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viii

How to Use This Book

The book provides a resource for all those studying computer science education, whether as part 
of a teacher training programme, or as part of postgraduate study, as well as for computer science 
teachers wishing to understand their subject better. The book explores why and how computer 
science can be taught effectively in schools. It is not country- or curriculum-specific so will support 
you wherever you are working in the world. 

As well as summarising key theories and research development in the field in an accessible way, 
the book provides opportunities throughout the chapters to engage with real-life examples from 
practice, and key concepts and questions for further reflection. 

Within Each Chapter
Chapter Synopsis Each chapter begins with a chapter synopsis which summarises the 
central focus of the chapter.

 Examples Within each chapter are examples that illustrate the material being covered 
in the chapter. In some chapters, these are practical examples of activities that you could 
carry out in your practice. In other chapters, these are examples from research that 
illustrate theoretical points to illuminate them. 

Key Concepts Key concepts are drawn out of the main text and explained in more 
detail. Highlighting key terms enables you to ensure you understand the concept and 
can define it.

At The End Of Each Chapter 
Key points The key points from each chapter are summarised in a short set of bullet 
points to highlight key takeaways.

 



How to Use This Book ix

Further Reflection Each chapter ends with an opportunity for further reflection 
through questions. This enables you as a reader to reflect upon your own practice and 
experience and to begin to think about how this might impact on your future practice.
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Preface

This book is the result of many, many conversations with teachers, researchers and teacher educators 
in many different countries – all engaged in the broad field of computer science education. It is 
an attempt to bridge the gap between practical and country-specific ‘how-to’ books on teaching 
computer science/informatics/computing (different names for our subject exist!) and the growing 
body of computer science education research pertaining to schools. The goal of the book was to 
bring together key experts in the field to explain their areas of research and its relevance in the 
classroom, in an accessible way, whilst retaining enough depth to be useful and provide a basis 
for practitioners to follow and engage in reflection and eventually even research on CS education. 
We hope that in this volume we have managed to do this and that our book will be useful to those 
training to teach computer science, as well as those already teaching computer science who wish to 
understand the issues in more depth.

This book specifically refers to school education (known as K–12 in the United States and 
elsewhere), rather than computer science in higher education, and will also be useful in identifying 
key areas of computer science education research relevant to bringing the subject into the school 
curriculum, as many countries are now doing.

The original text was published in 2018, and we are delighted to be able to publish an updated 
edition. As well as no less than thirty-five contributors, plus the editors, highlights of this second 
edition include the following:

 ● New sections on machine learning and (data-driven) epistemic programming
 ● A new focus on equity and inclusion in computer science education
 ● A revised chapter on relating ethical and societal aspects to knowledge-rich aspects of 

computer science education
 ● An extended set of chapters on the learning of programming, including design, pedagogy 

and misconceptions

In addition, we have managed to retain nearly all the content from the first edition! This book 
represents perspectives from all over the world and is intended to be accessible to you wherever 
you live and work. It does not relate to any particular country or curriculum, although some 
countries have been used as examples at times to illustrate key points. Although approaches to 
teaching computer science in school vary considerably in different countries, the key issues remain 
the same. We hope that drawing on a wide variety of perspectives has made this book even more 
valuable.

We hope you enjoy reading this book and find much to enhance your teaching!
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Across the world a major shift is taking place in computing education at school: children will in 
future learn computer science as a foundational discipline, from primary school onwards, just as 
they do mathematics and natural science. This change reflects a seismic shift, away from regarding 
computing merely as a technology that we must all grapple with and towards thinking of it as a 
subject discipline in its own right.

But once we say ‘we should treat computer science as foundational, for every child, not only 
the software developers of the future’, we must confront the deep questions: what should we teach, 
and how should we teach it? Other subject disciplines have had centuries to develop answers to 
these questions (and are still debating them), but computing has not. Yet the need is pressing, 
because educators across the world are hungry for an inspiring vision to frame their teaching, for 
pedagogies that provably work and for assessments that validly measure learning and progress.

So this book is extremely timely. It tackles both of the big questions – the ‘what’ and the ‘how’ – 
and does so from multiple perspectives. Moreover, because computer science education at the 
school level is still so new, it is hugely important that classroom practice is informed and guided 
by evidence rather than gut feelings. This book clearly meets that bar: it is written by many of the 
leading researchers and experts in computing education across the world.

But it is equally important that research should in turn be focused on the realities of the 
classroom. The book is written in a language that a classroom teacher, or a student training to be a 
teacher, can make sense of. Indeed, these teachers are the audience this book is intended to serve.

This second edition has a whole new section on equity and inclusion, which I particularly 
welcome in a discipline that, however inadvertently, skews heavily white and male. This is a lost 
opportunity that isn’t going to fix itself; we need to pay sustained attention to it.

Nobody has a monopoly on truth. Really good education is hard, and we are all feeling our way 
as we seek to inspire our young people with the joy and beauty of computer science. But the authors 
of this book have spent their professional lives studying computing in the classroom, and I am 
absolutely delighted to see such a substantial contribution in such an underserved space. Enjoy!

Professor Simon Peyton Jones OBE
Epic Games & University of Cambridge, UK

Foreword to the Second Edition
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1
Introduction to Part 1

Carsten Schulte

Computer science teachers teach computer science. So much is obvious, but what does that actually 
mean? What does computer science encompass? Why should it be taught in schools at all, and, to be 
more concrete, what is it that should be taught, why should it be taught and for whom? This first section 
of the book is targeted at such fundamental questions. Its chapters provide a range of perspectives 
on teaching and learning computer science at a school level. Their common goal is to provide a basis 
which informs the discourse about the role of the subject in the context of general education. In 
addition, they demonstrate the multifaceted nature of computer science and its interaction with other 
disciplines (including arts and humanities) and also its ethical and social implications.

Chapter 2 by Matti Tedre highlights the subject of computer science itself from three distinct 
ways to understand the subject matter. Does computer science in form and style resemble 
mathematics? Is it a discipline of engineering? In what way is it like natural science, or might it be 
something entirely different?

In Chapter 3, Erik Barendsen and Mara Saeli look into existing computer science curricula 
and highlight their multifaceted status. While from a government and societal point of view, 
they represent political appreciations of the importance of computer technology as a whole and 
of certain aspects in particular, for practitioners on a school level, they provide guidelines and 
indications for the planning of lessons without being definitive as what is written down in curricula 
often is not the same as what is actually implemented in the classroom.

Chapter 4 by Carsten Schulte, Felix Winkelnkemper and Lea Budde aims at an integration of 
different perspectives on the subject matter. While traditionally, computer science education puts a 
lot of emphasis on the architectural aspects and their theoretical underpinning, the chapter argues 
that in order to actual understand what products of computing are, what their role in the world 
is and why they got the way they are, one has to integrate architectural knowledge with relevant 
discourses, artefact genesis and the roles users and stakeholders have in the interaction with them.

In Chapter 5, Shuchi Grover and Roy Pea describe computational thinking as an approach 
which makes the way computer scientists think and tackle problems relevant to general education. 
The chapter explains what this encompasses and how the new competency changes both computer 
science courses and how it can be integrated with other subject courses.
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Chapter 6 by Ilkka Jormanainen, Matti Tedre, Henriikka Vartiainen, Teemu Valtonen, Tapani 
Toivonen and Juho Kahila explains how to learn machine learning (ML). It characterizes ML as 
a new way to tackle problems through computing which, while before it was based on explicitly 
programmed rules, now becomes data driven. What such a change means in terms of its application 
in K–12 schools is explored in detail using real-life examples.
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2
The Nature of Computing as a 

Discipline

Matti Tedre

Chapter outline

 2.1 Introduction: Computing as a discipline
 2.2 Computing is a field of engineering and design
 2.3 Computing is a sort of mathematics
 2.4 Computing is a science
 2.5 Understanding intellectual traditions is important in computing education

Chapter synopsis
What is computer science? What should we teach about computing and how? 
Which skills and knowledge are central to computing? Over the disciplinary 
history of computing, there has never been a consensus on the field’s 
fundamental nature, aims, methods, essential skills and knowledge, its relations to other 
disciplines or even the name of the field. In the course of their development, computing 
education initiatives such as curriculum development (see Chapter 3 in this book), course 
design and study program design often get to a point where the stakeholders start to 
question their consensus on how exactly do people define their field of study. Debates on 
those questions have characterized computing education discussions ever since the birth 
of the field, and many disagreements still remain. This chapter uses a historical perspective 
to introduce the reader to what is at stake in debates of computing’s disciplinary nature, 
what the central positions are and how those positions differ from each other.
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2.1 Introduction: Computing as a discipline
Teachers of any subject have an explicit or implicit idea of the essence of their field. Each teacher has 
a view and opinion of, for instance, their discipline’s subject matter, aims, fundamental questions, 
methods and the most important achievements. Those ideas guide them when they teach their 
subject, develop courses, design curricula or engage in education in other ways. This is just the 
same in computing. We have our perceptions of computing as a discipline, as a profession and as a 
body of knowledge. Through our teaching, we impart some of our own ideas to students, affecting 
how students learn to perceive their field.

Over the years, pioneers of computing have characterized the field of computing in a great 
number of ways. Some argue that computing is a branch of mathematical logic, and others 
argue that computing is a design and engineering field. Some emphasize computing’s scientific 
nature, while others its constructive character. All those arguments have been used to model 
computing education in different ways. Of the hundreds of characterizations of the field, 
some are more popular or influential than the others, but there is no ‘correct’ interpretation 
of computing’s disciplinary nature: different views are justified from different perspectives. 
Popularity of different views has also changed over the years with computing’s evolving status 
in the university as well as its developing technological state-of-the-art and theoretical body of 
knowledge.

One characterization of computing’s disciplinary nature is the report ‘Computing as a Discipline’ 
(Denning et al., 1989), which was commissioned to support new joint curriculum recommendations 
by two major organizations in computing: the Association for Computing Machinery (ACM) and 
the IEEE Computer Society. That report describes computing as a combination of three intertwined 
traditions: theory, modelling and design. These traditions derive from three disciplinary lenses: the 
analytical, scientific and engineering lenses. The first one is theoretically oriented and emphasizes 
formal methods of mathematics and logic. The second one is empirically oriented and features 
data, simulation and abstraction. The third one is technologically oriented and emphasizes 
design and engineering methods. The three traditions have their own aims and goals, and their 
differences have practical ramifications. They differ in terms of their methods, assumptions, views 
of knowledge, perceptions of the structure of reality, concepts of human nature and world view in 
general.

The ‘Computing as a Discipline’ report started to greatly affect how computing educators 
viewed their field. Most computing teachers indeed know some theory, do some design and 
engage in modelling or abstraction activities. But although those activities support each other, 
the three traditions of computing are also profoundly different from each other and in many ways 
incompatible.

In order to be able to give students a balanced and rich view of computing as a discipline, 
it is important to understand these different traditions, their research agendas and their roots. 
Viewing computing from a variety of perspectives offers educators meaningful entry points to 
computing’s topics, and it offers students insights into the immense theoretical, practical, scientific 
and philosophical richness of computing.

 



The Nature of Computing as a Discipline 7

This chapter introduces three dominant traditions of computing and characterizes their aims, 
questions, views of subject matter, methods and practices. These traditions are surely not the only 
ones at play, as one could easily argue that computing borrows many elements from social sciences 
and human sciences or that it might best be described as an interdisciplinary field. However, as 
most of computing’s disciplinary debates boil down to its theoretical, scientific and engineering 
features, this chapter focuses on these three.

2.2 Computing is a field of engineering 
and design
Those who view computing as primarily a technological field, or a field of engineering and design, 
have a strong case for their argument. Computing’s development as an independent discipline 
started only after the birth of the modern computer. Computing’s history reveals a rich collection 
of technical and technological breakthroughs, computing machinery and a union of theory and 
craftsmanship. Many pioneers of modern computing, such as Bush, Eckert and Atanasoff, were 
electrical engineers. The histories of automatic office machinery, scientific instruments, calculating 
instruments and military equipment are woven in the fabric of modern computing. Progress of 
computing has been driven by increasingly smarter designs as well as technological tendencies, 
such as the exponential growth rate of transistors in chips (Moore’s law), the even faster growth of 
memory technology density (Kryder’s law) and the exponential growth of communication speed.

For decades, engineering and design were, however, downplayed in discussions about academic 
computing. Even though software technology and system design were important drivers of 
progress – and often developed in universities – they did not resonate well with computing’s 
campaign to achieve an independent disciplinary identity in the academia. The issue was not that 
computer systems and software design would not be important, but it was about the rigor and 
academic image of the aspiring discipline of computing. There was a widespread opinion among 
the more established disciplines that design and engineering were not well-suited for traditional 
research universities. So, in their quest for making computing an independent discipline, some 
computing pioneers proudly promoted a view of computing as an abstract field that downplayed 
everything that had to do with designing, building and developing computer systems, societally 
valuable applications and computing machinery. But however intellectually justified, their views of 
computing as just a branch of mathematics and logic were far from what was really happening in 
computing practice and much of computing research.

The design and engineering aspects of computing were revived in the end of the 1960s, when 
a thought-provoking term software engineering was promoted as a solution to the sad state of 
software in the time of the so-called software crisis. The software engineering movement quickly 
gained momentum, as many practitioners and software-oriented academic people felt that their 
work is much better characterized by engineering and design than mathematics and logic. Over 
some three decades of development, software engineering matured into a progressive field and 
became a part of computing’s core knowledge.
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Proponents: We are designers and builders
Computing’s engineering nature has been described and justified in many ways. Some proponents 
of computing’s engineering character look at computing practice and argue that instead of 
mathematics or science, the majority of computer scientists – both practitioners and researchers – 
actually do engineering, design and development. Others base their argument on methods and 
outcomes and argue that engineering approaches are required for reaching the solid reliability and 
safety record of rigorous engineering design in other fields. Yet others wish designers to achieve the 
same sort of intellectual recognition and triumphant image that engineering had in the first half of 
the twentieth century. Those who argue that engineering describes best what people in computing 
actually do often justify their argument by looking at the aims and central questions, necessary skill 
set and methods and practices of computing.

Aims and questions
Frederick P. Brooks Jr, a computing pioneer and author of several classic works on software 
engineering, made a distinction between a scientist and an engineer: the scientist builds in order 
to study, and the engineer studies in order to build (Brooks, 1996). Similarly, while natural sciences 
focus on ‘what’ type of questions, some argue that computing’s focus on ‘how’ type of questions 
reveals its engineering character (Hartmanis, 1994). Hartmanis (1994) wrote that whereas natural 
scientists ask ‘what exists?’, computer scientists ask ‘what can exist?’ The engineering view sees that 
many problems in contemporary computing are not whether a program, algorithm, technique or 
system can exist, but how to make one in practice.

Many people also argue that the aim of computing has, from the very beginning, been to design 
and construct useful things. Hence, similar to any other engineering field, research in computing 
is about development of methods and tools that advance the state-of-the-art or enable new things 
to be done. Unlike natural scientists who deal with naturally occurring phenomena, engineers deal 
with artefacts that are created by people; for many people, that makes computing an engineering 
field. And while knowledge in natural sciences progresses through experiments, in computing, 
‘demonstrations’ is the keyword: in many computing fields, the scientists’ slogan ‘publish or perish’ 
has changed into the engineers’ slogan ‘demo or die’ (Hartmanis, 1994).

Subject matters
Those who argue that computing is essentially an engineering field have a difficult question to 
answer: if it is engineering, what is it the engineering of? If chemical engineering is the application 
of chemistry and mechanical engineering is the application of material science and physics, what 
is computing, as an engineering field, the application of? Attempts to address the ‘engineering of ’ 
issue include, for example, engineering of mathematics (or mathematical processes), information 
engineering, cognitive technology, conceptual engineering, language of technology and 
mechanization of abstraction (Tedre, 2014). None of these has gathered any widespread support.

From the subject matter viewpoint, the engineering view of computing boils down to two key 
issues: artifice and causality. Firstly, many engineering-oriented researchers and developers in 
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computing pose problems and follow the design process to come up with a solution in the form 
of an artefact (Denning et al., 1989; Simon, 1969). Different from natural sciences, which deal 
with naturally occurring things, computing deals with artefacts, which were designed for certain 
purposes in specific contexts of use. And different from mathematics, which deals with abstract 
objects, executable programs of computing are causal, physical things: they are swarms of electrons 
in the circuits of a computer. When run, they can cause change in the world. Computer programs 
can make monitors blink and printers rattle; they can drive cars and guide missiles to their targets. 
Suggestions by the engineering camp for computing’s subject matter include, for example, software, 
computer systems and computers.

Methods and practices
Some argue that the necessary skill set for computing reveals the field’s engineering nature. Design, 
in particular, is essential to computing, and in line with that, programming has been described 
as an art, craft, trade or skill. Many pioneers of computing point out that unlike research in 
many traditional theoretical and empirical sciences, development of working computer systems 
has to cater much more to material resources, social and human constraints, budgets as well as 
laws of nature. Many people in computing design complex systems with limitations to resource 
consumption. Design involves studying users, groups of users and communities, which requires 
methods from social sciences and humanities. And like engineers in other fields, programmers 
follow a systematic sequence of design decisions to exclude alternative options until a solution is 
ready (Wegner, 1976).

Examples: Design view in schools
Countless initiatives have introduced computing in schools through designing 
and building artefacts – such as building and programming educational robots, 
designing and creating games without writing code and creating apps for smartphones. 
At the university level, summative assessment is often based on students designing and 
implementing a solution to meet a concern, answer a threat or rise to an opportunity. All of 
these are design and engineering activities.

Opponents: Building things is not an academic aim
In addition to passionate supporters, the engineering view of computing has also strong opponents. 
In their attempt to improve computing’s academic status, many pioneers of computing downplayed 
computing’s constructive character and highlighted its theoretical aspects (Tedre, 2014). Early 
software engineering was accused of sloppy methodology and lack of rigorous theories. Some 
pointed out the short lifespan of technical inventions: as a fundamental discipline, computing 
should focus on enduring fundamental principles instead of technological solutions that obsolete 
quickly (Wegner, 1970). Many theoretically oriented pioneers of computing wanted to see 
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computing focus on what is common to the use of any computer in any application instead of 
technical details or societal aspects of computing.

Accusations of lack of rigor in software construction and research undermined computing’s 
engineering image. Those claims were first anecdotal and based on people’s subjective perceptions 
of how software construction was done. Many people pointed out the undeveloped theoretical 
foundations of software engineering, its scarcity of theoretically and technically well-developed 
methods and that it seemed to be guided by rules of thumb, toying and tinkering. Later, in the 
1990s, systematic reviews of publications in software engineering indeed showed a lack of attention 
to methodology and theory in software engineering publications.

However, some zealots aside, the usual argument against the engineering view was never about 
engineering and design being unimportant. Producing useful and reliable systems has always been 
a societally important aim that poses endless intellectual challenges. Instead, the critical voices 
about seeing computing as a branch of engineering or technology are about the lasting value 
of engineering and design, its contribution to our common knowledge about the world and its 
centrality in the academic discipline of computing and in computing research.

Key concept: Computing as engineering
Many computing activities are centred around requirement analysis, 
design, implementation, evaluation and production of useful artefacts. The 
questions that computing answers, and the problems it solves, are often of 
the engineering-type ‘how’ questions. Many problems in computing require 
design and engineering methods and a procedural knowledge base of rules, heuristics and 
processes. Design and engineering are an integral part of tertiary computing education, 
and their importance is also acknowledged at school levels.

2.3 Computing is a sort of mathematics
Ever since specialized disciplines started to form in the academia, there has been a tight connection 
between mathematics and sciences. Similarly, during the disciplinary formation of computing, 
many argued that mathematics and mathematical logic are central to the field: many of the field’s 
problems and their solutions are mathematical, the computer’s basic operational principles can be 
reduced to mathematical logic, many pioneers of the field are mathematicians and the very word 
‘computing’ refers to mathematical activity. Computing has appropriated parts of mathematics, 
too. Many mathematical objects like graphs, functions and matrices have become computer science 
objects that can be taught from a computing viewpoint instead of a mathematics viewpoint.

Computing’s early emphasis on mathematics was based on ideals as well as practical needs. 
To get a foothold in traditional research universities, computing should not have looked like 
a toolmaker, so emphasizing theory created a desirable image of the discipline. And unlike 
technical inventions, many of which grew obsolete within a decade, theoretical research was 
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considered to have lasting value. Until the late 1980s, there was a strong narrative of computing 
being primarily a mathematical field, but a gap was growing between that narrative and what 
went on in computing education, business and the industry. The software industry struggled 
with a multifaceted crisis with software production, and theory-oriented research was unable to 
solve that crisis.

Since the 1990s, debates about the role of mathematics in computing lost their zeal, and today 
there is a broad consensus on the importance of different kinds of approaches to computing. In 
universities, the mathematics requirements in computing commonly include discrete mathematics, 
probability and statistics. Yet still, debates continue about the relationship between computing and 
mathematics and how much mathematics should a computing professional or a researcher learn. 
Because in computing, theory and practice are very closely connected, some pioneers emphasize 
their interplay. Knuth (1991), for example, advised those who spend their time mostly on theory of 
computing to turn their attention to practice: ‘It will improve your theories.’ Similarly, he advised 
those who spend their time mostly on practice to turn their attention to theory: ‘It will improve 
your practice.’

Proponents: Logic rules
Those who argued that much of work in computing actually boils down to mathematics and 
logic justified their argument by referring to the aims and central questions, necessary skill set, 
and methods and practices of computing as well as the computer’s logical organization. Many 
aspects of computers and programs can be described by mathematical functions and symbol 
manipulation. Program states are often practically infinite, and mathematics is the best tool 
for dealing with infinity. Theory of computing is very much a mathematical theory. Those who 
advocate stronger inclusion of mathematics in computing education point out that most areas 
of computing have a close relationship with specific areas of mathematics (Baldwin, Walker & 
Henderson, 2013).

Methods and practices
Many proponents of a mathematical view of computing argue that one can reason about algorithms, 
programs and procedures in the same way mathematicians work with functions, theorems and 
proofs – in their minds or with a pen and paper (Smith, 1998). Hence, for reasoning about 
programs, skills and knowledge of methods and practices in mathematics and logic are absolutely 
essential. Even more, formal methods provide a variety of ways for greatly increasing the reliability 
and robustness of programs.

Even when computing professionals do not use mathematics and logic explicitly, they are a part of 
our ‘computational thinking’ habits (Aho, 2011). Although most software engineers, programmers 
and other computing professionals cope well in their professions without explicitly applying 
mathematics, mathematics and logic are implicit in very large parts of their work. Consequently, 
many share the opinion that computing education should include more mathematics, especially 
more applicable and relevant mathematics (Baldwin, Walker & Henderson, 2013).
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Subjects and questions
From the mathematical point of view, computer programs and other objects of computing are 
essentially abstract objects or can be modelled as such. For example, every executable program 
can be expressed as an algorithm, which is an abstract object one can reason about in terms 
of mathematics and logic. Mathematical knowledge is of lasting nature because it consists of 
necessary truths – truths that cannot be otherwise in the set of axioms and rules where they are 
stated.

Favourite descriptions of computing’s subject matter on the theoretical side are algorithms, 
classes of computations, models of computing, procedures and abstraction. Yet, there are 
differences between computing and traditional mathematics: Knuth (1974) wrote that unlike 
mathematics, computing often deals with finitary constructions and dynamic relationships. 
While mathematics is more declarative, computing is more imperative, which can be clearly 
seen in computing’s problems, aims and methods. Still, mathematics is the best tool for 
answering questions about the theoretical limits of different models of computing – ‘what can be 
automated?’ – as well as the practical limits set by how much computing is needed – ‘what can 
be efficiently automated?’

Examples: Mathematics and logic in school 
computing education
In school curricula, mathematical principles include activities like learning how 
to count from zero to 1,023 using ten fingers for binary digits, learning to use logic to 
solve mystery problems and learning binary data error detection through card flip magic 
trick. In the school curriculum recommendations, children learn simple concepts like binary 
representation in grades K–3 and continue to connections between mathematics, logic and 
computing in grades 6–9.

Opponents: It’s not what we do most of the time
No serious argument has claimed that mathematics plays no role in computing. Instead, the critics 
argue that mathematical methods do not play a dominant role in computing, that mathematical 
knowledge and skills are not central to most work in computing and that what matters the most 
in computing is the computer and its effects on science, society and our lives. Many researchers as 
well as professional practitioners of computing engage most of the time in activities that are not 
mathematical by nature: they elicit requirements, design interfaces, build models, debug programs, 
test systems and write manuals, for example.

Even those who acknowledge computing’s mathematical nature often oppose too strong 
conclusions about the relationship between computing and mathematics. Although both might 
be dealing with symbols on some level, their aims and objectives differ: mathematics is interested 
in the relationships between symbols as well as semantics of symbols, while most of computing is 
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about applications of mathematics to solve problems. And while mathematics is supposed to be 
independent of any social or human concerns, computing is very much about social and human 
concerns. One can argue that if computing were only a theoretical discipline, it would have never 
revolutionized science and the society. It is the machine that counts.

Key concept: Computing as mathematics and logic
Computers are logic machines, some of the most impressive achievements 
in computing are proven and presented in the language of mathematics 
and many mathematical structures like matrices, vectors and graphs have 
become standard computing concepts. Large parts of computing study formal 
objects, like algorithms and models of computing. Many questions of computing are best 
solved using mathematics and logic as tools. School curriculum recommendations have 
acknowledged the tight connection between computational thinking and mathematical as 
well as logical thinking.

2.4 Computing is a science
Throughout the history of computing, computing and science have been deeply intertwined, and 
the relationship goes both ways. Firstly, from Newton’s prolific numerical calculations to large-scale 
tabulation operations, computing or numerical analysis has served as a tool for science. Secondly, 
many pioneers of computing aimed to found computer science on similar scientific principles as 
natural sciences. Thirdly, many people argue that modern computing started a whole new era of 
science. Natural sciences gradually developed computational branches – such as bioinformatics, 
computational physics and computational chemistry – and computer simulation became a central 
element of progress in science.

The science discussions manifest in many ways. One of them is the debate about the field’s name, 
such as whether computer science is the right name. For instance, informatics, algorithmics and 
datalogy are in use in different countries. Another is concerned with the subject matter of the field: if 
astronomy is the study of celestial objects and zoology the study of animals, what is computing the 
study of? Yet another branch of the science discussion is concerned with methodology: research 
fields are characterized by their methods, but what is the method of computing – if there is one? 
And finally, some debates are concerned not with whether computing is a science, but with 
whether it might be the most important science today, given the amazing success of computational 
approaches in a broad variety of fields.

One striking feature of computing’s science debates is that the debaters do not share a common 
view of what science is. By science, some mean natural science and some mean any empirical 
science; some refer to methods and some to theories; and some talk about a body of knowledge or 
laws and some about a world view. In absence of a common ground, debaters often talk past each 
other and have great difficulties achieving consensus.
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Proponents: It’s a new kind of science
Those who argue that computing is a scientific discipline often refer to the aims of science – 
exploration, description, prediction and explanation of phenomena – and argue that computing 
shares those aims. Some research in computing also follows the experiment cycle of observation, 
description, prediction and testing; that cycle is sometimes called the scientific method. Many 
debaters see computing as an interdisciplinary field that combines theories from a variety of 
domains and contributes to an even broader variety of fields. People have attempted to resolve 
the problems with computing’s unique scientific nature by describing it as an unnatural science, 
artificial science, synthetic science and even a completely new domain of science that follows its 
own paradigm (Rosenbloom, 2013).

Subjects
Many arguments about computing’s scientific nature rely on its subject matter. There is a dizzying 
number of arguments about what computing is a science of, ranging from data, information 
and symbols to algorithms, processes, procedures and information flows as well as complexity, 
representation, users and designs (Tedre, 2014). All those can be studied through scientific 
principles. While earlier it was widely agreed that computing’s subject matter is artificial – making 
computing a science of the artificial (Simon, 1969) – newer descriptions of computing argue that 
computing studies phenomena both artificial and natural. Some have argued that computing has 
become a ‘fourth great domain of science’ (Rosenbloom, 2013).

Methods and practices
Computing’s large range of subjects makes it a methodologically rich field. Its scope and aims are 
so broad that it excludes few methodological strategies. Due to its broad variety of subjects of study, 
such as computability, usability, reliability and efficiency, it flexibly adopts methods from natural 
sciences and formal fields to social sciences and humanities. But more importantly, computing’s 
amazing success in triggering methodological changes in other fields of science and creating 
new fields altogether – fields such as bioinformatics, computational physics and computational 
chemistry – has made many people argue that computing has become the most important of all 
sciences.

After several decades of increased use of computers in science, the 1980s saw a rapid increase 
of use of computers to simulate a growing number of phenomena. One by one, research fields 
spawned ‘computational’ branches and computer simulation quickly became a central tool for 
sciences. Today, computing has been characterized as a third pillar of science, alongside the 
two traditional pillars of theory and experiment. The changes in how research is done using 
simulations are so radical that those changes have been described as the most disruptive shift 
since quantum mechanics and the computing era of science as the age of computer simulation 
(Tedre, 2014).
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Examples: Science in school computing education
In many countries, computing is integrated in the teaching of other subject 
matters. For instance, in grades 9–10, computer simulation is used in physics 
and biology to represent and experiment on natural phenomena. In the CSTA school 
curriculum, computational modelling is presented for understanding how interactions 
between individual elements in complex systems (such as people, animals or cars) give 
rise to emergent patterns that can be fundamentally unpredictable.

Opponents: If computing is science, it is bad science
Opposition towards computing’s status as a science comes in many forms, of which two 
are particularly common. Firstly, some people argue that computing is not really a science 
based on a variety of arguments. If by ‘science’ one means ‘natural science’, then computing 
surely is not similar to, for instance, physics and chemistry, because many of its subjects are 
artificial and because it is not methodologically united. Some also argue that while in the 
natural sciences, theories compete with each other in explaining the fundamental nature of 
their subject matters, computing does not have a track record of competing theories of the 
fundamental nature of, for example, data or information. Neither are theories in computing 
developed to reconcile theory with anomalies revealed by experiments, which is common in 
other sciences (Hartmanis, 1994).

Secondly, some people argue that computing is bad science. Large surveys of computing 
research have revealed that experimental validation of results is not as common in computing as 
it is in most other sciences. Even further, similar surveys show that research reports in computing 
often exclude important details of methodology, making it impossible for others to replicate or 
even properly evaluate the merits of those reports. The role of experiments in computing is another 
common target of criticism: while natural sciences are driven by crucial experiments, many parts 
of computing are driven by crucial demonstrations.

Computing’s inclusive pick-and-mix attitude towards methodology has been interpreted in 
two ways. While the proponents of computing’s scientific nature see computing’s methodological 
multiperspectivism in a positive light, those who criticize computing’s scientific nature quote the 
same characteristic as methodological eclecticism and lack of shared principles. For many people, 
‘everything goes’ is a sign of methodological anarchism and not a desirable feature of science.

Key concept: Computing as a science
Computers have become the most common tool of science, and simulation has 
become a standard feature of modern natural science. Many people argue that 
computing has become a third pillar of science, aside the traditional theory and 

 



Computer Science Education16

experiment. Computing helps theoretically oriented scientists to solve their equations and 
experimenters to analyse massive amounts of data, and it has given rise to a new way of 
doing science in the form of simulation.

2.5 Understanding intellectual traditions is 
important in computing education
The above sections present various windows to computing as a discipline, rooted in the traditions of 
engineering, mathematics and empirical sciences. They all have their advantages and disadvantages, 
and all are justified in different ways. As integral parts of computing’s practice and theory, the 
traditions are deeply intertwined and support each other. Some of the greatest achievements 
of computing happen at the intersections of different intellectual traditions,1 and others purely 
within one.

However, combining theory, design and empirical research in one educational program is not 
always easy. One has to be aware of the limitations of each tradition. For example, one cannot 
formally prove that a design has the intended qualities or that a computer system will not fail. 
Showing that something can be built does not demonstrate any of its qualities, such as usefulness, 
usability or reliability. Empirical research is not a tool for proving things. Explanations of human 
behaviour are very different from explanations of electromagnetic phenomena. When working in 
the intersection of computing’s traditions, one should know each of them well or risk having results 
that are flawed from the point of view of each of the traditions.

Working in the intersection of many intellectual traditions has posed problems for educators 
throughout computing’s disciplinary history. Teaching design and engineering requires different 
educational strategies than teaching the theory of computing. The aims and goals of engineering 
are different from the aims and goals of theoretical or empirical fields. In theses and degrees on 
systems and software, engineering ingenuity or programming virtuosity is often not enough, but 
questions are raised about scientific validation. These issues, and many others, may be alleviated by 
understanding computing’s unique disciplinary ways of thinking and practising and the intellectual 
traditions behind them. Over the history of modern computing, the field’s development has also 
frequently shifted the focus of computing research and education between different traditions.

Understanding computing’s traditions is also important for locating oneself within the 
landscape of computing fields (see also Chapter 3 in this book). Those who have strong preferences 
and opinions about computing’s essential features will benefit from understanding alternative 
viewpoints, their strengths and weaknesses. Those who are more ambivalent about their standing 
will benefit from contemplating different intellectual traditions with regard to courses, curricula 
and aims of education. A rich and balanced view of computing is also important for students 
who are still building their identities as computing professionals. By knowing the pros and cons, 
promises and challenges as well as landmark achievements of each of the major traditions in 
computing, we can give students a fascinating tour of computing in its full richness.
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Key points
 ● Over the disciplinary history of computing, there has been a lively debate 

on the field’s fundamental nature, aims, methods, essential skills and 
knowledge, its relations to other disciplines or even the name of the field.

 ● This chapter introduces three dominant traditions of computing and characterizes 
their aims, questions, views of subject matter, methods and practices. The 
traditions are deeply intertwined and support each other.

 ● Computing as engineering: Many computing activities are centred around 
requirement analysis, design, implementation, evaluation and production of useful 
artefacts.

 ● Computing as mathematics and logic: Computers are logic machines; some of 
the most impressive achievements in computing are proven and presented in the 
language of mathematics. Large parts of computing study formal objects, like 
algorithms and models of computing.

 ● Computing as a science: Computers have become the most common tool of 
science, and simulation has become a standard feature of modern natural science. 
Many people argue that computing has become a third pillar of science, aside the 
traditional theory and experiment

For further reflection
 ● Which of computing’s design, logico-mathematical and scientific aspects 

are you most familiar with? What are the most motivating assignments 
for students in each tradition? Which school subjects do students consider to be 
closest to computing?

 ● What kinds of skills and knowledge seem to be important for learning computing 
principles? How can computing be integrated into other subjects? What emphasis 
do you place on the three traditions discussed in this section when considering 
your students’ abilities in computing?

Note
 1 In this context, the term ‘intellectual’ is being used to mean discipline-based or scholarly traditions 

which computing historically draws on.
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3
Perspectives on Computing Curricula

Erik Barendsen and Mara Saeli

Chapter outline

 3.1 Introduction
 3.2 Curriculum components
 3.3 Curriculum layers
 3.4 Curricular decision-making

Chapter synopsis
In this chapter, we take a look at computer science curricula from various 
perspectives. We present the theories behind these perspectives as well as 
characteristic examples taken from actual curriculum documents and practices. 
First, we explore the various components of a curriculum, in particular the underlying 
rationale, the content matter and the goals and objectives. Second, we present a way to 
view curricula in terms of implementation layers, each with its own level of abstraction, and 
identify influencing factors, including the teachers’ own expertise and beliefs. We highlight 
the special role of textbooks and other teaching materials as an intermediate layer between 
designed and implemented curricula. We argue how the perspectives presented in this 
chapter can be used as lenses for analysing and understanding existing curricula as well as 
for supporting curricular decision-making.
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3.1 Introduction

Understanding curricula
What is taught in computer science in schools (‘the curriculum’) is influenced by many factors. It 
depends, for example, on government policies and national curricula, standards and guidelines, 
textbooks and local school policies. Finally, teachers’ personal expertise, preferences and beliefs 
shape the contents of their lessons.

This chapter is meant to help educators to make sense of these factors and their respective 
influence. It provides them with lenses to analyse and understand curricula, to participate in 
discussions about computer science education and to reflect on their own teaching practice from 
a curricular point of view. Thus, we aim to contribute to the readers’ ‘curricular literacy’ with the 
purpose of supporting informed decision-making about content matter.

The chapter takes a view on curricula from two perspectives. First, we discuss curricula in terms 
of their constituting components. Second, it will be helpful to distinguish layers in which curricula 
are represented, ranging from curricular intensions to implementations in classroom practice.

Curriculum components
Overall, a curriculum gives information on various aspects of teaching and learning. Thijs and 
van den Akker (2009) call them components (see Table 3.1). The rationale is the most fundamental 
component, influencing many others.

The curricular spider web (see Figure 3.1) outlines the different aspects described in a 
curriculum – if one changes one aspect, the others will be affected by this change. The centre of the 
curricular spider web is the rationale, answering the core question why students should learn. The 
interconnectedness of the components stresses that the components should be coherent (‘aligned’) 
to be effective.

Table 3.1 Curriculum components

Component Core Question

Rationale Why are they learning?
Aims and objectives Towards which goals are they learning?
Content What are they learning?
Learning activities How are they learning?
Teacher role How is the teacher facilitating their learning?
Materials and resources With what are they learning?
Grouping With whom are they learning?
Location Where are they learning?
Time When are they learning?
Assessment How is their learning assessed?

Source: Thijs and van den Akker (2009:12).
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Thijs and van den Akker describe the curricular spider web as a fragile thing:

Although a spider web is relatively flexible, it will most certainly rip if certain threads are pulled at more 
strongly or more frequently than others. The spider web thus illustrates a familiar expression: every 
chain is as strong as its weakest link. It may not be surprising, therefore, that sustainable curriculum 
innovation is often extremely difficult to realize. (Thijs and van den Akker, 2009: 12)

As a consequence, the underlying rationale that holds together the parts and provides coherence to 
the curriculum can be identified (see Table 3.1).

Moreover, in order to use a curriculum document to review and refine standards and plan 
teaching, it is crucial to be aware of the central component of the curricular spider web, the 
underlying rationale. By doing so, the wording, choices and gaps in a curriculum can be understood 
and explained.

Curriculum layers
In addition, to understand the effects of a curriculum, it is useful to distinguish between the 
curriculum as it was conceived, on the one hand, and the teaching practice, on the other. Van den 
Akker (2004: 3) developed a framework describing the different types of curriculum representations:

 ● Intended curriculum:
 ● Ideal: The vision of the society underlying the curriculum
 ● Formal/written: Documents describing a national curriculum; specifies intentions

Figure 3.1 The curricular spiderweb (Source: Thijs and van den Akker, 2009:11)
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 ● Implemented curriculum:
 ● Perceived: How teachers perceive and interpret the curriculum
 ● Operational: The so-called curriculum-in-action – what is taught and learned in the 

classroom
 ● Attained curriculum:
 ● Experiential: How learners experience their learning
 ● Learned: The learning outcomes of the learners

The intended curriculum is often described as a document on a national level or is presented as a 
suggestion from a teacher association, aiming to influence what is taught in schools. These usually 
(or hopefully) rely on a rationale that is shared by the community. On a more local level, such a 
curricular framework is then implemented at schools and in individual classrooms – this may be 
done by a group of teachers for a local school or by an individual teacher outlining a curriculum 
(lesson plan) for the next school year. How this is done depends on individual perceptions and 
interpretations. One final aspect is the level of the attained curriculum, capturing the learners’ view 
on the implemented curriculum – it describes the learning results.

Table 3.2 presents some influencing factors and the curricular levels they influence. It 
summarizes some concepts and theories, some of which we will present and discuss in the 
following sections.

Textbooks and other organized resource materials (hereafter called ‘textbooks’ for short) 
often play a mediating role between the intended and the implemented curriculum. Valverde 
et al. (2002) call this intermediary level the potentially implemented curriculum (see Figure 3.2). 
Although there is no international empirical evidence of the use of textbooks in computer science 
education, we know from a survey that more than 60 per cent of Dutch teachers use standard 
textbooks, while almost 40 per cent use other resources or personally developed materials 

Table 3.2 Curricular levels and influence factors

Curriculum Model (van den Akker, 2004: 3) Influenced by …

Intended Ideal Vision (rationale or basic 
philosophy underlying the 
curriculum)

Perspectives on higher level: policies, 
standards (actors: policymakers, 
standards, government, experts, 
professional organizations like ACM, CAS, 
GI, etc.)

… shared/collective perspectives

Formal/written Intentions

Implemented Perceived Interpretation by users Influenced by teachers’ perspectives 
on computing (Tedre); influenced by 
curriculum emphasis (van Driel)

Influenced by teachers’ orientations, 
knowledge (PCK, CK), beliefs

Actors: teachers
… individual perspectives

Operational Actual process of teaching/
learning

Attained Experiential As experienced by learners Learners’ beliefs, interests, motivation etc.
… individual perspectives

Learned Learning outcomes
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(Tolboom, Krüger and Grgurina, 2014). Textbook authors make specific decisions regarding 
the most appropriate sequencing of the content and the structuring of pedagogical situations 
where activities, explanations, examples and exercises are assigned particular roles (Valverde 
et al., 2002)

Structure of this chapter
In the remaining of this chapter, we will explore three of the curriculum components and show 
how they can be used to understand, compare and make sense of curricular representations. Then, 
we will look into two different curriculum layers, giving readers a few opportunities to reflect on 
their practice and which factors influence it. We will look first at the potentially implemented 
curriculum (e.g. textbooks and teaching material) and finally at the implemented curriculum 
(e.g. teaching practices and strategies). All this comes together in the closing section, in which we 
will suggest how to apply the presented perspectives to reflect on teachers’ curricular decision-
making.

Figure 3.2 The mediating role of textbooks (Source: Valverde et al., 2002)
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3.2 Curriculum components

Rationale
The underlying rationale of a curriculum is crucial for alignment of content and internal coherence. 
In essence, the rationale answers the question: Why teach this? The rationale therefore needs to 
take general aims of education into account and interpret these in terms of the subject matter of 
the discipline.

In an analysis of the role of programming, Schulte (2013) identifies the following general goals:

 ● Cope with affordances: developing competencies and skills to be able to cope with affordances 
of life in a variety of different situations.

 ● Participation in society/democracy: being able to act in terms of participation. It refers to 
what is called ‘education for democratic citizenship’. This is the ability to engage with and 
responsibly participate in the democratic sustainment and development of society.

 ● Development of identity: developing a sense of identity; getting to know what interests me, 
what resonates with me, what repels me, and so on.

These goals reflect the relative consensus on the general rationale of education, articulated by Tyler 
(1949): to provide knowledge, social preparation and personal development.

The same elements are elaborated upon by Biesta (2015), who distinguishes between the 
following:

 ● Qualification: gaining knowledge, skills, dispositions, and so on needed to go on and do 
something, either specific, such as a profession, or in general, such as being qualified to live 
in a complex society

 ● Socialization: becoming part of society (existing ways for doing and being) – culture and 
tradition

 ● Subjectification: becoming more autonomous and independent in thinking and acting

The question for a curricular rationale can thus be rephrased as follows: ‘What is the role of the 
subject domain in these general goals of education?’ The perceived nature of the discipline (see 
Chapter 2) is an important influencing factor for such a general vision of computer science education.

In the introduction of the CAS curriculum document (CAS, 2012), each of the three general 
goals is addressed: ‘Pupils studying computing gain insight into computational systems of all kinds, 
whether or not they include computers’ (qualification); ‘Education enhances pupils’ lives as well as 
their life skills. It prepares young people for a world that doesn’t yet exist, involving technologies that 
have not yet been invented, and that present technical and ethical challenges of which we are not 
yet aware’ (socialization) and, less prominently, ‘This … makes it an extraordinarily useful and an 
intensely creative subject, suffused with excitement, both visceral (“it works!”) and intellectual (“that 
is so beautiful”)’ (subjectification).

The CSTA (Computer Science Teachers Association) standards contain elements of socialization 
and a more prominent subjectification rationale:
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K–12 computer science teachers can thus nurture students’ interests, passions, and sense of 
engagement with the world around them by offering opportunities for solving computational 
problems relevant to their own life experiences.

(CSTA, 2016: 5)

Many educators regard the competence to express oneself as important – or even a prerequisite. 
This self-expression side of subjectification is more prominent in arts-related subjects. If one looks 
closely, however, this aspect can also be found in computing.

Besides its role in discovering new curriculum elements, awareness of the underlying rationale is crucial 
for maintaining the coherence and balance of the components constituting the curricular spiderweb.

Example: Storytelling in programming
Storytelling is sometimes used in introductory programming (e.g. producing small 
animations in Scratch by primary school students). Doing so, the students indeed 
learn about programming – but the animation itself does not have a particular usefulness; 
it does not solve a problem. Hence, the value of these tasks is sometimes seen only in its 
contribution to learning problem-solving techniques. However, based on the general goal of 
subjectification, the ability to write an animation as a self-expression has value in its own 
right. Indeed, it could be possible to extend the role of programming to ‘expression’: the idea 
that learners learn to program as a means to produce aesthetic expressions (Schulte, 2013) 
and hence as a contribution to subjectification as the third general goal of education.

Content
In this subsection, we will look at content matter in curricula in terms of computer science concepts. 
The term ‘concepts’ refers to ‘topics and ideas belonging to the subject matter, regardless of the 
specific skills or attitudes in which they appear’ (Barendsen et al., 2015: 85).

A classification of concepts in curricula can be an effective way to compare curricula on a 
global level. The underlying idea is that the occurrence of concepts gives an idea of the content 
emphasis in the documents. Moreover, the number of occurrences in curriculum documents 
can be regarded as a (global) indicator of the relative importance of concepts and knowledge 
categories. Such a concept analysis is relatively easy to carry out and results in a useful overview 
of the specified content matter. This concept distribution can serve as a starting point for a more 
in-depth comparison of curricula. In this way, Barendsen and Steenvoorden (2016) compared the 
curricula of CSTA and CAS as well as the national curriculum descriptions of France and the 
Netherlands (before and after the curriculum revision of 2016).

Example: Concept analysis of curriculum documents
Barendsen et al. (2015) and Barendsen and Steenvoorden (2016) apply a content 
analysis method to various curriculum documents. Concepts were extracted from 
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curriculum texts and grouped into general categories based on the list of so-called knowledge 
areas of the ACM/IEEE-CS Joint Task Force on Computing Curricula (2013): algorithms, 
architecture, modelling, data, engineering, intelligence, mathematics, networking, 
programming, security, society, usability and a final rest category.

Figure 3.3 displays the relative distribution of concept occurrences.

Figure 3.3 Relative distribution of concept categories (Source: Barendsen and Steen-
voorden, 2016)

Table 3.3 Top 5 knowledge categories in the sample curricula*

CSTA CAS France Netherlands 2007 Netherlands 2016

Algorithms
Engineering
Architecture
Society
Networking

Algorithms
Networking
Architecture
Data
Programming

Data
Programming
Architecture
Networking
Algorithms

Architecture
Data
Engineering
Networking
Rest

Programming
Engineering
Data
Society
Architecture

* Most frequent categories are mentioned first.

An interesting way to compare curricula is to look at the most prominent categories; see 
Table 3.3.
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Using the framework of computing traditions (Chapter 2), we can try to explain some 
differences. The CSTA and Dutch documents emphasize the engineering (‘making’) aspect 
of computing, which accounts for the relatively high frequencies of engineering and 
programming concepts. Also, from a more in-depth content analysis, it appears that in the 
CAS curriculum and French document, the scientific tradition is more present (and in the 
French case, the mathematical tradition).

Conceptual choices, priorities and applications can often be explained using Tedre’s framework 
of computing traditions (see Chapter 2). Let us, for example, speculate about typical roles of 
the concept of the Turing Machine in the respective traditions. As an important analytic model, 
the Turing Machine would be a primary concept in any curriculum rooted in the mathematical 
tradition. In the engineering tradition, however, one could expect a more marginal role of the Turing 
Machine as a theoretical basis of more prominently visible principles of (non-)computability. In 
the science tradition, the Turing Machine can be expected to serve as a descriptive model for the 
way computers work.

Aims and objectives
Curriculum descriptions usually contain learning objectives in terms of knowledge, skills and 
attitudes, as opposed to just a specification of content matter. Such a description specifies the aims 
of the curriculum in terms of students’ outcomes. To prepare for a proper alignment of the learning 
objectives with assessment, learning objectives are usually formulated in operational terms (i.e. in 
terms of observable student behaviour).

Various taxonomies exist for facilitating the formulation of operational objectives. One of the best 
known of those is the revised Bloom’s taxonomy (Anderson and Krathwohl, 2001) classification:

 ● Remember (characteristic verbs: recognizing, recalling)
 ● Understand (explaining, summarizing)
 ● Apply (show, solve)
 ● Analyse (categorize, subdivide)
 ● Evaluate (construct, design)
 ● Create (criticize, recommend)

It has been argued that this taxonomy does not fit seamlessly into computer science, because the 
operational objectives within computing do not seem to be equally distributed across the levels of 
this taxonomy. Indeed, many ‘making’ activities will be categorized in the higher Bloom categories 
(e.g. Lister and Leany, 2003), for example, ‘create’. In this respect, Johnson and Fuller (2006) propose 
to add a level ‘higher application’.

Another possible refinement is provided by the SOLO taxonomy (Biggs and Collis, 1982), 
distinguishing levels according to the ‘scope’ of students’ skills, varying from a local to a holistic 
perspective, with the following key aspects:
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 ● Pre-structural: unconnected, unorganized
 ● Unistructural: local perspective
 ● Multistructural: multi-point perspective
 ● Relational: holistic perspective
 ● Extended abstract: generalization and transfer

Many authors use complexity by referring to local versus holistic perspectives (‘scopes’) (e.g. lines 
in a program versus interactions in a multicomponent system) (see Lister et al., 2006; Whalley 
et al., 2006). However, if used synergically, the two taxonomies can help navigate through the aims 
and objectives of a curriculum. For example, in curriculum specifications, we can find indications 
of ‘lower’ Bloom’s taxonomy level being achieved by the accomplishment of other ‘higher’ levels.

Example: Using Bloom’s Taxonomy
The ability to understand and explain a program is much more important than 
the ability to produce working but incomprehensible code. Depending on the 
level, pupils should be able to do the following (CAS, 2012):

 ● Design and write programs that include
 ● Sequencing: doing one step after another
 ● Selection (if-then-else): doing either one thing or another
 ● Repetition: iterative loops or recursion
 ● Language constructs that support abstraction: wrapping up a computation 

in a named abstraction, so that it can be reused (the most common form of 
abstraction is the notion of a ‘procedure’ or ‘function’ with parameters)

 ● Some form of interaction with the program’s environment, such as input/output, 
or event-based programming

 ● Find and correct errors in their code
 ● Reflect thoughtfully on their program, including assessing its correctness and fitness 

for purpose, understanding its efficiency and describing the system to others

In this example, a lower Bloom level (understand and explain) is realized by achieving other 
higher levels (design, write and reflect). During this process of interaction between the 
different Bloom levels, one might expect the students to reach different levels of SOLO 
complexities as they move back and forth from the ‘making/creating’ activities.

The rather central role of the ‘making’ aspect of computer science is also addressed in the 
explanation given by the Dutch national curriculum committee.

Informatics is seen by many as a constructive discipline: a subject area where creating things 
(mostly digital artefacts) is the key element. In this epistemic view, informatics as a scientific 
discipline supplies the conceptual and procedural knowledge about such artefacts and the creation 
process. The ‘creation’ perspective is an attractive starting point for the subject. Therefore, the 
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committee has decided to position ‘design and development’ as a central skill in the new curriculum 
(Barendsen, Grgurina and Tolboom, 2016: 109).

One can recognize a strong ‘engineering’ emphasis, with maths/science as supporting traditions.
In summary, formulating goals and objectives for a given curriculum content is not 

straightforward. First, taxonomies are useful tools to be precise about the intended outcome levels. In 
the case of computer science, it is fruitful to complement a purely cognitive framework like Bloom’s 
with domain-specific complexity indicators in SOLO terms. Second, the underlying perception of 
the nature of the discipline impacts the translation of content into specific learning goals.

3.3 Curriculum layers
So far, we have discussed the intended curriculum through the perspective of the different 
components (rationale, content, aims and objectives). These components can be used as lenses for 
analysing and understanding existing curricula. In this section, we will focus on the perspective 
of curriculum layers (potentially implemented and implemented) to explore how the intended 
curriculum is translated into textbooks and classroom practice.

The potentially implemented curriculum
Textbook authors ‘translate’ the intended curriculum into documents including a sequence of 
topics, tasks and performance expectations which then teachers might use in their practice. During 
this translation process, textbook authors provide a first interpretation of the standards prescribed 
in the intended curriculum. A textbook can be seen as a tangible view of the intended curriculum, 
through the lenses of the textbook authors’ rationale.

The development of textbooks can be regulated by authorities, but in some cases (e.g. in the 
Netherlands), there is no authority which recommends, certifies or approves textbook series before 
they are distributed on the market. This could, for example, lead to textbooks series offering different 
interpretations of the national intended curriculum. Van Zanten and van den Heuvel-Panhuizen 
(2014) conducted a textbook analysis in the context of mathematics education, in which they 
examined how two different Dutch textbook series differ in their view on subtraction. The results of 
their analysis show that the investigated textbook series vary in their agreement with the intended 
curriculum with respect to content and performance expectations. The textbook series reflect 
divergent views on subtraction up to 100 as a mathematical topic. Consequently, the examined 
textbook series provide very different opportunities to students to learn subtraction up to 100.

Example: Textbook analysis activity for teachers
In their textbook analysis, Van Zanten and van den Heuvel-Panhuizen (2014) 
examined two textbook series. The analysis focused on three perspectives: the 
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subject content, the performance expectations and the learning facilitators. It is likely that 
the teaching material of your choice (e.g. textbook series and online material), unless you 
have created your own, provides a redefined intended curriculum, which you will then further 
interpret and implement. Compare one topic of your choice from the teaching material 
against the curriculum standards. How does the potentially implemented redefinition of 
that topic differ from yours, in terms of the content, the performance expectations and the 
learning facilitators? Is the teaching material aligned with your rationale? And consequently, 
how do the other components of the curricular spiderweb compare with your interpreted/
perceived curriculum?

The implemented curriculum
In the remainder of this section, we will focus on the implemented curriculum: the ways teachers 
perceive and put the intended curriculum into action. This process of implementing the curriculum 
is influenced by a range of teacher factors, like knowledge such as content knowledge (CK) and 
pedagogical content knowledge (PCK), orientations and beliefs (Shulman, 1986).

The space for teachers to give a personal interpretation in implementing a formal curriculum 
also became apparent in a PCK study by Rahimi, Barendsen and Henze (2016) in the context of 
the Dutch formal curriculum, which stresses the engineering perspective as we have seen. In the 
teachers’ PCK, Rahimi, Barendsen and Henze found a broad range of goals and objectives connected 
to the topic ‘design and development’, ranging from purely conceptual objectives to more practical 
learning goals. For computer science education, several studies found a relationship between beliefs 
and teaching (e.g. Fessakis and Karakiza, 2011; Schulte and Bennedsen, 2006; Bender et al., 2016).

Teachers’ curriculum emphasis is considered to be one of these beliefs. The idea is that teachers 
have goals that lie beyond the subject itself; such an emphasis has also the role to send a message 
about the subject. In a study with Dutch chemistry teachers, van Driel, Bulte and Verloop (2007, 
2008) found three different curriculum emphases: fundamental chemistry (FC), chemistry, 
technology and society (CTS) and knowledge development in chemistry (KDC). FC corresponds 
to the belief that theoretical notions should be taught first, because such notions can provide a 
basis for subsequently understanding the natural world and are needed for the students’ future 
education. CTS implies an explicit role of technological and societal issues within the chemistry 
curriculum. Finally, KDC is connected with the idea that students should learn how knowledge in 
chemistry is developed in sociocultural contexts, so that they learn to see chemistry as a culturally 
determined system of knowledge, which is constantly developing (cf. Barendsen and Henze, 2019).

To our knowledge, this framework has not been studied empirically in computer science 
education, but we can use the curriculum emphasis as a framework to discuss how a teacher makes 
decisions when implementing a curriculum. We can speculate about a version of the framework for 
computer science: FC is then the idea that the fundamental concepts of computer science should 
be emphasized, CTS is the notion that the interaction between computing and society should be 
emphasized and KDC stresses the way of thinking like a computer scientist.
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For example, three teachers with different curriculum emphases will be teaching the same 
topic (e.g. computational thinking) using three different approaches. A teacher with a focus 
on FC probably would stress the need to first teach fundamental concepts like algorithm as a 
prerequisite for engaging in computational thinking. From a CTS point of view, a teacher might 
stress computational thinking as a way to have some impact on society and technology. While a 
teacher with focus on KDC would probably aim to teach learners to think like a computer scientist. 
Van Driel, Bulte and Verloop (2007, 2008) found in their study that most teachers tend to support 
all three emphases to some degree, their focus being influenced by their experience and beliefs.

These three curriculum emphases seem to be closely connected to the general rationale of 
education articulated by Biesta (2015) mentioned earlier. From the perspective of the specific subject 
(e.g. chemistry, computer science, etc.), FC relates to qualification, where gaining knowledge, 
skills and dispositions is the basis (the knowledge needed to be a computer scientist); CTS and 
socialization both look at the perspective of the integration between education and society; while 
KDC and subjectification both address how the specific knowledge and way of thinking within a 
subject have a role in sociocultural contexts.

A final personal factor is presented by Ni (2011), in terms of computer science teacher identity. 
This comprises ‘Perception of CS’, ‘Perception of Teaching’ and ‘Perception of Self as a CS Teacher’. 
These three perceptions interact with the educational background of the teacher, the curriculum 
and (Ni stresses this point) the availability of a CS teacher community.

We have seen that personal factors influence the implementation of formal curricula when it 
comes to interpreting and elaborating the higher-level learning goals and when making decisions 
on how to implement the curriculum. Bishop and Whitfield (1972) provide a framework depicting 
the elements of this decision-making process, including a chain of factors, from background and 
experience via beliefs and values to aims and objectives. A so-called decision schema connects these 
(personalized) aims and objectives to the teaching situation, resulting in decision and action (see 
Borko, Roberts and Shavelson, 2008). This influence not only is visible in the long-term (deliberate, 
advised) planning of teacher and student activities but also plays a role in decision-making ‘on-
the-spot’ (i.e. during teaching). In such moments, all threads of the curricular spiderweb come 
together.

3.4 Curricular decision-making
In this chapter, we suggest a journey through the curricular spiderweb (Thijs and van den Akker, 
2009), which gives prospective and in-service teachers an opportunity for reflection on their 
own implemented curriculum and provides the tools to make informed decisions. We guide the 
reader through a visit of the curricular spiderweb, looking at the connections from the different 
components and layers.

Starting from the central component of the curricular spiderweb, we can reflect on the underlying 
rationale of a curriculum and the different general goals of education: qualification, socialization 
and subjectification. Also the perceived nature of the discipline is an important influencing factor 
for a general vision of computer science education and its implementation in the classroom.
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Analysing the content component in terms of concepts and knowledge categories of a curriculum 
turned out to be a useful approach to uncover some underlying principle beneath the selection of 
content in curricula. In this case, it was also useful for discussing and discovering various traditions 
in otherwise seemingly incomparable documents.

The last component from the curricular spiderweb is the aims and objectives, in terms of 
formulating goals and objectives for a given curriculum content. Looking at an example from the 
CAS standards (2012), we can examine its aims and objectives using both a cognitive (Bloom) and 
a domain-specific complexity indicator (SOLO).

After having looked at the different components, we propose to observe a curriculum from two 
different layers, offering the readers further opportunity for reflection on their practice. The first 
layer is the potentially implemented curriculum: textbooks and teaching material. 

Lastly, the teachers’ own beliefs influence their teaching practice and hence the implemented 
curriculum layer. Being aware of the underlying perspectives, views and emphases in a curriculum 
and of one’s own identity as a teacher can help to reflect on decisions and thus enhance this decision-
making and one’s own professional identity as a teacher. One aspect of this is the belonging to a 
community of computer science teachers. As quoted at the beginning of the chapter, curricula in 
computer science education will continue to evolve. Thus, we believe as a teacher you should not 
only be aware of implementing the curriculum in your classroom but also be able to participate in 
refining the formal curriculum.

As mentioned earlier, there are many stakeholders involved in using and refining a curriculum, not 
least the teachers. This chapter provides prospective and in-service teachers reflection opportunities 
and tools to actively maintain a connection with the intended curriculum in their practice and take 
informed curriculum decisions when, for example, choosing teaching materials (e.g. textbooks).

Key points
 ● The term ‘curriculum’ comprises various components, that is aspects 

of teaching and learning. If one changes one aspect, the others will be 
affected. The visualization of components in a ‘curricular spiderweb’ 
emphasizes that the components should be coherent (‘aligned’) and (to some 
extent) flexible to be effective.

 ● The underlying rationale of a curriculum is crucial for alignment of content and 
internal coherence. In essence, the rationale is the answer to the question ‘Why 
learn this?’ and thus reinterprets general roles and aims of education in terms of 
the curriculum content matter, in this case computer science.

 ● The content of a curriculum can be characterized in terms of concepts and 
knowledge categories. These provide a way to compare documents that otherwise 
differ in style and presentation.

 ● Taxonomies like Bloom’s and SOLO can help to formulate aims and objectives in a 
precise and operational way.

 ● The intended curriculum is often described as a document on a formal, in practice, 
national level. On a local level, there is the implemented curriculum: the ways 
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teachers perceive the intended curriculum and put it into action. This provides space 
for teachers to give a personal interpretation in implementing a formal curriculum, 
depending on individual perceptions, beliefs and interpretations. Teachers’ 
curriculum emphasis is considered to be one of these beliefs.

 ● Textbooks are a mediating role between the intended and the implemented 
curriculum. Textbook authors provide a first interpretation of the standards 
prescribed in the intended curriculum.

 ● The three traditions of computing (see Chapter 2) help explain curricular aims, 
questions, views of subject matter, methods and practices.

For further reflection
How do you, as a pre- or in-service teacher, see the relationship and impact of 
computer science to these general goals of education? Which of the computing 
traditions (engineering, mathematical, scientific) are you most familiar with? How is this 
reflected in your teaching practice?

Analyse a textbook and compare one topic of your choice from the textbook against 
the curriculum standards (the intended curriculum). In this process, reflect on how the 
potentially implemented redefinition of that topic differs from yours, in terms of the content, 
the performance expectations (intended learning outcomes) and the learning facilitators 
(scaffolding strategies).

