt = −0.5Xt−1 + 0.25, where .X0 = 0.5, 
2. .Xt = 1

3Xt−1 + 1, where .X0 = 1
2 , 

3. .Xt = −2Xt−1 + 3, where .X0 = 3, 
4. .Xt = 3Xt−1 + 5, where .X0 = 3.5. 

In each case, comment on stability and display the solution graphically for . 0 ≤
t < 5.
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Fig. 12.3 Graph of the solution of Problem 12.3.2 showing uniform convergence to the equilib-
rium value 

Solution 12.3 

1. 

. Xt = A(−0.5)t + 0.25

1 − (−0.5)
= A(−0.5)t + 0.25

1.5

= A(−0.5)t + 1

6
.

Since .0.5 = X0 = A + 1
6 , then .A = 1

3 . Therefore 

. Xt = 1

3
(−0.5)t + 1

6
.

This is a stable linear difference equation, with oscillatory convergence to the 
equilibrium value . 16 as shown in Fig. 12.2.
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Fig. 12.4 Graph of the solution of Problem 12.3.4 showing oscillatory divergence 
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Fig. 12.5 Graph of the solution of Problem 12.3.3 showing uniform divergence
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2. 

. Xt = A

(
1

3

)t

+ 1

1 − 1
3

= A

(
1

3

)t

+ 3

2
.

Since . 12 = X0 = A + 3
2 , then .A = −1. Therefore, 

. Xt = 3

2
−

(
1

3

)t

.

This is a stable linear difference equation, uniformly converging to the equilib-
rium value . 32 as shown in Fig. 12.3. 

3. 

. Xt = A(−2)t + 3

1 − (−2)
= A(−2)t + 1.

Since .3 = X0 = A + 1, then .A = 2 and 

. Xt = 2(−2)t + 1.

This is an unstable linear difference equation. The divergence is oscillatory (see 
Fig. 12.4). 

4. 

. Xt = A(3)t + 5

1 − 3
= A(3)t − 2.5.

Since .3.5 = X0 = A − 2.5, then .A = 6. Therefore, 

. Xt = 6(3)t − 2.5.

This is an unstable linear difference equation. The divergence is uniform (see 
Fig. 12.5). 

12.5 The Cobweb Model 

The Cobweb model is an economic model for analysing periodic fluctuations in 
price, supply, and demand that oscillate towards equilibrium. It is assumed that the 
quantities involved change only at discrete time intervals and that there is a time lag 
in the response of suppliers to price changes. 

For instance, the supply this year of a particular agricultural product depends on 
the price obtained from the previous year’s harvest. The demand for the produce will
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depend of course on this year’s price. Another example is that of package holidays. 
The holiday company’s supply of holidays for this season will depend on the prices 
obtained for last season’s. 

In general, we assume that the supply function at time t for a single good is 

. QS,t = aPt−1 + b.

Here .QS,t is the supply at time t and .Pt−1 the price at time .t − 1 (the previous 
period). The demand equation is 

. QD,t = cPt + d.

Here .a, b, c, d are constants, with .a > 0 and .c < 0. Initially .t = 0, and then t 
increases one unit at a time. 

Assuming equilibrium in period t , we have .QD,t = QS,t . That is, 

. aPt−1 + b = cPt + d

or 

. Pt = a

c
Pt−1 + b − d

c
.

This is a first order linear difference equation, with .
a
c

< 0, since a is positive and c is 
negative. The sequence .{Pt } generated gives the equilibrium prices for each period. 
Since .a/c �= 0, as .a/c is negative, we can solve the difference equation using (12.2) 
to obtain an expression for . Pt in the form 

. Pt = A
(a

c

)t +
(

b − d

c

)

/
(

1 − a

c

)

= A
(a

c

)t + b − d

c − a

where A is a constant. 
If .−1 < a

c
< 0, we have stability and oscillatory convergence to an equilibrium 

value 

.Pe = b − d

c − a
. (12.3) 

Problem 12.4 A car manufacturer’s supply and demand functions at time t for a 
particular car model are 

. QS,t = 3Pt−1 − 12, QD,t = −4Pt + 28.

Show that over time, the car’s price will converge and give the equilibrium value.
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Solution 12.4 For equilibrium in period t , 

. 3Pt−1 − 12 = −4Pt + 28,

which simplifies to 

.Pt =
(

−3

4

)

Pt−1 + 10. (12.4) 

Since .0 > − 3
4 > −1, the prices . Pt converge to the equilibrium value . Pe, which we 

can compute using the formula obtained earlier (Eq. (12.3)) or in Sect. 12.3. Using  
the latter with .a = − 3

4 and . b = 10, we have  

. Pe = b

1 − a
= 10

1 −
(
− 3

4

) = 40

7
= 5

5

7
.

Another way to compute . Pe, when we know there is convergence, is to note that in 
the limit as t tends to infinity, .Pt = Pt−1 = Pe. Therefore, 

. Pe =
(

−3

4

)

Pe + 10.

Then .
(

1 + 3
4

)
Pe = 10, from which it follows that .Pe = 5 5

7 , as before. 

Observe that the equilibrium price in this problem is independent of the value of 
. P0. The general solution of linear difference Eq. (12.4) is  

. Pt = A

(

−3

4

)t

+ 10

1 −
(
− 3

4

) = A

(

−3

4

)t

+ 40

7

where A is a constant. 
From this equation it is again clear that the equilibrium price is . 40

7 and that this 
does not depend on the value of A (which depends on the value of . P0). 

12.6 Second Order Linear Difference Equations 

A time path sequence is uniquely determined, given a second order linear difference 
equation and the values of the first two terms.
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Problem 12.5 Find the first five terms of the sequence .{Xt } given by 

. Xt − 5Xt−1 + 3Xt−2 = 1,

given that .X0 = 1, X1 = 3. 

Solution 12.5 Rearranging the linear difference equation gives 

. Xt = 5Xt−1 − 3Xt−2 + 1.

Therefore, 

. X2 = 5X1 − 3X0 + 1 = 5 × 3 − 3 × 1 + 1 = 13,

X3 = 5X2 − 3X1 + 1 = 5 × 13 − 3 × 3 + 1 = 57,

X4 = 5X3 − 3X2 + 1 = 5 × 57 − 3 × 13 + 1 = 247.

Therefore, the first five terms in order are .1, 3, 13, 57, 247. 

The general second order linear difference equation is of the form 

.Xt + aXt−1 + bXt−2 = c (12.5) 

where we assume .a, b, c are constants (independent of t). 
First order linear difference equations may be considered as the special case . b =

0. This explains the remark made in Sect. 12.3 when discussing first order linear 
difference equations: that they are special cases of second order linear difference 
equations. However, we gave a self-contained account of the general solution for the 
first order case. The general solution for the second order linear difference equations 
is a little more involved. 

The associated homogeneous linear difference equation of (12.5) is  

.Xt + aXt−1 + bXt−2 = 0. (12.6) 

If .{Ut }, .{Vt } are sequences satisfying the linear difference Eq. (12.5), then 

. Ut + aUt−1 + bUt−2 = c

and 

. Vt + aVt−1 + bVt−2 = c.

Subtracting we have: 

.Ut − Vt + a(Ut−1 − Vt−1) + b(Ut−2 − Vt−2) = 0
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or 

. Wt + aWt−1 + bWt−2 = 0

where .Wt = Ut − Vt . Thus .{Wt } satisfies the homogeneous linear difference 
Eq. (12.6). 

It follows that any two solutions of (12.5) differ by a solution of the associated 
linear difference Eq. (12.6). Thus if we manage to find a particular solution of 
(12.5) by guesswork or from theory, then the general solution of an inhomogeneous 
linear difference equation is obtained by adding the particular solution to the general 
solution of the associated homogeneous linear difference equation (known as the 
complementary solution). In brief: 

. General Solution = Particular Solution + Complementary Solution.

(12.7) 

This is true generally for linear difference equations and, in particular, for first order 
ones. We saw in Sect. 12.3 that the general solution of a first order linear difference 
equation 

. Xt = aXt−1 + b

is of the form 

. Xt = Aat + b

1 − a
(if a �= 1).

It can be verified that .Xt = Aat is the complementary solution (the general solution 
of the associated linear difference equation .Xt = aXt−1) and that the sequence 
.{Xt }, where .Xt = b

1−a
(for all t), is a particular solution of .Xt = aXt−1 + b since 

. 
b

1 − a
= a

(
b

1 − a

)

+ b.

12.6.1 Complementary Solutions 

In analogy with the complementary solution for the homogeneous first order case, 
suppose we try a similar solution of (12.6), of the form .Xt = Aut , where A is a 
constant and u a number to be determined. Then 

.Aut + aAut−1 + bAut−2 = 0.
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Dividing throughout by .Aut−2 gives 

. u2 + au + b = 0.

So u is a root of the quadratic equation 

.x2 + ax + b = 0, (12.8) 

known as the characteristic equation of the linear difference equation. Let its roots 
be .u, v (sometimes called the characteristic roots). 

It can be shown that the general solution of the homogeneous linear difference 
Eq. (12.6) is of the form  

. Xt =
{

Aut + Bvt if u �= v,

(A + tB)ut if u = v,

where A and B are constants. 

Problem 12.6 Solve the homogeneous linear difference equation 

. Xt − 7Xt−1 + 10Xt−2 = 0

where .X0 = 2, .X1 = 13. Determine .X10. 

Solution 12.6 The characteristic equation is 

. x2 − 7x + 10 = 0

whose roots are 2 and 5. The general solution is therefore 

. Xt = A2t + B5t

where A and B are constants. 
Since .X0 = 2, then 

. 2 = X0 = A20 + B50 = A + B.

Similarly, since .X1 = 13, then 

.13 = X1 = A21 + B51 = 2A + 5B.
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Thus, we have the simultaneous equations 

.A + B = 2, . (12.9) 

2A + 5B = 13. (12.10) 

Multiplying Eq. (12.9) by two and subtracting the result from Eq. (12.10) gives  

. 3B = 13 − 4 = 9.

Therefore .B = 3 and so, from (12.9), .A = −1. The general solution is therefore 

. Xt = −2t + 3(5t ).

Then 

. X10 = −210 + 3(510) = 29,295,851.

Problem 12.7 Solve the linear difference equation 

. Xt − 12Xt−1 + 36Xt−2 = 0

where .X0 = 1 and .X1 = 8. Determine . X9. 

Solution 12.7 The characteristic equation is .x2−12x+36 = 0 or .(x−6)2 = 0. This  
equation has two equal roots .6, 6. So the general solution of the linear difference 
equation is of the form 

. Xt = (A + tB)6t

where A and B are constants. 
Since .X0 = 1, then 

. 1 = X0 = (A + 0)60 = A

and since .X1 = 8, then 

. 8 = X1 = (A + 1 × B)61 or 8 = 6(A + B).

Since .A = 1, then .8 = 6 + 6B and therefore .B = 1
3 . 

The general solution of the linear difference equation is 

.Xt =
(

1 + t

3

)

6t .
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Therefore 

. X9 =
(

1 + 9

3

)

69 = 4 × 69 = 40,310,784.

12.6.2 Particular Solutions 

A particular solution for the general second order linear difference equation 

. Xt + aXt−1 + bXt−2 = c

where .a, b, c are constants is as follows: 

.Xt =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c

1 + a + b
if 1 + a + b �= 0;

ct

2 + a
if 1 + a + b = 0 and a �= −2;

1

2
ct2 if a = −2 and b = 1.

(12.11) 

The conditions on a and b in the above are respectively that: 

1. 1 is not a characteristic root (i.e., not a root of .x2 + ax + b = 0); 
2. One characteristic root is 1 and the other is not; 
3. Both characteristic roots are 1. 

That these are particular solutions is easily verified, but we will illustrate this by 
example only. 

It is not really necessary to remember the formulae for particular solutions. For 
a second order linear difference equation with constant coefficients, only one of the 
forms .Xt = K , .Xt = Kt , .Xt = Kt2 will work as a solution with K a constant. So 
one need only test three possibilities. 

For instance, .Xt = K (K constant) cannot be a solution of 

. Xt − 3Xt−1 + 2Xt−2 = 21,

since this would require .K − 3K + 2K = 21 or .0 = 21, which is absurd. However, 
trying .Xt = Kt (so .Xt−1 = K(t − 1), .Xt−2 = K(t − 2)) we have:  

. Kt − 3K(t − 1) + 2K(t − 2) = 21

which simplifies to .−K = 21. Therefore, .K = −21 and so .Xt = −21t is a solution 
of the difference equation.
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Problem 12.8 Find particular solutions of the following difference equations: 

1. .Xt + 7Xt−1 + 12Xt−2 = 4, 
2. .Xt − 5Xt−1 + 4Xt−2 = 9, 
3. .Xt − 2Xt−1 + Xt−2 = 4. 

Solution 12.8 

1. In this difference equation .1 + a + b = 1 + 7 + 12 = 20 �= 0. Therefore, 

. Xt = c

1 + a + b
= 4

20
= 1

5

is a particular solution. That is, the repeating sequence . 15 , 1
5 , 1

5 , . . . satisfies this 
difference equation. To check this, note that . 15 + 7 × 1

5 + 12 × 1
5 = 4. 

2. Here .1 + a + b = 1 − 5 + 4 = 0 and .a = −5 �= −2. Then 

. Xt = ct

a + 2
= 9t

−5 + 2
= −3t

is a particular solution. Thus .X0 = 0, X1 = −3, X2 = −6, X3 = −9 and so on. 
3. In this case, .a = −2, b = 1, c = 4 so a particular solution is 

. Xt = 1

2
4t2 = 2t2.

The general second order linear difference equation is solved by adding a 
particular solution to the complementary solution. We illustrate this in the next 
problem. 

Problem 12.9 Solve the following difference equations: 

1. .Xt + 7Xt−1 + 12Xt−2 = 4;. X0 = 1.2, X1 = 2.2, 
2. .Xt − 5Xt−1 + 4Xt−2 = 9;. X0 = 0, X1 = 5, 
3. .Xt − 2Xt−1 + Xt−2 = 4.. X0 = 1, X1 = 2. 

Solution 12.9 Particular solutions were found for these equations in the previous 
problem; so we only need the complementary solutions. 

1. The characteristic equation is 

.x2 + 7x + 12 = 0
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whose roots are .−3, −4. The complementary solution is therefore 

. Xt = A(−3)t + B(−4)t

with .A, B constants. 
Therefore, the general solution (of the given inhomogeneous difference 

equation) is obtained by adding the particular solution .Xt = 1
5 = 0.2 found 

in the previous problem: 

. Xt = 0.2 + A(−3)t + B(−4)t .

Since .X0 = 1.2, then .1.2 = X0 = 0.2 + A + B, which gives 

. A + B = 1.

Since .X1 = 2.2, then .2.2 = X1 = 0.2 + A(−3) + B(−4), which gives 

. 3A + 4B = −2.

Solving these two simultaneous equations for A and B gives 

. A = 6, B = −5.

The solution is therefore 

. Xt = 0.2 + 6(−3)t − 5(−4)t .

2. The characteristic equation is 

. x2 − 5x + 4 = 0

with roots .1, 4. The complementary solution is 

. Xt = A1t + B4t = A + B4t

with .A, B constants. A particular solution we found, in Problem 12.8.2, was 
.Xt = −3t . Therefore the general solution is 

.Xt = A + B(4)t − 3t.
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Since .X0 = 0, then .0 = X0 = A+B40 − 0 = A+B. Therefore, .A = −B. Next  
.X1 = 5, gives .5 = X1 = A + B41 − 3 × 1. That is .A + 4B = 8. Since .A = −B, 
then .3B = 8 and so .B = 8

3 and .A = − 8
3 . The general solution is therefore 

. Xt = −8

3
+ 8

3
(4t ) − 3t.

3. The characteristic equation is 

. x2 − 2x + 1 = 0

which has two equal roots: .1, 1. 
The complementary solution is therefore .Xt = A + tB. A particular solution 

we found was .Xt = 2t2. Therefore the general solution is 

. Xt = A + tB + 2t2.

Now .X0 = 1 gives .1 = A; while .X1 = 2 gives 

. 2 = A + 1 × B + 2(1)2 = A + B + 2.

Therefore .A + B = 0. Since .A = 1, then .B = −1. The solution is therefore 

. Xt = 1 − t + 2t2.

Problem 12.10 A simplified Samuelson model for a national economy is provided 
by the following difference equation, where . Xt is the total national income in year 
t : 

. Xt − c(1 + w)Xt−1 + cwXt−2 = k.

Here .c, w, k are positive constants and .c < 1. 
Find the general solution for the case .c = 0.9, w = 0.5, k = 1, where . X0 = 1

and .X1 = 1.3. 
Calculate the national income in years 10 and 20. 

Solution 12.10 The difference equation for the given parameters is 

. Xt − 0.9(1.5)Xt−1 + 0.9(0.5)Xt−2 = 1,

that is 

.Xt − 1.35Xt−1 + 0.45Xt−2 = 1.
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The characteristic equation is 

. x2 − 1.35x + 0.45 = 0

which has roots .0.75, 0.6. The complementary solution is therefore 

. Xt = A(0.75t ) + B(0.6t )

where A and B are constants. 
A particular solution is (see 12.11) 

. Xt = 1

1 − 1.35 + 0.45
= 1

0.1
= 10.

The general solution is therefore of the form 

. Xt = A(0.75t ) + B(0.6t ) + 10.

Since .X0 = 1, then .1 = X0 = A + B + 10, which gives 

.A + B = −9. (12.12) 

Similarly, since .X1 = 1.3, then .1.3 = X1 = A(0.75) + B(0.6) + 10. Therefore 

.0.75A + 0.6B = −8.7. (12.13) 

Multiplying Eq. (12.12) by .0.6 and subtracting the result from Eq. (12.13) gives  

. 0.15A = −8.7 + 0.6 × 9 = −3.3.

It follows that .A = −22 and, from (12.12), .B = −9 − A = −9 + 22 = 13. The  
general solution is therefore 

.Xt = −22(0.75t ) + 13(0.6t ) + 10. (12.14) 

The national income in year 10 is 

. X10 = −22(0.7510) + 13(0.610) + 10 = 8.840 (to 3 decimal places).

(This is almost 9 times the first year’s national income .X0 = 1.) 
In year 20, the national income is 

.X20 = −22(0.7520) + 13(0.620) + 10 = 9.931 (to 3 decimal places).
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Fig. 12.6 Graph of the solution . Xt of Problem 12.10 in continuous time, illustrating the simplified 
Samuelson model converging to the value 10 

If in the above problem, we compute .Xt for larger and larger t , the values 
approach a limiting value of 10. This can be seen from Eq. (12.14). As t increases, 
i.e., tends to . ∞, the terms involving .0.75t and .0.6t tend to 0, so that . Xt tends to the 
value 10; see Fig. 12.6. 

12.6.3 Stability 

A second order linear difference equation 

. Xt + aXt−1 + bXt−2 = c

where .a, b, c are constants, is stable if both its characteristic roots are strictly 
between .−1 and 1 and also .1 + a + b is non-zero. Otherwise it is divergent.
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If the characteristic roots are .α, β, this condition is the same as requiring . −1 <

α < 1 and .−1 < β < 1. The general solution of the difference equation must then 
be one of the forms: 

. Xt =
{

Aαt + Bβt + C if α �= β,

(A + tB)αt + C if α = β,

where .A, B are constants determined by the initial conditions (the values .X0 and 
. X1) and where 

. C = c

1 + a + b
.

The particular solution is .Xt = C and the complementary solution is either . Xt =
Aαt + Bβt or .Xt = (A + tB)αt . 

In either case; if .−1 < α < 1 and .−1 < β < 1, the complementary solution 
converges will tend to 0 as t tends to . ∞. Then the general solution will tend to the 
particular solution. 

The three difference equations in the second problem of the previous section are 
divergent. The difference equation in the simplified Samuelson model example is 
stable and the solution converges on the particular solution .Xt = 10, as is illustrated 
in Fig. 12.6. 

Convergence can still occur when .1 + a + b = 0 in the homogeneous case if one 
characteristic root is 1 and the other root lies strictly between . −1 and 1. 

Problem 12.11 Consider the difference equation 

. 2Xt − Xt−1 − Xt−2 = 0

(So the value of . Xt in period t is the average of its values in the previous two periods, 
.t ≥ 2.) 

Find the general solution and comment on convergence. 

Solution 12.11 The characteristic equation is .2x2 − x − 1 = 0, whose roots are 
.1, − 1

2 . The general solution is therefore 

. Xt = A + B

(

−1

2

)t

where .A, B are constants. 

As t tends to . ∞, .
(
− 1

2

)t

will tend to the value 0 and therefore . Xt converges to 

the solution .Xt = A. The value of  A can easily be expressed in terms of . X0 and . X1. 
Since .X0 = A + B and .X1 = A − 1

2B, then .A = 1
3 (X0 + 2X1).
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Self-Assessment Questions 

1. Solve the linear difference equations: 

(a) . Xt = 2Xt−1 + 5; X0 = 1
(b) . Xt = 1

2Xt−1 + 3; X0 = 4

Comment on stability and convergence in each case. 
2. A saver deposits $2000 in a savings account paying 4. % interest per annum. 

At the end of each year, the saver deposits $100 into the account. What is the 
value of the savings after 5 years? 

3. A firm buys a piece of equipment for e8000 . It is calculated that the value 
of the equipment will depreciate by 5. % per annum thereafter. What will the 
equipment be worth after 10 years, to the nearest euro? 

4. A manufacturer’s supply and demand functions for a good at time t are: 

. QS,t = 2Pt−1 − 7 and QD,t = −3Pt + 20.