Lastly, reflect on your own teaching beliefs in terms of computer science education on 
your teaching practice, that is, the implemented curriculum layer. In this process, reflect 
on your personal curriculum emphasis and your personal identity within computer science.
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Chapter outline

 4.1 Introduction
 4.2 Computing or IT – is that the question?
 4.3 The ARIadne principle as a holistic approach
 4.4 The role of individuals: Interaction
 4.5 Examples
 4.6 Summary and reflection

Chapter synopsis
This chapter addresses the implications of how the strong interrelation 
between digital technology and everyday life and society can be reflected when 
teaching computer science. The reader will get an overview of how to address 
these issues as an integral part of teaching computing. Instead of splitting competences 
into a technology-based computer science opposed to a usage-based information and 
communication technology (ICT), and instead of separating technological aspects from 
their impact and relation to the pupils’ world, the ARIadne (architecture relevance genesis 
and interaction) principle integrates several levels of descriptions by focusing on their 
interrelations. The ARIadne principle can therefore serve as a tool to support the integration 
of ethical and societal aspects into the already established core aspects of computer 
science education.
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4.1 Introduction
Computer science teachers can tackle their subject from a number of different perspectives which 
are discussed using varying terminologies. They have to decide whether they have to teach how 
to use a piece of software or whether they are concerned only with making its internal workings 
understandable. They must also decide whether they themselves have to cover the influence of 
information technology on social and individual life or whether they should leave that task for 
their colleagues. Last but not least, they must make a decision whether they need to explore with 
their pupils why the digital world got the way it is or whether it does suffice to teach the status quo.

The fact that questions like these do arise suggests different approaches to what computing 
education might be. These approaches distinguish themselves from each other in their focus which 
lies either on internal structures of digital technology – how software and hardware work – or on 
its application – what they are used for and how they are used. They also have different answers 
to the question, To what extent the interrelations between digital artefacts and society, on the one 
hand, and individual users, on the other hand, should be addressed in computing courses?

This chapter promotes an approach to computing education which aims to integrate the two 
areas. It constitutes that, in a computerized world, computer science education can no longer be 
limited to the role of covering only the architectural aspects of technology, such as how digital 
artefacts are constructed and how they work. Covering and answering these aspects of technology, 
of course, do not disappear. However, it has to be integrated with investigations into how and 
where digital technology surrounds us, how we use it and how it affects almost every aspect of 
life. Thus, the more formal (mathematical) foundations behind the architectural aspects and its 
concrete implementations in technology need to be complemented with aspects of their relevance 
and meaning in relation to social and personal roles and in individual interactions.

4.2 Computing or IT – is that the question?
When analysing public discourses about what there is to know, learn and teach regarding digital 
technology or even when taking a look into educational material about the subject, a bipolarity 
within the broader subject can often be made out

Typical computing education courses cover the architectural and formal basics of computing. 
This includes programming techniques, data structures, databases and so on. It might even 
touch more advanced topics, such as cryptography or network protocols. The knowledge and 
skills developed in these courses could, for example, help describe the inner workings of instant 
messengers (the likes of WhatsApp, Telegram, etc.). It does not, however, cover the personal and 
societal functions and purposes of such digital artefacts.

In contrast, in IT or digital literacy courses, instant messaging can very likely be a proper topic. 
Relevant social discourses and impacts can be covered. Often, the course would include advice 
regarding proper and safe usage of such services, for example, covering data protection and privacy 
regulations, a perceived need to be accessible 24/7, maybe even identifying changes in the use of 
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language due to the characteristics of the communication media. By covering instant messaging 
this way, relevant aspects regarding society and – hopefully – the individual pupils are discussed. 
However, this typically goes without reflecting the technological aspects of the digital artefacts 
involved.

In existing curricula, distinctions are not as clear-cut as characterized above. Table 4.1 showcases 
the main contents and competences of the CSTA K–12 computer science framework (CSTA, 
2017) in comparison to the DigComp 2.0 framework (European Commission, Joint Research 
Centre, 2016). Without going too much into detail on what the individual elements comprise, we 
can assign them to rather focus either on architectural aspects of computing technology (in grey) 
or on use and social impact (in white). It becomes clear that while a rather architecture-oriented 
curriculum might include some aspects of use and impact and a society- and usage-oriented 
curriculum may cover at least a few aspects of technical architecture, a strong emphasis on either 
one or the other can clearly be identified. It could be concluded that the other respective sphere of 
interest in both cases is covered merely as kind of an afterthought to what is considered the core 
of the matter.

We suggest getting rid of the strong emphases altogether, as an analysis of architectural aspects 
always implies the analysis of use and impact. The internal structure of digital artefacts always 
serves one (or more) purposes and is therefore always tightly connected with intentions. Likewise, 
the impact and use (as well as the usefulness) of a digital artefact cannot be thoroughly explained 
without understanding its inner workings. To explain one of the perspectives on technology, the 
other must be considered as well – at least to some degree.

4.3 The ARIadne principle as a holistic 
approach
In the following sections, we integrate the perspective typically subject to computing education 
(architecture) with the sociocultural perspective on technology (relevance). In order to integrate 
these perspectives, we put emphasis on the history of development which led to the current 
state of the artefact (genesis) and integrate the individual relations stakeholders have towards it 
(interactions).

Table 4.1 Comparing CSTA K–12 computer science standards list of concepts with the DigComp 
framework key components*

CSTA K–12 
Computer 
Science 
Framework

Computing 
Systems

Networks and the 
Internet

Data and 
Analysis

Algorithms and 
Programming

Impacts of 
Computing

DigComp 2.0 Information and 
data literacy

Communication and 
collaboration

Digital content 
creation

Safety Problem solving

*Light grey indicates a focus on architecture. White background indicates issues of use and/or societal impact.
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Key Concepts 
The ARIadne principle integrates artefact perspectives of features, architecture, 
relevance, genesis and interaction.

Features provide a users’ manual-style description: What is an artefact 
capable of? Which perceivable objects of manipulation constitute this capability?

Architecture provides an objective perspective of description: What does the artefact 
consist of? What are its inner workings?

Relevance provides a societal perspective of description: What is the artefact used for? 
What does it stand for? How does it influence society? Which social discourses influence 
how it is used?

Genesis describes the status quo as an interrelation: Which demands by society or 
individuals influenced the development of the artefact? Which architectural properties did it 
result in? How did the existence of the artefact influence a change in societal expectations? 
How did these changes in turn influence the further development?

Interaction describes how one is shaped by the artefact and how one shapes the 
artefact: In which role is a person when using an artefact? What roles does an artefact 
have within the process of use?

The ARIadne principle allows integrating these perspectives into a course. The word 
ARIadne itself is also a reference to the mythical figure of Ariadne, who finds her way 
through a maze.

The identification of physical and sociocultural aspects of technology and their analytic 
discrimination is quite common in the philosophy of technology. The approach described here is 
explicitly based on the Duality Programme, which suggested such a distinction in the early 2000s (De 
Ridder, 2007; Kroes, 1998; Kroes and Meijers, 2006). With different degrees of sub-differentiations 
and using varying terminologies (e.g. structure and function), the Duality Programme portrays 
technological artefacts – of which we consider digital artefacts to be a subcategory – from two 
vantage points which, while being intertwined, must not be mixed up. Such a discrimination, at first 
glance, might appear to be a contradiction to the before-mentioned goal of integrating the purely 
technological and socio-psychological discourses. However, it actually should be understood as a 
significant step towards such an integration.

Interrelations between the two perspectives can be described and scrutinized only if those 
phenomena which are interrelated can be clearly identified and discriminated in the first place. Trying 
to cover them in their intertwined state can lead to a sublimed form of technological determinism 
(Bimber, 1994). Again, the example of a typical modern mobile instant messaging service can serve 
as an illustration. As the primary function of such a service, one might identify ‘communication’. 
This very term, however, is used both when speaking about the service from a purely architectural 
point of view as well as when highlighting sociocultural aspects. However, the very same term refers 
to very different phenomena. In the case of architecture, when using the word ‘communication’, one 
refers to the technological property of being able to send strings of letters from one mobile device 
to another mobile device. When using the same word within the sphere of societal discourses, in 
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contrast, the meanings, purposes and intentions covered in the act of communication are in focus. 
When arguing within this sphere, one could, for example, discuss the impact of instant messaging 
services on the cultivation of friendships. Such an influence, which instant messaging services 
undoubtedly possess, however, clearly cannot be a property of the architecture of that messenger as 
nothing within the physicality of the messenger has anything to do with friendships.

While the technological and societal aspects thus have to be discriminated against each other, 
there is an interrelation between the two. The technological properties of the messenger services 
surely had their influence on what is expected in terms of human communication. If one now 
wanted to investigate the interrelation between architectural aspects of communication (being 
‘instant’, providing persistent storage, revealing whether a message has been read etc.) and relevant 
societal aspects of communication (like to what extent one expects to stay in contact even while 
on vacation), this can hardly be done when mixing up the two meanings of communication. One 
would then not be able to distinguish what people desire when using an artefact from its physical 
manifestation. To avoid such a confusion, it is advisable to reflect one’s usage of terminology and, 
if at all possible, choose different words for different concepts.

To come up with an explanation of a digital artefact which integrates the aforementioned 
perspectives on technology, it can prove promising not to start within one of the two perspectives 
themselves, but at their intersection, which in Figure 4.1 is called features.

Features describe what an artefact is used for, how it reacts to outside stimuli and which visible 
and manipulable properties it offers in relation to its capabilities. A major feature of an instant 
messenger would, for example, be its capability to send text to one or more participants of the 

Figure 4.1 The ARIadne principle defines perspectives of description of digital artefacts; the fea-
ture perspective is extended to an architectural and a relevance perspective; these are integrated 
by analysing the genesis of the artefact and put into concrete context
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service. For this feature, it provides, among other things, a text input field and a ‘Send’ button. When 
text is entered and ‘Send’ is pressed, that text is transferred to the devices of those participants of 
the service which have been selected before. Other features of the same artefact include the ability 
to check whether a message has already been seen read and the ability to have persistent access to 
messages of the past even when using different devices to access them.

While it is possible and sometimes even beneficial to describe an artefact solely on the feature 
level (e.g. in a user manual), such a perspective cannot explain how and why it even works, what it 
is used for, why it has been created this way and so on. To answer those questions and to understand 
the interrelations behind them, the world of mathematics, sciences and technology, on the one hand, 
and the world of societal discourses, on the other hand, must be taken into account and related to 
each other. However, in their entirety, both spheres are way too vast. Just to explain a digital artefact, 
one cannot go into the details of electrical current or explore the axioms of mathematics. Neither 
would it make sense to analyse the very basics of human societies and political systems. The scope of 
what has to be considered an integral part of the explanation has to be narrowed down. In order to 
do this, the features of an artefact can be made the starting point for a deconstruction (Magenheim, 
2001; Magenheim and Schulte, 2006) which can uncover the necessary elements relevant to the 
understanding of the artefact and emphasizes their interrelations. For this deconstruction, we refer 
to the duality approach explained above. The essential formal-physical aspects of the artefact we call 
its architecture, while the relevant societal discourses we call its relevance.

When an artefact is described from the perspective of its architecture, its purely technological 
conditions and relations, its data structures and its algorithms are in focus. Descriptions within 
this architectural perspective are where computer scientists typically feel at home. Architectural 
descriptions are neutral and factual. What is described is observable as well as deterministic. When 
covering the same artefact from a perspective of relevant discourses, its relevance, other aspects 
are in focus, including the purpose of the artefact, the expectations which are projected upon 
it, aspects of its influence on society and its societal function. Within this perspective, typically 
interpretations instead of descriptions are being made. They are less factual in nature as they cover 
discourses and therefore encompass conflicting points of view. Uncovering these aspects of digital 
artefacts typically relies on insights and methods provided by psychologists and sociologists. 
However, without these aspects of relevance, the description of a digital artefact literally becomes 
meaningless and useless.

If one wants to figure out what an artefact represents, what it actually is, one has to consider 
the ascriptions resulting from the relevant discourses. This can be illustrated quite nicely in a 
gedankenexperiement in which mankind has suddenly disappeared from the face of the earth, 
leaving behind all of its technical artefacts. Aliens, who happened to find these artefacts, would 
surely consider it very difficult to figure out what the purpose of the artefacts might have been, as 
they can investigate only their physical properties. Without contextual information about human 
physiology, human needs and human cultural preferences, the actual function of these artefacts 
could not be determined.

On the level of mere descriptions, a distinction between architecture and relevance can and 
probably should be made. However, the two perspectives necessarily must be combined as soon 
as one aims to explain an artefact, as such an explanation is characterized by making clear why 
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the artefact got the way it is. Technical artefacts have not just popped up but have been developed 
explicitly and with a purpose over a period of time. This is true even for more complex artefacts 
like ‘the internet’, which, while not having been created by a single person or a single company at a 
discernible point in time, definitely has not just appeared out of thin air and surely cannot be treated 
as a natural phenomenon. It is clearly human-built. Therefore, the architecture of the internet exists 
only because people had needs and thus formulated requirements which led to its development. 
The actual processes behind the genesis of an artefact often are quite complex. Many stakeholders 
are involved. Therefore, one can conclude that no architecture would even exist without complex 
discourses within society. From the other angle, there is hardly any discourse within society (if at 
all) which is not somehow influenced by existing technology. The combination of both thoughts 
leads to the insight that the status quo of any digital artefact can only be described by looking into 
its genesis (its history). We conclude:

 ● Nothing which can be found within the architecture of digital artefacts is without history and 
therefore is the result of discourses of the past.

 ● No discourse within society is without the influence of pre-existing technology.
 ● Therefore, the interrelations over time need to be investigated to understand the status quo 

of an artefact.
 ● A neutral description of the architecture of an artefact essentially is a purposefully narrowed-

down view disregarding that the state of the architecture is the result of past discourses.

4.4 The role of individuals: Interaction
Up to this point, the perspectives on digital artefacts were portrayed kind of actor-free. Of course, 
the relevant discourses do involve actual people and technology is indeed designed by human 
beings, yet, up to now, no individual human being was the focus of explanation. This is changed 
by extending our model of descriptions to include interactions with the digital artefact. In a school 
context, one of the most interesting individuals to consider will most likely be the learner (student, 
pupil).1

Individuals who use a digital artefact by interacting with it have knowledge and skills in terms 
of both its architecture and its relevant societal discourses. This knowledge enables them to use the 
artefact with some level of competency. While this relation is very individual, often certain explicit 
roles can be identified (see Fischer, 2002). Interactions with spreadsheet applications provide a 
good example for such roles. It has been found that one can identify people who see spreadsheets 
merely as a tool used for writing things down in an orderly manner (Borghouts et al., 2019). Others 
see it as an extended kind of calculator, while a third group of users create complex applications 
within spreadsheets. All of these roles require different sets of skills and knowledge. Following 
Fischer (2002), the roles and the associated self-views, world views and action schemes are not 
fixed but change within the process of interaction, allowing the artefacts to be shaped by individual 
needs and actions. At the same time, the interaction with the artefacts itself shapes one’s world 
view, self-view and habits.

 

 



Computer Science Education44

Adding the interaction aspects to the duality-based explanation of digital artefacts relate both 
architecture and relevance to individual perspectives on the artefact. This allows for an interaction-
based duality reconstruction, where the interaction roles of pupils within different contexts are 
considered before developing an intervention (see, e.g., Terfloth, Budde and Schulte, 2020). 
Additional potentials arise when not only considering oneself or pupils as the individuals being 
in interaction with the device but also taking other stakeholders into account. One can then put 
oneself into their shoes and try to empathically understand their needs and goals by relating them 
to their own. This way, decisions and opinions not only are based on one’s own relation towards an 
artefact but also include social and intersubjective deliberations.

4.5 Examples
By deconstructing a digital artefact along its architecture, its relevance, its genesis and its interaction, 
we have a tool which can be used for subject analysis and which can therefore be the basis for an 
educational reconstruction.2 The resulting question of whether and to what extent the approach 
can be used to create or update a curriculum has not yet been answered. However, we can provide 
some practical examples, which we want to characterize briefly in order to make the orientation 
of the approach described here comprehensible within concrete learning processes in computer 
science teaching.

Parking spaces
In project courses carried out together with local schools, pupils learn that they can explore the 
world they live in using digital artefacts by evaluating data covering their environment. This is 
described in more detail in Chapter 22 about epistemic programming. In a variation of this project 
course, instead of having pupils gather data using sensor-equipped devices, they are provided 
with existing occupation data of local parking spaces, time-based data that covered several of the 
past years.

At the beginning of the course, pupils learn that raw data without any kind of processing does 
not convey any insights as correlations within the data are not yet perceivable. The data needs some 
kind of treatment to extract this information which is kind of hidden within it. To perform this 
treatment, they are introduced to data-processing techniques based on Jupyter Notebooks. Jupyter 
Notebooks integrate the potential of documenting the data-wrangling process with blocks of 
programming code which perform the actual operations. Of course, pupils in K–12 schools cannot 
be expected to be proficient in programming data evaluations completely by themselves. Therefore, 
they are provided with prefilled notebook files which already contain code examples for typical 
operation, such as the selection of a certain day or the accumulation of data of selected weeks or 
months. These code snippets can be combined and adapted for more elaborate evaluations.

Now, being equipped with a toolset (architecture) they can use to squeeze information out of the 
given data set, under the guidance of their teachers and tutors, pupils are asked to come up with 
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hypothetical relations (relevance) within the data which they can then explore using programmed 
data evaluations. For example, they compare occupation data during different seasons, contrast 
vacation weeks to typical non-vacation weeks, hypothesize on the characteristics of bank holidays 
and so on. As the goal of the course is to let pupils experience that they can understand the world 
using digital, programmable tools, the ‘research questions’ they are trying to answer are not 
predetermined by the teachers or tutors, who serve the purpose only of assistants who are there to 
help with formulating hypotheses and translating them into programming code.

In an extended phase of the projects, the participants were then introduced to AI methods, 
namely, how to train systems to make predictions based on given data sets. This triggered them to 
think about how to protect the environment by reducing unnecessary traffic. They came up with 
the idea that making drivers find a free parking space rapidly instead of having them drive around 
town would reduce the environmental impact. With this goal in mind, they developed a piece of 
software to predict future parking space occupation.

Within the course described here, programming is used to gain new insights into the world the 
pupils live in. They can explore it in a kind of tinkering style by combining the features of existing 
programming snippets. By doing so, they create new digital artefacts and adapt its architecture to 
their needs. By checking their hypotheses with their newly adapted artefacts, new hypotheses can 
and do arise. This process in itself covers the whole model of artefact explanations we described 
in this chapter. Students have their assumptions (relevance) and create and adapt digital artefacts 
(architecture) in a way it makes the necessary information perceivable (features). They do so in a 
cyclic fashion of getting results, updating their assumptions, adapting the artefacts, getting new 
results and so on. This way, they can witness the development of an artefact and its usage (genesis) 
in quite a short time. Ultimately, when thinking about how to convey their findings to the world 
and even casting them into a proper product, they consider the world views and self-views of their 
potential customers (interaction).

Location data in mobile communication
The initial focus of the parking spaces example described above lay in the relevance of the data 
and its potentials to gain knowledge about the world around us and only in a subsequent step 
introduced technological means and skills which are needed to actually scrutinize the data and find 
out what they stand for. Instead, another project about location data in a cellular network context 
begins by figuring out, through an analysis of the interaction of taking phone calls (features), how 
and why such data is needed for the cellular networks to even work (architecture). It thus starts 
in a context relevant and common for the learners and is then analysed in more detail. First, the 
students describe the features of telephone calls as part of their everyday life (relevance). Based on 
these descriptions, students and teachers deduce which architectural prerequisites are necessary to 
be able to provide these features.

The question of how the architecture works thus relates to its features which are a consequence 
of its relevance. Architecturally, pupils must figure out how a phone call signal is routed from 
sender to receiver. They learn that mobile phone networks consist of different local cells in which 
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a signal is delivered to base stations (visible as antennas), transmitting the signal to nearby phones. 
They also have to understand that to find a suitable cell, a central database (the home location 
register or the visitor location register) is queried to find the current location of a cell phone. 
By reconstructing the technical processes involved when establishing a mobile phone call, it 
becomes clear that without data about which phone is currently logged in to which cell, in case 
of a call, the whole network (meaning all cells of the network) would need to be flooded with 
the call information, which would not be a feasible solution in terms of technical resources. As a 
consequence, by analysing the infrastructure and the inner workings of a mobile phone network, 
the necessity to acquire location data becomes apparent.

Reflecting on this insight, potentials for the use or misuse of this kind of location- and time-
based relevance are reflected upon. This reflection should also explain the existence of laws 
and regulations having been put into place (genesis) that limit the use of the data gathered to 
purposes which concern the operation of the networks themselves as well as to special cases of law 
enforcement. However, such rules and regulations do not exist – or are not properly enforced – in 
other areas where location data is gathered on mobile phones.

To give pupils a first-hand experience of the potentials of an extensive evaluation of location 
data (interaction), a real-life set of location data obtained from a cellular network provider is 
used in the course (Zeit Online, 2011). Pupils first get to see only the raw data in the form of a 
spreadsheet and are asked to come up with ideas on how to uncover interesting information about 
the person behind the data, like where he lives, where he works or what he does in his spare time. 
To gather this information, pupils are taught to use an interactive environment to analyse the 
data (architecture). They experience how simple it is to find out quite a lot about an individual as 
soon as a coherent body of data is created and to create a digital doppelganger. In a subsequent 
discussion, they reflect on what they were able to find out and, based on that, develop a sense of 
data awareness (relevance).

The purpose of the back and forth between architectural knowledge about the network and 
skills in the area of data analysis and reflections about desires, feelings and institutional regulations 
on the side of relevance is not to discourage pupils from using modern mobile phone technology 
or turning of location services at all costs, but to allow them to grasp the potentials of both use and 
misuse as well as be able to make informed decisions regarding their own actions in the future. It 
should also teach them to hypothesize on possible data involvement in modern technology more 
generally.

These practical examples given here show a first implementation of the approach outlined here for 
computer science teaching. It demonstrates that the content-oriented competencies (data storage, 
data processing, data analysis, algorithms etc.) do not necessarily represent new content, but rather 
that the content-oriented competencies become anchored within a context. Within the interaction, 
both the perspectives of architecture and relevance become motivated and necessary, providing the 
basis for the learning occasion. It can also be seen that the learning activities are always intertwined 
with concrete actions and reflections throughout the course, which allows the pupils to ‘step out’ of 
the process and reflect on what they were doing and then ‘step in’ again to implement the results of 
their reflections. This offers the opportunity to explicitly transfer competencies within the context 
and to reflect and evaluate the individual actions on a meta-level.
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Key points
 ● When only the features and architecture of a digital artefact are considered 

without any integration, it is possible to describe an artefact only either 
technically or in terms of its use and impact without being able to explain 
the inherent interrelations.

 ● Real explanations of artefacts always require integrating the relevance perspective 
and the interrelation between architecture and relevance through an analysis of the 
artefact’s genesis.

 ● By looking at interactions with the artefacts, the individual roles of users and the 
artefact in the interaction can be reflected, compared and developed.

 ● Combining these perspectives in the ARIadne approach allows explanations of 
digital artefacts and therefore their integration into computing courses.

 ● It also allows projects to be rooted both in architecture and relevance and, 
therefore, be meaningful to those carrying them out.

4.6 Summary and reflection
The approach characterized in this chapter can be used to deconstruct digital artefacts in a way that 
integrates different perspectives. In contrast to typical approaches towards computing education 
which are more canonical and typically mainly focus on the architectural aspects of technology, 
the process described here is explorative. In a back and forth between different perspectives of 
description, pupils and teachers take a journey through architecture and relevance, moderated 
by acts of interaction as well as by analysing the genesis of the artefacts. The examples show 
jumping back and forth between perspectives and connecting them is crucial to a more holistic 
understanding of digital artefacts. The learners recognize the interaction in terms of architecture and 
relevance and, based on differentiated knowledge, can uncover, analyse and evaluate interactions 
between architecture and relevance and hence also reflect on the intertwinedness of (individual) 
humans, technology and society. This way, learners get the opportunity to apply their skills and 
knowledge in a concrete context through the interaction with a digital artefact (Schulte and Budde, 
2018). Therefore, we hope, knowledge and skills do not remain hypothetical in the sense of inert 
knowledge but that learners can apply what they have learned, relate to it and integrate it into their 
everyday lives.

Introducing such an approach in computing classes allows a reconstruction of the digital reality 
within the classroom and allows learning activities to be framed and guided by it. Yet, this ARIadne 
principle (short for architecture, relevance, interaction and a reference to the mythical figure of 
Ariadne who finds her way through a maze) can also be of value in a less revolutionary setting 
as it allows existing educational approaches to be analysed and, if necessary or appropriate, be 
extended. In planning or reflecting on teaching units, teachers can use the ARIadne principle to 
check which aspects of architecture, relevance, interaction and genesis are involved or to develop 
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ideas what can or should be included, probably by focussing on specific features of an artefact. 
Thereby, teachers can integrate perspectives and their interrelations into existing course content. In 
summary, we hope the principle helps to find better, that is more nuanced and balanced, answers 
to the questions raised at the beginning of the chapter.

For further reflection
 ● After reading the chapter, go back to the beginning and try to answer the 

questions raised there.
 ● The field of computing education matured to focus on stable and long-lasting 

concepts and competencies. See, for example, the fundamental ideas approach by 
A. Schwill or the concept of computational thinking described in numerous flavours. 
These approaches are guided by the rule to ‘focus on ideas, not on artefacts!’ 
Discuss: Doesn’t the ARIadne principle increase the danger of teaching only 
contemporary tools and apps rather than the more persistent ideas and concepts?

 ● Think of a computing education lesson plan you know. Analyse and reflect on it by 
referring to the ARIadne principle. What, if anything at all, would you change?

 ● Choose a digital artefact from your environment and analyse it considering the 
following question: What features characterize it? How did the artefact change 
during its genesis? Starting from a feature, analyse its architecture, its relevance 
and how these are connected. What implications could this analysis have for 
computer science teaching?

Notes
 1 Schulte brings in the perspectives of pupils by extending the idea of a didactical reconstruction 

towards a duality reconstruction (Schulte, 2008).
 2 The concept of educational reconstruction is explained in Duit et al. (2012).
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Computational Thinking: A 

Competency Whose Time Has Come

Shuchi Grover and Roy Pea

Chapter outline

 5.1 Introduction
 5.2 What is computational thinking?
 5.3 Elements of computational thinking (breaking it down)
 5.4 CT concepts
 5.5 CT practices
 5.6 CT within and across subjects
 5.7 Summary

Chapter synopsis
Computational thinking (CT) encompasses a range of specific thinking skills 
for problem-solving, including abstraction, decomposition, evaluation, pattern 
recognition, logic and algorithm design. While what exactly is included in CT 
has been the topic of some debate, this chapter will consider each of the elements of 
CT, how the learning of these concepts and practices can be facilitated within the school 
curriculum and the role of CT skills in other domains.
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5.1 Introduction
The twenty-first century is arguably the century of computing. Artificial intelligence has finally 
come of age as it becomes embedded in the transformation of work, commerce and everyday life. 
Big data, speech and facial recognition, robotics, internet of things, cloud computing, autonomous 
vehicles and 24×7 access to anyone, anywhere in the world via social media are changing how and 
where people work, collaborate, communicate, shop, eat, travel, get news and entertainment and, 
quite simply, live. Computing is also transforming industry and innovation in every discipline, 
becoming an integral tool that is spurring new ways of doing and thinking. In such a world saturated 
by computing, ‘Computational Thinking’ (Wing, 2006) is now recognized as a foundational 
competency for being an informed citizen and being successful in STEM work, one that also bears 
the potential as a means for creative problem-solving and innovating in all other disciplines. In this 
decade, systematic endeavours have gained momentum to take computer science (CS) education 
and CT to scale in K–12 classrooms in states across the United States and internationally. Today, CT 
is also seen to be moving out of academic and computing-centric realms to mentions in mainstream 
news stories, non-academic book titles and even as a form of (algorithmic) theatre (Grover, 2021)!

5.2 What is computational thinking?
We have witnessed over the past two decades a shift in our beliefs of what is important to learn not 
only in STEM subjects but also in the humanities. This shift privileges teaching higher-order critical 
thinking abilities fundamental in each and every domain beyond rote learning and procedural 
skills, in what has been designated as ‘deeper learning’ (Pellegrino and Hilton, 2013). US efforts 
around the Common Core standards for subjects such as mathematics and English language and 
the Next Generation Science Standards (NRC, 2013) mirror similar shifts in other countries, which 
emphasize disciplinary thinking and ways of knowing and being beyond rote learning. So, teaching 
mathematics has moved towards thinking like a mathematician; science learning now involves 
developing competencies for thinking like and enacting the authentic practices of a scientist.

It seems only logical, then, that educators and policymakers keen to teach computer science are 
attempting to privilege CT or thinking like a computer scientist, over other aspects of computing 
(such as learning binary arithmetic). What is ‘computational thinking’ anyway? How is it defined 
and understood?

Jeannette Wing’s definition
Though somewhat opaque, Jeannette Wing’s definition of CT first articulated in a 2006 
Communications of the ACM article (Wing, 2006) deserves mention for capturing the collective 
imagination of educators and researchers worldwide and spurring global efforts to create a 
generation of computational thinkers. She uses ‘computational thinking’ as shorthand for ‘thinking 
like a computer scientist’.
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Key concept: Computational thinking
CT is the thought processes involved in formulating a problem and expressing its 
solution(s) in such a way that a computer – human or machine – can effectively 
carry it out.

Informally, CT describes the mental activity in formulating a problem to admit 
a computational solution. The solution can be carried out by a human or a machine. CT is 
not just about problem-solving but also about problem formulation (Wing, 2014).

CT is fundamentally about problem-solving using concepts and strategies most closely related to 
computer science. Problem formulation should be considered a key part of this problem-solving 
process. Since formulating the solution for the problem using CT need not involve the computer, 
even though the execution of the solution usually does, CT can be taught without the use of the 
computer. K–12 educators now aspire to teach these skills, with and without the computer, in ways 
that equip students to apply them in various contexts and domains and, more often than not, where 
a computer or computing device must carry out the solution. This is somewhat of a shift from early 
views of CT promulgated by Papert (1980), whose pioneering work in children and programming 
continues to inspire student-centred, constructionist CS curricula and pedagogies even today.

Although CT is mostly seen to be synonymous with computational problem-solving and teaching 
CT emphasizes skills for better preparation for a computing-centric world and economy, some 
framings prefer to emphasize CT learning as a means to computational creation, social engagement 
and participation (Kafai, 2016) or computational action (Tissenbaum, Sheldon and Abelson, 2019) 
that empowers the youth. Other framings emphasize an equity lens and advocate for CT learning 
in the context of ‘critical computing’ (Ko et al., 2020) through developing cultural competence 
(Washington, 2020), culturally relevant (Madkins et al., 2019) and community-oriented ethno-
centric (Eglash et al., 2006; Lachney, 2017) pedagogies. The Raspberry Pi Foundation (2020) and 
Kapor Center (2021) have authored excellent guides with ideas for the classroom on culturally 
relevant and responsive teaching.

5.3 Elements of computational thinking 
(breaking it down)
What does CT mean? What thought processes does it involve? Obtaining answers to these queries 
will help teachers and designers to develop curricula to prepare children’s CT competencies. 
Jeannette Wing’s article and subsequent efforts to define CT – especially for K–12 education – 
spawned a large body of articles breaking CT down into several elements that aimed to clarify 
and outline what ‘thinking like a computer scientist’ means, including our CT ‘state-of-the field’ 
review in AERA’s Educational Researcher (Grover and Pea, 2013). All these elements comprise 
some combination of a list of competencies most will agree are facets of the thinking processes 
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that computer scientists engage in when they solve problems. Keeping in mind that there is not 
yet an unassailable list, the elements that we find to be most comprehensive and useful to describe 
CT to teachers, with a few of our own tweaks, is that outlined by the British Computing at School 
initiative. By observing what kinds of thinking computer scientists activate when they engage in 
problem-solving, we find that CT encompasses the following concepts and practices. The inclusion 
of the ‘practices’ view of CT, in addition to CT concepts, is in keeping with the ‘thinking like a 
<domain expert>’ notion and describes the behaviours that domain experts engage in in the field.

Key concept: CT concepts and practices
CT concepts include the following:

 1. Logic and logical thinking
 2. Algorithms and algorithmic thinking
 3. Patterns and pattern recognition
 4. Abstraction and generalization
 5. Evaluation
 6. Automation

CT practices include the following:

 1. Problem decomposition
 2. Creating computational artefacts
 3. Testing and debugging
 4. Iterative refinement (incremental development)
 5. Collaboration and creativity (part of broader twenty-first-century skills)

We now describe each of these along with examples set in everyday non-computing contexts as 
well as computing and programming contexts. Where possible, we also describe a simple example 
or two of how teachers might teach these concepts and practices in the classroom.

5.4 CT concepts

Logic and logical thinking
Logical thinking involves analysing situations to make a decision or reach a conclusion about 
a situation. Computer scientists also often use more of a formal logic framework in their work. 
Boolean logic is at the heart of all computing from computational circuitry to its use in software 
and programming to make decisions in flow of algorithmic control. As part of CT competency 
development, students must build analytical thinking skills by working on logical puzzles and 
problem-solving scenarios as well as learning formal Boolean logic through an understanding 
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of AND, OR, NOT (and other variants of Boolean operators) and how to construct Boolean 
expressions using combinations of these primitive logic elements.

Example: Boolean expressions set in real-world 
settings
A simple example of logical thinking might involve constructing a Boolean 
expression for an alarm that would ring for soccer practice on Mondays at 4:00 pm and 
Wednesdays at 5:00 pm, as follows:

SoccerAlarm rings IF ((WeekDay is Monday AND Time is 4pm) OR (WeekDay is 
Wednesday AND Time is 5pm))

Being able to reason thus with Boolean logic also translates well to game programming 
when games require the use of control statements involving Boolean expressions, such as, 
‘Game over if the player has collected all the gold coins or has no more lives left’. Of course, 
the program will require an additional logical check to determine whether to announce ‘You 
won!’ or ‘You lost!’ before it ends.

Algorithms and algorithmic thinking
Algorithms are precise step-by-step plans or procedures to meet an end goal or to solve a problem; 
algorithmic thinking is the skill involved in developing an algorithm. Cooking recipes are a common 
everyday example of algorithms (albeit less precise than what would be considered algorithms 
in computer science). Other common examples are route maps suggested by applications such 
as Google Maps or instructions for assembling a piece of furniture, instructions for knitting or 
crocheting a scarf and so on. In fact, the precise set of actions to get ready for school every morning 
could be construed as an algorithm.

Computer scientists use this concept of algorithms to devise precise solutions to problems. These 
solutions could be described in the form of flowcharts, pseudo-codes or a bulleted list written in 
an abstract everyday language that could then be coded or programmed (by the same computer 
scientist who creates the algorithm or by other programmers) using a programming language to 
be interpreted and carried out (or ‘executed’) by a computer. As with logic, disciplinary learning in 
computer science at the undergraduate level also involves a more formal study of algorithms that 
students may not encounter in their K–12 CS learning, involving examining aspects of efficiency, 
resource optimization and complexity of algorithms.

Patterns and pattern recognition
We are all familiar with the concept of patterns and pattern recognition from our early learning of 
shapes or mathematics topics such as multiplication and number series completion. CT includes 
these ideas of pattern recognition and extends the idea to problem-solving settings. Pattern 
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recognition in CT could lead to the definition of a generalizable solution (which also has overlaps in 
maths) that can leverage automation in computing for dealing with a generic situation, for example 
any Step n of a series no matter how large n gets. Recognizing a repeating pattern also informs 
how to incorporate iteration or recursion in an algorithmic solution or a functional breakdown 
of a problem (that also serves the cause of creating manageable and modular solutions). CT also 
leverages pattern recognition by examining what parts of a problem are similar to something one 
has already solved (or programmed) before. This is the bedrock of the powerful idea of design 
patterns or programming paradigms in software development.

In addition to these basic ideas of pattern recognition, computer scientists have advanced 
more formal use and understandings of the idea of pattern recognition in topics such as machine 
learning and artificial intelligence that focus on recognizing patterns in data. Pattern recognition is 
used in computer vision algorithms for recognizing images and faces (recall how Facebook is able 
to automatically ‘recognize’ and tag a face?) or for recommending products on Amazon, your next 
article on a news site or your next song using iTunes ‘Genius’.

Abstraction and generalization
There is a broad consensus that abstraction is the keystone of computer science (and consequently, 
CT). Jeannette Wing refers to abstraction as the most important and high-level thought process in 
CT. It is related to several elements of CT described above. Simply put, abstraction is ‘information 
hiding’. The act of ‘black-box’-ing details allows one to focus only on the input and output. In 
this sense, then, abstraction provides a way of simplifying and managing complexity. It is also the 
ability to generalize based on similarities and differences. CT involves knowing the right types of 
abstractions to create and use in a computation solution.

K–12 education should strive to provide children with a sense of how computers and 
programming languages are also abstractions. Though the computer is a complex, physical machine 
made up of circuits and wires, as users of computers we interact with it through sophisticated 
operating systems and applications. Even computer application software developers don’t need 
to think in terms of the physical circuitry. Programming languages used by software developers 
represent an abstraction of the computer that understands the constructs and keywords used in 
that language. These higher-level languages hide the complexity of performing operations in the 
more primitive instructions that are used in lower-level programming languages and ultimately the 
lowest level ‘machine language’. A developer or an engineer at any stage typically needs to know 
only how to interact with one level below and what is to be seen by the next higher level. Every 
algorithm is also an abstraction as is every model or simulation that represents some real-world 
phenomenon. Every procedure defined within a program that stands for a set of instructions is 
also an abstraction. Data, stored in variables and data structures in programs, is the abstract ‘stuff ’ 
procedures or programs act on and manipulate. They are abstract because they encapsulate and 
hide the details of the physical things they represent. In this important respect, computer programs 
are akin to more familiar algebraic equations, which also hide the details of the physical things 
represented in algebra equations by their variables and values.
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Evaluation
Evaluation goes hand in hand with several of the elements of CT described above. Solutions to problems 
in the form of algorithms or abstractions in the form of programs, models or simulations must be 
evaluated for correctness and appropriateness based on the goal as well as constraints. While it involves 
analysis and analytical thinking, the idea of evaluation is grander. Solutions to problems are evaluated 
for accuracy and correctness with respect to the desired result or goal. There are often other grounds 
for evaluation. Think of the algorithm that provides directions. It could be evaluated based on any of 
several criteria – shortest, fastest, most scenic or other constraints such as the following: Does it take 
you past a grocery store or gas station where you may need to make a stop? Computer scientists dealing 
with complex problems and algorithms often evaluate their solutions based on efficiency constraints 
such as time to completion, resource usage and human factors or user experience considerations

Automation
‘Computing is the automation of our abstractions’ (Wing, 2008: 3718). A key part of CT, for 
computer science as well as computing in other domains, is working towards a solution that will 
be executed by a machine. Automation as a rationale to address a need that cannot be solved 
otherwise is often the motivation for using CT for problem-solving in the real world. In such 
instances, recognizing when automation is needed and what abstractions and data representations 
will best help develop an automated solution is a key part of CT.

At the K–12 level, even though the end goal of applying CT is not always a computational 
solution implemented on a machine, it is important for learners to develop an understanding of 
when automation is the answer to the problem – what aspects of problems are better solved by 
humans and which are better solved by the machines.

5.5 CT practices
The CT practices described below outline approaches that computer scientists often use when they 
engage in computational problem-solving.

Problem decomposition
This approach is not unique to computer scientists. It is suggested in Polya’s (1957) seminal work 
on problem-solving in the context of mathematics. Such a method for problem-solving was 
enumerated as one of the rules for right thinking by Rene Descartes ([1637] 1986) in his Discourse 
on Method: ‘divide each of the difficulties under examination into as many parts as possible, and as 
might be necessary for its adequate solution’. It is, however, a key approach in computational problem-
solving. Breaking a problem down into smaller subproblems makes the problem more tractable and 
the problem-solving process more manageable. Examples abound in everyday life. Getting ready for 
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school or work usually involves getting cleaned up, getting dressed, having breakfast, packing lunch 
or a snack and ensuring you have the right contents in your bag as you leave. Each of these subtasks 
contains its own set of actions, is independent of the other and often happens in the same sequence 
every day. Going back to the algorithmic process of cooking and the recipe as an algorithm, one can 
easily see problem decomposition at play when the recipe separates the pre-preparation process of 
marinating or getting the ingredients together, from preparing some portion of the dish (e.g. the 
dressing or gravy) and the preparation of the main dish and then combining it with some post-
processing steps (cooling, garnishing and such) to get the dish ready for serving.

In the context of programming, the task of breaking down a problem often leads to pieces of 
code being written separately. These component parts of the program need to ‘come together’ 
when the whole solution is composed. This process is simple when the different subproblems are 
independent of each other. Take, for example, the task of calculating the average score of an exam. 
The first subproblem could involve asking for user input and creating a list or array of scores; the 
second could address traversing the list and adding up all the scores in some aggregator variable 
and the final step could simply involve calculating the average by dividing the total of all scores by 
the number of student scores.

Creating computational artefacts
Wing’s definition suggests that the goal of CT is to solve problems that can be executed by humans 
or computational devices. While several examples of CT described above are situated in the real 
world and do not involve a computer, creating solutions to be executed by a computer is often 
a natural end goal of CT and problem-solving. Sometimes, the computational artefact is merely 
a simulation or model or interactive prototype of something that will eventually be a physical 
artefact; at other times, the computational artefact is itself the end goal – a game or story or artefact 
of creativity and personal expression or software that could be used by others.

Programming is therefore seen as an especially useful platform for teaching CT since it brings 
together several of the elements – both concepts and practices – that are central to CT. In Grover 
and Pea (2013), we asserted, ‘Programming is not only a fundamental skill of CS and a key 
tool for supporting the cognitive tasks involved in CT but a demonstration of computational 
competencies as well.’

Even so, it is important to observe that CT involves problem-solving and thinking competencies 
that can be invoked in settings outside of programming. Programming, although important, 
cool, interesting and fun, is but one of the possible vehicles for developing CT competencies. The 
current rush to focus on coding often attracts attention towards the features of the programming 
environment and away from the important aspects of CT that must be involved. Often these ‘low-
floor’ programming environments allow for tinkering without the mindfulness and meta-cognition 
called for by deeper learning. This is akin to learning the syntax of a specific programming language 
(what the constructs mean and accomplish) without a deeper appreciation for the deeper CT 
concepts and practices that equip learners with the competencies to be used in any programming 
context, whatever its specific features.
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Testing and debugging
Testing and debugging are integral to any kind of problem-solving (Miller, Galanter and Pribram, 
1960). Evaluating one’s solution for accuracy, detecting flaws in a faulty solution and fixing them 
are part and parcel of any problem-solving process.

Like other CT concepts and practices, testing and debugging are related to many of the other 
elements described here. They are part of the process of evaluating a computational solution – whether 
it satisfies relevant rules and assumptions, whether the solution works for boundary conditions 
and all relevant inputs and situations and whether it acts as expected for illogical or erroneous 
inputs. This also involves logical and ‘if-then’ analytical thinking to isolate the problem and zero 
in on the error. It is also integral to the incremental development and problem decomposition 
strategies described above.

Rigorous, systematic testing and debugging is an art and science in computing, especially 
in software development. Developing test cases and taking the software through its paces is a 
significant part of the software development process, and it is a process that itself can become 
automated. In the context of programming, systematic testing of the solution for correctness for 
the range of valid and invalid inputs is an integral competency in learning to program.

Incremental development (or iterative refinement)
This is a very common strategy used in the context of programming. Though similar to the process 
of problem decomposition, it focuses not so much on the idea of decomposing the problem into 
subproblems as it does on ‘growing the solution or program’ iteratively with frequent testing and 
debugging in between to develop improvements. This is contrasted with – and preferable to – 
writing large chunks of code that make it difficult to isolate the bug(s) if the solution does not work 
as intended. The most frequently used avatar of this approach in professional software development 
circles goes by the moniker ‘agile development’ (Martin, 2003).

Consider a simple example from robotics. Imagine a roving bot that needs to turn around when 
it hits an obstacle. The student could first simply code and test the movement – have the robot go 
forward in a straight line. Then s/he could add the obstacle collision test by making the motors 
stop when the touch sensor indicates a collision. Once this is tested and found to be working, the 
student could then add the reverse-and-turn-upon-collision code instead of simply stopping. This 
kind of incremental growth of the solution can be contrasted to coding all the pieces all at once 
and then testing. Imagine how unmanageable it can all become if the problem is more complex!

Collaboration and creativity
A couple of other elements, though not considered part of CT in earlier definitions of CT, are often 
described as common practices in computational problem-solving. These include collaboration 
and creativity. Both are acknowledged as critical competencies for a new century, but they do also 
have a special meaning as CT practices and in the world of computer science. Collaboration is 
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often fostered in K–12 computing classrooms through ‘pair programming’ (Williams and Kesseler, 
2002) – a practice that is increasingly popular in industry. The norms of collaboration in pair 
programming require programmers to alternate between taking the lead on typing or reviewing 
code and have been shown to be beneficial to problem-solving processes. There are other forms 
of collaboration that are unique to CS. The division of development tasks in software engineering 
is necessitated by CT practices such as problem decomposition and modularization. Parallel 
computing has also led to the division of computing tasks and is at the heart of globally important 
programming paradigms such as MapReduce, which has been used for many years at Google. 
Other interesting forms of collaboration in the world of CS include the use of GitHub to build on 
one another’s work in projects, crowdsourcing computer games to advance a scientific agenda (as 
in FoldIt and Xylem) and collaborative software development as part of the free and open-source 
movement that led to the creation of Linux and other systems.

Creativity as a CT practice acts on two levels – it aims to encourage out-of-the-box thinking and 
alternative approaches to solving problems, and it aims to encourage the creation of computational 
artefacts as a form of creative expression. Block-based ‘open-ended’ introductory programming 
environments such as Scratch, Alice and App Inventor have been developed with the goal of 
teaching creative coding and motivating learners as a conduit for teaching CT, especially in K–12 
settings.

Fostering CT in the classroom and CT across subjects

Example: Logical thinking in the language arts 
classroom
Here is a simple problem involving logical thinking described in Grover (2009), 
an early ISTE article on CT ideas for teachers:

 ● If the Giants beat the Dodgers, then the Giants win the pennant.
 ● If PlayerX is out, then the Giants beat the Dodgers.
 ● PlayerX is out.

What is the conclusion?

Example: Logical thinking in the mathematics 
classroom
In a game, exactly six inverted cups stand side by side in a straight line. Each 
has exactly one ball hidden under it. The cups are numbered consecutively 1 to 6. Each 
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of the balls is painted a single solid colour. The colours of the balls are green, magenta, 
orange, purple, red and yellow. The balls have been hidden under the cups in a manner that 
conforms to the following conditions:

 ● The purple ball must be hidden under a lower-numbered cup than the orange ball.
 ● The red ball must be hidden under a cup immediately adjacent to the cup under 

which the magenta ball is hidden.
 ● The green ball must be hidden under cup 5.

Which of the following could be the colours of the balls under the cups, in order from 1 
through 6?

 (A) Green, yellow, magenta, red, purple, orange
 (B) Magenta, green, purple, red, orange, yellow
 (C) Magenta, red, purple, yellow, green, orange
 (D) Orange, yellow, red, magenta, green, purple
 (E) Red, purple, magenta, yellow, green, orange

Currently, computational and algorithmic thinking problems such as these are found mostly 
in competitions such as the Enigma Computational and Algorithmic Thinking contest run by 
Edfinity along with the Australian Math Trust and Bebras, but there is no doubt that students 
would be well-served by tackling such non-programming puzzles and problems as part of CT 
competency building. There are several ways of encouraging algorithmic thinking practices in 
learners that involve articulating precise step-by-step procedures – storyboards, an ordered set of 
sentences, pseudo-codes, flowcharts and the like. Even in the context of programming, expressing 
an algorithm in such ways before coding it into a programming language to be executed by a 
computer is a well-established and recommended practice. One fun exercise used in the context 
of robotics involves writing a set of detailed steps in plain English to verbally guide a blindfolded 
student partner to perform a certain task. Ideas of exception handling, iterations and conditional 
actions could be woven into this fun exercise.

To learners, practising these CT concepts and approaches in contexts outside programming 
signals the importance of the CT and problem-solving process rather than simply codifying the 
solution in the syntax of a programming language. Grover, Pea and Cooper (2015) describe an 
example of a curriculum focusing on deeper, transferable learning of algorithmic thinking skills 
using a pedagogy that incorporates various pedagogical ideas from the learning sciences, in 
addition to assessments that cover cognitive as well as affective dimensions of deeper learning.

5.6 CT within and across subjects
It is reasonable to argue that it is in all the contexts outside of CS classrooms that CT truly shines 
with its generativity. From music, maths, social studies, history, language arts and throughout the 
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sciences and engineering, curricular ideas can come alive with CT. Just as in disciplinary research 
in each of these fields, where CT advances both everyday practice and its innovations, there is a role 
for creativity in curriculum design and teaching of other subjects through the integration of CT in 
those classrooms, while also providing rich and varied contexts for developing CT competencies.

Bringing CT into STEM classrooms will also better prepare students for the modern landscape 
of the STEM disciplines. Efforts to bridge CT and STEM in K–12 science have centred mostly on 
building computational models and simulations to understand and study phenomena in science 
(e.g. Hansen et al., 2015; Hutchins et al., 2020; Sengupta et al., 2013; Wilensky, Brady and Horn, 
2014) and have shown much promise. Grover, Fisler et al. (2020) and Grover, Sengupta, et al. (2020) 
provide excellent and varied examples of STEM and CT integration. Growing the knowledge base 
on how best to effect the integration of CT and STEM remains one of the imperatives for computing 
education research (Cooper et al., 2014; Lee et al., 2020).

The role of CT in non-STEM subjects, such as music, social sciences, visual arts, language arts 
and history, is manifold. Barr, Harrison and Conery (2011) and Grover (2018a, 2018b) outline 
examples of what this integration might look like, as does Google’s Exploring Computational 
Thinking. Examples of documented efforts for meaningfully integrating CT and non-STEM 
subjects can be seen in Settle et al. (2012) and Wolz et al. (2010), among others. Fablabs, making 
and computational crafts also open a whole world of possibilities of CT development in the 
context of art and craft that involves creating tangible computational artefacts. Leah Buechley’s 
five innovative tool designs including the Lilypad Arduino for e-textiles and ‘sketch’ electronics 
using microcontrollers and conductive ink have been found to reach audiences beyond those that 
robotics clubs and competitions typically attract. These tools have also supported equity-focused 
teaching of CS centring, ethno-computing and computational participation (Kafai et al., 2014)

Regardless of the domain, integration of CT into other subjects is often challenging for teachers 
and curriculum designers. Recent efforts have aimed to ease the process and lend coherence to CT 
integration efforts. Grover (2020) takes inspiration from Mishra and Koehler (2006)’s technological 
pedagogical content knowledge (TPCK) framework to integrate technology into subjects and 
builds on ideas from Malyn-Smith et al. (2018) to articulate ‘CTIntegration’, a framework that 
draws attention towards the intersections of CT/CS, the subject domain and pedagogical content 
knowledge (PCK). The framework serves as an aid for not only curriculum design and pedagogy 
but also teacher preparation.

Another framework called PRADA (an acronym for pattern recognition, abstraction, 
decomposition and algorithms) finds common ground between articulations of CT to propose a 
practical and understandable way of ‘introducing the core ideas of CT to non-computing teachers 
in order to support them in infusing CT into their curricula’ (Dong et al., 2019).

5.7 Summary
In a world infused with computing, CT is now being recognized as a foundational competency 
for being an informed citizen and being successful in all STEM work and one that also bears the 
potential as a means for creative problem-solving and innovating in all other disciplines. The roots 

 



Computational Thinking 63

of CT in education date back to Papert’s work in the 1980s that centred on children developing 
thinking skills through programming computers. Recent efforts on bringing CT to school 
education, while still inspired by that early work, have been informed by Wing’s 2006 definition 
and call to action. Definitions and elements of CT have been broadened in the past decade to 
include aspects of collaboration and creativity.

CT is defined as the set of the thinking skills used by computer scientists to address a broad 
range of problems in computing and other domains. Learning CT, much like learning scientific and 
mathematical thinking, is more about developing a set of problem-solving heuristics, approaches 
and ‘habits of mind’ than simply learning how to use a programming tool to create computational 
artefacts. That said, programming is a key vehicle for teaching, learning, expressing and assessing 
CT that is unarguably also deeply engaging for students in K–12 classrooms. Much like recent 
movements in science and maths that have adopted a practices view to STEM learning, the key 
elements of CT are broken down into concepts and practices. CT concepts are commonly believed 
to include logic and logical thinking, algorithms and algorithmic thinking, patterns and pattern 
recognition, abstraction and generalization, evaluation and automation, whereas CT practices 
include problem decomposition, creating computational artefacts, testing and debugging and 
iterative refinement (or incremental development). Collaboration and creativity, now seen as 
cross-cutting skills for the twenty-first-century learner, are also viewed as CT practices that often 
acquire a unique flavour in the context of CT.

It is reasonable to argue that it is in contexts outside of CS classrooms that CT truly shines 
with its generativity. As Denning (2017b) points out, CT emerged from within the scientific 
fields – it was not imported from computer science. Computing and STEM share a deeply symbiotic 
relationship, and as such, mathematics, science and engineering classrooms provide perhaps the 
most intuitive contexts for CT learning and use. Computational modelling and simulation are 
concrete mechanisms for integrating computing and STEM, and can benefit the learning of both 
the STEM content and the development of CT skills with such an emphasis (e.g. Honey and Hilton, 
2011). The role of CT in non-STEM subjects, such as music, social sciences, visual arts, language 
arts and history, is promising but as yet underdeveloped.

The thoughts and ideas reflected in this chapter present the current dominant framing of CT in 
the K–12 school education context. We adopt the disciplinary view of a thinking lens that is driving 
new ways of teaching and learning across all subjects. However, it is by no means the last word on 
this evolving topic in education and fertile field of enquiry in education research.

Key points
 ● Computational thinking (CT) is a key twenty-first-century skill that helps 

students to both understand and take advantage of computing in various 
domains.

 ● Learning CT is about learning to think like a computer scientist – developing a 
specific set of problem-solving skills that can be applied in any domain for creating 
solutions that can be executed by a ‘computer’ (machine or human).
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 ● Elements of CT include concepts such as logic, algorithms, abstraction, pattern 
recognition, evaluation and automation. It also includes practices such as problem 
decomposition, creating computational artefacts (usually through programming), 
testing and debugging, and iterative refinement. Collaboration and creativity are 
broader twenty-first-century competencies that take on a special flavour in the 
context of CT.

 ● Although programming is a key vehicle to teach and learn CT, it can be taught in the 
classroom with or without a computer or programming.

 ● Bringing CT into STEM classrooms will also better prepare students for the 
modern landscape of the STEM disciplines; computational modelling and creating 
simulations are concrete mechanisms for integrating computing and STEM.

 ● The role of CT in non-STEM subjects, such as music, social sciences, visual arts, 
language arts and history, is promising but still underdeveloped.

For further reflection
 ● Critics of the current movement to introduce CT warn against falling into 

the trap of assuming that CT will help learners build thinking skills that can 
be transferred to other domains. Both the critics and those who make the claim 
against and in support of transfer ignore something we learning scientists know 
well. Transfer of learning across contexts does not happen automatically. Pea’s own 
research in the 1980s showed that students who were programming in LOGO did 
not automatically do well in problem-solving situations in maths or in planning route 
scheduling. The learning sciences advocate that transfer needs to be mediated 
through empirically established techniques that call for, among others things, 
making explicit connections between the original and transfer learning contexts. For 
example, in past work, our classroom intervention included explicit mechanisms to 
mediate for and assessing transfer from block-based to text-based programming 
(Grover, Pea and Cooper, 2014). Have you seen any evidence in your own practice 
of the transfer of CT skills?

 ● Denning (2017a, 2017b) urges the CS/CT movement in K–12 education not to lose 
sight of the fact that CT emerged from within the scientific fields – it was not 
imported from computer science. Indeed, computer scientists were slow to join the 
movement. He goes on to argue that to use CT productively in science domains, 
one also needs the ability to design computations. Computational design is a better 
term to design the skill set than CT. This view closely aligns CT to the domain of 
computational science. Do you think CT has a role beyond computational science?

 ● There are some who believe that CT, if broken down into elements as described 
and taught through unplugged or non-programming means, will be reduced 
to learning thinking skills that will not necessarily translate into the abilities 
necessary to create computational solutions and apply CT in various domains 
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as per the promise. In order to learn and apply CT, students need to be working 
with abstractions and thinking about general solutions along with other concepts 
such as patterns, logical and algorithmic thinking. Writing a cooking recipe alone, 
although an example of algorithmic thinking, is not going to translate into providing 
learners the ability to develop computational solutions at the level of rigour that 
K–12 educators of CT and CS aim for their students. Students must experience CT 
in various contexts (and subjects) and through various modes and tools (unplugged, 
digital and programming) over the course of their elementary and secondary school 
journey. Where do you think that CT links to the rest of the curriculum?
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Chapter outline

 6.1 Introduction: From rule-driven to data-driven computing
 6.2 Teaching machine learning at K–12 level: Pedagogical considerations
 6.3 What do we know this far about teaching ML in K–12?
 6.4 Examples of potential technologies for K–12 classroom
 6.5 Conclusions

Chapter synopsis
Since the 2000s, numerous practical applications of machine learning 
techniques have shown the potential of data-driven approaches in a large 
number of computing fields. The rapid diffusion of ML in apps, services and 
everyday gadgets has direct and significant implications on computing education at all 
levels. Since the mid-2010s, a quickly growing number of research and development 
initiatives have explored how to teach machine learning concepts also in K–12 computing 
education. However, as of now, the computing education research body of literature 
contains remarkably few studies of how people learn to train, test, improve and deploy 
machine learning systems. This is especially true of the K–12 curriculum space. This chapter 
explores challenges, opportunities and emerging trajectories in educational practice, theory 
and technology related to teaching machine learning in K–12 education.
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6.1 Introduction: From rule-driven to data-
driven computing
Data-driven society, artificial intelligence and so-called algorithms are nowadays no doubt known by 
most people following news, social media and public discussion. In the past ten years, the computing 
landscape has seen a major technological shift. Traditional programming and rule-based ‘good old-
fashioned artificial intelligence’, which have been the driving force of automation for the past seventy 
years, have been joined by a variety of data-driven machine learning techniques. The much-hyped ‘second 
machine age’ (Brynjolfsson and McAfee, 2014) is based on the ability of machine learning techniques to 
automate many tasks that traditional, rule-based programming struggles with. In many application areas, 
it has turned out that for large classes of problems it is much easier to collect data sets large enough for 
machine learning than to figure out the rules necessary for a rule-based program (Karpathy, 2017).

Many popular examples of the latest advances in automation are based on a combination of 
advanced computational AI methods and traditional programming. Examples include self-driving 
cars, face recognition (Taigman et al., 2014), computer-based identification of tumours (Esteva 
et al., 2017) and the game of Go, where a computer was programmed to learn completely on its 
own to achieve superhuman ability in the game (Silver et al., 2017). Success and failure stories 
of these new technological interventions – often based on user-generated data – get publicity 
easily in major news outlets, and development and strategic changes of tech giants relying on AI 
technologies, such as Google and Facebook, are of interest for billions of users.

What is not so often talked about in public, nor taught in schools, is how everyday people leave 
massive amounts of data traces behind when they are using these services and how data is treated 
and used to build and improve the AI services. Only recently, public audiences have been made 
aware of phenomena such as algorithm bias.

The rapid development of AI technologies and the role of intelligent technology in society are 
a driving force for an evident change also in computing education. Just as previous developments 
in computing have triggered changes in computing education, AI technologies such as machine 
learning are now acting as a catalyst for change throughout the education system both in K-12 and 
in higher education. The focus of computing education has shifted before, new shifts will come and 
it has been suggested that the next frontier in computer science education research is how to teach 
artificial intelligence (Druga, 2018; Shapiro, Fiebrink and Norvig, 2018; Shapiro and Fiebrink, 2019).

In this chapter, we explore pedagogical, practical and technological considerations of teaching 
machine learning (ML) especially at the K–12 education level.

6.2 Teaching machine learning at K–12 
level: Pedagogical considerations
In K–12 education, most AI-related initiatives have historically been concerned with (1) AI-
based tools to support learning, (2) AI-based tools for studying learning processes and (3) AI 
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to support school administrative functions (Holmes, Bialik and Fadel, 2019). Adaptive learning 
environments, pedagogic agents, automated governance, intelligent tutoring systems and many 
other similar research programs have attempted to model elements of the learning situation – such 
as the learner, pedagogy, subject matter, context of learning and learning objects – in ways amenable 
to automation (Andriessen and Sandberg, 1999; Holmes, Fadel and Bialik, 2019; Williamson and 
Eynon, 2020). As technology and educational paradigms have changed, so have views about the 
merger between AI and education (Andriessen and Sandberg, 1999).

Machine learning can be considered as a subset of artificial intelligence methods, and the 
field can be divided roughly into two different categories. First, supervised learning engages 
domain experts or even end users of a system to train, let’s say, an image recognition tool, with 
predefined samples. Training of the system is continued until the desired level of accuracy in 
the model is reached. Then, the model is implemented as part of a system and released to the 
end users. When using the second type of ML methods, unsupervised learning, an intelligent 
system learns important aspects of the model by itself, that is, without users’ intervention. 
Unsupervised learning is used often, for example, in clustering problems, such as customer 
segmentation, and in different kinds of recommendation systems. No matter if supervised or 
unsupervised machine learning is used in school education, the needed pedagogy comes with 
new considerations when compared to traditional, rule-based programming or computational 
thinking education.

Traditional rule-based programming drives learners to find a solution and program an artefact 
which produces a correct result with all inputs. Shapiro, Fiebrink and Norvig (2018) define the 
traditional view of the core of computing as a collection of human-comprehensible, deterministic 
algorithms that can be verified. They envision two shifts away from this in the near future. They 
observe that machine learning models are not human-readable algorithms but opaque composites 
of millions of parameters. ML models are not amenable to verification efforts; however, their 
effectiveness can be statistically established. They further note that nearly all literature on computing 
education research targets rule-driven programming and, consequently, call for a major shift in the 
focus of computing education research to study how people learn and reason about ML systems 
(Shapiro, Fiebrink and Norvig, 2018; Shapiro and Fiebrink, 2019).

This paradigm shift from rule-driven programming to data-driven approach enforces teachers 
and learners to adopt new kinds of thinking. First, the ML process is almost always opaque at least in 
some parts. While the training process and the result – trained ML model – are open for inspection 
and learners’ manipulation, the actual learning process where training data is provided to ML 
algorithms takes place in a black box, perhaps with some parameters available for end users to play 
with. Second, while the end results, such as an image recognition model, might work with most of 
the examples and new images presented to the system, the model might fail with obvious correct 
cases (false negative) or, in turn, recognize images wrong (false positive). When teaching ML in 
K–12, an important aspect to take into account is that the outcome is not any more deterministic, 
even verifiable algorithm that works correctly with all cases in its input space. Instead, students 
need to learn that they have succeeded with their project when the result is approximately good 
enough. Acceptability is no longer a binary choice; it is a degree of confidence (Tedre, Denning and 
Toivonen, 2021).
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Key concepts
 ● Amount and quality of data matter the most in machine learning.
 ● Supervised and unsupervised learning are two main categories of machine 

learning.
 ● Supervised learning methods use training set (a representative sample of 

data to be learnt) to construct a model.
 ● Unsupervised learning methods derive meaningful patterns, such as clusters, from 

data without predefined samples.
 ● Accuracy and ‘goodness’ of the model are up to discretion by the end user – often 

it is enough that the model works ‘well enough’.