Show that over time the equilibrium price of the good will converge and find 
the equilibrium price. 

5. Solve the second order difference equations: 

(a) . Xt + 6Xt−1 − 7Xt−2 = 8; X0 = 1, X1 = 3
(b) . Xt + 3Xt−1 − 4Xt−2 = 6; X0 = 1, X1 = 2
(c) . Xt − 2Xt−1 + Xt−2 = 6; X0 = 1, X1 = 3

Exercises 

1. Solve the following difference equations, commenting on stability. 

(a) . Xt = −3Xt−1 + 5; X0 = 2
(b) . Xt = − 1

3Xt−1 + 5; X0 = − 1
4

(c) . Xt = 2Xt−1 − 8; X0 = 9
(d) . Xt = 3

2Xt−1

(e) . Xt = 2
3Xt−1 − 10

(f) . Xt = 0.95Xt−1.

Evaluate .X10 for cases (a)-(c). 
2. Calculate the equilibrium price of a single good in an isolated market where 

the supply, .QS,t , demand .QD,t and price . Pt in period t are given by 

. QS,t = 4Pt−1 − 5,

QD,t = −5Pt + 10.

Show that the prices . Pt converge and find the equilibrium price.
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3. Solve the difference equations: 

(a) . Xt = Xt−1 + 3; X0 = 0
(b) . Xt = 3 − Xt−1; X0 = 1

In each case, sketch the graph of the function . Xt for . t = 0, 1, 2, 3, 4.

4. Solve the following difference equations, commenting on stability in each 
case: 

(a) . Xt − 6Xt−1 + 9Xt−2 = 2; X0 = 1.5, X1 = 2
(b) . Xt + 2Xt−1 − 3Xt−2 = 7; X0 = 0, X1 = 4
(c) . Xt − 2Xt−1 + Xt−2 = 6; X0 = 1, X1 = 3
(d) . Xt − 2Xt−1 − 15Xt−2 = 8; X0 = 0, X1 = 1
(e) . 10Xt − 3Xt−1 − 4Xt−2 = 18; X0 = 2, X1 = 0
(f) . 4Xt − Xt−2 = 9; X0 = 5, X1 = 1
(g) . 3Xt − 4Xt−1 + Xt−2 = 0; X0 = 4, X1 = 0

5. Solve the difference equations: 

(a) . 2Xt − Xt−1 − Xt−2 = 0; X0 = 0, X1 = 1
(b) . 2Xt − Xt−1 − Xt−2 = 1; X0 = 0, X1 = 1

6. A simple model for total national income . Xt in year t satisfies the difference 
equation 

. Xt − 1.26Xt−1 + 0.36Xt−2 = 1.

Show that . Xt converges and give the equilibrium value. 
7. A population model for a population . Xt in year t is given by the difference 

equation 

. 9Xt − 9Xt−1 + 2Xt−2 = 100.

Show that the population converges and give its equilibrium value. Evaluate 
.X10, given that .X0 = 48 and .X1 = 49. 

8. A second order linear difference equation .Xt + aXt−1 + bXt−2 = c with 
.b = 0 may be considered first order. Use this to deduce the solution of a 
general first order linear difference equation as given in Sect. 12.3, from the  
theory of solutions of second order equations given in Sect. 12.6.
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� Key Learning Objectives 
On completion of this chapter students should be able to: 

• Solve first order linear differential equations
• Determine if the solution of a first order linear differential equation is 

stable or unstable
• Solve first order nonlinear differential equations of Bernoulli type
• Apply the technique of separation of variables to solving differential 

equations
• Apply the technique of integrating factors to solving differential equations
• Solve second order linear differential equations
• Determine if the solution of a second order linear differential equation is 

stable or unstable 

13.1 Introduction 

There are close similarities between the theories of linear difference equations and 
linear differential equations. Indeed, differential equations may be regarded as the 
continuous analogues of difference equations where the variable quantity, such as 
time, is assumed to flow continuously rather than occurring in discrete intervals. 

In market models where supply, demand, and price vary continuously and where 
each one is affected by the others, it is important to know their rates of change and 
whether these rates are increasing or decreasing. For instance, if the current price 
.P(t) is a function of time t , the economist may wish to know the first derivative 

.P ′(t) = dP (t)
dt

and the second derivative .P ′′(t) = d2P(t)

dt2 . 
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A particular model may be described by an equation relating P and its deriva-
tives, known as a differential equation. Given the equation, the problem is to 
determine P . 

Differential equations have already been encountered. Finding the indefinite 
integral .F(t) = ∫

f (t)dt is equivalent to solving the differential equation 

. 
dF

dt
= f

for F when f is given. 
If .y(t) is a function of a variable t , an . nth order differential equation in y is a 

differential equation in which n is the highest order of derivative of y that occurs in 
the equation. For instance, a second order differential equation can only involve . dy

dt

and . d
2y

dt2 . 
The equation is linear if no mth powers of y or its derivatives occur for any m 

other than .m = 0 or .m = 1. Thus, no terms such as .y− 1
2 , . y2 or .

(
dy
dx

)3
occur. 

Solving a differential equation for y means expressing y as a function of t , either 
implicitly or explicitly, using the equation. 

Finally, we mention some simplified notation that is often used in the theory of 

differential equations. If y is a function of t , then . 
dy
dt

and .
d2y

dt2 can be denoted simply 

by . y′ and . y′′, respectively. An alternative notation, due to Newton, is . ẏ for . 
dy
dt

and . ÿ

for . d
2y

dt2 . 

13.2 First Order Linear Differential Equations 

If .y(t) is a function of a variable t , an equation of the form 

.
dy

dt
= ay + b (13.1) 

where .a, b are constants, not both 0, is known as a first order linear differential 
equation. The equation is homogeneous if .b = 0; otherwise it is inhomogeneous. 

The associated linear homogeneous differential equation of (13.1) is  

.
dy

dt
= ay. (13.2) 

If .y1(t), y2(t) are solutions of (13.1), then .y′
1 = ay1 + b and .y′

2 = ay2 + b, which 
implies .y′

1 − y′
2 = a(y1 − y2). Let .y = y1 − y2. Then .y′ = y′

1 − y′
2 and therefore 

.y′ = ay, which means y is a solution of (13.2). 
It follows that any two solutions of Eq. (13.1) differ only in a solution of (13.2), 

the associated homogeneous equation. Therefore, the general solution of .y′ = ay+b
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is obtained by adding a particular solution of that equation to the general solution 
of the homogeneous equation .y′ = ay. The general solution of (13.2) is known as 
the complementary solution of (13.1). The analogy with the theory of difference 
equations is clear (see Sect. 12.6). 

To find a particular solution of (13.1), try one that does not change with t (i.e., 
one that is time invariant if t denotes time). Try .y = k, where k is a constant to be 
determined. In this case . dy

dt
= 0, since k is constant, and so for (13.1) to hold, we 

require .0 = ak + b or .k = − b
a

(if .a �= 0). Therefore, 

. y = −b

a

is a particular solution if .a �= 0. Next, we solve the homogeneous equation 

. 
dy

dt
= ay.

Since 

. 
dt

dy
= 1

dy
dt

,

(see (6.10)) then 

. 
dt

dy
= 1

ay

and so 

. t =
∫

1

ay
dy = 1

a

∫
1

y
dy = 1

a
ln y + k,

where k is a constant. Therefore, putting .c = ka, this simplifies to 

. ln y = at − c

y = eat−c = e−ceat

(using the product rule for indices (1.11)). Therefore, 

. y = Aeat

where .A(= e−c) is a constant.
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Therefore, the general solution of 

. 
dy

dt
= ay + b,

if . a �= 0, is  

. y = Aeat − b

a

where A is a constant. 
In the case . a = 0, Eq. (13.1) reduces to 

. 
dy

dt
= b

whose solution is .y = ∫
bdt = b

∫
dt = bt + K (remember b is a constant), where 

K is a constant of integration. To summarise: 

The general solution of the equation .
dy

dt
= ay + b is: 

. y =
⎧
⎨

⎩
Aeat − b

a
if a �= 0,

bt + K if a = 0,

where A and K are constants. 

Problem 13.1 Solve the differential equation 

. 
dy

dt
= (3.4)y + 17

where .y = 3 when .t = 0. 

Solution 13.1 Using the general solution in the box above, 

. y = Ae3.4t − 17

3.4
= Ae3.4t − 5.

When .t = 0, .3 = y = Ae0 − 5 = A − 5 so that .A = 8 and so the solution is 

.y = 8e3.4t − 5.
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Problem 13.2 A model for the population .y(t), in millions, of some country at time 
t states that the rate of change of the population is given by 

. 
dy

dt
= −0.05y + 4.5.

The population at time .t = 0 is 100 million. 

1. Evaluate .y(10), correct to 2 decimal places. 
2. Find the value of t for which .y(t) = 91, correct to 1 decimal place. 

Solution 13.2 We are given that 

. 
dy

dt
= −0.05y + 4.5.

The solution is  

. y = Ae−0.05t − 4.5

(−0.05)
= Ae−0.05t + 90.

1. Since .100 = y(0) = Ae0 + 90 = A + 90, then .A = 10, so  

. y(t) = 10e−0.05t + 90.

Therefore, 

. y(10) = 10e−0.5 + 90 = 96.07 (correct to 2 decimal places).

2. If .91 = 10e−0.05t + 90, it follows that .1 = 10e−0.05t , which gives 

. e−0.05t = 0.1.

Take the natural logarithm of each side: 

. ln 0.1 = ln e−0.05t = −0.05t.

Therefore, 

. t = − 1

0.05
ln 0.1 = 46.1 (correct to 1 decimal place).

A sketch of this solution is shown in Fig. 13.1. The dashed line corresponds to the 
line .y = 90.
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Fig. 13.1 The graph of the solution of Problem 13.2 on population decline. The population 
converges to 90 million 

13.2.1 Stability 

If . α is any positive number, .e−αt will tend to 0 and .eαt will tend to . ∞ (increase 
without bound) as t tends to . ∞. It follows that the solution 

. y = Aeat − b

a

of the differential equation 

. 
dy

dt
= ay + b (a �= 0),

will converge on the equilibrium value .− b
a

as t tends to . ∞ when . a < 0. In this  
case, we say the solution of the equation is stable. Solutions that diverge are said to 
be unstable; for instance, when .a > 0.



13.3 Nonlinear First Order Differential Equations 343

In the case .a = 0, the differential equation is . dy
dt

= b, where .b �= 0. The general 
solution .y = bt +K , where K is a constant, is evidently divergent since bt will tend 
to .±∞ with t . To summarise: 

The solution of the differential equation .
dy

dt
= ay + b is 

1. unstable if .a ≥ 0; 
2. stable if .a < 0. In this case the solution y converges on the particular 

solution .−b/a as equilibrium value. 

The solution in Problem 13.1 is unstable. The solution in Problem 13.2 is stable 
and the equilibrium value is 90. This means the population converges towards this 
value as t increases (see Fig. 13.1). It takes almost 46 years to reach 91 million (see 
the second part of Problem 13.2). However, by decreasing one of the parameters, 
namely changing . 4.5 to .3.85, it takes less than 10 years to fall from 100 to 91 million. 

Note the equilibrium value .− b
a

is never realized by .y = Aeat − b
a

if . A �= 0. This  
is because . eat never takes the value 0, since .ex > 0 for any number x. 

13.3 Nonlinear First Order Differential Equations 

Nonlinear differential equations are more difficult to analyse. For these equations, 
there are specialised techniques depending on the type of equation. 

One such equation that occurs in economics is the Bernoulli equation 

.
dy

dt
= ay + byn (13.3) 

where .a, b, n are constants and .n > 1. 
This can be solved by linearizing it in the following way. Let .z = y1−n. Then by 

the chain rule (6.8) 

. 
dz

dt
= dz

dy
× dy

dt
= d(y1−n)

dy
× dy

dt
= (1 − n)y−n dy

dt
.

Therefore, 

.y−n dy

dt
= 1

(1 − n)

dz

dt
.
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Multiplying Eq. (13.3) throughout by .y−n gives 

. y−n dy

dt
= ayy−n + byny−n.

That is 

. 
1

(1 − n)

dz

dt
= ay1−n + b = az + b.

Therefore, 

. 
dz

dt
= (1 − n)az + (1 − n)b,

which is a linear first order differential equation. This can be solved by the method 
discussed earlier in Sect. 13.2. 

Problem 13.3 Solve the differential equation 

. 
dy

dt
= y − 2y2,

given that .y(0) = 1
5 . 

Solution 13.3 This is the Bernoulli Eq. (13.3) with .a = 1, b = −2 and . n = 2. Let  
.z = y1−n = y1−2 = y−1. Then following through the above technique, the given 
differential equation transforms to 

. 
dz

dt
= −z + 2.

The general solution is 

. z = Ae−t − 2

(−1)
= Ae−t + 2.

Since .z = y−1, then 

. y−1 = Ae−t + 2.

We are given that .y = 1
5 when .t = 0. Therefore, 

.

(
1

5

)−1

= Ae0 + 2 = A + 2.
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It follows that .A = 3, .y−1 = 3e−t + 2, and therefore 

. y = 1

3e−t + 2
.

13.3.1 Separation of Variables 

If a first degree differential equation can be expressed in the form 

. f (y)
dy

dt
= g(t),

where f is a function only of y and g a function only of t , we can sometimes solve 
the equation by the method of separation of variables. 

The technique is more easily understood if we treat dy and dt as differentials— 
see Appendix A—whose ratio is the derivative . dy

dt
. The usefulness of this idea will 

become apparent from the following examples. 

Problem 13.4 Solve the differential equation 

. y2 dy

dt
= 8t + 1,

given that .y(0) = 6. 

Solution 13.4 Write the equation as 

. y2dy = (8t + 1)dt.

Integrate both sides: 

. 

∫
y2dy =

∫
(8t + 1)dt.

Then 

. 
1

3
y3 = 4t2 + t + K,

where K is a constant. 
When .t = 0, .y = 6 and so . 13 (63) = 0 + 0 + K , which gives .K = 72. It follows 

that 

.
1

3
y3 = 4t2 + t + 72
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which can also be written as 

. y3 = 3(4t2 + t + 72).

Problem 13.5 Solve the differential equation equation 

. 
dy

dt
= 1

2
y3t2,

given that .y(0) = 1. 

Solution 13.5 Rearrange the equation to obtain 

. 2y−3dy = t2dt.

Integrating both sides: 

. 2
∫

y−3dy =
∫

t2dt,

gives 

. 
2

−3 + 1
y−3+1 = 1

3
t3 + K,

where K is a constant. Then 

. − y−2 = 1

3
t3 + K.

Since .y = 1 when .t = 0, then .K = −1. Therefore 

. − y−2 = 1

3
t3 − 1.

Multiply throughout by .−3 to get 

. 3y−2 = −t3 + 3

or 

.
3

y2 = 3 − t3.
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We can also write this as 

. y2 = 3

3 − t3 .

Problem 13.6 Solve the differential equation equation 

. t
dy

dt
= y2,

where .y(1) = − 1
2 . 

Solution 13.6 Write the equation in the form 

. y−2dy = t−1dt

and integrate both sides to obtain 

. 

∫
y−2dy =

∫
t−1dt.

That is, 

. − y−1 = ln t + K (13.4) 

where K is a constant. When .t = 1, y = − 1
2 ; so we have  

. −
(

−1

2

)−1

= ln 1 + K = 0 + K.

Therefore .2 = K , and substituting this in (13.4) gives  

. − y−1 = ln t + 2

which can be rearranged as 

.y = − 1

2 + ln t
.
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13.3.2 Integrating Factors 

In this section we shall discuss a method for solving first order linear differential 
equations of the form 

.
dy

dx
+ Py = Q (13.5) 

where P and Q are functions of x only. 
The idea is to multiply both sides of this equation by a function I of x known as 

an integrating factor, so that the left-hand side of the resultant equation becomes 

. 
d(Iy)

dx
.

That is 

. I
dy

dx
+ IPy = d(Iy)

dx
= I

dy

dx
+ dI

dx
y.

So we need 

. 
dI

dx
= IP .

We can integrate this equation using separation of variables. Write 

. 
1

I
dI = Pdx

then integrating both sides gives 

. ln I =
∫

Pdx.

(As we only need to find one function I , we can take the constant of integration to 
be 0.) Therefore 

. I = e
∫

Pdx.

So if we multiply the original differential Eq. (13.5) throughout by I , we have  

.I
dy

dx
+ IPy = QI.
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We have seen that the left-hand side is . d
dx

(Iy). Therefore 

. 
d

dx
(Iy) = QI.

Integrating both sides gives 

. Iy =
∫

QI dx + C

where C is any constant. 
Therefore the solution to the differential Eq. (13.5) is  

. y = 1

I

(∫
QI dx + C

)

where .I = e
∫

Pdx . 
We shall give some examples that will give a better understanding of the method. 

The problems will not use the formula directly but will first find the integrating 
factor. Then we multiply the equation throughout by I and then rearrange and 
simplify to find the solution. 

Problem 13.7 Solve the differential equation 

. 
dy

dx
+ 4y = x

where .y = 1 when .x = 0. 

Solution 13.7 The integrating factor .I = e
∫

4dx since .P = 4. Therefore, .I = e4x . 
Multiplying both sides of the equation by .e4x gives 

. e4x dy

dx
+ 4ye4x = xe4x

That is, 

. 
d

dx
(ye4x) = xe4x,

which means 

.ye4x =
∫

xe4x dx. (13.6)
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We shall evaluate this this integral using integration by parts: 

. 

∫
xe4x dx = 1

4

∫
xd(e4x) = 1

4

(

xe4x −
∫

e4x dx

)

. = 1

4

(

xe4x − 1

4
e4x

)

= 1

16
e4x(4x − 1) + C,

where C is any constant. Multiplying (13.6) throughout by .e−4x gives 

. y = 4x − 1

16
+ Ce−4x.

We can find C, since .y = 1 when .x = 0. That is, 

. 1 = − 1

16
+ C.

So .C = 17/16. Therefore 

. y = 1

16

(
4x − 1 + 17e−4x

)
.

Problem 13.8 Solve the differential equation 

. x
dy

dx
= 3y + x2

where .y = 2 when .x = 1. 

Solution 13.8 First we rewrite the equation in the form (13.5), thus 

.
dy

dx
− 3y

x
= x. (13.7) 

Here .P = − 3
x

, so .
∫

P dx = −3
∫ 1

x
dx = −3 ln x = ln x−3. The integrating factor 

I is then .eln x−3 = x−3. Multiplying both sides of (13.7) by .x−3, then 

. x−3 dy

dx
− 3x−4y = x−2.

That is, 

.
d

dx
(x−3y) = x−2.
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Therefore, .x−3y = ∫
x−2 dx = −x−1 + C, where C is some constant. Then 

. y = x3(−x−1 + C) = −x2 + Cx3.

When .x = 1, . y = 2; so .2 = −1 + C. Therefore .C = 3 and so 

. y = 3x3 − x2.

13.4 Solow Differential Equation 

The Solow-Swan model is an example of a nonlinear first order differential equation 
that models economic growth. The model was developed in 1957 by Robert Solow 
who received the Nobel Prize for Economics. The model comprises a production 
function, Q, that depends on two factors of production: capital K and labour L of 
the form 

.Q = Q(K,L). (13.8) 

In practice K and L and hence Q will depend on time t and the model will seek to 
determine the behaviour of output Q as a function of time. 

The model assumes that the production function Q is homogeneous of degree 1, 
i.e. 

.Q(λK, λL) = λQ(K,L), (13.9) 

for any number . λ (see Sect. 5.4). In this case the production function is said to 
exhibit constant returns to scale. 

We can use this assumption to express the production function on a per worker 
basis. Define 

. k = K

L
and q = Q

L

to be the capital and output per worker, respectively, then choosing .λ = 1/L in 
(13.9) gives .Q(k, 1) = q. If we define .q(k) = Q(k, 1) then the production function 
can be expressed in the form 

. q = q(k).

Solow’s differential equation expresses the rate of change of capital in terms of 
the difference between the rate of investment and the rate of depreciation; i.e. 

.
dk

dt
= i − δk, (13.10)
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where . δ is a constant of proportionality known as the rate of depreciation. The rate 
of investment is modelled using 

. i = sq = sq(k),

where s is a constant savings rate that takes a value between 0 and 1. Finally, we 
obtain the differential equation 

.
dk

dt
= sq(k) − δk (13.11) 

For example, we consider the Cobb-Douglas production function (see Sect. 5.4.1) 
with . β = 1 − α

. Q = Q(K,L) = AKαL1−α.

With this choice of . β the production function is homogeneous of degree 1 since 
.α + β = 1. Written in terms of output per worker this becomes 

.q = q(k) = Akα. (13.12) 

The graph of .q = q(k) is shown in Fig. 13.2 for .A = 1 and .α = 1
3 . Solow’s 

differential equation for the Cobb-Douglas production function is 

.
dk

dt
= sAkα − δk (13.13) 

An equilibrium solution to this equation is obtained by setting . dk
dt

= 0. Therefore 
these solutions are values of k for which 

. sAkα = δk.

This equation has two solutions: .k = 0 and .k = (sA/δ)1/(1−α) for . α < 1. The  
nonzero solution is known as the steady state level of capital. The graphs of . q =
sq(k) and .q = δk are shown in Fig. 13.3 for .A = 1, .s = 0.5, .δ = 0.12 and .α = 1

3 . 
The nonzero intersection of the graphs provides the value of the steady-state level 
of capital which in this case is .k ≈ 8.505. 