6.3 What do we know this far about teaching 
ML in K–12?
The past few years have seen a quickly growing number of initiatives for integrating AI/ML topics in 
K–12 education (Tedre et al., 2021). Researchers have proposed curricular extensions (e.g. Evangelista, 
Blesio and Benatti, 2018; Sperling and Lickerman, 2012), frameworks for AI/ML literacy (e.g. Touretzky 
et al., 2019) and ethics (Ali et al., 2019; Heintz and Roos, 2021), pedagogical perspectives (Ali et al., 
2019; Vartiainen et al., 2021), MOOCs (Heintz and Roos, 2021) and teacher training. Altogether, 
these initiatives in the K–12 context are driven by the call to provide students and teachers with the 
knowledge and skills needed for active agency and citizenship in a datafied world (Tedre et al., 2021).

However, building such an agenda is not straightforward, nor does it take place overnight. 
Traditional programming and computational thinking have been taught at schools over decades by 
now, but it is only during the past ten years or even less when these topics have become mainstream 
and a recognized part of curricula around the world. Machine learning and AI education in K-12 
level is much less studied; reports from teaching experiments, tools and pedagogical solutions have 
started to appear only recently in the body of research literature. The researchers’ and practitioners’ 
community is still in the process of identifying, amongst other issues, (a) what to teach when 
talking about K-12 AI education, (b) how to teach the needed skills, (c) which tools to use to teach 
and (d) how to make teaching appropriate for different age groups.

6.4 Examples of potential technologies for K–12 
classroom
Today, as ML-based applications have become a common part of children’s everyday life, ranging 
from smart toys to music streaming services, attention has turned to how to teach some ML 
principles to children (Touretzky et al. 2019; Wong, 2020). Many modern programming languages 
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nowadays offer functionalities, libraries or add-on front ends to build and train ML models without 
exposing the underlying operations and the architecture of ML solutions to the users. Languages 
such as Python, R and MATLAB have been used in practical and theoretical courses on ML 
education in tertiary education. The trend in ML education is towards increasingly sophisticated 
tools for enabling practical hands-on experiences for students.

To render ML accessible and democratize the access to these technologies, the sophisticated underlying 
model and details of its internal implementation have been buried under layers of abstraction. Due to 
the complexity of many ML algorithms and the black box nature of ML’s predictive models, theoretical 
and practical ML education use a broad spectrum of tools to soften the learning curve for state-of-the-
art ML solutions. For instance, some projects have used various sets of scripting and notation languages 
to scaffold the black-boxed parts of the predictive models (Jormanainen and Sutinen, 2012, 2014). Other 
projects have used mobile robots to introduce the concepts of artificial neural networks (ANNs) and 
selected ML paradigms, such as reinforcement learning (Toivonen and Jormanainen, 2016; Toivonen, 
Jormanainen and Tukiainen, 2017). The aim of these tools is to transform a theoretical subject into a 
tangible, practical and explicit representation of the predictive models.

However, the tools and pedagogical approaches appropriate to each age group, learning context 
and educational objective are very different, and the spectrum of challenges and aims of ML 
education initiatives reflects these differences. ML education initiatives in K–12 are of many kinds, 
and often in addition to ML, concepts and skills also involve learning about fundamental principles 
of time and place, understanding and being able to manipulate materials and constructions 
(physical artefacts) as well as being able to place such artefacts into a broader historical perspective. 
A large number of initiatives focusing not only on ML education tools but also on pedagogical and 
curricular perspectives have emerged in the context of K–12 education to fill the need to teach 
middle-school children some basic ML concepts (Tedre et al., 2021).

These tools can provide suitable scaffolding for learners to understand the black-boxed nature 
of ML models. As it has been illustrated by Toivonen et al. (2020), the currently available ML 
tools can be used successfully in a co-design project with schoolchildren. We will present next the 
workflow of an image recognition project as well as the tools that can be used in it.

First step: Learning basics of image recognition with 
‘!BB’ tool
A common machine learning task is image recognition. In order to show the students that recognition 
does not happen by ‘magic’, the whole supervised machine learning process needs to be opened or glass-
boxed (Toivonen, Jormanainen and Tukiainen, 2019). Essentially, image recognition of 2D images is 
based on extracting meaningful features from image pixel information. This information may include, 
for example, colour information of a pixel in RGB colour or greyscale space, pixel’s relation to adjacent 
pixels, features of collections of pixels in the image and so on. When learning the content of an image 
set, machine learning algorithms read image information and extract these useful patterns from data.

Pattern recognition and image analysis are complex subjects as such, and they are not usually 
taught at K–12 level. To demonstrate an ML-based image recognition tool and image feature 
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extraction, we have built a simple web-based application (Figure 6.1) which can be used to teach 
basic machine learning concepts (image recognition, supervised learning, training data, feature, 
classifying, accuracy) to schoolchildren. We have shown (Mariescu-Istodor and Jormanainen, 
2019) that it is possible to introduce and develop a machine learning method for object recognition 
by using knowledge that high school students attain during their normal mathematics and 
computing classes.

!BB (‘not black-box’) machine learning application (!BB, n.d.; Mariescu-Istodor and Jormanainen, 
2019) uses the computer’s webcam for capturing image data at live speed and classifies each frame 
using a simple feature-based classifier. The interface is simple, consisting of four views:

 1. A small video screen of the webcam feed (Figure 6.1A);
 2. The current frame as the model sees it (showing aspect ratio and fullness properties) 

(Figure 6.1B);
 3. All currently labelled images on a 2D feature space (Figure 6.1C); and
 4. A complete list of labels of currently trained classes. In addition, under view A, a small label 

shows the classification result for the current webcam frame and under view D, a small text 
box and a ‘Learn’ button that enables adding the current webcam image to the training set. The 
2D diagram (Figure 6.1C) shows the properties of the current frame (giraffe in Figure 6.1A) 
with a black circle. As it can be seen in Figure 6.1C, the current giraffe frame is not in the 
training set (the circle is not on top of any of the trained samples), but it is close enough for 
other giraffe samples depicted in orange colour to be recognized as a giraffe.

An example use case of this tool could be to ask children to find sample images of the pre-
trained classes and try if the tool recognizes the picture correctly. If this does not happen, it can be 
elaborated why the recognition failed. Another successfully used approach (Mariescu-Istodor and 
Jormanainen, 2019; Toivonen et al., 2022) is to ask children to draw, for example, animals that have 
been included in the training set. Often children’s first drawings are not successfully recognized, as 
the artwork does not have the sufficient properties.

For instance, after finding out that a line drawing of an elephant has very low fullness (and, 
therefore, is easily misclassified), learners would improve their picture by colouring the elephant 
to improve the classification accuracy. They would make too skinny elephants wider to change 
the bounding box size (and to make them more elephant-like). They would draw giraffes tall and 
skinny-legged to affect the aspect ratio and fullness. This helps the children to understand the 
principles of image recognition and engages them easily in a collaborative problem-solving process 
when they are trying to improve the drawings.

The !BB tool presents an oversimplified model for the image classification task and uses only 
two properties of an image (aspect ratio and fullness). In the case of real-life image recognition 
applications, however, models are much more complex and feature spaces are hyperdimensional. 
This creates a problem in educational contexts, especially when learners do not have previous 
background in advanced computing or AI methods as it is almost always the case in K–12. 
Visualizing feature spaces beyond three dimensions can be considered, in general, a difficult 
task (Samek et al., 2017). Efficient image recognition tools are in many cases based on ANNs, 
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but visualizing internal structure or state of an ANN in a novice-friendly way is also difficult, 
and ANNs are known to be hard to trace. Nevertheless, tools such as Google Teachable Machine 
(GTM) provide an easy way for scaffolding after the basics of image recognition have been taught, 
for instance, with the !BB learning environment.

Second step: Widening the landscape in ML-based image recognition with GTM (n.d.) provides 
a web-based user interface for classifying images, sounds or human body poses. The system runs 
in a standard web browser and does not need any software or hardware add-ons, except for a 
web camera and microphone that are usually available in laptop and desktop computers. In the 
following use case description, we focus on the image recognition feature of GTM (Figure 6.2).

GTM allows users to upload image samples from their own computer or to use the computer’s 
webcam to record training samples for different image classes. After sufficient training sets have been 

Figure 6.1 User interface of !BB image classification application
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created for the desired image classes, the users start the training process of the classifier. In contrast to 
!BB, the training takes place in a black box, and the users can only observe the progress of the process 
and see the final model. Users can adjust ML model training properties, such as epochs (how many 
times data samples are fed through the training model), batch size and learning rate and see key 
indicators of how successful the training process was, such as accuracy results and confusion matrix.

After the model is created, the students can use it with image samples that are not included in the 
training set to justify the quality of the end result. If the model, for some reason, fails to produce the 
desired classification result, the students need to improve the training sets and train the model again. 
This iterative process of model creation is an essential aspect when teaching how data-driven and 
intelligent systems work. There are several ways to leverage this process in a pedagogically meaningful 
way. The students can, for instance, consider if their training data has been enough or of good quality, 
which aspects in the training set might make the model to fail, how they could improve training data 
and so on. This helps them to understand what is important when working with AI and data-driven 
applications: It is not any more important to formulate explicit rules to control a program’s behaviour. 
Instead, data quality, coherence and human agents’ (students in the context of this chapter) decisions 
about ‘goodness’ of the model make the application work (so-called human-in-the-loop ML system; 
Xin et al., 2018; Toivonen, Jormanainen and Tukiainen, 2019; Toivonen and Tukiainen, 2021).

When the training process is completed and when the students are happy with the resulting classifier 
model (i.e. the accuracy of the model is at a desired level), the model can be exported from GTM and 
implemented as a part of a web or mobile application. As a promising feature of GTM, it is possible 
to prepare the model also for embedded systems running with low-power low-cost microcontrollers, 

Figure 6.2 Google Teachable Machine project classifying students’ animal artwork
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such as Arduino Nano 33 BLE with an embeddable camera module, such as OV7670. This opens new 
possibilities for integrating ML and AI education with arts, crafts and STEAM education.

6.5 Conclusions
Artificial intelligence changes our society in unforeseen ways. People are using more and more 
online services for work and pleasure, and a constantly growing amount of data is collected from 
individuals. This development also challenges the educational system to adapt to the needs of 
datafication and prepare students with new kinds of skills. Computing education is at the core of 
the paradigm shift, when rule-driven information systems are transformed to data-driven ones, 
where the users need to possess completely different kinds of skill sets.

School teachers are already struggling with the recent wave of integrating computational thinking 
into school curricula. Computing, computational thinking or programming is restricted to a rather 
limited number of classroom hours in national curricula or have been more or less successfully 
‘integrated’ into other subjects. Despite the challenges, there is a clear need for understanding how 
ML-based and data-driven systems in people’s everyday lives work.

More research and practice are needed for pedagogical models, skill progression schemes, 
appropriate educational technology, ethical dilemmas, domain integration and all other elements 
of education. Bottom-up collaboration between researchers, developers and teachers in the field is 
essential to understand better the bottlenecks of K–12 machine learning education and to provide 
relevant computing education for citizens of ever-changing datafied society.

Key points
 ● AI and machine learning education have an increasingly important role also 

in K–12 education.
 ● A good selection of tools and learning environments is available for machine 

learning education for different learning and teaching needs.
 ● Research on pedagogical impact, ethical aspects and curricular issues associated 

with K–12 machine learning education is not yet well established.

For further reflection
 ● Do you know what type of data, and how much, social media services 

collect from you when you are using them?
 ● What happens if you provide a classification model with more training samples? 

Can you reach the point where the classifier recognizes only very similar samples to 
the training set?

 

 



Computer Science Education78

 ● Can you ‘cheat’ a trained classification model, for example a face recognition 
system? What features seem to be the most dominant in image recognition?

 ● What AI and machine learning developers should do to reduce and avoid 
algorithm bias?

 ● In your opinion, what are the most important aspects on fair and ethical use of AI 
services in everyday life?
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7
Introduction to Part 2

Nicol R. Howard

Computer science (CS) impacts just about every facet of society, and its influence on varying fields 
has increased efforts to make CS educational opportunities accessible to all learners. Movements 
such as Computer Science for All (CS for ALL) have helped to expand course offerings in upper 
grades and influence increased levels of CS integration in classrooms with young learners. Efforts to 
engage all learners in CS have evolved for various reasons from the hope to broaden participation 
to increasing job opportunities and high wages associated with the field. Yet inequities persist in 
CS education policies, practices and classroom environments.

Greater awareness of the inequities in CS education has resulted in research and practice focused 
on justice-oriented approaches to preparing learners and transforming learning environments. 
More specifically, researchers and practitioners have increased their efforts to better understand 
how to strengthen CS experiences for minoritized learners (i.e. racialized, gendered, multilingual, 
identifying as having a dis/ability) to ensure sustainable and inclusive CS learning environments 
that consider the intersectional identities and needs of all learners. In different areas of the world, 
the terms used to describe these various efforts and the communities they serve to benefit may 
differ (e.g. minoritized in the United States, diversity in the UK); however, the collective goal is 
to ensure equity. The authors of the chapters in this section invite readers to reflect on the issues 
of diversity, equity, inclusion and justice in their own geographical contexts and how these may 
influence broader sociopolitical considerations.

The chapters in this section were written by educators and researchers who focus their work on 
justice-oriented and equity-centred CS education for all. Their work calls for reducing inequities 
and transforming CS learning and environments into more inclusive experiences that integrate 
knowledges that centre students’ identities and communities. Both technological, as well as 
pedagogical issues, and manifold implications for making CS opportunities accessible for all 
learners will be presented by the authors of the chapters in this section.

The section begins with ‘Equity and Inclusion in Computer Science Education: Research on 
Challenges and Opportunities’ by Jill Denner and Shannon Campe. Their chapter begins by 
outlining existing research on equity and inclusion in computer science education. We learn about 
the various factors that limit representation in CS education and why it is important to purposefully 

 

 



Computer Science Education84

address equity and inclusion. Denner and Campe present opportunities for increasing diversity 
and offer five different types of strategies that teachers can use to support equity and inclusion in 
CS classrooms.

Tia C. Madkins and I examined the ways in which educators can facilitate justice-oriented 
learning practices in ‘Engaging Culturally Relevant and Responsive Pedagogies in Computer 
Science Classrooms’. In this chapter, we provide a general understanding of the current state of 
the field related to CS education and advocate for using equity pedagogies (e.g. culturally relevant 
pedagogy, culturally relevant computing) through a justice-oriented lens. We offer practical 
examples and guidance on how to use equity-centred pedagogies. Our belief that educators and 
researchers need to understand what it means to use a justice-oriented equity lens in CS teaching 
and learning informs the recommendations we offer on how to engage equity pedagogies in CS 
classrooms.

In ‘Increasing Access, Participation and Inclusion within K–12 CS Education through Universal 
Design for Learning and High Leverage Practices’, Maya Israel, Latoya Chandler, Alexis Cobo and 
Lauren Weisberg aim to answer ‘what do we mean by Computer Science for All?’ and ‘how can we 
plan CS in a manner that proactively includes all learners?’ We learn how transforming inclusive 
CS education relies on supporting teachers with their understanding of the intersectional identities 
of students. The authors offer strategies for including all learners in CS education through the use 
of inclusive practices, such as Universal Design for Learning (UDL) and High Leverage Practices 
(HLPs), as well as on the intersection of UDL with culturally responsive and sustaining pedagogies.
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8
Equity and Inclusion in Computer 

Science Education: Research on 
Challenges and Opportunities

Jill Denner and Shannon Campe

Chapter outline

 8.1 Introduction: Setting the stage
 8.2 Why are certain groups under-represented in computing?
 8.3 Opportunities for change
 8.4 Conclusion
 8.5 Recommendations

Chapter synopsis
This chapter introduces research on equity and inclusion in computer science 
education. Topics include why it is important to intentionally address equity and 
inclusion in computer science education, the factors that limit representation, 
opportunities for increasing diversity according to theoretical perspectives and empirical 
research and five different types of strategies that teachers can use to support equity and 
inclusion in computer science classes.
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8.1 Introduction: Setting the stage
Enthusiasm for computer science (CS) education in K–12 is growing worldwide, but not all 
students are participating equally. Groups that are under-represented include females, students 
with learning differences/disabilities and, depending on the country, students from certain racial 
or ethnic minority groups. This chapter describes strategies that teachers can use to increase equity 
and inclusion and help to address these gaps.

Globally, when conversations turn to equity and inclusion in CS education, the focus is usually 
on gender. This is because in most countries men outnumber women in computing fields. There 
are only six countries where women make up more than 30 per cent of tertiary graduates in 
information and communication technologies: Canada, Estonia, India, Indonesia, Turkey and 
Mexico (Huyer 2019). Among the bachelor’s degrees awarded in computer and information 
science in 2017–18 in the United States, only 20% were awarded to women (National Center 
for Education Statistics, 2019) and only 18 per cent of students enrolled in CS in the UK in 
2018/19 were female (HESA, 2020). However, there is gender parity in some countries, such as 
in enrolment in CS studies in Saudi Arabia and in the IT workforce in Malaysia (Frieze and 
Quesenberry, 2019).

Data on the participation of students across racial and ethnic groups is available primarily in the 
United States and shows persistent gaps. In CS undergraduate programs in the United States, Black 
and Hispanic/Latinx students are under-represented in enrolment and have lower rates of retention 
and degree completion compared to white and Asian students (Duran et al., 2021; Zweben, 2019). 
And while recent years have shown an increase in the number of Native American/Alaskan, Black, 
Hispanic/Latinx and Native Hawaiian/Pacific Island students taking AP CS Principles tests, there 
has been a decline in participation among the latter three groups in taking AP CS A tests (Code.
org, 2021), and pass rates continue to be much lower among Black and Hispanic students than 
among white and Asian students (Ericson 2021).

These findings do not capture the variation within racial categories, so an intersectional lens 
is needed to understand inequities in computing education (Warner et al., 2021). While fewer 
than half of Black and Hispanic students (46 per cent each) and 52 per cent of white students say 
their schools offer dedicated CS classes, access is the lowest among rural students and those from 
low-income households (Gallup, 2021). Rather than focusing on demographic categories, it may 
be more useful to consider how social identities expose people to overlapping and interdependent 
systems of discrimination or disadvantage (Charleston et al., 2014; Kvasny, Trauth and Morgan, 
2009). Included in this lens needs to be whether a student has a disability or learning difference.

In the United States, 15 per cent of K–12 students have a disability; the most common are in 
areas of learning, speech and language, health impairments, developmental delay and emotional 
disturbance (Ladner and Israel, 2016). Although grouped under the umbrella of disabilities and 
learning differences, many of these students do not have an intellectual disability and bring an 
ability to approach and solve complex problems in innovative ways that may be particularly 
beneficial for learning CS (Wille, Century and Pike, 2017). However, there has been limited 
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attention to the creation of inclusive learning environments for students with disabilities (Stefik 
et al., 2019).

To address these gaps, there is a growing movement to integrate CS into schools, where it has 
the potential to reach all students. In countries like Russia, there has been a system for teaching 
CS in schools since 1985 (Khenner and Semakin, 2014). And in the UK, government officials have 
begun to publicly support CS education efforts (Brown et al., 2014). However, these efforts have 
met resistance. For example, a nationwide effort to integrate CS into the schools in New Zealand 
required public media campaigns to address concerns about what it was replacing (Bell, Andreae 
and Robins, 2014). In India, while the majority of students feel that CS should be a compulsory 
subject, over half of the teachers do not agree (Raman et al., 2015). And in Switzerland, most pre-
service teachers agreed that a new mandatory CS education class was important, but the women 
were less interested in learning CS and more likely to view it as hard or boring (Repenning et al., 
2019). While most parents in the United States want their children’s schools to offer CS (Google 
Inc. and Gallup Inc., 2015) and most Americans believe that it is as important to learn CS as it is 
to learn reading, writing and mathematics (Horizon Media, 2015), integration across states and 
school districts varies greatly.

Despite the growing movement to offer CS to K–12 and Key Stage 1–5 students worldwide, the 
focus is squarely on access, not on equity. But K–12 and Key Stage 1–5 CS education will only lead 
to more diverse classes, majors and ultimately the workforce when it is equitable and inclusive. The 
Capacity for, Access to, Participation in, and Experience (CAPE) framework developed by Fletcher 
and Warner (2021) shows how equity can become an intentional part of the educational ecosystem 
starting with building the capacity of districts and teachers to offer inclusive instruction. Thus, 
CS teachers must understand the content as well as diversity issues and pedagogical strategies for 
inclusive CS education (Delyser et al., 2018). However, less than 60 per cent of CS teachers in the 
United States feel prepared to address equity in the classroom; that number is lower among white 
and elementary school teachers (Koshy, et al., 2021). This chapter provides a resource for teachers 
to increase diversity and equity at all grade levels in CS education by creating inclusive learning 
experiences and institutions.

Key concepts
Diversity refers to the representation of different kinds of individuals in 
computer science, across languages, learning styles and other differences as 
well as a range of social or cultural groups (across race, ethnicity, class, gender, 
sexual orientation, dis/ability status, etc.).

Inclusion involves an active and intentional engagement with diversity such that a range 
of individuals are able to fully participate in computer science education.

Equity requires the creation of opportunities for historically under-represented 
populations to have equal access and participate in computer science education; it requires 
an asset-based approach and an understanding of why disparities exist.
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8.2 Why are certain groups under-represented 
in computing?
There are a range of factors that perpetuate inequities in computing. Most efforts focus on 
individual-level factors, but there is increasing attention to the role of relational and institutional 
factors (Denner, Martinez and Thiry, 2016). Key research and theory on the role these factors play 
in equity in CS education are summarized below.

Individual factors
Expectancy-value theory describes the role of students’ belief systems in their educational choices, 
including their expectations for success and the extent to which they value a field like computing 
(Eccles, Wigfield and Schiefele 1998). For example, a student’s confidence and perceptions of their 
mathematics and problem-solving abilities affect their decisions about whether or not to pursue 
computing (Hong et al., 2015). Among girls, decisions to pursue computer science are influenced 
by their interest in mathematics, problem solving, creativity and design as well as their curiosity 
about how technology works (Cooper and Heaverlo, 2013; Denner, 2011). Girls’ interest is also 
influenced by the extent to which they think positively about CS and related careers and see their 
potential for social impact (Hong et al., 2015). While interest and confidence can initially motivate 
students to seek out opportunities to learn computing, relational support and institutional 
opportunities are needed to sustain that interest.

Relational factors
Expectancy-value theory also suggests that achievement goals are influenced by culturally based 
beliefs and by expectations of teachers and other influential adults (Eccles, 2007). For example, 
in Malaysia the lack of a gender gap is likely due to the cultural norm that computing is not a 
masculine field (Othman and Latih, 2006) and to girls being encouraged and given access at 
an early age (Sien et al., 2014). In the United States, disinterest in computing fields is partially a 
result of negative stereotypes that students from some groups are less interested in CS (Master, 
Meltzoff and Cheryan, 2021) or less likely to be successful – a belief held by parents, teachers and 
administrators (Google Inc. and Gallup Inc., 2015; Margolis et al., 2008). These beliefs result in less 
encouragement of female students to pursue STEM or CS (Google and Gallup, 2016; Muenks et al., 
2020). Similarly, misperceptions about the intellectual capacity of students with disabilities can 
limit what educators expect of them (Ladner and Israel, 2016). These stereotype-based messages 
sent by adults are often small, subtle and cumulative in nature and result in lower self-concept and 
expectations for success in computing fields (Else-Quest, Mineo and Higgins, 2013). While high 
expectations and encouragement can increase students’ interest in CS, they also need access to 
inclusive CS learning environments.
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Institutional factors
Institutional structures at multiple levels determine who has access to CS and what their experience 
is in the classroom. Country- and state-wide initiatives have resulted in increased access in 
countries like Israel, where extensive CS education in high school created more equal numbers 
of women and men taking the CS exam (Armoni and Gal-Ezer, 2014). But resources vary across 
schools and districts; in the United States, rural schools and schools that serve large numbers 
of low-income and Black, Latinx, Indigenous and Pacific Islander students have the fewest CS 
opportunities (Koshy et Al., 2021; Margolis et al., 2008). And students with disabilities cannot 
be fully included when there are no accessible tools, such as screen readers for visually impaired 
students (Ladner and Israel, 2016). How a classroom is decorated influences all students’ sense 
of belonging (Master, Cheryan and Meltzoff, 2016). There are growing efforts to institutionalize 
the use of racially just and inclusive strategies through ongoing training and support for teachers 
(Goode et al., 2021).

In summary, whether or not a person chooses to pursue and persist in a computing field is 
influenced by a multitude of factors that include personal beliefs, messages from other people 
and the environment and the extent to which the learning environment provides the necessary 
access, tools and scaffolds that a student needs to succeed both in and beyond the classroom.

8.3 Opportunities for change
In this section we describe a framework for the types of change mechanisms that can be used to 
address individual, relational and institutional factors that perpetuate a lack of diversity in CS 
education. It builds on Liben and Coyle’s (2014) taxonomy of intervention goals to address the 
gender gap in STEM that includes five change mechanisms based on theories and research on 
gender development. Table 8.1 outlines these change mechanisms by adapting the terms used by 
Liben and Coyle. Each one is described, along with intervention strategy examples, in the following 
sections.

Table 8.1 Five intervention change mechanisms for increasing representation in computer 
science

Change Mechanisms Definition

Remediate Fix individual qualities that are considered important for success in CS (e.g. 
increase confidence, boost skills)

Revise Modify pedagogy, tools and the environment so they better fit a diverse 
group of students

Refocus Highlight how a range of interests can be compatible with success in CS
Recategorize Shift thinking about certain identities being incompatible with CS
Resist Work to challenge stereotypes, biases and discriminatory practices
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Remediate
Strategies to promote this change mechanism focus on students’ skills and/or their beliefs about their 
abilities. In Russia, a nationwide curriculum was developed to increase computing knowledge (e.g. 
algorithmic thinking) starting in elementary school (Khenner and Semakin, 2014). And specific 
strategies, like teaching children to program computer games, have been used to increase students’ 
understanding of programming concepts and their problem-solving capacities with results replicated 
in countries as diverse as Turkey, Taiwan and the United States (Akcaoglu, 2013; Al-Bow et al., 2009; 
Wang and Chen, 2011). US-based studies find it is possible to increase students’ confidence, interest 
and skills in CS through positive reinforcement and encouragement from family, peers and other 
adults (Hong et al., 2015) as well as pair programming, where two students work side by side on one 
computer (Denner et al., 2014). A study of Scottish college students in an introductory programming 
class found that helping students develop performance attributions that focus on factors that they can 
change increased their growth mindset and test scores (Cutts et al., 2010). While efforts to ‘remediate’ 
individuals are incomplete without regard to the relational and institutional contexts of learning, 
changes in students’ beliefs and skills are commonly used to measure success.

Revise
These approaches focus on developing inclusive pedagogies and tools to make CS a better fit for a 
range of students. Effective CS pedagogy includes hands-on project-based learning that leverages 
prior experience, uses peer collaboration and shows how CS is relevant to students’ lives (Happe 
et al. 2021; Shaw, Fields, and Kafai 2020). Strategies for increasing the relevance include showing 
students how computer science can be used to address needs in their schools and communities 
(Denner et al. 2015; Cheryan et al. 2009). With the right supports and scaffolds in place, pair 
programming (see example activity) can be an effective collaborative strategy for supporting 
students with a range of confidence and experience in CS classrooms (Campe, Green, and Denner 
2019; Lewis 2011). The Universal Design for Learning (UDL) approach aims to accommodate a 
range of learning differences and includes inclusive pedagogical strategies, such as using a screen 
reader and offering activity-oriented tasks that allow the use of multiple senses to learn (Hansen 
et al. 2016; Ladner and Israel 2016; also see Chapter 10 by Israel et al.). Recent efforts have made 
popular US curriculum like CS Principles accessible for blind and visually impaired students and 
include training teachers in accessibility (Stefik et al., 2019).

Example: Using pair programming to promote 
equity and inclusion
Working with a partner while learning to program a computer can increase 
students’ engagement and learning when it is managed effectively. Start by asking students 
to choose two to three people they are willing to work with and use that information to 
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match them to a partner with similar prior experience and confidence. Build the pair’s 
communication and rapport through non-computer-based activities such as ‘Draw what 
I say’. Demonstrate what both effective and ineffective communication looks like through 
videos and role plays. Reinforce effective communication with public acknowledgments, 
such as ‘Pair of the Week’(Campe, Green and Denner 2019).

Refocus
This set of strategies aims to challenge stereotypes about the kind of skills or interests that are 
compatible with a career in computing. While views are changing, many young people still believe 
that computer scientists are men who work alone all day on a computer (Hansen et al., 2017). 
But showcasing creativity and design can be a good strategy for engaging students in computing. 
Programs like Digital Youth Divas teach girls to design everyday artefacts (jewellery, hair 
accessories, music) and include collaboration, critique, circuitry, coding and fabrication (Pinkard, 
Martin and Erete, 2020). Digital storytelling is often used as a mechanism for the designer to 
interpret and share the world around them and to highlight voices that may not be heard otherwise 
(Peppler et al., 2014; see Chapter 4 by Schulte et al. for examples of the interrelation between 
digital technology and everyday life and society). Workshops such as Skins incorporate digital 
design, animation and game programming that students use to modify digital games based on the 
traditional stories of their Native American community (LaPensée and Lewis, 2011). E-textiles 
combine computation and crafting with the use of fabric, conductive thread, circuits and lights to 
create artefacts for practical or artistic use and have been shown to increase interest in computing, 
especially for girls (Jayathirtha and Kafai, 2019). Media computation builds on students’ interest in 
sound, photography and video while introducing them to computing concepts and skills (Guzdial, 
2013). However, while media computation succeeds in changing how much students value 
computing and retains more students than traditional computing classes, it does not necessarily 
increase long-term participation in computing because it does not directly address relational or 
systematic factors (Guzdial, 2013).

Recategorize
Most strategies in this category aim to challenge stereotypes about who is good at (and who should 
pursue) computer science. For example, Craig (2014) describes an intervention in Australia, where 
the media and local speakers challenge stereotypes that CS is not for girls, raise awareness among 
teachers about CS careers and offer girls opportunities to shadow CS college students and attend 
a Girls in Computing day. In the United States, programs that connect Black and Latinx girls with 
same-sex role models and near-peer mentors challenge negative stereotypes about computer science 
careers and increase interest and intention to pursue these types of careers (Denner, Martinez and 
Thiry, 2016; Erete et al., 2021; Dasgupta, Scircle and Hunsinger, 2015).

 

 



Computer Science Education 92

A smaller number of programs send the message that computing is compatible with a range 
of cultures and identities. The TECHNOLOchicas campaign highlights the interests and needs 
of young Latinas through stories of Latinas studying or working in technology (Fernandez and 
Wilder, 2020). Additional strategies include integrating knowledge that is relevant to students’ 
identities and communities within activities that are designed to promote computational learning. 
These culturally responsive approaches go beyond tech literacy to centre culture, community 
and intersectional identities to explicitly challenge stereotypes about who belongs in computing 
(Scott, Sheridan and Clark, 2015) and also show the connection to more current cultural references 
(Eglash et al., 2013).

Resist
A justice-centred approach to computing advocates for addressing the systemic factors that 
perpetuate inequity in CS education (Lachney, Ryoo and Santo, 2021). This includes developing 
students’ critical consciousness about how institutionalized systems of power, bias and oppression 
perpetuate inequity in CS. Examples include fostering conversations about social justice, race 
and gender and creating opportunities for students to use CS to build solutions that address 
inequities in their school and community (Denner et al., 2015; Jenson, Dahya and Fisher, 2014; 
Scott and White, 2013; Vakil, 2014). Going beyond the classroom, Erete et al. (2021) use a 
transformative approach that involves knowing the institutional histories so as to not replicate 
injustice and involving families to challenge local policies that limit access. Madkins, Howard 
and Freed (2020) describe how teachers can use equity pedagogies and present a new framework 
that incorporates these elements and describes the steps that teachers can take to implement 
a culturally responsive-sustaining pedagogy in CS (Kapor Center, 2021; also see Chapter 9 by 
Madkins and Howard).

8.4 Conclusion
While an increasing number of studies have aimed to understand when and why students choose 
not to study CS, the focus has been largely on the gender gap. A recent global snapshot of CS 
education shows that one challenge to understanding equity and inclusion is the wide variation 
in the terms used and the learning outcomes targeted across countries (Hubwieser, Armoni and 
Giannakos, 2015). However, there remains a need for studies of racial/ethnic minority groups in 
countries besides the United States as well as studies that account for students’ multiple intersecting 
identities.

Liben and Coyle’s (2014) intervention types provide a useful framework for K–12 educators to 
be intentional in how they support equity and inclusion as they teach computer science. While it 
may not be possible to address all five mechanisms at once, it is important to recognize which are 
being prioritized and why for a given group of students. By organizing efforts using the framework, 
it will become more clear which strategies are not yet being addressed. Ultimately, it is important 
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to develop and test strategies for all five change mechanisms for the needed progress on increasing 
diversity in computer science to take place.

8.5 Recommendations
Most large-scale efforts begin by working to incorporate computer science into schools with a 
focus on building individual skills and competencies. In this chapter we advocate for incorporating 
relational and institutional goals early in the process. Teachers can use the framework to evaluate 
whether their strategies are inclusive, starting with looking at their own students and institutional 
context and assessing which parts of the framework are in need of more immediate attention and 
which parts they have already succeeded in addressing. Teachers can use the framework to advocate 
for resources, such as training in inclusive pedagogies and access to tools that are inclusive of 
different types of learners. They can also use the framework to identify gaps that can be filled by 
forming partnerships with colleges, industry or out-of-school programs. These actions can lead to 
more equitable opportunities and more inclusive learning environments.

Key points
 ● A focus on equity and inclusion is an important part of quality computer 

science education.
 ● The challenges to fostering an equitable and inclusive learning environment 

exist at the institutional, relational and individual levels.
 ● Five different types of change mechanisms can be used to address the lack of 

diversity in computer science: remediate, revise, refocus, recategorize and resist.
 ● The most common strategies focus on remediating individuals or revising the 

pedagogy or tools, and the least common strategy is helping students develop a 
critical consciousness in order to transform the structural issues that perpetuate the 
disparities.

 ● Efforts to incorporate CS into schools must go beyond individual goals to also 
address relational and institutional goals.

For further reflection
 ● For each of the five change mechanisms described in this chapter, list two 

to three activities that you could do with students.
 ● Considering the factors that prevent equity and inclusion in computer science 

education, reflect on which challenges would be the most amenable to change in 
your own classroom.
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Chapter outline

 9.1 Introduction: Advocating for equity in computer science education
 9.2 Why equity pedagogies in computer science education?
 9.3 Equity pedagogies: Guiding frameworks
 9.4 Equity pedagogies in practice
 9.5 Conclusion

Chapter synopsis
In this chapter, we provide a general understanding of the current state of the 
field related to computer science (CS) education and advocate for using equity 
pedagogies (e.g. culturally relevant pedagogy, culturally responsive computing) 
through a justice-oriented lens as an essential practice in CS classrooms. We believe that 
educators and researchers need to understand what it means to use a justice-oriented 
equity lens in CS teaching and learning and how to engage equity pedagogies in CS 
classrooms. As such, we provide an overview of a justice-oriented approach to CS education 
and offer guidance on the distinctions between commonly used equity pedagogies and 
how educators might use these teaching practices.
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9.1 Introduction: Advocating for equity in 
computer science education
Over the years there has been an increasing interest in Key Stage 1–5 (UK and similar systems) 
and K–12 (US) CS education as well as efforts to define its goals and questions about how best 
to reach them (Grover and Pea, 2013). Computer scientist Jeanette Wing’s (2006) call to action 
helped the discussion coalesce around an organizing principle: computational thinking (Caeli 
and Yadav, 2020; Papert, 1980 [1993]). Connecting this term to twenty-first-century challenges, 
Wing (2006: 35) argued that beyond just using computer programs or learning to code, the 
ability to ‘think like a computer scientist’ is an essential skill for all learners. These conversations 
spurred initiatives to assess and improve CS education. In a report sponsored by the Association 
for Computing Machinery (ACM) and the Computer Science Teachers Association (CSTA), 
Wilson and colleagues (2010) identified three gaps in CS education: a lack of cohesive standards, 
discrepancies between states and a gap in learners’ access and participation in CS courses by 
racialized, gendered and classed identities. Policymakers and organizations launched initiatives 
to address these gaps and to begin advocating for equity in CS. For example, in the United States, 
the Obama administration announced the Computer Science for All Initiative in January 2016, 
allocating 4 billion dollars to expand access to CS (Smith, 2016) and prompting the founding 
of the CS for All Consortium. Additionally, organizations like ACM, Code.org, CSTA and the 
International Society for Technology in Education (ISTE) developed standards and frameworks 
to define CS education, culminating in the K–12 Computer Science Framework, CSTA standards 
and ISTE standards.

Importantly, each set of the ISTE standards addresses equity related to learners’ access to 
learning opportunities and achievement in inclusive classroom cultures. For example, the ISTE 
Computational Thinking Competencies include an Equity Leader strand to provide a framework 
for goal setting for both teaching and learning. The Equity Leader strand explicitly calls for CS 
educators to counter stereotypes that exclude any learners from CS opportunities and sets the 
expectation that educators choose culturally relevant learning activities (ISTE, 2016/17). The CSTA 
Standards also include an Equity and Inclusion domain addressing a set of CS practices to support 
teachers in their equity-focused vision (CSTA, 2020).

Key concept: Minoritized learners Minoritized 
learners
Instead of using students of colour, we use the term minoritized learners in our 
research and practice (Madkins and Howard, 2021; Madkins and Morton, 2021). 
This term highlights the power dynamics and racial hierarchies influencing 
communities who are in the global majority (Lim, 2020) and remain minoritized in dominant 
narratives about these children (e.g. minority students, racial minorities). We also use the 

 



Engaging Culturally Relevant and Responsive Pedagogies 103

term learners in our research and practice, rather than students, to push back against 
traditional narratives about children using white, middle-class norms (Madkins and Howard, 
2021). This signals that all children are learning regardless of where they are – in or out of 
school (Madkins and Morton, 2021).

Equity
In education, equity is typically defined as equality (Gutiérrez, 2008), focusing on fairness 
and equal access to inputs, like resources (i.e. technology, textbooks, classroom spaces), 
advanced course offerings, highly qualified teachers and standards-based instruction. 
Others define equity as related to achievement by highlighting disparate achievement 
outcomes, like test scores or degree attainment (e.g. Obama CS for All Initiative; NAEP, 
2016). In contrast, scholars who have critical stances grounded in social justice define 
equity by acknowledging minoritized learners’ full humanity and viewing their cultural and 
linguistic practices as resources for learning rather than deficits (i.e. asset-based rather 
than deficit-oriented approaches). Working towards equity means supporting minoritized 
learners in the following: (1) engaging in meaningful and rigorous instruction; (2) grappling 
with and challenging systemic racism, power and oppression and (3) using CS knowledge 
to empower themselves and their communities. Thus, equity is defined as intentionally 
facilitating justice-oriented learning experiences for minoritized learners. This requires 
viewing teaching and learning as inseparable from pursuing justice while attending to 
learners’ access to rigorous instruction and equitable outcomes.

Justice-oriented equity lens
A justice-oriented approach requires three components: (1) prioritizing asset- or strengths-
based approaches that centre learners, families and communities; (2) using an equity lens 
that moves beyond access and achievement frames and instead centres social justice and 
(3) empowering learners to use CS knowledge for transformation. Ultimately, a justice-
oriented equity lens pushes educators to think beyond solving disparate outcomes related 
to achievement in CS and encourages the consideration of equity-focused teaching 
practices to support learners in dignity-cultivating learning experiences (Madkins and 
Howard, 2021).

9.2 Why equity pedagogies in computer  
science education?
Minoritized learners have historically been marginalized in classrooms and often experience 
gaps in access to rigorous learning opportunities (i.e. opportunity gaps; Williams, Carter 
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and Reardon, 2014). Educational research is rife with descriptions of minoritized learners’ 
disparate access to rigorous instruction and achievement outcomes (e.g. Chakrabarti, Carter 
and Kendi, 2019), especially in CS education. This includes learners’ access to technology, 
advanced course offerings and highly qualified teachers (CSforAll, 2020; Howard and Howard, 
2020; Madkins et al., 2019). There are several pedagogical approaches teachers might use to 
better support minoritized learners and decrease opportunity gaps, collectively known as 
equity pedagogies. These are asset-based teaching practices supporting minoritized learners’ 
outcomes and further developing their potential to become social change agents (Banks and 
Banks, 1995). Thus, using any equity pedagogy with fidelity requires teachers to simultaneously 
focus on content learning and critical consciousness development (i.e. one’s familiarity with, 
recognition of and desire to act upon inequities within a sociohistorical and sociopolitical 
context (Freire, [1970] 2005)).

Using equity pedagogies can support minoritized children’s learning outcomes (i.e. conceptual 
knowledge development, achievement and identity development) across all content areas, especially 
CS (Madkins et al., 2019). Though it can be difficult to connect CS course content to social justice 
issues, educators with justice-oriented approaches to CS education advocate for equity pedagogies 
within K–12 STEM and CS classrooms. It is incredibly important to address long-standing issues of 
systemic racism, power and exclusionary practices in CS education. In doing so, we work towards 
creating and sustaining more just and equitable educational futures for all learners, especially 
minoritized learners (Bang, 2020).

Educators, scholar activists and others have also called out racism, sexism and anti-Blackness 
and/or made commitments to addressing equity within K–12 and post-secondary CS education 
(e.g. Benjamin, 2019; Goode et al., 2020; Guzdial, 2020; Morales-Doyle et al., 2020; Payton et al., 
2020; Sherriff et al., 2020; White, 2017). To support researchers and educators in engaging justice-
oriented CS education, we outline four theoretical frameworks guiding commonly used equity 
pedagogies in K–12 CS classrooms.

9.3 Equity pedagogies: Guiding frameworks
Here, we provide an overview of four theoretical frameworks that undergird some of the equity-
focused teaching practices teachers might use in CS classrooms: culturally relevant pedagogy 
(CRP; Ladson-Billings, 2006), culturally responsive teaching (CRT; Gay, 2000), culturally sustaining 
pedagogy (CSP; Paris and Alim,2017) and culturally responsive computing (CRC; Scott and 
White, 2013, Scott, Sheridan and Clark, 2015). There are other frameworks that may contribute 
to the understanding and implementation of facilitating equitable CS learning opportunities for 
minoritized learners. For example, Lee and Soep (2016: 484) introduced critical computational 
literacy, connecting Wing’s (2006) computational thinking to critical literacy (‘observing, 
analysing, and deconstructing’ oppressive systems and inequalities). However, in this chapter, 
we briefly highlight the most prominent frameworks (see Table 9.1) in classroom practice based 
on our review of current research (for comprehensive reviews, see Aronson and Laughter, 2016; 
Morales-Chicas et al., 2019; Vakil, 2018).
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Culturally relevant pedagogy
Using CRP in the CS classroom demonstrates a teacher’s explicit acknowledgement that they value 
all learners and expect them to excel. CRP principles include (a) high expectations for all learners, 
(b) development and maintenance of cultural competence and learners’ development of cultural 
capital to succeed in the dominant culture and (c) planning and facilitating learning experiences 
to further develop learners’ critical consciousness (Ladson-Billings, 2006). Teachers must give 
equal attention to each component to implement CRP with fidelity. Teachers engaging CRP also 
show their learners they genuinely care for them, reject deficit-model thinking about minoritized 
learners and view learners’ cultural practices as resources for learning (Ladson-Billings, 2006).

Culturally responsive teaching
Geneva Gay (2000) defines CRT as situating the lived cultural experiences, characteristics and 
perspectives of ethnically diverse learners as a primary channel to inform effective teaching. The 
five essential elements of CRT include the following: (1) developing a cultural diversity knowledge 

Table 9.1 Differentiating equity-focused theoretical frameworks

Theoretical Framework Overview

Culturally relevant pedagogy (CRP)
Ladson-Billings (2006)

Three tenets include educators’ intentional mindset and 
explicit actions related to the following:

●  Academic excellence (explicit high expectations for 
learning and achievement);

●  Cultural competence (using learners’ cultural practices 
for learning and breaking down dominant culture in 
schooling); and

●  Critical/sociopolitical consciousness development 
(awareness of and challenging of sociopolitical forces 
influencing our world).

Culturally responsive teaching (CRT)
Gay (2000)
Hammond (2015a, 2015b)

The five essential elements of culturally responsive 
teaching include the following:

● Cultural diversity knowledge base;
● Culturally relevant curricula;
● Cultural care and learning communities;
● Cross-cultural communications; and
● Cultural congruity.

Culturally sustaining pedagogy (CSP)
Paris (2012)
Paris and Alim (2017)
Also see Chapter 10 by Israel et al.

Focus on maintaining and cultivating linguistic and 
cultural pluralism, in opposition to existing educational 
contexts historically structured to ignore and 
marginalize learners’ cultural and linguistic assets.

Culturally responsive computing (CRC)
Scott and White, 2013; Scott, Sheridan and Clark, 

2015)

Draws and builds upon principles of culturally relevant 
teaching to honour learners’ backgrounds, life 
experiences and interests to make meaningful 
connections to computing topics.

Source: Madkins, Howard and Freed (JCSI, 2020)
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base; (2) designing culturally relevant curricula; (3) demonstrating cultural care and building 
learning communities; (4) effective cross-cultural communications and (5) cultural congruity. 
Prior to delivering instruction, teachers create a classroom climate of cultural care, in partnership 
with their learners, that is conducive to learning while fostering communal classrooms. Teachers 
also prioritize understanding their learners’ communication styles to avoid violating cultural 
values and to achieve effective cross-cultural communication in classrooms. Teachers also establish 
cultural congruity by taking everything they know about their learners’ cultural diversity (and how 
their learners learn) to enhance their instructional delivery.

Zaretta Hammond (2015a, b) builds on the five essential elements provided by Gay (2000) 
through her work on CRT and the brain through four interdependent practices: awareness, 
learning partnerships, information processing and community building. Hammond (2015a, b) 
asserts that culturally responsive teachers who have awareness develop their own sociopolitical 
consciousness. Building a learning partnership with learners in the instructional process requires 
teachers to build trust and move away from didactic approaches to reimagine the relationship as a 
partnership for education with authentic opportunities to make cultural connections (Hammond, 
2015a). The culturally responsive teacher works to create an environment where minoritized 
learners have opportunities to engage in information processing ‘in a manner congruent with how 
the brain learns’ (Hammond, 2015ba: 172) and take risks because they feel they belong and are 
fully supported. Finally, a culturally responsive teacher engages in community building, whereby 
they establish a safe and intellectual environment for learners so they feel supported by one 
another.

Culturally sustaining pedagogy
Building upon CRP (Ladson-Billings, 2006), Paris (2012) and colleague (Paris and Alim, 
2017) conceptualized CSP. This approach promotes equity by engaging minoritized learners in 
experiences that sustain cultural pluralism, where educators recognize and build upon the varied 
and dynamic nature of learners’ repertoires of practice (Gutiérrez and Rogoff, 2003). Moreover, 
educators must reject the idea that learning to navigate the dominant culture (i.e. white, middle-
class norms) is the only way for learners to be successful. As such, youth have opportunities to learn 
in a manner that sustain their cultural ways of being and shape their access to power in oppressive 
systems (Paris and Alim,2017). By utilizing CSP, educators and learners both hope to understand, 
explore and critique how racialized, ethnic and/or cultural experiences (e.g. what it means to be 
Latinx or Black in a particular context) are rooted in both enduring and shifting practices (also see 
Chapter 8 by Denner and Campe).

Culturally responsive computing
Kimberly Scott and colleagues (Scott and White, 2013; Scott et al., 2015) introduced CRC to 
make connections between culturally relevant teaching practices and CS. These principles support 
efforts focusing on increasing learners’ access to computing and diversity in the tech fields but with 
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a focus on the inextricable link between STEM and computing content and social justice (Scott, 
Sheridan and Clark, 2015).

CRC embeds sociocultural relevance at all levels of the learning experience, from the selection 
of tools and the actual classroom to applications outside of the classroom. Thus, learners are 
supported to creatively engage with technology in a meaningful context with attention to their 
cultural and personal interests while addressing intersectional identities that impact their 
experiences with technology. CRC calls for situating technology ideas within a sociopolitical 
context and giving learners opportunities to critique and explore issues they find relevant. Learners 
should feel supported in their learning, identity development and expression as they become 
creative innovators with technology, able to repurpose computing tools towards their own goals. 
When using CRC, educators redefine success of computing programs by asking ‘who creates, for 
whom and to what ends?’ rather than gauging success by a list of CS topics covered.

In summary, CRC principles include the following: (1) developing technologies that reflect 
and respond to minoritized learners’ identities; (2) critiquing and addressing sociopolitical issues 
within computing and society more broadly and (3) facilitating computing learning experiences 
that are grounded in and built upon a rigorous curriculum and minoritized learners’ identities 
(e.g. academic, racialized, gendered) and cultural and linguistic practices (Eglash et al., 2013; Scott, 
Sheridan, and Clark, 2015).

9.4 Equity pedagogies in practice
Recent scholarship has shown how using equity pedagogies in K–12 CS classrooms can positively 
influence student outcomes, such as achievement, belonging and interest (Ryoo et al., 2013; 
Scott and White, 2013; Vakil, 2014). Other scholars have found the use of culturally relevant and 
responsive teaching to support learners in making connections between social justice issues, CS 
course content and personal relevance (Madkins et al., 2019; Scott, Sheridan and Clark, 2015).

Scott and White (2013) utilized CRC principles in their curriculum for COMPUGIRLS, a 
two-year program for girls, who were mostly from Black and Latinx communities. The use of 
CRC practices facilitated girls’ increased tech knowledge, identification with and interest in 
CS, agency and critical consciousness development. Vakil (2014) highlights the importance 
of connecting app programming to critical consciousness development – a key component of 
equity-focused pedagogies. Learners expressed that having opportunities to make connections 
to social justice issues contributed to their increased interest, engagement and participation in 
CS (Vakil, 2014).

Exploring computer science (ECS), a popular curriculum and course in high schools, was 
developed in 2008 to democratize CS learning through culturally relevant curricula (Goode 
and Margolis, 2011; Ryoo et al., 2013). ECS is grounded in learners’ enquiry-based explorations 
of CS concepts and issues of equity and is aligned with CRC principles (Ryoo, 2019). Across 
ECS classrooms, learners have been supported in developing critical consciousness, seeing the 
relevance of CS to their lives and learning CS concepts (Goode and Margolis, 2011; Ryoo, 2019; 
Ryoo et al., 2013).
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Example: Equity-focused teaching practices in CS
Here, we share practical examples to demonstrate how educators might 
implement equity-focused teaching in CS classrooms.

Table 9.2 Engaging equity-focused teaching practices

Identity development ●  Are aware of and address power dynamics that impact classroom culture 
and learners’ experience

●  Are aware that intersectional identities can impact learners’ experiences 
with technology in different ways and on different levels (might include: how 
the effects of technology impact different communities and populations 
differently, identity impacts on access to technology/technology learning, 
identity impacts on ability to see oneself as a technological change agent)

●  Support identity development and expression through computing tools
●  Challenge stereotypes about who belongs in computing by addressing 

representation, showing learners examples of diverse creators and creating 
space for discussion

●  Encourage peer pedagogy, where learners teach and learn from each other 
via feedback and sharing ideas/completed work (for a full explanation, see 
Ching and Kafai, 2008, or Fields et al., 2018)

● Support learner–learner friendships
Personal and 

sociopolitical 
relevance of 
technology

●  Situate technology ideas within their sociopolitical context and give learners 
opportunities to critique and explore issues that are relevant to them

●  Create CS experiences connected to learners’ knowledge, interests and life 
experiences, broadening ideas of where CS thinking can be applied

●  Value learners’ strengths and outside knowledge and create opportunities 
for them to showcase these

Positioning learners 
as creative agents/
change agents

●  Empower learners to become creative innovators with technology, able to 
repurpose technology towards their own goals

●  Build enough flexibility into both the tools and the activities to leave room 
for learners to pursue goals that are meaningful to them

●  Legitimize learners’ expertise through creating opportunities to share their 
work with the broader community and/or making their work visible in a 
shared space

Sources: Ashcraft et al. (2017); Babbitt et al. (2012); Fields et al. (2018); Keune et al. (2019); Pinkard et al. (2017); 
Ryoo (2019); Scott, Sheridan, and Clark (2015); Vakil (2018).

9.5 Conclusion
When providing the background and context on the state of the field of CS, we noted the renewed 
interest in CS education over the past fifteen years. From the Obama administration announcement 
of the Computer Science for All initiative to the collective work informing the Computer Science 
Frameworks and subsequent standards, direct and indirect efforts are underway to improve the 
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field and broaden participation in CS. This increased interest in broadening participation also 
requires relevant guidance for situating equity pedagogies as an essential practice for our work 
with minoritized learners. Both the ISTE and CSTA standards for educators address equity 
related to access and achievement. These sets of standards include words like equity, inclusion and 
culturally relevant learning, demonstrating a recognition that there is still a need for the purposeful 
application of instructional practices. We commend the collective work of CTSA, ISTE and other 
organizations. However, as critical scholars of STEM and CS education, we would be remiss if 
we did not acknowledge that what is written in a set of standards is often either not followed 
or explicitly followed absent of the critical consciousness or rationale required to effectively 
implement equity pedagogies.

In this chapter, we provided a rationale for using equity pedagogies in CS and outlined practical 
examples from research to illustrate how practitioners might use equity pedagogies in their 
classrooms. We offered background and insights related to four prominent theoretical frameworks 
grounded in asset-based approaches to supporting minoritized learners as evidenced by research 
and practice. Although we differentiate these equity-focused theoretical frameworks, the application 
of any of these frameworks positions educators to continually work towards centring equity.

Effectively engaging equity pedagogies requires educators to support minoritized learners by: (1) 
constructing culturally relevant and rigorous CS curricula; (2) implementing the curricula in a 
meaningful manner; (3) challenging systemic racism, power and oppression; (4) guiding learners 
in grappling with and challenging these same systems and (5) encouraging them to use CS to 
empower themselves and their communities. When educators engage equity pedagogies, learners 
are supported in their identity development, understand the personal and sociopolitical relevance 
of technology and are positioned as change agents.

CS innovations remain an important factor in the growth and development of economies 
around the world. Minoritized learners continue to contend with the denial of access to advanced 
and rigorous CS (and other STEM) courses. Much attention has been given to broadening 
participation for minoritized learners, and there have been notable advances in CS educational 
research and practitioner communities related to equity-focused teaching. Yet, there is more work 
to do to further support learners with the integration of CS knowledge in K–12 classrooms. Such 
an integration can occur by prioritizing equity pedagogies in CS classrooms to effectively prepare 
learners for entry into CS-related fields. It is our hope that this chapter uplifts efforts to support 
minoritized youth in further developing their CS knowledge, seeing the connections between 
using this knowledge and pursuing their personal interests and using computational thinking to 
empower themselves and their communities.

In conclusion, we emphasize that equity-focused work is important because we cannot continue 
to invite learners (and, in turn, their families and communities) into CS education by focusing 
only on increasing access to CS courses, development of CS knowledge and working towards CS 
integration. If we, instead, engage in CS teaching and learning with a justice-oriented approach, 
we are more likely to invite them into a field and learning experience that they will welcome and 
appreciate. What is most important to remember is that classroom-based or informal educators, 
teacher educators, district personnel, families and community members are all working together 
with common goals and with a purpose – supporting all learners to be successful in CS education. 
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We know that content and context matter, so the ways we implement equity-focused teaching 
practices will look different wherever learning occurs. If we hold each other accountable to actually 
engage equity-focused teaching, we get better at it over time. It is imperative for educators to be 
kind to one another and extend grace to self and colleagues as we hold each other accountable to 
do the difficult work.

Key points
 ● This chapter notes the importance of working towards equity in support of 

minoritized learners.
 ● Four asset-based equity pedagogies (CRP, CRT, CSP and CRC) were highlighted 

as well as the ways in which they should be taken up in K–12 computer science 
classrooms.

For further reflection
 1. What do you view as the distinctions between the four frameworks 

we highlighted in this chapter (culturally relevant pedagogy, culturally 
responsive teaching, culturally sustaining pedagogy and culturally responsive 
computing)?

 2. Think of a lesson you recently taught or will teach soon. How could you modify it 
to centre a social justice issue related to the content or concepts you teach in that 
lesson?

 3. How might you incorporate your learners’ lived experiences into a CS lesson?
 4. What are the affordances of engaging culturally relevant and responsive pedagogies 

in CS teaching for learners, their families and the community?
 5. Considering the importance of equity-centred pedagogies in CS, in what ways are 

you engaging these practices? What will you do differently?
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Chapter outline

 10.1 Introduction: Computer science for all learners
 10.2 Applying inclusive frameworks in K–12 CS education classrooms
 10.3 Next steps: Considering intersectional frameworks

Chapter synopsis
What do we mean by Computer Science for All? How can we plan computer 
science (CS) in a manner that proactively includes all learners? In this chapter, 
we explore strategies for including all learners in K–12 CS education through the 
lens of inclusive practices that include Universal Design for Learning (UDL) and High Leverage 
Practices (HLPs). We present the theoretical underpinnings of these two approaches as 
well as how they connect to K–12 CS education research. Lastly, we also provide guidance 
about the intersection of UDL with Culturally Responsive and Sustaining Education.
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10.1 Introduction: Computer science for all 
learners
Computer science (CS) education is rapidly becoming part of the core curriculum for young 
people around the globe. Because of the ubiquitous nature of computation in today’s society, there 
is a growing need to prepare citizens with fundamental computational literacies, both to meet the 
professional demands of global economies and to fulfill their public roles in society (Grover and 
Pea, 2013; Tissenbaum, Sheldon and Abelson, 2019; Wing, 2006). Initiatives such as CS for All seek 
to help students develop these essential computational literacies and, in the process, democratize 
computing by focusing on access and inclusion of all learners.

Although the phrase CS for All has been used widely in the CS education community, many 
such efforts have yet to focus on the inclusion of students with disabilities. In the United States 
alone, there are approximately 7.3 million students with disabilities (approximately 14 per cent of 
students) receiving special education services in public K–12 schools under the Individuals with 
Disabilities Education Act (Irwin et al., 2021). Although more difficult to track, approximately 
another 2.3 per cent of students in the United States receive accommodations through section 504 
of the Rehabilitation Act of 1973, a civil rights law that prohibits discrimination based on disability 
(Zirkel, 2019). Given these numbers, if we are committed to CS for All, we must increase efforts for 
the inclusion of students with disabilities in CS education.

Understanding barriers and pathways to inclusion in 
K–12 CS education
Despite the large number of students with disabilities in K–12 schools, with a few notable 
exceptions, there has been a surprising silence regarding their inclusion in CS education. This 
shortage of attention to the inclusion of students with disabilities in K–12 CS education has directly 
resulted in exclusionary practices including a lack of development and utilization of accessible 
computational tools, limited professional development in inclusive pedagogical approaches and a 
lack of advocacy for the rights of students with disabilities to participate in K–12 CS instruction 
(Israel et al., in press). This phenomenon is not unique to CS education. However, because CS 
education is now emerging as a new disciplinary area in many schools (Kirby, 2017), there is an 
opportunity to disrupt this trend early in order to increase access and engagement for all learners.

The small but growing body of literature about the inclusion of students with disabilities in K–12 
CS education indicates that when these learners are presented with accessible tools and inclusive 
pedagogical approaches, they are likely to succeed (e.g. Israel et al., 2020; Snodgrass, Israel and 
Ladner, 2016). Rather than focusing on ‘fixing problems within students’, which is a positionality 
based on a deficit model of disability, many of these studies place inclusive practices as a pathway to 
participation and learning. Thus, by taking a social view on disability, we flip the narrative towards 
an emphasis on reducing barriers in the environment that prevent learning (Israel et al., in press).
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It is helpful to use an ecological systems theory approach to understanding both barriers and 
pathways to inclusion within K–12 CS education (Bronfenbrenner, 1977). Understanding the 
experiences of students with disabilities is complex, not uniform, and is based on the environment 
in which a student learns. At the microsystem level, the student engages with parents, teachers, 
peers and others. At the mesosystem level, the student experiences policies within the school 
and district such as advocacy for (or lack of) accessible materials and school-level scheduling 
decisions. At the macrosystem level, the student is influenced by educational policies and laws 
related to CS education mandates as well as disability-specific legislation related to inclusion 
and participation. At each of these levels, there are barriers and pathways to inclusion that are 
situated within a complex system that cannot be discussed only at the classroom level (Israel, 
2021). Table 10.1 provides examples of both barriers and pathways to inclusion in K–12 CS 
education.

Key concept: Inclusive mindsets
The term ‘inclusive practices’ is often used broadly to suggest a set of approaches 
that increase the participation and belongingness of students with disabilities, 
thus proactively minimizing their exclusion (Florian and Black-Hawkins, 2011). To 
enact these practices, teachers must first believe that students with disabilities 
belong to and can succeed in K–12 CS education. These mindsets assume five equity 
principles (adapted from Israel, 2021):

 1. All learners deserve to be meaningfully included in CS education.
 2. All learners can succeed in CS instruction.
 3. Learner variability is an asset in the CS classroom.
 4. CS instruction must engage all learners.
 5. Advocating for CS inclusion challenges barriers and opens pathways to participation.

Understanding and reflecting on these five equity principles can help teachers build 
an inclusive mindset and provides a starting place for understanding how to apply the 
instructional frameworks described below.

10.2 Applying inclusive frameworks in K–12 CS 
education classrooms
In order to achieve K–12 CS instruction that is accessible and inclusive and encourages full 
participation and belongingness of all learners, teachers must proactively plan for that level of 
participation. In this section, two approaches are described: Universal Design for Learning (UDL) 
and high leverage practices (HLPs). UDL is a general framework for proactively planning for 
inclusion and participation and HLPs are a set of instructional strategies that can be implemented 
within UDL-based instruction.

 



Computer Science Education 118

Universal Design for Learning in CS education
UDL is a pedagogical framework developed by the Center for Applied Special Technology (CAST), 
a nonprofit research and development organization that promotes the expansion of equitable 
learning opportunities. Following the passage of the Americans with Disabilities Act in 1990, the 
universal design movement first gained popularity with architects and designers seeking to make 
environments and products more accessible to those with disabilities. UDL evolved alongside a 
trend towards inclusive educational policies designed to increase instructional accessibility for 
students with disabilities. The UDL framework is rooted in research-based educational practices 
(Posey, n.d.) and can be used as ‘a blueprint for creating flexible goals, methods, materials, and 
assessment that meet the needs of diverse learners’ (Rose, Meyer and Hitchcock, 2005: 3).