Equation (13.13) is in the form of the first order nonlinear differential Eq. (13.3) 
considered in Sect. 13.3 with .y = k, .a = −δ, .b = sA and .n = α. The equation is 
linearized by setting .z = k1−α to give 

.
dz

dt
= −(1 − α)δz + (1 − α)sA.
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Fig. 13.2 Graph of the Cobb-Douglas production function . q(k)
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Fig. 13.3 Graphs of the functions .sq(k) and . δk with the point of intersection corresponding to 
the steady state level of capital
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This is a first order linear differential equation with solution 

. z = Ce−(1−α)δt + sA

δ
,

where C is a constant. Finally, 

. k = z
1

(1−α) .

The following problem provides a detailed derivation of the solution for .k(t). 

Problem 13.9 Solve the following Solow differential equation 

.
dk

dt
= sAkα − δk (13.14) 

subject to the initial condition .k(0) = k0. 

Solution 13.9 Note that the Solow differential equation is of Bernoulli type 
discussed in Sect. 13.3. This differential equation can be solved by linearizing it 
in the following way. Let .z = k1−α . Then by the chain rule (6.8) 

. 
dz

dt
= dz

dk

dk

dt
= d(k1−α)

dk
× dk

dt
= (1 − α)k−α dk

dt
.

Therefore, 

. k−α dk

dt
= 1

(1 − α)

dz

dt
.

Multiplying Eq. (13.14) throughout by .k−α gives 

. k−α dk

dt
= −δkk−α + sAkαk−α.

That is 

. 
1

(1 − α)

dz

dt
= −δk1−α + sA = −δz + sA.

Therefore, 

.
dz

dt
= −(1 − α)δz + (1 − α)sA,
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which is a linear first order differential equation. This can be solved by the method 
discussed in Sect. 13.2. The general solution is 

. z(t) = Ce−(1−α)δt + sA

δ
,

where C is a constant. The corresponding solution for .k(t) is 

. k(t) =
(

Ce−(1−α)δt + sA

δ

)1/(1−α)

.

The constant C is determined from the initial condition .k(0) = k0 so putting . t = 0
into the last equation gives 

. k(0) = k0 =
(

C + sA

δ

)1/(1−α)

,

which can be rearranged to give 

. C = k
(1−α)
0 − sA

δ
.

Finally, we obtain that output is given by the expression 

. k(t) =
(

k
(1−α)
0 e−(1−α)δt + sA

δ

(
1 − e−(1−α)δt

))1/(1−α)

.

Since .α < 1, .−(1 − α) = α − 1 < 0 and so the solution is stable. Note that as 
.t → ∞, .k(t) → k∞ = (sA/δ)1/(1−α). This is the equilibrium value. 

Problem 13.10 Solve the Solow differential equation 

.
dk

dt
= 0.1q − 0.05k (13.15) 

for the Cobb-Douglas production function 

. Q = 2K
1
2 L

1
2

where .k = 27, when time .t = 0. Give the equilibrium value. 

Solution 13.10 This is a special case of the Solow differential Eq. (13.11) with . s =
0.1, .δ = 0.05 and .q(k) = 2k

1
3 . Comparing this expression for .q(k) with the general 

form given by (13.12), we have .A = 2 and .α = 1
3 .
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Introduce the change of variable .z = k1− 1
3 = k

2
3 , then 

. 
dz

dt
= dz

dk

dk

dt
= 2

3
k− 1

3
dk

dt
.

Multiplying (13.15) by .k− 1
3 gives 

. k− 1
3
dk

dt
= 0.1(k− 1

3 )(2k
1
3 ) − 0.05(k− 1

3 )(k)

which written in terms of z is 

. 
3

2

dz

dt
= 0.2 − 0.05z.

This simplifies to give the first order linear differential equation 

.
dz

dt
+ 1

30
z = 2

15
. (13.16) 

This equation can be solved using an integrating factor. The integrating factor is 

.e
∫ 1

30 dt = e
t

30 . Multiplying (13.16) by the integrating factor gives 

. 
d

dt

(
e

t
30 z

)
= 2

15
e

t
30 .

On integrating both sides of this equation we obtain 

. z = 4 + Ce− t
30 ,

where C is a constant. Therefore, 

. k(t) = (4 + Ce− t
30 )

3
2 .

When .t = 0, .= 27 which yields .(4 + C)
3
2 = 27 from which we obtain .C = 5. 

Finally, we obtain the solution 

. k(t) = (4 + 5e− t
30 )

3
2 .

As .t → ∞, .k → 4
3
2 = 8. This is the equilibrium value. 

We leave it as an exercise to check that this solution agrees with the general 
solution of the Solow differential equation after substitution of the parameter values.
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13.5 Second Order Linear Differential Equations 

The general second order differential equation is of the form 

.
d2y

dt2
+ a

dy

dt
+ by = c, (13.17) 

which can also be written as 

. y′′ + ay′ + by = c.

Here .a, b, c are constants, 

. y′ = dy

dt
and y′′ = d2y

dt2 .

The equation is homogeneous if .c = 0; otherwise it is inhomogeneous. The  
associated homogeneous differential equation to (13.17) is  

.
d2y

dt2 + a
dy

dt
+ by = 0. (13.18) 

As in the first order case, it can easily be shown that any two solutions of Eq. (13.17) 
differ by a solution of (13.18). Thus, the general solution of (13.17) is any particular 
solution of (13.17) plus the general solution of (13.18). 

As before, the general solution of the associated homogeneous differential 
equation is known as the complementary solution of (13.17). 

13.5.1 The Homogeneous Case 

Consider the homogeneous linear differential Eq. (13.18). The general second order 
homogeneous linear difference equation had solutions of the form .Xt = Aαt , 
where .A, α are constants. So we might try solutions of this form for the differential 
equations case. 

However, as the function . ex is easier to differentiate than the general exponential 
. αx (recall that . dex

dx
= ex), we shall try solutions of the form .y = Aeαt , with . A, α

constants. This is not a major change because . αx can be expressed as a power of e, 
noting that .et ln α = αt (since .t ln α = ln(αt ) = loge(α

t )). 
If .y = Aeαt (A �= 0), then .y′ = A d

dt
(eαt ) = Aαeαt and . y′′ = Aα d

dt
(eαt ) =

Aα2eαt . Therefore, .y = Aeαt is a solution of the homogeneous equation if and only 
if 

.Aα2eαt + aAαeαt + bAeαt = 0.
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Dividing throughout by .Aeαt gives 

. α2 + aα + b = 0.

This is the condition for . α to be a root of the quadratic equation 

. x2 + ax + b = 0

which we will call the characteristic equation of the differential equation. Its roots 
are the characteristic roots. The similarity with difference equations is clear (see 
Sect. 12.6). We assume that the characteristic roots are real i.e. .b2 − 4ac ≥ 0. 

If we allow .A = 0, then .y = 0, which is still a solution of the homogeneous 
differential equation. It follows that .y = Aeαt is a solution for any constant A, 
where . α is any one of the two characteristic roots. If .α, β are the two characteristic 
roots, there are two combinations of this basic type solution that give the general 
solution of .y′′ + ay′ + b = 0 depending on whether . α, . β are equal or not. They are 
as follows: 

. y =
{

Aeαt + Beβt if α �= β,

(A + tB)eαt if α = β,

where .A, B are constants. The values of .A, B can be determined from boundary 
conditions; for instance the values of .y(0) and .y′(0) are given, or the values of . y(0)

and .y(1). The theory for solving second-order differential equations is valid even if 
the characteristic roots are not real (see Chap. 3). However, we will not consider this 
possibility here. 

Problem 13.11 Solve the differential equations 

1. . 
d2y

dt2 + 5
dy

dt
+ 6y = 0; y(0) = 0 and y′(0) = 4,

2. . 
d2y

dt2 − dy

dt
− 6y = 0; y(0) = 1 and y′(0) = 5,

3. . 
d2y

dt2
− 6

dy

dt
+ 9y = 0; y(0) = 1 and y′(0) = 1.

Solution 13.11 

1. The characteristic equation is 

.x2 + 5x + 6 = (x + 2)(x + 3) = 0.



13.5 Second Order Linear Differential Equations 359

The characteristic roots are therefore .−2, −3. The solution is therefore 

. y = Ae−2t + Be−3t

and so .y′ = −2Ae−2t − 3Be−3t . Since 

. 0 = y(0) = Ae0 + Be0 = A + B,

then .A = −B. Since also 

. 4 = y′(0) = −2A − 3B

then 

. 4 = −2A − 3(−A) = −2A + 3A = A.

Therefore .A = 4 = −B, and the solution is 

. y = 4e−2t − 4e−3t .

2. The characteristic equation is 

. x2 − x − 6 = (x + 2)(x − 3) = 0.

The characteristic roots are therefore .−2, 3. The solution is therefore 

. y = Ae−2t + Be3t .

Then 

. y′ = −2Ae−2t + 3Be3t .

Since .y(0) = 1, then 

. A + B = 1.

Since .y′(0) = 5, then 

. − 2A + 3B = 5.
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Solving the simultaneous equations gives .A = −0.4 and .B = 1.4. The solution 
is therefore 

. y = −0.4e−2t + 1.4e3t .

3. The characteristic equation is 

. x2 − 6x + 9 = (x − 3)2 = 0.

Therefore, there are two equal characteristic roots .3, 3. The solution is therefore 

. y = (A + tB)e3t .

We have 

. 1 = y(0) = (A + 0)e0 = A.

Since 

. y′ = Be3t + (A + tB)3e3t ,

using the rule for differentiation of a product of functions (6.6), then 

. y′(0) = Be0 + (A + 0)3e0

= B + 3A

= B + 3 (since A = 1).

Therefore, since .y′(0) = 1, then .B = −2. It follows that the solution is 

. y = (1 − 2t)e3t .

13.5.2 The General Case 

We have shown how to solve homogeneous linear differential equations and 
therefore we can find complementary solutions in the inhomogeneous case. All we 
need now is to find particular solutions of Eq. (13.17): 

.y′′ + ay′ + by = c.
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There are three cases of particular solutions: 

. y =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c

b
if b �= 0,

c

a
t if b = 0, a �= 0,

1

2
ct2 if a = b = 0.

It is a simple exercise to show that these are indeed particular solutions of 
Eq. (13.17). Note that the solution .y = c

b
is that obtained by assuming y is constant 

(i.e., time invariant if t represents time). 
The cases for a particular solution correspond, in order, to the cases when: 0 

is not a characteristic root; exactly one characteristic root is 0; both characteristic 
roots are 0. Compare this with the corresponding case for difference equations in 
Chap. 12. 

Problem 13.12 If .y = y(t) is a function of t , solve the following differential 
equations for y: 

1. . y′′ − y′ − 6y = 6; y(0) = 0 and y′(0) = 5,

2. . y′′ + 5y′ + 6y = −12; y(0) = 2 and y′(0) = 3,

3. . y′′ − 6y′ + 9y = 18; y(0) = 0 and y′(0) = 1,

4. . y′′ − 4y′ = 8; y(0) = 0 and y(1) = 3.

Solution 13.12 

1. From Example 13.11.2, we know that the complementary solution is of the form 

. y = Ae−2t + Be3t .

(We do not apply boundary conditions until we have the complete general 
solution.) 

A particular solution is .y = 6
−6 = −1, so the general solution is 

. y = Ae−2t + Be3t − 1.

Then 

.y′ = −2Ae−2t + 3Be3t .
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Since 

. 0 = y(0) = A + B − 1,

then .A + B = 1. We also have  

. 5 = y′(0) = −2A + 3B.

Solving the simultaneous equations .A + B = 1 and .−2A + 3B = 5 gives . A =
−0.4 and .B = 1.4. The solution is therefore 

. y = −0.4e−2t + 1.4e3t − 1.

2. From Example 13.11.1, the complementary solution is 

. y = Ae−2t + Be−3t .

A particular solution is .y = −12
6 = −2. Therefore, the general solution is 

. y = Ae−2t + Be−3t − 2.

Then 

. y′ = −2Ae−2t − 3Be−3t .

Since .y(0) = 2, then .2 = A + B − 2 and since .y′(0) = 3, then .3 = −2A − 3B. 
Solving the simultaneous equations .A+B = 4 and .2A+3B = −3 gives . A = 15
and .B = −11. The solution is therefore 

. y = 15e−2t − 11e−3t − 2.

3. From Example 13.11.3, the complementary solution is 

. y = (A + tB)e3t .

A particular solution is .y = 18
9 = 2. The general solution is therefore 

. y = (A + tB)e3t + 2.

Since .0 = y(0) = (A + 0)e0 + 2 = A + 2, then .A = −2. Since 

.y′ = Be3t + (A + tB)3e3t ,
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using the rule for differentiation of a product of functions (6.6), then 

. y′(0) = B + 3A.

Therefore, since .y′(0) = 1 and .A = −2, then .B = 7. The general solution is 
therefore 

. y = (7t − 2)e3t + 2.

4. The characteristic equation is 

. x2 − 4x = x(x − 4) = 0

and the characteristic roots are therefore .4, 0. The complementary solution is 

. y = Ae4t + Be0t = Ae4t + B.

A particular solution is .y = 8
−4 t = −2t . The general solution is therefore 

. y = Ae4t + B − 2t.

Since .0 = y(0) = A + B and .3 = y(1) = Ae4 + B − 2, then .B = −A and 
.5 = Ae4 + B. Then .5 = Ae4 − A = A(e4 − 1). Therefore, .A = 5

e4−1
= −B and 

the general solution is 

. y = 5

e4 − 1
(e4t − 1) − 2t.

13.5.3 Stability 

To discuss the stability of the second order linear differential equation 

. 
d2y

dt2
+ a

dy

dt
+ by = c,

we shall assume .b �= 0 in order to simplify matters by avoiding degenerate cases. 
The condition .b �= 0 is equivalent to the condition that the characteristic roots 
.α, β �= 0.
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The general solution of the differential equation is then 

. y =

⎧
⎪⎨

⎪⎩

Aeαt + Beβt + c

b
if α �= β,

(A + tB)eαt + c

b
if α = β,

where .A, B are constants. 
Since .eγ t tends to 0 or . ∞ as t tends to . ∞ according as .γ < 0 or . γ > 0, the  

solution y will diverge if either . α or . β is positive; while if .α, β are both negative, 
the complementary solution tends to 0 and so y converges on the particular solution 
. c
b

, the equilibrium value. 
In Examples 13.12.1 and 13.12.3, the solution diverges, while in Exam-

ple 13.12.2 it converges to the equilibrium value . −2, the particular solution in 
that case. 

Self-Assessment Questions 

1. Solve the differential equation 

. 
dy

dt
= 2y − 3; y(0) = 0,

for the function .y = y(t). 
2. Determine if the solution of the first order linear differential equation 

. 
dy

dt
= 2y − 3;

is stable or unstable. 
3. Solve the first order nonlinear differential equation of Bernoulli type 

. y′ = 2y − y3; y(0) = 1.

4. Solve the differential equation 

. 
dy

dt
= y2t3; y(1) = −4,

using separation of variables. 
5. Solve the differential equation 

. 
dy

dx
− y

x
= x, y(1) = 0, x > 1,

using an integrating factor.



13.5 Second Order Linear Differential Equations 365

6. Solve the second order linear differential equation 

. 
d2y

dt2 + 4
dy

dt
− 12y = 6; y(0) = −1

2
, y′(0) = 4.

7. Determine if the solution of the second order linear differential equation 

. 
d2y

dt2
+ 4

dy

dt
− 12y = 6.

is stable or unstable 

Exercises 

1. Solve the following differential equations for the function .y = y(t). 

(a) . 
dy

dt
= 5y + 6; y(0) = 1,

(b) . 
dy

dt
= −3y + 4; y(0) = 1

3
,

(c) . 
dy

dt
= 0.8y + 12; y(0) = 5.

Comment on stability for each of these equations and sketch the graph of y 
against t . 

2. Solve the following differential equations for .y = y(t) and sketch the graph 
of y against t . 

(a) . 
dy

dt
= 4; y(0) = 7,

(b) . 
dy

dt
= 4t; y(0) = 1.

3. In a population model, the population .y(t) (thousands) at time t (years) 
satisfies 

. y′ = −0.05y + 2.

The initial population is 100,000. What is the equilibrium value of the 
population? When does the population fall to within 1000 of this equilibrium 
value? Sketch the graph of population against time. 

4. Solve the following differential equations for .y = y(t). 

(a) . y′ = 1.2y − y2; y(0) = 2,

(b) . y′ = −2y + 5y1.2; y(0) = 1.

5. Solve the following differential equations for .y = y(t). 

(a) .y2 dy

dt
= 4t; y(0) = 3,
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(b) . yt
dy

dt
= 1; y(1) = 1,

(c) . 
dy

dt
= yt; y(0) = 3,

(d) . 
dy

dt
= 2t + 1

6y2
; y(0) = 1,

(e) . et dy

dt
= y2; y(0) = 0.5.

6. Solve the following differential equations for .y = y(t). In each case, 
comment on stability. 

(a) . 
d2y

dt2 − 2
dy

dt
− 15y = 0; y(0) = 5, y′(0) = 1,

(b) . 
d2y

dt2
+ 8

dy

dt
+ 15y = 30; y(0) = 2, y′(0) = 1,

(c) . 
d2y

dt2 − 8
dy

dt
+ 16y = 4; y(0) = 4, y′(0) = 10.

7. Solve the following differential equations. 

(a) . 
d2y

dt2 + 3
dy

dt
= 0; y(0) = 1, y′(0) = 3,

(b) . 
d2y

dt2 − 4y = 12; y(0) = 0, y′(0) = 6,

(c) . 
d2y

dt2 − 10
dy

dt
= 5; y(0) = 0, y′(0) = 1

2
,

(d) . 
d2y

dt2
= 10; y(0) = 1, y′(0) = 2.

8. Solve the following differential equations for the function .y = y(x). 

(a) . y′ = −3y + 15, y(0) = 1;
(b) . y′ = 0.5y − 6, y(0) = 15,

Comment on stability in each case. 
9. Using the substitution .z = y−1, convert the differential equation 

. 
dy

dt
= y − 3y2

into a linear differential equation and solve it, given that .y(0) = 1
2 and y is a 

function of t . 
10. Solve the differential equation 

. 3y2 dy

dt
= 6t + 1

where .y(0) = 1.
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11. Solve the differential equation 

. 
dy

dx
+ 2y = 3e−x, y(0) = 4,

using an integrating factor. 
12. Solve the following differential equations, commenting on stability in each 

case: 

(a) . y′′ + y′ − 12y = 36; y(0) = 4, y′(0) = 7,

(b) . y′′ − 10y′ + 25y = 50; y(0) = 5, y′(0) = 10,

(c) . y′′ − 6y′ = 9; y(0) = 4
3 , y′(0) = 1

2 ,

(d) . y′′ + 7y′ + 6y = 12; y(0) = 6, y′(0) = 1.

13. Solve the following differential equations: 

(a) . 
dy

dx
+ 6y = 2,

(b) . 
dy

dx
− 2y = 3xe3x,

(c) . 
dy

dx
+ y

x + 1
= x2; y(0) = 1

3
,

(d) . 
dy

dx
− 6yx2 = 12x2; y(0) = 1.

14. Solve the Solow differential equation 

. 
dk

dt
= 0.16q − 0.04k

for the Cobb-Douglas production function 

. Q = 8K
1
2 L

1
2

where .k = 36, when time .t = 0. Give the equilibrium value.
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In defining the derivative . dy
dx

of a function y of x in Chap. 6, we said that 
dy and dx should not be regarded as separate quantities. However, with the 
appropriate interpretation, we can regard dx and dy individually (they are then 
called differentials) and regard . 

dy
dx

as their ratio. 
The geometric meaning of a differential can be seen in Fig. A.1, which shows part 

of the graph of a function .y = f (x). A general point P on the graph has coordinates 
.(x, y), where .y = f (x). If  x changes by a small amount . �x, the corresponding 
point Q on the curve has coordinates .(x+�x, y+�y), where .y+�y = f (x+�x). 
Since .y = f (x), then .�y = f (x + �x) − f (x). In Fig. A.1, . �x is the length PB  
and . �y the length QB. 

The tangent slope . dy
dx

at P is the rate of change of y relative to x at P ; or
approximately the change in y resulting from a unit increase in x. So an estimate
for . �y is .

dy
dx

× �x. This is the length AB in Fig. A.1. 
The differential dy of any function .y = f (x) of x is defined by 

.dy = dy

dx
× �x = f ′(x) × �x. (A.1) 

In particular, since x is itself a function of x, then taking .y = x we have . dx =
dx
dx

× �x = 1 × �x = �x. Therefore, .dx = �x. It follows that if x changes by a 
very small amount dx, then 

. dy = dy

dx
× dx = f ′(x)dx

is the change in y, calculated using the current rate of change . 
dy
dx

of y relative to x. 
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P: 

Q: 

A 

tangent 

(x,y) 

x 

B 

Δ 

(x+Δx,y+Δy) 

dy 

Δy 

Fig. A.1 Geometric interpretation of a differential 

For example, for the function .y = f (x) = x3, we have  

. 
dy

dx
= f ′(x) = 3x2.

Therefore 

. dy = 3x2dx.

Thus, if .x = 2 and x increases to .2.001, the change in x is . �x = dx = 0.001
and .f ′(2) = 3 × 22 = 12. Therefore 

. dy = f ′(2) × dx = 12 × 0.001 = 0.012.