Rather than promoting an ideal method of instructional delivery, UDL prioritizes flexibility in 
instructional methods, materials and learning environments with the goal of removing barriers 
to learning, designing lessons for academically diverse classrooms and addressing the unique 
learning needs of students with disabilities (Israel, Lash and Ray, 2017a; 2020). Learners in a UDL 
classroom rarely perform the same tasks concurrently. Rather, they engage in flexible activities and 
assessments with a variety of learning materials and strategies designed to empower and motivate 
them to take control over their learning experiences. UDL was developed alongside advances in 
the field of cognitive neuroscience such as the identification of key brain networks responsible for 
learning (CAST, 2018). These networks align with UDL’s three guiding principles: multiple means 

Table 10.1 Barriers and pathways to inclusion in K–12 CS education

 Example Barriers Example Pathways

Macrosystem Lack of explicit policies about inclusion of 
students with disabilities accessing CS 
education

Limited mandates for purchasing of 
accessible CS tools, materials and 
curricula

Advocacy at all levels for inclusion and 
participation of all students (including those 
with disabilities) in CS education.

Expectations and accountability by educational 
leaders about the development of accessible 
CS tools, materials and curricula.

Mesosystem Limited professional development for 
teachers about inclusive pedagogical 
approaches

CS offered only to students taught in 
inclusive educational contexts, leaving  
out students who are not in these 
settings

School counsellors advising students with 
disabilities to not take CS courses

Investment of time and resources into teacher 
professional development focused on 
inclusion and participation of students with 
disabilities in K–12 CS education

CS is available for and encouraged by all K–12 
students

Microsystem Assumptions by teachers that students  
with disabilities cannot succeed in CS

Lack of availability of assistive technologies 
in classrooms

Limited use of inclusive pedagogical 
approaches in CS instruction

Use of inclusive pedagogies such as Universal 
Design for Learning and high leverage 
practices in K–12 CS instruction

Advocacy by teachers for the full participation 
of students with disabilities in CS 
instructional activities

Source: Adapted from Israel (2021).

 

 



Increasing Access, Participation and Inclusion 119

of engagement (the ‘why’ of learning), multiple means of representation (the ‘what’ of learning) 
and multiple means of action and expression (the ‘how’ of learning). Applying these guidelines 
to one’s curriculum and pedagogy can result in instruction that is inclusive, accessible and usable 
(Burgstahler, 2020).

The UDL guidelines are on the CAST website and include various resources designed to help 
educators with practical application in their curricula. Israel and colleagues (2017) also developed 
a tool that provides recommendations for integrating UDL into CS and computational thinking 
curricula (see Table 10.2 for an adapted version). This table includes recommendations for various 
strategies for designing CS lessons with the three UDL principles. For instance, to ensure that a 
lesson has multiple means of engagement, options should be provided for recruiting learner interest, 
sustaining learner effort and persistence and facilitating learners’ self-regulation of behaviour. This 
principle can be accomplished by giving students a choice regarding their projects, software or 
topics; teaching and encouraging peer collaboration and product sharing; and developing ways for 
students to self-assess and reflect on their own work and the work of others. To ensure that a lesson 
has multiple means of representation, information should be delivered with various languages, 
symbols and modalities to provide students options for how they perceive and comprehend 
information. This principle can be accomplished by teaching and reviewing content-specific 
vocabulary, modelling computing using physical representations as well as interactive whiteboards 
and videos, and providing graphic organizers for students to ‘translate’ programs into pseudocode. 
To ensure that a lesson has multiple means of action and expression, options should be provided 
for learners to engage in physical action, expression and communication, and executive functions. 
This principle can be accomplished by including CS Unplugged activities that show the physical 
relationship of abstract computing concepts, providing opportunities to practice computing skills 
and content through projects that build on prior lessons and guiding students to set goals for long-
term projects.

Key concept: UDL and key legislation
In the United States, UDL is endorsed by various K–12 education policy initiatives 
(CAST, n.d.) including the Every Student Succeeds Act (2015), which requires 
that assessments be designed with UDL principles in mind and the National 
Education Technology Plan (Office of Educational Technology, 2017), which 
urges that technology be ‘born accessible’ to increase access and inclusion for all learners. 
In these laws, UDL commonly leverages assistive technologies to improve accessibility 
of instruction and proactive support learning for students who benefit from accessible 
instructional materials (Basham et al., 2010; Posey, n.d.). Evaluating tools commonly used 
in K–12 CS instruction is important for meeting learning goals in an inclusive classroom.

Scholars advocate that a UDL-based instructional approach is crucial for achieving equitable 
and accessible CS instruction that meets the needs of diverse learners, including those with 
disabilities (Hansen et al., 2016; Israel, Lash and Ray, 2017a; Israel and Ladner, 2016; Ray et al., 
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Table 10.2 UDL in K–12 CS education crosswalk

 Providing Multiple Means 
of Engagement

Providing Multiple Means 
of Representation

Providing Multiple Means of 
Action and Expression

Affective networks:
The ‘WHY’ of learning

Recognition networks:
The ‘WHAT’ of learning

Strategic networks:
The ‘HOW’ of learning

Access Provide options for 
recruiting interest:

Give students choices 
(choose project, 
software, topic)

Allow students to make 
projects relevant to 
culture and age

Allow for differences in 
pacing and length of work 
sessions

Provide options for 
perception:

Model computing using 
physical representations as 
well as through interactive 
whiteboards and videos

Provide access to video 
tutorials of computing tasks

Select coding apps and 
websites that allow the 
students to adjust visual 
settings (such as font size 
and contrast) and that are 
compatible with screen 
readers

Provide options for physical 
action:

Include CS Unplugged 
activities that show physical 
relationship of abstract 
computing concepts

Provide teacher’s codes as 
templates

Select coding apps and 
websites that allow coding 
with keyboard shortcuts 
in addition to dragging and 
dropping with a mouse

Build Provide options for 
sustaining effort and 
persistence:

Teach and encourage peer 
collaboration by sharing 
products

Utilize pair programming 
and group work with 
clearly defined roles

Recognize students 
for demonstrating 
perseverance and 
problem-solving in the 
classroom

Provide options for language 
and symbols:

Teach and review content 
specific vocabulary

Teach and review computing 
vocabulary (e.g. code, 
animations, computing, 
algorithm)

Post anchor charts and 
provide reference sheets 
with images of blocks or 
with common syntax when 
using text

Provide options for expression 
and communication:

Give opportunities to practice 
computing skills and content 
through projects that build on 
prior lessons

Create physical manipulatives 
of commands, blocks or lines 
of code

Provide options that include 
starter code

Internalize Provide options for self-
regulation:

Develop ways for students 
to self-assess and reflect 
on own projects and 
those of others

Use assessment rubrics 
that evaluate both 
content and process

Acknowledge difficulty 
and frustration. Model 
different strategies for 
dealing with frustration 
appropriately

Provide options for 
comprehension:

Provide graphic organizers 
for students to ‘translate’ 
programs into pseudocode

Encourage students 
to ask questions 
as comprehension 
checkpoints

Use relevant analogies and 
make cross-curricular 
connections explicit (e.g. 
comparing iterative product 
development to the writing 
process)

Provide options for executive 
functions:

Guide students to set goals for 
long-term projects

Provide exemplars of completed 
products

Provide explicit instruction on 
skills such as asking for help, 
providing feedback and using 
problem-solving techniques

Source: Adapted from Israel et al. (2017).
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2018). This guidance is based on a body of research supporting the potential for UDL to increase 
access and success among students with disabilities in CS education (Israel et al., 2020; Lechelt 
et al., 2018; Marino et al., 2014; Wille, Century and Pike, 2017). Although the research has 
thus far been concentrated mostly on UDL implementation in K–12 STEM and postsecondary 
computer science instruction, scholars have recently identified positive outcomes associated 
with implementing UDL in K–8 CS instruction (e.g. Hutchison and Evmenova, 2021; Israel 
et al., 2020).

High leverage practices in CS education
HLPs were designed to support teacher practice and improve student learning outcomes across 
disciplines for students with disabilities (McLeskey et al., 2019). Although these strategies were 
developed by the Council for Exceptional Children (CEC) in 2014 with the intent to provide 
targeted criteria for K–12 special education practitioners, the application of these strategies in 
any classroom provides tremendous opportunities for all students. The final version of the HLPs 
included twenty-two instructional approaches separated into four categories (collaboration, 
assessment, social/emotional/behavioural and instruction) (CEC Division for Early Childhood, 
2015; McLeskey et al., 2019). While a growing body of empirical literature on inclusive K–12 CS 
pedagogies presents findings that point to the use of HLPs as methods for reducing barriers to 
inclusion, few CS education researchers identified these HLPs explicitly. The following three HLPs 
were included in this chapter due to their use in the CS education literature.

HLP14: Teaching cognitive and metacognitive strategies to support 
learning and independence
A quintessential computational thinking strategy is the ability to abstract complex problems 
and decompose those problems into manageable, smaller tasks (Wing, 2006). Abstraction and 
decomposition require metacognitive and self-regulatory strategies in which students can activate 
schema to complete a task. According to Winne (2021), students’ use of metacognitive strategies 
influences how they will handle challenges that emerge during instruction. Therefore, this 
HLP provides guidance for practitioners to support students’ cognitive and metacognitive skill 
development.

Budin and colleagues (2021) described the reciprocal relationship between the teacher, 
student and instruction with the intention of students setting achievable goals, monitoring their 
own progress and adapting to changes throughout instruction. During this process, the teacher 
models, monitors and selects the strategies to facilitate cognitive development. For example, when 
employing HLP14 during CS instruction, teachers can assist students systematically and informally 
with the metacognitive process of debugging. A study conducted by Emara and colleagues (2020) 
analysed the impacts of the self-regulatory process as well as other problem-solving strategies 
during targeted debugging activities with students. Students were provided scaffolded activities 
and encouraged to work together as researchers observed their behaviours during activities. The 
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regulation and cognitive process results from the study revealed similar attributes to supports 
offered when employing HLP14, such as providing structure to decompose problems, working 
collaboratively to evaluate the errors and allowing for open discussion to act on the problem-
solving task (Emara et al., 2020).

HLP16: The use of explicit instruction
The use of explicit instruction is defined as the use of a systematic and direct approach to teaching. 
It is often seen as its own set of instructional practices in special education (Archer and Hughes, 
2011). Using this approach to designing CS lessons reduces cognitive load. Examples include 
breaking down multi-step directions into small manageable chunks and limiting front-loaded 
teaching into short mini-lessons (Hughes, Riccomini and Morris, 2019: 216). Although this HLP 
is evident in the K–12 CS education research, like other HLPs, it is not often referenced in those 
terms. In instances where CS content can seem overwhelming to students, teachers can use explicit 
instruction to assist in self-monitoring and task completion. Since many CS skills are recursive, 
designing lessons that review previously taught skills also ensures students retain information 
and have the opportunity to activate schema to scaffold learning. However, explicit instruction 
should be balanced with open enquiry approaches so that students have the opportunity to use 
these skills to engage in more open-ended and creative computational experiences (Israel et al., 
2015). Ray and colleagues (2018) found that when teachers provided explicit instruction within 
enquiry-based activities during CS instruction, such as breaking tasks into simple step-by-
step demonstrations and modelling protocols, they increased the engagement of students with 
disabilities.

HLP19: The use of instructional and assistive technologies
Instructional and assistive technologies can be powerful tools for making instruction accessible, 
engaging and meaningful. CS teachers should consider using three types of educational technologies 
when working with students with disabilities: (a) assistive technologies, (b) general instructional 
technologies and (c) content-specific instructional technologies (Israel and Williams, in press). 
Although these technologies are often categorized as different types of technologies, there is often 
an overlap.

While all HLPs are crucial to maximizing student outcomes, in the United States, HLP19 has 
legal implications as defined by the Individuals with Disabilities Education Act (IDEA; NCES, 
2021). Assistive technology is defined in the 2004 reauthorization of IDEA as ‘any item, piece 
of equipment, or product system, whether commercially acquired off the shelf, modified, or 
customised, that is used to increase, maintain, or improve the functional capabilities of a child with 
a disability’ (IDEA, 2004). These can be high- or low-tech tools, including but not limited to, text-
to-speech apps, tablet devices, raised paper with lines and highlighter pens (Israel, 2019). Assistive 
technology also includes the services required to support the learner in using that technology 
efficaciously. When considering CS-specific tools, some students will require assistive technologies 
such as a modified mouse or a text-to-speech app for reading.
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Alongside assistive technologies, instructional technologies that support students with disabilities 
fall into the following categories: general technologies that are used across content areas (e.g. laptop 
computers, word processing software) and content-specific technologies (e.g. Scratch). Both types 
of technology tools can be used to positively support and enhance learning for all students. Thus, as 
more CS related tools and software become available, ensuring that these technologies are available 
and accessible to all learners and using them alongside general and assistive technologies that 
support learning for students with disabilities can enhance student learning outcomes, increase 
access and ensure legal compliance within the school systems (Table 10.3).

10.3 Next steps: Considering intersectional 
frameworks
Transforming inclusive CS education relies on developing teachers who understand the 
intersection of student differences, inclusive pedagogical frameworks and awareness for providing 
learning opportunities that maximize quality access and engagement for all students. It is the 
teacher’s responsibility to implement pedagogy at the intersection of ability, culture and language 
within the classroom. In order to support teachers in this endeavour, there must be a unifying 
framework that attends to these intersections through a multifaceted approach that advances 
inclusive education beyond merely providing access (Waitoller and Thorius, 2016). Engaging the 
landscape of inclusive CS education at the intersection of ability, culture/race and translanguaging 
begins with understanding the interlaced forms of exclusion and recognizing the need for adopting 
and implementing research-driven frameworks in partnership with researchers, practitioners and 
policymakers. Inclusive frameworks that guide curriculum and professional development for CS 
teachers is a pathway for ensuring a greater adoption of classroom practices aimed at closing the 
equity gaps for marginalized students in CS education (Kapor Center, 2021).

Table 10.3 Aligning HLPs to CS education studies

HLP Example in CS Instruction

#14 Teaching cognitive and metacognitive 
strategies to support learning and 
independence

Emara and colleagues (2020) examined how students engaged 
in debugging from a cognitive and self-regulatory perspective. 
Progress monitoring, identifying actions and goal setting in 
collaborative groups facilitated longer stretches of debugging 
behaviours and increased student outcomes and engagement.

#16 Use of explicit instruction Taylor (2018) designed a study in which students with intellectual 
disabilities strengthened computer programming skills when 
teachers used explicit instructions.

#19 Use of instructional and assistive 
technologies

Ladner and Stefik (2017) provide a framework in their study to 
support students with visual impairment through the Quorum 
programming environment, which is a text-based language 
that allows for the use of screen readers.
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Marginalized intersections of ability and exclusion
The cultural aspect of disability has been mis-conceptualized and framed as a deficit among one 
centralized group of people. Ability, cultural background and language have been historically 
interlaced and associated with deficiencies and shortcomings throughout the existence of schooling 
(Artiles, 2011). However, people with disabilities are a diverse mixture of individuals with different 
identities and a wide range of strengths, experiences and backgrounds who have been forced to use 
‘normalised’ abilities needed to function in school (Waitoller and Thorius, 2016).

Given the diversity of students with disabilities, it is necessary to recognize that students do not 
experience only one single form of exclusion but rather an overlap of several exclusionary barriers 
that stand in the way of quality access to, and participation in, learning. Thus, the intersection of 
students’ abilities, cultures and languages make up their unique and complex identities.

Extending strengths of UDL and culturally responsive 
sustaining education
UDL, culturally responsive sustaining education (CRSE) and translanguaging pedagogy are 
multifaceted inclusive frameworks that have each contributed to minimizing exclusion barriers 
for diverse learners in education. We should consider all three equity frameworks because 
students encounter overlapping layers of barriers that these frameworks, together, can address. 
A cross-pollination of these inclusionary frameworks, anchored by UDL, can guide practitioners 
in integrating CRSE and translanguaging in CS instruction, ostensibly extending UDL’s benefits 
beyond providing access and inclusion (Waitoller and Thorius, 2016).

Kapor Center CRSE framework and translanguaging in 
K–12 CS education
As UDL accounts for access and inclusion for all students, it can be maximized through alignments 
with the Kapor Center Framework of Culturally Responsive Sustaining Computer Science 
in providing more quality access for all demographics of learners. This framework for CRSE in 
CS extends beyond barriers of access by attending to all demographics of culture, language and 
inequalities positioned within the context of society in CS education (Kapor Centre, 2021). The 
framework involves explicit implementation of practice within the cultural dimension of learning 
and the exclusions that have historically enabled students of diverse abilities to be labelled as deficient. 
Its framework of CRSE in CS extends from culturally responsive teaching (CRT) by addressing 
barriers in cultural backgrounds of students that range from stereotypes of computer science, 
learning expectations and the quality of CS classroom inclusion for all students (Kapor Center, 
2021). This framework breaks apart the biases of ability through reshaping the constructs of practice 
for all students to have the opportunity to learn CS. It helps to move teachers towards constructing 
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inclusive mindsets, by dispelling the historical ones that have marginalized our students’ ability, in 
ways in which the UDL framework can extend its reach of differentiated access to all students.

Translanguaging pedagogy
Working with students from cultural and linguistically diverse backgrounds is a priority which 
requires situating students in their lived experiences to provide a quality opportunity to participate 
in deeper learning (Gay, 2000; 2002). Allowing students to include their diverse experiences with 
language into the classroom enables them to draw meaning from their language as they face 
new learning experiences, providing a personalized opportunity to expand on their learning. 
Translanguaging enables students to use their entire range of language to make meaning without 
being bound to the dominant language, giving students a voice and an opportunity to be included 
in the learning experience (WIDA, 2020; Wiley and Garcia, 2016). Translanguaging is an inclusive 
pedagogical approach which provides implications to supporting a joining process of the linguistic 
ability that students bring into the classroom with the computer concepts they could participate in, 
which extends UDL’s reach beyond access (Vogel et al., 2019).

Cross-pollinating UDL, CRSE and translanguaging  
in CS education
At the center of equity in inclusive CS education is the belief that all students can succeed 
academically and that culture, language, ability or socioeconomic status should not present 
barriers to participation and inclusion (Hansen et al., 2016). Inclusive mindsets are a prerequisite 
to equitable access which UDL, CRSE and translanguaging offers. To begin considering equity in 
CS education, teachers must believe that all students should have the opportunity to learn CS and 
that they can succeed if instruction is designed with them in mind. These equity-focused mindsets 
lead us to promote the strengths that make up students’ identity and to seek equitable frameworks 
that acknowledge learners’ unique intersections (see Figure 10.1).

UDL, CRSE and translanguaging frameworks are intended to guide professional practice, 
development and preparation for transforming teachers who have adopted the mindsets of 
inclusive education for closing the equity gaps in computer science. Although professional 
development (PD) is a pathway to adopt inclusive education practices, majority (80 per cent) PD 
efforts for inclusive learning address individual forms of student abilities and differences in an 
isolated approach to exclusion, by assuming that a single form of learner difference is independent 
from another as opposed to intersecting (Waitoller and Artiles, 2013).

The inclusive frameworks allied together are designed to dismantle the barriers that happen 
at the unique intersections of ability, culture and language. This alignment can inform pedagogical 
practices towards providing a wide range of support for diverse learners. However, to achieve a 
widespread transformation of inclusive CS practices, a streamline of PD for building equitable 
mindsets for inclusion and developing unified practices of the inclusive frameworks is necessary 
for nurturing CS teachers to maximize closing the equity gap.
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Key points
 ● Students with disabilities are a diverse set of learners that cannot be 

lumped into one category. They have unique strengths and challenges.
 ● Students with disabilities have often been excluded from K–12 CS education, not 

because of explicit exclusionary practices, but because of implicitly being left out of 
CS for All initiatives and opportunities.

 ● This chapter introduces the idea of an inclusive mindset as well as two ways of 
proactively planning for the participation and learning of students with disabilities 
in K–12 CS education: UDL and HLPs. Inclusive mindsets are our beliefs about 
the belonging of all learners in CS education; UDL and HLPs are instructional 
approaches that enact full participation and inclusion in CS education.

 ● In addition to UDL and HLPs, other equity frameworks such as CRSE and 
translanguaging play a role in inclusive CS education because students are complex 
and belong in multiple communities.

Figure 10.1 Connection of equity frameworks (Source: adapted from Israel, 2021)
 



Increasing Access, Participation and Inclusion 127

For further reflection
 ● What steps can you take to understand both barriers and pathways to 

inclusion of CS learners in your school system?
 ● What would it take to move from a deficit-oriented view to a more asset-based 

perspective of all learners, including those with disabilities in CS education?
 ● How can you equip teachers with knowledge of Universal Design for Learning (UDL) 

and high leverage practices (HLP) in CS education to decrease barriers to inclusion 
in the CS classroom?
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Introduction to Part 3

Erik Barendsen

There are two main angles for approaching teaching and learning in computer science. First, one 
can start from general educational principles and theories and explore how they appear in (and 
apply to) computer science education. In contrast, one can focus on specific computing content 
matter and investigate aspects of topic-specific pedagogies relative to this content, such as possible 
learning goals and objectives, factors influencing learners’ understanding, instructional strategies, 
and assessment. This part takes the first angle, whereas Part 4 follows the second approach by 
focusing on pedagogical aspects of programming.

As computer science is being introduced on more and more educational levels, understanding 
learners’ possibilities and challenges and developing age-appropriate pedagogies are becoming 
crucial. In Chapter 12, Tim Bell and Caitlin Duncan discuss principles for teaching computing 
content at primary school level, advocating to integrate computer science content into more 
traditional content matter.

In Chapter 13, Paul Curzon and colleagues explore strategies to foster students’ conceptual 
learning. They present a variety of possible approaches, ranging from using analogies to more 
elaborate classroom practices such as enquiry-based learning. The semantic waves theory is used 
as a learning-theoretical principle to explain the effectiveness of some of the presented learning 
activities.

Chapter 14 moves on to the role of language in teaching and learning. One way of looking at 
learning a topic is to regard it as learning a new – professional – language. Ira Diethelm and co-
authors explore students’ everyday language, the computer science scientific language and ways to 
scaffold the transition between the two. A model of discourse (‘talk’) in the computing classroom 
plays a central role in the chapter.

Understanding learners’ attitudes towards the discipline and towards learning is crucial for 
designing appropriate learning environments. In Chapter 15, Quintin Cutts and Peter Donaldson 
focus on the interesting notion of mindset as a factor influencing learners’ success. Classroom 
practices and, surprisingly, teachers’ own mindsets turn out to be instrumental to the development 
of the learners’ mindsets. The authors confront the reader with key aspects of their own mindset 
and discuss results of scientific research on mindsets of computer science students and teachers.
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Chapter 16 focuses on assessment in the computing classroom. In accordance with the recent 
shift in attention from summative to formative assessment, Sue Sentance, Shuchi Grover and Maria 
Kallia present possibilities to implement the latter, also known as ‘assessment for learning’. The 
reader learns about general principles such as peer assessment as well as concrete tools such as 
concept mapping. Moreover, pointing ahead to Part 4, this chapter presents specific approaches 
towards formative assessment of programming projects.
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12
Teaching Computing in  

Primary Schools

Tim Bell and Caitlin Duncan

Chapter outline

 12.1 Introduction
 12.2 Case study one: Binary representation
 12.3 Computational thinking, computer science and programming at the primary 

school level
 12.4 Reasons for introducing computing in primary schools
 12.5 The bigger picture
 12.6 Integrated learning
 12.7 Case study two: Programming – what are the main concepts?
 12.8 Teacher education
 12.9 Summary: The purpose of teaching computing at primary schools

Chapter synopsis
With the introduction of computing into primary school curricula in many 
countries, and as informal learning opportunities in others, specific pedagogies 
to support teaching this topic to primary-aged children need to be examined. 
In this chapter we will summarize current research in this area and discuss our own 
experiences in New Zealand, working with primary school teachers and students.
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12.1 Introduction
Classroom pedagogy for teaching computing is something that changes considerably from early 
school years through to the end of high school. Extending computing to the primary years of school 
(students of ages five through to twelve to thirteen years old) presents unique challenges as well as 
opportunities. In this chapter we will look at what computing would look like in a primary school 
and reasons why it should be taught at that level. We focus on elements relating to computational 
thinking and concepts from computer science.

A common concern around incorporating this subject into primary school is that the concepts 
it covers are too advanced and are unsuitable for this age group. There is also the issue that 
teachers are already working with a ‘crowded curriculum’, so this subject could just become 
another add-on that there isn’t time to teach. The vast majority of teachers do not have prior 
knowledge of this subject, so along with finding time to teach it, they need time for their own 
learning as well.

To avoid this new subject at primary school coming across as a seemingly unrelated collection of 
topics, it is useful to be aware of the big ideas that we want students to take away from their learning 
(Bell, 2016). For example, many primary school students learn a programming language such as 
Scratch, but what are the concepts that we want them to learn from this? In ten years’ time it is 
unlikely that they will need to know the name of the command for storing a value into a Scratch 
variable. Likewise, many curricula include converting binary numbers to decimal, but in practice, 
few people may ever have to do that. Yet there is value in teaching both Scratch programming and 
binary number representation. Looking for the big picture will be a theme of this chapter, since we 
need to appreciate the overarching goals to be able to make sense of the small details that appear 
in the classroom.

Computational thinking (CT) has been described in previous chapters (e.g. Chapter 5), and 
through this chapter we will connect this definition with primary school curriculum. Before 
defining and exploring these ideas carefully, we begin with a case study to give us something 
concrete to illustrate the principles and ideas that we will introduce.

12.2 Case study one: Binary representation
Data representation and ‘binary numbers’ are topics that merit understanding by students, as 
binary representation is fundamental to how everything is stored, manipulated and communicated 
on digital devices. In fact, one of the defining characteristics of digital technology is in its 
name: everything is represented by digits!

Jargon such as ‘binary numbers’ may put teachers off approaching the subject of computer 
science. One of the keys to making computer science (CS) and CT work in primary school is 
making it explicit that much of this jargon can be seen simply as ‘big words for simple ideas’; 
every specialist field needs technical language to avoid having to use long-winded descriptions of 
commonly used ideas.
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Example: Teaching binary representation to early 
primary children using CS Unplugged
This activity is described more fully in an open-source lesson (CS Unplugged, n.d.).

 ● Create a set of five cards, with dots on one side and nothing on the other. The cards 
have 1, 2, 4, 8 and 16 dots, respectively.

 ● Place them down in order with the one-dot card on the far right and the one with 
sixteen dots on the far left.

 ● Give the rule that each card either has all of its dots visible or is flipped to 
show none.

 ● Using this context, students can be scaffolded to discover binary representations 
(e.g. ‘show exactly five dots’) and to explore limits (such as thirty-one being the 
maximum number that five cards can show).

The binary representation activity shows how the concept of representing numbers and letters in 
binary can be communicated to relatively young students by manipulating cards (Figure 12.1). It 
is taught with students constructing the concepts themselves, rather than simply being told how 
things work. For example, they can work out for themselves that each card has twice as many dots 
as the previous one. In doing this, students are also demonstrating the CT skills of logical reasoning 
and pattern recognition.

Initially ‘yes’ and ‘no’ are used to communicate if each card has its dots visible or not, and the 
terms ‘zero’ and ‘one’ for the two symbols aren’t mentioned until later, which emphasizes that they 
are an arbitrary abstraction for what is physically happening on a computer with electrical charges 
and magnetism. The important thing isn’t what the two symbols are; it is the fact that using any 
two different symbols allows us to represent any type of data (e.g. the activity quickly extends to 

Figure 12.1 Interacting with binary numbers using cards
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representing letters of the alphabet using numbers). The technical word for these two values is 
‘binary digit’, abbreviated as ‘bit’, and while it is good for students to know this terminology, most 
of their time has been spent understanding the implications of binary representation.

Sometimes ‘binary numbers’ are taught as simply converting conventional decimal numbers to 
a representation with zeroes and ones, which can be conveniently assessed in exams. In practice, 
computer scientists rarely convert numbers between binary and decimal; the real concepts at play 
here are much deeper. The following section discusses one of the key ideas that students can take 
away from the activity above.

Anything stored on a computer can be represented 
using just two symbols
This is a powerful concept and is easily demonstrated to students using the numbers to represent 
months. Without explanation, the teacher says something like, ‘The month I was born in is no-no-
yes-yes-yes’ (pointing at the cards from left to right), which students could translate to 00111, or 
the decimal number 7, but are likely to recognize it as ‘July’. This gives the opportunity to point out 
that a new type of data (months in the range January to December) can be represented by simply 
saying yes and no. From a CT point of view, this is an application of abstraction; the name ‘July’ 
carries a lot of extra information and history – for example it was named after Julius Caesar – but 
for practical purposes (such as working out how long it is until my birthday), abstracting the word 
to number 7, or binary representation 00111, is sufficient.

Another important concept is the range of values that can be represented by a given number of 
bits. The above activity uses five cards and can represent any value from zero to thirty-one. This 
gives thirty-two different values (a concept that may be a challenge for some students to come to 
grips with). But with some guidance, students should be able to extend this idea to six cards, which 
represent the values from zero to sixty-three, giving sixty-four different values. The principle that 
this has started to expose is discussed in the following section.

Each extra bit added to a binary representation doubles 
the range of values that can be represented
This observation comes up in many different areas. For example, 5 bits provides thirty-two different 
values and so are sufficient to represent the twenty-six letters of the English alphabet (with some 
combinations left over). However, this isn’t enough to represent the approximately 100 characters 
used on an English computer keyboard, which includes upper and lower case, punctuation and 
other symbols. For this 7 bits (allowing 128 different values) are needed.

Extending this to languages such as Chinese, which have tens of thousands of symbols, one 
might expect that a very large number of bits is needed for each character. In fact, just 16 bits for 
each character allows for 65,536 different symbols and is sufficient for most documents. The same 
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also applies to representing colours. It is generally accepted that the human eye can distinguish a 
few million different colours at most. A 24-bit representation of colour allows a digital device to 
store over 16 million different colours, and so in principle it is more accurate than the human eye 
can perceive. Using more than 24 bits would be redundant.

Relating the technical idea of binary numbers to helping humans communicate in their own 
language, or perceive the colours in images accurately, gives meaning to what otherwise appears as 
a purely technical concept. These are highly motivating examples for both students and teachers. 
This isn’t just an interesting example though; it is the whole point of binary representation: to be 
able to store things as diverse as words, images, sounds and financial information at a level of 
accuracy that matches human needs.

Key concept: Digital systems should be designed 
for humans
The previous example makes the point that binary numbers relate directly to human 
needs and values. This idea applies to most technical areas of computing: interfaces 
need to be designed to interact well with the way that the user thinks and works, 
and programs need to be written in a way that if another human has to read the ‘code’, they 
can do so easily. Computer systems need to be designed to be reliable so that people aren’t 
constantly wasting their time having to get material from backups or asking for a repeated 
download. They also must be reliable in terms of safety, as digital systems are used in high-risk 
environments such as medical care. Networks need to operate at a human timescale – we are 
used to communicating and thinking at the level of around 1 second; if a system constantly 
takes 30 seconds to respond, it will be frustrating and difficult to use. We summarize this with 
the mantra: computer programs aren’t written for computers; they are written for humans.

12.3 Computational thinking, computer science 
and programming at the primary school level
A computing curriculum should support the development of CT skills. As discussed in Chapter 5, CT 
has been defined in many different ways, although the varying definitions are broadly in agreement.

It’s important that teachers are clear on what CT is and isn’t, since not everything that happens 
on computers will be CT and vice versa. The value of being able to work with computational ideas 
is applicable beyond being able to program and, conversely, can be learnt in areas other than 
programming (such as the ‘Unplugged’ example above). However, converting an idea to a program 
and getting it to work on an autonomous device fully exercises one’s ability to be precise in the 
expression of the steps needed to solve a problem (Hermans and Aivaloglou, 2017). Programming 
is an excellent way of consolidating and testing one’s CT skills.
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Having acted out ideas in an unplugged context enables students to properly understand the 
steps of their algorithm. This can then map directly onto an implementation, since Unplugged 
activities enforce the constraints that computation imposes on a programmer (Bell, 2021). It also 
helps with debugging, since this can be done effectively only if the programmer understands 
what the program was intended to do at each step. It is important to note that teaching only in 
an unplugged style has disadvantages, just as teaching only programming does. When taught in 
isolation, students (and sometimes teachers) may perceive unplugged activities as isolated learning 
activities or even just games, and they can struggle to make connections between the activities and 
computing (Duncan, 2019). Preceding learning programming with Unplugged activities has been 
demonstrated to increase students’ self-efficacy (Hermans and Aivaloglou, 2017). Programming 
contextualizes unplugged and vice versa (Bell, 2021). A survey of research on unplugged approaches 
can be found in Bell and Vahrenhold (2018).

In the following we reflect on how an activity, such as the binary number activity, can exercise 
common aspects of CT for students at a primary school level, based on the outline given in 
Chapter 5. A more detailed description of these connections can be found at the end of the lesson 
plans on csunplugged.org.

Logical thinking
Logical reasoning is about trying to make sense of things by observing, thinking about the facts 
and rules that you know are correct and using logic to deduce more rules and information from 
these. In our binary numbers example, students used these skills to evaluate how many numbers 
can be represented with a certain number of bits or how to represent a given number.

Algorithmic thinking
This supports students to follow algorithms and to create algorithms to solve problems by breaking 
them down into steps. In our binary example, students practise and develop algorithmic thinking 
skills as they learn (by constructing the knowledge themselves) an algorithm for converting 
decimal numbers to binary and practise following this algorithm. When looking for evidence of 
students’ algorithmic thinking skills, teachers can observe how methodical students are in their 
approach to the task.

Pattern recognition
Finding patterns is an important part of working in computation because repeated patterns can 
be automated and generalized. For the binary number activity, there are obvious patterns in the 
number of dots on each card as well as the maximum value that can be represented by a given 
number of cards. There are multiple other patterns that can be explored within this activity 
as well.
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Abstraction and generalization
This is about simplifying things by identifying what is and is not important and removing all specific 
details and patterns that will not help us solve our problem. By doing this we can create problem 
representations and solutions that are as general as possible. The binary activity requires students to 
work with several abstractions, including using numbers to represent letters of the alphabet, cards 
to represent the digits 0 and 1, and even the terms ‘zero’ and ‘one’, or ‘off ’ and ‘on’, to represent the 
two different states that the digits can be in. Binary number representation itself is an abstraction! 
It hides the complexity of the electronics and hardware inside a computer that store data, and the 
versatility of digital devices hinges on the generalization possible through this simple abstraction.

Evaluation
This is about identifying the possible solutions to a problem and judging which is the best to use. 
For the binary numbers, students can evaluate how many different values can be represented with 5 
bits, then with 6 bits and more. The result of this evaluation is that they should see the exponential 
growth in the range of values as the number of bits increases and the trade-off between richness of 
representation with the cost of storage space.

12.4 Reasons for introducing computing in 
primary schools
There are several positive consequences of having students experience computing at primary 
school age, as opposed to encountering it for the first time as an adolescent or later (Duncan, Bell 
and Tanimoto, 2014):

 ● Students are exposed to the concepts and ideas when they are younger, before misconceptions 
about the nature of the subject set in (e.g. ‘It’s just for boys’, ‘It’s about sitting in front of a 
computer and using it all day’); these misconceptions potentially damage students’ views 
of their competence in computing, particularly those from historically underrepresented or 
excluded groups.

 ● Diversity is increased by giving as many students as possible exposure and experience in 
computing, not just those with a special interest, or extra opportunities and privilege.

 ● It provides a chance for students to find out which skills are closely connected with 
programming and computing in general, particularly maths and communication skills, which 
are harder to pick up if a student develops a passion for computing later in their schooling or 
career.

 ● Natural languages are learned most easily before approximately ten years of age, and while the 
same has not yet been fully established for programming languages, there is some evidence 
that this may be the case.
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 ● CT and programming provide good opportunities for an integrated curriculum, where 
students can learn subjects as diverse as maths, literacy and music in ways that can be 
deeper than learning the subjects in isolation (Duncan, Bell and Atlas 2017). An integrated 
curriculum is generally easier to implement in junior years because it is common for students 
to have one teacher for all subjects, rather than multiple teachers covering single subjects, as 
is common in intermediate and high school.

12.5 The bigger picture
Having looked at some specific examples and considered the role of CT in the curricula, we 
now take a step back and think again about why particular topics should appear in curricula for 
beginning students. We begin by thinking about the ecosystem surrounding digital devices, so that 
we have a benchmark to compare curriculum topics against.

Figure 12.2 shows a model of a digital system based on six key elements that are commonly 
found in curricula (Duncan and Bell, 2015). The ‘digital device’ would traditionally be a computer, 
but it could also be a smartphone, a tablet or an embedded device such as a burglar alarm or cash 
register. All of these devices run applications, otherwise referred to as software, apps or firmware; 
examples would be a word processor, clock, web browser or weather simulator as well as include 
hidden software such as a printer driver or a washing machine controller. These applications apply 
an algorithm to data; the algorithm might be as simple as incrementing the number of steps taken 
in a personal fitness device or as complex as predicting the weather 1 week from now. A key is that 

Figure 12.2 A model of digital systems
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the algorithm is just the process that happens, but to implement the algorithm, someone needs to 
create a program that physically operates on the data, in a form that the digital device can execute. 
Many students may not even be aware that all these devices are running computer programs; the 
tools in common use, including search engines and social networks, can appear as monolithic 
entities rather than ‘code’ that someone has actually written.

The most important component of the system is the human, as software and hardware are 
created to address a human need. This need might be as trivial as entertainment – playing a small 
game or an animated movie – through making sure that food can be delivered to a population 
economically and quickly. In all these cases, the interface to the human is crucial; a confusing 
interface can lead to disasters, and a delightful interface enables the software and its associated 
hardware to be sold at a premium.

Finally, very few digital devices exist in isolation, and they are connected through some sort of 
infrastructure, whether it is the internet, a local area network, a small personal network such as 
Bluetooth or a ‘sneakernet’, where a memory card or disk is physically moved between devices such 
as from a camera to a computer.

The six components in Figure 12.2 provide a model for the knowledge that students will need 
in order to fully understand a system and be able to design their own digital artefacts. A complaint 
about older curricula is that they focus primarily on the applications, while the data, algorithms, 
programs and infrastructure are treated as a black box, and the human is expected to conform to 
the system, rather than viewing the interface critically and considering what is good about it and 
what might be improved.

This provides us with a bigger picture: if we can explicitly expose students to all six elements 
of digital systems in a form that is meaningful in their world, then we can give them a better 
understanding of how it all works and empower them to be technology creators rather than just 
consumers. This now puts a topic such as ‘binary numbers’ in context; for example, students can gain 
an appreciation that the same hardware can be used for working with a wide variety of information 
and that it is binary data moving around the system that makes great things happen. It also 
explains why inventions like flash memory open new possibilities for photographers, musicians 
and seismologists alike because the same physical memory can be used for such different purposes.

Moving back to the bigger picture of a device, and the view that the human is the most important 
part of a computer system, we become aware that as students learn about programming, they need 
to always have the human (i.e. the user) in mind. This can be as trivial as thinking about how a 
response will affect the user, such as a rather humiliating ‘You are wrong!!!’ response to an incorrect 
answer to a quiz question or making users wait unnecessarily because the programmer couldn’t be 
bothered using a more efficient algorithm.

12.6 Integrated learning
Introducing computing to primary education is, for many teachers and schools, an intimidating 
task. One approach that can be helpful is to use integrated learning, where computing concepts are 
learned in the context of other subjects and vice versa.
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Integrated learning can appear in many forms in computing classes. For example, investigating 
early cryptographic methods can open an opportunity for student inquiry that is relevant to social 
studies around the use of codes in wartime. Writing programs to play music can utilize skills 
from both subjects at the same time (Bell and Bell, 2018). Lee, Martin and Apone (2014) integrate 
computing lessons with storytelling, science investigations and analysing locational data, while 
Smith and Burrow (2016) use computing in the context of story writing.

There are several benefits of using integrated learning. One is that lessons use partially familiar 
ideas; for example, teaching programming in the context of music for a teacher who is confident 
with music means that just the programming is the new knowledge domain for the teacher; in 
contrast, having students write a program to convert binary numbers could have both the teacher 
and students working with two new knowledge domains.

Another advantage of integrated learning is that the new subject of computing can have a positive 
impact on the existing curriculum, rather than competing for valuable time. For example, teaching 
geometrical ideas like distance and angles through a language like Scratch can be motivating for students 
because the system helps them visualize and quickly apply what they are learning, and at the same time, 
they are learning to sequence and possibly iterate commands (Duncan and Bell, 2015, Duncan 2019).

12.7 Case study two: Programming – what are 
the main concepts?
A lot of the improvements in curricula focus on learning programming (or ‘coding’), so we provide 
a second case study here to unpack the concepts at play at the primary school level.

Example: Kidbots
In the ‘Kidbot’ activity (https://www.csun plug ged.org/en/top ics/kidb ots/
unit-plan/), a large grid (typically an 8 by 8 grid of 30 centimetre squares; see 
Figure 12.3) is used on which students can step out simple instructions like ‘Forward’, 
‘Turn left’ and ‘Turn right’. Three students play the roles of ‘Bot’, ‘Programmer’ and ‘Tester’, 
respectively. The ‘Bot’ stands on a square in the grid, and another square is identified that 
they need to get to. The programmer writes a series of instructions using the commands 
and then gives their ‘program’ to the tester to read them to the bot. Once the tester gets 
the program, it is executed without any adjustment, to simulate what happens when a 
program is run on a computer (this is why a tester is needed; the programmer will be very 
tempted to make changes on the fly!). The course can be made progressively more difficult 
by adding obstacles, and extra challenges include finding alternative sets of instructions 
that achieve the same thing.

A follow-up activity is to do the same thing with a ‘turtle’-based system, either one with 
physical movement such as a Bee-Bot or an on-screen one such as the Bee-Bot app.

 

https://www.csunplugged.org/en/topics/kidbots/unit-plan/
https://www.csunplugged.org/en/topics/kidbots/unit-plan/
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Figure 12.3 Kidbot grid

The ‘Kidbot’ activity enables students to physically experience what they can later program a device 
to do. Although the two activities are the same at an abstract level, doing the activity away from the 
computer encourages the student to think through their program. This helps prevent them from 
entering into a kind of ‘programming by permutation’ process where they continually make small 
changes to a program without understanding it, in the hope that it will fix a mystery bug that they 
have encountered.

Introductory programming systems such as the turtle-based approach described here, as used 
in languages like Scratch, Snap!, Blockly, Logo and so on, work with concrete ideas based around 
movement that students will be familiar with, yet can introduce fundamental ideas like sequence, 
selection (if statements) and iteration (loops). This is a good example of scaffolding using current 
knowledge (movement in a 2D space) to teach some simple programming commands.

A valuable aspect of starting with unplugged exercises is that it is an opportunity to use technical 
terminology appropriately: the device follows an algorithm that is implemented by programming 
the device, and if testing shows that it doesn’t work correctly, then the program needs to be debugged. 
The importance of learning the language of the discipline is discussed further in Chapter 14.

In the bigger picture of learning programming, the simple ‘Kidbot’ programming language 
introduces several important programming concepts: the use of sequence as well as testing and 
debugging. However, it is important for students to advance (eventually) beyond the concept 
of sequence to become comfortable with selection and iteration. Together, these three concepts 
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give access to the full power of computing (Aho, 2010), and if we consider a typical beginner’s 
programming language like Scratch, Snap! or Logo, we can see that it contains all the elements 
and, therefore, is suitable for teaching programming in considerable depth, provided that all those 
elements are exercised well. It appears that despite the potential of such languages, they aren’t 
widely used to explore the full power of programming. For example, Aivaloglou and Hermans 
(2016) found that in a sample of around 4 million Scratch programs shared online, 78.33 per cent 
had no decision points and 13.8 per cent had only one, so very few student programs were using ‘if ’ 
statements or conditional loops and therefore weren’t accessing the full power of a computational 
device. Likewise, Amanullah and Bell (2019) found that only about a third of Scratch programs 
used decision points, and the use of common programming patterns was very rare.

Being aware of the key elements of computer programs (and computing in general) dispels the myth 
that computing is changing so fast that knowledge will be out of date too quickly; on the contrary, the 
fundamental elements of modern programming languages that are used to program the latest devices 
would be recognized by Alan Turing and are no more powerful computationally than the nature of 
computation that he articulated in the 1930s (although they are smaller and faster!)

Thinking about programming as teaching these key elements means that teachers should see 
themselves as teaching programming, rather than teaching a particular language. While animations 
or games that don’t use all of these elements in any depth can be inspiring for students and 
have cross-curricular value, a teacher shouldn’t lose sight of enabling students to work with the 
elements at an age-appropriate level. For a very young student, this might involve focussing only 
on sequence and possibly iteration (e.g. repeat commands), in the same way that in maths the 
preparation for algebra is to learn basic facts about numbers, in preparation for learning more 
powerful notation later.

More details around teaching ‘coding’ are provided in Part 4, but it is useful to note that in 
primary schools the role and context of programming as a subject is changing as it becomes a 
part of mainstream curricula. There is a view that younger students can gain a lot through playful 
interaction with a programming environment; Resnick and Rusk (2020) point out that ‘although 
it might seem more efficient to teach concepts through direct instruction, we have seen that 
many students become more engaged and gain a greater sense of agency and confidence when 
they learn through playful experimentation and exploration’. However, the advent of curricula in 
many countries has led to more formal expectations, and an important trend is the understanding 
that reading and interacting with existing code is a valuable prelude to writing it. This is reflected 
in approaches such as ‘Predict, Run, Investigate, Modify, Make’ (PRIMM) (Sentance, Waite and 
Kallia, 2019).

Through a focus on CT rather than on just programming, students will be learning generally 
applicable skills (such as giving clear and unambiguous instructions) as well as realizing that 
computers do only what a program says and not necessarily what the programmer intends. 
Another key idea is that most programs will need debugging, and the act of programming has to 
include this. It is appropriate at the primary school level to be getting familiar with these ideas as 
general skills and to appreciate what a program is. The goal of this is not to have every student enter 
a career in programming, but to ensure students have the opportunity to understand the world 
they are living in, where digital systems are a part of nearly everything they do.
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12.8 Teacher education
Providing large-scale and sustainable professional development, resources and support to teachers 
is yet another challenge. However, all of these can be overcome with suitable support (Brown et al., 
2014; Falkner, Vivian and Falkner, 2014; Schulte, Hornung and Sentance, 2012; Bell, Duncan and 
Atlas, 2016; Duncan, 2019). For primary school teachers, professional development needs to be 
in the context of helping a generalist teacher see the value of adding another topic to the range 
they need to cover; beyond primary school, it can involve developing more advanced knowledge 
(including programming) and particularly the pedagogy to deliver these topics.

Pre-service education can be a major challenge; colleges of education are often contending with 
an already full curriculum, so fitting in a new subject that the academic staff aren’t experienced 
teaching can be just as challenging as introducing it in schools. This adds to the need for training 
and resources that can be implemented quickly by teachers.

Support for teachers new to the area can be provided in many ways: in-person workshops, online 
courses including massive open online courses (MOOCs), peer mentoring and co-teaching, subject 
associations and pre-prepared lesson plans and assessment resources. There are also many resources 
online for self-education in general CS and programming, which a subset of teachers may choose to 
use to extend their own learning, but this is not necessary (and should not be required) for teaching.

Teacher confidence is also crucial for implementing this subject. Teachers can find it hard to 
navigate unfamiliar terminology, which becomes a barrier to engaging (Munasinghe, Bell and 
Robins 2021). In a pilot study, Vivian et al. (2020) found that teacher confidence was an issue, 
particularly for primary school teachers, female teachers and those living away from metropolitan 
areas. However, they found that after about four years’ experience, teachers moved from negative to 
positive self-esteem in computing, so a key is supporting teachers to overcome initial frustrations as 
they gain experience. In our experience in New Zealand, an effective way of increasing confidence 
and engagement for a significant number of teachers is making personal connections, which is 
a large emphasis in our workshops. These connections are both between teachers, so they can 
support each other in the future, and between teachers and the subject content itself. Identifying 
the importance of computing in peoples’ lives, and how it connects to their own community, can 
make it easier for teachers to see themselves as part of the digital world.

While content knowledge is of course essential for teachers, it does not need to be as extensive as 
might be expected. It’s not necessary to be a better programmer than students (although of course 
more programming knowledge is helpful) and be able to debug their programs; rather it’s about 
facilitating learning and supporting students to do the problem solving themselves.

12.9 Summary: The purpose of teaching 
computing at primary schools
Now that we have both a big picture of what computing is about and some detailed examples 
that relate to this, the purpose of teaching these topics in primary schools comes into focus. 
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A key purpose of education is to prepare students for their future and enable them to participate 
positively in society. Students will also have the opportunity to see why numeracy and literacy are 
important if they intend to engage further with computing, so that they don’t abandon learning 
these in favour of just learning ‘coding’.

Despite the value of introducing CT at primary school, there are also challenges in the process. 
Any change in an educational system is complex, and these changes involve a considerable amount of 
learning for teachers. Making space in a curriculum can also mean a change in priorities that not all 
education systems are ready for (Brown et al., 2014), and this challenge extends to teacher education.

To make this transition more achievable, we must stay focussed on the main objectives for 
introducing these topics to primary school curricula. The goal is not to push students’ knowledge of 
these concepts as far as possible. It is to give all students a broad understanding of the topic, teach 
them the big picture concepts and, for those students who enjoy the topic, unlock their passion for it.

Key points
 ● Focussing on the big ideas and goals of teaching computing can avoid it 

turning into a disjoint collection of topics that need to be taught.
 ● Digital systems are designed for humans, and computing education needs to bring 

students back to thinking about how each sub-topic studied affects humans.
 ● Computational thinking can be exercised by teaching skills and knowledge in 

computing.
 ● There are several reasons for introducing computing to primary aged students; 

many of these mean that their learning should ignite their interest rather than 
overwhelm them with information.

 ● Integrated learning can help to reinforce the applicability of computing, give 
teachers more confidence with the subject and avoid displacing other subjects in 
the school day.

 ● Learning programming should be seen as gaining a broad understanding of what 
computing is, rather than a specific skill in a particular language.

 ● Teachers need support to overcome initial challenges teaching a new topic, as it can 
take a few years to become comfortable with it.

 ● Bringing in a new subject to the curriculum is challenging; it is important to keep in 
mind the main purposes for teaching the new topics.

For further reflection
 ● How could topics from computing be used to enhance other subjects in 

the curriculum with integrated learning?
 ● What might different interest groups (parents, teachers, industry, government) see 

as the main reasons for introducing computing in primary schools?

 



Teaching Computing in Primary Schools 149

References
Aho, A. V. (2010, January), What Is Computation? Ubiquity Symposium.
Aivaloglou, E., and Hermans, F. (2016), ‘How Kids Code and How We Know: An Exploratory Study 

on the Scratch Repository’, in Proceedings of the 2016 ACM Conference on International Computing 
Education Research, 53–61.

Amanullah, K., and Bell, T. (2019), ‘Evaluating the Use of Remixing in Scratch Projects Based on 
Repertoire, Lines of Code (LoC), and Elementary Patterns’, in 2019 IEEE Frontiers in Education 
Conference (FIE), 1–8, IEEE.

Bell, J., and Bell, T. (2018), ‘Integrating Computational Thinking with a Music Education Context’, 
Informatics in Education, 17 (2): 151–66. https://www.ceeol.com/sea rch/arti cle-det ail?id=708 739.

Bell, T. (2016), ‘Demystifying Coding for Schools—What Are We Actually Trying to Teach?’ Bulletin 
of the European Association for Computer Science (BEATS), 120 (October): 126–34.

Bell, T. (2021), ‘CS Unplugged or Coding Classes?’ Communications of the ACM, 64 (5): 25–7.
Bell, T., Duncan, C., and Atlas, J. (2016), ‘Teacher Feedback on Delivering Computational Thinking 

in Primary School’, in Proceedings of the 11th Workshop in Primary and Secondary Computing 
Education, 100–1.

Bell, T., and Vahrenhold, J. (2018), ‘CS Unplugged—How Is It Used, and Does It Work?’, in H. J. 
Böckenhauer, D. Komm, and W. Unger (eds), Adventures between Lower Bounds and Higher 
Altitudes: Essays Dedicated to Juraj Hromkovič on the Occasion of His 60th Birthday, vol. 11011, 
497–521, Cham: Springer.

Brown, N. C. C., Sentance, S., Crick, T., and Humphreys, S. (2014), ‘Restart: The Resurgence of 
Computer Science in UK Schools’, Transactions on Computing Education, 14 (2): 9:1–9:22. http://
doi.org/10.1145/2602 484.

CS Unplugged (n.d.), Unit Plan: Binary Numbers. https://www.csun plug ged.org/en/top ics/bin ary-
numb ers/unit-plan/.

Duncan, C. (2019), ‘Computer Science and Computational Thinking in Primary Schools’, Doctoral 
Dissertation, University of Canterbury, New Zealand. http://dx.doi.org/10.26021/3286.

Duncan, C., and Bell, T. (2015), ‘A Pilot Computer Science and Programming Course for Primary 
School Students’, in Proceedings of the Workshop in Primary and Secondary Computing Education—
WiPSCE ‘15, New York: ACM Press.

Duncan, C., Bell, T., and Atlas, J. (2017), ‘What Do the Teachers Think? Introducing Computational 
Thinking in the Primary School Curriculum’, in Proceedings of the Nineteenth Australasian 
Computing Education Conference, 65–74. http://doi.org/10.1145/3013 499.3013 506.

Duncan, C., Bell, T., and Tanimoto, S. (2014), ‘Should Your 8-Year-Old Learn Coding?’ in Proceedings 
of the 9th Workshop in Primary and Secondary Computing Education, 60–9, New York: ACM Press. 
http://doi.org/10.1145/2670 757.2670 774.

Falkner, K., Vivian, R., and Falkner, N. (2014), ‘The Australian Digital Technologies 
Curriculum: Challenge and Opportunity’, in Proceedings of the Sixteenth Australasian Computing 
Education Conference (ACE2014), 3–12, Auckland, New Zealand.

Hermans, F., and Aivaloglou, E. (2017), ‘To Scratch or Not to Scratch? A Controlled Experiment 
Comparing Plugged First and Unplugged First Programming Lessons’, in Proceedings of the 12th 
Workshop on Primary and Secondary Computing Education, 49–56, New York: ACM Press.

 

https://www.ceeol.com/search/article-detail?id=708739
http://www.doi.org/10.1145/2602484
http://www.doi.org/10.1145/2602484
https://www.csunplugged.org/en/topics/binary-numbers/unit-plan/
https://www.csunplugged.org/en/topics/binary-numbers/unit-plan/
http://www.dx.doi.org/10.26021/3286
http://www.doi.org/10.1145/3013499.3013506
http://www.doi.org/10.1145/2670757.2670774


Computer Science Education 150

Lee, I., Martin, F., and Apone, K. (2014), ‘Integrating Computational Thinking across the K–8 
Curriculum’, ACM Inroads, 5 (4): 64–71. http://dx.doi.org/10.1145/2684 721.2684 736.

Munasinghe, B., Bell, T., and Robins, A. (2021), ‘Teachers’ Understanding of Technical Terms in a 
Computational Thinking Curriculum’, in Australasian Computing Education Conference, 106–14.

Resnick, M., and Rusk, N. (2020), ‘Coding at a Crossroads’, Communications of the ACM, 63 (11):  
120–7.

Schulte, C., Hornung, M., and Sentance, S. (2012), ‘Computer Science at School/CS Teacher 
Education: Koli Working-Group Report on CS at School, in Proceedings of the 12th International 
Conference on Computing Education Research: Koli Calling ’12, 29–38. Tahko, Finland: ACM. 
http://doi.org/10.1145/2401 796.2401 800.

Sentance, S., Waite, J., and Kallia, M. (2019), ‘Teaching Computer Programming with PRIMM: A 
Sociocultural Perspective’, Computer Science Education, 29 (2–3): 136–76.

Smith, S., and Burrow, L. E. (2016), ‘Programming Multimedia Stories in Scratch to Integrate 
Computational Thinking and Writing with Elementary Students’, Journal of Mathematics Education, 
9 (2): 119–31.

Vivian, R., Quille, K., McGill, M. M., Falkner, K., Sentance, S., Barksdale, S., Busuttil, L., Cole, E., 
Liebe, C., and Maiorana, F. (2020, June), ‘An International Pilot Study of K–12 Teachers’ Computer 
Science Self-Esteem’, in Proceedings of the 2020 ACM Conference on Innovation and Technology in 
Computer Science Education, 117–23.

http://www.dx.doi.org/10.1145/2684721.2684736
http://www.doi.org/10.1145/2401796.2401800


151

13
Teaching of Concepts

Paul Curzon, Peter W. McOwan, James Donohue, 
Seymour Wright and William Marsh

Chapter outline

 13.1 Introduction
 13.2 Teaching through analogy and storytelling
 13.3 Computing unplugged
 13.4 Context-based learning
 13.5 Enquiry-based learning
 13.6 Discourse and active writing
 13.7 Conclusions

Chapter synopsis
This chapter reviews strategies successfully used for teaching computer 
science and computational thinking concepts: those based on analogy, 
‘unplugged’ computing, discourse and writing, contextualized approaches and 
enquiry-based learning. We give concrete examples based on our practical experience 
teaching computing concepts to students of all ages through Computer Science for Fun 
(www.cs4fn.org) and in developing material to support teachers through Teaching London 
Computing (teachinglondoncomputing.org). We also draw on other resources including 
CS Unplugged (csunplugged.org), which spawned an interest in kinaesthetic activities 
stimulating understanding of concepts in concrete ways by making the abstract tangible.

 

 

http://www.cs4fn.org


Computer Science Education 152

13.1 Introduction
Computing develops sophisticated skills such as programming but is also a rigorous academic 
subject akin to physics or history, consisting of a rich conceptual framework. Computational 
thinking, the core skill set that students develop studying computing, is also rich with concepts such 
as abstraction, decomposition and generalization. Understanding these concepts is an important 
part of being able to think computationally. A solid understanding of earlier concepts is often a 
prerequisite for understanding later ones (Meyer and Land, 2006), especially with programming. 
Having ways to give students timely help around threshold concepts and misconceptions is vital as 
it is easy for students to form faulty mental models and so harbour critical misconceptions.

The learning of concepts is therefore vital. Appropriate pedagogic methods are needed that leave 
students with a clear understanding of individual concepts, their relationships and how they fit into 
broader contexts of the subject. We overview a variety of approaches.

13.2 Teaching through analogy and storytelling

Analogy
Many computing concepts have links to everyday objects and real-world, ideas so the use of 
analogy is a powerful way to scaffold students’ understanding. These analogies can help explain the 
computing version in a memorable way (see box). Curzon (2014) describes many such analogies.

Example: Analogy for computing concepts
First-in-first-out queue data structures have a direct analogy to what we do 
in supermarkets. A priority queue might be illustrated by talking about what 
happens at a night club where most people queue but celebrities go straight to the front, 
and the arrival of an A-list celebrity leaves minor celebrities waiting.

The idea that one data structure might be implemented in several completely different 
ways can also be illustrated with real-world examples first. Have students consider 
different situations they have encountered where queues form (a deli counter and a bus 
stop, perhaps) and explain how they work. Both are first-in-first-out but may do so with 
completely different implementations. The bus stop might have people waiting in line: new 
people join at the back but leave from the front, and all shuffle up as someone leaves. The 
deli counter might have a ticket system. People take a number and stand anywhere. They 
move only when their number comes up. Many other implementations exist too, showing 
that one abstract data type can be implemented in many ways.

It is important to make clear the boundaries of the analogy and clearly link back to the computing 
concept. This relates to the educational theory of ‘semantic waves’ (Maton, 2013; Macnaught et al., 
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2013), which argues that good teaching involves waves of explanation. First the teacher descends 
the semantic wave linking from abstract and technical concepts to concrete and everyday concepts. 
Critically, they then go back up the wave to link back to the technical concepts. Chapter 14 explores 
the use of metaphors from a linguistic perspective.

Some computing analogies are more than an analogy – the computing and real-world versions 
are identical at the conceptual level. Computation is something that happens in the world, not just in 
computers. For example, a stack of chairs follows the rules of a stack data structure in that chairs can 
be added and removed only in a last-in-first-out manner. It is the implementation of the concepts 
that differs, not the abstract concept itself. Everyday equivalences make very powerful explanations.

Key concept: Semantic waves
Semantic waves concern what makes a powerful explanation. They explain 
how to make many of the approaches described here work (or why they do 
not work). Good explanation starts by introducing technical concepts but then 
relates them in some way to concrete (or material) situations or contexts that 
are already understood, before then explicitly linking back to the new concept. This approach 
is behind successful teaching by analogy, storytelling and successful unplugged teaching.

Storytelling
Storytelling provides a different kind of hook to link concepts to (see box). The stories must be 
engaging and memorable. The place of the concept in the story must also be natural. The links from 
the story to the technical concepts have to be clear: travelling the semantic wave. One approach is 
to tell a story, then have students identify the concepts themselves.

Examples: Storytelling
An example of using fiction to teach concepts is in telling the story of ‘The 
Cat in the Hat’ (Dr Seuss, 1958) to explain recursion. In this story a series 
of ever smaller cats appear to help solve a problem of a stain on a bath. With the cats 
representing recursive calls, the story includes analogies for the key concepts underpinning 
recursion: base and step cases, and the need to unwind recursive calls. Linked to the story, 
these concepts are given a problem-solving context and made memorable.

A non-fiction example is used in the ‘Searching to Speak’ activity (Curzon and McOwan, 
2017; Curzon, n.d.). This uses the story of how a locked-in syndrome, paralysed patient 
wrote a book. You interactively explore with the class how to devise an algorithm for him 
to communicate when all he can do is blink an eye. The natural human drama involved, 
together with a twist at the end, makes the story a memorable way to learn concepts such 
as divide and conquer.
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Invention
Another approach is to support students to invent concepts themselves. Puzzles or kinaesthetic 
activities provide scaffolding. For example, to introduce while loops, introduce the need for repetition 
and have the students invent the syntax and structure, based on their understanding of if-statements.

13.3 Computing unplugged
Unplugged computing (Bell et al., 2009) involves teaching concepts away from computers. 
Unplugged activities provide ways to understand concepts in a constructivist way (Papert and 
Harel, 1991). It is again vital that the links to the concepts are clearly made. Otherwise students 
can be left understanding the everyday version of the activity but not the computing concept 
itself. Unplugged activities are a physical, rather than verbal, version of applying semantic waves 
(Macnaught et al., 2013), where the physical activity is a way of engaging with the concept in a 
concrete way, before ascending the wave to make the link to the technical concept.

Key concept: Unplugged computing
Unplugged computing involves teaching computing away from the computers. 
Physical objects are used to illustrate abstract concepts. There are a variety 
of approaches centred around kinaesthetic activities. Variations include role-
playing computation, puzzles, games and magic. The strength is in the way 
intangible abstract concepts are made physical, so can be pointed to, manipulated and 
questions easily asked about them.

Kinaesthetic activities
In kinaesthetic unplugged activities (Curzon et al., 2009), tangible objects are representatives of 
abstract concepts. These can be physically manipulated following algorithms. Learners are able to 
see, point to and manipulate objects, making it easier to explore the concepts and ask questions. 
A barrier to asking questions is often that the person does not possess the vocabulary to even frame 
them. By giving physical representations, the learner can point to them and ask the question at the 
level of the analogy rather than having to fully verbalize it at the technical level. This can also be 
used to encourage students to invent concepts.

Example: Kinaesthetic binary search
In the CS Unplugged ‘Binary Search’ activity (CS Unplugged, 2008), participants 
invent binary search. A physical scenario for doing the search is set up with 
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numbered objects placed in order under cups. The student must find a particular object, 
lifting as few cups as possible. The secret is to check the middle first and use the number 
there as a signpost indicating which half to then search recursively. If students don’t 
immediately invent this idea, they soon learn that it is a good strategy.

Role-playing computation
The kinaesthetic approach can be taken further: role-playing computation. Instead of physical 
objects taking the place of virtual things and the student applying an algorithm to them, the 
computation now acts on the students. The CS Unplugged ‘Beat the Clock: Sorting Networks’ 
activity (Bell et al, 2015: 80–6) is one example. Students act as data that is sorted into order 
following an algorithm.

Example: Role-playing program execution
Assignment is a threshold concept when learning programming. In the 
Teaching London Computing ‘Box Variables’ activity (Box Activity Variables, 
n.d.), students role-play being variables: storage spaces with shredders and photocopiers. 
Code is executed on them manipulating those variables. This builds a mental model of how 
a sequence of assignments work. It gives a clear, visual illustration of how a single value is 
copied from elsewhere, then stored, with old values discarded (shredded). It also makes a 
tangible distinction between names (a label round the person’s neck), the variable (the box 
the person holds) and the value (the thing in the box).

Students can also role-play commands, wiring them together as in the ‘Imp Computer’ 
activity (Imp computer activity, n.d.), to illustrate control structures. ‘Compile’ program 
fragments onto the ‘wired’ together students. Each plays a statement or test, following 
their instruction only when a baton is passed to them.

Dance has been used to visualize algorithms (Strictly micro:bit, 2016), as has sport, turning sort 
algorithms into relay races to put numbered beanbags into order in buckets, for example.

Puzzles
Computer scientists have long used puzzles to develop computational thinking skills (Harel and 
Feldman, 2004; Levitin and Levitin, 2011). Logic puzzles can be used to develop logical thinking 
skills. Variations of puzzles found in puzzle books can illustrate a wide range of concepts (Puzzles 
computational thinking, n.d.). They give a simple, but fun, way to actively work with concepts. 
For example, give ciphertext to decrypt as a puzzle with or without keys. This leads to active 
learning around concepts including encryption, decryption, frequency analysis, cribs, plaintext 
and ciphertext, encryption keys, symmetric and asymmetric ciphers as well as different encryption 
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algorithms. Puzzles can recreate forms of attack such as man-in-the-middle attacks: set the puzzle 
of forwarding an encrypted message with an additional sentence added. Take a similar approach 
with other concepts: follow the algorithm to solve the puzzle. For example, compression puzzles 
are a way to understand concepts around compression of text (Compression code Puzzles, n.d.).

The Swap puzzle (n.d.) involves swapping the positions of pieces by sliding or jumping them. 
It explores what is meant by an algorithm, how different algorithms can solve the same problem 
and how alternatives can take different numbers of steps, leading to concepts linked to algorithm 
efficiency.

Art and craft
Art and craft can be linked to computing concepts. A CS Unplugged activity involves creating 
necklaces that encode binary in the colours or shapes of beads. Square grid colour-by-number 
puzzles, where numbers represent the colour of squares, explore concepts related to image 
representation, introducing bitmap graphics. Interdisciplinary links can be made to Pointilism 
(painting with small circles) and Roman mosaics (pixels as pieces of glass). Variations illustrate 
colour depth and image compression. To introduce transmission of images, give students the task 
of sending a pixel puzzle drawing across the room by holding up numbered placards. Then, have 
them devise a way of doing it by sending fewer numbers (inventing run-length encoding). Introduce 
vector graphics using pictures created from shapes in a puzzle context. Introduce recursion using 
recursive drawings of grass or trees (Doodle Art, n.d.) linking to the computer-generated imagery 
of films as well as algorithmic art.

Games
Games, from pencil and paper to video games, can teach concepts embedded within them. The 
game can be centrally linked to the concept as with the card game Control-Alt-Hack® (www.Con 
trol AltH ack.com). It explicitly teaches security concepts, with players going on ethical hackers’ 
missions. Other games draw on analogies: use 20-questions activity (n.d.) to illustrate divide and 
conquer. If you name people in turn, ‘Is it Adele?’, ‘Is it Batman?’, and so on, linear searching 
through the names of famous people, you lose! Playing it well involves finding halving questions. 
Games can also provide an engaging context as in the ‘Brain-in-a-Bag’ activity, where unplugged 
brains play Snap to illustrate neural nets or logic gates (Brain-in-a-bag, n.d.).

Magic and mystery
Magic tricks can illustrate many computing concepts in fun, memorable ways. Challenge the class 
to work out both how the magic works and the computing link. ‘Self-working’ tricks of magicians 
are equivalent to a computer scientist’s algorithm. They comprise precise instructions that if 
followed in the given order always result in a specific, desired magical effect (such as that the card 
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on the table is the one predicted). Computer programs are just algorithms written in a language 
that a computer, rather than a human magician, can follow with the guaranteed effect of whatever 
the program is supposed to do. This analogy gives an interesting way to introduce both algorithms 
and computational thinking concepts.

Example: A magic trick
Download the teleporting robot jigsaw trick (Teleporting robot (and Melting 
Snowman) Activity, n.d.). To do the magic, follow the three-step algorithm: count 
the robots, rebuild the jigsaw in a different way and count the robots again. A robot 
disappears. Everyone can do the trick by following the instructions without knowing how 
it works. The point of algorithms is that you need no understanding of what is going on for 
the correct effect to be guaranteed – that is what computers need as all they do is follow 
instructions blindly. The magic trick illustrates why algorithms are the basis of computing.

Magic tricks were first used to teach computing as part of CS Unplugged, for example to illustrate 
error-correcting codes in the Card Flip Magic Activity (Bell et al., 2015: 35–42). ‘The Magic of 
Computer Science’ series (McOwan and Curzon, 2008; McOwan, Curzon and Black, 2009; Curzon 
and McOwan, 2015) take easy-to-perform self-working tricks, showing how the secret techniques 
can be mapped to many different concepts in computing, from binary to pattern recognition. 
Tricks work well as openers to a lesson using the emotional hook and mystery of magic to set the 
scene for in-depth analysis of the taught concepts.

The way tricks are invented gives way to explore computational thinking concepts such as 
decomposition (full tricks are built from combinations of smaller techniques), generalization 
(creating a new trick from the principle of an old one) and evaluation (are you sure enough it 
works to present it to an audience?).

Presentation matters too for a trick to be fit for purpose. This gives a way to introduce concepts 
around usability, so that programs are fit for purpose. The same understanding of human cognition 
matters when presenting a magic trick and when designing easy-to-use software (McOwan, Curzon 
and Black, 2009; Curzon and McOwan, 2015).

Having mastered the performance and learning opportunities of self-working magic, develop 
your own lessons based on self-working card tricks, starting with Fulves (1976) classic series or 
Diaconis and Graham (2013) for a more detailed dive into mathematical card magic.

Part of the strength of magic tricks for teaching concepts is the mystery involved, discussed below.

13.4 Context-based learning
Context-based learning involves teaching concepts within either real-life or fictitious, but realistic, 
examples. This involves actively engaging students with the material rather than presenting 
concepts in an isolated and theoretical manner. If topics can be set in a context that relates to a 
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student’s interests and pre-existing knowledge and understanding, then that interest can drive their 
learning. Several contexts can be drawn on to support learning of computing concepts.

Within-syllabus context
The most basic context is that of the wider subject itself. The computing syllabus is not just a 
series of self-contained areas. There are rich links between them. Drawing out the connections 
and scaffolding students to do so themselves is important. It is helpful to place more basic topics 
in a wider context of the subject, so that they are not just abstractions. For example, instead of 
teaching binary representations in isolation, motivate it by the context of networking and how text is 
represented, allowing messages to be sent between computers. Concept maps, discussed below, can 
help students to draw out wider links across a subject. This relates to the higher levels of the SOLO 
taxonomy, where forming such links is a measure of intellectual progress (Biggs and Collis, 1982).

Technological context
In computing, within-syllabus contexts can be extended to real-world technological contexts. 
Computers are ubiquitous and disappearing into the environment. Rather than just discuss binary 
representations of letters and images in the context of networking, put them in the context of 
instant messaging or texts. Set image representation in the context of image sharing and how a 
digital camera works. Draw on students’ curiosity about how technology actually works.

Historical context
A historical context can support understanding of many concepts and link to history syllabuses. For 
example, Roman numerals were better for large numbers than the notches in sticks shepherds used. 
However, it is hard to do multiplication with Roman numerals, so they were eventually replaced. 
These examples show why number representation matters. Pre-computer-age historical links can 
intrigue, combining with the storytelling approach of providing strong narratives. Prominence can 
be given to the roles of women through the history of computing, telling the stories of Ada Lovelace, 
Grace Hopper and others. The role of Bletchley Park and of Polish Mathematicians, cracking ciphers, 
gives new understanding about the actions and ‘brilliance’ of allied commanders and so on.

Example: Historical storytelling
Cryptography and steganography date back thousands of years. Tell the story of 
the beheading of Mary Queen of Scots. Placed under house arrest by Elizabeth 
I for twenty-one years, Mary became involved in an assassination plot. She communicated 
with the plotters by hiding messages in casks of Ale (steganography) and used a simple 
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substitution cipher. Elizabeth’s spy master knew of the plot. His man-in-the middle attack, 
intercepting messages, using frequency analysis to read them and adding text to the end 
of messages gave him the evidence he needed to execute the plotters.

Cross-curricular context
Computing has rich interdisciplinary links, drawing on other subjects and changing the way they 
are done. We have seen links to art and history. Computer scientists have also drawn biology: neural 
networks (computing based on the way the brain works) and genetic algorithms (computing based 
on the way evolution works) and the other sciences. Computational modelling, whether unplugged 
(see, e.g., Brain-in-a-bag activity, n.d.) or programming (see below), can also bring concepts in 
other subjects to life. At the same time, the concept of computational modelling itself can be 
explored.

Non-computing context
Non-computing contexts allow students to understand new abstract concepts in terms of things they 
already understand or that are physical and tangible and so easier to understand first (lower down 
the semantic wave). Drawing on constructivist principles, it also shows how computer science is 
about much more than computers. For example, use Braille to introduce binary representations. It 
is a binary system of bumps and no-bumps that was the first practical use of a binary representation 
of characters. See also the earlier locked-in syndrome activity.

Research context
Research stories can also be used to embed concepts in context. This is the basis of the ‘Computer 
Science for Fun’ approach (www.cs4fn.org). It presents research in a fun way, using accessible 
language, embedding clear explanations of core concepts in the stories. cs4fn was originally 
intended as hobby-mode learning to be read as any other magazine. However, schools use it 
in many other ways including as set reading, as a source of ideas for writing and to support 
literacy.

13.5 Enquiry-based learning
The way science is traditionally taught is a cause of students’ declining interest in STEM with 
age (Rocard, 2007). Enquiry-based learning, where students explore topics using real scientific 
methods, helps arrest the decline in student attitudes towards STEM, fosters better scientific 
thinking and gives a deep way to learn concepts. It can be applied to computing too.
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TEMI
‘Teaching Enquiry with Mysteries Incorporated’ (TEMI; Loziak et al., 2016) is an enquiry-based 
learning framework using mysteries as a hook to engage students. It defines enquiry in terms of 
a student cognitive skill set and uses a stepwise progression to engender confident enquirers. It 
exploits the affective side of learning, the need to engage emotionally and creatively, that is at the 
core of scientific practice. It is based on the 5Es learning cycle (Bybee et al., 2006), an effective 
methodology for teaching concepts where the students do the work.

Key concept: The 5Es learning cycle
The 5Es learning cycle structures lessons around the following five stages.

Engage: Students are first hooked. In TEMI this is by the chosen mystery. It 
generates questions.

Explore: Students then carry out research and experiments, to answer the 
question(s) identified in the ‘engage’ phase.

Explain: Students summarize their learning so far. The teacher assesses understanding, 
possibly intervening to ensure students correctly grasp principles.

Extend: Students use their new learning in a different context, applying the concepts they 
have learnt about.

Evaluate: Students reflect on what and how they have learnt so they can build on the 
skills developed. This stage may include formal testing.

A gradual release of responsibilities through the stages structures the learning activity, starting from 
the teachers acting as a model, employing a phased apprenticeship approach where students take 
responsibility for their own learning, mistakes and successes. Showmanship binds TEMI lessons 
together, maintaining a sense of excitement as activities unfold. See, for example, Loziak, McOwan 
and Olivotto (2016: 179) for a magic trick example: a number is freely chosen that amazingly 
divides exactly by numbers given by the magician, engaging the class. In an explore phase, the trick 
is repeated as the students work out the algorithm involved, followed by an explanation of why it 
works, based on prime factors. The extend step takes the ideas further into a discussion of prime 
factors in encryption systems. Evaluation explores if variations work.

Enquiry through programming and computational 
modelling
If students can program, teach computing concepts with exercises to write programs that implement 
them. Do this in an enquiry-based way. It forces students to engage deeply with the concepts. 
Care needs to be taken to scaffold exercises and ensure they are at appropriate levels for students’ 
programming skill.
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Computational modelling can, similarly, be used to investigate other subjects and better 
understand phenomena. The Turtle (Millican, 2016) and Greenfoot (www.greenf oot.org) 
programming environments come with examples: writing a program that simulates Brownian 
motion, how ants leave trails or the forces acting on a projectile that lead to its trajectory. This leads 
to a better understanding of computational modelling itself as an investigative tool.

13.6 Discourse and active writing
Use natural language to directly enhance, and assess, learners’ knowledge.

Talking as well as doing
Grover and Pea (2013) argue that students gain a better understanding of concepts if ‘discourse-
intensive pedagogical practices’ are used. This involves combining tasks both with productive 
teacher-led discussions and with peer discussion (so group work is important). They do this in the 
context of students using App Inventor to write apps, discussing concepts needed and encountered. 
Chapter 15 further explores the role of classroom discourse in teaching and learning.

It is also part of the exercise to encourage students to look actively for computing concepts 
in everyday examples. Furthermore, encouraging students to always explain their programs (or 
algorithms) to someone else (and in documentation) is a powerful way for them to gain a deeper 
understanding of the concepts. It is also a very positive part of debugging. Often bugs highlight 
incorrect mental models of underlying concepts. Trying to explain how a program works can lead 
to the student seeing the problem themselves.

This links to semantic waves (Macnaught et al., 2013): the teacher encourages discussion moving 
from concrete activities to concepts.

Short writing activities
Defining and explaining concepts, or exploiting concepts when explaining code, are common 
teaching strategies. Asking learners to do the same is a common form of assessment. The short texts 
which learners write in response give useful snapshots of their knowledge of the concepts concerned. 
Although a piece of writing can seem to be a static and fixed product, it is the embodiment of lots 
of processes of thinking and composition. Focussing on how a text is composed is a good way to 
make a student aware of the thinking – that is, the conceptualization – embodied in that writing.

Example: Short writing activity
This activity revises conceptual knowledge and focusses attention on how to 
present it effectively in an assessment context. Students involved commented 
they enjoyed it because it ‘was testing our understanding, not just telling us things’.
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It focusses on ‘what makes a good exam answer’ to a question such as ‘Explain what 
is meant by a “system call” ’. Review the concepts involved, then have students discuss 
their expectations about the answer in small groups. Next, provide five answers to this 
question that range from high scoring to low scoring. Students role-play being examiners 
in groups, grading the answers using terms like poor, some merit and good or by putting 
them in order. The class vote on grades before the actual grades are shared. Next, the 
groups discuss the ‘criteria’ they used. If they generate criteria specific to the particular 
question, steer them towards more generic criteria. Have them share their thoughts with 
the class, before sharing the criteria used by the examiners, part of which involves correct 
concepts and relationships between concepts and part is to do with the command words 
(such as ‘Explain’ or ‘Compare’) in the question and how these predict the shape of the 
answer.

As a follow-up, take students’ answers where some of the statements are related to the 
question (if not accurately) and some are not. Present the answers broken into their separate 
statements. Students work in groups to identify two statements which deal with concepts 
relevant to the conceptual field of the question and two that are irrelevant, belonging to 
different conceptual fields. Alternatively, provide lists of concepts which are related to a 
question. Students allocate the concepts to columns in a table headed: Most Related, 
Somewhat Related, Little Related. Share the students’ tables and invite comments.

Understanding concepts involves understanding relationships between concepts. 
Explain this, then present students with sentences linking concepts in which one of the 
concepts is omitted (e.g. ‘A system call causes a _________’), together with a mixed-up list 
of the omitted concept words. In groups they complete the sentences, then discuss.

Concept maps
Concept maps give a visual way to work actively with concepts and the relationships between 
them. Use them to develop understanding and as a diagnostic test. They give a way for students 
to frame their thoughts and see when those thoughts are still hazy. They can also use them as 
a stepping stone towards writing sentences. One way to use concept maps is as a variation on 
writing relationship statements. Partially created concept maps must be filled in using a set of given 
terms. Another is to draw concept maps based on the students’ own written answers to questions, 
comparing these with an expert concept map. Do this as part of a role-playing exercise where the 
students play examiners, commenting on the work of others based on discrepancies to the expert 
concept map.

Diagnostically, use concept maps to identify students who need extra support in an area or to 
correct their misunderstandings face to face. This role of concept mapping as a formative assessment 
method is highlighted in Chapter 16. Another variation is to give students a question and first 
brainstorm around twenty concepts that are related to it, before creating a draft concept map using 
them. Also encourage students to draw links between concept maps of different conceptual areas. 
By doing concept map activities over time, students start to build much richer conceptualizations 
of the subject themselves (Novak and Canas, 2006).
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Program and algorithm comprehension
Programming is a skill. However, it is still important that a strong focus is placed on the deep 
understanding of underlying concepts. It is easy to focus on syntax, suggesting the task of learning 
to program is one of remembering keywords and punctuation. Teaching approaches need to place 
the focus on semantics instead. That involves deeply understanding concepts. The many ways 
to teach concepts already discussed provide ways to do this, but with programming, formative 
assessment based on dry run activities is critically important. Dry runs involve stepping through 
the execution of a program on paper, keeping track of the values in variables and the results of tests 
as each line of a program executes. They help students understand the step-by-step workings of the 
program and so of the concepts behind the underlying constructs. The focus of dry run activities, 
and of feedback around them, should not be on the final answer but on the program’s step-by-step 
operation. Integrate pencil and paper dry run exercises with drama-based unplugged techniques, 
acting out the execution code to help demonstrate constructs and concepts.

13.7 Conclusions
It is easy to fall into the trap of believing that teaching concepts boils down to giving clear 
definitions for students to learn. This is a transmission model of teaching. We have given many 
alternative approaches that allow learners to directly engage with concepts in more constructivist 
ways, building on their existing knowledge and experience. The best approaches combine these 
techniques giving multiple and rich ways to understand concepts and their interrelations. The 
ideas behind semantic waves are key to many of these approaches. They involve in various ways 
travelling the semantic wave, from technical concept down to everyday experience, but then 
critically repacking back up the wave, making clear links back to the technical concept.

Key points
 ● Success in programming, computational thinking and computing more 

generally is founded on a deep understanding of rich concepts.
 ● Concepts do not have to be taught using a transmission model of teaching.
 ● There are a wide variety of constructivist approaches that can be used: from 

analogy-based and unplugged approaches to those built around discourse and 
active writing.

 ● Aim to embed discussion within one of the many contexts available for teaching 
computing concepts.

 ● Tell stories and use mystery to engage pupils with concepts in memorable ways.
 ● Use a mixture of approaches and contexts.
 ● Whatever techniques you use to teach concepts, aim to make the students travel 

up and down the semantic wave.
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For further reflection
 ● Consider how you teach concepts currently. Do you follow a semantic 

wave, starting from abstract technical concept, moving to concrete 
everyday experience and then explicitly linking back to the abstract concept again?

 ● Identify concepts you currently teach using transmission and explore which 
approaches apply.

 ● Identify threshold concepts that students struggle with. Could a targeted change 
help students overcome the problem?
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Chapter synopsis
Spoken and written language are an important part of the computer science 
classroom yet often not given much attention. In this chapter we focus on 
instructional language in the computer science classroom and also address 
other aspects of language and literacy development through computer science. We 
introduce some aspects of theory related to this problem domain to start a meta-discourse 
on spoken language for teaching CS and consider different types of teacher and student 
talk in the classroom. We give hints and pedagogical suggestions for teachers on how 
to support understanding and learning computer science as well as supporting literacy 
development in students.
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14.1 Introduction
Whenever you learn a new subject or skill, at some point you need to pick up the particular 
language that goes with that domain. And the only way to really feel comfortable with this language 
is to practice using it. It’s exactly the same when learning computer science (CS). In this chapter we 
consider how language is used in the CS classroom, in terms of both the terminology of the subject 
and the way we can use dialogue and questioning effectively.

14.2 Language in education
In any subject, a learner needs to know about the terminology of the subject of interest. But it is 
important to not only know the terminology but also how to use it in a given context. Certain 
words may have context-specific meanings that change depending on the subject at hand. Certain 
fields may have a higher number of metaphors. Or there may be numerous words from a field 
that found their way into the vernacular of the people but with slightly changed meanings. These 
specifics need to be known in order to communicate successfully about them and to exchange and 
expand knowledge.

Successful communication about digital media, computers and CS requires certain linguistic 
skills. Thus, learning about digital media and computers is closely connected to the ability to 
understand and produce appropriate descriptions and explanations of the subject matter (Diethelm 
and Goschler, 2014). Linguistic competence, therefore, is key to successful acquisition of knowledge 
and learning of skills (Dawes, 2004). This is especially the case in schools, where most instruction is 
delivered verbally – in the form of oral explanations by the teacher and written texts in textbooks.

Key concept: Educational language
The variety of language used in schools – in the German context often described 
as ‘Bildungssprache’ (educational language) – differs considerably from the one 
used in everyday communication: it is usually less dialogic, more abstract; it uses 
more complex constructions and in general is more oriented towards written 
discourse instead of spoken discourse (even if it is delivered verbally). In order to master 
communication within this variety, one needs more and other linguistic and communicative 
skills than necessary for everyday interaction outside of educational contexts.

Language relating to a specific discipline may be known as ‘disciplinary literacy’. This 
refers to the subject-specific terminology to which teachers need to introduce students.

When considering the different communication skills, we can make a distinction between basic 
interpersonal communication skills (BICS) and cognitive academic language proficiency (CALP) 
(Cummins, 1979, 2008). BICS are sufficient to manage simple ‘conversational’ language used in 
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direct everyday communication outside of professional or educational contexts. This language 
typically consists of dialogue including small talk, simple orders and requests, simple narrations 
and the like. CALP, in contrast, is necessary in order to master educational and academic language. 
This language used in schools, universities or professional contexts includes different text types like 
news, reports, scientific papers, talks or more complex narrative texts like novels. CALP therefore 
requires – among a lot of pragmatic knowledge – a larger lexicon with more abstract terminology 
as well as the mastery of certain complex grammatical constructions like sentences in the passive 
voice, complex noun phrases, complex sentences often including multiple embedding and in some 
languages such as German other inflectional forms (like past forms of verbs).

Not all pupils are sufficiently equipped with this linguistic knowledge. Many pupils have not 
had enough input in the required variety, because they do not talk much about topics outside 
of everyday interest in their family and their peer groups, because they do not read much and/
or because they do not engage much in activities that make complex and abstract language 
necessary. The situation can be even worse for children and youths growing up with more than one 
language: For many of them, even a large part of everyday communication takes place in another 
language than in the one they have to use in school, so that their input in the language used in 
school is even more diminished. But even if bi- or multilingual pupils have a lot of academic and 
educational input, using their second language often means a higher cognitive load and requires 
greater concentration on the processing and production of language.

14.3 Language in computing education
It is clear that every subject comes with a specific terminology that has to be learned along with the 
concepts connected to them. If the terminology consists of words that are used only in connection 
with the subject, then most of the time teachers are aware of the fact that these words have to be 
part of their explicit teaching. In CS, words like byte, integer, compiler and recursion and acronyms 
like RAM/ROM or CAD/CAM have to be taught explicitly.

Example: Creating a glossary
Ask students to write down scientific terms and words that are connected to 
the present topic of your course and collect them all. Then, let your students 
create a glossary for the twenty or thirty most important of these words: Therefore, each 
student should provide a description for one term in his or her own words. Then, two other 
students should review and adjust each description. Repeat this for each new topic of your 
course at the beginning of a unit or for preparing for a test.

For other words, it is more difficult for teachers to detect potential challenges. This is often the case 
with words that have a specific meaning within the CS community but a slightly or sometimes 
completely different meaning in everyday discourse, for example nouns like code, memory, address, 
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folder, loop, bug and value or verbs like to save, to code, to retrieve and to submit. Very often, teachers 
are not aware of the fact that these differing meanings have to be taught and learnt just like completely 
new words. If this explicit teaching/learning does not take place, pupils try to make sense of the 
words and the contexts they occur in with their knowledge from everyday communication. This can 
lead to misunderstandings and misconceptions not helpful for understanding new concepts taught 
in computer science. Even teachers’ questions aiming to make sure that everything is understood 
often fail to yield appropriate responses by the pupils, because they think they ‘understand’ all the 
words that were used, because they ‘know’ them – albeit with a different meaning.

In the context of German schools, the fact that a lot of CS terminology consists of English words 
makes the situation different from that in English-speaking countries. On the one hand, having to 
learn and use a variety of words in another language than the one the subject is taught in could 
be an additional difficulty for pupils. On the other hand, it makes terminology more perceivable 
and distinguishable as terminology (with a different meaning than the same word in everyday 
discourse). In cases where there are German words, however, the problem of different usage in 
different discourses and communities remains – for example with terms like programmieren (to 
program/to code) or ein Programm schreiben (write code/write a program).

This terminology is not used in isolation, however. The terms appear in sentences whose 
construction differs from that of sentences in the vernacular. Most scientific communities and the 
texts produced within these communities use very specific linguistic constructions that can be rare 
in everyday discourse or – just like terminology – come with subtly different meanings. Sometimes 
these differences are rather obvious and easy to figure out: if a teacher orders his or her pupils to 
‘tell’ the computer something, in most cases the pupils would understand that they are meant to 
type something in, not to say something. However, in other cases it might be less obvious and 
produce misunderstandings: If a teacher wants his or her students to print a sentence, they might 
assume that they have to use the printer. But in programming, printing a sentence usually refers to 
displaying a sentence on screen.

In more advanced CS lessons, the use of highly specific constructions could lead to situations 
where not everything is understood by the pupils. For example, consider the amount of technical 
language involved in the task to ‘create two derived classes that inherit the properties of the base 
class and override two inherited methods, but also remember to regulate access through access 
control attributes’.

14.4 Talk in computing lessons
The nature of student and teacher talk is a key aspect of the teaching of computing in school. However, 
this has not been widely explored within computing education, although there is a significant body 
of work in mathematics, science and general education that relates to enhancing the quality of 
classroom talk (Sentance and Waite, 2021). In computing education, most of the literature relate 
to language and communication as a vehicle for learning centres on pair programming and peer 
instruction (Vahrenhold, Cutts and Falkner, 2019), both privileging classroom talk and purposeful 
dialogue. Research has shown that peer instruction positively impacts learning outcomes (Porter 
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et al., 2011; Zingaro et al., 2014). Pair programming has been shown to improve program quality 
and confidence (Braught, Eby and Wahls, 2008; McDowell et al., 2006), although in the school 
context it may depend on the way that the collaborative work is instantiated (Lewis, 2011).

Encouraging more productive talk in the classroom means supporting students in learning to 
reason effectively and to explain clearly. In computing, students particularly need such linguistic 
skills in programming, in order to explain how their program works (or why it doesn’t) (Sentance 
and Waite, 2021). A number of models of classroom dialogue have been proposed to understand 
how students and teachers can use talk more effectively, including dialogically organized instruction 
(Nystrand et al., 2003), exploratory talk (Mercer, 1995) and dialogic teaching (Alexander, 2006).

Key concept: Exploratory talk
The notion of exploratory talk (Mercer, 1995) led to a large body of research in 
mathematics education aimed at improving students’ abilities to learn more 
effectively through improving their talk within a discipline. Exploratory talk 
is where pupils listen critically but constructively to each other’s ideas. The 
objective of this interaction is to reach an agreement. In the task, students must explore 
the different possible answers. They exchange ideas with a view to sharing information to 
solve problems.

Cui and Teo (2020) provide a useful summary and synthesis of the research on dialogue in the 
classroom and describe a number of ‘dialogic moves’ that teachers use in the classroom including

 ● Eliciting a contribution such as through authentic questioning
 ● Extending dialogue by asking learners to explain through elaboration or substantiation
 ● Connecting links between participants and their contributions
 ● Challenging participants to clarify and deepen thinking
 ● Critiquing through critical evaluation of each other’s contributions

Most of these involve skilful questioning on the part of teachers in order to encourage students to 
use computing-specific language and reasoning to explain their understanding. This is in contrast 
to typical IRF (initiation–response–feedback) exchanges where a teacher asks a question to which 
they already know the answer.

Questioning in programming lessons is particularly important in terms of facilitating code 
comprehension. Questions structured around the Block Model (Schulte, 2008) can be used to ensure 
different questions target understanding of different elements of the code (Sentance and Waite, 2021).

Some recent research has been conducted specifically on talk in the computing classroom. 
Sentance and Waite (2021) synthesized discourse frameworks associated with the study of talk 
in general teaching and learning to analyse talk in high-school programming classrooms where 
the PRIMM pedagogy was being used. The authors developed a generic theoretical model for 
planning and evaluating talk in the programming classroom (see Figure 14.1) and found several 
key factors that enhanced discourse. Key factors included encouraging talk through classroom 
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routines, using questions and explanations, including goals on vocabulary and carefully designing 
learning contexts, including using example code, activity structure and the student’s own code to 
situate talk (Sentance and Waite, 2021).

In another study, Zakaria et al. have designed and investigated a structured feedback intervention 
for teachers to use to support students doing shared programming tasks (Zakaria et al., 2021). 
Comparing the dialogue and activity of six pairs of students, aged ten to eleven years old, from 
classes with and without the intervention, the authors reported promising results in productive 
collaboration and discourse such as increased exploratory talk including more justification and 
an increase in shared alternative ideas. Research on classroom talk in computing is still at an early 
stage, and it is clear that more is needed.

14.5 Metaphors of computer science
Metaphors are not just fancy additions to our language – more often than not, they reflect certain 
conceptions and help us to understand abstract things by transferring our knowledge about more 
concrete things to the abstract domains. This is also the case for computers and things connected 
to them. It is not unusual to describe computers as containers, sometimes specifically buildings, 
where things on the inside are moved around, for example in expressions as follows:

 ● The data is transferred.
 ● I will move the file to another folder.

More typical words reflecting this metaphor are identified in the study by Izwaini (2003: 
3): architecture, library, sign in/log in, sign out/log out, platform, port and window.

Figure 14.1 Talk in the programming classroom (Source: Sentance and Waite, 2021: 13)
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The metaphorical description of the computer or parts of it as a living being or even a person is 
also frequent:

 ● The computer memorizes previous activities.
 ● The computer feels asleep/woke-up.
 ● The compiler looks into the memory address.

Izwaini (2003: 2) identifies more words used in talking about computers that imply that it is a living 
being: ‘client, conflict, dialogue (conversation between the computer and the user), generation, 
language, memory, protocol, syntax, widow/orphan, and virus and bug (it can get ill)’.

Other metaphors suggest that the computer is a workshop or a manufacturer (equipment, 
hardware, install, load, template, tools) or an office (desktop, directory, document, file, folder, mail, 
trash, can, wastebasket) (Izwaini, 2003: 2).

It has become clear that complex and subtle knowledge about the specific use of language within 
a scientific or educational community is necessary in order to properly understand what is said in 
the classroom or written in textbooks. It has also become clear that one cannot expect pupils to 
come readily equipped with all that knowledge, but that teaching specific linguistic knowledge and 
skills is in fact part of education – thus, subject teaching and language teaching, as well as subject 
learning and language learning, are inseparable.

14.6 From everyday language to scientific 
language
So far, we have seen how metaphors are used when talking about CS and quickly touched upon 
the importance of avoiding misconceptions (see also Chapter 13). One of the problems that arises 
when teaching CS is ambiguity. In general, CS uses a variety of ‘dead metaphors’. These metaphors 
are not only used, they are ‘lived by’ (Lakoff and Johnson, 2003). Words like ‘packet’, ‘string’, 
‘protocol’, ‘cloud’, ‘stack’, ‘program’, ‘model’ and many more are not used metaphorically anymore. 
These ambiguous terms have found their way into the general terminology of the field and are now 
considered scientific terms (Diethelm and Goschler, 2014: 3). Their meanings shift, depending 
on who uses one of these words and in which context they are used. In CS lessons, there are also 
anthropomorphised metaphors. These are metaphors where comparisons with the human body 
are made. A computer works like a brain; it can break down, can get a virus and needs care (Steffen, 
2006: 42), processes can be killed and there is inheritance in programming.

Key concept: Metaphors
Metaphors can help pupils and teachers to conceptualize very abstract things 
and make them cognitively more manageable. However, it always has to be 
clear that these are in fact metaphors, not factual descriptions of the parts and 
actions of the computer.
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Some metaphors can be helpful in some respects and on certain levels of description – for example 
the distinction between programs and folders – but they can be misleading in other respects and 
on other levels – for example if one wants to explain the basic nature of ‘information’ the computer 
uses. In order to avoid long-lasting misconceptions, which can result in resistance to learning new 
conceptualizations, teachers have to be aware of the metaphors used in classroom language, in order 
to avoid them or use alternative ones if a specific metaphor blocks the understanding of a certain 
concept. We also suggest that teachers should explain carefully rather than penalize the usage of 
anthropomorphised metaphors. After all, even professionals tend to use these kinds of metaphors 
(Anton, 2010: 68). Using metaphors leads to discourse about metaphors, which encourages more 
dialogue about the subject between students and teachers.

In his PhD thesis, Busch researched the usage of metaphors in CS (Busch, 1998). This allows 
for a first detailed look at the way metaphors are used in CS in general and the way they are used 
in teaching in particular (Diethelm and Goschler, 2014). There, he provides a three-step system, 
which can help teachers if they want to use metaphors:

 1. Clarification of meaning of the term in other non-CS contexts
 2. Speculation about possible meanings of that term in CS and also about what it would certainly 

not mean
 3. Development of the CS-related meaning of the term (Busch, 1998: 125)

These three steps can be used by teachers to make sure that the origin as well as the meaning of a 
metaphor is made clear to the students, that the way the metaphor is used by the students is correct 
and that the students can distinguish between metaphors for everyday language and those used in 
technical contexts.

Teachers can also make these distinctions by clarifying the level of language that is used in 
classroom settings. Given that there are at least two different levels of language, everyday language 
and scientific language, teachers therefore need to make sure that there is time to talk about 
(scientific) language and its benefits in the classroom.

In order to introduce new scientific language to the classroom, Martin Wagenschein (1980: 
130–8) suggests three phases. The first phase aims at causing surprise. Students are encouraged to 
express their feelings and thoughts in their own words. Every utterance is valuable to the discourse. 
The teacher needs to take a step back and only guide the discussion using non-scientific language. 
The second phase aims at preserving these thoughts by embedding them into everyday language 
in a way ‘that it could be explained to oneself or others in a way that it could be understood later 
on, e.g. in a year’ (Wagenschein, 1980: 130–8). So far, only common language is being used. This 
changes in phase three. The third phase uses the preserved text and transforms it into a scientific 
text. Wagenschein suggests that scientific language should not be taught explicitly. We, on the 
other hand, suggest that the transformation in phase three should be taught explicitly to make sure 
that students understand that the terminology used is different from everyday language. This way, 
inaccuracies and misconceptions can be avoided and clearer lines between the different levels of 
language can be drawn. A way for teachers to introduce new language explicitly in phase three is to 
incorporate a meta-discourse in their lessons.
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Key concept: Meta-discourse
The meta-discourse’s aim is ‘to engage students in a discussion about language 
including syntactic and semantic features of informal everyday talk and of formal 
scientific use’ (Rincke, 2011). Teachers can single out the settings in which 
scientific words or phrases can occur, make distinctions between the ways they 
are used in common language and scientific language, make cross-disciplinary comparisons 
and show how words and sentences surrounding the word in question shape meaning.

Using a meta-discourse allows students not only to understand where a word or a phrase comes 
from and what it means but also to assign it to a level of language. It is then easier for students 
to distinguish between the levels of language. In his book, Lemke suggests that the ability to talk 
about science also leads to the ability to do science ‘in terms of reasoning, observing, analysing 
and writing’ (Diethelm and Goschler, 2014: 3). Lemke (1990: 170) also recommends that students 
‘should be required to be able to say anything in science in more than one way, and taught how to 
do so. … Saying the meaning without the same set of words’.

14.7 Structuring lessons
When structuring lessons, teachers need to be aware of possible difficulties when introducing 
new terminology. A common model used to structure student-oriented lessons is Educational 
Reconstruction. This model can also be applied to plan a language-oriented lesson including a 
meta-discourse. The model places a phenomenon caused by CS in its centre and surrounds it by five 
aspects that all interact with and influence each other (see Figure 14.2). Each of these components 
can be used for student- and language-oriented lessons.

The first aspect is the analysis of social demands. This aspect focuses on explaining why a certain 
concept or phenomenon needs to be taught. What makes it important? Why should students be 
able to talk about this concept? When a phenomenon is being chosen as the topic for a lesson, it is 
not only important to choose a topic that the students experience outside of their classrooms but 
the teacher also needs to ask questions regarding the origin of the phenomenon. What is its name 
and where does its name come from? And is it necessary or helpful for the students that they get 
this information as well? Essentially, the teacher needs to decide if the phenomenon itself needs a 
linguistic analysis in class or not. Even if the phenomenon itself does not need explicit linguistic 
coverage, its parts just might. The Clarification of Science Content Structure ‘describes how the 
phenomenon could be explained scientifically and which subject domain knowledge is required to 
understand the phenomenon’ (Diethelm and Goschler, 2014). Kattmann et al. list several questions 
for this step, one of which is especially important for a language-oriented lesson: ‘Which terms are 
used in scientific publications and textbooks and which of them could hinder or support learning 
due to the narrow meaning of the word or parts of it?’ (qtd. in Diethelm and Goschler, 2014). It is the 
teacher’s task to choose which terms are important for the lesson, which terms need to be addressed 
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linguistically and how these terms are defined. Teachers need to make sure that new scientific terms 
are not defined by other scientific terms unless unavoidable. In addition, definitions should be 
phrased in a way that they are extendable once a deeper understanding of the topic is achieved.

While analysing the content structure it is also important to consider both the students’ and the 
teachers’ perspectives. When considering the student’s perspectives, it is important for teachers 
to understand that these perspectives matter just as much as the content structure. It is important 
to understand that students’ conceptions are not synonymous with misconceptions, because the 
‘term “mis” already suggests that the students’ conceptions would be wrong or not worthwhile 
and thus have to be replaced in their minds by something that is more “correct” in any respect’ 
(Diethelm, Hubwieser and Klaus, 2012). It is important to understand the terms students use and 
why they use them, because they provide insights into the students’ lives and enable establishing 
connections and expanding their knowledge. Teachers need to ask themselves where their students’ 
conceptions derive from, if they derive from linguistic phenomena and also if a meta-discourse can 
help to create awareness.

Figure 14.2 Educational reconstruction for computing education (Source: Diethelm et al., 
2012: 166)
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Example: How a streaming video works
A study by Diethelm and Zumbrägel (2010) has shown what some pupils think 
about the way streaming a video works. In their study, 26 per cent of students thought that 
the video they stream is actually played online and they just watch it, similar to watching a 
movie in the cinema or on television. While planning a lesson, teachers can then make time 
to analyse the word ‘streaming’ together with the children, so that they understand that 
data are actually transported to their computers, much like water in a stream. Of course, 
depending on the grade one is teaching, the explanation can be more or less detailed. It 
can also be used to introduce a new topic, for example the internet, packaging or protocols. 
Knowing the students’ perspectives shapes the way the content structure is presented. 
Adjustments can be made so that these perspectives are incorporated, problematized and 
expended in the lesson.

Teachers’ perspectives can, just like the student’s perspectives, be very different from one another. 
Teachers will use different methods and have different pedagogical knowledge, different content 
knowledge, different psychological knowledge and so on (Diethelm, Hubwieser and Klaus, 2012). 
Therefore, teachers could ask themselves a set of questions when planning a lesson, for example 
which terms are known to them and how they would explain these terms to their students. This 
question will also reveal if there are uncertainties of a certain topic. They have to ask themselves 
which terms are known to them through their work or studies and if there are limits to their 
own knowledge and where they need to catch up to be able to properly explain concepts to their 
students. At the same time, CS teachers can also talk to their colleagues or CS teachers from other 
schools. That way, they can compare definitions for terms among each other. If one supposes that a 
class has several teachers throughout their years at a school, one can also suppose that the students 
will encounter teachers who use different definitions for the same terms. Through the comparison 
of terms, teachers can create a common understanding and use the same terms in the same ways, so 
that the students can continue to use the terms they learned without causing misunderstandings.

One way to make this common ground available for present as well as future teachers is 
through the implementation of a wiki. Our work with teachers has shown us that, given a 
specific concept, different teachers come up with different definitions. These definitions aim 
at explaining the same concept using different terms, which in turn leads to lively discussions. 
Through these discussions, teachers experience different points of view and in the end find 
similar definitions.

All of these aspects influence the design and arrangement of lessons and courses. ‘If we focus 
on “CS classroom language”, this means that they all have an influence on the terms that occur in 
class during different phases of the lessons, used by different participants’ (Diethelm and Goschler, 
2014). Through iterative execution of the analysis of these aspects, lessons can be planned that are 
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student- as well as language-oriented and that create an awareness for the language and terminology 
that is being used throughout the lessons.

14.8 Recommendations
As a result of our thoughts presented so far, and based on the works of Lemke (1990) and 
Wagenschein (1980), we can offer the following recommendations:

 1. Give students more practice talking (computer) science; encourage students to talk about 
CS to one another and to talk in everyday language. This way, they will get used to using the 
terminology presented in class.

 2. Teach students how to describe phenomena and CS concepts in everyday language. Students 
will then be able not only to communicate with other computer scientists but also to mediate 
and explain to other learners.

 3. Require your students to be able to say anything in more than one way and always in full 
sentences to make sure about the meaning. This allows the teacher to check for understanding 
and to see where there are still problems that need to be addressed.

 4. As a teacher, prepare and provide different explanations in everyday language and in scientific 
language for the same concept and make it explicit when you use each, for example do I make 
a difference in the use of ‘programming’ and ‘coding’? Where is this difference, and how can 
I explain it to my students in everyday language?

 5. Teach the meta-discourse; discuss the different meanings of terms, their usage and their 
origins and metaphors, for example show different definitions from textbooks and negotiate 
on a set of central terms for that course and their meanings and write down a common 
glossary. A glossary can help students in class, when doing homework, to get used to 
terminology and also when they prepare for tests.

 6. Practice with your students translating from everyday language into scientific language and 
back again, and grade this activity.

 7. Get familiar with the everyday language that your students use, who are different from you, 
have different cultural backgrounds, are of a different gender, are non-native speakers and 
have special needs.

 8. Emphasize the human side of CS, for example in modelling processes or about information 
technology as an everyday phenomenon and CS as one way of describing the world 
and so on.

 9. Involve your students in decision processes on the contexts and on examples for the concepts 
you’d like to teach. This way, the students’ connection to CS will be strengthened and your 
lessons will have more meaning to the students. That way, they might talk more about CS 
with their peer groups.

 10. Give room for a discussion about the nature of computer science. Teach your students about 
different viewpoints on our discipline, on the different scientific methods we use and on their 
benefits for different application domains.
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Key points
 ● The scientific language of computer science consists of many metaphors 

that might cause misunderstandings.
 ● Students and teachers need to talk about computer science to one another 

to negotiate meanings of terms and to avoid misunderstandings.
 ● Everyday language, educational language and scientific language have to be 

considered by teachers to support learning.
 ● When introducing a new term, students and teachers should reflect on other 

meanings in non-CS-contexts before using it scientifically.
 ● The framework of educational reconstruction helps plan lessons from different 

perspectives.
 ● The meta-discourse about CS terms and their usage supports learning and 

connecting CS terms and knowledge to everyday life.

For further reflection
Try using meta-discourse within a workshop with your colleagues: Think about 
the terms ‘coding’, ‘implementing’, ‘modelling’ and ‘programming’. Write down 
on your own one typical sentence you use for each term. Let your colleagues write down 
a sentence for each term also. Then, compare your sentences, discuss them and agree on 
one definition for each term and on one exemplary sentence for each of them. Write them 
on a poster, and place it in your classroom or another frequented wall in your school.

Repeat this with another set of terms with ‘quite the same but different’ meanings.
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15
Investigating Attitudes towards 

Learning Computer Science

Quintin Cutts and Peter Donaldson

Chapter outline

 15.1 Introduction to Mindset
 15.2 Should Mindset concern only the learners?
 15.3 Considering teachers’ Mindsets
 15.4 Exploring our own Mindset and practices as teachers
 15.5 Do typical computer science learning designs foster a fixed Mindset?
 15.6 The influence of prior experience on novices’ success
 15.7 The bigger picture: Teacher and learner attitudes and learning designs

Chapter synopsis
This chapter explores computer science learners’ attitudes towards learning, as 
well as those of their teachers, and how teaching practices may affect these 
attitudes. The exploration is set in the context of Carol Dweck’s Mindset, a 
concept with which many readers will be familiar or will have at least read about (Dweck, 
2008). Mindset concerns how learners’ beliefs about their ability to learn directly affect 
their learning outcomes, and Mindset-based interventions have been successfully applied 
in computing contexts, for example our own study (Cutts et al., 2010). However, Mindset 
has subtle consequences for teachers, which are often lost. For, as we shall show, 
teachers’ own Mindsets and the practices they adopt are instrumental in the formation of 
their learners’ Mindsets. Teachers must explore their own attitudes and practices carefully 
and examine why their students may be getting blocked in their studies. As we move 
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from being an optional or self-selected subject at late secondary or tertiary education to a 
mainstream school subject starting at the primary level and taken by all, this exploration is 
ever more important if we are to expect success for our learners. An exercise is provided in 
the chapter to help the exploration, which tends to lead to a re-evaluation of our underlying 
understanding of how learning and skill development work, encouraging us to raise 
important questions about our own practices.

15.1 Introduction to Mindset
Carol Dweck’s thirty-year research programme, broadly captured under the title Mindset, aims 
to foster more appropriate attitudes and practices among learners and teachers so that learning 
outcomes can be improved. It centres not on the identification of some natural ability as the 
predictor of learning success, but instead on the learner’s attitude to whether they think they can 
get better. In summary, those who do believe they can improve have a so-called growth Mindset, 
whereas those who think ability levels are traits one is born with have a fixed Mindset.

It is important to note that Dweck is not disputing the observation that some people find some 
types of activities or learning easier than others. What she disputes is that others can’t learn (Dweck, 
2008). Some key aspects deriving from the Mindset work are as follows:

 ● A person’s Mindset can vary depending on which skill or ability is considered. In everyday life, 
we hear this all the time, for example: ‘Oh I just can’t do maths at all!’ or ‘I haven’t got an ear for 
music!’. In our discipline, Scott and Ghinea (2014) provide evidence that students’ Mindsets 
relating to computer science ability are distinct from general views about intelligence.

 ● Mindset can be measured and is malleable. Although the word ‘Mindset’ might imply 
something set and unchangeable, Mindset is in fact highly malleable. Experiences that 
learners go through can influence their Mindset towards certain fields of study.

 ● Educationally, performance and mastery goals are associated with fixed and growth Mindsets 
(Dweck and Legget, 1988). Fixed Mindset learners tend to value performance – that is, some 
outcome measure of a learning exercise, whereas those with a growth Mindset value gaining 
mastery of the subject matter. In computing, for example, a performance measure may be a 
running program as the outcome of a programming  exercise – for a fixed Mindset learner, as 
long as the program is working, all is good; a more mastery-oriented valuation of the exercise 
would be that the learner fully understands how the program works or that they had learned 
enough from the exercise so that they could solve a related problem. Zingaro and Porter 
(2016) showed that mastery goals evidenced in computer science students were a predictor 
of continued interest and success in the subject.

 ● Directly related to the performance and mastery goals, learners with different Mindsets adopt 
different responses to feedback. Growth Mindset learners are likely to largely ignore a mark on 
a piece of work (a performance measure) and concentrate on feedback that will help them to 
improve next time. By comparison, studies show that fixed Mindsetters focus only on the mark 
and do not cognitively engage with formative feedback that could help them improve; instead 
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they are stuck in the emotional centres of the brain (Mangels et al., 2006). In the face of failure 
to achieve a goal, which is in itself a kind of feedback, those with a growth Mindset will try again 
using one of a number of alternative strategies in order to reach the goal; fixed Mindsetters tend 
to either give up or hopelessly retry using the same strategy over and over. Dempsey et al. (2015) 
demonstrated that improving students’ self-efficacy is an important goal for success in computer 
science, and having multiple strategies in the face of difficulties will clearly enhance self-efficacy.

Key concept: Mindset
Our Mindset, or our attitude towards whether we can learn something, is at 
least as important as any natural ability we may have. We can have different 
Mindsets towards different subjects to be learned. Our Mindset towards 
learning a subject can change from growth to fixed and vice versa. A growth 
Mindset person has the learning goal to master a subject; a fixed Mindset person will only 
attempt to perform well. Growth Mindset learners make use of feedback; fixed Mindset 
learners favour a rating or mark, ignoring formative feedback.

15.2 Should Mindset concern only the learners?
Much of the Mindset work appears to focus principally on the learner. In the description of 
Mindset in the previous section, it is the learners’ beliefs that influence their ability to succeed; it 
is the learners’ response to feedback that will keep them stuck or enable them to progress; it is the 
learners’ willingness to try a new strategy in the face of failure that will ultimately get them to the 
goal. In studies, the learners’ Mindsets are measured, and interventions are designed to directly 
influence the learners’ beliefs, via, for example, the messages mentioned above.

In computer science Mindset studies, the focus has also been on the learners. In Simon et al. 
(2008), students took part in a so-called ‘saying is believing’ intervention, in line with earlier 
successful studies (Aronson, Fried and Good, 2002): having learned about Mindset in a short 
lecture segment, the students wrote about applying Mindset ideas in the context of solving difficult 
problems. This intervention was relatively separated from their actual computer science work, and 
ultimately, changes in their computer science Mindset were not significant. If anything, they became 
more fixed as they went through the course, a result also found by Scott and Ghinea (2014). In our 
own study (Cutts et al., 2010), more intensive Mindset training did produce significant changes in 
the students’ Mindsets, but again, the focus of the training was the learners.

Some questions come to mind:

 ● What is the influence of teachers’ Mindsets on the learning of those in their care?
 ● Does influencing the learners’ Mindsets directly, via some form of instruction about Mindset 

concepts, lead to increased learning? What is the influence of the instructional design itself 
on the learners’ Mindsets and consequently their learning?
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15.3 Considering teachers’ Mindsets
We will address the second issue raised above later in the chapter. On the first question, studies of 
managers were the first to show that the Mindset of those in a mentoring/training role was related 
to their actions towards their charges (Heslin, Vanderwalle and Latham, 2006). Where the manager 
had a growth Mindset, he or she was more likely to coach an employee in difficulties and was able 
to come up with more suggestions for going forward. Similar effects have been observed in studies 
of teachers.

Do computer science teachers hold a fixed Mindset towards learning the subject? Large numbers 
appear to do so:

 • Lewis (2007) polled junior and senior students and also academic staff asking them to rate 
their agreement to the statement ‘Nearly everyone is capable of succeeding in the computer 
science curriculum if they work at it.’ Seventy-seven per cent of the staff disagreed with 
the statement. In Kinnunen et al.’s (2007) study, the majority of the sixteen CS educators 
interviewed talked about students on their courses who just ‘get it’ and about those who 
never will.

 ● The fact that there is heated on-going debate around whether computer science/
programming ability is innate or learned speaks to the lack of consensus on this issue. 
One of this chapter’s author’s own twenty-year computer science education research career 
started with this question (Cutts, 2001); Ahadi and Lister (2013) introduce the term ‘geke 
gene’ while arguing that innate ability is only part of the picture; Guzdial (2014) argues 
against the finding in Macnamara, Moreau and Hambrick (2016) that deliberate practice 
only minimally explains expert performance; and Patitsas et al. (2016) demonstrate 
that bimodal distributions in computer science don’t exist and are a folklore based on 
instructors’ prejudices about innate ability. Most recently, McCartney et al. (2017) have 
proposed a malleable ‘Geekiness Quotient’, which balances the concepts of innate ability 
and acquired skill.

 ● In our own work with teachers over the years, we have come across those who 
undoubtedly pigeonhole their pupils into ability levels, demonstrating a fixed Mindset 
attitude. During the CS Inside project (Cutts et al., 2007) which was an early adopter of 
the Unplugged style of computer science education, teachers often expressed surprise 
when particular pupils, obviously generally viewed to be low-achieving, made more 
valuable contributions than their more highly rated peers during sessions using this 
alternative pedagogical approach.

From all of this, it therefore seems essential that we should be considering teachers’ Mindsets at 
least as enthusiastically as those of the learners, for, from the former, directly or indirectly, are 
created the latter. The takeaway message here is that we, the teachers, are actually at the heart of the 
Mindset issue, not the learners.
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15.4 Exploring our own Mindset and practices 
as teachers
Surprisingly, most teachers we’ve encountered tell us that they are aware of Dweck’s Mindset work 
generally, yet their comments and actions belie a fixed Mindset attitude. Dweck herself, on the 
basis of numerous studies, for example Sun (2015), identifies the notion of a false growth Mindset, 
where teachers state they have a growth Mindset but don’t act as though they do.

Having read this far, where do you think you stand? What is your own view of the potential for 
any learner to develop their computer science ability? This is a fundamentally important question 
as computer science is globally transformed from its erstwhile position as an optional subject taken 
only by those who chose it in upper secondary or tertiary education into a mandatory part of all 
pupils’ education starting in early primary. Even as an optional subject, when one might sensibly 
conjecture that those taking it would have some expectation of success, computer science has had 
a notoriously high failure rate (Watson and Li, 2014). If one holds a view of computer science 
ability as innate (fixed Mindset), how can one then subject young people everywhere to a computer 
science education programme, knowing that large numbers must fail?

Here is a question to facilitate an exploration of our position. Is our stated expectation of what 
learners can achieve (i.e. our Mindset) at odds with our own teaching practices or those we have 
experienced? A teacher who believes that computer science ability is innate (fixed Mindset) most 
likely has adopted, consciously or unconsciously, a set of teaching practices that mirror his or her 
belief. For example, the programme may move too fast, provide little feedback, offer no opportunity 
for catching up and so on.

More importantly, however, even if a teacher says that he or she has a growth Mindset attitude 
towards the learning of computer science, we conjecture that very often the learning and teaching 
approaches used are still not sufficiently supportive – they are still likely to foster a fixed Mindset 
attitude in learners.

Do you disagree with our conjecture? Are you outraged that we might suggest this disconnection 
between growth Mindset belief and fixed Mindset practices? If so, then consider the following 
exercise, which we have used with large numbers of teachers to shed light on the disconnect.

The exercise starts with a familiar pseudocode  example – making a cup of tea – as is often 
used as a first example of creating a plan. Don’t be side-tracked though: this is nothing to do with 
program planning, and any example algorithm written in plain English would be fine. Take your 
time answering the questions and don’t read ahead! So, the example is as follows:

 1. Fill the kettle.
 2. Flick the switch on.
 3. While the kettle is boiling, get a cup and put a teabag into it.
 4. Once boiled, pour water into the cup.
 5. Wait a few minutes.
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 6. Remove the teabag.
 7. Add milk to taste.

The first question we have posed to numerous teachers about this is as follows: What do you need to 
know to understand these instructions in plain English as a solution to the task of making a cup of tea? 
We do this at a whiteboard and ask the group to shout out the answers – take a moment yourself 
now to consider your own answer. You should range right from issues to do with tea-making down 
to elements of syntax.

This takes a while, and there’s usually a lot on the board by the time we’ve finished. The following 
categories at least usually emerge from the discussion:

 ● Appreciating the gross structure of a set of steps within the body of text.
 ● Being able to parse sentences, seeing the structure and picking out verbs as actions or 

operations, nouns as things and all the necessary grammatical connecting tissue.
 ● A hierarchy of concepts, from those specific to this problem to more general concepts – from 

tea-making specifically, such as what teabags are, the steeping time necessary for tea to brew, 
to liquids more generally, such as milk, water, boiling, kettle and cups, to primitive process 
concepts such as sequence, parallel activity, time and pauses.

 ● Contextual connections, some implicit such as in line 6 – remove the teabag from where? – 
some explicit such as kettle, cup and teabag being referred to in many places, and across 
many lines, for example switch on/once boiled.

We then ask: How long does it take to learn about all of this for the typical human being? There’s a bit 
of thinking, before answers of around five to six years emerge.

We then transition to a program fragment of ten to fifteen lines in a language that the teachers 
are familiar with, using constructs that they’d use with their pupils. It could be any simple program, 
but this one reads in a mark that should be out of thirty, checks it is in range and repeatedly reads a 
new number in if it is not and finally converts the validated mark to a percentage and writes it out:

Dim Mark as Integer
Dim Percentage as Single
Dim OutOfRange as Boolean
Percentage = 0
OutOfRange = True
Do
Mark = InputBox(‘What mark did you get? ‘)
OutOfRange = Mark < 0 Or Mark > 30
If OutOfRange Then
MsgBox(‘Error! Mark not in range 0-30’)
Endif
While OutOfRange
MsgBox(‘You got ‘ & (Mark/30)*100 & ‘%’)

We ask the same question again: What do you need to know to be able to read and understand this?
An even longer list of categories tends to emerge, including the following:
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 ● Being able to see the gross structure of the program, including variable declarations and 
initializations, the loop to validate the input, the calculation and the output of the result

 ● Being able to remember all the syntactic elements as well as all their meanings
 ● Understanding that a formal language is different from a natural language (related to Pea’s 

(1986) superbug and further explained in Tenenberg and Kolikant (2014) and Cutts et al. 
(2014))

 ● Variables, including what they are as a concept, what the types associated with them mean, 
what an assignment is

 ● Expressions, including literal values in the program text such as True, 0, 30, ‘You got’, simple 
binary operations and then complex expressions combining a number of operators, either 
numeric or logical as well as concatenation and type coercion

 ● What input and output library functions do, and how to use them
 ● Control flow constructs of sequence and conditional loops
 ● Understanding the context – exam marks and how they can be out of range and arithmetic 

conversion to percentages

When asked the related question How much time do you give your pupils before expecting them to be 
able to understand a program like this?, the typical answer is about three weeks.

The comparison of six years to three weeks is obviously not entirely fair, but unpicking in this 
way how much there is to be learned, deeply, by comparing natural and programming language 
texts is often a radical eye-opener for teachers. In any introductory course, these concepts would 
be expected to be understood in three to five weeks, and the introduction of new concepts will 
build on these. Studies and learning models now indicate that missing the early building blocks is 
a key signal for failure in a course, including Robins’ Learning Edge Momentum (2010), Ahadi and 
Lister’s stumbling points (2013), and Porter, Zingaro and Lister’s prediction of student success on 
the basis of analysing fine-grained clicker data (2014).

In the next section we use the literature to strengthen the argument that the typical instructional 
design in introductory computer science courses is likely also to foster a fixed Mindset in learners.

15.5 Do typical computer science learning 
designs foster a fixed Mindset?
When reviewing the available evidence from both the Mindset-specific studies and more general 
research that examines how students’ attitudes and beliefs change over the course of their CS 
education, there is evidence that our courses are fostering a fixed Mindset. For example, Scott and 
Ghinea (2014) found that nearly a third (30.2 per cent) of students’ beliefs about programming 
aptitude became more fixed, with nearly a fifth (18 per cent) of these changing completely from a 
growth Mindset to a fixed Mindset. Even in cases where an introductory course has been specifically 
designed to provide extra support, there is evidence of a modest reduction in growth Mindset. For 
example, in our own Mindset study (Cutts et al., 2010), those who did not receive Mindset training 
experienced a 5 per cent reduction in growth Mindset score over just a short six-week period. 
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More broadly, studies like those of Settle, Lalor and Steinbach (2015) indicate decreases in student 
confidence and engagement during their initial CS1 experience.

To begin to understand the reasons why, let us consider the typical instructional design 
of an introductory computer science course. This involves covering a range of programming 
concepts, one at a time; each concept is introduced using example code fragments and the 
output they produce, leaving learners to individually come up with an internalized model 
for how the fragment actually works, a small number of worked examples may be explored 
and learners are then given programming problems to work on, where they are expected to 
develop working programs using a development environment. This is a generally accepted 
format whether using an educational programming environment such as Scratch or an industry 
language such as Java.

Examining this design against the key Mindset aspects introduced at the start of the chapter, we 
can explore how the fixed Mindset may be being developed:

 ● Performance versus mastery goals: The predominant measure of success in a programming 
course is whether the learner is able to get a working solution to a problem. The running 
program is taken as a proxy for successful learning, but in truth, how much do we know 
about what the learner has in fact learned? Has the learner been asked to explain the 
program in detail or the process followed to get the solution? Usually not. Do we evaluate 
how much help was received from tutors, peers, the internet and so on to get the program 
working? Usually not. The dominant concept of running a program is further underlined 
by the increasing use of automated acceptance tests for marking and recording progress. 
It doesn’t matter how the student gets the program, as long as it passes the test. This 
whole approach will clearly foster a performance goal in learners – learning to program 
is presented as an exercise in getting programs to run, not in understanding why they 
do or don’t work. This is backed up by Buffardi and Edwards (2015), who found that 
the automatic grading system was discouraging reflective testing, an indicator of deep 
thinking about programs.

 ● Response to feedback: What kind of feedback do learners typically receive? In a typical context 
where learners attempt to solve problems by getting a working program, the programming 
environment provides feedback every time the learner tries to run their program. The ratio 
of failure to success is high in favour of failures, which in itself is disheartening to someone 
not used to it. Furthermore, the error messages of the programming environment are usually 
quite opaque, and many learners take no useful information from them that might help them 
identify the cause of the problem. Given these factors, it is hardly surprising that the typical 
learner response to all this negative feedback is to put their hand up and ask for help or to get 
help from peers or the web. Students with this response were characterized by Perkins et al. 
(1986) as Stoppers.

 ● Alternative strategies: We rarely explicitly teach debugging strategies, which would provide 
learners with options when faced with challenges. Anecdotally, more experienced students 
have often commented on how essential the web is as a tool to be used to find the cause 
of problems they’re facing, but teaching students about appropriate search techniques for 
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solving problems is not common practice. For students who are struggling, the predominant 
behaviour observed by tutors and teachers is of students making almost random changes 
to their program, over and over again, in the hope that it will magically start working. This 
is a clear sign of the adoption of a fixed Mindset and the repeated application of a hopeless 
strategy that is not working. Such students were characterized by Perkins et al. (1986) as 
extreme movers.