The actual change in y is 

.�y = f (2.001)− f (2) = (2.001)3 − 23 = 0.012006 (correct to 6 decimal places).
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This concept of differentials extends to functions of two or more variables in a 
natural way. If .z = f (x, y), the differentials dx, dy, dz are related by 

.dz = ∂f

∂x
dx + ∂f

∂y
dy. (A.2) 

This relation can be used to obtain the total derivative formula (see Chap. 8). 
If x and y are functions of a variable t and if dx, dy, dz are the differentials 

corresponding to a change dt in t , then dividing both sides of (A.2) by  dt gives 

. 
dz

dt
= ∂f

∂x

dx

dt
+ ∂f

∂y

dy

dt
.

In the theory of differentials, dx and dy can, essentially, be regarded as ‘small 
changes’ in x and y such that the ratio . dy

dx
is the derivative of y with respect to 

x. In Sect. 6.1 we used the notation .�x and .�y for small changes’ so this is a 
slight abuse of notation. Nevertheless, it is useful, as will be shown. (The term 
‘infinitesimally small’ is used in some texts instead of ‘small’ and differentials 
referred to as ‘infinitesimals’.) To give a more rigorous account of differentials is 
beyond the scope of this book. 

The rules of differentials may be summarized as follows: 

1. . d(un) = nun−1 du

2. . du = 0 if u is a constant
3. . d(λu + μv) = λdu + μdv if λ,μ are constants
4. . d(uv) = udv + vdu

5. . d
(u

v

)
= vdu − udv

v2

It is straightforward to verify these rules, using the definition of differentials and 
the rules of differentiation. In these rules an important observation is that there is 
no mention of an underlying variable. The rules stand by themselves, regardless of 
what any underlying variables there may be. 

Problem A.1 Determine the differential of each of the following functions: 

1. .3x − 2; 
2. .x2 + 3x − 5; 
3. .x2y3; 
4. .4e−3x ; 
5. .x2 ln x;
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6. . 
x2

x + y

7. .2x−4y2. 

Solution A.1 

1. . d(3x − 2) = 3dx − d(2) = 3dx

2. . d(x2 + 3x − 5) = d(x2) + 3dx − d(5) = 2xdx + 3dx = (2x + 3)dx

3. . d(x2y3) = x2d(y3)+ y3d(x2) = x2(3y2dy)+ y3(2xdx) = 3x2y2dx + 2xy3dy

4. . d(4e−3x) = 4d(e−3x) = 4
d

dx
(e−3x)dx = 4 × (−3)e−3xdx = −12e−3xdx

5. . d(x2 ln x) = x2d(ln x) + (ln x)d(x2) = x2
(
1

x
dx

)
+ (ln x)2xdx = x(1 +

2 ln x)dx

6. 

. d

(
x2

x + y

)
=

[
(x + y)d(x2) − x2d(x + y)

]

(x + y)2

=
[
(x + y)2xdx − x2(dx + dy)

]

(x + y)2

=
[
(x2 + 2xy)dx − x2dy

]

(x + y)2

7. 

.d(2x−4y2) = 2[x−4d(y2) + y2d(x−4)]
= 2[x−42ydy + y2(−4)x−5dx]
= 4yx−4dy − 8y2x−5dx



BAnswers to Self-Assessment Questions 

Chapter 1 
1. 11 
2. . 25/8
3. 8.26 . ×10−5

4. £9000 
5. . 1/81
6. . −2x2 + 17x − 30
7. . (3x − 2)(3x + 2)

Chapter 2 
1. . x = 8
2. . x = 3, y = −1
3. The graph of the straight line .y = 2x + 3, −3 ≤ x ≤ 1 is shown in Fig. B.1 
4. . −3/2
5. .P = 35, . Q = 35

Chapter 3 
1. The graph of the function .f (x) = x2 −2x −3, −2 ≤ x ≤ 4 is shown in Fig. B.2 
2. . x = −2, 6
3. . x = − 5

2 , 1
4. The profit function is .π = −3Q2+36Q−10. The level of output that maximizes 

profit is .Q = 6. 

Chapter 4 
1. .f (−2) = 5; . f (3) = 0.
2. .T C = 24 + 12Q; .AC = 24

Q
+ 12. When .Q = 8, .T C = 120 and .AC = 15. 

3. .AC = 75,000
Q

+ 200 When Q becomes very large AC approaches 200. 
4. .x = g(y) = 7−y

4 . 

5. .P = 60 − 5Q
3 . When .Q = 9, .P = 45. 
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Fig. B.1 The graph of the straight line .y = 2x + 3, −3 ≤ x ≤ 1
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Fig. B.2 The graph of the quadratic function .f (x) = x2 − 2x − 3, −2 ≤ x ≤ 4
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Chapter 5 
1. (a) .log2 16 = 4, (b) .log5(1/125) = −3. 
2. The production function is homogeneous with degree of homogeneity .n = 5

6 . 
Therefore, since .n < 1, this production function displays decreasing returns to 
scale. 

3. 32.92% 
4. 8.45% 
5. When .t = 0 the turnover is $4million. When .t = 3, the turnover is $6.27million. 

The turnover will have doubled after 4.62 years so after 5 years. 

Chapter 6 
1. 

. (a) f ′(x) = 12x2 − 3; (b) f ′(x) = 7

3
x4/3 + 7

2. 

. (a)
dy

dx
= −18e−3x; (b)

dy

dx
= 3

x

3. 

. 
dy

dx
= 3

x
; d2y

dx2
= − 3

x2

When .x = 1, 

. 
dy

dx
= 3; d2y

dx2
= −3

4. 

. T R = PQ = 65 − Q

5
Q = 13Q − Q2

5
, MR = 13 − 2Q

5

When .Q = 5, .T R = 60 and .MR = 11. When .Q = 10, .T R = 110 and .MR = 9. 
5. .MPC = 0.16Y + 0.15, .MPS = 1 − MPC = 0.85 − 0.16Y . When .Y = 2, 

.MPC = 0.47 and .MPS = 0.53. When .Y = 4, .MPC = 0.79 and .MPS = 0.21. 
6. 

.
dQ

dL
= 84L − 3L2,

d2Q

dL2
= 84 − 6L = 6(14 − L)
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Since 

. 
d2Q

dL2
< 0 for L > 14,

the law of diminishing marginal productivity holds for this production function. 

Chapter 7 
1. 

(a) .f ′(x) = 6x−6 = 6(x−1) < 0 for 0 < x < 1. Therefore, .f (x) is decreasing 
in the domain .0 < x < 1. 

(b) .f ′(x) = e−x(1 − x) > 0 for 0 < x < 1. Therefore, .f (x) is increasing in the 
domain .0 < x < 1. 

2. .f ′(x) = 3x2 − 12 = 0 when x = ±2. .f ′′(x) = 6x. Since . f ′′(−2) = −12 < 0
the function has a maximum at .x = −2. Since .f ′′(2) = 12 > 0 the function has 
a minimum at .x = 2. 

3. 
(a) . MPL = 18L − 4.5L2, APL = 9L − 1.5L2

(b) .MPL = 0 when L = 0 or L = 4. The  value of  L that maximizes output is 
.L = 4. 

(c) 

. 
d(APL)

dL
= 9 − 3L = 0 when L = 3

When .L = 3, .APL = 13.5 = MPL. Therefore, at the value of L that 
maximises the average product of labour, the values of .MPL and .APL are 
equal. 

4. . π = T R − T C = −Q3 − 12Q2 + 540Q − 2000

. 
dπ

dQ
= −3Q2 − 24Q + 540 = −3(Q − 10)(Q + 18) = 0 when Q

= 10 or Q = −18

Profit is maximized when .Q = 10 with .π = 1200. 

Chapter 8 
1. 

. fx = 3x2 + ey, fy = xey, fxx = 6x, fxy = ey, fyy = xey.

2. When .x = 2 and .y = 1, .z = 14. 

.�z = zx�x + zy�y = 13 × (−0.05) + 16 × (0.03) = −0.17
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3. 

. 
dz

dt
= (2xy3)(3t2) + (3x2y2)(5)

When .t = 1, .x = 2 and .y = 5. Therefore 

. 
dz

dt
= 3000

4. 

. EP = 8P

Q
, EPA

= 5PA

Q
, EY = 0.2Y

Q

When .P = 12, .PA = 10 and .Y = 500, .Q = 254. Therefore, 

. EP = 96

254
= 0.38, EPA

= 50

254
= 0.20, EY = 100

254
= 0.39

5. 

. 
∂U

∂x
= 2

3
x−2/3y3/4,

∂U

∂y
= 3

2
x1/3y−1/4, MRCS = 4y

9x
.

(a) When .x = 27 and .y = 16, .U = 48, 

. 
∂U

∂x
= 2

3
x−2/3y3/4 = 16

27
,

∂U

∂y
= 3

2
x1/3y−1/4 = 9

4
,

MRCS = 64

243
= 0.263

(b) . �U = (16/27) × 0.2 + (9/4) × 0.1 = 0.34
(c) If x decreases by 2 then to maintain the value of U , y must increase by 

approximately .2 × MRCS = 0.526. So the new value of y is 16.526. When 
.x = 25 and .y = 16.526, .U = 47.93. 

Chapter 9 
1. The stationary point is .(0, 0). It is a minimum with .f (0, 0) = 5. 
2. The maxium is 0.125 which is attained when .x = 0.5 and .y = 0.25. 
3. The maximum profit is 84 which is attained when .X = 4 and .Y = 5. 
4. 

(a) The maximum output is 10,800. 
(b) 10,980 
(c) 243
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Chapter 10 

1. .AB =
[
2 3
0 −3

]
; .BA =

[
0 1
6 −1

]
; .A + B =

[
1 1
4 2

]
; .A − B =

[−1 1
0 −4

]
; 

.A2 =
[

2 −1
−2 3

]
; .At =

[
0 2
1 −1

]
; .A(A + B) =

[
4 2

−2 0

]
. 

2. .BA =
[
3 −1 −3
6 8 3

]
; .AC =

⎡
⎣

3
−3
0

⎤
⎦; .BC =

[
3

−4

]
. 

3. The value of the determinant is 10. 
4. The matrix is not invertible when .c = 6. 
5. The matrix is not invertible when .b = 4. 

6. The inverse matrix is . 
1

11

[
4 −1

−1 3

]

7. The eigenvalues and the corresponding eigenvectors are: 

(i) .λ = 3, .

[
1
1

]
; .λ = 4, .

[
2
3

]
. 

(ii) .λ = 0, .

[
3

−2

]
; .λ = 8, .

[
1
2

]
. 

(iii) .λ = 3 (multiplicity 2), . 

[
1

−1

]

Note that any non-zero multiple of an eigenvector is also an eigenvector. 
8. The eigenvalues and the corresponding eigenvectors are: 

(i) .λ = 1, .

⎡
⎣
0
3
1

⎤
⎦; .λ = −2, .

⎡
⎣
0
0
1

⎤
⎦; .λ = 3, .

⎡
⎣

5
10
1

⎤
⎦. 

(ii) .λ = 0, .

⎡
⎣

1
−1
1

⎤
⎦; .λ = 2 (multiplicity 2), .

⎡
⎣
0
1
0

⎤
⎦. 

(iii) .λ = 0, .

⎡
⎣
1
1
0

⎤
⎦; .λ = 1 (multiplicity 2), the eigenvectors are all non-zero linear 

combinations of the vectors .

⎡
⎣
0
1
0

⎤
⎦ and .

⎡
⎣
2
0
1

⎤
⎦.
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Chapter 11 
1. 

. 

(i)
∫

(x3 − 6x2 + 4x − 5) dx = x4

4
− 2x3 + 2x2 − 5x;

(ii)
∫

2e3x−4 dx = 2

3
e3x−4;

(iii)
∫

2

6x − 5
dx = 1

3
ln(6x − 5);

(iv)
∫

x2(4x − 6) dx = x4 − 2x3.

2. Evaluate the integral 

. 

∫ 2

1
(x2 + 4x − 5) dx = 10

3
.

3. 

. 

∫ 2

1
(4x − x2) dx = 32

3
.

4. 

. 

∫ 6

0
(10 + 4Q)dQ = 132.

When .Q = 6, .P = 34. Therefore .PS = 6 × 34 − 132 = 72. 
5. When .Q = 2 then .P = 4 and .PQ = 8 since .P = 16 − 6Q. Therefore 

. CS =
∫ 2

0
P dQ − 8 =

∫ 2

0
(16 − 6Q)dQ − 8 = 12.

6. The extra cost is 

. 

∫ 20

10
MC dQ = 1300.

7. When .Q = 4, .T R = ∫ 4
0 MR dQ = 76. If  Q increases to 8, the increase in T R  

is 

.

∫ 8

4
MR dQ = 68
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Chapter 12 
1. 

(a) . Xt = 6(2t − 5)
(b) .Xt = 6 − 21−t , which converges uniformly to the value 6. 

2. 2975 to the nearest dollar. 
3. 4790 to the nearest euro. 

4. .Pt = A
(
− 2

3

)t + 5.4 where A is a constant. The price converges to 5.4 as t tends 
to infinity. 

5. 
(a) . Xt = 9

8 − 1
8 (−7)t + t

(b) . Xt = 4t + 2
3 (−2)t − 2

3
(c) . Xt − 1 − t + t2

Chapter 13 
1. . y(t) = 3

2

(
1 − e2t

)
2. The solution is unstable. 
3. The solution is 

. y(t) =
(

2

1 + e−4t

) 1
2

4. The solution is .y(t) = −4t−4. 
5. .y(x) = x2 − x. 
6. The solution is . y(t) = 1

2

(
e2t − e−6t − 1

)
7. The solution is unstable since . e2t tends to . ∞.
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A 
Average cost function, 84, 130 
Average product of labour, 157 

B 
Base, 13 
BEDMAS, 4 
Bernoulli equation, 343–345 
Brackets 

expanding, 17 
multiplying, 17 

Budget lines, 37–40 

C 
Capital, 104 
Chain rule, 126, 180 
Characteristic equation, 249, 251, 252, 254 
Chord, 119 
Cobb-Douglas, 105 
Cobweb model, 321, 323 
Complementary goods, 45, 187 
Constant of integration, 266 
Constraint, 207 
Constraint constant, 207 
Consumer’s surplus, 284–291 
Consumption, 270 
Continuity, 77–82 
Convergence 

oscillatory, 318 
uniform, 318 

Cramer’s rule, 236–237 
Critical point, 200 

D 
Decimal places, 9 
Decimals, 8 

recurring, 9 

scientific form, 10 
standard form, 10 
terminating, 8 

Degree of homogeneity, 105 
Demand equation, 40 
Demand function, 40, 90 
Denominator, 5 
Derivative, 119 

higher order, 136 
partial, 173 
second order, 136 
total, 180, 181 

Determinant, 27, 232, 237–245 
expansion of, 240 

Difference equation, 312 
characteristic equation, 326 
characteristic roots, 326 
complementary solution, 325–328 
divergent, 333 
equilibrium value, 317 
first order, 314–317 
general solution, 325 
homogeneous, 312 
inhomogeneous, 312 
linear, 312 
particular solution, 325, 328–333 
second order, 323–334 
stability, 317–321, 333–334 
stable, 318, 333 
unstable, 318 

Differential, 345, 369–371 
Differential equation, 338 

boundary conditions, 358 
characteristic equation, 358 
characteristic roots, 358 
complementary solution, 339 
equilibrium value, 342 
first order, 338–347 
homogeneous, 338, 357–360 
inhomogeneous, 338, 357 
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linear, 338–343, 357–364 
nonlinear, 343–347 
particular solution, 339, 360 
second order, 357–364 
separation of variables, 345 
Solow, 351–356 
stability, 342–343, 363–364 
stable solution, 342 
unstable solution, 342 

Differentiation, 120 
chain rule, 126 
constant function, 121 
exponential function, 128 
implicit, 183–185, 190 
linear function, 122 
logarithmic function, 128 
power function, 122 
product of functions, 124 
quotient of functions, 125 
sums and differences of functions, 123 

Discriminant, 202 
Distributive law, 18 

E 
Eigenvalues, 247–262 
Eigenvectors, 247–262 
Elasticity of demand, 185–189 

cross-price, 186 
income, 186 
own price, 185 

Elimination method, 27 
Equations 

constraint, 207 
equivalent, 24 
inconsistent, 28 
independent, 28 
roots, 53, 76 

Equilibrium, 41 
price, 42 
quantity, 42 

Exponent, 13 
Exponential function, 96–99 

base, 96 
exponent, 96 

Extremum, 149, 202, 203 

F 
Factorization 

common factor, 20 
difference of two squares, 20 
quadratic expression, 58 

Factors of production, 104 

Fixed costs, 63 
Fractions, 5–8 

addition, 6 
division, 7 
equivalent, 5 
lowest terms, 5 
multiplication, 7 
reduced, 5 
subtraction, 6 

Function, 23, 71 
absolute extrema, 152 
absolute maximum, 153 
absolute minimum, 153 
argument, 71 
concave, 147 
constraint, 207 
convex, 147 
cubic, 75 
decreasing, 75, 146 
dependent variable, 71, 172 
derivative, 118, 119 
domain, 73 
exponential, 96 
global extrema, 152 
global maximum, 153 
global minimum, 153 
homogeneous, 104 
increasing, 75, 146 
independent variable, 71, 172 
inverse, 87, 91, 100 
limit, 74 
linear, 23 
local extrema, 149 
local extremum, 149 
many-to-one, 73 
objective, 207 
one-to-one, 73, 88 
point of inflection, 154 
quadratic, 51 
range, 73 
rational, 296 
reciprocal, 82 
relative extremum, 149 
restricted domain, 73 
two variables, 172 

G 
Gradient, 118 

I 
Identity, 20 
Indices, 13
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rules of, 15 
Indifference curves, 194 
Inferior goods, 187 
Integral, 266 

definite, 274–275 
indefinite, 274 

Integration 
definite, 276–282 
limits of, 274 
partial fractions, 296–305 
by parts, 306–308 
rules of, 269, 277 
substitution, 291–295 

Intercept, 34 
Interest 

annual, 107 
compound, 107 
continuous, 108 
semi-annual, 108 
simple, 107 

Isocost curves, 218 
Isoprofit curves, 218 
Isoquants, 194, 218 

L 
Labour, 104 
Labour productivity, 158 
Lagrange multipliers, 211–218 

interpretation of, 215–218 
Lagrangian, 211 
Law of diminishing marginal productivity, 140 
Law of diminishing marginal utility, 191 
Law of diminishing returns, 140 
Linear equations, 24–30 

simultaneous, 27–30 
Linear functions 

graphs, 31–37 
Linear systems of equations, 234–236 
Logarithmic function, 99–103 
Logarithms 

common, 100 
natural, 100 
rules of, 102 

M 
Marginal cost, 130, 270, 289 
Marginal product of capital, 192 
Marginal product of labour, 138, 192 
Marginal propensity to consume, 131, 270 
Marginal propensity to save, 132 
Marginal rate of commodity substitution 

(MRCS), 190 

Marginal rate of technical substitution 
(MRTS), 192 

Marginal revenue, 129, 271 
Marginal utility, 189 
Market saturation, 112 
Matrix, 224 

addition, 226–227 
adjoint, 239 
cofactor of, 238, 239 
determinant, 232 
diagonal, 230 
distributive law, 231 
identity, 230 
inverse, 232 
invertible, 232 
multiplication, 227–234 
row, 224 
scalar multiplication, 225–226 
square, 224 
symmetric, 225 
transpose, 224 
zero, 227 

Matrix of coefficients, 234 
Monomial, 17, 74 

N 
Negative numbers 

division, 4 
multiplication, 3 

Numbers 
decimal, 8 
integers, 2 
irrational, 9, 97 
natural numbers, 2 
rational, 5 
real, 9 

Numerator, 5 

O 
Optimization 

constrained, 207–218 
unconstrained, 200–206 

P 
Parabola, 54 
Partial derivative, 173–175 

cross-derivatives, 175 
first order, 175 
higher order, 175–177 
second order, 175 

Partial differentiation
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chain rule, 180 
Partial fractions, 296–305 
Percentages, 11–13 
Polynomial, 17 

addition, 17 
coefficient, 17 
degree, 296 
subtraction, 17 
term, 17 

Power, 13, 24 
Principal, 107 
Producer’s surplus, 283 
Production function, 138–142, 191–193 

Cobb-Douglas, 105 
optimization of, 155–160 
returns to scale, 104–106 

Profit function, 63, 171 
optimization of, 160–163 

Q 
Quadratic equations, 58–63 
Quadratic functions, 51, 55 

axis of symmetry, 54 
graphs, 52–58 
vertex, 54 

R 
Real line, 9 
Reciprocal, 7 
Relationships 

one-to-many, 73 
Returns to scale 

constant, 105 
decreasing, 105 
increasing, 105 

S 
Saddle point, 202 

Samuelson model 
simplified, 331, 334 

Savings, 270 
Sequence, 312 
Significant figures, 9 
Small increments formula, 120, 177, 181 
Solow differential equation, 351–356 
Stability 

first order difference equation, 317–321 
first order differential equation, 342–343 
second order difference equation, 333–334 
second order differential equation, 363–364 

Stationary point, 149, 200 
Straight line, 32 

slope, 34–37 
Substitutable goods, 45, 186 
Substitution method, 29, 207–210 
Superior goods, 187 
Supply and demand, 40–47, 66 

multicommodity, 45–47 
Supply equation, 41 
Supply function, 41 

T 
Tangent, 118 
Total cost, 63, 270 
Total derivative formula, 180 
Total revenue, 63, 271 
Turning point, 149, 200 

U 
Utility function, 172, 189–191 

V 
Variable, 17 
Variable costs, 63 
Vector 

row, 224
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