You may well ask at this point why all learners don’t fail, given the apparent weakness in typical 
learning designs that we are describing. Furthermore, given that some succeed, it is easy to 
attribute their success to some innate ability, the exact explanation the general Mindset philosophy 
is arguing against! In the next section, therefore, we explore an alternative explanation for why 
some succeed while others fail.

15.6 The influence of prior experience on 
novices’ success
At the core of this explanation are the prior experiences that contribute to the learners’ performance. 
Those who have succeeded at some form of programming before are very likely to succeed in 
an introductory course (Ramalingam, LaBelle and Wiedenbeck, 2004). But how do we explain 
those who have never programmed before? Considering aspects of the computer science concepts 
outlined in the example above that a novice must master, the following can be concluded:

 ● Experience with languages of a more formal nature, including mathematical algebras and 
anecdotally, Latin and Greek, will have given the learner skills to appreciate both the nature 
of a formal language as one with strict definitions and an experience of reading texts out of 
order, for example precedence rules in maths, verbs at the end of the sentence in Latin and 
German and so on. The experience of working with mathematical language and processes 
may explain why studies have shown a correlation between prior high school maths 
performance and success in computer science course (Bennedsen and Caspersen, 2005; 
Bergin and Reilly, 2005).

 ● It is well known that a single construct, such as variable assignment, may have multiple 
valid interpretations (Bornat, Dehnadi and Barton, 2012). Teaching styles that introduce 
concepts by example enable the learner to adopt any one of these so-called alternative 
conceptions (Sorva, 2013), which will work for some exercises they complete, but not all 
(Ma et al., 2011).

 ● Studies show that those with visualization skills tend to achieve better in STEM subjects, 
including computer science (Cooper et al., 2015; Sorby, 2013). More importantly, the same 
studies have showed that the visualization can be acquired with training.

In summary, there is sufficient evidence to propose that the spread of outcomes in our classes is at 
least partly based on prior experiences.
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15.7 The bigger picture: Teacher and learner 
attitudes and learning designs
We have now laid sufficient groundwork to come back to the questions posed but not answered 
earlier in the chapter:

 ● Does influencing the learners’ Mindsets directly, via some form of instruction about Mindset 
concepts, lead to increased learning?

 ● What is the influence of the instructional design itself on the learners’ Mindsets and 
consequently their learning?

With respect to the second question, we have shown that typical instructional designs are highly 
likely to foster a fixed Mindset towards computer science learning in learners with limited relevant 
prior experiences. Hence, we may now expect the answer to the first question to be no. To back up 
this expectation, the minimal Mindset training intervention of Simon et al. (2008) didn’t influence 
the students’ Mindsets, let alone increase their learning. The more in-depth Mindset training of 
our study (Cutts et al., 2010) did influence students towards more growth Mindsets, but, crucially, 
the Mindset training alone was not enough to increase learning. In the study, three interventions 
were used: one was the Mindset training, a second explicitly encouraged the students to try new 
strategies in the face of failure and the third emphasized the importance of making good use of 
available high quality feedback to their learning. Only when students had both the Mindset training 
and one of the other interventions were improvements in learning noted.

The importance of this result is that the additional growth Mindset-based interventions changed 
the instructional design of the course and were the result of the teacher fully taking on board the 
ramifications of Mindset as laid out in Dweck’s work and the many related studies.

As Dweck said, teaching with a growth Mindset is not a statement, it’s a journey. The journey 
requires a deep re-evaluation of our own understanding of how learning computer science skills 
can take place, from an understanding of both general education theory and the increasing 
understanding we have about computer science education in particular. It requires a continual 
investigation of our own practices and how they affect students’ success. It must inevitably lead 
to a major rethink of the typical instructional design for an introductory computer science 
course.

Key points
 ● Mindset is the belief that people hold about whether ability is mostly 

innate (fixed) or can be improved through deliberate practice in a specific 
area of learning (growth).

 ● Educationally, performance and mastery goals are associated with fixed and growth 
Mindsets, respectively – Mindset has a huge influence on outcomes.
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 ● Mindset towards a particular skill or ability can be measured and can, and does, 
change with learners able to move between growth and fixed Mindsets depending 
on their learning experience.

 ● A teacher’s Mindset is easily transferred to their learners. It’s crucial therefore that 
teachers develop a growth Mindset in order to create instructional designs that can 
foster a growth Mindset in learners.

 ● Teachers of computer science have been shown to have a fixed Mindset. Exercises 
such as the one in this chapter help to shift them towards a growth Mindset.

 ● Typical learning and teaching techniques in computer science foster a fixed 
Mindset.

 ● Just saying ‘I believe in growth Mindsets’ isn’t enough – a teacher needs to re-
evaluate their teaching practices to determine how they could be influencing 
learners’ Mindsets.

For further reflection
Examining the design of your own course or programme of learning,

 ● do you get learners to carry out a survey or exercise at the start of the 
course to help you judge the beliefs they start with and again towards the end of 
the course to see how they’ve changed?

 ● have you provided a range of suitable strategies that learners can use when they 
get stuck on known areas of difficulty?

 ● can you reorganize tasks so that learners have an opportunity to directly apply the 
feedback they receive soon afterwards?

 ● do you have mechanisms in place for learners to move at different speeds?
 ● for programming in particular, do you explain that repeated failure is to be 

expected? – programs don’t work correctly for most of the development period and 
then finally do!
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Computing Classroom
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Chapter outline

 16.1 Assessment overview
 16.2 Assessment methods
 16.3 Assessing programming projects
 16.4 Edfinity: An example of an assessment platform
 16.5 Summary

Chapter synopsis
This chapter gives a general introduction to formative assessment and applies 
this to the teaching of computing in school, with reference to research studies 
in this area. A variety of methods that can be used for assessment are discussed including 
self- and peer assessment, automated tools, rubrics, concept maps and multiple-choice 
questions. Ways of assessing programming projects are discussed and evaluated. Finally, 
an example of an assessment platform and the types of features that might be useful for 
such platforms are discussed.

16.1 Assessment overview
Assessment is critically important to education – for evaluation and accreditation and for 
supporting learning, with summative assessments supporting the former and formative 
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assessments the latter. Key aspects of formative assessment are questioning, dialogue and 
developing students’ abilities to self-assess (Black and Wiliam, 1998), and in order to learn more, 
students need feedback on their progress. Students can use teacher feedback to work on their 
areas for development, which puts the responsibility and power into the hands of the student. 
Students should be able to use self-assessment to identify their areas for improvement and apply 
themselves to these.

In this chapter, we focus primarily on formative assessment, or assessment for learning, 
which includes feedback, questioning, self-assessment opportunities, peer assessment and a 
range of other strategies in the context of computing. While assessment opportunities such as 
projects or tests may be used formatively or summatively, primarily in this chapter we discuss 
these in terms of their contribution to formative assessment, drawing on existing research in 
the field.

Key concept: Formative and summative 
assessment
A key feature of assessment is that it concerns making judgements. This enables 
an assessment of learning to be made, known as summative assessment. With 
this type of assessment, students are graded at the end of a course or module. 
This can be for certification purposes or for evaluating learning in the aggregate and how 
well the learning goals were addressed by the curriculum.

Another type of assessment is assessment for learning, known as formative 
assessment, which is used to identify what students know, what they still need to learn 
and how to get there. This can also be used for diagnostic purposes and to address student 
misconceptions. There are many methods that can be used to formatively assess students, 
some of which are discussed in this chapter.

Formative assessment taking place at school has the intention of promoting further 
learning for the student, whereas summative assessment revolves around key points 
where a student’s achievement is measured, giving data that can be used not only by the 
student but also by a number of other stakeholders, including the school and employers.

It is necessary to make a distinction between the assessment opportunity and the assessment 
activity; in this chapter we discuss both. The assessment opportunity is a task that may be set 
with the intention of using it for assessment. The assessment activity is the provision of feedback, 
dialogue and student discussion, generated as a result of the task, that provides an opportunity for 
improving student learning. For some tasks, feedback is inherent, but in others, it happens later. 
Thus, it is possible to provide an assessment opportunity that does not result in much assessment 
activity.

The framework shown in Figure 16.1 highlights three key aspects or dimensions of formative 
assessment in school – the design of assessments, teacher preparation and formative assessment 
literacy, and community participation and resource repositories.
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16.2 Assessment methods
In this section we look at some of the different methods we can use to assess computer science 
knowledge and skills:

 ● Self- and peer assessment
 ● Parson’s puzzles
 ● Rubrics
 ● Concept maps
 ● Response systems and multiple-choice questions (MCQs)

Self- and peer assessment
Peer and self-assessment are effective methods of formative assessment, both useful in the 
classroom. Boud and Falchikov (2007) define peer assessment as a process of providing feedback 
on peers’ work based on success criteria that the students may have established previously. Self-
assessment can be defined as formative assessment evaluating the extent to which oneself or one’s 
work meets requirements or success criteria. Peer review or assessment has been used as a learning 
process to improve the quality of computer programs for at least thirty years (Luxton-Reilly, 2009).

Figure 16.1 A framework for assessment (Source: Grover 2021)
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Example: Using peer assessment in the classroom
Ask students to write an algorithm to control a red, amber and green traffic light. 
Writing the algorithm is the assessment opportunity. Using peer assessment, 
the students can then share their algorithms, either on paper or by presenting them in small 
groups. You should decide on some criteria to assess the algorithms such as ‘functionality’, 
‘notation’ and ‘improvements’. The writing and giving of feedback is the assessment 
activity. At the end of the peer assessment, students should understand their strengths 
and where they need to improve, possibly with recommendations on how to do so. The 
more often you carry out peer assessment, the more familiar students get, and they will be 
able to give increasingly constructive feedback to their peers as well as having a growing 
understanding of what the criteria mean.

By engaging with peer assessment, students move from being merely observers in the classroom 
to being more active participants, engaging with the learning process. In addition, the levels of 
collaboration and sense of community are increased by the use of peer assessment (Clark, 2004). 
Topping (2009) suggests that peer assessment helps students really understand the aims and 
objectives of a course. This leads to students developing a better understanding of the assessment 
criteria against which they themselves will be judged. Students, assessing the work of others, benefit 
by developing skills to identify errors in their own work (Sitthiworachart and Joy, 2003). Self-
assessment can also help students to identify errors and to further develop the ability to accurately 
measure their performance against requirements, which is important for creating effective learners 
(Boud, Lawson and Thompson, 2013).

A small-scale study, examining students’ ability to self-assess their programming skills that 
used a survey aligned to Bloom’s taxonomy, found that students’ self-assessment was accurate in 
relation to their summative assessment (exam) scores (Alaoutinen and Smolander, 2010). In a 
high school environment, teachers’ and students’ assessment scores were highly correlated (Tseng 
and Tsai, 2007). However, other studies show that students demonstrate a tendency to be more 
generous with self-assessment marks (Sajjadi et al., 2016) and with peer assessment of their friends 
(Sitthiworachart and Joy, 2003). Weaker students appear less accurate when self-assessing (Murphy 
and Tenenberg, 2005).

Overall, the benefits of self- and peer assessment include increasing levels of engagement and 
collaboration in the classroom, increasing understanding of assessment criteria and identification 
of strengths and weaknesses in a student’s work. As assessment activities, both self- and peer 
assessment are suitable for the computer science classroom. The value of these may be increased 
by the additional support from teachers in the form of graphical aids, templates and rubrics. 
Grover, Sedgwick and Powers (2020) share several examples of such guides that can be provided to 
students. Figure 16.2 is an example of a peer feedback form (that also integrates the programming 
project with English language arts).
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Figure 16.2 Sample peer feedback guide for a Scratch project (Source: Grover, Sedgwick and 
Powers, 2020)

Parson’s puzzles
Parson’s puzzles are drag-and-drop tasks which present fragments of code that students should put 
in the correct order to solve a problem. Parson’s puzzles are supported by tools like Hot Potatoes, 
Ville and JSParson (Ihantola and Karavirta, 2011). Table 16.1 presents an example in the Ville 
environment. Students regard this type of task as easier than writing code and more creative and 
objective than other assessment tasks (Denny, Luxton-Reilly and Simon, 2008). The tools also 
provide feedback to students. Teachers can use these puzzles as an alternative to open-ended code 
writing questions and identify students’ difficulties and misconceptions.

Rubrics
Rubrics provide a way of offering more consistent assessment of student performance. They are 
used to define detailed criteria that describe what students should achieve (Becker, 2003), and they 
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have two shared characteristics. The first is a list of criteria that are necessary for the particular task 
and the second is the degree of quality (Andrade, 2000). These features make rubrics proper tools 
to reliably evaluate students’ performance, but they can help students understand their progress 
as well (Black and Wiliam, 2009). Popham (1997) refers to rubrics as instructional illuminators.

Rubrics have been used to assess computer programming assignments from the early 1980s 
(Miller and Peterson, 1980; Hamm et al., 1983) to the current day (Becker, 2003; Barney et al., 
2012; Mustapha et al., 2016). An example of a rubric is shown in Table 16.2.

Rubrics are regarded as fair and reliable tools with which students can better understand 
what is expected of them (Barney et al., 2012) and the amount of effort needed to reach a 
specific level of performance (Mustapha et al., 2016). Additionally, rubrics are useful in peer 
and self-assessment and can help students to evaluate their performance or that of their peers. 
Alternatively, students can be involved in developing the rubrics and thus feel more engaged 
with the whole process.

Concept maps
A concept map is a schematic representation of concepts and the relationships they form and can 
be used by students to represent their knowledge of a subject. Figure 16.3 shows an example of a 
concept map.

Table 16.2 An example of a rubric for a solution in a programming task

 Weak
0–3

Emerging
4–6

Good
7–8

Excellent
9–10

Solution 
for 1 b

An incomplete 
solution is 
implemented. It 
does not compile 
and/or run.

Runs but has 
logical errors. 
Apply emerging 
if program does 
not use 2D array 
or has incorrect 
results

A complete solution is 
tested and runs but 
does not meet all the 
specifications and/
or work for all test 
data. Apply good if 
program misses one 
data entry line.

A completed solution 
runs without errors. 
It meets all the 
specifications and 
works for all test 
data.

Source: Adapted from Eugene, Stringfellow and Halverson (2016).

Table 16.1 Example of Parson’s puzzles adapted from Ville example

Program Exercise Description

 def main():
  a = 1
  b = -1
  a = b
  tmp = a
  b = tmp

Order the lines of code so that the function swaps the 
contents of variables a and b

Source: Ihantola and Karavirta (2011).
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As an assessment tool, it can be used to measure students’ quality of understanding and the 
structure of their knowledge (Borda et al., 2009). Markham and Mintzes (1994) suggested a 
detailed scoring system (Table 16.3) to help teachers evaluate students’ concept maps.

By employing concept maps, teachers can monitor students’ level of learning and organization of 
knowledge, which leads to teachers identifying students’ misconceptions and misunderstandings 
(Moen, 2009; Wei and Yue, 2016). In a study conducted at the university level, students reported 
that concept maps are more entertaining than other assessment methods (Freeman and 
Urbaczewski, 2001).

Drawing concept maps can also be used as a learning activity (see Chapter 13).

Figure 16.3 Example of a concept map (Mühling, 2016)

Table 16.3 Concept map scoring system

Component Description Score

Concepts No. of concepts 1 point for each concept
Concept relationships No. of valid relationships 1 point for each valid relationship
Branching Scores for branching varied according to 

the amount of elaboration
1 point for each branching
3 points for each successive branching

Hierarchies No. of hierarchies 5 points for each level of hierarchy
Cross-links No. of cross-links 10 points for each cross-link
Examples No. of examples 1 point for each example

Source: Markham et al. (1994).
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Response systems and multiple-choice questions
Audience response systems, informally known as ‘clickers’, allow the teacher to display an MCQ 
with optional responses. Learners respond to the question by pressing a button on an electronic 
device. A receiver picks up the signals from the clickers and sends the responses to software, and 
the software interprets and displays the results. The teacher can see the results and can choose to 
share them with the class.

Online versions of the ‘clicker’ provide more accessible use of technology in the classroom. These 
online systems include Kahoot, Socrative, Poll Everywhere, Edfinity and Diagnostic Questions. 
The facilities offered by each are slightly different, but they all incorporate a mechanism for hosting 
a live interactive quiz made up of MCQs. These particular systems require each student to have a 
device connected to the internet. Most of these are auto-gradable and therefore are very helpful in 
providing timely and quick feedback. Newer systems such as Edfinity.com have gone beyond MCQ 
types to add more interactive assessment item types such as Parson’s puzzles, Point-and-Click, 
Hotspot interaction and matching column (Grover et al., 2022).

The use of response systems has several advantages for learners. In the classroom, a natural 
competitiveness among learners exists to answer the questions quickly and accurately (Cutri et al., 
2016). Learners’ self-confidence improves because of the opportunities for interaction with their 
peers (Coca and Slisko, 2013; Fotaris et al., 2016). There is some support for suggesting that the use 
of response systems leads to improved academic performance (Kay and LeSage, 2009), but this is 
contradicted by a more recent study (Wang, Zhu and Sætre, 2016). Therefore, while improvement 
in academic performance may not be guaranteed by the use of response systems, students perceive 
the systems as a positive addition to the classroom.

Online systems have advantages for the teacher. Not only do students get immediate feedback 
about the correct response, but the teacher gets immediate feedback about what the students 
know and do not know, thereby making it ideal for formative assessment (Kay and LeSage, 2009). 
Collecting and analysing data about individuals or groups of students is possible with the online 
systems. Some provide analytics that can help teachers identify gaps in knowledge by groups and 
individuals and feature the ability to allow comparisons to all other users of the system.

The use of response systems and online quizzes is not without disadvantages, however. Although 
students view the systems as engaging and motivating, an abundance of enthusiasm could lead to 
challenging classroom management situations. In schools, the challenge lies in acquiring the skills 
to use the tool as part of the learning process, rather than just as an engaging and motivating game. 
Students may need to be trained in how to use the online quizzes as part of the learning process 
and not view them just as a game.

Regardless of the delivery method, developing the MCQs is a difficult challenge (Dell and 
Wantuch, 2017; Kay and LeSage, 2009). Writing MCQs may seem an easy task, but writing 
questions to allow identification of real confusion or misconceptions is challenging (Dell and 
Wantuch, 2017). Some systems such as Edfinity have leaned on prior research to aggregate 
common misconceptions related to introductory programming concepts such as variables, 
functions, loops, conditionals and Boolean operators (among others) that have been documented 
over decades of research and create assessment items aligned to them. These items are typically 
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simple MCQ directly probing understanding related to the misconception and can be used as 
a formative assessment for timely and speedy feedback to teachers and students (Grover and 
Twarek, 2021).

16.3 Assessing programming projects
The challenge of assessing a programming skill is present at all levels of education, from primary 
to university. At university, large cohorts and the necessity to reduce marking time have led to 
many innovative approaches to machine marking of computer programs. However, at primary and 
secondary levels, the programming tasks are not as complex and the number of students at most 
institutions is not as large. We can consider four potential solutions to the problem of assessing 
programming projects:

 ● Assess the process
 ● Assess the product/artefact
 ● Assess by interview
 ● Assess the design

Assess the process
Computer science is not the first subject challenged with assessing a process as opposed to an 
artefact. In Israel, design-based learning (Doppelt, 2009) was an attempt to assess the thinking 
processes of high-school students in a course combining mechanics, electrical engineering and 
programming. Students documented both the process of producing their group projects and the 
thinking skills employed during the process. The approach of documenting the creation process, 
incorporating reflection and evaluation, is seen in some computing classrooms, by the use of 
learning journals, portfolios or coursework submissions.

Observation is another approach to assessing process. In the science laboratory, students can 
be observed as they engage in practical activities (Hofstein and Lunetta, 2004). An observer 
summatively assesses students according to planning, design, performance and analysis. This same 
approach may be used in the computing classroom (Brennan and Resnick, 2012).

Assess the product/artefact
The most obvious method of assessing skills in programming is to assess the artefact, including the 
program code created (Insa and Silva, 2015; Lobb and Harlow, 2016).

Werner, Campe and Denner (2012) analysed middle school children’s games developed in 
the Alice visual programming language; students were able to understand and use a range of CS 
concepts, with about one-third using variables, one-half using built-in functions and only a single 
student creating a custom function.
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By using Stagecast Creator, Denner Werne and Ortiz, 2012) assessed middle school girls’ 
artefacts; on inspection of the artefacts, 18 per cent did not include interaction, only 1 per cent 
included an ‘and if ’-type test and very few changed rule names from the default of ‘untitled’.

In the Scratch environment, Seiter (2015) employed the SOLO taxonomy to assess fourth-
grade students’ program responses; the majority of students gave relational level (one from the 
top) rather than extended abstract (top) responses in their code. Brennan and Resnick (2012) also 
assessed computational thinking through examination of the Scratch artefacts uploaded to the 
Scratch community website. The scripts were analysed to determine the number and distribution 
of the different types of blocks. They concluded that knowing the type and count of blocks used was 
not sufficient to evidence computational thinking.

In some way, all of these studies were uncontrolled. Some (Denner, Werner and Ortiz, 2012) lack 
specifications for the artefacts that may allow students to evidence their learning. Others (Brennan 
and Resnick, 2012; Seiter, 2015; Werner et al., 2012) provide no information about the process of 
producing the artefacts. Based on these studies, it seems unlikely that students will spontaneously 
produce evidence of learning in their artefacts.

Assess by interview
Adding another assessment instrument may strengthen the artefact-based judgements. Several 
researchers (Barron et al., 2002; Brennan and Resnick, 2012; Grover, Pea and Cooper, 2015; 
Portelance and Bers, 2015) have used interviews to fulfil this purpose.

Brennan and Resnick (2012) performed 60- to 120-minute interviews with students on the 
production of their Scratch projects. The responses to these questions allowed the researchers to 
form detailed descriptions of the development process (Brennan and Resnick, 2012). Another 
study conducted by Portelance and Bers (2015) employed artefact-based interviews with a group 
of second graders in the United States who used ScratchJr. This study is innovative because it 
uses peer interviewers and video interviews to assess children’s learning about computational 
thinking.

Grover, Pea and Cooper (2015) found in their artefact-based interviews that students who did 
not perform well on the (mostly MCQ) summative test were able to demonstrate understanding of 
concepts during the interviews. This led to the conclusion to use ‘systems of assessments’ to get a 
holistic picture of student understanding.

Assess the design
One approach that forgoes employing a student-created artefact is described as design scenarios 
(Brennan and Resnick, 2012). In this approach, projects are created by an educator, with different 
projects designed that increase in difficulty and aesthetically appeal to different groups. The student 
can then be asked to explain what the project does, describe an extension to the project, fix a bug 
in the project and remix the project to add a feature (Brennan and Resnick, 2012). This process can 
be observed in real time, which allows understanding to be tracked. This approach still requires a 
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significant amount of the assessor’s time. It also has the disadvantage that the programming stages 
of fixing a bug and remixing may be subject to unacknowledged influences, in much the same way 
as the artefact-only approach.

In conclusion, none of the approaches to assess programming skills and computational thinking 
discussed above is without disadvantages. However, there does seem to be an acknowledgement 
that the very popular approach of assessing code artefacts alone has shortcomings. This suggests 
that varied forms of assessments, or ‘systems of assessments’, should be employed over the course 
of a school year to get a multifaceted and holistic picture of student understanding (Grover, 2017). 
The addition of another assessment format can be used to validate the artefact assessment. This 
additional method could be an interview, an observation, or a test.

16.4 Edfinity: An example of an assessment 
platform
In order to support formative assessment practice by teachers, assessment platforms and homework 
systems must be feature rich to support aggregation, creation, curation and cataloguing or 
taxonomizing of assessments based on multiple and multilevel taxonomies relevant to CS teachers. 
Ongoing efforts for CS assessment item banks and repositories include Edfinity (edfinity.com), 
Project Quantum (https://diag nost icqu esti ons.com/Quan tum), Viva (Giordano et al., 2015) and 
the Canterbury Question Bank focused on introductory college-level CS (Sanders et al., 2013).

Edfinity is one example of a platform from the United States. Taxonomies on Edfinity include CS/
CT topics, learning standards (such as those from CSTA, n.d.) or learning goals by curricula (such as 
AP CS Principles), grade, difficulty level and ad hoc metadata to support easy search and discovery. 
Edfinity also aids with assessment delivery, administration, auto-grading and teacher dashboards. 
Backend data and analytics on student performance provide teachers crucial insights into students’ 
learning and understanding at individual and aggregate levels (Grover, Pea and Cooper, 2014).

Edfinity also provides for multiple attempts of a question, hints and feedback (or explanation) 
for correct and incorrect options. Solution explanations accompany the item and serve as (a form 
of) feedback. These explanations, as also the question stem, support rich text, graphics and video 
for better learner engagement and multiple modes (and languages) of presentation to equitably 
support diverse learners. Edfinity item types include technology-enhanced assessments that push 
the boundaries to include interactivity (such as hotspot and point-and-click items), drag-drop 
for item types such as Parson’s problems, matching column and code labelling based on research 
in subgoal labelling (e.g. Morrison, Margulieux and Guzdial, 2015) and in-browser code entry 
(assessed through unit tests). Such items are not only engaging but can also help reduce cognitive 
load (Figure 16.4).

Assessment creation and aggregation functions on technology platforms such as Edfinity can 
also support features for teacher collaboration, contribution, attribution and sharing as well as 
interfaces for creation of both simple and technology-enhanced items. They can also innovate with 
randomized variants of items, solution validation and customized feedback to students.

 

https://www.diagnosticquestions.com/Quantum
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16.5 Summary
The focus of this chapter has been primarily on formative assessment, or assessment for learning, 
which includes feedback, questioning, self-assessment opportunities, peer assessment and a range of 
other strategies in the context of computing. This is based on the innovative work of Black and Wiliam 
(1998).

The value of both peer and self-assessment, part of formative assessment, is supported in the 
research (Liu et al., 2001; Boud, Lawson and Thompson, 2013). Not only do learners receive valuable 
formative feedback, but it also gives them an opportunity to understand better the requirements or 
objectives of the task they are undertaking. The one concern to acknowledge is that the assessment 
by peers may not always be congruous with assessment by teachers. Peers may have a tendency to 
be generous with marks (Sajjadi et al., 2016).

In the computer science classroom, because much time is devoted to programming, it is tempting 
to assess the outcome of that task (Insa and Silva, 2015; Lobb and Harlow, 2016). However, assessing 

Figure 16.4 (a) An MCQ item from Computational Thinking Test (CTt) adapted into a point-and-
click item on Edfinity.com and (b) a Parson’s puzzle problem for AP CS Principles
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the artefact produced by the task of programming has been shown to be less reliable than methods 
that assess the process of producing the artefact (Brennan and Resnick, 2012; Portelance and 
Bers, 2015).

An assessment opportunity is a task that may be set with the intention of using it for 
assessment. These may include a programming environment with the ability to generate 
feedback for the learner or the teacher. Parson’s puzzles, a task where algorithm steps are 
ordered, can be accomplished in online environments (Ihantola and Karavirta, 2011) but 
can also be done with paper cut-outs. Rubrics are a fair and reliable (Barney et al., 2012) 
assessment tool, where learners can reflect on their own performance and judge how to reach 
a higher level (Mustapha et al., 2016). When learners produce concept maps, they reveal how 
they organize their knowledge and understanding. Teachers can interpret the maps to reveal 
students’ misconceptions (Wei and Yue, 2016). MCQs can be used, as formative assessment 
tools, in several different ways in the classroom. Clicker technologies (Ribbens and National 
Science Teachers Association, 2007) and online systems bring a competitive environment to the 
activity of assessment while allowing the teacher to collect immediate feedback and respond 
immediately to misunderstandings and misconceptions (Kay and LeSage, 2009). However, to 
reap the most benefit from these systems, the students and teachers must use them as a tool, 
rather than just an engaging activity.

There is much research still to be conducted in the area of assessment in computer science 
education. Areas of particular interest include understanding how classroom dialogue can be 
leveraged to formatively assess computational thinking skills and understanding the extent 
to which peer and self-assessment in schools reflects the bias shown in higher education. 
Reproducing and testing these studies in a new context will lead to more effective teaching and 
learning.

Key points
 ● Many assessment methods can be used in conjunction to effectively 

formatively assess students in computing.
 ● Self- and peer assessment enable students to become familiar with the criteria 

used to assess them and thus become more aware of what they need to do to 
progress.

 ● Concept maps are useful to examine students’ understanding of the relationship 
between key concepts and ideas.

 ● Automated tools for assessing programming are becoming more apparent with 
more new developments expected in the next few years.

 ● Multiple-choice questions and response systems using technology can give both 
teacher and student instant feedback about their progress and stimulate discussion 
about right and wrong answers to questions.
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For further reflection
 ● For each of the assessment approaches listed in this chapter, make a list 

of example topics that would benefit from this type of assessment and 
devise some assessment opportunities.

 ● Focusing on a topic in computing that students might find difficult, reflect on the 
type of assessment that would enable a teacher to have a good understanding of 
what the student understood and any persistent misconceptions.
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17
Introduction to Part 4

Sue Sentance

With the introduction of computer science in schools, we have probably all seen the media and 
others become rather fixated with ‘coding’, as if computer science were only about coding and 
nothing else. There are two problems with this common overgeneralization. The first is the omission 
of all the other aspects of computer science that are taught in school, including networking, 
computer architecture, human–computer interaction, data and information, and the impact of 
technology on society. Second is the assumption that coding is the same as programming, which 
it is not. Where coding assumes that an algorithm is to be translated into program code and then 
executed, programming includes the whole process of designing a solution, creating an algorithm 
and then coding.

We can see that programming is a substantial topic and has frequently been reported as difficult 
to teach and learn; in addition, there has been a lot of research into how we learn to program 
over several decades. In this second edition, we decided to increase the focus on programming to 
capture the full breadth of the subject, including oft-neglected design (Chapter 19) as well as the 
new and exciting topic of epistemic programming (Chapter 22). It’s exciting to be able to delve a 
little deeper, and hopefully, readers will find this useful.

In Chapter 18, Michael E. Caspersen starts us thinking about the teaching of programming. 
There is a long history in computing education research around the teaching of programming, 
from the 1970s or even earlier. In this chapter we learn about a number of key principles for 
teaching programming, covering a number of strategies including the value of worked examples 
and stepwise improvement as useful approaches for developing a secure understanding of 
programming concepts and skills. Reflecting on programming at this level may give you some 
surprising insights into your understanding of programming: demonstrating that subject and 
pedagogical knowledge is complex and cannot be expressed as recipes.

In Chapter 19, Jane Waite draws on her research with primary teachers to consider the potential 
uses of design, the difficulties of design and what underlying concepts might help teachers 
to support the teaching and learning of design at the primary level. It’s an important aspect of 
programming and often neglected
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In Chapter 20, Juha Sorva gives an overview on typical misconceptions in the computing 
classroom and gives some advice for misconception-sensitive teaching. Students do not enter the 
classroom as blank slates, ready to be filled with concepts from computer science – instead they are 
on a learning journey and may hold alternate conceptions on the way: it’s useful for teachers to be 
able to uncover them and discuss concepts with learners.

Chapter 21 moves us on to specific practice in the school programming classroom. In this 
chapter, written by Jane Waite and me, we look at a number of specific programming strategies for 
teaching, the different contexts for learning programming and how we can support learners.

Finally, in Chapter 22, the authors switch their focus to a brand new perspective on 
programming. In this chapter, Sven Hüsing, Carsten Schulte and Felix Winkelnkemper define 
epistemic programming as ‘the acquisition of new insights and the expression and representation 
of ideas’. This view of programming offers us a way of developing and presenting new insights and 
supports the creation of meaning. Analysing epistemic programming via people, project, process 
and product, the authors highlight how the students will be able to use programming to better 
understand the world and as a means for self-expression. In this sense, the analysis of large data 
sets is a typical application of epistemic programming.
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18
Principles of Programming Education

Michael E. Caspersen

Chapter outline

 18.1 Introduction
 18.2 Teaching and learning programming is a grand challenge
 18.3 Principles for teaching programming

Chapter synopsis
The defining characteristics of the computer is its programmability, and 
programming is the essence of computing/informatics. Indeed, computing is 
much more than programming, but programming – the process of expressing one’s ideas 
and understanding of the concepts and processes of a domain in a form that allows for 
execution on a computing device without human interpretation – is essential to computing.

Teaching and learning programming is not easy; in fact, it is considered one of the grand 
challenges of computing education. In this chapter, we describe the nature of the challenge, 
and we provide a dozen teaching principles to help overcome the challenge.

18.1 Introduction
Writing a chapter about the principles of teaching of programming is an intriguing task but for 
many reasons also challenging – an entire book could be written on the subject.
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This decision has advantages and disadvantages. An advantage is that the chapter is applicable 
regardless of which language technology you as a teacher intend to use. A disadvantage is the lack 
of concrete examples, expressed in a specific programming technology that you can apply directly 
in your teaching.

Section 18.2 describes the challenge of teaching programming. In section 18.3 – the heart of the 
 chapter – we present a dozen principles that can help overcome some of the challenges of teaching 
and learning programming.

18.2 Teaching and learning programming is a 
grand challenge
In some ways, programming education has changed dramatically over the past more than fifty years. 
We have experienced a rich and successful development in programming language technologies 
and an accompanying development of teaching practices.

However, in other ways, things have not changed that much, and it is still the case that typical 
introductory programming textbooks devote most of their content to presenting knowledge about 
a particular language (Robins, Rountree and Rountree, 2003).

Exposing students to the process of programming is merely implied but not explicitly addressed 
in texts on programming, which appear to deal with ‘program’ as a noun rather than as a verb.

But teaching programming is much more than teaching a programming language. Knowledge 
about a programming language is a necessary but far-from-sufficient condition for learning the 
practice of programming. Students also need knowledge about the programming process, that is, 
how to develop programs, and they need to extend that knowledge into programming skills.

David Gries (1974: 82) pointed this out already in 1974, when he wrote the following:

Let me make an analogy to make my point clear. Suppose you attend a course in cabinet making. The 
instructor briefly shows you a saw, a plane, a hammer, and a few other tools, letting you use each one 
for a few minutes. He next shows you a beautifully-finished cabinet. Finally, he tells you to design 
and build your own cabinet and bring him the finished product in a few weeks. You would think he 
was crazy!

Clearly, cabinet making cannot be taught simply by teaching the tools of the trade and 
demonstrating finished products, but neither can programming.

Nevertheless, judging by the majority of past as well as contemporary textbooks, this is what is 
being attempted. In Kölling (2003), a survey of thirty-nine major selling textbooks on introductory 
programming was presented. The overall conclusion of the survey was that all books are structured 
according to the language constructs of the programming language; the process of program 
development is often merely implied rather than explicitly addressed.

A typical structure of a section on a specific language construct (e.g. the while loop) is the 
presentation of a problem followed by a presentation of a program to solve that problem and a 
discussion of the program’s elements. From the viewpoint of a student, the program was developed 
in a single step, starting from a problem specification and resulting in a working solution.
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This pattern of introducing material creates – unintentionally – the illusion that programming 
is trivial and straightforward. The fact that we all, when we start addressing a problem, start with 
incomplete and incorrect programs, which we then gradually modify by extending, refining and 
restructuring our implementation until we arrive at an acceptable solution, seems to be swept 
under the carpet as if it was an embarrassing secret that must not be mentioned. While the 
ultimate solution to the problem is explained in detail, the process – how we go about developing 
the solution – is almost entirely neglected in textbooks and beginners’ courses (Caspersen 
and Kölling, 2009). Essentially, programming is one of the best-kept secrets of programming 
education!

In a time where computing/informatics education is becoming general education for all and 
students don’t choose to learn programming out of personal interest, the challenge not only persists 
but also is reinforced.

According to du Boulay (1989) the difficulties of novices learning programming can be separated 
into five partially overlapping areas:

 ● Orientation: finding out what programming is for
 ● The notional machine: understanding the general properties of the machine that one is 

learning to control
 ● Notation: problems associated with the various formal languages that have to be learned, 

mastering both syntax and semantics
 ● Structure: the difficulties of acquiring standard patterns or schemas that can be used to 

achieve small-scale goals such as computing the sum using a loop or implementing a 0..* 
association between two classes

 ● Pragmatics: the skill of how to specify, develop, test and debug programs using whatever 
tools are available

The good news is that there are some relatively simple and effective didactical principles that help 
alleviate the challenge; we organize the principles in four categories:

 1. Progression
 1.1. Be application oriented
 1.2. Let students progress from consumer to producer (use–modify–create)
 1.3. Organize the progression in terms of complexity of tasks, not complexity of language 

constructs
 2. Examples

 2.1. Provide exemplary examples
 2.2. Provide worked examples
 2.3. Establish motivation through passion, play, peers and meaningful projects

 3. Process
 3.1. Reveal process and pragmatics
 3.2. Provide scaffolding through stepwise self-explanations
 3.3. Apply and teach incremental development through stepwise improvement (i.e. extend, 

refine, restructure)
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 4. Abstraction
 4.1. Reinforce specifications
 4.2. Reinforce patterns
 4.3. Reinforce models and conceptual frameworks (program into a language)

These teaching principles are described in detail in the next section. However, while the principles 
help overcome many aspects of the challenge of teaching and learning programming, it still persists 
(Gries, 2002: 5):

Programming is a skill, and teaching such a skill is much harder than teaching physics, calculus or 
chemistry. People expect a student coming out of a programming course to be able to program any 
problem. No such expectations exist for a calculus or chemistry student. Perhaps our expectations 
are too high.

Compare programming to writing. In high school, one learns about writing in several courses. 
In addition, every college freshman takes a writing course. Yet, after all these courses, faculty 
members still complain that students cannot organise their thoughts and write well! In many ways, 
programming is harder than writing, so why should a single programming course produce students 
who can organise their programming thoughts and program well.

Is writing hard? Is teaching writing hard? Well, clearly it depends a great deal upon what you are 
trying to (teach your students to) write. Writing a novel, a textbook or a dissertation is very hard, 
and it is hard to teach how to do so. Writing an article, a feature or a report is also fairly hard and 
hard to teach. Writing a birthday greeting, a to-do list or a text message is much easier and requires 
very little instruction apart, of course, from learning the basics of (reading and) spelling.

Learning programming is not very different from learning writing. Most of the time, 
programming is creative and fun. However, like writing, programming is not trivial, and we teachers 
must embrace the challenge with enthusiasm as well as with a humble attitude and reasonable 
expectations. The most important aspect of learning programming as well as writing is to program/
write things that matter to us.

18.3 Principles for teaching programming
In this section, we describe twelve teaching principles, or didactical principles, organized in four 
categories. The principles, which are all backed by research and experience, can help overcome 
some of the challenges of teaching and learning programming.

Progression

Principle 1.1: Be application oriented
Traditionally, introductory programming courses apply a bottom-up approach, in the sense that 
students are introduced to basic and foundational concepts and expected to master these before 
more advanced concepts and principles are introduced. Hence, in a traditional programming 
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course, students are often trained in constructing a trivial program as the very first activity, and then 
later on they are trained in adding more layers of complexity to a system in terms of user interfaces, 
databases, and so on. For the technically inclined students, this may be a feasible approach, but for 
a more general audience, this could pose severe motivational problems, as we are dealing with a 
wider range of students with much more diverse interests and backgrounds.

There is an even more important reason why a traditional bottom-up approach is fallible. 
For a general audience, we are not aiming at developing detailed and concrete competences in a 
specific programming technology; instead, we are aiming at developing interest, critical thinking, 
creativity and broader skills in programming and computational thinking and practice. Therefore, 
we recommend an application-oriented top-down approach. This implies to start various teaching 
activities by introducing well-known or familiar applications, which is then split apart for 
conceptual and/or technical examination, evaluation and modification.

For motivational reasons, we recommend applications based on the criteria that they must 
matter to students in the relevant age range, applications which they find interesting to use and 
hopefully to examine and improve. Examples could include pedagogical lightweight versions of 
Facebook, iTunes/Spotify, YouTube, Twitter, Blogs, Photoshop, Instagram and similar applications. 
Or it could be something embedded in a physical context based on Internet of Things, for example 
wearables and smart clothes. But these are just examples; in general, the choice of application types 
depends on the specific context and target group (Caspersen and Nowack, 2013).

For a specific technology like Scratch, there are a great number of approaches and domains that 
have inspired educators and researchers to develop teaching materials, for example a data-driven 
approach (Dasgupta and Resnick, 2014), a creativity- and maker-driven approach (Brennan, 
Balch and Chung, 2014) and a computing concept-driven approach (Armoni and Ben-Ari, 2010; 
Meerbaum-Salant, Armoni and Ben-Ari, 2013).

Principle 1.2: Let students progress from consumer to producer 
(use–modify–create)
Pattis (1990) introduces the call before write approach to teaching introductory programming, 
arguing that it ‘allows students to write more interesting programs early in the course and it 
familiarizes them with the process of writing programs that call subprograms; so it is more natural 
for them to continue writing well-structured programs after they learn how to write their own 
subprograms’.

Meyer (1993) introduces the notion of the inverted curriculum as follows: ‘This proposal suggests 
a redesign of the teaching of programming and other software topics in universities on the basis of 
object-oriented principles. It argues that the new “inverted curriculum” should give a central place 
to libraries, and take students from the reuse consumer’s role to the role of producer through a 
process of “progressive opening of black boxes.” ’

) briefly mentions the notion of consuming before producing by providing three specific examples. 
One example is as follows: ‘BlueJ allows beginning with an object “system” with just one class 
where students just interactively use instances of this class (they consume the notion of interacting 
with an object via its interface). Producing the possibility of interacting with an object, on the other 
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hand, requires more knowledge about class internals and should thus be done after the principle of 
interaction with objects is well understood.’

The consume before produce principle is applicable to a wide number of topics, for example code, 
specifications, class libraries and frameworks/event-driven programming.

Code: The principle may be applied with respect to the way students write code at three levels of 
abstractions: method level, class (or module) level and modelling level as follows: (1) Use methods (as 
indicated above, BlueJ allows interactive method invocation on objects without writing any code). At 
this early stage, students can perform experiments with objects in order to investigate the behaviour 
and determine the actual specification of a method. (2) Modify methods by altering statements or 
expressions in existing methods. (3) Extend methods by writing additional code in existing methods. 
(4) Create methods by adding new methods to an existing class. This may also be characterized as extend 
class. (5) Create class/module by adding new classes/modules to an existing model. This may also be 
characteriszd as extend model. (6) Create model by building a new model for a system to be implemented.

Specifications: Specifications and assertions can be expressed in many ways, for example as 
Javadoc, test cases, general assertions in code, loop invariants, class invariants and system invariants 
(constraints in the class model, for instance, a specific multiplicity on a relation between two 
classes). In all cases, students are gradually exposed to reading and comprehending specifications 
prior to producing specifications themselves.

Class libraries: Not many years ago, the standard syllabus for introductory programming 
courses encompassed implementation of standard algorithms for searching and sorting as well as 
implementation of standard data structures such as stacks, queues, linked lists, trees and binary 
search trees.

These days, standard algorithms and data structures are provided in class libraries, ready to be 
used by programmers. By using class libraries that provide advanced functionality, students can do 
much more interesting things more quickly. Also, experience as consumer presumably motivates 
learning more about the principles and theory behind advanced data structures and packages for 
distributed programming, and so on.

Consequently, algorithms and data structures are one of the areas where we can sacrifice material in 
order to find room for all the new things that make up a modern introductory programming course.

Frameworks/event-driven programming: Sometimes even using a piece of software can be a 
daunting task. Frameworks are examples of such complex pieces of software.

Frameworks may constitute a part of an introductory programming course, but in order to 
ease comprehension of a complex frameworks with call-back methods (inversion of control), it 
helps to provide a stepping stone in the form of a small and simple framework, which students 
consume by making a few simple instantiations. After the road has been paved, you may provide 
a more general taxonomy for frameworks/event-based programming, which is now more easily 
understood and grasped in the context of the simple toy framework. With the concrete experiences 
and the taxonomy in the bag, students are prepared to embark on using more complex frameworks.

Christensen and Caspersen (2002) provide a more thorough discussion of an approach to 
teaching frameworks and event-based programming in introductory programming courses.

Use–Modify–Create: Lee et al. (2011) describe how computational thinking takes shape for 
middle and high school youth in the United States. They propose using a three-stage progression for 
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engaging youth in computational thinking. This progression, called use–modify–create, describes 
a pattern of engagement that was seen to support and deepen youths’ acquisition of computational 
thinking (see also Chapter 3, ‘Perspectives on Computing Curricula’).

Caspersen and Bennedsen (2007) describe a similar three-stage progression for working with 
programs, called use–extend–create. Caspersen and Nowack (2013) also describe use–modify–
create as a specialization of consumer-to-producer. A more elaborate or fine-grained version is 
use–alter–test–modify–assess–refine–evaluate–create.

 conclude that the use–modify–create progression is a useful framework for educators and 
researchers looking at how computational thinking develops and how that development can be 
supported.

Principle 1.3: Organize the progression in terms of complexity of 
tasks, not complexity of language constructs
Typically, progression in introductory programming courses is dictated by a bottom-up treatment 
of the language constructs of the programming language being used, and this is the way most 
textbooks are structured. We hold as a general principle that the progression in the course is 
defined in terms of the complexity of the worked examples presented to the students and the 
corresponding exercises and assignments.

Example: Progression
A concrete example of progression in terms of complexity of task is provided by 
the classical Turtle Graphics, developed by Seymour Papert. Students can start 
by making utterly simple programs/drawings and then gradually, based on the student’s 
ambitions and skills, progress to make more advanced and ultimately quite complicated 
programs/drawings. Thus, Turtle Graphics exhibit what Papert called ‘low floor, high ceiling’; 
that is, it allows for easy entrance without restricting the power of expression.

Another example is to let the progression be defined in terms of complexity of program 
structure or architecture (e.g. classes and their relationship) by starting with very simple 
programs with simple functionality and only few components with very simple relationships 
and then progress to more complex programs with increasingly complex structure and richer 
functionality. This could be starting with a program with just one component (representing, 
say, a die, a date, a person, an image, a song, etc.); then working with programs with 
two components (representing, say, a die and a die cup, a date and a clock, a person and 
a party, a song and a playlist, etc.) and then go on to working with programs with many 
components and more complex structures (e.g. a game, music player, an image processing 
app, etc.). See Bennedsen and Caspersen (2004b) for further details.

It is of course possible to turn things around and start out using a more complex app, 
then zoom in and work on a smaller part, perhaps just one component, while modifying this.
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Examples

Principle 2.1: Provide exemplary examples
Examples are important teaching tools. Research in cognitive science confirms that ‘examples 
appear to play a central role in the early phases of cognitive skill acquisition’ (VanLehn, 1996). An 
alternation of worked examples and problems increases the learning outcome compared with just 
solving more problems (Sweller and Cooper, 1985; Trafton and Reiser, 1993).

Students generalize from examples and use them as templates for their own work. Examples 
must therefore be easy to generalize and consistent with current learning goals.

By perpetually exposing students to ‘exemplary’ examples, desirable properties are reinforced 
many times. Students will eventually recognize patterns of ‘good’ design and gain experience in 
telling desirable from undesirable properties.

With carefully developed examples, teachers can minimize the risk of misinterpretations and 
erroneous conclusions, which otherwise can lead to misconceptions. Once established, misconceptions 
can be difficult to resolve and hinder students in their further learning (Clancy, 2004; Ragonis and 
Ben-Ari, 2005). See also Chapter 20, in which Juha Sorva details many different misconceptions.

A good example must be understandable by students. Without ‘understanding’, knowledge 
retrieval works only on an example’s surface properties, instead of on its underlying structural and 
conceptual properties (Trafton and Reiser, 1993; VanLehn, 1996).

A good example must furthermore effectively communicate the concept(s) to be taught. There 
should be no doubt about what exactly is exemplified. The structural form of information affects 
the form of the knowledge encoded in human memory. Conceptual knowledge is improved by 
best examples and by expository examples, where the best example represents an average, central 
or prototypical form of a concept. To minimize cognitive load, an example should furthermore 
exemplify only one new concept (or very few) at a time.

The two example properties, (1) understandable by students and (2) effectively communicating the 
concept(s) to be taught, might seem obvious. However, the recurring discussions about the harmfulness 
or not of certain common examples show that there is quite some disagreement in the teaching 
community about the meaning of these properties. For further details, including many more references, 
see Börstler, Caspersen and Nordström (2007, 2016) and Börstler, Nordström and Paterson (2011).

Principle 2.2: Provide worked examples
Studies of students in a variety of instructional situations have shown that students prefer learning 
from examples rather than learning from other forms of instruction. Students learn more from 
studying examples than from solving the same problems themselves.

A worked example (WE), consisting of (1) a problem statement and (2) a procedure for solving the 
problem, is an instructional device that provides a problem a solution for a learner to study (Atkinson 
et al., 2000; Chi et al., 1989; LeFevre and Dixon, 1986). WEs are meant to illustrate how similar problems 
might be solved, and WEs are effective instructional tools in many domains, including programming. 
WEs combined with faded guidance are particularly effective (Caspersen and Bennedsen, 2007).
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Atkinson et al. (2000) emphasize three major categories that influence learning from worked 
examples; Caspersen and Bennedsen (2007) present the categories as how-to principles of 
constructing and applying examples in education: (1) How to construct examples, (2) how 
to design lessons that include examples and (3) how to foster students’ thinking process when 
studying examples. We return to the latter when we discuss Principle 3.2: Provide scaffolding 
through stepwise self-explanations.

Bennedsen and Caspersen (2004a) illustrate implicitly how WEs can be used to teach 
programming using a systematic, model-based programming process. Caspersen and 
Bennedsen (2007) present an instructional design for an introductory programming 
course based on a thorough use of WE, and Caspersen (2007) provides an overview of WE 
literature related to programming education as well as a survey of the related cognitive load 
theory (CLT).

Principle 2.3: Establish motivation through passion, play, peers and 
meaningful projects
Mitch Resnick and his research group at the Lifelong Kindergarten at the MIT Media Lab have 
been developing new technologies, activities and strategies to engage young people in creative 
learning experiences (Resnick, 2014). Their approach is based on four core elements, sometimes 
called the Four P’s of Creative Learning:

 ● Projects. People learn best when they are actively working on meaningful projects – generating 
new ideas, designing prototypes, refining iteratively.

 ● Peers. Learning flourishes as a social activity, with people sharing ideas, collaborating on 
projects and building on one another’s work.

 ● Passion. When people work on projects they care about, they work longer and harder, persist 
in the face of challenges and learn more in the process.

 ● Play. Learning involves playful experimentation – trying new things, tinkering with materials, 
testing boundaries, taking risks, iterating again and again.

In this example, WE and faded guidance is applied in five stages as follows:

 1. In a video, present development of a player with two components, Playlist and Track. (A 
complete WE)

 2. In a lecture, present (a partial) development of a similar example, that is, with the same 
structure but different cover stories. This could be, say, a simple banking system with 
components Account and Transaction. (A partial WE)

 3. In a lab session, students use, modify and extend both examples.
 4. In an exercise, students extend the player by adding an Image component that allows several 

images to be displayed when a Track is played.
 5. In an assignment, students implement a similar system (again, similar structure, but different 

cover story), say, a notebook app with Notes, Keywords, Contacts, and so on.
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Process
As mentioned in the first section, the process of programming is one of the best-kept secrets of 
programming education.

Thus, students are left on their own to find their process of programming. Instead of leaving 
the students on their own, we as educators must help students to develop a systematic process to 
learning programming; and we must provide guided tours to proper program development.

This section deals with the process from three perspectives: how to reveal the programming 
process, how to facilitate process-based self-explanations and how to conceptualize the programming 
process as consisting of three independent (but of course related) activities: extension, refinement 
and restructuring – stepwise improvement.

Principle 3.1: Reveal process and pragmatics
Revealing the programming process to beginner students is important, but traditional static 
teaching materials such as textbooks, lecture notes, blackboards, slide presentations, and so on 
are insufficient for that purpose. They are useful for the presentation of a product (e.g. a finished 
program), but not for the presentation of the dynamic process used to create that product.

In addition, the use of traditional materials has another drawback. Typically, they are used for 
the presentation of an ideal solution that is the result of a non-linear development process. Like 
others (Soloway, 1986; Spohrer and Soloway, 1986), we consider this to be problematic, because 
it will inevitably leave the students with the false impression that there is a linear and direct ‘royal 
road’ from problem to solution.

This is very far from the truth, but the problem for novices is that when they see their teacher present 
clean and simple solutions, they think they themselves should be able to develop solutions in a similar 
way. When they realize they cannot do so, they blame themselves and feel incompetent. Consequently, 
they will lose self-confidence and, in the worst case, their motivation for learning to program.

Therefore, we must also teach about the programming process. This can include the task of 
using tools and techniques to develop the solution in a systematic, incremental and typically non-
linear way. An important part of this is to expound and to demonstrate that

 ● many small steps are better than a few large ones
 ● the result of every little step should be tested
 ● prior decisions may need to be undone and code refactored
 ● making errors is common also for experienced programmers
 ● compiler errors can be misleading/erroneous
 ● online documentation for class libraries provides valuable information and 
 ● there is a systematic, however non-linear, way of developing a solution for the problem at hand

We cannot rely on the students to learn all of this by themselves, but by using an apprenticeship 
approach, we can show them how to do it. WEs are highly suitable for this purpose (see principle 
2.2), and they can be effectively communicated via videos. For many more details on this, see 
Bennedsen and Caspersen (2005).
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Principle 3.2: Provide scaffolding through stepwise self-explanations
Self-explanations provide guidance regarding the way that students can study and understand 
instructional material. Clark, Nguyen and Sweller (2005) define SE as ‘a mental dialog that learners 
have when studying a worked example that helps them understand the example and build a schema 
from it’. According to Chiu and Chi (2014), the activity of self-explaining promotes learning through 
the elaboration of information being studied, associating this new information with learners’ prior 
knowledge, making inferences and connecting two or more pieces of the given information.

The benefits of self-explanations were first shown by Chi et al. (1989). They found that good 
students’ explanations provided justifications for steps in the examples and related those steps 
to the concepts presented in the instructional material. Those students also monitored their 
understanding while studying the examples.

More information on self-explanation and stepwise self-explanation (a specialization of self-
explanation related to stepwise improvement) can be found in Caspersen (2007) and Aureliano, 
Tedesco and Caspersen (2016).

Principle 3.3: Apply and teach incremental development through 
stepwise improvement (i.e. extend, refine, restructure)
In traditional stepwise refinement (Dijkstra, 1969; Wirth, 1971; Back, 1978, 1988; Morgan, 1990), 
programming is regarded as the one-dimensional activity of refining abstract programs (i.e. 
programs containing non-executable specifications) to concrete programs (i.e. executable code) 
through a series of behaviour-preserving program transformations. The fundamental assumption 
of traditional stepwise refinement is that the complete specification, or the requirements, is known 
and addressed from the outset. Typically, stepwise refinement is described as a strict top-down 
process of programming.

Programming by stepwise improvement (Caspersen, 2007), on the other hand, is characterized 
as an explorative activity of discovery and invention that takes place in the three-dimensional space 
of extension, refinement and restructuring. Extension is the activity of extending the specification 
to cover more (use) cases; refinement is the activity of refining abstract code to executable code to 
meet the current specification, and restructure is the activity of improving non-functional aspects 
of a solution without altering its observable behaviour, such as design improvements through 
refactoring, efficiency optimizations or portability improvements.

A very simple example of stepwise improvement is the development of an app that can show 
a date and advance to the next/previous date by pushing dedicated buttons in the user interface. 
Such an app can be developed according to stepwise improvement in the following extension steps:

 1. Construct (part of) the user interface, no functionality
 2. Make the app work except for the last day of a month (assume thirty days in every month and 

ignore leap years)
 3. Make the app work for a variable number of days per month
 4. Make the app work for leap years (except centuries)
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 5. Make the app work for centuries (except four-centuries)
 6. Make the app work for four-centuries

By breaking the problem down like this and developing the program in a number of increments/
iterations where the specification is gradually extended, the programming task becomes much 
more manageable. Also, it allows for a success/celebration every time a new version is finished. 
There are many pedagogical advantages of organizing students’ programming process according 
to stepwise improvement.

From the stepwise improvement framework, Caspersen and Kölling have designed a novice’s 
process of (object-oriented) programming called STREAM (Caspersen and Kölling, 2009).

Abstraction

Principle 4.1: Reinforce specifications
In programming, it is essential, at many levels of abstraction, to be able to distinguish and separate 
what a (part of a) program does from how it does it. A description of what a program part does 
is called a specification; the implementation, that is, the actual code of the program part, is the 
ultimate description of how it does it. Typically, one specification has many implementations; that 
is, there may be many concrete ways to obtain a desired outcome (to meet a specification).

A specification may be expressed as a name of a function, as a comment in natural text or in a 
more formal way. The concrete syntactic expression of a specification is not essential; it is the notion 
of specification itself, and the ability to separate specification from implementation, that is essential. 
As Pattis (1990) points out: ‘the linguistic ability to cleanly separate a subprogram’s specification 
from its implementation’ is required in order to practice the ‘call before write’ approach.

We therefore hold as principle that the notion of specification is treated as a first-class citizen in 
introductory programming courses. See Caspersen (2007) for more on this.

Principle 4.2: Reinforce patterns
A pattern captures and describes (the essence of) a recurring structure or process in a given 
domain. In music, there are patterns of chords that, with minor or major variations of the melody, 
are used again and again (search the web for ‘three chords’ or ‘four chords’ and see for yourself). 
This is also the case in programming, where programming patterns are used again and again to 
obtain variations of essentially the same structure or process.

The fundamental motivation for a pattern-based approach to teaching programming is 
that patterns capture chunks of programming knowledge. According to cognitive science and 
educational psychology, explicit teaching of patterns reinforces schema acquisition as long as the 
total cognitive load is ‘controlled’.

We reinforce patterns at different levels of abstraction including elementary patterns, algorithm 
patterns and design patterns, but equally importantly, we provide a conceptual framework for object 
orientation that qualifies modelling and programming and increases transfer. Furthermore, we 
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stress coding patterns for standard relations between classes (Knudsen and Madsen, 1988; Madsen 
et al., 1993; East et al., 1996; Muller, 2005; Caspersen, 2007; Caspersen and Bennedsen, 2007).

Principle 4.3: Reinforce models and conceptual frameworks 
(program into a language)
The so-called Sapir-Whorf hypothesis from linguistics states that language defines the boundaries 
of thought. Programming languages are artificial and simple languages, and if a programmer’s 
thoughts are nurtured only via the constructs of a specific programming language, these thoughts 
will be severely constrained and have very limiting boundaries.

All programming languages have limitations, and we overcome these limitations by thinking 
and designing in terms of richer and more appropriate concepts and structures, which we simulate 
in the technology at hand.

In the early days of assembly programming, programmers used jump and compare instructions 
to simulate selection and iteration. This was also the case for the earliest high-level languages with 
go-to statements as the only control structure. Then, control structures for selection and iteration 
were developed.

Similarly, in the early days of programming, there was no programming language support for 
arrays (lists) and records (tuples). Consequently, these had to be simulated through careful and 
minute programming activities.

As long as there was no support for subprograms but the notion was conceived, programmers 
had to simulate call and return (and, in the general case, maintain not one but a stack of return 
addresses).

When there was no support for classes, but the notion of abstract data type was conceived, 
programmers had to simulate this, again through structured and minute programming activities.

The historic development of programming languages can be viewed as a constant interplay 
between programming language constructs and architectural abstractions. Limitations in 
programming languages generate new concepts, architectural abstractions, which can be simulated 
in existing programming languages. Gradually, these architectural abstractions find their way into 
mainstream languages but only to generate more advanced needs and foster new architectural 
abstractions.

In object-oriented programming, UML and similar modelling languages provide a richer 
conceptual framework than most object-oriented programming languages support. For example, 
the notion of association (a special relation between program components) is not directly supported 
but has to be simulated through structured and minute programming activities. In principle, this is 
exactly the same situation as simulation of a while loop with go-to statements.

When teaching programming, it is important to provide a conceptual framework, which is 
richer than the concrete programming language being used. Programming should not be done in 
a language, but into a language.

Conceptual modelling. As a general foundation for informatics/computing, we recommend a 
general introduction to conceptual modelling. Unfortunately, there are no introductory texts on 
the subject, but Kristensen and Østerbye (1994: 83–6) provide a nice discussion on the subject; 
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the authors present the topic in the context of object-oriented programming languages, but it has 
much wider applications and implications.

The exposition in Kristensen and Østerby, which originates from Madsen, Møller-Perdersen 
and Nygaard (1993), presents a model of abstraction consisting of three abstraction processes (and 
their inverses): classification (exemplification), aggregation (decomposition) and generalization 
(specialization). The model may not be complete, but it has shown its applicability in many cases, 
including data modelling and object-oriented modelling, and has the potential to become a much 
more general framework for informatics and computational thinking. The current focus on 
computational thinking emphasizes abstraction and decomposition as major aspects (); however, the 
above-mentioned framework for conceptual modelling provides a richer and more general approach.

Sowa (1984) provides a broader approach to the topic but with a different perspective.
There are many learning-theoretic arguments for adopting a conceptual framework approach, 

for example a model-driven approach, to programming. We provide two (for more details, see 
Caspersen, 2007):

1. Because of their generic nature, the abstract models directly support schema creation and 
transfer:

Well-designed learning environments for novices provide metacognitive managerial guidance to focus 
the students’ attention and schema substitutes by optimizing the limited capacity of working memory 
in ways that free working memory for learning. Good instruction will segment and sequence the 
content in ways that reduce the amount of new information novices must process at one time and, 
as much as possible, reinforce domain patterns to support schema acquisition and improve learning.

2. Variation of form (e.g. cover story) can help novices realize that there is a many-to-one 
relationship between form and problem type: when students see a variety of cover stories used for 
identical or similar structures (of class models), they are more likely to notice that surface features 
are insufficient to distinguish among problem types and that problem categorization according 
to structural similarities (patterns) is imperative to enable reuse of solution schemas (Quilici and 
Mayer, 1996).

Models provide an excellent overview and generic approach to introductory programming. 
If pedagogical development tools more completely supported integration of code and UML-like 
models, we conjecture that the effect would be even better.

Example: Elementary patterns
Elementary patterns, that is, patterns for elementary program structure, exist 
in a number of variations, for example roles of variables (Sajaniemi, 2008), 
selection patterns (Bergin, 1999) and loop patterns (Astrachan and Wallingford, 1998).

Roles of variables represent programming knowledge that can be explicitly taught to 
students and which are easy to adopt in teaching. A number of roles for variables was 
identified and described by Sajaniemi (2008), for example fixed value, organizer, stepper, 
most-recent holder, one-way flag, most--wanted holder and so on.
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Bergin (1999) divides selection patterns in three categories: basic selection patterns, strategy 
patterns and auxiliary patterns. Examples of basic selection patterns are Whether or Not and 
Alternative Action, examples of strategy patterns are Short Case First and Default Case First 
and examples of auxiliary patterns are Positive Condition and Function for Positive Condition.

Astrachan and Wallingford (1998) present a number of loop patterns related to sweeping 
over a (linear) collection of data. Examples of elementary loop patterns are Linear Search, 
Guarded Linear Search, Process All Items and Loop and a Half.

Key points
 ● Teaching and learning programming is a grand challenge
 ● In a time where computing/informatics education is becoming general 

education for all and students don’t choose to learn programming out of personal 
interest, the challenge not only persists but also is reinforced

 ● Exposing students to the process of programming is merely implied but not 
explicitly addressed in texts on programming, which appear to deal with ‘program’ 
as a noun rather than as a verb

 ● Some relatively simple and effective teaching principles can help alleviate and 
overcome the challenge:

 ● Progression: Be application-oriented; let students progress from consumer to 
producer (use-modify-create); organize progression in terms of complexity of task, 
not complexity of language constructs

 ● Examples: Provide exemplary examples; provide worked examples; establish 
motivation through passion, play, peers and meaningful projects

 ● Process: Reveal process and pragmatics; provide scaffolding through stepwise 
self-explanations; apply and teach incremental development through stepwise 
improvement (i.e. extend, refine, restructure).

 ● Abstraction: Reinforce specifications; reinforce patterns; reinforce models and 
conceptual frameworks (program into a language)

For further reflection
 ● The use of examples is important in helping students to improve their 

programming skills. Consider how worked examples could be used in your 
classroom to support a particular programming topic.

 ● Considering the principles presented in this chapter, how do you think these could 
be incorporated at different points with young, beginner programmers to enable 
progression in programming.
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19
The Role of Design in Primary  

(K–5) Programming

Jane Waite

Chapter outline

 19.1 Rationale for learning to design in K–5 programming
 19.2 Teaching K–5 planning in other subjects
 19.3 In classroom use of, and difficulties with, teaching K–5 program design
 19.4 K–5 design concepts and opportunities for classroom use
 19.5 Conclusion

Chapter synopsis
Teaching primary-aged children to program presents many challenges, including 
helping them to design, write and debug programs. Planning in K–5 literacy 
lessons and other subjects is a well-established activity in many classrooms, 
for example drawing a storyboard in literacy lessons to plan a story or drawing a circuit to 
be made in science. But in computing lessons, the phase of planning (or design) can be 
overlooked or even avoided.

Investigation of what design is going on in K–5 programming lessons and what concepts 
might be involved has attracted very little attention. Yet, in some computing curricula, 
teachers must support students to design and make programs. This chapter will look at 
studies in this area and reflect on how we might practically apply research findings in 
teaching practice.
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19.1 Rationale for learning to design in K–5 
programming
The study of learning how to design in programming has a long history for undergraduate learners 
and those in industry. Soloway proposed that teaching programming was not just about the syntax 
and semantics of a programming language. Instead, it was about teaching problem-solving and that 
students should be explicitly taught that programming is a design discipline (Soloway, 1986: 853). 
Denning (2011: 88) similarly focused his attention on the importance of design as he categorized 
design as one of the great principles of computing.

Despite these clear recommendations to teach how to design programs, in K–12 contexts 
program design has until recently been generally lacking both in research undertaken (Rich, 
Strickland and Franklin, 2017; Oleson, Wortzman and Ko, 2021) and in the development of 
teaching and learning resources (Falkner and Vivian, 2015).

Sometimes design is mentioned in passing as part of curriculum research activities. More 
recently, perhaps because of the calls for design research, pockets of design-focused research have 
started to appear. For example, Grover, Pea and Cooper (2015) have designed a blended computer 
science course for middle school learners that integrates design. Similarly, but for younger learners, 
Hansen et al. (2016) have developed a K–5 programming course with elements of design. Physical 
computing research sometimes includes design activities, including research in kindergarten 
(Sullivan and Bers, 2018), middle school and high school contexts (e.g. Kafai, Fields and Searle, 
2012; Przybylla and Romeike, 2017).

With respect to design-specific research, Schulte et al. (2017) have proposed a theoretical model 
for incorporating design in school programming lessons that includes two interleaved learning 
paths of exploration and design. Industry approaches have been tailored for the classroom, such as 
the engineering design process in early primary years (Bers, 2017) and agile methods for middle 
and high school (Kastl and Romeike, 2015). Loksa et al. (2016) have also investigated emphasizing 
self-awareness of the design process in high school students.

Over the past five to six years, a set of studies have been conducted explicitly looking at design 
in K–5 programming classrooms in England (Waite et al., 2018a, 2018b, 2020;Waite, 2022); this set 
of studies forms the basis for the design concepts discussed in this chapter.

Despite this promising start, the work about design in programming in schools is limited in 
scale and the length of study, and there are few studies in the K–5 context. Yet, K–5 teachers 
worldwide are being increasingly required to teach programming in their classrooms and within 
this, to some degree, design. Programming in K–8 has been introduced to curricula in Finland, 
Australia, Croatia, Slovenia, Ukraine, Greece, South Korea and some parts of Spain, Italy, Hong 
Kong, Germany, the United States and the UK (Rich et al., 2018), and the list is growing.

 



Role of Design in Primary (K–5) Programming 239

Examples of design in K–5 curriculum
How design is explicitly incorporated in each country’s curriculum varies; we take just two curricula 
examples, one from England and one from the United States.

In England, educators have been required since 2014 to teach grade K–1 students to:

 ● ‘Understand what algorithms are, how they are implemented as programs on digital devices, 
and that programs execute by following precise and unambiguous instructions

 ● Create and debug simple programs’. (Department for Education, 2013: 2)

In the United States, the CSTA framework for K–1 children is similar. Students should:

 ● ‘Model daily processes by creating and following algorithms (sets of step-by-step instructions) 
to complete tasks. (1A-AP-08)

 ● Decompose (break down) the steps needed to solve a problem into a precise sequence of 
instructions. (1 A-AP-11)

 ● Develop plans that describe a program’s sequence of events, goals, and expected outcomes 
(1A-AP-11)’. (CSTA, 2017)

For slightly older learners in England, grade 2–5 learners should:

 ● ‘Design, write and debug programs that accomplish specific goals, including controlling or 
simulating physical systems; solve problems by decomposing them into smaller parts

 ● Use sequence, selection, and repetition in programs; work with variables and various forms 
of input and output’. (Department for Education, 2013: 2)

In the United States, the CSTA curriculum for grade 2–5 requires teachers to enable students to:

 ● ‘Compare and refine multiple algorithms for the same task and determine which is the most 
appropriate (1B-AP-08)

 ● Decompose (break down) problems into smaller, manageable subproblems to facilitate the 
program development process (1B-AP-11)

 ● Use an iterative process to plan the development of a program by including others’ perspectives 
and considering user preferences (1B-AP-13)’. (CSTA, 2017)

Whether all teachers implement these requirements in the same way is an open question. To start 
reflecting on this, we next look at research investigating K–5 teachers’ experiences of design (or 
planning) in computing and other subjects.

19.2 Teaching K–5 planning in other subjects
K–5 teachers are likely to be generalists who teach their young students all subjects, from literacy 
to science. Teachers, therefore, have the experience of using design, sometimes called planning, in 
the teaching of other subjects.
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Here, when we talk about K–5 planning, we refer to deciding what will be included in our 
finished artefact and figuring out how the components of that artefact will fit together. For example, 
if teaching seven-year-old pupils how to write a story, the teacher might discuss and draw the 
setting, including the characters engaged in the story and sketch out a storyboard. This planning 
activity is not saying who will do the work of translating the plan into a finished piece of writing; it 
is the design that outlines what will be written.

In the research of teaching writing in literacy lessons, investigation of the planning aspect of 
the process for writing has a long, rich history and is recommended to K–5 teachers (Schunk and 
Swartz, 1993; Graham et al., 2012; Higgins et al., 2021). Planning has been identified as an essential 
metacognitive or executive process that supports self-regulation in writing (Berninger et al., 2002). 
Planning separates the task of gathering ideas and developing an initial overall piece from the 
job of then implementing this as the written text. Learners can annotate their plan with useful 
words and phrases without contending with how the fragments might be joined to create larger 
structures. At the end of writing, the plan can be used to check that all intended parts are included, 
checking for completeness and cohesion.

Similarly, in design and technology lessons, the phase of planning out, designing, what is to 
be made is a familiar phase in some K–5 classrooms and may be done by drawing the intended 
product. In mathematics teaching, planning how to tackle different types of problems is likely to 
be taught, as is thinking about how to conduct a science experiment, such as drawing a circuit to 
be built. Whether these planning activities are formally documented in specific formats will vary 
by pedagogical approach and classroom context.

19.3 In classroom use of, and difficulties with, 
teaching K–5 program design
To discover what K–5 teachers think about design in programming and what they are doing in 
lessons, Waite et al. (2018a) surveyed this topic with primary school teachers working in England.

The researchers asked teachers about their views of the usefulness of design in programming 
lessons and their views of the usefulness of planning in writing lessons. Of the 207 respondents, 82 
per cent of teachers reported that design was very useful or essential (see Table 19.1), and 78 per 
cent thought the same for the usefulness of planning in teaching writing in literacy lessons.

Table 19.1 Usefulness of design and usefulness of planning

Usefulness Design (%) Cumulative (%) Planning (%) Cumulative (%)

Essential 53% (110) (53%) 51% (105) (51%)
Very useful 29% (59) (82%) 27% (56) (78%)
Somewhat useful 15% (32) (97%) 16% (33) (94%)
A little useful 3% (6) (100%) 4% (9) (98%)
Not useful 0% (0) (100%) 2% (4) (100%)

Source: Waite et al. (2018a: 4).
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Teachers were also asked about their use of design in programming lessons and their use of planning 
in writing lessons; here there was a marked difference compared to views on usefulness. Only 44 
per cent of teachers said they usually or always used designs in programming lessons compared to 
88 per cent saying they usually or always used planning in writing lessons (see Table 19.2).

Teachers who have started to use design in programming lessons have reported using design for 
a wide range of purposes, including managing the process of program development, for assessment 
and differentiation of lessons (Waite et al., 2018a, b, 2020).

Example: Uses of design
Students can use design

 ● To gather ideas
 ● To check the design with the intended user
 ● To distinguish between the different parts of the design (design components)
 ● To separate the effort of idea generation and implementation
 ● To self-assess confidence to be able to implement the different aspects of 

the design
 ● To annotate with code snippets
 ● As an aide memoire to tick off what they have done and need to do next
 ● As a contract with a partner for pair programming
 ● To self-assess against design criteria
 ● To help with debugging

Teachers can use design

 ● To reveal students’ ideas and understanding
 ● To help work out what to teach next
 ● For formative assessment
 ● For summative assessment
 ● To reveal and explain the value of design
 ● To differentiate and scaffold teaching

Table 19.2 Use of design and use of planning

Use Design (%) Cumulative (%) Planning (%) Cumulative (%)

Always 20% (42) (20%) 57% (58) (57%)
Usually 24% (49) (44%) 31% (31) (88%)
Sometimes 36% (75) (80%) 9% (9) (97%)
Rarely 13% (26) (93%) 2% (2) (99%)
Never 7% (15) (100%) 1% (1) (100%)

Source: Waite et al. (2018a: 5).
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However, not all teachers use design. What stops some K–5 teachers from incorporating design 
in programming lessons has been reported to include six difficulties for using design in K–5 
programming classrooms (see Figure 19.1) (Waite et al., 2020).

Waite et al. (2020) found their surveyed K–5 teachers reported a significant reason for not doing 
design is pupil resistance. Teachers said pupils want to get on and code or think design is boring, as 
one teacher’s comment exemplified: ‘A minority find it useful but I think most find it unnecessary 
and a chore. They don’t link it to computing’ (English primary teacher).

This example leads to the theme of a lack of pupil expertise. Teachers reported that students 
lacked the knowledge and experience of program design. Teachers mentioned that students 
created designs that were too ambitious or that students had difficulties from sticking too closely 
to designs.

A further major difficulty highlighted was that there was not enough time to do design in 
programming lessons.

Figure 19.1 Difficulties of using design in primary programming classrooms (Source: Waite et al., 
2020: 26).
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Teachers also reported they lacked expertise and confidence in teaching design. An issue linked 
to expertise was that there was no consensus from the surveyed teachers about what an algorithm 
was and how this might relate to the design of a programming project.

Another theme was the lack of resources with design in them or conflicting pedagogies. This 
latter aspect of pedagogical conflicts is exemplified by one teacher’s comments on some students 
preferring an organized approach to design versus others preferring an exploratory approach to 
design.

Some like the organisation and ordered approach [to design], but some prefer to jump in, try out ideas, 
select what works, then plan. It does help them think about why they are programming and what they 
want to happen, especially thinking about how they order and sequence. (English primary teacher)

19.4 K–5 design concepts and opportunities for 
classroom use
To investigate how difficulties with K–5 design in programming projects might be addressed, a 
design toolkit of concepts involved in K–5 design has been co-designed with teachers. Twenty-
eight expert primary teachers who reported using design in programming lessons have worked on 
the toolkit. The design toolkit includes design concepts that may provide a way to help to address 
the difficulty of teachers’ lack of expertise about K–5 design and work towards remedying the 
confusion over what an algorithm is. By having a better understanding of design, teachers may 
decide that design is worth the time needed and may start to build techniques to overcome student 
resistance and address students’ low expertise levels. But more research is needed to evaluate the 
impact of design on student outcomes.

We highlight six of the eleven design concepts from the toolkit here, as shown in Figure 19.2:

 ● Activity genre
 ● Common design patterns
 ● Design component
 ● Design format
 ● Design approach
 ● Levels of abstraction

Activity genre and simple K–5 design patterns

Concept descriptions and examples
Activity genre is the broad type of programming project. For example, K–5 project genres include 
route-based, animations, quizzes, games and simulations, physical computing and tools or aids. 
Some projects will be of more than one genre; for example, children might use a microcontroller to 
build a toy that navigates a maze – this would be a route-based physical computing genre.
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A simple K–5 design pattern is a useful functionality that is commonly used in K–5 projects. For 
example, managing scores might be common in K–5 games and quizzes, and asking for a username 
to personalize user output might be useful in animations, quizzes, games and simulations.

About the concept
Genre is a useful way of grouping types of writing, films and computer games. In research on 
teaching literacy, genre, such as poetry, recounts and traditional stories are used to help students 
learn the common features of written pieces (Rose, 2009). Similarly, types of programming projects 
such as animations, quizzes, games and simulations are noted in research and lesson planning 
(Brennan and Resnick, 2012; Spieler et al., 2017).

Some research suggests design patterns are associated with specific genres. For example, 
Basawapatna et al. (2011) identified collision, generation and absorption as common design patterns 
for games and simulation genres. Design patterns require particular programming constructs to 
be used when they are implemented. For example, games are likely to have design patterns that 
keep scores and manage lives, which require variables. Similarly, games are likely to incorporate 
user input that controls the action, requiring the use of if-then-else statements (conditionals). In 
contrast, there are limited opportunities to use variables and conditionals in simple animations. 
Therefore, some programming project genres may limit or extend student learning by their 
common design patterns. At the same time, some genres appear to be more or less appealing to 
some groups of children. For example, girls have been found to prefer to create animations and 
boys to create games, in which case, genre and student preference may disadvantage some students 
to learn and make progress (Troiano et al., 2020).

Figure 19.2 Design concepts for K–5 programming projects (Source: Waite, 2022).
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Example: Classroom opportunities
Check if children have the opportunity to work with a range of genres.

 ● Ensure all children can work with a range of K–5 design patterns and associated 
programming constructs. For example, if making animations, ask students to add 
interactivity, asking for a user’s nickname (to be stored in a variable for later use) and 
user choices (requiring if-then-else conditional statements).

 ● Teach children about genre and common design patterns so they can reuse the 
knowledge across projects.

Design components

Concept descriptions and examples
To help young learners understand more about the different aspects of design, the design 
components concept has been suggested (Waite, 2022). When designing a project, several design 
components are developed (see Figure 19.3). For most K–5 projects, there will be design components 
of an object and data design, an algorithm design and an artwork and sound design. For some 
projects, there may also be a physical structure and mechanical design or an electronics design.

About the concept
K–5 programming projects are expected to have an algorithm design as the code is an implementation 
of an algorithm, and programming projects usually require students to write code. When learners 

Figure 19.3 Design components of K–5 programming projects (Source: Waite, 2022).
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design their algorithms, they break the action down into parts and decide upon the order in which 
these parts will occur. As well as an algorithm, K–5 designs will usually have an object and a data 
design. This is to help learners start to think about what thing(s) will be controlled in some way by 
the algorithm and to name them. For example, in an animation, a character or scene (an object) 
will change its appearance. In a route-based activity, a programmable toy or on-screen character 
(an object) will be programmed to navigate a route. It is hoped that getting students to think about 
design components may help them as they implement their programs, but more research is needed 
in this area to confirm this concept.

A little more about algorithms
An algorithm, in the computer science sense, is unambiguous; ‘algorithms are directions to control a 
computational model (abstract machine) to perform a task’ (Denning, 2017: 4), and each operation 
has a ‘well defined effect that can be carried out by a machine’ (Denning, 2017: 8).

Waite et al. (2020) have argued that in K–5 contexts, students often do now know what is 
practicable at the start of their programming projects and gradually refine their ideas about their 
design, including the algorithm, of what should happen as they go along. Also, in K–5 contexts, 
the formats used by students to represent design, such as drawings or physical enactments, do 
not foster precise definitions. Therefore, it is likely their representations of algorithms will be 
ambiguous. Teachers must therefore consider whether they call these imprecise representations an 
algorithm. Further research is needed to investigate what impacts this ambiguous view will have as 
students learn more about the precision required of an algorithm (Waite et al., 2020).

Example: Classroom opportunities
Help students to become aware of the different design components. For 
example, Figure 19.4 shows a design in which the characters (objects) are 
named in a list, the algorithm is implied through the numbered speech bubbles and the 
artwork is the images of the characters and scene.

Design formats

Concept descriptions and examples
The design format is the media (or representation) in which the design exists. The format could be 
written notes, a drawn labelled diagram or a storyboard (see Figure 19.5). For a single component, 
such as the algorithm design, there may be more than one format for a project. For example, the 
algorithm may be physically enacted, verbally explained and indicated on a storyboard through 
numbered events. A single design format may include representations of more than one design 
component. For example, a drawn storyboard might include the artwork, algorithm, object and 
data design (see Figure 19.4).
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About the concept
Teachers are likely to build a repertoire of design formats that they see as being useful for the 
projects that they use in programming lessons. Some teaching resources may suggest specific 
formats, such as walking out a route for a programmable toy activity (a physical enactment design). 
Sometimes teachers may use familiar formats from learning in other subjects.

Figure 19.4 Example design including annotations of the design components (Source: original 
design from Barefoot Computing Resources).

Figure 19.5 Example design formats for K–5 programming projects (Source: Waite, 2022).
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Figure 19.6 is an example of a K–5 design for a Christmas card animation. The design includes 
two formats, a labelled diagram and a storyboard. In the labelled diagram, the characters and 
background (objects) needed for the project are drawn and labelled. The algorithm design is 

Figure 19.6 An example design with a labelled diagram and storyboard.
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shown as the sequence of events in the storyboard, including the numbering and arrows that 
show movement. In the second box, the student indicates they want to show snow falling. As 
they start their design, they will need to work out how to implement this. It may be that they 
use a series of backgrounds or that they program individual snowflakes. The algorithm of each 
of these options is very different, but it is unlikely that young students will represent these 
algorithms formally.

Whether designs are updated as the development progresses or how precise student’s designs 
are will vary by student and teacher. For example, as shown in Figure 19.7, some resources 
suggest using a flowchart with older K–5 learners to create more precise designs using formal 
notation.

More research is needed to investigate what level of precision is most useful for teaching and 
learning and, similarly, whether young learners should call an imprecise description of events an 
algorithm.

Example: Classroom opportunities

 ● Make students aware of verbal or acted-out designs so that they realize 
they are designing their projects.

 ● Provide students with format templates.
 ● Model how to create storyboards and other design formats.

Figure 19.7 An example design with a flowchart and written algorithm.
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Design approaches

Concept descriptions and examples
Design approaches are the approaches that students follow to develop their design. An example 
approach is exploratory, where students do not plan very far ahead, trying out ideas as they go along. 
Another approach is plan-ahead, where students think about the main characters and events in the 
product to be made before they start to implement their ideas. As shown in Figure 19.8, students 
are likely to combine an exploratory and plan-ahead approach. If students follow instructions to 
create a product originally designed by someone else, they will be using a copied design approach.

About the concept
The design approach sits within an overall project development process. For example, Bers (2017) 
has suggested a project development approach for very young learners to follow of a simplified 
engineering design process (see Figure 19.9). This process has been successfully used with 
kindergarten and K–1 learners and includes a defined phase where they plan their project. What 
design approach is used within this planning phase is not stipulated.
Beginner programmers are not like expert programmers; beginners are learning what a 
programming language’s commands will do and what is possible as they build a project; they are 
constructing their mental models of programming languages as they go along.

Therefore, it is not likely that young students will be able to formulate a precise design that they 
can successfully implement as they embark on their project. Schulte et al. (2017) consider this in 
their theoretical design exploration model. In this model, students are expected to continually 
move between two learning paths, one of exploration and learning about what can be designed and 
one of design where they use this knowledge to think ahead and plan what to do.

The exploration approach can be linked to the concept of bricolage. Bricolage is an informal, artisan 
approach where the craftworker discovers the properties of the materials they work with and shapes a 
product in an experimental way (Levi-Strauss, 1968). This approach is often associated with Papert’s 
constructionism, and Turkle and Papert (1991) proposed that children were either bricoleurs or planners.

Figure 19.8 Design approaches for K–5 projects (Source: Waite, 2022).
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Example: Classroom opportunities

 ● If your students copy designs, create a plan-ahead design and show them 
the parts they are implementing.

 ● If your students tend not to think ahead, challenge them to explain what they want 
to achieve.

 ● If your students get bogged down in a plan-ahead format and are nervous about 
exploring, model how to explore and exemplify how to use the new-found 
functionality.

Levels of abstraction

Concept descriptions and examples
When we create a program, there are four ‘levels’ we can consider. These can be called levels of 
abstraction as they are different ways of thinking about a programming activity. As shown in 
Figure 19.10, levels of task, design, implementation and running the program have been suggested 

Figure 19.9 The simplified engineering design process used with K–2 children (Source: Bers et al., 
2014: 155).
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in a revised K–5 programming levels of abstraction model. The levels are not a linear set of stages 
nor strict steps to complete a programming project; they are a set of views of a project. Not all 
programming activities will incorporate all levels. The order in which pupils work on levels will 
vary for different activities. Also, it is likely we won’t work on each level just once. Instead, we will 
move between the levels many times and start at different levels.

About the concept
The K–5 levels of abstraction model builds on the work of researchers who have studied students 
learning to program (see Figure 19.10). Perrenet, Groote and Kaasenbrood (2005) suggested a 
levels of abstraction model for undergraduates. Armoni (2013) adapted this model by renaming 
the object level to the algorithm level. These models have been combined using feedback from K–5 
students and their teachers, and levels have been renamed for primary school use (Waite et al., 
2018a; Waite, 2022).

The model suggested by Armoni has been used in high school research and has been found to 
improve student programming outcomes by supporting students to understand the level they are 
working at, including careful use of level-specific vocabulary (Statter and Armoni, 2016). Of note, 
girls made more progress than boys when using the framework, and the authors suggest that the 
model may increase girls’ self-efficacy about learning to program (Statter and Armoni, 2017).

Task: The task is a summary written or verbal description of a program.
Design: The design represents the algorithm and other design components.

Figure 19.10 Revised K–5 levels of abstraction for programming projects and the models that 
have informed the new version (Source: Waite, 2022).
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Implementation: The implementation level is the code itself, any files created for artwork or 
sounds, any program setting that has created objects such as sprites and variables and any physical 
structures and wiring for physical computing activities.

Running the program: This is either the code running or any reference to the program’s output, 
such as when debugging the code.

Example: Classroom opportunities

 ● Review your classroom use of programming project vocabulary and be 
more level-specific.

 ● Explain the levels to students and ask them to spot when they and their peers move 
between levels.

 ● Model techniques to help students move between levels, such as adding code 
snippets annotations to the design.

19.5 Conclusion
Design is important in the teaching of programming to older learners and is often included in K–5 
curricula but seems to be overlooked. Teachers face various challenges in finding resources, gaining 
experience and overcoming student resistance to using design. Emerging research is starting to 
suggest concepts that might help teachers and learners overcome difficulties with design. However, 
research is needed to evidence how and what design should be introduced in class and how to 
support teachers.

Key points
 ● Design is an essential aspect of program development and is often 

included in K–5 curricula, but what this means in classroom practice is not 
agreed.

 ● K–5 students and their teachers are likely to do planning, a form of design, in other 
subjects, such as storyboarding in literacy lessons; therefore, cross-curricular planning 
expertise, experience and expectations can be built upon in programming lessons.

 ● K–5 teachers may have difficulties implementing design in their programming 
lessons, including student resistance, a lack of their own and their students’ 
experience and understanding of design, a lack of time to do design, conflicting 
views of how to do it and a lack of resources that include design.
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 ● Some K–5 programming teachers are starting to overcome difficulties in including 
design in their teaching and use techniques such as modelling how to do design, 
using design templates, asking students to annotate designs with useful code 
snippets and highlighting the value of design.

 ● Having a set of K–5 concepts may help teachers and students introduce design in 
classrooms; concepts will provide a common vocabulary and improve knowledge 
about design and increase expertise in classroom programming design.

For further reflection
 ● What are your experiences of planning in other subjects (e.g. in teaching 

literacy)? How have these experiences shaped your view of planning and 
design?

 ● Do you agree with the Turkle and Papert (1991) view that pupils are either bricoleurs 
or planners? What are the benefits and disadvantages of design?

 ● Which of the design concepts, activity genre, common design patterns, design 
components, design formats, design approaches or levels of abstraction might be 
most useful for teachers and students? How and when might they be incorporated 
into classroom practice?
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20
Misconceptions and the Beginner 

Programmer

Juha Sorva

Chapter outline

 20.1 Introduction
 20.2 Sources of misconceptions about programming
 20.3 Some theoretical perspectives on misconceptions
 20.4 Implications for pedagogy

Chapter synopsis
In this chapter, we will review the literature on misconceptions about 
programming – that is, the intuitive, underdeveloped and possibly flawed 
ideas that beginners have about specific programming constructs or about the way 
programs work in general. We will spend much of the chapter looking at examples of 
common misconceptions and exploring what gives rise to them. We will then briefly view 
misconceptions through the lens of educational theory before concluding with suggestions 
on how to address student misconceptions in teaching.

20.1 Introduction
Here are two examples of what we will call misconceptions.

M1  A variable can store multiple values; it may store the ‘history’ of values assigned to it.
M2 Two objects with the same value for a name or id attribute are the same object.
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Misconceptions about programming constructs are both common and natural. Even a student that 
exhibits a misconception usually has some useful knowledge about the concept, but the student is 
missing a piece, links pieces unproductively or applies their knowledge in an unsuitable context. 
Through experience and instruction, students overcome these difficulties.

However, since the computer does not negotiate the syntax or semantics of a programming 
language, misconceptions produce practical problems: a student with a misconception will write 
programs that do not work. When a misconception persists, it may leave the student frustrated and 
unable to make progress. Moreover, the student may find it hard to appreciate further instruction 
and learn from it unless that instruction is sensitive to misconceptions. Research has linked student 
misconceptions to low self-efficacy in programming (Kallia and Sentance, 2019) and bugs that are 
difficult to fix (Ettles, Luxton-Reilly and Denny, 2018).

Research in physics education suggests that knowledge of misconceptions is an important 
component of teachers’ pedagogical content knowledge. In a study of hundreds of physics teachers, 
Sadler et al. (2013) found that those teachers who could identify their students’ most common 
misconceptions were more effective in fostering student learning than those who could not. In 
computing education, misconceptions research is not yet as well established as in physics education. 
Nevertheless, there is a substantial and growing body of work that documents misconceptions and 
demonstrates that some of them occur across individuals and teaching contexts. Much of this work 
has focused on introductory-level programming, but researchers have also studied misconceptions 
of data structures and algorithms, program correctness and other computing topics.

Like most studies to date, we will primarily consider text-based programming. Nevertheless, 
there is evidence that similar misconceptions arise in blocks-based programming as well and that 
the frequency of particular misconceptions may depend on the chosen format (e.g. Weintrop and 
Wilensky, 2015; Grover and Basu, 2017).

Many misconceptions arise from a combination of factors that involves the programming 
content itself, students’ prior knowledge and instructional design. Let us begin by reviewing some 
of these factors. We will see more examples of specific misconceptions as we go.

The examples in this chapter, such as M1 and M2 above, have been selected and paraphrased 
from the hundreds of misconceptions reported in the literature. (See Qian and Lehman, 2017; 
Sorva, 2012 and references therein.)

20.2 Sources of misconceptions about 
programming

Mathematics
In many programming languages, dividing the integer 99 by 100 produces zero. This often surprises 
students but is ultimately just a detail. It is, however, an example of a more general pattern: students 
bring their mathematics knowledge to the programming class, but the concepts, notations and 
terms of programming are subtly different from ones that students know from school mathematics.
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The variables and assignment statements of (typical imperative) programming look deceptively 
familiar. Many of the most commonly reported misconceptions are associated with these constructs.

M3  A variable is merely a pairing of a name (symbol) with a value. It is not stored within 
the computer, apart from the program code.

M4  An assignment statement such as a = b + 1 stores an equation in memory or 
stores an unresolved expression b + 1 in variable a.

It is well documented that beginner programmers struggle with sequencing statements; a simple 
three-line swap of variable values is hard for many students (Lister, 2016). Prior knowledge and 
notations influence some of these difficulties: even though a sequence of assignment statements is 
a step-by-step mechanism for manipulating state, it looks much like a set of declarations that hold 
simultaneously.

M5  A program, especially one with assignment statements, is essentially a group of 
equations.

M6 Several lines of a (simple non-concurrent) program can be simultaneously active.

Pea (1986) notes that many students find it quite reasonable to sequence a piece of (imperative) 
code so that the lines that read user inputs follow the line that uses the input data to compute 
a result. Jimoyiannis (2011) illustrates how some students attempt to ‘solve’ programs much as 
one would a group of equations, substituting variable names with the right-hand sides of other 
assignment statements.

Equations are symmetric, as is the notation a = b, but assignment statements are not. It is 
possible that prior knowledge of mathematics also plays a role in the formation of misconceptions 
such as the following one.

M7 A ssignment statements such as a = b work in both directions: they swap the 
values of two variables.

We have now seen that students sometimes interpret code in terms of mathematics. Whether or 
not they do so may depend on whether a piece of code looks familiar from math class.

M8  A variable name needs to be a single letter; longer identifiers are interpreted as 
(parts of) commands.

Grover and Basu (2017) documented an instance of M8 where students failed to recognize a 
variable called NumberOfTimes as a variable because its name was so long. Instead, the students 
came up with speculative meanings for the statement where the identifier appeared.

Vocabulary
Some misconceptions arise from the natural-language semantics of words. For instance, some 
programming languages use the word ‘then’ exclusively in selection statements: if a then b 
else c. But in English, the word also – and usually – implies a sequence: ‘first a, then b’. Another 
example is the while keyword, which appears in many imperative programming languages. There 
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is evidence from multiple studies over the past few decades that many students assume the word 
implies a continuous check:

M9  A while loop’s condition is evaluated constantly. The instant it becomes false, the 
loop exits.

Students may attribute a similar quality to if statements. The English expression ‘If you need any 
help, call me.’ does not suggest an immediate, one-time check; it means that the listener ought to 
call the speaker in the event that they need help later.

M10 An if statement triggers whenever its condition becomes true.

What is missing from this conception (much as in M6 above) is the notion that control passes from 
one instruction to the next. Pea (1986) cites a student who explains: ‘[The computer] looks at the 
program all at once because it is so fast.’

Analogies
Teachers employ analogies between programming concepts and more familiar concepts; students 
also come up with their own analogies and may share them with their peers. Analogies are a useful 
tool for teaching and reasoning, but they are also a source of misconceptions: since any analogy is a 
mapping between things that are similar but not identical, there is the risk that learners overextend 
the analogy.

The classic example from introductory programming is the analogy of a variable being like a 
box. A variable does indeed have some box-like characteristics, which fact can be used productively 
in teaching, but the analogy may still produce misconceptions (Hermans et al., 2018), especially if 
the differences between variables and boxes are not explored. Consider M1 above, for instance: a 
box can hold multiple objects at the same time, but a variable only has one. Here are two more 
examples:

M11  Assignment statements such as a = b move values from one variable to another. 
The source variable is emptied in the process.

M12 Variables are initially empty containers and do not need to be initialized.

Purpose versus structure
Consider the statement a = a + 1. Here is how a student, teacher or textbook might describe 
it: ‘It increments the variable a by one.’ This is a summary of the purpose of the line of code, that is, 
what it accomplishes for the programmer. What was left unsaid is the structure of the code: it is an 
assignment statement, which involves evaluating the composite expression a + 1 and assigning 
its value to the variable a. That is how the programming environment handles it. Students, 
however, may simply memorize the ‘statement type for incrementing counters’ and fail to discern 
its constituent components. (This is perhaps especially likely if they view assignment statements as 
equations as in M4 above, since a = a + 1 does not fit that interpretation.)
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M13  Incrementing a variable is an indivisible operation; no conception of evaluation and 
assignment.

A piece of code is a causal mechanism that consists of many components. Research on mental 
models suggests that it is important to be able to reason about a causal system in terms of 
its individual components without mixing them up with the purpose of the whole (de Kleer 
and Brown, 1983). It is such an understanding that allows one to debug unexpected behaviour 
and to combine components in novel ways. Although M13 is viable for many purposes, it is 
not felicitous for building a general understanding of program components – expressions and 
statements.

Programs tend to have a conspicuous line-based format. It may be tempting for students (and 
teachers) to treat lines as the main constituents of programs and gloss over their internal structure. 
Often, the concepts of expression and evaluation receive little attention. Here is another example:

test = [″A list″, ″that″, ″contains″, ″four strings″]

The overall purpose of the line might be summarized as: ‘Stores four strings in test.’ An 
experienced programmer will not take this too literally. They will perceive that this, too, is an 
assignment statement, which evaluates the right-hand side and stores the resulting reference in a 
variable; they will realize that test is not really the name of a list object but of a variable. But a 
beginner may well have more trouble.

M14  Conflation of referring variable with object; the name of the variable is a part of the 
object. Assignment statements change the names of objects.

M15 An object can be referenced by only one variable.
M16 Declaring a variable also creates an object of the appropriate type.

Let us consider another facet of our example. The description ‘Stores four strings in test.’ is 
metonymous: it refers to an entity, the list of strings, via a structurally associated entity, the name 
of a variable. Metonymy is pervasive in human communication: we can say things like, ‘She likes 
to read Kafka,’ and it will be obvious we refer to the literary works associated with a person. The 
computer system, however, takes instructions literally and requires us to spell out our purpose in 
terms of the structural components that the system can manipulate. Beginners may expect the 
computer to work out what their metonymous instructions mean, which is a potential source of 
many errors, such as confusing array elements with their indices or attempting to reference objects 
using the values of their attributes (Miller, 2014).

M17  A field that has distinct values for each object, such as name or id, works as an 
identifier for objects.

Metonymy is an example of a still broader source of student difficulties, discussed next.

Expectations of interpretive intelligence
Miller (1981) and Pane, Ratanamahatana and Myers (2001) studied how non-programmers 
describe procedures in natural language. Among other things, they found that many aspects that are 
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commonly explicit in programs were implicit or entirely absent in people’s natural descriptions: the 
details of looping, variable declarations, parameter passing, else clauses and so on.

In the light of those studies, it is no surprise that beginner programmers are so often taken aback 
by the level of detail that is required in programming. Beginners frequently assume that what they 
write says more between the lines than it actually does.

M18  Programs get interpreted more or less like sentences in natural conversation. The 
computer or programming environment is, for practical purposes, able to deduce the 
intention of the programmer. It may, for instance, fill in ‘obvious’ information without 
being told.

M19  The computer/environment prevents operations that are unreasonable or pointless.

Pea (1986) identified what he termed the superbug behind many beginner mistakes: students 
behave as if ‘there is a hidden mind somewhere in the programming language that has intelligent, 
interpretive powers’. This is not to say that students believe that there is a homunculus running the 
machine or that computers reason in the same way human brains do. However, when beginner 
programmers are unsure what to do, they commonly fall back on analogies with familiar forms of 
language use. Typically, they overestimate the reasoning capabilities of the system. Many scholars 
have reported on student behaviour consistent with the superbug.

Students sometimes fail to realize that the system does not find meaning in identifiers. For 
example:

M20  The natural-language semantics of variable names affect which value gets assigned 
to which variable. For example, smallest will surely not store a number greater 
than the one in largest.

Analogies with natural conversation may also influence students’ difficulties with specific 
programming constructs. As one example, else clauses are conspicuously rare in non-
programmers’ process descriptions, as people often neglect alternative branches and may consider 
them too obvious to merit consideration. This may partially explain why some students have 
difficulties with else, including the following misconceptions.

M21  Using else is optional; the code that follows an if statement is the else branch (if 
necessary).

M22 Both then and else branches are always executed.

Intangible concepts beneath program code
Some aspects of programming are more visible than others. In particular, program code – the 
static aspect of programs – is very tangible. It is natural to think about programs in terms of the 
code that the programmer directly manipulates. However, some of the concepts and processes 
that explain the runtime behaviour of code – the dynamic aspect of programs – are not explicit 
in code but nevertheless impact what the programmer should do. Examples of the latter group 
include references, transfer of control between statements, expression evaluation and memory 
allocation.
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Consider functions. The program code that defines and calls them is tangible but function 
activations at runtime are not. Students commonly find it hard to understand parameter passing, 
local scope, the lifetime of variables and return values. Some of these difficulties may persist even 
as students advance in their studies (Fisler, Krishnamurthi and Wilson, 2017). Here are just a few 
of the reported misconceptions:

M23  Variable names must be different in the calling code and in the function signature. 
(Alternatively: They must be the same.)

M24  Parameter passing forms direct links between variable names in the call and the 
signature.

M25  The local variables of methods are members of the object whose method was 
called. Or vice versa: object members are initialized anew at each method 
invocation.

M26 Any recursive function is essentially a loop within a single activation of the function.

References, too, are only implicitly present in program code. Students who are unfamiliar with the 
concept often form misconceptions such as the following. (See also M14–M17 above.)

M27  Assigning an object to a variable (always) stores the object’s properties in the 
variable.

M28 Assignment statements copy properties from a source object to a target object.
M29 Two objects with identical states are the same object.

Another example is the relationship between a class and its instances. In many programming 
languages, classes are tangible, static definitions, whereas object creation happens dynamically at 
runtime. This is a notoriously difficult idea in introductory object-oriented programming, as are 
the related concepts of the constructor and the this (or self) reference (see, e.g., Holland, 
Griffiths and Woodman, 1997; Ragonis and Ben-Ari, 2005).

M30 An object is essentially just a piece of code, difficult to distinguish from a class.
M31 A class is a collection of – or container for – objects.
M32  Instantiation involves only the execution of the constructor body, not the allocation 

of memory.
M33 Providing a constructor definition is sufficient for object creation to happen.
M34 this is the class in which a method is implemented.

An implicit execution model
Many or even most of the misconceptions that we have discussed so far illustrate a common 
point: students often struggle to predict the behaviour that results when the computer executes 
the instructions in a program. Many students lack a way of reasoning that enables them to reliably 
answer questions such as: What can this programming system do for me? What are the things it 
can’t or won’t do? Which rules does it follow? What is the division of labour between myself and the 
computer system – that is, between the human instructor and the mechanistic instructee? What 
changes within the system does each of my instructions bring about?
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In other words, students need to be taught a model of program behaviour (Duran, Sorva 
and Seppälä, 2021), an abstraction of computer software and hardware that suits the sort of 
programming that students will do.

Different programming languages and environments call for different models of program 
behaviour. For instance, a model that explains the behaviour of Python programs may involve 
concepts such as memory allocation, flow of control, references and call stack. A model for pure 
functional programming may be simpler.

Even a single programming language can be viewed in terms of different models. One model 
may be more or less detailed than another, or more consistent, technically accurate, generalizable 
to other languages and so forth (Duran, Sorva and Seppälä, 2021). Which model works best will 
depend on learning goals and context.

Models of program behaviour are not always explicitly discussed by textbooks, teachers or 
students. This makes it likelier that students fail to construct reliable knowledge.

Limited variation in programs
Students commonly cite concrete experiences with programs as their main source of 
programming knowledge. Whether from given examples or programs they write themselves, 
students infer implicit ‘rules’ from the programs they encounter. Limited exposure to different 
programs can lead to under- or overgeneralized rules that limit students’ ability to make use of 
programming constructs. Here are some examples of misconceptions that unnecessarily restrict 
the programmer:

M35 Object attributes must be numbers or similarly primitive data.
M36 Function arguments must be literals or constants.
M37  Comparisons must appear within a conditional expression and not, for example, 

in return or assignment statements. Booleans are perceived as parts of control 
structures, not as values in the same sense as numbers.

M38 Only one instance can be created for each class.
M39 A method can be invoked only once (on each object, or in total).
M40 A class can have only one method./A class can have only one member variable.

Misconceptions such as M8, M17 and M20, from earlier in this chapter, indicate that some 
students find it difficult to understand how the programming environment handles identifiers. 
Indeed, students may find it difficult to tell the difference between an identifier chosen by the 
programmer and a construct of the programming language; some learners search the internet 
for variable names and other program-specific identifiers as they attempt to find help for 
programming problems. Limited variation in programs can exacerbate these difficulties. For 
instance, if all or most objects have a name or id attribute, students are more likely to think of 
the identifier as part of the language, as in M17. Another example, from personal experience: in 
a course where I frequently used another as the parameter name in methods that compare the 
active object with the given object, some students ended up thinking another was a reserved 
word akin to this.
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Teachers
As noted at the beginning of this chapter, teachers’ knowledge of students’ likely misconceptions 
makes a difference to student learning. In addition, the same study by Sadler et al. (2013) shows 
that teachers’ own subject-matter knowledge is a necessary (but insufficient) precondition of 
knowledge of misconceptions. In other words, teachers who ‘know their stuff ’ are less likely to 
encourage misconceptions in their students, especially if the teacher additionally knows how ‘the 
stuff ’ challenges learners.

Other aspects of teachers’ ability and instructional design also matter, of course. For instance, 
excessively complex or unmotivating tasks will result in poorer learning and may contribute to 
misconceptions.

20.3 Some theoretical perspectives on 
misconceptions
Misconceptions have long been of interest to researchers of conceptual change (Vosniadou, 2008). 
Theories of conceptual change seek to characterize the nature of people’s conceptual structures and 
how those structures change as we learn.

Classical conceptual change theory posits that conceptual structures are ‘theory-like’ in that 
even intuitive knowledge is relatively organized and structurally coherent. Moreover, people are 
generally averse to disturbing this relatively harmonious state, which explains the resilience of 
existing conceptions. In the classical view, misconceptions are often seen as obstacles that need to 
be avoided or confronted; learning results from cognitive conflict between an existing conception 
and the demands of a novel situation, leading to the rejection of the existing conception and its 
replacement with a new one. By designing situations that engender cognitive conflict, teachers can 
help students overcome their flawed conceptions.

Knowledge-in-pieces theories of conceptual change reject the classical view. Their proponents 
argue that intuitive knowledge has no coherent overall organization and consists of largely isolated, 
highly context-dependent elements. It is both possible and common for a person to have multiple 
apparently contradictory ideas about a phenomenon so that they draw on whichever idea occurs 
to them in a particular situation. A programming student, for example, might draw on distinct 
conceptual structures for:

 ● Assignment statements with objects vs assignment statements with primitive values (Sorva, 2008),
 ● Scalar variables vs array variables (Lister, 2016),
 ● Variables that store numbers vs ones that store strings (Hermans et al., 2018) or
 ● Assignment statements that increment a variable (M13) vs other assignment statements 

(M4 & M5).

It is the fragmented nature of knowledge that makes misconceptions resilient: a learner can add a 
parallel understanding rather than supplanting an existing one.
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Knowledge-in-pieces theories encourage an emphasis on the productive parts of learners’ 
existing conceptions. Learning is seen as being not about confronting flawed conceptions but about 
connecting and organizing intuitive ideas and discovering to what extent they are viable and how 
they can be developed. Elements of intuitive knowledge – so-called misconceptions included – are 
raw materials for learning that evolve into more general, theory-like structures.

The neo-Piagetian perspective of Lister (2016) complements knowledge-in-pieces theories of 
conceptual change. Lister describes how it is normal for beginner programmers to initially exhibit 
a low level of commitment to their conceptions about programming, to routinely swap between 
conceptions and to develop error-prone ad hoc tracing strategies for different programs.

20.4 Implications for pedagogy

A model of program behaviour as a learning objective
One of the foremost recommendations from the misconceptions literature is that teachers need 
to help students reason about program behaviour. This does not imply that a low-level hardware 
model is necessary; students can be taught a more abstract model of program behaviour that 
operates just beneath the level of program code that the students manipulate. The key is to identify 
what the students need to know so that they can program and learn successfully.

This means that students may need to learn concepts that are not directly visible in program 
code but that help explain the behaviour of programs, such as expression evaluation, memory 
allocation, references or the call stack. These concepts can be introduced alongside new 
programming constructs, gradually extending a simple initial model. Duran, Sorva and Seppälä 
(2021) present an example progression of ‘rules of program behavior’ for Python programs, discuss 
the related trade-offs in instructional design and elaborate on the need to teach a model of program 
behaviour. Fincher et al. (2020) illustrate a collection of pedagogic devices (‘notional machines’) 
that various teachers have used to explain how programs behave.

This is not a call to add more content to already crowded curricula. It is a call to acknowledge 
content that is already in but often neglected. Any programming environment has some 
underlying behaviour that students will need to cope with. Without help, students are forced to 
rely on guesswork, fragile analogies and mistaken assumptions, which may prohibit productive 
programming and effective learning.

Advice for misconception-sensitive teaching
Try to learn to see programming concepts and language constructs from your students’ perspectives. 
Discussions, observation and collecting feedback can all help in this, but you may need to probe 
deep: ‘It was not until we did the tedious work of having students walk through every command 
in a program, thinking aloud and explaining how the computer would interpret it, that we became 
aware of the prevalence of these [conceptual] bugs. After that, we saw them everywhere’ (Pea, 1986).
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Expect students to conceptualize code constructs in unexpected ways. Expect conceptions that 
are fragmented and may appear inconsistent with each other. Reflect on your own assumptions; 
do not assume that students share them. Draw on the research literature to prepare for common 
misconceptions that your students may develop. Where possible, use concept inventories or similar 
assessments (Taylor et al., 2014; Parker and Guzdial, 2016; Grover, 2020) to assess students’ prior 
knowledge and the effectiveness of your teaching.

Find the valuable aspects of students’ conceptions and build on them. When you encounter a 
misconception, remember to consider the situations where the conception is viable. Guide students 
to explore the viability of their knowledge for different kinds of programs and to compare and 
contrast different conceptions. Obviously, do not dismiss misconceptions as failures; instead, help 
your students emotionally so that they are not discouraged by the misconceptions.

One does not learn to program without program-writing practice, but don’t take that to mean 
that the most effective way to learn is only to write programs; to learn to write code, students also 
need to learn to read code (Lister, 2016; Xie et al., 2019). Don’t assume that because a student 
produced a piece of code, they understand it (Salac and Franklin, 2020). Design code-reading 
activities that target a model of program behaviour. Use worked-out examples and case studies of 
programs (Skudder and Luxton-Reilly, 2014; Linn and Clancy, 1992). Have students fix or extend 
given programs, which motivates a careful study of the given code and lets students work on more 
interesting applications than they could write from scratch.

Encourage students to explain program behaviour in detail to themselves and to others. Arrange 
for students to get feedback on their explanations. Consider peer instruction (Porter, Bailey-Lee 
and Simon, 2013) and other collaborative activities as a way to explore and address misconceptions. 
Design classroom discussions around apparent or expected student misconceptions (Ginat and 
Shmallo, 2013).

Teach students self-explanation skills (Fonseca and Chi, 2011) so that they can focus on 
underlying principles rather than the surface features of a particular program. Be aware that 
learning to trace programs requires repeated practice; have students practice tracing and present 
general principles as feedback on their tracing attempts (Lister, 2016).

Teach students to explain both the overall purpose of a piece of code (the forest) and its 
individual constituents (the trees). Watch out for explanations that mix purpose with structure, 
both in what you say and in what students say. Teach a model of program behaviour that has 
sufficient granularity (Duran, Sorva and Seppälä, 2021): highlight that lines of code are not atomic; 
acknowledge expressions and evaluation as significant concepts.

In popular constructionist pedagogies, students use tools such as Scratch to build and share fun 
creations but may fail to learn foundational concepts; complement constructionism with other 
approaches that target conceptual understanding (Grover and Basu, 2017).

The example programs that students encounter are a major source of their programming 
knowledge; strive for exemplary examples. Use lists of known misconceptions as inspiration for the 
design of examples and related activities. Try to make sure that students encounter rich variation 
in programs to prevent particular misconceptions: Did my example class have just one instance 
or just one method (M38, M40)? How have I highlighted to my students that the execution order 
of statements makes a difference (M5)? Have I used multiple variables referencing a single object 
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and a single variable referencing a succession of objects (M14, M15)? Have the students had to 
deal with multiple identical but distinct objects (M29)? Do my examples of while discourage the 
‘continuous evaluation of condition’ interpretation (M9)? Do I have an example that shows how 
changing the value of a variable does not impact the values of other variables, even those initialized 
using it (M4)? Have I included an example of multiple variables with the same name in different 
scopes? What about nested function calls and other complex function arguments (M36)? And so on.

Pay particular attention to examples that introduce a concept. Note that using the simplest 
imaginable example may give a misleading first impression (e.g. the first variable students see is 
assigned an integer literal). Do not use only code that works; make use of erroneous programs as 
well. Use combinations of examples with minimal differences to separate aspects and highlight 
contrasts.

Have students view, draw or manipulate visualizations of hidden processes, or role-play the 
processes. Consider program visualization software designed for education (Sorva, Karavirta and 
Malmi, 2013). Recognize that reading a visualization is itself a skill that needs to be learned and 
that struggling beginner programmers may struggle to decipher the visualizations, too.

Analogies and metaphors can provide viable alternatives to technical terms; look for consistent 
analogies that explain many concepts and their relationships (e.g. Gries, 2008). Reflect on the 
borders of any analogies you use and deliberately explore those borders with your students. Watch 
out for known issues with common analogies (e.g. variable as box).

Teach students to spell things out literally enough when they instruct the computer. Discuss 
the differences between programming and human conversation – even human conversation 
that is about programming. Explore natural-language phenomena such as metonymy in an age-
appropriate manner. Consider what other prior knowledge, besides language, might be leveraged 
or otherwise taken into account (see, e.g., Simon et al., 2008).

Be on the lookout for deceptively familiar notations and terms from mathematics and their 
subtle impact on student understandings. Explicitly point out some of the most common pitfalls.

Don’t forget about program-writing practice either.

Key points
 ● Beginner programmers commonly struggle with specific programming 

constructs and the nature of programs more generally.
 ● Factors that contribute to student misconceptions include: limited 

exposure to different programs, intangible concepts and an implicit model of 
program behaviour, students’ prior knowledge of mathematics and natural language 
and the analogies employed in teaching.

 ● To teach most effectively, teachers should be familiar both with the programming 
concepts and with how students commonly view the concepts.

 ● Teachers should make it their goal to teach students a model of program behaviour, 
a reliable basis for reasoning about what program code does when executed.



Misconceptions and the Beginner Programmer 271

 ● Teachers can help students construct increasingly productive knowledge by 
providing ample practice with reading and tracing a rich variety of programs, 
designing examples to target common misconceptions, bringing the intangible 
aspects of programming into focus and probing the borders of analogies and 
metaphors.

For further reflection
 ● Review a programming textbook or the materials you use for teaching. 

Consider whether the text, examples and activities are likely to help with – 
or encourage – the misconceptions listed in this chapter.

 ● Reflect on the model of program behaviour that your students need. What 
capabilities of the programming environment are invoked by the commands in the 
language? What do the students need to know about those capabilities in order to 
reason reliably about program behaviour? Which ‘rules’ does the system obey?
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Chapter outline
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Chapter synopsis
In this chapter, we follow on from Chapter 18, ‘Principles of Programming 
Education’, to describe practical, research-backed approaches that can be 
used in the programming classroom. We describe some of the difficulties 
faced by young programmers and then highlight research relating to three broad areas of 
collaboration, code comprehension and modelling. Moving to the specific application of 
pedagogies, we next outline specific and popular contexts of physical computing, block-
based programming, project-based learning, unplugged programming and games. We finish 
by considering specific ways to support students to learn to program, including scaffolding 
the learning and incorporating a range of strategies to support a deeper understanding of 
programming.
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21.1 Introduction
Programming is a key part of computer science and computing; it is a skill that cannot sit separately 
from the theoretical components of computing. Rather, programming is the application of concepts 
that are often hard to understand until they are put into practice. Programming practice is not 
simply skill reinforcement; it is the route to understanding.

To teach any subject requires good teaching skills, knowledge about the subject being taught 
and specific knowledge – known as pedagogical content knowledge – that a teacher gains about 
how to teach a particular topic to their students in the learning context at a given moment in 
time. When reading this chapter, you might wish to think carefully about which combination of 
instructional approaches is likely to ensure that learning is accessible for all your students.

21.2 Why do learners struggle with 
programming?
Learners new to programming can find it difficult. For example, it has been asserted that beyond the 
syntax and semantics of particular programming concepts, beginner programmers may struggle 
to put these together to construct a program (Robins, Rountree and Rountree, 2003). Actually 
writing code (as opposed to reading) is particularly hard for novice programmers (Qian and 
Lehman, 2017), and it is commonly believed that code tracing is easier than code writing (Denny, 
Luxton-Reilly and Simon, 2008). However, many students find code tracing challenging (Vainio 
and Sajaniemi, 2007) with particular difficulties being around single value tracing, confusion of 
function and structure, external representations and levels of abstraction.

The mental effort needed by learners as they embark on this complex journey of learning to 
program can also be viewed through cognitive load theory (van Merriënboer and Sweller, 2005). 
Cognitive load theory is a theory of instructional design that suggests that some instructional 
techniques assume a processing capacity greater than our limits and so are likely to be defective 
and that students should instead engage in activities that are directed at schema acquisition and 
automation (Sweller, 1994). Working independently on programming has been suggested to have 
higher cognitive load than working collaboratively through pair programming (Tsai, Yang and 
Chang, 2015).

However, we may inadvertently use teaching methods that don’t help this situation at all. 
A reliance on programming textbooks and ‘show me’ approaches to teaching coding means that 
novices may end up being asked to copy in a section of code that has no meaning to them at all. 
Add this to the fact that younger learners will be developing their literacy and keyboard skills, the 
process of copying in can be incredibly frustrating and dispiriting. Another practice might be to 
model writing a program from the front while learners watch and then ask learners to go ahead 
and write a similar program themselves: this also leaves a huge chasm for the novice programmer 
to fill in themselves, which many simply cannot manage.
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21.3 Strategies for teaching programming
Any teacher, of any subject, will draw on a toolkit of teaching strategies to support students in their 
learning and provide variety in lessons. Teaching programming is no different, and we encourage 
teachers to develop their own toolkit of strategies and decide what is appropriate for each teaching 
context. Here, we outline some of the research underlying some common approaches to the 
teaching of programming.

Code comprehension
For many years, researchers have highlighted the importance of reading code and being able to 
trace what it does before writing new code (Lister et al, 2004). Comparing tracing skills to code 
writing, they demonstrated that novices require a 50 per cent tracing code accuracy before they can 
independently write code with confidence (Venables, Tan and Lister, 2009). Learning to program 
is sequential and cumulative, and tracing requires students to draw on accumulated knowledge 
to conceive a big picture. Work by Teague and Lister in this area suggests that novice learners 
should be focused on very small tasks with single elements (Teague and Lister, 2014). Another 
study concluded that as well as inferring meaning from code from its structure, the first step should 
be to make inferences about the execution of the program (Busjahn et al., 2013).

There is a wide range of potential code comprehension tasks that can be used as learning 
activities to highlight students’ alternate conceptions or exemplify programming concepts. Some 
examples are spotting concepts, recalling facts or examples, changing aspects of programs and 
comparing and decomposing solutions. More specifically, students can predict what code will do, 
match designs to programs, investigate and fix buggy code or sabotage code for their peers to fix. 
Students can be asked to annotate code with an explanation of what the code is intended to do. 
Parts of code can be removed and students asked to fill the gaps.

One particular activity to support code comprehension is Parson’s problems; these provide 
learners with all the code required, but in sections and with the sections in the wrong order (Parsons 
and Haden, 2006). There are many variants of Parson’s problems, such as including superfluous lines 
of code with common syntactic or semantic errors to act as distractors, faded Parson’s problems 
where students increasingly complete some lines of code and adaptive Parson’s problems, which 
dynamically control problem difficulty based on a student’s performance. Parson’s problems have 
been suggested to be particularly effective in helping university students understand patterns in 
programs (Weinman et al., 2021) and improving student engagement (Ericson, Margulieux and 
Rick, 2017).

Languages like Python (commonly used in schools in England) are often celebrated because 
you can write a program in a short number of lines. However, this can often mean there are lots 
of programming concepts to understand in one line of code. One way to unpack what the code is 
doing is to align comprehension exercises to the Block Model (Schulte, 2008; Izu et al., 2019). The 
Block Model, as shown in Table 21.1, distinguishes between a new programmer’s understanding 
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Table 21.1 The Block Model

(M) Macro 
structure

Understanding the overall 
structure of the program 
text

Understanding the 
algorithm underlying 
a program

Understanding the 
goal/purpose of the 
program in the current 
context

(R) 
Relationships

Relationships between 
blocks

Sequence of 
function calls, object 
sequence diagrams

Understanding how 
subgoals are related 
to goals

(B) Blocks Regions of interest that 
build a unit (syntactically or 
semantically)

Operation of a block 
or function

Understanding of the 
function of a block of 
code

(A) Atoms Language elements Operation of a 
statement

Function of a 
statement

(T) Text surface (P) Program 
execution

(F) Function

Architecture/structure Relevance/intention

Source: Adapted from Schulte (2008).

of the structural atomic detail of a program, the code, the functional goals of the program and the 
problem (Schulte, 2008).

Izu et al. (2019) mapped a set of code comprehension activities to the Block Model. Some of 
these are shown in Table 21.2, adapted a little from the original paper.

Example: Investigate questions
Use some of the activities from Table 21.2 to encourage students to investigate 
an extract of program code. For example:

 ● Ask the question, ‘What would happen if those two lines were the other way 
round?’

 ● Ask the question, ‘What would happen if the input to the program was ____?’
 ● Ask students to draw on the program to identify blocks of code or the type of a 

construct?
 ● Ask students to draw the flow of control on the program showing what line is 

executed when a loop is exited.
 ● Ask students to identify the scope of a variable.
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Table 21.2 Example code comprehension activities aligned to the twelve-cell Block Model

 Text Surface Program Execution Function

Macro •  Describe the overall 
program block 
structure by drawing 
nested boxes

•  Represent the overall 
program structure 
by drawing a tree of 
function/procedure 
dependencies

•  Verify if a program 
statement or block is ever 
reachable during program 
execution

•  Identify a comprehensive 
set of inputs to check all 
possible computation 
flows of a program

•  Choose an appropriate 
name for a program

•  Create meaningful test 
cases for the allowed 
inputs and expected 
outputs

Relational •  Link each occurrence 
of a variable with its 
declaration

•  Identify where a 
particular function is 
called

•  Trace the program 
execution for a given 
input, where the 
program includes calls to 
procedural units

•  Verify whether some 
branches of a switch/case 
statement are redundant, 
that is, can never be 
executed

•  Identify the scope of a 
variable

•  Choose an appropriate 
name for a variable

•  Solve a Parson’s puzzle for 
a given code purpose by 
reordering simple blocks

Block •  Draw a box around the 
code of each conditional 
construct

•  Draw a box round the 
body of each method/
procedure/function

•  Identify recurring 
instrumental blocks such 
as that for swapping the 
values of two variables

•  Identify the block(s) 
implementing some 
specific program pattern

•  Summarize in a short 
sentence what the block 
goal is

•  Identify the program 
block(s) with a given 
function, described in 
problem-domain terms

Atom • List all integer variables
•  Draw a box around 

the headers of all 
procedures/functions in 
a piece of code

•  Determine the program 
output for given input 
data, again where the 
program does not include 
procedural units

•  Determine the value of 
an expression for given 
values of the involved 
variables

•  Identify the purpose of 
an expression or a simple 
statement, in connection 
with the problem domain

•  Rename a constant with 
an appropriate name from 
the problem

Source: Adapted from Izu et al. (2019).

Collaboration
As we have seen in Chapter 14, dialogue and classroom talk are an important aspect of the 
teaching and learning of programming. When learning to program, students can be encouraged to 
discuss their code with one another. Collaborative, program-focused tasks involving talking about 
programs can help the development of socially constructed knowledge about programming. There 
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are a number of ways in which we can encourage collaboration when teaching programming. Two 
of the most popular approaches are pair programming and peer instruction.

Pair programming is a well-researched method for engaging students in programming, with 
evidence that it can improve teaching and learning. However, care needs to be taken when 
implementing this approach with social dynamics, power struggles, friendship dynamics, 
confidence with computers, inequity of roles, how students talk to each other, the structure of tasks 
and teacher intervention, all potentially impacting interactions and learning (Shah and Lewis, 
2019; Denner, Green and Campe, 2021). More research with larger numbers of students in different 
contexts with carefully controlled interventions is needed to provide robust recommendations for 
classroom practice.

Key concept: Pair programming
Used in industry and education, pair programming is a collaborative approach 
where two people simultaneously work on a single software development 
project. Swapping roles regularly, one person (the driver) has control of the 
mouse and keyboard, and the other (the navigator) continuously collaborates by 
reviewing the written code and keeping track of work done against the design (McDowell 
et al., 2006).

Key concept: Peer instruction
Peer instruction (PI) is not simply peers teaching each other. In class, learners 
are provided with carefully constructed, concept-based, multiple-choice 
questions, which are based on pre-lesson reading. Learners independently 
consider the questions and give their answer (vote) using flashcards or an 
online voting system. They then share their responses with their peers and discuss their 
thinking before re-submitting their answer (re-vote). The teacher reviews learners’ first and 
second answers and, if needed, provides further support after the second answers before 
moving on to the next question.

Example: Activities to encourage collaboration

 ● Develop a pair working agreement for your own class and use it when 
introducing pair programming. Experiment with different ways of pairing 
students and reflect on what is most successful for your own teaching context.

 ● Try peer instruction, including asking your students to reflect on the experience and 
whether it supported their learning.
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 ● Encourage students to talk through their program with another student, paying 
attention to the terms that they use and what they find difficult to explain. Ask 
students whether talking through a program with another person helps them with 
troubleshooting.

Modelling
Modelling is a form of in-class demonstration where students observe as a teacher completes an 
activity whilst talking through their thought process. This brings an apprenticeship approach to 
teaching, and in the teaching of programming, it is also referred to as live coding (Rubin, 2013) 
(not to be confused with ‘live coding’ as a form of performance art). Pupil interaction may be 
introduced into this approach by asking learners what to do next at various points in the activity 
and by asking them to spot mistakes. Modelling is also used in the teaching of other subjects and 
can be a very useful approach to introduce programming concepts and processes.

To support learning through live coding, two things are essential. First, the teacher must carefully 
select appropriate examples for teaching new concepts, consolidating understanding or addressing 
existing or potential misconceptions. Second, live coding should reveal the thinking of the 
demonstrator: what the teacher says as they ‘think aloud’ is crucial to the effectiveness of live coding.

As well as using sample programs for students to predict what the program will do, teachers also use 
sample programs when they model how to write code based on worked examples. Worked examples 
can be provided to students for them to learn about concepts, processes and features of programming 
environments, such as the concept of iteration, the process of development, the role of variables and tools 
for debugging. A further enhancement of the use of worked examples is subgoal modelling, whereby 
meaningful labels are added to worked examples to visually group steps into subgoals, highlighting 
the structure of code. Recently, Margulieux et al. (2020) redesigned a resource aimed at 15- to 18-year-
olds, adding subgoal labels to a set of resources used in an Advanced Placement programming course 
and found some positive effects on outcomes. Students learning with subgoals performed no better 
in knowledge-based assessment but performed better on problem-solving questions, wrote more on 
open-ended questions and continued to use subgoals after the course. Teachers in the study suggested 
that struggling students found subgoals the most useful (Margulieux et al., 2020).

Putting it all together
One approach to teaching programming which emphasizes code comprehension, student 
collaboration and teachers’ use of language when modelling is PRIMM (Sentance, Waite and Kallia, 
2019). PRIMM is an approach that can help teachers structure lessons in programming. PRIMM 
stands for predict, run, investigate, modify and make, representing different stages of a lesson or 
series of lessons. PRIMM promotes discussion between learners about how programs work and 
the use of starter programs to encourage them to read code before they write it. A number of 
studies have been employed to investigate the impact of PRIMM; the largest of these was a mixed 
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methods study involving around five hundred students aged eleven to fourteen. The results showed 
that PRIMM lessons had an impact on programming attainment and that teachers particularly 
value the collaborative approach, the structure given to lessons and the way that resources can be 
differentiated (Sentance, Waite and Kallia, 2019).

Example: Teaching the PRIMM way
Try PRIMM out in a programming lesson. You may need a sequence of lessons 
to complete all five steps, with some iteration of predict, run and investigate 
before students are ready for modify and make.

 ● Predict: Give students a program (on paper or on the board) and ask them to discuss 
it and predict what it might do. Students can draw or write out what they think will 
be the output.

 ● Run: Give students an executable version of the program. Ask students to run 
the program so that they can test their prediction. Discuss the results with 
the class.

 ● Investigate: Provide a range of activities to explore the structure of the code, such as 
tracing, explaining, annotating, debugging and so on. These can be mapped to the 
Block Model as in Table 21.1.

 ● Modify: Provide a sequence of increasingly more challenging exercises to enable 
students to edit the program to change its functionality; the transfer of ownership 
moves from the code being ‘not mine’ to ‘partly mine’ as students gain confidence 
by extending the function of the code.

 ● Make: Set a new programming problem for the students. Support the students 
to plan and design a solution to the problem. Developing the solution to the new 
problem should enable students to practice the programming skills they learned 
during the previous steps.

21.4 Contexts and environments
In this section, we move from strategies in the teachers’ toolkit to the variety of contexts and 
environments that can be used to learn programming.

Block-based programming
Sometimes called block-based, visual or graphical programming languages, these languages use 
graphical images to represent programming commands. These easy-to-use languages are used not 
only with the youngest learners in formal and non-formal learning contexts but also with older 
students in formal introductory programming lessons.
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Block-based languages and their programming environments provide a range of affordances 
over and above text-based languages. Affordances include not requiring students to memorize and 
type in commands or deal with unfamiliar and sometimes confusing characters such as {}, [] and 
== and presenting natural language-type block labels. Commands are often grouped by colour 
to give hints about their shared purpose, and shapes dynamically change their size to signal the 
scope of the command. Common shapes indicate which combinations of programming objects 
are allowed and provide an environment that allows quick and easy program-building (Bau et al., 
2017; Weintrop et al., 2019).

Unplugged programming
Unplugged activities teach about computing without a computer (Bell et al., 2009). Role-play can 
provide a physical enactment of a complex concept. For example, acting out a bubble-sort breaks 
down the process into individual steps and highlights features that might otherwise be difficult to 
envisage (Katai, Toth and Adorjani, 2014). Role-play can also be used to help learners design new 
products as they step through and try out their ideas. For example, when learning how to program 
programmable toys, students can ‘play turtle’ to help them understand the way the machine works 
as they embody and execute the steps of their solution (Papert, 1980).

Examples of unplugged activities and how to use the semantic wave theory to introduce them 
effectively are given in Chapter 13 on concepts.

Physical computing
Physical computing (also called tangible computing) refers to the use of both software and 
hardware to build interactive physical systems that sense and respond to the real world. It includes 
building tangible interactive objects or systems, designing with creativity and imagination and 
engaging physically as well as mentally. From a learning perspective, physical computing intersects 
a range of activities often associated with design technology, electronics, robotics and computer 
science. But perhaps more importantly, physical computing provides a means to explore the use of 
technology in a wide range of subjects.

Physical computing can be very useful in the learning of programming. With a physical device, 
there can be instant feedback from the device to indicate whether the program code works as 
desired. This can be rewarding as well as accelerate learning.

A common finding from research is that physical computing projects are particularly motivational 
to pupils (Garneli, Giannakos and Chorianopoulos, 2015). There are many different types of physical 
computing devices. Devices can include packaged electronics with no programming required, 
programmable robots and construction sets, programmable boards with integrated or external 
input and output devices that need a PC during use, battery-powered embedded programmable 
boards which can operate without a PC and general-purpose programmable boards that often use 
wired power (Hodges et al., 2020).
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Game creation
Game creation is often used as a context for learning how to program. However, as with research into 
physical computing pedagogy, the evidence for game creation being beneficial is often not robust 
(Kafai and Burke, 2015). One notable example of a games context being used to teach programming 
is the work of the Scalable Design Team (Repenning et al., 2015). Rather than basing teaching on 
objectives related to students learning about programming constructs such as sequence, selection 
and repetition, the curricula focus on common patterns used in creating simulations.

Across all contexts, project-based learning can be used to give learners autonomy, ownership 
and realism as learners are provided with choices as to what to investigate and build (Thomas, 
2000). A project-based learning approach to programming is associated with construction and 
constructionism as learners make things (or knowledge) through active exploration (Papert, 1980) 
and where the products made are meaningful in some way to the maker (Kafai and Resnick, 1996). 
This approach has come under criticism (e.g. Mayer, 2004), and incorporating scaffolding can be 
useful to provide some structure (Lye and Koh, 2014).

21.5 Supporting learners
Programming involves a complex set of skills, and some learners may find it challenging. There 
is a range of ways to support learners as they gradually master the key concepts and practice the 
skills.

Cognitive apprenticeship
Cognitive apprenticeship is a concept introduced back in the 1980s and refers to how novices can 
gain expert skills by observing and then practising expert activity (Collins, Brown and Newman, 
1987). Some teaching approaches associated with cognitive apprenticeship are modelling, coaching, 
scaffolding, student articulation, reflection and exploration. In their review of teaching and learning 
of computational thinking through programming, Lye and Koh found that authentic contexts with 
scaffolding and reflection activities appeared to be the most successful, but the authors advised 
that no one pedagogical solution is appropriate for all classes. They suggested using a number of 
approaches that fall under the umbrella of cognitive apprenticeship, including much scaffolding 
at the start of projects, modelling and studying, modifying and extending code samples (Lye and 
Koh, 2014).

Metacognition through abstraction
Several frameworks have been suggested that support teachers, and their students, to build mental 
models of abstractions related to programming, which will help them to teach and learn how to 
program. Understanding abstraction can aid metacognition.
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The Abstraction Transition Taxonomy (AT) divides student knowledge and practices in 
learning to program into three levels: code, computer science (CS) speak and English; AT also 
describes the transitions between these levels (Cutts et al, 2012). Another framework is Levels 
of Abstraction (LOA), a framework similar to AT but with four levels: execution of code, code, 
object and goals (Perrenet and Kaasenbrood, 2006). Armoni (2013) further developed this 
framework for high-school students, in which the ‘object’ level was renamed ‘algorithm’ level 
to support teacher and pupil understanding, and transitions across the levels were also defined. 
Statter and Armoni (2017) reported that learners using the framework showed improvements 
in attendance, algorithm development, algorithm creation, ability to explain solutions and 
understanding of initialization, with more improvement by girls than boys. To support primary 
classrooms, the LOA levels have been further renamed as running the code, code, design and 
task (Waite et al., 2018).

The importance of students being able to move from the ‘task’ level to the ‘code’ level and vice 
versa is linked with the advice that learners would benefit from being able to draw on existing 
templates or plans that solve a certain type of problem. To aid this, Lokkila et al. (2016) suggested 
that programmers would benefit from being taught ‘learning templates’ as a process for problem-
solving.

Scaffolding
Scaffolding is used in education to describe both the micro-level scaffolding of teachers interacting 
with students in lessons and the macro-level scaffolding of planning lesson goals and the 
organization of learning tasks (Hammond and Gibbons, 2001). A simple example of a continuum of 
scaffolding has been developed to provide initial guidance for teachers to understand their choices 
better; the Computer Science Student-Centred Instructional Continuum (CS-SCIC) includes 
broad categories of instructional approaches for programming, such as copying code, targeted 
tasks, shared coding, project-based, inquiry-based and tinkering. This has been successfully used 
in England and the United States to support teachers’ professional development (Waite and Liebe, 
2021). CS-SCIC reflects the tension between exploration, making and direct teaching, and gives 
teachers a way to talk about planning programming lessons as they create a sequence of learning 
experiences (Waite and Liebe, 2021).

There are other ways to support learners that are discussed elsewhere in this book. Chapter 5 covers 
the development of problem-solving skills using the lens of computational thinking. Chapter 20 
addresses programming misconceptions that teachers can usefully be aware of. Chapter 19 considers 
the use of planning and design in supporting learners to think algorithmically prior to getting stuck 
into code, and Chapter 14 focuses on the need for an understanding of appropriate language for 
programming. All these aspects add to our understanding of the effective teaching of programming 
in the classroom.
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21.6 Conclusion
In this chapter, we have described research that teachers can use to support their teaching of 
programming in schools. The chapter has included a range of classroom strategies such as reading 
code and pair programming, contexts in which programming may be taught and how to support 
students. There is still much for teachers and researchers to learn from experience and robust 
research as our knowledge of this area continues to grow.

Key points
 ● Collaboration using strategies such as pair programming and peer 

instruction can promote both problem-solving and use of programming-
specific language.

 ● Code comprehension activities facilitate an understanding of the program code, 
especially when mapped to the Block Model.

 ● Teacher modelling through live coding and worked examples enables learners to 
understand the process of programming.

 ● Programming can be taught in a variety of different contexts and environments, 
including physical computing and games and using unplugged approaches or block-
based languages.

 ● Learners can be supported in their programming journey through cognitive 
apprenticeship, developing metacognitive skills and providing scaffolding

For further reflection
Reflect on the different needs of different learners: Using this chapter, make 
a mind map of the ways that you can support the learners in your classes 
who seem to have struggled learning to program, and elaborate on how that might be 
implemented in your classroom context.
Go deeper: Many of the ideas in this chapter are underpinned by fundamental theories of 
learning that can help us understand learning better. Here are some source texts that you 
may want to read to increase your understanding:

 ● Lave and Wenger (1991)
 ● Papert (1980)
 ● Savery and Duffy (1995)

 

 



Programming in the Classroom 287

References
Armoni, M. (2013), ‘On Teaching Abstraction in Computer Science to Novices’, Journal of Computers 

in Mathematics and Science Teaching, 32 (3), 265–84. https://www.learn tech lib.org/p/41271.
Bau, D., Gray, J., Kelleher, C., Sheldon, J., and Turbak, F. (2017), ‘Learnable Programming: Blocks and 

Beyond’, Communications of the ACM, 60 (6): 72–80. https://doi.org/10.1145/3015 455.
Bell, T., Alexander, J., Freeman, I., and Grimley, M. (2009), ‘Computer Science Unplugged: School 

Students Doing Real Computing without Computers’, New Zealand Journal of Applied Computing 
and Information Technology, 13 (1): 20–9. https://www.cosc.can terb ury.ac.nz/tim.bell/csed ucat ion/
pap ers/Bell%20Al exan der%20Free man%20Grim ley%202 009%20JA CIT.pdf.

Busjahn, T., Bednarik, R., Begel, A., Crosby, M., Paterson, J. H., Schulte, C., Sharif, B., and Tamm, 
S. (2013), ‘The use of code reading in teaching programming’, in Proceedings of the 13th Koli 
Calling international conference on computing education research, 3–11. https://doi.org/10.1109/
ICPC.2015.36.

Collins, A., Brown, J., and Newman, S. (1987), ‘Cognitive Apprenticeship: Teaching the Craft of 
Reading, Writing, and Mathematics’. Technical Report No. 403. Center for the Study of Reading, 
University of Illinois at Urbana-Champaign. https://www.ide als.illin ois.edu/bitstr eam/han 
dle/2142/17958/ctrst read tech repv 0198 7i00 403_ opt.pdf.

Cutts, Q., Esper, S., Fecho, M., Foster, S. R., and Simon, B. (2012), ‘The Abstraction Transition 
Taxonomy: Developing Desired Learning Outcomes through the Lens of Situated Cognition’, in 
Proceedings of the 9th Annual International Conference on International Computing Education 
Research, 63–70. https://doi.org/10.1145/2361 276.2361 290.

Denner, J., Green, E., and Campe, S. (2021), ‘Learning to Program in Middle School: How Pair 
Programming Helps and Hinders Intrepid Exploration’, Journal of the Learning Sciences. https://doi.
org/10.1080/10508 406.2021.1939 028.

Denny, P., Luxton-Reilly, A., and Simon, B. (2008), ‘Evaluating a New Exam Question: Parsons 
Problems’, in Proceedings of the Fourth International Workshop on Computing Education Research, 
113–24. https://dl.acm.org/doi/10.1145/1404 520.1404 532.

Ericson, B. J., Margulieux, L. E., and Rick, J. (2017), ‘Solving Parson’s Problems versus Fixing and 
Writing Code’, in Proceedings of the 17th Koli Calling International Conference on Computing 
Education Research, 20–9. https://doi.org/10.1145/3141 880.3141 895.

Garneli, V., Giannakos, M. N., and Chorianopoulos, K. (2015), ‘Computing Education in K-12 
Schools: A Review of the Literature’, in 2015 IEEE Global Engineering Education Conference 
(EDUCON), 543–51. https://doi.org/10.1109/EDU CON.2015.7096 023.

Hammond, J., and Gibbons, P. (2001), ‘What Is Scaffolding?’ in J. Hammond (ed.), 
Scaffolding: Teaching and Learning in Language and Literacy education, 1–14. Primary English 
Teaching Association. https://eric.ed.gov/?id=ED456 447.

Hodges, S., Sentance, S., Finney, J., and Ball, T. (2020), ‘Physical Computing: A Key Element 
of Modern Computer Science Education’, Computer, 53 (4): 20–30. https://doi.org/10.1109/
MC.2019.2935 058.

Izu, C., Schulte, C., Aggarwal, A., Cutts, Q., Duran, R., Gutica, M., Heinemann, B., Kraemer, E., 
Lonati, V., Mirolo, C., and Weeda, R. (2019), ‘Fostering Program Comprehension in Novice 
Programmers – Learning Activities and Learning Trajectories’, in Proceedings of the Working Group 

https://www.learntechlib.org/p/41271
https://www.doi.org/10.1145/3015455
https://www.cosc.canterbury.ac.nz/tim.bell/cseducation/papers/Bell%20Alexander%20Freeman%20Grimley%202009%20JACIT.pdf
https://www.cosc.canterbury.ac.nz/tim.bell/cseducation/papers/Bell%20Alexander%20Freeman%20Grimley%202009%20JACIT.pdf
https://www.doi.org/10.1109/ICPC.2015.36
https://www.doi.org/10.1109/ICPC.2015.36
https://www.ideals.illinois.edu/bitstream/handle/2142/17958/ctrstreadtechrepv01987i00403_opt.pdf
https://www.ideals.illinois.edu/bitstream/handle/2142/17958/ctrstreadtechrepv01987i00403_opt.pdf
https://www.doi.org/10.1145/2361276.2361290
https://www.doi.org/10.1080/10508406.2021.1939028
https://www.doi.org/10.1080/10508406.2021.1939028
https://www.dl.acm.org/doi/10.1145/1404520.1404532
https://www.doi.org/10.1145/3141880.3141895
https://www.doi.org/10.1109/EDUCON.2015.7096023
https://www.eric.ed.gov/?id=ED456447
https://www.doi.org/10.1109/MC.2019.2935058
https://www.doi.org/10.1109/MC.2019.2935058


Computer Science Education 288

Reports on Innovation and Technology in Computer Science Education, 27–52. https://dl.acm.org/
doi/10.1145/3344 429.3372 501.

Kafai, Y. B., and Burke, Q. (2015), ‘Constructionist Gaming: Understanding the Benefits of Making 
Games for Learning’, Educational Psychologist, 50 (4): 313–4. doi: 10.1080/00461520.2015.1124022.

Kafai, Y. B., and Resnick, M. (1996), Constructionism in Practice: Designing, Thinking, and Learning in 
a Digital World, Mahwah, NJ: Lawrence Erlbaum Associates.

Katai, Z., Toth, L., and Adorjani, A. K. (2014), ‘Multi-Sensory Informatics Education’, Informatics in 
Education, 13 (2): 225–40. https://www.learn tech lib.org/p/158 137/.

Lave, J., and Wenger, E. (1991), Situated Learning: Legitimate Peripheral Participation, 
Cambridge: Cambridge University Press.

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., McCartney, R., Mostr, J. E., 
Sanders, K., Seppälä, O., Simon, B., and Thomas, L. (2004), ‘A Multi-National Study of Reading 
and Tracing Skills in Novice Programmers’. Working group reports from ITiCSE on innovation 
and technology in computer science education (ITiCSE-WGR ‘04), Association for Computing 
Machinery, New York, 119–50. https://dl.acm.org/doi/10.1145/1041 624.1041 673.

Lokkila, E., Rajala, T., Veerasamy, A., Enges-Pyykönen, P., Laakso, M., J., and Salakoski, T. (2016), 
‘How Students’ Programming Process Differs from Experts—A Case Study with a Robot 
Programming Exercise’, in EDULEARN16 Proceedings of the 8th International Conference 
on Education and New Learning Technologies, 1555–62. http://dx.doi.org/10.21125/edule 
arn.2016.1308.

Lye, S. Y., and Koh, J. H. L. (2014), ‘Review on Teaching and Learning of Computational Thinking 
through Programming: What Is Next for K–12?’ Computers in Human Behavior, 41: 51–61. https://
doi.org/10.1016/j.chb.2014.09.012.

Margulieux, L. E., Morrison, B. B., Franke, B., and Ramilison, H. (2020), ‘Effect of Implementing 
Subgoals in Code.org’s Intro to Programming Unit in Computer Science Principles’, ACM 
Transactions on Computing Education, 20 (4): 1–24. https://doi.org/10.1145/3415 594.

Mayer, R. E. (2004), ‘Should There Be a Three-Strikes Rule against Pure Discovery Learning?’ 
American Psychologist, 59 (1): 14–19. https://doi.org/10.1037/0003-066x.59.1.14.

McDowell, C., Werner, L., Bullock, H., and Fernald, J. (2006), ‘Pair Programming Improves Student 
Retention, Confidence, and Program Quality’, Communications of the ACM, 49 (8): 90–5. https://
doi.org/10.1145/1145 287.1145 293.

Papert, S. (1980), Mindstorms: Children, Computers, and Powerful Ideas, New York: Basic Books.
Parsons, D., and Haden, P. (2006), ‘Parson’s Programming Puzzles: A Fun and Effective Learning Tool 

for First Programming Courses’, in Proceedings of the Eighth Australasian Conference on Computing 
Education (ACE ’06), 157–63.

Perrenet, J., and Kaasenbrood, E. (2006), ‘Levels of Abstraction in Students’ Understanding of the 
Concept of Algorithm: The Qualitative Perspective’, ACM SIGCSE Bulletin, 38 (3): 270–4. https://
doi.org/10.1145/1140 124.1140 196.

Qian, Y., and Lehman, J. (2017), ‘Students’ Misconceptions and Other Difficulties in Introductory 
Programming: A Literature Review’, ACM Transactions on Computing Education, 18: 1. https://doi.
org/10.1145/3077 618.

Repenning, A., Webb, D. C., Koh, K. H., Nickerson, H., Miller, S. B., Brand, C., Horses, I. H. M., 
Basawapatna, A., Gluck, F., Grover, R., Gutierrez, K., and Repenning, N. (2015), ‘Scalable Game 
Design: A Strategy to Bring Systemic Computer Science Education to Schools through Game 

https://www.dl.acm.org/doi/10.1145/3344429.3372501
https://www.dl.acm.org/doi/10.1145/3344429.3372501
https://www.learntechlib.org/p/158137/
https://www.dl.acm.org/doi/10.1145/1041624.1041673
http://www.dx.doi.org/10.21125/edulearn.2016.1308
http://www.dx.doi.org/10.21125/edulearn.2016.1308
https://www.doi.org/10.1016/j.chb.2014.09.012
https://www.doi.org/10.1016/j.chb.2014.09.012
https://www.doi.org/10.1145/3415594
https://www.doi.org/10.1037/0003-066x.59.1.14
https://www.doi.org/10.1145/1145287.1145293
https://www.doi.org/10.1145/1145287.1145293
https://www.doi.org/10.1145/1140124.1140196
https://www.doi.org/10.1145/1140124.1140196
https://www.doi.org/10.1145/3077618
https://www.doi.org/10.1145/3077618


Programming in the Classroom 289

Design and Simulation Creation’, ACM Transactions on Computing Education, 15 (2): 1–31. https://
doi.org/10.1145/2700 517.

Robins, A., Rountree, J., and Rountree, N. (2003), ‘Learning and Teaching Programming: A 
Review and Discussion’, Computer Science Education, 13: 137–72. https://doi.org/10.1076/
csed.13.2.137.14200.

Rubin, M. J. (2013), ‘The Effectiveness of Live-Coding to Teach Introductory Programming’, in 
Proceedings of the 44th ACM Technical Symposium on Computer Science Education, 651–6. https://
doi.org/10.1145/2445 196.2445 388.

Savery, J. R., and Duffy, T. M. (1995), ‘Problem Based Learning: An Instructional Model and Its 
Constructivist Framework’, Educational Technology, 35 (5): 31–8.

Schulte, C. (2008), ‘Block Model: An Educational Model of Program Comprehension as a Tool for a 
Scholarly Approach to Teaching’, in Proceedings of the Fourth International Workshop on Computing 
Education Research (ICER ’08), 149–60. https://doi.org/10.1145/1404 520.1404 535.

Sentance, S., Waite, J., and Kallia, M. (2019), ‘Teaching Computer Programming with 
PRIMM: A Sociocultural Perspective’, Computer Science Education, 29 (2–3): 136–76. 
doi: 10.1080/08993408.2019.1608781.

Shah, N., and Lewis, C. M. (2019), ‘Amplifying and Attenuating Inequity in Collaborative 
Learning: Toward an Analytical Framework’, Cognition and Instruction, 37 (4): 423–52. https://doi.
org/10.1080/07370 008.2019.1631 825.

Statter, D., and Armoni, M. (2017), ‘Learning Abstraction in Computer Science: A Gender 
Perspective’, in Proceedings of the 12th Workshop on Primary and Secondary Computing Education 
(WiPSCE’17), 5–14. https://doi.org/10.1145/3137 065.3137 081.

Sweller, J. (1994), ‘Cognitive Load Theory, Learning Difficulty, and Instructional Design’, Learning and 
Instruction, 4 (4): 295–312.

Teague, D., and Lister, R. (2014), ‘Programming: Reading, Writing and Reversing’, in Proceedings of the 
2014 Conference on Innovation & Technology in Computer Science Education, 285–90. https://doi.
org/10.1145/2591 708.2591 712.

Thomas, J. W. (2000), ‘A Review of Research on Project-Based Learning’. Autodesk Foundation. 
https://www.asec.pur due.edu/lct/HBCU/docume nts/ARe view ofRe sear chof Proj ect-BasedL earn 
ing.pdf.

Tsai, C. Y., Yang, Y. F., and Chang, C. K. (2015), Cognitive Load Comparison of Traditional and 
Distributed Pair Programming on Visual Programming Language. 2015 International Conference 
of Educational Innovation through Technology (EITT), 143–6.

Vainio, V., and Sajaniemi, J. (2007), ‘Factors in Novice Programmers’ Poor Tracing Skills’, in 
Proceedings of the 12th Annual SIGCSE Conference on Innovation and Technology in Computer 
Science Education, 236–40.

van Merriënboer, J. J. G., and Sweller, J. (2005), ‘Cognitive Load Theory and Complex 
Learning: Recent Developments and Future Directions’, Educational Psychology Review, 17 (2), 
147–77. https://doi.org/10.1007/s10 648-005-3951-0.

Venables, A., Tan, G., and Lister, R. (2009), ‘A Closer Look at Tracing, Explaining and Code Writing 
Skills in the Novice Programmer’, in Proceedings of the Fifth International Workshop on Computing 
Education Research, 117–28. https://doi.org/10.1145/1584 322.1584 336.

Waite, J., Curzon, P., Marsh, D., Sentance, S., and Hawden-Bennett, A. (2018), ‘Abstraction in 
Action: K-5 Teachers’ Uses of Levels of Abstraction, Particularly the Design Level, in Teaching 

https://www.doi.org/10.1145/2700517
https://www.doi.org/10.1145/2700517
https://www.doi.org/10.1076/csed.13.2.137.14200
https://www.doi.org/10.1076/csed.13.2.137.14200
https://www.doi.org/10.1145/2445196.2445388
https://www.doi.org/10.1145/2445196.2445388
https://www.doi.org/10.1145/1404520.1404535
https://www.doi.org/10.1080/07370008.2019.1631825
https://www.doi.org/10.1080/07370008.2019.1631825
https://www.doi.org/10.1145/3137065.3137081
https://www.doi.org/10.1145/2591708.2591712
https://www.doi.org/10.1145/2591708.2591712
https://www.asec.purdue.edu/lct/HBCU/documents/AReviewofResearchofProject-BasedLearning.pdf
https://www.asec.purdue.edu/lct/HBCU/documents/AReviewofResearchofProject-BasedLearning.pdf
https://www.doi.org/10.1007/s10648-005-3951-0
https://www.doi.org/10.1145/1584322.1584336


Computer Science Education 290

Programming’, International Journal of Computer Science Education in Schools, 2 (1): 14–40. https://
doi.org/10.21585/ijc ses.v2i1.23.

Waite, J., and Liebe, C. (2021), ‘Computer Science Student-Centered Instructional Continuum’, in 
Proceedings of the 52nd ACM Technical Symposium on Computer Science Education (SIGCSE ‘21), 
1246. https://doi.org/10.1145/3408 877.3439 591/.

Weinman, N., Fox, A., and Hearst, M. A. (2021). ‘Improving Instruction of Programming Patterns 
with Faded Parsons Problems’, in Proceedings of the 2021 CHI Conference on Human Factors in 
Computing Systems, 53. https://doi.org/10.1145/3411 764.3445 228.

Weintrop, D., Killen, H., Munzar, T., and Franke, B. (2019), ‘Block-Based Comprehension: Exploring 
and Explaining Student Outcomes from a Read-only Block-based Exam’, in Proceedings of the 50th 
ACM Technical Symposium on Computer Science Education (SIGCSE ‘19), 1218–24. https://doi.
org/10.1145/3287 324.3287 348.

https://www.doi.org/10.21585/ijcses.v2i1.23
https://www.doi.org/10.21585/ijcses.v2i1.23
https://www.doi.org/10.1145/3408877.3439591/
https://www.doi.org/10.1145/3411764.3445228
https://www.doi.org/10.1145/3287324.3287348
https://www.doi.org/10.1145/3287324.3287348


291

22
Epistemic Programming

Sven Hüsing, Carsten Schulte  
and Felix Winkelnkemper

Chapter outline

 22.1 Introduction: Why should/would one engage in programming?
 22.2 Characterizing epistemic programming
 22.3 Epistemic programming projects
 22.4 Exemplifying the main aspects of epistemic programming

Chapter synopsis
This chapter introduces the idea of epistemic programming as a perspective on 
programming (projects) that focuses on its potential for gaining new insights, 
for example by analysing data. While epistemic programming is an exploratory 
(and typically data-driven) process, its core idea is to highlight the use of programming in 
terms of engaging in a subject of interest, of analysing it, of reflecting upon it and finally of 
using means of programming to present one’s own thoughts, ideas and insights. A typical 
product of such a process is a computational essay: a mix of source code, visualizations 
and verbal explanations that presents ideas or insights gained through the (programming) 
process.
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22.1 Introduction: Why should/would one 
engage in programming?
Within computer science education, it is a common goal to engage students in the art and craft 
of programming. Programming is often portrayed as being difficult, obscure and something 
for specialists, as described and questioned by Becker (2021). However, programming does 
not necessarily have to be seen as a burden. It can also be a passion and thereby a way of 
relaxing and of expressing oneself as it allows one to explore one’s own world and/or fields of 
interest. To widen the perspective on programming towards an interest-driven programming 
process, we describe a didactic programming concept called epistemic programming (EP). Its 
focus lies on letting students explore their (local) world through programming while at the 
same time gaining insights into the programming process itself. The approach allows them 
to perceive programming as a means of (self-)expression, communication and knowledge 
acquisition. To illustrate the broad idea behind the approach, before even touching on the 
subject of programming, we first tell the story of an amateur photographer, who explores the 
world through taking pictures while at the same time learning about the technology behind 
photography.

One of the authors of this chapter considers himself to be a passionate photographer. He also 
happens to have an affection for London, where, naturally, he takes a lot of photos. Taking photos 
in London could be considered a completely useless activity. Virtually any landmark of the city has 
already been photographed numerous times, both by hobbyists and by professional photographers. 
One could therefore argue that nobody has to do so themselves any more, as ‘professional solutions’ 
already do exist. However, for a passionate photographer, taking photos in London remains to be 
rewarding for several reasons.

 (1) Knowing existing photos of specific subjects which suggest it might be hard to photograph in 
a certain manner, it can be considered a challenge to try to take a similar photo, which means 
trying to figure out how the photo was created in terms of lighting, weather, lens, camera 
settings and post-processing. But being a hobby photographer is not only about trying to 
copy the work of others.

 (2) One could also find satisfaction in trying to capture a subject in a different way than usual, 
which would, for example, mean finding new perspectives, creating creative compositions or 
trying to capture it in special lighting situations.

 (3) Especially in very public places like in the City of London, a challenging and therefore 
rewarding undertaking might also be to try to find subjects which have indeed not 
been photographed before or which at least are not among the photographic clichés. 
This typically implies deviating from the usual paths a tourist would take. A hobby 
photographer, therefore, explores the location in one’s own way by making the process 
of exploration itself one’s own through taking photos. In this way, one expresses oneself 
through photography.
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Being a passionate hobby photographer therefore means one is engaged in exploring two areas 
of interest at the same time. The first one is the location (or subject) one is taking photos of. While 
roaming around, trying to find interesting subjects or perspectives, waiting for certain situations to 
occur or considering different kinds of lighting, one explores even a common tourist hotspot quite 
differently than the average tourist. On the other hand, one also explores the technologies and 
concepts behind taking photos, when to use which kind of lens, how to set up the camera and how 
to process the photos afterwards. In exploring both the subject of photography and the architecture 
of photography, one is improving one’s skills and knowledge in both areas. The outcome of this 
process is rewarding in itself. It is not just a copy of what others have done professionally but also 
a product of one’s own creativity.

This little report of an enthusiast photographer indicates that photography can be way more 
than the activity of taking and collecting photos as it can be a means of exploring the world 
individually and expressing oneself. Moreover, it is about improving one’s own skills and getting to 
know technical aspects about it. But what does this tale of photography as a leisure activity have in 
common with programming?

Similar to resorting to already existing, professionally created photos, one might argue that 
instead of oneself engaging in programming, one could merely use an already existing tool. While 
this may be an adequate argument for everyday problems, programming, as well as photography, 
can also be about expressing oneself through the individuality of the programming process itself 
as well as through its products. When taking photos while on holiday for the purpose of sending 
them to friends or family, these photos are supposed to transport a certain message. According to 
the expression/self-development-dimension described by Schulte (2013: 21), the same can be said 
about programming, as ‘programs unavoidably include ideas or problem solutions so that “others 
can reason about”’ it: in this characterization, programming is a way to express oneself through 
the creation of an aesthetic product. With programming, one could, for example, create a digital 
greeting card for one’s own family. In this case, one would also follow a certain idea of expressing 
oneself, which would have a quite aesthetic character.

In addition to that, EP may also serve the goals of generating ideas and searching and finding 
evidence for certain theories and ideas. Kay (2005), for example, describes how children could 
program a simulation of falling objects with different weights to show others the weight-
depending behaviour of these objects. Programming could similarly be used in order to evaluate 
the air quality in the classroom. In this case, students would focus on gaining and communicating 
insights (about air quality) through their programming process. As, in these examples, the goal 
of getting information about one’s world is rather more factual than in the previous, more artistic 
examples, this category of EP aligns particularly well with data analysis and data science/AI in 
general. However, even then, the aesthetic character remains an important factor, especially when 
transferring one’s findings to other people.

These examples of EP can be related to the heuristic or tinkering approach in which they are 
performed: when creating a greeting card, when developing a simulation and when evaluating data, 
one repeatedly switches between phases of adapting code and running it in order to discover areas 
where improvements may still be needed (e.g. if the greeting card is not yet to one’s liking, the 
simulation is not yet running accurately, or the appropriate evidence for a hypothesis has not yet 
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been found). It is the same kind of short feedback loop which can be observed in digital photography. 
Here, one would tinker with different camera angles, various zoom levels, different camera settings 
or lighting arrangements; check the results; adapt settings when necessary and try again.

Another similarity between photography and programming is that professional execution is 
quite complicated and complex. In photography, there are many aspects that need to be considered 
and specific ‘photography skills’ that are to be used and have to be learned in advance. Nevertheless, 
most of us would all agree to be some kind of ‘hobby-photographer’, at least in certain situations. 
Similarly, programming, while being an undertaking which can be carried out with high levels of 
skills, can also be performed and therefore be targeted at non-experts, who could use it as a tool for 
their own purpose, for example to find out something about an area they are interested in.

Just like you do not need to study photography to take a few nice shots and explore the world (while 
simultaneously learning something about the camera as well as the techniques of photography), 
leisure or – as they are sometimes called – end-user programmers (Ko et al., 2011) can also make 
active use of computers to explore the world, the technology and themselves. Through such an 
insight-driven programming approach, a computer can serve as a sort of magnifying glass on the 
world, so that one’s own environment can be explored in a way which would not have been possible 
without the technical aid of programming.

As programming can be seen as a tool to both express oneself and to perceive the world, mastering 
it to an adequate degree can be regarded as a kind of literacy, just like reading and writing. As Vee puts 
it: ‘It is important to widen access to programming because of its power and diversity of applications, 
which means that programming cannot be relegated to the exclusive domain of computer science. 
It is also important to broaden our concepts of writing to include programming. Together, images, 
sound and other modes of composition have already shifted the way we communicate and how we can 
express and process information’ (Vee, 2013: 60). Programming allows many kinds of compositions. 
In addition to fostering the exploration of a domain one is interested in, programming opens up and 
is an essential part of expressing ideas and communicating them.

With these goals in mind, EP aims at creating a specific type of interactive document, often 
called a computational essay. A computational essay is a ‘genre of scientific writing that combines 
live code, written prose, mathematics, and pictures or diagrams in order to make an argument, 
explain an idea, or tell a story’ (Odden and Malthe-Sørenssen, 2021: 15704). One could argue that 
the programming code itself already is a representation of the programming process, which can 
be further elaborated by additional explanations of the code as well as the programming results. In 
EP, we therefore explicitly introduce computational essays to enable students to keep track of their 
programming processes and the processes of creating self-expressions, ideas or evidence.

22.2 Characterizing epistemic programming
EP focuses on the acquisition of new insights and the expression and representation of ideas. 
The word ‘epistemic’ comes from the Greek, meaning ‘knowledge’. Bereiter (1980: 88) introduced 
‘epistemic writing’ to describe a way to gain knowledge through the act of writing, which combines 
the ‘skill system for reflective thought’ and the ‘skill system for unified writing’, to search for 
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meaning within a context. Writing, in this interpretation, becomes an essential part of thinking. 
Others conclude that the epistemic character of writing can also be experienced by novice writers 
or younger students in general (Casa et al., 2016; Galbraith, 1999; Pohl and Steinhoff, 2010; 
Strohmaier, Vogel and Reiss, 2018). Keys (1999) mentions the idea within different scientific fields 
to reflect on the respective content as well as to produce new knowledge through the act of writing 
itself. An important aspect of writing is that it can help to present knowledge explicitly in order to 
find connections or to think intensively about something based on the self-produced representation 
(Keys, 1999). Just like writing text, programming can represent an activity through which insights 
can be gained, be made explicit and be structured. Therefore, we call this kind of programming 
epistemic programming. To summarize, the goals behind the EP approach are as follows:

 (1) To convey that programming can be a tool to gain knowledge: students should be able to reflect 
that programming empowers the programmer to gain new insights. The programming process, 
therefore, is synchronized with the knowledge-acquisition process in terms of that hermeneutic, 
slowly advancing, tinkering process of digging deeper and deeper into a specific topic.

 (2) To dissolve the prejudices of the ‘nerdiness’ of programming by showing that it can play a 
major role in everyday life as (epistemic) programming represents a tool to discover one’s 
own fields of interest in one’s own world.

 (3) To include both the understanding of the (local) environment (external insights) and the 
acquisition of competent handling and understanding of digital artefacts for this very 
purpose (internal insights) (see the programming dimension of thinking in Schulte (2013)).

 (4) To communicate the intertwined knowledge acquisition and programming processes: Representing 
and recording expressions, ideas and evidence together with the respective programming 
process in order to reflect on these aspects and to distribute them to others.

EP projects can be of different grades of complexity: On the one side, one could focus on complex/
scientific research projects, where there is a concrete question that shall be answered. On the other 
side, one could just casually tinker with the means of programming to explore one’s own world without 
a specific epistemic question in mind or even without any desire for producing new insights at all.

In the next section, we will explore the concept of EP in more depth.

22.3 Epistemic programming projects
To further clarify the concept of EP, we use the 4P’s (people, project, product and process) often 
used to characterize software development (Jacobson, Booch and Rumbaugh, 1999). By doing so, 
we address the following questions:

 ● People: Who is EP aimed at; what roles do people have?
 ● Project: What sort of projects can be performed using an EP approach?
 ● Process: How can EP processes take place?
 ● Product: What characterizes the product of EP?
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People 
EP aims at making programming appeal to a wider audience: In a broad sense, even musicians 
using programming for composing and performing music engage in EP-like activities.1 In a similar 
direction, EP can be identified within the idea of storytelling with programming, often focusing on 
children using block-based languages, which are then used as a didactical tool for introducing ‘real’ 
programming (e.g. Adams and Webster, 2012; Šnajder, 2014). In a way similar to our introductory 
example, a study with graphic designers and photographers states that they were engaging in 
programming as scripting tool features in GIMP or Adobe Photoshop, mostly to save time, create 
custom effects or share artefacts (Dorn and Guzdial, 2006).

A major group for whom EP is useful or even mandatory are scientifically minded people – 
putting emphasis on the potential of EP as an activity to gain insights and evidence. As Zwart 
(2018: 979) describes, code ‘is a description of concepts and their relationships, which are 
imperative for reproducibility and validating the [scientific] results’; thus, without the ability to 
properly use this language, scientific progress is hindered (Zwart, 2018). Accordingly, EP can be 
seen as the skill needed by scientists in general for analysing and interpreting data and presenting 
and communicating their results (Somers, 2018). Again, also youth (i.e. laypersons) can use this to 
produce data-driven stories (Wilkerson et al., 2021). In this respect, EP can be classified as part of 
the scientific tradition of programming (see Chapter 2 in this book), as it is an approach of going 
through science-like cognitive processes.

Project
Having identified a wide range of people potentially being involved in EP, a similarly wide range of 
projects can benefit from it: Storytelling projects are projects where EP is used to develop, represent 
and share ideas. Programmers communicate them through an artefact that also has aesthetic 
intentions. These involve writing (e.g. in Twigg, Blair and Winter, 2019), music, graphic design or 
photography. These projects are likely to be open and exploratory while producing an interactive 
medium. They can be performed individually or in a group effort.

Data-driven stories are a specific form of storytelling, for example used by data journalists. Here, 
the role of data and of programming to explore and analyse data becomes much more prominent. 
Data stories as projects are often driven by some ‘epistemic need’ (see ‘general epistemic need’ in 
Kidron et al. (2010)) such as a question that might be answerable by evaluating data. Following 
this epistemic need, students might progress in a typical pattern of data science projects (see, e.g., 
Pfannkuch et al., 2010; Wild and Pfannkuch, 1999).

Data science projects could be called the most strict and scientific form of EP projects. They 
strive for evidence and represent it in a form that allows criticism and scrutiny by others. Especially 
by not only telling a data story but also including the code used to manage, clean, analyse and 
visualize data together with additional descriptions, they assure reproducibility. EP projects, 
therefore, allow others to also follow the process of enquiry, to reproduce it as well as to test it by 
changing the code and hence experiment with variations of the scientific analysis.
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Process
Within the range from open storytelling projects via data-driven storytelling to (professional) data 
science projects, the process of programming becomes more and more explicit, controlled and 
reproducible. Nevertheless, an important characteristic of EP remains to be its inherent tinkering 
style. Dong et al. (2019) identify tinkering processes in the field of open-ended assignments, allowing 
more opportunities for creative solutions and/or to pursue a set of different goals; it is becoming 
observable by back-and-forth changes in the code and is in this view connected to uncertainty, 
hesitation and indecisiveness (Dong et al., 2019: 1206). The article concludes that any of the observed 
tinkering behaviours can be either productive or detrimental. EP stresses the positive connotations 
of tinkering, interpreting it in line with using programming and coding like epistemic writing as a 
tool for thinking, similar to what Dong et al. (2019) call prototype-based tinkering. All in all, the 
key aspect of this process is the cognitive (and probably also motivational) function of building a 
representation of one’s idea that helps to clarify the idea and one’s own thinking.

In the more typical view on programming in computer science education, programming is 
more aligned to systematic problem solving and implementing algorithms. Coding is therefore 
always dependent on a previous modelling and design activity or on features of tasks that pre-
structure the solution (e.g. to implement a certain algorithm). From this perspective, tinkering 
would rather be seen as a sign of a lack of competencies, an obstacle in reaching one’s goals and a 
habit one should overcome. In contrast, in EP, tinkering is merely regarded as an indication that 
the process of thinking and gaining insights is becoming iteratively more and more profound. The 
process is targeted towards developing ideas and stories, creating meaning, getting insights and/or 
producing evidence – just as in writing, where experts plan, write and especially revise what they 
have written. In this process, one switches one’s role between being a writer and critic of oneself. 
The (intermediate) code is an interim representation of the current ideas and thought processes 
and is used to elaborate and refine one’s own thinking as well as ideas and insights.

EP can be implemented on various levels of complexity and could even serve the purpose of an 
introduction to programming. It can be aligned to ideas of data science projects as outlined in, for example, 
Ridsdale et al. (2015) or Wild and Pfannkuch (1999). In this context, EP affords and communicates 
aspects of programming that otherwise might be unrepresented. Following the EP approach, such 
aspects get the attention they deserve, not only as a prerequisite for writing computational essays but 
also as part of some everyday programming literacy. To hint at some of these aspects:

 a) In data science process models, for example, data has to be represented and therefore cleaned 
and probably transformed.

 b) Many aspects like analysing data, visualizing data as well as data transformations are supported 
by libraries. Their use and the ability to familiarize oneself with a library is essential.

 c) In many projects, programming is maybe closer to scripting, which according to Loui (2008) 
means relying on high-level abstractions and provides means for rapid prototyping, working 
with data in heterogeneous settings and getting things done with short source code snippets. 
It can also be interpreted as glueing together powerful components (Ousterhout, 1998).
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Generally, this tinkering or scripting process within EP projects typically proceeds in a kind of spiral-
like process: As the programming process is driven by new insights, the findings of each iteration 
of code-adaption need to be reflected upon in order to optimize the program according to the own 
research interest. This results in a circular sequence of code adaption, code execution, exploration 
of results and reflection of the results. From iteration to iteration, the code is therefore adapted to 
gradually gain more and more concrete insights, emerging from the programming results.

Product
There are numerous tools which would support or allow such tinkering processes covering numerous 
areas of interest – often making them accessible by relying on the direct manipulation principle. Just 
like in the photography example, one could argue that these could just be used without the need 
of programming something oneself. However, an important advantage of programming over using 
such tools is that the process is captured in the program code itself and can therefore be revisited at a 
later time. In this regard, EP and creating computational essays have the goal of making this thinking 
process permanent and thereby comprehensible to the reader of the program code, so that after the 
program code is written, one can understand this process, reflect on it, reproduce it or even further 
develop it. A specific aspect of this exploratory and/or tinkering process is that it blurs the distinction 
between (a) planning or designing, (b) implementing and (c) testing. All three are part of the stepwise 
creation of knowledge or insights, hence the product of this process.

The product of an EP project is not only the program itself but also the insights and the way they 
were gained, as the program typically does not fully convey its process of creation. Computational 
essays (DiSessa, 2000; Odden and Malthe-Sørenssen, 2021; Wolfram, 2017) can fill this gap. Within 
this medium, it is possible to combine the aspects of program code, programming execution as 
well as the documentation of the program code and the interpretation of its results. By creating a 
computational essay as an explicit product, it is possible to make the knowledge acquisition process 
as well as the programming process accessible to the ‘readers’, thereby also empowering them to 
tinker with the program for validating the results or gaining their own insights (as McNamara 
(2019) and Sandve et al. (2013) claim), allowing them to evolve into ‘writers’.

To create computational essays, Jupyter Notebooks (see Figure 22.1) are a suitable tool, as through 
their block structure, they allow programmers to record the programming process as well as the 
recognition or thought processes (Granger and Perez, 2021; Johnson, 2020). Program code can be 
segmented across different code cells, which can then be executed separately. The output of each 
code cell is displayed just below the respective cell. So-called markdown cells are used to comment 
on the programming code and the programming results. The programming and the knowledge 
acquisition process can be explained step by step through documenting the program code and 
interpreting the programming outputs within markdown cells. The final computational essay often 
needs cleaning and polishing of the versions produced during tinkering/scripting and commenting/
documenting of ideas and results (see Rule, Tabard and Hollan (2018) for further discussion).
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Key concept: Peer instruction
EP is characterized by the main goals of gaining insights, forming and 
representing ideas, and communicating:

 ● The product of EP is a computational essay that integrates program code 
as well as natural text in one place, thereby representing an executable and 
adaptable knowledge product, which aims to present and explain some insights 
or ideas.

 ● The process of EP is often based on tinkering, developing, testing and refining 
hypotheses where program code is used to represent ideas as well as to test and 
document them.

 ● The people addressed by EP are not only professional programmers but also 
laypersons who can use it to explore their own projects and interests and to be able 
to participate in a new form of communication (think, e.g., about data journalists).

 ● The projects typically carried out as EP projects are often based on data to be 
explored or on some phenomenon in one’s own sphere of interest.

Figure 22.1 Elements of a computational essay in a Jupyter Notebook
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22.4 Exemplifying the main aspects of 
epistemic programming
Within EP, students are supposed to learn how to use digital artefacts and (quite likely) data within 
these artefacts to create meaningful programs or evaluations and therefore to gain specific insights 
into the environment from which the data was obtained. Especially in the context of data science, 
EP provides a different perspective on programming by showing the students how the world can 
be made perceivable through data and how the model based on the data can be made explorable 
through programming. Programming appears as a tool to create insights, to be able to open up the 
world and thus to act self-determined and autonomously in society. This illustrates the educational 
relevance of EP (see the term ‘Bildung’ in Hopmann (2007) and Schulte and Budde (2018)).

A currently relevant example for insight-driven programming in a school context is the analysis 
of environmental data – an EP project that has already been tested within different school classes 
(Hüsing and Podworny, 2022). In this project, students engage in measuring and analysing 
different values, for example particulate matter, CO2, humidity or temperature, in the surrounding 
of their school to compare it to other cities or for different locations around their school (e.g. near 
a street and in a park). Here, programming is a suitable tool to gain and share such insights, for 
example to raise awareness for environmental protection on a local example. Within the project, 
students choose their own research focus for the data analysis and then collect suitable data, before 
analysing it. The whole process is constantly driven by an individual epistemic interest that the 
students are working on. The students try different evaluation methods and possibly also different 
data sets to create meaningful visualisations and evaluations in order to find an answer to their 
research question. When doing so, the students’ research focus is likely to be subject to change 
based on the analysis and its results, as new insights might also lead to new questions or interests. 
Finally, the students share their findings as well as their programming and knowledge acquisition 
process in a computational essay. In total, the focus is not only on the software product but more 
importantly also on the programming- and knowledge-acquisition process itself.

Key points
 ● Programming is not only a necessity in order to build new software 

products but also a tool for thinking, gaining and presenting (new) insights.
 ● Epistemic programming will be an important literacy for communication in 

a digital and data-driven world.
 ● Epistemic programming allows a different introduction to programming and 

programming languages that might spark interest and motivation in such learners 
who would not be interested in learning programming per se.

 ● Epistemic programming allows a low threshold to include data science in the 
computer science classroom.

 



Epistemic Programming 301

 ● Epistemic programming is not solely focused on teaching job-related skills but 
(like the photographer mentioned at the beginning of the chapter) to foster 
subjectivation and developing individual capacities to pursue one’s own interests 
and curiosity.

All in all, there are two main perspectives from which to look at this approach: from a perspective 
of computer science education, EP might represent a rather different and promising approach 
to inspire students to be interested in programming. It therefore could also change the students’ 
perception of programming in terms of relevant applications of programming skills (a).

From a knowledge-based view, students can gain individual insights through programming – 
on the one hand, about the digital artefacts (including the use of data) (internal insights) and, on 
the other hand, into a specific domain they are interested in (external insights) (see the thinking 
dimension of programming in Schulte (2013)). Programming enables them to gain insights that 
they could not have been able to get without it (b).

In the previous example of an environmental analysis, the insight-driven characteristic of EP 
becomes quite clear: While in other school-based programming approaches, the focus is often on 
products in the sense of software, on implementing an algorithm and on the students’ development 
of specific programming skills, within EP projects, students develop their own insight-driven focus 
and align their programming process with it.

Because of these intrinsic characteristics of EP, it might be a valuable approach to introduce the 
students to that kind of ‘leisure’, ‘follow-your-interest’ characteristic as well as a technique through 
which students can develop specific ideas or evidence and communicate them to others, thereby 
learning something about using data and digital artefacts and at the same time something within 
the context of their own interest.

For further reflection
 ● Reflect on your own programming projects, to what extent can they be 

interpreted as epistemic programming projects.
 ● Read the paper ‘The State of the Art in End-User Software Engineering’ by Ko et al. 

(2011) and compare the epistemic programming approach to end-user programming 
and end-user software development.

 ● Chapter 18 presents didactic principles for teaching programming at school: Do you 
think the principles mentioned there are also applicable and essential for teaching 
epistemic programming?

 ● Epistemic programming depends on the interaction with some kind of digital 
artefact, like Jupyter Notebooks. Use the ARIadne principle, described in Chapter 4, 
to analyse such artefacts in the context of interaction within the epistemic 
programming process.

 



Computer Science Education 302

Note
 1 See, for example, Blackwell and Collins (2005) with a discussion of programming languages for 

live coding and Brown and Sorensen (2009: 18) from a more compositional perspective on new 
practices and interaction with generating music, addressing the ‘live coder’ for whom ‘software 
code is a medium of expression by which creative ideas are articulated’.
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Algorithm A process for solving a problem or achieving an outcome, 
built from steps that a computational device can execute.

ARIadne principle A way of analysing digital artefacts by describing their 
architecture and their relevant societal discourses and 
interrelating them by retracing their genesis and by focusing 
on the interactions relevant stakeholders have with the 
artefact.

Binary representation Representing information on a computer using just two 
digits (usually written as 0 and 1).

Coding A loose term for computer programming (and when used 
more precisely, the part of programming that involves 
converting an algorithm or plan to a programming 
language); the word has other common meanings in 
computer science, including encryption coding, compression 
coding, channel coding, binary codes, markup language 
codes and more.

Competency A complex disposal of behaviour that can be applied to solve 
a certain task or problem that is relevant in “real” life.

Computational thinking A way of thinking about a problem and the important 
elements of it and breaking the problem down into steps that 
can be implemented on a computer.

Constructionism A form of constructivism that emphasizes student learning 
through the creation of concrete projects that are shared 
with others; constructionism has inspired the design of 
toolkits such as Logo, Lego Mindstorms and Scratch.

Constructivism A theory of learning that describes how students start to 
build their knowledge and understand though questioning, 
direct experience and reflection.

Glossary 
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Culturally responsive teaching The inclusion of students’ cultural references as a way to 
empower students to learn.

Curriculum Characterization of learning in terms of rationale, content, 
learning outcomes and instructional strategies; a curriculum 
can take the form of a formal document (‘intended’ 
curriculum) but can also appear as the learning that actually 
takes place (‘implemented’ or ‘attained’ curriculum).

Debugging Working out why a program doesn’t do what it was intended 
to, and fixing the problem.

Design Working out useful details of what is to be implemented 
as a program from the task or problem description (the 
requirements); the design is likely to include components 
such as the algorithm, a data structure design and graphical 
user interface design; for younger learners these components 
can be simplified, for example as the algorithm, the object 
and data design, the artwork and sound design.

Diversity The representation of different kinds of individuals and 
different kinds of social or cultural groups.

Duality reconstruction The analysis of digital artefacts in terms of architecture (‘how 
does it work’) and relevance (‘what does it do’) in order to 
understand the interaction between the artefact and the 
outside world.

Educational standard A set of competencies depicted in detail that were decided 
by educational authorities to be the minimal or average 
learning outcomes of educational institutions.

Equity The creation of opportunities for historically 
underrepresented populations to have equal access to and 
participation in computer science education.

Growth mindset The belief that one’s abilities can be developed through 
hard work.

Hybrid network A network consisting of human and digital actors, with 
human–human, human–computer and computer–computer 
connections and interactions.

Inclusion The active and intentional engagement with diversity such 
that a range of individuals are able to fully participate.

Integrated learning Learning where multiple subjects are used at the same time.
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Interaction The interplay between digital artefacts and the world, which 
can be viewed on three levels: interaction between a human 
and a computer, interaction within more complex hybrid 
networks and interaction between computing and society as 
a whole.

Intersectionality The interconnected nature of social categorization (e.g. 
gender, culture, ability).

Kinaesthetic activities Activities where physical, tangible objects are used as 
representatives of abstract concepts and/or where physical 
activities are used.

Learning objective A description of goals that educators aim to achieve in terms 
of learning progress of their students.

Meta-design Design of digital artefacts as a (socio-technical) problem 
solving framework that allows others to design their 
solutions, as opposed to design of such artefacts by directly 
implementing a concrete problem-solving strategy.

Metonymy A figure of speech in which a thing is not mentioned directly 
but via a closely associated thing (e.g. the name Hollywood 
can be used to refer to the movie industry associated with 
that neighborhood); extremely common in human language 
but not in programming languages.

Misconception An underdeveloped or flawed idea about specific content; 
different educational theories have different definitions for 
what a misconception (or ‘alternative conception’) is; we use 
the term in a loose sense.

Notional machine The capabilities of a particular programming system 
(language and environment), which the system draws on 
as it executes programs; ‘What the system can do for the 
programmer, and what it can’t’; understanding a notional 
machine is necessary in order to reason reliably about 
program behaviour and to instruct the system effectively.

Objectivation The identification of (in particular, human) actors and their 
behaviour with information processing units and processes.

Pair programming Two people work together at one computer to write code, 
switching frequently between working the keyboard and 
mouse and directing the work.
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Pedagogical content knowledge Knowledge about particular content from the perspective 
of learning and teaching: what difficulties does the content 
pose for learners, what methods and tools work for teaching 
the content and so on.

Semantic waves An approach to explanation that involves giving technical 
concepts but then relating them in some way to concrete (or 
material) situations or contexts that are already understood, 
before then explicitly linking back to the new concept.

Superbug The beginner mistake of instructing a computer much as one 
would instruct a human being with interpretive powers.

Translanguaging Designing instruction where students can access multiple 
languages to maximize communication.

Turing completeness A distillation of the kinds of structures that digital devices 
can execute, which helps to understand the limits of 
computation and the range of structures needed to write 
programs.

Turtle-based language A programming language based on movement (forward, left, 
right, etc.), either physically or on a screen.

Universal design for learning A framework to improve learning through flexible 
design that can meet the needs of students with diverse 
learning needs.

Unplugged Teaching computer science concepts without using a 
computer, or at least, without using programming as the 
vehicle.
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4Ps 295
5Es learning cycle 160

abstraction 56, 141, 222, 251, 284
Abstraction Transition Taxonomy 284
active writing 161
aims 27
algorithm 55, 70, 71, 142, 246
algorithmic thinking 55, 140
alternative conception 191
analogy 152, 262
application oriented 222
applications 142
architecture 40
ARIadne principle 40
art and craft 156
artefact 9
artefacts 58
artificial intelligence 70
assessment 197

formative 198
peer 199
process 205
product 205
self 199
summative 198

assignment statement 261
attained curriculum 22
attitude 183
automation 57

barriers 116
basic interpersonal communication skills 168
big ideas 136
binary representation 136
Block Model 171, 277, 278

block-based 282
Bloom’s taxonomy 27
Boolean expressions 55

CAPE 87
causality 8
classroom talk 170
code comprehension 277
code tracing 276
code writing 276
cognitive 121
cognitive academic language proficiency 168
cognitive apprenticeship 284
cognitive load theory 276
collaboration 59, 278
communication 45
complexity 221
computational essay 299
computational modelling 160
computational thinking 51, 53, 139
computing

as engineering 10
as mathematics and logic 13
as a science 15

concept 53, 54, 151, 243
concept map 162, 202
conceptual change 267
conceptual frameworks 231
content 25
content knowledge 30
context 158
context-based learning 157
creating 58
creativity 59, 88
cross-pollinating 125
CS for All 116
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culturally relevant pedagogy 105
culturally responsive

computing 106
sustaining education 124
teaching 105

culturally responsive-sustaining pedagogy  
92

culturally sustaining pedagogy 106
curricular spider web 20
curriculum 19, 39

components 20, 24
emphasis 30
implemented 22, 30
intended 21
layers 29
potentially implemented 29

data 45, 142
data driven 70
data science 297
debugging 54, 59, 241, 282
decision-making 31
decomposition 57
deconstructing 44
design 7, 139, 238

approaches 250
assessment 206
concepts 244

dialogic moves 171
digital artefacts 38
digital storytelling 91
disability 86, 88, 116, 124
discourse 161
diversity 87
duality programme 40

Edfinity 207
educational language 168
educational reconstruction 176
engage 292
engineering 7
enquiry-based learning 159
epistemic programming 291
equity 86, 87, 102, 103

pedagogies 92, 104, 107

evaluation 57, 141
everyday language 173
examples 226
execution model 265
exemplary examples 226
expectancy-value theory 88
explicit instruction 122
exploratory talk 171

false growth mindset 187
features 40
feedback 184

peer 201
fixed mindset 184
flowcharts 55
formative assessment 198

game 156, 283
gender 86
generalization 56, 141
genesis 40
Google Teachable Machine 75
growth mindset 184

high leverage practices (HLPs) 117, 121
historical storytelling 158

identity 31, 108
image recognition 73
implemented curriculum 22, 30
inclusion 86, 87, 116
inclusive 89
inclusive mindsets 117
incremental development 59, 229
intended curriculum 21
interaction 40
intersectional 123
intersectional identities 92
intervention change mechanisms 89
interview 206
invention 154
iteration 56, 145, 231, 281
iterative refinement 59

justice-oriented 92, 103
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Kidbots 144
kinaesthetic activities 154
knowledge-in-pieces 268

language 167, 221
logic 10, 54
logical thinking 54, 60, 140

machine learning 70, 71
magic and mystery 156
mastery 184
mathematics 10
media computation 91
meta-discourse 175
metacognition 121, 284
metaphor 172, 173
metonymy 263
mindset 90, 184

false growth 187
fixed 184
growth 184
teachers’ 186

minoritized learners 102
misconception 259
modelling 280
models 231
multiple-choice questions 204

natural-language semantics 261
nature of computing 5
neo-Piagetian 268
notional machine 221

objectives 27

pair programming 90, 170, 280
Parson’s problems/puzzles 201, 277
pathways 116
pattern 55, 230
pattern recognition 55, 140
pedagogical content knowledge 30
pedagogy 61, 71, 89, 90, 104, 119, 136, 147, 268
peer

assessment 199
feedback 201

instruction 280
performance 184
physical computing 283
planning 239
play 227
potentially implemented curriculum 29
practices 54
pragmatics 228
primary 237
primary schools 135
PRIMM 146, 171, 281
prior experiences 191
problem solving 53, 297
process 228, 297
process assessment 205
product 298
product assessment 205
program and algorithm comprehension 163
program behaviour 268
program execution 155
programming 90, 139, 144, 160, 205, 219, 238, 

275, 292
languages 72

progression 222
project 295, 296
project-based learning 284
pseudo-codes 55
purpose 262
puzzles 155

qualification 24

racial categories 86
rationale 24
relevance 40
response systems 204
role-playing 155
rubrics 201
rule-driven 70

scaffolding 152, 285
science 13
scientific language 173
selection 28, 145, 233, 261, 283
self assessment 199
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self-explanations 229
semantic waves 152
semantics 221
social impact 88
socialization 24
sociopolitical 108
software engineering 7
SOLO taxonomy 27
specification 230
STEM 62
stepwise improvement 229
storytelling 25, 153, 297

digital 91
historical 158

strategies 53
structure 262
subjectification 24
summative assessment 198
superbug 189, 264
syntax 221

taxonomy 27
Bloom’s 27
SOLO 27

teacher education 147
teachers 267
teachers’ mindset 186
technologies 122
TEMI 160
testing 59
theory-like 267
tinkering 298
translanguaging 124

universal design for learning (UDL) 90, 117, 118
unplugged 137, 154, 283
use-modify-create 223

vocabulary 261

worked examples 226
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